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Abstract

Requirements for verifying spatia relations in robot workcell in terms of
accuracy and repeatability are increasing. Improvements in the performance of
industrial robots have extended the range of applications in to new fields in
which flexihility, high payload, accuracy and repeatability are needed. To satisfy
the requirements of overall geometric performance and flexibility in a robot
system, a sensor-based, intelligent robot can be used.

One of the goals of this thesis was to develop a flexible, CAD—based robot
system. Modern applications and cost-effective production require off-line
programming, and the difference between off-line programming systems and
actual robot workcells has to be illustrated somehow in order to verify the gap
between simulation models and actual robot systems.

A method for modelling spatial uncertaintiesin arobot system is presented here,
based on Bayesian-form estimation of model parameters and of the spatial
uncertainties in the resulting parameters. The calibration of the robot workcell
consists of severd phases: hand-eye calibration, localization of the work object
and estimation of model parameters for the work object surface. After localizing
the work object, a finalization task can be carried out, e.g. inspection,
manufacturing or assembly. A synthesis method of sensing planning that uses
the same form of modelling spatial uncertaintiesis also presented. The deviation
between covariance propagation models and actual systems is reduced by using
detailed noise models of the robot system, including measured noise, at different
phasesin the calibration.

The methods developed here were tested with smulation and extensive actual
tests in each phase. The evaluation criteria used were eigenvalues in the
directions of eigenvectors of the error covariance matrix. A careful analysis of



gpatial uncertainties was carried out to test the reiability of the covariance
propagation method when the level of noise is changing, the results suggesting
that the method is aso applicable in such cases. The sensing planning method
was compared with different types of sets of samples and the results analysed by
considering the a posteriori error covariance matrix for the estimated parameters.
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List of symbols

e error function

H homogenous pose matrix including rotation matrix and trandation
vector

AH homogenous increment matrix for the pose matrix

J jacobian matrix

K partial derivative of error function with respect to input
parameters

m pose parameter vector

Am increment for pose parameter vector

(0] observabilty index

P error covariance matrix

R noise matrix for the input data

T translation vector

V Rotation matrix

0 weight matrix

o) gaussian form noise in pose parameters

o singular value

ot rotation of the joint t



@ transformation of each joint in D-H parameters

A eigenvalue of the parameter

W planned set of samples

(tx ot D@, qoz) full pose parameters (trand ation and orientation)

A,BandC formsof spatial uncertaintiesin coordinate transformations

CAD Computer Aided Design

D-H Denavit-Hartenberg, a notation of method for coordinate
transformations

DOF Degrees Of Freedom

EKF Extended Kalman Filter

GA Genetic Algorithm

KF Kaman Filter

Monte Carlo simulation method based on generation of random numbers

MCL Monte Carlo Localization

pose posture, trand ation and orientation information

SA Simulated Annealing

SNR Signal-to-Noise Ratio

STL Stereolithography exchange format

TCP Tool Center Point
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1. Introduction
1.1 Background

There is an increasing need for verifying the accuracy and rdiability of the
kinematic properties of industrial robot systems. Due to improvements in the
performance of microcomputers, robot manufacturers are able to design
controllers which have better performance in computing robot paths more
accurately than before. This combined with higher accuracy in the manufactured
parts of the manipulator has meant that the whole geometric system of an
industrial robot has taken several steps forward during the last few years, and the
result is the development of accurate, powerful robots suitable for many
purposes (ABB Robotics 2003a, KUKA Robotics 2003). Analysis of geometric
relationships and estimation of spatiadd uncertainties is nevertheless a
fundamental problem in several robot-related application areas: product
inspection, assembly, manufacturing, machining and mobile robotics. A
desirable situation as far as flexibility and cost efficiency in a manufacturing line
is concerned would be that the same robot should perform both manufacturing
operations and quality inspection. In that way it would be possible to save
process time, device investments and space on the factory floor. Improved
accuracy increases costs, but costs can be held at areasonable level when using a
robot system. The constantly increasing off-line programming aso places
requirements on the accuracy and repeatability of a robot. Off-line models are
nominal ones, but programs have to work in actual robot cells. This difference
also has to be realized somehow. One solution is to analyze the spatial
uncertainties off-line in order to verify that deviations between the nominal
model and the actual workcell are within an acceptable range, determined as the
working space in which the dimensions of the robot cell can vary but the robot
programs still work.

Improvement of the accuracy, repeatability and performance of a robot system
requires both external sensors and intelligence in the controller. Sensors help a
robot to observe its environment and, using its intelligence, process the observed
data and make decisions and changes to control its movements. The term
intelligent robotics, or sensor-based robotics, is used for an approach of this
kind. Such a robot system includes a manipulator (arm), a controller, external
sensors and software for controlling the whole system. The movements of the
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robot are controlled using a closed loop system. For this to be successful, the
bandwith of the control sensors has to be much greater than that of the actuators
of the joints, but usually the external sensors are still much less accurate than the
internal sensors of the robot (Bernhardt & Albright 1993). The types of sensors
that the robot uses for observing its environment may include vision, laser-range,
ultrasonic or touch sensors. The availability of data varies between different
sensors, and it is important when designing a robot system to consider what its
requirements will be. The combining of information from several measurements
or sensorsis called sensor fusion.

The calibration of robot systems to improve accuracy can be divided into two
main types:

. Calibration of static parameters, in which the aim isto estimate and
improve the parameters used in the kinematic model of the robot. A
typical application is static positioning in an assembly task.

. Calibration of dynamic parameters, in which the dynamic parameters of
the robot model are estimated and improved. This improves the accuracy
of the motion paths and other dynamic actions.

This thesis focuses on the first type of calibration, the goal being to estimate the
transformations between different coordinate frames, evaluate the goodness of
the transformations and reduce the uncertainties in the estimated parameters by
planning the measurements such that the effects of noise, i.e. uncertainty in the
system, are minimized.

There are always inaccuracies and flexibilities in the joints and links in a robot
system, and improvement of robot performance in the sense of accuracy must
include the following methods: calibration of robot joints and link lengths,
calibration of the relationships between sensors and the robot base, calibration of
the relationships between sensors and the robot TCP and visual servoing.
Cdlibration of robot joints and link lengths means estimation of the offsets for
robot joint angles and link lengths and using these for improving the kinematic
model of the robot. This kind of calibration can be carried out using external
sensors. When a sensor is located in arobot cell, the transformation between the
sensor coordinate frame and the robot base has to be calibrated. This is called
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hand-eye calibration. The sensor may also be attached to the TCP of the robot,
so that the transformation from the robot TCP to the sensor coordinate frame has
to be determined. Visua servoing means that the accuracy of the robot is
improved by observing its location using an externa vision sensor and moving
the TCP of the robot on the basis of that visua information. The largest
inaccuracies and errors in a robot system nevertheless depend on the use of the
robot. Mechanical stress on the manipulator arm causes deviation in the TCP in
the case of tasks with a high payload (Maooring et al. 1991). Robot manufacturers
nowadays provide manipulator arms with as much as a 500 kg payload for this
eventuality, but unfortunately they have poorer accuracy (ABB Robotics 2003z,
KUKA Robotics 2003).

Cdlibration of the kinematic model of a robot includes the following three steps:
modelling the kinematic behaviour of the robot, determining the parameters to
be estimated and collecting the measurement data. Static calibration can be
carried out in two ways depending on the measurement approach: first, a large
number of points around the working space can be measured with a sensor
having a high level of noise, or second, only a few, accurate and carefully
selected points can be measured (Bernhardt & Albright 1993). This is because
the accuracy and reliability of the calibration is highly dependent on the quality
of the measurement data. There are two main methods for generating the set of
measurement motions that will satisfy the requirements: generate-and-test and
synthesis (Sheng et al. 2000). Generate-and-test is straightforward and easy to
implement, but the disadvantage is the computational cost. This is critical only
in real-time applications, however. Synthesis requires a deeper understanding of
the relationships of parameter estimation to the goal to be achieved. In addition
to these two methods, there are knowledge-based methods and sensor simulation
methods which are not used so frequently in sensing planning.

When running a robot in an unknown evironment, i.e. treating objects whose
geometric properties are not known, a method for representing surface modelsis
needed. In addition to this, when trying to model all the possible error sourcesin
a robot system, uncertainties in the surface models have to be taken into
consideration. Another requirement for modelling is to model surfaces using
simple forms which are easy to use in any calibration of the robot system.
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There are severa mathematical methods for calculating the parameters for
calibrations. In many cases linearized models can be used, e.g. least-squares
estimation. A very commonly used method is a Kaman filter (KF) or an Extended
Kaman Filter (EKF). Some researchers have used a Levenberg-Marguard method
(Motta & McMaster 1997) and obtained promising results. In order to improve the
localization in a global frame, researchers have used a Monte Carlo Localization
(MCL) in mobile robotics (Dellaert et a. 1999). The other branches of non-linear
parameter estimation are Grid-based Markov Locaization and Topological
Markov Localization (Dellaert et a. 1999). Most of the parameter estimation
methods enable the sensor information to be fused with the initial estimate after it
has been computed, in order to reduce the uncertainties in the estimated
parameters. Especially in mobile robotics, sensor fusion is important when the
location of the robot isto be updated whileit is moving.

Simulation and off-line programs offer a flexible approach for using a robot
system efficiently. Nowadays product design is based on CAD models, which
are also available for smulation and off-line programming purposes. When the
robot is working, a new path can be designed and generated, but there is till a
gap between the simulation model and an actual robot system, even if the
dynamic properties of the robot are modelled in the simulation model. When
using intelligent robots, this gap is bridged using sensor observations on the
environment and motions are corrected according to sensor information from the
control system. This kind of interaction improves the flexibility of the robot
system and makes it cost-effective in small lot sizes aswell.

1.2 Scope of the thesis
The purpose of this thesis is to present methods for estimating the geometrical
relationships between coordinate frames and the spatia uncertainties in
estimated model parameters. The calibration and running of a robot system
requires three main steps:
. Planning and programming the robot motions

. Executing the motions and collecting measurement data with sensors

. Analysing the results.
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Off-line programming includes calculation of the required set of motions (specific
position and orientation values) and testing them in a smulation tool. This step is
aso caled the sensing planning and simulation step. The second step, executing
the actua calibration, includes making the measurements using the robot system.
The cdibration of geometrical transformations can be divided into two main tasks:
hand-eye calibration, i.e. determining the transformation between the robot TCP
and the origin of the sensor, and work object locdlizing, i.e. determining the
relationship between the robot base frame and the origin of the work object.
Analysis of the results includes calculation of spatia uncertainties attached to the
estimated parameters or some specific feature and verifying that the accuracy
requirements of the robot system will be fullfilled. The accuracy requirements for
robot systems are typically between 0.1 and 0.8 mm.

The phases in the estimation of spatial relations in a robot-based workcell, as
illustrated in Figure 1, may be taken to include hand-eye calibration, work object
localization and a finalization task, which can be inspection, deburring etc. The
initial input to the system is CAD information on the product to be handled. A
priori information on the cell or environment should also be included. Using the
sensor / sensors of the system, hand-eye calibration is first carried out, including
the estimation of spatial uncertainties attached to the estimated parameters. After
determining the hand-eye transformation, the location is measured, i.e. the
uncertainties associated with the work object are estimated and a pose is
calculated. Spatia uncertainties are dso caculated in this phase, and then
analyzed to check the fullfilment of the accuracy requirements. The last phase is
the handling of the work object. This may include inspection, manufacturing
operations, e.g. deburring or polishing, or assembly. These are typical
applications of the robot system developed in this thesis.

Since the effects of noise and unmodelled sources of error can disturb parameter
estimation, the quality of the coordinate transformations has to be verified
somehow. The evaluation of system performance will be more reliable if
efficient models are used to describe the spatial uncertainties, which are
regarded in this thesis as affecting the estimated model parameters.
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Figure 1. Process flow for the estimation of spatial relations in a robot-based
workcell.

The spatial uncertanties are analysed by studying the error covariance of the
estimated parameters a posteriori. When estimating the uncertainties of a pose
with six degrees of freedom, the error covariance matrix includes both
trangdation and orientation information. Computation of eigenvectors and
eigenvalues from an error covariance matrix which includes several units does
not give clearly interpretable results, but instead, the uncertainties attached to a
single feature, e.g. a point, will allow computation of an error covariance matrix
with single units. Other criteria for analysing the goodness of the set of samples
are the condition number (Sakane et al. 1987), observability index (Borm &
Menq 1991) and noise amplification index (Nahvi et a. 1996).

To obtain model parameters with a low level of uncertainties in the estimation
process, the data set used for estimation will have to be carefully selected. This
kind of data set can basically be generated in two ways. generate-and-test or
synthesis. In the generate-and-test method, the parameter space of the sensor is
discretized and candidates for different positions and orientations are generated.
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The set of points is then evaluated somehow based on the given criteria
Building up a system of this kind is not very complicated, but if the parameter
space is very large or the criteria do not sort the set of samples effectively, the
result will be inaccurate. The other disadvantage of this method is that it ignores
internal sensor parameters in the planning process and usualy fails to take
uncertainties into consideration (Gu et al. 1999).

The second method, synthesis, adopts an analytical approach to solving the
problem, by calculating the valid sensor positions and orientations directly. Its
best solutions allow the measurements to be planned so as to take internal sensor
parameters into consideration. The disadvantage of the synthesis method is that
If one tries to optimize too many parameters the result is an agorithm with poor
performance. This thesis descibes an algorithm which belongs to the second
category but without considering the internal parameters of the sensor. The
method developed for this purpose is simple and easy to implement for
application to different parameter estimation problems.

When estimating model parameters in work object localization and surface
models, the Verification Vision approach (Shirai 1987) is considered in this
thesis. This means that al the objects and their shape and form are known
beforehand and no specia attention is paid to recognition of an object by the
sensor in advance.

One goal of this thesis has been to develop a flexible, CAD-based robot system.
The requirements of flexibility are suitability for production of single or small
lot sizes and changes of deviations in work objects. To fulfil the requirements of
flexible operation of the system, al the robot motions are programmed off-line
with interaction between an operator and the system. Various kinds of auxiliary
tools have been developed for different types of motion, including selection of
the calibration points, orientation and selection of the commands for the run-
time sensor measurements. In addition to using CAD models produced by a
designer, a Reverse Engineering approach is proposed here. In a case when there
isno CAD model available, or the form of the work object differs considerably
from that presupposed in the CAD model, a parametric or patched surface model
can be generated from a cloud of measurement points. When using the same
kind of estimation method as for coordinate transformations, it is possible to
estimate the uncertainties attached to the model parameters.
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The methods and algorithms presented in this thesis have been tested by
simulation and in an actua test environment. In the smulation tests, the
agorithms were implemented using MATLABO software and robot simulations
were run using the ENVISIONO off-line programming tool. In the actua tests,
several types of robots and sensors were used. The main tests were carried out
using an industrial robot with six rotational joints and a 3D laser-range sensor.

No analysis of the computational efficency of the proposed methods has been
included in this thesis. There are a number of rea-time applications in the
literature (Davison & Kita 2001, Dissanayake et al. 2001, Nilsson & Nygards
1996) that use the Kalman Filter, for example, which is very similar to the
method proposed here, and the methods presented here can be implemented in
real-time applications as well.

1.3 Contribution of the thesis

The idea of developing methods for estimating coordinate transformations and
gpatial uncertainties in a robot system is not new, as the fundamental work of
modelling spatial uncertainties was performed by Durrant-Whyte (1988), who
defined the uncertainties based on Gaussian noise. Interest in robotics in the
early 1990s focused on mobile robotics, and most of the research into the
modelling of spatial uncertainties took place in that field. Hardly any attention
was paid to the a posteriori analysis of error covariances, however, as presented
in this thesis, even though methods for composing covariance matrices had been
presented.

The contribution made by this thesis to methods for modelling spatial
uncertainties in the context of arobot system are the following:

. Modelling the spatial uncertainties in a robot-based workcell covering a
wide range of error sources. Several examples of modelling uncertainties
in one task have been proposed in the literature using different
modelling methods e.g. (Moreno et al. 2002, Su & Lee 1992, Taylor &
Ragjan 1988), but not in whole systems with accumulations of spatial
uncertainties including severa phases: hand-eye calibration, work object
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localization, surface model generation and manufacturing operations
such as surface inspection.

Careful evaluation of covariance-based uncertainty approximations
(Monte Carlo simulations, experiments with a real robot system). The
spatial uncertainties are evaluated by studying the behaviour of an a
posteriori error covariance matrix derived from the estimated
parameters. The properties of the covariance matrix that are studied are
both eigenvalues and eigenvectors, and also an uncertainty ellipsoid,
which is one geometrical illustration of the covariance matrix.

Analysis of the level of input noise affecting the a posteriori
uncertainties of the estimated parameters. It is important in a noisy
system to find the limits of performance within which it can be used, i.e.
the limits within which the parameter estimation gives robust results.
Thisanalysis should be carried out in each estimation phase.

A simple, novel sensing planning method for generating a set of samples
that give alow level of uncertainties for the paramaters to be estimated.
User of this method also enables the reliability of the estimator to be
improved when the properties of the a posteriori error covariance matrix
can be predicted within certain limits.

Development of a flexible, CAD-based robot system. The system is
programmed off-line, using simulation and CAD data as a priori
information. The simulation model is updated off-line and movements of
the robot are adjusted on-line based on sensor measurements from the
environment. This kind of system is able to operate in manufacturing
tasks with individual or short series production.

The main focus with regard to modelling spatia uncertainties is placed on
studying the usability and reliability of the covariance propagation method when
modelling the robot system. Linearized models are quite straightforward to use,
and it is assumed that they remain reliable even if severa calibration steps are
taken (hand-eye calibration, work object localization and surface modelling).
The usability and reiability are studied by comparing the difference in
orientation and the lengths of the main axis of the uncertainty ellipsoid between
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covariance propagation, Monte Carlo simulation (Kariméki 1993) and actua
tests. In addition, the effect on the goodness of the set of samples is tested, to
assess whether the difference between the uncertainties in the covariance
propagation and actual tests decreases as the set of samples becomes better.

The methods developed in this thesis are designed in such away that they should
be easy to implement in the context of other estimation problems and to carry
out even in afactory environment or remotely, using applications built on a web
browser. They have been implemented in a different types of sensors, including
alaser rangefinder, atactile sensor, an optical range sensor and a camera system
in adifferent projects.

1.4 OQutline of the thesis

The chapters 2 and 3 are similar in structure, as they both include an overview of
the literature regarding methods of hand-eye calibration, work object
localization and the estimation of work object surface model parameters.

Chapter 2 presents methods for estimating the model parameters, together with
approaches for solving the coordinate transformations required in hand-eye
calibration, work object locaization and the generation of surface models, as
found in the literature. The estimation methods found in the literature are
classified into deterministic and stochastic methods in order to illustrate the
different approaches.

Methods for modelling the spatia uncertaintiesin arobot system are considered
in chapter 3. A review of the methods used in the literature is presented, and this
is again classified into deterministic and stochastic approaches. A brief overview
of methods of sensor fusion used in roboticsis aso given.

Chapter 4 discusses sensing planning. Both main methods, i.e. generate-and-test
and synthesis, are explained. In addition to these, expert systems and sensor

simulation systems for sensing planning are introduced.

A methodological framework developed for parameter estimation, modelling of
gpatial uncertainties and the planning of measurements is given in chapter 5,

20



which focuses on presenting the contribution of this thesis to different phases of
calibrating a flexible robot.

The results of the experimenta tests are given in Chapter 6. First, a simple
illustrative simulation example involving the estimation of a cube is presented,
after which the results of the simulation and actual tests of hand-eye calibration,
work object localization and surface model estimation are given.

The results and methods presented in the thesis are discussed in Chapter 7, and
Chapter 8 states the conclusions and considers directions for future work.

21



2. Overview of parameter estimation
methods for use with robot
workcells

2.1 Introduction

One of the fundamental problems in robot automation is the requirement for
generating a robot program off-line for a certain task, running it on severa
robots and obtain similar results with each. Usually this is not possible even if
the robots are from the same manufacturer and should be similar. The reasonslie
mainly in manufacturing deviations between manipulators and the performance
of the robot controllers. To overcome these inaccuracies the kinematic model
and coordinate transformations can be corrected in order to improve the
accuracy of the robot systems.

The kinematic modelling of a robot can be divided into two levels (Mooring et
a. 1991). First, corrections for joint level parameters are identified. These
parameters include properties of encoders, signals and transducers and the
lengths of the links, and they are usually updated directly in the controller of the
robot. The second level determines the parameters for joint angles and the
position of the end effector of the robot. These parameters can aso describe
homogeneous transformations from one coordinate frame to another. The most
common means of modelling the transformations between robot links is the
Denavit-Hartenberg method, which is also used here.

The computation of model parameters consists of the following steps:
1) determination of the system model and the parameters to be estimated,
2) retrieval of a priori information on the estimated parameters (this is not
aways required, depending on the method of calculation), and 3) calculation of
the parameters. In the estimation of the parameters certain evaluation criteria are
usually used to determine the optimal solution. The methods available for
parameter estimation can be classified based on the type of model or assumption
regarding noise (Mooring et a. 1991):
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1. Deterministic or Stochastic
2. Recursive or Nonrecursive
3. Linear or Nonlinear.

The first criterion is divided, depending whether or not probabilistic models are
used for system and noise models. The second criterion depends on the way in
which the measurement data are used, which determines whether the whole body
of datais collected at once or sequentially, with recursive computation. The third
classification is based on the mathematical model that is used in modelling the
system. A short overview of parameter estimation methods will be given in the
next paragraphs, and ways of considering uncertainties when using different
estimation methods will be introduced in Chapter 3.

2.1.1 Modelling the pose parameters

The full pose in a robot system modelled in a Cartesian space consists of six
degrees of freedom, i.e. three trandation and three orientation parameters. A
state vector containing these parameters can be modelled in basically two
different ways, deterministic and stochastic, as described above. The literature
review contained in this thesis includes solutions to the existing problem that use
both approaches to the modelling of parameters (where pose includes both
trangation and orientation parameters). In deterministic modelling, the variables
are fixed constants that are assumed to be noise-free. In many cases this is
enough, but if the level of system noiseis high, the model may be inaccurate. A
typical approach in the deterministic modelling is | east-squares estimation.

In stochastic modelling, parameters are modelled in terms of their mean value
and variance. Just as in deterministic modelling any parameter is assumed to be
constant or of some exact value, each parameter in stochastic modelling has a
mean and probability. The stochastic approach is closer to nature, because
mathematical models are always approximations and no parameter can be
determined absolutely (Maybeck 1979).
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2.1.2 Deterministic and stochastic estimation

Typica methods for both deterministic and stochastic estimation are explained
here. A typical deterministic example is least-squares estimation, the equations
for which can be composed as follows. Let matrix J be the measurement, the
vector m the parameter estimate and y the output of the system:

y=J"'m «y
Estimates for parameters m in equation (1) can be written as follows:
m=(JJ") (2

This equation (2) can be used recursively or non-recursively as classified in
paragraph 2.1. A well known stochastic estimation method is Kalman filtering,
the equations for which can be composed as follows. Let vector m at time k be
the parameters to be estimated, while the matrix J includes the measurements,
matrix y(k) the output of the system, matrix O(k) the input noise and matrix
P the covariance of the measurements, as follows:

y(k) = J" (k)m(k) + o(k) 3

The Kalman filter equations for parameter estimation are as follows:

P(k -1)J (k)
o + T () Pk - DI (k) “)
m(k) = m(k =1)+ LK) y(k) =" (k)m(k 1) (5)
P(k) = P(k =1) - L(k)J " (k) P(k 1) (6)
where
L is the correction matrix
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m isthe estimate of the parameters
P is the covariance matrix of the estimated parameters
7, is the noise matrix of the measurement.

The result is an estimate of the state parameters m with its covariance P. The
estimation methods will be classified in terms of the deterministic and stochastic
approaches later in this chapter.

2.1.3 Estimating the pose parameters

The input and output data to be used in parameter estimation are illustrated in
Figure 2. The edtimated parameters include these of the homogeneous
transformation from the base frame to the target frame. The result is a coordinate
transformation and spatia uncertainties, i.e. the uncertainty type of that
transformation. One exception concerns the estimation of surface model
parameters of the work object, where no homogeneous transformation is
provided, but instead there are model parameters which may include translation,
orientation and parameters defining the shape or size of the object, e.g. the
radius of a surface. Spatial uncertainties are uncertainties of the estimated
parameters.

o Initial information
Noise in the system on the estimated
parameters

Parameter estimation
(translation and orientation)

L

Spatial uncertainties
in the coordinate
transformation

Coordinate
transformation

Figure 2. Estimation of the parameters.
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When using robots equipped with external sensors for various measuring and
manipulating tasks, the following three calibrations should be performed:
calibration of the internal parameters of the sensor, hand-eye calibration and
calibration of the link lengths and joint offsets of the robot. It is assumed in this
thesis that the internal parameters of the sensor are already calibrated, and also
the joint level parameters of the robot itself. Two main configurations can be
given in hand-eye calibration: static camerasin the environment and on-the-hand
cameras. In the case of static cameras, they are looking at a robot which is
moving a calibration tool with reference points used in calibration. In on-the-
hand systems the camera is attached to the TCP of the robot and it is used to
measure a calibration object.

Estimation of model parametersis aso required for work object localization and
surface model generation. These two methods use the same estimation principle
as hand-eye calibration and are presented later in this chapter.

2.2 Hand-eye calibration methods

The purpose of hand-eye calibration is to determine the coordinate
transformation from the origin of the sensor to the TCP of the robot in on-the-
hand situation. This transformation includes five to six parameters depending on
the type of sensor, and is usually calculated by making movements with the
robot and measuring the positions using a sensor. The transformation can then be
calculated using the sensor information and information on the pose of the TCP
of the rabot. In following, methods for solving problem of hand-eye calibration
isreviewed from the literature.

2.2.1 Methods based on deterministic estimation

A least-squares method can be used for calculating the parameters by fitting the
measured set of samples into the parameters to be estimated. This is done by
means of fitting criteria, i.e. an error function aimed at finding the best solution.
Here two main solutions for hand-eye calibration using least-squares are
presented: standard L SQ and recursive LSQ.
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Standard linear least-squares estimation

The fundamental problem of hand-eye calibration is the transformation between
the wrist of the robot and the sensor. This can be characterized by means of
equation (7):

AX = XB (7)
where

A isthe change in position of the wrist of the robot

B is the change in the coordinate frame of the sensor

X is the transformation between the wrist of the robot and the

coordinate frame of the sensor.

Both 4 and B are known, and X is unknown and has to be solved. The most
fundamental work in hand-eye calibration has been carried out by Tsai & Lenz
(1989), in a paper in which they propose a new method for calculating the hand-
eye transformation with a much smaller number of unknown parameters, which
is important especially in noisy cases. In this calibration the camera is attached
to the wrist of the robot and robot makes a series of motions by measuring a
calibration block with an array of target points on the top surface. The position
of each target point on the calibration block is accurately known. The method is
based on first defining the orientations of the hand-eye transformation in the
form of arotation axis and then solving the trandation. The calculation is carried
out by comparing the measurements using linear |east squares estimation.

Other basic work for solving the homogeneous transformation equation (7) was
contributed by Shiu & Ahmad (1989), who used an approach based on geometric
interpretations of the eigenvalues and eigenvectors of a rotation matrix. Both
trandation and orientation values are calculated simultaneously using least-
square fitting. Because no unique solution to equation (7) can be found with only
one measurement, the parameters are estimated with two robot positions, but the
orientations of the wrist cannot be zero or a multiplication of a 1t value, which
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would guarantee a unique solution. The solution is verified with practical tests
and the paper also includes a noise analysis of the estimated parameters by
adding noise to the measurement and simulating the results. In conformity with
the results illustrated in this thesis, Shiu & Ahmad state that noise is dependent
on the configuration of the robot.

Hand-eye calibration of a stereo-camera system has been described by
Takahashi & Tomita (1988), who propose a method for solving both external
and internal parameters. They use a previoudly determined calibration pattern.
Because the orientation parameters are the most critical and easiest to change,
these are iteratively solved first, and after that the trand ation parameters, as done
by Tsai and Lenz. The fitting criterion for calculating the camera location is a
unique point measured by both of the cameras, and the solution is found using
the least-squares method. The problem of parameter estimation is to measure the
same point with both cameras even when the intrinsic parameters are not correct.
These parameters are updated during the estimation process. To solve this
problem the authors proposed to use segment matching to evaluate the
correspondence, and also matching of vertices. These methods make it much
easier to find the solution even in hoisy situations.

A method for the hand-eye calibration of a vision sensor has been presented by
Wang (1992), who proposes three cases of sensor calibration, each of which
requires different information on the calibration objects and measurement
positions. Class A requires the target object to be in a precalibrated location,
class B requires a reference object with no precaibration and class C requires
only a simple point in a non-calibrated location as the reference object. The
classes presuppose different solutions for determining the transformation. A
solution for class A can be found directly, using one measurement, whereas in
class B cdculation is a little more complicated and is resolved by first
calculating the rotation matrix and then solving the trandation vector using the
least-square method. In class C the rotation matrix is aso calculated first and
after that a trandation. The paper provides smulation and experimental results
for all three classes. The experimenta tests show that Wang's method and the
Tsai-Lenz method have smaller standard deviations than Shiu-Ahmad’ s method.
The method proposed in the paper provides a suitable solution for different
needs and is a noteworthy contribution in that sense.
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The fird means of solving robot-world and hand-eye transformations
simultaneousdy was formulated by Zhuang et al. (1994b) in terms of the
following equation (8):

AX =YB (8)

where

A isthe change in position of the wrist of the robot,

B is the change in the coordinate frame of the sensor,

X is the transformation between wrist of the robot and the coordinate
frame of the sensor,

Y is the transformation between the base frame of the robot and the

world frame.

Both hand-eye and robot-world transformations may have to be determined
frequently or rarely, depending on the application. It is dways an advantage,
however, if both calibrations can be carried out within a single set of
measurements. The calibration is performed in the same way as proposed by
Tsai, i.e. firg solving the rotation part of the transformation and then the
orientation part, both using linear models. Contrary to the origina proposal, the
orientation of the transformations is solved using unit guaternions, which means
that a minimum of three measurements are required for determining the
orientation and three more for trandation. The method was tested under the
effect of uniformly distributed noise added to the trandation and orientation
parameters of the measurements. In another test, noise was added to the joint
values of the robot. The kinematic model of the robot was constructed using the
Denavit-Hartenberg notation. These authors mention as one drawback of the
method the two-stage computation, which means that errors from the first stage
propagate into the second stage. In addition, the method seems to be quite
sensitive to the completeness of the measurements.
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Assembly robots used in the electronics industry have usually a reduced number
of degrees of freedom. Typical examples of these are robots with a SCARA arm.
A means of hand-eye calibration for such situations is proposed by Zhuang
(1998), the basic solution being very similar to that used in cases of a full six
degrees of freedom, although some differences do exist. The solution is divided
into two phases, solving of the rotation matrix and then of the position vector.
The types of motion can be divided into two forms, restricted motions and
random motions. Both cases are solved using the |east squares method.

Use of structure-from-motion combined with known robot motions has been
illustrated by Andreff et al. (2001). Basicaly, the method is based on solving a
slightly modified version of the homogenous equation (7), namely

A(A)X = XB 9)

where
A is an unknown scale factor.

