
V
TT PU

BLICA
TIO

N
S 510

Interm
ediate Language for M

obile Robots. A
 link betw

een the high-level planner and ...
Ilkka K

auppi

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000
02044 VTT 02044 VTT FIN�02044 VTT, Finland

Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. +358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax +358 9 456 4374

ISBN 951–38–6251–8 (soft back ed.) ISBN 951–38–6252–6 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2003ESPOO 2003ESPOO 2003ESPOO 2003ESPOO 2003 VTT PUBLICATIONS 510

Ilkka Kauppi

Intermediate Language for Mobile
Robots

A link between the high-level planner and
low-level services in robots

In the future, robots will be used in homes, and ordinary people should be
able to give tasks for robots to perform. This should be done descriptively
using natural language as in describing tasks to another person. In this
work an intermediate language for mobile robots (ILMR) has been pre-
sented. It makes it easier to design a new task for a robot. ILMR is intended
for service and field robots and it acts as an intermediate link from user, an
intelligent planner or a human-robot interface to a robot’s actions and
behaviours. The main principle in development work has been simplicity
and ease of use. Neither any deep knowledge of robotics nor good pro-
gramming skills are required when using ILMR. While easy to use, ILMR
offers all the required features that are needed to control today’s specialised
service and field robots. These features contain sequential and concurrent
task execution and response to exceptions. ILMR also makes it easier to
manage the development of complicated software projects of service robots
by creating easy-to-use interfaces to all of several subsystems in robots.

VTT PUBLICATIONS 510

Intermediate Language for
Mobile Robots

A link between the high-level planner and
low-level services in robots

Ilkka Kauppi
VTT Industrial Systems

Dissertation for the degree of Doctor of Science in Technology to be
presented with due permission of the Department of Automation and
Systems Engineering, Helsinki University of Technology, for public
examination and debate in Auditorium AS1 at Helsinki University of

Technology (Espoo, Finland) on the 12th of December, 2003, at 12 noon.

ISBN 951–38–6251–8 (soft back ed.)
ISSN 1235–0621 (soft back ed.)
ISBN 951–38–6252–6 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)
Copyright © VTT Technical Research Centre of Finland 2003

JULKAISIJA – UTGIVARE – PUBLISHER

VTT, Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

VTT, Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Tuotteet ja tuotanto, Otakaari 7 B, PL 13022, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 5888

VTT Industriella System, Otsvängen 7 B, PB 13022, 02044 VTT
tel. växel (09) 4561, fax (09) 456 5888

VTT Industrial Systems, Otakaari 7 B, P.O.Box 13022, FIN–02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 5888

Technical editing Leena Ukskoski

Otamedia Oy, Espoo 2003

3

Kauppi, Ilkka. Intermediate Language for Mobile Robots. A link between the high-level planner and
low-level services in robots. Espoo 2003. VTT Publications 510. 143 p.

Keywords mobile robot languages, industrial robot languages, autonomous service robots,
autonomous field robots, natural language control, field robotics, high-level
languages

Abstract
The development of service and field robotics has been rapid during the last few
decades. New versatile and affordable sensors are now available, and very
importantly, computing power has increased very fast. Several intelligent features
for robots have been presented. They include the use of artificial intelligence (AI),
laser range finders, speech recognition, and image processing. This all has meant
that robots can be seen more frequently in ordinary environments, or even in
homes.

Most development work has concentrated on a single or a few sophisticated
features in development projects, but even work to design control structures for
different levels in robot control has been done. Several languages for industrial and
mobile robots have been introduced since the first robot language WAVE was
developed in 1973. Tasks can be given to robots in these languages, but their use is
difficult and requires special skills of users.

In the future, robots will also be used in homes, and ordinary people should be able
to give tasks for robots to perform. This should be done descriptively using natural
language as in describing tasks to another person.

In this work an intermediate language for mobile robots (ILMR) has been
presented. It makes it easier to design a new task for a robot. ILMR is intended for
service and field robots and it acts as an intermediate link from user, an intelligent
planner or a human-robot interface to a robot’s actions and behaviours. The main
principle in development work has been simplicity and ease of use. Neither any
deep knowledge of robotics nor good programming skills are required when using
ILMR. While easy to use, ILMR offers all the required features that are needed to
control today’s specialised service and field robots. These features contain
sequential and concurrent task execution and response to exceptions. ILMR also

4

makes it easier to manage the development of complicated software projects of
service robots by creating easy-to-use interfaces to all of several subsystems in
robots.

It is possible for users to use ILMR to give direct commands or tasks to a robot, but
it is intended to be used with higher-level abstract languages, such as sign language
or even natural spoken language through a high level planner. An action in ILMR
can be given coarsely, i.e. in an abstract way, or in detail. Due to this coarseness,
ILMR is suitable to be used with higher-level abstract languages and the set of
elementary commands supports directly the use of natural language. With ILMR no
complicated models of robots and the world are needed. Only a few measureable
parameters for robots are needed and a simple map of the environment is
maintained.

ILMR has been implemented in two different kinds of robots, and its use and
performance has been studied with simulators and actual robots in a wide variety of
tests. The structure and operation of ILMR has proved to be useful and several
tasks have been carried out successfully using both test robots.

5

Preface
This research has been carried out at the Technical Research Centre of Finland
(VTT) during two projects. The first project MCLMR (Motion Control Language
for Mobile Robots) was done during years 2000–2001 and was funded by VTT.
The results of this first project were a starting-point for a second project, which
was carried out during years 2001–2003. The aim of this second project was to
develop an intermediate language for a robot Workpartner at Technical University
of Helsinki (HUT). This second project was financed by the Technology
Development Centre of Finland (Tekes) and VTT. An important part of the funding
for this work came from the Research Support Foundation of Helsinki University
of Technology, which received a donation from Sandvik/Tamrock Ltd.

Professor Aarne Halme was the conductor of this thesis and I thank him for his
advice during the work.

Researchers Petri Kaarmila and Marko Blom from VTT have provided valuable
help when testing and programming features for the developed language ILMR and
I thank them both.

I thank also MSc (tech) Mikko Heikkilä, MSc (tech) Jouni Sievilä and Dr. Jorma
Selkäinaho for their help when doing tests with Workpartner at HUT.

I also thank my preliminary examiners, Dr. Hannu Mäkelä and docent Tapio
Heikkilä for their valuable suggestions on my thesis.

Finally I thank my wife Iris and children Inga and Henrik for their patience during
the days and nights when I was preparing this thesis.

Espoo, October 2003

Ilkka Kauppi

7

Contents

Abstract ... 3

Preface .. 5

List of symbols.. 10

List of abbreviations ... 12

1 Introduction.. 15
1.1 Overview of the history, current state and future of robotics 15
1.2 Motivation and aims for the study... 17
1.3 Scientific contribution of the dissertation.. 23
1.4 Outline of the dissertation.. 24

2 State of the art .. 26
2.1 Language ... 26
2.2 Industrial robot languages ... 28
2.3 Mobile robot languages ... 29

2.3.1 Reactive robot languages ... 29
2.3.1.1 Behaviour language ... 29
2.3.1.2 RAP and RPL... 30

2.3.2 Mobile robot control languages.. 32
2.3.2.1 ARCL... 32
2.3.2.2 ZDRL ... 32
2.3.2.3 MML.. 33
2.3.2.4 RIPL... 33
2.3.2.5 RCL.. 34
2.3.2.6 FDTL ... 35
2.3.2.7 PRS .. 37
2.3.2.8 GOLOG ... 39
2.3.2.9 TDL.. 40

2.3.3 Visual languages .. 43
2.3.3.1 Lingraphica .. 43
2.3.3.2 PILOT .. 44

2.3.4 Languages for agents.. 45
2.3.4.1 ESL .. 45

8

2.3.4.2 MRL... 46
2.3.5 Natural language control of robots... 49

2.3.5.1 FSTN.. 49
2.3.5.2 IBL... 50

2.3.6 XML-based languages.. 52
2.3.7 Other related work.. 54

2.4 Summary.. 54

3 Autonomous service and field robot .. 56
3.1 Subsystems of service and field robots.. 56
3.2 Control architecture ... 58
3.3 Teaching, learning and skills ... 61
3.4 Control of an autonomous service and field robot..................................... 62

3.4.1 Low-level control ... 62
3.4.2 Middle-level control ... 63
3.4.3 High-level control .. 63

4 Intermediate language for mobile robots (ILMR) ... 65
4.1 Structure of ILMR ... 65
4.2 Control architecture ... 70

4.2.1 Intermediate process... 70
4.2.2 Internal language process ... 72

4.2.2.1 Shared memory .. 72
4.2.2.2 Interpreter... 74

4.3 Concurrent and sequential execution... 76
4.4 Elementary commands .. 79
4.5 Command categories ... 82

4.5.1 Define commands... 84
4.5.2 Path calculation and position controller ... 89

4.5.2.1 Reference path calculation... 89
4.5.2.2 Position controller.. 90

4.5.3 Movement commands .. 93
4.5.4 Action commands... 97
4.5.5 Control flow commands ... 100
4.5.6 Variables .. 103
4.5.7 Obstacle avoidance... 104

4.6 Use of ILMR with planner... 107

9

5 Experiments with ILMR .. 109
5.1 Workpartner... 109

5.1.1 Hardware and software architecture of Workpartner 110
5.1.2 Sensors of Workpartner.. 112

5.2 MoRo... 114
5.3 Experiment site .. 115
5.4 Simulators.. 117
5.5 Experiment plan... 118
5.6 Results of experiments... 122

5.6.1 Tests 1 and 2: Turn... 122
5.6.2 Test 3: followwall... 125
5.6.3 Test 4: obstacle avoidance.. 126
5.6.4 Test 5: a short task.. 127
5.6.5 Test 6: loop... 130
5.6.6 Test 7: a task with an abstract description.................................... 131
5.6.7 Other tests... 133

6 Conclusions.. 134

References... 136

10

List of symbols

α turning angle of the robot

nowc current curvature of the robot

ic calculated curvature of the robot

dh change in heading

ds cumulated distance in time t∆

c∆ maximum rate for c

h heading-angle of the robot

starth starting point heading

endh ending point heading

obsl length of checked area in obstable avoidance

p pitch-angle of the robot

q robot's position

gq goal position

goalq goal position

startq starting position

r roll-angle of the robot

t time

t∆ time period

aU attractive potential

rU repulsive potential

obsw width of checked area in obstacle avoidance

x local position coordinate

11

endx ending point coordinate

refx reference path coordinate

startx starting point coordinate

y local position coordinate

endy ending point coordinate

refy reference path coordinate

starty starting point coordinate

ξ positive scaling factor

ρ distance function

η positive scaling factor

oρ positive constant

12

List of abbreviations
AGV Automated Guided Vehicle

AI Artificial Intelligence

ALGOL ALGOrithmic Language

API Application Program Interface

ARCL A Robot Control Language

ASR Automatic Speech Recognition

BASIC Beginner's All-purpose Symbolic Instruction Code

C A Programming Language

C++ A Programming Language

CAN Controller Area Network

CCD Charge Coupled Device

cc-Golog An extension to GOLOG

CURL Cambridge University Robot Language

DOS Disk Operating System

DTD Document Type Declaration in XML and SGML

ESL Execution Support Language

FDTL Fuzzy Decision Tree Language

FSTN A Finite-State Transducer Network

GOLOG alGOL in LOGic

HAL Behaviour Language for Robots

HLC High Level Control of a Robot

HMI Human Machine Interface

13

HTML Hypertext Markup Language

IBL Instruction Based Learning

ILMR Intermediate Language for Mobile Robots

IREDES International Rock Excavation Data Exchange Standard

KL1 Concurrent Logic Programming Language

KRL Kuka Robot Language

Lazy-QPRM A Variant of The Probabilistic Roadmap Method

LHD Load, Haul and Dump

LISP A Language for Symbolic Data Processing

LLC Low Lwvwl Control of a Robot

MATLAB The Language of Technical Computing

MCLMR Motion Control Language for Mobile Robots

MLC Middle Level Control of a Robot

MML A Model-based Mobile robot Language

MRL Multiagent Robot Language

NASREM NAtional Standard REference Model

NC Numerically Controlled

PASCAL A Programming Language That Enables Structured Programming

PC Personal Computer

PC104 A Standard for Small PC-Cards

pGOLOG An Extension to GOLOG

PILOT Programming and Interpreted Language Of actions for Telerobotics

PRS Procedural Reasoning System

QNX Realtime operating system (RTOS) software

14

RAP Reactive Action Package

RAPID A Programming Language for ABB Industrial Robots

RCL The Robot Command Language

RIPL Robot Independent Programming Language

RPL Reactive Plan Language

RoboML Robotic Markup Language

ROSIV NC like Language

SGML Standard Generalized Markup Language

SPLAT A Simple Provisional Language for Actions and Tasks

TCP Tool Center Point

TCM Task Control Management

TDL A Task Description Language for Robot Control

UNIX A Powerful Operating System Developed at The Bell Telephone
Laboratories

VDT A Visual Design Tool

VTT Technical Research Centre of Finland (Valtion Teknillinen
Tutkimuskeskus)

WAVE The First Robot Language

XML Extensible Markup Language

ZDRL Zhe Da Robot Language

15

1 Introduction

1.1 Overview of the history, current state and future of
robotics

The roots of robotics go back to the year 1920 when the term robot was first used
in a play called “R.U.R” or “Rossum’s Universal Robots”. The writer was a Czech,
Karel Capek, and the word robot comes from the Czech word robota, which means
tedious labour [Fakta 2001, 1985]. In the play the destiny of the robot inventor was
unhappy, first the man makes a robot, then the robot kills the man. This might have
inspired a famous writer, Isaac Asimov, to define the Three Laws of Robotics in
1942 [Asimov, 1989]. These laws were built-in in every robot in Asimov’s science
fiction books and they prevented robots from causing any harm to human beings.

Since Willard Pollard and Harold Roselund designed the first programmable paint-
spraying mechanism in 1938 and the first electronic computer, Eniac, was built in
1946, the development of robotics has gone ahead with rapid strides. People’s
hopes of robots were, however, still higher, and it was expected that robots would
affect our lives much quicker than they have.

Industrial applications turned out to be an excellent field for robots, and the use of
industrial robots increased rapidly since the first industrial robot, Unimate, was in
production use in a GM automobile factory in 1961 [Tiedon maailma 2000, 1999].
Applications in industry were similar repetitive tasks, robots were not mobile, and
only a few sensors were necessary. When a new task for an industrial robot was
prepared, it stayed the same for a long time. From this starting point the
development of industrial robots proceeded under control of standards.

Also mobile robots started to develop since Shakey, a mobile robot with vision
capability, was built by Stanford Research Institute in 1968 [Nilsson, 1984]. The
development of robotics evolved into two separate branches, industrial robots and
mobile robots, because the same solutions were not possible within both branches.
With mobile robots the tasks are complex and changeable, and environments are
changing and not always well known, and a lot of sensors are needed. One of the
most important differences between mobile and industrial robots is the fact that
mobile robots should be able to act in ordinary environments and among people,
whereas industrial robots work inside restricted areas.

16

Today there are worldwide at least 760 000 robots working in industry, and they
are expected to be over 965 000 by 2005. The service robots are mainly used in
professional applications (e.g. medical robots, underwater robots, surveillance
robots and demolition robots) and it is estimated that 12 000 service robots were in
use at the end of 2001 and during the period 2002–2005 there will be another 25
000 units. [Unece and IFR, 2002]

In the future the growth is expected to be highest in entertainment robotics and the
number of robots in that area will be about 1.2 million by 2005. One example of
entertainment robotics is a riding robot [Kuhnhen, 2002]. A few commercial robots
for homes are also available today. The applications are chosen to be simple
enough, such as lawn mowers [WWW-reference 1] and vacuum cleaners [WWW-
reference 2]. There are also some robotic toys available, such as the Aibo robot dog
[WWW-reference 3].

Author's opinion is that in the far future robots will enter our homes and offices.
First they will be specialised and take care of special tasks such as cleaning,
material transporting, cooking, driving a car etc. Gradually they will become closer
to androids, human-like robots. They will become general-purpose robots, which
have limited intelligence, good communication skills and the ability to learn. They
can use tools, and one robot can handle all usual tasks in an ordinary environment
alone or perhaps co-operating with other robots or humans.

More complex and versatile tasks place high demands on programming and task
description. Most robot systems today have been programmed in ways described
later in chapter 2. Usually robots today can do exactly what they have been
programmed to do, and they can even handle some exceptions. A completely new
task means new program design, compilation and testing. This phase has to be
done usually by an expert with a knowledge of programming environment and
designing tasks. In the future, ordinary people should be able to give tasks to
robots. This should be done descriptively using natural language as in describing
tasks to another person.

The work described in this thesis tries to take a short step towards easier use of
service and field robots for application developers, and through easier human-
machine interfaces, also for ordinary people. This thesis concentrates only on
mobile robotics and all issues related to it, especially programming, control, task

17

planning and execution, supervising and navigation and leaves out industrial robot
issues except for comparison purposes.

1.2 Motivation and aims for the study

During the last few decades several intelligent and still more intelligent features for
mobile robots have been introduced, and this has made it possible to see
autonomous mobile robots more frequently in ordinary environments, or even in
homes.

Minerva [Thrun et al., 1999] is a tour-guide robot, which guides people through a
museum, explaining what they see along the way. Minerva navigates using
odometry, a laser scanner and a camera pointed at the ceiling. The software
architecture in Minerva contains about 20 distributed software modules, which
communicate asyncronously. There are modules for hardware interface, navigation,
interaction and Web-interface. Interaction here means the emotional state of a
robot, control of the head and control of speech and sounds. Using a Web-interface
a Web-user can select a tour and watch camera images recorded by Minerva and
see the robot’s position displayed on the map. The tours for Minerva are described
in a high-level description language called RPL.

Amadeus [Kamada and Oikawa, 1998] is an autonomous decentralized
transportation system, which is aimed to transportation tasks among cells on the
shop floor. It consists of mobile agents (AGVs) and cell agents which cooperate in
transporting objects. When transportation is needed in a cell, a cell agent negotiates
with mobile agents to determine vehicle allocation and assigns the transportation
task to the unassigned mobile agent that is able to receive the object to be
transported with the least delay. Mobile agents also negotiate with each other to
avoid collisions in difficult areas such as a narrow passage. The architecture used
in Amaneus is behaviour-based and there are four main behaviour styles, which are
normal-running, approaching-station, leaving-station and changing-course.
Amadeus was in operation at Fujitsu’s Kanuma Plant in 1998.

Helpmate [Evans, 1994] is a famous trackless robotic courier, which has been
developed in a project at Helpmate Robotics inc. during 1992–1994. The aim of the
project was to develop the technology for intelligent, autonomous mobile robots, or
robot carts, that can find their way around a factory, hospital, or similar place by

18

sensing and avoiding obstacles and taking alternative routes if a path is blocked.
Nowadays, Helpmate Robots are delivering medicines, supplies, prepared food, X-
ray images and other material in about 100 hospitals in the United States and
Canada, and there are already marketing arrangements with companies in Europe
and Japan. Helpmate is equipped with sonar, vision and contact sensors and it can
use elevators without assistance. The software is based on its own behaviour
language (HAL) with rule files. Typical installation time for a hospital is estimated
to be 15 man-days.

Autonomous load-haul-dump (LHD) device [Mäkelä, 2001] has been developed
for underground mine applications. A new route for the LHD is taught by driving
the machine through the route, either by an operator or using tele-operation. The
new route is then sent to the Mining Control System (MCS) and the LHD is ready
to start the new production route. The navigation is based on odometry with
correction by laser-scanner readings from the tunnel walls.

DAVID is a robot system that was meant to accomplish a variety of office tasks, such
as collecting and delivering mail or cleaning up the offices [Prassler et al., 1997].
DAVID has functions for perception, planning, motion and manipulation. To combine
these functions in complex tasks DAVID is implemented with AUTOGNOSTIC
[Stroulia and Goel, 1999]. It is implemented in Lucid Common Lisp and is responsible
for the configuration, the monitoring and the repair of the task structure.

The problem from the point of view of a developer with all of these examples, and
with many other robots too, is the way they are programmed. They all have their
own software architecture, which is difficult to understand if you are not familiar
with that specific architecture. If you understand one system, you still have
difficulties to understand some other system. They are ready systems for users, but
closed systems for developers. They operate only in the way they were originally
programmed, and an ordinary user has no way to define a totally new type of task
for any of these robots.

During the last decade VTT has also developed autonomous vehicles for various
applications and environments like underground mines, electronics factories and
container yards [Lehtinen et al., 2000]. During continuous development work it
was noticed that a new application always requires a lot of software modification
and generation despite of earlier software development and experience in that field.
To make it easier an intermediate motion control language for mobile robots

19

(MCLMR) [Kauppi et al., 2001] was first developed. It gave means to flexibly
design a new task for a robot and change it when needed.

This previous work gave guidelines for further development. At the starting point
of this development work there were drivers and interfaces available for sensors
and actuators and control software for several subsystems of a robot, such as
navigation, perception and motion control. It was assumed that a real-time
operating system would be available in robots and several processes could be run
concurrently. Some of the processes could even be run in separate processors. The
missing factor was a structure which would link all subsystems together in a way
that would enable the developer of one subsystem to control and utilize other
subsystems easily and in a desired way and would give the user or the high level
planner the means to design and control a new task or a subtask for a robot. This
missing factor was named ILMR (the Intermediate Language for Mobile Robots)
and its requirements are stated in Table 1.

Table 1. The requirements of ILMR.

1 Usability with service and field robots
2 Separation of robot dependent and independent parts
3 Easy control and access to all subsystems in a robot
4 Use is akin to natural language
5 Parameters for primitive operations can be given roughly or in detail
6 Interpretative system
7 Possibility to use behaviours
8 Easy way to use concurrent and sequential subtask/operation execution and

monitoring
9 Inhibition of harmful/damaging commands
10 Intelligent halt of a running task
11 Monitoring of the status of subsystems
12 Emphasis on movement commands

The first requirement states that ILMR should operate with service and field robots.
Those are usually mobile robots that are in the future going to operate in homes
and offices among humans and other robots. The commands for those robots
should be given in a spoken or written natural language by ordinary people. The
goal of this thesis is to make the use of these robots easier in everyday life.

20

The second requirement states that ILMR should have two separate parts. One part
contains the algorithms of ILMR and is independent of any robot, and the other is
used to connect it to a certain robot and environment. This implies that a task
description with ILMR is independent of the robot, and the task could still be valid
if the robot is replaced by a different robot.

The third requirement states that, on the one hand the developer should have easy
access to all subsystems in a robot, and on the other hand the user should be able to
utilize all subsystems to perform designed tasks without knowing many or even
any details of them. In addition, managing software development is also easier in
complicated service robots when the developer has a standard interface to other
subsystems by means of ILMR.

