
V
TT PU

BLICA
TIO

N
S 514

Softw
are configuration m

anagem
ent in agile m

ethods
Juha K

oskela

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000
02044 VTT 02044 VTT FIN�02044 VTT, Finland

Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. +358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax +358 9 456 4374

ISBN 951–38–6259–3 (soft back ed.) ISBN 951–38–6260–7 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2003ESPOO 2003ESPOO 2003ESPOO 2003ESPOO 2003 VTT PUBLICATIONS 514

Juha Koskela

Software configuration management in
agile methods

VTT PUBLICATIONS

496 Nuutinen, Maaria, Reiman, Teemu & Oedewald, Pia. Osaamisen hallinta ydinvoima-
laitoksessa operaattoreiden sukupolvenvaihdostilanteessa. 2003. 82 s.

497 Kolari, Sirpa. Ilmanvaihtojärjestelmien puhdistuksen vaikutus toimistorakennusten sisäil-
man laatuun ja työntekijöiden työoloihin. 2003. 62 s. + liitt. 43 s.

498 Tammi, Kari. Active vibration control of rotor in desktop test environment. 2003. 82 p.
499 Kololuoma, Terho. Preparation of multifunctional coating materials and their applications.

62 p. + app. 33 p.
500 Karppinen, Sirpa. Dietary fibre components of rye bran and their fermentation in vitro. 96

p. + app. 52 p.
501 Marjamäki, Heikki. Siirtymäperusteisen elementtimenetelmäohjelmiston suunnittelu ja

ohjelmointi. 2003. 102 s. + liitt. 2 s.
502 Bäckström, Mika. Multiaxial fatigue life assessment of welds based on nominal and hot spot

stresses. 2003. 97 p. + app. 9 p.
503 Hostikka, Simo, Keski-Rahkonen, Olavi & Korhonen, Timo. Probabilistic Fire Simulator.

Theory and User's Manual for Version 1.2. 2003. 72 p. + app. 1 p.
504 Torkkeli, Altti. Droplet microfluidics on a planar surface. 2003. 194 p. + app. 19 p.
505 Valkonen, Mari. Functional studies of the secretory pathway of filamentous fungi. The effect

of unfolded protein response on protein production. 2003. 114 p. + app. 68 p.
506 Caj Södergård (ed.). Mobile television � technology and user experiences. Report on the

Mobile-tv project. 2003. 238 p. + app. 35 p.
507 Rosqvist, Tony. On the use of expert judgement in the qualification of risk assessment. 2003.

48 p. + app. 82 p.
508 Parviainen, Päivi, Hulkko, Hanna, Kääriäinen, Jukka, Takalo, Juha & Tihinen, Maarit.

Requirements engineering. Inventory of technologies. 2003. 106 p.
509 Sallinen, Mikko. Modelling and estimation of spatial relationships in sensor-based robot

workcells. 2003. 218 p.
510 Kauppi, Ilkka. Intermediate Language for Mobile Robots. A link between the high-level

planner and low-level services in robots. 2003. 143 p.
511 Mäntyjärvi, Jani. Sensor-based context recognition for mobile applications. 2003. 118 p. + app.

60 p.
512 Kauppi, Tarja. Performance analysis at the software architectural level. 2003. 78 p.
513 Uosukainen, Seppo. Turbulences as sound sources. 2003. 42 p.
514 Koskela, Juha. Software configuration management in agile methods. 2003. 54 p.

VTT PUBLICATIONS 514

Software configuration management
in agile methods

Juha Koskela
VTT Electronics

ISBN 951–38–6259–3 (soft back ed.)
ISSN 1235–0621 (soft back ed.)

ISBN 951–38–6260–7 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

Copyright © VTT Technical Research Centre of Finland 2003

JULKAISIJA – UTGIVARE – PUBLISHER

VTT, Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

VTT, Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde (08) 551 2111, faksi (08) 551 2320

VTT Elektronik, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel (08) 551 2111, fax (08) 551 2320

VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN–90571 OULU, Finland
phone internat. + 358 8 551 2111, fax + 358 8 551 2320

Technical editing Marja Kettunen

Otamedia Oy, Espoo 2003

3

Koskela, Juha. Software configuration management in agile methods. Espoo 2003. VTT
Publications 514. 54 p.

Keywords: software configuration management (SCM), agile methods, extreme programming,
software development methods

Abstract
The development of good quality software is a critical element of successful
competition for today’s software market shares. However, software products are
becoming larger and more complex; therefore, the development of quality
software is neither easy nor rapid. Agile software development methods focus on
generating early releases of working products. They aim to deliver business
value immediately from the beginning of the project. Regardless of the
development method in use, it is important that software development be under
control. Software configuration management (SCM) is known as a method of
bringing control to the software development process, and thus, proper
application of SCM is a key component in the development of quality software.
However, currently very few studies on software configuration management in
agile methods exist; hence this study.

The aim of this publication is to systematically review the existing literature on
agile software development methodologies from an SCM point of view. First,
analytical SCM lenses based on existing SCM literature are constructed. Second,
existing agile methods are analyzed using the lenses constructed. The results
show that only two of the existing agile methods take SCM explicitly into
account, but most of the methods highly value SCM tool support and its ability
to revert to earlier versions of development artefacts. Nonetheless, the basis for
successful SCM implementation, SCM planning, has been completely forgotten.

4

Contents

Abstract... 3

List of symbols.. 6

1. Introduction... 7

2. Software configuration management .. 9
2.1 Background.. 9
2.2 The purpose and benefits of SCM ... 9
2.3 SCM activities ... 10

2.3.1 Configuration identification .. 11
2.3.2 Configuration control .. 12
2.3.3 Configuration status accounting.. 14
2.3.4 Configuration audits.. 14
2.3.5 SCM planning ... 15

2.4 Automation of SCM .. 16
2.4.1 Automating SCM activities... 17
2.4.2 Common features of SCM tools.. 17

2.5 Lenses for the analysis... 23

3. Current state of agile software development methods.................................. 26
3.1 Overview of agile software development .. 26
3.2 Shared characteristics .. 28
3.3 Existing agile methods .. 29

3.3.1 Adaptive Software Development .. 30
3.3.2 Agile Modeling ... 30
3.3.3 Crystal family of methodologies ... 31
3.3.4 Dynamic Systems Development Method................................ 31
3.3.5 Extreme Programming .. 31
3.3.6 Feature Driven Development .. 32
3.3.7 Internet-Speed Development... 32
3.3.8 Pragmatic Programming.. 32
3.3.9 Scrum .. 33

5

4. Results .. 34
4.1 SCM approach... 34
4.2 SCM planning.. 36
4.3 Configuration identification .. 36
4.4 Change management ... 38
4.5 SCM tools.. 40

5. Discussion... 43
5.1 SCM approach... 44
5.2 SCM planning.. 44
5.3 Configuration identification .. 44
5.4 Change management ... 45
5.5 SCM tools.. 45
5.6 Summary.. 46

6. Conclusions... 47

References... 49

6

List of symbols

CCB Configuration Control Board

CI Configuration Item

CM Configuration Management

CSA Configuration Status Accounting

CSCI Computer Software Configuration Item

FCA Functional Configuration Audit

PCA Physical Configuration Audit

SCM Software Configuration Management

SCMP Software Configuration Management Plan

VSS Microsoft Visual SourceSafe

VTT Technical Research Centre of Finland (http://www.vtt.fi)

7

1. Introduction
Today software products are becoming larger and more complex. At the same
time, stronger market pressures are forcing software engineers to develop their
products more quickly. Furthermore, customers are demanding more with better
quality, and requirements keep changing. These facts can lead to a failure if the
software product development is not well under control.

In brief, software configuration management (SCM) is a method of controlling
the software development and modifications of software systems and products
during their entire life cycle (Crnkovic et al. 2003). SCM affects a product's
whole life-cycle by identifying software items to be developed, avoiding chaos
when changes to software occur, offering traceability for the changes made, by
providing needed information about the development state, and aiding the audit
of both software and the SCM process.

In the last few years, agile software development methods have gained
significant attention in the software engineering community. Agile methods
focus on generating early releases of working products and on delivering
business value immediately from the beginning of a project. Agile software
development methods contain minimal processes and are often labelled "barely
sufficient" (Highsmith 2002a). On the other hand, SCM is often considered as
bureaucratic method that causes additional work and more documentation.
However, according to Compton & Conner (1994), SCM is essential whenever
software is developed. SCM cannot be eliminated; at most one can achieve bad
SCM (Compton & Conner 1994). Thus, regardless of the software development
method used, the role of SCM remains important. Because there exist very few
studies on software configuration management with agile methods, this study
has been undertaken.

The goal of this publication is to systematically review existing literature on
agile methods from an SCM point of view. First, analytical SCM lenses based on
existing SCM literature are constructed, and second, existing agile methods are
analyzed using the analytical SCM lenses constructed.

This work is organized in six sections. In the following second section, an
introduction to software configuration management and the lenses for the

8

subsequent analysis are provided. The third section presents an overview of the
existing agile methods, which are subsequently analyzed in section four using
the analytical SCM lenses constructed. In the fifth section, results and
implications of the study are discussed. The sixth section presents the
conclusions of the study.