To solve this problem they propose a new eguation which can solve the hand-
eye transformation even in specia cases, including pure trandations, pure
rotations or planar motions. The result of the parameter computation is fairly
robust due to the structured motions. This makes the method very reliable.

Recursive least-squares

The recursive version of hand-eye calibration presented by Angeles et a. (2000)
uses the least-square method on-line, which means that they compute parameter
estimates using common recursive least-sguare estimation (RLS). They
demonstrate that the method works well in on-line applications even when not
optimized. The recursive manner also behaved quite well, and the accuracy of
the estimates improved during estimation.
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2.2.2 Methods based on stochastic estimation
Kalman filtering

A means for localizing the pose of a robot wrist using an ultrasound sensor has
been presented by Wehn & Belanger (1997). Even though the ultrasound sensor
is not usually very accurate, they succeeded in reducing the kinematic error of
the robot system. They used a Kalman filter in the estimation and modelled the
noise of the system, especialy properties related to the ultrasound sensor, e.g
turbulences and convection currents in the test room. When using the Kalman
filter, they divided the estimation process into two separate subfilters, a
reference filter which uses a fixed reference sender at a known location and a
main filter which uses a moving sender attached to the robot’s wrist, and
estimated the position of the wrist. The idea is that information from the
reference filter is fed to the main filter in order to improve the estimates of the
position of the wrist. A more detailed description of the Kalman filter isgiven in
section 3.2.3.

Gradient methods

The Newton method is an iterative method for solving a non-linear function
which has a continuous derivative de/dm around the linearization area. After
selecting initial quess (x,,v,,z,) for the parameters to be estimated, the
iteration runs by calculating a derivative around the zero. The intersection of the
tangent of the curve with the given function gives the next quess (x,,y,,z,),
which are closer to the final estimate. In the next step, the derivative is
calculated in this new location (x,,,,z,), and the intersection of the tangent
with the function again gives a new estimate (x,,,,z,). This is continued
until the tolerance & small enough and desired accuracy is achieved. The
eventual estimate (x,,v,,z,) is taken as the result of the iteration (Kreyszig
1993).

Of the various non-linear methods, gradient methods are the most often used for
parameter estimation in hand-eye calibration. In their description of the hand-eye
calibration of a laser-range sensor attached to the hand of a robot Wei et al.
(1998) formulate the problem using linear functions. The novelty in their work is
that they include systematic error when building up the system model. The hand-
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eye transformation is calculated using the Newton-Rhapson method in an
iterative manner. The proposed method does not need any a priori information,
but instead the algorithm first searches for the initial values itself. Thisis done
by using only trandational values and first calculating the orientation of the
calibration plane. After that, the orientation of the sensor in the wrist of the robot
is calculated, and finally the trandation of the sensor. The method was tested
with Monte Carlo simulations and an actual system with 320 tests, using 13
planes for calibration. The variances of the calculated parameters were aso
studied, and the results were promising.

We et a. (1998) aso applied the proposed method to calibrating cameras in the
wrist of the robot and proposed an approach in which the first initial calibration
is carried out without any motion planning and the actual motion planning is
carried out after that. The method is compared with that of Tsai and the rms
error and maximum error are shown to be smaller than with Tsai’s method. The
drawback of the proposed method is the computational cost, which could not be
reduced because of the need to estimate multiple object coordinates.

Horaud & Dornaika (1995) proposed an extension of Tsai’s method for solving
the hand-eye equation, equation (7). Their new form of that equation was

MY =M'YB (10)
where
M isa 3x4 perspective matrix of first positions
M' is a 3x4 perspective matrix of second position.

The main advantage of this new method is that a pinhole model of camerais no
longer needed and the method can then be applied to a laser stripe sensor, laser
rangefinder etc. Adding to the method proposed by Tsai & Lenz, Horaud &
Dornaika present two solutions for equation (10): first alinear solution in which
the rotation is solved first and then the transation, and second, simultaneous
estimation of the rotation and trandation parameters using the non-linear
Levenberg-Marquardt method. They tested the algorithms with simulations that
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assumed uniform random noise in the first case and Gaussian—form noise in the
tranglation and orientation parameters separately in the second case. The results
showed that the non-linear method gave better performance for the trandation
vector, sometimes at the cost of the rotation vector. Overal, the non-linear
method was more accurate than the linear method. Its disadvantage is that it
needs quite accurate initial assumptions for the iteration.

The method for the calibration of a robot and a hand-mounted camera using a
Gauss-Newton approach presented by Zhuang et al. (1995) involves three levels
of calibration, first simultaneous calibration of the intenal parameters of the
camera and its hand-eye transformations, second calibration of the interna
parameters of camera, a hand-eye transformation and a base-world
transformation, and third calibration of the entire robot in addition to the above.
By comparing this multi-step calibration with simultaneous calibration, they
were able to evaluate the error propagation between the different cases. The
parameters were estimated by the Gauss-Newton method, which was shown to
work more robustly than a Levenberg-Marquardt algorithm. Jacobian and
estimation error vectors were composed for an iterative computation of the
estimated parameters.

Following Zhuang's proposal for a linear solution for solving the hand-eye and
robot-world transformations (Zhuang et al. 1994b), Dornaika & Horaud (1998)
presented closed-form and non-linear solutions for the same transformations in
workcell. The main differences between the linear and closed-loop methods are
(Dornaika & Horaud 1998): 1) The linear method solves the components of
quaternions linearly and then normalizes the quaternions so that they represent
rotations, while in the case of a closed-form solution the unit quaternions are
solved directly. 2) The linear method is not feasible for certain special
configurations, whereas a closed-form system is. The advantages of non-linear
methods are that the parameters, including translation and orientation, are
estimated once, the method is not perturbed in the presence of noise as in the
linear case, and both closed-loop and non-linear methods allow evaluation of the
quality and confidence of the solution. For non-linear estimation they use the
Levenberg-Marquardt minimization method. The results of the estimation of the
transformation are equal to those obtained by hand-eye calibration, i.e. the non-
linear method provided the most accurate solution for estimating the
homogeneous transformation.
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Other stochastic estimation methods for hand-eye calibration

Zhang & Ji (2001) used genetic algorithms (GA) for camera calibration. The
advantage of their method compared with linear estimation methods is that they
do not need an initial guess at the calibrated parameters, and accurate calibration
can be carried out using only 7 measurement samples, even if both internal and
external camera parameters are calibrated, whereas in linear models the
minimum number of measured points is equal to number of parameters to be
estimated. All three operations of genetic algorithms, evaluation, selection and
recombination, are included in the generation of a solution space. The
contribution of this work lies in the new mutation scheme provided, which
comprises two steps: determination of the direction of the search, and
determination of the step size in that direction. The selection of step size
determines the amount of perturbation affecting a point generated in the given
interval and has an effect on the convergence. Too small a perturbation will
usualy lead to sluggish convergence, but too large a perturbation may give
erroneous or oscillating convergence. When selecting the position of a new
current point in each generation, the authors use “golden selection” to control the
direction of search. This improves the convergence of the GA considerably,
leads to a close to optimal solution and simultaneously saves computation time.
The algorithm was shown to be robust and accurate, especialy in situations with
ahigh noise level relative to that alowed for in Tsai’s commonly used method.

2.3 Work object localization methods

Work object localization is based on fitting the measurements from the surface
of the work object into the nomina model of the same surface. The work object
to be localized may include surfaces of several forms, and some of these have to
be sdlected for fitting.

The localization of work objects with different surface forms can be managed in
basically two ways. each surface form has its own model, which is used in
localization (e.g. a plane, cylinder, or B-spline surface), or else al the different
forms are managed using patched surface forms. The advantage of the first
method is that fitting is always effective even in the case of noisy data. The
disadvantage is selection of a suitable surface form in each case, as this usually
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requires atool that will carry out that selection automatically. One advantage of
modelling of all surfaces using patched surfaces is that no sorting is required
between surface forms, but this kind of system is more sensitive to noise, and
localization does not produce such accurate result as with separate surfaces.

Very similar methods are used in work object localization as in hand-eye
calibration. An overview of parameter estimation techniquesis presented bel ow.

2.3.1 Methods based on deterministic estimation
Least-squares method for work object localization

A fundamental paper on determining forms of represention for surfaces and
locating work objects is that of Faugeras and Hebert (1986). Where
representation is traditionally divided into two main topics: hierarchical
representation, in which several resolutions are used, and homogeneous
representation, in which only one resolution is used, they use homogeneous
representation. They model surfaces by deviding them into severa subfeatures,
which include a plane, quadrics and a B-spline surface. This is done even when
the surface has a complicated form, e.g. a B-spline surface. The method has
several advantages: 1) it is robust with respect to occlusions, so that a planar
surface can be found even if it is partly hidden, 2) planar or quadric surface
models are fairly robust in terms of the location of measuring points when
measured from the surface, i.e. it does not matter where the point is located on
the plane surface, and 3) it is quite easy to choose the type of surface
representation for simple surface models. Objects are localized using recursive
least-squares estimation in which the distance between the reference surface and
the point to be measured consists of error functions, i.e. the distance is to be
minimized. When estimating the rotation parameters Faugeras & Hebert (1986)
use both an orthonormal matrix and quaternions.

The principle used by Gunnarsson and Prinz (1987) for managing complicated
surfaces, including B-spline surfaces, in their fundamental work on localization
was to linearize curved surfaces locally, i.e. to assume that a curve or surface
consists of small planes. The surface is fitted by calculating the smallest
distances from points measured to a plane approximation of each surface
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segment. The calculation is done in an iterative manner using the least-squares
method. When estimating the position and orientation of work objects, they
noticed that it is quite easy to determine trandation parameters but orientation
requires rather complicated surface forms, i.e. high gradients. This was aso
noted by Sallinen and Heikkila (2000b), when localizing the very flat surface of
a ship’s propeller, in that the estimation easily converged to a local minimum
instead of aglobal one.

A CAD-based method of surface profile measurement has been studied by Menq
et a. (1992), who propose a solution for surface inspection by first determining
the accurate location of the surface to be inspected and then measuring the
reference points from the surface. They were able to localize complicated
surfaces based on minimizing the squared sum of distances between measured
points and reference points. Before the actual estimation, the optimal points were
identified in order to speed up the localization process. To describe the goodness
of the set of samples, they propose a sensitivity measure which is a product of
normal vectors and transformation errors, which are equa to dimensional errors.
They use the standard deviation of the measured surface points for assessing the
tolerances of the surface to be inspected.

To avoid the requirement of an a priori initial estimation, Boley et al. (1996)
proposed the use of a Recursive Total Least Squares method, computing the TLS
solution by ULV Decomposition, which is much faster than the frequently used
Singular Value Decomposition method and can aso be easily updated when new
data are received by the system. Comparison of the proposed agorithm with the
Kaman filter pointed to promising results.

Other deterministic methods for work object localization

Localization of free-formed objects using an iterative closest point (ICP)
algorithm based on the Newton method has been proposed by Besl and McKay
(1992). The method relies on minimizing the distance between measured points
and a surface. It can be applied to different forms of surfaces and is robust with
respect to noise within a reasonable level. The disadvantages, however, are easy
convergence to a local minimum and falure of the computation when
complicated object forms are used.
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The method proposed by Besl and McKay was also used by Schutz and Hugli
(1995), who improved the ICP algorithm by reducing the time required for
matching. They took a number of measurements and selected the best ones by
evaluating the quality of matching. Quality was computed from the squared
distances between the closest points.

Localization of work objects, including commonly used symmetric data features
such as planes, cylinders and spheres, has also been discussed by Gou et al.
(1998). The localization is identified with a homogeneous space in a Euclidean
group, and mimization is achieved using a Tangent algorithm or Hong-Tan
agorithms. The authors expanded their work to cover al three cases of
localizing work objects: general localization of 3-D objects, localization of
symmetric work objects and localization of partially machined workobjects.
Hybrid localization / localization of partially machined objects focuses on the
localization of objects with unmachined surfaces and methods for extracting
points measured from unmachined surfaces. The symmetric localization problem
includes localization of objects with symmetric geometries, while general 3-D
localization is for typical normal cases. Illustrations were provided of results
obtained with all three proposed methods.

2.3.2 Methods based on stochastic estimation

A simple method for localizing a polyhedral object using light stripes has been
proposed by Kemmotsu and Kanade (1995). This includes three identica laser
rangefinders, and the pose of the object is computed by minimizing the distance
between points on the surface and a reference model of the object by minimizing
the sum of the integrals of the squared distances aong each line segment over all
pairings of afeasible interpretation. The uncertainty of a pose is determined as a
covariance matrix of points at the ends of each stripe. The noise in the system
includes uncertainties coming from the sensing tool as well as noise from
inaccuraciesin the object to be localized.

Other work using stochastic estimation in work object localization has been
carried out by Sanderson (1999) and in localization of a mobile robot by
Nygards and Wernersson (1998). These papers are explained more detailed in
chapter 3.
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2.4 Work object surfaces

Surface models can be divided into two main forms. parametric and patched
surfaces. The model parameters of parametric surfaces can be estimated by the
same methods as presented for hand-eye calibration and work object
localization. Patched surfaces are non-linear surfaces, e.g. spline surfaces. Due
to their more precise description of the surface, parametric surfaces are more
reliable for use in object localization than patched surfaces. The modelling of
both forms is illustrated in this section and equations are presented for
computation of the model parameters.

Surfaces are divided by Faugeras and Hebert (1986) into forms of
representation, which they call primitives. These include planes, quadrics and B-
spline surface patches, with a residue of more complicated surfaces. In the
generation of models, they first divide the surface into smaller regions and repeat
the division until the required accuracy is achieved. This also works in reverse,
which means that small regions can be merged into larger areas when such a
high level of accuracy is not required. This is very useful when finding the
locations of aworkobject surface for use in localization, as only the surface of a
restricted region needs to be modelled accurately.

Three types of surface form for work objects are considered by Li et al. (1998),
namely 1) a general form of a surface, 2) a symmetric, i.e. parametric, surface,
and 3) a surface with unfinished areas. The surfaces in the first two cases are
very close to a CAD model, or at least the deviations between the reference
model (design model) and the actual model (model of the real work object) are
very small. In the third case the surface of the work object is divided into parts
representing finished and unfinished surfaces and the unfinished surfaces are
constrained out in localization. This type of modelling is very important in
manufacturing applications, for even though efforts are made to localize work
objects using accurate surfaces, it is not always possible.

2.4.1 Parametrized surfaces

An efficient method for modelling parametric surfaces is presented by Ahn et al.
(2002), who estimate different surface forms (plane, cylinder, sphere, cone or
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torus) from a point cloud using the Gauss-Newton method, taking the shortest
distance as a fitting criterion. The main goa of their work was to develop a
system that automatically generates the right surface forms. The current state of
the method is that the user interactively identifies points on different surfaces of
the CAD moded and the algorithm does the segmentation and surface model
fitting. Thisis a good step, as mentioned previously, as one of the most critical
tasks in the use of multiple surface forms for work object localization or the
estimation of surface model parametersis to separate the surfaces from the set of
samples measured.

2.4.2 Free-form surfaces

When surfaces are more complicated, they have to be modelled using patched
surfaces, because a parametric surface would not provide sufficient accuracy.
Patched models are more complicated than those for parametric surfaces, and
several types of surface models have been developed for such purposes,
including triangular facets, B-splines and Bezier curves. The differences
between these surface types lie mainly in the representation of the surface. B-
spline surfaces are patched and have some control points and/or knots that define
their form, the representation of this patch structure varying from one method to
another.

Surface modelling using Bezier curves

A Bezier curve has a set of control points describing its form. Surfaces are then
regarded as consisting of several curves with a given mutual density.

The modelling of surfaces using Bezier curves has been explained by Knopf &
Abouhossein (2000). The surface model is generated based on a cloud of points
and the control points are decribed using a Bernstein Basis Function network
that gives weights for the Bezier functions. The advantage of Bernstein Basis
Functions is that they can be used directly for modelling the polynomials used
for describing Bezier curves.
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Surface modelling using B-Spline surfaces

The modelling of surfaces using B-Spline surfaces also cals for the determination
of control points on the basis of a set of points on the surface. A typica agorithm
for generating such a surface has been presented by Liu and Hasegawa (2001).
Thisisillustrated in Figure 3:

3D Data points

|

Phase 1 Surface Extraction

Phase 2 Surface Simplification

Phase 3 Surface Fitting
Phase 4 Surface Refinement

Figure 3. Flow chart for the generation of a B-spline surface, according to Liu
& Hasegawa (2001).

The first phase, surface extraction, includes the generation of a large mesh of
vertices that may become parts of the B-spline surface. In the second phase the
surface is simplified by reducing the number of facets in the mesh. In the third
phase, a B-spline surface is generated by finding control points that describe it.
In the fourth phase, surface refinement, the surface model is scanned through
and checked for the required accuracy. If this is not satisfied, the surface is
divided into smaller parts so that the requirements will be fullfilled.
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B-spline surfaces have been used by Huang and Cohen (1993) in an approach in
which cubic polynomials are calculated for describing the surface. A
transformation of a curve is calculated by using moments of the curve, which
means that the sizes of the changes in the surface profiles are considered. In this
way the pose of each surface can be calculated.

Gunnarsson and Prinz (1987) also modelled complicated surfaces using a B-
spline surface patch and found it to be simple and usable for locaization
purposes.

Charlebois et d. (1997) modelled different kinds of parametric surfaces using B-
spline surfaces and analyzed the goodness of the fit of the set of points to the
surface in each case. They used two kinds of criteria in the evaluation, the first
describing the curvedness of the patch and the second its shape. Uncertainties in
surfaces can be evaluated by calculating the means and standard deviations for
these parameters. They tested the criteria for plane, cylinder and sphere surfaces
with an actual robot system and were able to evaluate the surfaces successfully.
The tests showed that a B-spline surface patch can be used for modelling
parametric surfaces, but it is obvious that the computation requirement for
surface model generation is much larger than when using parametric
representation directly.

Modélling of the whole environment of a mobile robot using B-spline surfaces
has been described by Drapikowski and Nowakowski (2002), who also showed
that all forms can be modelled using only B-spline surfaces.

Surface modelling using triangular facets

A popular form of modelling for free-form surfaces is triangular faceting, in
which the surface consists of facets connected to each other. For flexible use, the
accuracy of the CAD model has to be controlled somehow for each purpose. In
order to be able to use this approach in robotics, there is no time for heavy
computation. A flexible Reverse-Engineering approach with user-controlled
density has been proposed by Chen et a. (1999). The facet model is generated
by calculating the surface normal using the cross-product of two vectors
calculated from three points and normalising the result. They propose two
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approaches to data reduction: 1) by reducing the facets based on small
differences between the normal vectors, and 2) reducing the number of triangles
by means of a kind of filter which converts the regions with small triangles into
larger triangles. Both of these methods also work in reverse, which is necessary
when accurate information is required in some particular area.

The modelling of free-form surfaces in a robot environment has also been used
by Salinen et a. (2001), who measured the surface profile of a work object
using a laser rangefinder and generated a facet model using an octree method,
the advantages of which are effective representation in an unevenly distributed
point cloud and the ability to represent very complicated forms.
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Figure 4. A facet model for the surface of a work object (Sallinen et al. 2001).

A typical surface modelled using triangular facets is illustrated in Figure 4.
Basically, afacet surface can be used for work object localization by calculating
the shortest distance from the set of measured points to the reference surface
using the same point-to-point fitting as presented for the localization of a B-

spline surface. Instead of searching for the closest point, one will be searching
for the closest facet.
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2.5 Discussion of the overview of parameter estimation
methods for use with robot workcells

The estimation of coordinate transformations in a robotic system is essentia in
order to be able to carry out tasks that require high accuracy. The methods for
doing this can be divided mainly into deterministic and stochastic approach for
the state model and linear and non-linear cases depending the mathematical
model used in modelling the system. Deterministic models does not include
noise in the models whereas in stochastic models noise is modelled in the
system. The advantages of linear methods is that they are quite straightforward
to use and can be employed easily in many applications. A typical example of a
linear model is standard least-squares estimation. The disadvantage compared
with the non-linear methods is sensitivity to noise (e.g. Newton-Rhapson). Both
linear and non-linear models require a priori information on the parameters to be
estimated, which may in some cases be difficult to obtain. In addition to these
methods, genetic algorithms (GA) have been used to determine the parameters
for coordinate transformation. The advantage of these is that calculation does not
need any a priori information and the number of set of samples required is fairly
small. Thisis dueto their principle of operation.

There are several methods for hand-eye calibration described in the literature in
addition to the classical Tsai method. Severa authors propose smultaneous
calibration of the sensor to TCP transformation and the location of the robot in
the world frame using linear models (e.g. Zhuang et al. 1994b) and non-linear
models (e.g. Dornaika & Horaud 1998, Heikkila et al. 1999). This will improve
flexibility and verify the performance of the robot system if calibration is carried
out frequently enough.

Localization of the pose of the work object depends on the surface form of the
object. Its surfaces can be divided into parametric and patched surfaces, where
the parametric surface forms considered here are planar, cylinderica and
spherical and the patched surfaces considered are B-spline surfaces. The
localization of parametric surfaces is more straightforward than that of work
objects with patched surfaces. On the other hand, patched surfaces provide a
much larger variety of surface forms. When using parametric surfaces, the
feature selection that follows data acquisition plays an important role, athough
thistask is not considered here. The localization of work objects with parametric
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surfaces gives a more accurate result, however, due to the form of the surface
model. Problems are often encountered in estimating the orientation parameters
of objects with patched surfaces, because flat surfaces cause large orientation
errors even with alow level of noise.

Input data for surface generation can be obtained directly from the CAD model
or a Reverse Engineering approach. Another form of modelling surfaces in
addition to the two methods mentioned above is the triangular facet method.
This gives a flexible approach to modelling even in the case of complicated
surfaces.



3. Modelling the spatial uncertainties
in a robot system

3.1 Introduction

Methods for modelling the spatial uncertainties in a robot system are closely
related to the parameter estimation problem presented in the previous chapter.
Forms of modelling the uncertainties can be divided into the three classes:

¢ Stochastic models
+ Deterministic models
¢ Simulation models

It is assumed in stochastic models that the noise in the initial state and during
motion and all the measurement models are distributed according to some
known distribution. When considering the use of stochastic models used in
parameter estimation, the most common stochastic-based estimator used in
linear models is the classica Kaman filter (Maybeck 1979), there being
numerous examples of the use of this approach in the literature (Su & Lee 1992,
Nygérds & Wernersson 1998, Sanderson 1999). The Kaman filter gives arobust
and efficient method for estimating both parameters and their respective
uncertainties, and it can be used recursively, i.e. to predict the state of the next
cycle by using the last estimate and a new measurement to produce new values
for the state parameters. This recursive behaviour improves the speed and
computational requirements of the method (Moreno et a. 2002). The advantage
of covariance propagation methods isthe rdatively simply way of combining the
existing uncertainties between coordinate frames and error sources. On the other
hand, the disadvantage is that if the actual noise models are not Gaussian-
distributed the covariance propagation gives a rather biased result. Due to the
demand for modelling more complex systems, there are several modifications of
the Kalman filter, including an Extended Kalman filter developed for cases
where the system model has non-linear dynamics or a non-linear pattern of
observations.



In addition to the Kalman filter, there are Bayesian forms of modelling which
apply when using a Gaussian form of noise distribution. The main user of
Bayesian-form modelling is Durrant-Whyte (1988). There are many similarities
between the Kalman filter and the Bayesian form of modelling, but there is a
difference in the presentation of probabilities.

Deterministic modelling gives a fairly straightforward way of modelling spatial
uncertainties. The two main methods are tolerance propagation (Taylor & Rajan
1988) and grid-based modelling / dynamic Markov localization (Burgard et al.
1998). In these methods a solution space is divided into deterministic elements,
polytopes in tolerance propagation and a probability density map in grid-based
modelling.

There are several search agorithms which uses simulation methods or known as
sampling-based methods for modelling spatial uncertainties. The most common
method used in robotics is Monte Carlo localization, the idea of which is to
present theoretical probability distributions in the state space by simulated
random measurements (Moreno et a. 2002). The probability function itself is
not described (Dellaert et a. 1999).

The second type of simulation methods consists of genetic algorithms, which
presuppose that the uncertainties are considered to be stochastic. Due to the high
computational cost, such algorithms are usually calculated off-line, athough
examples of on-line calculation can be found in the literature, e.g. Moreno et al.
(2002), who improves the performance of localization by combining the Kalman
filter with genetic algorithms.

3.2 Methods for modelling spatial uncertainties

The main methods for modelling the spatial uncertainties are described in detail
in this chapter, together with areview of the literature. The methods are divided
into stochastic, deterministic and simulation models, and each subtopic is
presented under these headings. Before the methods are presented, the factors
affecting spatial uncertainty will be described.
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3.2.1 Factors affecting spatial uncertainty

Spatial uncertainty is affected by noise, which can be divided into geometric and
non-geometric errors (Mooring et a. 1991). Geometric errors are errors in
parameters that define the geometric transformations in the robot system, and
can arise from the following sources: resolution of the sensors at the joints in the
robot, resolution of the measuring sensor (e.g. laser rangefinder) and
manufacturing accuracy of the manipulator, i.e. deviations in the lengths of the
links. Non-geometric errors are computational errors made by the robot
controller when carrying a heavy payload, for example. When calibrating the
robot system, i.e. estimating the spatial uncertainties of the transformations in
different coordinate frames, geometric errors pay a major role and non-
geometric errors a minor one.

The behaviour of geometric errors can be described in terms of homogeneous
distribution and continuous existence. A Gaussian distribution is a suitable
assumption for modelling such noise, but the effect or amplification may change
depending on the parameter, so that an ideal Gaussian distribution does not give
a good enough solution. Also, some error sources are not uniformly distributed
and are better represented in deterministic modelling.

3.2.2 Deterministic modelling
Tolerance propagation

The use of multidimensional linear programming, as proposed by Taylor and
Rajan (1988), represents a different approach to modelling the uncertaintiesin a
robot system. The advantages of the method are that it is a straightforward way
of modelling non-probabilistic constraints and that it does not require knowledge
of the probability distributions, because redundant sensor information does not
contribute to the reduction of uncertainty. The computation method gives more
conservative results than methods based on a Gaussian distribution, and it can
also be easlly applied to geometric problems in order to solve proper
configurations. The uncertainty spaces are solved for areas called polytopes,
which are equa to tolerance spaces. To smplify the interpretation of high-
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dimensiond polytopes, they are projected to alower dimensional space such asa
2D or 3D space.

The idea emphasized by Taylor & Rajan is illustrated in Figure 5, where the
orientation of the inner square is determined to be within the given segment a ,
and the locations of the corners ¢;, ¢, ¢; and ¢, within certain limits. The
determination of uncertainty limits by this method is a quite smple and still
effective way of presenting uncertainties.

Figure 5. Constraint of a small part within a feed tray, according to Taylor &
Rajan (1988).
Grid-based modelling / Dynamic Markov Localization
The basic idea of Markov Localization is to maintain a probability density over

the whole state space of the estimated parameters (Burgard et al. 1998). This
probability density grid map is updated when new information is obtained e.g.
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on coordinate relations. The dynamic properties of the method are expressed
when the resolution of the probabilty space is dynamically enhanced. The new
information is integrated into the state space using a Bayesian update formula.
To manipulate the probability space efficiently, they use an octree principle for
representing the probabilities. The advantages of the method are that the space
requirement is adopted automatically and the resolution of the state space can be
increased or reduced dynamically.

Grid-based modelling has also been used by Olson for estimating the location of
amobile robot (Olson 1999). He used probability distribution functions (PDF) to
express the uncertainties. A scene caled an occupancy grid is created to
represent the forms of the environment of the robot and the respective
uncertainties. He used the maximum likelihood method for the estimation itself.

3.2.3 Stochastic modelling
Gaussian distribution: Kalman filter

The Kalman filter is a well-known method for taking the model with following
conditions into consideration when estimating parameters (Kalman 1960): error
is zero-mean, white noise and error covariances are known. When estimating the
transformations between coordinate frames, Smith and Cheeseman (1986)
became the first to use a Kalman filter in robotics for modelling the spatial
uncertainties between a nominal transformation and the expected error of the
estimated parameters. They proposed a general model of coordinate
transformations which could be generalized into a six degrees of freedom model,
including the uncertainties attached to the translation and orientation parameters.
The uncertainties in each coordinate frame were studied by considering the
uncertainties of a point in that frame. Uncertainty is described in terms of an
error covariance matrix for the estimated parameters, which geometrically takes
the form of an uncertainty ellipsoid. The geometrical presentation is illustrated
in Figure 6, where the coordinate transformations of the four coordinate frames
frame,, frame,, frame,, frame, with respect to the world areillustrated.
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Figure 6. A sequence of approximate transformations, according to Smith and
Cheeseman (1986).

Smith and Cheeseman also introduced two methods for manipulating spatial
uncertainties and compounding and merging approximate transformations. By
compounding they mean propagation of the uncertainties associated with
different coordinate frames into a one combined uncertainty which represents
the total uncertainty attached to the coordinate transformations and is aways
larger than the separate uncertainties. This is the typical case when calculating
the uncertainties affecting a manipulator arm and determining the coordinate
transformation using the forward geometrics of the arm. When combining two
two-dimensional coordinate transformations H , (X;, Y,, 6,) and H, (X>, 1>,
6;) into a single transformation H. (X;, Y;, &), which is given in terms of
H , and H ,, the covariance of the transformation /. must also be estimated.
The given transformation is approximated using first-order Taylor series
expansion around the means of the variables, and can be written in matrix form
asfollows:
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AX,
AY, |OJ[AX, AY, A6, AX, AY, AG,]" (11)
A6,

where

J is the (3x6) Jacobian matrix of the transformation around the
mean values.

The covariance of the estimated parametersis defined as follows:

C, DJ[% 0 }JT =HC,H" +KC,K" (12)
2
where
C, is the covariance matrix of the coordinate frame H |
C, is the covariance matrix of the coordinate frame H
H isthe partial derivative of the coordinate frame H
K isthe partial derivative of the coordinate frame H

The merging of coordinate transformations means that the uncertainties attached
to some coordinate transformations are reduced by using information from other
similar or paralel transformations. The initia situation for merging the
transformations is that the covariances C; and C, of the individua
transformations H, and H, must be known. When merging two
transformations in which C; is the one to be computed, the Kalman gain K has
first to be calculated:

K=C)c,+C,]™ (13)
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The covariance of the merged coordinate transformations can then be calculated
from the Kalman gain as follows:

C,=C,-KC, (14)

and the merged mean value for the transformation as

X, =X, +K[X, - X|] (15)

Both compounding and merging methods need some initial assumptions in order
to work reliably. First, the errors are assumed to be independent in both cases,
and the noise in the parameters is aso assumed to be zero-mean Gaussian
digtributed with no bias. In the case of merging, the coordinate transformations
have to be in the same coordinate system. Also, when combining similar or
paralel transformations of corresponding uncertainties one must be careful to
select the appropriate weights for the linear combinations of the two estimates. If
these assumptions are satisfied, the given formula should produce a reliable
estimate.

