
V
TT PU

BLICA
TIO

N
S 515

m
Platon - Brow

sing and developm
ent platform

 of m
obile applications

Palviainen &
 Laakko

ESPOO 2003ESPOO 2003ESPOO 2003ESPOO 2003ESPOO 2003 VTT PUBLICATIONS 515

Marko Palviainen & Timo Laakko

mPlaton

Browsing and development platform of
mobile applications

Leikkausvara
ylhäällä 23 mm

Leikkausvara
alhaalla 24 mm

Leikkausvara
oik. reunassa 4 mm

Kirjan alareunan pos: Y = 273

VTT PUBLICATIONS 515

mPlaton
Browsing and development platform of

mobile applications

Marko Palviainen & Timo Laakko
VTT Information Technology

ISBN 951�38�6265�8 (soft back ed.)
ISSN 1235�0621 (soft back ed.)

ISBN 951�38�6266�6 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1455�0849 (URL: http://www.vtt.fi/inf/pdf/)

Copyright © VTT Technical Research Centre of Finland 2003

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

VTT, Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O.Box 2000, FIN�02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Tietotekniikka, Sinitaival 6, PL 1206, 33101 TAMPERE
puh. vaihde (03) 316 3356, faksi (03) 316 3380, (03) 317 4102,

VTT Informationsteknik, Sinitaival 6, PB 1206, 33101 TAMMERFORS
tel. växel (03) 316 3356, fax (03) 316 3380, (03) 317 4102

VTT Information Technology, Sinitaival 6, P.O.Box 1206, FIN�33101 TAMPERE, Finland
phone internat. + 358 3 316 3356, fax + 358 3 316 3380, + 358 3 317 4102

VTT Tietotekniikka, Tekniikantie 4 B, PL 1203, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 7028

VTT Informationsteknik, Teknikvägen 4 B, PB 1203, 02044 VTT
tel. växel (09) 4561, fax (09) 456 7028

VTT Information Technology, Tekniikantie 4 B, P.O.Box 1203, FIN�02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 7028

Technical editing Marja Kettunen

Otamedia Oy, Espoo 2004

3

Palviainen, Marko & Laakko, Timo. mPlaton - Browsing and development platform of mobile
applications. Espoo 2003. VTT Publications 515. 98 p.

Keywords mobile application development, mobile Internet, WAP, XML, XHTML, browsing,
mobile platform

Abstract
VTT Information Technology has created a comprehensive mobile Internet
research and development environment, the components of which enable
experimentation of new multimedia technologies and ideas, and their
implementations in the mobile user's Internet environment before the method is
standardized and incorporated into commercial products. This reports describes
the mPlaton browsing and development platform of mobile applications, which
forms a part of the VTT's mobile Internet research environment.

mPlaton supports the development of client-side mobile browsing applications,
so that implemented parts are consistent, generic and reusable. It provides
frameworks and solutions how to browse the content in mobile environment,
present the content with profile information in separate user agent
implementations with multimodal controls available and create and edit the
browsing content.

The core of mPlaton include frameworks for browsing (AGB), for mobile user
agents, content types and multimodal controls (MIMEFrame), and for XML
editors (FEdXML). The frameworks are designed for mobile environments so
that they are very light and scalable, based on generic standards, and are
transferable for separate platforms and can be implemented by using different
kinds of object-oriented languages (e.g., Java and C++). The solutions
introduced in this work are implemented in Java SE, Java Personal Profile and
Java MIDP platforms. The solutions are based strongly on standards (e.g., by
World Wide Web Consortium (W3C) and Open Mobile Alliance (OMA)) and
generic object-oriented technologies, and they are designed to be generic enough
to enable the transferability to other platforms.

4

Preface
The work related to the mPlaton platform described in this report has been carried
out within several research projects at VTT Information Technology. The early
groundwork (years 1999 � 2000) was related to the development of the
VisualWML system (a development tool for WAP applications) - a predecessor of
the mPlaton toolkit. VisualWML was developed within the research projects
"WML-Browser" (year 1999) and "WAP-Multimedia" (2000). After, many parts
of mPlaton toolkit were introduced during the "AMMME" project (2001). Finally,
the core frameworks of mPlaton were defined and implemented during the current
research project "Adaptive context-aware mobile and multimedia applications and
their development environment - ALLLAS" (http://www.vtt.fi/tte/proj/alllas).

One of the initial aims of this work has been to support other mobile Internet and
applications projects at VTT by providing a browsing and development platform
for mobile applications. The target is to enable the experimentation with new
technologies and ideas, and their implementation in mobile user's Internet
environment before the method is standardised and incorporated in commercial
products.

The solutions provided by mPlaton are based strongly on the evolving Mobile
Internet standards (e.g., by OMA and W3C) as well as generic object-oriented
technologies, and they are designed to be generic enough to enable the
transferability to other platforms.

5

Contents

Abstract ... 3

Preface .. 4

List of symbols.. 8

1. Introduction... 10
1.1 VTT's Mobile Internet research and development platform................ 10
1.2 mPlaton � a browsing and development platform 11

2. Mobile Internet and browsing applications... 13
2.1 Standardization .. 14
2.2 Adaptive and intelligent mobile browsing services............................. 15

2.2.1 User Agent Profile... 17
2.2.2 Style sheets.. 19
2.2.3 Personal preferences and other profile information 21

2.3 Multimodality .. 22
2.4 Mobile application frameworks... 22

3. Overall architecture of mPlaton.. 24

4. AGB � Architecture for Generic Browser .. 26
4.1 Architecture ... 27

4.1.1 Object pull... 28
4.1.2 Object push ... 31
4.1.3 AGB configuration.. 33
4.1.4 Triggered browsing ... 34

4.2 Reference implementations ... 35

5. MIMEFrame - Framework for mobile user agents, content types and
multimodal controls .. 41

5.1 Architecture ... 42
5.1.1 User Agent .. 43
5.1.2 Content .. 44
5.1.3 Controls ... 45

5.2 MIMEFrame framework ... 46

6

5.2.1 User agent ... 47
5.2.2 MIME.. 49
5.2.3 Controls ... 51

5.3 Reference implementations ... 52
5.3.1 MIMEFrame in Java MIDP environment 53
5.3.2 Presenting mobile content with resources and multimodal

controls.. 55

6. FEdXML � Framework for XML editors ... 57
6.1 Requirements for XML editor framework... 59
6.2 Architecture for modular XML editors ... 61
6.3 FEdXML framework ... 62

6.3.1 XML model... 63
6.3.1.1 Grammar ... 63
6.3.1.2 Editing operations ... 63
6.3.1.3 Validations .. 64
6.3.1.4 Change-propagation mechanisms 65

6.3.2 XML view ... 66
6.3.3 XML controller ... 66
6.3.4 Constructing configurable XML editors 67

6.4 Reference implementations ... 68

7. Applications.. 73
7.1 mPlaton Toolkit � a development toolkit for mobile browsing

applications.. 73
7.2 µBrowser - a micro browser implementation for PDA devices 80
7.3 MIDBrowser - a browser implementation for Java MIDP enabled

mobile phones.. 81

8. Discussion... 83
8.1 AGB... 83
8.2 MIMEFrame .. 86
8.3 FEdXML ... 86

9. Conclusions and future work .. 88
9.1 Results ... 88
9.2 Future work ... 89

7

Acknowledgements... 91

References... 92

8

List of symbols
API Application Programming Interface

CC/PP Composite Capability/Preference Profiles

CSS Cascading Style Sheets

DOM Document Object Model

DTD Document Type Definition

GPRS General Packet Radio Service

GSM Global System for Mobile communications

HSCSD High Speed Circuit Switched Data

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IMPS Instant Messaging and Presence Service

OMA Open Mobile Alliance

MIDP Mobile Information Device Profile

MMS Multimedia Messaging Service

RFC Request For Comments

RDF Resource Description Framework

RTP Real-time Transport Protocol

9

SMIL Synchronized Multimedia Integration Language

SVG Scalable Vector Graphics

UAProf User Agent Profile

UML Unified Modelling Language

UMTS Universal Mobile Telecommunications System

URI Uniform Resource Identifier

W3C World Wide Web Consortium

WAE Wireless Application Environment

WAP Wireless Application Protocol

WCSS WAP Cascading Style Sheets

WLAN Wireless Local-Area Network

WML Wireless Markup Language

WSP Wireless Session Protocol

XHTML eXtensible HyperText Markup Language

XML eXtensible Markup Language

XPath XML Path Language

XSL eXtensible Stylesheet Language

XSLT eXtensible Stylesheet Language Transformations

XSL-FO eXtensible Stylesheet Language Formatting Objects

10

1. Introduction
The use of mobile applications is becoming a part of everyday life in
consequence of the development of mobile devices and network solutions. At
the same time, the diversity of the mobile environment is increasing. For
instance, mobile devices will have multiple network connections and the
available bandwidth may vary a lot. There will be several kinds of new mobile
applications. In particular, context and location awareness will be properties of
many mobile applications. The Semantic Web will enable intelligent services,
like information brokers, filters and search agents, which can offer greater
functionality and interoperability than current stand-alone services.
Multimodality improves the usability by combining several interaction ways like
visuals, voice and touch.

The characteristics of mobile environment set many requirements for mobile
applications. Mobile devices memory, processing power as well as other
capabilities are rather limited compared to desktop PCs. In particular, mobile
applications should satisfy the needs of different kinds of mobile users as well as
be very light, reusable and transferable to various kinds of mobile devices. This
all poses several challenges for mobile application development and tools.

1.1 VTT's Mobile Internet research and development
platform

VTT Information Technology has created a comprehensive mobile Internet
research and development environment. It enables experimentation of new
multimedia technologies and ideas, and their implementations in the mobile
user's Internet environment before the technologies are standardized and
incorporated into commercial products (Figure 1.1). The system covers the
entire chain from content servers through presentation format and data transfer
protocol modifications to the user's browser and terminal. It includes the key
components needed for the development and testing of new services as well as
development tools for applications developers. For instance, specifications of
Open Mobile Alliance (OMA) are used as a part of the implementation of the
platform. The platform has been used in several national and EU projects. The
open, modular architecture of the system allows its modification as the related

11

specifications are continuously developed and the exploitation of the
components and their porting into real environment.

