ESPOO 2003 VTT PUBLICATIONS 508

Paivi Parviainen, Hanna Hulkko, Jukka
Kaaridinen, Juha Takalo & Maarit Tihinen

Requirements engineering

Inventory of technologies

VTT PUBLICATIONS 508

Requirements engineering
Inventory of technologies

Paivi Parviainen, Hanna Hulkko, Jukka Kaariainen,
Juha Takalo & Maarit Tihinen

VTT Electronics

ISBN 951-38-6245-3 (soft back ed.)
ISSN 1235-0621 (soft back ed.)

ISBN 951-38-6246—1 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1455-0849 (URL: http://www.vtt.fi/inf/pdf/)

Copyright © VTT Technical Research Centre of Finland 2003

JULKAISIJA — UTGIVARE — PUBLISHER

VTT, Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

VTT, Bergsmansvégen 5, PB 2000, 02044 VTT
tel. vixel (09) 4561, fax (09) 456 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O.Box 2000, FIN-02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Kaitovdyld 1, PL 1100, 90571 OULU
puh. vaihde (08) 551 2111, faksi (08) 551 2320

VTT Elektronik, Kaitoviyli 1, PB 1100, 90571 ULEABORG
tel. viixel (08) 551 2111, fax (08) 551 2320

VTT Electronics, Kaitoviyla 1, P.O.Box 1100, FIN-90571 OULU, Finland
phone internat. + 358 8 551 2111, fax + 358 8 551 2320

Technical editing Marja Kettunen

Otamedia Oy, Espoo 2003

Parviainen, Péivi, Hulkko, Hanna, Kédridinen, Jukka, Takalo, Juha & Tihinen, Maarit.
Requirements engineering. Inventory of technologies. Espoo 2003. VTIT Publications 508. 106 p.

Keywords Requirements engineering (RE), RE methods, RE techniques, RE tools, system
and software engineering

Abstract

The purpose of this publication is to describe existing systems and software
requirements engineering techniques, methods and tools based on a literature
study. This publication covers a wide range of requirements engineering
methods and theoretical issues and thus provides a broad view of the field. Also,
some RE tools are described.

Requirements engineering is also described in general and RE processes
introduced to provide background information about RE and help to understand
the method descriptions. The main processes of RE as seen in this publication
include: System requirements development, requirements allocation and flow-
down, software requirements analysis and specification and continuous
processes including requirements documentation, requirements validation and
verification and requirements change management. Requirements Management
(RM) activities are understood to begin before actual requirements engineering
process phases (RM planning) and continuing during design, implementation,
testing and maintenance phases.

Preface

This publication has been drawn up during MOOSE (Software engineering
methodologies for embedded systems), which is an ITEA project (no 01002).
The project's main goal is to seamlessly integrate the different areas of product
and software development into a common framework.

The purpose of the literature study is to provide a comprehensive review of the
current state of requirements engineering. As this publication is an inventory of
existing requirements engineering methods, techniques and tools and contains
the requirements engineering process definition, it serves as the basis for further
research performed within the MOOSE project. More information about
MOOSE project together with its goals and publications can be found from the

project's web site, http://www.mooseproject.org.

Contents

ADSITACE ...ttt ettt ettt st b e st b ettt 3
PIEEACE ... st 4
List Of terMINOLOZYccvviivvieiieiieitiecieeeieeete ettt et ste e teeste e e teeereeabeesveesbeesbaesene e 6
L. INETOAUCHION. ...ttt s 11
2. Requirements eNgiNEEring PrOCESSESccvreerrreerireerrreerreeesveessseeessseessseeensnes 12
2.1 System requirements development...........ccceevveevieveesieeieereeereeeneennns 16

2.2 Requirements allocation and flow-dOWn........c.cceceevirinienineeneneneens 22

2.3 Software requirements analysis and specification.............cccceeveennenen. 29

2.4 Continuous activities in REcccocvivviiviiiiiiiieeeeee e 34
2.4.1 Requirements dOCUMENtAtiON.........ccveevveereerreereeireesreesireeneens 34

2.4.2 Requirements validation and verificationcccceccevennennee. 36

2.4.3 Requirements change management..............cceeeveerreerrveeveennens 37

2.5 Requirements management VIEWPOINL........c.eeeveerreereereervensreesreenenennns 37

3. Requirements engineering methods..........ccceeeevieriieecieeciie e 47
3.1 General MEthodS.......cceeieiiiriieiieieee e 48

3.2 System Requirements development............ccccceveveeeieeriieneeneeneenieenn. 52

3.3 Requirements allocation and flow-down...........ccccceevvvevieneeceeeneennen. 59

3.4 Software requirements analysis and specification............c.ccecevervennen. 61

3.5 CoNtiNUOUS ACHIVITIES .eouveeueeriiieiieeieenieesttesiee ettt et e st st eneean 72

3.6 Requirements Management...........c.eecveerveereerverrenreesseesseesnesnessseenses 78
3.6.1 Requirements identificationcceeeeveeeviieniieeeiieerveeeneeens 78

3.6.2 Requirements traceability............ccceeverierienieniieeneenie e 79

3.6.3 Requirements traceability models, methods and languages.... 80

3.6.4 Requirements change control..........c.cccceevevreieerieeneeneenieeiens 87

4. Requirements engineering toO0lS..........cvevvverierierieniieeieeseesee e ere e 93
4.1 INtrOAUCTION c..eineiiiiiieiieiee ettt s 93

4.2 Basic RM t00] fRAtUIESceevueruieierieeieie et 94

4.3 Examples of RE t00IScccoviiriieiieiieiecte e 95

S SUITIMATY .o ntteeiiteeiteeetteeteeette e et e ettt e sateesbteesaseesnteesnsaeeenseessseensseesnseesnnseenn 96
ACKNOWIEAZEMENLS.........vieiieiieiiieiie ettt e ereete et e e eaeenreesaessaessnesnseens 97
RETEIENCESeinieiiee et sttt 98

List of terminology

The terminology of this publication is presented in the following.

Allocation

Architecture

Baseline

Business
Requirements

COTS

Constraint

Derived
requirement

The process of distributing requirements, resources, or other
entities among the components of a system or program.
(IEEE Std 610.12-1990)

The organisational structure of a system or component.
(IEEE Std 610.12—-1990)

(1) A specification or product that has been formally
reviewed and agreed upon, that thereafter serves as the
basis for further development, that can be changed only
through formal change control procedures.

(2) A document or a set of documents formally designated
and fixed at specific time during the life cycle of a
configuration item.

(3) Any agreement or result designated and fixed at a given
time, from which changes require justification and
approval. (IEEE Std 610.12-1990)

Business requirements represent high-level objectives of the
organisation or customer requesting the system or product.
(Wiegers, 1999)

COTS (commercial off-the-shelf) is a ready-made software
product, which is supplied by a vendor and it has specific
functionality as part of a system (Morisio et al., 2000).

A statement that expresses measurable bounds for an
element or function of the system. That is, a constraint is a
factor that is imposed on the solution by force or
compulsion and may limit or modify the design changes.
(IEEE Std 1233-1998)

A requirement deduced or inferred from the collection and
organisation of requirements into a particular system
configuration and solution. (IEEE Std 1233-1998)

Embedded
softwar e

Embedded
System

End user

Hardware

Method

Prototyping

Raw
requirement

Requirement

A software that is part of a larger system and performs
some of the requirements of that system; for example,
software used in an aircraft or rapid transit system. (IEEE
Std 610.12-1990)

Embedded systems are products, which are directly
incorporated into electromechanical devices other than
general-purpose computer hardware, devises known as
target systems. (Stankovic, 1996)

The person or persons who will ultimately be using the
system for its intended purpose. (IEEE Std 1233-1998)

Physical equipment used to process, store or transmit
computer programs or data. (IEEE Std 610.12—-1990)

Provides a prescription for how to perform a collection of
activities, focusing on how a related set of techniques can
be integrated, and providing guidance on their use.
(Nuseibeh & Easterbrook, 2000.)

A hardware and software development technique in which a
preliminary version of part or all of the hardware or
software is developed to permit user feedback, determine
feasibility, or investigate timing or other issues in support
of the development process. (IEEE Std 610.12—-1990)

(An environmental or customer) requirement that has not
been analysed and formulated as a well-formed
requirement. (IEEE Std 1233-1998)

- (1) A condition or capability needed by a user to solve a
problem or achieve an objective.

- (2) A condition or capability that must be met or
possessed by a system or system component to satisfy a
contract, standard, specification, or other formally imposed
documents.

- (3) A documented representation of a condition or
capability as in (1) or (2). (IEEE Std 610.12—-1990)

Requirements
Engineering
(RE)

Requirements
Elicitation

Requirements
analysis

Requirements
M anagement
(RM)

Requirements
Negotiation

Requirements
Traceability
(RT)

Activities that cover discovering, analysing, documenting
and maintaining a set of requirements for a system.
(Sommerville & Sawyer, 1997)

Elicitation is one of the first phases in requirements
engineering and purpose is to discover requirements for the
system being developed. Requirements are elicited from
customers, end-users and other stakeholders such as system
developers. (Kotonya & Sommerville, 1998)

Analysis is one of the first phases in requirements engineering
and purpose is to analyse the elicited requirements. When
requirements are discovered, conflicts, overlaps, omissions
should be analysed. (Kotonya &
Sommerville, 1998; Sommerville & Sawyer, 1997)

and inconsistencies

Requirements management manages changes to agreed
requirements, relationships between requirements, and
dependences between the requirements document and other
documents produced during the systems and software
engineering process. (Kotonya & Sommerville, 1998)

Purpose of negotiation is to discover missing requirements,
ambiguous requirements, overlapping requirements and
unrealistic requirements. The result of the negotiation
process is a definition of the system requirements, which
are agreed by requirements engineers and stakeholders.
(Sommerville & Sawyer, 1997)

Requirements traceability refers to the ability to describe
and follow the life of a requirement, in both a forwards and
backwards direction (i.e., from its origins, through its
development and specification, to its subsequent
deployment and use, and through all periods of on-going
refinement and iteration in any of these phases) (Gotel &
Finkelstein, 1994a)

Requirements
Validation

Requirements

Verification

Specification

Stakeholders

System

System
breakdown
structure (SBS)

System
Engineering

Requirements validation is concerned with the process of
examining the requirements document to ensure that it
defines the right system (i.e. the system that the user
expects). (Kotonya & Sommerville, 1998)

The process of ensuring, that requirements statements are
accurate, complete and that they demonstrate the desired
quality characteristics. (Wiegers, 1999)

A document that fully describes a design element or its
interfaces in terms of requirements (functional,
performance, constraints, and design characteristics) and
the qualification conditions and procedures for each
requirement. (IEEE Std 1220-1998)

Stakeholders mean people or organisations who will be
involved by the system and who have an influence on the
system requirements. They could be end-users, managers
and others involved influenced by the system. They also are
for instance engineers responsible for the system
development and maintenance, customers of the
organisation. (Kotonya & Sommerville, 1998.)

A set or arrangement of elements [people, products
(hardware and software) and processes (facilities,
equipment, material, and procedures)] that are related and
whose behaviour satisfies customer /operational needs, and
provides for the life cycle sustainment of the products.
(IEEE Std 1220-1998)

A hierarchy of elements, related life cycle processes, and
personnel used to assign development terms, conduct
technical reviews, and to partition out the assigned work
and associated resource allocations to each of the tasks
necessary to accomplish the objectives of the project. It also
provides the basis for cost tracking and control. (IEEE Std
1220-1998)

System engineering integrates all the disciplines and
speciality groups into a team effort forming a structured

Techniques

Technologies

Traceability

Trade-off
analysis

development process that proceeds from concept to
production to operation. System engineering considers both
the business and the technical needs of all customers with
the goal of providing a quality product that meets the needs
of the user. (Leffingwell & Widrig, 2000)

Technical and managerial procedures that aid in the
evaluation and improvement of the software development
process. (IEEE Std 610.12—-1990)

Used here as an upper level term to cover processes,
methods, techniques and tools.

The degree to which a relationship can be established
between two or more products of the development process,
especially products having a predecessor-successor or
master-subordinate relationship to one another; e.g., the
degree to which the requirements and design of a given
system element match. (IEEE Std 610.12—-1990)

An analytical evaluation of design options/alternatives
against performance, design-to-cost objectives, and life
cycle quality factors. (IEEE Std 1220-1998)

10

1. Introduction

This publication has been drawn up during MOOSE (Software engineering
methodologies for embedded systems), which is an ITEA project (no 01002).
The basis of this publication is a literature study on Systems and Software
Requirements Engineering performed at VT T Electronics.

The publication presents both theoretical issues concerning systems and software
requirements engineering (i.e. the requirements engineering processes), and
practical means for implementing it (i.e. existing methods, techniques and tools).
The publication consists of three main parts:

1. Requirements engineering processes (chapter 2) describes requirements
engineering in general and introduces RE processes. The purpose of this
chapter is to provide the reader with an overview of requirements
engineering. The background information presented in this chapter serves as
the basis for understanding the method descriptions in chapter 3.

2. Requirements engineering methods (chapter 3) describes the RE methods
discovered during the performed literature study. Methods are organised
based on the requirements engineering processes presented in chapter 2.

3. Requirements engineering tools (chapter 4) introduces general types of
requirements engineering and requirements management tools and
technologies. The chapter also provides an insight into the variety of
computer-aided RE tools.

This publication covers a wide range of requirements engineering methods and
theoretical issues and thus provides a broad view of the field. An important
purpose of this document is to function as a background for further, more
detailed and focused research. This research will be carried out later on in the
MOOSE project, where a shortcomings analysis will be conducted for some of
the requirements engineering techniques, methods, and tools presented here.

11

2. Requirements engineering processes

This chapter introduces the requirements engineering processes, including their
purposes, inputs, activities and outputs. Also, methods that can be used during
the processes are mentioned; more detailed descriptions of the methods can be
found from the method part of the publication (chapter 3).

According to Sommerville & Sawyer (1997), selection of RE process depends
on many things: organisation, systems engineering and software development
process, type of the software developed, etc. All processes do not fit to all
organisations. Usually good requirements engineering process includes the
following activities (Sommerville & Sawyer, 1997):

1. Requirements elicitation, where the system requirements are discovered
through consulting the stakeholders, from system documentation,
domain knowledge and market studies.

2. Requirements analysis and negotiation, where the requirements are
analysed in detail, and they are accepted by the stakeholders.

3. Requirements validation, where the consistency and completeness of the
requirements is checked.

These activities also need support to accommodate changes in the requirements.

In embedded computer systems, due to physical constraints (e.g., timing, heat
production), system requirements engineering is very important, even more
important than software requirements engineering. Figure 1 depicts the main
processes of system and software requirements engineering and how
requirement management (RM) is understood as part of RE. The figure is based
on (Kotonya & Sommerville, 1998; Sailor, 1990; Thayer & Royce, 1990). In
addition, RM activities are understood to begin before actual requirements
engineering process phases (RM planning) and continuing during design,
implementation, testing and maintenance phases.

12

3 SydETi T T
u Ranuiramanes - "_ = R ppui rrse e Valldalizn and
e e &~ | dbEiimeAlalon | sericdlgn
arm Allscatian e ey
[Florw-doram
I i
T T :
£ t 11 _— c

FriE———
v

o

1111 I 1 R
D O developimend phises

Riequirem=ris
Kuanagemeni

Figure 1. The context of the System and Software requirements engineering
processes

The figure shows the different viewpoints that should be considered while
gathering requirements during system requirements phase. RE is iterative
process that will go into more details during each iterative cycle during
development phases. During gathering requirements, some analysis (e.g., cost -
benefit and technical feasibility analysis) is also done. In the next phase the
captured requirements will be allocated to system components and detailed
system requirements are defined and validated. Note that allocation and flow-
down may be done for several hierarchy levels. In allocation and flow-down
phase requirements identification and traceability have to be taken into account
and both system and software requirements specifications will be documented.
That phase provides essential input for other SW development phases and
maintenance. Requirements management (RM) activities are shown as a
continuous and cross-section process that begins from RM planning and
continues via activities of identification, traceability and change control during
and after RE process phases.

In following Table 1 the RE process phases are presented with CMMI (CMMI-
SE/SW, v1.1) engineering process areas.

13

Table 1. Requirements engineering process phases and CMMI process areas.

RE process phases

The engineering process ar eas
of CMMI and their Specific
Goals (SG)

Specific Practices (SP)
by goal

System requirements
development

Requirement devel opment:
SG1. Develop customer
requirements

SG2. Develop product
requirements

SG3. Analyse and validate
requirements

Requirements management:
SG1. Manage requirements

SP1.1-1 Collect stakeholder
needs

SP1.1-2 Elicit needs

SP1.2-1 Develop the customer
requirements

SP2.1-1 Establish product and
product-component
requirements

SP3.1-1 Establish operational
concepts and scenarios
SP3.4-3 Analyse requirements
to achieve balance

SP1.2-2 Obtain commitment to
requirements

Requirements allocation
and flowdown

Reguirement development:
SG2. Develop product
requirements

Reguirements management:
SG1. Manage requirements

SP2.1-1 Establish product and
product-component
requirements

SP2.2-1 Allocate product-
component requirements
SP2.3-1 Identify interface
requirements

SP1.2-2 Obtain commitment to
requirements

Software requirements
analysis and specification

Requirement development:
SG3. Analyse and validate
requirements

Requirements management:
SG1. Manage requirements

SP3.1-1 Establish operational
concepts and scenarios
SP3.2-1 Establish a definition
of required functionality
SP3.3-1 Analyse requirements
SP3.4-3 Analyse requirements
to achieve balance

SP1.2-2 Obtain commitment to
requirements

Continuous activities
(documentation,
validation and
verification, change
control)

Verification:

SGl1. Prepare verification

14

SP1.3-3 Establish verification
procedures and criteria

SG2. Perform peer reviews

SG3. Verify selected work
products

Validation
SGl1. Prepare for validation

SG2. Validate product or
product components

Reguirements management:

SG1. Manage requirements

SP2.2-1 Conduct peer reviews
SP2.3-2 Analyse peer review
data

SP3.2-2 Analyse verification
results and identify corrective
action

SP1.1-1 Select products for
validation

SP1.2-2 Establish the validation
environment

SP1.3-3 Establish validation
procedures and criteria

SP2.1-1 Perform validation
SP2.2-1 Analyse validation
results

SP1. 5-1 Identify
inconsistencies between project
work and requirements

Requirements
management

Reguirements management:

SG1. Manage requirements

SP1.1-1 Obtain an
understanding of requirements
SP1.3-1 Manage requirements
changes

SP1.4-2 Maintain bi-directional
traceability of requirements

In the following sections (2.1-2.3), each RE process is introduced, including
general descriptions of activities and references to suitable methods. In section

2.4 continuously ongoing RE activities — documentation, validation and

verification — are shortly presented.

Section 2.5 describes requirement

management (RM) process and its main activities, i.e., traceability and change
control. We have distinguished detailed RM consideration from RE phase model

to emphasise its support role for RE.

15

2.1 System requirements development
Purpose:

The main purpose of the system requirement development process is to examine
and gather desired objectives of the systems from different viewpoints (e.g.
customer, users, system's operating environment, trade and marketing) and these
objectives are identified as a set of functional requirements of the system. The
requirement development phase includes activities from requirements elicitation
process and also some parts of requirements analysis process as described by
Kotonya and Sommerville (1998).

Input:

Business requirements, customer requirements, user requirements, constraints,
in-house ideas and standards are inputs for this process.