The fourth requirement says that no deep knowledge of robotics nor good
programming skills are required when using ILMR. The given commands are akin
to natural language and simple tasks can be given like one person to another even
directly without any high-level planner. The development of a planner is also easier
because it can be done in steps from direct mapping from input to output in order to
form an intelligent interpretation of spoken language, and all the time the output of
the planner remains a readable task description with the commands approaching
natural language.

The fifth requirement states that the operations can be given roughly or in detail. This
coarse description enables the easy connection to the more abstract planning layer in
robots and detailed parameters enable the precise movements of the robot. With
coarse parameters the task description can be more abstract without exact figures.
Those will be solved by ILMR during the execution according to the sensor readings.

The sixth requirement states that ILMR should have an interpreter. It is necessary
because of the need to give, stop and change tasks quickly at any time. The
interpreter should also check the following commands in case of any effects on the
current command. This is useful when it is desirable that two subtasks be combined
together smoothly.

The seventh requirement states that there should be a possibility to control and use
behaviours in robots. One example of behaviour is obstacle avoidance. If it is
switched on, then it will overdrive the output of the position controller of ILMR in
case of obstacles.

21

The eighth requirement says that both sequential and concurrent operations should
be available and they should be available without any complex control structures.
Also here the ease of programming is taken into account and the implementation of
the language should take care of problems of concurrency. The user should
however be able to control the concurrency/sequential execution if desired.

The ninth requirement says that ILMR should be aware all the time of the status of the
robot and reject any given command that could somehow harm or damage the robot.

The tenth requirement states that the user or other software should be able to stop
the current task or operation at any time, but this should be done intelligently so
that safety is maintained concerning the robot, the cargo and the environment.

The eleventh requirement states that ILMR should monitor the status of the robot
and its subsystems and do any necessary operations when an emergency or other
exception occurs.

The last requirement states that most of the commands at this stage handle the
movements of the robot, which are maily generic for different robots. In the future
the commands for manipulators will be added, but at the moment it is enough that
ILMR only triggers the sequence of manipulation, which is controlled by an
external control process and acknowledges the calling software or the user when
manipulation is done.

It is difficult to put the requirements in order of importance. Requirements 3–8 are,
however, more important than the others.

In this thesis the control of a robot is divided into three levels, and the left part of
the Figure 1 gives an overview of the control levels in a service robot. The high
level control (HLC) contains all intelligent features such as learning, reasoning and
concluding. The task of a HLC is to decompose the intentions of the user into
subtasks and monitor their execution. The abstract task descriptions come from the
user or an artificial intelligent unit (AI). From the user the descriptions go through
a human machine interface (HMI) to a planner, which can decompose them into the
form which is understood at the middle level control (MLC). From the AI unit the
descriptions can go also through the HMI or directly to the planner. The middle
level control enables the execution of behaviours, primitive actions and supervision
of robot’s subsystems. The algorithms of ILMR are running at this level and a

22

robot dependent intermediate process is used to connect ILMR to a certain robot
environment and HLC. The low level control (LLC) contains drivers and
controllers for all sensors and actuators and the control of all subsystems in a robot.

The control levels high, middle and low also describe the levels of abstraction. At
high level the descriptions and goals are expressed with abstract terms of natural
language such as “bring me the orange ball”. At middle level this goal is
decomposed into subgoals, but the descriptions can still contain some abstract
terms. At low level the descriptions are precise without any abstraction. This can
be seen from the right part of the Figure 1. The output of the high level can also be
a list of scripts such as “findball(orange)-bringball-giveball” but finally these
scripts are decomposed into the commands shown in Figure 1.

Figure 1. The control levels in a service robot and the task description at different
abstraction levels.

23

1.3 Scientific contribution of the dissertation

Mobile robots have been evolving during the last few decades alongside with the
means to control robots. One way to make the control of robots easier is the use of
robot languages. With a suitable language a developer can easily design a new task
for a robot and utilise different services and sensors in a robot. A robot language
can be a high-level or a low-level language. With high-level languages a task
description can be abstract and low-level languages enable access to actuators and
sensors. Some languages can contain features from both levels. A working solution
with current specialized service and field robots is a combination of two languages.
One language is operating at a low level and another at a high level. The high level
language could be for example a sign language, which is interpreted from camera
images with pattern recognition and decomposed into lower level language
commands.

Most languages are extensions of existing programming languages such as LISP,
C, C++, ALGOL, PASCAL, etc. Design of a new task for a robot with these
languages is like writing a new program for a computer. A new task should be
designed, coded, compiled and tested before it can be used in a robot and the
developer should have good programming skills.

Some languages contain an interpreter and databases containing skills, behaviours,
object descriptions, etc. With these languages a new task can be given using an
interpreter, but it must be defined beforehand, or at least the subtasks, which are
used to construct it, must be defined beforehand in a database, and this definition
can be difficult for users. This can be seen from examples shown in chapter 2.

The first scientific contribution of this thesis is a new method which makes it easier
to design a new task for a robot. This can be seen from the chapter 4.1. It also gives
means of easily control and utilize the subsystems of a robot and so make the
software development and management easier by providing a standardized
interface to subsystems. This is important with today’s complicated service robot,
which is equipped with several subsystems and many people are developing
software for it. An example of such a robot is Workpartner, which is explained in
the chapter 5.

24

The second scientific contribution of this thesis is a new method above the
operating system to handle concurrency and sequential actions without any special
control structures. This method is explained in chapters 4.3 and 4.4.

The third scientific contribution of this thesis is a method to give commands
coarsely or in detail. The coarse parameters enable the easy connection to the more
abstract planning layer in robots and detailed parameters enable the precise
movements of the robot when desired. For example turn(left) and
turn(d=90,c=0.45) both turns robot to the left, but first one is easier to give and
understand and it contains internal intelligence to define left according to
environment with help of perception data. Due to this coarseness, ILMR is suitable
to be used with higher-level abstract languages and the set of elementary
commands supports directly the use of natural language.

The fourth scientific contribution of this thesis is the way that variables are
handled. The user can handle the variables with their names not knowing their
content and structure. Each command and control structure in ILMR knows how to
handle the different fields in variables.

The final aim with ILMR is to develop it to a common description language for
mobile robots such as MATLAB for matematical problems. The language itself
contains all the basic elements which are needed to control a robot, and the user
can concentrate only on tasks to be carried out. When a task is defined by ILMR,
then the robot can be replaced by another, different kind of robot, and still the task
definition could remain valid.

1.4 Outline of the dissertation

This dissertation is a descriptive case-study which describes the research to
develop an intermediate language to control mobile robots and studies its
application and use with two different test vechicles.

The dissertation is organised as follows:

Chapter 1: Introduction. Introduction gives a short overview of the history and
future of the robotics. It also describes how the topic for this dissertation has been
chosen.

25

Chapter 2: State of the Art. This chapter clarifies the concept language and
describes how the language development for mobile robots has proceeded during
last 15 years. Also differencies between industrial robot languages and mobile
robot languages are studied.

Chapter 3: Autonomous Service and Field Robot. This chapter explains the
concept of an autonomous robot and its subsystems. It clarifies what functions are
needed and how control and issuing commands can be arranged. It also handles the
terms teaching, learning, skills and language.

Chapter 4: Intermediate Language for Mobile Robots (ILMR). The structure and
use of ILMR is explained in this chapter. An example task is studied in detail.
Software architecture and associated processes are explained as well as the
interpreter, command classes and elementary commands. Obstacle avoidance,
trajectory generation and position controller are also explained in detail. Features
of concurrent and sequential execution in ILMR are also examined in this chapter.

Chapter 5: Experiments with ILMR. Two test vehicles are used to study the
feasibility and use of ILMR in robots. In this chapter both test vehicles,
Workpartner, a centaur-like robot which was developed at HUT, and MoRo, which
is an AGV developed at VTT, are described. A wide variety of tests have been
carried out with both test vehicles to study the use and feasibility of ILMR in
various situations and environments.

Chapter 6: Conclusions. Summary of the research and recommendations for future
work are presented in the last chapter.

26

2 State of the art
According to definition a robot is a machine, which can flexibly do many kinds of
tasks, and this is accomplished by just modifying a program and without any
modification of the mechanical parts. So as long as there have been robots there
has also been more or less a need for an easy way of giving new tasks to a robot.
However, the development of mobile robots during the last few decades has mostly
concentrated in special, single and intelligent features with only one particular task
in mind. Since the first robot language WAVE was developed in 1973 at the
Stanford Artificial Intelligence Laboratory [Paul, 1977], there have been many
attempts to develop control languages for robots, but this study concentrates only
on attempts during last 15 years.

First the concept of language is clarified, and then a typical language for industrial
robots is examined to show why it is suitable for industrial applications but not for
mobile robots. After that the development of languages for mobile robots is
examined by means of example languages and it is shown how languages have
developed from simple action-trigger commands to abstract high-level languages.
It can also be seen from examples that robot languages can be based on different
approaches. The basis can be, for example, behavioural or hierarchical. It can also
be natural language or hybrid of these all. The language and its run-time
implementation in a robot are not separated in this thesis but they are handled as
one unity.

2.1 Language

A language is a system of communication, which usually is connected to human
spoken language and which is based on an arbitrary system of symbols. To be more
explicit it can be understood to be any means of any living creature to report, warn
or express something [Fakta 2001, 1981]. One example of such languages is the
honeybee’s dance language, which is used by honeybees to tell their nestmates
about discoveries they make beyond the hive [Kirchner and Towne, 1994]. The
most important feature of a language is its ability to produce messages. Where a
message is an object which has a meaning for a certain receiver [Turchin, 1997].

In a computer the executable control program is formed of a sequence of machine-
language commands. A machine-language command consists of a numerical code,

27

which contains the type of the command and the source and destination addresses
of the information. To make programming easier several high-level programming
languages have been developed. Instead of numbers and addresses the developer
can now use words and names. Before the use of such a high-level control program
it must be compiled to machine-language code. This is done by compilers which
have been developed for each language. There are also interpretative languages,
which means that commands are interpreted when they are encountered. These
languages are less powerful than compiled languages, because errors must be
checked at run-time.

Programming languages for computers can be classified according to several
criteria. One classification is shown in Table 2 [WWW-reference 4]. The same
source also lists 133 languages, but there are much more available around the
World.

Different languages have different aims and are suitable for different purposes. For
example MATLAB is a mathematical language, which has been developed to solve
mathematical problems. It has built-in functions for powerful mathematical
analysis, but it is not suitable for real-time control of a mobile robot. HTML is a
markup language to describe how information appears in Web browsers, but it is
not suitable to solve mathematical problems.

Table 2. A classification of programming languages.

The requirements of ILMR implies that it can be classified as concurrent,
imperative, interface, interpreted and scripting language.

Compiled Imperative Open Source
Concurrent Interface Parallel
Constraint Interpreted Procedural
Database Language-OS Hybrids Prototype-based
Dataflow Logic-based Reflective
Declarative Markup Regular Expressions
Distributed Multiparadigm Scripting
Functional NET Specification
Garbage Collected Obfuscated Visual
Hardware Description Object-Oriented Wirth

28

2.2 Industrial robot languages

There are several languages available for industrial robots. One group is high-level
languages such as PASCAL-like languages RAPID (ABB) and KRL (KUKA) or
BASIC-like languages such as MBA4 (Mitsub.) and Karol (Fanuc). Another group
is NC-like languages such as ROSIV (Reis) and the third group is proprietary
languages such as V+ (Adept). [Freund et al., 2001]

RAPID is a programming language for ABB industrial robots [WWW-reference 5].
RAPID has means to define constants, variables and other data objects. It has
commands for motion, tool and I/O manipulation and monitoring mode. It has
arithmetic and logic operators and a control structure for programs. It can also
communicate with an external PC and via serial interface. The movements of a
robot are programmed as pose-to-pose movements. The basic motion characteristic
must be defined before motion can start. This contains position data (end position
and external axes), speed data, zone data, tool data and work-object data. The user
can also define maximum velocity, acceleration, management of different robot
configurations, payload, behaviour close to singular points and so on. There are for
example 10 different move commands availabe in RAPID and they are MoveC,
MoveJ, MoveL, MoveAbsJ, MoveCDO, MoveJDO, MoveLDO, MoveCSync,
MoveJSync and MoveLSync. An example of MoveL command is shown below.

MoveL ToPoint := [940,0,1465,0.707,0,0.707,0], Speed := v50, Zone := z50,
Tool := gripper1

World zones can be defined within the working area of the robot to indicate that
the robot’s TCP is a definite part of the working area or to delimit the working area
in order to prevent a collision with the tool or to create a common working area for
two robots. RAPID has also special commands for spot welding, arc welding and
glueware.

The commands of RAPID are suitable for industrial applications, where actions are
happening inside a well defined working area and movements are in fact tool
movements to get desired manipulations for workpieces done correctly. All
required actions and movements can be done with a huge set of commands,
definitions and parameters.

29

A task definition for a robot with RAPID is a demanding job. One should know
which command is the right one for a certain situation and usually the programs are
first tested with simulators which are available for industrial robots. A task for an
industrial robot has to be well designed, because time is money in business and all
movements should be optimal.

With mobile robots task definition can’t be so strict, since the environment can be
partly or totally unknown, and unforeseen events can occur any time. Task
definition and even a totally new goal for the mission must be replanned in case of
unforeseen events. Defining tasks for mobile robots should also be easy, since it
can be occasional.

2.3 Mobile robot languages

In the following chapters the mobile robot languages are divided into six
categories. In each category the languages are studied and finally they are mapped
to the requirements of ILMR.

2.3.1 Reactive robot languages

2.3.1.1 Behaviour language

The Behaviour Language utilizes reactive behaviour-based methods for robot
programming. It has a Lisp-like syntax and behaviours are represented by a set of
rules. These rules are compiled to augmented finite state machine (AFSM)
representations which can be compiled for the target processors. This language is
based on subsumption architecture [Brooks, 1986] [Brooks, 1991] (see Figure 18)
and an AFSM encapsulates a behavioural transformation function where the input
to the function can be suppressed or the output can be inhibited by other
components of the system. The details of the subsumpion architecture are
explained in the chapter 3.2.

When an AFSM is started, it waits for a specific triggering event and then its body
is executed. In the body it is possible to perform primitive actions or to put a
message in order to interact with other AFSMs. The events can depend on time, a

30

predicate about the state of the system, a message deposited into a specified
internal register, or other components being enabled or disabled. There are no plans
or procedures available, but it is possible to define macros and use them in the
definition of behaviours. [Pembeci and Hager, 2001]

2.3.1.2 RAP and RPL

RAP system task-net (Reactive Action Package) was originally released by James
Firby in two publications [Firby, 1987] and [Firby, 1989]. Later he added an
extension to the RAP to enable the effective control of continuous processes
[Firby, 1994]. The RAP system was applied with the animate agent architecture,
which is shown in Figure 2.

Figure 2. The Animate Agent Architecture [Firby, 1994].

In the RAP system the task is first selected for execution. If the task represents a
primitive action, it is executed directly, otherwise the corresponding RAP is
searched from the RAP library. Then the success of the task is checked, and if it is
true, then the task is complete and the next task is allowed to run. If the task has not
yet completed, then one of the methods is selected according to suitable tests, and
the task waits until the selected method is complete. The selected method can also
contain several subtasks. When the method has completed then task success is
checked again, and if it is true, then the next task can be run. If it is not, the next
method is selected for execution. An example of a RAP is shown in Figure 3 on the
left and a concurrent task net on the right.

31

Figure 3. An example RAP and A Simple Concurrent Task Net.

The RAP in Figure 3 defines how to pick up something. There are two methods to
reach this goal.

A task-net system has been implemented and used to control a real robot doing
vision-based navigation tasks at the University of Chicago.

The RAP-system is efficient with mobile robots and it allows concurrent task
execution and response to exceptions. It needs, however, some expertise to define
RAPs for a task.

RPL (Reactive Plan Language) is mainly based on RAP. It is geared to high-level
robot planning, and to represent advisory plans for emergency situations. Many of
the concepts of RAP have been carried over in RPL. The syntax of RPL is however
more recursive and expressed in Lisp style. More high-level concepts (interrupts,
monitors) have been made into explicit constructs, and the interpreter does not
attemp to maintain a world model that tracks the situation outside the robot.
[WWW-reference 6]

When these reactive languages are compared to requirements of ILMR it can be
noticed that only a part of them are satisfied. For example RAP and RPL satisfy the
requirements 1, 2, 6, 7, 8, 10 and 11 in Table 1 but the important requirements 3, 4
and 5 are not satisfied.

32

2.3.2 Mobile robot control languages

This category contains a set of languages which are not suitable for other
gategories. Many of them are extensions of existing programming languages such
as Pascal, Lisp, Algol, etc. The languages are presented in chronological order. The
oldest are handled first and in a shorter manner, while the newest are handled in
more fine detail.

2.3.2.1 ARCL

ARCL (A Robot Control Language) [Elmaghraby, 1988] was based on Pascal-like
syntax. It was a compiled language and the developed cross-compiler required
three passes before the executable code was ready to be downloaded and executed
in a robot. This language has a Pascal-like syntax with sensory-control and motion-
control commands. An example of an ARCL-language command is
MOVA(GRIP,HI,CONT,MED) which opens the gripper on the robot. This
language was implemented on the HERO-1 robot.

ARCL emphasized sensory-based programming rather than planned trajectory
motion and was designed for educational robot HERO-1. Concurrent execution
was not possible with ARCL and the use of ARCL was also difficult because it
required allways three passes before it was ready to be executed in a robot.

2.3.2.2 ZDRL

ZDRL (Zhe Da Robot Language) was a motion oriented robot language [Chen and
Xu, 1988]. It was an interpretative system and the language was composed of
system commands and program instructions. System commands were used to
prepare the system for execution of user-written programs. ZDRL included 32
system commands and 37 program instructions, and it contained capabilities for
program editing, file management, location-data teaching, program executing and
program debugging. This language was implemented in a Rhino XR-1 robot.

This language was a combination of a high-level language and a low-level
language. Assembly language was used to do very time-consuming operations and
a high-level language was used to store program steps and variables and to perform
trajectory planning.

33

2.3.2.3 MML

MML was a Model-based Mobile robot Language which was developed at the
University of California at Santa Barbara [Kanayama, 1989]. It is a high-level off-
line programming language which contains functions for high-level sensor
functions, geometric model description and path planning and others. This
language contains an important concept of slow and fast functions, which
architecture is essential for real-time control of robots. A slow function is executed
sequentially, while a fast function is executed immediately. The second important
concept is the separation of the reference and current posture, which makes precise
and smooth motion control and dynamic posture correction possible. An example
program to execute a smoothed square path with MML is shown in Figure 4.

MML was a good attempt to propose a candidate for standard set of locomotion
functions for mobile robots.

user()
{
 POSTURE p,a,b;
 int i;

def_posture(200.0,0.0,0.0,&a);
def_posture(200.0,0.0,0.0,&a);

set_rob(def_posture(-100.0,-200.0,0.0,&p));
for(i=0;i<4;i++)
{
 move(comp(&p,&a,&p));
 if(i<3)
 move(comp(&p,&b,&p));
 else
 stop(comp(&p,&b,&p));
}

}

Figure 4. An example program with MML.

2.3.2.4 RIPL

RIPL (Robot Independent Programming Language) [Miller and Lennox, 1990] is
based on an object-oriented Robot Independent Programming Environment [RIPE].
The RIPE computing architecture consists of a hierarchical multiprocessor

34

approach, which employs distributed general and special-purpose processors. This
architecture enables the control of diverse complex subsystems in real time while
co-ordinating reliable communications between them. The software classes in
RIPE are defined to represent the physical objects in robots and work cells and thus
the communication interfaces to these generic software classes in RIPE become the
general device independent language which can be used to programme the cell or a
robot. RIPE has four primary layers: task-level programming, supervisory control,
real-time controls and device drivers.

RIPL is in fact a set of routines, which are defined inside classes of RIPE, and the
language is a compiled language.

2.3.2.5 RCL

RCL (The Robot Command Language) [Fraser and Harris, 1991] is based on
NASREM architecture (NAtional Standard REference Model) [Albus et al., 1987].
NASREM is a hierarchical and collateral architecture, with representations at
increasing levels of abstraction in higher levels of the architecture. Upper levels
represent symbolic, intelligent system commands, while at lower levels the model
is geometric and dynamic intelligent control. The details of NASREM architecture
are explained in the chapter 3.2. The syntax of RCL is hierarchical and the
language elements are defined from other RCL elements. Telerobot exits at level 4,
Arms and Cameras at level 3 and so forth, e.g.

<Telerobot#1>::= Arm#1><Arm#2><Platform><TV_Camera#1>

<Arm#1> ::= <Joint#1><Joint#2><Hand#1>

Example commands with RCL can be as follows

position_trajectory(time1, x1,y1,time2,x2,y2 …)

turn_on_place(time1,direction1,time2,direction2…)

These commands will be interpreted to produce actuator commands.

35

2.3.2.6 FDTL

FDTL (Fuzzy Decision Tree Language) is a language, which is based on a
computational model that combines fuzzy rule-based control with the hierarchical
nature of decision trees [Voudouris et al., 1995]. FDTL contains a compiler which
produces C code, which can be executed on a variety of platforms as embedded or
independent programs. The language has been tested with simulators and a
controller called GC (Garbage Collection) for an autonomous test vehicle that
steers using the differential velocities of its two driving wheels. The vehicle is
equipped with ultrasonic proximity sensors together with other sensors that give
the angle and distance to various goals. The task of the robot is to collect and
dispose of garbage, while avoiding obstacles, and moving to a recharging point, if
the battery condition is low, and to service point if damage is detected. Fuzzy
decision tree architecture is a feed-forward system. The incoming information from
the sensors together with internal variables (goal position, battery level, damage
detectors, state variables etc.) are fed to the tree. The tree spreads activation from
the root to the leaf nodes. All leaf nodes in this application have only two outputs,
the velocities of each wheel. Where a rulebase outputs to an internal node the
output value will act to “scale” the relative contribution of the rulebase at that
node. For instance, root of the tree spreads activation progressively to Obstacle
Avoidance as the vehicle approaches obstacles, otherwise it spreads activation to
the goals-subtree. Thus any of the leaves can have an effect on the output velocities
but this effect is moderated by the activation level of its ancestor nodes.

The FDTL description for GC rulebase is shown in Figure 5 and the FDTL
definition for d, one of the distance sensor readings, is shown in Figure 6 on the left
and the expression for the state of the “has_rubbish” detector is shown on the right
in Figure 6.