Client Gateway
Content Encoding

Protocols

WAP
Protocol
StackProtocols

HTTP,WSP,SIP,RTP,..

Personalization

Proxy

HTML WAP
XHTML MP

Adaptation

Media Conversion

Server

Web applications

Multimedia Services

Push services
MMS, IMPS

Location and
context-awarenessH

T
T
P

 Mobile applications

mPlaton
Browsing and
 development
Frameworks

Figure 1.1. Mobile Internet research environment.

1.2 mPlaton � a browsing and development platform

This report describes the "mPlaton" browsing and development platform for
mobile applications. mPlaton forms an essential part of the mobile Internet
research environment (see Figure 1.1), and it has been developed since the year
1999 within several projects of VTT Information Technology. Key research
topics of them related to mPlaton included how to

! browse the content in mobile environment,

12

! present the content with profile information in separate user agent
implementations with multimodal controls available, and

! construct the browsing content to mobile environment.

As results, new frameworks have been created for

! browsing (AGB);

! mobile user agents, content types and multimodal controls (MIMEFrame);
and

! XML editors (FEdXML).

The core frameworks (AGB, MIMEFrame and FEdXML) are designed for
mobile environments so that they are very light and scalable, based on generic
standards, and are transferable to separate platforms and can be implemented by
using different kinds of object-oriented languages (e.g., Java and C++). The
solutions introduced in this work are implemented by using Java 2 SE, Personal
Java and Java MIDP platforms. The core solutions described strongly rely on
standards (e.g., by OMA and W3C) and generic object-oriented technologies.
They are designed to be generic enough that transferability for other platforms is
enabled.

Basic concepts and properties of Mobile Internet browsing applications are
outlined in Chapter 2. Then, detailed descriptions of the core frameworks of
mPlaton are provided in Chapters 3, 4, 5 and 6. By using the frameworks several
new applications have been designed and implemented: mPlaton Toolkit � a
development toolkit for mobile applications, µBrowser - a micro browser
implementation for PDA devices, and MIDBrowser - a browser implementation
for Java MIDP enabled mobile phones; the applications are described in Chapter
7. Finally, the results are discussed and conclusions are drawn in Chapters 8 and 9.

13

2. Mobile Internet and browsing
applications

Mobile Internet is growing rapidly. New specifications and definitions are being
prepared in several working groups and organisations. Two central organisations
amongst others are Open Mobile Alliance (OMA) and World Wide Web
Consortium (W3C), which have prepared several new specifications and defacto
standards. Mobile Internet makes it possible to construct new kinds of services
for the users, such as

! adaptive and intelligent mobile browsing services, and

! context- and location-aware services,

! push, multimedia messaging, mobile instant messaging and presence
services.

The mobile contexts of use as well as the characteristics of mobile devices and
networks may vary a lot [ArD02]. Thus, there is a great need for adaptive mobile
browsing applications, which are capable to be profiled for the user, device and
available network connection.

Personalised, context-aware and location-based mobile computing is excepted to
be one of the major ingredients of the future wireless Internet services
[MiP01][MK+02]. Many information and services are relevant only in limited
context [CoK99]. Information about the user's environment makes it possible to
implement time-aware, location-aware, device-aware and personalised
applications [HS+03]. Context-aware applications can offer contextual sensing,
adaptation, resource discovery and augmentation methods to interact with the
environment [Pas98]. The context information can be used in adapting the user
interface and providing relevant services to the user [DS+99].

The new developing mobile platforms (e.g., Java MIDP, Symbian and Nokia
Series 60) give increasing opportunities to mobile software developers. It is
important that same applications can be reused and transferred to the different
mobile devices.

14

Mobile browsing standards, intelligent browsing services, adaptive mobile
browsing services, multimodality and mobile platforms are described in the
following subsections.

2.1 Standardization

The Wireless Application Environment [WAE] specified by OMA provides an
extensible environment for application development. The most important content
formats of browsing applications include Wireless Markup Language (WML)
[WML] and XHTML Mobile Profile [XHTMLMB], which is a part of WAP2
specifications. Both of them are authoring languages for mobile Internet services
and applications.

eXtensible Markup Language (XML) [BP+00] provides a generic and compact
way to define structured information. Consequently, it is becoming heavily used
in several applications, such as, electronic publishing, and, especially, in mobile
environments (browsing applications) XML has become the key element.

Both WML and XHTML Mobile Profile are eXtensible Markup Language
(XML) applications. XML itself specifies an easy and flexible way to describe
and deliver structured information over the World Wide Web (WWW). The
modularization work of XHTML [AB+01] supports well adaptation and
transformations to other XML applications (such as WML) and between
modules (i.e. XHTML Basic [BI+00]). Consequently, browsers have to support
several different modules. In particular, XHTML Mobile Profile is a strict
superset of the XHTML Basic document type. The WML 2.0 document type
extends XHTML Mobile Profile by including WML 1.x compatibility and other
extensions. XHTML Mobile Profile is a compact core module, which is to be
supported by most of the browsers. The documents written using earlier WML
1.x versions can be transformed into WML 2 format. WAP 2 also includes WAP
Cascading Style Sheets (WCSS) [WCSS] targeted for XHTML Mobile Profile
and WML 2 documents.

Standardised ways for making descriptions and processing are mandatory in
making automatically adapting services. For instance, the Semantic Web
[SEMW, BLE01] is one step towards these intelligent browsing services. A key

15

element of data integration is a language for specifying the semantics associated
with data content [BeF01]. Metadata can be used for adapting applications in
dynamic environments [BC+03]. Ontology provides a common understanding of
topics that can be communicated between people and application systems
[DM+00]. The Semantic Web will enable intelligent services, like information
brokers, filters and search agents, which can offer greater functionality and
interoperability than current stand-alone services [DM+00].

2.2 Adaptive and intelligent mobile browsing services

Mobile environment may be divided to layers (cf. Figure 2.1). Services can be
transmitted via a wireless network to the terminal of a user. However, mobile
terminals have many limitations, which influence the application design. Such
are limited input and output capabilities [KHL02], slow network connections,
and restricted memory and processing power. Mobile device is to be used "any
time and anywhere", and, thus, usage environment is very different (e.g., more
distractions) compared to desktop PC. From the service development point of
view, the mobile environment sets great challenges while services must fit to the
requirements of networks, terminals and users.

Intelligent browsing services may automatically combine content from different
sources and filter the content suitable for the user. An intelligent browsing
service may utilise, for instance, information about the user (user profile),
contexts of use, devices (device profile), network, and the service itself. The
services can be automatically constructed and adapted to fit to the current
context of use. Adaptation can be done in either the client or server side. On the
server side (or in the proxy), the content are to be adapted
[BoK01][DeC02][OK+01] to fit to the current context of use so that

! only information needed is transferred over the mobile network,

! the information can be transferred to the device in a reasonable time,

! the device can present the transmitted content, and

! the content corresponds to the contexts of use.

16

HSCSD

Tailored services

Te
rm

in
al

s

Local services and service
makers

Converted wired network
services (e.g WWW-pages)

GPRS UMTS BluetoothWLANGSM ...

N
et

w
or

ks
U

se
rs

Se
rv

ic
es

Figure 2.1. In the future, there will be various kind of mobile applications and
services. At the same time, there will be an increasing variety of different kind of
mobile user groups, terminals and alternative mobile networks.

After the adaptation, the generated content corresponds to the user preferences,
is suited to be transferred via the network connection (in a reasonable time) and
the presentation is optimised for the mobile device.

On the client side, profiling can be accomplished by

! requesting only the content, which can be presented in the device (e.g., if the
device can not present audio or video, no request for the server-side should
be made),

! requesting only the content defined to be browsed in profile information
(e.g., the user may not want to see any pictures in order to enable faster
operation), and

! profiling the presentation of the content in the device (e.g., by using the style
sheets).

17

Information needed for the adaptation can be obtained from user agent profiles
or style sheets, or there could be additional information, for instance, about user
preferences.

2.2.1 User Agent Profile

The Resource Description Framework (RDF) [LaS99] provides domain-neutral
mechanism to exchange and process metadata [Kle01], while it aims to provide
the foundation for metadata interoperability across different resource description
communities [DM+00]. RDF is an application of XML and it defines a simple
model for describing interrelationships among resources in terms of named
properties and values. The Composite Capabilities/Preferences Profile (CC/PP)
framework [KR+03, OS+01] creates a structured format for how a client device
tells to an origin server about its capabilities and preferences. The CC/PP uses
RDF for expressing a user agent�s profile. The User Agent Profile (UAProf)
[UAPROF] uses the CC/PP model to describe the characteristics of a user agent
by defining a set of components and attributes [Hje00].

Device profiles
(CC/PP; UAProf)

Server
(WML,
XHTML,
HTML)

Gateway or ProxyWAP
Devices

Figure 2.2. A use case of User Agent Profile.

The User Agent Profile architecture enables the end-to-end flow of UAProf
between the client device, the intermediate network points, and the origin server.
Wireless Session Protocol (WSP) clients connect to servers via a WAP gateway
and Wireless Profiled HTTP clients may connect to an origin server directly or
via proxies. Capability and Preference Information (CPI) is transmitted within

18

the protocol headers, and it consists of information collected from the device
hardware, user agent software, and user preferences and network characteristics.
The device may not have all this information, but it may indicate the location by
a single URI and the WAP gateway or proxy resolves the URI and retrieves the
information from the manufacturer host (see Figure 2.2). Then, the gateway or
proxy forwards the request to the origin server and includes the profile
information in HTTP header.

On the way to the origin server the profile may pass through one or more
proxies. The origin server extracts the profile information and resolves all
indirect references to information stored at other network elements. Then, the
origin server adapts and translates the requested content into the appropriate
format using the UAProf. Finally, the gateway or proxy directs the response to a
client. The UAProf may be cached in the gateway or proxy, which may also add
information (e.g., additional network information) to the profile.