Activities:

The process phase begins by gathering (eliciting) system requirements by
communication with all stakeholders. Typically, defining system requirements is
started by observing and interviewing people (Ambler, 1998). This is not a
straightforward task, because users may not realise, which their work activities
can be implemented by a computer system, and on the other hand, sometimes
users’ requirements are misunderstood because of their own terminology used to
describe the desired functionality. In addition, different types of users will have
different requirements. System requirements evolve from user requirements,
however, user and system requirements must be kept separate (Stevens et. al.,
1998). On the other hand, user requirements have to be analysed within the
context of business requirements (management perspective) like cost-
effectiveness, organisational and political requirements. Also, environment of
the system, e.g., external systems and technical constraints, have to be examined
and explicated. The main result of the system requirement development phase
are top-level system requirements (Sailor, 1990), which are the initial system
requirements on the top of the requirements hierarchy.

16

System requirements development process is also the phase where requirements
documentation has to be considered for the first time, e.g., gathered requirements
have to be identified. The following figure shows the context for developing
system requirements specification (SyRS).

RAW REQUIREMENT
CUSTOMER
CUSTOMER
FEEDBACK
CUSTOMER REPRESENTATION DEVELOP
SYSTEMS
REQUIREMENTS < TECHNICAL FEEDBACK
COLLECTION
CONSTRAINT
ENVIRONMENT /INFLUENCE
REPRESENTATION TECHNICAL
COMMUNITY

Figure 2. The context for developing of SyRS (IEEE Sd 1233-1998).

IEEE Standard (1233—-1998) states that customers are the prime system drivers
providing their objectives and needs, or describing problems or ideas for the
desired system. Feedback to the customer includes SyRS representations, e.g.,
technical interchange or communication clarifying or confirming requirements.
Also, the environment can set constraints for system requirements.
Environmental influences can be classified as follows: political, market,
standards and technical policies, cultural, organisational and physical factors.
The technical community includes activities of system design, implementation,
integration, test, manufacturing, deployment, operations and maintenance.

According to IEEE Std 1233-1998 the SyRS development includes four (4) sub-
processes:

1. Identify requirements from customer, environment and technical community
(see Figure 2)

2. Build well-formed requirements
Organise the requirements into SyRS

4. Present the SyRS in various representations for different audiences.

17

The context of the first sub-process was already described. In the second phase,
well-formed requirements should be built. A well-formed requirement is a
statement of system functionality (a capability) that must be met or possessed by
a system to solve a customer problem or to achieve a customer objective, and
that is qualified by measurable conditions and bounded by constraints. In the
third subprocess, structure should be added to the set of requirements by relating
the requirements to one another according to some comparative definition
method. In the last phase, analysts (who work with customer) should identify the
best means of communicating the requirements to all individuals that need to
understood, review, accept or use the SyRS.

The following table (Table 2) presents requirements categorisation based on
Buede, D.M. (1997).

Table 2. Categorisation model for system requirements (Buede, 1997).

Input/output | This requirements category includes sets of acceptable inputs
requirements | and outputs, trajectories of inputs to and outputs from system,
interface constraints imposed by the external systems and
eligibility functions that match system inputs with system
outputs for the life-cycle phase of interest. This category can
be partitioned into four subsets:

- Inputs.

- Outputs.

- External interface constraints.

- Functional requirements.

Technology | This requirements category consists of constraints and
and performance index thresholds (e.g. the length of the operational
systemrwide | life for the system, the system's availability) that are placed
requirements | upon the physical resources of the system. This category can be
partitioned into four subsets:
- Technology.
- The different attributes of the system,
¢.g. maintainability and availability.
- Cost.
- Schedule, e.g. development time period, operational
life of the system.

18

Trade-off Algorithms for comparing any two alternative designs on the
requirements | aggregation of cost and performance objectives.
These algorithms can be divided into three sub categories:

- Performance trade-offs.

- Cost trade-offs.

- Cost-performance trade-offs.

System test These requirements have four primary elements:

requirements - Observance: stating how the test data for each
requirement will be obtained.

- Verification plan: stating how the test data will be used
to determine that the real system conforms to the design
that has been developed.

- Validation plan: stating how the test data will be used
to determine that the real system complies with the
originating requirements.

- Acceptability: stating how the test data will be used to
determine that the real system is acceptable to the
stakeholders.

During system requirements development phase, different categorisation models
can be used to ensure that requirements are considered from all relevant
viewpoints. The categorisation models are useful from documentation
(specification) viewpoint, too.

Sommerville and Sawyer (1997) categorise requirements to functional and non-
functional requirements: functional requirements describe what the system
should do and non-functional requirements place constraints on how these
functional requirements are implemented. Stevens et al. (1998) points that
functionality itself is useless if the function is, for example, unreliable or not fast
enough. They list following types of requirements that also may be necessary:

- performance requirements
- information relation ship and history requirements
- temporal and dynamic behaviour requirements

- requirements for parallelism or concurrency

19

- logical behaviour (e.g. conformance to a mathematical model)
- flow of control

- flows of data or material

- non-functional requirements (constraints)

- interactions with external systems

- end-to-end scenarios

SPICE (1998) processes and base practices that are related to system
requirements development include:

- CUS3 Requirements edlicitation process. The purpose of the
Requirements elicitation process is to gather, process, and track evolving
customer needs and requirements throughout the life of the software and/ or
service so as to establish a requirements baseline that serves as the basis for
defining the needed software work products. Base practices include:

= CUS.3.BPI: Obtain customer requirements and requests.
= (CUS.3.BP2: Agree on requirements.

= (CUS.3.BP3: Establish customer requirements baseline

= (CUS.3.BP4: Manage customer requirement changes

= CUS.3.BPsS: Understand customer expectations

= CUS.3.BPé6: Keep customers informed.

- ENG.1.1 System requirements analysis and design process. The purpose
of the System requirements analysis and design process is to establish the
system requirements (functional and non-functional) and architecture,
identifying which system requirements should be allocated to which
elements of the system and to which releases. Some of the following base
practices (BP3, BP4, BP7) are related to the allocation and flow-down
process phase (section 2.2):

= ENG.L.1BP1: Identity system requirements

= ENG.1.1BP2: Analyse system requirements (partly allocation and
flow-down)

20

= ENG.1.1BP3: Describe system architecture (allocation and flow-
down)

= ENG.1.1BP4: Allocate requirements (allocation and flow-down)
= ENG.1.1BP5: Develop release strategy
= ENG.1.1BP6: Communicate system requirements

= ENG.1.1BP7: Establish traceability

The following methods and techniques (of the RE methods described in section 3)

are applicable to system requirements development activities:

- Gathering/dlicitation:

Section 3.1: Brainstorming, Contextual inquiry, interviewing,
observation, prototyping and scenarios.

Section 3.2: CORE, Ethnography, JAD, Protocol Analysis, QFD,
REVEAL, SCRAM, SSM, VOSE and VORD.

Section 3.4: Volere.

Section 3.5: requirements reuse.

- Analyss:

Section 3.1: prototyping, scenarios.

Section 3.2: MPARN, QFD, REVEAL, SCRAM, SSADM, VORD and
VOSE.

Section 3.3: SRA.
Section 3.4: SCR and WinWin.

Section 3.5: requirements modelling.

Outcome:

The results of system requirements development phase are captured as top-level

requirements that are input for allocation and flow-down phase.

According to SPICE (1998) results of customer requirements elicitation process

include:

- continuing communication with the customer will be established

21

agreed customer requirements will be defined

a mechanism will be established to incorporate new customer requirements
into the established requirements baseline

a mechanism will be established for continuous monitoring of customer
needs

a mechanism will be established for ensuring that customers can easily
determine the status and disposition of their requirements

enhancements arising from changing technology and customer needs will be
identified and their impact managed.

According to SPICE (1998) results of system requirements analysis and design

process include (partly results of allocation and flow-down):

requirements of the system will be developed that match the customer's
stated needs

a solution will be proposed that identifies the main elements of the system
(allocation and flow-down)

the requirements will be allocated to each of the main elements of the
system (allocation and flow-down)

a release strategy will be developed that defines the priority for
implementing system requirements

the system requirements will be approved and updated as needed

the requirements, proposed solution, and their relationship will be
communicated to all affected parties.

2.2 Requirements allocation and flow-down

In this process, requirements and design (or architecture) work are closely

linked. Requirements analysis is often defined as the “what” of a problem, it is

implementation-free and contains objectives, not methods. Design is then the

“how”, it describes the implementation that will meet the requirements. The two

are supposed to be kept distinct, although, the feasibility of meeting a

requirement must always be considered. (Dorfman, 1990)

22

The development of system-level requirements is, to the extent possible, a pure
“what” addressing the desired characteristics of the complete system.
Determining levels of the hierarchy and allocating system requirements to the
elements, are a “how”. They do not address objectives beyond the system
requirements, but they define a subsystem structure that enables the
requirements to be met. Flow-down is again a “what”, determining what each
element should do (functions, performance, etc.). Development of the
architectural design is then a process in which the steps of requirements analysis
and design alternate, with more detail brought out at each cycle. The output of
requirements analysis is input to the next state of design and the output of design
is input to the next stage of requirements analysis. (Dorfman, 1990).

Pure requirements analysis, like pure design, can only go so far, both disciplines
are needed to achieve the desired result, a system that meets its users’ needs. The
characteristics of requirements analysis, like that of design, change as the work
proceeds down in the hierarchy: requirements analysis for a lower-level element
is much more detailed and involves knowledge of previous design decisions.
The tools and methods used for analysis do in fact support all aspects of
architectural design development: partitioning, allocation, and flow-down. They
are useful, therefore, in both the requirements analysis and design stages of the
process. (Dorfman, 1990) The methods include Shlaer-Mellor Object-Oriented
Analysis Method, OMT, UML etc.

Purpose:

Requirements allocation and flow-down process is primarily a matter of making
sure that all system requirements are fulfilled by a subsystem somewhere or by a
set of subsystems collaborating together. Top-level system requirements will need
to be organised hierarchically, helping to view and manage information at
different levels of abstraction (Leffingwell & Widrig, 2000; Stevens et al., 1998).

Architectural models provide the context for defining how applications and
subsystems interact with one another to meet the requirements of the system.
Goal of architectural modelling, also commonly referred to as high-level
modelling or global modelling, is to define a robust framework within which
applications and component subsystems may be developed. Component
diagrams may be used to describe the framework (component diagrams show

23

software components their interfaces and their interrelationships. (Ambler, 1998)
More information of component diagrams can be found from (Rational, 1997;
Booch, 1994).

Input:

Top level system requirements defined in system requirements development (see
section 2.1) are the main input for requirements allocation and flow-down phase.
As the system level requirements are being developed, also the elements that
should be defined in the hierarchy, should be considered. By the time the system
requirements are complete in draft form, a tentative definition of at least one and
possibly two levels of system hierarchy should be available. This definition will
include names and general functions of the elements. Definition of the system
hierarchy is often referred to as “partitioning”. (Dorfman, 1990).

Activities:

Requirements Allocation: Each system level requirement (with its requisite
performance and interface characteristics) is allocated to one or more elements at
the next level (i.e., it is determined which elements will participate in meeting
the requirement). The allocation process is iterative; in performing the
allocation, needs to change the system requirement (additions, deletions, and
corrections) and/or the definitions of the elements may be found. (Dorfman,
1990; Pressman, 1992).

Allocation includes also allocating the non-functional requirements to system
elements. Each system element will need an apportionment of the non-functional
requirements (e.g., performance requirement). (Nelsen, 1990). However, all
requirements are not allocable; non-allocable requirements are items such as
environments, operational life and design standards, which apply unchanged
across all elements of the system or its segments. (Sailor, 1990)

The flowing-down of top-level system requirements through lower levels of the
hierarchy until the hardware and software component levels are reached is
known as “top-down” analysis. In theory, it produces a system in which all
elements are completely balanced or “optimised”. In the real world, complete
balance is seldom achieved, because fiscal, schedule, and technological

24

constraints result in some “flow-up” requirements. (Sailor, 1990). “Top-down”
simply means that the requirements are decomposed from the top, or system
level, and allocated down through subsystems, hardware equipment, and
software programs in an orderly fashion. The requirements are decomposed
down to the level at which the requirement can be designed and tested. Top-
down analysis can be done in structured manner, “Structured” means that the
analysis is logical in nature and is documented and implemented in a consistent
manner throughout all levels of the system. (Nelsen, 1990). Methods that can be
used in this include e.g., SSADM.

In addition to top-down analysis, also exploring options from a bottom-up and
middle -out perspective is needed. Upper-level diagrams summarise the lower
levels of functionality and behaviour, but we must not neglect the advantage of
top-down analysis, particularly in analysing the interactions between levels.
(Stevens et al., 1998)

The overall process of the evaluation of alternative system configurations
(allocations) includes:

- Definition of alternative approaches.

- Selection of evaluation criteria — e.g. performance, effectiveness, life-cycle
cost factors.

- Evaluation of alternatives.

- Application of analytical techniques (e.g., models).
- Data generation.

- Evaluation results.

- Sensitivity analysis (exposing areas, in which a small change in capability of
the item would cause a large change in total system performance or cost).

- Definition of risk and uncertainty.

- Selection of the configuration. (Pressman, 1992; Blanchard & Fabrycky,
1981).

25

Example steps of allocation include (based on structural analysis) (Nelsen, 1990):

1. System is taken as a whole and all of the external inputs and outputs
associated with the system are generally defined, including their source and
destination. All of the overall system requirements are defined that would
apply to this single transfer function.

2. The single system transfer function is decomposed into major elements. By
using the functional requirements isolated from the customer’s
documentation by the system engineers, the requirements are categorised
and grouped according to these general functions. All inputs and outputs
from the first level will be included at this level, but rather than go into or
out of one element they must be directed toward that element to which they
apply. At this point the derivation of additional requirements begins, there
are additional interfaces required between these second-level elements,
which are not explicit system requirements, but are requirements derived
from the system decomposition.

3. Each level 2 element is individually decomposed into the next lower-level
functions. Level 3 allocations are those elements that will functionally
satisfy all the requirements associated with one of the level elements and
that will include all of the interfaces of that element. These elements may
not be the lowest level, but may still be able to be decomposed further at the
next level. As the process continues to lower functional levels, the derivation
of requirements becomes a more significant part of the process and calls
upon the expertise at the more detailed design level.

Once the functions of the system have been allocated, the system engineer can
create a model that represents the interrelationship between system elements and
sets a foundation for later requirements analysis and design steps. For example,
an architecture template (Hatley & Pirbhai, 1987) can be used to develop system
model (Hatley—Pirbhai Methodology (HPM)). (Pressman, 1992)

Requirements Flow-down: Flow-down consists of writing requirements for the
lower level elements in response to the allocation. When a system requirement is
allocated to a subsystem, the subsystem must have at least one requirement that
responds to the allocation. Usually more than one requirement will be written.
The lower-level requirement(s) may closely resemble the higher level one, or
may be very different if the system engineers recognise a capability that the

26

lower level element must have to meet the higher-level requirements. In the
latter case, the lower-level requirements are often referred to as “derived”.
(Dorfman, 1990).

Derived requirements are requirements that must be imposed on the
subsystem(s). These requirements are derived from the systems decomposition
process, as such, alternative decompositions would have created alternative
derived requirements. Typically there are two subclasses of derived
requirements:

- Subsystem requirements are those that must be imposed on the subsystems
themselves but do not necessarily provide a direct benefit to the end user.

- Interface requirements may arise when the subsystems need to communicate
with one another to accomplish an overall result. They will need to share data
or power or a useful computing algorithm. (Leffingwell & Widrig, 2000).

The level of detail increases as the work proceeds down in the hierarchy. That is,
system-level requirements are general in nature, while requirements at low levels
in the hierarchy are very specific. When flow-down is done, errors may be found
in the allocation, the hierarchy definition and the system requirements.
(Dorfman, 1990).

Software requirements analysis and specification is part of this activity, but is
described in its own section (see section 2.3).

Interfaces: As each level of partitioning, allocation and flow-down takes place,
the interfaces of each element to the rest of the system must be specified. This
definition has two parts. First, interfaces defined at higher levels are made more
specific, i.e., the external interfaces to the entire system are identified as to
which subsystem(s) actually perform the interface. Second, internal interfaces at
that level are defined, i.e., the subsystem-to-subsystem interfaces needed to
enable each subsystem to meet the requirements allocated to it. Any interface
between pairs of parent functions must appear between some of their children,
with the flows in the same direction(s) and forming continuous chains at the
lower level(s). (Dorfman, 1990; Stevens et al., 1998)

27

Traceability: The number of requirements proliferates rapidly during the
allocation and flow-down process. Keeping track of these requirements is
essential to make sure that all requirements are properly flowed down to all
levels with no requirements lost and no “extras” thrown in. Reading the
requirements becomes impossible, without a way to keep track of the flow-down
path in the hierarchy. Establishment of traceability as allocation and flow-down
are done helps to assure the validity of the work. Then, if changes are needed
traceability enables locating the related requirement at higher and lower levels,
that must be reviewed to see if they need to be changed. (Dorfman, 1990).
Traceability is part of requirements management and is discussed in more detail
in section 2.5.

The following methods (of the RE methods described in chapter 3) are
applicable to requirements allocation and flow-down activities:

- Allocation:

= Section 3.3: ATAM, Hatley-Pirbhai methodology and SRA.

= Section 3.4: Booch methodology, HOORA and Jacobson method.
- Flow-down:

= Section 3.3: ATAM and SRA.

Outcome:

The result of this process is detailed system level requirements and the
“architectural design” or “top-level design” of the system. Although it is called a
design, requirements engineering is involved throughout the process. (Dorfman,
1990) Also, needs to change the system requirement (additions, deletions, and
corrections) and/or the definitions of the system elements may be found.

The decomposition is done right when:

- Distribution and partitioning of functionality are optimised to achieve the
overall functionality of the system with minimal costs and maximum
flexibility.

- Each subsystem can be defined, designed, and built by a small, or at least
modest-sized team.

28

- Each subsystem can be manufactured within the physical constraints and
technologies of the available manufacturing processes.

- Each subsystem can be reliably tested as a subsystem, subject to the
availability of suitable fixtures and harnesses that simulate the interfaces to
the other system.

- Appropriate deference is given to the physical domain - the size, weight,
location, and distribution of the subsystems - that has been optimised in the
overall system context. (Leffingwell & Widrig, 2000).

2.3 Software requirements analysis and specification

Requirements analysis is a software engineering task that bridges the gap
between system level software allocation and software design. Requirement
elicitation and analysis are closely linked processes. As requirements are
discovered during the elicitation process, some analysis is done. When
requirements are discovered, conflicts, overlaps, omissions and inconsistencies
should be analysed. (Kotonya & Sommerville 1998; Sommerville & Sawyer,
1997; Pressman, 1992)

Purpose:

The software requirements analysis is the activity of determining what functions
the software will perform and documenting those functions and other
requirements in a software requirements specification. Requirements analysis
enables the specification of software functions and performance, indication of
software’s interface with other system elements, and establishment of design
constraints that the software must meet. Requirement analysis also refines the
software allocation and builds models of the process, data, and behavioural
domains that will be treated by software. Requirements analysis provides a
representation of information and function that can be translated to data,
architectural and procedural design. Finally the requirements specification
provides the developer and the customer with the means to assess quality once
the software is built. (Pressman, 1992)

29

Through the system mechanism of flow-down, allocation, and derivation, a
software requirements specification will be established for each software
subsystem, software configuration item, or component. A requirements
traceability mechanism will be established that will generate an audit trail
between the system/software requirements and final tested code. (Thayer &
Royce, 1990)

I nput:

The starting point for the analysis is the detailed system level requirements
allocated for the system component software.