The Kaman filter and Gaussian distribution of noise has been used for
modelling spatial uncertainties by Su and Lee (1992), who present methods for
manipulating uncertainties that include the fusion of uncertainties arising from
different coordinate frames and the transforming uncertainties from one frame to
another. They also apply the manipulation of uncertainties to an assembly task
and develope methods for different kind of tasks: moving actions, perception
actions and contact actions. A moving action consists of the movement of a
robot arm from one location to another, which changes the uncertainties in the
pose due the different configuration of the robot, while a perception task is a
sensing task aimed at reducing the uncertainties in the world state by improving
knowledge about it. They propose a solution for the consistency problem of
defining the spatial relationships in the world state, and maintain that when a
coordinate transformation gains more information and the original location of
the coordinate frame is changed, this also changes other transformations in that
frame. The principleisillustrated in Figure 7:
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Figure 7. Coordinate transformations when uncertainties in the world state are
updated, according to Su & Lee (1992).

The preceding node mentioned in the figure is the original frame before updating
of the world state, the active node is the updated coordinate frame and the
succeeding node is the new target frame, i.e. the frame which will be approached
next. The third form of action is a contact action, in which they assume that there
are no modelling errors in the surfaces, so that two objects become fully
dependent in their location. When contact occurs in some directions of the
surfaces but not all, uncertainties are reduced only in these parameters.

The Kaman filter has also been used together with other methods. The
modelling of spatial uncertainties using the maximum likelihood method has
been proposed by Sanderson (1999), who uses the Kalman filter for parameter
estimation and aso models the uncertainties of parts using a Gaussian
distribution when assembling known parts using a robot. The main question with
respect to this application is: even if the parts fit nominally with each other, what
is the probability that they actualy fit? He regards the uncertainties as
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tolerances, because in practice designers specify the uncertainties as relations
between two parts.

Gaussian-distributed covariance modelling for noise and uncertainties has been
used by Nygdrds and Wernersson (1998), who employ explicit covariance
matrices and a Kalman filter for parameter estimation. They have applied their
method to mobile robot scanning planes around the working space.

In cases where the coordinate systems are non-linear, better results can be
achieved using the Extended Kalman Filter (EKF), which is a non-linear
estimator. The difference between the Kalman filter and the Extended Kaman
filter isthat in EKF the linearization is performed around an estimated traj ectory
instead of a previously caculated nominal trajectory.

An iterative version of the Extended Kalman filter was proposed by Moreno et
a. (2002), in a work in which they combined genetic algorithms (GA) with
EKF, proposing three localization methods:. firgt, generating the initia values
using GA, second, making a genetic search for suitable values and selecting
them using GAs, and third, updating the state using EKF. The proposed method
combines the advantages of EKF and the parameter search used in GAs. They
call the new method the Restricted Genetic Optimization Filter (RGO). The
uncertainties are modelled as probabilities in GAs and then transformed into
EKF, so that the uncertainties are reduced in the iteration and can be used in
both GAs and EKF.

Gaussian distribution: Bayesian-form modelling

Another stochastic form of modelling is Bayesian modelling, which has been
developed in the field of robotics by Durrant-Whyte. Bayesian-form modelling
uses Gaussian featured assumption in the modelling of the noises. Durrant-
Whyte started his work with mobile robotics, but the method has been applied to
amost every field of robotics, including ground, underwater and flying robots.
The fundamental work was reported in Durrant-Whyte (1988), where he
introduced basic methods for modelling the spatial uncertainties of coordinate
transformations using Bayesian-form uncertainty modelling.



According to Durrant-Whyte, the uncertain geometry includes two main
elements. the geometry itself and the overall topology between the geometric
structures. The geometry describes the geometric uncertainties of basic features
such as paints, curves and planes in a three-dimensional space, and the topol ogy
defines the probabilistic geometric transformations between these basic features.
When the transformation of a parameter vector between coordinates ¢ and ¢’ is
written p '=h,(p), the perturbed transformation can be written as follows:

p'+p'=h,(p+d) (16)
where

dp isthenoise at the point

As in the case of Kaman filtering, equation (16) can be written using the
Taylor series expansion:

»'=J,h, (17)
where

J »h isthe Jacobian matrix describing the changein dp viewed
from different coordinate systems.

Durrant-Whyte also illustrates methods for transforming spatial uncertainties
from one coordinate frame to another and mecanisms for the consistent
interpretation of relations between uncertain features. If the transformation
between coordinates i and j is’h; and ‘A, is the variance of the point p in the
coordinate frame i, the variance in the coordinate frame j can be written

. 0’h, )\, 0’h,
j/\ — i z/\ i
A2k (S )

This equation is valid provided that the matrix 0’4, /0p, is not singular or ill-
conditioned. The validity of this can be proved using verifying tools such as
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condition number or computation of the eigenvalues of the error covariance
matrix.

Bayesian modelling was also used for representing spatial uncertainties by
Nakamura & Xu (1989), who proposed a geometrical fusion method for sensor
information based on Bayesian probabilities. For the geometrical representation
of uncertainties they proposed an uncertainty ellipsoid inside which the resulting
parameter vector is located in parameter space (Figure 8). A similar uncertainty
elipsoid was presented earlier by Smith and Cheeseman (1986). The dllipsoid
was calculated on the basis of an error covariance matrix determined in such a
way that its eigenvectors are the principal axis of the elipsoid and eigenvalues
represent the lengths of the axis. As a criterion for describing the extent of the
uncertainties attached to the estimated parameters they use the volume of the
uncertainty ellipsoid, which can be written as follows:

pl2

Vapess = s 12V 9P) (19
where
p is the (x,y,z) point of the covariance to be calculated in the
estimated coordinate frame
r is the gamma function
P is the covariance of the parameters.

Computation of the uncertainty ellipsoid as a criterion for evauating the
goodness of the set of samples has been also used by Heikkila et al. (1999) and it
issimilarly used in thisthesis.
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X
Figure 8. The uncertainty ellipsoid of Nakamura and Xu (1989).

To minimize the uncertainties when fusing measurements from several sensors
in the system, Nakamura and Xu tried to minimize the volume of the uncertainty
ellipsoid by minimizing the determinant of the error covariance matrix P . This
was done by using Lagrange multipliers for solving the proper weight matrix in
order to calculate the error covariance matrix.

Probability functions

The modelling of uncertainties by means of probability functions was proposed
by Hager (1990). To model the uncertainties in complicated cases such as non-
linear ones, he presents probability densities that employ piecewiseconstant
density functions. In that way he is able to manipulate the density of the grid and
improve the accuracy of the uncertainty modelling.

The computational cost of updating the uncertainties of probability functions is
much greater than in the Bayesian method, because the probability attached to
each element in each partition must be updated. This is the main disadvantage of
the method. The resolution of the grid also affects the existence of bias in the
system. Such problems can be avoided by using grid size that is smaller than the
required tolerance level. Also, the rectangular structure works best when the
observations are highly independent. The grid-based method presented by Hager
works better if the parameter estimation can be discretized and the sensors can
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have quantized outputs. In that way the updating of the probabilties can also be
made much faster.

Figure 9. Probability functions according to Hager (1990). Left, a one-
dimensional function, and right, a multidimensional approximation of the
density function.

Other stochastic methods

The Gauss-Markov random method is a means of modelling Gaussian-form
gpatia uncertainties. The method has been applied to modelling of the
assemblability of parts by Mantripragada and Whitney (1999). To test the
probabilities attached to the assembled parts they used variation ellipsoids which
accumulated errors from noisesin the system and included both trandational and
orientational errors in the parts. The method offers an effective tool for
evaluating uncertainties, especially in assembly.
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3.2.4 Simulation modelling
Monte Carlo Localization

In Monte Carlo Localization (MCL) the uncertainties are presented as a
probability density with respect to the samples. The method was employed by
Dellaert et a. (1999) to improve on their previous work (Burgard et a. 1998).
The advantage compared with their previous method is the reduced requirement
for computation power and memory. The accuracy is also higher than in Markov
Localization and the method is easier to implement. They base these statements
on careful comparison between the two methods.

Weaknesses of the methods for modelling spatial uncertainties

Each modelling method entails limitations with regard to accuracy and the
possibilities for recovering from failure. In the linearized models, the assumption
of modelling the noise as Gaussian is often too far from reality. Usually this
becomes significant when the errors in the motion model become too large.
These errors are originaly mechanical problems involving transmission, gears,
encoders and sensors, and have to be considered non-systematic. All systematic
errors are considered when a robot system is calibrated, but elimination of the
non-systematic ones is a more difficult task. Some sensors have interna
parameters with similar behaviour, and their modelling using a Gaussian
digtribution represents a fair assumption, although determination of the sensor
bias should also be included in the calibration process.

Linearized models rely heavily on a priori information about the estimated
parameters. If the initial information is unreliable or erroneous, the estimation
may very easily fail. In the case where a work object is placed in a robot
workcell and no CAD modé is available for its localization, it is not aways
possible to obtain a priori information on the estimator. In the case of the
Extended Kaman Filter, when the equations are first-order terms of Taylor
series and higher terms are neglected, there is a small deviation between the
exact function and the linearization.
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Search agorithm-based methods usually suffer from the density of the samples.
When using genetic algorithms, the number of samples affects the accuracy of
the estimate. Then a compromise has to be found between the number of
samples and the time required to calculate the estimates. The number of samples
a so affects the convergence ratio. The tool required to shorten the computation
time is restriction of the solution space. In an actua system, genetic algorithms
need four times more computation time than the Extended Kaman filter
(Moreno 2002), which means that they cannot be calculated on-line. On the
other hand, genetic algorithms are less expensive methods than Monte Carlo
localization. So far, most of the search algorithm methods are unfortunately off-
line techniques or require part of the calculation to be carried out off-line.

3.3 Combining estimates and uncertainties from different
measurements

Transformation from different measurements or several sensors can be
combined, provided it is described in such a way that it can al be evaluated
using the same criteria. The form of the information can be different in many
ways:. the uncertainty in the sensors being based on accuracy and the amount of
information (coarse or sparse data), and the time stamps may be different. Forms
of merging sensor information can be divided into the following two categories
(Luo & Lin 1988):

e Multi-sensor Integration
e Multi-sensor Fusion.

Sensor integration means the use of several sensors to assist the behaviour and
movements of the robot without fusing their information, whereas in multi-
sensor fusion sensor measurements from different sources are combined or fused
together to represent the estimate and its uncertainties in a single format. The
error functions and Jacobian matrices can be different, depending on the types of
SEeNsors.
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3.3.1 Control strategies

The interface by which the sensors communicate with each other is specified in
the control strategies. Selection of the most proper strategy depends on the
requirements of the system to be developed, i.e. the separate needs and parts of
the system and the principles of fusion used for combining the information.
Control strategies can be divided as follows (Henderson et al. 1987):

e Sequentia / Parallée

* Probabilistic/ Deterministic
e Feedback / Open loop

* Modular / Hierarchica

» Goal-directed / Data-driven.

Control of the system may by sequential or paralel depending on the process
and the amount of computation. When estimating spatial relationships in this
thesis, they are taken as belonging to the sequentia control, whereas parallel
control is more often used in mobile robotics, when computation time is more
critical. The form of modelling the spatial uncertainties in a robot system can be
probabilistic or deterministic, and this selection can also be made for control. A
large system may also include both types of modelling, so that computation is
carried out using deterministic modelling, for example, but global estimation is
done using a probabilistic method. The type of sensor may also affect the
selection. The principles of a control system can be open or closed when
information obtained from the feedback loop is used for controlling it. A control
system may also be a modular construction, or else it may be built up in a
hierarchical manner, just as it may be either goal-directed or data-driven. This
usually depends on the application. The trend in recent years has been to
construct robot systems and other machines based on modular architectures. The
goa has been "plug-and-play” thinking, so that parts of the machine can be
attached or removed without complicated configuration tasks.
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The advantages that can be achieved when using sensor fusion are improvement
of the reliablity and accuracy, reduction in uncertainties and the possibility to
include sensors of severd typesin the system. In most of cases the uncertainties
in the estimated parameters are also considered when fusing sensor
measurements. This is a basic requirement when information from sensors of
different types is fused. The completeness of the information gathered on the
environment will increase as a result of combining measurements from severa
sensors, and this may enable objects or whole environments to be measured,
which would not otherwise be possible. This may be the case when modelling
surrounding objects. When using multiple sensors, the time required for
measuring is an important aspect. In this thesis, a laser rangefinder with a laser
stripe is used, and with sensor fusion, al the data can be used in the estimation.
When designing a multi-sensor robot system, the sensors will usually be selected
to complement each other, e.g. a combination of vision, laser rangefinder and
touch sensors. Vision or range sensors lack information in cases of occlusion,
and if the robot has a tactile sensor attached to the manipulator, information can
be obtained from behind occluding objects. The cost of the whole measuring
system becomes smaller when collecting the information using several sensors
and fusing the information rather than building up separate systems for each
observing sensor.

Reliable operation of a multi-sensor system requires high-level flexibility to
maintain stable computation. Although modern sensor technology is very
advanced, there are still a lot of problems with the sensors. The fusing system
has to manage situations where the collecting of information with any of the
sensors may be interrupted or may be erroneous. On the other hand, a multi-
sensor system should keep the overal functioning of the robot system stable
even if one sensor does not work. In that way a multi-sensor system with sensor
fusion is more reliable than arobot system with only one sensor.

3.3.2 Sensor fusion in different ranges
Efficient use of multi-sensor fusion is achieved by using the most suitable sensor
at each distance from the target. Luo and Kay (1989) present a hierarchica

approach for managing sensor fusion in different situations. The model,
illustrated in Figure 10, contains four phases. far away, near to, touching and
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manipulation. In the lower part of the circle, the most suitable sensors are
presented for the proposed distances. The arrow on the right-hand side of the
circles represents time, which means that observations are first made far away
from the target and come closer and closer to it with time. The range of sensing

represents the distance between the target and the sensors, which naturally
increases from close to further away.

FAR AWAY

NEAR TO

TOUCHING

MANIPULA-

Range of sensing TION

A

force/torque
weight

tactile

hand-eye
vision

proximity

vision

Figure 10. Four phases of the approach to sensor fusion adopted by Luo & Kay
(1989).

The concept of a virtual sensor, as presented by Eccles et al. (1989), implies a
method for improving the flexibility of a multi-sensor system. It is an arbitrary
type of sensor that improves knowledge about the environment and may also
include higher-level information. The properties of the virtual sensor aso
include the fact that the main system does not need to know the type of sensor or
form of data acquired. The virtual sensor takes care of al the data transformation
processes from sensor reading into submitting the data for sensor fusion.
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The combining of measurements into a one large matrix by means of sensor
fusion was proposed by Nakamura and Xu (1989). Each new measurement
increases the size of the weight and measurement matrix. To keep the
computation time at a reasonable level, old measurements are deleted after a
given period of time. Fusion is based on Gaussian-form uncertainty
representation, which is aso used in the estimation procedure.

Minimal representation size (MRS) is a data fusing method in which a minimal
representation for the data is selected using certain criteria. Selection includes
choosing the properties of the model and the representation size for residuals or
errors. The method has been investigated by Joshi & Sanderson (1999) and who
use adifferential evolution agorithm consisting of a heuristic search and genetic
agorithms for finding the solution. MRS is aso known as the minimum
description length criterion, as it finds the shortest length of program that can be
used to construct the data to be observed.

3.4 Discussion of the modelling the spatial uncertainties
in arobot system

Methods for modelling spatial uncertainties in robotics have been obtained from
the theory of statistics. The most common stochastic method has been to assume
that the noise has a Gaussian distribution. Approaches of this kind include
Kaman filter -type modelling and Bayesian-form modelling, which are both
linearized models. These are very useful when the noise follows the assumed
digtribution, but quite easily fail when the measurement data are biased.

Another type of stochastic modelling involves probability functions, which also
give a noticeable advantage if the measurements can be discretized. Tolerance
propagation and dynamic Markov localization represent the deterministic
approach and sampling methods used by search agorithms, e.g. Monte Carlo
localization, give good alternatives in many applications. Search agorithm
methods has been used e.g. in mobile robot navigation, where the movement
space has been modelled using a sampling-based technique.



When a great dea of information is available at one moment or as a function of
time, there may be a need to combine measurements. Methods for multi-sensor
integration or fusion of this kind, as proposed in the literature, are reviewed at
the end of this chapter. Most of them include the estimation of spatial
uncertainties in the result in the case of fused parameters.
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4. Planning of sensing actions
4.1 Introduction

The selection of aversatile set of samples and robot configurations can affect the
noise level of the estimated parameters. Tarabanis et a. (1995a) state that the
goal of sensing planning is to understand and quantify the relationship between
the objects to be viewed and the sensors detecting them. The approach is a
model-based, task-directed form of computer vision, but it is employed as a
general approach to sensing planning in this thesis. The system for planning
computer vision consists of the parts illustrated in Figure 11, including the
processing of many of the tasks, sensor models and object models as input
information for the system, the main system for sensor planning and output in
the form of planned parameters.

The purpose of planning may be divided into two distinct areas (Hutchinson &
Kak 1989): how to place the sensor such that the object features can be detected
in a best way possible, and how to choose the robot motions in a way that the
known target is localized most accurately. The sensing tasks that have to be
carried out include object recognition, scene reconstruction and feature
detection. These are closely related to camera techniques and are not considered
in this thesis. One important purpose of sensing planning lies in applications
where computation time is limited, so that the parameters of the model have to
be estimated very quickly and often only a few measurements out of a vast
amount of data can be used in the calculation.

Thus motions that give a set of samples for estimating the parameters in such a
way that spatial uncertainties will be minimized are studied here. It is assumed
that a priori information is available from the environment, i.e. sensor models
and object models. In addition, planning may also consider internal parameters
of the sensor, e.g. focal length. In this thesis a laser-rangefinder is used and the
internal parameters are not estimated, i.e. no set of samples is planned for
minimizing these parameters.

Sensor planning is an important part of an autonomous robot system, and it

includes a method for selecting an optimal set of samples. The methods
presented in the literature can be divided into two main types: generate-and-test
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and synthesis (Tarabanis et a. 1995a). In addition to these, there are also other
sensing planning types, including expert systems and sensor simulation systems.
The quality of measurement selection is very important in cases where there is
only a sparse set of samples measured using a point-by-point sampling system
and when the available data are very noisy. Examples of acquisition systems
yielding a sparse set of data are the Coordinate Measuring Machine (CMM),
which obtains only a few samples, or a robot system with a tactile sensor.
Compared with vision systems, the amount of data achieved using a point laser
rangefinder or an ultrasound sensor is much smaller, unless they are scanning
sensors. For this reason, sensing planning plays an important role in a robot
system when estimating the coordinate transformations and trying to analyze and
minimize the spatial uncertainties attached to the parameters of the estimated
transformation.

tasks

* object recognition
* scene reconstruction
* feature detection

sensor

models
object

models

SENSOR
PLANNING
SYSTEM

AN

planned parameters
* camera pose
* gptical settings
* illumination pose

Figure 11. Sensing planning for computer vision (Tarabanis et al. 1995a).

The parameters that the sensor planning system produces in the general case of a
vision system are the pose and optical setting of the sensor, and in some cases
the pose of an illuminator may also be considered. The main attention in this
thesis is paid to calculating the pose of the sensor. The optical settings include
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those for internal parameters including visibility, field of view, focus,
magnification or pixel resolution and perspective distortion. The illumination
parameters include illuminability, the dynamic range of the sensor and contrast
(Tarabanis et al. 199538). These are considered only in the review of the
literature.

In the object recognition that precedes the planning phase in general sensing
planning systems, the object information is extracted from CAD models, which
are nowadays available in manufacturing environments. The required parameters
or other geometric information for the planning algorithm will be selected
automatically or manually from the CAD models. This selection process will not
be considered here, as the information is assumed to be obtained automatically.
One special type of sensing planning, known as sensor simulation systems, relies
heavily on the CAD model and the model for the whole robot system in a
simulation environment. More detailed information on the system is given in
section 4.4.2.

This chapter illustrates methods for planning the set of samples, presenting first
the generate-and-test method, then the synthesis method, and finaly simple
examples of two other methods, expert systems and sensor simulation systems.

4.2 Generate-and-test

The most common method for considering the goodness of a set of samples is
generate-and-test. It is straightforward to use but usually requires time, due to
the iterative manner of selecting the set of candidates. The methods are divided
here into two classes, involving the use of either a condition number or an
observability index for evaluating the set of samples. One member of the
condition number class is a noise amplification index, which weights the
difference between the smallest and largest individua values of the
identification matrix more than the condition number.
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4.2.1 Condition number

One of the most fundamenta works in sensor planning is that of Sakane et al.
(1987), who introduced the HEAVEN planning system. This uses a spherical
representation to illustrate the configurations of a sensor. When planning the
positions of the sensor for measuring the object, a geodesic dome is created
around the object and divided into small triangular facets. A viewing sphere of
radius equd to the distance from the vision sensor to the target object, which is
selected a priori, is centred on the object. The first criterion, visibility of the
target point, is defined by projecting a ray from the target point of the object to
the centre of the appropriate facet, and all the intersections of the object frames
are computed. The second criterion, distance, is calculated by computing the
distances from the object to the sensor and iteratively selecting the best ones,i.e.
those which involve the points closest to the camera. The last criterion, sensor
placement, is calculated as an intersection of the candidate facets sorted by the
distance criteria. In addition to these criteria, the illumination of the viewpoints
is evaluated using the inverse of the condition number, i.e. the illumination for
the configuration C; can be written

C, =1 cond (M) (20)

where

M is the matrix of unit vectors that point from the object surface to
the light sources

cond (M ) isthe condition number of the matrix M .
The condition number can be caculated when the equations are in the form of a

square matrix A (4" 4), the condition number for the matrix 4 being
calculated using the second norm (Kreyszig 1993):

cond(=] 4| 47, @
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The other way is to calculate the condition number from the largest and smallest
individual values of the identification Jacobian matrix, as proposed by Zhuang &
Roth (1996):

cond(J) = G (22)
where
O rvox isthe largest individual value
o isthe smallest individua value.

min

The relation between eigenvalues and inidvidual values is that eigenvalues are
positive sgquare roots of the singular values to the power of two. The condition
number is calculated by dividing the largest individual value in the matrix by the
smallest, where the smallest value is theoretically one. In that case al the
individual values will be equa to one and al axes of the uncertainty ellipsoid
will be of the same length. The geometrical interpretation for this is that the
uncertainty ellipsoid has the form of a sphere.

The condition number used by Motta & McMaster (1997) was calculated from
the Jacobian matrix of the robot kinematic system. The important aspect when
using the condition number is that the parameters and task variables of the
Jacobian matrix have to be scaled before calculating the condition number.
There are two ways of scaling the data to obtain a better condition number
(Nahvi et. al. 1994): task variable scaling, in which both the position and the
orientation of the tip have to be scaled to the same precision, and parameter
scaling, in which the effects of different parameters at the tip are normalized, i.e.
they are trandation and orientation parameters. A typical example of parameter
scaling is column scaling.

Sallinen et al. (1999) used the condition number to evaluate the goodness of the
set of samples after carrying out the measurements. In that case hand-eye
calibration of a laser rangefinder was carried out and several sets of samples
were generated randomly. The condition numbers for the different sets of
samples were then compared with respect to spatial uncertainties. There was
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some coherence between the condition number and the spatial uncertainties, but
these criteria complement each other rather than sharing the same result.

Calculation of the inverse of the condition number as a criterion for sensing
planning was aso suggested by Nahvi & Hollenbach (1996), who took the
maximum value to be one. They used an inverse condition number to determine
the Noise Amplification Index, an indicator which is a product of the inverse
condition number and the minimum individual value:

o o2

04 = amin amin = amin (23)

max max

The larger the index, the better the observability and the smaller the difference
between the axes of the uncertainty ellipsoid in a geometric sense. The noise
amplification index is an indicator of the amplification of the sensor noise and
the unmodelled errors. The index was successfully tested with a 3DOF planar
robot. As a consequence of the sensitivity of the noise amplification index to the
different scales of the Jacobian matrix, the data have to be scaled before
computing it, and the measuring conditions should be the same for all the data
sets to be compared.

4.2.2 Observability index

An observahility index for evaluating variations in the parameters was defined
by Borm & Menq (1991). This measure of parameter errors was calculated by
multiplying the individua values of the Jacobian matrix, taking the sguare root
of the product and dividing it by the square root of the number of measurements:

{o, (o, T,
M

(24)

where
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g, isthe L : ¢th individual value, and the smallest

o isthefirst individual value, and the largest
L is the number of individual values
M is the number of measurements.

The observability measure can be used as a noise minimization criterion when
minimizing the index O, i.e. the smaller the index, the lower the noise level in
the system.

The parameter estimation results were considered by studying the propagated
error covariance matrix over the links in the robot system (Borm & Meng 1991).
The test system included a robot with 5 DOF and the position was verified by a
coordinate measuring machine (CMM). These authors reached the following
three conclusions on the use of the observability measure: 1) the observability
measure increases as the upper bound of the RMS value of the residual position
error decreases, 2) the selection of configurations is as important as the number
of measurements, and 3) the robot caibrations should be carried out with the
configurations that have the highest observability measures.

The observability index was later used by Nahvi et a. (1994), who stated the
determinant of the Jacobian matrix:

\det(J"J) =0,...0, (25)

where
J is the Jacobian matrix.

This was also called manipulability by Klein and Blaho (1987). Based on
eguation (25), these latter authors defined the observability index:

0O=o0, (26)
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which is equal to smallest individual value. From the geometrical point of view,
if the error in estimated parameters is defined as an uncertainty ellipsoid, or a
hyperellipsoid as they cal it, the semi-axes of that hyperélipsoid are the
individual values o,...0,. Also, the volume of this hyperellipsoid is
proportiona to the product of the individual values of the identification matrix
J. As a result, they proposed that both the condition number and the
observability index should be used in order to obtain the best results.

The simplification of equation (26) proposed by Klein & Blaho gives a one-
sided interpretation of the uncertainties attached to the estimated parameters. If
the minimization criterion is an individua value only in one direction, it can
easily give rise to a situation in which this one direction is minimized and other
directions suffered. Most situations of this kind are much worse than
uncertainties distributed homogeneously in the parameter space, because
minimization of uncertainties in only one direction leads to a situation in which
the uncertainties in other directions are greatly expanded.

A generate-and-test method for planning visual guidance for a robot has been
proposed by Heikkila et a. (1989), who divide the planning task into four
phases. selection of the feedback strategy, structure evaluation, selection of the
both feature and object evaluation and selection of the viewpoint. The main
evaluation consists of selecting a proper feature, which can be an edge or an
object. The goodness of the feature information is evaluated in the case of an
edge in terms of the length of the edge and the ease of finding the corner. When
the object criteria include a combination of edges and possibilities for
determining degrees of freedom for the object, the viewpoints of the robot
system are planned using two evaluation functions. a goodness factor for the
viewpoint, calculated as the product of the goodness factors of the objects in the
view, and a goodness value for the path, evaluated by reference to the goodness
factors for the different views and the angles between the eigenvectors of the
rotation matrices and the normal vector of the plane. The method seems to be
suitable for a number of purposes, but its use is restricted to vision systems due
to the requirement for detailed feature extraction.

The generate-and-test method is easy to implement and gives a good initial

solution for synthesis-based methods (Gu et al. 1999). The potential problems
related to it are said by Gu et al. (1999) to be: 1) the computational cost is quite
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high in most cases. This problem is expanding, especially as the dimensions of
the parameter set are expanding. 2) The constraints on the sensor, e.g. focus,
resolution and field-of-view, are often ignored. 3) The solution space for
possible candidates is limited to one viewpoint and view direction at the centre
of each facet, because of the computation cost, and 4) the uncertainties are not
usually considered. In many cases, however, modelling of the evaluation criteria
or a cost function for sensing planning is too difficult or even impossible, and in
those cases the generate-and-test approach will be the proper solution.

4.3 Synthesis

The synthesis method for selecting the set of samples requires a deeper
understanding of a robot and the sensor model than the generate-and-test
approach. When building up the system for selecting the samples, the parameters
to be minimized have to be selected, togerther with some kind of minimization
function or criterion. The minimization criterion can be a condition number,
occlusion, uncertainties in the estimated paramaters or a geometrical dimension.
The space of the solutions is fairly easy to find when estimating only a few
parameters, but as the number of parameters increases, the computation becomes
more complicated and it can be very difficult to find the best solution. In some
cases in which both external and internal sensor parameters are estimated, the
number of parameters to be minimized will reach 14.

One classical synthesis method for generating the set of samples presented by
Tarabanis et a. (1995b) is called MVP (machine vision planner). The system
takes the object CAD model and sensor information as an input and determines
camera poses and settings as outputs. The parameters which are defined are the
pose of the camera (6DOF) (r,,V) and a principal point on the image plane d ,
the focal length f and the aperture of the lens @ . This means that planning is
carried out in an eight-dimensional space, any point in which is cdled a
generalized viewpoint V(r, Vv d f a). The optimization function for
the estimated parameters can be written as follows:

f= max(algl t0y,80, A28 TU3,85 +0'4g4) (27)
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where
g, isafunctionof g.(, v d f a)

a, are the weights for the parameters.
The weights are selected initially such that each parameter is weighted equally,
but after the optimization a solution for a global minimum will be achieved by
searching for the proper value for each weight. Using the general optimization
equations presented, the MV P offers a useful tool for synthesis of optimal sensor
positions.

4.3.1 Error covariance matrix

Error covariance matrix describes the noise of the estimated parameters around
the estimated value. It can be interpreted geometrically by calculating
eigenvalues and eigenvectors which describes the uncertainties length of the axis
and orientation of the uncertainty elipsoid. When the error covariance matrix is
calculated by propagating all the error sources possible to model, it describes the
total uncertainty of the propagated links or estimated parameters. Volume of the
uncertainty ellipsoid gives the space e.g. within the end tip of the calibrated tool
lies. Therefore it can be used as a criteria for describing the accuracy of the
different devices of the robot system.

Uncertainty minimization has been applied to the localization of mobile robots
by Borghi & Caglioti (1998), who use position uncertainty as an optimization
criterion, i.e. an a posteriori error covariance matrix. Due to the requirement for
fast computation in the sensing planning task in the case of a moving robot, the
computation is divided into two phases: an off-line phase and an on-line phase.
The finding of a solution to the problem follows a grid-based approach. The off-
line phase includes dividing the solution space into separate cells, which are then
used for calculating the optimal solution in the on-line phase based on the given
criterion. In the estimation of uncertainties, they use uncertainties at a known
point, which is an advantage when studying an a posteriori covariance matrix
with the same units, i.e. the translation parameters of a point.
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When using an uncertainty matrix as a criterion, a situation arises in which
parameters with different units are selected for the covariance matrix. This
problem was solved by Borghi & Caglioti (1998) by using uncertainties at a
point as a criterion for sensing planning when the units of the error covariance
matrix were translation parameters. In the situation where the 2D reference pose
of the robot is represented as g(X,Y) =0, the uncertan pose as
g(X',Y") =0 and the noise of the pose as (dx,0dy,dV), the relative non-
displaced pose can be written as

X'| | cosod sSnod | X —ox
v'| |-snsd cosad| Y- (28)

and the covariance matrix for the robot pose as:

o, O, O,

xx Xy

AN=\o, o, O (29)

»x W xx
Os Oy Oy

The position error of point / isindicated as being (dx,,dy,) and the accuracy
0, Of the position / is presented by the trace of the covariance matrix A,
i.e. the sum of the eigenvalues. This quantity is equal to the mean squared
distance between the true position of 7 and the estimated position. The equation
can be written:

Opor = El_dxfz + 5)/12J = Osuoa Y O5151 (30)
where
E[ ] is the covariance of the given parameters.
The problem can now be formulated: using the given estimates of the pose
parameters and their covariance matrix, which is the point on I (I" here
describes the surface around the robot) to be explored at which the criterion

O o Will be minimized, equation (30), the minimization is carried out by
suboptimal exploration, which relies on a priori information on the environment,
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by selecting the measurements with the least uncertainties. The method has
proved promising, and is especialy suitable for curvilinear environments. In
addition, localization works fine with a very few measurement points, so that it
can be used in piecewise linear environments.