HardwarePlatform
BluetoothProfile
BitsPerPixel
ColorCapable
CPU
ImageCapable
InputCharSet
Keyboard
Model
NumberOfSoftKeys
OutputCharSet
PixelAspectRatio
PointingResolution
ScreenSize
ScreenSizeChar
SoundOutputCapable
StandardFontProportional
TextInputCapable
Vendor
VoiceInputCapable

SoftwarePlatform
AcceptDownloadableSoftware
AudioInputEncoder
CcppAccept
CcppAccept-Charset
CcppAccept-Encoding
CcppAccept-Language
DownloadableSoftwareSupport
JavaEnabled
JavaPlatform
JVMVersion
(MexeClassmark)
MexeSpec
MexeClassMarks
MexeSecureDomains
OSName
OSVendor
OSVersion
RecipientAppAgent
SoftwareNumber
VideoInputEncoder

NetworkCharacteristics
CurrentBearerService
SecuritySupport
SupportedBearers
SupportedBluetoothVersion

BrowserUA
BrowserName
BrowserVersion
DownloadableBrowserApps
FramesCapable
HtmlVersion
JavaAppletEnabled
JavaScriptEnabled
JavaScriptVersion
PreferenceForFrames
TablesCapable
XhtmlVersion
XhtmlModules

WapCharacteristics
SupportedPictogramSet
WapDeviceClass
(WapPushMsgPriority)
(WapPushMsgSize)
WapVersion
WmlDeckSize
WmlScriptLibraries
WmlScriptVersion
WmlVersion
WtaiLibraries
WtaVersion
(WapSupportedApplications)

User Agent Profile Schema Components (Version 20-Oct-2001)

PushCharacteristics
Push-Accept
Push-Accept-Charset
Push-Accept-Encoding
Push-Accept-Language
Push-Accept-AppID
Push-MsgSize
Push-MaxPushReq

Figure 2.3. The User Agent Profile Components.

19

The User Agent Profile schema has six key components, which are
HardwarePlatform, SoftwarePlatform, BrowserUA, NetworkCharacteristics,
WapCharacteristics and PushCharacteristics [UAPROF] (Figure 2.3). Each of
these resources has a collection of properties that describe the component. The
HardwarePlatform describes the hardware characteristics of the terminal device
such as screen size, model etc. The SoftwarePlatform has properties that
describe the operating system software such as OSVersion etc. The BrowserUA
has a collection of attributes to describe the HTML browser application. The
NetworkCharacteristics has information about the network�s capabilities: for
instance, current network bearer service and a supported security. The
WapCharacteristics has properties to describe WAP capabilities on the device,
e.g., WmlDeckSize and WapVersion. PushCharacteristics describes the push
connection capabilities of the terminal device. In UAProf case it is possible to
add definitions outside of the current UAProf descriptions. It is also possible to
define descriptions by telling only the location where the actual description can
be found, and, so, it is possible to limit the amount of wireless traffic.

2.2.2 Style sheets

Style sheets are a device independent way to affect the visual appearance of the
structured (e.g., XHTML or HTML) documents. Style sheets can be attached to
documents and, so, both authors and readers can affect the presentation without
changing the original structure of the document. Style sheets can be described by
using eXtensible Style Sheet Language (XSL) [AB+01b] and Cascading Style
Sheets (CSS) [BW+98] specified by W3C.

XSL is a style sheet description language for XML documents. With XSL it is
possible to attach styles to XML documents and to transform XML documents
to new ones. The XSL language consists of XSL Transformations (XSLT), XML
Path language (XPath) and XSL Formatting Objects (XSL-FO) parts. XSLT is a
language for transforming XML documents, XPath is a language for accessing
and referring to the parts of the XML document and XSL-FO describes the
vocabulary for XML formatting semantics. XSLT describes transformation to
another XML document or to another document type. For example, an HTML
document can be constructed from XHTML source by using XSLT. XSLT uses
the XPath for referring to the parts of an XML document. XSL-FO makes it

20

possible to describe the formatting objects for the XML document and with
XSLT these formatting objects can be attached to the target XML document.

CSS is a mechanism to add styles to structured (e.g., HTML and XML)
documents. In CSS the style is described by rules, which consist of a selector
and a declaration block. The selector defines to what part of the document the
rule is connected to and the declaration block tells the style descriptions for that
part. Style rules can be defined in several separate CSS descriptions. For
documents, CSS descriptions may come from three different origins. These
choices are listed below.

1. Author can specify style sheet internally to the document. CSS descriptions
can be defined in the document or some external style sheet can be linked to the
document.

2. User can specify own style sheet, which can have user preferred style
declarations.

3. User Agent can have own CSS description. CSS can be made for some
specific user agent so that the layout of the content fits the agent as well as
possible.

Figure 2.4 shows an example where the XML document is visualised by using
style declarations in separate CSS descriptions. The user agent CSS (e.g., a CSS
for mobile device) is on the top level, the user CSS is on the next level and then
the author CSS on the last level. Style declarations are selected for XML
elements by computing specificity values for each rule defined. In the standard
case style declarations with higher specificity value overrides the style
declarations with lower specificity value, but CSS offers (e.g., !important)
mechanisms to change the order. It is also possible to inherit style declarations
from other elements.

21

2

4

1

text1

text2

5

...

CDATA nodes

Default
formatting

font-weight=�normal�
width=�60�
height=�40�

CSSStyleDeclaration4
font-weight=�normal�
font-style=�italic�
width=�60%�
height=�auto�
border-color=�blue�
color=�green�

XML Document CSSStyleDeclaration 1
font-weight=�bold�
width=�50%�

CSSStyleDeclaration 3

2

text1text2

1

5

3

Visualised presentation
3

Selector1 {attribute:value;....}
Selector2 {attribute:value;....}
Selector3 {attribute:value;....}
...

User Agent CSS

User CSS

Author CSS

Computed CSS style declarations

CSSStyleDeclaration 2
font-weight=�inherit�
width=� inherit�

CSSStyleDeclaration 5

Inherited Values

Selector1 {attribute:value;....}
Selector2 {attribute:value;....}
Selector3 {attribute:value;....}
...

Selector1 {attribute:value;....}
Selector2 {attribute:value;....}
Selector3 {attribute:value;....}
...

Figure 2.4. Cascading style sheet in XML document.

2.2.3 Personal preferences and other profile information

In order to implement profiled intelligent mobile browsing services, different
kinds of information should be available for the software components
performing the adaptation [Nob02]. Examples of such information include

! location information,

! user profile (e.g., personal favourites [BS+03]) [GUP], and

! current contexts (e.g., if the user is attending a meeting, the device must be
in the silent mode).

For example, the Generic User Profile (GUP) defined by 3GPP is a collection of
user related data [GUP]. Some profile information may be collected
automatically while the user uses applications.

22

2.3 Multimodality

Multimodality allows the user to access wireless information in the most natural
way, where user can input and receive information with various ways [Kum03].
Mobile users will get the freedom to choose from the multiple modes of
interaction (e.g., keyboard, touching screen or voice), which will enable
spontaneous and intuitive communication (e.g., forms could be filled with the
voice commands). Multimodality enables totally new kinds of (e.g., voice-based)
services and it can make the mobile browsing services easier to adopt for new
users.

There are needs for clearly defined architectures and standards supporting
building of multimodal applications for different types of terminals
[NFP01,RS+01]. W3C has a multimodal interaction activity [MMI] for
developing markup specifications for synchronisation across multiple modalities
and devices with a wide range of capabilities. W3C has published Multimodal
Interaction Framework [LR+03], which identifies the major components of
multimodal systems. The purpose of the framework is to identify and relate
markup languages for multimodal interaction systems. The framework describes
the input and output modes widely used today, and it can be extended to include
additional modes of user input.

2.4 Mobile application frameworks

For mobile application development there are several core application platforms.
Examples of these platforms are J2ME, Symbian OS, Palm OS, Windows CE
and Linux. Generally, mobile platforms are to be designed so that they fit in
devices with limited memory and processing power. Also, scalability to different
device environments is often required. The drawback of the lightness is the fact
that only core methods for mobile application construction are supported.
Therefore, there is a need for higher-level software frameworks that can extend
core platforms and make the implementing of the mobile applications easier.
This includes requirements for application components that can easily be
embedded in and used by other applications.

23

A software framework offers a skeleton and guidelines (e.g., well-defined
interfaces) for some specific domain application implementations, so that
implementations are consistent, modular, and reusable. Generally, as a result of
using software frameworks:

- Implementation of new applications becomes easier, because software
frameworks offer base skeletons for the implementations.

- Implementations are more understandable, because they follow guidelines
(e.g. interfaces) introduced by framework.

- Quality of applications is better, because applications can be implemented of
small well-tested reusable modules.

Applications can be easily transferred into new environments by replacing
existing modules with new implementations.

mPlaton offers software frameworks for implementing

! context-aware mobile pull and push enabled browsers,

! mobile user agents and adaptive content types with multimodal controls
available, and

! editors for constructing mobile XML applications.

24

3. Overall architecture of mPlaton
The mPlaton platform consists of three main frameworks closely related to each
other (see Figure 3.1)

- AGB (Architecture for Generic Browser) for mobile browser
implementations,

- MIMEFrame for presenting content types with profile information in mobile
user agent with multimodal controls available, and

- FEdXML (Framework for XML editors) for editing the mobile browsing
XML applications.

XML Content
Editing

Content
Presentation
and Controls

Browsing
Services

MIMEFrame

AGB

FEdXML

mPlaton

Figure 3.1. Parts of mPlaton architecture.

These frameworks are used as construction blocks of new mobile applications.
They can be used separately or combined to work together.

Mobile browsing application typically consists of the server and the client sides.
The server side offers the content to browse and the client side presents the
browsed content. The browsing can be initiated either by the user (pull services)
or initiated outside (push services).

25

The frameworks enable the construction of mobile pull/push enabled browsing
applications. In particular, the frameworks provide means to browse (AGB),
present (MIMEFrame) and edit (FEdXML) different content by using the
available profile information.

AGB, MIMEFrame and FEdXML can be used together for constructing client
side mobile browsing applications. In this, AGB offers the core services for
mobile browser implementation. MIMEFrame offers components and interfaces
used by the AGB implementation (or other applications) for presenting the
content, controls, and user agent properties. FEdXML is a framework for various
kinds of XML editors. Particularly, FEdXML enables developers to construct
editors with which it is possible to edit the browsed XML content in mobile
device.

Further, the mPlaton components can be embedded in other applications, which
is one core property of mPlaton. Thus, mPlaton enables the creation of very
different kinds of applications. Chapter 7 shows examples of created
applications. The examples demonstrates also how to provide implementations
of the mPlaton frameworks in different Java platforms (Java SE, Personal Java
and Java MIDP). Many of the examples utilise the provided common reference
implementations (see Sections 4.3, 5.4 and 6.5) of mPlaton components.