9

2. Software configuration management
In this section, software configuration management is introduced. Thus, the
purpose of SCM, basic SCM activities, and the automation of SCM are
explained, giving a picture of complete software configuration management.
Finally, the construction of SCM lenses for the subsequent analysis is presented.

2.1 Background

Configuration management (CM) is the discipline of controlling the evolution of
complex systems (Tichy 1988). CM first came into existence in U.S. defence
industry (Leon 2000), where it was used to control manufacturing processes.
Gradually, computers and software also evolved to the stage, where people were
constrained to find ways to control their software development processes. In
short, SCM is CM specifically for software product development. Tichy (1988)
presents two ways in which SCM differs from general CM: First, software is
easier and faster to change than hardware, and second, SCM can potentially be
more automated. However, according to Abran & Moore (2001, p. 122), "the
concepts of configuration management apply to all items to be controlled
although there are some differences in implementation between hardware CM
and software CM."

Today there are various standards for SCM, for both military and commercial
use. According to Leon (2000), the most comprehensive international standard is
ANSI/IEEE standard 1042 (1987, p. 10). It defines SCM as follows:

"Software CM is a discipline for managing the evolution of computer
program products, both during the initial stages of development and
during all stages of maintenance."

2.2 The purpose and benefits of SCM

SCM is a critical element of software engineering (Feiler 1990). According to
Leon (2000), it is needed because of the increased complexity of software
systems, increased demand for software and the changing nature of software.

10

Leon also states that SCM can be used as a strategic weapon that will give the
organization an edge over those who are not using SCM or using it less
effectively. When used effectively during a product's whole life-cycle, SCM
identifies software items to be developed, avoids chaos when changes to
software occur, provides needed information about the state of development, and
assists the audit of both the software and the SCM processes. Therefore, its
purposes are to support software development and to achieve better software
quality. As it can be seen in Figure 1, SCM is one of the major elements leading
to better software quality.

Figure 1. Achieving software quality (Pressman 1997).

2.3 SCM activities

According to the IEEE's (IEEE Std. 828-1990) traditional definition of SCM, the
following four activities are included: configuration identification, configuration
control, configuration status accounting and configuration audits. Successful
SCM implementation also requires careful planning (Abran & Moore 2001).
SCM planning produces a document called SCM plan, in which SCM activities

11

and other practices of SCM are described carefully (IEEE Std. 828-1990). Figure
2 shows these five basic SCM activities.

Configuration management
planning

Configuration
identification

Configuration
control

Configuration
status accounting

Configuration
audit

Figure 2. The basic activities of SCM.

2.3.1 Configuration identification

According to Leon (2000), configuration identification is a process where a
system is divided into uniquely identifiable components for the purpose of
software configuration management. These components are called computer
software configuration items (CSCIs) or shorter and more generally just
configuration items (CIs). A CI can be a unit or a collection of lower level items
(Rahikkala 2000). IEEE (IEEE Std. 610.12-1990) defines configuration
identification as an element of SCM, consisting of selecting the CIs and
recording their functional and physical characteristics in technical
documentation. Each CI must be named and versioned uniquely to distinguish it
from the other CIs and from other versions of CIs (Whitgift 1991). Examples of
CIs are project plan, specifications, design documents, source codes, test plans
and test data, executables, make files, tools, and SCM plan. Whitgift (1991) also
states that every source item should have a status attribute which defines the
level of approval that the item has achieved. An example of the range of status
values for an element code is: untested, module tested and integration
tested. Accordingly, a document can have such values as draft, proposed and
approved.

In the configuration identification phase, a project's baselines and their contents
are also identified. A baseline is a software configuration management concept
that helps us to control change (Leon 2000). It is a document or product that has
been formally reviewed and that thereafter serves as a basis for further

12

development. It can also be an assembly of CIs, an accepted configuration
(Taramaa 1998.) The most common baselines of software development are
shown in Figure 3 below (Pressman 1997). The life cycle model shown is a
traditional waterfall model; every phase produces a baseline:

Figure 3. The most common software baselines (Pressman 1997).

2.3.2 Configuration control

As stated earlier, software can change very quickly and easily, and uncontrolled
changes can lead to chaos. Therefore, after the configuration items of the system
have been identified, the next step is to control the changes to the software.

Controlling changes during software development has been defined as a task for
SCM (Pressman 1997). According to Leon (2000), baselines have a very
important role in managing change. According to (IEEE Std. 610.12-1990),

13

baselines can be changed only through formal change control procedures
including the following steps: evaluation, coordination, approval or disapproval
and implementation of changes to configuration items.

Figure 4. The change management process for conventional software (Asklund
& Bendix 2002).

A change request can result from many things. For example, new features,
enhancements of existing features or defects can lead to change requests (Leon
2000.) Figure 4 above presents a traditional change control process. The process
starts, when a need for change is noticed. A properly completed change request
form is sent to the configuration control board (CCB), whose main function is to
evaluate and to approve or disapprove change requests (Leon 2000). According
to Leon (2000), change requests can also be deferred when they and their
associated documentation are filed for later resolution. If a change request is
approved, proposed changes are assigned to developers to be implemented. After
implementation, the changes are verified in various testing procedures to ensure
that they have been implemented as agreed.

14

Change is one of the most fundamental characteristics in any software
development process (Leon 2000). Lehman (1980) also suggests that change is
intrinsic in software and must be accepted as a fact of life. Making changes to
software is easy, but if it is done at will, chaos will result (Leon 2000).
According to McConnell (1998), effective projects control changes, whereas
ineffective projects allow changes to control them. However, Whitgift (1991)
states that the level and formality of control required varies considerably; large
teams need strict and formal change control, but small teams can rely on much
less formal control.

2.3.3 Configuration status accounting

Software development produces lots of information that should be recordable
and reportable whenever needed. According to IEEE (IEEE Std. 610.12-1990),
configuration status accounting consists of the recording and reporting of
information needed to manage a configuration effectively, including a listing of
the approved configuration identification, the status of proposed changes to the
configuration and the implementation status of approved changes. All this and
other information related to CIs and activities concerned with them are thus
available for the people involved in the project. Status accounting reports
include change logs, progress reports, CI status reports and transaction logs
(Leon 2000)

2.3.4 Configuration audits

According to Leon (2000), the purpose of configuration audits is to ensure that
the software product has been built according to specified requirements
(Functional Configuration Audit, FCA), to determine whether all the items
identified as a part of CI are present in the product baseline (Physical
Configuration Audit, PCA), and whether defined SCM activities are being
properly applied and controlled (SCM system audit or in-process audit). A
representative from management, the QA department, or the customer usually
performs such audits. The auditor should have competent knowledge both of
SCM activities and of the project (Leon 2000).

15

2.3.5 SCM planning

According to Abran & Moore (2001), a successful SCM implementation
requires careful planning and management. All of the SCM activities introduced
above are described in the SCM plan. The main purpose of the SCM plan is to
answer such questions as: who is going to do what, when, where, and how
(Buckley 1996). Thus, the SCM plan serves as a guideline for the people
working with software configuration management. According to Buckley
(1996), a configuration management plan is written for each project. However,
an organization may use a generic SCM plan template that can be tailored to
each particular project. Table 1 presents the common contents of an SCM plan
according to IEEE standards:

Table 1. Common contents of SCM plan (IEEE Std. 828-1998).

Class of
information

Description

Introduction Describes the Plan's purpose, scope of application, key
terms, and references.

SCM
management

(Who?) Identifies the responsibilities and authorities for
accomplishing the planned activities.

SCM activities (What?) Identifies all activities to be performed in the
project.

SCM schedules (When?) Identifies the required co-ordination of SCM
activities with the other activities in the project.

SCM resources (How?) Identifies the tools and physical and human
resources required for execution of the Plan.

SCM plan
maintenance

Identifies how the Plan will be kept current while it is in
effect.

16

As it can be seen from Table 1, an SCM plan defines responsibilities, activities,
schedules and resources related to a project's SCM implementation.

2.4 Automation of SCM

The basic SCM activities introduced in the previous subsection are assisted by
SCM tools. According to Leon (2000) the role of an SCM tool is to automate
SCM activities and to improve development productivity. Automating manual
SCM tasks provides more time to do the actual development work, leading to
improved speed and productivity. From a developer point of view, SCM offers a
stable development environment, maintains configuration items, stores their
history, supports product building and coordinates simultaneous changes
(Crnkovic et al. 2001). In other words, it helps software developers in their daily
work. According to Estublier (2000), a typical modern software configuration
management tool provides primary services in the following areas:

� Management of the repository of components

� Version control

� Support for engineers

� Workspace management

� Concurrency control

� System building

� Process control and support

These features are explained in the section 2.4.2. In the next section, the
automation of SCM activities is introduced in more detail.

17

2.4.1 Automating SCM activities

According to Dart (1990), SCM is generally a combination of manual and
automated procedures. However, since most SCM processes are well established
and repetitive, they can be supported by computers (Conradi & Westfechtel
1999). We know that configuration identification is an SCM activity in which
configuration items are selected and their functional and physical characteristics
are recorded in technical documentation. According to Leon (2000), this type of
information can be captured and updated automatically by an SCM tool.