In his previous work, Caglioti (1994) had used a determinant of the a posteriori
error covariance matrix as a criterion for planning the set of samples. In
parameter estimation he uses a minimum error variance estimator, which enables
him to estimate the error covariance of the estimated parameters. When locating
objects, information about their surfaces has to be available, and the
minimization in the sensing planning phase is divided into several subproblems
for each surface.

A composition of robot movements when the robot approaches a cube has been
proposed by Nilsson & Nygéards (1996). The movements are programmed off-
line and use measurements made by alaser rangefinder and Gaussian-form noise
for modelling the uncertainties in the robot system. The uncertainties are
considered by calculating and studying the error covariance matrix for the
estimated parameters. The state equation of the moving robot is written as
follows:

Xy =X, s, +bdiag(s, )wl, +cw2, (31)
where

X, = [xk : yk]T is the position vector of the robot with respect to the object to
be gripped at time ¢,

S is the unknown planning variable describing the desired
incremental change in the robot position

wl, , w2, are the sequences of variables

b,c are the model variables.
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When the output of the sensor ismodelled as z, = A(x, ) + v, , the cost function
for the system can be written asfollows:

J(Sgre-esSy_1) =E[(xN —xg)T(xN —xg)] (32

where

J(sg,---,Sy4) isafunction of the poses of the robot

SgyeerSyg are poses of the robot

X, isthe requested final position

Xy is the actual final position

E [ ] is the covariance of the given parameters.

A solution for the cost function is obtained using the Extended Kalman filter.
The planning algorithm is repeated when a new observation is received and the
solution is always adjusted with respect to the information available. The final
error can be used for optimizing the speed of the approach by considering the
criterion used in the planning.

4.3.2 Surface properties

A method for planning viewpoints for a partial dimension inspection has been
presented by Sheng et a. (2000), although their assumption that the targets to be
inspected have free-form surfaces makes the inspection more difficult. The test
setup consisted of a CCD camera system mounted at the TCP of the robot. The
internal parameters of the camera system are assumed in the sensing planning to
be constants, and only the external parameters, i.e. the pose parameters, are to be
calculated. The sensing planning procedure consists of two main steps: 1)
finding flat patches on the surface of the object, and 2) determining the
viewpoints for each flat patch. A flat patch is defined as a set of connected
triangles which correspond to a certain continuous area on a surface, and the

78



angle between the normal and each triangle within an average normal patch must
be within a given threshold. The search for flat patches is carried out by
increasing a seed area, selected as being the triangle with largest area on the
surface. The neighbouring triangles are tested with the given criteria and the
growth process is repeated until there are no more acceptable triangles to add.
An improved version of flat patch selection is presented by Sheng et al. (2001),
where the flat patches are constructed using the adjacency information on the
surfaces and similarity between the surface normals.

Sheng et al. (2001) adopt a ”bounding box” approach to determine the optimal
camera viewpoints. This means that a bounding box is constructed on a given
patch to project al the vertices in three orthonormal directions and to find the
farthest and closest points. The direction with the maximal areal view is chosen
as the optimal direction, and the other two directions are selected so that the
points can all be covered by the smallest rectangular field of view. The search
for viewpoints is carried out recursively by selecting patches and subpatches
depending on the success of the search. Experimenta tests showed that the
system works with real CAD models.

An optimal sensor placement for visual dimension inspection has aso been
proposed by Gu et a. (1999), who used error measures of two kinds for
formulating the placement problem: displacement error and quantization error.
The displacement error includes errors of camera placement (6 DOF), which
giverise to errors in the image plane that can be computed by calculating partial
derivatives of placement with respect to the image in the image plane. The
random variables of cameralocation are assumed to be Gaussian in distribution,
and since the displacement error is the sum of several variables with Gaussian
digtribution, the displacement itself is also Gaussian-distributed. The
quantization error arises from the accuracy of the image digitization. It is
assumed in the work referred to that a line in the image plane has equal noise in
the directions x and y of its endpoints. The noise in the image plane is aso
Gaussian-distributed. When integrating both the displacement and the
quantization error, the result will be Gaussian distributed with a zero mean. The
dimensiona inspection is carried out by calculating the dimensional error and its
deviation and comparing the result with manufacturer’s information. If the
resulting deviation is smaller than the given threshold, the test will be passed.
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4.3.3 Occlusion

Occlusion has been used as a criterion for computing optimal viewpoints by
Tarabanis et a. (1996) and Maver & Bacsy (1993). Especialy in the case of
complicated objects, some points on the object may not be visible. In such cases
the use of occlusion as a criterion for sensing planning is very effective. The
forms of occlusion can be divided into two cases (Tarabanis et a. 1996): sdlf-
occlusion, which means that the object which contains the feature to be
measured is occluding the view itself, and location of a desired feature in such a
way that it is impossible to measure using the given sensor, i.e. the sensor has
too limited an angle of view or is too large to account for small hollows in the
work object.

Tarabanis et a. (1996) propose two ways of detecting occlusions. They can
either be controlled for on the basis of the boundary representation of the objects
in the work space, as provided for in the agorithm, the optimal pose values for
the camera being determined using a generate-subdivide-select algorithm, or else
a decomposition-based algorithm can be used in which the occlusion is
considered by checking the boundary faces. The authors compare these two
algorithms and show the boundary-based one to be clearly better in terms of both
performance and robustness.

Maver & Bajcsy use a two-stage method of occlusion observation. Their first
scan provides initial information on the scene, and the resulting data are utilized
in the second scanning to check the occlusions from the potential directions of
observation.

4.3.4 Other synthesis methods

A Bayesian dtatistical decision theory is used by Cameron and Durrant-Whyte
(1990) for determining the optimal sensing locations in recognition and
localization operations. The object and sensor models use the probabilistic
approach, i.e. the Gaussian-form noise models proposed by Durrant-Whyte in
his previous work (Durrant-Whyte 1988). Cameron and Durrant-Whyte uses
probabilistic membership functions to describe the uncertainties attached to the
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sensed objects, and they also include information on the shape of the object, its
dimensions and uncertainties within the combined uncertainty of the system.
Utility functions are used to evaluate the merits of each sensed position, and the
sensed positions are collected into a probabilistic interpretation tree and a
sequential analysis is used to test the proposed hypothesis. The poses that pass
this two-stage test are accepted as sensed positions. The system was tested in a
2D case with an actual robot-camera system and the results were successful.

The planning of sensing strategies for multi-sensor capabilities has been studied
by Hutchinson & Kak (1989). Their solution comprises a complete system
including object identification based on a hypothesis concerning the object and
the surrounding scene. They use the Dempster-Shaver theory for object feature
matching, defining the following sets of hypotheses: feature matches, object
consistency and aspect consistency. The set of motions is composed of a set of
planning motions for several observable features of the target object. Their
matching criterion is the difference between the dot products of the measured
and modelled surface normals. The sensors they used for measuring the robot
workcell included alaser range sensor, a vision sensor and a force/torque sensor.
The best sensing strategy for these was evaluated using the following three
criteriac 1) viewpoint, which corresponds to the principal viewpoint for a given
aspect, 2) features which can be observed from the selected viewpoint, and 3) a
hypothesis based on this initial information. This process is repeated until the
minization of ambiguity reaches the required level.

Almost all the papers concerning sensing planning have an approach with a
static target, but research has also been carried out into sensing planning for
moving targets. Methods and results have been described by Abrams et al.
(1999). The approach to dynamic sensing planning is basicaly the same as to
static planning, but the sensing operation has to be carried out within a certain
time period. There are two types of movement in dynamic sensing planning: one
in which the sensing tool is moving and the target objects remain stable, and one
in which both the sensing tool and the target objects are moving. The optical
parameters of the sensor are planned in the first phase and the measurements for
localizing the target object are performed in the second. The system computes all
the same parameters as static planning systems and in addition temporal
intervals, i.e. the time related to the sensing event. For the dynamic sensing
process the system has to have an additional motion model for the environment.
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The idea of the planning is to find temporal intervals for viewpoints, compute
swept volumes of the target objects that present the movement and then use the
viewpoint algorithm to compute sensor positions, orientations and optical
parameters that are valid for each interval. The paper aso presents an improved
version of the viewpoint planning agorithm that includes a new way of
integrating the field-of-view and resol ution constraints. Even if the system works
well, there will be much to be done in the future regarding the time intervals and
how to manage them. The temporal interval decomposition method they useisa
rough method and they will presumably improve it significantly.

Simulated Annealing is a stochagtic optimization method for generating an
optimal set of samples derived from Monte Carlo methods (Zhuang et d.
19944q). Its advantages are that it offers an easy way of implementing the joint
travel limits in configuration selection and that it avoids a local minimum point
in the minimization function in the context of gradient-based methods.

Simulated annealing is implemented with the following procedure: 1)
formulation of the cost function F', 2) selection of the initial configurations
through the probability distribution Q(.) 3) generation of candidate states by
specifying the conditional probability distribution D(.,.) and 4) design of the
cooling schedule {7',} . To observe the state of identification of Jacobian and
kinematic parameters, the authors use the condition number and the
observability measure. The first step, definion of a cost function, is carried out
using the condition number or the observability index, whileiln the second step,
the probability function is determed by distributing it uniformly over the
parameter space. Candidates are generated by random selection of a robot joint
variable vector, every new vector being selected in such a way that it does not
contain any joint value in common with previous vectors. The cooling schedule
can written as follows:

r

ik 2 (33)

where
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r=T7,In2 inwhich 7, istheinitial temperature

k isaconstant (>0)

[ =1(k) = truncate(k /L)) .

This is a finite-time equation generated using a Markov chain of finite length
L, . Although simulated annealing is a computationally expensive method, it
can be recommended for generating an optimal set of samples. The compution is
carried out off-line, which makesiteasier to use in real systems.

The synthesis method gives a much more effective way of generating an optimal
set of samples than generate-and-test. In addition, a larger parameter space can
be covered. The disadvantage is the difficulty of forming the criterion function
for the selection of samples. When looking for a flexible and intelligent way of
generating a set of samples, synthesis usually has more advantages than other
methods.

4.4 Other sensing planning methods

In addition to generate-and-test and the synthesis approach, there are two less
common methods for sensing planning, namely expert systems and sensor
simulation systems. Less intensive work has been put into developing these
methods, but there are several applications for which they constitute the proper
solutions.

4.4.1 Expert systems

Expert systems can be included among the sensing planning systems. Their
planning relies on a knowledge base derived from a human expert’s knowledge
of image processing techniques. The idea of the planning system is that it
generates a sequence of primitive image processing operations to solve the given
vision problem. Expert systems can be divided into four categories (Matsuyama
1988): consultation systems for image processing, knowledge-based program
composition systems, rule-based design systems for image segmentation
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agorithms and goal-directed image segmentation systems. Expert systems have
been developed for a number of tasks (Matsuyama 1988), including signal
interpretation, medical diagnosis, circuit design and troubleshooting and plant
control. Two knowledge-based systems are presented here.

Kitamura et a. (1990) presented an expert system for a part feeder. The pose of
the object is recognized using predetermined criteria concerning its features,
including the area of the component and angular features. Both feature values
are measured using binary images. The system as presented consists of three
modules: an image processing expert (IPE), a decision tree generator (DTG) and
a feature selection expert (FSE). The IPE component generates an image
processing procedure to measure the values of the shape features, the DTG
calculates the effectiveness value of the terminal level shape feature and a
threshold value for the classification, and the FSE selects the shape feature to
generate the decision tree. This method was applied to their part feeder with
successful results.

The other knowledge-based expert system was presented by Matsuyama (1988).
The genera architecture for expert systems for image processing includes a
reasoning engine, knowledge about image processing techniques, a library of
image processing operators and a database of characteristics of the input and
processed image data. The reasoning engine operates at two levels: generation of
an anaysis plan and selection of an operator, and adjustment of parameters. The
whole system is controlled with a user interface.

4.4.2 Sensor simulation systems

In sensor simulation systems a scene is visualized on the basis of information
obtained from different components of the world, including target objects,
sensors, the robot and light sources. The planning is carried out visually or may
be based on a generate-and-test approach, for example.

The sensor simulation system called VANTAGE proposed by Ikeuchi & Robert
(1991) includes model-based vision system that recognize the object based on its
appearance. It models the world in 3D, but recognition takes placein a 2D space.
To model objects in this 2D space they define sensor detectability as a measure
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to describe where the sensor can see the object. The input to the system consists
of boundary values for the object, and the result is the set of measurement poses.
Objects are modelled using structures at different levels (trees) and object
recognition makes use of the illumination-level structure. The uncertainties
attached to each feature are taken into consideration in the recognition. The
system has been tested and works fairly reliably despite its high computational
Cost.

The other methods that exist alongside generate-and-test and synthesis offer
good solutions for a number of planning applications, but their performance is
highly dependent on the user. The results achievable with an expert system
depend on the knowledge base, and the sensor simulation method is restricted by
the simulation environment and its accuracy. Despite some disadvantages and
exceptional features, there are many applications for which these systems offer
the best solution.

4.5 Discussion of planning of sensing actions

The objective of sensing planning is to generate a set of samples so that, using
the data, the estimates of the coordinate transformation will be reliable and the
parameters will decribe it with a low level of uncertainties. The two main
approaches to planning are generate-and-test and synthesis. If the estimation
process is known, the synthesis method will provide effective tools for
generating a set of samples. Depending on the application, there may be a
requirement for on-line planning, and in such cases the method will have to be
fast to compute, so that synthesis is an obvious solution for these purposes.
Generate-and-test is simplier to use and is a more common method for planning
samples.

Generate-and-test is a straightforward approach for selecting the set of samples.
It is usually computationally heavy, however, and so the calculations are
performed off-line. The interpretation of the results is quite obvious and criteria
for the set of samples are often taken from applied mathematics, including the
condition number and observability index. In the synthesis method, the set of
samples is generated based on given criteria, basically of the same kind asin the
generate-and-test approach. Caculation of the set of samples is quite fast and
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this means that the method is often used in time-critical applications. Other
criteria used in the synthesis approach are the properties of surface profiles and
surface occlusion. Typical surface properties are flatness and field of view.
Occlusion is very useful when the object includes features which cover some
areas of its surface. In such cases it is imperative to select the viewpoint on the
basis of occlusion.

There are applications, especially in industry, which use other sensing planning
methods, including expert systems and sensor simulation systems. In addition,
modern CAD / simulation softwares have similar properties (Deneb 2000). The
demerit of these methods is their heavy dependence on both the human operator
of the system and a database consisting of expert rules defining the system base.
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5. A comprehensive framework for the
modelling, estimation and planning
of parameters and uncertainties in robot
workcells

5.1 Introduction

The estimation of model parameters in a robot workcell includes hand-eye
calibration, work object localization and surface model parameter estimation. A
stochastic method for estimating all these three phases is introduced in this
chapter. The method is based on Newton-Rhapson iterative estimation and uses
Bayesian-form modelling of spatial uncertainties in the robot workcell. The
kinematic modelling of the robot is performed by the Denavit-Hartenberg
method, which enables a flexible approach to be adopted for both solving the
kinematics and modelling the kinematic structure when propagating spatial
uncertainties.

This chapter also presents a method for modelling spatial uncertainties using
covariance propagation that can be applied to every phase of the calibration of a
robot system, including hand-eye calibration, work object localization,
estimation of surface model parameters and sensor fusion (section 5.3), in which
measurements from several sources are combined. Means of modelling the
gpatia uncertainties involved in localization and the surface uncertainties of the
work object with B-spline surfaces are presented here which have not been
reported in the literature in this form.

A synthesis-based method for planning measurements is introduced in section
5.4. This seeks to minimize the a posteriori error covariance matrix and uses the
geometric distance between consecutive points as a minimization criteria when
measuring points on the surface of the work object. A verification of the criteria
is provided, and equations for planning the set of samples for work object
localization are given.
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5.2 Estimation of parameters in robot workcells

The calibration of a robot means here estimation of the spatial relations between
its wrist and the origin of the sensor (hand to eye), between the work object and
the world and between the robot base and the wrist, together with the form of the
work object surface. The equations are composed for a 6DOF robot and a 5SDOF
sensor and are explained in detail.

5.2.1 Hand-eye calibration

Here a method for estimating the parameters for hand-eye calibration using the
Newton-Rhapson method is presented. The method is based on iterative
Newton-Rhapson method and the same method is used aso in work object
localization and estimating the surface model parameters in this thesis. The
sensor used in this work is a laser rangefinder, modelled as a transformation
from the wrist (TCP) of the robot to the origin of the sensor frame, so that the
measurement value is the distance from sensor origin to the measured point. This
distance is obtained only in one dimension, but a versatile set of data can be
obtained when using robot motions to move the sensor. One-dimensional
measurement also relaxes one degree of freedom and alows severa
measurement positions and orientations. It means that only five pose parameters
have to be egtimated instead of the full six. The state vector describing the
transformation between the sensor origin and the robot TCP can be written as
follows:

mg=[x y z @ q] (34)
where the first three terms describe the trandation and the next two the
orientation of the estimated transformation in euler angles. The calibration is
carried out by measuring the distances between the sensor origin and the surface

of the cdlibration plane. The state of this plane can be determined using three
parameters, as follows:

mCP:|:Z @. @] (35)
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where the first parameter describes the distance from the origin in the direction z
of the plane and the next two the orientation of the plane. Hand-eye calibration
can be performed more reliably using parametric surfaces, due to the more
accurate model obtained as compared with patched surfaces. A plane surface is
used here, and the error function used as a minimization criterion is given only
for a plane surface. The measuring system is based on measurement motions
generated off-line, a rough estimate of the sensor to TCP transformation and a
rough estimate of a position and orientation of the calibration plane, Figure 12.
The position and orientation of the calibration plate are also determined during
estimation of the hand-eye transformation, an ideafirst introduced by Jérviluoma
(1991). Parameter estimation is more sensitive to error in the apriori information
on orientation values than are the translation values of the estimated parameters.
The same behaviour has been noted in the literature (Gunnarsson & Prinz 1987,
Dornaika & Horaud 1998, Heikkil& et a. 1993). The advantages of the method
proposed here is the ssimplicity of the calibration plane required for calibration
and flexibility of movements of the robot for collecting set of samples.

sensor

sensor
tcp tep
Ve T V. T

tcp tcp

plane

V plane T

robot robot

Figure 12. Coordinate transformations in hand-eye calibration.
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The following coordinate transformations are used in hand-eye calibration:

plate frame in the world (robot base) frame: 7, v 7« 7, 5,

robot '~ robot '

robot's TCPintheworld frame: #,, V' T , &,

robot ? * robot

sensor frame in therobot’s TCP frame: # ., v, 75", &, and

tcp tcp

measured range value of the sensor 4 .

where

H's are 4x4 homogenous transformation matrices including translation
and orientation

V's are 3x3 rotation matrices,.

T's are 3x1 trandlation vectors, and

o's are 6x1 noise vectors of the pose parameter .

[xyz(px(g,(g].

The direction of measurement of the sensor is set here to the direction z. When
obtaining only a distance value d , the measured point in the sensor frame can
be written as follows:

ps=[0 0 d]f (36)

When using a priori information on the hand-eye transformation, the point can
be expressed in the robot TCP frame as follows:

pTCP e VSE}’!SOI‘pS +TSE}1SOI‘ (37)

tep tcp

The transformation y,«=, 7> is constant and is estimated during the iterative

estimation process. The next transformation is from the robot TCP to the robot
base frame. This is different in each motion measurement and an accurate value
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for this transformation is measured from each joint encoder in each
measurement. This means that in each pose the joint values are read from the
controller of the robot and converted into pose form using the Denavit-
Hartenberg model, including the rotation matrix »'» and the trandation vector
T

robot "

Pr =V b Prcr + ]:’i)cgot (38)
Finaly, the measured point is transferred to a calibration plate frame. An initia

estimate for the transformation is used at the beginning, and the result is updated
during the estimation process.

pP - (V plane )T pR + (V plane )T (_T plane) (39)

robot robot robot

A fitting criterion, i.e. an error function, is required for estimating the coordinate
transformations. Since the measurements are on the plane surface and the
coordinates of the calibration plane surface have been chosen in such a way that
the plane x-y coincides with the plane surface and z direction z points upwards,
the error function can be written as the z-coordinate of the measured point on the
plane surface:

eplane = [0 O ]']pP (40)

where
Pp is the measured point transformed into the calibration plate frame.

The system is non-linear and has to be linearized around zero, i.e. small change
of transformation Am =0. This means that the measurements are fitted to a
system model and a Jacobian matrix is calculated by composing a partia
derivative of the error function e, with respect to the parameters to be estimated,
m:
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Oc; _ Oe, Op; (41)
Om Op, Om

This equation consists of the following partial derivatives: de;/dp, isa partial
derivative of the error function with respect to a point in the sensor frame, and
dp,/0m isaderivative of a point in the estimated pose frame with respect to
al six pose parameters. The method proposed by Lowe improves the
performance of the computation of a solution for the derivative given here
(Lowe 1985). According to his principle, small rotations around the orientation
axis (¢,,¢,,¢.) can be marked as trandations in the coordinate axis. This
assumption produces only trandation values in the Jacobian matrix, and
computation issimpler.

When estimating parameters for the transformation from the TCP frame to the
sensor frame, the a priori information on these is assumed to be quite close to the
final estimate. Small corrections are calculated for each pose parameter in the
course of the iteration and added to the values obtained from the previous
iteration step. The partial derivatives for the estimated parameters m, are
calculated as partial derivatives from the error function with respect to the
estimated parameters:

100 0 40

oe .
——=[o o oy viLyg|o 10 —d 0 0| @)
m
’ 001 0 00
where
d is the range measurement of the sensor
y plane is the rotation matrix from the world frame to the calibration plane
frame
o is the rotation matrix from the world frame to the robot wrist
(TCP) frame
poeer is the rotation matrix from the wrist frame to the sensor frame.
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Parameters for the height and orientation of the calibration plane are estimated
when it is assumed that the state vector of the pose parameters consists of a full
set of six DOF pose parameter vectors:

Oe
T =fo 0 -1 -p, p. O (43)
P
where
PP, are pointsin the calibration plane frame.

Both of the equations above include zero columns in the estimation, and these
are removed from the Jacobian matrix, which in general consists of matrices for
the TCP to sensor transformation mg and matrices for the robot base to plane
transformation m,,, asfollows:

a_[a o -
om | dmg  om, (44)

Each measurement in the Jacobian matrix is inserted into equation (44), to give
one line with eight columns. The total Jacobian matrix has a size of Nx8, where
N isthe number of measurements, as follows;

:6e

J,=—
om

(45)

The corrections Am for the sensor and plane transformations can be calculated
using the equation (46):

Am = —(J;TQ‘lJ; + P‘l)_lanTQ‘le (46)

where
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0 is the weight matrix of the measurements, see below
J is the Jacobian matrix described above
P isthe apriori error covariance matrix.

This equation is close to the observer part of the Extended Kalman Filter, or
without the weight matrices and a priori error covariance matrix, close to LSQ
estimation. The weight matrix Q is used to weight the measurements with
respect to their uncertainties. More information on this is given in the next
paragraph. The initial assumption of the error covariance matrix P refersto a
Bayesian form of estimation and can be taken from the previous estimate.

The parameters are updated using the method proposed by Lowe (1985), in
which the correction parameters are not directly added to the initial parameter
values but instead are added using a corresponding correction transformation.
The correction Am in equation (46) includes correction parameters for
trandation and orientation in Euler form (Paul 1983), so that they are converted
into a homogeneous transformation, i.e. AH, = (AV,AT)

Hn+l = HnAH (47)
where
H, is the coordinate transformation of the estimated parameters
before the correction step,
H, 4 is the transformation including the estimated parameters after
correction,
AH is the correction transformation based on the estimated parameter

invariants of LSQ.
The correction transformation AH is calculated in each iteration step.

The parameter estimation procedure has the following steps:
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1. Obtain measurement points from the reference target object,
determine the error function and the parameters to be estimated.

2. Giveinitial values m,,, for the estimated parameters m,, .

init

3. Compute the points(x,, y,,2,) in the reference frame and the
error function e related to these points.

4. Compute the Jacobian matrix J; related to the estimated
parameters.
5. Use Bayesian estimation to compute the correction values Am for

the estimated parameters.

6. Update the values for the estimated parameters with the resulting
correction transformation matrix AH .

7. Repeat steps 3-6 until the correction parameters Am are small
enough.

8. When the correction parameters Am are small enough, the
updated parameters m, may be taken as the resulting estimated
parameters m .

Depending on the noise in the system, the estimation should converge to its
minimum after four to Six iteration steps. In the updating of trandation and
orientation parameters, the trandation parameters are updated first in each round
and the orientation parameters after that. When using the weight matrix, the
measurements with less uncertainties are weighted more than the uncertain ones.
When modelling the noise in the system, the uncertainties from each possible
source are taken into consideration.

The advantage of the method is its relatively simple way of manipulating the
uncertainties in the estimation process. This is due to the fact that uncertainties
are modelled using simple geometric features such as points, so that the weight
matrices and Jacobian matrices do not become too complicated. It would be a
hard task to compose equations for fitting two complicated surfaces, for
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example, without splitting them into simple features. In addition, the iterative
method for parameter estimation also works in cases where the measurements
include noise, which istypical in actual systems.

5.2.2 Work object localization
Parametric surfaces

Before the manufacturing task, the work object is located in a robot working
area and is usually fixed with fastening jigs. The location of the work object is
roughly known, and off-line programmed task measurements are generated
based on that information. For accurate surface treatment tasks, however, e.g.
surface inspection or assembly, the location of the work object has to be known
accurately with respect to the base of the robot. In the case of single objects or
small lot sizes, there is no reason for building up hard jigs to clamp the objects,
and the most flexible solution in such cases is to localize each work object
separately. This gives an accurate transformation for each pose and the overall
accuracy is not disturbed by cumulative errors brought about by using one
localization for all work objects. The work object is localized by measuring it
from different directions depending on its surface form. The idea of localization
is to minimize the distance between the set of measured points and a model of a
reference surface on the work object, Figure 13. An error function is used as a
fitting criterion in this minimization.

The pose of the work object is determined by six parameters:

m,=x v z & @ @ (48)
Asin the case of sensor hand-eye calibration, the measured point is transformed
first from the sensor frame to the TCP frame and then from the TCP frame to the

robot base frame and from the robot base frame to the work object frame, in
which the error function is calcul ated.
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Figure 13. Coordinate transformations in work object localization (Sallinen &
Heikkild 2002).

The error function depends on the surface form of the work object. If the surface
isaplane, it is described with a surface norma » and the direct distance / from
the origin of the work object. The error function can then be written as a dot
product of anormal vector with a point on the surface

e, =np-I (49)
where
n is the surface normal vector of the reference surface,
p is the measured point on the surface,
l is the shortest distance from the reference surface to the origin of
the work object.

The error function in equation (49) is non-linear and is related to the estimated
parameters, which are estimated iteratively by linearizing the error function
around the nominal values of the work object location parameters within each
iteration step. Asin the case of sensor hand-eye calibration, the corrections are
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calculated in each iteration step using linear models for the error function.
Linearization around Am = 0 givesfor the localization of the work object

de _Oe Op
“ 3 A (50)
amWO ap amwa
which can be written further as
5 100 O p -p,
szl o, oyl 10 -p 0 o ()
" 6001 p, -p, O
where
n.n,,n_  aethecomponents of the normal vector of the reference surface,

p., p, and p_ arethe measured point in the work object frame.

The measurements are collected from at least three sides of the work object, so
that the requirements for estimating all six pose parameters are fullfilled. The
measurements compose a Jacobian matrix J;, with each measurement
producing one line. The corrections for the estimated parameters are calculated
using equation (51), as determined previoudly.

The iteration proceeds in the same way as in the calculation of sensor hand-eye
calibration and takes 4-8 steps to converge to the minimum depending on the
condition, e.g. level of noise.

Patched surfaces

Localization of patched surfaces requires a dightly more complicated algorithm.
The principle is the same, fitting of the measured point cloud into the reference
model of the surface. Complicated surfaces are modelled in the present work
using a B-spline surface patch as proposed by Choi (1991). The criterion for
fitting is the shortest distance between the measured point and the closest point
calculated on the surface patch:
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e= pref - pmeas (52)

where
Pres is the reference point on the nominal surface
Dneas is the measured point.

The reference point on the surface is calculated by means of an iterative search
throughout the surface, the distances from 9 reference points being calculated in
each iteration step and the next location being taken to be around the shortest
distance. Thisis repeated up to four times, by which point a satisfactory level of
accuracy is usually achieved, Figure 14.

meas

Figure 14. Search for a reference point on a B-spline surface.

In this case the error function is three dimensional and it produces three lines in
the Jacobian matrix, i.e. errorsin the x, y and z dimensions.
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The partial derivatives of the error function with respect to the parameters to be
estimated can be written as follows:

1 00 O p. ~Dp,

aei ane \[ C, sensor
Sz verao 10 —p 0 p | @
wo O O 1 py _px O
where

p., p, and p_ aremeasured pointsin the work object frame..

The sdection of surface points is more sensitive when localizing patched
surfaces than when using parametric surfaces. Especially when locdizing
surfaces that are close to planar in form, the number of points has to be large,
and there should aso be measurements from other directions. Otherwise severa
problems will arise with convergence.

5.2.3 The robot base-wrist relation

The robot movements are based on a model of the robot, with the different parts
of the model determining how the encoder values of the servos of the joints are
transformed into TCP values for the rabot. The parts between the encoders and
TCP consist of four models (Bernhardt & Albright 1993): an actuator model, a
kinematic model, a deformation model and a target model. The actuator model
determines the mechanical relationship between the motors and joints of the
robot, which affects the errors is reflected in pose deviations. The kinematic
model describes the motion of the robot, and should be accurate in all
configurations and at all velocities. The deformation model characterizes the
compliancein thejoints and links of the robot and takes care of the elasticity and
backlash in the movements of the robot so that the robot model behaves
correctly, including its dynamic properties. The target model specifies the TCP
with respect to the flange of the robot. This relation remains quite stable during
the lifecycle of the robot. The robot model isillustrated in Figure 15.
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Figure 15. The robot model, according to Bernhardt & Albright (1993).

When modelling the spatial uncertainties of a robot system, the background of
noise sources has to be ascertained. The model described above gives a short
overview of what models are involved in controlling a robot system which is
affected by uncertainties that can be observed by the user.