More detailed descriptions of the frameworks are in the Chapters 4, 5 and 6.

26

4. AGB � Architecture for Generic Browser
Mobile services can be divided into two types: pull and push. The user requests
pull services, whereas push services are invoked externally. All these services
are transmitted to the devices via some connection. Also, navigation can be
divided into push or pull type operations.

Because of the heterogeneity of the mobile environment, there is a great need for
a modular scalable browser architecture that could be configured for different
kinds of mobile devices. The architecture should respond to the requirements of
the mobile environment. In the following the generic requirements (collected
from different sources) are enumerated that we have identified for browser
architectures. Firstly, the browser architecture should offer basic navigation
operations as commonly found in web browsers, e.g. navigate a new page,
navigate in history (back, forward) and abort the navigation [LNR96]. For
mobile users, the architecture should offer

! support features of mobile applications, such as push services,

! support for context and location aware browsing services, and

! support for automated initiated browsing (e.g., based on the location or the
context of use).

To be suitable for various kinds of mobile devices, the architecture should

! be very light (should work with devices having very limited memory and
processing power resources [KuO00]),

! be scalable to different kinds of mobile devices (It should be possible to add
and remove push and pull services and connection components from the
configuration),

! be flexible and modular so that created components related to push and pull
type services could be easily used together in different configurations. It
should be possible to easily add components, for example, by modifying the
browser configuration descriptions,

27

! be reusable (e.g., should work in different environments, and the related
implementation parts should be as reusable as possible) [GHJV94], and

! minimise the use of batteries (e.g., should support temporal pull and push
connections so that the connections are kept open only a certain time).

In addition, the browser architecture should be suitable for the requirements of
networks. So, the architecture should

! support different kinds of communication protocols and connections,

! optimise the use of the network capabilities (e.g., by using caching and by
adding concurrency [Wat94]),

! support the attachment of profile information to requests (cf. Section 2.2.3),
and

! support various kinds of authentication methods.

The developed new browser architecture and framework (AGB), which is
designed to fulfill the above requirements, is described in the following Section
4.1. Then, reference implementations for AGB and usage examples are
described in Section 4.2.

4.1 Architecture

AGB is an abstract model for mobile browser offering pull (initiated by the user)
and push (initiated outside) browsing services (Figure 4.1), where all parts
related to browser are added by changing the configuration. The core of the
AGB includes interfaces only. The principal aim of AGB is to offer a fully
modular structure for mobile browser implementations. Object browser offers
primitive navigation operations for pull, push, backward, forward, reload and
stop navigation. All the user-initiated browsing is done via the pull method. For
navigating in the history there are backward and forward methods, and the
reload method can be used to update the browsed objects. For receiving the push

28

messages there is the push method. A key feature of AGB is that all the
navigation tasks are finally mapped to push and pull operations.

Object
Browser

Pull
Operations

Push
Operations

Configuration

Figure 4.1. Object browser architecture.

AGB connections (pull and push type) can be further classified to persistent,
temporarily and disposable connections. For example, an HTTP connection that
makes it possible to fetch the content several times by using the same connection
is a persistent connection. A temporary connection is only a certain time
available. An HTTP connection can be defined to be valid in certain time by
using the cache-control header. A disposable connection is, e.g., a reader type
connection, which makes it possible to read the content only once from the given
source.

4.1.1 Object pull

AGB supports synchronous and asynchronous browsing. In synchronous
browsing, connections are opened and content is fetched in the main process.
The synchronous browsing blocks the main process until the browsing is
completed. This means that the browser can not be used during the synchronous
browsing operation. Synchronous browsing has to be used in devices, where
there are no support for thread-based processing or not enough memory or
processing power for asynchronous browsing.

29

In order to prevent the browser from blocking during the loading of the content
and to enable multiple simultaneous connections, browsing can be performed
asynchronously in separate threads [CDK01]. This way the object loading time
will be the sum of time spent on connection opening, request sending and
response receiving. For instance, an HTML page may include several pull
sources such as images, texts and videos. If these load operations are done at the
same time, the perceived load time is the maximum of the load times of the
objects [Luo98] (Figure 4.2).

topen connection tsend request tresponse time

topen connection tsend request tresponse time

topen connection tsend request tresponse time

topen connection tsend request tresponse time

...

tfor n object loading

1

2

3

4

Figure 4.2. Perceived time spent on loading multiple objects with asynchronous
load operations.

To keep AGB highly pluggable the connections and objects are constructed in
connection and object factories (Figure 4.3). All supported connections and
objects plugins can be configured to these factories. New connections and
objects are constructed by using an ObjectInitiator, which tells the name and
initialisation attributes for the object to construct. If a new object is constructed
successfully it is returned, otherwise an exception is thrown.

In AGB, pull operations can be initiated by using a connection initiator or a
connection object. This makes it is possible to construct (e.g., HTTP, bluetooth
and RTP) connections in initialisation threads. The ConnectionInitiator interface
offers methods for

! getting an ObjectInitiator object, for the connection to be constructed in
connection factory,

! querying if the connection initiator valid is to keep in cache, and

! identifying if an equal ConnectionInitiator is already in the cache.

30

Connection
Factory

Connections

Connection

Fetch from
ObjectPull

Cache

C
on

ne
ct

io
n

In
iti

al
is

at
io

n

BrowserUI

Object

ObjectBrowser

BrowserUI
Impl

Fetch from
Connection

Initialization
Cache

O
bj

ec
t P

ul
l Object

Factory

Objects
ObjectPull
Listeners

ObjectPull
Listeners

Connection
Initiator

BrowserUI
ObjectBrowser

BrowserUI
Impl

Figure 4.3. The Object pull operation can be executed with connection initiator
or with connection object.

New objects are constructed in the object pull thread by using connections. The
Connection interface offers methods for

! opening the connection, which returns an ObjectInitiator for the object to
construct in object factory,

! querying if the connection is valid to keep in cache,

! identifying if there is an equal Connection in the cache, and

! closing the connection.

Authentication within the connections can be implemented so that an
authentication request is thrown when a connection is to be opened. The thrown
authentication request is caught in object pull thread and the request is sent for
the BrowserUI. The AuthenticationRequest interface offers methods for getting
the connection to authenticate and for retrying the object pull with authenticated
connection.

The two-level object pull mechanism makes it possible to asynchronously fetch
content with opened connections or to asynchronously initialise new connections

31

for content fetching. This means that both opening the connections and fetching
the objects can be done in the background threads so that these operations do not
interrupt the main process of the browser. Connection initialisation and object
pull operations have one of the following states:

1. Operation completed

2. Operation not completed

3. Operation failed

For minimising requests to mobile network, AGB has caches for connection
initialisation and for object pull operations. The size of the cache depends on the
memory size, and it can be configured in AGB. In an object pull operation with a
connection initiator a look-up operation to the connection initialisation cache is
carried out first. If the cache contains an initialised connection, the object pull
operation is done with the initialised connection. If the cache contains an
incomplete connection, the requestor is registered as a pull listener of the
connection initialisation. Later, if the connection is successfully created, a new
object pull operation executed with the created connection and the pull listeners
are registered as listeners of the new object pull operation. If the cache contains
a failed connection initialisation, it is possible to try to reinitialise the connection
again by starting a new connection initialisation thread.

In an object pull operation with a connection, a look-up operation to the object
pull cache is carried out first. If the cache contains a completed object pull
operation, the related object is returned. If an incomplete object pull operation is
in the cache, the requestor is registered as a listener of the object pull. When the
object pull is completed, the listeners are notified of the pulled object. If the
cache contains a failed object pull operation, starting a new object pull thread
performs the reload operation.

4.1.2 Object push

New push (e.g., WAP push, MMS or SMS) connections can be added to the
AGB by using the push adapters (Figure 4.4). A push adapter receives the

32

messages coming from the push connection and maps received messages to pull
operations or push indications of AGB.

ObjectBrowser

pull(...)

PushConnection

Connection
Initiator /

Connection

PushAdapter
Receives an SL

message and constructs
a ConnectionInitiator
or a Connection of it

Service
Load (SL)
Message

Service Load (SL) Push Event

PushConnection

PushAdapter
Receives an SI

message and constructs
a PushIndication of it.

Service
Indication (SI)

Message

Push
Indication

ObjectBrowser

Connection
Initiator /

Connection

BrowserUI

pull(...)

Service Indication (SI) Push Event

Figure 4.4. Push adapters for SL and SI messages.

Push connections are normally implemented so that a listener is registered for a
defined port. Listeners are notified of new push messages and, then, depending
of the protocol implementation, the message can be handled either immediately
or later, e.g., by using a thread based processing. Normally, the mobile device is
not always connected to the network, but time-slots are used to reduce the
battery usage (e.g., in Flex protocol). In AGB, it is possible to dynamically
change the push adapter configuration. If a push connection is not available, the
push adapter can be removed from the configuration and if the push connection
will become available again the push adapter can be added to the configuration.
When a push adapter is removed, all resources related to the adapter should be
released (in the close method of the push adapter interface).

In AGB, there are two types of push events:

1. Service Load (push message is loaded immediately)

2. Service Indication (push message gives the location of the actual push object
and, then, the user can navigate to the service)

33

In service load, events should adapt to the AGB pull operations. This means that
push adapters adapt push messages to ConnectionInitiator or Connection objects,
which can be used in AGB pull operations. Service indication messages are
passed for the BrowserUI as PushIndication objects. The PushIndication interface
includes methods for getting the original push indication message and the push
connection where the push message is received.

4.1.3 AGB configuration

Because of the heterogeneity of the mobile devices, the mobile browser
architecture should be highly modular and configurable. The flexibility and
modularity of AGB is achieved by the interfaces so that all the core (parts
offered by the reference implementation) and external parts can be configured to
AGB as components. The BrowserConfiguration interface makes it possible to
replace parts of the browser with new implementations (Figure 4.5).

The BrowserUI interface is used to configure user interfaces. It offers methods
for receiving push indications, for handling authentication requests and for
handling errors during the browsing. BrowserUI has also methods for notifying
of object browsing started or stopped events. Browsed content can be received
by adding object pull listeners to the browser configuration.