Change management is an activity that is supported in many of today’s SCM
tools (e.g. Conradi & Westfechtel 1999; Leon 2000). As one example,
information about change requests goes directly to all the people concerned
(such as the CCB), and they can then send approval or disapproval immediately
by e-mail or other messaging systems. All the information related to the change
process, such as who initiated the change, who implemented the change, and
how the change was implemented, can be captured and used for status
accounting to manage the whole project more effectively (Leon 2000.) This and
other relevant information can be then queried for the purposes of various
reports.

As explained earlier, configuration auditing is the validation of the completeness
of a product. According to Leon (2000), SCM tools can automate most of the
auditing, because they can generate the necessary information for verification
purposes. For example, one person might need a history of all changes and
another a log containing details about work completed.

2.4.2 Common features of SCM tools

Today there are a number of SCM tools available, while their features vary
greatly. According to Leon (2000, p. 202), "each tool has its own strengths and
weaknesses. For example, some are better at change management, whereas
others have excellent build management and versioning capabilities." Next,
these features are examined in more detail.

18

Version Control

The main purpose of version control is to manage different versions of
configuration objects that are created during the software engineering process
(Pressman 1997). According to Taramaa (1998), the term “object” is used by
some authors to describe CI. A “component repository” is a place where all the
versions of CIs are kept. The terms “version”, “revision” and “variant” are basic
SCM concepts. Therefore, their differences are explained next. The meaning of
“branching” and “merging” is also explained.

Let us assume that a developer is producing an item not yet under SCM control.
S/he can freely modify the item, and the changes made affect this item, in
particular. But when the item is put under SCM control, changes to the item
produce new revisions, CIs that change and evolve with time. They may be
created for various reasons, such as to extend functionality or to fix bugs
(Conradi & Westfechtel 1996).

Variants are versions that are organized in parallel development lines called
branches. However, branches are only one way to implement variants, because
they can be done also with conditional compilation, with installation description,
or with a run-time check (Persson et al. 2001). There are two types of variants:
permanent and temporary (Whitgift 1991). Permanent variants are created, for
example, when the product is adjusted for different environments. There can be
a variant for Linux and another for Windows. The difference between a
permanent and a temporary variant is that a temporary variant will later be
integrated with another variant (Zeller 1996). This kind of integration is also
called “merge”. According to Whitgift (1991), an instance of an item, each of its
variants and revisions, is called an item version.

Figure 5 presents a situation where development is done in parallel branches.
When revision 1.3 is almost done, revision 1.2, which is already in use at a
customer site, is noticed to have a bug. If there is no time to wait for revision 1.3
to be approved, a temporary bug-fix branch is created, the bug is fixed, and the
variant is supplied to the customer. After that versions 1.3 and 1.2.2 are merged
into version 1.4. At the same time, development is also done in a permanent
variant branch for Linux.

19

Figure 5. Basic version control.

Version attribute values, mentioned in the SCM process section, are also
supported by many CM tools (Whitgift 1991). They can provide facilities for
recording the evolution of an item through its lifecycle.

Workspace management

SCM tools can also help developers to work in peace by providing them with
private workspaces. The purpose of provided workspace is to prevent users from
interfering with one another's work (Dart 1994). Developers can check out
desired files or configuration from the repository in their own workspaces. The
“check out” operation creates copies of the items in the developer's workspace;
after that, the developer can modify the items as needed and finally execute
“check in”. The “check in” operation copies items back into the repository: the
version control system then creates new versions as needed. Figure 6 represents
the check out/in process. A “get“ operation equals to a “check out” operation,
except that the files copied into the workspace are read-only and therefore
cannot be modified. The terminology in use for these operations can vary
between different SCM tools.

20

Figure 6. Workspaces and check out/in.

Concurrency control

The implementation of concurrency control depends on the SCM tool in use.
Some of these tools use so-called optimistic concurrency control (Asklund &
Bendix 2002), which means that files are not locked when checking them out,
and there may be simultaneous modifications to the same files by multiple users.
Others prevent simultaneous access by using a locking mechanism. Microsoft's
Visual SourceSafe (VSS) is a one example of an SCM tool in which both of
these mechanisms are implemented and locking is used as a standard setting.
Figure 7 below presents a situation where one user is trying to check out a
project file already checked out by another user; the tool's locking mechanism
prevents this operation by disabling the check out function.

21

Figure 7. Preventing simultaneous modifications by using file-locking
mechanism in VSS.

However, if the “multiple checkouts” function is enabled in VSS, users are able
to check out files that have already been checked out by another users. The users
checking in such files must themselves resolve any conflicts between
modifications that may occur if VSS is not able to merge the modifications
automatically. Figure 8 presents this situation, where the users have modified the
same lines, and therefore the user who checks in later has to solve the problem.
All activities should be based on the project's SCM procedures as defined in the
SCM plan.

22

Figure 8. Merging the overlapping modifications in VSS.

The advantages of concurrent development are remarkable. Development teams
can work with the same files, while the SCM tool controls development.
According to Leon (2000), the difference between concurrent and parallel
development is that in concurrent development, branches are finally merged into
a single item, whereas in parallel development merging is not performed and
branches go ahead separately. The same alternatives can exist at the project
level. For example, if there is a project that reaches the testing stage, the project
can be branched so that testing and bug fixing can be performed separately.
Development continues in the main branch, and later on the modified files on
these two branches can be merged.

System building

In system building (a.k.a. build management), the purpose is to combine needed
file versions and then compile them to create an application. Building can be
done for a subsystem, a module, or a whole system (Leon 2000) and the building
strategy can be either incremental or from scratch. In incremental building, only

23

files that been changed will be built; correspondingly, all files will be built when
building from scratch. According to Whitgift (1991), building from scratch can
be a very expensive process in terms of machine resources, because a large
system may contain thousands of files of source code.

SCM tools can facilitate building work by capturing necessary information and
making the building process repeatable. To be repeatable, details of used
components, components' versions, the operating system and its version,
compiler and linker options etc., are required (Leon 2000). An SCM tool usually
includes a Make tool to generate an executable software system reliably and
efficiently (Conradi & Westfechtel 1998).

Process control and support

According to Estublier (2000), process support means both the "formal"
definition of what is to be performed on what (a process model) and the
mechanisms to help reality conform to the model. In practice, a State Transition
Diagram (STD) and activity-centred modelling are offered as a solution. As an
example Estublier (2000) states that change control is traditionally an integral
part of SCM tools.

2.5 Lenses for the analysis

This section constructs the SCM lenses through which current agile software
development methods will be analyzed. The following analytical lenses were
seen as relevant for addressing the research purposes of this publication; see
Table 2.

24

Table 2. Lenses for the analysis.

Perspective Description Key references

Software configuration
management approach

How is software configuration
management addressed in the
method?

(Feiler 1990;
Leon 2000)

SCM planning What does the method define as
SCM planning?

(IEEE Std. 828-
1990; Abran &
Moore 2001;
Buckley 1996)

Configuration
identification

What does the method define as
item identification and
baselining?

(IEEE Std.
828-1990;
Leon 2000)

Change management What does the method define as
change management?

(IEEE Std.
828-1990;
Leon 2000)

SCM tools What is the role of software
configuration management tools
in the method?

(Leon 2000)

As has been said, software configuration management is a critical element of
software engineering (Feiler 1990). According to Compton & Conner (1994), it
is an essential activity that must take place whenever developing software. SCM
is needed because of increased complexity of software systems, increased
demand for software and the changing nature of software (Leon 2000). Again,
according to Leon (2000), proper application of SCM is a key component in the
development of quality software. This perspective explores how the method in
question addresses SCM. For example, the method may have SCM as a key
practice; then its viewpoint towards SCM can be seen as explicit. Therefore, this
perspective also explores the various methods' SCM-related practices.

25

According to Abran & Moore (2001), a successful SCM implementation
requires careful planning. SCM planning is the basis for project's SCM
implementation precisely recording in an SCM plan who is going to do what,
when, where, and how (Buckley 1996). This viewpoint examines what the
method defines as SCM planning.

According to Leon (2000), configuration identification is the basis for
subsequent control of the software configuration. It is "the process whereby a
system is separated into uniquely identifiable components for the purpose of
SCM" (Leon 2000, p. 91). From this perspective, what the method in question
defines as item identification and baselining will be analyzed.

As stated before, change is one of the most fundamental characteristics in any
software development process (Leon 2000). Lehman (1980) states that change is
intrinsic in software and must be accepted as a fact of life. According to Leon
(2000), making changes to software is easy, but managing those changes (the
uncontrolled changes) is not. However, uncontrolled change can create problems
serious enough to create project failures. Controlling changes while software is
being developed has been defined as a task for SCM (e.g. IEEE 828-1990;
Taramaa 1998). This viewpoint explores agile software development methods
from a change management perspective. In other words, what the method in
question defines as change management and how it should be handled will be
examined.

The purpose of software configuration management tools is to support and
automate SCM activities and to provide help for developers. According to Leon
(2000), the role played by SCM tools is becoming more and more important in
today’s complex software development environments. Leon (2000) also states
that no SCM tool is the solution for every software configuration management
problem, but SCM tools can be a step towards more effective software
configuration management. Weatherall (1997, p. 3) sums this up as follows:
"SCM is first an attitude; second, a process; and only third, a set of tools."
However, software configuration management tools are important part of a
comprehensive software configuration management solution and, therefore, they
can be seen as relevant to the evaluation of agile software development methods
from the SCM point of view. This dimension explores what the role of SCM
tools is in a particular agile method.