Activities:

According to SPICE (1998) the following base practices belong to software
requirements analysis process:

- Specify software requirements: Determine and analyse requirements of the
software components of the system and document in a software
requirements specification.

- Determine operating environment impact: Determine the interfaces between
the software requirements and other components of the operating
environment, and the impact that the requirements will have.

- Evaluate and validate requirements with customers: Communicate the
software requirements to the customer, and based on what is learned through
this communication, revise if necessary.

- Develop validation criteria for software: Use the software requirements to
define the validation criteria for the software. The validation criteria are used
in developing the software tests.

- Develop release strategy: Prioritise the software requirements and map them
to future releases of the software.

- Update requirements for next iteration: After completing an iteration of
requirements, design, code, and test, use the feedback obtained from use to
modify the requirements for the next iteration.

30

- Communicate software requirements: Establish communication mechanisms
for dissemination of software requirements, and updates to requirements to
all parties who will be using them.

- Establish traceability: Establish traceability between the system requirements
and the software requirements.

Software requirements stage has two distinct activities: problem analysis and
product description:

- Problem analysis is the activity that encompasses learning about the
problem to be solved (often through brainstorming and/or questioning),
understanding the needs of potential users, trying to find out who the user
really is, and understanding all the constraints on the solution. Problem
analysis is defining the product space, i.e., the range of all possible software
solutions that meet all known constraints. The needs of user, customer and
the development organisation need to be defined. The needs of users can be
uncovered by watching the users to do the job (methods such as
Ethnography or SSM) and allowing users to play with experimental early
versions of the product (prototyping). Techniques that can be used in
problem analysis include: Data Flow diagrams (DFD), Entity-Relation
diagrams (ERD), Coad Object diagrams, Listing all Inputs and Outputs,
Listing major functions, Structured Requirements Definition (SRD),
Structured Analysis and Design technique (SADT), Structured Analysis and
System Specification (SASS), and Object Oriented Analysis (OOA). (Davis,
1990; Thayer & Royce, 1990). Also Object oriented methods and UML can
be used to this activity (see Douglass, 1999; Jacobson et al., 1999).

- Product description mainly involves writing the software requirements
specification (SRS), including both behavioural and non-behavioural
requirements. SRS contains a complete description of the external behaviour
of the software system. It is possible to complete the entire problem analysis
before starting to write the SRS. However, it is more likely that as the
problem analysis decomposition process yields aspects of the problem that
are well understood, the corresponding section of the SRS is written. SRS’s
purpose is to provide means of communicating among customers, users,
analysts, and designers, supporting system-testing activities and controlling

31

the evolution of the system. For example, IEEE defines contents of an SRS.
(IEEE Std 830-1998). The standard doesn't describe sequential steps to be
followed, but defines the characteristics of a good SRS and provides a
structure template for the SRS. This template can be used in documenting
the requirements, and also as a checklist in other phases of the requirements
engineering process. (Davis, 1990)

Usually the requirements are documented using natural language and diagrams,
so that all the system stakeholders can understand them. (Kotonya &
Sommerville, 1998; Sommerville & Sawyer, 1997). The primary purpose for
using a requirements specification technique is to reduce the inherent ambiguity
of natural language and to ease detecting inconsistencies, redundancies,
incompleteness, and ambiguities. Examples of techniques for real time systems
include: Finite state machines, decision tables and decision trees, Program
Design Language (PDL also known as structured English and pseudo code),
Statecharts, Requirements Engineering Validation system (REVS),
Requirements Language Processor (RLP), Specification and Description
Language (SDL), PAISLey (Zave, 1982), Petri nets. (Davis, 1990)

Software requirements are commonly classified to (Jacobson et al., 1999; Thayer
& Royce, 1990):

- Functional: A requirement that specifies an action that a system must be able
to perform, without considering physical constraints; a requirement that
specifies input/output behaviour of a system

- Non-functional: A requirement that specifies system properties, such as
environmental and implementation constraints, performance, platform
dependencies, maintainability, extensibility, and reliability. A requirement
that specifies physical constraints on a functional requirement. (Jacobson et
al., 1999).

= Performance requirements. A requirement which specifies
performance characteristics that a system or system component must
possess, e.g., max. CPU-usage, max. memory footprint.

= External interface requirements. A requirement which specifies
hardware, software, or database elements with which a system or

32

system component must interface, or that sets forth constraints on
formats, timing or other factors caused by such an interface.

= Design constraints. A requirements which affects or constrains the
design of a software system or software system component, e€.g.
language requirements, physical hardware requirements, software
development standards, and software quality assurance standards.

= Quality attributes. A requirement which specifies the degree to
which software possesses of attributes that affects quality, e.g.
correctness, reliability, maintainability, portability.

- or behavioural and non-behavioural requirements (Davis, 1990).

Methods used in Requirements Engineering are commonly not isolated, but used
within a certain software engineering methodology, which encompasses some
other software lifecycle phases as well, or combined with another approach. For
example, object oriented analysis methods and agile methods are used also
during some other software development phases.

The following methods (of the RE methods described in section 3) are
applicable to software requirements analysis and specification activities:

- Problem analysis:
= Section 3.1: Prototyping and scenarios.

= Section 3.4: Booch methodology, HOORA, Jacobson method, OMT,
Planguage, RUP, SADT, SASS, SCR, Shlaer-Mellor, SREM,
Storyboarding, UML, and COTS-specific methods CARE and OTSO.

= Section 3.5: Requirements modelling and requirements reuse.
- Product description:
= Section 3.2: CORE and VORD.

= Section 3.4: B-method, HOORA, Jacobson method, Planguage, RUP,
SADT and SCR.

= Section 3.5: B-method, Petri nets, VDM and Specification Language Z.

33

Outcome:

Formal, agreed upon baseline of software requirements. According to SPICE
(1998) as a result of successful implementation of the process:

- The requirements allocated to software components of the system and their
interfaces will be defined to match the customer’s stated needs.

- Analysed, correct, and testable software requirements will be developed.

- The impact of software requirements on the operating environment will be
understood.

- A software release strategy will be developed that defines the priority for
implementing software requirements.

- The software requirements will be approved and updated as needed.

- Consistency will be established between software requirements and software
designs.

- The software requirements will be communicated to affected parties.

2.4 Continuous activities in RE

This section describes requirements engineering activities that are continuously
ongoing. The activities include requirements documentation, requirements
validation and verification and requirements change management.

2.4.1 Requirements documentation

Requirements have to be documented to enable communication and agreement
of the requirements as well as traceability to other work products. These
documents, i.e., specifications, can be written in a natural language or by using a
requirements statement language (e.g., formal methods). Also, modelling
techniques should be used to describe requirements (e.g., UML, Data Flow
Diagrams, etc.). System requirements specification is discussed in more detail in
section 2.1 and software requirements specification in section 2.3.

34

Requirements specification document should follow a standard format, several
formats have been proposed in literature, e.g., IEEE Std 830-1998; Davis, 1990
and Leffingwell & Widrig, 2000.

The specifications are defined in a specification tree that follows the system
hierarchy. Each deliverable item (or assembly of items) should have a
specification, against which the acceptance of the item is reflected. After the
specifications are ready, an overall baseline design is established. (Sailor, 1990)
Different requirements documents may be needed also for different viewpoints
(Leffingwell & Widrig, 2000):

- The system is very complex — One “parent” document, that defines
requirements of the overall system (system requirement specification),
including hardware, software, people, and procedures, and another document
defines requirements for just the software piece (software requirements
specification i.e., SRS).

- The customer’s needs are being documented prior to documenting detailed
requirements — One document defines the features of the system in general
terms (vision document), and another defines requirements in more specific
terms (SRS).

- The system may be a member of a family or related products or the system
being constructed satisfies only a subset of all the requirements identified —
One document defines the full set of requirements for a family of products
(product family requirements document or product family vision document),
and another defines requirements for just one specific application and one
specific release (SRS).

- Marketing and business goals need to be separated from the detailed product
requirements — One document describes the overall business requirements
and business environment in which the product will reside (business
requirements document or marketing requirements document), and another
defines the external behaviour of the system being built (SRS).

35

The following methods (of the RE methods described in section 3) are
applicable to requirements documentation activities:

- Section 3.5: B-method, Petri Nets, VDM, Specification language Z and
requirements modelling.

Part of requirements documentation is identification of requirements, that is,
assignment of unique identifier for each requirement. This is discussed more in
section 2.5.

2.4.2 Requirements validation and verification

Validation means actions to confirm that the behaviour of a developed system
meets user needs whereas verification means actions to confirm that the product
of a system development process meets its specification, for example, the design
must meet the system requirements. (Stevens et al., 1998) Requirements
verification is a continuous process starting with design reviews in the early
phases of system development and ending with review of data from the system
tests. (Sailor, 1990)

Tasks of verification and validation include:

- Defining the verification requirements, i.e., principles on how the system
will be tested.

- Planning the verification.

- Capturing the verification criteria (when the requirements are defined).
- Planning of test methods and tools.

- Planning and running of reviews.

- Implementing and performing the tests and managing the results.

- Maintaining traceability.

- Auditing.
Generally used methods for requirements validation and verification include

reviews (section 3.5), prototyping (section 3.1) and various testing methods (not
described in more detail in this publication). Also, methods used in system

36

requirement development, requirement allocation and flow-down and software
requirements analysis and specification activities often include activities for
requirements verification and validation.

2.4.3 Requirements change management

After the requirement baseline is established all changes to the requirements
must be controlled. This is discussed in more detail in section 2.5.

2.5 Requirements management viewpoint

Requirements management (RM) can be seen as a parallel support process for
other requirements engineering processes (Sommerville & Sawyer, 1997;
Kotonya & Sommerville, 1998). It also continues after requirements
specification phase, because the requirements continue to change during system
development and these changes must be managed (Kotonya & Sommerville,
1998). Sommerville and Sawyer (1997) define principles concerning
requirements management:

- Changes to the agreed requirements need to be managed.
- Relationships between requirements should be described and managed.

- Relations between requirements documents and other documents produced
during the systems and software engineering need to be managed.

According these principles the main concerns of requirements management are
change control and traceability. The last principle emphasises traceability
support between requirements and design, implementation, and test artefacts.
This principle connects managed requirements with the design, implementation
and test items to ensure traceability, for example, during verification and change.
On the other hand, according Kotonya and Sommerville (1998) requirements
identification is an essential pre-requisite for requirements management. It
focuses on the assignment of unique identifier for each requirement
(Sommerville & Sawyer, 1997). These unique identifiers are used to refer to
requirements during product development and management. Sommerville and

37

Sawyer (1997) propose guidelines for RM, which extend RM concepts to cover
also RM planning and automation issues.

RM can be organised under four main RM activities as follows (Figure 3):

- Requirements identification: all guidelines which relate to the identification
and storage of requirement items.

- Requirements traceability: all guidelines which relate to the requirements
traceability.

- Requirements change management: all guidelines, which relate to the
requirements change management.

- Requirements management planning: guidelines, which relate to the
planning and documentation of identification, traceability and change
management activities as well as the definition of other RM goals,
responsibilities and policies for a project. Planning provides means to select
and define suitable RM procedures when considering RM for a project.

Requirements management planning

Identification Traceability Change management

Figure 3: Main activities for RM.

Requirementsidentification

Requirements identification focuses on the assignment of unique identifier for
each requirement, which can be used to unambiguously refer to a requirement
during product development and management (Sommerville & Sawyer, 1997). It
is an essential pre-requisite for requirements management (Kotonya &

38

Sommerville, 1998). Requirements may evolve during product development
(Sommerville & Sawyer, 1997). For example, customer’s expectations may
change or be misunderstood, which causes updates for system’s requirements.
Thus the management of requirement versions is worthwhile. Requirements are
normally also organised hierarchically (Stevens et al., 1998; Crnkovic et al.,
1999). This allows increasing their specificity through parent-child -relations
(Leffingwell & Widrig, 2000). Leffingwell and Widrig (2000) introduce that
identification scheme could allow the description of parent-child relations. For
example, if parent requirement is identified as SR63.1 then child requirements
could be identified as SR63.1.1, SR63.1.2, etc.

Leffingwell and Widrig (2000) emphasise that by using attributes you get better
management of complexity of information. Requirement attributes can be used
to record additional information about requirements (Leffingwell & Widrig,
2000; Stevens et al., 1998). They can be included into requirements to describe
information e.g. about requirement classification, priority, status, version,
relations, rationale, etc. Some attributes can have pre-defined set of values. For
example, status -attribute could have values identifying requirement’s maturity
and its progress through product development (Leffingwell & Widrig, 2000):

- proposed (under discussion)
- approved (approved for implementation)

- incorporated (to product baseline).

Attributes used in a project and their meaning should be documented to ensure
their better understanding and correct usage in the project (Leffingwell &
Widrig, 2000). Clearly defined attributes can systematise the capture of
requirement-related information.

Requirement baseline forms the foundation for design phase (Hooks & Farry,
2001). Hooks and Farry (2001) describe baselining as a technique for “drawing
the line in the sand”. This means that requirement baselining unambiguously
identifies certain agreed set of requirements (requirements specification) for
product’s design. Baselining does not mean that requirements can not change
after it. However, after baselining the changes to the requirements need to be
incorporated using change control procedures to avoid uncontrolled
modifications to the requirement baseline.

39

Requirementstraceability

Requirements traceability (RT) refers to the ability to describe and follow the
life of a requirement in both a forwards and backwards direction (Gotel, 1995).
The importance of traceability is recognised also in standards (e.g. (ISO/IEC
12207, 1995) and (IEEE Std 830-1998)). Kotonya and Sommerville (1998)
present requirements traceability as a critical part of requirements change
management. During change management it is used to assess the impact of a
change to understand related elements which likely will be affected.

Gotel (1995) emphasises the life cycle aspect of the traceability. Requirements
form the basis for design and implementation activities and they should be
traceable through product’s life. Requirements’ traceability information need to
be recognised, stored, and retrieved to support, for example, verification and
change management activities. Gotel (1995) distinguishes traceability into
vertical and horizontal elements. Furthermore, these can be divided into
forwards and backwards traceability as illustrated in Figure 4.

Backwards
A

Backwards «— Horizontal — Forwards

Vertical Versions

9L 8411 S . 10npo.d Bulinp sioeRLY

v
Forwards

Figure 4. Horizontal and vertical requirements traceability (adapted from
(Gotel, 1995), p.37).

40

The dimensions of traceability (forwards, backwards, vertical and horizontal) are
further explained in Table 3.

Table 3: Dimensions of traceability.

Dimensions | Forwards Backwards
Vertical Traceability of requirements Traceability of requirements
forward from specification to into its sources (customer
implementation and test. requirements).
Horizontal Traceability of requirement Traceability of requirement
versions to forward direction. | versions to backwards
direction.

Kotonya and Sommerville (1998) emphasise the direction of traceability and
further extend vertical traceability with ”to” and “from” attributes as well as
with traceability between requirements and external documents. This
classification describes bi-directional nature of RT (extended by Kotonya and
Sommerville (1998) based on Davis (1990)):

- Forward-to traceability: traceability of sources (customer requirements,
system level requirements, etc) to requirements

- Forward-from traceability: traceability of requirements to design
specifications

- Backward-to traceability: traceability of design specifications to
requirements

- Backward-from traceability: traceability of requirements to their sources
(customer requirements, system level requirements, etc)

- Links between requirements and links between requirements and external
documents (e.g. rationale)

Gotel and Finkelstein (1994a) separate two main types of requirements
specification traceability from forwards and backwards traceability as follows:

41

- Pre-traceability: is concerned with those aspects of a requirement’s life prior
to its inclusion in the requirements specification (RS) (requirements
production).

- Post-traceability: is concerned with those aspects of a requirement’s life that
result from its inclusion in the RS (requirements deployment).

Term requirements specification (RS)” refers here to requirements baseline
(Gotel & Finkelstein, 1994a). Gotel and Finkelstein (1994a) and Gotel (1995)
also introduce that post-traceability type is well supported. On the other hand,
they state that pre-traceability is poorly understood and not comprehensively
supported.

Kotonya and Sommerville (1998) describe the set of RT policies, which need to
be defined for an organisation:

- The traceability information which should be maintained

- The techniques used to maintain relations

- Schedule for the collection of traceability information

- Responsibilities for maintaining traceability information

- Description of how to handle and document policy exceptions

- The process used to ensure that the traceability information is updated after
the change has been made

Sommerville and Sawyer (1997) concrete requirements traceability by defining
information types for it. These types describe specific information, which need
to be linked together (Sommerville & Sawyer, 1997): requirements-sources,
requirements-rationale, requirements-requirements, requirements-architecture,
requirements-design and requirements-interface.

Kotonya and Sommerville (1998) and Stevens et al. (1998) state that after
system level requirements specification architectural design divides and assigns
system level requirements into sub-system level entities, which are further
specified and divided into smaller entities. Thus specification happens in various
levels during system decomposition in co-operation with architectural design
until sufficient practical implementation level has been reached. Hooks and

42

Farry (2001) emphasise requirements traceability between these levels to ensure
that all requirements are flowed from the top, through all requirements levels.

Requir ements change management

Requirements change management refers to the ability to manage changes to the
systems requirements (Kotonya & Sommerville, 1998). It also ensures that
similar information is collected for each proposed change and that overall
judgements are made about the costs and benefits of proposed change.
Requirements are baselined when moving to the design phase. However, we can
never start the design if we wait until we know everything about the
requirements. Thus the requirements should be ”good enough” to proceed with
design (Hooks & Farry, 2001). Even if requirement specification is
comprehensive something can change during development, for example,
customer’s needs or regulations. This causes the need for clear practices, which
guide how possible changes to the baselined requirements are handled when
changes to requirements are recognised.

Kotonya and Sommerville (1998) describe the set of policies, which need to be
defined for the organisation:

- The requirements change management process (consisting tasks like change
request and impact analysis) with the description of needed information.

- Responsibles for the tasks described in the change management process (e.g.
Change Control Board who consider change requests).

- The software support for the change management process.

Basic elements of postbaseline requirements change management process
consists of phases for (Hooks & Farry, 2001):

- Documenting and evaluating the change justification.
- Performing a thorough change impact assessment.
- Making the decision to approve or reject the change.

- Implementing the change if approved.

The change can cause impacts for schedule and budget. Makérdinen (2000)
emphasise that requirement level modification type of change usually has effects

43

to the project planning (revision of project plans concerning schedule, budget,
and resources). The above process concerns requirement changes, but
Leffingwell and Widrig (2000) state that change in design or implementation
(e.g. source code) can also lead to the changes to the requirements. So also in
these cases the impact to the requirements should be assessed.

Leffingwell and Widrig (2000) introduce five guidelines to manage changes
effectively:

1. Recognise that change is inevitable, and plan for it: change procedures for
the project should be planned.

2. Baseline the requirements: baseline provides clear concept to identify the set
of requirements, which are used in a design phase. It provides mechanisms
to distinguish, which set of requirements is ’old” and which requirements
have changed or evolved after baselining.

3. Establish a single channel to control change: for example, in large systems
Change Control Board (CCB) who share the responsibility about the
approval of change requests. In small systems the responsibility can be given
e.g. to someone who is an owner of the artefact or person who has an overall
understanding of system requirements.