AGB object factories are used to handle connections and object plugins. The
ObjectFactory interface offers methods for changing the configuration of plugins
in runtime. Additionally, the connection and object factories can be replaced.
AGB initialises the push adapters defined in the configuration. The configuration
of push adapters can be changed in runtime by using the methods of the
PushAdapters interface.

34

Browser
Configuration

BrowserUI

ConnectionFactory
ObjectFactory
PushAdapters

ObjectPullListeners

Connections
and Objects

 Pull Listeners
 User Interface

ObjectPullCache
ConnectionHistory

ConnectionInitializationCache Core
Modules

ObjectPullFactory
ConnectionInitializationFactory

Figure 4.5. AGB configuration.

For making the AGB a highly transferable system, all the core parts of AGB can
be replaced. This is important because there are great differences between
platforms (e.g., Java MIDP vs. Java SE 2), and, so, it is important that also the
core parts of the object browser can be replaced with solutions suitable for the
environment in question. Connection initialization and object pull
implementations can be used to replace reference ConnectionInitializationFactory
and ObjectPullFactory implementations. The reference cache and connection
history implementations can be replaced by introducing new implementations
for the ConnectionInitializationCache, ObjectPullCache and ConnectionHistory
interfaces.

4.1.4 Triggered browsing

In order to construct location- and context-aware browsing services, we have built
a Triggered Browsing extension module (called ATB) for AGB. ATB extends the
object browser so that pull and push browsing requests can be done with triggers
(Figure 4.6). The triggered browser saves browsing requests and tries to execute
the saved requests with specified rate (e.g., once in 3 seconds) in execution thread.

Browsing triggers makes it possible to implement various kinds of (e.g., location
and context-based) triggering conditions. The BrowsingTrigger interface offers

! isValidToExecute(), and

! isValid() methods.

35

A browsing request is executed if the trigger notifies (the isValidToExecute
method returns true) that browsing is valid to execute. If browsing request is not
valid (e.g., the timestamp of the trigger is outdated), the request is removed from
the triggered browser.

Figure 4.6. Triggered browser extends object browser with triggered browsing
services.

Push adapters can map Service Load (SL) messages to connection or connection
initiator objects, and, then, pass them for the triggered browser with specified
triggers. The pull operation will be done when the browsing is triggered. Service
Indication (SI) messages can be mapped to push indication objects and, then the
push indications can passed for the triggered browser with specified triggers.
The triggered push indication will be passed for the BrowserUI.

4.2 Reference implementations

In order to evaluate the AGB interfaces, we have done reference
implementations of the core parts of AGB for Java 2 SE and Java MIDP
environments. However, the environments set several restrictions for
ConnectionFactory and ObjectFactory implementations. Java 2 SE and Java
Personal Profile environments offer methods for creating new instances of Java

pull(...,
browsingTrigger)

pushIndication(...,
browsingTrigger)

PushAdapter

TriggeredBrowser

Service Indication
Message

Service Load
Message

pull(...,
browsingTrigger)

Push Connection

BrowserUI

delayed push
indication

delayed pull

ObjectBrowser

36

classes with arguments. In object factory there could be a mechanism for
selecting the correct constructor for given arguments. After the constructor is
selected a new instance of class can be constructed. In Java 2 SE and Java
Personal Profile environments object factory can be implemented so that new
instances of classes are implemented by using constructors offered by Java
(java.lang.reflect.Constructor).

MIDPConstructorImpl
newInstance(Object[]) throws Exception
Class[] getParameterTypes()
Class getDeclaringClass()

public Object newInstance(Object[] attributes)
 throws Exception{

 return new DestinationClass(
(AttrType1)attributes[0],
(AttrType2)attributes[1],
 (AttrType3)attributes[2],
...
);

}

MIDPPlugin MIDPConstructor

MIDPPluginImpl

O...n

Figure 4.7. The implementation of Java MIDP plugin.

However, Java MIDP offers no support for such constructors. It offers only a
method for creating instances of classes without arguments. In Java MIDP
environment, an object factory can be implemented by using MIDPPlugin and
MIDPConstructor interfaces (Figure 4.7). The MIDPPlugin interface offers a
method for getting available MIDPConstructor objects for the plugin. The
MIDPConstructor interface offers methods for getting

! parameter classes for the constructor,

! the new instance of the destination class with attributes, and

! the destination class of the constructor.

The MIDPPlugin implementation is needed for all the plugin types. Object
factory finds the suitable constructor for the given attribute types, and then uses
the MIDPConstructor for constructing a new instance of the destination class.

In AGB, the content is browsed by object pull and push operations. In order to
use the pull mechanism, available connections and object plugins has to be
configured to the system by using the methods of connection and object factory
interfaces. Names and class paths for the supported plugins can be defined in

37

configuration files. When the AGB is started, the defined plugins are inserted to
the active browser configuration. Figure 4.8 illustrates how plug-in components
for the pull operation can be implemented and configured. A connection object
gives the plug-in name to be constructed and the parameters for the constructor.

HTTPConnection(String location){
 URL url=new URL(location)
}
ObjectInitiator open() throws Exception, AuthenticationException{
 // Connection is initialised here

 URLConnection urlConnection=openURLConnection(location)
return new ObjectInitiator(urlConnection.getContentType(),

urlConnection)
}
...

SMIL(URLConnection urlConnection){
 Plugin initialisation...
}
...

URI(String location){
 if(location.startWith("http:") connectionName="httpConnection"
 else(location.startWith("ftp:") connectionName ="ftpConnection"
 ...
}
ObjectInitiator getObjectInitiator() throws Exception{
 return new ObjectInitiator(connectionName, location)
}
...

pull(new URI("http:www.testcase.com/smilshow.smi"))
pull(new URI(URL))
pull(new URI(HTTPConnection))

Connection
Initialization

ObjectPull
application/smil fi.vtt.tte.agb.plugins.SMIL
image/svg+xml fi.vtt.tte.agb.plugins.SVG
...

plugins.conf

httpConnection fi.vtt.tte.agb.impl.HTTPConnection
ftpConnection fi.vtt.tte.agb.impl.FTPConnection
...

connections.conf

ConnectionInitiator

Connection

Plugin

Figure 4.8. Implementation of a connection initiator, connection and object
plug-ins.

In the pull operation with ConnectionInitiator, the connections are constructed in
ConnectionInitialisation threads (Figure 4.9). After connection is constructed
object pull operation with the connection can be started. A temporary connection
can be implemented so that in the connection implementation there is a timer,
which closes the connection after a certain time interval and assigns the
connection to be not valid to kept in cache. Opened connection can also be
closed and removed by using the methods of the connection initialization cache.

If authentication is required (for the connection to be opened), an authentication
request is thrown, and AGB passes the request for the BrowserUI. After the
connection is authenticated, object pull operation can be completed. Next, when
object pull is completed, object pull listeners are notified of the new object.

38

BrowserUI ObjectBrowser ConnectionInitialization

pull(ConnectionInitiator) CIFactory. create(...)

directPull(Connection)

OPFactory. create(...)

ObjectPull ObjectPullListeners

authentication(AuthenticationRequest)

objectPullEvent(ObjectPull)

connection.open()

 authenticationRequest.authenticate(Connection)

Figure 4.9. UML sequence diagram for object pull operation with connection
initiator.

Figure 4.10 shows how a push adapter can be implemented.

public PushAdapter(ObjectBrowser objectBrowser)
{
 this. objectBrowser = objectBrowser
 // Push connection is initialized here
 ...
}
public receive(PushMessage pushMessage)
{
 if(isServiceLoad(pushMessage)) agb.pull(ConnectionInitiator)

 or agb.pull(Connection)
 else if(isServiceIndication(pushMessage)) agb.push(PushIndication)
}

PushAdapter(ObjectBrowser objectBrowser)
public receive(PushMessage pushMessage)

PushAdapter
pull(Object attribute)
push(Object attribute)

AGB

PushConnection
add(PushAdapter)
notifyOfPushMessage() pushAdapter->receive(msg)

Figure 4.10. A push connection is added to AGB by using a push adapter
structure.

Push messages can be received by implementing an adapter, which maps
received messages to object pull or push indication operations (Figure 4.11).
WAP push connection supports service load (SL) and service indication (SI)
type-of messages. The SL message push adapter can be used to construct either a
ConnectionInitiator or Connection type-of object and then starts an object pull
operation with the constructed object. The SI message push adapter can be used
to construct a PushIndication object, which can be sent for BrowserUI. The user

39

gets an indication of the available push service and can browse to the content
referred in the message. The push adapters can also be used for implementing
instant messaging mechanisms.

PushConnection PushAdapter ObjectBrowser
 notify(SIMessage)

 pull(ConnectionInitiator) /
 pull(Connection)

BrowserUI

 pushIndication(PushIndication)

Sequence Diagram for Push Service Indication (SI) Message

 notify(SLMessage) pull(ConnectionInitiator) /
 pull(Connection)

Sequence Diagram for Push Service Load (SL) Message
PushConnection PushAdapter ObjectBrowser

Figure 4.11. UML sequence diagram for object push events.

In order to test the ATB, we implemented an information service where the
browser automatically browses content from various kinds of web sources for
the mobile user. We collected first a sequence of web addresses of (e.g., news,
stock rates, and weather forecasts) services and, then, constructed a trigger,
which triggers browsing in certain times. Subsequently, we registered those
addresses and triggers to the triggered browser and launched the information
browsing service.

We tested the triggered push with WAP push mechanism. In that the push
indications of new browsing content where delayed so that the indications where
passed for the browser UI after some certain triggering condition was fulfilled. A
triggering condition can be based on the context of use; for example, if the user
is at work (context), the browsing context can be delayed, but after user comes
to home (context) the content is shown to the user.

We have used the reference implementations as a base for mobile browser
implementations in Java SE 2, Java Personal Profile, and Java MIDP
environments (Figure 4.12). We have implemented different kinds of pull (e.g.,
HTTP, RTP, Reader) and (e.g., WAP) push connections and (e.g., text, image,
audio, video and WML, SMIL, XHTML) content type plugins for AGB based
browsing. Toolkit, µBrowser and MIDBrowser implementations are introduced

40

in Chapter 7. However, because AGB provides a generic framework based on
interfaces, practically any connection and content type implementations can be
introduced by providing implementations of required AGB interfaces.