26

3. Current state of agile software
development methods

In this section, agile software development in general and existing agile software
development methods in particular are introduced briefly.

3.1 Overview of agile software development

The agile movement has gained significant attention in the software engineering
community in the last few years . Agile software development methods focus on
generating early releases of working products. It is claimed that they are good at
adapting to change. In fact, according to Cockburn & Highsmith (2001a), agility
is “all about” creating and responding to change.

The name "agile" arose in 2001, when seventeen process methodologists held a
meeting to discuss future trends in software development. They noticed that their
“lightweight” methods had many characteristics in common, and as the term
“lightweight” was not descriptive enough for these methods, they agreed on the
term “agile”. According to Cockburn (2002), an agile process is both light and
sufficient. “Lightness” is a means of staying manoeuvrable. “Sufficiency” is a
matter of “staying in the game”. In consequence of this meeting, the "Agile
Alliance" and its manifesto for agile software development (Beck et al. 2001)
emerged. The manifesto states the following:

"We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

27

That is, while there is value in the items on the right, we value the items on the
left more."

As it appears of this manifesto, agilists value things on the left more. However,
the idea is to find the right balance between these items. For example even if the
working software is valued more by agilists, they can not forget documentation
completely.

People have been recognized as the primary drivers of project success in agile
methods (Cockburn & Highsmith 2001b). People are the most important
ingredients of success, because good and rigorous process and the right tools
will not save the project if the development team does not have skilful members
(Martin & Hall 2001). With the “right” people, the ability to communicate with
other team members is also valuable and helps to keep things up to date.

Working software without documentation is better than non-working software
with volumes of documentation. In agile methods, working software is delivered
early and often. It is valued more than comprehensive documentation, and
therefore documentation can be added later when there is time. But what is the
right amount of documentation? According to Cockburn (2002), words "just
enough" and "barely sufficient" can also be applied to documentation.

The third statement values customer collaboration over contract negotiation.
Working closely with the customer and the frequent delivery of software enable
regular customer feedback, which is needed for successful projects.

The last statement of the manifesto values responding to change over following
a plan. Since change is inevitable in software development (Pressman 1997),
developers must be able to react to change when it happens. Plans are important,
but the problem is that software projects can not be accurately predicted far into
the future, because there are so many variables to take into account (Martin &
Hall 2001).

28

3.2 Shared characteristics

Agile software development methods have some common characteristics. As
these methods are "barely sufficient", the two main characteristics are, as
indicated before, lightness and simplicity. Agile methodologies thus contain
minimal processes and documentation and reduced formality (Highsmith 2002a).
The purpose is to do what is needed at this moment, not to try to predict the
future too far ahead, and to do urgent things first. Fast and incremental
development enables fast partial “delivers” to customers and further fast
feedback from them. Abrahamsson et al. (2002) enumerate four elements that
make a development method agile. In this case software development should be
incremental, cooperative, straightforward and adaptive; see Table 3:

Table 3. Common characteristics of agile methods (Abrahamsson et al. 2002).

Common characteristics
of agile methods

Description

Incremental development Small software releases, with rapid cycles.

Cooperative Customer and developers working constantly
together with close communication.

Straightforward The method itself is easy to learn and modify,
and it is well documented.

Adaptive Able to take into account last moment changes.

29

Figure 9. Evolutionary map of agile methods (Abrahamsson et al. 2003).

Figure 9 above shows agile methods and their interrelationships, together with
their evolutionary paths. Abrahamsson et al. (2003) have purposefully included
some more philosophical meta-level expositions in the figure, because these
have either directly or indirectly impinged upon preceding agile methods. Figure
9 shows that most of the current agile methods appeared near the year 2000.

3.3 Existing agile methods

The family of agile methodologies is growing constantly. According to
Abrahamsson et al. (2003) and their comparative analysis of agile software
development methods, nine methods existed when they wrote their article. Seven
of these methods, excluding Agile Modeling (AM) and Internet-Speed
Development (ISD), are included in this analysis. AM is excluded, because it is
not method per se (Abrahamsson et al. 2002): AM requires supporting methods,
as it covers only modelling. Respectively, ISD is excluded, because very few
articles in it exist. Today there also exist other agile software development
methods, such as Lean Software Development (Poppendieck & Poppendieck

30

2003), but they are still reasonably new to be included in the analysis. As a result
the included methods are Adaptive Software Development, the Crystal family of
methodologies, Dynamic Systems Development Method, Extreme Pro-
gramming, Feature Driven Development, Pragmatic Programming and Scrum.

This section briefly introduces existing agile methods. Because of the research
interests of this publication, the purpose is not to introduce agile methods
thoroughly and comprehensively. For a more extensive review and analysis of
current agile methods, readers are referred to (Abrahamsson et al. 2002).

3.3.1 Adaptive Software Development

Adaptive Software Development (ASD), developed by James A. Highsmith,
offers an agile and adaptive approach to high-speed and high-change software
projects. The method encourages incremental, iterative development, with
constant prototyping. The static plan-design-build life cycle is replaced by a
dynamic speculate-collaborate-learn life cycle (Highsmith 2002b).

According to Highsmith (2002b, p. 310), "The practices of ASD are driven by a
belief in continuous adaptation." However, ASD's practices are difficult to
identify, and that is perhaps the most significant problem with the method
(Abrahamsson et al. 2002).

3.3.2 Agile Modeling

Agile Modeling is a chaordic, practice-based methodology for effective
modeling and documentation of software-based systems (Ambler 2002a).
According to (Abrahamsson et al. 2002, p. 82), "The underlying idea is to
encourage developers to produce advanced enough models to support acute
design problems and documentation purposes, while still keeping the amount of
models and documentation as low as possible." AM is not a complete software
process; the focus is primarily on effective modeling and documentation
(Ambler 2002b).

31

3.3.3 Crystal family of methodologies

Crystal is the name of a family of methodologies developed by Alistair
Cockburn. The Crystal family focuses on individuals' talents and emphasizes
that every team should utilize a process uniquely tailored to itself (Highsmith
2002a). As the focus is on people, interaction, and community, it means that
processes and tools are secondary. According to Highsmith (2002a), there are
only two absolute rules in Crystal: incremental development and self-adaptation.
In a Crystal project, increments should be less than four months, and the
methods and conventions the team adopts must be tuned and evolve.

3.3.4 Dynamic Systems Development Method

According to Stapleton (1997, p. xiv), "DSDM is a framework of controls for
RAD, supplemented by guidance on how to apply those controls." DSDM
provides a user-centred, iterative and incremental way of developing application
systems that serves the needs of the business (Stapleton 1997). Since its origin in
1994, this method has become the de facto standard for RAD in the UK. DSDM
is based on nine principles, all of which must be applied in a project; otherwise
the whole basis of DSDM is endangered (Stapleton 1997).

3.3.5 Extreme Programming

Extreme programming (XP), developed by Kent Beck, is an agile method for
teams developing software subject to rapidly changing requirements. It is a
deliberate and disciplined approach to software development (Crispin & House
2003). The XP process can be characterized by short development cycles,
incremental planning, continuous feedback, reliance on communication, and
evolutionary design (Beck 1999b). Further according to Beck (Beck 1999a),
rather than planning, analyzing, and designing for the far future, XP suggests
doing all these activities a little at a time, throughout the software development.
Primarily, XP is aimed at object-oriented projects using at most a dozen
programmers in one location (Jeffries et al. 2001). According to surveys, XP is
currently the most popular and best-known method in the agile family of
methodologies (e.g. Maurer & Martel 2002; Charette 2001). XP is made up of a

32

simple set of common-sense practices. In fact, most of XP ’s practices have been
in use for a long time and therefore they are not unique or original (Beck 1999a).
Many of them have been replaced with more complicated practices in the
process of time, but in XP they are collected together.

3.3.6 Feature Driven Development

Feature Driven Development (FDD) was first reported in (Coad et al. 2000) and
further developed by Jeff Luca, Peter Coad and Stephen Palmer (Abrahamsson
et al. 2002). FDD is a highly iterative agile software development process that is
focused on delivering frequent, tangible and working results. The FDD approach
does not cover the entire software development process, but rather focuses on
the design and building phases (Palmer & Felsing 2002). The method is built
around a set of "best practices", which should be used to get the greatest benefit
from the method. According to (Palmer & Felsing 2002), the practices are not
new but the particular combination of the ingredients is new.

3.3.7 Internet-Speed Development

According to Abrahamsson et al. (2003), Internet-speed development is the least
known of agile software development methods. Baskerville et al. (2001) have
researched the ISD approach and present three important aspects related to it:
“time-drives”, “quality depends” and “process adjusts”. “Time drives” means
that ISD development is focused on moving the product quickly to market. By
“quality depends” the authors mean that quality depends on how important it is
to customers and how good the developers are. The third one means that the
development process must adjust according to current needs and circumstances.

3.3.8 Pragmatic Programming

Pragmatic Programming is actually a set of programming "best practices"
published in "The Pragmatic Programmer" by Andrew Hunt and David Thomas
(2000). According to Abrahamsson et al. (2002), Pragmatic Programming does

33

not include process, phases, distinct roles or work products. However, the book
contains a total of 70 tips that cover most programming practicalities.