4. Use a change control system to capture changes: change control system
should be used to capture all requested system related changes. Change
requests should be transmitted to CBB for decision making.

5. Manage change hierarchically: changes to the requirements should be
managed in top-down hierarchical fashion. For example, changes to the
specification can cause changes to the features or to design, implementation
and test.

In addition, Leffingwell and Widrig (2000) state that configuration management
(CM) -based requirements management can be useful for a project. Change
management involves to the large amounts of information. Versions from
requirements and other artefacts are linked to the change objects and this
information is transferred from people to people and change related information
is collected during the process (Leffingwell & Widrig, 2000). CM-based
approach can support the complexity of change management by preserving the
revisions to requirements documents, facilitating the retrieval and reconstruction

44

of previous versions of documents, supporting a managed baseline “release
strategy” for incremental improvements or updates to a system, and preventing
simultaneous update (locking) the document (Leffingwell & Widrig, 2000).

RM planning

Sommerville and Sawyer (1997) introduce the definition of requirements
management policies as one guideline for RM. These policies define goals and
procedures for RM, which should be followed in an organisation. Sommerville
and Sawyer (1997) state that an organisation can have general policies for RM,
but each project should evaluate their applicability and select and maybe tailor
relevant ones for the project. Training is used to ensure that people are aware of
the policies and know how to apply them (Sommerville & Sawyer, 1997). It is
unrealistic to define the total set of generic policies for an organisation at once.
Thus they need to be developed incrementally according practical experiences
(Figure 5).

General RM policies Company level

Develop and update set of]
general policies incrementally Amend, tailor, adopt
according experiences Train people

-

1 Project level
Tailored RM policies

Figure5: Tailoring general RM policies for projects.

Sommerville and Sawyer (1997) introduce the issues for generic policies, which
need to be defined:

- Objectives with rationale for the RM process.

45

- Reports which will be produced to increase visibility and activities which
will produce these reports.

- Standards for the requirements documents and requirements descriptions
(templates, structures): this defines the form or template used to record
requirements information including fields to collect the detailed information
necessary to completely specify the requirement.

- Requirement change management policies: responsibilities, procedures and
SW support to requirements change management.

- Review and validation policies.

- Relationship between requirements management and other systems
engineering and project planning activities.

- Traceability policies: responsibilities, schedules, information types and
techniques for requirements traceability.

- Criteria when these policies can be ignored. These special practices provide
flexibility into policies e.g. when there is urgent needs for system changes.

According Sommerville and Sawyer (1997) the implementation of RM policies
takes at least a year of calendar time. They also state that the mechanisms for
checking that the procedures are being followed are needed. Sommerville and
Sawyer (1997) further discuss requirements change management and traceability
policies. They state that the implementation of the change management policy is
fairly expensive and the automation of process is essential. The automation is
needed to due to the volume of information, which must be processed. On the
other hand, Sommerville and Sawyer (1997) state that the costs to implement
traceability depend on defined policies and the number of requirements for your
system. Kotonya and Sommerville (1998) describe which factors influence to the
traceability policies: number of requirements, estimated system lifetime, level of
organisational maturity, project team size and composition, type of system and
specific customer requirements.

46

3. Requirements engineering methods

This chapter presents requirements engineering methods and techniques, which
have been gathered and documented in the performed literature study. General
methods, which can be utilised during different phases of the RE process, are
presented in the first subsection of this chapter. Then phase-specific methods are
presented grouped under respective requirements engineering process phases
according to the ones described in chapter 2. A short overview of the methods
and techniques is provided followed by pointers to sources of further
information.

Table 4 presents the symbols, which have been used in method descriptions to
illustrate different types of sources of further information.

Table 4 Symbols of information sources used in method descriptions.

Symbol | Type of infor mation sour ce

Article about method e.g. in conference proceedings or technical journal.

Book about method, or parts of a book.

Information about method's origins, e.g. method's developer or publication
= where the method was first introduced.

|

E‘I'__a. WWW-resources on method, e.g. method's homepage or a web tutorial.

Tool supporting the usage of the method.

L Experience report or a case study of method's usage.

The books in the further information section have been selected based on their
age, i.e. the most recent ones have been included. The tools in the further
information section have been selected so, that an example of found tools has
been included (if any tools have been found in the literature). Links to more
comprehensive tool lists is presented in section 4.3.

47

3.1 General methods

In this section general methods, which can be used during several requirements
engineering process phases, are described. VIT Publication about agile software
development methods (Abrahamsson et al., 2002), presents agile methods, which
also provide support for requirements engineering activities.

Brainstorming

Brainstorming is a group technique for generating new, useful ideas and
promoting creative thinking. It aims at getting a large number of ideas from a
group of people in a short time. (Vierimaa et al., 2001). In requirements
engineering, brainstorming can be used to discover unidentified requirements
and to elicit requirements from stakeholders.

Further information:

Vierimaa, M., Ronkainen, J., Salo, O., Sandelin, T., Tihinen, M.,
- Freimut, B. & Parviainen, P. 2001. MIKKO Handbook: Comprehensive
collection and utilisation of software measurement data. Pages 96—100.
Technical Research Centre of Finland. VTT Publications 445.
[£| Rawlinson, J.G. 1981. Creative Thinking and Brainstorming. Gower
~ Publishing Company Limited.

E.‘-I'-"' Brainstorming homepage. URL: http://www.brainstorming.co.uk/

Contextual Inquiry

Contextual Inquiry (CI) is a structured field interviewing method for gathering
data from the structure of work practice, making unarticulated knowledge about
the work explicit so that designers can understand it, and getting at the low-level
details of work that has become habitual and invisible. Contextual Inquiry is
based on a few core principles:

- Understanding the context in which a product is used.
- Considering the user as a partner in the design process.
- The usability design process must have a focus.

- Interpretation.

48

- Clis more a discovery process than an evaluative process. It is also more
like learning than testing. (Beyer & Holtzblatt, 1998)

Further information:

Beyer, H. & Holtzblatt, K. 1998. Contextual Design: Defining Customer-
- Centered Systems. Morgan Kaufmann Publishers, Inc.

Facilitated meeting

The purpose of these techniques is to try to achieve a comprehensive effect
whereby a group of people can bring more insight to their requirements than by
working individually. Using facilitated meeting techniques may result in a richer
and more consistent set of requirements that might otherwise be achievable.
(Sawyer & Kotonya, 2001)

One facilitated meeting and collaboration technique is the Bridge Methodology.
Its purpose is to facilitate system stakeholders' communication and involve them
all in the phases of system development. In Bridge, a user-centred task flow, a
set of abstract task objects, and a paper prototype of a graphical user interface
(GUI) are produced. The Bridge has three major steps: task analysing, task-to-
object mapping, and object-to-GUI mapping. (Dayton & Tournet, 1999)

Further information:

Dayton, T. & Tournat, K. 1999. How to Design, Prototype, and Test A
Usable GUI In Three Days. URL:
http://www.baychi.org/meetings/archive/0399.html

Sawyer, P. & Kotonya, G. 2001. Software Requirements. In the Trial

~ Version (0.95) of SWEBOK, Guide to the Software Engineering Body of
Knowledge. Chapter 2, pages 1-26. http://www.swebok.org/ (available
26.3.2002)

Interviews

Interviewing is a technique applicable to requirements elicitation. In practice
interviews are discussions between the requirements engineer and different

49

stakeholders about the system with a purpose of building up an understanding of
stakeholders’ requirements. There are two types of interviews:

- Structured (closed) interview, which is done with pre-defined set of
questions by requirement engineer.

- Open interview, which is a discussion about what stakeholders want from
the system without pre-defined agenda performed in an open-ended way.
(Kotonya & Sommerville, 1998)

Further information:

Judd, C.M.; Smith, E.R. & Kidder, L.H. 1991. Research Methods in
~ Social Relations, International edition. Sixth ed. Holt Rinehart and
Winston, Inc.
EJ__‘ The University of Western Australia's tutorial on interviewing. URL:
http://undergraduate.cs.uwa.edu.au/units/670.300/readings/regs.elicit.Int

erviewing.htm

Observation

The purpose of this technique is to observe stakeholders in the field. The
requirements engineer learns about user' tasks by immersing themselves in the
environment and observing how users interact with their systems and each other.
(Kotonya & Sommerville, 1998) One observation technique is Ethnography,
which is presented later in subsection 3.2.

Further information:

Lofland, J. & Lofland, L.H. 1995. Analyzing social settings: A Guide to
~ Qualitative Observation and Analysis. Wadsworth Publishing Company.

Prototyping
A prototype of a system is an initial, ideally quick to make and inexpensive

version of the system, which is available in an early phase of the development
process. Prototypes may be used to help elicit and analyse system requirements.

50

There are many different techniques and approaches for prototyping, but they
usually fall into one of the two main categories: throwaway prototyping and
evolutionary prototyping. The main difference in these two is that in throwaway
prototyping a disposable prototype is created to help elicit and analyse system
requirements, which are hard to understand for the customer. In evolutionary
prototyping a workable system prototype with limited functionality is made
available to the users early in the development process and modified and
extended later to produce the final system. (Kotonya & Sommerville, 1998)

Further information;

Andriole, S.J. 1994. Fast, cheap requirements prototype, or else! IEEE
Software. Vol. 11. Issue 2. Pages 85—87.

Scenarios

Scenarios are examples of interaction sessions, and consist of descriptions of
sequential actions. Scenarios are useful, because end-users and other system
stakeholders find it easier to relate to real-life examples rather than abstract
descriptions of the functions. This makes scenarios applicable for eliciting and
clarifying system requirements. Scenarios should include at least the following
kind of descriptions:

- The state when entering the scenario and state after completion of the
scenario.

- The normal flow of events and exceptions to the normal flow of the events.

- Information about concurrently ongoing things.

When end-user simulates the use of the system by following the scenarios the
engineer does memos of user's comments, problems and suggestions at the same
time. (Kotonya & Sommerville, 1998; Sommerville & Sawyer, 1997)

Further information:

Cox, K. 2000. Fitting scenarios to the requirements process. Proceedings
of the 11th Workshop on the Database and Expert Systems Applications.
Pages 995-999.

51

3.2 System Requirements development

This section presents methods and techniques, which can be utilised during the
system requirements development phase of the requirements engineering
process, either alone or supporting other methods. Some methods and techniques
cover several RE phases, and therefore the classification is rather suggestive
than explicit. A short overview of the method is provided followed by pointers
to sources of further information.

The methods and techniques presented in this section are:

- Controlled Requirements Expression (CORE)

- Ethnography

- Joint Application Development (JAD)

- Multi-criteria Preference Analysis Requirements Negotiation (MPARN)
- Protocol Analysis

- Quality Function Deployment (QFD)

- REVEAL

- Scenario-based Requirements Engineering (SCRAM)

- Structured System Analysis and Design Methodology (SSADM)
- Soft System Methodology (SSM)

- Viewpoint-Oriented Requirements Definition (VORD)

- Viewpoint-oriented Software Engineering (VOSE)

Controlled Requirements Expression (CORE)

CORE is a method, which is applicable to the needs of requirement expression.
It is supported by a simple diagrammatic notation, which can represent many
vital viewpoints of the system requirements. CORE defines the steps in
production of a requirement specification, with particular emphasis on start-up
and the link between steps. For each step, CORE also defines the activities
involved and the checks to be applied. (Mullery, 1979) In requirements
engineering, CORE is best suited for gathering requirements.

52

Further information:

Mullery, G.P. 1979. CORE - A Method for Controlled Requirement
Specification. Proceedings of IEEE Fourth International Conference on
Software Engineering.

é Developed by G. P. Mullery at Systems Designers Limited.

Ethnography

Ethnography is a technique for observing users in real-life or simulated
operating situations. It can be used for evaluating the strengths and weaknesses
of an existing system in order to capture design requirements for the system
under development, or for task analysis when determining the steps to be
performed by the system under development in order to complete the desired
tasks. Ethnography also helps in identifying system interfaces. In requirements
engineering, ethnography is best suited for gathering requirements from users.

Further information:

Suchman, L. 1983. Office procedures as practical action. ACM
Transactions on Office Information Systems. Pages 320—-328.
[£| Sommerville, 1.; Rodden, T.; Sawyer, P.; Bentley, R. & Twidale, M.
- 1993. Integrating ethnography into the requirements engineering process.
Proceedings of the IEEE International Symposium on Requirements
Engineering. Pages 165—-173.

- Ethnography was originally developed by anthropologists to understand
social mechanisms in 'primitive' societies. L. Suchman first identified the
potential value of ethnography in deriving computer system
requirements.

E.‘-I'-"' Coherence project is a three-year EPSCR-funded project investigating
the problem of integrating ethnographically informed analysis into a
systematic approach to systems design. URL:
http://www.comp.lancs.ac.uk/computing/research/
cseg/projects/coherence/index.html

" The Ethnograph is a software tool, which can be used to support
ethnography. URL: http://www.scolari.co.uk/ethnograph/ethnograph.htm

53

‘L Bentley, R.; Hughes, J.A.; Randall, D.; Rodden, T.; Sawyer, P.; Shapiro,
D. & Sommerville, I. 1992. Ethnographically informed systems design
for air traffic control. Proceedings of Conference on Computer
Supported Cooperative Work. ACM Press. Pages 123-129.

Joint Application Development (JAD)

JAD is a structured, facilitated meeting (a JAD session) where modelling is
performed by both users and developers together. A trained facilitator leads JAD
sessions. User requirements are often gathered in JAD sessions where the
facilitator leads the group through prototyping and/or the definition of use cases.
(Ambler, 1998) In requirements engineering, JAD is best suited for gathering
requirements from different stakeholders.

Further information:

Ambler, S. W. 1998. Process Patterns. Building Large- Scale Systems
- Using Object Technology. Cambridge University Press.

Wood, J. & Silver, D. 1989. Joint Application Design. John Wiley &
- Sons.

- JAD was originally developed at IBM in the late 1970's.

i)

Multi-criteria Preference Analysis Requirements Negotiation

MPARN assists stakeholders in evaluating, negotiating, and agreeing upon
different alternatives using multi-criteria preference analysis techniques. The
purpose of the MPARN process is to generate mutually agreed criteria, assess
alternatives' performance on each criterion, and to elicit each group participants'
relative preference over each alternative. During the process the needs of all
stakeholders and conflicts in these needs are identified and options of conflict-
resolution are explored. (In et al., 2001) In requirements engineering, MPARN is
best suited for performing top-level analysis to raw requirements.

54

Further information:

In, H.; Olson, D. & Rodgers, T. 2001. A Requirements Negotiation
Model Based on Multi-Criteria Analysis. International Symposium on
Requirements Engineering.

Protocol Analysis

Protocol Analysis is a technique, which can be used for forming an
understanding of users' thought patterns when performing a given, structured
task. In Protocol Analysis, users perform the given task and simultaneously
explain their thought processes, while an observer records the verbal data. After
the session the verbal data is analysed, and the real thought process can be
compared to the system's process. Thus the system's strengths and weaknesses
can be identified. (Ericsson & Simon, 1993) In requirements engineering,
Protocol analysis is best suited for gathering requirements from users.

Further information:

Ericsson, K.A. & Simon, H. A. 1993. Protocol Analysis - Revised
Edition. MIT Press.

Quality Function Deployment (QFD)

Quality Function Deployment (QFD) is a methodology for identifying customer
needs, expectations and requirements, and linking them into the company's
products. This is done by determining customer preferences and their importance
and translating them into product design requirements. QFD utilises different
diagrams, tables, charts and matrices to facilitate its different tasks. In
requirements engineering, QFD 1is suitable for gathering requirements, and
performing top-level and detailed analyses to them.

Further information:

Revelle, J.B.; Moran, J.B.; Cox, C.A. & Moran, J.M. 1998. The QFD
- Handbook. John Wiley & Sons.

55

é Developed by Yoji Akao in Japan in the 1970's. Introduced to United
States by Akao in 1983.

EJ“ QFD Institute's home page. URL: http://www.qfdi.org/

‘% QFD2000 is a software tool, which can be used to support QFD. URL:
http://www.qfd2000.co.uk/introduction.htm
Graves, S.B.; Carmichael, W.P.; Daetz, D. & Wilson, E. 1991.

Improving the Product Development Process. Hewlett Packard Journal.
June 1991.

REVEAL

REVEAL is a systematic principled method for the elicitation, specification, and
management of systems requirements. It provides guidelines for the RE
activities from the early phases of the establishment of problem context, through
to the identification of stakeholders, the elicitation and recording of
requirements, their verification and validation, and on to their use and
maintenance. (Hall, 2001) In requirements engineering, REVEAL is best suited
for gathering requirements and performing top-level analysis to them.

Further information:

Hall, A. 2001. A Unified Approach to Systems and Software
Requirements. The 5th IEEE Symposium on Requirements Engineering.

Scenario-based Requirements Engineering (SCRAM)

Scenario-based Requirements Engineering (SCRAM) is a method that combines
use cases approaches with object oriented development. In SCRAM scenarios
are created to represent paths of possible behaviour through a use case, and these
are then investigated to develop requirements. SCRAM can also be utilised in
requirements documentation. In requirements engineering, SCARM provides
support for all system requirements development activities from requirements
gathering to requirements validation.

56

Further information:

Sutcliffe, A. 1998. Scenario-Based Requirement Analysis. Requirements
Engineering Journal. Vol. 3. No 1. Pages 48—65.

I Sutcliffe, A. & Ryan, M. 1998. Experience with SCRAM, a SCenario
Requirements Analysis Method. Proceedings of the Third International
Conference on Requirements Engineering.

Structured System Analysis and Design Methodology (SSADM)

Structured System Analysis and Design Methodology (SSADM) is a
methodology used in the analysis and design stages of systems development. It
consists of seven stages, which include steps to be followed. SSADM utilises a
set of complementary, well-known techniques, such as data flow diagrams,
entity life histories and relational data analysis. In requirements engineering
SSADM can be used when performing detailed analysis of system and software
requirements.

Further information:

Ashworth, C. & Goodland, M. 1990. SSADM: A Practical Approach.
~ McGraw-Hill.

Originally developed for UK Government development projects by
Learnmonth and Buchett Management Systems and the Government's
computing advisory body, the CCTA. SSADM Version 1 was released in
June 1981. Since then, new versions have been developed up to Version
4.

" Select SSADM is a software tool supporting SSADM. URL:
http://www.selectbs.com/products/products/ssadm.htm

Soft System M ethodology (SSM)

Soft System Methodology (SSM) aims at establishing an understanding of the
problem within an organisation by structuring the situation from the perspectives
of all relevant systems (e.g. people, procedures, policies, hardware and
software). This broad perspective makes the approach usable in requirements
elicitation combined with other requirements analysis methods. (Kotonya &
Sommerville, 1998)

57

Further information:

Checkland, P.B. 1981. Systems Thinking, Systems Practice. John Wiley

& Sons.

Wilson, B. & Duffy, M. 2001. Soft Systems Methodology: Conceptual

~ Model Building and Its Contribution. John Wiley & Sons.

B

LN
i

. Developed by Professor Peter B. Checkland at Lancaster University.

SSM homepage. URL:

http://members.tripod.com/SSM_ Delphi/ssm4.html

Dang, Q.C.; Baylis, T. & Patel, D. 1995. Modeling business through soft
systems methodology in end-user development: A claim and an
approach. Proceedings of the 7th International Conference on Advanced
Information Systems Engineering.