Figure 4.12. AGB in Java SE 2, Java Personal Profile and Java MIDP
environments.

41

5. MIMEFrame - Framework for mobile user
agents, content types and multimodal

controls
In forthcoming mobile browsing applications there are different kinds of
contents to browse, different kinds of user agents presenting that content, and
multimodal controls available. So, there are requirements for frameworks, which
support the construction of the client-side of mobile browsing applications. A
framework should introduce general guidelines for client-side implementations
so that created parts are consistent, reusable and can co-operate. To be suitable
for mobile environment, we have identified several requirements. The
framework should support

! different kinds of user agents and implementation platforms,

! different kinds of content types,

! combining different kinds of content to work together (e.g., VoiceXML and
XHTML),

! using of browsing and content fetching services,

! using of the profiling information (e.g., UAProf, Style sheets and user
preferences),

! multimodal controls, and

! extensions (so that any kind of new services and resources can be added to
the framework in the future).

Further, for making the framework suitable to various kinds of mobile platforms,
it should be

! very light,

! highly transferable so that it can work in different platforms, and

42

! generic and extendable to fulfil the future needs.

To our knowledge, there are no previous publications of frameworks fulfilling
the described requirements. We have developed a framework, called
MIMEFrame, which aims to fulfil the above requirements.

This chapter is organised as follows. First, an architecture for client-side of
mobile browsing application is introduced in Section 5.1, then the MIMEFrame
is described in Section 5.2 and a reference implementation and use cases for
MIMEFrame are introduced in Section 5.3.

5.1 Architecture

The client-side of mobile browsing application can be divided to user agent,
content and controls (Figure 5.1). User agent describes the use environment and
presents the content and controls are a way to control the mobile browsing
application. In this work these co-operating parts combine the base architecture
for the client-side of mobile browsing applications. The requirements what we
have identified for the user agent, content and controls parts are described in the
following subsections.

Controls

UserAgent Content

Figure 5.1. Base components of the MIMEFrame architecture.

43

5.1.1 User Agent

In this work, the user agent is defined as an abstract model for the mobile device
and the user. To be suitable for mobile browsing applications, the user agent
should offer

! access to browsing services,

! extensible resources and services,

! support for using various kinds of user interfaces in presenting the content.

The user agent is capable to present content and to offer services for the other
parts (e.g., for the content types) of the mobile browsing application. Access to
the browsing services should offer methods for asynchronous browsing, for
object fetching, for navigating in the browsing history, and for reloading the
downloaded content. Asynchronous non-blocking content fetching is required,
because both opening the connections and downloading the content are normally
much slower in mobile Internet than in wired Internet and so content fetching is
not allowed to block the UI of the browser. To be suitable for mobile use the
push type-of browsing should also be supported.

The context of use and characteristics of mobile environment (e.g., device and
networks) should be taken into account in mobile browsing applications. The
user agent should offer various kinds of (e.g., user agent profiles (Section 2.3.1),
user preferences, style sheets) resources for the server side (e.g., the size of the
browsing application can be adapted to fit for the current network and device)
and for the client side (e.g., style sheets) adaptation. User agent should also offer
methods for content types co-operation. User agent should enable content types
to share and use various kinds of resources and services offered by other content
types.

The user agent should support use of various kinds of UI components in
presenting the content. There should be methods for updating the user interface,
getting the actual UI component, and handling the errors. In some cases, access
to the actual UI component is needed for using the methods of the used UI

44

implementation. Also, methods for handling errors raised during using the
mobile browsing application are needed.

5.1.2 Content

The content is defined as the actual content, which is presented in the user agent.
For allowing the presentation and co-operation of different kinds of content
types in mobile devices, content types should offer methods for

! creating new instances of the content to be presented in user agent,

! rendering the content and for updating the content rendering components,

! querying the content type,

! offering various kinds of controls for the content,

! receiving (e.g., controller) events from various sources, and

! closing the browsed content so that all the resources related to the closed
content are released.

A new content type instance should be constructed by using resources offered by
the user agent (e.g., user agent profile, user preferences and style sheets). If
resources are changed the content type instance should be updated. Content type
should offer methods for rendering the content and for updating the components
related to it. For minimising the use of memory resources, content type should
release all the resources related it when it is closed (e.g., when a new content is
browsed).

A flexible mechanism for controlling different kinds of content types is needed.
Content type should support the use of various kinds of controls so that it is
possible to add and remove controls in run-time. Content types should also offer
methods for receiving (e.g., controller) events from separate sources.

45

5.1.3 Controls

The mobile browsing applications can be controlled by using various kinds of
controls (e.g., keyboard, touching screen or voice). In this work, controls are
divided to modal and non-modal controls. For modal controls there should be
methods for

! handling modal input events, which come from various input controllers,

! adding and removing new event listeners in run-time so that, e.g., user agent
and content types can handle events came from various sources,

! defining the active modal event listener (focus owner), and

! moving the focus.

A modal event is handled so that only the current focus owner handles the event.
There could be multiple modal event listeners available (e.g., offered by various
kinds of content types). For instance, in a SMIL demonstration, there can be
several content types having own modal event listeners. There should be
methods for moving (e.g., by using tabulator in keyboard or by using some voice
commands) the focus in modal listeners hierarchy. Modal listeners can be
combined to the tree structure (Figure 5.2), which can be used, e.g., with the
container content types. The focus can be moved to the correct modal event
listener by using the tree structure.

R modal event
listener

focus owner

R root event
listener

Figure 5.2. Modal event listeners in tree hierarchy.

46

In mobile browsing applications, there can also be non-modal controls. Non-
modal events are arisen outside, e.g., there could be time and location-based
events and mechanisms by which the other users can control the browsing
application. In order to handle the non-modal events, there should be methods
for receiving non-modal events coming from various sources as well as
mechanisms for notifying listeners of the non-modal events.

5.2 MIMEFrame framework

The MIMEFrame framework, based on the client-side architecture introduced in
Section 3, fulfils the requirements described for the user agent, content and
controls components. MIMEFrame supports the creating of different kinds of
content types for different mobile user agent implementations with modal and
non-modal controls available. MIMEFrame contains three main interfaces:
UserAgent, MIME and Controls (Figure 5.3).

...

Controls

UserAgent MIME

Modal
events

Non-modal
events

EventAdapter

Browser

UIComponent
Services

Keyboard Mouse Voice

Location and
time based

events

MediaControls
EventListeners

Renderers

Media
Resources

ModalEventListeners
NonModalEventListeners

Non-modal
controls

Figure 5.3. MIMEFrame is a framework for user agents and content types with
multimodal controls available.

47

5.2.1 User agent

UserAgent is an interface for user agent implementations to present different
kinds of content types (MIMEs). The UserAgent interface offers access to

! browsing and fetching services (Browser),

! a user interface component (UIComponent),

! extensible resources (Resources), and services (Services).

The Browser interface offers access to browsing and object fetching services. It
offers methods for

! asynchronous browsing and object fetching (browsing can be done in the
thread),

! moving in the navigation history (back and forward), stop (browsing in the
background is stopped), reload (last browsed object is loaded again), and

! object push.

The Browser interface is designed so that the browsing can made
asynchronously in an own thread so that both opening the connections and
fetching the objects can be done in the background. For thread-based object
fetching the ObjectFetchingAttributes interface offers methods for getting the
name and attributes of the connection. The fetched object can be returned (e.g.,
from the thread) to the caller by using the objectFecthed(Object) method in the
ObjectFetchingAttributes interface.

The UIComponent interface offers methods for getting the actual UI component,
for repainting the user interface, and for handling errors. UIComponent provides
access to the actual UI component, which can be used for utilising the methods
of the UI implementation. UI component can be used for presenting all kinds of
errors, which are raised during the use of the browsing application.

48

User agent and various kinds of content types can share resources by using
methods of the Resources interface. Resources can contain (e.g., user agent
profile, style sheet, user preferences and the user agent configuration)
information, which can be used in presenting and profiling the content. The
Resources interface offers methods for

! adding and removing resources,

! getting resources by name and getting enumeration of the available
resources, and

! notifying the registered resource listeners of the changes in the resources.

New services (e.g., location or context-aware services) can be offered for the
user agent and content types by using methods of the Services interface. The
Services interface has methods for

! executing available services,

! adding, and removing services, and

! querying the names of the available services.

Extensible services enable co-operation of different kinds of content types. It is a
way for content types to use services offered by other content types. Various
kinds of services can be implemented by using a Service interface, which offers
a method: Object executeService(Object[] attributes) throws Exception.

Services can be executed by giving the name and the attributes for the service. If
the service for given name is found, the service is executed. The result of the
service is returned as an object. If errors are raised during the service execution,
an exception can be thrown.

49

5.2.2 MIME

The MIME interface enables the implementation of different kinds of content
types. The MIME instances can co-operate (e.g., in the container content types
like in XHTML or SMIL) and be presented in user agent. The MIME interface
include methods for

! getting new instances of the MIME,

! rendering the content in MIME,

! updating the MIME, and

! closing the MIME type.

When a MIME object is downloaded, a new instance of the MIME type can be
obtained by calling the getInstance(UserAgent) method (Figure 5.4) and using
(e.g., profiling information) resources registered to the user agent. The created
MIME instance can register the services, which it can offer, to the user agent
services. UserAgent offers access to the browsing services, and container (e.g.,
XHTML or SMIL) MIME types can use these services for fetching the (e.g.,
video or image) content in presentations.

UserAgent MIME MIMERenderers

 getInstance(UserAgent)

MIMEforUA MIMEAnimator

 animate(MIMEForUA)

 update()

 close()

 repaint()

 animationStarted()

 animationStopped() stop(MIMEForUA)

 render(GraphicsContext)

Figure 5.4. A UML sequence diagram of using MIME.

The content in MIME can be visualised by using a render method of the MIME
interface. The GraphicsContext implementation depends of the environment
where the MIME is rendered, e.g., graphics methods are very different in Java 2
SE from those in Java MIDP environment. MIME can use methods of current

50

graphics context by casting the given graphics context to the type known by the
MIME. If the available resources or services are changed, the update method can
be used for refreshing the MIME type. When the MIME type is not any more
used, the memory resources related to the MIME type can be released by the
close method.