FDTL is a language in which fuzzy decision trees are described and a tool for
programming robots and intelligent systems. It contains a compiler that produces
ANSI standard C-code, which can be compiled to executable code in a variety of
platforms. The readability of the language is good, but the weakness is its difficult
use, which requires two steps in compilation phase.

36

Figure 5. FDTL Description for GC Rulebase.

rules
begin

GC
begin

if dmin==NEAR then ObstacleAvoidance;
if dmin==FAR then Goals;

ObstacleAvoidance
begin

if d1==VN and d2==VN and d3==VN and d4==VN
then Vleft:=NS and Vright:=NS;

if d1==VN and d2==NE and d3==NE and v4==VN
then Vleft:=PS and Vright:=PS;

end
Goals

begin
if energy<=20 and damage==’yes’

then go_to_charger;
if energy>20 and damage==’yes’

then go_to_service;
...
if energy>20 and damage==’no’ then do_jobs;

go_to_charger
begin
...
end

go_to_service
begin
...
end

do_jobs
begin

if hold_rub==’yes’ then go_to_bin;
if hold_rub==’no’ then go_to_rub;

go_to_bin
begin
...
end

go_to_rub
begin

 ...
end

end // end of do jobs
end // end of Goals

end // end of GC
end; // end of rules

37

// carry rubbish
numeric d symbolic hold_rub
{ {
 trapezoidal VN 0 0 80 120; // Very Near ‘yes’;
 triangular NE 80 120 160; // Near ‘no’;
 trapezoidal FR 120 160 255 256; // Far }

}

Figure 6. Examples of FDTL definitions.

2.3.2.7 PRS

PRS (Procedural Reasoning System) is a high-level Control and Supervision
language for autonomous robots [Ingrand et al., 1996]. It executes procedures,
plans and scripts in dynamic environments. The kernel of PRS is composed of
three main elements: a database, a library of plans and a task graph. The database
contains facts representing the system view of the world and is updated
automatically when new events appear. The information in database may be such
as the position of the robot, the container it carries, pointers to the trajectories
produced by the motion planner, the currently used resources etc. The database can
also contain predicates, which trigger some internal C code to retrieve their value.
Each plan in the library describes a particular sequence of actions and tests that
may be performed to achieve given goals or to react to certain situations. PRS does
not plan by combining actions, but by choosing among alternative plans/or
execution paths in a plan which is executing. Therefore this library must contain all
the plans/procedures/scripts needed to perform the tasks for which the robot is
intended. The task graph is a dynamic set of tasks currently executing. In a mobile
robot application, the task graph could contain the tasks corresponding to various
activities the robot is performing (one activity to refine its current mission, another
to monitor incoming messages from a central station giving orders, another one
managing the communication layer with low-level functional modules, etc).

An interpreter manipulates these components. It receives new events and internal
goals, checks sleeping and maintained conditions, selects appropriate plans
(procedures) based on these new events, goals and system beliefs, places the
selected procedures on the task graph, chooses a current task among the roots of

38

the graph and finally executes one step of the active procedure in the selected task.
This can result in a primitive action or the establishment of a new goal. In PRS,
goals are descriptions of a desired state associated to the behaviour to reach/test
this state. The goal to position the robot is written (achieve (position-robot 20 10
45)). This goal is satisfied if the robot is already located at this position. The goal
to test, if the robot is located in a particular position, would be written (test
(position-robot 20 10 45)). Finding out the current location of the robot can be
written using variables (test (position-robot $x $y $theta)). This implies that either
the database contains this information or there is a procedure to find out the
position. The goal to wait until the robot is ready to move could be written as (wait
(robot-status ready-for-displacement)). A “guarded” action (behaviour) is shown in
the next example:

(& (achieve (position-robot 20 10 45)) (preserve (~ (robot-status
emergency))))

This insures that robot status is not emergency during movement to the position
(20,10,45). The goal to maintain the battery level above 20% while executing a
trajectory is written:

(& (achieve (ececute-trajectry @traj)) (maintain (battery-level
0.200000)))

An example of a plan for long-range displacement with PRS is shown in Figure 7.

This language is able to run multiple tasks in real time. It can condense a lot of
information on a single command-line, but its readability is poor.

39

Figure 7. A Plan for Long Range Displacement with PRS.

2.3.2.8 GOLOG

GOLOG (alGOL in LOGic) is a logic programming language for dynamic domains
[Levesque et al., 1997]. The programs in GOLOG can be written at a high level of
abstraction and a GOLOG program is actually a macro, which expands during the
evaluation of the program to a sentence in the situation calculus. The world model
is dynamically maintained according to user-defined axioms about the
preconditions and effects of actions and the initial state of the world, and the
program reasons about the state of the world and considers the effects of different
actions before committing itself to a particular behaviour. The original GOLOG
language had several missing features that enabled implementations work only
with completely known initial situations without sensing handling and other
concurrent processes. To overcome these problems extensions to the GOLOG
language have been presented by [Grosskreutz and Lakemeyer, 2000]. With these

(defka |Long Range Displacement|
:invocation (achieve (position-robot $x $y $theta))
:context (and (test (position-robot @current-x @current-y @current-theta))

(test (long-range-displacement $x $y $theta @current-x
@current-y @current-theta)))

:body ((achieve (notify all-subsystems displacement))
 (wait (V (robot-status ready-for-displacement) (elapsed-time (time) 60)))
 (if (test (robot-status ready-for-displacement))
 (while (test (long-range-displacement $x $y $theta @current-x @current-y

 @current-theta))
 (achieve (analyze-terrain))
 (achieve (find-subgoal $x $y $theta @sub-x @sub-y @sub-theta)
 (achieve (find-trajectory $x $y $theta @sub-x @sub-y @sub-theta @traj)
 (& (achieve (execute-trajectory @traj))
 (maintain (battery-level 0.200000)))
 (test (position-robot @current-x @current-y @current-theta)))
 (achieve (position-robot @x @y @theta))
 else
 (achieved (failed)))))

40

extensions, cc-Golog and pGOLOG, it is possible to apply this system also for
mobile robots. An example of cc-Golog plan for a mobile robot is shown in Figure
8. The expression loop(σ) is a shorthand for while(true, σ). This task makes a robot
to “(1) deliver mail to the offices; (2) say ‘hello’ whenever it passes near Henrik’s
room; (3) interrupt its actual course of action whenever the battery level drops
below 46 Volt and recharge its batteries” [Grosskreutz and Lakemeyer, 2000].

Figure 8. cc-Golog Plan.

The first line in this plan means that the robot is waiting until the battery level
drops to level 46. At this point an atomic action grabWheels sets the fluent wheels
to false and the program deliverMail is blocked. When the task chargeBatteries is
completed the action releaseWhls will set the fluent wheels to true and deliverMail
may resume execution. The task deliverMail will make use of actions startGo(x,y),
waitFor(atDestination) and stop. Relations and functions whose truth values vary
from situation to situation are called fluents in ccGolog.

This language is powerful and it can handle concurrent tasks and events. The
readability of the plans in cc-Golog is fairly good, but it is far away from natural
language.

2.3.2.9 TDL

TDL (A Task Description Language for Robot Control) is a language, which is an
extension of C++ and contains means to create, synchronise and manipulate task
trees [Simmons and Apfelbaum, 1998]. It is based on three-tiered architecture,
which is common in a modern robot and is shown in Figure 9. The behaviour layer
controls the actuators and sensors. The executive layer translates abstract plans to
low-level commands, executes them and handles exceptions. The planning layer
specifies the mission at abstract level. The basic representation used in TDL is a

withPol(loop(waitFor(battLevel<=46,
 seq(grapWhls,chargeBatteries,releaseWhls)))),
 withPol(loop(waitFor(nearDoor6213,
 seq(say(hello),waitFor(nearDoor6213))))
 withCtrl(wheels,deliverMail)))

41

task tree and a TDL-based control program operates by creating and executing task
trees. Each node in a task tree has an action associated with it. The action can
perform computations, dynamically add child nodes to the task tree or perform
some physical action in the world. Actions can include conditional, iterative and
even recursive code.

Figure 9. Three-Tiered Control Architecture [Simmons and Apfelbaum, 1998].

The actions associated with nodes use current sensor data to make decisions about
what nodes to add to the tree and how to parameterise their actions. Thus, the same
task-control program can generate different task trees from run to run. TDL
contains a compiler that transforms TDL code into efficient, platform-independent
C++ code that invokes a Task Control Management (TCM) library to manage task-
control aspects of the robot. The robot action is thought to be formed of a set of
concurrent tasks such as moving, sensing, planning and executing etc. TDL gives
means to decompose a task, synchronise subtasks, monitor execution and handle
exceptions. An example of a task tree with related task definition is shown in
Figure 10.

A visual design tool (VDT) is also available for programmers to design TDL tasks.

42

Figure 10. Example Task Tree and Task Definition [Simmons and Apfelbaum,
1998].

Task definition with TDL looks like and is as readable as conventional C++
software. The real-time use of TDL is limited by the fact that it requires two
compilation phases.

In Table 3 the languages are mapped against the requirements of ILMR. The
numbers 1–12 stand for requirements and ‘+’ means that the requirement is
satisfied and ‘–‘ means that it is not. A blank space means that information is not
available.

43

Table 3. Mapping of languages against the requirements of ILMR.

1 2 3 4 5 6 7 8 9 10 11 12
ARCL + - - - -
ZDRL + - - -
MML + - - - -
RIPL + - - -
RCL + - - -
FDTL + - -
PRS + - - -
GOLOG + - -
TDL + - - -

It can be seen from the table that at least two of the requirements are not satisfied
by any of the languages.

2.3.3 Visual languages

2.3.3.1 Lingraphica

Lingraphica is a visual-language prosthesis which was meant to be used for robot
command and control in unstructured environments [Leifer et al., 1991]. This
method suggests that robot motion and task planning can be specified efficiently
and with a minimum of training using text-graphic primitives. This system support
communication through access to a Picture Gallery of linguistically and
situationally organised graphic objects. The thesaurus is divided into six categories:
actors, actions, placements, modifiers, things and other. Motion primitives in this
system contain such actions as rotation (about an axis), swinging (a door), turning
(a knob), and constrained motion (e.g., inserting an object into a slot) or moving in
a straight line.

With over 2000 pictographs even the uninitiated can define a task for a robot. It
could, however, be difficult to define the details of the task with pictures or at least
it could take a long time to find suitable pictures from the selection.

44

2.3.3.2 PILOT

PILOT (Programming and Interpreted Language Of actions for Telerobotics) is a
visual, imperative and intepreted language for mission programming in telerobotics
[Fleureau et al., 1995]. In PILOT the primitives are graphical boxes with symbols
that describe their effects. There are seven primitives available and they are
sequentiality, conditional, iterative, parallelism, pre-emptive, reactivity and
alternative. The first one means that the second action is started when the first one
is ended. The conditional primitive is used to make a choice according to boolean
variables or equations. The first item which is true generates the execution of the
associated actions. The iterative primitive generates a loop while a boolean
evaluation is false. The evaluation can be a mathematical comparison or a sensor
reading. The primitive parallelism starts n actions in parallel, but it terminates only
when all the actions are stopped. The pre-emptive primitive is used to stop
parallelism as soon as one action is finished. With the primitive reactivity the
mission can be stopped and it waits for the event given by the operator or a sensor.
The primitive alternative allows the operator to make a choice between actions. In
PILOT the following actions are modelled: Move(V), Turn(α), Detect L1,
Initialize, Siren, Detec line, Line-guiding(V) and Approach line(α,V). Where V
means velocity and α means angle.

This language is derived from the YALTA (Yet Another Language for
Telerobotics Application) [Paoletti and Marce, 1990] and is suited to planning
missions and modifying them during execution. It allows sequential and concurrent
actions execution and response to sensory events. The set of commands is too
limited but its readability is good. A mission designed with PILOT is shown in
Figure 11.

The Table 4 shows the mapping against the requirements of ILMR. At least two of
the requirements are not satisfied.

Table 4. Mapping of languages against the requirements of ILMR.

1 2 3 4 5 6 7 8 9 10 11 12
Lingraphica + - + - -
PILOT + - - +

45

Figure 11. A mission designed with PILOT.

2.3.4 Languages for agents

2.3.4.1 ESL

ESL (Execution Support Language) is a language for encoding execution
knowledge in embedded autonomous agents [Gat, 1997]. ESL has features from
other languages e.g. RAP and RPL. ESL was meant to be a powerful, flexible and
easy-to-use tool and in practise it is an extension of Common Lisp. Contingency
handling in ESL is based on the cognizant-failure approach. This approach
presumes that multiple possible outcomes of actions are easily categorised as
success or failure, and when a failure occurs, the system can respond appropriately.
The construct FAIL signals that a failure has occurred and WITH-RECOVERY-
PROCEDURES sets up recovery procedures for failures. A Cleanup Procedure is
called in ESL with WITH-CLEANUP-PROCEDURE construct and it is called
when any other procedure cannot deal with the situation. An example of ESL code
is shown in Figure 12. Three different recovery procedures for recovering are given
from widget failures. The third procedure will not give up until three retries.

46

Figure 12. An example of ESL code [Gat, 1997].

ACHIEVE and TO-ACHIEVE constructs can be used to decouple achievement
conditions and the methods of achieving those conditions. An event can be used to
synchronise multiple concurrent tasks in ESL in such a way that tasks signal each
other. A task can wait for several events simultaneously. When any of these events
is signalled, the task will become blocked. Multiple tasks can also wait for same
event simultaneously. The constructs for synchronisation are WAIT-FOR-
EVENTS and SIGNAL. There are also constructs for checkpoints, task nets,
guardians and property locks in ESL. The language ESL has been used to build the
executive component of a control architecture for an autonomous spacecraft.

This language seems similar to RAP and it supports multiple concurrent tasks. A
task can be waited-for or signalled in ESL and ESL provides a mechanism called a
checkpoint for signalling task-related events. It will keep a record of the event
having happened.

2.3.4.2 MRL

MRL (Multiagent Robot Language) is an executable specification language for
multiagent robot control [Nishiyama et al., 1998]. Physical robots and sensors are
regarded in MRL as intelligent agents and MRL concentrates on semantic level
communication between them. Each robotic agent has it’s own knowledge source

(defun recovery-demo-1 ()
(with-recovery-procedures
((:widget-broken

(attempt-widget-fix :broken)
(retry))

(:widget-broken
(attempt-widget-fix:severely-broken)
(retry)

(:widget-broken :retries 3
(attempt-widget-fix

:weird-state)
(retry)))

(operate-widget)))

47

for rules and procedures to perform tasks requested by an external agent. MRL
contains means for concurrency control, event handling and negotiation of the
agents. An agent in MRL can contain several sub-agents but only one super-agent
and thus the agent has two unique communication channels, one for super-agent
and another for sub-agents. An agent never sends a message to a certain sub-agent,
but sub-agents always check whether the message is available. The uppermost
agent, called the root agent, manages indirectly all the agents. An example of
applying MRL in co-operation between two robots is shown in Figure 13. The key
mechanism for co-operation comes from the following message:

do(<AgentID>,<Command>,<A list of variables for
synchronization>)

where variables are used for concurrency control between two robots.

The language MRL was tested with a multirobot system, which included four
manipulators, a vision sensor and a mobile camera. These objects were connected
to several workstations through serial interface. MRL was also applied to mobile
robots successfully according to [Nishiyama et al., 1998].

All programs with MRL were first compiled into KL1 language, which is a parallel
logic programming language designed in the Japan’s Fifth Generation Computer
Systems Project. KL1 programs were then compiled into C programs and these
executable programs were running in parallel UNIX systems and even DOS-based
computers.

This language enables concurrency control, priority control and negotiation but the
readability of the language is poor and it requires three compilation phases until the
code is executable in robots.

48

Figure 13. A co-operative program with two robots by MLR.

The Table 5 shows the mapping against the requirements of ILMR. At least three
of the requirements are not satisfied.

Table 5. Mapping of languages against the requirements of ILMR.

1 2 3 4 5 6 7 8 9 10 11 12
ESL + - - -
MRL + - - - -

49

2.3.5 Natural language control of robots

2.3.5.1 FSTN

In [Drews and Fromm, 1997] a natural-language approach for mobile service robot
control has been described. A language-processing unit has been realised and
installed in a wheelchair, which is equipped with a navigation and environment
control system. For the acoustic word recognition, a commercial software toolkit
(Dragon Tools) is used and the sampled word sequence is transmitted via a
wireless RS232 channel to an external PC, which is attached to the environment
control module. High-priority control for wheelchair like “Stop” are intercepted
and processed directly by the wheelchair CPU. The sentence is parsed by a finite-
state transducer network (FSTN), which checks the grammatical structure and
vocabulary. The output of the FSTN contains a formatted version of the sentence.
The database in FSTN contains grammatical word clusters like "noun", “verb”,
“negation” etc. In the next phase the formatted sentence is processed by the
transformation module. The sentence is split into the basic components
“instruction”, “intervention” and “question” and the splitting is based on the
recognition of the grammatical word pattern. These patterns are in transformation
database and can be adapted by the individual user. The environment database
describes all the objects, the possible activities linked to the objects and the
individual status information. The semantic database contains the terms describing
the individual objects. For example, the term “Switch off” implies that the
variables containing speed, light, steering etc. are all set to zero. When processing
missing information, like a sentence “No, the other” the system checks the context
memory to find missing data. The context memory is based on “last in first out”
structure. In case of no answer the question/answer module is initiated and the
question is generated. Finally a control sequence is generated and transmitted to the
controller. The system had a vocabulary of approximately 500 words and it
allowed navigation in home environment. The system worked well with simple
sentences, but there were problems when sentence formulation became more
complex.

This language is a good example of the solutions that we shall see in the future.
With this system even the uninitiated can control a mobile robot in a home
environment.

50

2.3.5.2 IBL

IBL (Instruction Based Learning) is a method to train robots using natural language
instructions [Lauria et al., 2001]. IBL uses unconstrained language with a learning
robot system. A robot is equipped with a set of primitive sensory-motor procedures
such as turn_left or follow_the_road that can be regarded as an execution-level
command language. The user’s verbal instructions are converted into a new
procedure and that procedure becomes a part of the knowledge that the robot can
use to learn increasingly complex procedures. With this procedure the robot should
be capable of executing increasingly complex tasks. Because errors are always
possible in human-machine communication, IBL verifies whether the learned
subtask is executable. If it is not, then the user is asked for more information.

IBL was evaluated in a miniature town (170 x 120 cm) with a miniature robot (8 x
8 cm) equipped with a CCD colour TV camera, a TV VHF transmitter and an FM
radio and image processing was done in an external PC.

The linguistic and functional data was collected using 24 humans to give
instructions to describe six routes from the same starting point to six different
destinations. A human operator in another room guided the miniature robot
according to given instructions seeing only the image from the robot’s camera. The
needed primitives were concluded from this data, and when a human specified a
nonterminating action, such as keep going, it was classified as move forward until.
The number of primitives was 14 and they are shown in Figure 14.

51

Count Primitive procedures

 1 308 MOVE FORWARD UNTIL [(past | over | across)<landmark> | [half_way_of |
end_of) street] | [after <number><landmark>[left | right] | [roab_bend]

 2 183 TAKE THE [<number>] turn [(left | right)] | [(before | after | at) <landmark>]
 3 147 <landmark> IS LOCATED [left | right | ahead] | [(at | next_to | left_of | right_of |

in_front_of | past | behind | on | opposite | near) <landmark>] | [(half_way_of |
end_of | beginning_of | across) street] | [between <landmark> and <landmark>] |
[on <number> turning (left | right)]

 4 62 GO (before | after | to) <landmark>
 5 49 GO ROUND ROUNDABOUT [left | right] | [(after | before | at) <landmark>]
 6 42 TAKE THE <number> EXIT [(before | after | at) <landmark>]
 7 12 FOLLOW KNOWN ROUTE TO <landmark> UNTIL (before | after | at)<landmark>
 8 4 TAKE ROADBEND [left | right]
 9 4 STATIONARY TURN [left | right | around] | [at | from <landmark>]
10 2 CROSS ROAD
11 2 TAKE THE ROAD in_front
12 2 GO ROUND <landmark> TO [front | back | left_side | right_side]
13 1 PARK AT <location>
14 1 EXIT [car_park | park]

Figure 14. Primitive navigation procedures collected from route descriptions
[Lauria et al., 2001].

A dialogue manager was designed to act as an interface between the user and the
robot manager. The robot manager intercepts new messages from the dialogue
manager while executing previous procedures. Three execution processes are
available in the robot manager: learn, execute and stop. If there is a corresponding
procedure for a given message, then an execute process starts. Otherwise a learn
process starts with instructions from the dialogue manager. The robot manager was
written using C and the Python scripting language.

These two languages are difficult to map against the requirements of ILMR. They
are mainly concentrated on high-level control and information was not available to
see how the middle level control was arranged. The basic idea in both languages
was, however, akin to the basic idea of ILMR. They both have means to control
robots with spoken natural language and they can be used by the uninitiated.

52

2.3.6 XML-based languages

XML (Extensible Markup Language) is based on SGML (Standard Generalized
Markup Language) and SGML is a meta-language that is used to describe markup
languages. HTML (Hypertext Markup Language) is one of SGML-applications,
that is designed to be a simple tagging language and what is currently used to show
text in web-browsers. XML contains the best points of SGML and HTML and it is
expected to replace them in the near future. [North and Hermans, 2001]

An XML-based language, RoboML, is designed to serve as common language for
robot programming, agent communication and knowledge representation
[Makatchev and Tso, 2000]. Elements for agent communication in RoboML are
set, get and subscribe, and each can have an optional attribute sender, receiver or
ontology. In RoboML the following container elements are defined for Hardware
ontology: robot, wheel, motor, sensor, controller, and so forth. These elements can
be specified by the name and the ontology attributes. An example RoboML
message from the AGV1 embedded agent to the MyInterface user interface agent is
shown in Figure 15.

Figure 15. RoboML message from AGV1 to the MyInterface.

53

For the robot programming, RoboML only gives the framework. Available
languages should be translated into RoboML.

RoboML is powerful with agent-based human-robot interfaces via the internet.
XML is supported by browsers, parsers, translators, browser plug-ins, and other
software components for XML are also available.

Another example of XML usage with robot languages is presented in [Kulyukin
and Steele, 2002]. They integrated voice-based natural language instruction and
action in the three-tiered robot architecture. The user’s instructions are first mapped
into strings. As the Automatic Speech Recognition (ASR) system freely available
Microsoft’s Speech Api (SAPI) 5.1 SDK is used. The grammar is defined for
recognition by XML Data Type Definition (DTD). Three used rules are shown in
Figure 16 and the executive layer is implemented with RAP system.

Figure 16. Rules with XML format.