Viewpoint-Oriented Requirements Definition (VORD)

Viewpoint-Oriented Requirements Definition (VORD) can be used for analysing

a system from multiple perspectives in order to capture all possible

requirements. First the relevant viewpoints are identified, and broken down into

sub-viewpoints. Then each viewpoint's requirements are collected, rated for
importance, documented, analysed and specified. VORD can also be utilised

when documenting system and software requirements.

Further information:

e
L k)

Kotonya, G. & Sommerville, I. 1996. Requirements Engineering with
Viewpoints. Software Engineering Journal. Vol. 11. No 1. Pages 5-11.

.- Developed by Gerald Kotonya and Ian Sommerville in 1992.

/% VORD Toolset written in Java from the method's developers. URL:

i

http'//www comp.lancs.ac.uk/computing/resources/re/VORDTool.zip

Kotonya, G. 1999. Practical Experience with Viewpoint-Oriented
Requirements Specification. Requirements Engineering Journal. Vol. 4.
No. 3. Pages 115-133.

58

Viewpoint-Oriented System Engineering (VOSE)

In VOSE viewpoints are organised into configurations (collections of related
viewpoints) in order to resolve conflicts among system requirements. Templates
are used for describing the viewpoints. A configuration for a hypothetical
problem domain may consist of templates with different styles (viewing the
same partition of the problem domain) or templates with the same style (viewing
different partitions of the problem domain). The final system is constructed after
combining all of the configurations with problem solved. (Kotonya &
Sommerville, 1998). In requirements engineering, VOSE is best suited for
performing top-level analysis to raw requirements.

Further information:

Finkelstein, A.; Kramer, J.; Nusebeih, B. & Goedicke, M. 1992.
Viewpoints: A framework for intgrating multiple perspectives in systems
development. International Journal of Software Engineering and
Knowledge Engineering. Vol. 2. Issue 10. Pages 31-58.

- Developed at Imperial College, London in early 1990's.

3.3 Requirements allocation and flow-down

This section presents methods and techniques, which can be utilised during the
requirements allocation and flow-down phases of the requirements engineering
process, either alone or supporting other methods. A short overview of the
method is provided followed by pointers to sources of further information.
Methods supporting software architecture analysis can be found e.g. from a
survey by Dobrica and Niemela (2002).

The methods and techniques presented in this section are:
- Architecture Tradeoff Analysis Method (ATAM)

- Hatley—Pirbhai Methodology (HPM)

- System Requirements Allocation Methodology (SRA)

59

Architecture Tradeoff Method (ATAM)

Architecture Tradeoff Analysis Method (ATAM) is an iterative method for
evaluating if a system's architecture-level design meets its requirements when
considering multiple, desired quality attributes. The method identifies trade-off
points between the quality attributes, facilitates communication between
stakeholders, clarifies and refines requirements, and provides a framework for an
ongoing, concurrent process of system design and analysis. (Kazman et al., 1998)
In requirements engineering, ATAM is best suited for performing trade-off
analysis and managing non-functional requirements during requirements
allocation. It can be also used for recording a rationale of requirements flow-down.

Further information:

Kazman, R.; Klein, M.; Barbacci, M.; Longstaff, T.; Lipson, H. &
Carriere, J. 1998. The Architecture Tradeoff Method. Proceedings of the
fourth IEEE International Conference on Engineering of Complex
Computer Systems. Pages 68—78.

|'d Developed at Software Engineering Institute (SEI).

'EJ_‘ SEI's ATAM homepage. URL: http://www.sei.cmu.edu/ata/ata_init.html

Kazman, R.; Barbacci, M.; Klein, M.; Carriere, S.J. & Woods, S.G.
1999. Experience with performing Architecture Tradeoff Analysis.
Proceedings of the International Conference on Software Engineering.
Pages 54-63.

Hatley—Pirbhai Methodology (HPM)

The Hatley-Pirbhai Methodology (HPM) is a well-defined methodology for
developing embedded, real-time systems. It handles both the system
requirements and the architecture concurrently with a requirements model and
an architecture model. HPM provides a means for capturing, recording,
allocating and managing system requirements and architecture at all levels, and
links the system with its subsystems. In requirements engineering, HPM is best
suited for verifying requirements allocation and managing changes to it.

60

Further information:

Hatley, D.J. & Pirbhai, I.A. 1987. Strategies for Real-Time System

- Specification. Dorset House.

Hatley, D.; Hruscha, P. & Pirbhai, I.A. 2000. Process for System

- Architecture and Requirements Engineering. Dorset House.

. Developed by Derek Hatley and Imtiaz Pirbhai in 1987.

" TurboCASE/Sys is a software tool, which can be used to support

i

different activities of HPM. URL.: http://www.turbocase.com/

Rader, J. & Haggerty, L. 1994. Supporting Systems Engineering with
Methods and Tools: A Case Study. The 28th Asilomar Conference on
Signals, Systems and Computers. Vol. 2. Pages 1330—-1334.

System Requirements Allocation M ethodology (SRA)

System Requirements Allocation Methodology (SRA) is a customer-oriented
systems engineering approach for allocating top-level quantitative system
requirements. It aims at creating optimised design alternatives, which correspond
to the customer requirements using measurable parameters. (Hadel & Lakey,
1995) In requirements engineering, SRA provides support for different activities
of requirements allocation.

Further information:

Hadel, J.J. & Lakey, P.B. 1995. A customer-oriented approach for
optimising reliability-allocation within a set of weapon-system
requirements. Proceedings of the annual symposium on Reliability and
Maintainability. Pages 96—101.

- Developed at McDonnell Douglas.

3.4 Software requirements analysis and specification

This section presents methods and techniques, which can be utilised during the
software requirements analysis and specification phase of the requirements
engineering process, either alone or supporting other methods. Some methods

61

and techniques cover several RE phases, and therefore the classification is rather
suggestive than explicit. A short overview of the method is provided followed by
pointers to sources of further information. At the end of this section also two
methods suitable for component-based software production are presented.

The methods and techniques presented in this section are:

- Booch Methodology

- Hierarchical Object Oriented Requirements Analysis (HOORA)

- Jacobson Method

- Object Modeling Technique (OMT)

- Planguage

- Rational Unified Process (RUP)

- Shlaer-Mellor Object-Oriented Analysis Method

- Software Cost Reduction requirements method (SCR)

- Software Requirements Engineering Methodology (SREM)

- Storyboard Prototyping

- Structured Analysis and Design Technique (SADT)

- Structured Analysis and System Specification (SASS)

- Unified Modeling Language (UML)

- Volere method

- WinWin approach

- Component-based methods:
= COTS-Aware Requirements Engineering (CARE)
= Off-the-Shelf Option (OTSO)

Booch M ethodol ogy

The Booch software engineering methodology is an object-oriented approach for
system analysis and design. It can be used for analysing and specifying software
requirements, as it produces a high-level description of the system's functions
and structure from the customer requirements' point of view. Also domain
analysis, which is done by defining object classes, their attributes, inheritance,

62

and methods, can be utilised in the analysis and specification of software
requirements. At the end of the analysis phase, validation is performed. (Booch,
1994) In requirements engineering, the Booch Methodology is best suited for
performing high-level and detailed analyses to software requirements. It also
provides some support for performing validation of software requirements.

Further information:

Booch, G. 1994. Object-oriented Analysis and Design with Applications,
2nd edition. Addison-Wesley.

Hierarchical Object Oriented Requirements Analysis (HOORA)

Hierarchical Object Oriented Requirement Analysis (HOORA) is a method that
can be used to model systems in an object-oriented way, to trace the model
elements to user requirements, to translate the model information into software
requirements, and to generate an initial architectural design from the model
information. (Gennaro, 1995) In requirements engineering, HOORA is best
suited for analysing and validating software requirements. It also provides
support for requirements allocation.

Further information:

Gennaro, G. 1995. Hierarchical Object Oriented Requirements Analysis
(HOORA). Preparing for the Future Vol. 5. No. 4. European Space
Agency. http://esapub.esrin.esa.it/pff/pffvSnd/genvSn4.htm

E‘-I'“ HOORA's homepage. URL: http://www.hoora.org/

" HAT, the HOORA Analysis Tool, is a software tool, which can be used
to support different activities of HOORA. URL: http://www.hoora.org/

Jacobson M ethod

Jacobson Method is a software process that defines an object as an entity
characterised by number of operations and a state, which remembers the
operations. The method uses two models to cover the requirements definition
phase: a requirements model and an analysis model. The requirements model is
intended for capturing user requirements by specifying all the functionality of

63

the system from users' perspective. The function of the analysis model is to form
the basis for the system's structure by specifying objects in the information
space. (Jacobson et al., 1992) In requirements engineering, Jacobson method
provides support for analysing, validating and documenting software
requirements.

Further information:

Jacobson, I.; Christerson, M.; Jonsson, P., & Gunnar, O. 1992. Object-
Oriented Software Engineering: A Use Case Driven Approach. Addison-
Wesley.

Object Modeling Technique (OMT)

Object Modeling Technique is an object-oriented development method, which
uses three models to describe a software system: object model, dynamic model
and functional model. The object model determines the types of objects that can
exist in the system and identifies allowable relationships among objects. The
dynamic model described valid changes to system states together with change
conditions. The functional model describes the computations to be performed by
the system. (Bourdeau & Cheng, 1995) In the field of requirements engineering
OMT is best suited for analysing software requirements.

Further information:

[£| Rumbaugh, J.; Blaha, M.; Premerlani, W.; Eddy, F. & Lorensen, W.
~ 1991. Object-Oriented Modeling and Design. Prentice Hall.

=| Derr, K.W. 1995. Applying OMT: A Practical Step-by-Step Guide to
~ Using the Object Modeling Technique. SIGS Books.

- Developed by Rumbaugh, Blaha, Premerlani, Eddy and Lorensen in
1991.

EJ__‘ Object Modeling Technique tutorial in WWW.
URL: http://www.smartdraw.com/resources/centers/software/omt.htm

" ObjectPlant is a software tool, which supports OMT.
URL: http://www.arctaedius.com/ObjectPlant/info.html
I A case study of applying OMT to designing and implementing an
electronic filing system is included in (Derr, 1995).

64

Planguage

Planguage consists of a systems engineering language for communicating
systems engineering and management specifications, and a set of methods
providing advice on best practices. The Planguage Specification Language is
used to describe all the requirements, designs and plans. The main Planguage
Methods are as follows:

- Requirement Specification: used to capture all the different requirement

types.

- Impact Estimation: used to evaluate designs against the requirements.

- Specification Quality Control: used at any stage of a project to check the
adherence of any plan, contract, bid or technical specification to best
practice specification standards.

- Evolutionary Project Management: used to plan and monitor implementation
of the selected designs. (Gilb, 2003)

In requirements engineering, Planguage is best suited for analysing software
requirements.

Further information:

~[5| Gilb, T. 2003. Competitive Engineering. Addison-Wesley.
é - Developed by Tom Gilb.

'Ea_l} Mr. Gilb's homepage http://www.result-planning.com/

Rational Unified Process (RUP)

RUP is an iterative process for engineering object oriented systems, and it
strongly embraces use cases for modelling requirements and building the
foundation for a system. RUP project consists of four phases and nine
workflows, which are taking place in parallel. (Abrahamsson et al., 2002) The
Requirements workflow covers requirements engineering activities, e.g.
modelling requirements and continuously validating them with users. In
requirements engineering, RUP is best suited for analysing and validating
software requirements.

65

Further information:

[£] Kruchten, P. 1998. The Rational Unified Process. Addison-Wesley.

B

Abrahamsson, P.; Salo, O.; Ronkainen, J. & Warsta, J. 2002. Agile

~ Software development methods: Review and analysis. Pages 55-61.

Technical Research Centre of Finland. VTT Publications.

. Developed by Philippe Kruchten, Ivar Jacobsen and others at Rational

Corporation.

Shlaer-Mellor Object-Oriented Analysis M ethod

Shlaer-Mellor Object-Oriented Analysis Method provides a structured means of

identifying objects within a system by analysing abstract data types. The
identified objects are used as a basis for building three formal models of the

system: information, state, and process. In RE the method can be used both for

high level and more detailed analysis and specification of software requirements.

Further information:

Shlaer, S. & Mellor, S. 1988. Object-Oriented System Analysis:

~ Modeling the World in Data. Yourdon Press Computing Series. Prentice-

Hall.
Starr, L. 1996. How to build Shlaer-Mellor object models. Yourdon

~ Press.
. Developed by S. Shlaer and S. Mellor in 1988.

Project Technology Inc.'s WWW-library on Shlaer-Mellor Method.
URL: http://www.projtech.com/pubs/papers.html

" WinA&D is a software tool, which can be used to build different Shlaer-

Mellor models. URL: http://www.excelsoftware.com/

Fayad, M.E.; Hawn, L.J.; Roberts, M.A. & Klatt, J.R. 1991. Mission
Generation System (MGS): An Application of Shlaer-Mellor's Object-
Oriented Method. The Proceedings of the IEEE/AIAA 10th Conference
on Digital Avionics Systems. Pages 91-96.

66

Software Cost Reduction requirements method (SCR)

Software Cost Reduction requirements method (SCR) is a formal, partially
mathematical method, which uses a tabular notation for representing system
requirements. In RE SCR is most suitable for analysing, specifying and
documenting the system and software requirements of safety-critical and
control-intensive software systems.

Further information:

Parnas, D.L. 1978. Software Requirements for the A-7 Aircraft.
~ Technical Report 3876. Naval Research Laboratory. Washington DC.

é Developed by David Parnas in 1978 at Naval Research Laboratories to
document flight program requirements.

'E‘_l'_-.. Constance Heitmeyer's homepage including many publications on SCR.
URL: http://chacs.nrl.navy.mil/personnel/heitmeyer.html

I Kirby, J. Jr.; Archer, M. & Heitmeyer, C. 1999. Applying Formal
Methods to an Information Security Device: An Experience Report.
Proceedings of the 4th IEEE International Conference on High
Assurance Systems Engineering. Pages 81—-88.

Softwar e Requirements Engineering M ethodology (SREM)

In Software Requirements Engineering Methodology (SREM) requirements are
generated using a requirements specification language (RSL) and a software tool
called REVS (Requirements Engineering and Validation System). The basic
concept underlying SREM is that design-free functional software requirements
should specify the required processing in terms of all possible responses (and the
conditions for each type of response) to each input message across each
interface. (Alford, 1978) In requirements engineering, SREM provides support
for all the activities of software requirements development.

Further information:

Alford, M. 1977. A Requirements Engineering Methodology for Real
Time Processing Requirements. IEEE Transaction on Software
Engineering. Vol. 3. No.1. Pages 60—69.

67

Alford, M.W. 1978. Software Requirements Engineering Methodology
(SREM) at the Age of Two. Proceedings of Computer Software and
Applications. IEEE Computer Society's 2nd Edition. Pages 332—339.

. Developed by Mack Alford in 1977.

S

5]
l Scheffer, P.A.; Stone, A.H. & Rzepka, W.E. 1985. A case study of
SREM. IEEE Computer. Pages 47—54. Vol. 18. Issue 4.

Storyboard Prototyping

Storyboarding is a modelling technique, which combines practices from
requirements analysis and simulation methodologies. A storyboard is a sequence
of displays that represent the functions, which the system may perform when
formally implemented. Storyboards are 'live' tools, which means, that after initial
test runs it is usually necessary to make changes and conduct more tests until
consensus emerges about the system's features. Storyboards are designed to
verify requirements definitions, help designers to decide, if the system can be
developed given the known time and financial constraints, and serve as
compasses to software engineers. (Andriole, 1989) In requirements engineering,
Storyboards can be used for high-level analysis of software requirements and for
validating the requirements with users.

Further information:

Andriole, S. 1989. Storyboard Prototyping for Systems Design: A New
- Approach to User Requirements Analysis. Q E D Pub Co.

Andriole, S. 1992. Rapid Application Prototyping: The Storyboard
- Approach to User Requirements Analysis. John Wiley & Sons

14 Developed by Stephen J. Andriole in 1989.

EJJ Mr. Andriole's homepage. URL: http://www.andriole.com/

“ Vermont Views is a software tool, which can be used to support
Storyboard prototyping. URL: http://www.vtsoft.com/

68

Structured Analysisand Design Technique (SADT)

SADT is a proprictary software engineering methodology for analysing and
representing software requirements and design. SADT is composed of a graphic
language and a method for using it. An SADT model is organised sequence of
diagrams, each with supporting text. SADT also defines the personnel roles in a
software project. (Schoman & Ross, 1977) In requirements engineering, SADT
can be used for analysing and documenting software requirements.

Further information;

Schoman, K. & Ross, D.T. 1977. Structured Analysis for Requirements
Definition. IEEE Transactions on Software Engineering. Pages 6—15.

Marca, D.A. & McGowan, C.L. 1988. SADT: Structured Analysis and
- Design Techniques. McGraw-Hill.

Structured Analysis and System Specification (SASS)

SASS is a top-down technique, in which the analyst starts by representing the
system in a context diagram showing all system inputs and outputs and
repeatedly refines the system, representing each refinement in a more detailed
diagram. The purpose of the SASS is to analyse the problem, not to design the
software. The SASS consists of five, consecutive phases: first, a survey is
conducted, then it is followed by structured analysis, a hardware study,
structured design and finally, the implementation. (Davis, 1990) In requirements
engineering, SASS can be utilised performing detailed analysis to software
requirements.

Unified Modeling Language (UML)

UML, the Unified Modeling Language, is a methodology-independent graphical
notation for modelling software systems. It can be used to specify, visualise, and
document models of software systems, including their structure and design, in a
way that meets all of these requirements. UML defines and uses twelve types of
diagrams divided into three categories: structural, behaviour and model
management. The behavioural diagrams, including use case diagrams, are best
suited for the purposes of requirements engineering. They can be used to

69

describe functional requirements' interactions with the system in support of their
goal(s), which provides a basis for their organisation and makes it meaningful to
users. (Booch et al., 1998)

Further information:

Booch, G.; Jacobson, I. & Rumbaugh, J. 1998. The Unified Modeling
- Language User Guide. Addison-Wesley.

EJ“ Homepage of UML. URL: http://www.uml.org/

Volere

The Volere method provides a generic process for gathering requirements, ways
to elicit them from users, as well as a process for verifying them. The Volere
Specification Template provides specific instructions to achieving the
appropriate requirements specifications. The template guides each part of the
process in detail. The focus of the method is also in understanding customer
needs in all phases of the process. (Robertson & Robertson, 1999) In
requirements engineering, Volere is suitable for gathering requirements and
validating both system and software requirements. It can be utilised also when
writing the software requirements specification.

Further information:

Robertson, S. & Robertson, J. 1999. Mastering the Requirements
- Process. Addison-Wesley.

é Developed by Suzanne and James Robertson at Atlantic Systems Guild,
Inc.

EJ“ Volere's homepage. URL: http://www.volere.co.uk/

WinWin Approach

WinWin Approach is a collaboration technique, which aims at constructing a
problem/design solution, which meets different stakeholders' needs and
expectations (i.e. win conditions) optimally. WinWin supports multi-stakeholder
considerations and change management, and can be used for achieving effective

70

requirements negotiation and attaining increased customer satisfaction. (Bose,
1995) In requirements engineering,

Further information:

Bose, P. 1995. A Model for Decision Maintenance in the WinWin
Collaboration Framework. Proceedings of the 10th Conference on
Knowledge-Based Software Engineering. Pages 105—113.