3.3.9 Scrum

Scrum is a management and control process that focuses on building software
that meets business needs (Schwaber & Beedle 2002). According to Highsmith
(2002a), it has also been applied to nonsoftware projects. Scrum has a project
management emphasis and deals primarily at the level of the team. In fact, the
name Scrum refers to the game of rugby, because of the similarities between
these two; both are adaptive, quick and self-organizing (Schwaber & Beedle
2002). According to (Schwaber & Beedle 2002), Scrum teams are fully
autonomous and guided by their knowledge and experience, rather than formally
defined project plans. Scrum does not define any specific software development
techniques or methods for the implementation phase, but rather it leaves the
power of decision to the developers. However, Scrum introduces a set of
practices that establish an environment within which products can be rapidly
built in complex environments. Schwaber & Beedle (2002) suggest strict
adherence to the practices, if the team is novice to Scrum. Later, when the level
of experience has grown and people have adopted the values of Scrum, it is
possible make adjustments.

34

4. Results
The purpose of this section is to analyze chosen agile methods from an SCM
point of view. Analysis is conducted using the analytical lenses defined in
section 2.5. Thus, for each method the software configuration management
approach, SCM planning, configuration identification, change management
approach and the role of SCM tools is evaluated. Each perspective will be
analyzed separately in the following subsections.

4.1 SCM approach

Table 4 shows how different agile methods address software configuration
management and enumerates the methods' SCM related practices. The methods
take very different approaches towards SCM. If a method takes SCM explicitly
into account, it indicates that the value of SCM has been clearly understood and
emphasized. Therefore, the methods with an explicit approach clearly require
SCM to be conducted during the project. If a method has a tool viewpoint to
SCM, it indicates that that the literature about the method deals with software
configuration management from a tool perspective. If a method does not
explicitly take SCM into account, software configuration management can still
be used to support software development with that particular agile method.

FDD and DSDM take software configuration management explicitly into
account. In FDD, SCM is one of the method's "best practices" that among others
needs to be included in order to obtain the greatest benefit from the method. In
addition, one FDD practice suggests building a system regularly, for example,
daily or weekly, depending on the size of the project and the build time (Palmer
& Felsing 2002). According to Palmer & Felsing (2002), an FDD project's
demands on a CM system depend on the nature and complexity of the software
under development. Besides FDD, DSDM also values SCM highly. According
to Stapleton (1997, p. 61), "software configuration management is a key feature
in DSDM." Good configuration management is essential in order to control the
rapidly evolving products within a DSDM project. One of the DSDM's practices
requires that all changes during the development be reversible.

35

Table 4. Software configuration management approach and SCM related
practices.

Method Software
configuration
management approach

Practices related to
SCM

Adaptive Software
Development

SCM not explicitly
considered

–

Crystal family of
methodologies

Tool viewpoint on SCM –

Dynamic Systems
Development Method

SCM explicitly
considered

All changes during the
development must be
reversible.

Extreme Programming SCM partially
considered

Collective ownership,
small releases, and
continuous integration.

Feature Driven
Development

SCM explicitly
considered

Configuration
management, regular
builds.

Pragmatic Programming Tool viewpoint on SCM Source code control.

Scrum SCM not explicitly
considered

–

XP's approach to SCM can be seen as implicit. The method does not require
software configuration management to be conducted. However, Paulk (2001) has
examined XP from a CMM (Capability Maturity Model) perspective and states
that SCM is partially addressed in XP via collective ownership, continuous
integration and small releases. The Crystal family of methodologies and
Pragmatic Programming have a tool perspective towards software configuration

36

management. This means that the literature of those methods deals with SCM
only from a tool perspective.

In both ASD and Scrum, SCM is not explicitly addressed. However, in the
implementation phase of Scrum, developers are free to use any methods and
techniques they prefer to accomplish the aim of the Sprint. Thus, the use of
software configuration management practices and tools is not excluded.
Nonetheless, according to Abrahamsson et al. (2003, p. 6), "ASD is more about
concepts and culture than software practices."

4.2 SCM planning

The planning of software configuration management should be the basis for a
project's SCM implementation. According to Leon (2000, p. 152), the main
purpose of the SCM plan "is to create an awareness among the various groups
involved in a software project about the SCM functions and how they are to be
performed in that project."

It was found that none of the agile methods addresses SCM planning
specifically. However, it may be assumed that in FDD and DSDM, which
require SCM to be conducted, SCM planning is intended to be part of a
comprehensive SCM solution.

4.3 Configuration identification

From this perspective, it will be analyzed what each method defines as item
identification and baselining. Table 5 shows that many of the methods stipulate
that every development artefact should be under version control. These managed
development artefacts are called configuration items in SCM terminology.

37

Table 5. Configuration identification.

Method Item identification and baselining

Adaptive Software
Development

Not explicitly addressed.

Crystal family of
methodologies

Not explicitly addressed.

Dynamic Systems
Development Method

Everything should be under version control.
Baselining should be conductable daily.

Extreme Programming Source codes should be under version control.

Feature Driven Development Everything should be under version control.

Pragmatic Programming Everything should be under version control.

Scrum Not explicitly addressed.

DSDM suggests that "everything that is produced (analysis models, designs,
data, software, tests, tests results, etc.) should be kept in step with one another so
that it is relatively easy to move back to a known 'build' state whenever the
development has gone down a blind alley." (Stapleton 1997, p. 73) FDD has a
similar viewpoint as it suggests that "any artefact that is used and maintained
during the development of the system is a candidate for version control."
(Palmer & Felsing 2002, p. 53). Pragmatic Programming emphasises making
sure that "everything is under source code control – documentation, phone
number lists, memos to vendors, makefiles, build- and release procedures, that
little shell script that burns the CD master – everything" (Hunt & Thomas 2000,
p. 88). The literature of XP values the management of source code (Jeffries et al.
2001). Collective code ownership and continuous integration combined to
source code control is the basis for XP development. Other agile methods do not
explicitly define what items should be managed. DSDM is the only method that
sets requirements for baselining requiring that it should be conductable daily
(Stapleton 1997).

38

4.4 Change management

According to Cockburn & Highsmith (2001a), agility is about creating and
responding to change. This section analyses agile methods from a change
management perspective; see Table 6.

Table 6. Change management.

Method Change management

Adaptive Software
Development

Changes are frequent in software development.
Therefore, it is more important to be able to
adapt to them , than it is to control them.

Crystal family of
methodologies

Not explicitly addressed.

Dynamic Systems
Development Method

All changes during development must be
reversible. Development team members must be
empowered to make decisions without
bureaucratic overheads. Change control serves to
ensure that quality, once built in to the system, is
preserved.

Extreme Programming The customer decides what to change. The team
can integrate its changes with current code
through comprehensive unit testing.

Feature Driven
Development

New requirements and features should be
controlled by a change management process.

Pragmatic Programming Not explicitly addressed.

Scrum "Controlled chaos": Changes are managed using
Product Backlog and Sprint Backlogs.

39

In FDD and DSDM, change management is a natural part of development,
because they both require software configuration management to be conducted
during a project. FDD requires that new requirements and features should be
controlled by a change management process (Palmer & Felsing 2002). This
change management process should include reviewing the impact on cost,
schedule, and quality. For the resulting system to meet its expectations, the
development process must allow controlled changes, deletions and additions to
requirements and features. Changes to new features should be tracked separately
from the main features list. Palmer & Felsing (2002) introduce the 10% Slippage
Rule they have found useful in controlling changes. This rule means that a
project can absorb a maximum of 10 % increase in features without affecting the
project. In FDD this absorption is possible because the features are small and the
duration of feature's development is short. Changes to the project beyond 10%,
however, will force a 10% change in something else, for example, schedule or
scope. DSDM requires that all changes during development must be reversible
(Stapleton 1997). If a fruitless path has been taken during development, it is
possible to revert to earlier stages of the development and proceed from there.
Moreover, DSDM requires that development team members must be empowered
to make decisions without bureaucratic overheads (Stapleton 1997). Further
according to Stapleton (1997), the main function of change control in DSDM is
to ensure that quality, once built into the system, is preserved.

In XP the customer decides what to change and can change the requirements
(user stories) in the project, but they can not be changed during the iteration
(Martin 2002). XP team members are empowered to make decisions during the
iteration and the customer is always on-site to help clarify matters. The team
integrate their changes continuously with currently released code through
comprehensive unit testing. According to collective ownership practice, anyone
can change any code at any time.

According to Schwaber & Beedle (2002), in Scrum the Product Backlog is a
prioritized list of features, enhancements and bug fixes that constitutes the
changes to be made to the product in future releases. Only one person, called the
Product Owner, is responsible for managing and controlling the Product
Backlog. Changing the contents of Product Backlog or priorities is done with the
Product Owner. A Sprint Backlog is a list of tasks the team has to complete to
meet the Sprint goal. However, no changes to the Sprint Backlog are allowed

40

during the Sprint. According to Highsmith (2002a), this is the "control" part of
"controlled chaos."

According to (Highsmith 2000), most management strategies are geared either to
reduce the number of changes or to control changes. From ASD's perspective,
these strategies are useful, but it is more useful to embrace change than to try to
control it. "Balancing at the edge of chaos" balances between change control and
change containment (Highsmith 2000). By “change containment” Highsmith
means tackling a problem and moving on.