A MIMERenderer is an interface for MIME rendering components. For handling
MIME rendering components, the Renderers interface offers methods for

! adding and removing rendering components,

! repainting the registered rendering components, and

! notifying the registered rendering components when MIME playing is started
or stopped.

The MIMEAnimator interface offers methods for animated content types.
MIMEAnimator works so that it repaints the rendering components of animated
MIMEs with specified frequency. When animating is started or stopped the
rendering components of animated MIME type are notified.

The MIME interface offers access to the Media, MediaControls, and
EventListeners interfaces. The Media interface offers methods for getting the
original media object, the top-level (e.g., Text, Audio, Video and Multipart) and
full media type (e.g., text/html), and the location of the content (e.g.,
http://test/image.jpg). The top-level and full media types (of the Media interface)
conform to the RFC 2045 and 2046 standards. Standards RFC 2045 and 2046
specify the format for transmitting different kind of content in messages. For
Multipurpose Internet Mail Extensions (MIME), RFC 2046 define five discrete
top-level media types: text, image, audio, video and application and two
composite top-level media types: message and multipart.

The MediaControls interface enables MIMEs to offer various kinds of media
controls. The MediaControls interface offers methods for

! adding and removing media controls, and

! getting the enumeration of the available media controls.

51

Media controls enables one to control any kind of media content; the only
requirement is that the controlling component knows the types of the available
media controls.

MIME types can be notified of events by using event listeners. The
EventListeners interface offers methods for adding and removing available event
listeners, and for getting the enumeration of available event listeners. A MIME
type can offer various kinds of event listeners, which can be used, e.g., for
notifying of modal or non-modal controller events.

5.2.3 Controls

Controller events coming from various sources can be handled by using the
methods of the Controls interface. Controller events can be handled by
implementing an input adapter. An input adapter should put the incoming events,
first, into a event queue (in temporal order), and, then, classify the (e.g.,
keyboard, mouse or voice controller) events to modal or (e.g., time based events)
non-modal events, and, finally, pass the events to Controls. The Controls
interface offers methods for receiving modal and non-modal events. Modal
events are handled exclusively so that only one modal event listener (focus
owner) handles the event. Three phases are described below.

1. The event is first sent for the RootEventListener. If the event is handled,
more steps are not made. Otherwise, there are continued to the phase two.

2. In the second phase, the focus is requested from RootEventListener (a modal
event is given as an input). If the focus is changed (focus is gained or lost),
no more steps are made. Otherwise, handling proceeds to the phase three.

3. In the third phase, focus owner (if available) handles the modal event.

The hierarchical structure of modal event listeners can be constructed by using
the ModalEventListenerHierarchy interface, which offers methods for moving
the focus correctly in the modal event listeners hierarchy. The
ModalEventListener interface offers methods for

52

! getting the focus (it gets the modal event as an input and returns the focus),

! handling the modal event, and

! getting the hierarchy of modal event listeners.

Non-modal events are passed to the all non-modal event listeners. Non-modal
event listeners can be added or removed from Controls at run-time. Non-modal
events are handled so that

1. non-modal event is first sent for RootEventListener, and

2. after that the event is sent to the other non-modal event listeners.

Each NonModalEventListener decides how to react to the event. If a listener can
cast the non-modal event to the known (e.g. time-based) event type, it can
handle the event, otherwise the event is skipped.

5.3 Reference implementations

In order to evaluate MIMEFrame, we have done reference implementations for
the UserAgent, Control and MIME components of MIMEFrame with Java, which
we have tested in Java 2 SE, Java Personal Profile and Java MIDP environments.
Reference implementation offers interfaces for different kind of resources. The
UAProf interface offers methods for reading and setting values from/to the user
agent profile. It supports the attribute value types defined in the UAProf
specification [UAPROF] (e.g., Literal, Dimension, Number and Boolean) (cf.
Section 2.2.1). The UserPreferences interface is for reading and setting values
from/to user preferences. User preferences contain information related to the
current contexts of use, e.g., there can be set values for keys like �Show
subtitles�, �Use large fonts� and �Silent Mode�. The UAStyleSheet interface
offers methods for getting the actual style sheet (e.g., based on interfaces defined
by W3C). The UserAgentConfiguration interface offers access to the textual key
value pairs, which can be used for configuring the user agent. User agent
configuration can contain, e.g., information related to the user interface (e.g.,
information of the layout), path settings, and other values, that the user agent can
use.

53

The reference implementation offers the following interfaces to control media
types:

! PlayControl (for controlling video and audio types),

! MediaTimeControl (for real-time content types),

! DimensionControl (for getting the visible dimension of the media), and

! TextControl (for getting the textual presentation for the media).

We have implemented text, image (e.g., jpeg, gif, png), WML, XHTML, SMIL,
VoiceXML and real-time audio and video content types. The following
subsections show how the reference implementation of MIMEFrame is used in
Java MIDP environment, and there are examples of presenting mobile browsing
content with resources and multimodal controls.

5.3.1 MIMEFrame in Java MIDP environment

We used AGB (Chapter 4) to implement the browsing features in Java MIDP
environment. User agent profile, style sheet, user preferences and variables are
available in the user agent resources. The user agent offers an input field service
for the content types. The service opens an input field and when the editing is
done the editing results are returned to the caller. WML plugin registers
Variables to the resources of user agent. This means that other content types can
modify attribute values and, so, they can effect to the WML presentation. E.g., a
VoiceXML content type plugin could be used to modify these attribute values.
The canvas is a UI component for presenting various kinds of content types.

54

UserAgentBrowser

UIComponent

Resources

Canvas
 paintComponent(Graphics)

GraphicsContext

MIDPGraphics

UAProf
Stylesheet

UserPreferences

Services

Variables

MIME

MIDPMIME

WMLImpl
InputFieldService

BrowserImpl

EventListeners

MediaControls
DimensionControl

WML1Control

WML1Modal
EventListener

UserAgentImpl

Renderers

Media
WML1Document

MIMERenderer

public paintComponent(Graphics g){
 midpGraphics.setGraphics(g);
 mime.render(midpGraphics)
}

Figure 5.5. MIMEFrame in Java MIDP environment.

Figure 5.5 shows how MIMEFrame is used in Java MIDP environment.
MIDPMIME is an extension for MIME types in the MIDP environment. MIME
types are rendered so that the render method of MIME is called in the paint
method of the canvas, and the graphics context (MIDPGraphics) is given as an
attribute. The MIME type can render the content in it to the given graphics
context. The graphics context can offer access to the actual graphics context and
then it can offer additional information needed (e.g., background and foreground
colours and fonts) for rendering. The graphics context can define the bounds for
the rendering area so that a content type (e.g., image) in a (e.g., SMIL) container
content type can render the content to the given bounds.

The Java MIDP user agent is controlled by a keyboard. Keyboard events are
mapped to modal key events and then passed to Controls. User agent has
RootModalEventListener for the controller events. If the user agent does not
handle the event, the event is sent for the focus owner. Controls can notify the
WML plugin of modal key events by using the modal event listener
(WMLModalEventListener) offered by WML plugin. With keyboard it is
possible, e.g., to navigate in WML documents. WMLPlugin can be controlled by
dimension (DimensionControl) and by using WML plugin specific controls
(WMLControls).

55

5.3.2 Presenting mobile content with resources and multimodal
controls

Figure 5.6 shows an example of using resources in presenting the content types.
In the example, UAProf and style sheet resources are applied in XHTML
presentation.

Figure 5.6. An XHTML document presented via two different style sheets.

We have constructed a testing environment for multimodal controls with
multiple available content types. In the implementation, input commands can be
given by using keyboard, mouse or by a voice command prompter. Figure 5.7
shows a combined VoiceXML and WML presentation where a voice command
prompter can be used for moving the focus, for selecting the objects and for
giving various kinds of input commands.

56

Figure 5.7. VoiceXML combined to WML presentation.

57

6. FEdXML � Framework for XML editors
In the future, consumers will produce content in mobile devices in real time, like
they now do in the wired Internet [DiB01]. Consequently, there is a great need
for content producing tools. This chapter concentrates on XML editors and
introduces a new generic framework for component-based XML editors (called
FEdXML), which can be used as the base of XML editor implementations. First,
in this chapter, we provide a classification of different kinds of XML editors and
outline requirements for a modular architecture of XML editors in Section 6.1.
Next, in Sections 6.2 and 6.3, the FEdXML architecture and framework are
described in detail. Reference implementation for FEdXML and practical use
cases for the framework are presented in Section 6.4.

In order to enable non-experts to construct XML (e.g., SMIL, SVG and
VoiceXML) applications, the usability of XML editing tools should be noticed
[Arn99, Jok03]. In general, an XML editor should

! show the XML content as illustrative as possible,

! offer effective tools for XML handling,

! make sure that the edited content follow the language specification, and

! guide and instruct the user while editing the XML-content.

In this work, we divide XML editors into four main categories:

1. Textual editors,

2. Generic XML editors,

3. Configurable XML editors and

4. Language specific XML editors.

We mainly consider the creation of XML editors that are capable of editing the
XML model directly and, in particular, keeping the edited content valid. A

58

textual source is understood to be an XML document if it complies with the
XML well-formedness constraints defined in the XML definition [BP+00]. An
XML document is valid if it is well-formed and follows the rules, and the model
defined in an associated Document Type Definition (DTD), which is a
description, which defines the elements, attributes and structure of the target
XML language. Schema languages like XML Schema [Fal01] by W3C and
RELAX NG by OASIS and ISO/IEC JTC1, support namespaces and data types
(e.g., numeric data types). Schema provides a markup vocabulary. It describes
formally permissible names for tags and attributes and permissible structural
relationships between such tags and attributes [MT+02].

A generic XML editor

! is applicable for any XML-based language,

! uses DOM as a internal representation of XML,

! offers controls for XML editing and navigating in the document structure,
and

! includes a visualisation view to each document being edited.

The benefit of a generic XML editor is that it can be used with any XML-based
language. However, the problem of the general approach is often the poor
usability. Several usability problems may arise if the model does not sufficiently
notify the characteristics of the target XML language, if the views are not
designed to show the content of the target XML language, and if there are only
generic editing controls (not language-specific controls like wizards or
templates).