E.‘-I'“ The homepage of WinWin. URL:
http://sunset.usc.edu/research/ WINWIN/

Component based methods:
COTS-Aware Requirements Engineering (CARE)

CARE is a process-driven approach for selecting Commercial Off-The-Shelf
(COTS) components, which satisfy the customer requirements. CARE starts by
eliciting the customers’ goals, which describe high-level objectives for the
system. When requirements are elicited, they need to be evaluated against the
goal of the system. Requirements for the system need to be developed by
considering the capabilities of available COTS components. (Chung et al., 2001)

Further information:

Chung, L.; Cooper, K. & Huynh, D.T. 2001. COTS-Aware
Requirements Engineering Technique. Proceedings of the 2001
Workshop on Embedded Software Technology (WEST'01).

Off-the-Shelf Option (OTSO)

OTSO method is developed to offer basis for evaluating and selecting reusable
components for SW development. It provides specific techniques for defining
the evaluation criteria, comparing the costs and benefits and consolidating the
evaluation result for decision making. This multi-phase approach to Commercial
Off-The-Shelf (COTS) component selection begins during requirements
elicitation. First, all potential candidates for reuse with using existing guidelines
and criteria are searched, then it is decided, which are the best candidates to

71

selected for more detailed evaluation. Then the candidates are evaluated by the
evaluation criteria and the evaluation results are documented. Finally, the
evaluation results are analysed and the best COTS components selected.
(Kontio, 1995)

Further information:

Kontio, J. 1995. OTSO: A Systematic Process for Reusable Software
Component Selection. The Hughes Information Technology Corporation
and the EOS Program. Version 1.0

3.5 Continuous activities

This section presents methods and techniques, which can be utilised when
performing the continuous activities (i.e. requirements documentation,
requirements validation and verification, and requirements change management)
of the requirements engineering process, either alone or supporting other
methods. A short overview of the method is provided followed by pointers to
sources of further information. At the end of this section, short descriptions of
general approaches related the continuous activities of the requirements
engineering process are presented.

The methods and techniques presented in this section are:
- B-method

- Petri Nets

- Vienna Development Model (VDM)

- Specification Language Z

- General approaches related to the continuous activities of the requirements
engineering process:

= Requirements modelling
= Requirements reuse

= Requirements reviews

72

B-method

B-method is a formal specification method and language for iterative
development of software specifications as it covers all the software life-cycle
activities. The B-specification construction can be done in an incremental or
compositional manner. The consistency of the specifications can be formally
verified by proving all the proof obligations, which are automatically generated.
As a formal method B offers a high degree of confidence, that a system will
conform to its specifications. In the field of RE the B-method is most suitable for
formally specifying the requirements of safety or security critical systems.

Further information:

[£] Schneider, S. 2001. The B-method: An Introduction. Palgrave.

é Developed by J. -R. Abriail.

The B Formal Method WWW-Bibliography. URL:
http://www3.inrets.fi/B@INRETS/B-Bibliography/

/% B-toolkit is a software tool, which supports the B-method. URL:
http://www.b-core.com/

Sekerinski, E. & Sere, E. (eds.).1998. Program development and
stepwise refinement — Case Studies Using the B method. Springer-
Verlag.

E_‘.I'.x

Petri Nets

Petri Nets is a formal, mathematically defined technique for modelling and
analysing software systems. A Petri Net itself is a directed graph consisting of
defined elements, e.g. different types of nodes and transitions. In the area of
requirements engineering Petri Nets can be used for systems graphical
modelling, specification and prototyping, as the models produced within the
technique are executable.

Further information:

Petri, C.A. 1962. Kommunikation mit Automaten. Bonn Institut fiir
Instrumentelle Mathematik. Schriften des IIM Nr. 2.

73

=| Girault, C. & Valk, R. 2002. Petri Nets for System Engineering: A Guide
to Modeling, Verification and Applications. Springer-Verlag.

. Developed by Carl Adam Petri.

EJJ Petri Nets homepage. URL: http://www.daimi.au.dk/PetriNets/

" GreatSPN is a software tool, which provides support for Petri Nets.
URL: http://www.di.unito.it/~greatspn/

‘L McLendon, W.W. & Vidale, R.F. 1992. Analysis of an Ada System
Using Coloured Petri Nets and Occurrence Graphs. Proceedings of the
13th International Petri Net Conference. Lecture Notes in Computer
Science Vol. 616. Springer Verlag.

Vienna Development Model (VDM)

Vienna Development Model (VDM) is a formal, model-based specification
method, which has a lot of similarities with Specification Language Z. It
provides a notation supported by a set of techniques for modelling, analysing
and specifying software systems, and progressing further into detailed design
and coding. In VDM specifications different definitions, such as state and
function definitions, are collected in modules. In the field of RE VDM is most
suitable for formally specifying the requirements of safety or security critical
systems. The VDM Specification language achieved full ISO standardisation in
1996 (ISO/IEC 13817-1).

Further information:

Bjorner, D. & Jones, C.B. (ed.s). 1978. The Vienna Development
~ Method: The Meta-Language. Volume 61 of Lecture Notes in Computer
Science. Springer-Verlag.

Jones, C.B. 1990. Systematic Software Development Using VDM, 2nd
~ ed. Prentice Hall.

14 Developed by Bjorner and Jones in 1978.

i)

" VDMTools is a software toolkit, which supports writing formal
specifications using Vienna Development Model.
URL: http://www.ifad.dk/Products/vdmtools.htm

74

Specification Language Z

Specification language Z is a formal, model-based method for writing software
specifications. The specifications written in Z contain both formal, mathematical
parts and informal, textual descriptions. The purpose of this dualistic structure is
to provide a precise description of the intended behaviour of the system (formal
part), but still keep the specification approachable and understandable (informal
part) (Sheppard, 1995). The specifications written in Z are usually simpler and
shorter than specifications written in some programming language. In the field
of RE Z is most suitable for formally specifying, documenting and validating the
requirements of safety or security critical systems.

Further information:

Abrial, J-R. 1980. The Specification Language Z. Oxford University
~ Programming Research Group.

Sheppard, D. 1995. An Introduction to Formal Specification with Z and
~ VDM. McGraw-Hill.

. Developed by the Programming Research Group (PRG) at Oxford
University in 1980.

© Z/EVES is a software tool, which provides support for writing
specifications using Z. URL: http://www.ora.on.ca/z-eves/

General approaches related the continuous activities of the
requirements engineering process:

Requirements modelling:

Requirements should be modelled at an appropriate level of detail when they are
agreed. Requirement models have to be as clear and unambiguous as possible
that all system stakeholders can understand requirements correctly. In order to
make the requirements easy to understand they must be modelled using natural
language and diagrams. (Kotonya & Sommerville, 1998.) Examples of
modelling techniques include data flow models, and Unified Modeling
Language (UML), see section 3.4.

75

Requirementsreuse:

Reusing requirements means that requirements of other systems in the same
application area are reused. When developing new systems it is generally good
practice to reuse as much knowledge as possible. By reusing requirements the
less effort and time is spend in eliciting requirements and risks of producing
requirements are reduced. Reuse of requirements across systems may be possible
in situations where the requirement is concerned with providing information
about the application domain and/or it is concerned with the style of presentation
of information. (Sommerville & Sawyer, 1997; Kotonya & Sommerville, 1998)

Requirementsreviews:

Requirements reviews are the most widely used technique of requirements
validation. They involve a group of people who read and analyse the
requirements, look for problems, meet to discuss these problems and agree on a
set of actions to address the identified problems. Examples of review methods
include, N-fold Requirements Inspection Method, Walkthroughs, and
inspections. Important aspects of requirements reviews include pre-review
checking, review team membership and review checklists (Kotonya &
Sommerville, 1998).

Further information:

Ciolkowski, M.; Laitenberger, O.; Rombach, D.; Shull, F.; Perry, D.
2002. Software inspections, reviews and walkthroughs. Proceedings of
the 24th International Conference on Software Engineering. Pages
641-642.

Gilb, T. & Graham, D. 1993. Software Inspection, 1st ed. Addison-
 Wesley.

Table 5 summarises all presented requirements engineering methods (except

general methods presented in section 3.1 and in the end of section 3.5) and their
suitability to different phases and activities of the RE process.

76

Table 5. Methods and their RE phase coverage.

PHASE / ACTIVITY
Allocation
System Requirements & SW requirements Publication
Development Flowdown development year
%) 2 4
% é S Z _ﬁ S g % g
@ g s c E g g = % GE
Zls|gle|e|&|8|2|s|ElE]| s 2|8
@ o | 2 5 3 s || L E| B o « =
slalB8l23]l=2]l 8| 2|83 |l=2]| & &)
METHOD Sle|&8[8[S|=|2|f|8]1818| 6] 8 |8
ATAM X X 2002 | 2002
B-method X X X X 2001 | 1999
Booch X X X X 1995 | 1997
CARE 2002 | --
CORE X X 1979 | 1992
Ethnography | X 1999 | 2001
Hatley-Pirbhai X X 2000 | 1994
HOORA SW X X X X 2003 | 1997
Jacobson SW X X X X X 1992 --
JAD X 1995 | 1998
MPARN X 2002 | --
OMT X X 1999 | 1995
OTSO 1996 | 1996
Petri Nets X X 2002 | 2002
Planguage X X X 2003 --
Protocol an. X 1993 --
QFD X X X X | 2002 | 2002
REVEAL X X X [2001] --
RUP SW X X X X | 2003 -
SADT X X 1993 | 2000
SASS X X 1979 -
SCR X X X X 2000 | 2000
SCRAM X X X X X X X | 1998 | 1998
Shlaer-Mellor X X 1998 | 1998
SRA X X X 1995 --
SREM SW X X X X 1990 | 1985
SSADM X X X 2002 --
SSM X 2001 | 1997
Storyboarding | SW X X 1992 | 1992
UML SW X X 2002 | 2002
VDM X X X X 1997 | 2000
WinWin X 2000 | 2001
Volere X X X 2001 --
VORD X X X X X 2000 | 1999
VOSE X 1994 -
VA X X 2002 | 2000

77

3.6 Requirements management

This chapter introduces requirements management (RM) related techniques,
models and methods. Each main RM activity is considered separately and
related techniques, models and methods are presented briefly according to
studied literature. Some techniques or approaches cover several RM activities,
and therefore the classification is rather suggestive than explicit. For example,
RADIX method, presented as a method supporting requirements traceability,
provides support for both requirements traceability and identification.

3.6.1 Requirements identification

Requirements identification practices focus on the assignment of unique
identifier for each requirement (Sommerville & Sawyer, 1997). Natural
identification scheme for hierarchical requirements is to identify child-
requirements following parent requirement’s identification (Leffingwell &
Widrig, 2000). This identification technique describes the item’s place in the
system or document. For example, when organising requirements into chapters,
4.2.6 would identify sixth requirement in second section in the chapter four
(Sommerville & Sawyer, 1997). The technique can describe item’s location in
requirements structure by using its identification. However, unique identifier is
difficult to assign for requirement until all requirements and their structures are
clear. This complicates the control and identification of requirements during RE
process until the requirements have been frozen. The technique also suggests
that certain requirement is closely related to other requirements with similar
identifiers even there might be also other relations (Sommerville & Sawyer,
1997). Kotonya and Sommerville (1998) describe the following alternative
approaches, which can address these problems:

— Dynamic renumbering: This technique allows the automatic inter-
document renumbering of paragraphs when inserting information using e.g.
word-processing systems. It usually also allows cross-references to the
paragraphs and maintains automatically information when there are changes
in requirements structure.

78

— Database record identification: Database record identifier is assigned for
each requirement entered in a requirements database. By using this
technique each requirement is considered to be an entity, which can be
uniquely identified, versioned, referenced and managed.

— Symbalic identification: Requirements are identified using symbolic names
related to the contents of the requirement. For example, EFF-1, EFF-2, ...,
EFF-n can be used for the identification of efficiency requirements. The
technique does not fix the requirement under certain structure. It can be used
as interim identification scheme until requirements have been defined.

3.6.2 Requirements traceability

Requirements traceability (RT) refers to the ability to describe and follow the
life of a requirement and its relations with other development artefacts in both a
forwards and backwards direction (Gotel, 1995).

Sommerville and Sawyer (1997) divide basic techniques for traceability into
traceability tables, traceability lists and automated traceability links. Tables and
lists (also referred as traceability matrixes) can be used to describe also the
relations between requirements and other software development artefacts. For
example, Adams and Douthit (2000) use a traceability matrix for presenting
requirements and their related allocation, implementation and verification
information. On the other hand, Remillard (1996) uses a traceability matrix for
identifying relationships between requirements and tests. According Pinheiro
(2000) some form of traceability matrix is implemented in almost every current
traceability tool. Matrices are also utilised for traceability, for example, as a part
of methods like QFD (Quality Function Deployment) (Gotel, 1995; West, 1991).

Traceability tables are used to present relationships between requirements
describing how requirement on row depends on requirement on column
(Sommerville & Sawyer, 1997). Furthermore, there can be tables to describe all
needed relationships, e.g. requirement-source —table and requirement-design —
table. The mark used for describing relationship can be simply e.g. an asterisk.
More complex presentation of relationship is possible if relationship’s type can
be expressed by using specific symbols for different types of relationships
according project’s RM practices (for example, specifies, requires, constrains,

79

etc.) (Sommerville & Sawyer, 1997). Traceability tables are simple and easy to
implement e.g. by using spreadsheet identification (Leffingwell & Widrig,
2000). They are useful when there are relatively small number of requirements.
Richer information can also be attached to the matrix by using relationship
symbols. On the other hand, they are not very useful when there are hundreds or
thousands of requirements (thinly populated matrix). Also meaning of rows and
columns can be misunderstood (Sommerville & Sawyer, 1997). Traceability list
is a technique, which can be used for compact presentation of requirements
(Sommerville & Sawyer, 1997). In this presentation there is list of depending
requirements for each requirement in rows. This representation is more compact
than table and can also be implemented by using e.g. spreadsheet. Technique
can be used for greater number of requirements (do not become unmanageable
so easily) (Sommerville & Sawyer, 1997). It is also less error prone than table
presentation. However, separate lists are needed for each type of relation. In
addition, there is no easy way to assess the inverse of a relationship.

Automated traceability links —technique uses a database to store and maintain
requirements. Traceability links are included as fields in the database record
(Sommerville & Sawyer, 1997). This is efficient way to manage requirements as
separate entities and describe and maintain links between them.

3.6.3 Requirements traceability models, methods and languages

RT comes sometimes as the by-product of certain approach. The following
approaches are collected from Gotel (1995) and Pinheiro (2000) and divided into
models, methods and languages as follows:

- Models:
= REMAP and IBIS based solutions
= RT reference models
= Contribution structures
= Document-centred models
= Database-guided models
- Methods:
= RADIX
= QFD
- Languages

80

Models

Term ”Model” is here used to refer to the establishment of structures containing
the elements and the relations used in tracing, usually specifying their types as
well as constraints under which the elements of the model can be related
(Pinheiro, 2000).

REMAP and | Bl S based solutions

According Pinheiro (2000) IBIS model (Issue Based Information Systems
method) related models intend to capture design rationale by providing
automated support for discussion and negotiation of design issues. IBIS model
can be understood as a decision support system (Lee & Liu, 1993). Traceability
related models, which are originally based on IBIS are, for example, “REMAP
model” and its further development to “RT reference models”. Ramesh and Dhar
(1992) enumerate also other systems, which aim to support co-operative work
and argumentation: gIBIS, IBE and SIBYL.

REMAP describes conceptual model that relates process knowledge to the
objects that are created during the requirements engineering process (Ramesh &
Dhar, 1992). This process knowledge is actually reasons behind design
decisions, or design decisions that shape the design (Ramesh & Dhar, 1992). The
main input and output elements of the model are Requirements and Design
objects. REMAP allows collecting rationale information related to requirement’s
evolution and requirement’s refinement into designs. Ramesh and Dhar (1992)
have developed also a prototype environment based on the model.

Further information;

Lee, S., Liu, B. 1993. IBO: an issue based object model for software
design. Proceedings of IEEE Region 10 Conference on Computer,
Communication, Control and Power Engineering. Vol. 1. Pages
270-274.

Ramesh, B., Dhar, V. 1992. Supporting systems development by
capturing deliberations during requirements engineering. IEEE
Transactions on Software Engineering. Vol. 18. No. 6. Pages 498-510.

81

Ramesh, B., Jarke, M. 2001. Toward reference models for requirements
traceability. IEEE Transactions on Software Engineering. Vol. 27. Issue
1. Pages 58-93.

- REMAP model introduced in Ramesh and Dhar (1992).

" According Ramesh and Jarke (2001) REMAP has been served as a
starting point for several commercial tool developments, for example,
Knowledge Based Software Assistant (KBSA) environment.

RT reference models

The development of RT reference models is based on REMAP model (Ramesh
& Jarke, 2001). The purpose of reference models is to significantly reduce the
task of creating application-specific models and systems for traceability: the user
selects relevant parts of the reference model, adapts them to the problem at hand,
and configures an overall solution from these adapted parts (Ramesh & Jarke,
2001). Different stakeholders involve to the development of the product. For
example, project managers, designers, maintainers, end users, etc. The
traceability needs of these stakeholders differ due to differences in their goals
and priorities. According Ramesh and Jarke (2001) the users can be divided into
two levels: low-end users and high-end users with different requirements for RT.
The reference models describe preliminary models for both of these user types.

Further information:

Ramesh, B., Jarke, M. 2001. Toward reference models for requirements
traceability. IEEE Transactions on Software Engineering. Vol. 27. Issue
1. Pages 58-93.

. RT reference models introduced in Ramesh and Jarke (2001).

" High-end models have been demonstrated using SLATE RM tool
(demonstration is documented by Ramesh and Jarke (2001)). Design
rationale capture has been demonstrated using KBSA environment
(demonstration is documented by Ramesh and Jarke (2001)).

82

Contribution structures

Contribution structures make traceable the human sources of requirements,
requirements related information, and requirements related work (Pinheiro,
2000).

Gotel and Finkelstein (1995) have considered support for pre-traceability since it
is not well known and supported area. They proposed approach based on
contribution structures to describe and manage traceability links (Gotel &
Finkelstein, 1994b; Gotel & Finkelstein, 1995). They emphasise that
requirements’ sources are in important role when considering the problem of
traceability. The links between sources and requirements artefacts are usually
uncontrolled. This lack of traceability can cause problems on later life cycle
phases when details of who originally generated the requirement are lost.
Contribution structures offer a way to model the network of people who have
participated in the requirements engineering process (Gotel & Finkelstein,
1997). They provide the opportunity to extend conventional forms of artefact-
based requirements traceability with the traceability of contributing persons
(Gotel & Finkelstein, 1997). Also prototype tool has been constructed to
demonstrate, refine and evaluate the model (Gotel, 1995).

Further information:

Gotel, O. & Finkelstein, A. 1994b. Modelling the Contribution Structure
Underlying Requirements. Proceedings of the First International
Workshop on Requirements Engineering: Foundations of Software
Quality.

Gotel, O. & Finkelstein, A. 1995. Contribution structures [Requirements
artifacts]. Proceedings of the Second IEEE International Symposium on
Requirements Engineering. Pages 100—107

Gotel, O. & Finkelstein, A. 1997. Extended requirements traceability:
results of an industrial case study. Proceedings of the Third IEEE
International Symposium on Requirements Engineering. Pages 169—178.