To model the kinematics of arobot system, the relation between the robot base
frame and the wrist of the robot has to be determined somehow. The
transformation from the base of the robot to its TCP consists of joints and links
connected together to form a manipulator arm. To model the kinematics of the
system, a method proposed by Denavit & Hartenberg (in Paul 1983) is used in
this work. This enables the TCP to be calculated using a forward geometry
model of the manipulator arm.

The transformation of a point between two coordinate frames in the robot system
can be written as follows (Paul 1983):

H} =H;"(p) (54)
where
H f isthe target coordinate frame,
H f‘l is the base coordinate frame of the joint coordinate frames,
"p is a vector consisting of the parameters D—H, defining the

relationship between joint i and point m .
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The parameter vector can be written in Denavit—Hartenberg form as follows:

"p=106,a,d,a]" (55)
where
6 isthejoint rotation angle,
a isthetrandation of alinear joint,
d is aconstant linear transformation,
a is aconstant rotational transformation.

The transformation between the robot base frame and the robot TCP frame
consists of severa transformations generated from links in the robot. When
modelling the robot, these links are used to calculate the forward geometry. If
each joint ¢, is written in matrix form with translation and orientation
parameters in Euler angles, ie. =[x y z @ @ ¢]’, the geometry
equations of the one specific robot system can be written as follows:

¢,=[~a, d, 0 -a, 0 -6 (56)
¢,=[-a, 0 0 0 0 -8, (57)
¢.=[-a, 0 0 -a, 0 -6 (58)
$,=[0 d, 0 -a, 0 -6,/ (59)
¢.=[0 0 0 -a, 0 -6 (60)
¢,=[0 0 -d, 0 0 -4 (61)
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where

0. isthejoint rotation angle of i:th joint,

a, is the trandation of i:th linear joint,

d, is the constant linear transformation of i:th link,

a, is the constant rotational transformation of i:th link.

These transformations have been specified for the ABB IRB 1400 industrial
robot used in some tests in this thesis. The matrix equations (56)—61) will
change in form when the kinematics of another robot manipulator is considered.

The transformations decribed above areillustrated in Figure 16 (Sallinen 2001):

1 6 -90
2 0
3 & 90
4 6, -90
5 6g 90
6 b 0

475
0

0
720
0
85

Link Varisble aj(deg) §(mm) dj(mm) Range (deg)

170/-170
70/-70 + 90
701-65

150/-150
115/-115
300/-300

Figure 16. The ABB IRB1400 robot with Denavit-Hartenberg link

representation (Sallinen 2001).
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The TCP vaue of the robot is caculated by transforming the equations (56)—
(61) into a homogeneous transformation matrix and multiplying them.

The geometric model described in equations (56)—61) represents the
transformation from the robot base to the TCP of the robot. This model includes
al the models presented previously, depending on how the parameters
O,a,d,a are defined, i.e. the actuator model, kinematic model, deformation
model and target model. The uncertainties arising from these models are
combined and the resulting uncertainty is close to Gaussian in its distribution.

5.2.4 Work object surfaces
Parametrized surfaces

We present here a means for identifying parametric surface forms and estimating
the location of the surfaces in a coordinate, the surfaces being divided into three
forms: plane, cylinder and sphere. All three forms are suitable for cases where
only sparse data are available. The number of measurement points required for
estimating each parameter model is roughly twice the number of parameters to
be estimated, even in cases where the measurements include a lot of noise. The
main attention in surface modelling is paid to simple, robust representation and
the ability to include the estimation of spatial uncertainties in surface model
parameters. Details and more information can be found in Sallinen & Heikkila
(2001b).

Planar surface

The simplest form of surface is a plane surface. This has three degrees of
freedom, i.e. it is defined using trandation from the origin to the plane and
orientation around two axes, x and y, giving the parameters
Mane = P @, @ |. The surface model parameters can be estimated by a

similar method to that used in hand-eye calibration and work object localization,
LSQ Newton-Rhapson iteration. This means that the pose of the surface is
estimated but it contains a different number of parameters depending on the
form of the surface. Estimation requires an initial assumption for the parameters
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to be estimated, as in the case of hand-eye calibration and work object
localization. In the case of plane surface estimation, the error function is scdar,
i.e. the shortest distance between the plane surface and the measured point:

e=-p, (62)

where
D. is z-coordinate of the point in the plane frame.

When estimating the parameters of the surface model, the measured point is
transformed from the measurement point frame, i.e. sensor frame, to the
estimated surface frame and the error function is calculated in that frame. Thisis
done in the case of a Reverse-Engineering approach, whereas in the other case,
points are estimated directly in the work object frame, not by transforming them
from the sensor frame. The coordinate frame of the plane surface is located on a
surface of the plane, but the position is not determined. Transformation requires
a knowledge of the hand-eye transformation and the robot base to TCP
transformation as well as of the location of the work object. If the points are
measured locally using points digitized from a CAD model, transformations of
this kind do not need to be carried out, but instead the surface can be estimated
inaloca surface frame.

The Jacobian matrix for a plane surface is calculated from the error function
with respect to the estimated parameters, equation (63):

de
=|-1 -
o, [ p, Px] (63)
where
PP, are the measured point values in the workobject frame

Mome =| . @ @], estimated parameters.

The parametrization of a plane surfaceisillustrated in Figure 17.
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Plane frame

0

y

surface 2
world D

World frame

Figure 17. A plane surface described using three parameters (Sallinen &
Heikkild 2001b).

Cylinderical surface

The second form of parametric surface is a cylinderical one. The parameters of
the model are estimated from a set of points distributed in the form of a cylinder
or part of such aform. A priori information on the parameters to be estimated
has to exist before estimation can be carried out. The cylinder surface is
described using the position of the centre of the cylinder, the orientation of its
centre line and its radius m,, = lpx p, @ @ rJ. The coordinate frame

is located in the middle of the cylinder and the height is set to an arbitrary value
(Sallinen & Heikkila 2001b).

The error function used to minimize the distance between the set of measured
points and the reference model is asfollows:

e=yp2+p>-r (64)

where
yy are the measured points in the cylinder frame,
r isthe estimated radius of the cylinder.
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The partia derivatives for the estimation of the surface model parameters are
constituted as follows:

de 1
pr-m p,p. ~ DD nmﬁmﬂ (65)

Om,, [p?+p?

where

p.»p,,p. aethemeasured pointsin the cylinder frame

my=[p. p, @ @ r]aeestimated parametersfor the cylinder pose.

As can be seen, the radius of the cylinder is estimated simultaneoudy with other

parameters. The parametrization of the cylinder surface is illustrated in Figure
18.

Cylinder frame

X,y
surface
world

World frame

Figure 18. A cylindrical surface with estimated parameters
(Sallinen & Heikkild 2001b).

Spherical surface

Mode parameters for a spherical surface can be generated from a point cloud in
which the points are approximately in a spherical form. As in the previous
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forms, a set of measured points are transformed from the sensor frame to the
surface frame. The spherica surface is determined using the vector

Misphere =[ P Py, P r] , Where 7 istheradius of the sphereand p,,p,,p.

are its centre points. The surface model is generated by an iterative process. The
error function for estimating the surface model parameters of a sphere is as
follows:

e=\p>+p’+p’-r (66)

where
p.»p,,p. aethemeasured pointsin the surface frame.

The partial derivatives for the estimation of the surface model parameters are as
in equation (67):

(67)

ae = 1 2 2 2
msphere P, + py + D,
where
P p,,p. ae the measured pointsin the surface frame
My =| P. P, p. 7| aetheestimated parameters.

As in the case of the estimation of cylinder model parameters, the radius of the
sphere is also estimated. The parametrization of a spherical surfaceisillustrated
in Figure 19. The pose of the sphere includes only the position of its centre point
and its radius, so that no orientation is described.
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Sphere frame

X0,z

surface
world

World frame

Figure 19. A spherical surface with estimated parameters
(Sallinen & Heikkild 2001b).

Free-form surfaces
B-spline surfaces using tensor products

The patched surfaces considered in this thesis are modelled using B-splines. The
parametric forms illustrated were generated on the basis of estimated surface
parameters, and patched surfaces by measuring a set of points on the surface of
the work object using a robot and generating or selecting a patch to represent the
surface. The size of patch will be selected by reference to the size of the whole
surface and its gradients. The whole surface will be taken to consist of small
local surface patches, i.e. the surface will be determined in terms of a grid of B-
splines which describe its properties. The bicubic uniform B-spline patch
r(u,v) isexpressed as atensor product in equation 68, as given by Choi (1991):

r,v) =YD N )N W)V, (69)

i=0 j=0

where

109



Nou)=1-3u+3u’-u®)/6 (69)

N (u) = (4-6u®*-3u’)/6 (70)
N3(u) =(+3u+3u’-3u®)/6 (71)
N3 = Zu' 7

And the B-spline surface patch defined by 16 control vertices and expressed in
matrix form, equation (73):

r(u,v) =UNBN'V’ (73)

where

(74)
VZ[l v v vs]
1 4 1 0
_1/-3 0 3 0
"6/3 -6 3 0 (79)
-1 3 -31

The control vertices V,,, to V,, are 3D points which define the surface patch.
They form a control point net which can be evenly or non-evenly distributed and
of a density that depends on the accuracy requirements. The size of the control
net can vary depending on the accuracy requirements and the a priori
information. A 4x4 sizeis used for work object localization as presented here.

The localizations of work objects with patched surfaces were calculated by
Gunnarsson and Prinz (1987) using point to plane fitting, but this did not
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produce such an accurate result as point-to-point fitting. The authors assumed
the patched surface to consist of local plane surfaces, which can sometimes a
very rough assumption, especially when the surface is changing rapidly. Point-
to-point fitting operates well when the surface has large gradients. The novelty
of the method presented here relative to that of Gunnarsson & Prinz is that it
considers spatial uncertaintiesin the measuring system.

5.3 Modelling and estimating the spatial uncertainties in
arobot system

When modelling the spatial uncertainties using stochastic models and a
Bayesian-form noise distribution, some initiad remarks should be made. One
concerns the consistency of the system model and the validity of the set of
samples for measurement. If these settings are not valid, eg. the model
parameters differ from the actualy estimated ones, the estimates may biased.
Thisisacommon problem in noisy systems and attempts are made here to avoid
this by planning the optimal measurements and weighted estimation.

5.3.1 Modelling and transforming spatial uncertainties

The definition of a homogeneous transformation between the joints and links of
arobot is presented in previously in this chapter. When modelling noise in this
thesis, errors are considered only for joint rotations &, and this error can be
transformed into the coordinate systems of another link have the errors in the
other link added to it etc. with the help of the other D-H parameters of the joint.
Thus a formalization is needed for this transformation and accumulation of
uncertainties.

Three means of modelling the spatial uncertainties between two coordinate
frames are presented in the following, in each in which the spatial uncertainty is
modelled as zero mean Gaussian-distributed noise, as first introduced by
Jarviluoma & Heikkila (1994). The different forms of uncertainties are
designated hereas A, B and C and may beillustrated as follows:
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A: The uncertain transformation is an additional transformation after the
nominal one.

The spatia uncertainties are followed by a nominal transformation. Thisformis
used when the nominal transformation is constant or very close to constant and

the uncertainty appears after that transformation. The transformation can be
written in matrix form as:

H(m)H (J) (76)
where
H(m) is the nomina transformation, including translation and
orientation parameters
H(J) is the uncertainty transformation
m is the nominal parameter vector
o) IS azero mean random pose parameter vector

B: The uncertain transformation is an additional transformation before the
nominal one

The gpatial uncertainty occurs before the nominal transformation. This form is
used when the error source for the transformation is close to the origin of the
coordinate frame. It can be written in matrix form as:

H(0)H (m) (77)
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C: The uncertain transformation is added directly to the parameters, and the
orientations are expressed in the base coordinate frame before the nominal
transformation

Here the uncertain transformation is included in the whole transformation and
can be expressed in matrix form as:

H(m +3) (78)

The form of presentation for spatial uncertainties also depends on the method
used for estimating these. When using an Extended Kaman filter—type
estimator, the results of uncertainties are given in form A or B depending on the
initial assumptions. An example of the use of forms A and B is given in the work
of Durrant-Whyte (1988). Generating a large number of samples by adding noise
to nominal transformations gives form C uncertainties, a typica example of
which is Monte Carlo smulation. Form C has aso been used by Smith and
Cheeseman (1986). Different forms of presenting a transformation with spatial
uncertainties are illustrated in Figure 20 below.

ST

Figure 20. Forms of spatial uncertainty, modified from Jarviluoma & Heikkild
(1994).
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The spatial uncertainties in a robot workcell are presented in several coordinate
frames, and to be able to evaluate the uncertainties of the whole system in one
frame, they have to be propagated into a one compound coordinate frame. This
requires the combination of uncertainties from different coordinate frames,
which is done by transforming them from one form to another and combining
the local uncertainties. The procedure is carried out here by transforming the
uncertainties between different forms (A, B and C) so that they are represented
in the same form in the coordinate frame in which they are summed together.
The transformations between forms can be written as follows:

H(6)H (m)= H(m)H(5) (A->B) (79)
H(m)H(5")= H(6)H(m) (B->A) (80)
H(m+08)=H(m)H(3) (A->C) (81)
H(m)H(3")=H(m+3J) (C->A) (82)

where

m isthe vector of the pose parameters,

0 represents the uncertainties attached to the pose parameters,

o' represents the transformed uncertainties attatched to the pose

parameters.

These equations are obtained by deriving the transformations from one to
another, e.g. A to B, A to C and C to A. As the transformations are non-linear,
linearization is performed at J =0. Let P be the covariance of a known
coordinate frame in one of the three forms. The covariance P' in some other
form then becomes:

P=Jrprr (83)
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where

Jr =g—6 is the Jacobian matrix between the forms, computed at 0 =0 from

equations (61)—64).

The transformations between the forms of uncertainties and the errors caused by
the linearization are verified by Jarviluoma & Heikkila (1994) using Monte
Carlo simulation. According to the test examples, the differences between
transformation and Monte Carlo simulation were quite small, athough
transformation errors close to the singular point (¢ =71/ 2+ n7) increased due
to linearization. Jarviluoma & Heikkila (1994) studied only the diagonal terms
of the error covariance matrix, which introduces uncertainties in the direction of
the coordinate axis of the coordinate frame.

5.3.2 Propagating the uncertainties into the TCP frame

To combine the uncertainties arising from the joints of the robot, the noises in
each joint have to be propagated into one frame. The noises are modelled in the
form C, which is based on the principle of measuring the noises from the actual
system by carrying out repeated tests. The uncertainty in each coordinate frame
is represented using a 6x6 pose error covariance matrix, as follows:

0O --- 0
Pe=:t : (84)
0 Nog
where
e isthe first standard deviation of joint i.

l

The noise in each joint is defined using pose error covariance, which means a
total number of six coordinate frames with uncertainties in the form C. These
uncertainties are combined by first transforming the consecutive transformations
in form C to forms A and B, so that they represent the uncertainties in the same
frame and the covariances can be summed together:
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P=P+P, (85)

where
i and j denote respective points.

The procedure is continued by transforming consecutive transformations into
same coordinate frame and summing them together. Finally a situation in which
al the uncertainty transformations are in one coordinate frame is achieved, and
the outcome represents the transformation from the base of the robot to the TCP
of the robot in form A. Due to the geometric properties of the coordinate
transformations, the transformation from form A to form B is equa to the
inverse of the transformation from form B to form A.

J s =I5 (86)
where
J 15 is the Jacobian matrix for transformation A -> B, equation (77),
I 54 is the Jacobian matrix for transformation B -> A, equation (78).

Point uncertainty in a coordinate frame
There are several needs for evaluating the uncertainties of particular featuresin a
coordinate frame. The feature considered here is a point which can be
determined or measured almost anywhere around the work object. Consideration
of the uncertainties attached to this point provides several advantages:

* Theerror covariance matrix includes values with only one unit

e Therepresentation of a point is understandable

e Computation of the uncertainties is quite straightforward.
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The motivation for using the same units in the error covariance matrix is strong.
Almost in every case of estimation, uncertainties attached to different parameters
are mixed together, the geometric interpretation for this being that the
uncertainty ellipsoid has been rotated. If the uncertainty ellipsoid includes
parameters with severa units, computation of the uncertainties will not
necessary give the correct result. This is because the parameters of the error
covariance matrix have cross-relations with each other and the different units
have different scales, which disturbs the result. By considering the uncertainties
attached to a point in terms of the same units should enable reliable uncertainties
to be achieved.

Representation of a point is quite easy to illustrate compared with an error
covariance matrix with six degrees of freedom, and can be presented in a normal
3D space. The third advantage means that if the uncertainty of a coordinate
frame is known, the uncertainty of any point in that frame can be calculated as
follows:

— T
P, =J,PJ! (87)
where
P, is the covariance matrix of the coordinate frame
» =g—p is the 3x6 Jacobian matrix of the known point p evauated
m

around m =0.

The Jacobian matrix J , for the estimation of the uncertainties of a point in a
coordinate frame can be written as follows:

100 0 p -p
op _

L=010-p 0 p (89)
"loo1 p -p O

where

p.,p,,p. aethecoordinates of the point inthe nomina coordinate frame.
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5.3.3 Uncertainties in hand-eye calibration

To verify the goodness of hand-eye calibration, the uncertainties in the
homogenous transformation from the TCP of the robot to the coordinate origin
of the sensor must be determined. The uncertainties that affect this
transformation come from the joint of the robot and the resolution of the sensor.
In the following chapters, methods for modelling the spatial uncertainties using
Bayesian form modelling is applied into hand-eye calibration, work object
localization and estimation of surface model parameters.

When composing the weight matrix for simultaneous hand-eye calibration and
pose estimation of a calibration plane, the input parameters for the system have
to be considered. The weight matrices are calculated by linearizing the estimated
parameter values around the nominal values. The input measurements for the
system includes m, = []{ Jy o Ja o Ja o Jjioje d"], i.e. the joint values
and a sensor range for i:th pose, cf. Figure 16. When calculating the weight
matrices, the TCP of the robot is calculated using the forward geometrics
proposed in the previous chapter and then the input values are presented in a
Cartesian frame, namely m;,m = [x y z ¢ @ @ d]. The noise

matrix R consists of various measurements in Cartesian space, set as diagona
values to the noise matrix, including both robot TCP and sensor range values.
These noise values are propagated based on noisesin the joints in each pose.

R = RTCP O

range

Each measurement produces a 7x7 matrix R, and the total noise matrix has a
size of i*(7x7), wherei isthe number of measurement samples.

Weight matrices for the measurements (measurements = values of the error
function e of the measured samples) are derived from the original TCP pose and
the range measurements by linearization around the nominal values for the
estimated parameters. The Jacobian matrix which is here referred as K for the
measurements is seen to be
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K = % _ de de 90
" 0h \Oh,, Oh (%0)

and the robot pose parameters, i.e. de/0h,, , can be written as

Oe Op
K. =—° "t
« Op, Ohycp &

and further, on the first derivative of the weight matrix J;; when the error

functioniSeplanez[O 0 :I]pp,intheformofequation(36).

k,=—=[0 0 1 (92)

the partial derivative K,

5 1 00 O p. D,
K=o r=rfvgo 10 -p 0 p | @
rer 601 p -p. O

where

p.p,,p. ae the pointsin the TCP frame.

The input parameters for trandation and orientation of the robot TCP pose are
Rrep =[x y z @ @, qlzj and the respective value for the sensor

measurement range /..., 1S d. The partial derivative matrix K for a sensor

sensor

parameter, i.e. de/0h,,,,. ,issimply
0
KS(:’V[SU" = VS 0 (94)
1
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This is included in the uncertainties of sensor hand-eye calibration. The
covariance matrix for the estimated state vector is obtained by multiplying the
Jacobian natrix J, by the weight matrix of the input parameters. Let R be this
noise matrix, i.e. the weight matrix Q of the input parameters.

The weight matrix Q for the measurements K, isthen
T
O=K,RK, (95)
whichisfinaly used in the estimator, equation (46).

The eye-in-hand calibration agorithm was implemented and convergence was
tested by ssimulations with a varying number of measured points. The number of
iterations needed was typically found to vary in the range 10-12, depending on
the variability in the data and the initial values chosen.

5.3.4 Uncertainties in work object localization

Estimation of the spatial uncertaintiesin the location of a work object is the next
phase after hand-eye calibration. When localizing the work object using a hand-
eye calibrated sensor, the uncertainties of the calibration have to be taken into
consideration. These are added to the joint noises and range measuring noise. As
in the case of sensor hand-eye calibration, the noise in the robot joints is
propagated into the TCP noise in a Cartesian frame.

The noise matrices for the work object localization include the noise arising
from the joint of the manipulator, the noise of the sensor measurement and
sensor hand-eye calibration, i.e. the uncertainty in the transformation from the
TCP to the origin of the sensor. The noises from these sources are placed in a
block diagonal matrix similar to that used in the case of sensor hand-eye
calibration:
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RTCP 0 0
R= 0 R 0 (96)

range

0 0 R

hand —eye

Each measurement produces 13x13 matrices, and the total size of the matrix is
i*13x13, wherei isthe number of measurement points.

The partial derivative of the error function with respect to the input parametersis
used to calculate the weight matrices:

OJe _0Oe Op
~ 3 A (97)
om, Op Om,,
where
m,, aretheinput values in Cartesian form, i.e.

m;, = [(T repVrcr ) ' anges (Thand—eye Vnand-eve )] input

parameters.

The partia derivative K rcprange Of the error function e = n.p —1 with respect
to the pose parametersis as follows:

3 100 0 p. -p, 0
szl o, wfm)vijo 10 -p 0 pLvglo (98)
M1cp range 00 1 P Do 0 1

where

D, is the measured point in the TCP coordinate frame,
n.n,,n, are components of the reference surface normal vector,
V is the rotation matrix.
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In addition, there are uncertainties coming from the sensor hand-eye calibration
that also have to be considered. The partia derivative K hana-eve for this can be
written asfollows:

100 O p. D,

szl o, albzfvzeelo 1o —p 0 p | )
mhand—eye 0 0 1 p,v -p, 0
where
p is the measured point in the wrist frame.

The weight matrix Q is calculated using the equation (93).

5.3.5 Uncertainties in surface models

The uncertainties in the work object surface parameters may also need to be
taken into consideration when modelling the spatia uncertainties in a robot
workcell. There are many cases in which there is no CAD model available of the
work objects to be localized. In those cases the surface parameters have to be
estimated in order to obtain a CAD model and verify its accuracy. Applications
in which very high accuracy is needed, e.g. surface inspection or assembly, have
to take the spatia uncertainties between the object inspected or assembled and
the target object into consideration.

Uncertainties can appear in surface models from different sources. When a
surface model is generated from a CAD model, the accuracy of the latter
determines the uncertainties of the surface, but even if a CAD mode is
available, the manufacturing accuracy of the actual surface increases the surface
inaccuracies and the result differs from the CAD model. The Reverse
Engineering approach, in which surface models are generated from the actual
surface, means that uncertainties arise from the accuracy of the measuring
system. Such systems are usualy highly non-linear, but their uncertainties have
somehow to be propagated into single point uncertainties, which are used to
estimate surface uncertainties. When surface model parameters are estimated
from a set of points, the number of points affects these uncertainties. As in the
previous estimation cases, the level of uncertainties can be reduced in most cases
by increasing the number of measurement points.
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Uncertainties in surface models affect the accuracy of work object localization,
as has been shown by Sallinen and Heikkila (2001). Not least for this reason,
levels of uncertainty in surface models should be kept low. If the noise level of
surface uncertainties is relatively high, the uncertainty of work object
localization will increase dramatically.

Parametric surfaces

Equations for estimating the spatial uncertainties attached to surface parameters
are presented in the following subchapters. The noise introduced into the
estimation is modelled as the noise attached to the measured points. Depending
on the form of the particular surface, the points are distributed in a manner of a
plane, cylinder or sphere.

Planar surface

Estimation of the spatial uncertainties in planar model parameters is based on
modelling the noise of the input parameters of the system and first propagating
the uncertainties and then combining them into one uncertainty matrix. The

weight matrix K includes partia derivatives of the error function e with
respect to themeasured parameters m , equation (82).

ae wor 9
a_ = [O O ]']Vp/unfzd V}io[:’ld (100)
mP

where
m,=[p. p, p.],includesthe position of the measured point in TCP frame

e isthe error function, e = p_

V world

lane is the rotation matrix from the world frame to the plane frame

v, is the rotation matrix from the TCP frame to the world frame.
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When estimating model parameters and spatia uncertainties for the various
surface forms, the noise matrix R, must also be considered. Here the input
parameters for estimation are the uncertainties attached to a point, so that the
size of each R, will be 3x3. The total noise matrix will consist of a number of
R, matrices equal to the number of points used in estimation.

Cylindrical surface

The weight matrix K for estimating uncertainies in the model parameters for a
cylindrical surfaceis a partial derivative of the error function with respect to the
measured parameters:

ae wor (¢
om_ = [dx dy O]chz Vi (101)
mp
where
dx 2? is a partial derivative of the error function with respect to
X
parameter x
dy :% is a partial derivative of the error function with respect to
Y
parameter y
e=.\pZ+pl-r is the error function for the estimation of cylindrical

model parameters.
Spherical surface
The weight matrix K for estimating the uncertainty in spherical surface model

parameters is calculated from the error function respective to the measured
parameters.
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ae - robot 1 r tc;
67 - [dx dy dZ] I/cyl I/rul])]ut (102)

p

where
x =% is a partia derivative of the error function with respect to the
X
parameter x
dy :% is a partial derivative of the error function with respect to the
Y
parameter y
7 2? is a partial derivative of the error function with respect to the
Z
parameter z

e=.pZ+pi+p?—r  istheerror function for the estimation of spherical
model parameters

Patched surfaces

The uncertainties in surface patches are modelled using the uncertainties
attached to a single point, but unlike parametric models, uncertainties are not
estimated iteratively when modelling the surface itself. Instead, they are
considered when the work object with a B-spline surface is localized, by
including the surface uncertaintiesin the combined uncertainties of the system.

Figure 21 shows a 2D B-spline curve determined using three points. Each point
has a nominal value and an uncertainty, which is illustrated as an ellipsoid
around it. The forms of the ellipsoids are determined based on the uncertainties
in the points. The orientation and area of an uncertainty ellipsoid depends on the
input uncertainties of the system.
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Figure 21. A 2D spline curve determined using three points and their
uncertainties.

According to this assumption, each point on the B-spline curve in the coordinate
frame can be determined as a nominal point with Gaussian-distributed zero mean
noise, asfollows:

pL=pitopy (103)
P2 =p; tp, (104)
Ps = Pps * s (105)

where

)24 is the nominal value of a point

v, isthe uncertainty of each point around its nominal value.

The density of a B-spline surface patch has to be selected depending on its
accuracy requirements. By increasing the number of points determining the
surface, the uncertainty of the surface will be reduced. These methods have been
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developed for a sparse set of points, however, and it is assumed that they do not
have to be selected too close to each other. Expanding this principle to the 3D
case, each point requires 3D uncertainty, describing its spatial uncertainty. An
uncertain surface patch can be illustrated in terms of Figure 22, in which thereis
a nomina transformation with a nomina surface and an uncertain
transformation with an uncertain surface:

workobject nominal
frame

workobject frame
with surface uncertainties

World frame

Figure 22. Coordinate frames in the B-spline surface model.

Estimation of spatial uncertainties in a B-spline surface patch
The method presented here assumes that uncertainties in the measurement

process are stochastic, i.e. they have a noise value in each pose that is
approached. To model robot uncertainty in different poses, a joint-based noise
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model is used which is based on Denavit-Hartenberg notation, setting the noise
for each joint and propagating these into pose 6 DOF uncertainties as decribed in
the previous chapter. These pose values are used to estimate the remaining
uncertainty for hand-eye calibration of the sensor. In the same way, the pose
uncertainty is combined with work object pose estimation and surface treatment.

In the estimation of spatial uncertainties for estimated parameters, it is possible
to calculate partial derivatives for the input parameters by defining the weight
matrix Q. Again, let K be a block diagonal matrix in which blocks x’s are
partial derivatives of the error . with respect to the errors m, that affect the
measuring. Each block Ki,...,Ky includes a partia derivative of one
measurement and a partial derivative of the sensor tool correction. In the
diagonal block, one K, represents one block and contains these partial
derivatives. The error derivative of e with respect to the measuring errors of the
measured values m, becomes:

Oe, _ Oe, Op

m

om, - op;" Om,

(106)

An error function for computation of a weight matrix can be obtained by
localizing the patched surface, i.e. e =p, . — p, and the measured point with

respect to the measured values for pose of the robot
(m,, = [x y z ¢ @ @ rJ, where the first six are pose parameter
values and r» is the sensor distance value) and the uncertainty of the points
(m,, =[px Py pz])-

The error derivative for spline surface uncertainties can be taken into
consideration based on point uncertainties in the spline path using the equation
105.

Oe, T
[ Vglane V.tcp
ame'p ( robot ) robot (107)
y e i are rotation matrices with respect to the coordinate

transformations.
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In addition to the surface uncertainties, the combined error derivative for the
robot and sensor uncertaintiesis, using the equation 106:

1 00 O p. ~—D, ]
3 0
ei —_ ane 7 C, sensor
am - (I/iflljot ) Vri)got O 1 O - p z O p X I/tcp O (108)
e,s 1
001 p -p 0
where
Viw " is rotation matrix from tcp to sensor frame
p., p,and p, are pointsin the TCP coordinate frame.
In the case of work object localization, the estimated parameters m,, , are
m, ., = [x y z ¢ ¢ (pz]. The form of the error derivative is similar
to that of equation (96), and the error derivative can be written as
1 00 O p. ~D, ]
5 0
=) vz o 10 —p. 0 p vlo|| (a09)
e,wo 1
001 p, -p. O
where

Vome v Ver”  are rotation matrices with respect to the coordinate
transformations,

P D, and p, are pointsin the TCP frame.

To model the noise in the Bayesian system, R is set as a block diagonal matrix
in which Ri1,...,Rx~ include the covariance matrices of the different spatial
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uncertainty sources in the measuring system. R, includes the variances of the
robot pose parameters and the variances of the measured point coordinates
together with the sensor covariance matrix. In the case of work object
localization, R, also includes the error covariance matrix of sensor calibration.
The whole noise matrix R is formed by setting the R, matrices in the diagonal
block of the matrix R as many times as there are measurements in the
measurement data. For a different point, there are different uncertainties in robot
uncertainty due to the robot pose uncertainty calculation.

Covariance matrices O for the noise of the error K, can be calculated using
eguation (93), presented in the previous chapter, i.e. multiplication of the noise
matrix by the weight matrix.

5.3.6 Combining estimates and uncertainties from different
measurements

Fusion using the Fisher Method

The Fisher method is used for fusing the measurements and their respective
uncertainties in the present work. The requirement for sensor fusion arises from
the flexibility and computational limits of the current system. When using a laser
rangefinder with a laser stripe, one measurement produces a large number of
measurement points. To use al the measurements effectively, information
obtained from all the points has to be used. Because computation of the Jacobian
and weight matrices for several thousands of points at one time is too laborious a
task, the measurement data can be divided into severa sets and estimation can
be carried out in several steps. In addition, the system is easy to expand to
include new sensors providing information about the environment.