The use of XML seems to be inevitable with mobile robots in the future when
communication is done via internet networks. An example of this is the IREDES
Initiative which is designed to be the common language in the mining industry.
IREDES means International Rock Excavation Data Exchange Standard and it is a
standard for electronic data exchange between rock excavation equipment and
central computer systems. IREDES is based on XML [WWW-reference 7].

54

2.3.7 Other related work

An interesting robot-language idea is described in [Yanco, 1992]. It shows how
two robots can learn a simple two-signal language using reinforcement learning.
Another robot receives auditive signals from humans and both robots can
communicate between themselves. A human operator can give two possible tasks
to another robot: both spin and both go straight. In a given sample run the desired
behaviour was learned after thirteen iterations. Another research of the same kind
is shown in [Billard and Hayes, 1997].

Other related works not discussed here are for example Humanoid Motion
Description Language [Choi and Chen, 2002], SPLAT (A Simple Provisional
Language for Actions and Tasks) which provides a language for defining robot
plans and control laws [WWW-reference 8], Supervisory Control of Mobile Robots
using Sensory EgoSphere [Kawamura et al., 2001], CURL (Cambridge University
Robot Language) the human-oriented robotic programming language [Dallaway
and Jackson, 1994] and Famous [WWW-reference 9].

2.4 Summary

Robot languages, considered above, can be classified according to several criteria.
They can be on-line or off-line languages, high-level or low-level languages,
compiled or interpreted languages, extensions to existing programming languages
or own novel designs and so on. Regardless of this classification the development
of robot languages has proceeded from simple direct motion commands via more
abstract languages towards the use of natural spoken language in robot control.

Some languages are very efficient and can condense a lot of information in a single
command. Such languages are for example PRS and GOLOG. It is, however, not
clear for a new reader what is meant by their condensed commands, and they are
dissimilar to natural language. The intermediate language, ILMR, described in this
thesis is not condensed but on the contrary is close to descriptive natural language
and is easy to understand and use. In the future the service robots are used also in
homes and commands are given with spoken natural language. A high level
planner interprets these commands into executable tasks in a robot. This is easier if
the robot language is akin to natural language as is the case with ILMR.

55

Several languages are such that task-giving requires many steps before the code is
executable by a robot, and even a slight modification of a task requires that all the
steps be done again. With compiled languages a new task should first be compiled
and then executed. In worst cases the task should be compiled first to one language
and then to another language and finally to executable code.

ILMR is an interpretative language that is most suitable for service and field
robots. New tasks can be given or stopped any time without any compilation phase.
The executable code for each command is at once available as soon as the
interpreter has created and started an object for each command.

These languages described earlier are operational and efficient in their original
applications, but their use in different applications requires a lot of work to
redesign tasks.

The sequential and concurrent execution control is usually arranged with special
commands to create a sequential or a concurrent task. With ILMR no special
commands are needed. It is concurrent by nature, and sequential tasks can be
arranged using a wait-command or conditional control structures. With movement
commands the sequential execution is automatic.

ILMR is not based on any particular existing robot or programming language, but it
has features from many languages. The control structures are similar to ones in
MATLAB and C, the use of scripts is origin from PRS, the wait-command is
similar to the waitfor-command in RAP. ILMR is meant to be an easy link between
the user or a higher-level planner and services and resources in a robot and to be
close to descriptive natural language.

The starting point for ILMR has been the need to have a simple robot control
language, which can be used with several robots and different higher-level planners
or other intelligent systems, and also the easy conversion of natural language
commands into the robot executable language. The primary need for ILMR was in
Workpartner-project.

56

3 Autonomous service and field robot

3.1 Subsystems of service and field robots

Service and field robots evoke in many of us androids and other human-like robots
from science-fiction books and movies. Intelligent and flexible robots that can
serve people doing any kind of task, might become a reality in the far future.
Today, we are at a stage where service robots are taking their first steps and saying
their first words. The current specialized robots can contain several intelligent
subsystems, artificial intelligence, vision, and they can even understand spoken
language, but we cannot associate intelligence and versatility with today’s robots.
On the contrary, they are stupid and can clumsily perform only simple tasks that
must be designed beforehand and that are restricted to only simple exceptions.
They cannot respond in unknown situations and do not know what to do.

Most mobile robots today consist of a set of subsystems. The combination of
subsystems is dependent on the application where the robot is used. The set of
subsystems, which is discussed in the following, is shown in Table 6. Each
subsystem is treated to such an extent that it is later possible to show how the
control language can be connected with it.

Table 6. Subsystems of a mobile field and service robot [Halme, 2003].

Power and energy system
Motion system
Motion control system (piloting system)
Navigation system
Perception system
Motion and action planning system
Man-machine interface and remote control system
Work tool system including manipulator

The power and energy system is indispensable in all robots. The energy source can
be incorporated into the device or energy can be supplied via a cable. Without any
cable the robot is free to move around, but operation time is limited by the capacity
of the energy source. An autonomous robot with a built-in energy source must have

57

a supervision system, which guides the robot to the recharging dock when the
energy capacity is low.

A service robot can be stationary in applications where movement is not necessary.
An example of a stationary service robot could be a robot playing a musical
instrument. However, most service robots are mobile, and they need a motion
system. Motion can be realised in many ways. Usually it is done with wheels in
even and easy environments. In somewhat more difficult environments a track
arrangement is useful. A more complicated way is the use of leg mechanisms. Legs
are useful in environments that are uneven or not easily accessible. Flying or diving
robots use propellers and propulsion motors. Ballast tanks or buoys can also be
used in underwater applications. It is also possible to use any combination of
means mentioned before to realise motion.

The motion control system, which is also called piloting system, is needed to
control the motion of a robot. The piloting system must know the kinematics of a
robot in order to control it correctly. The kinematics of a robot with wheels or
tracks are simple, but the leg system is much more complicated. In nature, there
are e.g. several modes how a four-legged horse moves, and these modes can also
be applied to a legged robot that tries to keep its balance.

The navigation system localises the robot in a local or global co-ordinate system,
but it is not necessary for a robot. The movement can also be behaviour-based or
random. For example in a robot soccer game, the location of a robot might not be
relevant information. The whole game could be based on three behaviours: get the
ball, avoid another robots, go to the goal with a ball. However, the tactics of the
game could be much more efficient with knowledge of the positions of all robots.
Usually the task is easier to describe and execute with location information. The
navigation system can be based on many different methods and a combination of
different methods. Dead reckoning is a usual way to calculate the location of a
robot. It means that the position of a robot can be calculated by integrating the
speed vector with respect to time. The position error, however, cumulates in this
method as a result of slipping of wheels or drift in sensors or many other reasons.
Therefore, another method is needed to correct the position error when it becomes
too high. This correction method can be based on a beacon system, vision,
landmarks and so on.

58

Some kind of perception system is indispensable in every robot. A robot cannot act
properly without sensors. Sensors are needed to sense the environment and the
internal state of the robot. Usually robots have at least sensors for location and
velocity measurements, actuator state measurements and collision detection. The
perception system can combine sensor data from different sensors and preprocess
data so that it can be used more easily within other systems.

The motion and action planning system is needed to interpret the intentions of the
user and translate them to low-level actuator controls and sensor measurements.
This system is the most demanding part of the whole robot. More intelligence here
means easier use. If the system is intelligent, the user can lie on a sofa and just say
“get me another beer”. If the system is less intelligent, the user has to say “Go to
the kitchen. Look around and look for the freeze. Go to the freeze and open the
door. Look inside and locate the beer. Take the beer and close the door. Come here
and give me the beer”. Given a still more simple system, the task description has to
have more precise details.

Human-Machine Interface (HMI) is ineluctable. Today’s robots cannot reason, so
they need instructions from the user. The typical tasks for HMI are mission
preparation and initialisation, monitoring of tasks and the state of the robot. An
important task for HMI is teleoperation. There are many situations which are
impossible for a robot to handle. In these cases the user can control the actuators
directly via HMI. The virtual reality technology can be used with HMI to enable
telepresence and thus make the control of robot easier [Yong et al., 1998].

If the service robot is meant to do something useful, then it needs tools with usable
manipulators and a work tool system which controls the manipulator and the tools.

3.2 Control architecture

Robots can be controlled in three ways. Control can be hierarchical, reactive and
hybrid. In the hierarchical control the robot updates the internal world model,
chooses appropriate action for the situation and executes it. This cycle is repeated
constantly. An example of hierarchical control architecture is NASREM [Albus et
al., 1987].

59

Figure 17. The principle of the NASREM architecture [Albus et al., 1987].

The principle of the NASREM architecture is shown in Figure 17. It is based on
three hierarchical lines of computing modules that are serviced by a
communications system and a global memory. The sensory processing modules
handle the sensory information and observe the external world. The world
modeling modules keep the global memory database current and consistent. Global
memory is a database that keeps the best estimate of the state of the external world.
The task decomposition modules perform real-time planning and task monitoring
functions.

The reactive control excludes the internal world model and connects perception
and action directly. The creator of a reactive or behavioural approach was prof.
Brooks [Brooks, 1986].

60

Figure 18. Subsumption architecture of a robot control [Brooks, 1986].

The task is decomposed into task-achieving behaviours in this architecture which is
called a subsumption architecture. This is shown at the top of Figure 18. Each slice
is implemented explicitly and finally all of them are tied together to form a robot
control system.

The control system is built using levels of competence. This is shown at the bottom
of Figure 18. First a complete robot control system which achieves level 0
competence is built. When it is working as well as designed it will not be altered
any more. This is the zeroth level control system. Next another control layer is
built. This first level control system is able to read data from the level 0 system and
it is also permitted to inject data to the internal inputs of level 0 suppressing the
normal data flow. The zeroth level continues to run unaware of the layer above it.
The same process is repeated to achieve higher levels of competence.

There is no need for a central control in behaviour-based architecture. The control
system is a set of agents that take care of their own world.

The hybrid control is a combination of both approaches. The three-tiered (3T)
control architecture is hybrid. It was explained in chapter two.

61

The control architecture of ILMR (see Figure 1) has features from both NASREM
and subsumption architecture. Behaviours such as obstacle avoidance obey the
rules of subsumption architecture. If an obstacle is found, the behaviour suppresses
the normal data flow from the position controller to the actuators and replaces it by
its own data flow. The task decomposition is, however, hierarchical as it is in
NASREM. The task and the goal are both more abstract at higher control levels
and the time scale is long at high level and short at low level. ILMR cannot be
based only on the subsumption architecture because planning is an important part
of it whereas NASREM is too heavy and complicated to be used as it is. That is
why the three level architecture has been selected to be the basis for ILMR.

The efficient control of a robot requires that the robot do things concurrently.
When it is moving, it should also be sensing. It should also plan and execute
concurrently. For example, when a robot approaches an object, it should sense the
orientation of the object and plan the final stage of an approach according to the
sensed orientation. It should also start to prepare the manipulator and gripper for
final manipulation whenever there is enough sensed information available. These
concurrent activities need to be scheduled and synchronised in order to co-ordinate
activities, and exceptions should be handled as well.

Several languages have been developed to solve these concurrent control problems
and some of them have been explained in chapter two.

3.3 Teaching, learning and skills

A simple way to teach a robot a new task is to show how it is done. This teaching
can be done for example by teleoperation. The user controls the actuators in the
robot directly and the robot records the inputs and outputs of the controllers.
Afterwards the robot can repeat the recorded actions when executing a task. The
recorded data can be processed after a teaching phase to smoothen the movements
of the robot. A taught task can be stored in a database as a new skill of a robot.

Learning in robotics is an intricate question. One extreme view would be that the
whole operation of a robot would be the result of continuous learning. One could
imagine that in the far future a robot could be built in a way that after construction
it knew nothing except basic information and it had the ability to learn. First it
learns to handle sensors and actuators, and then it learns skills according to user

62

information and by downloading information from other robots. Another extreme
view would be that learning could consist of adding shown and learnt tasks into a
task library. In practise, learning is today something between these two extremes.

A skill is an important thing for a robot and it can be for example a set of primitive
operations organized in a proper way with respect to the order of execution to reach
some abstract or concrete goal. A good control system for a robot is such that the
robot can widen its skills.

In Workpartner, which is another test case in this thesis, all intelligent features are
located in a planner, which is responsible for the decomposition of the intentions of
the user into subtasks and monitors their execution with means of ILMR. The co-
operation between the planner and ILMR is handled later in chapter 4.6.

3.4 Control of an autonomous service and field robot

As mentioned before, a robot cannot reason. Thus there must be a system that
enables the user to control and command the robot. In this chapter the control of a
robot is examined from bottom to top.

3.4.1 Low-level control

An autonomous robot contains a set of actuators and sensors. Each of them
contains a driver for detailed operation. A suitable controller can also be included
in a driver to entail meaningful actions. For example a speed controller gets a
desired speed value as a reference value. It reads the current speed with a sensor
and using a suitable algorithm it adjusts the voltage or current for wheel-motors to
reach the desired speed.

A low-level control (LLC) of a robot contains drivers and controllers for all sensors
and actuators, and it is unique for each different robot. A low-level control contains
also an interface which enables upper levels to communicate with it. This interface
can be, for example, a set of C-functions, a low-level language or a message-
exchanging system.

63

Teleoperation of a robot could have direct access to low-level controllers, but it
could also be arranged through a middle-level control.

3.4.2 Middle-level control

Above a low-level control there is a control level that enables the execution of
behaviours, primitive actions and supervision of a robot’s subsystems. This middle-
level control (MLC) or execution control is usually implemented using a suitable
robot language.

A robot language enables users or AI-systems on higher control levels to use all
available resources and services in a robot. Behaviours and tasks can be activated
and disabled through a robot language, and task definitions can be given with
control structures of a robot language.

This level already contains some autonomous actions, which can be regarded as
reflexive functions. They can be compared with reflexes in a human body. They
are used, for example, to monitor the balance, energy level and excess of maximum
load in a robot and respond with adequate actions when needed.

The type and quality of a language used here has an effect on the usability and
versatility of high-level control.

3.4.3 High-level control

The most demanding part of a robot control is the high-level control (HLC). A
motion and action planning system in Table 6 can be regarded as a high-level
control. The task of a HLC is to decompose the intentions of the user into subtasks
and monitor their execution. A HLC can also contain artificial intelligence (AI)
which enables independent decisions, and even complicated tasks can be carried
out even without any intervention of a human being.

All intelligent features such as learning, reasoning and concluding belong to this
level and they form the most important part of intelligent robot control in the
future.

64

An important subsystem to be used with a HLC is a HMI. It enables the user to
give instructions or commands to the robot. Commands can be given for example
via keyboard, sign language or natural language.

During the last few years the interest of using natural language for training
personal robots has increased [Lauria et al., 2002], [Lopes and Teixteira, 2000].
The process of understanding instructions in spoken English can be divided into
four subtasks according to [Lauria et al., 2002]. These subtasks are speech
recognition, linguistic analysis, ambiguity resolution and dialogue updating. Using
a natural language we can express rules and command sequences that even contain
symbols. Thus it is well suited to interaction with robots that use symbols and rules
to represent knowlegde as well. Using a natural spoken language even the
uninitiated can instruct robots to adapt to their particular needs.

A HCL presumes that there is a lower level control in a robot that can execute
given subtasks. When a MLC is implemented in a way that is close to natural
language, then the co-operation between HLC and MLC is easier.

65

4 Intermediate language for mobile robots
(ILMR)

4.1 Structure of ILMR

ILMR is a way to translate a high-level task description for a mobile robot to low
level actuator controls and sensor measurements. Using ILMR the user can easily
design a new task for a robot simply by writing a list of English action-describing
words. The main principle in development work has been simplicity and ease of
use. Neither any deep knowledge of robotics nor good programming skills are
required when using ILMR. Using ILMR a simple task is given descriptively as if
it would be given to another person. An example of a simple task with ILMR is
shown in Figure 19. It contains three commands, which all are in fact subtasks
learnt beforehand. The structure of subtasks is shown on the right in Figure 19.

Figure 19. A simple task with ILMR.

When the interpreter in ILMR gets the string Go_to_the_mail it searches for a
subtask named Go_to_the_mail and if it is found then associated commands are
created and executed. No compilation is done, only parameters for commands are

66

examined, and commands are at once ready for execution. The subtask
Take_my_mail contains also another subtask take_the_mail.

Below, in Figure 20, is an example of a more complicated task given in ILMR. It
contains also control structures which are described in the following.

Init()
Turns = 0
Obsavoid(on)
While(Turns<2)
 MyDoor=sensor(scanner,door)
 Wait(MyDoor)
 Speed(0.3)
 Gotoxy(MyDoor)
 Ok=Turn(right)
 If(Ok)
 Speed(0.6)
 Followwall(middle)
 Door=sensor(scanner,door,left)
 If(Door)
 Break(Followwall)
 Record(ToDoor)
 Speed(0.3)
 Turn(Door)
 Turn(left)
 Goahead(3)
 Over=Takebox
 Wait(Over)
 Record(close)
 Speed(-0.3)

 Followpath(ToDoor,backwards)
 Turnok=Turn(d=-90,c=1)
 Wait(Turnok)
 Speed(0.6)
 Followwall(middle)
 Door=sensor(scanner,door,left,forever)
 If(Door == MyDoor)
 Break(sensor)
 Speed(0.3)
 Turn(Door) // or Turn(MyDoor)
 GoReady=Goahead(3)
 Wait(GoReady)
 Speed(-0.3)
 Turn(d=180,c=1)
 Turns = Turns + 1
 EndIf
 EndIf // Door
EndIf // Ok
EndWhile
Battery=sensor(battery)
If(Battery<LowBattery)
 Priority=Highest
 Go_Charger
EndIf

Figure 20. An example task description by ILMR.

In this task a robot is asked to bring two boxes from another room. In the following
the action of every command in this example is explained.

Init() initialises the robot and all subsystems and sensors; the task will not continue
until Init() has finished.

Turns=0 is a variable statement. A variable named Turns is initiated with a value 0.

ObsAvoid(on) means that the robot’s obstacle avoidance behaviour has been
switched on.

67

While(Turns<2) starts a repetition loop, which ends when the variable Turns gets
a value 2.

MyDoor=sensor(scanner,door) means that the robot starts to look for a door
using a sensor scanner. Both scanner and door have been explained in a model of
the robot, which contains parameters for each robot, sensor and object. Scanner in
this case means a laser-scanner and a door means an opening, whose width is
0.8–1.2 m. When the door has been found, its parameters will be stored in a
variable MyDoor and the command sensor will terminate.

Wait(MyDoor) waits until the door has been found. No further commands in
current command block are executed before the command wait has terminated.

Speed(0.3) sets the speed value for the robot. Here the value is 0.3 m/s.

Gotoxy(MyDoor) moves the robot to the door which has been found.

Ok=Turn(right) moves the robot to the right following an arc segment of a default
circle, which is predetermined by maximum curvature of a robot. The scanner
readings are also used to check that a turn is possible. If it is not, then a new, free
path to the right is determined according to scanner readings. When the turn has
been done, the variable Ok gets a value 1, which can be used in the following
command.

If(Ok) starts a conditional command block, which is executed when the statement
inside the brackets is true. The conditional command block will end with a
command EndIf.

Speed(0.6) sets a new speed value (0.6 m/s) for the robot.

Followwall(middle) moves the robot along the corridor in the middle.

Door=sensor(scanner,door,left) will start to look for a door on the left side of the
robot. This command is executed simultaneously with the previous FollowWall-
command. When the door has been found, the command block between the
commands If and EndIf will activate.

68

If(Door) starts a new conditional command block which will be executed when the
variable Door is true (or its value is 1).

Break(Followwall) will terminate the command Followwall.

Record(ToDoor) will start recording the robots position to the file ToDoor.

Speed(0.3) sets again the speed value (0.3 m/s) for the robot.

Turn(Door) moves the robot in the middle of the door opening.

Turn(left) behaves the same way as previously explained Turn(right).

Goahead(3) moves the robot 3 meters ahead.

Over=Takebox is not an elementary command, but it is a subtask learnt
beforehand. It is in fact a list of elementary commands or subtasks. When subtask
Takebox is over, the variable Over gets a value 1.

Wait(Over) waits until the variable Over gets the value 1.

Record(close) stops position recording.

Speed(-0.3) means that the robot will move to the reversed direction.

Followpath(ToDoor,backwards) moves the robot to the door backwards along the
recorded path.

Turnok=Turn(d=-90,c=1) reverses the robot to the right 90 degrees using a value
1.0 for curvature (which is equal to 1/(radius of turning circle)). Here the
parameters for command must be precise since there is no scanner pointing
backward in the robot. When the turn has been done the variable Turnok gets a
value 1.

Speed(0.6) sets again the speed value 0.6 m/s for the robot.

Followwall(middle) makes the robot to move in the middle of the corridor.

69

Door=sensor(scanner,door,left,forever) is the same as before, but the last
parameter tells that the command will not terminate when it finds a door. When a
door has been detected the command will start to look for another door and the
same will continue forever. The parameters of the last found door is available in
the variable Door.

If(Door==MyDoor) compares if the door is the same as MyDoor. When the
comparison is true then the following command block will activate.

Break(sensor) terminates the sensor-command.

Speed(0.3) sets again the speed value 0.3 m/s for the robot.

Turn(Door) turns the robot to the middle of the door opening. The variable
MyDoor could have been used instead of Door.

GoReady=Goahead(3) moves the robot 3 meters ahead.

Wait(GoReady) waits until Goahead(3) is ready.

Speed(-0.3) sets the speed value -0.3 m/s for the robot.

Turn(d=180,c=1) turns the robot to the left 180 degrees.

Turns = Turns + 1 increments the variable Turns.

The following EndIF and EndWhile commands close the corresponding
command blocks.

Battery=sensor(battery) reads the battery voltage and stores it to the variable
Battery.

If(Battery<LowBattery) compares the voltage with predefined value LowBattery,
which has been defined in the model description of the robot.

It should be noticed that in this command block level, there is no wait or
conditional command that could block the execution of these two commands, and
so this comparison is executed continuously.

70

Priority=Highest means that the following command is executed immediately and
all other commands are prohibited.

Go_Charger is a learnt skill, which drives the robot to the charging station
regardless of its position and status.

4.2 Control architecture

As it was said in chapter 1.2, ILMR is based on a three-level control architecture
(see Figure 1). LLC handles the sensors and actuators and other subsystems of the
robot. MLC enables the execution of behaviours, primitive actions and supervision
of robot’s subsystems. The algorithms of ILMR are running at this level and a
robot-dependent intermediate process is used to connect ILMR to a certain robot
environment and HLC. The task of a HLC is to decompose the intentions of the
user into subtasks and monitor their execution.

4.2.1 Intermediate process

The intermediate process is simply a process that somehow receives commands
from somewhere and sends them to the language process. It also transmits sensor
and actuator requests from the language process to suitable processes in a robot.
Also some simple calculations that are dependent on a certain robot are done as a
part of this process. At the moment, there are two different intermediate processes
available. One is for VTT’s test vehicle MoRo and another is for WorkPartner. The
detailed description for these robots is given in the chapter 5.