In Pragmatic Programming and Crystal family of methodologies, the change
management has not been explicitly addressed. As Pragmatic Programming does
not include process, phases, distinct roles, or work products, it is understandable
that the change management point of view has not been considered.

4.5 SCM tools

As mentioned above, the role played by software configuration management
tools is becoming more and more important in today’s complex software
development environments (Leon 2000). In this section agile methods are
analyzed from the SCM tool perspective, see Table 7.

Most of the agile methods emphasize the importance of the SCM tool. Agile
methods consider the ability to revert to earlier versions of development artefacts
highly valuable. Quick changes may lead to ”a blind alley” in the development,
and then it is important that every earlier version of every artefact is accessible.
In fact only ASD and Scrum do not mention SCM tools at all. However, in
Scrum, developers are free to use whatever methods and tools they prefer to
accomplish the aim of the Sprint.

41

Table 7. The role of SCM tools.

Method The role of SCM tools

Adaptive Software
Development

SCM tools are not explicitly addressed.

Crystal family of
methodologies

The SCM tool is one of the most important tools
a project team can have.

Dynamic Systems
Development Method

The role of the SCM tool is important. However,
it has been understood that a tool does not solve
anything by itself.

Extreme Programming The importance of SCM automation is
emphasised.

Feature Driven
Development

SCM tool is required.

Pragmatic Programming SCM tool is required.

Scrum SCM tools are not explicitly addressed.

According to Cockburn (2002), in Crystal methods, versioning and configuration
management tools are "the most important tools the team can own." (Cockburn
2002, p. 203) Unfortunately the method does not describe anything else about
SCM or SCM tool usage. As mentioned earlier, DSDM requires a lot of
configuration management. According to Stapleton (1997), every development
artefact should be co-ordinated so that it is easy to revert to earlier versions.
Therefore, Stapleton sees automated software configuration management as an
essential part of the DSDM project. In addition to version control, the chosen
SCM tool should support baselining and branching. Integration with other
development tools and ease of use are highly valued. As referred to earlier,
Stapleton (1997) also states that an SCM tool, in itself, does not solve anything;
a tool is only as good as its users.

42

In XP, code changes are continuously integrated with currently released code.
Jeffries et al. (2001) recommend using a separate integration machine, where the
integration is conducted. XP literature emphasizes the importance of SCM
automation to support XP practices (e.g. Jeffries et al. 2001; Bendix & Hedin
2002). In addition, it has been understood that an SCM tool can improve
productivity. Jeffries et al. (2001) state that, in general, an SCM tool should be
easy to use. Further they emphasize that there should be as few restrictions as
possible in an SCM tool for example, no passwords, no group restrictions, as
little ownership “hassle” as possible. Because of XP's collective ownership
practice, an SCM tool should support concurrent development. According to the
experiences of Lippert et al. (2002), optimistic concurrency control works a lot
better than a locking mechanism in agile methods like XP.

As already mentioned, FDD requires that SCM be considered in FDD projects.
According to Palmer & Felsing (2002), an SCM tool should be able to identify
the source code for all the features that have been completed and able to
maintain the history of changes to classes as they are enhanced. However,
Palmer and Felsing (2002) also state that actual SCM needs are dependent on the
nature and complexity of the software.

Pragmatic Programming emphasizes the importance of the SCM tool. Tip#23
(Hunt & Thomas 2000, p. 88) says, "always use source code control". Thus
SCM tools should be used regardless of team size. According to Hunt & Thomas
(2000), an SCM tool should at least have version control, but branching,
baselining, build management and concurrent development are also seen as an
important and helpful features. In addition, Pragmatic Programming stresses that
everything should be under version control.

43

5. Discussion
In this section, the results of the analysis are discussed. Table 8 summarizes the
results of the study and their implications. The discussion is divided into five
subsections according to perspectives.

Table 8. Results and implications of the study.

Perspective Description of the results Implications

SCM approach Only two of the methods
take SCM explicitly into
account. Most of the
methods address SCM at
some level via SCM tools.

SCM is a key component in
the development of quality
software and, therefore, it
should not be neglected.

SCM planning The literature of the agile
methods does not mention
anything about SCM
planning.

Emphasis on SCM planning
is needed, because it is a
basis for successful SCM
implementation.

Configuration
identification

Only three of the methods
emphasized that everything
should be under version
control.

With modern SCM tools
"controlling everything"
should be the tendency also
in the other agile methods.

Change
management

The agile methods
understand that changes are
inevitable in software
development. However,
change management
approaches diverge.

Change management
processes should be taken
into account as a part of a
project's SCM
implementation.

SCM tools Most methods emphasize the
important role of SCM tools.
The ability to revert to earlier
versions of items was seen as
the most important feature.

Methods should place more
emphasis on comprehensive
SCM solutions.

44

5.1 SCM approach

The results of this study revealed that only two of the analyzed agile methods
take SCM explicitly into account (FDD and DSDM). Moreover, the literature of
agile methods did not describe any SCM approach according to the traditional
definition of SCM. Still, most of the methods take SCM into account via SCM
tools. In the case of agile methods, SCM implementations do not have to be as
heavy weight as in larger software projects. However, according to (Jonassen
Hass 2002), effective software configuration management is crucial to the
success of agile projects. The key point is that SCM is a main component in the
development of quality software and it should not be neglected.

5.2 SCM planning

Agile methods literature does not mention SCM planning at all. One reason may
be that agile methods value working software over comprehensive documen-
tation (Beck et al. 2001). However, careful SCM planning is a basis for a
project's SCM implementation (Abran & Moore 2001) and, therefore, it should
not be neglected. It is typical for agile methods that documentation can be added
later when there is time. However, this is not a recommended solution in the
case of SCM plan. An SCM plan describes the guidelines for software
configuration management, e.g., an identification scheme for configuration
items. If there is no SCM plan, developers will use the SCM practices they
consider best at the moment, producing a great variation among the SCM
practices in use. Therefore, agile methods should place emphasis on SCM
planning as well.

5.3 Configuration identification

Only three of the analyzed methods, FDD, DSDM and Pragmatic Programming,
emphasize that every development artefact should be under version control. This
means that artefacts are configuration items and need to be uniquely identified.
In the case of XP, the literature emphasized that source code should be under
version control. According to Leon (2000, p. 93), "modern SCM tools can
efficiently and effortlessly handle any number of CIs without any problems."

45

Therefore, not only source codes but also every important development artefacts
should be kept under version control.

Baselining strategies were not actually defined. Only DSDM suggested that
baselining should be possible on a daily basis.

5.4 Change management

As noted above, changes are inevitable in software development. This has been
accepted for a long time. Agile methods make no exception in this case. In fact,
according to Cockburn & Highsmith (2001a), agility is about creating and
responding to change. In fast-paced development there will be changes, and the
important question is how they should be reacted. According to McConnell
(1998), controlling changes is critical to a project's success. It protects the
project from unnecessary change, ensures that all concerned parties are involved
in decision-making and improves the quality of decisions made (McConnell
1998).

The results of this study show that different agile methods have quite different
approaches towards change management. ASD suggests adapting to changes
rather than controlling them. In FDD and DSDM, a change control process is
part of the required SCM implementation. As Whitgift (1991) has stated, the
level and formality of change control varies; large teams need strict and formal
change control, but small teams can rely on less formal control. According to
Boehm (2002), small teams and products are home ground for agile methods,
which means that in agile projects the change management processes do not
necessarily need to be as formal and rigid as in larger projects. Change
management can also be a separate function regardless of the agile method.
Thus, the main point is that change management should not be neglected.

5.5 SCM tools

The results of this study show that most of the agile methods highly appreciate
SCM tools and the automation they can offer. According to Ronkainen &
Abrahamsson (2003, p. 6), "pervasive use of version / configuration control is

46

one key ingredient in enabling fast-paced development work in an environment
where seemingly harmless changes may cause bugs that are very difficult to
locate and fix". This study supports their argument. Agile methods seem to relish
having an ability to revert to earlier versions of development artefacts. Since
rapid development and quick changes may lead to mistakes in development, it is
important that earlier versions of development artefacts are accessible.
According to Berczuk & Appleton (2003), version control is an essential part of
making team software development effective, and agile methods are focused on
teamwork (e.g. Abrahamsson et al. 2002). Therefore, version control is one of
the most important features an SCM tool should have in an agile software
development project. Other tool features that were seen as important were
optimistic concurrency control, baselining and branching.

Overall, the literature on agile methods revealed that these methods have a very
tool-focused viewpoint towards SCM. This tendency is like the one Leon (2000)
has stated; the role played by SCM tools is becoming more and more important
in today’s software development environments. Leon (2000) has also stated that
increased business agility is one of the SCM tool's benefits and means that "the
company can be more agile and more responsive to the needs of the customer
without compromising product quality." (Leon 2000, p. 189). SCM tools do not
solve all configuration management problems, but they can be one step towards
more effective software configuration management (Leon 2000). Therefore,
agile methods should emphasise more comprehensive SCM solutions and
understand the fact that SCM tools are only one part of a successful SCM
implementation.

5.6 Summary

In this section, the results of the analysis were discussed in five subsections. The
results of this study show that only two of the analyzed agile methods take SCM
explicitly into account. Still, most of the methods take SCM into account at
some level via SCM tools. Because software configuration management is
crucial to the success of agile development, agile methods should emphasise
more comprehensive SCM solutions.