Contribution structures for RT introduced by Gotel and Finkelstein
(Gotel & Finkelstein, 1994b; Gotel & Finkelstein, 1995). Detailed model
is presented in PhD thesis (Gotel, 1995).

I Experiences from industrial case introduced in Gotel and Finkelstein
(1997)

&3

Document-centred models

These models usually present traces as relations between documents of different
types (Pinheiro, 2000). For example, in SODOS (Software Documentation
Support model) model RT results, from model’s documentation strategy. On the
other hand, HYDRA (Hypertext Model for Requirements Engineering) model
(Pohl & Haumer, 1995) is the specialisation of generic hypertext model
(GHYM). HYDRA is used to structure informal information during the
requirements engineering process by creating formal hypertext object, which
refer to the informal representations (or part of it) (Pohl & Haumer, 1995). These
formal objects are used to relate informal information with other representations
(e.g. entity relationship diagrams, first order logic constraints). Formal structure
enables situated and selective retrieval of informal information (Pohl & Haumer,
1995).

Further information:

Horowitz, E. & Williamson, R. 1986. SODOS : A Software
Documentation Support Environment - its Use. IEEE Transactions on
Software Engineering. Vol. 12. No. 1. Pages 1076—1087.

Pohl, K. & Haumer, P. 1995. HYDRA: A Hypertext Model for
Structuring Informal = Requirements Representations. Second
International Workshop on Requirements Engineering: Foundations of
Software Quality.

SODOS introduced in Horowitz and Williamson (1986). HYDRA
introduced in Pohl and Haumer (1995).

Database-guided models

Database guided models are used to store trace information on databases for
later retrieval (Pinheiro, 2000). Usually these models describe explicit
information related to the traceability. They could also be used as concrete
alternatives when implementing RT. Examples from database guided models are
the simple model developed by Sommerville and Sawyer (1997) which allows
item identification and traceability, and more advanced model called
Multiview++ (Toranzo & Castro, 1999). Multiview++ tries to provide
comprehensive and explicit model of which information should be captured

&4

containing item and attribute information. The model contains several
perspectives, which identify and differentiate elements used by different
stakeholders.

Further information:

Toranzo M. & Castro J. 1999. Multiview++ Environment:
RequirementsTraceability from the perspective of different stakeholders.
II IberoAmerican Workshop on Requirements Engineering.

Methods

Term “method” is used here to refer to orderly arrangements of procedures to be
followed in the development process, accompanied by guidelines for their
execution (Gotel, 1995). These methods include also those requirements
engineering or software engineering methods, which embed support for
requirements traceability. For example, Kotonya and Sommerville (1998)
introduce traceability practices as part of VORD method (traceability between
viewpoints and requirements). On the other hand, agile development method,
extreme programming (XP), implements traceability using cross-references
between user stories (user requirements) and task cards. Next two methods,
RADIX and QFD, are discussed more detailed.

RADIX

RADIX is methodology and tool for requirements traceability (Yu, 1994). It has
been developed to support specific SW (SESS switch SW) (Yu, 1994)). It aims
to support product development by providing the identification and management
of product features. Methodology describes also concept of the tool, based on
documentation macros, called RADIX. The methodology is originally planned to
support the “waterfall” type of the development methodology where the exit
criteria at each phase must be satisfied before the next phase is entered.

The practical implementation of RADIX is based on the set of documentation
macros (Yu, 1994). RADIX uses cross-references to describe relations between
artefacts (Pinheiro, 2000). The macros provide a means of identifying, labelling,
and adding supportive information to requirements. For example, .gD doc-
12345R identifies that document’s ID is doc-12345R. The methodology

&5

describes traceability procedure to follow during the product development to
ensure requirements traceability.

Further information:

Yu, W. D. 1994. Verifying software requirements: a requirement tracing
methodology and its software tool-RADIX. IEEE Journal on Selected
Areas in Communications. Vol. 12. No. 2. Pages 234-240.

- RADIX introduced in Yu (1994).

QFD

Quality Function Development (QFD) is method used for RE. It has been
introduced already in section 3.2, thus this section focuses on its traceability
facilities. QFD utilises matrixes to implement the traceability of requirements
through product development process (Brown, 1991; West, 1991). For example,
to develop design requirements from customer requirements, product functions
from design requirements, test requirements and process requirements from
customer and design requirements (West, 1991). These matrixes are linked
together by linking output from one matrix to input for another enabling
requirements traceability through design, implementation and test (Brown, 1991;
West, 1991).

Further information:

Brown, P. 1991. QFD: Echoing the Voice of the Customer. AT&T
Technical Journal. March/April 1991. Pages 21-31.

West, M. 1991. Quality function deployment in software development.
IEE Colloquium on Tools and Techniques for Maintaining Traceability

During Design. Pages 5/1-5/7.
L anguages
According Gotel (1995) and Pinheiro (2000) traceability can also be supported
using languages or notations. For example, ALBERT (Dubois et al., 1994) is

agent-oriented language for building and eliciting requirements for real-time
systems. On the other hand, RML (Requirements Modelling Language,

86

Greenspan et al., 1994) provides traceability as a consequence of its structuring
and organising principles. Regular expressions are used as part of the tracing
model implemented by TOOR tool (tool for traceability) to support requirements
traceability (Pinheiro, 2000).

Further information:

Greenspan, S.; Mylopoulos, J. & Borgida, A. 1994. On formal
requirements modeling languages: RML revisited. Proceedings of the
16th International Conference on Software Engineering. Pages 135—-147.
Dubois, E.; Du Bois, P. & Petit, M. 1994, ALBERT: an agent-oriented
language for building and eliciting requirements for real-time systems.
Vol. IV: Information Systems: Collaboration Technology Organizational
Systems and Technology. Proceedings of the 27th Hawaii International
Conference on System Sciences. Pages 713—722.

Pinheiro, F. 2000. Formal and Informal Aspects of Requirements
Tracing. III Workshop on Requirements Engineering.

3.6.4 Requirements change control

Requirements change management refers to the ability to manage changes to the
systems requirements (Kotonya & Sommerville, 1998). Change management
(ChM) process models and approaches are discussed in this section. Term
”process model” is here used to refer support for actual workflows and activities
taking place when people work in the context of change management. These
process models are specifically designed for general change management not
especially for requirements changes. The following process models are collected
and presented by Mékérdinen (2000):

- Olsen’s ChM model

- V-like model

- Ince's ChM model

- AMES process model
- Spiral-like ChM model
- Generic ChM model

87

Olsen’s ChM mode€

Model created by Olsen (1993) is based on general knowledge of software
engineering principles. Olsen also uses mathematical and statistical data to
explain the software "rush-hour". "Rush-hour" refers to the overload of software
engineers.

Model views the whole software development process as a dynamically
overloaded queue of changes and views all work done by software designer as
changes. Change is anything that requires some work to be done. The source for
the change can be change manager, user or verification activity. Sponsors offer
the funding for the projects and they also monitor the schedules.

Further information:

Olsen, N. 1993. The software rush hour. IEEE Software. Vol. 10. Issue
5. Pages 29-37.

é - Model presented in Olsen (1993).

V-like model

The model aims at investigating the concept of integrated environments for
software maintenance. This change management model describes the activities
needed when implementing a change. According to Harjani and Queille (1992),
following types of maintenance activities are considered:

- user support (answers to requests coming from users)
- corrective maintenance (activities to fix an error)
- evolutive maintenance (new functionalities)

- adaptive maintenance (adapt software to a change in its operational
environment)

- perfective maintenance (improving non-functional requirements)
- preventive maintenance (improves the maintainability)

- anticipative maintenance (anticipate future problems).

88

Further information:

Harjani, D. -R., Queille, J. -P. 1992. A process model for the
maintenance of large space systems software. Proceedings of Conference
on Software Maintenance. IEE Computer Press. Pages 127-136.

The research of the model has been carried out in the ESF/EPSOM
project. "EPSOM (European Platform for SOftware Maintenance) is
subproject of the Eureka Software Factory project (ESF) (Harjani &
Queille, 1992).

Ince's ChM mode

According to Makardinen (2000), Ince discusses how software configuration
management relates to software change management. Ince’s model covers
activities related both software development and maintenance phases. Change
request can be originated from customer requests for new features or error
corrections. Other source for change request can be the development, which
identifies problems in validation phase. Ince does not discuss about other
external change sources like changes in the hardware environment or
improvement ideas coming from software development team.

Further information:

| Ince, D. 1994. Introduction to software quality assurance and its
implementation. McGraw-Hill.

{4 Original source of the model is Ince (1994).

AMES process model

Maikérdinen (2000) states that AMES model supports maintenance process of a
company. It defines three layers: strategic, management and technical
(Mékarainen, 2000).

Strategic layer makes decisions on planning the future of the product and how
the customer or user relationship will be taken care of. Management layer plans,
organises and controls the actions and people who provide the change service.
Technical layer carries out the changes.

&9

Further information:

Boldyreff, C.; Burd, E. & Hather, R. 1994. An evaluation of the state of
the art for application management. Proceedings of the International
Conference on Software Maintenance. Pages 161-169.

é - AMES project.

Spiral-like ChM model

Compared with other model, Ince's model describes the outer cycle of the spiral
model and the last quarter of the systems engineering cycle (technical
implementation of the change). V-model defines the outermost cycle of the
spiral model. Every round of spiral has been divided into four quarters: problem
understanding, evaluate alternative solutions as well identify and solve risks,
develop, and plan for the next phases.

According to Mikérdinen (1996), the execution of the process starts from the
innermost circle. Process proceeds clockwise. Makédrdinen (2000) states that "the
same tasks are performed by each cycle, but the viewpoint is different in each
cycle.

Further information:

Mikardinen M. 2000. Software change management processes in the
development of embedded software. Technical Research Centre of
Finland. VTT Publications 416.

- According to Mikérédinen (2000) the spiral-like model was derived in the
AMES project.

B

Generic ChM modd

Maikérdinen (2000) presents phases for generic change management and divides
changes into the product level changes and project level changes. Product level
changes generate new requirements for the new products or new product
releases. It also generates feature modification, addition and deletion requests for
development projects. Project level changes are initiated and managed internally

90

by the project and can be generated because of product level changes. Project
level changes can also generate product level changes.

Maikardinen (2000) distinguishes four instances of the generic model for
different types of change: trivial defect correction, defect correction, requirement
level modification and improvement proposals.

Further information:

Mikidrdinen M. 2000. Software change management processes in the
development of embedded software. Technical Research Centre of
Finland. VTT Publications 416.

14 Introduced in Mikéardinen (2000).

=
I Case study related to the generic ChM process model presented in
Mikiérdinen (2000).

Some approachesto support requirements ChM

Requirements change management support by using certain approaches. For
example, Crnkovic at al. (1999) introduce how SCM functions and tool features
can support RM. The intention of the approach is to utilise SCM to support
requirements change management during product’s life cycle. The approach
handles each requirement as separate configuration item and connects them to
implementation items (e.g. code modules) and utilises change management
facilities to control changes to the requirements. This enables the change
management of individual requirements during their life cycle. Also Lindsay et
al. (1997) have emphasised fine-grained configuration management support.
Lam et al. (1999) introduce the usage of metrics to support requirement change
management. They emphasise measurement as central activity to underpinning
sound and rational management decisions. They present measurement-action
framework, which provides a set of indicators that can assist managers in
measuring requirements change as well as generic action plans that provide
managers with practical guidance on how to use the indicators as a basis for
taking managerial action.

91

Further information:

Crnkovic, I.; Funk, P.& Larsson, M. 1999. Processing requirements by
software configuration management. Proceedings of the 25th
EUROMICRO Conference. Vol. 2. Pages 260—-265.

Lindsay, P.; Yaowei, L. & Traynor, O. 1997. A generic model for fine
grained configuration management including version control and
traceability. Proceeding of the Australian Software Engineering
Conference. Pages 27-36.

Lam, W.; Loomes, M. & Shankararaman, V. 1999. Managing
requirements change using metrics and action planning. Proceedings of
the Third European Conference on Software Maintenance and
Reengineering. Pages 122—128.

92

4. Requirements engineering tools

4.1 Introduction

Kotonya and Sommerville (1998) state that tools, which support requirements
engineering, can be divided into following two types:

- Modelling and validation tools support the development of system models.
The completeness and consistency of the models can be checked.

- Management tools help to manage the requirements database and support the
requirements change management.

According to Kotonya and Sommerville (1998) modelling tools can be based on
structured methods (e.g. SADT) or specialised requirements modelling
languages (e.g. RSL). These tools enable the creation of graphical and textual
models of the requirements and consistency checks. Validation tools, according
to Kotonya and Sommerville (1998), can "analyse the description for
mathematical inconsistencies which imply either mistakes in the formal
specification or requirements errors".

On the other hand, the main functions of requirements management are
according to Kotonya and Sommerville (1998) management of changes,
relationships and the dependencies between the requirement documents and
other documents during the whole product life cycle. RM management tools
have been developed because of the problems of managing unstable
requirements and the large amount of data collected during RE process.
Management tools support the management of requirement database and
changes to these requirements.

Organisation selects appropriate tools for use. Tool selection can depend of
various factors, such as (Sommerville & Sawyer, 1997):

- The tools that are already in use in the organisation, and new tools that are
compatible with the existing systems.

- Tool and training budget.
- The size of the system being developed.
- The specific guidelines which you wish to implement.

- Stability of the tool providing companies (that also means the availability of
the tools).

93

4.2 Basic RM tool features

In this sub section the basic requirements management (RM) tool features are
considered according literature. Detailed list of characteristics of requirements
management tools can be found from Sommerville and Sawyer (1997) and from
publication of Lang and Duggan (2001). According to Lang & Duggan (2001),
software requirements management tool must be able to:

- Maintain unique identifiable description of all requirements.

- Classify requirements into logical user-defined groups.

- Specify requirements with textual, graphical, and model based description.
- Define traceable associations between requirements.

- Verify the assignments of user requirements to technical design
specifications.

- Maintain an audit trail of changes, archive baseline versions, and engage a
mechanism to authenticate and approve change requests.

- Support secure, concurrent co-operative work between members of a
multidisciplinary development team.

- Support standard systems modelling techniques and notations.

- Maintain a comprehensive data dictionary of all project components and
requirements in a shared repository.

- Generate predefined and ad hoc reports.
- Generate documents that comply with standard industrial templates.

- Connect seamlessly with other tools and systems.

RM tools collect together the system requirements in a database or repository
and provide a range of facilities to access the information about the requirements
(Kotonya & Sommerville, 1998). Firstly, information browsing, querying and
reporting facilities allow the retrieval of needed information from database.
Secondly, traceability support facilities are used to generate traceability
information. Thirdly, converters and integrations with word-processors are
needed for maintaining links between the database and the natural language
representation of the requirements. Finally, change control facilities maintain
information about requested requirements changes and links to the requirements
affected by the change.

94

Many RM tools are based on database. Requirement database may have
relatively few records but each of them may include many links - to documents,
to text files and to other requirements. Commonly used database types are
relational database systems and object-oriented database systems.

Relational databases are used for storing and managing large number of records,
which have the same structure and minimal links between them. Currently many
RM tools are based on relational databases. According to Sommerville and
Sawyer (1997) it is possible to maintain many links with a relational database,
but it is insufficient as it requires operations on several different tables.
Sommerville and Sawyer (1997) state that object-oriented databases are
structurally more suited to requirements management. They allow different types
of information to be maintained in different objects and the way they manage
links between objects is fairly straightforward.

4.3 Examples of RE tools

This section presents some tools for Requirement Engineering (RE). In the
chapter 3 examples of the method-specific tools are included into the
descriptions of the methods (if any tools have been found in the literature).
There are numerous tools, which contain functionality related to RE support.
Different tools have focused on different aspects of RE depending on their
background. Thus, the intention is to provide the reader with a high level insight
into the variety of RE related tools. It should be kept in mind, that the following
presentation of RE tools is by no means comprehensive.

Collections of tool information can be found from these web sites (available
11.11.2003):

- Rabi Archrafi's descriptions of available requirements engineering
tools. URL: http://www.volere.co.uk/tools.htm

- INCOSE's pages, which contain taxonomy of requirements engineering tools
divided into hierarchical categories according to the purpose of use. URL:
http://www.incose.org/tools/tooltax/regengr_tools.html

- Ian Alexander's pages, which present a list of RE tool vendors and freeware
suppliers. URL: http://easyweb.easynet.co.uk/~iany/other/vendors.htm

95

5. Summary

This publication is based on a literature study on systems and software
requirements engineering. It discusses a diverse and plentiful set of available
requirements engineering technologies and aims at providing a comprehensive
view of the current state in requirements engineering practices.

Based on several requirements engineering processes described in literature, an
iterative requirements engineering process suitable for the requirements
engineering of embedded systems and software is defined. The phases of the
process are described in detail with their respective purpose, input, output, and
activities to be performed.

A survey of over 60 existing methods, techniques and approaches supporting the
different phases and activities of requirements engineering is presented using the
process model as a suggestive categorisation framework. The methods,
techniques and approaches are introduced briefly together with pointers to
sources of further information.

Also main types and basic features of tools and technologies, which provide
support for different activities of requirements engineering are discussed. In
addition, a short summary of existing RE tools is presented in order to offer an
insight to the variety of RE tools.

Shortcomings analysis of the existing technologies presented in this publication
will be performed later during the MOOSE project. Some limitations of the
technologies were already discovered when performing this literature study. For
example, experiences of the methods usage are not that widely published, yet in
order to utilise a technology, information about its limitations and suitability to
different situations is clearly needed.

96

Acknowledgements

We would like to thank all MOOSE project partners, especially people at
LogicaCMG and Oc¢ for their valuable comments regarding this publication. In
addition, we would like to express our appreciation to the official reviewer of
this publication, Dr. Serguei Roubtsov. We would also like to thank the support
from ITEA and Tekes.

97

References

Abrahamsson, P.; Salo, O.; Ronkainen, J. & Warsta, J. 2002. Agile Software
development methods: Review and analysis. Pages 55—61. Technical Research
Centre of Finland. VTT Publications 478.

Adams, G. & Douthit, D. 2000. Managing concurrent development-a systems
engineering approach. AUTOTESTCON Proceedings. Pages 248-255.

Alford, M.W. 1978. Software Requirements Engineering Methodology (SREM)
at the Age of Two. Proceedings of Computer Software and Applications. IEEE
Computer Society's 2nd Edition. Pages 332—-339.

Ambler S. W. 1998. Process Patterns Building Large-Scale Systems Using
Object Technology. Cambridge University Press/SIGS Books.

Andriole, S. 1989. Storyboard Prototyping for Systems Design: A New
Approach to User Requirements Analysis. Q E D Pub Co.

Beyer, H. & Holtzblatt, K. 1998. Contextual Design: Defining Customer-
Centered Systems. Morgan Kaufmann Publishers, Inc.

Blanchard B.S. & W. J. Fabrycky. 1981. Systems Engineering and Analysis.
Prentice Hall.

Booch, G. 1994. Object-Oriented Analysis and Design with Applications, 2nd
ed. Addison-Wesley.

Booch, G.; Jacobson, I. & Rumbaugh, J. 1998. The Unified Modeling Language
User Guide. Addison-Wesley.

Bose, P. 1995. A Model for Decision Maintenance in the WinWin Collaboration
Framework. Proceedings of the 10th Conference on Knowledge-Based Software
Engineering. Pages 105-113.

Brown, P. 1991. QFD: Echoing the Voice of the Customer. AT&T Technical
Journal. March/April, 1991. Pages 21-31.