In WorkPartner the intermediate process is called pilot. When the process pilot is
started, it will immediately start the process kokis_0, which is the actual language
process. The word kokis comes from the Finnish words KOmentoKIeli Sisäinen,
which means in English Internal Commanding Language. The user interacts never
directly with kokis_0, everything is done through pilot and kokis_0 is in a way
invisible to the user. The commands in WorkPartner can be given in process
manager, in which they can be written directly using the keyboard. The process
manager sends commands to the pilot with qnx-messages as shown in Figure 21.
Other processes can also send commands to the pilot in the same way.

71

When commands for Workpartner have been given via a graphical user interface,
they will be sent first to the manager, which in turn sends them to the pilot.

message msg,rmsg;
char* s = “LocMode(automatic)”;

int ptu_pid=qnx_name_locate(0,”pilot”,0,0);
msg.sender=ID_MGR;
msg.type=MSG_PILOT;
for(int i=0;i<strlen(s);i++) msg.data[i] = s[i];msg.data[strlen(s)]=0;
Send(ptu_pid,&msg,&rmsg,sizeof(msg),sizeof(rmsg));

Figure 21. An example of code for sending a message to process pilot in
Workpartner.

The process pilot returns immediately giving information about the success of the
command. If the command was correct, then rmsg.data[0]=0, and if there was an
error, then rmsg.data[0]=1.

The process pilot also calculates the position of Workpartner-robot using dead-
reckoning techniques via equations (1). Dead-reckoning calculation is done at 10
Hz. The navigation subsystem of Workpartner updates the position of the robot at 2
Hz. When a new position infromation is available the dead-reckoning position is
also updated.

() ()[]
[] []()

dshyy
dshxx

dhhh
coldlegnewlegcoldlegnewlegdh

cioldleginewlegds
i

)sin(
)cos(

)0(_)0(_)1(_)1(_tanh

__
3

0
4
1

+=
+=
+=

−−−=

−= �
=

(1)

where c is a coefficient to convert pulse counts of wheels (leg_new and leg_old) on
legs into meters. The robot’s posture is defined by (x,y,h), where h is the heading-
angle.

72

4.2.2 Internal language process

The core of the language process can be divided into three main parts. One is the
shared memory, which is used to transmit information between the language and
the intermediate processes. The second is the interpreter, which checks the
grammar and parameters of a new command and creates a runnable object for each
command. The third part is a vector which contains all created command objects
and a loop in which the vector is manipulated. Naturally, there are additional
commands which all are inherited from the base class command.

4.2.2.1 Shared memory

The communication between the internal language process and an intermediate
process is arranged asynchronously by using shared memory. Shared memory
contains fields for sensory data, language, command, command status and message
data. Each field is a C++ class that contains information and methods to read and
write that information. Figure 22 shows the most important variables for each class
and in Figure 23 the C++ source code for the MessageClass is shown. This is the
only information needed to transfer between the internal language and an
intermediate processes. The communication is asynchronous. When new sensory
data is available in the intermediate process, it is written to shared memory. When
the internal language process needs a sensory data it checks if that data is available.
If it not it will be checked again during the next cycle of the command loop
otherwise it is read and used. The command loop is explained in chapter 4.2.2.2.
Similarly when the internal language process has data to be transferred to the robot
or the user it is written to shared memory and read in the intermediate process and
delivered to the right destination. The data flow chart of ILMR is shown in Figure
24.

SensorData in Figures 22 and 24 contains information about the robot.

73

Class Most Important MemberVariables

SensorData x_pos, y_pos, h_pos, speed, distance
targ_x, targ_y, targ_a, targ_w
ptu_angle, scanner_angle, scanner_dist
scans

ILMRData msgdata[100]

CmdStatus status,error,msgData[100]

CmdsData msgData[1000]

MessageData msg[100]

Figure 22. Member variables for shared memory classes.

Figure 23. The class MessageData of ILMR.

74

Figure 24. The data flow chart of ILMR.

When the intermediate process has been started, it will first create an object
instance of shared memory, and second it will start the language process, which
also will be linked to the shared memory object.

4.2.2.2 Interpreter

When the language process is activated it will first read the robot environmental
model. Second it will create an interpreter object and the vector for command
objects, and finally it will start an everlasting loop. The pseudo-code for this loop is

75

shown in Figure 25. In this loop a new possible command is first checked from the
shared memory. If something is found, it will be sent to the interpreter.

When the interpreter receives a string, it first checks if a string contains a variable
statement. In case of a new variable is encountered, it will be created, and
otherwise the old variable will be used and the given operation will be linked to it.
If it was not any variable statement, e.g. Counter = 1, then the interpreter will
check if it was a new command. In case of a new command, its parameters will
also be checked. If the string will pass these checks, a new command object will be
created and appended to the command vector. If the string contains no variable
statement or commands, the interpreter will check if it is a subtask learnt
beforehand. If a subtask is found, it will be checked and any found commands will
be appended to the command vector. If this is not the case, an error message is sent
to the intermediate process.

Figure 25. Pseudo-code for the command loop.

The flow chart in Figure 26 shows how a new command is handled in ILMR.

There is no parser available at the moment for ILMR, but it is possible to validate
the grammar of the task with the elementary commands check and checkend. If the
task to be validated is put in between the words check and checkend, the interpreter
will check the grammar and give the error messages, if there are any, but will not
create executable objects for commands.

While(1)
{
 if(newcommand(cmd)) interpreter(cmd,list);
 Command *cmd;
 for(i=0;i<list->entries;i++)
 {
 cmd = list->find(i);
 status = cmd->run(state);
 if(status==READY) delete(cmd)
 }
 check_robot_status();
}

76

Figure 26. The flow chart of the interpreter.

4.3 Concurrent and sequential execution

The basic element in ILMR is a command block. Command blocks can exist on
different levels and command blocks on the same level are executed concurrently.

77

Usually when commands are given one after another, they belong to same
command block level, and are therefore executed concurrently. When a movement-
command is running, it is, however, not allowed to run another movement-
command and the execution of a movement-command does not begin until the
previous movement-command is terminated. Other commands after and before the
blocked movement command are however executed. Command blocks on the same
level can be distinguished from each other with an empty command and an empty
command can be created by giving an empty line to the interpreter.

Command blocks inside each other can be created using if- and while-commands.
With a wait-command it is also possible to create a sequential execution flow. The
example in Figure 27 contains both sequential and concurrent execution.

obsavoid(on)
d=followwall(middle)
cnt=0
while(cnt<5)

door=findtarget(scanner,door)
if(door)

cnt=cnt+1
claps=0
while(claps<2)

clap_hands
endwhile

endif
endwhile
if(cnt==5)

break(followw)
break(while(c)

endif
ready=gotoxy(door)
if(d>10)

shake_head
endif
wait(ready)
make_a_bow

battery=sensor(battery)
if(battery<24)

goto_charger
endif

Figure 27. An example of concurrent and sequential execution in ILMR.

78

First obstacle avoidance is switched on. It is a behaviour that is executed
continuously when the robot is moving. Next the robot starts to follow walls in the
middle of the corridor. At the same time it is looking for doors, and if a door is
found, the robot will clap its hands twice using a skill learnt beforehand. If the
travelled distance is more than 10 meters, then the robot will shake its head once
using another skill learnt beforehand. If the door found was the fifth door, then the
followwall- and while-commands are terminated, and when the while-command is
terminated, then all commands inside the while-block are also terminated. When
the command followwall is terminated, it will allow the command gotoxy(door) to
run. The last command is blocked with a wait-command, and it is executed as soon
as the command gotoxy(door) is terminated. Finally, the robot will make a bow
using a skill learnt beforehand. Concurrently the battery level is checked, and if it
is below 24 V, then the robot starts a skill goto_charger that has been also learnt
beforehand.

Some languages (e.g. GOLOG) contain special commands to create a sequential or
a concurrent execution flow. This is however not needed in ILMR. The basic idea
is that everything is concurrent except movement commands that are sequential by
nature. Sequential execution can be arranged in a natural way using the conditional
command “if” or by waiting until the previous command is ready using the wait
command.

ILMR contains also a reserved word PRIORITY which is used only when a block
needs to be run immediately. Then the first command in that block should be
PRIORITY = HIGHEST. If that block is executed, then all other command blocks
are terminated.

The obstacle avoidance is arranged as a subsumption behaviour in ILMR. If it is
switched on, then the trajectory in front of the robot is checked in view of obstacles
any time when an updated environmental map becomes available. This happens at
a rate of 2–4 Hz. If an obstacle is found, then the output from any other movement
command is suppressed and the obstacle avoidance algorithm controls the
movements of the robot. The executable movement command does not know about
obstacles and its execution continues unchanged as before encountering obstacles.
It uses the current position of the robot and tries to move the robot back to the
trajectory. If the obstacle disappears, then the current movement command drives
the robot back to the trajectory after a security wait.

79

4.4 Elementary commands

In ILMR there is a set of elementary commands that can be used directly to control
a robot or to construct new, more intelligent features for a robot. At the moment
there are 33 elementary commands available in ILMR and the set of used
elementary commands is shown in Table 7. In addition to this set of commands,
there are also means of handling variables in ILMR.

Table 7. The set of elementary commands in ILMR.

Define Movement Action Control flow
MoveMode Goahead Sensor If – EndIf
LocMode Turn FindTarget While – EndWhile
Speed FollowPath Actuator Break
BodyPose FollowWall Manipulate Stop
Locate FollowTarget Init Cont
AdvanceStop GotoXY Wait
ObsAvoid GotorelXY Check
Record Approach Checkend
Use Clear
Savepos
CreatePath

It is desirable that the set of commands remain as condensed as possible.
Therefore, the chosen commands are such that with them all kinds of movements
are possible and all features of the used robots can be used. These commands can
also be used to build new commands for a robot as a new skill.

It is possible that in the future there will arise needs for new elementary commands
from different robot applications.

All of the elementary commands are inherited from the base class Command and
the definition for that class is shown in Figure 28.

Each of elementary command classes inherits all the methods shown in Figure 28.
The four virtual methods are overridden with suitable methods in each command
class. As an example the definition for the class GotoXY is shown in Figure 29. The
number and type of parameters for the constructor-method in each elementary
command class can be individual, but the reset- and run-methods have always only
one integer-parameter so that calling them is similar in all cases.

80

The original idea was that a thread would be created for each command so that they
could be run concurrently. Unfortunately the threads were not available in the
QNX-operating system used, and so another solution was used.

#include "cmdid.hpp"

class Command
{

public:
virtual Command(){};
virtual ~Command(){};
int virtual reset(int)=0;
float virtual run(int)=0;
int isMovement() {return movement_cmd;}
String cmdLine;
float getRet() {return ret;}
short getCmdID() {return cmdID;}

protected:
int movement_cmd;
short cmdID;
float ret; // return value
int done;

};

Figure 28. The base class Command in ILMR.

All the created commands will be appended to the command vector and their run-
method is called repeatedly in a loop as shown in Figure 25. To ensure a quick
response to signals and other exceptions the structure of run-methods must obey
certain rules. The basic structure for a run-method is shown in Figure 30. Usually
when the command is ready, its object will be destroyed, but in some cases it will
be left to wait for further use. That is the reason for the first line (if(done)
return EPSILON;) where EPSILON is a positive number near zero. Then the
current time is checked, and if more than 100 ms has been elapsed, then the
calculation phase is done. The calculation phase cannot be time-consuming. If it is,
then it shoud be divided into several subphases that are executed during successive
run-method calls and in that case the time period 100 ms can be shorter. If the
command is ready, it will return –1, and the command object will be destroyed.

The run-method of each command is called at 100 Hz, and for that reason their
execution can be viewed as concurrent in practice. The interpreter creates and starts
a new command in 2 ms and so a new command given during the execution of
other commands will not disturb the concurrent execution of commands.

81

#include <fstream>
#include <time.h>
#include "io.hpp"
#include "command.hpp"
#include "variable.hpp"
#include "traj.hpp"
#include "posc.hpp"

#ifndef GOTOXY_HPP
#define GOTOXY_HPP

class GotoXY : public Command
{
 public:
 GotoXY(IO*, Variable*, Variable*, float, float, float, int, String
);
 virtual ~GotoXY();
 virtual int reset(int);
 virtual float run(int);
 float new_run(float,float,float);

 private:
 IO* myIO;
 Traj* trajec;
 Posc* positionController;
 Variable* my1Variable;
 Variable* my2Variable;
 int useMyVariable, updateMyVariable;
 int point, reverse, reverse_going, reverse_ok, first_xy;
 float start_x, start_y, start_h, end_x, end_y, end_h,
 rev_h, cur_h, t_rev, cur, tn, to, _left;
};

#endif

Figure 29. The class GotoXY in ILMR.

If the command is a movement-command and the state is RESERVED, it means
that there is already a movement-command running and it is not allowed to run
another movement-command.

The method reset is used to initialize the run-method to be as it was after creation.

82

float SomeCommand :: run(int state)
{
 if(done) return EPSILON;

 tn=clock()/(float)CLOCKS_PER_SEC;
 if(tn-to<0.1) return _left;
 to=tn;

 if(first)
 {
 if(movement_cmd && state!=IDLE) return 100;
 state = RESERVED;
 first = 0;
 // initialization
 }

 // calculations
 if(io->shamsg->sensor->newSickdata())
 {
 …
 _left = …
 }
 if(_left<=0)
 {
 done = 1;
 state = IDLE;
 this->ret = _left;
 return –1;
 }
 return _left;
}

Figure 30. The structure of a run-method.

4.5 Command categories

The elementary commands can be divided into four categories. The first category
Define contains commands that can be used to switch behaviours on or off and set
a mode for a subsystem in a robot. If a robot is stationary and some of define-
commands are given, the robot will do nothing. The effect of any define-command
will be shown only when a robot is moving. The only exception is the command
BodyPose, which controls immediately the posture of the robot. The second
category Movement contains commands which actually move the robot. The third
category Action contains commands that handle sensors, actuators and other
equipment of the robot, and the fourth category Control flow contains commands
that are used to control the execution of other commands.

83

Only two of all commands obey the subsumption architecture. ObsAvoid and
AdvanceStop suppress the output from other movement commands and replace
them with their own data flow. Other commands can be compared to levels E-
MOVE and PRIMITIVE in the NASREM architecture. The replanning intervals at
these levels are accordingly 200 ms and 30 ms. The commands of ILMR, however,
do not obey the structure of NASREM. Only the command FollowTarget have
some features from NASREM since it requests services from sensors all the time.

At the moment, most commands handle the movements of the robot, which are
mainly generic for different robots. In the future, the commands for manipulators
will be added, but now ILMR has no algorithms for manipulations. It only triggers
the sequence of manipulation, which is controlled by an external control process
and acknowledges the calling software or the user when the manipulation is done.
Anyway, there are means in ILMR to control directly the individual actuators in a
manipulator, and it is possible to construct manipulator skills using these
commands.

To work properly, ILMR needs a simple model of the robot and its sensors and
actuators. The model structure is shown in Figure 31. The HARDWARE section has
three parts. The part ROBOT contains all necessary information about the robot
such as dimensions, maximum speed and so on. The part SENSORS contains the
description for each sensor and the part ACTUATORS contains the description for
each actuator. The SOFTWARE section has also three parts. The part OBJECTS
contains the identifiers and definitions for each recognizable object. The part
IDENTIFIERS contains user defined identifiers which can be used with ILMR
commands. The part PARAMETERS contains user defined default values for
certain behaviours of ILMR.

84

Figure 31. The model of the robot and software parameters in ILMR.

This model has critical meaning for ILMR, because it is used in algorithms and it is
assumed that the model is sensible.

In the following chapters each command is explained in detail with examples. It
should be noticed that commands can be given either in upper-case or lower-case
letters or any mixture of them. The commands and parameters are expressed using
the BNF-notation (Backus Naur Form).

4.5.1 Define commands

Define commands are useful when a user wants to set a certain mode for a robot or
switch on or off some behaviours in the robot. Some of the commands are such that
their run-method is called only once, while others are such that their run-method is
called repeatedly forever.

MoveMode() is used to select a mode for movement in a robot. The robot
Workpartner is used as an example for this command. For another robot the

85

parameters could be as well swim, run and fly. These modes are given in the part
identifiers of the robot model.

Movemode ::= movemode “(“ mode “)”
mode ::= wheels | rolking | parking

Parameters wheels Workpartner acts as an usual vehicle with wheels
rolking Workpartner slides its legs along the ground
parking all joints and actuators are locked

Example movemode(wheels)

Description This command sends a message to the locomotion process loco,
which controls the movement of WorkPartner and as a result
WorkPartner will change its mode.

LocMode() is used to select a navigation mode for the navigation process. These
modes are given in the part identifiers of the robot model.

Locmode ::= locmode “(“ mode “)”
mode ::= automatic | scanner | gps | odo

Parameters Automatic mode is selected automatically according to situation
Scanner laser-scanner map is used for navigation
Gps gps-satellite positioning is used
Odo only odometry is used for navigation

Example locmode(odo)

Speed() is used to set speed for a robot.

Speed ::= speed “(“ value [“,w”] “)”
value ::= number | variable
number ::= <a real number in range – max_speed…max_speed [m/s]>
variable ::= letter {letter | digit}

Parameters w the command is not executed until the current
movement command has terminated

86

Description Without a speed-command a robot uses the default speed that is
defined in the robot model. This command can be given any time
and it will be executed immediately. It must be noticed, however,
that a robot will not move using only this command. It only sets the
value for the speed to be used in current or next movement
command.

Example speed(-0.5), speed(-0.6,w)

BodyPose() is used to set values for the robot’s orientation.

Bodypose ::= bodypose “(“ setting {“,” setting} “)”
setting ::= sel “=” value
sel ::= “r” | “p” | “rc”
value ::= <real number in defined range>

Parameters r roll-angle of the robot (-30 … 30 degrees)
p pitch-angle of the robot (-30 … 30 degrees)
rc road clearance in meters (0…1)

Example bodypose(r=10,p=20,rc=0.5)

Locate() is used to initialize the coordinate system for desired position and heading
values. It can also be used to ask the current posture information.

Locate ::= locate “(“ (x-value “,” y-value “,” h-value “) | “x”|”y”|”h”)”
x-value ::= <real number in meters>
y-value ::= <real number in meters>
h-value ::= <real number in degrees (-180 … 180)>

Example locate(2.5,7.8,180), x=locate(x)

Description This command sends a new posture value for dead-reckoning
procedure in an intermediate process.

AdvanceStop() will affect only during the following movement command and it
will stop the robot before the destination.

87

Advancestop ::= advancestop “(“ distance “)”
distance ::= <real number in meters>

Example advancestop(1.0)

ObsAvoid() is used to select a behaviour for a robot when it encounters an
obstacle.

Obsavoid ::= obsavoid “(“ mode “)”
mode ::= on | off | stop

Parameters on obstacle avoidance is active
off the robot ignores obstacles
stop the robot will stop when an obstacle is detected

Example obsavoid(on)

Definition The algorithm for this command is explained in chapter 4.5.7.

Record() starts to record a robot's position to the file which is given by a parameter.
Recording can be stopped at any time by giving a command record(close).

Record ::= record “(“ filename | close “)”
Filename ::= letter {letter | digit}

Example record(path_1), record(close).

Use() command is used to tell the robot to use the last goal position as a new start
position when starting a new movement command.

Use ::= use “(“ abspos | goalpos “)”

Parameters abspos the robot’s current position is used
goalpos the last goal position is used

Example use(goalpos)

88

Definition With the parameter goalpos the trajectory for the next movement
command is not calculated from the current position but from the
destination position and orientation of the previous movement
command.

SavePos() command is used to save the current position to be used later.

Use ::= savepos “(“ name [“,”device] “)”
name ::= letter {letter | digit}
device ::= letter {letter | digit}

Parameters name the name for the stored position
device the name for the pointing device to be used to show

positions for a robot

Example savepos(pos1), savepos(pos2,laser)

Definition With only one parameter the robot's current position is stored. The
other parameter is used to select device for which the position is
stored. It can be e.g. a laser that is defined in the robot model. When
the parameter laser is used, the position of the place where laser
beam hits is stored.

CreatePath() command is used to calculate a path that follows given co-ordinates.

Use ::= createpath “(“ name {“,”x-value “,”y-value} “)”
name ::= letter {letter | digit}
x-value ::= <real number in meters>
y-value ::= <real number in meters>

Parameters name the name for the stored path

Example createpath(path1,0.0,0.0,5.0,1.0,6.0,5.0)

89

4.5.2 Path calculation and position controller

When a movement command is given, the object it created is put in the command
vector and its run-method is called repeatedly. The language has a state that tells if a
movement command is running or not. If this state is idle, then the first call will
change it to reserved, which means that no other movement command is allowed to
run. If the state is reserved, then the run method only waits until the state changes to
idle. When a movement command is ready, in other words the robot has reached the
goal or the command is interrupted, then the language state is changed to idle again.

4.5.2.1 Reference path calculation

When a movement command is allowed to run, it will first calculate a reference
path to the destination. [Segovia et al., 1991] state that the path for a robot in a free
environment is usually presented by four methods. The first one uses straight lines
and circular arcs. Another method is to use a curve named “Clothoid” (Cornu
Spiral) with linear variation according to the curvilinear abscissa. This type of
curve gives a continous curvature path but it is difficult to connect two straight
lines with an arc of clothoid. The third way is to use polar polynomials and the
fourth way is to use bezier’s polynomials.

The path calculation for displacement commands in ILMR is simply done using
bezier curves with equations (2).

()
() 3

3
2

2
1

2
0

3
3

3
2

2
1

2
0

3

)1(3)1(31

)1(3)1(31

ytyttyttyty

xtxttxttxtx

+−+−+−=

+−+−+−=
(2)

where t is time and ix and iy are defined in equations (3), where
()startstartstart hyx ,, is the start point of the path and ()endendend hyx ,, is the end
point of the path and trajdist is the distance between those two points.

90

end

end

endend

endend

startstart

startstart

start

start

yy
xx

htrajdistyy
htrajdistxx
htrajdistyy
htrajdistxx

yy
xx

=
=

−=
−=
+=
+=

=
=

3

3

2

2

1

1

0

0

)sin(4.0
)cos(4.0
)sin(4.0
)cos(4.0

(3)

Finally the maximum curvature for the created path is calculated, and if it is more
than the maximum curvature for the robot, then if allowed by the user, the robot
moves backwards and turns to the destination. A new path is calculated and its
maximum curvature is calculated again, and if it’s not admissible, then the robot
continues turning until an acceptable path is generated.