47

6. Conclusions
Agile software development methods have gained significant attention in the
software engineering community in the last few years. They place more
emphasis on individuals, interactions, working software, customer collaboration,
and responding to change, rather than on processes, tools, documentation,
contracts and plans. SCM is a method of bringing control to the software
development process and is known as an inseparable part of quality-oriented
product development regardless of development method. On the other hand,
software configuration management is often considered bureaucratic method, an
approach that causes additional work and more documentation. However, the
value of SCM should not be underestimated in the case of agile software
development methods. Currently, there are very few studies of software
configuration management in agile methods.

The aim of this publication was to systematically review the existing literature
on agile software development methodologies from an SCM point of view.
Therefore, analytical SCM lenses based on existing literature were constructed,
including the following five perspectives:

SCM approach: This perspective analyzed how software configuration
management is addressed in a method and explored each method’s SCM-related
practices. It was found that only two of the methods take SCM explicitly into
account. However, most of the methods address SCM at some level via SCM
tools.

SCM planning: The purpose of this perspective was to find out what the agile
methods define as SCM planning. The results show that agile methods literature
does not mention SCM planning at all. In software configuration management
literature, SCM planning has been described as a basis for successful SCM
implementation. Therefore, agile methods should also place emphasis on SCM
planning.

Configuration identification: In this perspective, it was analyzed what the agile
methods defined as item identification and baselining. The results of the study
show that only three of the existing agile methods stipulate every development
artefact should be under version control. However, modern SCM tools can

48

handle any number of configuration items without any problems and, therefore,
"controlling everything" should be the tendency in the other agile methods as
well. Only DSDM has addressed baselining by suggesting that it should be
possible to carry out baselining daily.

Change management: The purpose of this perspective was to clarify what agile
methods define as change management. It was found that different agile methods
take quite different approaches. For example, ASD suggests adapting to changes
rather than controlling them. Respectively, in FDD and DSDM, the change
controlling process is part of the required SCM implementation. Thus, change
management processes should be defined and taken into account as part of a
project's SCM implementation

SCM tools: This perspective analyzed the role of software configuration
management tools in agile methods. The results show that most of the methods
emphasize the importance of SCM tools, and the ability to revert earlier versions
of items is seen as the most important feature. However, while tools are an
important part of software configuration management, agile methods should
stress more comprehensive SCM solutions.

In conclusion, the results of this study showed that there are lacks in the SCM
approaches in the different agile methods. The positive result was that software
configuration management had not been completely forgotten. However, it is
clear that SCM should be a key ingredient in fast-paced agile development.

49

References
Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J. 2002. Agile Software
Development Methods: Review and Analysis. Espoo, VTT Electronics, 107 p.
VTT Publications 478.
http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf.

Abrahamsson, P., Warsta, J., Siponen, M. T., Ronkainen, J. 2003. New
Directions on Agile Methods: A Comparative Analysis. Proceedings of the 25th
International Conference on Software Engineering (ICSE'03).

Abran, A., Moore, J. 2001. SweBok: Guide to the Software Engineering Body of
Knowledge, Trial Version 1.0, California: IEEE Computer Society Press.

Ambler, S. W. 2002a. Agile Modeling: Best Practices for the Unified Process
and Extreme Programming. New York: John Wiley & Sons.

Ambler, S. W. 2002b. Introduction to Agile Modeling. A Ronin International,
Inc. White Paper.

Asklund, U., Bendix, L. 2002. A Study of Configuration Management in Open
Source Software Projects. Software, IEE Proceedings, Vol. 149, No. 1, pp. 40–46.

Baskerville, R., Levine, L., Pries-Heje, J., Ramesh, B., Slaughter, S. 2001. How
Internet Companies Negotiate Quality. IEEE Computer, Vol. 34, pp. 51–57.

Beck, K. 1999a. Embracing Change with Extreme Programming. Computer,
Vol. 32, No. 10, pp. 70–77.

Beck, K. 1999b. Extreme Programming Explained: Embrace Change. Reading,
Massachusetts: Addison-Wesley.

Beck, K., Beedle, M., Bennekum, A. V., Cockburn, A., Cunningham, W.,
Fowler, M., Grenning, J. Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick,
B., Martin, R. C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D. 2001.
Manifesto for Agile Software Development [Web-document]. Available:
http://agilemanifesto.org/. [Referenced 14.5.2003].

50

Bendix, L., Hedin, G. 2002. Summary of the subworkshop on extreme
programming. Nordic Journal of Computing, Vol. 9, No. 3, pp. 261–265.

Berczuk, S. P., Appleton, B. 2003. Software Configuration Management
Patterns: Effective Teamwork, Practical Integration. Boston: Addison-Wesley.

Boehm, B. 2002. Get Ready for Agile Methods, with Care. Computer, Vol. 35,
No. 1, pp. 64–69.

Buckley, F. J. 1996. Implementing Configuration Management: Hardware,
Software and Firmware, 2nd ed. New York: IEEE Press.

Charette, R. 2001. The Decision Is In: Agile Versus Heavy Methodologies.
Cutter Consortium e-Project Management Advisory Service, Vol. 2, No. 19.

Coad, P., LeFebvre, E., De Luca, J. 2000. Java Modeling in Color with UML:
Enterprise Components and Process. Prentice Hall.

Cockburn, A., Highsmith, J. 2001a. Agile Software Development: The Business
of Innovation. Computer, Vol. 34, No. 9, pp. 120–122.

Cockburn, A., Highsmith, J. 2001b. Agile Software Development: The People
Factor. Computer, Vol. 34, No. 11, pp. 131–133.

Cockburn, A. 2002. Agile Software Development. Boston: Addison-Wesley.

Compton, S. P., Conner, G. R. 1994. Configuration Management for Software.
New York: Thomson Publishing Company.

Conradi, R., Westfechtel, B. 1996. Version Models for Software Configuration
Management. ACM Computing Surveys, Vol. 30, No. 2, pp. 232–282.

Conradi, R., Westfechtel, B. 1998. Software Configuration Management and
Engineering Data Management: Differences and Similarities. Proceedings 8th
International Workshop on System Configuration Management. Brüssel. LNCS
1439. Springer-Verlag. Pp. 95–106.

51

Conradi, R., Westfechtel, B. 1999. SCM: Status and Future Challenges. Ninth
International Workshop on Software Configuration Management (SCM-9).

Crispin, L., House, T. 2003. Testing Extreme Programming. Boston, Addison-
Wesley.

Crnkovic, I., Persson Dahlqvist, A., Svensson, D. 2001. Complex Systems
Development Requirements – PDM and SCM Integration.

Crnkovic, I., Asklund, U., Persson Dahlqvist, A. 2003. Implementing and
Integrating Product Data Management and Software Configuration
Management. Artech House.

Dart. S. 1990. Spectrum of Functionality in Configuration Management
Systems. Technical Report CMU/SEI-90-TR-11.

Dart, S. 1994. Concepts in Configuration Management Systems. Technical
Report. Software Engineering Institute, Carnegie Mellon University, Pittsburgh.

Estublier, J. 2000. Software Configuration Management: A Roadmap. The
Future of Software Engineering, 22nd International Conference on Software
Engineering (ICSE 2000).

Feiler, P. H. 1990. Software Configuration Management: Advances in Software
Development Environments. Technical Report. Software Engineering Institute,
Carnegie Mellon University, Pittsburgh.

Highsmith, J. A. 2000. Adaptive Software Development: A Collaborative
Approach to Managing Complex Systems. New York, NY, Dorset House
Publishing.

Highsmith, J. 2002a. Agile Software Development Ecosystems. Boston,
Addison-Wesley.

Highsmith, J. 2002b. What is Agile Software Development. Crosstalk, the
Journal of Defense Software Engineering, October.

52

Hunt, A., Thomas, D. 2000. The Pragmatic Programmer. Addison Wesley.

IEEE 1042-1987. IEEE Guide to Software Configuration Management. IEEE
Standards Collection – Software Engineering, Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey.

IEEE 610.12-1990. IEEE Standard Glossary of Software Engineering
Terminology. IEEE Standards Collection – Software Engineering, Institute of
Electrical and Electronics Engineers, Piscataway, New Jersey.

IEEE 828-1990. IEEE Standard for Software Configuration Management Plans.
IEEE Standards Collection – Software Engineering, Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey.

IEEE 828-1998. IEEE Standard for Software Configuration Management Plans.
IEEE Standards Collection – Software Engineering, Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey.

Jeffries, R., Anderson, A., Hendrickson, C. 2001. Extreme Programming
Installed. NJ: Addison-Wesley.

Jonassen Hass, A. M. 2002. Configuration Management Principles and
Practices. Addison-Wesley.

Lehman, M. 1980. Programs, lifecycles and laws of software evolution.
Proceedings of IEEE. Vol. 68, No. 9.

Leon, A. 2000. A Guide to Software Configuration Management. Boston:
Artech House.

Lippert, M., Roock, S., Wolf, H. 2002. Extreme Programming in Action:
Practical Experiences from Real World Projects. England: John Wiley & Sons
Ltd.

Martin, R. C., Hall, P. 2001. Agile processes. Chapter from "Agile
Development: Principles, Patterns, and Process".

53

Martin, R. C. 2002. Agile Software Development: Principles, Patterns, and
Practices. Upper Saddle River, NJ, Prentice-Hall.