98

Bourdeau, R.H. & Cheng, B.H.C. 1995. A Formal semantics for object model
diagrams. IEEE Transactions on Software Engineering. Vol. 21. No. 10. Pages
799-821.

Buede, D.M. 1997. Integrating requirements development and decision analysis.
IEEE International Conference on Systems, Man and Cybernetics.
Computational Cybernetics Simulations. Vol. 2. Pages 1574—-1579.

Chung, L.; Cooper, K. & Huynh, D.T. 2001. COTS-Aware Requirements
Engineering Techniques. Proceedings of the 2001 Workshop on Embedded
Software Technology (WEST'01).

CMMI-SE/SW V1.1. CMMI*™ for Systems Engineering/Software Engineering,
Version 1.1.

Crnkovic, 1.; Funk, P. & Larsson, M. 1999. Processing requirements by software
configuration management. Proceedings of the EUROMICRO'99 Conference.
Volume: 2. Pages 260-265.

Davis, A. M. 1990. Software requirements: analysis and specification. Prentice Hall.

Dayton, T. & Tournat, K. 1999. How to Design, Prototype, and Test A Usable
GUI In Three Days. URL: http://www.baychi.org/meetings/archive/0399.html

Derr, K.W. 1995. Applying OMT: A Practical Step-by-Step Guide to Using the
Object Modeling Technique. SIGS Books.

Dobrica, L. & Niemeld, E. 2002. A Survey of Software Architecture Analysis
Methods. IEEE Transactions on Software Engineering. Vol. 28. No. 7. Pages
638-653.

Dorfman M. 1990. System and Software Requirements Engineering, In: Thayer,
R.H. & Dorfman, M. IEEE System and Software Requirements Engineering.
IEEE Software Computer Society Press Tutorial. IEEE Software Society Press.

Douglass, P. B. 1999. Doing Hard Time: Developing Real-Time Systems with
UML - Objects, Frameworks, and Patterns. Addison-Wesley.

99

Dubois, E.; Du Bois, P. & Petit, M. 1994. ALBERT: an agent-oriented language
for building and eliciting requirements for real-time systems. Vol. IV:
Information Systems: Collaboration Technology Organizational Systems and
Technology. Proceedings of the Twenty-Seventh Hawaii International
Conference on System Sciences. Pages 713—722.

Ericsson, K.A. & Simon, H. A. 1993. Protocol Analysis - Revised Edition. MIT
Press.

Gennaro, G. 1995. Hierarchical Object Oriented Requirements Analysis
(HOORA). Preparing for the Future Vol. 5. No. 4. European Space Agency.
http://esapub.esrin.esa.it/pff/pffvSnd/genvSn4d.htm

Gilb, T. 2003. Competitive Engineering. Addison-Wesley.

Gotel, O. 1995. Contribution Structures for Requirements Traceability. Ph.D.
Thesis. Imperial College of Science, Technology and Medicine. University of
London.

Gotel, O. & Finkelstein, A. 1994a. An Analysis of the Requirements
Traceability Problem. Proceedings of the First International Conference on
Requirements Engineering. Pages 94-101.

Gotel, O. & Finkelstein, A. 1994b. Modelling the Contribution Structure
Underlying Requirements. Proceedings of the First International Workshop on
Requirements Engineering: Foundations of Software Quality (REFSQ-94).

Gotel, O. & Finkelstein, A. 1995. Contribution structures [Requirements
artifacts]. Proceedings of the Second IEEE International Symposium on
Requirements Engineering. Pages 100-107.

Gotel, O. & Finkelstein, A. 1997. Extended requirements traceability: results of

an industrial case study. Proceedings of the Third IEEE International
Symposium on Requirements Engineering. Pages 169—178.

100

Greenspan, S.; Mylopoulos, J. & Borgida, A. 1994. On formal requirements
modeling languages: RML revisited. Proceedings of the 16th International
Conference on Software Engineering. Pages 135-147.

Hadel, J.J. & Lakey, P.B. 1995. A customer-oriented approach for optimising
reliability-allocation within a set of weapon-system requirements. Proceedings
of the annual symposium on Reliability and Maintainability. Pages 96—101.

Hall, A. 2001. A Unified Approach to Systems and Software Requirements. The
5th IEEE Symposium on Requirements Engineering.

Harjani, D.-R. & Queille, J.-P. 1992. A process model for the maintenance of
large space systems software. Proceedings of Conference on Software
Maintenance. [EE Computer Press. Pages 127-136.

Hatley, D. J. & Pirbhai, I. A. 1987 Strategies for Real-Time System
Specification. Dorset House.

Hooks, I. & Farry, K. 2001. Customer-Centred Products. Amacom.
Horowitz, E. & Williamson, R. 1986. SODOS : A Software Documentation
Support Environment - its Use. IEEE Transactions on Software Engineering.

November 1986. Pages 1076-1087.

IEEE Guide for Developing System Requirements Specifications (IEEE Std
1233-1998). 1998. Institute of Electrical and Electronics Engineering Inc.

IEEE Standard for Application and Management of the Systems Engineering
Process (IEEE Std 1220-1998). 1998. Institute of Electrical and Electronics

Engineering, Inc.

IEEE Standard Glossary of Software Engineering Terminology (IEEE Std
610.12 —1990). 1990. Institute of Electrical and Electronics Engineering, Inc.

IEEE Recommended Practice for Software Requirements Specifications (IEEE
Std 830—-1998). 1998. Institute of Electrical and Electronics Engineering, Inc.

101

In, H.; Olson, D. & Rodgers, T. 2001. A Requirements Negotiation Model Based
on Multi-Criteria Analysis. International Symposium on Requirements
Engineering.

Ince, D. 1994. Introduction to software quality assurance and its implementation,
McGraw-Hill.

ISO/IEC 12207. 1995. Information technology - Software life cycle processes,
International Standard.

ISO/IEC 13817-1. 1996. Information technology -- Programming languages,
their environments and system software interfaces -- Vienna Development
Method -- Specification Language -- Part 1: Base language. International
Standard.

Jacobson, I.; Booch, G. & Rumbaugh, J. 1999. The Unified Software
Development Process. Addison-Wesley.

Jacobson, I.; Christerson, M.; Jonsson, P., & Gunnar, O. 1992. Object-Oriented
Software Engineering: A Use Case Driven Approach. Addison-Wesley.

Kazman, R.; Klein, M.; Barbacci, M.; Longstaff, T.; Lipson, H. & Carriere, J.
1998. The Architecture Tradeoff Method. Proceedings of the fourth IEEE

International Conference on Engineering of Complex Computer Systems. Pages
68-78.

Kontio, J. 1995. OTSO: A Systematic Process for Reusable Software
Component Selection. The Hughes Information Technology Corporation and the
EOS Program. Version 1.0

Kotonya, G. & Sommerville, I. 1998. Requirements Engineering: Process and
Techniques. John Wiley & Sons.

Lam, W.; Loomes, M. & Shankararaman, V. 1999. Managing requirements

change using metrics and action planning. Proceedings of the Third European
Conference on Software Maintenance and Reengineering. Pages 122—-128.

102

Lang, M. & Duggan, J. 2001. A Tool to Support Collaborative Software
Requirements Management. Requirements Engineering. Vol. 6. No. 3. Pages
161-172.

Lee, S. & Liu, B. 1993. IBO: an issue based object model for software design.
Proceedings of the IEEE Region 10 Conference on Computer, Communication,
Control and Power Engineering. Vol. 1. Pages 270-274.

Leffingwell, D. & Widrig, D. 2000. Managing Software Requirements - A
Unified Approach. Addison-Wesley.

Lindsay, P.; Yaowei Liu & Traynor O. 1997. A generic model for fine grained
configuration management including version control and traceability.
Proceedings of the Australian Software Engineering Conference. Pages 27-36.

Morisio, M.; Seaman, C.B.; Parra, A.T.; Basili, V.R.; Kraft, S.E. & Condon, S.E.
2000. Investigating and Improving a COTS-Based Software Development
Process. Proceedings of the International Conference on Software Engineering.

Mullery, G.P. 1979. CORE — A Method for Controlled Requirement
Specification. Proceedings of IEEE Fourth International Conference on Software
Engineering.

Maikardinen, M. 1996. Application management requirements for embedded
software. Technical Research Centre of Finland. VTT Publications 286. 99 p.

Mikidrdinen M. 2000. Software change management processes in the
development of embedded software. Technical Research Centre of Finland. VTT
Publications 416. 185 p. + app. 56 p.

Nelsen, E. D. 1990. System Engineering and Requirement Allocation. In Thayer,
R.H. & Dorfman, M. IEEE System and Software Requirements Engineering.
IEEE Software Computer Society Press Tutorial. IEEE Software Society Press.

Nuseibeh B. & Easterbrook S. 2000. Requirements Engineering: A Roadmap. In
Finkelstein, A. (ed.). The Future of Software Engineering . Companion volume

103

to the proceedings of the 22nd International Conference on Software
Engineering. IEEE Computer Society Press.

Olsen, N. 1993. The software rush hour. IEEE Software. Vol. 10. Issue 5. Pages
29-37.

Pinheiro, F. 2000. Formal and Informal Aspects of Requirements Tracing. III
Workshop on Requirements Engineering.

Pohl, K. & Haumer, P. 1995. HYDRA: A Hypertext Model for Structuring
Informal Requirements Representations. RWTH-Aachen, Informatik V.

Pressman, R. S. 1992. Software Engineering, A Practitioner’s Approach, 3rd
Edition. McGraw-Hill.

Ramesh, B.& Dhar, V. 1992. Supporting systems development by capturing
deliberations during requirements engineering. IEEE Transactions on Software
Engineering. Vol. 18. No. 6. Pages 498-510.

Ramesh, B. & Jarke, M. 2001. Toward reference models for requirements
traceability. IEEE Transactions on Software Engineering. Vol. 27. Issue 1. Pages
58-93.

Rational Software Corporation. 1997. The Unified Modeling Language for
Object-Oriented Development Documentation. v1.1. Rational Software

Corporation.

Rawlinson, J.G. 1981. Creative Thinking and Brainstorming. Gower Publishing
Company Limited.

Remillard, A. 1996. Software validation made simple. Proceedings of the Ninth
IEEE Symposium on Computer-Based Medical Systems. Pages 36—40.

Robertson, S. & Robertson, J. 1999. Mastering the Requirements Process.
Addison-Wesley.

104

Sailor, J. D. 1990. System Engineering: An Introduction. In: Thayer, R H. &
Dorfman, M. IEEE System and Software Requirements Engineering. IEEE
Software Computer Society Press Tutorial. IEEE Software Society Press.

Sawyer, P. & Kotonya, G. 2001. Software Requirements. In the Trial Version
(0.95) of SWEBOK, Guide to the Software Engineering Body of Knowledge.
Chapter 2, pages 1-26. http://www.swebok.org/ (available 26.3.2002)

Schoman, K. & Ross, D.T. 1977. Structured Analysis for Requirements
Definition. IEEE Transactions on Software Engineering. Pages 6—15.

Sheppard, D. 1995. An Introduction to Formal Specification with Z and VDM.
McGraw-Hill.

SPICE. 1998. ISO/IEC TR 15504-2: Information Technology Software Process
Assessment Part 2: A Reference Model for Processes and Process Capability.
Technical Report type 2. International Organisation for Standardisation (ed.).

Sommerville, I. & Sawyer, P. 1997. Requirements Engineering: A Good Practice
Guide. John Wiley & Sons.

Stankovic, J. A. 1996. Real-Time and Embedded Systems. ACM Computing
Surveys. Vol. 28. No. 1. Pages 205-208.

Stevens, R.; Brook, P.; Jackson, K. & Arnold, S. 1998. Systems Engineering -
Coping with Complexity. Prentice Hall.

Thayer, R. H. & Royce, W. W. 1990. Software Systems Engineering. In: Thayer,
R.H. & Dorfman, M. IEEE System and Software Requirements Engineering.
IEEE Software Computer Society Press Tutorial. IEEE Software Society Press.

Toranzo M. & Castro J. 1999. Multiview++ Environment: Requirements
Traceability from the perspective of different stakeholders. II IberoAmerican

Workshop on Requirements Engineering.

Wiegers, K.E. 1999. Software requirements. Microsoft Press.

105

Vierimaa, M., Ronkainen, J., Salo, O., Sandelin, T., Tihinen, M., Freimut, B. &
Parviainen, P. 2001. MIKKO Handbook: Comprehensive collection and
utilisation of software measurement data. Pages 96—100. Technical Research
Centre of Finland. VTT Publications 445.

West, M. 1991. Quality function deployment in software development. IEE
Colloquium on Tools and Techniques for Maintaining Traceability During
Design. Pages 5/1-5/7.

Yu, W. D. 1994. Verifying software requirements: a requirement tracing
methodology and its software tool-RADIX. IEEE Journal on Selected Areas in
Communications. Vol. 12. No. 2. Pages. 234-240.

Zave, P. 1982. An Operational Approach to Requirements Specification for

Embedded Systems. IEEE Transactions on Software Engineering. Vol. 8. No. 5.
Pages 250-269.

106

Published by Series title, number and
report code of publication

W77 VTT Publications 508

VTT-PUBS-508

Author(s)
Parviainen, Péivi, Hulkko, Hanna, Kédaridinen, Jukka, Takalo,Juha & Tihinen, Maarit

Title
Requirements engineering
I nventory of technologies

Abstract

The purpose of this publication is to describe existing systems and software requirements
engineering techniques, methods and tools based on a literature study. This publication covers a
wide range of requirements engineering methods and theoretical issues and thus provides a broad
view of the field. Also, some RE tools are described.

Requirements engineering is also described in general and RE processes introduced to provide
background information about RE and help to understand the method descriptions. The main
processes of RE as seen in this publication include: System requirements development,
requirements allocation and flow-down, software requirements analysis and specification and
continuous processes including requirements documentation, requirements validation and
verification and requirements change management. Requirement Management (RM) activities are
understood to begin before actual requirements engineering process phases (RM planning) and
continuing during design, implementation, testing and maintenance phases.

Keywords
Requirements engineering (RE), RE methods, RE techniques, RE tools, system and software engineering
Activity unit
VTT Electronics, Kaitoviyla 1, P.O.Box 1100, FIN-90571 OULU, Finland
ISBN Project number
951-38-6245-3 (soft back ed.) E2SU00054
951-38-6246—1 (URL:http://www.vtt.fi/inf/pdf/)
Date Language Pages Price
November 2003 English 106 p. C
Name of project Commissioned by
MOOSE (Software engineering methodologies for ITEA,
embedded systems) National Technology Agency of Finland Tekes
Series title and ISSN Sold by
VTT Publications VTT Information Service
1235-0621 (soft back ed.) P.O0.Box 2000, FIN-02044 VTT, Finland
1455-0849 (URL: http://www.vtt.fi/inf/pdf/) Phone internat. +358 9 456 4404

Fax +358 9 456 4374

VTT PUBLICATIONS

490 Vaskivuo, Teemu. Software architecture for decentralised distribution services in spontaneous
networks. 2003. 99 p.
491 Mannersalo, Petteri. Gaussian and multifractal processes in teletraffic theory. 2003. 44 p. +
app. 109 p.
492 Himanen, Mervi. The Intelligence of Intelligent Buildings. The Feasibility of the Intelligent
Building Consept in Office Buildings. 2003. 497 p.
493 Rantamiki, Karin. Particle-in-Cell Simulations of the Near-Field of a Lower Hybrid Grill.
2003. 74 p. + app. 61 p.
494 Heinio, Raija-Liisa. Influence of processing on the flavour formation of oat and rye. 2003.
72 p. + app. 48 p.
495 Raisinen, Erkki. Modelling ion exchange and flow in pulp suspensions. 2003. 62 p. + app. 110
p.
496 Nuutinen, Maaria, Reiman, Teemu & Oedewald, Pia. Osaamisen hallinta ydinvoima-
laitoksessa operaattoreiden sukupolvenvaihdostilanteessa. 2003. 82 s.
497 Kolari, Sirpa. Ilmanvaihtojirjestelmien puhdistuksen vaikutus toimistorakennusten sisdilman
laatuun ja tyontekijoiden tyooloihin. 2003. 62 s. + liitt. 43 s.
498 Tammi, Kari. Active vibration control of rotor in desktop test environment. 2003. 82 p.
499 Kololuoma, Terho. Preparation of multifunctional coating materials and their applications. 62
p. + app. 33 p.
500 Karppinen, Sirpa. Dietary fibre components of rye bran and their fermentation in vitro. 96 p.
+ app. 52 p.
501 Marjamiki, Heikki. Siirtyméperusteisen elementtimenetelméohjelmiston suunnittelu ja ohjel-
mointi. 2003. 102 s. + liitt. 2 s.
502 Biéckstrom, Mika. Multiaxial fatigue life assessment of welds based on nominal and hot spot
stresses. 2003. 97 p. + app. 9 p.
503 Hostikka, Simo, Keski-Rahkonen, Olavi & Korhonen, Timo. Probabilistic Fire Simulator.
Theory and User's Manual for Version 1.2. 2003. 72 p. + app. 1 p.
504 Torkkeli, Altti. Droplet microfluidics on a planar surface. 2003. 194 p. + app. 19 p.
505 Valkonen, Mari. Functional studies of the secretory pathway of filamentous fungi. The effect
of unfolded protein response on protein production. 2003. 114 p. + app. 68 p.
508 Parviainen, Pidivi, Hulkko, Hanna, Kéiridinen, Jukka, Takalo, Juha & Tihinen, Maarit. Re-
quirements engineering. Inventory of technologies. 2003. 107 p.
509 Sallinen, Mikko. Modelling and estimation of spatial relationships in sensor-based robot
workcells. 2003. 218 p.
Tata julkaisua myy Denna publikation séljs av This publication is available from
VTT TIETOPALVELU VTT INFORMATIONSTJANST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.0.Box 2000
02044 VTT 02044 VTT FIN-02044 VTT, Finland
Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. +358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax +358 9 456 4374
ISBN 951-38-6245-3 (soft back ed.) ISBN 951-38-6246-1 (URL: http://www.vtt.fi/inf/pdf/)

ISSN 1235-0621 (soft back ed.) ISSN 1455-0849 (URL: http://www.vtt.fi/inf/pdf/)

U
@)
o]
=
—
>
=
—
o
Z
wn
Ul
o
co

*s3130[0UYdI] JO AI0IUSAU] "SULIIIUISUS SIUSWAIIMDIY

	Abstract
	Preface
	Contents
	List of terminology
	1. Introduction
	2. Requirements engineering processes
	2.1 System requirements development
	2.2 Requirements allocation and flow-down
	2.3 Software requirements analysis and specification
	2.4 Continuous activities in RE
	2.4.1 Requirements documentation
	2.4.2 Requirements validation and verification
	2.4.3 Requirements change management

	2.5 Requirements management viewpoint

	3. Requirements engineering methods
	3.1 General methods
	3.2 System Requirements development
	3.3 Requirements allocation and flow-down
	3.4 Software requirements analysis and specification
	3.5 Continuous activities
	3.6 Requirements management
	3.6.1 Requirements identification
	3.6.2 Requirements traceability
	3.6.3 Requirements traceability models, methods and languages
	3.6.4 Requirements change control

	4. Requirements engineering tools
	4.1 Introduction
	4.2 Basic RM tool features
	4.3 Examples of RE tools

	5. Summary
	Acknowledgements
	References