4.5.2.2 Position controller

In [Chung et al., 2001] a position controller for a differential drive wheeled mobile
robot is introduced. This controller has two separated feedback loops, a velocity
feedback loop and a position feedback loop. The proposed algorithm is also
designed to compensate for both internal and external errors. This controller has
been successfully tested by computer simulation, but the problem is the complexity
of the kinematics and the control algorithm required.

In [Lakehal et al., 1995] a fuzzy based path tracking control for a mobile robot is
proposed. The inputs of the controller are the position and orientation errors of the
robot with respect to the reference path. In this method no mathematical model of
the robot is required, and control rules are simple and clear. Human experience is,
however, needed to establish the rules.

In [Feng et al., 1994] a model-reference adaptive motion controller for a
differential drive mobile robot is described. This controller modifies control
parameters in real time to compensate for motion errors. The internal errors are
detected by wheel encoders and compensated by a cross-coupling control method.
The external errors can be caused by wheel slippage, floor roughness, etc, and are

91

compensated by an adaptive controller. The adaptation algorithm is based on the
hyperstability theory to provide good convergence characteristics and stability.

When a path is successfully created in ILMR then a position controller is created
and its run-method is called repeatedly. The used position controller has been
developed in a way that it can be used with many different kinds of robots. If the
curvature in a robot is marked with c, c∆ is the maximum rate for c to change and

t∆ is a period between two cycles of calculations, then at any moment three
possible curvatures for a robot can be calculated using equations (4) where

nowc means the current curvature of the robot.

tccc
tccc

cc

now

now

now

∆∆−=
∆∆+=

=

3

2

1

(4)

With these curvature, current position and heading values we can easily calculate
where the robot will be after a certain time. Then we can calculate the cumulative
position error in regard to a desired trajectory according to equations (5), where
dist calculates the minimum distance from the desired trajectory points to the
calculated trajectory. Index k is the index of the current reference point and n is the
number of points inside a certain distance in front of the robot.

�

�

�

+

=

+

=

+

=

=

=

=

nk

kj
refref

nk

kj
refref

nk

kj
refref

jyjxcdistrighterr

jyjxcdistlefterr

jyjxcdistcurrerr

)](),(,[_

)](),(,[_

)](),(,[_

3

2

1

(5)

Figure 32 shows three possible trajectories when 1c , 2c and 3c are used. The
desired path is given with little squares and the robots trajectory is given with a line
and little dots.

92

Figure 32. Curvature calculation in the position controller.

When the three error values have been calculated, then the final control curvature
can also be calculated according to equations (6a, 6b) in case of err_curr < err_left
and err_curr < err_right.

if err_left < err_right

��
�

�
��
�

�

+
∆∆+=

lefterrcurrerr
currerrtccc now __

_5.0 (6a)

if err_right < err_left

��
�

�
��
�

�

+
∆∆−=

lefterrcurrerr
currerrtccc now __

_5.0 (6b)

If err_left is minimum then

��
�

�
��
�

�

+
−∆∆+=

lefterrcurrerr
lefterrtccc now __

_5.01 (7)

93

and if err_right is minimum then

��
�

�
��
�

�

+
−∆∆−=

righterrcurrerr
righterrtccc now __

_5.01 (8)

In Figure 32 the checked distance in front of the robot is about two meters. It
depends on c∆ and the speed of the robot and the curvature difference between the
robot and the reference trajectory in front of the robot.

4.5.3 Movement commands

Goahead() moves a robot ahead or back.

Goahead ::= goahead “(“ value “)”
value ::= number | variable
number ::= <a real number in meters>
variable ::= letter {letter | digit}

Example goahead(-1.45), goahead(dist1)

Turn() command is used to make a robot turn to the left or right.

Turn ::= turn “(“ exact | abstract “)”
exact ::= “d=” value “,c=” value
abstract ::= left | right | variable
value ::= <real number in degrees>
variable ::= letter {letter | digit}

Parameters d=??? turning angle in degrees
c=??? turning curvature (1/m)
left turns to the left; if not possible tries to followwall

until turning is possible

right turns to the right; if not possible tries to followwall
until turning ispossible

variable turns to the position stored in the variable

94

Example turn(d=90,c=0.2), turn(left), turn(todoor)

Description When turn(left) or turn(right) is given, the space for turning is first
checked. If there is space, the trajectory is generated and executed. If
there is not enough space, then the current distance to the desired
direction is maintained and followwall is activated. The followwall
continues until turning is possible.

FollowPath() makes a robot to follow a given path.

Followpath ::= followpath “(“ filename [,reverse] [,backwards] “)”
filename ::= letter {letter | digit}

Parameters reverse the robot goes backwards
Backwards the path is followwed from the end to the beginning

Example followpath(path_1), followpath(path2,reverse,backwards)

Note The parameter reverse can be replaced by a speed-command with a
negative parameter. The effect is similar.

FollowWall() moves a robot along a wall nearby.

Followwall ::= followwall “(“ mode [“,” distance] “)”
mode ::= left | right | middle
distance ::= <positive real number in meters>

Parameters left the robot follows the wall on the left side
right the robot follows the wall on the right side
middle the robot goes in the middle of two walls
distance sets the distance to the wall. Default distance is

defined in the robot model

Example followwall(middle), followwall(left,2.5)

95

Description The environmental map is used to calculate the angle of the wall on
the left or right. The position of the robot is projected to the wall.
From this point three meters ahead a new point is calculated, and
this point is used to calculate the goal position for the robot at
desired distance from the wall. Then a command gotoxy is generated
and executed internally, and this is repeated after each two meters
until the command is terminated.

FollowTarget() makes a robot to follow a target.

Followtarget ::= followtarget “(“ target “,” distance “)”
target ::= letter { letter | digit }
distance ::= <positive real number>

Parameters target an object which is defined in the robot model
distance distance to the object in meters

Example followtarget(user,5)

Description This command uses two different sensors. A colour camera is used
to locate the target that is defined by colour and size. The angle of
the found colour-object is used to determine the distance of that
object with a laser-scanner. The size of the object is also calculated
from the scanner readings. If the size and angle are acceptable, then
this target position is set as goal position of the robot. The algorithm
is shown in Figure 33.

96

Figure 33. Algorithm for the command followtarget.

Gotoxy() moves a robot to a desired position.

Gotoxy ::= gotoxy “(“ x-value ”,” y-value [“,” h-value] [“,r”] | variable
“)”

x-value ::= <real number in meters>
y-value ::= <real number in meters>
h-value ::= <real number in degrees>
variable ::= letter {letter | digit}

97

Parameters r with r-parameter the robot is allowed to move first
backwards and turn to the destination if it can't
follow the internally defined path

Example gotoxy(3,4,180), gotoxy(myDoor), gotoxy(myDoor,r)

Gotorelxy() is equal to gotoxy(), the only difference is that it uses relative
coordinates.

Gotorelxy ::= gotorelxy “(“ x-value ”,” y-value [“,” h-value] [“,r”] | variable
“)”

x-value ::= <real number in meters>
y-value ::= <real number in meters>
h-value ::= <real number in degrees>
variable ::= letter {letter | digit}

Parameters r with r-parameter the robot is allowed to move first
backwards and turn to the destination if it can't
follow the internally defined path

Example gotorelxy(3,4,180)

4.5.4 Action commands

With action commands the user can initialise some or all actuators, sensors and
processes. He can also use sensors and actuators in a simple direct way or in a
more intelligent fashion. Both of which are described in detail in the treatment that
follows.

Sensor() is a command which can be used in a simple way to take sensor readings
from a named sensor.

Sensor ::= sensor “(“ sensorID [“,” define1] [“,” define2] [“,” forever] “)“
sensorID ::= name | number
name ::= letter {letter | digit }
number ::= <positive integer>
define1 ::= direction | integer | variable

98

define2 ::= direction
direction ::= left | right

Parameters sensorID Name or number of the sensor. Defined in the robot
model

Examples dist = sensor(scanner) // returns all scanner readings
dist = sensor(scanner,left) // returns the scanner readings on the left
dist = sensor(scanner,1) // returns the scanner reading with index 1
dist = sensor(1,0) // returns the scanner reading with index 0
Mydoor = sensor(scanner,door) // looks for a door using scanner

Description In the last example the robot starts to look for a door using a sensor
named scanner. Both scanner and door are explained in the robot
model. Originally the first field of the variable Mydoor has the value
false, and when the door is found, its value is changed to true, and
the coordinates of the door are stored to the variable Mydoor. After
that the command sensor will terminate. It is also possible to add the
parameter left or right after the word door. In that case, the robot
will start to look for the door only on the desired side of the robot. It
is also possible to add a parameter forever which tells that the
command will not terminate when it finds a door. In this case, the
variable Mydoor retains the parameters of the latest door found.

FindTarget() is used to locate an object using a camera or a laser scanner. Its
course of action is the same as it is with the sensor-command.

Findtarget ::= findtarget “(“ sensorID “,” object “)”
sensorID ::= name | number
name ::= letter {letter | digit }
number ::= <positive integer>
object ::= letter {letter | digit }

Parameters sensorID Name or number of the sensor. Defined in the robot
model

object Name of object. Defined in the robot model

Example door = findtarget(scanner,door)

99

Actuator() is a command which is used in direct control of motors, relays and
other actuators of a robot.

Actuator ::= actuator “(“ actuatorID “,” value “)”
actuatorID ::= name | number
name ::= letter {letter | digit }
number ::= <positive integer>
value ::= on | off | number
number ::= <a real number>

Parameters actuatorID Name or number of the actuator. Defined in the robot
model

value Reference value for the actuator.

Description The first parameter is a name or a number of an actuator and the
second parameter is a reference value for that actuator. The user can
define name, number and range for each actuator in the robot model.
What actually happens, when an user gives, for example, a
command actuator(leg1,90), is as follows: First the interpreter
checks if a name leg1 is found. Then it checks if the value 90 is
within the admissible range for leg1. After that the message is sent
to the intermediate process that contains a user-programmed method
to handle this request.

Example actuator(brake,on), actuator(leg1,90)

Init() is used to initialize sensors, services and internal variables.

Init ::= init “(“ [address] [{“,”address }] “)”
address ::= letter {letter | digit }

Parameters without any parameter all sensors and services are initialized.
Parameter can be a name for a sensor, service or a variable. It is
defined in the robot model.

Example init(), init(navi)

100

Manipulate() is a command to switch a manipulation task on.

Manipulate ::= manipulate "(" param ")"
param ::= take | leave | getball | giveball

Example manipulate(take)

Description This command sends a message to the process manipulator in a
robot. When manipulation is done the process manipulator sends a
reply and the command manipulate terminates.

4.5.5 Control flow commands

The commands of the class control flow are used to control the execution of other
commands. They include commands to build conditions and loops.

If() is a condition command which is followed by a command block which ends
with the endif command. Inside the parentheses there can be a variable or a
comparison expression.

If ::= if “(“ expression “)” {commands} endif
expression ::= variable | comparison
comparision ::= variable (“<” | “<=” | “==” | “>” | “=>”) (number | variable)
variable ::= letter {letter | digit }
number ::= <a real number>
commands ::= {ILMR command}

Example dist = goahead()
if(dist>5.5)
 break(goahead)
 turn(left)
endif

While() – EndWhile is a way to build a loop. Inside the parentheses there can be a
variable or a comparison expression.

101

While-loop ::= while “(“ expression “)” {commands} endwhile
expression ::= variable | comparison
comparision ::= variable (“<” | “<=” | “==” | “>” | “=>”) (number | variable)
variable ::= letter {letter | digit }
number ::= <a real number>
commands ::= {ILMR command}

Example followwall(middle)
cnt = 0
loop=while(cnt<5)
 door = sensor(scanner,door,left)
 if(door)
 cnt = cnt + 1
 endif
endwhile
wait(loop)
break(followwall)
gotoxy(door)

Description In this task the robot moves along a corridor in the middle. It keeps
looking for doors on the left side and after the fifth door the robot
stops following the wall and goes to the middle of the door
opening.

Break() command stops the robot and clears the command list or terminates a
desired command.

Break ::= break [“(“ name “)”]
name ::= letter {letter | digit }

Example break, break(turn(d=)

Description If a parameter is given, then ILMR tries to locate a command in
the list of commands, which contains the text given using the
parameter. If a match is found, then the selected command is
terminated.

102

Stop command is used to stop the current operation of a robot. No parameter is
needed.

Cont command is used to continue a stopped operation. No parameter is needed.

Wait() will stop the execution of the following commands in the current command
block and wait for a desired time interval, which is given in seconds as the only
parameter.

Wait ::= wait “(“ number | variable “)”
number ::= <real number in seconds>
variable ::= letter {letter | digit }

Example wait(4.5), wait(door)

Note The parameter can also be a variable and the wait will be active
until the first field of the variable is true.

Clear() is used to clear a variable in ILMR.

Clear ::= clear “(“ variable “)”
Variable ::= letter {latter | digit }

Example clear(counter)

Check-Checkend is used to validate the grammar of the desired task.

Example check
goahead(3)
turn(left)
checkend

Description The interpreter checks the grammar of the task in between the
commands check and checkend and gives error messages if there
are rrors. No executable objects are created.

103

4.5.6 Variables

Variables and variable arithmetic is available in ILMR. When the interpreter
encounters an arithmetic expression for a variable, it first checks if that variable
already exists. If it is found, the operation is linked to that variable. If this is not the
case, a new variable is created.

A variable in ILMR is in fact a vector which has several fields and each command
knows what field is suitable for it. It has also a value-field that accesses values
directly and stores them to variables such as Turn = Turn + 1. The command door
= sensor(scanner,door) puts the coordinate values of the found door into the fields
X and Y of the variable door (door->X and door->Y). When the above-mentioned
command or some other command terminates, it also puts a value 1 into the field
status of the variable (door->status = 1). If the following command is If(door), it
checks the field door->status. The command GotoXY(door) uses the fields door-
>X and door->Y. The fields of a variable are shown in Table 8.

Table 8. Fields of a variable in ILMR.

VARIABLE
Field Description

Status Gets value 1 when the associated command is ready, otherwise 0

X x-value in meters

Y y-value in meters

H Heading value in radians

Value The result of an aritmetic operation

Dist The distance travelled of the associated command

The variables in ILMR are global and they are available in all command blocks.
The aritmetic operators -,+,/,* are available in ILMR at the moment.

104

4.5.7 Obstacle avoidance

Obstacle avoidance can be implemented in many ways. [Sitharama Iyengar and
Elfes, 1991] presents the use of artificial potential field. In this approach the goal is
regarded as an attractive pole and obstacles are repulsive points. The attractive
potential can be defined by an equation (9) and the repulsive potential by another
equation (10) [Vidal-Calleja et al., 2002]

),()(2
1

ga qqqU ξρ= , (9)

where ξ is a positive scaling factor and 2||||),(gg qqqq −=ρ is a definite function
who has a global minimum equal to zero at gqq = .

�
�

�
�

�

>

≤−
=

2

22
22

1

0

)1
),(

1(
)(

o

o
oor

if

if
qqqU

ρρ

ρρ
ρρ

η
(10)

where η is a positive scaling factor. The region of influence of the obstacle is
determined by the positive constant oρ . One problem with this approach is
avoiding a local minimum, where the sum of repulsive and attractive forces is zero,
and another problem is the fact that sometimes the path should go along the other
side of the obstacle where the maximum potential is.

A fuzzy controller with a learning automaton is used for obstacle avoidance in
[Babvey et al., 2002]. The parameters of the input and the output fuzzy
membership functions are determined by a learning automaton at each time step
based on sparseness of the obstacles. A neural network for obstacle avoidance is
used for example in [Diequez et al., 1995].

A variant of the probabilistic roadmap method (lazy-QPRM) is used in [Lanzoni et
al., 2002]. First a roadmap is built with startq , goalq and N nodes distributed
uniformly. Then shortest path is found between startq and goalq . If a collision
occurs, the corresponding nodes and edges are removed. The planner finds a new
path, or updates the roadmap with new nodes and edges. The process is repeated
until a collision-free path is found. The result paths are long and irregular, and they
are smoothed with an iterative relaxation-based method. This PRM-method
assumes that the planner has a complete knowledge of the workspace. With mobile

105

robots, that is not true. They can only sense the portion of the workspace that is
nearby and not obstructed by obstacles. Another problem is the computing power
required. The calculation cycle can take even several seconds.

In [Prassler et al., 2001] the concept of Velocity Obstacle (VO) is introduced and is
used in a robotic wheelchair to compute avoidance manoeuvres of people crossing
its path. The VO identifies the set of velocities causing a collision with the obstacle
at some future time. In case of several moving obstacles, individual VOs are joined
together and avoidance velocities are those that are outside of all VOs.

In ILMR, an environmental map is assumed to be available. In test vehicles that
were used, it is formed by means of a 2D-laser scanner functioning at 2 Hz. An
example of environmental map is shown in Figure 54 in the chapter 5.

The environmental map is in fact a set of (x,y)-points that are updated when a new
scanning is available. The points behind the robot are maintained in the map until
the distance has increased over 3 meters.

The environmental map is checked within an area, whose length is defined by the
equation (11)

and width by the equation (12).

)5.0,21max(
max

v
R

lobs ×+= (11)

widthrobotwobs _2.1 ×= (12)

where maxR is the maximum curvature (1/m) for a robot. The checked area is in fact
a rectangle only when the robot is moving straight. Otherwise the reactangle is
stretched according to the curvature of the robot. The checking here means that the
coordinate of each point is checked and, if one or more of them is inside the
defined area, an obstacle is found.

The path around the obstacle is calcucated in a simple way to search enough space
on either side of the obstacle.

106

The principle of obstacle avoidance in ILMR is shown in Figure 34. The dashed
line in Figure 34 is the defined reference path and the dotted square is the area to
be checked for obstacles. In figure A, no obstacles are found and the robot goes
along the reference path. In figure B, an obstacle is found, and in figure C, the
suitable path around the obstacle is calculated. In figure D, the robot leaves the
refrence path to go around the obstacle. When obstacle avoidance is going on in
figures E and F, the robot continuously checks if the way back to the reference path
is free. In figure G, the way back to the reference path is free, but the robot must go
on until the rear of the robot has passed the obstacle in figure H.

The state diagram of obstacle avoidance is shown in Figure 35. The state
AVOIDING includes the path calculation around the obstacles and the statement
OBS_CONTROL=1 says that the normal position control of ILMR is overdriven
by obstacle avoidance. If the obstacle is removed or avoided, then the variable
OBS_CONTROL gets a value 0, and the position controller drives the robot back
to its original route.

Figure 34. The principle of obstacle avoidance in ILMR.

107

Figure 35. The state diagram of obstacle avoidance in ILMR.

4.6 Use of ILMR with planner

The planner represents the intelligent part of the robot. It is responsible for the
decomposition of the intentions of the user into subtasks, and it monitors their
execution.

A new command or a mission for a robot is given in spoken English, sign
language, by keyboard or by other means. When the planner receives a new
command or task, it first checks if a similar task is found in the database, only a
part of which is located in local memory, and most of which is on the internet. If a
similar task description is found, then the robot’s current status and position is
considered and the description is modified accordingly. Then the task is sent in
short pieces to ILMR for execution. If the task description is incomplete, then the
planner asks the user for supplementary information. If the task description is

108

totally unknown, the planner asks the user to describe it in detail. This new task is
then added into a task database as a new skill.

Subtasks, which the planner sends to ILMR can be single ILMR commands or they
can be scripts or beforehand learned skills, which are stored in the database of
ILMR.

The planner is not yet ready and the development work is going on and the
connection to ILMR is not yet fixed but the current plan is as explained above.

109

5 Experiments with ILMR

The developed intermediate language, ILMR, has been implemented in two mobile
robots. A centaur type service robot Workpartner, which has been built at the
Automation Technology Laboratory of Helsinki University of Technology [Halme
et al., 2001a] was the primary application goal for ILMR. The second robot, MoRo
(Mobile Robot) has been built at VTT to act as a testbed for development of
autonomous robots. All features and algorithms were first implemented and tested
in MoRo, and when they were functional enough, they were also implemented in
Workpartner.

5.1 Workpartner

Workpartner is a centaur type service robot with four legs, body and a human-like
upper body with two hands and a head. Each leg is equipped with a wheel and both
hands with two-finger grippers. The head is equipped with a laser pointer, which is
used to measure the distance to a single point, and a colour CCD camera.
Appearance of Workpartner can be seen in Figure 36.

The size of Workpartner is such that it is suited to co-operating with humans and
can use same tools as humans. The weight of Workpartner is about 230 kg and
payload is about 60 kg. The operation time is 4–5 hours with 2 litres of petrol. The
maximum curvature in movement is 0.25, which means that Workpartner can turn
around in an area with a diameter of 8 m when driving with wheels.

Workpartner has been designed for autonomous tasks such as cleaning of outside
areas, small agricultural works, guard, guidance and so on.

The movement of Workpartner can occur in three different ways. On even
environment the legs can be locked and Workpartner acts as an ordinary vehicle
with wheels. On uneven or otherwise difficult environment such as thick snow the
robot slides its legs along the ground. This movement mode is called rolking
[Halme et al., 2001b]. With the active leg-system the robot can also step over small
obstacles and even climb the stairs. Turning is done using the articulation joint of
the body.

110

Figure 36. Centaur type robot Workpartner.

5.1.1 Hardware and software architecture of Workpartner

Each leg and the articulation joint are controlled by means of a micro-controller
unit. The robot is also equipped with a PC104-size main computer running the
QNX operating system. The CAN bus is used to transfer information between
subsystems. The navigation subsystem is also equipped with a separate PC104-size
computer and communication between the main PC and the navigation PC is
arranged through a twisted-pair Ethernet cable. The CAN-based control system of
Workpartner is shown in Figure 37.

111

Servo amplifiers

Leg controller

Leg controller

Servo amplifiers

Middle joint controller
Energy system cont.

Servo amplifiers

Servo amplifiers

Leg controller

Leg controller

Servo amplifiers

Shoulder 1

Shoulder 2

Elbow

Right arm

Tilt

Turn

Body

Shoulder 1

Shoulder 2

Elbow

Left arm

Main computer
PC/104

QNX

CAN

WLAN-
Access point

Ethernet-hubVideo Server
Navigation-PC

PC/104
QNX

Laserpointer

PTU

Camera

Gripper

Wireless
network

User Interface PC
Windows

Home base PC
Windows

MANIPULATOR
PLATFORM CAN-Bus

CAN-Bus

Laserscanner

GPS-receiver

Gyroscope

RS-232

RS-232

Ethernet

Ethernet

Ethernet

Ethernet

NAVIGATION SYSTEM

Inclinometers

RS-232

RS-232 HEAD

- Mikrophone
- Yo-yo-controller
- Joystick

USER INTERFACE

Figure 37. CAN-based control system of Workpartner.