Maurer, F., Martel, S. 2002. Extreme Programming: Rapid Development for
Web-Based Applications. IEEE Internet computing, Vol. 6, Issue 1, pp. 86–90.

McConnell, S. 1998. Software Project Survival Guide. Redmond, Washington,
Microsoft Press.

Palmer, S. R., Felsing, J. M. 2002. A Practical Guide to Feature-Driven
Development. Upper Saddle River, NJ, Prentice-Hall.

Paulk, M. C. 2001. Extreme Programming from a CMM Perspective. Paper of
XP Universe.

Persson Dahlqvist, A., Asklund, U., Crnkovic, I., Hedin, A., Larsson, M., Ranby,
J., Svensson, D. 2001. Product Data Management and Software Configuration
Management: Similarities and Differences. The Association of Swedish
Engineering Industries.

Poppendieck, M., Poppendieck, T. 2003. Lean Software Development – An
Agile Toolkit. Upper Saddle River, NJ: Addison Wesley.

Pressman, R. S. 1997. Software Engineering: a Practitioner's approach, 4th ed.
New York: McGraw-Hill Companies.

Rahikkala, T. 2000. Towards Virtual Software Configuration Management. A
Case Study. Espoo, VTT Electronics, 110 p. + app. 57 p. VTT Publications 409.
http://www.vtt.fi/inf/pdf/publications/2000/P409.pdf.

Ronkainen, J., Abrahamsson, P. 2003. Software Development Under Stringent
Hardware Constraints: Do Agile Methods Have a Chance? 4th International
Conference on Extreme Programming (XP 2003).

Stapleton, J. 1997. Dynamic Systems Development Method – The Method in
Practice. Addison Wesley.

54

Schwaber, K., Beedle, M. 2002. Agile Software Development With Scrum.
Upper Saddle River, NJ, Prentice-Hall.

Taramaa, J. 1998. Practical Development of Software Configuration
Management for Embedded System. Espoo, VTT, 147 p. + app. 110 p. VTT
Publications 366. http://www.vtt.fi/inf/pdf/publications/1998/P366.pdf.

Tichy, W. 1988. Software Configuration Management Overview.

Weatherall, B. 1997. A Day in the Life of a PVCS Road Warrior: Want to Get
PVCS Organized Quickly in a Mixed-Platform Environment? Technical paper,
Synergex International Corporation [Web-document].
Available: http://www.pvcs.synergex.com/oll_files/synergex-151.asp.
[Referenced 14.5.2003].

Whitgift, D. 1991. Methods and Tools for Software Configuration Management.
England: John Wiley & Sons Ltd.

Zeller, A. 1996. Software Configuration with Feature Logic. Proceedings of the
Workshop on Knowledge Representation and Configuration Problems.

Published by Series title, number and
report code of publication

VTT Publications 514
VTT–PUBS–514

Author(s)
Koskela, Juha
Title

Software configuration management in agile methods
Abstract
The development of good quality software is a critical element of successful competition
for today’s software market shares. However, software products are becoming larger and
more complex; therefore, the development of quality software is neither easy nor rapid.
Agile software development methods focus on generating early releases of working
products. They aim to deliver business value immediately from the beginning of the
project. Regardless of the development method in use, it is important that software
development be under control. Software configuration management (SCM) is known as a
method of bringing control to the software development process, and thus, proper
application of SCM is a key component in the development of quality software. However,
currently very few studies on software configuration management in agile methods exist;
hence this study.

The aim of this publication is to systematically review the existing literature on agile
software development methodologies from an SCM point of view. First, analytical SCM
lenses based on existing SCM literature are constructed. Second, existing agile methods
are analyzed using the lenses constructed. The results show that only two of the existing
agile methods take SCM explicitly into account, but most of the methods highly value
SCM tool support and its ability to revert to earlier versions of development artefacts.
Nonetheless, the basis for successful SCM implementation, SCM planning, has been
completely forgotten.
Keywords
software configuration management (SCM), agile methods, extreme programming, software development
methods

Activity unit
VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN–90571 Oulu, Finland

ISBN Project number
951–38–6259–3 (soft back ed.)
951–38–6260–7 (URL:http://www.vtt.fi/inf/pdf/)

E2SU00055

Date Language Pages Price
December 2003 English 54 p. B

Name of project Commissioned by
Agile software technologies (UUTE2) VTT

Series title and ISSN Sold by
VTT Publications
1235–0621 (soft back ed.)
1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

VTT Information Service
P.O.Box 2000, FIN–02044 VTT, Finland
Phone internat. +358 9 456 4404
Fax +358 9 456 4374

V
TT PU

BLICA
TIO

N
S 514

Softw
are configuration m

anagem
ent in agile m

ethods
Juha K

oskela

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000
02044 VTT 02044 VTT FIN�02044 VTT, Finland

Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. +358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax +358 9 456 4374

ISBN 951–38–6259–3 (soft back ed.) ISBN 951–38–6260–7 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2003ESPOO 2003ESPOO 2003ESPOO 2003ESPOO 2003 VTT PUBLICATIONS 514

Juha Koskela

Software configuration management in
agile methods

VTT PUBLICATIONS

496 Nuutinen, Maaria, Reiman, Teemu & Oedewald, Pia. Osaamisen hallinta ydinvoima-
laitoksessa operaattoreiden sukupolvenvaihdostilanteessa. 2003. 82 s.

497 Kolari, Sirpa. Ilmanvaihtojärjestelmien puhdistuksen vaikutus toimistorakennusten sisäil-
man laatuun ja työntekijöiden työoloihin. 2003. 62 s. + liitt. 43 s.

498 Tammi, Kari. Active vibration control of rotor in desktop test environment. 2003. 82 p.
499 Kololuoma, Terho. Preparation of multifunctional coating materials and their applications.

62 p. + app. 33 p.
500 Karppinen, Sirpa. Dietary fibre components of rye bran and their fermentation in vitro. 96

p. + app. 52 p.
501 Marjamäki, Heikki. Siirtymäperusteisen elementtimenetelmäohjelmiston suunnittelu ja

ohjelmointi. 2003. 102 s. + liitt. 2 s.
502 Bäckström, Mika. Multiaxial fatigue life assessment of welds based on nominal and hot spot

stresses. 2003. 97 p. + app. 9 p.
503 Hostikka, Simo, Keski-Rahkonen, Olavi & Korhonen, Timo. Probabilistic Fire Simulator.

Theory and User's Manual for Version 1.2. 2003. 72 p. + app. 1 p.
504 Torkkeli, Altti. Droplet microfluidics on a planar surface. 2003. 194 p. + app. 19 p.
505 Valkonen, Mari. Functional studies of the secretory pathway of filamentous fungi. The effect

of unfolded protein response on protein production. 2003. 114 p. + app. 68 p.
506 Caj Södergård (ed.). Mobile television � technology and user experiences. Report on the

Mobile-tv project. 2003. 238 p. + app. 35 p.
507 Rosqvist, Tony. On the use of expert judgement in the qualification of risk assessment. 2003.

48 p. + app. 82 p.
508 Parviainen, Päivi, Hulkko, Hanna, Kääriäinen, Jukka, Takalo, Juha & Tihinen, Maarit.

Requirements engineering. Inventory of technologies. 2003. 106 p.
509 Sallinen, Mikko. Modelling and estimation of spatial relationships in sensor-based robot

workcells. 2003. 218 p.
510 Kauppi, Ilkka. Intermediate Language for Mobile Robots. A link between the high-level

planner and low-level services in robots. 2003. 143 p.
511 Mäntyjärvi, Jani. Sensor-based context recognition for mobile applications. 2003. 118 p. + app.

60 p.
512 Kauppi, Tarja. Performance analysis at the software architectural level. 2003. 78 p.
513 Uosukainen, Seppo. Turbulences as sound sources. 2003. 42 p.
514 Koskela, Juha. Software configuration management in agile methods. 2003. 54 p.

	Abstract
	Contents
	List of symbols
	1. Introduction
	2. Software configuration management
	2.1 Background
	2.2 The purpose and benefits of SCM
	2.3 SCM activities
	2.3.1 Configuration identification
	2.3.2 Configuration control
	2.3.3 Configuration status accounting
	2.3.4 Configuration audits
	2.3.5 SCM planning

	2.4 Automation of SCM
	2.4.1 Automating SCM activities
	2.4.2 Common features of SCM tools

	2.5 Lenses for the analysis

	3. Current state of agile software development methods
	3.1 Overview of agile software development
	3.2 Shared characteristics
	3.3 Existing agile methods
	3.3.1 Adaptive Software Development
	3.3.2 Agile Modeling
	3.3.3 Crystal family of methodologies
	3.3.4 Dynamic Systems Development Method
	3.3.5 Extreme Programming
	3.3.6 Feature Driven Development
	3.3.7 Internet-Speed Development
	3.3.8 Pragmatic Programming
	3.3.9 Scrum

	4. Results
	4.1 SCM approach
	4.2 SCM planning
	4.3 Configuration identification
	4.4 Change management
	4.5 SCM tools

	5. Discussion
	5.1 SCM approach
	5.2 SCM planning
	5.3 Configuration identification
	5.4 Change management
	5.5 SCM tools
	5.6 Summary

	6. Conclusions
	References