The Fisher method has been used for local estimation purposes by Luo and Lin
(1988), together with a Bayesian model for global estimation, see Figure 23:
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Figure 23. Functional block diagram of multi-sensor fusion, after Luo & Lin
(1988).

The difference between the Fisher model and Bayesian modelling, however, is
that Bayesian modelling uses initial information for weighting the estimation
(the a posteriori error covariance matrix P ). This gives an initial direction for
the uncertainties, which are usuadly quite close to the initial value when
considering the same system. Luo and Lin use the a posteriori error covariance
obtained from Fisher estimation in Bayesian estimation, which alows more
reliable results to be obtained, as Fisher estimation filters out most of the noise
in the system and Bayesian estimation can use fairly reliable information.

First, the set of measurement data is divided into smaller amounts, of a size that
can be computed at one time. The data for each estimation have to be selected
carefully, as they have to be versatile enough to allow the parameters for
coordinate transformation to be chosen. This may be a problem when estimating
a full transformation with 6 DOF and using information on single points in a
sensor frame. Even if the point information in the sensor frame includes location
in 2D (y,z values, where y is the width of the point in the laser stripe and z the
distance value), the estimate can very easily become biased. Using the parameter
estimation methods presented in previous chapters, an estimate and its respective
error covariance matrix can be calculated, and this procedure is repeated until all
the measurements have been used for computing local estimates. After that
fusion phase follows in which the previously calculated sub-results are
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combined. The estimates from two measurements can be combined using the
following equation:

m= PtotPc_lmestimate,c + BBt caMesimate.c1 (110)
where
P, is the combined covariance of the new measurement and previous
covariance
P is the covariance of the current step
P, is the total uncertainty from the previous iteration step

are the estimates for the parameters

mestimate,c

m are the estimates for the parameters from the previous iteration

step.

estimate ,c=1

The combined covariance P, can be calculated by combining the error
covariances of the current parameters and the error covariance matrix of the total
uncertainties for all the previous measurements:

P =(P*'+ Po_,l,c-l)_l (112)

tot c 1

When fusing state parameters and uncertainties from different sensors, one has
to be very careful with the forms of spatiad representation (A, B or C). Error
covariancesthat are to be combined have to be in the same form.

A recursive algorithm for fusing measurements and uncertainties
Given equations can be written in the form of a recursive algorithm in which the

different steps are explained. This can mainly be divided into two phases,
estimation of parameters and their uncertainties and fusion of the estimates and
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their uncertainties. The parameter estimation is similar to that presented in the
previous chapter. The recursive algorithm works as follows:

1 Set the initial value for parameters mg to be estimated and their
covariance P_; .

2 Take every n:ith point from each measurement pose, in such way
that the matrices in the calculation will not become too small or too
large.

3 Calculate the correction Am for the estimated parameters.
4 Update the estimated parameters m using the correction Am .

5 If the corrections Am are close enough to zero, go to the next
phase, otherwise go to step 3.

6 The estimates for the parameters are now in the vector m;.
Calculate the covariance matrix P..

7 Reiterate steps 1-6 until all the data have been processed. There
should then be n values for the estimates m, and n values for the
respective covariances P..

8 Calculate the total covariance P, using equation (109) and the

respective estimates. Continue calculation until all the estimates and

covariances have been processed.

9 Theresulting P, and estimates m are the error covariance matrix
and estimates for the estimated parameters.

The final estimate m and respective covariance P,, can be upgraded by using
them as the previous estimate m _, and covariance F,, ., and fusing them
with new data. When combining new data with the estimates, one nevertheless
has to be careful not to include very biased data, especiadly with low-level
uncertainties attached, because this will have quite a large effect on the final
estimate.

estimate
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5.4 Planning of the measurements

This paragraph presents a new synthesis method for sensing planning based on
minimization of an a posteriori error covariance matrix and eigenvalues in it.
This latter consists of a multiplication of the Jacobian matrix by the weight
matrix, and minimization means here a manipulation of the terms in the Jacobian
and weight matrices to achieve a low level of spatid uncertainties. The
minimization of error covariance matrix and effect of signal-to-noise ratio is
illustrated in simulations, where the location of the measurement points in the
surface of the workobject effects to the pose uncertainties. The Jacobian and
weight matrices may belong to any phase of the calibration of the robot system,
and planning is carried out for each phase separately. The planning agorithm
presented here is based on methods for modelling spatial uncertainties put
forward in thisthesis, and relies on interpretation of the error covariance matrix.

5.4.1 Error covariance matrix and SNR

A novel method for sensing planning is presented here based on a posteriori
uncertainties in the estimated parameters. The methods for estimating the spatial
uncertainties presented in this thesis form the groundwork for using the error
covariance matrix as a criterion for sensing planning and as a basis for
evaluating and modelling spatial uncertainties in a robot system. The existing
methods for using a posteriori error covariance matrices as evaluation criteria are
suitable for many cases, but they have following shortcomings. Borghi &
Caglioti (1998) used the method only in a 2D case and based it on the
calculation of range distances between a robot and a surface. This kind of
criteria formation is not possible in hand-eye calibration, for instance, because
the solution space is more complicated. Nilsson & Nygards (1996) also used
geometric distances and the respective uncertainties as criteria for sensing
planning. These methods were designed for mobile robots and are more suitable
for purposes in which there are usually 3 degrees of freedom and the
minimization criteria can be composed based on simple geometric features of the
environment.

The planning is focused on selecting reference features from the measurement
pose. The poses itself is assumed to be given, and optimization considers the
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features that will be measured. The goal is to minimize the uncertainties in an
estimated pose and the selection of measurements that especialy affect the
rotation uncertainties is considered. As will be illustrated later, the estimation of
translation parameters is not so sensitive to quality of measurements as the
estimation of the orientation parameters of the pose. Here the minimization and
maximization of matrices means selecting of values for parameters in matrix
rows and columns. The goal of the selection is to achieve low level of
uncertainties in terms of eigenvalues of the error covariance matrix. To ssmplify
the evaluation of uncertainty criterias, multiplication and sum of all eigenvalues
isused which isillustrated in simulations further in this chapter.

Computation of the covariance

The method presented here is based on minimizing the a posteriori error
covariance matrix of the estimated parameters when using Bayesian-form
modelling of the spatia uncertainties. This means that the sensor has to be
placed in such poses that the noise in the estimated parameters will be
minimized. In addition to noise, there are a lot of unmodelled error sources
which cannot be adjusted. When using Bayesian-form estimation with weight
matrices, the a posteriori error covariance matrix is used as a minimization
criterion for planning the set of samples.

The following error sources have to be considered in the minimization of the
gpatial uncertainties in the system, depending on the task: noise in the joints,
noise in the sensor, hand-eye calibration of the sensor, work object locaization,
surface uncertainty and point uncertainty. When generating the set of samples,
i.e. when cdculating the matrix P, these error sources are taken into
consideration in matrices J and Q eguation (110).

The error covariance matrix P of the estimated parameters can be calculated as
follows:

P=J"0'N* (112)

where
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J is the Jacobian matrix for estimating the model parameters
0 is the weight matrix of the measurements.

The error covariance matrix P consists of the product of the Jacobian matrix J
and the weight matrix Q. According to equation (110), the minimization leads
to a situation in which J has to be maximized and ( has to be minimized.
These matrices share the same parameters, however, so that minimization of P
is not so straightforward. It may be carried out in two ways: by measuring
optimal points for localization, i.e. each row in the Jacobian matrix will give a
large amount of information and there are only afew rows, or else the number of
rows in the Jacobian matrix can be increased but each row will give only alittle
information.

The control parameters of the sensing planning system presented here are
parameters of the Jacobian matrix J and weight matrix Q. These may include
(x,y,2) point values of the calibration plate frame in hand-eye calibration, the
range of measurement in the sensor frame, point values on the work object
surface or the orientation of the TCP of the robot, for example. In the ssimple
examples of planning measurements for line estimation and work object
localization later in this section, matrices for control parameters areillustrated.

Signal-to-noise ratio

Each measurement includes a measurement point p with noise 0 p . This point
is measured in the sensor frame and may be transformed into the world or work
object frame using a known geometrical transformation with spatial uncertainty.
The noise is assumed here to be constant in the parameter space, and the goal is
to achieve a high signal-to-noise ratio.

When estimating the pose parameters of the line or the work object, assuming
that the noise is constant in the working space, the aim isto obtain alarge signal.
The signal is here determined as a distance between the parameters of two
sequentia lines in Jacobian matrix in the case of maximizing J and two
sequential lines of partial derivative measurement matrix K when minimizing
weight matrix Q. Noise in the signa is noise of the system, i.e. matrix R . SNR
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is not used here as a direct cost function for selecting of control points, instead,
as a ground for maximizing the Jacobian and minimizing the weight matrix
when the noise of the system is known. The simulations for dependence between
distance of points and uncertainties areillustrated in later in this chapter.

Computation of the criteria

The principle of the sensing planning method is illustrated as ssimple example.
Thelineis descibed in coordinate frame in Figure 24 below:

cy

CX

Figure 24. Estimation of the location of a line in a coordinate frame.

Estimation of alinein (XY) space using two points p, and p, isillustrated in
Figure 24. The solution space is constrained using two parameters in X and Y
direction, ¢, and ¢, suchthat 0< p, <c, and O0< p <c . Theobjectiveis
to localize aline such that the pose uncertainties will be minimized. The pose of
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a line is described using the orientation between x-axis and a line and shortest
distance fromthe origin, i.e.

my,, =la d] (113)
where
a isaangle between x-axisand aline
d isashortest distance between aline and an origin.

The error function is a shortest distance of a point from the line,

T [— xsina + ycosa — d] (114)

where
X,y are the coordinates of a measurement point

When planning the set of measurements, the parameters to be estimated have to
be considered first. The partial derivatives of the error function with respect to
the estimated parameters comprise the parameters that affect the spatial
uncertainties of the estimated parameters. The error function is the same as that
used in parameter estimation, e.g. estimation of the pose of the work object.
Estimation of rotation parameters requires at least a pair of points, which leads
to a Situation in which the distance between these points is maximized in order
to achieve a high SNR and this is formulated as a max problem. Based on these
parameters, the set of samples will be generated by selecting the maximum
values of the composed parameters, taking into consideration the constraints of
the parameter space. Thus the equation for generating a set of samples based on
aJacobian matrix can be written as follows:

_ { ae }max:cz
Y, =max{— (115)

m min=cl
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where

e isthe error function

m are the estimated parameters

c, isthe upper congtraint value of the parameter space
[ isthe lower constraint value of the parameter space.

The constraint values for equation (113), ¢; and c,, are usually set by the
dimensions of the parameter space, asin example of locaizing aline, ¢ ,c, . In
the actual robot system this means the dimensions of the working range of the
robot, the measurement tool and the work object, e.g. the lengths of the sides of
the work object.

Maximizing the Jacobian matrix J in a case of localizing of a line means
maximizing distance of sequentia point pairs of Jacobian matrix, asfollows:

-x,cosa -y, sna -1
-x,c08a —y,sna -1
J = : : (116)
-x,,C080 -y, Sna -1
| —x,cosa-y,sna -1
where
n is the number of points.

It means the control parameters x and y have to be manipulated to maximize
the distance between the measurement points, i.e. sequential lines of Jacobian
matrix. Signs of control parameters does not need to be considered because
covariance matrix P includes multiplication of Jacobian matrix J'J and the
result is always positive. The number of solution spaces depends on the amount
of parameters in Jacobian row. In the example above, there are two parameters
and it will give two different point pairs: (x =0,y =c¢) and (x =¢,y =0).
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In general case, the Jacobian matrix ae/ O0m determines the control parameters
and may include position and orientation parameters from the world frame or
work object frame as well as the sensor range or other interna or external
parameters of the sensor. The composed position parameters from the partial
derivative de/dm are maximized by selecting their largest possible values. The
selection of rotation maxima and minima means selecting large and small angles
for each axis. That is the case when the Jacobian matrix includes rotation
matrices, e.g. hand-eye calibration. Orientation parameters are planned directly
from the rotation matrices, not by computing partial derivatives from the
Jacobian matrix. The orientation matrices that affect to the uncertainties are
composed from Jacobian matrix and weight matrix. By maximizing the
composed parameters the highest SNR can be obtained for the measurements.
Each dimension must be considered when selecting the points, and both its
minimum and its maximum must be set. If there are several dimensions, al of
them have to be taken into consideration.

The idea is based on the proposa of Lowe (1985) that a small rotation around
different axes can be projected as a small translation in a perpendicular axis.
Using this principle, the set of samples is generated by maximizing the distances
between the points.

Effect of the weight matrix

The weight matrix Q also has to be studied when considering the optimal
positions and orientation. The weight matrix consists of partial derivatives of the
error function with respect to the measurements K and their noise matrix, as
follows:

O=KRK" (117)
where
K is a matrix consisting of partial derivatives of the error function
with respect to the input parameters
R isamatrix consisting of the noise affecting the input parameters.
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If the noise matrix R is assumed to be constant, then the goa will be the
minimize the weight matrix K , which can be written in partial derivative form:

Oe
K= 118
ammput ( )
where
e isthe error function
m is the vector containing the measurement parameters.

input

As in the case of computation of the criteria, the error function depends on the
type of surface form and the measurement parameters of the robot system. The
error function is the same in equations (113) and (117), however. The partia
derivatives for the weight matrix can be written:

max=c2
lPK:min{ 0c } (119)

m

input J min=c1

Optimizing both equations (113) and (117) is not so simple, due to the
interdependence of the parameters between the equations. Of the two, equation
(113) has the larger effect on the estimation process, due to the double terms in
the Jacobian matrix J compared with the weight matrix Q in equation (110).
The effect of equation (117) becomes noticeable when the noise of the input
parametersis not linear.

Minimization of weight matrix Q is similar with maximizing the Jacobian
matrix J . In the case of weight matrix, also the point pairs of sequentia rows
are selected and distance between them are minimized. The weight matrix
includes multiplication of matrices K such that sign does not have to be
considered (KK ") .

The effect of equation (117) on work object localization can be seen when there
the error covariance of the sensor and the covariance of the pose of the robot are
included. The uncertainty attached to each measurement is weighted by
reference to the sensor hand-eye caibration uncertainty. The orientation of the
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sensor should be chosen based on the form and orientation of the uncertainty
ellipsoid of the measuring point in the calibrated sensor frame.

When forming the total measurement matrix W, the information obtained from
both the Jacobian measurement matrix W, and the weight measurement matrix
Y, has to be considered. In most cases minimization and maximization focus
on the same parameters in the work space, e.g. points or angles of the measuring
tool. In that case, planning is quite straightforward and dimensions of these
parameters can be maximized and minimized. In the case of hand-eye
calibration, for example, the measurement poses are set such that the range
values of laser rangefinder are minimum and maximum values and the
orientation of the TCP of the robot has both large and small angles. In the case
of work object localization, measurement poses are selected such that they are
some distance away from the origin of the work object in each direction. The
parameters have first to be composed, however, and after that minimized and
maximized. If these dimensions share the same size class, the uncertainty
ellipsoid should be close to a sphere, but when there are large differences in the
dimensions, the uncertainties will be much larger in some directions than in
others and the uncertainty ellipsoid will be wide but flat in form.

There are more sources of uncertainty in the localization of the work object, than
in hand-eye calibration. The tota criteria can be found by first transforming the
error covariance matrices into one coordinate frame and then combining them.
There are always one or more error covariance matrices which are assumed to be
constant and one which isto be minimized, e.g.:

P = Prep + Prng-ere * (/0,07 0,) ™ (120)
where
P isthe total uncertainty in the system
P is the error covariance matrix for the TCP of the robot
Prni-eve isthe error covariance matrix for the hand-eye calibration
J,, 0t is the a posteriori error covariance of the pose of the work

object.
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Otherwise, if the error covariance matrices are not assumed to be constant, each
error covariance will have to be mininized and divided into separate terms, cf.
equation (110). When expanding further on this principle, each pose has its own
uncertainty for joints and sensor uncertainty. By minimizing the uncertainties of
each pose of the robot, including the sensor measurement uncertainty and the
uncertainty arising from hand-eye calibration, total uncertainty minimization can
be achieved. The direct computation of global covariance is not considered,
however.

5.4.2 Verification of the planning criterion

The selection of measurement points in sensing planning i.e. maximizing the
distances between the points is shown here to illustrate the effect of given
criterias for gpatial uncertainties of the localized cube. The result of the sensing
planning is verified by distributing the measurement points around the three
sides of the workobject and analyzing the spatial uncertainties of a corner point
of the localized cube. Throughout this simulation, the criteria of selection of the
measurement points maximum distance from each other will be shown. The
criterias used for evaluating the uncertainties were product of eigenvalues of
error covariance matrix, sum of eigenvalues of error covariance matrix and
volume of the uncertainty ellipsoid. In al the three different cases, two pair of
points from each surface was measured. The placing of the points to the surfaces
was done similarly in each side: all the possible location variations of
measurement points was calculated. The parameter that uncertainties were
related to was a distance between measurement points on each surface. The
criterion for selecting the pair of pointsistwo distances that give the largest total
distance. These two largest distances was summed together and total distance is
a sum of distances between two point pairs in each surface. Uncertainties to the
system are taken from the actual system illustrated in the chapter 5.

Figure 26 illustrates the uncertainties of a point in the calibrated cube frame
when the measurement points are distributed around the three sides of the cube.
In all the Figures 26-28 the most highest uncertainties are cut off to improve the
illustration of the curves.
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From the Figure 25 can be seen that when the distance between the points on the
surface of each side increases, the uncertainties of pose of the cube decreases.
The trend of the curve seems to be that uncertainties are decreased tramaticaly
first and after that, decrease is more stable.

'
prodlerd of pppemapiues ol cox, makis fmme)|
[= [=

—
s L ] L] =8 B gL L
drilanch bafvaen gt mm|

Figure 25. Product of eigenvalues of error covariance matrix vs. distance
between the measurement points.

In the Figure 26, sum of the eigenvalues of the error covariance matrix with

respect to distance between the points. Asin the case of product of eigenvalues,
the trend is that uncertainties are decreasing, here not such fast.
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Figure 26. Sum of eigenvalues of error covariance matrix vs. distance between
the measurement points.

In the last case, volume of the uncertainty ellipsoid is illustrated for different
distances between the points, Figure 27. Curve is close to product of
eigenvalues, i.e. the curve is decreasing rather fast.

All the three different cases illustrated the same behaviour between uncertainties
of the localized cube and distance between the measurement points. Here one
criteria of uncertainties in simulations has been selected to simplify the
interpretation of results, i.e. product on sum of eigenvalues, not single
eigenvalues. This kind of methods are suitable because usually the goa is to
minimi ze the whol e uncertainties of the system, not only one direction.

The principle of using distances between measurement points can be generalized
into other forms of set of point. The set of points may form a feature which
distances will be considered. Here an example of localizing of acube using three
points forming a tringle in each surface is illustrated. The goal is to decrease
uncertainties and the distance of points is calculated as a circle of triangle
formed by the three measurement points. The uncertainties are illustrated in a
same way as in case of two point pairs, product and sum of eigenvalues and the
volume of the uncertainty ellipsoid.
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Figure 27. Volume of the uncertainty vs. distance between the measurement
points.

The form of the curve is similar with the case of using two pair of points for
localizing the cube, Figure 28. The uncertainties are decreasing first quite fast,
but after that the uncertainty of the measurement points becomes such high that
the pose uncertainties are decreasing rather slowly. The peaks in the curve
means that the distance between two points is rather long but the third point is
close one of these two points and located unfavourable. The curve in Figure 29
shows that uncertainties may become larger even when distance is increasing if
location of one point is much worse than the other two.

Simulation results from sum of eigenvalues and volume of uncertainty ellipsoid,
Figures 29 and 30 shows that increase of distance between measurement points
decreases gpatial uncertainties. Using of maximum distance of measurement
points as a criterion for minimizing error covariance matrix can be applied to the
different forms of set samples. However, if the number of points increase, the
complexity of computing distances becomes higher and one have to be careful
when calculating the distances.
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Figure 28. Product of eigenvalues of error covariance matrix vs. distance
between the measurement points, case three points in each side.
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Figure 29. Sum of eigenvalues of error covariance matrix vs. distance between
the measurement points, case three points in each side.
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Figure 30. Volume of the uncertainty vs. distance between the measurement
points, case three points in each side.

Steps in planning the measurements

The sensing planning procedure can be divided into the following eight steps.
Here the measurement target, i.e. hand-eye calibration or work object
locdization, isreferred to as an object.

1 Select the object and parameters to be estimated

2. Determine the boundary values for the system with regard to the
measurement parameters

3.  Generate the measurement matrix W, from the Jacobian matrix J
4.  Generate the measurement matrix W, from the weight matrix QO

5. Combine the measurement matrices W, and Y, into the total
measurement matrix W
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6. Check that the measuring device is able to measure the selected
points

7. Estimate the spatial uncertainties of the estimated parameters

8. If the required level of spatia uncertainties is achieved, stop,
otherwise go to step 3 and add further measurements.

The above sensing planning algorithm is connected with a whole parameter
estimation model, so that after the measurements have been planned the spatia
uncertainties can be analyzed. Depending on the requirements, the achieved
level of spatial uncertainties is either satisfied or not. If a more accurate level is
required, more measurements should be planned and performed. When running
the actual robot system, al the measurements should be run off-line, and also
motion planning and verification of the accuracy of the required level. In that
way the production system can run efficiently without extra interruptions.

The problem involved in planning the reference features illustrated in this
chapter is that planning is based on the assumption that the feature contain very
few or no spatial uncertainties. This means that the requirement for successful
measurement is that the deviation between the nominal location of the pose of
the work object, for example, and its actua location should be smaller than in
the selection of details for the reference features. If the deviation is larger, there
is a possibility that the robot will measure false features or even ones lying
beyond the work object.

The proposed method is illustrated in few examples in this thesis. In the next
paragraph, planning the set of measurements is carried out for workobject
localization. In the chapter 6, a planning for localization of a cube is presented
and localization of the cubein 3D world is demonstrated.

5.4.3 Planning the measurements for work object localization

We will consider here equations for planning the measurements required to
localize a cubic work object. Of the six plane surfaces constituting the cube,
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three are measured for localization of the pose. The sensing planning starts out
from the parameters to be estimated, i.e. the pose of the work object.

The pose of the work object is determined using three trandation values and
three orientation values:

Mpe =[x v 2 @ @ @] (121)

The measurement points are planned for each of the three plane surfaces, in
order to minimize uncertainties in al six pose parameters. Each surface is
determined using trandation from the origin to the surface and two orientation
values of the surface. The surfaces are termed here the x-plane, y-plane and z-
plane, referring to normal directions in the world coordinate frame. Error
functions for localizing the cube in the world frame can then be written for the
sides as follows. the error function for the measurement point on the x-plane
surface is e, = x, that for the measurement point on the y-plane surface e, =y,
and that for the measurement point on the z-plane surface e, =z. These error
functions are used to compose the parameters for sensing planning, equations
(121), (124) and (127).

The Jacobian matrix for estimating the pose parameters of the work object for
the measurements 1...n for three different surfaces can be written as follows:

1 00 0 —Z.1 YV

Oe

=|: : : : : (122)
cube 0 1

(@)
|
N
o
=

z,n

where
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(¢ ...x,,»1--.»,,2,...2, ) are the measurements of the parameters (x.y,z)
between 1...n for x, y and z surfaces

n is the number of measurements.

The goal of the planning is to find measurements points (x,y,z) for each pair of
rows in equation (120) such that they will give an optimum or close to optimum
amount of information for parameter estimation.

To find the parameters to be maximized in each pair of rows in Jacobian matrix,
the partia derivative of the error function with respect to the parameters to be
estimated for the plane surface in the direction x can be written as follows:

de {Oe de Oe }
(123)

Moo |0x 09, 09,

cube,x

The whole pose includes 6 pose parameters, but each surface (here the x-plane)
gives information only on three parameters, and aso information on these
parameters for the Jacobian matrix, i.e. one trandation and two orientation
parameters. The partial derivative of the error function with respect to the
estimated pose parameter x is 1. The control parameters are then obtained from
partia derivatives of the error function with respect to the orientation
parameters, equation (121),when the constraints of the model are O...n and
n+1l...n+n,asfolows

000 -z »
000 -z,
Juper =[1 100 (124)
000 -z, yo
0 00 -z Vu |

W,-fé” =max{(y,,21), (¥2:25) - (V11 2,0), (V5 2,0} cube,x (125)

The result is a set of points generated by minimizing and maximizing the
measurement points on the reference surface of the cube in directions y and z.
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This actually means that there are four locations on the x-plane surface of the
work object where the points are measured: close to the coordinate origin, where
y =0and z =0, at the end of the y-axis, wherey = max, z = 0, at the end of the
z-axis, wherey = 0, z = max, and at the opposite corner from the origin, where
y = max and z = max.

The localization of the y-plane partial derivative of the error function with
respect to the parameters defining the y-plane can be written:

%, _[oe v oc
om dy d¢p 0@

(126)

cube,y

and the measurement parameters to be minimized and maximized are (control
parameters):

[0 1 0 -z 0 x
010 -z 0 ux
Jopey =5 1 : Do (127)
010 -z, 0 x,,
010 -z, 0 «x

n

LIJ:; =max{(x,,z,), (x5, 25) - (X,4,2,.4), (x,,2,)} cube .y (128)

and correspondingly for the plane surfacein the direction z :

aez = % k ﬁ 129
om 0z 0¢, 09, (129)

cube,z

and the measurement parameters to be minimized and maximized (control
parameters):
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001 -y x
001 -y, =x
Jowper =1 1 : Do (130)
001 -y, x4
001 -y «x

- O O

o O

n

W,-fé” =max{ (xy, y1), (x5, ¥,) .- (%1, ¥,): (x,, ¥,)} cube,z (131)

The minimization and maximization equations (123), (126) and (129) all contain
the same parameters, so that the result of planning is that measurements will be
minimized and maximized in these directions and the uncertainties in the pose of
the work object will be minimized.

The weight matrix

The criteriato be considered are the weight matrix of the error covariance matrix
and computation of the parameters which affect the uncertainties in the
estimated parameters, i.e. matrix W, . This means that the weight matrix K has
to be minimized, which is done by minimizing its parametersin a pair of rows.
When locating the work object, asin the case of calculating the matrix W, , each
surface has to be considered separately, because weights for the surfaces are
different. The input to the system is a measurement point p :

r=[p. p, p.] (132)

The weight matrix is composed by calculating the partial derivative of an error
function ¢ =x with respect to the input parameters. For the plane in the
direction x, the weight matrix can be computed as follows:

Oe,
op

=[t 0 d (133)

The weight matrices for the plane surfaces in the directions y and z can be
written as follows, whereupon the error functions are e, =y and e, =z:
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aey

—=[0 1 q (134)
op
%o o q (135)
op

Asillustrated above, the weight matrices are constant in al directions. It can be
written for 1...n measurementsfor al in one matrix:

1 00
0 1
0 0

Koo =8 0 i (136)
1 0 0
01 0
_O O 1”_

The above example means that only the translation parameters of the
measurement affect the uncertainties in the estimated parameters, and the
measurement poses can be planned based on information from the Jacobian
matrix W, . This is because only the uncertainty attached to the measurement
points in the work object coordinate frame was considered.

The output of the sensing planning algorithm is a total measurement matrix W
which is a combination of measurement matrix W, and measurement matrix
Y, . The total measurement matrix is a set of points selected based on given
criteria, i.e. located at reference features on the surface of the work object, here
close to the origin and corners of the cube.

The result of the localization of the work object isillustrated in the Figure 31. In
the figure, actua location is solid line and reference location is described with
dashed line. The set of samples are selected from four location in each side,
drawn in the reference object. As illustrated in the figure if the deviation
between reference model and actual location is large, the planning have to carry
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out such that reference features are not out of the actual surface. The planning is
here carried out for each surface separately.

be
H cu

world

world frame

Figure 31. Result of the sensing planning for work object localization.

The total number of features composed using sensing planning is 12. Depending
on the requirements of the spatial uncertainties of the location of the work
object, the measurement points are constantly distributed around these features.

5.5 Discussion a comprehensive framework for the
modelling, estimation and planning of parameters in
robot workcells

The geometry of a robot has been modelled here using the Denavit-Hartenberg
notation, which is based on joints and links which define the transformation
from the base frame of the robot to the TCP of the raobot. When modelling the
robot, the geometric model is assumed here to include all the models of the
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control system, as these are not produced separately. The calibration of the robot
system consists of calibrating static parameters, i.e. the geometry of the system.

A method for simultaneous estimation of the hand-eye transformation and the
location of a calibration object, here a plane, is also presented in this chapter for
a laser -range sensor. The method is flexible and easy to use, due to the freely
selected motions and simple calibration object.

Localization of the pose of the work object depends on the surface form of the
object. Its surfaces can be divided into parametric and patched surfaces, where
the parametric surface forms considered here are planar, cylinderica and
spherical and the patched surfaces considered are B-spline surfaces. The
localization of parametric surfaces is more straightforward than that of work
objects with patched surfaces. On the other hand, patched surfaces provide a
much larger variety of surface forms. When using parametric surfaces, the
feature selection that follows data acquisition plays an important role, athough
thistask is not considered here. The localization of work objects with parametric
surfaces gives a more accurate result, however, due to the form of the surface
model. Problems are often encountered in estimating the orientation parameters
of objects with patched surfaces, because flat surfaces cause large orientation
errors even with a low level of noise. Localization of the work object with a
triangular facet surface is similar to the localization method using patched
surfaces presented here, i.e. caculations of the shortest distance from a
measured point to the closest facet on the surface. The difference between a
patched and a facet surface is that the facet model is discrete but the patched
model is continuous.

The parameter estimation models presented in this chapter provide tools for
estimating the spatial uncertainties of the estimated transformation parameters.
These methods are aso fairly easy to apply in different contexts. A Gaussian
form of noise modelling has been studied in this thesis, the main intention being
to investigate whether the assumption of Gaussian-form noise gives a reliable
approach to modelling the spatial uncertainties in a robot system. As the model
IS sengitive to noise, it isimportant to know whether it will work realiably when
the noise level is changing. Answers to these questions have been sought in
experimental tests.
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Three means are employed here to model noise based on its location in the
transformation, and are considered when estimating the spatial uncertainties of a
coordinate transformation in a robot workcell. Covariance propagation gives the
transformation inclusive of noise that follows the nominal transformation, while
Monte Carlo simulation adds the noise to the transformations. Different forms of
uncertainty have to be transformed to the same form before they can be
combined. Equations for the computation of spatial uncertainties are composed
in this thesis for hand-eye calibration, work object localization and surface
model parameters. In each case uncertainties are estimated for the parameters to
be estimated. To interpret the resulting covariances, it is better to consider
uncertainties in a specific feature, e.g. a point. In that way it is possible to avoid
several types of units and mixing of results. No method for considering the
spatial uncertainties of a surface model when localizing a work object with a
patched surface has been reported in the literature. Equations are given for this
here and tests are described in the experimental chapter. Modelling of the spatial
uncertaintiesin the surface is one of the crucial points, especialy if the surfaceis
rough or irregular, because it has a major effect on the localization uncertainties
attached to the work object (Sallinen & Heikkila 2001b). In the case of surface
uncertainty included in the localization uncertainties at a typical noise level, the
work object location estimate was 10 times larger than when localizing the work
object without surface model uncertainties.