Figure 38. Software architecture of Workpartner.

112

The software architecture of Workpartner is shown in Figure 5.3. The figure shows
all tasks running in Workpartner and ILMR is only one task among others. The
communication is handled both synchronously by QNX-messages and
asynchronously by shared memory (Sha). The reason why ILMR does not seem to
occupy a central place in the figure is the fact that other software was already
developed to some extent until it was discovered that an intermediate language was
needed to make management of the whole system easier.

5.1.2 Sensors of Workpartner

Workpartner is a complicated robot with several subsystems and sensors. The main
sensors are explained in the following and more detailed description of sensor
system can be seen in [Selkäinaho, 2002].

The wheel revolutions of Workpartner are measured by means of Hall sensors and
joint angles are measured by potentiometers. Inclinations are measured using
gravity-based inclinometers.

Navigation is based on 2D-laser range finder Sick LMS 291. Successive laser
range maps are matched when there are not any known landmarks available.
Sometimes the robot also recognizes landmarks as vertical cylinder objects or
vertical planes. Using the Hough transform, the robot can estimate its heading
position with a 0,2° accuracy relative to the vertical plane. The robot’s position can
be estimated with the accuracy of 1 cm when two vertical planes are available.
With vertical cylinders the corresponding values are 0,5° and 0,1 m. The
navigation subsystem gives new position information at a frequency of 2 Hz. More
detailed description of the navigation system can be seen in [Selkäinaho, 2002].

The robot head is equipped with a colour camera, which is used to look for objects
around the robot and a laser pointer, which can be used to measure distance to a
certain point in the camera image.

In its rear part Workpartner also has four ultrasonic sensors to measure distances
backwards.

The control architecture of Workpartner is hybrid. It contains features from
reactive control and from hierarchical or planning control.

113

In Figure 39 the robot model file ROBO.INI is shown for WorkPartner. The first
tag [SENSORSANDACTUATORS] is followed by a list of sensor and actuator
names. After each name there is an integer that can be used instead of a name as a
command parameter in any ILMR command. The next value can be double and it
gives the minimum value of a sensor reading, and the next one gives the maximum
value. The last value gives the number of readings associated with that sensor. The
second tag [OBJECTS] is followed by two named objects user and side_edge, and
both of them are followed by two parameters. Object name will be replaced by
parameters when used in ILMR. After tag [IDENTIFIERS] a user can define
identifiers that will be replaced by the following parameters when used in ILMR.
Tag [PARAMETERS] is followed by some default values for internal variables in
ILMR. All of them have however a default value that is used if the file ROBO.INI
is missing or corrupted.

[SENSORSANDACTUATORS]
gyro 0 -180 180 1
scanner 1 0 30000 361
laser 2 0 30000 1
ptu 3 0 100 2
[OBJECTS]
user yellow 30
side_edge 200 30
[COLORS]
yellow 18
[IDENTIFIERS]
off 0
automatic 1
scanner 2
gps 3
odo 4
rolking 4
wheels 5
parking 6
[PARAMETERS]
max_time_to_search 10
default_speed 0.2
max_speed 0.6
pos_interval 0.5
omax_curvature 0.4
curinc 0.8
robot_length 2.2
robot_width 1.0
followwall_d 1.0
bs_security 1.0
[END]

Figure 39. The robot model file ROBO.INI in WorkPartner.

114

5.2 MoRo

MoRo is a traditional automatically guided vehicle (AGV). Its size is 120 cm x 60
cm, and it can turn around in an area with a diameter of 1.5 m. The steering of the
robot is done by means of the front wheel only, which is turnable and is also
equipped with the driving motor of the robot. In the rear, the robot has two wheels
supported by the same axle. All wheels are equipped with pulse sensors to measure
the revolutions of the wheels and, in addition, the front wheel is equipped with a
potentiometer to measure the turning angle. Below the body, there is an array of
inductive sensors that are used to detect the round metal plates when driving over
designated positions. The deviation of the robot can be measured with the accuracy
of 1cm using inductive sensors. MoRo contains also a 2D-laser range finder Sick
LMS 291 that is used for navigation, obstacle avoidance, and as a security
sensor/switch. An optical fibre gyroscope is used to measure the heading angle, but
it can also be measured with a good accuracy using only differential odometry.

MoRo is also equipped with a PC104-size main computer running the QNX
operating system. It has also a cheap radio-unit, which can be used to communicate
with an external PC.

The appearance of MoRo can be seen in Figure 40 and the control architecture of
MoRo is shown in Figure 41.

115

Figure 40. Mobile robot MoRo.

Figure 41. Control architecture of MoRo.

5.3 Experiment site

The experiments with Workpartner were carried out around the Computer Science
Building of Helsinki University of Technology. This test environment is shown in

116

Figure 42. The experiments with MoRo were carried out at an office environment
at the VTT building, and this environment is shown in Figure 43.

Figure 42. Test site for Workpartner.

Figure 43. Test site for MoRo.

117

5.4 Simulators

During the development work a huge number of experiments have been carried out
when developing each feature and every single command for ILMR. A simulator
environment has also been developed for Windows NT with Borland C++ Builder.
It was used to develop the algorithm for the position controller in ILMR. This
simulator has a model for both test vehicles, Workpartner and MoRo. These
models have been built in an iterative way, in which a trajectory was driven with a
robot and a current version of the position controller. Then the same trajectory was
driven with the simulator, and parameters were manipulated in such a way that
results were equal. The simulator contained also a genetic algorithm to search
optimal values for parameters. The main window of the simulator is shown in
Figure 44.

Figure 44. Windows NT-based simulator to be used for the development of the
position controller.

Another simulator has also been developed for QNX-environment. The whole
language, ILMR, with all its features is available in this simulator and it has been
the main tool when developing commands and features for ILMR. The same
processes are running in the simulator and MoRo. The only difference is that
movements and sensor readings are simulated. The same task could anayway be
given for both the simulator and MoRo and when the task execution was successful

118

in the simulator it could also be tested with MoRo. A snapshot of this simulator is
shown in Figure 45.

Figure 45. QNX-simulator for ILMR.

5.5 Experiment plan

All designed commands and features of ILMR have been verified first with the
simulator and then with two different robots. The experiment plan is shown in
Table 9.

119

Table 9. Experiment plan.

TEST 1 Movement command test

Purpose To test the performance of a movement command. The
command TURN is selected for a representative of movement
commands. The behaviour of turn command with detailed
parameter is the same as it is with other movement commands.

Parameters D=-90, c=0.4 and 0.6 for MoRo and c=0.25 for Workpartner

Speed 0.2…0.8 m/s for MoRo and 0.4 m/s for Workpartner

Number of tests 18 (15 with MoRo and 3 with Workpartner)

TEST 2 A command with an abstract parameter

Purpose To test the performance of a command with an abstract
parameter. The command Turn(left) was used in this test.

Parameters Left

Speed 0.3 m/s

Number of tests 5 (With MoRo)

TEST 3 Followwall test

Purpose To test the performance of a followwall command. This
command is behaviour-based and its behaviour was tested
here.

Parameters Left,1

Speed 0.3 m/s

Number of tests 3 (With simulator)

TEST 4 Obstacle avoidance

Purpose To test the performance of obstacle avoidance behaviour.

Commands Obsavoid(on) and Goahead(5)

Speed 0.3 m/s

Number of tests 3 (With simulator)

120

TEST 5 Short task

Purpose To test the linking of commands together

Commands List of commands shown in Figure 52

Speed 0.3 m/s

Number of tests 3 (With MoRo)

TEST 6 Loop test

Purpose To test the performance of a loop command while. A sequence
of several movement and other commands was carried out
three times.

Commands List of commands shown in Figure 56

Speed 0.3 m/s

Number of tests 1 (With Workpartner)

TEST 7 A task with abstract parameters

Purpose To test how a way out of the laboratory to a certain doorway is
described with natural language and with ILMR and to show
how the robot carries out the given task.

Commands List of commands shown in Figure 58

Speed 0.3 m/s

Number of tests 1 (With MoRo)

121

All movements of the robots with ILMR, except for followtarget, followwall and
obstacle avoidance, are based on a planned trajectory. Thus the behaviour of all
movement commands is similar and it is enough to show the performance with one
command. This is done for the turn-command separately with both robots with the
test 1.

The command turn with an abstract parameter left has been tested with the test 2.
The command turn(left) behaves differently than with detailed parameters. If there
is not room enough on the left the robot keeps the distance to the left and moves
forward until there is room enough to turn. Then the suitable path to the left is
generated and the robot follows it.

The behaviour of the command followwall has been tested with the test 3 and the
obstacle avoidance with the test 4 and then a list of movement commands, a script,
has been tested to show how movement commands can smoothly be linked
together with the test 5. Also looping command of ILMR have been tested with
simple tasks with the test 6 and finally a more complicated task with abstract
parameters has been tested with test 7.

The command followtarget has not been reported separately, but it was
successfully used in many other tests to teach a robot a new path.

All experiments have been done with the final language, though some experiments
with Workpartner during the development work are also presented to show how
ILMR has been used in different tasks. Some of tests have been carried out with the
qnx-simulator, that was running the same processes as MoRo, but the movements
and sensor readings were simulated.

The successful performance is estimated by two criterias: deviations from the
desired paths when it is possible and fluent advance.

122

5.6 Results of experiments

5.6.1 Tests 1 and 2: Turn

The parameters for the command turn can be given in two ways : numerically and
abstractively. In this test the robot was asked to turn left 90 degrees with different
curvatures and speeds. For MoRo the curvature was 0.4 and 0.6 and for
Workpartner it was 0.25. The speed was in range 0.2–0.8m/s. The result
trajectories are shown in Figure 46 and the results in Table 10. The results with
right turns are equal and they are not shown here. The error is biggest with
Workpartner and with higher speed. The reason for that is the fact that the given
curvature was too near to the maximum curvature of Workpartner and the reference
curvature was clipped as can be seen from Figure 48. This result requires some
modification to the code of ILMR.

In the test 2 the robot was asked to turn left with the command turn(left) and the
result trajectories are shown in Figure 47 and results in Table 11. In this test, the
robot MoRo was driving along a corridor and when the corner was detected, in
other words there was enough room on the left, the trajectory was generated and
the robot followed it. When the command turn(left) was given, the robot started to
follow the wall on the left and looked for space to turn. Table 11 and Figure 47
tells that the performance of one trial was different than the others. The reason
could have been an erronous data from the scanner. Otherwise the performance is
good.

123

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

3.5

4

X [m]

Y
 [

m
]

TURN TEST WITH MORO AND WORKPARTNER 13.5.2003

Workpartner

MoRo

Figure 46. Trajectories of the turn test with both robots.

0.5 1 1.5 2 2.5 3 3.5 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
TURN-LEFT TEST WITH MORO 13.6.2003

x [m]

y
[m

]

Figure 47. Turn left test.

124

0 2 4 6 8 10 12 14 16 18 20
0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Time [s]

C
ur

va
tu

re
 [

1/
m

]

TURN TEST WORKPARTNER 13.5.2003

Figure 48. The clipping of the curvature output of the position controller in a test
with Workpartner.

Table 10. Maximum deviations from the path in test 2 with means and standard
deviations.

TEST 1: TURN(d=90,c=x.x)
Number of trials Maximum

deviation
from the path

Mean of
maximum
deviations

Std. deviation
of maximum
deviations

8 (c=0.60, v=0.2-0.8m/s) 0.08 m 0.0225 m 0.0242 m
7 (c=0.40, v=0.2-0.8m/s) 0.04 m 0.025 m 0.0115 m
3 (c=0.25, v=0.2-0.4m/s) 0.22 m 0.183 m 0.0635 m

Table 11. Maximum deviations from the path in test 3.

TEST 2: TURN(LEFT)
Number of trials Maximum deviation on

x-axis
Maximum deviation on

y-axis
4 0.04 m 0.01 m
1 Deviant function

125

5.6.2 Test 3: followwall

In this test the robot was asked to follow the wall on the left side at the distance
1.0m. The used command was followwall(left,1.0) and the recorded paths are
shown in Figure 49. The algorithm is such that door-openings are ignored and thus
the corner was detected late.

0 2 4 6 8 10
-2

-1

0

1

2

3

4

5

6

7

8

X [m]

Y
 [

m
]

FOLLOWWALL TEST 13.6.2003 WITH QNX SIMULATOR

Figure 49. The trajectories of the followwall test with qnx-simulator.

Three tests were carried out with different initial distances to the wall and to the
desired distance. The speed of the robot in this test was 0.3 m/s and the desired
distance was reached within three meters. These tests were carried out with the
qnx-simulator and the performance of the followwall behaviour with a real robot
can be seen in test 7. In practise the performance is the same for both the simulator
and the robot MoRo. The results are shown in Table 12.

126

Table 12. Maximum deviations from the desired distance to the wall in test 3.

TEST 3: followwall(left,1)
Number of trial Deviation from the desired

distance
Excess of the goal distance

1 0.4 m 0.02 m
2 1.0 m 0.05 m
3 1.2 m 0.03 m

5.6.3 Test 4: obstacle avoidance

Obstacle avoidance is a behaviour that is activated when the robot is moving and
an obstacle is detected. It was tested successfully with MoRo several times. Here in
the Figure 50 is a result of an obstacle avoidance test with the qnx-simulator for
ILMR. The behaviour of the algorithm for obstacle avoidance is the same in the
simulator and in real robots and it will work same way.

0 1 2 3 4 5 6 7 8

- 2

- 1

0

1

2

3

X [m]

Y
[m]

OBSTACLE AVOIDANCE TEST 13.6.2003 WITH SIMULATOR

Figure 50. Obstacle avoidance with the qnx-simulator.

127

The environmental map built by MoRo in a test at the laboratory is shown in
Figure 51.

Figure 51. An environmental map of the test vehicle MoRo.

The diamonds in Figure 51 are the points from the walls and they are calculated
from the scanner data. The line in figure is the calculated wall which can be used
with the followwall command.

5.6.4 Test 5: a short task

In this test the robot was asked to carry out a short task which is shown in Figure
52. In this test several movement commands are linked together. It means, for
example, that when the command goahead(1.2) is nearly finished (0.5 m left) and
the language knows that the operation continues directly with the following
movement command turn(d=90,c=0.5), the command goahead(1.2) is terminated
and the left path (0.5m) is linked to the beginning of the turn(..) command.

The result trajectories are shown in Figure 53 and the maximum positional error is
0.07m when the robot is going back to the starting point. In Figure 54 the speed
variation during the test is shown and Figure 55 shows the growth of the x-
coordinate when two commands are linked. It is shown from the recorded data and
can be seen from Figure 55 that it takes about 0.1 second to link the remaining part
of the previous command to the next command. The performance is good all the

128

time during the test and the behaviour of the robot is fluent all the time. There are
no problems with continuity when commands are linked together. The post-
condition of the last command matches always with the pre-condition of the next
command.

Figure 52. The description of a short task to a robot in ILMR.

0 0.5 1 1.5 2 2.5 3 3.5
-0.5

0

0.5

1

1.5

2

2.5

3

X [m]

Y
 [

m
]

A TEST WITH MORO 13.5.2003

Figure 53. The result trajectories when the robot MoRo has carried out a short
task.

129

0 5 10 15 20 25 30 35 40
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time [s]

S
pe

ed
 [

m
/s

]

A TEST WITH MORO 13.5.2003

Figure 54. The speed of MoRo when carrying out a task shown in Figure 52.

2 4 6 8 10 12 14

0

0.5

1

1.5

2

2.5

3

X-coordinate in test 5

Time [s]

X
[m

]

Two commands linked

Figure 55. X-coordinate of Moro when carrying out a task defined in Figure 52.

130

5.6.5 Test 6: loop

In this test the performance of a loop-command while was tested. The task used for
Workpartner is shown in Figure 56 on the left and definition for subtasks TURN1
and TURN2 are shown on the right. The result trajectory is shown in Figure 57.

locate(0,0,0)

wait(1)

cnt=0

while(cnt<2)

 speed(0.4)

 f=followpath(PATH)

 wait(f)

 TURN1

 speed(0.4)

f=followpath(PATH,BACKWARDS)

 if(f)

 cnt=cnt+1

 endif

 wait(f)

 TURN2

endwhile

TURN1:

speed(-0.4)

t1=turn(d=90,c=0.25)

wait(t1)

TURN2:

speed(-0.4)

t1=turn(d=-90,c=0.25)

wait(t1)

Figure 56. Loop-test with Workpartner.

The word PATH is the name for the trajectory that was taught to Workpartner
beforehand. In the loop the taught path was driven backwards and forwards twice.

131

0 5 10 15 20 25 30 35 40 45 50

-20

-15

-10

-5

0

5

10

15

LOOP-TEST WITH WORKPARTNER 12.6.2003

X [m]

Y
 [

m
]

Figure 57. The trajectory of Workpartner when carrying out the task shown in
Figure 56.

The performance in this test was good and the total distance Workpartner travelled
was more than 200 m with several manoeuvres.

5.6.6 Test 7: a task with an abstract description

The last test with ILMR was a short task that was defined in an abstract way. The
task description is shown in Figure 58. On the left is a description that a person
could use when describing to another person and on the right is the corresponding
description with ILMR commands. It is a task in which a way out of the laboratory
is learnt using abstract parameters for commands of ILMR. First the robot turns to
the left when there is enough room. If there is not, it keeps the distance to the
objects on the left and looks for the room on the left. Next it turns again to the left.
When this turning is over, it looks for a door on the right and continues to the door.
Then it turns to the left again twice and starts to follow wall on the left. When five
meters have been passed, the command followwall is terminated, and the robot

132

starts to look for space to turn again to the left. When this turning is over, the robot
goes still ahead one meter.

The result trajectory of this test is shown in Figure 59. The scanner readings on the
left and right are recorded, and they are shown in the figure in addition to the robot's
position. The task execution was successful with the MoRo robot and the path was
learnt and could be driven next time with the command followpath(path-1).

This is an example of a task that can be given using natural language and is easily
transferable to the ILMR commands in a high-level planner.

Figure 58. The same task descripton of test 7 with natural language and ILMR.

init()
obsavoid(on)
record(path_1)
turn(left)
t=turn(left)
wait(t)
door=sensor(scanner,door,right)
wait(door)
gotoxy(door)
turn(left)
t=turn(left)
dist=followwall(left)
if(dist>5)
 break(followwall)
 t=turn(left)
 goahead(1)
endif
record(close)

• Take first two turns to the left

• And then look for the door on
the right

• Go to the door

• Take again two turns to the left

• And follow the wall on the left
about 5 meters

• Turn to the left

• And move forward 1 meter

133

-10 -5 0 5
-10

-8

-6

-4

-2

0

2

4

6

8

X [m]

Y
 [

m
]

MoRo TEST 19.6.2003

Figure 59. The result trajectory of the task shown in Figure 58. Also walls and
other obstacles shown by the scanner are drawn in the figure.

5.6.7 Other tests

In [Sievilä, 2003] the robot Workpartner had a mission to search for drilling holes
using a camera. When a hole was found, the robot moved to the hole and measured
its profile. Next it searched for another hole and measured it and this was repeated
until the last hole was measured. The movements in this mission was done using
ILMR and another software utilized the commands of ILMR. It gave means for an
application developer to utilize easily the subsystems of the robot.

During the summer 2002 an interesting test was successfully carried out with
Workpartner. First a path was taught to Workpartner with commands record(path)
and followtarget(user,4), and then it automatically drove to the working area with
the command followpath(path). It stopped and looked for a box with a command
findtarget(scanner,box). Then it drove to the box with the command gotoxy(x,y),
and took the box using the trigger command manipulate(take), which started the
manipulation process in another unit of Workpartner. After that Workpartner drove
away and laid down the box with the trigger command manipulate(leave).

134

6 Conclusions
An intermediate language for mobile robots (ILMR) has been presented in this
thesis. It makes it easier to design new tasks for a robot. ILMR is intended for
service and field robots, and it acts as an intermediate link from user, an intelligent
planner or a human-robot interface to a robot’s actions and behaviours. The main
principle in the development work has been simplicity and ease of use. Neither
deep knowledge of robotics nor good programming skills are required when using
ILMR. While easy to use, ILMR offers all the required features that are needed to
control today’s specialised service and field robots. These features contain
sequential and concurrent task execution and response to exceptions.

In the future, robots will be used also in homes, and ordinary people should be able
to give tasks for robots to perform. This should be done descriptively using natural
language as in describing tasks to another person.

ILMR is intended to be used with higher-level abstract languages, such as sign
language or even natural spoken language. An action in ILMR can be given
coarsely, i.e. in an abstract way, or in detail. Due to this coarseness, ILMR is
suitable to be used with higher-level abstract languages and the set of elementary
commands supports directly the use of natural language, and therefore the co-
operation between ILMR and the high-level planner in a robot is easy.

The user can also use ILMR commands directly to control a robot or construct
subtasks as scripts or lists of ILMR commands. Simple tasks for mobile robots can
be easily given in ILMR and even more complicated tasks can be easily designed
descriptively using direct ILMR commands.

ILMR has been implemented in two different kinds of robots, and its use and
performance has been studied with simulators and actual robots in a wide variety of
tests. The structure and operation of ILMR has proved to be useful and several
tasks have been carried out successfully using both test robots.

In the future, the set of elementary commands will be expanded to also allow
manipulator commands and coordinated movements between the body and the
manipulators of the robot. The use of variables will also be made more fluent in the
future and some new control structures will also be added.

135

The abstract use of commands will also be developed in the future to ensure a still
more fluent connection from natural language to robot control. This includes the
parameterization of scripts.

The intelligent monitoring of the status of the robot will also be developed in the
future to reject any given command that could somehow harm or damage the robot.

136

References

Albus, J.S., McCain, H.G. and Lumia, R. [1987]. NASREM: Standard Reference
Model for Telerobot Control. NASA 1987 Goddard Conference on Space
Applications of AI and Robotics.

Asimov, I. [1989]. The Complete Robot. Great Britain, Glasgow, 1989. 682 p.

Babvey, S., Momtahan, O. and Meybodi, M.R. [2002]. A Fuzzy-Based Intelligent
Navigation System for Mobile Robots. Proceedings of the 3rd International
Symposium on Robotics and Automation, Mexico, 2002. Pp. 186–191.

Brooks, R.A. [1986]. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation RA-2.

Brooks, R.A. [1991]. Integrated systems based on behaviors. SIGART Bulletin,
2(4), pp. 46–50.

Billard, A. and Hayes, G. [1997]. Robot’s first steps, Robot’s first words.
Proceedings of the GALA97 conference, Groningen, Assembly on Language
Acquisition, Edingburg, April 4–6, 1997.

Chen, B. and Xu, Y. [1988]. ZDRL: Motion-Oriented Robot Programming
Language. Proceedings of the 1988 IEEE International Conference on Systems,
Man and Cybernetic, Volume 2. August 1988. Pp. 1226–1229.

Choi, B. and Chen Y. [2002]. Humanoid Motion Description Language.
Proceedings of the Second International Workshop on Epigenetic Robotics,
Edinburgh, Scotland, August 10–11, 2002. 4 p.

Chung, Y., Park, C. and Harashima, F. [2001]. A Position Control Differential
Drive Wheeled Mobile Robot. IEEE Transactions on Industrial Eelectronics,
Volume 48, Issue 4, August 2001, pp. 853–863.

Dallaway, J.L. and Jackson, R.D. [1994]. The User Interface for Interactive
Robotic Workstations. Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems ’94, Volume 3, September 1994. Pp. 1682–1686.

137

Diequez, A.R., Raimúndez, C., Sanz, R., Lopez, J. and Delgado, E. [1995]. An
Intelligent Supervisory Model for Path Planning and Guidance of Mobile Robots in
Non-structured Environments. Proceedings of the 2nd IFAC Conference on
Intelligent Autonomous Vehicles 95, Espoo, Finland, 12–14 June, 1995. Pp. 81–86.

Drews, P. and Fromm, P. [1997]. A Natural Language Processing Approach for
Mobile Service Robot Control. Proceedings of the 23rd International Conference on
Industrial Electronics, Control and Instrumentation (IECON 97), Vol 3, November
1997. Pp. 1275–1277.

Elmaghraby, A.S. [1988]. A Robot Control Language. Proceedings of the
Southeast Conference ’88, IEEE, April 11–13, 1988. Pp. 413–416.

Evans, J. [1994]. Helpmate: An Autonomous Mobile Robot Courier for Hospitals.
Proceedings of the International Conference on Intelligent Robots and Systems,
1994. Pp. 1695–1700.

Fakta 2001 [1981]. 8. osa, WSOY, Porvoo, 1981.

Fakta 2001 [1985]. 13. osa, WSOY, Porvoo, 1985.

Feng, L., Koren, Y. and Borenstein, J. [1994]. A model-reference adaptive motion
controller for a differential-drive robot. Proceedings of the IEEE International
Conference on Robotics and Automation. 8–13 May 1994, Volume 4. Pp. 3091–
3096.

Firby, R.J. [1987]. An investigation into reactive planning in complex domains. In
Sixth National Conference on Artificial Intelligence, Seattle, WA, July 1987.
AAAI.

Firby, R.J. [1989]. Adaptive execution in complex dynamic worlds. Technical
Report YALEU/CSD/RR #672, Computer Science Department, Yaly University,
January 1989.

Firby, R.J. [1994]. Task Networks for Controlling Continuous Processes. In
Proceedings of the Second International Conference on AI Planning Systems,
1994. Pp. 49–54.

138

Fleureu, J.L., Le Rest, E. and Marce, L. [1995]. PILOT: A Language for Planning
Mission. Proceedings of the 2nd IFAC Conference on Intelligent Autonomous
Vehicles 95, Espoo, Finland, June 12–14, 1995. Pp. 386–391.

Freund, E., Lüdemann-Ravit, B, Stern, O. and Koch, T. [2001]. Creating the
Architecture of a Translator Framework for Robot Programming Languages.
Proceedings of the 2001 IEEE International Conference on Robotics &
Automation, Seoul, Korea, May 21–26, 2001. Pp. 187–192.

Fraser, R.J.C. and Harris, C.J. [1991]. Infrastructure for Real-time Robotic Control:
Aspects of Robot Command Language. IEEE Colloquim on Intelligent Control, 19
February 1991.

Gat, E. [1997]. ESL: A Language for Supporting Robust Plan Execution in
Embedded Autonomous Agents. Proceedings of the IEEE Aerospace Conference,
1997.

Grosskreutz, H. and Lakemeyer, G. [2000]. Towards more realistic logic-based
robot controllers in the GOLOG framework. Korrekturabzug, Künstliche
Intelligenz, Heft 4/00, arenDTaP Verlag, Bremen. Pp. 11–15. ISSN 0933-1875

Halme, A. [2003]. Lecture of prof. Halme on Service and Field Robotics.
http://www.automation.hut.fi/edu/as84145/luennot.html, Retrieved 5.9.2003.

Halme, A, Leppänen, I., Ylönen, S. and Kettunen, I [2001a]. Workpartner –
centaur like service robot for outdoor applications. Proceedings of the 3rd

International Conference on Field and Service Robotics, June 11–13, 2001,
Finland. Pp. 217–223.

Halme, A., Leppänen, I., Montonen, M. and Ylönen, S. [2001b]. Robot motion by
simultaneously wheel and leg propulsion. Proceedings of the 4th International
Conference on Climbing and Walking Robots, September 24–26, 2001. Pp. 1013–
1019.

Ingrand, F.F., Chatila, R., Alami, R. and Robert, R. [1996]. PRS: A High Level
Supervision and Control Language for Autonomous Mobile Robots. Proceedings of
the 1996 IEEE International Conference on Robotics and Automation,
Minneapolis, 1996.

139

Kamada, T. and Oikawa, K. [1998]. AMADEUS: A mobile, Autonomous
Decentralized Utility System for Indoor Transportation. Proceedings of the 1998
IEEE International Conference on Robotics & Automation, Leuven, Belgium, May
1998. Pp. 2229–2236.

Kanayama, Y. [1989]. Locomotion Functions for a Robot Language. Proceedings
of the International Workshop on Intelligent Robots and Systems ’89, IEEE/RSJ,
September 4–6, Japan, 1989. Pp. 542–549.

Kauppi, I., Blom, M., and Lehtinen, H. [2001]. Motion Control Language for
Mobile Robots. Proceedings of the 3rd International Conference on Field and
Service Robotics FSR2001, June 11–13, Finland, 2001. Pp. 43–48.

Kawamura, K., Peters, R.A., Johnson, C., Nilas, P. and Thongchai, S. [2001].
Supervisory Control of Mobile Robots using Sensory EgoSphere. Proceedings of
2001 IEEE Enternational Symposium on Computational Intelligence in Robotics
and Automation, July 29 – August 1, Canada, 1994. Pp. 523–529.

Kirchner, W.H. and Towne, W.F. [1994]. The Sensory Basis of the Honeybee’s
Dance Language. Scientific American, June 1994. 7 p.

Kuhnhen, M. [2002], Entertainmet robotics – Are we being taken for a ride?
Proceedings of the 33rd International Symposium on Robotics, Stockholm, Sweden,
October 2002, CD-rom.

Kulyukin, V. and Steele, A. [2002]. Introduction and Action in the Three-Tiered
Robot Architecture. Proceedings of the 3rd International Symposium on Robotics
and Automation, Toluca, Edo. Méx., México, September 2002. Pp. 578–583.

Lakehal, B., Amirat, Y. and Pontnau, J. [1995]. Fuzzy steering control of a mobile
robot. International IEEE/IAS Conference on Industrial Automation and Control:
Emerging Technologies, 22–27 May 1995. Pp. 383–386.

Lanzoni, C, Sánches, A. and Zapata, R. [2002]. A Single-Query Motion Planner for
Car-like Nonholonomic Mobile Robots. Proceedings of the 3rd International
Symposium on Robotics and Automation, Toluca, Edo. Méx., México, September
2002. Pp. 267–274.

140

Lauria, S., Bugmann, G., Kyriacou, T., Bos, J., and Klein E. [2001]. Training
Personal Robots Using Natural Language Instruction. Intelligent Systems, IEEE,
Volume 16, Issue 5, Sep/Oct 2001. Pp. 38–45.

Lauria, S., Bugmann, G., Kyriacou, T., Bos, J. and Klein, E. [2002]. Converting
Natural Language Route Instructions into Robot Executable Procedures.
Proceedings of the 2002 IEEE International Workshop on Robot and Human
Interactive Communication, Berlin, September 25–27, 2002. Pp. 223–228.

Lehtinen, H., Kaarmila, P., Blom, M. and Kauppi, I. [2000]. Mobile Robots
Evolving In Industrial Applications. Proceedings of the International Symposium
on Robotics (ISR 2000), Montreal, May 2000. Pp. 96–101.

Leifer, L., Van der Loos, M. and Lees, D. [1991]. Visual Language Programming:
for robot command • control in unstructured environments. Proceedings of the
Fifth International Conference on Advanced Robotics (91 ICAR), Vol 1., June
1991. Pp. 31–36.

Levesque, H.J., Reiter, R., Lesperance, Y. and Scherl, R.B. [1997]. GOLOG: A
Logic Programming Language for Dynamic Domains. Journal of Logic
Programming, 31(1–3), pp. 59–83.

Lopes, L.S. and Teixteira, A.J.S. [2000]. Human Robot Interaction through Spoken
Language Dialogue. Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, IEEE CS Press, Los Alamitos, California, 2000.

Makatchev, M. and Tso, S.K. [2000]. Human-Robot Interface Using Agents
Communicating in a XML-Based Markup Language. Proceedings of the IEEE
International Workshop on Robot and Human Interactive Communication
ROMAN 2000, Osaka, Japan, September 27–29, 2000. Pp. 270–275.

Miller, D.J. and Lennox, R.C. [1990]. An Object-Oriented Environment for Robot
System Architectures. Proceedings of the IEEE International Conference on
Robotics and Automation, Cincinnati, OH, August 13–16, 1990. Pp. 14–23.

Mäkelä, H. [2001]. Overview of LHD navigation witout artificial beacons.
Robotics and Autonomous Systems 36 (2001), pp. 21–35.

141

Nilsson, N.J. [1984]. Shakey the Robot. SRI AI Center, Technical Report 323,
April, 1984.

North, S. and Hermans, P. [2001]. XML Trainer Kit. IT Press, 2000.

Nishiyama, H., Ohwada, H. and Mizoguchi, F. [1998]. A Multiagent Robot
Language for Communication and Concurrency Control. Proceedings of the
International Conference on Multiagent Systems, 3–7 July 1998. Pp. 206–213.

Paoletti, J.C and Marce, J. [1990]. A monitoring language for telerobotics
applications. First International Symposium on Measurement and Controllingf
Robotics, ISMRC’90, ROBEX,90, NASA, Houston, Texas, 1990.

Paul, R.P. [1977]. WAVE: A Model-Based Language for Manipulator Control. The
Industrial Robot, Vol. 4, No. 1, 1977, pp. 10–17.

Pembeci, I., and Hager, G. [2001]. A Comparative Review of Robot Programming
Languages, August 14, 2001.
Available from http://citeseer.nj.nec.com/555282.html, Retrieved 10.9.2003.

Prassler, E., Scholz. J and Fiorini, P. [2001]. A Robotic Wheelchair for Crowded
Public Environments. IEEE Robotics & Automation Magazine, Vol. 8, Issue 1,
March 2001, pp. 38–45.

Prassler, E., Stroulia, E. and Strobel, M. [1997]. Office Waste Cleanup: An
Application For Service Robots. Proceedings of the the 1997 IEEEE International
Conference on Robotics and Automation, Albuquerque, New Mexico, April 1997.
Pp. 1863–1868.

Segovia, A., Rombaut, M., Preciado, A. and Meizel, D. [1991]. Comparative study
of the different methods of path generation for a robot in a free environment.
International Conference on Advanved Robotics, ‘Robots in Unstructured
Environments’, 91 ICAR., Vol. 2, 1991. Pp. 1667–1670.

Selkäinaho, J. [2002]. Adaptive autonomous navigation of mobile robots in
unknown environments. Helsinki University of Technology, Automation
Technology Laboratory, Series A: Research Reports No. 24, December 2002. Dr.
Thesis. 88 p.

142

Sievilä, J. [2003]. Palvelurobotin suorittama etsintä- ja tunnistustehtävä. Teknillinen
Korkeakoulu, Automaatio- ja systeemitekniikan osasto. Diplomityö. 60 p.

Sitharama Iyengar, S. and Elfes, A. [1991]. Autonomous Mobile Robots:
Perception, Mapping and Navigation. IEEE Computer Society Press, Los Alamos
California, 1991. Pp. 428–436.

Simmons, R. and Apfelbaum, D. [1998]. A Task Description Language for Robot
Control. Proceedings of the Conference on Intelligent Robotics and Systems,
Vancouver, October 1998.

Stroulia, E. and Goel, A. [1999]. Evaluating PSMs in Evolutionary Design: The
Autognostic experiments. International Journal of Human Computer Studies, 51,
pp. 825–847.

Thrun, S., Bennewitz, M., Burgard, W., Cremers, A., Dellaerr, F., Fox, D., Hahnel,
D., Rosenberg, C., Schulte, J. and Schulz, D. [1999] Minerva: A second-generation
museum tour-guide robot. In Proceedings of the IEEE International Conference on
Robotics Automation (ICRA). Pp. 1999–4005.

Tiedon maailma 2000 [1999]. Otava, Hongkong. 476 p.

Turchin, V. [1997]. Language. In: Heylighen, F., Joslyn, C. and Turchin, V.
(editors). Principia Cybernetica Web (Principia Cybernetica, Brussels),
URL:http://pesmc1.vub.ac.be/LANG.html.

Unece and IFR [2002], World Robotics 2002 – Statistics, market analysis,
forecasts, case studies and pfofitability of robot investment. United Nations, (ISBN
9211010470, ISSN 10201076).

Vidal-Calleja, T.A., Velasco-Villa, M. and Aranda-Bricaire, E. [2002]. Real-Time
Obstacle Avoidance for Trailer-Like Systems. Proceedings of the 3rd International
Symposium on Robotics and Automation, Mexico, 2002. Pp. 131–136.

Voudouris, C., Chernett, P., Wang, C.J. and Callaghan, V.L. [1995]. Hierarchical
behavioural control for autonomous vehicles. In Proceedings of the 2nd IFAC
conference on Intelligent Autonomous Vehicles 95, Espoo, Finland. Pp. 267–272.

143

Yanco, H. [1992]. Towards an adaptable robot language. In Intelligent
Applications of Artificial Intelligence to Real World Robots: Papers from the 1992
Fall Symposium, AAAI Technical Report FS-92-02, Boston, MA, October 1992.
Pp. 191–194.

Yong, L.S., Yang, W.H. and Ang, M. [1998]. Robot Task Execution with
Telepresense Using Virtual Reality Technology. Proceedings of the International
Conference on Mechatronic Technology, Taiwan, 1998.

WWW-reference 1, http://www.automower.com/, Retrieved 9.9.2003

WWW-reference 2, http://trilobite.fi.electrolux.com, Retrieved 9.9.2003

WWW-reference 3, http://www.eu.aibo.com/, Retrieved 9.9.2003

WWW-reference 4, http://dmoz.org/Computers/Programming/Languages/,
Retrieved 12.9.2003

WWW-reference 5, ABB Flexible Automation. RAPID Reference Manual. S-
72168 Västerås, Sweden. Art. No. 3HAC 7783-1.
http://rab.ict.pwr.wroc.pl/irb1400/datasys_rev1.pdf, 19.5.2003. 583 pages.

WWW-reference 6, http://www.informatic.uni-bonn.de/~rhino/docs/rpl-
manula/node2.html, Retrieved 10.9.2003

WWW-reference 7, http://www.iredes.org/, Retrieved 12.9.2003

WWW-reference 8, http://www.cs.utexas.edu/users/qr/robotics/splat/, Retrieved
12.9.2003

WWW-reference 9, http://www.sas.be/famous /famous.htm, Retrieved
12.9.2003

Published by Series title, number and
report code of publication

VTT Publications 510
VTT–PUBS–510

Author(s)
Kauppi, Ilkka
Title

Intermediate Language for Mobile Robots
A link between the high-level planner and low-level services in robots
Abstract
The development of service and field robotics has been rapid during the last few decades. New versatile and affordable
sensors are now available, and very importantly, computing power has increased very fast. Several intelligent features for
robots have been presented. They include the use of artificial intelligence (AI), laser range finders, speech recognition, and
image processing. This all has meant that robots can be seen more frequently in ordinary environments, or even in homes.
Most development work has concentrated on a single or a few sophisticated features in development projects, but even
work to design control structures for different levels in robot control has been done. Several languages for industrial and
mobile robots have been introduced since the first robot language WAVE was developed in 1973. Tasks can be given to
robots in these languages, but their use is difficult and requires special skills of users.
In the future, robots will also be used in homes, and ordinary people should be able to give tasks for robots to perform. This
should be done descriptively using natural language as in describing tasks to another person.
In this work an intermediate language for mobile robots (ILMR) has been presented. It makes it easier to design a new task
for a robot. ILMR is intended for service and field robots and it acts as an intermediate link from user, an intelligent planner
or a human-robot interface to a robot’s actions and behaviours. The main principle in development work has been
simplicity and ease of use. Neither any deep knowledge of robotics nor good programming skills are required when using
ILMR. While easy to use, ILMR offers all the required features that are needed to control today’s specialised service and
field robots. These features contain sequential and concurrent task execution and response to exceptions. ILMR also makes
it easier to manage the development of complicated software projects of service robots by creating easy-to-use interfaces to
all of several subsystems in robots.
It is possible for users to use ILMR to give direct commands or tasks to a robot, but it is intended to be used with higher-
level abstract languages, such as sign language or even natural spoken language through a high level planner. An action in
ILMR can be given coarsely, i.e. in an abstract way, or in detail. Due to this coarseness, ILMR is suitable to be used with
higher-level abstract languages and the set of elementary commands supports directly the use of natural language. With
ILMR no complicated models of robots and the world are needed. Only a few measureable parameters for robots are
needed and a simple map of the environment is maintained.
ILMR has been implemented in two different kinds of robots, and its use and performance has been studied with simulators
and actual robots in a wide variety of tests. The structure and operation of ILMR has proved to be useful and several tasks
have been carried out successfully using both test robots.
Keywords
mobile robot languages, industrial robot languages, autonomous service robots, autonomous field robots,
natural language control, field robotics, high-level languages
Activity unit
VTT Industrial Systems, Otakaari 7 B, P.O.Box 13022, FIN–02044 VTT, Finland
ISBN Project number
951–38–6251–8 (soft back ed.)
951–38–6252–6 (URL:http://www.vtt.fi/inf/pdf/)
Date Language Pages Price
November 2003 English 143 p. C
Name of project Commissioned by

Series title and ISSN Sold by
VTT Publications
1235–0621 (soft back ed.)
1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

VTT Information Service
P.O.Box 2000, FIN–02044 VTT, Finland
Phone internat. +358 9 456 4404
Fax +358 9 456 4374

V
TT PU

BLICA
TIO

N
S 510

Interm
ediate Language for M

obile Robots. A
 link betw

een the high-level planner and ...
Ilkka K

auppi

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000
02044 VTT 02044 VTT FIN�02044 VTT, Finland

Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. +358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax +358 9 456 4374

ISBN 951–38–6251–8 (soft back ed.) ISBN 951–38–6252–6 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2003ESPOO 2003ESPOO 2003ESPOO 2003ESPOO 2003 VTT PUBLICATIONS 510

Ilkka Kauppi

Intermediate Language for Mobile
Robots

A link between the high-level planner and
low-level services in robots

In the future, robots will be used in homes, and ordinary people should be
able to give tasks for robots to perform. This should be done descriptively
using natural language as in describing tasks to another person. In this
work an intermediate language for mobile robots (ILMR) has been pre-
sented. It makes it easier to design a new task for a robot. ILMR is intended
for service and field robots and it acts as an intermediate link from user, an
intelligent planner or a human-robot interface to a robot’s actions and
behaviours. The main principle in development work has been simplicity
and ease of use. Neither any deep knowledge of robotics nor good pro-
gramming skills are required when using ILMR. While easy to use, ILMR
offers all the required features that are needed to control today’s specialised
service and field robots. These features contain sequential and concurrent
task execution and response to exceptions. ILMR also makes it easier to
manage the development of complicated software projects of service robots
by creating easy-to-use interfaces to all of several subsystems in robots.

	Abstract
	Preface
	Contents
	List of symbols
	List of abbreviations
	1 Introduction
	1.1 Overview of the history, current state and future of robotics
	1.2 Motivation and aims for the study
	1.3 Scientific contribution of the dissertation
	1.4 Outline of the dissertation

	2 State of the art
	2.1 Language
	2.2 Industrial robot languages
	2.3 Mobile robot languages
	2.3.1 Reactive robot languages
	2.3.1.1 Behaviour language
	2.3.1.2 RAP and RPL

	2.3.2 Mobile robot control languages
	2.3.2.1 ARCL
	2.3.2.2 ZDRL
	2.3.2.3 MML
	2.3.2.4 RIPL
	2.3.2.5 RCL
	2.3.2.6 FDTL
	2.3.2.7 PRS
	2.3.2.8 GOLOG
	2.3.2.9 TDL

	2.3.3 Visual languages
	2.3.3.1 Lingraphica
	2.3.3.2 PILOT

	2.3.4 Languages for agents
	2.3.4.1 ESL
	2.3.4.2 MRL

	2.3.5 Natural language control of robots
	2.3.5.1 FSTN
	2.3.5.2 IBL

	2.3.6 XML-based languages
	2.3.7 Other related work

	2.4 Summary

	3 Autonomous service and field robot
	3.1 Subsystems of service and field robots
	3.2 Control architecture
	3.3 Teaching, learning and skills
	3.4 Control of an autonomous service and field robot
	3.4.1 Low-level control
	3.4.2 Middle-level control
	3.4.3 High-level control

	4 Intermediate language for mobile robots (ILMR)
	4.1 Structure of ILMR
	4.2 Control architecture
	4.2.1 Intermediate process
	4.2.2 Internal language process
	4.2.2.1 Shared memory
	4.2.2.2 Interpreter

	4.3 Concurrent and sequential execution
	4.4 Elementary commands
	4.5 Command categories
	4.5.1 Define commands
	4.5.2 Path calculation and position controller
	4.5.2.1 Reference path calculation
	4.5.2.2 Position controller

	4.5.3 Movement commands
	4.5.4 Action commands
	4.5.5 Control flow commands
	4.5.6 Variables
	4.5.7 Obstacle avoidance

	4.6 Use of ILMR with planner

	5 Experiments with ILMR
	5.1 Workpartner
	5.1.1 Hardware and software architecture of Workpartner
	5.1.2 Sensors of Workpartner

	5.2 MoRo
	5.3 Experiment site
	5.4 Simulators
	5.5 Experiment plan
	5.6 Results of experiments
	5.6.1 Tests 1 and 2: Turn
	5.6.2 Test 3: followwall
	5.6.3 Test 4: obstacle avoidance
	5.6.4 Test 5: a short task
	5.6.5 Test 6: loop
	5.6.6 Test 7: a task with an abstract description
	5.6.7 Other tests

	6 Conclusions
	References