The combining of several measurements with respect to uncertainties was
discussed in this chapter, and a Fisher-form sensor fusion method was described
which can be used computationally for this purpose. The main motivation for the
use of sensor fusion in the estimations of coordinate transformations presented
here is to utilize al the measurement information obtained from a sensor.
Another important advantage is the improvement in accuracy when updating the
estimate afterwards. This means that the accuracy of the estimate can be
improved by adding the new measurements to the estimate without calculating
al the data again.

The intention of this chapter in the field of sensing planning has been to
illustrate a novel method for sensing planning which relies on modelling of the
gpatia uncertainties using covariances, as presented in this thesis, and trying to
minimize the error covariance matrix. When the behaviour of the spatial
uncertainties in parameter estimation is known, the error covariance matrix can

157



be used as a planning criterion and the results can be interpreted either as values
or geometrically. The selection of set of pointsis based on minimizing the error
covariance matrix and it leads to a Stuation where distances between
measurement points are maximized. The reliability of the criterial is illustrated
with simulations where pose uncertainties compared with distance between the
measurement points. There is not such a close connection between uncertainty
analysis and sensing planning in the literature asis proposed in this thesis, and as
a result the new method of sensing planning is very flexible and easy to
implement in conjunction with other planning operations, e.g. hand-eye
calibration or estimation of the model parameters for a surface.
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6. Experimental tests

This chapter presents the results of simulations and of the experimental tests
required for verifying the properties of the proposed covariance propagation
methods, which are of a kind that has not been reported before. The intention
was to test the proposed methods at different phases and to analyse carefully the
spatia uncertainties affecting the estimated parameters.

The algorithms adopted for parameter estimation and covariance propagation
were tested with Monte Carlo simulations and actual tests to verify the
confidence of the presented methods when used in different phases of a robot
system as described in this thesis. The tests included covariance propagation of
the joint—based model of the robot, hand-eye calibration, work object
localization and sensing planning. In the case of hand-eye calibration and work
object localization, large-scale repeated tests were carried out to verify the
results. Parameter estimation and uncertainty analysis were performed in
conjunction with covariance propagation and the Monte Carlo smulation in the
case of the surface models, while the principle of the pose estimation methods
and their sensitivity to noise were first illustrated in a simple cube pose
estimation problem.

The dimensions and poses of both calibrated objects such as a sensor in the
hand, the calibration plane and the localized work object and geometrical
illustrations including an uncertainty ellipsoid were not verified using any
external measuring tool, e.g. a machine for measuring coordinates. The
performing of such an operation would be complicated and expensive. Instead
the required reliability was demonstrated by comparing the results of covariance
propagation with a Monte Carlo simulation and actual tests.

The experimental robot system was equipped with a hand-eye laser rangefinder
based on the conventional triangulation principle (CCD/laser)(MEL 1998).
There were no problems with reflection, due to the use of a matte surface on the
targets and the high quality of the sensor. The robot used in the experimests was
an ABB IRB1400 manipulator arm with six rotational joints and a S4 controller.
The tag points for the robot motions (paths) were generated off-line using the
commercia off-line programming tool ENVISION (Deneb 2000). The range
sensor values and the actua values of the robot joint encoders were stored to
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verify the positions actually achieved. Reference data on the surfaces and robot
motion data were acquired from the work object CAD model and robot off-line
programming tools, respectively. In addition, both hand-eye calibration and
localization of the work object were supported by the noise models for the range
sensor and the robot joint sensors. The measurement models assume rigid links
for the robot, which is a fair assumption when measurements are made at a
reasonably slow speed and similar joint configurations are used, so that the
deflections are stable in each set of samples.

6.1 Uncertainties in simple examples

6.1.1 Estimating the model parameters

The principle of the estimation method presented in this thesis is illustrated in
the example of estimating the pose of a cube in a world coordinate frame. The
state vector defining the pose includes all six pose parameters, i.e. three
translation parameters and three orientation parameters. The input values for the
estimator are a set of points which are distibuted along the axis of the cube and a
priori information about the location of each side of the cube in the cube frame
and in the world frame. The location of a cube is described as a homogeneous
transformation H ¢, inthe world frame, i.e. each point p, =[x » z| canbe

world

expressed in the world frame using the following transformation:

Puoria =Vasara Pi + Tt (137)
where
yoe is the rotation matrix of the H ¢,
T is the translation vector of the H " .

The pose parameters of the cube can be written in vector form:
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M =[x Vv 2 0 @ @) (138)

This is a state vector which is needed to caculate an estimate for the
homogeneous transformation. The set of points is fitted to the model of a cube
on each side using an error function as the fitting criteria. The error function is
the shortest distance of a measured point from each surface, cf. the example of
sensing planning in section 5.4.3:

e =x (139)
e, =y (140)
e, =z (141)

Because the error function is a non-linear function related to the date
parameters, these latter are estimated iteratively by linearizing the error function
around the nominal values, m, =0. Each iteration step produces correction
values for the estimated parameters, and the remaining parameters to be
estimated are updated using these corrections. For the cube transformation,
linearization gives one point measurement for each side of the cube. The result is
a partial derivative from the error function with respect to the estimated
parameters, i.e. the state vector can be written:

ae ae ap cube
om

=% om (142)

cube cube

The result of a partia derivative of the error function with respect to each pose
parameter is asfollows:

de =% Oe Ode 0de 0Oe Qe
om Ox Ody 0z 0@, O0¢, 0@

(143)

cube

and the partia derivatives are calculated from
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5 1 00 O p. ~D,
=lo10-p. 0 p (144)
amcube
601 p -p. O

where
p.p,,p, ae points in the cube frame.

This equation is used as a Jacobian matrix for parameter estimation and is solved
iteratively, with equation (141) giving one line with six columns for the Jacobian
matrix when multiplied by de/d p.,,,, which is a 1x3 vector. The estimated

parameters are corrected iteratively to find the transformation which minimizes
the distances between the measured points and the surfaces of the object. Using
the Bayesian-form estimation method, the increments for updating the estimated
parameter can be calculated using equation (17), as given in section 5.2.1.

The noises of the measured points are collected into one noise matrix, marked as
R, , and are set as diagonal terms. The noise is assumed to be gaussian
digtributed. One 3D point in the noise matrix forms a 3x3 noise matrix in which
the diagonals are variances of the actual noises in the directions x, y and z:

c? 0 O
R={0 o © (145)
0 0 o

The whole noise matrix is formed by setting the 3x3 noise matrices of a point
noise into the total noise matrix R inthe form of diagonal blocks:
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R=| : : (146)

The number of blocksis equal to the number of measurements in the system.

The other part of the error covariance matrix is the weight matrix K. Sources
for this simple example come from the measured points:

p=lx y o (147)

The error function depends non-linearly on the measurements and it is linearized
with respect to the parameters to be measured. The error is assumed to be very
small, and for the partial derivative we can write:

Oe.
K=25
o (148)

The partial derivative for localizing the cube then becomes

, [Loo0
5.=0 10 (149)
Pi 1o 0 1

The matrix in equation (146) is 3x3, which means that it weights the
measurements from three directions. Thus the weight matrix for computing
small corrections to the estimated parameters is calculated in section 3.3 in the
form of equation (72), by multiplying the weight matrix by the noise matrix on
both sides.
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6.1.2 Uncertainties in the estimation of the pose of a cube

The gpatial uncertainties of a point in alocalized cube are studied in this section.
Theideaisto study the behaviour of the estimation as the set of samples changes
from poor to versatile. The observations are made by comparing the covariance
propagation method and Monte Carlo simulation.

The three sets of samples are illustrated in the figure below, which shows three
sets of points along all the coordinate axes: 1) points covering the length of the
cube, range 0...100 units, 2) points spread aong the coordinate axes,
representing part of the side of the cube, range 0...30 units, and 3) points close
to the origin along the axis, range 0...10 units. To analyze the uncertainties in
the pose of the cube, the uncertainties of a point p = [100 100 100] mm in
its coordinate frame were calculated. The feature point represents the corner of
the cube and is on the opposite side from the coordinate origin. When estimating
the point with translation parameters aone, the mixing of scales in the error
covariance matrix must be avoided.

H

world frame

Figure 32. Cube with three sets of points.

164



Case 1: Point range 100 units, number of points 90.

Thefirst case will consider points spread aong the total length of the sides of the
cube, in the range 0...100. The results of the covariance propagation are
presented in Table 1 and the Monte Carlo simulation in Table 2. The uncertainty
ellipsoids for noise level 0.1 areillustrated in Figure 33.

The uncertainty ellipsoids are rotated, i.e. they are eigenvectors, in both
covariance propagation and Monte Carlo simulation, as can be seen in the results
in Tables 1 and 2 and Figure 31. The form of the uncertainty ellipsoid is wide
but flat in both propagation and Monte Carlo ssimulation (i.e. the dimensions of
the two largest eigenvalues are high compared with that of the third). The
dimensions of the two largest eigenvalues in covariance propagation and Monte
Carlo simulation are also close to each other, in spite of the fact that there is
about a 45 degree orientation difference between the propagation and Monte
Carlo simulation. In these cases most of the rotation is around eigenvector 3,
which has the smallest eigenvalue, and the resulting ellipsoids are quite close to
each other. The uncertainties are scaled linearly as the noise at the points
changes. The covariance propagation gives a nominal solution for the
uncertainty ellipsoid, i.e. the eigenvalues are of the same size, whereas the
Monte Carlo simulation is closer to a practical approach (actua system), in
which the eigenvalues are rarely the same, due to the effect of noise.

Table 1. FEigenvalues and respective eigenvectors for the error covariance
matrix, case 1, covariance propagation.

Noise at the points | A, A, Ay Eigenvectors
[unit] [unit] | [unit] | [unif]
0.1 0.062 |0.062 |0.018 |0.730-0.367 0.577

-0.682-0.448 0.577
-0.047 0.815 0.577
1 0.618 | 0.618 | 0.183 0.773 -0.367 0.577
-0.682 -0.448 0.577
-0.047 0.815 0.577
10 6.184 | 6.184 1.826 0.730 -0.367 0.577
-0.682 -0.448 0.577
-0.047 0.815 0.577
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Table 2. FEigenvalues and respective eigenvectors for the error covariance
matrix, case 1, Monte Carlo simulation.

Noise at the points A A, Ay Eigenvectors
[unit] [unit] | [unit] [unit]
0.1 0.047 | 0.059 | 0.0138 | 0.852-0.374 -0.368

0.030 0.735 -0.677

-0.523 -0.566 -0.638
1 0.488 | 0.599 | 0.139 | 0.807 0.461 -0.370

0.102 -0.725 -0.681
-0.582 0.512 -0.632
10 4792 | 6410 | 1371 | 0.881 -0.286 -0.377
-0.059 0.724 -0.687
-0.470 -0.627 -0.622

Case 2: Point range 30 units, number of points 90

In the second case, the points are spread over the range 0...30 units along the
axis of the cube. The results of the covariance propagation are presented in
Table 3 and those of the Monte Carlo simulation in Table 4. The uncertainty
elipsoids are again rotated, as can be seen from the eigenvectors, especialy
when the level of noise is increasing. The eigenvalues for the two methods are
not so close to each other asin case 1, the uncertainties still rise linearly with a
linear increase in noise level.

Table 3. Eigenvalues and respective eigenvectors for the error covariance
matrix, case 2, covariance propagation.

Noise at the points A A, Ay Eigenvectors
[unit] [unit] [unit] [unit]
0.1 0.248 | 0.248 | 0.018 | 0.730-0.367 0.577

-0.682-0.448 0.577
-0.047 0.815 0.577
1 2477 2477 | 0183 | 0.773 -0.367 0.577
-0.682 -0.448 0.577
-0.047 0.815 0.577
10 24773 | 24.773 | 1.826 | 0.730 -0.367 0.577

-0.682 -0.448 0.577
-0.047 0.815 0.577
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Table 4. FEigenvalues and respective eigenvectors for the error covariance
matrix, case 2, Monte Carlo simulation.

Noise at the points A A, Ay Eigenvectors
[unit] [unit] [unit] [unit]
0.1 0.198 0.232 0.015 | 0.743 0.468 -0.478

0.039-0.744 -0.667
-0.668 0.477 -0.571
1 1.891 2.268 0.147 | 0.823 -0.3050 -0.480
-0.113 0.740 -0.663
-0.558 -0.599 -0.574
10 24310 | 29.770 | 122.156 | 0.973 0.220 -0.077
0.220 -0.763 0.607
-0.075 0.608 0.791

The uncertainty ellipsoids are rotated in both propagation and Monte Carlo
simulation, as can be seen from the eigenvectors and in Figure 33.

A

world frame

Figure 33. Uncertainty ellipsoids (eigenvectors and respective eigenvalues).
Covariance propagation (right) and Monte Carlo simulation (left).
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Case 3: Point range 10 units, number of points 90

In the third case the points are close to the origin of the coordinate frame, range
0...10 units. The resulting uncertainties for propagation are presented in Table 5
and those for Monte Carlo simulation in Table 6.

The uncertainty ellipsoids are again rotated in this third case, as can be seen
from the eigenvectors in Table 6. The eigenvalues of the Monte Carlo simulation
are dightly smaller than when using covariance propagation, but the deviation
between covariance propagation and Monte Carlo ssimulation is fairly large. The
difference is quite large at noise levels of 0.1 and 1, and very large a a noise
level of 10.

The results suggest that the difference between covariance propagation and
Monte Carlo simulations seems to become smaller as the set of sample points
becomes more versatile and larger when the set of samples is poor. In addition,
the level of uncertainty improves significantly when the set of samples becomes
more versatile. The failure of covariance propagation can be seen first when the
noise level increases to 10 times that at noise level 1 in case 3. This means that
the calculation converges to local minima. The difference between covariance
propagation and Monte Carlo is greatest in case 3, while as the versatility of the
set of samples reduces the uncertainties, the difference between covariance
propagation and Monte Carlo simulation is lowest in case 1.

In al the cases with noise levels of 0.1 and 1 the uncertainty ellipsoids have two
large dimensions and one much smaller one, but their orientations differ between
covariance propagation and Monte Carlo simulation. In any case, the largest
uncertainties point in the same direction, and the results can be considered
reliable for estimating uncertainties in the robot system, for instance. When
considering the eigenvectors and respective eigenvalues, it is clear that new
information about the uncertainties in the system has been obtained.
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Table 5. FEigenvalues and respective eigenvectors for the error covariance
matrix, case 3, covariance propagation.

Noise at the points A A, Ay Eigenvectors
[unit] [unit] [unit] [unit]
0.1 0.784 0.018 0.784 | 0.730 0.577 -0.367
-0.682 0.577 -0.448
-0.047 0.577 0.815
1 7.844 0.183 7.844 | 0.773 0577 -0.367
-0.682 0.577 -0.448
-0.0470.577 0.815
10 78436 | 1.826 | 78.436 | 0.730 0.577 -0.367
-0.682 0.577 -0.448
-0.0470.577 0.815

Table 6. FEigenvalues and respective eigenvectors for the error covariance
matrix, case 3, Monte Carlo simulation.

Noise at the points A A, As Eigenvectors
[unit] [unit] [unit] [unit]
0.1 0599 | 0.015 | 0.739 | 0.821 -0.495 -0.284
-0.145 -0.662 0.735
-0.552 -0.562 -0.616
1 5927 | 0.309 | 7.382 | 0.840 -0.496-0.219

-0.204 -0.664 0.719

-0.502 -0.559 -0.660
10 101.508 | 99.614 | 98.122 | -0.840 0.438 -0.319

-0.134-0.738 -0.661
0.526 0513 -0.679

6.2 Uncertainties in robot geometry

The geometry of the robot is modelled using the Denavit-Hartenberg model
(Paul 1983) and the joint-based model is transformed into pose form, including
trandation and orientation values of the TCP of the robot (6 DOF). The
transformation also includes the spatial uncertainties of the particular pose as
presented in section 5.2.3 and assuming the noise is gaussian distributed. The
differences between covariance propagation, experimental tests and Monte Carlo
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simulation were tested, and the results can be seen in Table 7 below. The results
are eigenvaluesfor the error covariance matrix.

Table 7. Validity of the TCP error propagation model.

/\x /]J,- /lz /]qx A@ /]4&
[m] | [mm] | [mm] [deg] [deg] [deg]
Covariance 0.0180 | 0.0102 | 0.0086 | 0.0021 | 0.0027 | 0.0010
propagation
Experimental test 0.0180 | 0.0098 | 0.0079 | 0.0031 | 0.0013 | 0.0009
Monte Carlo 0.0181 | 0.0104 | 0.0086 | 0.0021 | 0.0027 | 0.0010
Simulation

The eigenvalues in Table 7 are quite close to each other, because the level of
noise is fairly low and pure propagation does not need estimation, so that
linearization gives the largest effects for the difference between the three
methods. The eigenvalues are calculated from an error covariance matrix with 6
DOF. Covariance propagation is close to Monte Carlo simulation, and the
eigenvalues for the experimental tests are somewhat smaller even if 6 DOF
covariance matrix is analyzed.

6.3 Uncertainties in hand-eye calibration

In the first estimation phase, hand-eye calibration was carried out by measuring
the points from a steel calibration plate located in front of the robot. All the
measurement motions were generated off-line by randomly selecting positions
and orientations around the calibration plate. When estimating the spatia
uncertainties, the reference point p =[0 0 200| mm was estimated in the
coordinate frame of the tool. The set of points consisted of 28 randomly chosen
points on the surface of the cdibration plane. The number of actua tests carried
out was 800, i.e. each 28-point sequence was run 800 times and covariance
matrices calculated from 800 tool-to-TCP transformations. Different tests are
collected to Table 8.
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Table 8. Specifications of different methods in hand-eye calibration.

Number of points Number of repeats
Covariance 28 1
Propagation
Experimental test 28 800
Monte Carlo 28 2000
Simulation

The noise matrices for hand-eye calibration was calculated as follows:. the joint
noises were measured for each pose separately and propagated through the links
as a TCP pose error covariance matrix, cf. section 5.2.3 These matrices were
calculated dependent on pose. The noise in the sensor range measurement was
also measured for each pose separately.

The results of hand-eye calibration obtained by three methods are given in Table
9. The eigenvalues are close together and only small differences exist. The form
of the uncertainty ellipsoid iswide but flat in all cases, and there are eigenvalues
for two markedly larger dimensions perpendicular to each other and one
eigenvector for an eigenval ue perpendicular to these two. The flatness appliesin
the measuring direction, which indicates that the uncertainties in orientation
parameters have a greater effect on the measurement point than do the
trandation parameters, and that the orientation parameters are more difficult to
estimate accurately. Estimation of orientation parameters is also a problem in
several cases reported in the literature (Gunnarsson & Prinz 1987, Dornaika &
Horaud 1998, Heikkila et a. 1993).

Table 9. Point uncertainty in the calibrated sensor frame.

Method A A, A; Eigenvectors

[mm] | [mm] | [mm]
Covariance 1.286 | 1.505 | 0.598 | 0.3890.855 0.344
Propagation 0.914 -0.405 -0.028

-0.116-0.325 0.939
Experimental test 1183 | 1.659 | 0504 | 0.211 -0.836 0.507
0.931 0.330 0.156
-0.298 0.439 0.848
Monte Carlo 0.961 | 0.991 | 0.319 | 0.261 0.895 0.363
Simulation 0.957 -0.288 0.022
-0.124 -0.342 0.931
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To test the effect of noise on system behaviour, the propagated covariances were
calculated and Monte Carlo simulations were run for cases in which the input
noises were 0.001, 0.01, 0.1, 1, 10, 100 and 1000 times the original values for
the robot system. The behaviour of the algorithm was studied in two ways using
this test: 1) how much the resulting uncertainty is reduced as the level of input
noise decreases, and 2) how the correspondence between the covariance
propagation and Monte Carlo simulation changes as the noise level changes. The
difference is due to system linearization, i.e. the reliability of the covariance
propagation weakens as the noise level increases, and the fina result can be an
unreliable estimate.

Figures 34 and 35 illustrate the (x,y,z) point uncertainty (eigenvalues in the
direction of the eigenvectors of the error covariance matrix). The covariance
propagation algorithm is depicted in Figure 34 and the Monte Carlo simulation
in Figure 35. In both cases the uncertainty level of the measured point changesin
alinear manner depending on the input noise. According to the figures, when the
uncertainty level decreases by a factor of 10 the uncertainty of a point in the
calibrated sensor frame decreases simultaneoudly by a factor of 10. The same
behaviour happened when the noise level was scaled to 10 times larger than the
nomina value, and the same trend continued when scaling the noise level to
0.01, 0.001, 100 and 1000 times. The form of the uncertainty ellipsoid can be
seen from Figures 34 and 35. The parameters x and y have larger valuesand z is
dlightly smaller, i.e. the form is wide but flat. The difference between these
parameters al so remains the same when the noise level changes.

The second issue was the behaviour of the agorithm (i.e. how the propagation
estimate follows the smulation result) when the noise level changes. To
illustrate this behaviour, the difference between the covariance propagation and
Monte Carlo simulation was calculated for each level of noise. The differences,
calculated in percentages, are depicted in Figure 36.
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Figure 34. Point uncertainty (x,y,z) in the estimated sensor frame, calculated by
the covariance propagation method.
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Figure 35. Point uncertainty (x,y,z) in the estimated sensor frame, calculated
using Monte Carlo simulation.
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Figure 36. Difference between the propagation algorithm and Monte Carlo
simulation with respect to the measurement point in the calibrated sensor frame.

According to Figure 36, the difference between the propagation agorithm and
the Monte Carlo simulation remains similar even if the noise level changes. The
difference rises when the noise level increases 100 times compared with the
original value, but below this noise level the difference between the propagation
and Monte Carlo simulation is about 35%. As shown in Table 8, the results in
terms of the uncertainty level for the actual system lie between the propagation
and simulation results.

6.4 Uncertainties in work object localization

A motivation for careful analysis of localization of the work object is affect of
propagated uncertainty of hand-eye calibration. An other point for study is that
while hand-eye cdlibration is carried out relatively rarely in flexible
manufacturing cell, in the single series production, work object has to be
localized for every piece. Therefore uncertainties and their analysis plays an
important role in work object localization.
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Covariance propagation for work object localization was tested with actual
measurements. A machined cube was localized and measured on three sides to
estimate its full pose with six degrees of freedom. The maximum uncertaintiesin
the form of eigenvalues in the direction of the eigenvectors for the error
covariance matrix of the work object poseis presented in Table 11.

Table 10. Specifications of different methods in work object localization.

Number of points Number of repeats
Covariance 26 1
Propagation
Experimental test 26 300
Monte Carlo 26 1000
Simulation

The uncertainties in the work object pose were studied by considering the a
posteriori error covariance matrix of a point in the corner of the cube. This
corner was located on the opposite side of the cube from the origin and the
dimensions of the point were p = [100 150 100] mm. The actual work
object localization tests were carried out 300 times and the Monte Carlo
simulation 1000 times. The result regarding the pose of the work object was
m,,, =[853537 -396.717 667.983 0.958 -0.581 -0.0378]

[mm/deg] in the robot frame.

Table 11. Point uncertainty in the calibrated work object frame.

Method A A, Ay Eigenvector

[mm] [mm] [mm]
Covariance 1.916 0.350 1.253 | 0.828 0.401 -0.394
Propagation -0.089 0.786 0.612

-0.554 0.472 -0.686
Exprimental 0.890 0.257 1.231 | -0.621 0.496 0.607
test 0.670 0.738 0.083
-0.407 0.458 -0.790
Monte Carlo 6.372 1.488 4166 | 0.949 0.296 -0.109
Simulation -0.305 0.770 -0.561
-0.082 0.565 0.821
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There are two larger eigenvalues 4 and 2, in Table 11 which seem to be much
higher than the third ), (about three times larger). This same form of the
uncertainty ellipsoid can aso be seen in the case of hand-eye calibration, see
Table 9. Uncertainties in orientation values have the greatest effect on the tota
uncertainties in the pose of the work object, the implication for the planning
phase being that the measurements should be planned so as to minimize the
uncertainties in orientation parameters.

The results suggest that the relative level of noise in the system seems to be
rather high. Another important fact is the versatility of the set of samples, which
in these tests was a randomly chosen set of points. If the points were selected
inorder to minimize the level of uncertainties, the correspondence between the
propagation algorithm and the Monte Carlo ssimulation could be improved.

A
| o
M%)\Z

Monte Carlo Propagation

Figure 37. Uncertainty ellipsoids and eigenvectors for the Monte Carlo
simulation (left) and covariance propagation methods (right).

The uncertainty ellipsoids in the case of covariance propagation and the Monte
Carlo simulation are illustrated in Figure 37, where A, 4, and ), ae the
eigenvalues in the direction of the eigenvectors, the latter being represented in
the figure by lines. The two elipsoids are similar in form but that for the Monte
Carlo simulation is much larger in size. In both cases the eigenvalues for the two
largest eigenvectors are closer to each other and the third is smaller.
Geometrically, this means that the elipsoids are wide but flat. In the case of
work object localization it means that the orientation uncertainties of the
coordinate frame of the work object affect the uncertainties most. It is good to
keep this in mind when planning the measurements, in order to know what task

176



has to be to carried out in the robot system, i.e. the number of measurements has
to beincreased in the critical directions.

As in hand-eye calibration, the behaviour of parameter estimation was similarly
studied here as the noise level changed. The input noise was scaled between
0.001, 0.01, 0.1, 1, 10 and 100 times the actua level of noise and the feature
considered was a point in the corner of the work object.

The difference between the eigenvalues (A;, A,, A;) aso remains small in both
covariance propagation, Figure 38, and Monte Carlo simulation, Figure 39,
behaviour that indicates that the uncertainty ellipsoid has not been rotated. If the
orientation had changed, the eigenvalues would have changed and the result
would have been a saw-like function for each eigenvalue (Sallinen et a. 2000).
The uncertainties arising from the hand-eye calibration still affect the parameter
estimation in work object localization, however, as can be seen when comparing
the eilgenvalues for hand-eye calibration, Figure 39, with those for work object
localization, Figure 40, the latter curves being less linear.
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Figure 38. Uncertainties at the given point (directions x,y,z), covariance method.
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Figure 39. Uncertainties at the given point (directions x,y,z), Monte Carlo
simulation.
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Figure 40. Difference between covariance propagation and Monte Carlo
simulation (directions x,y,z).
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The fact that the curves representing the eigenvalues for the point on the work
object are not linear can be attributed to the system linearization and the fairly
high level of noise. The difference between the covariance propagation method
and Monte Carlo smulation remains at the same level, however, indicating that
the system is working properly. The difference between covariance propagation
and Monte Carlo smulation can be seen in Figure 40, where at is seen to
contrast with that found in then case of hand-eye calibration. The tota level of
noise is propagated to the higher level and the difference is not linear, the
difference on each axis is about the same. The interpretation for this behaviour
lies in the fact that the orientation of the uncertainty ellipsoid remains the same
but its size and volume is change.

The following three implications can be extracted from the test results illustrated
above: First, when examining the eigenvectors of different methods in Tables 8
and 9, it can be seen that the orientation difference between the methods is
somewhat exiguous. The eigenvectors maintain approximately the same
orientation even when the noise level changes, because the curves are linear in
Figures 35 and 39. In other words, the orientation of eigenvectors in the error
covariance matrix (and uncertainty ellipsoid) does not rotate when the noise
level changes. Second, the results of the actual tests are close to the propagation
results, indicating that the distribution of noise in the actua system is close to a
Gaussian model. This can also be seen from the measurements of the sensor and
joint noise. The covariance propagation method assumes that al noise is
Gaussian-distributed. Third, uncertainty propagation seems to be reliable when
combining the uncertanties coming from hand-eye calibration with those
affecting work object localization. The noise level increases in that case, but
propagation seems to work robustly, because the difference between covariance
propagation and Monte Carlo estimation is so small.

From the system designer’s point of view, limits can be set for the system
requirements. In the actual system, the mean value for noise in the joints of the
robot was 0.0015 degree when considering all the poses and respective joints.
The other noise source, noise from the sensor, was 0.0305 mm. According to the
simulations, the noise level can be raised to ten times this figure and the
propagation algorithm still gives relatively reliable estimates. This means that
the robot can have an average noise of up to 0.015 degree in each joint and the
measuring noise in a sensor may be up to 0.3 mm. Thisis not so straightforward,
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however. The noise from different joints has different effects on the compound
noise, the noise in the first three joints having a much larger effect on the TCP
noise than that in the next three, and noise in the joints is dependent on the
poses, asillustrated by Sallinen & Heikkila (2001a). Moreover, the versétility of
the set of samples is even more important than the noise level of the system, as
demonstrated in the sensing planning tests in section 5.6.

It can be stated that the reliability of the estimation of parameters and respective
uncertainties depends on the quality of the set of samples in two ways: via the
versdtility of the set of points and via the noise level of the set of points. Thus
substantial attention has to be paid to these two aspects when designing hand-
eye calibration and work object localization. The covariance propagation method
seems to be useful for estimating spatial uncertainties in the robot system even
though it is approximate and not very accurate due to non-linearities in the
model and the actual system.

It should be emphasized that simulation and actual tests are the best ways to
verify the sensitivity of the covariance propagation method. When considering
the different noise levels, it is evident that evaluation methods such as condition
number (Motta & McMaster 1997) or noise amplification index (Nahvi &
Hollenbach 1996) do not give such a reliable result and are focused on
evaluating other things and not spatial uncertaintiesin the estimated parameters.

Figure 41. The actual robot system measuring the cube.
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The robot is shown in Figure 41 measuring a cubic work object located in its
working area, i.e. the noise values of the joints could be expected to be close to
the mean value for the Gaussian noise (i.e. possible noise bias was avoided or
minimized).

6.5 Uncertainties in work object surface models

Estimation of surface model parameters and spatial uncertainties was tested
using the covariance propagation method for different surface forms including
parametric and patched surfaces. Spatial uncertainties were calculated for
different numbers of points to observe the behaviour of the estimation. For
patched surface forms, both covariance propagation and Monte Carlo simulation
methods were used and the differences compared. All the sets of points were
randomly generated.

6.5.1 Parametric surfaces

Modd parameters for parametric surfaces were estimated on the Reverse-
Engineering principle, which means that noise was imported into to the system
from points measured using the actual robot system. Each measurement point
had uncertainties of [0.01 0.013 0.015] mm in the directions x,y,z respectively,
and the parameters of each surface were estimated using different numbers of
points between 3 and 15. The results, presented in Figures 42—46, are first std.
deviations of the diagonal terms of the error covariance matrix. The tests were
run in simulations, not with actual workobjects with different surface forms.

Estimation of parameters for a planar surface

Model parameters for a plane surface were estimated using a different number of
points, in order to test the effect of the estimated parameters on the spatial
uncertainties. The plane surface was defined using one trandation parameter and
two orientation parameters, which means that the minimum number of points
required for estimation is three. The tests started from three measurement points
and lasted up to 14 points. The results are illustrated in Figures 42 and 43. The

181



uncertainties were analyzed by calculating the diagona values in the error

covariance matrix. The values for the estimated parameters are given in Table 10
using 10 points in the estimation.

Table 12. Estimated parameters of the plane surface.

z [deg] | ¢ [deg] | ¢, [ded]
100.7403 | 5.0000 | 5.0000

|

“ [TBNEZ
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Figure 42. Uncertainty of the plane translation value z with respect to the
number of measured points.
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Figure 43. Uncertainty of the orientation values Ox and Oy with respect to the
number of measured points.

A typical number of points used for estimating the plane model parametersis 10,
and the level of uncertainty achieved is 0.004 mm in trandlation values and 0.01
deg in orientation values in the plane frame. According to the curves, a fourth
point would reduce the uncertainties considerably, while subsequent points
would not have such alarge effect on the uncertainties. A satisfactory level of
uncertainties was achieved with the robot system used in this thesis using 10
paints.

Estimation of parameters for a cylinderical surface

The surface model for the cylinder was defined using five parameters, including
two trandation and two orientation parameters and the radius of the cylinder,
and the uncertainties were analyzed using 6 to 15 points. The results in terms of
diagonal values in the error covariance matrix are illustrated in Figures 45 and
46. The estimated parameters are given in Table 11, where 10 points were used
for parameter estimation.
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Table 13. Estimated cylinder parameters.

x [mm] |y [mm] | @[deg] | ¢, [deg] | d [mm]

40.0374 | -600.0373 | 5.0000 | 5.0000 | 75.0000
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Figure 44. Uncertainty in cylinder translation values x,y and the radius of the
cylinder with respect to the number of measured points.
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Figure 45. Uncertainty in cylinder orientation values Ox and Oy with respect to
the number of measured points.

The same effect as in estimation of plane model parameters can be seen here for
cylinder model parameters, in that the uncertainties decreased radically after the
first points and more steadily after that. 10 points gave a fairly good level of
uncertainties in the robot system used here, 0.02 mm in translation values and
0.005 deg in orientation values when estimating the cylinder pose parameters,

even though the number of parametersto be estimated was more than in the case
of aplane surface.

Estimation of parameters for a spherical surface
Mode parameters for the surface of a sphere were estimated using 4...12 points

measured on the surface. The following results were obtained for the estimated
parameters, the centre point and the radius of the sphere, Table 14:

185



Table 14. Estimated sphere pose parameters.

x [mm] y [mm] z [mm] d [mm]
20.000 200.0000 50.0000 75.0000
]
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Figure 46. Uncertainty of the sphere translation values x, y, z and radius with
respect to the number of measured points.

Again the same effect can be seen in the uncertainties in the spherical model
parameters, the first point after the minimum number of points having the largest
effect on the spatia uncertainties of the estimated parameters. According to
Figure 46, a satisfactory level of uncertainties can be achieved using 6
measurement points (0.05 mm in trandation parameters).

In al the surface models the uncertainty values change between each coordinate
axis. Thisis due to rotation of the uncertainty ellipsoid, in which the form of the
elipsoid remains amost the same but the axes change in their positions. If the
surfaces are modelled and estimated using measurements which contain random
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variation i.e. noise, the tests suggest that 10 points should be used for parameter
estimation. The points are randomly selected around the surfaces in the tests,
however, and if the number of points isto be reduced, their quality should be
considered. The estimation of surfaces and uncertainties in model parameters by
means of uncertainties in calibration and localization would complete the model
of spatial uncertaintiesin arobot system.

6.5.2 Patched surfaces

The effect of gpatial uncertainties on patched surfaces was tested in a dightly
different way from the case of parametric surfaces because the generation of
patched surfaces by the method presented here does not need any estimation.
The effect of uncertainties was tested by localizing the object with a B-spline
surface patch and analysing the uncertainties at a point in the localized work
object pose.

The localized work object was a ship's propeller, and the point,
p= [100 100 100] mm, was located on its surface. Eigenvalues and
eigenvectors were calculated for the point, and the results were as presented in
Table 15. To verify the covariance propagation method, Monte Carlo simulation
was run 2000 times and the analysis was carried out for the same point. The
location of the propeller in the robot coordinate frame was estimated to be
M roneiler = [97.459 926.948 472.691 1.158 -0.291 —0.19]]

[mm/deg].

Table 15. Point uncertainty in the estimated work object frame.

Data Set A A, Ay Eigenvectors
[mm] | [mm] | [mm]
Covariance 1466 | 0.757 | 0.326 | -0.171 0.912 0.372
Propagation 0.761 -0.118 0.636
-0.625 -0.392 0.675
Monte Carlo | 2.140 | 1160 | 0.326 | 0.018 0.567 0.824
Simulation -0.499 -0.709 0.498
0.867 -0.420 0.270
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The eigenvalues in Table 15 are close to each other, involving only small
deviations, and as pointed out in previous chapters, the uncertainty ellipsoids are
similar in form and orientation. The two main axes of the uncertainty ellipsoid
point approximately in the same directions in both covariance propagation and
Monte Carlo simulation. The two largest eigenvalues in the case of Monte Carlo
simulation seem to be larger than in covariance propagation, but the smallest is
the same. Covariance propagation is dightly optimistic, and the same trend can
also be seen in other cases of work object localization.

An increase in the number of points used in estimation will reduce the spatial
uncertainties attached to the work object pose. To illustrate this, a large number
of points (2304) were used to estimate the pose of the work object. Using the
sensor fusion method decribed in section 5.3.6 and including the spatia
uncertainties of the surface patch, the spatial uncertainties of a point in the
estimated work object frame were calculated. The results are given in Table 16.

Table 16. Point uncertainty in the estimated work object frame, determined by
the covariance propagation method with a large number of points.

Data Set A A, As Eigenvectors
[mm] | [mm] | [mm]

Sensor 0.076 | 0.056 | 0.015 | 0.317 0.926 -0.204

Fusion -0.675 0.372 0.638
0.666 -0.064 0.743

No 1.466 | 0.757 | 0.326 | -0.171 0.912 0.372

Fusion 0.761 -0.118 0.636
-0.625 -0.392 0.675

When increasing the number of points (up to 100 times relative to the case with
no sensor fusion), the uncertainties decreased by a factor of 30...100. This can
be used as a rough evaluation of how the uncertainties behave when the number
of measurements is increased. It is obvious, however, that there are much more
sophisticated methods for reducing the uncertainties than increasing the number
of points, e.g. sensing planning.

Measurement of the actual ship propeller isillustrated in Figure 47. There were

no problems with reflection, even if a laser range sensor was used, but the
surface of the propeller is fairly flat, which means that localization is quite
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difficult and it is recommended that measurements should be obtained from
positions with high gradients.

As in hand-eye calibration and work object localization, the effect of noise on
the parameter estimation was analysed for the localization of a work object with
a B-spline surface. The level of system uncertainties was scaled to 0.1, 0.01,
0,001 or 10 times the original situation, including uncertainties attached to the
robot and to hand-eye calibration of the sensor. The main interest in the tests lay
in studying how much the patched surface affects the work object localization
uncertainties. Again the uncertainties at a point on the surface of the propeller
were studied and Monte Carlo smulations were run 500 times to verify the
results. Theresults areillustrated in Figures 48 and 49.

Figure 47. A robot measuring the actual propeller.

The curves in the Figures indicate that localization of a work object with a
patched surface does have an effect on the spatial uncertainties, and the
eigenvalues are atered and the eigenvectors show much greater rotation than
when localizing work objects with parametric surfaces. When the noise level is
increased to 10 times that of the reference system, the uncertainties increase
markedly. Localization using noises 100 times larger than in the nominal system
was tried, but it failed. There are no large differences between covariance
propagation and Monte Carlo simulation, but the Monte Carlo curves are slightly
smoother.
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Figure 48. Change in noise level for a point in the work obejct frame,
propagation method.
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Figure 49. Change in noise level for a point in the work object frame, Monte
Carlo simulation.
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One of the reasons for the differences between the localization results for a
parametric surface and a patched surface lies in the identification of a reference
point on the surface. While a point can be found quite straightforwardly on a
parametric surface and it is mathematically accurate, it must be located
iteratively in the case of a patched surface, which means that its location error
will depend on the accuracy of the iteration. In addition, the accuracy clearly
increases with the uncertainty of the surface points. It isimportant in such cases
to select points that give information that reduces the uncertainties.

In the test the set of points was selected randomly in order to be distributed as
widely as possible around the ship’s propeller. The localization measurements
was then carried out on three of the propeller’s five blades so as to improve the
estimation.

6.6 Sensing planning

The sensing planning algorithm was tested with simulations and actual tests. To
illustrate the principle of the planning method, a simple example of planning the
optimal measurement points for locating a square object is given first, after
which the results of locating of a cubein the actual robot frame are presented.

Severa methods were used to evaluate the goodness of a set of samples,
including calculation of the error covariance matrix by the covariance
propagation method, condition number and noise amplification index. The error
covariance matrix is studied by calculating the eigenvalues in the directions of
the eigenvectors and the volume of the uncertainty ellipsoid, as in the previous
chapters. To obtain reliable results, the error covariance matrix is propagated in
such a way that it includes parameters with the same units, usualy translation
information on a point in the estimated coordinate frame.

6.6.1 Planning measurement of the localization of a square
The sensing planning method is illustrated here with a simple example of the

estimation of the pose of a square. The steps required to execute the agorithm
are as follows: first, computation of the parameters to be considered, second,
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minimization and maximization of the points in the direction of the computed
parameters (control points), third, generation of the measurements, and fourth,
running of the points. After generating the points, the set of samplesis compared
with a different set and evaluated on several criteria. Only two sides of the
square are considered in this example.

The estimated pose parameters of a square in 2D are m,,,,,, = [x y qoz] , 1.

its position on the axis (x,y) and its orientation around the axis z of the origin.
The error function is a shortest distance from a measured point to the surface of
the square, e, = [0 :I.]p for the surfacein x directionand e, = [1 O]p for the
surface in y direction, where p is the measurement point. The dimensions for

the measurements in both directions to be planned, x and y, will then be, i.e.
Y, :

PP (150)

de de, 0Oe, 0e, Oe, Oe, Oe,
Ox Oy 0@ Ox 0Jy 0@

square
whichisequal to

Oe
om

square

=0 1 -x 1 0 )] (151)

It can be seen from equation (148) that the dimensions x and y of points on the
surface of the work object have the largest effect on the spatial uncertainties in
the pose of the sgquare (columns 3 and 6). Let the lengths of the sides of the
square be 100 units and number of points on each side 100. For localization of
the square, the minimum and maximum values of the points in the directions x
and y on both sides are selected, asfollows.

W= = min,max{x}, W= =min,max{y} (152)

i=n+n
where

n is the number of points on each side of the square.
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The result of the planning is that points for locaizing the square are selected at
four locationsin it. On the side x the points are selected from close to the origin
(X',Y") and along the x axis in the distant corner While on the side y they are
selected from close to the origin and along the y axis in the distant corner, see
Figure 51.

The effect of the weight matrix on the set of samples is the same as in the
example presented in section 5.4.1, where only the trandation values of the set
of points affected the uncertainties and the effect of the weight matrix do not
have to be taken into consideration when generating the set of samples.

Four set of samples are illustrated in Figure 50: planned, poor, pattern and
random. The point considered is located on the opposite side of the square from
the coordinate origin.

X
Figure 50. A square and four sets of samples: 1) planned measurements,

2) a poor set of samples, 3) a pattern, and 4) a random set of samples around the
sides of the square.
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The uncertainties in the sguare are evaluated by anayzing the spatial
uncertainties of the point p on the opposite side of the square from the
coordinate origin, to obtain the largest effect of noise on the transformation from
the world frame to the square frame. Uncertainties in the position and orientation
of the square are propagated to this point. The error covariance matrix for the
point can be calculated using Equation (107).

The eigenvalues in the direction of the eigenvectors of the error covariance
matrix and the volumes of the uncertainty ellipsoids for the point p in the
square frame are presented in Table 17.

If the assumption regarding the selection of the best set of points is correct, a
geometrically opposite set of samples will be selected to represent a poor set.
These points are distributed in the middle of both sides of the square. The third
set of samples is selected congtantly around the sides of the square to form a
pattern. The pattern set of samples means that measurement positions and
orientations are selected regularly around the measurement space. Sample sets of
this kind are usually used in calibrating camera systems, for example (Tsa &
Lenz 1989). The fourth set of samples consists of randomly selected points
around both sides of the square.

Table 17. Eigenvalues, eigenvectors and volumes of the uncertainty ellipsoid for
the various set of samples.

Set of samples A A, Eigenvector Volume of the
uncertainty ellipsoid
[unit’]
Planned 0460 | 0.316 | 0.707 0.707 | 0.457
-0.707_0.707
Opposite to planned 5528 | 0.316 | 0.707 0.707 | 5.492
-0.707_0.707
Pattern 0.680 | 0.316 | -0.707 -0.707 | 0.675
0.707 -0.707
Random 0.3162 | 0.817 | -0.835 0551 | 0.812
-0.551 -0.835

The results in Table 17 indicate that the planning method presented here will
give the best set of samples and lowest level of uncertainties for the estimated
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parameters. The second best choice is the patterned set and the third best the
randomly distributed points. The set of points opposite the planned ones is
clearly the worst case. When selecting the set of samples, a pattern is a fairly
safe choice, but when the number of points is limited, there will be some
problems in selecting suitable ones. A random approach is quite risky, of course,
asit may give agood result or avery bad one.

The uncertainty ellipsoids for the planned, patterned and random cases in Table
17 are presented in Figure 51, which shows that there are difference in the
lengths of the axes and the orientation of the ellipsoid. The same behaviour will
also be observed in the 3D case.

Figure 51. Uncertainty ellipsoids. Left: planned, middle: pattern and right:
random.

When considering the orientation of the eigenvectors, all the sets of samples
except for the random one give very familiar results. This is because amost the
same information is provided for each parameter, whereas in the random case al
the parameters have different amounts of information.

6.6.2 Calculation of the pose of a cube
The sensing planning algorithm was tested with actual tests carried out in a
different environment from the previous ones and with different robot and sensor

systems. The robot system used was a PUMA 650 industrial robot with 6 DOF,
and al the measurement poses were generated off-line. The sensor system was a
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CCD stereo camera system, developed by Tomita et a. (1998) which enabled
3D points to be measured from a single view, and the point information was
used in the estimation. The internal parameters of the camera system were
calibrated before the tests and assumed to be constant in the measuring space.

The sensing planning algorithm was evaluated by comparing it with two sets of
measurement points, leaving out the one that was opposite to that planned. This
meant that the first set used in the test was composed using the planning method,
the second was a pattern where the points were consistently distributed around
the work object and the third was the random, as used in almost all of the sets of
samplesin thisthesis. The noise level of the system was measured and its values
were used in the agorithms. Contrary to hand-eye calibration and work object
localization, noise is assumed here to be constant in each pose. The number of
points was 8 on each side of the cube, and the uncertainties were analyzed for a
point p=[100 400 100] mm in the estimated work object frame. The
results are eigenvalues and eigenvectors of the error covariance matrix. The
results are presented in Table 18.

Table 18. Results of estimation of a cube, point uncertainty at one corner.

Set of Eigenvalue | Eigenvalue | Eigenvalue | Eigenvectors

samples A, [mm] A, [mm] Ay [mm]

Planned 0.0381 0.0439 0.0339 0.9651 0.1782 0.1919
0.1577 -0.9805 0.1173
-0.2090 0.0830 0.9744

Pattern 0.0493 0.0408 0.0453 -0.9369 0.3494 0.0133
0.2193 0.6168 -0.7560
0.2723 0.7054 0.6545

Random 0.0510 0.0402 0.0722 -0.7292 0.6107 -0.3086
0.6607 0.7457 -0.0856
-0.1778 0.2663 0.9473

Theresultsin Table 18 illustrate the effect of the sensing planning algorithmin a
3D case. The eigenvalues are smallest and the eigenvectors point ailmost in the
directions of the work object frame. In the case of the patterned distribution they
are rotated dightly, and in the random set of samples the uncertainty ellipsoid
has been rotated a lot. The uncertainty ellipsoid is also different in form in the
planned, random and patterned cases, being flat in the random case, amost a
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sphere in the planned case, and between these two in the pattern case. One
reason for this is that the planned set of samples gave an equal amount of
information on each parameter to be estimated and an equal noise level. As seen
in Table 18, the sdlection of the points has an effect on the form of the
uncertainty ellipsoid, and thus the user has an opportunity to affect the form of
the uncertainty ellipsoid at some level. If the points are selected using the
sensing planning method presented here and the dimensions of the work object
are equal, the uncertainty ellipsoid will take the form of a sphere and the number
of points and uncertainties will scale the a posteriori uncertainties of the
estimated parameters. This is a very important property when running a robot
system where the requirements regarding accuracy and uncertainties are high. If
the uncertainties can somehow be controlled, then the measurement sequence
can be planned such that the requirements will be fullfilled.

The results of sensing operations was also analysed using various evaluation
criteria, including condition number, noise amplification index (Nahvi &
Hollenbach 1996) and the volume of the uncertainty ellipsoid. The condition
number and noise amplification index were calculated from the identification
Jacobian matrix and the volume of the uncertainty ellipsoid from the error
covariance matrix of the point at the corner of the work object. The results are
illustrated in Table 19.

Table 19. Condition number, noise amplification index and volume of the
uncertainty ellipsoid for different set of samples

Set of samples Condition Noise amp. Vol. of uncert.
number index ellipsoid [mm?]
Planned 565 0.470*10° 2.3760%*10™
Pattern 813 0.594* 10° 3.8159*10*
Random 1721 1.424*10° 6.1957*10™

Asindicated in the results in Table 19, the planned set of samples gives the best
results with al the evaluation methods. The pattern set is close to the planned
one, but the random set clearly lags behind. The resultsin Table 19 show that the
carefully planned set of samples gives roughly three times better results than a
random set.
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6.7 Other experimental tests

The methods presented in this thesis for estimating of model parameters and
covariance propagation have also been applied to a number of other systems,
together with the tests presented above. A short overview of the systemsis given
here.

The whole robotized surface inspection system was built using an ABB
IRB1400 industrid robot with a Cyber Optics laser rangefinder. The sensor
gives a point laser measurement and the resolution is 0.001 mm (Cyber Optics
1989). The tasks carried out have been hand-eye calibration, work object
localization (the work object was a graphite mould) and inspection of the surface
of the mould. The research included estimation of spatial uncertainties in the
different phases of the system (Heikkila et al. 1999).

The work object localization was implemented in an optical sensor attached to
the TCP of the robot (Sdllinen et al. 2000). The sensor was a triangulation
angular scan LED array based on a range imaging sensor. A method for
calibrating two robots in a one workcell was presented in the same study,
followed by localization of the work object using these two robots. The results
showed that additional measurements reduce the pose uncertainties of even if the
noise level is quite high.

A Bayesian—form method was used for estimating the spatial uncertainties of
camera location in the robot workcell (Heikkila et al. 2000), the principle of the
calibration being to move a robot arm with a ssmple calibration object attached
to it into severa positions and estimate the transformation from the robot base
frame to the constant camera frame by measuring the calibration object. The
gpatial uncertainties of the transformation were studied by considering the
eigenvalues of the a posteriori error covariance matrix.

A work object localization system based on a touch sensor was developed for an
industrial application. The sand mould was localized before machining by means
of six measurements made on its front surface. The measuring system was built
in a demonstration robot cell at the Metso Lokomo Steels foundry, Tampere,
Finland. The measuring system includes an easy-to-use graphical interface to
facilitate use.
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6.8 Discussion of the experimental tests

The parameter estimation methods are explained in this chapter through
experimental tests. One of main topics was illustration of the methods for
modelling spatial uncertainties, first by means of simple examples and then with
the idea expanded to full 6 DOF pose estimation. Ancther topic was the
behaviour of parameter estimation when the noise level is changing, which was
assessed by carefully considering the a posteriori error covariance matrices.
Finaly the sensing planning method presented in this thesis was tested and
evaluated.

The different phases of calibration of the robot system are presented, including
hand-eye calibration, work object localization and estimation of the surface
model parameters. The model parameters and their respective uncertainties were
estimated using covariance propagation, Monte Carlo simulation and actua
tests. Special attention was paid to the reliability of the estimator by carrying out
extensive repeat tests for hand-eye calibration and work object localization in
which joint distribution information on different poses was collected and used to
model the uncertainties in the robot geometry. A further purpose of this was also
to find out whether the noise in the joints is biased or whether a Gaussan
assumption is close enough to represent the actual noise distribution.

The tests indicated that higher reliability can be achieved when the system is
modelled in more detail than when using a general pose noise model. This effect
isillustrated by the difference between the covariance propagation, Monte Carlo
and actual tests when models were improved with regard to noise. The test
began by modelling the transformation from the base of the robot to the TCP of
the robot using constant noisesin the pose parameters of the TCP (Heikkila et a.
1999). Next, the transformation from the base of the robot to its TCP was
modelled based on constant noise in each joint (Sallinen et al. 2000), and in the
final solution the model was congtructed so that each pose involved separate
noise. The results, presented by Sallinen & Heikkil&é (2001a) and Ramsli (1991),
indicate that the noise varies greatly between poses and that this augments the
motivation to build a detailed model to represent this noise.

A careful analysis of a posteriori error covariances after each parameter
estimation has been presented in this chapter. Computation of a posteriori error
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covariances has been suggested in the literature, e.g. by Sanderson (1999), but
not such a careful analysis of the results of the estimation. In addition, the
analysis of the behaviour of the spatial uncertainties when the noise level is
changing and the comparison with Monte Carlo simulation are further
contributions made by this chapter.

The proposed sensing planning method was tested in this chapter. First, asimple
example of localizing a square in a coordinate frame using different set of
samples including planned, opposite to planned, pattern and random was
illustrated. Lenghts and directions of eigenvectors as well as volume of the
uncertainty ellipsoid was considered as criterias for evaluating the results. The
actual tests was carried out by localizing a cube in the world frame and three
different set of samples was used for localizing. In both sguare and cube
localization cases presented planning method gave the results with smallest
uncertainties and uncertainty ellipsoids were least rotated.

Some additional experiments on the methods presented here are reported briefly
at the end of the chapter. The straightforward way of implementing a new
application is one of the main advantages of the method.

Selection of the criteria depends on the particular application and the
performance requirements. The well-known criterion of the condition number is
effective in cases where the uncertainties have to be equal in all directions, but
that is not usually the ultimate goal. In some applications there are directions
that are critical for uncertainty and directions not so critical, and here the
uncertainty elipsoid provides more infromation than the condition number or
observability index. The disadvantage of the uncertainty ellipsoid is
interpretation of its rotation and eigenvalues, which is more complicated with
the simple numerical values of the condition number, for instance.
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7. Discussion

The goal of this thesis is to present methods for estimating model parameters
with respect to spatial uncertainties and for evaluating the spatial uncertaintiesin
arobot system. The transformations in a robot system consist of spatial relations
between the coordinate frames and of their respective uncertainties. The
motivation for the work is to have a method for combining the uncertainties
arising from different sources and for estimating the total uncertainty in the
system. The model is augmented with criteria for evaluating the uncertainties
and using them for planning sensing actions. The methods presented in this
thesis are evaluated with actual tests.

Methods for estimating model parameters can be divided into deterministic and
stochastic methods as well as linear and non-linear types. One traditional, rather
straightforward method for solving the estimation problem is to use linear
models. These are often very successful, but they are not the best solution in the
presence of noise. Instead, non-linear methods provide a more powerful solution
for parameter estimation, and it is these that are used in the present thess.
Deterministic approach do not consider noise in the system whereas stochastic
system models the noise in given distribution.

Basically the same parameter estimation methods can be used for hand-eye
calibration, work object localization and estimating the parameters of surface
models. The major differences between the calibrations lie in the numbers of
coordinate transformations and parameters estimated. In hand-eye calibration,
both the TCP to sensor origin and robot to calibration object transformations
have to be estimated, while in other forms of calibration one transformation is
usually estimated. The number of pose parameters estimated varies from threein
the case of a plane surface to six in the case of localization of a work object with
three surfaces. In addition, variations in work object locaization can be found
depending on the surface forms of the object to be localized. These may be
divided into parametric and patched forms. Modelling the different surface
forms has been reported in the literature (Charlebois et al. 1997, Li et al. 1998,
Sanderson 1999) but they suffer from the lack of modelling the spatial
uncertainties of the estimated parameters, especialy in the case of patched
surfaces.
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The stochastic parameter estimation method presented here is based on iterative
Newton-Rhapson estimation. The method has been found to be applicable in the
presence of noise and the iterative solution usualy converges to a globa
minimum after four to eight steps. There is a possibility, however, that the
iterative search will converge to alocal minimum, especialy in cases where a
set of measurement data does not contain enough information for estimating the
parameters or the level of noise is relatively high. This may be the case when
localizing a ship's propeller using measurements of the surface of a single blade.
Another example is 6DOF hand-eye calibration of a sensor with insufficient
rotations around the z-axis of the sensor frame. Situations of this kind can be
managed by carefully planning the set of samples and avoiding a high level of
noise relative to the number of measurement points.

The modelling of spatial uncertainties can be divided into three classes:
stochastic, deterministic and simulation methods. The method proposed in this
thesis belongs to the stochastic class and is Bayesian in form. The advantage of
the method is that it is straightforward to implement in many applications where
the noise is assumed to have a Gaussian distribution. Another stochastic method
which uses assumption of Gaussian distribution of noise is Kaman filter
(Maybeck 1979), which is actualy close to the method presented here.
Probability functions provide a method for modelling uncertainties using
probability bars or a grid for describing them. Tolerance propagation (Taylor &
Ragjan 1988) and grid-based modelling are examples of deterministic methods
for modelling spatial uncertainties (Burgard et a. 1998). The most common
simulation-based method is Monte Carlo localization (Moreno et a. 2002),
where the uncertainties are presented as probability density samples. The
methods presented for modelling spatial uncertainties can be applied to dl
phases of estimating coordinate transformation in arobot cell.

Each method for modelling spatial uncertainties has its own advantages. A
Bayesian-form method was selected here and methods for evaluating the
uncertainties were developed. Basically, the uncertainties are evaluated on the
basis of an a pogeriori error covariance matrix. These uncertainties are
Illustrated geometrically using an uncertainty ellipsoid, which can be studied by
considering the orientation and lengths of its axes. The method is sensitive to
noise, and in order to prove its suitability for use in an actual robot system,
several simulation and actual tests were run to verify the limits of the noise level
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in the system. When these limits can be determined, the system is assumed to
work reliably within them.

One goal of the thesis wasto study the suitability of a posteriori error covariance
as a criterion for sensing planning. The evaluation criteria of the covariance
propagation were tested with different numbers of points and different levels of
noise. The sensing planning method presented here uses an a posteriori error
covariance matrix as an evaluation criterion and the tests show that the result is
better than methods compared with the proposed method. The planning criterion
was in the case of localization of a cube, the distance between sequential
measurement points. The planned set of samples was compared other sets
generated by different methods, and the results indicated that the method
presented here planned the set of samples that gave the smallest level of
uncertainties for the parameters to be estimated. The method is rather smple and
straightforward to implement in many estimation processes.

The covariance propagation methods presented here were tested experimentally
and compared with Monte Carlo simulation and actual tests. Attention was paid
in the extensive actua tests to verifying the distribution of the set of samples.
The results illustrate that the method presented here is sensitive to noise but
copes within the noise level of the actual robot system. If the noise level
increases 10 times relative to the noise in the actua system, the covariance
propagation may fail, but the performance of the estimator can be extended to
higher levels of noise by increasing the number of measurement points and the
quality of the set of samples.

One motive for the work was to achieve a flexible robot-based manufacturing
workcell. A lot of work can be done off-line before moving the actual robot.
This work involves planning the measurements, simulating them and computing
the spatial uncertainties. The final task is anaysis of the results and a decision to
increase the number of measurements or begin executing the actual motions. The
system uses initial CAD information obtained from the workcell, including the
robot model and work object models, but is able to adjust itself to changing
conditions which are not whole programmed beforehand. This adjustment is
based on sensor observations on the environment and can be carried out on-line.
The results of this thesis represent a system which is operating in the way
described here.
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The modelling of spatial uncertainties can be applied to many other situations,
e.g. evaluation of the accuracy of a 3D coodinate measuring machine or milling
machine. Another field would be mobile machines, which is quite afamous field
of roboatics, so that the modelling of spatia uncertainties in these applications is
not new (Dissanayake et a. 2001, Sukkarieh & Durrant-Whyte 2001).
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8. Summary

Modédling and verification of spatial relationships in a robot workcell is one of
the fundamental tasks in intelligent robotics. Almost every application has
certain requirements for accuracy and repeatability that have to be verified in
advance somehow. The requirements are exceptionally high in the production of
single items or short series, when it is not economically feasible to make several
test pieces or a heavy jigs for asingle product. In addition to accuracy, flexibility
plays an important role in intelligent robotics. The use of sensors to observe the
robot’ s environment and computing of the spatial relations of the workcell can
constitute a key task in fullfilling these requirements.

This thesis presents methods for estimating model parameters for hand-eye
calibration, work object localization and surface model parameters and for
simultaneous estimation of the spatial uncertainties in the estimated parameters.
It is based on a Bayesian-form stochastic method and a priori information on the
estimated parameters. An a posteriori error covariance matrix is used as a
criterion for evaluating spatial uncertainties.

A sensing planning method based on the use of an a posteriori error covariance
matrix as an evaluation criterion is presented here. The goal of the planning isto
generate a set of measurement points that will give an optimal or close to
optimal solution for the parameters to be estimated when the reference location
of the pose is known in advance. The quality of the set of samples plays an
important role in cases where the amount of measurement data is limited.
Typical cases are measurement information obtained from a tactile sensor or a
point laser rangefinder.

Special attention is paid to analysing spatial uncertainties and their behaviour
under different conditions. The geometrical interpretation of the error covariance
matrix is an uncertainty ellipsoid, which is illustrated using the directions of
eigenvectors and lengths of eigenvalues. A careful analysis of these propertiesis
presented in connection with the experimenta tests. The differences between
covariance propagation, Monte Carlo simulation and the actual tests are
calculated and evaluated, and the behaviour of covariance propagation and
Monte Carlo simulation when the noise level of the system changes is analysed.
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One basis for a flexible robot cell is CAD information about the robot and the
surrounding objects. Measurement points for the robot can be planned first using
the sensing planning agorithms presented here. After that, motions can be
programmed off-line to verify the configurations of the robot when running the
path and to check for collisions. The methods presented in thesis can be carried
out off-line or on-line. As a designer’s tool, they assist in selecting appropriate
components when constructing the robot cell. In on-line applications, the sensing
planning algorithm generates a set of samples to be used for localizing a new
work object. The intention is to embed the new features and algorithms into the
larger software tools so that most of the features will be transparent to the user.

The equations composed for parameter estimation and the modelling of spatial
uncertainties were tested in simulations and actua tests. The best methods for
verifying the reliability of algorithms of this kind are careful simulations. Here
Monte Carlo simulation was used and the results were also compared with those
of actual large repeat tests. No case in which such close attention is paid to
analysing the a posteriori error covariances has been reported before in the
literature.

Future work on this research theme will be concentrated on algorithms for
sensing planning at all phases of the calibration of a robot cell and the
integrating of planning into an embedded on-line solution. A theme extending
further into the future concerns modelling of the uncertainties in a robot working
space. So far, uncertainty has been measured in the actua workcell, e.g. in
various joint configurations, but the level of noise should somehow be estimated
without actual measurements in each pose and without loss of accuracy.
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