The usability of a generic XML editor can be improved by implementing
configuration mechanisms that can be used to adapt the editor for a specific
XML-based language (Figure 6.1). Configurable XML editors have generic
model, view and controller components, which can be configured by using some
external descriptions. However, in this solution, the views and controllers should
be general enough to suit different XML languages and, also, capable of
adapting to the characteristics of specific XML languages.

59

View

DOM XSLT

Controller
Profilers

Model

Configurable
XML

Editor

Controller

 Minimized
Interface

 Minimized
Interface

 Minimized
Interface

View

XSL CSS

View
Profilers

Macros

DTD Schema

Model
Profilers

Figure 6.1. Configurable XML editor.

The characteristics of XML languages vary a lot. For example, the creation of
SMIL presentations differs greatly from the construction of VoiceXML
applications. So, there is a need for language-specific XML editor features that
may be implemented by adding language-specific MVC components to the
generic XML editor. The language-specific components should be designed to
work perfectly with the XML-based target language. A model for a specific
XML language should follow the language rules exactly so that all the editing
complies with the rules defined in the language description. Information and
functions relevant to the current editing job should be easily available to the
user. For editing there should be language-specific controls like special
commands, wizards and templates to make the editing as easy and efficient as
possible.

6.1 Requirements for XML editor framework

In order to minimise the effort to construct XML editors for different kinds of
environments (desktop and mobile), an XML editor framework should (at least)
introduce the common core modules of the XML editor. However, the mobile
environment sets many requirements for application development. In mobile
devices the memory and processing power and input and output capabilities are
normally very limited. Also, the capabilities of mobile devices vary a lot. Thus,
the framework should be

60

! very light and scalable, so that it works on desktop and mobile environment;

! generic, so that it is not dependent on any specific (e.g., a parser)
implementation;

! transferable, so that framework and implementations related to it can be
transferred to very different kinds of devices and environments; and

! reusable, so that the framework and related parts can be used in various
kinds of XML editor configurations.

Because of the great diversity of mobile environments, the framework should
offer a modular approach to construction of XML editors. Modular approach
enables one to

! construct XML editors of small well-tested reusable modules, which
implement interfaces defined by the framework, and

! replace specific parts of XML editor with new implementations so that XML
editor can work in various kinds of environments.

To keep the framework reusable and transferable to very different kinds of
environments the core of the framework should include only interfaces. The core
interfaces should

! be possible to be implemented in various kinds of environments (e.g., J2ME
and Symbian) with various kinds object-oriented languages available (e.g.,
with the Java and C++),

! offer base for implementing the modules of XML editor, and

! be based on standard interfaces, so that editor components are as generic as
possible.

This report describes a new generic framework for XML editors, FEdXML,
which seeks to address all the above requirements. FEdXML introduces a
generic architecture for modular XML editors, where the XML editor is divided

61

by using the Model-View-Controller structure (cf. Section 6.2). FEdXML is a
light, scalable, and highly transferable architecture (Section 6.3). The core of
FEdXML contains only interfaces and it makes it possible to construct XML
editors for various kinds of environments. FEdXML relies strongly on standard
XML interfaces introduced by W3C.

In order to evaluate the FEdXML, we have constructed reference Java
implementations (cf. Section 6.4) for the core parts of the framework. These
reference implementations can be used as a base for generic, configurable and
language-specific XML editor implementations.

6.2 Architecture for modular XML editors

We have identified the following requirements for the Model-View-Controller
(MVC) [BM+96] parts of XML editor. The XML model should offer methods for

! querying what it is possible to do for the model according to the underlying
grammar,

! executing various kinds of editing operations,

! validating the edited model, and

! updating changes in XML model to the other parts of the editor.

XML view should visualise the content in XML document and XML controller
should offer methods for XML content editing. In addition, in order to construct
configurable XML editors there is a need for methods for configuring the XML

! model (e.g., by enhancing the editing and validation methods),

! views (e.g., by configuring the visual appearance of XML editor), and

! controllers (e.g., by defining new XML editing controls like macros and
wizards).

62

In Figure 6.2, the base architecture model notifying the above requirements is
shown. The modular architecture is combined of XML model, view, controller
and configuration methods parts. These core modules co-operate and form the
skeleton for the XML editor implementations.

Grammar

XMLControllerUpdates

XML ViewXML Model

XML
Controller

Configuration Methods

Editing Operations

Validation

Model Configuration

View Configuration

Controller Configuration

XMLView

Figure 6.2. Architecture for modular XML editors.

6.3 FEdXML framework

The FEdXML framework is based on the architecture model defined above in
Section 6.2. FEdXML divides the XML editor by using the Model-View-
Controller (MVC) structure and offers methods for configuring the MVC parts
of XML editor (Figure 6.3).

XMLController

XMLView

XMLViewImpl

FE
dX

M
L

XML ViewXML Model

ValidatorImpl1

...
XMLControllerImpl

DOM3Validation

Validation

DOMOperationExecution

ValidatingDOM

V
al

id
at

io
n

 G
ra

m
m

ar

ValidatorImpl2

DOMOperationListener1

...
DOMOperationListener2

EditableXMLDocument
Services

MutationListeners
SelectionListeners E

di
ta

bl
e

D
oc

um
en

t

XML
Controller

DOMOperation

XMLNodeFormatter
XMLFormattingObject

Validator

Configuration Methods

Ed
iti

ng
O

pe
ra

tio
ns

Figure 6.3. FEdXML architecture.

63

6.3.1 XML model

FEdXML provides interfaces for accessing the underlying grammar
(DOM3Validation), for executing editing operations (ValidatingDOM and
DOMOperationExecution), for validating the content (Validation), and for
accessing the editable XML document (EditableXMLDocument). These core
interfaces of FEdXML are described in the following subsections.

6.3.1.1 Grammar

W3C has published (currently a candidate recommendation) validation
interfaces for DOM (level 3) [CKR03] for making the queries to the underlying
grammar. The interfaces offer methods for making queries like where the nodes
or attributes can be added to or removed from. They can be accessed by using
the methods of the DOM3Validation interface of FEdXML.

6.3.1.2 Editing operations

FEdXML offers DOM operations for implementing primitive or more advanced
XML editing operations like macros and wizards. The DOMOperation interface
offers methods for

! executing the XML editing operation,

! getting a mutation event for the operation, and

! getting an inverse operation for cancelling the operation.

When a DOM operation is executed the mutation listeners of XML document
and the DOM operation listeners are notified. For example, an undo manager
implementation can be a DOM operation listener. The DOMOperation interface
offers methods to implement undo- and redo-operations for DOM editing
operations.

64

CharacterData

Text Comment CDATASection

Node

Attr

ElementDocument

DocumentFragment

DocumentType Entity

EntityReferenceProcessingInstruction

Notation

= Validation Layer
Figure 6.4. FEdXML adds validation to the DOM data types.

XML content can be edited via data type interfaces (e.g., Node, Element, Attr,
Text etc.) of DOM. FEdXML adds a validation mechanism to all the basic data
types of the DOM (Figure 6.4). The validating versions for those data types can
be obtained by using the methods of the ValidatingDOM interface. The editing
methods of the validating data types can be implemented as DOM operations so
that the editing is validated against the defined validators. If a validation error is
raised, the editing is cancelled and a validation exception is thrown.

6.3.1.3 Validations

In FEdXML, the XML content is validated by using validator components. It is
possible to use several (e.g., DTD or XML Schema based and language specific)
validator components at the same time.

A single validator component can be straightforwardly implemented, because
only the validate(Node) method has to be implemented. A validator validates a
single node in XML structure and, if needed, a validation exception can be
thrown. In FEdXML, validation results are classified into four categories

65

! fatal errors (e.g., element is in wrong place or wrong attribute in the
element),

! errors (e.g., wrong attribute value or required attributes or child elements are
not defined for the element),

! warnings (e.g., there can be a implementation that does not support all the
features of the edited language, e.g., attribute values of elements), and

! accepted (no validation errors in the XML-content).

Validation exceptions can be implemented by using FatalValidationError,
ValidationError and ValidationWarning interfaces. If during editing a validation
error is thrown, the editing operation is not executed and the error can be shown
to the user. If a warning is thrown, the operation is executed and warning can be
shown for the user (the ValidationWarningListener component is called). If
validation errors are not thrown, the editing operation is executed.

Validators can be used for directing the editing process. For example, if a
required child element is not defined, a validator can throw an exception. The
exception can be caught, and, then, a UI component for defining the child
element can be suggested. After the child element is defined, the same editing
operation can be tried again and if exceptions are not thrown, the editing is
updated to the XML document. A validator can be used for tutoring the user
(e.g., of the valid attribute values). A validator can also warn the user of the
features, which are not supported by the current (e.g., browser) implementation.

6.3.1.4 Change-propagation mechanisms

The EditableXMLDocument interface offers access to XML document services
and selection and mutation listeners. EditableXMLDocument can offer various
kinds of services (e.g., an access to underlying grammar of XML document).
The SelectionListeners interface includes methods for notifying the defined
selection listeners of Node and Range selections in the edited XML document.
The MutationListeners interface includes methods for notifying the defined
mutation listeners of mutation events in the edited XML document. The
MutationListener interface is based on the standard MutationEvent interface
defined by W3C.

66

6.3.2 XML view

The XML view is used to visualise the visible nodes of DOM. There are
methods for

! implementing XML views (XMLView and XMLVisualElement interfaces),
and

! notifying XML views of the selections and mutations in XML model.

The XMLView interface gives an abstraction for XML view. The
XMLVisualElement interface includes methods for getting the node and the
bounds of the visual element of the XML view. XMLView offers methods for
getting the visual XML element that is located in the given coordinates and for
getting the visual XML element for the node of the edited DOM. These methods
can be used in XML editing component (e.g., a popup menu or attribute input
field) for obtaining (e.g., the bounds of) the visual XML element for the node to
edit. XML views can be configured to be selection and mutation listeners of the
XML document. When nodes in XML document are selected or edited, XML
views are notified and updated.

6.3.3 XML controller

The XMLController interface enables the use of various kinds of the input
mechanisms in XML editing (Figure 6.5). XML views can include listeners for
input events, e.g., for mouse and keyboard. When the event listener is notified of
an input event the event can be passed for the XML controller, which can use the
input events for directing various kinds of XML editing (e.g., popup menus, text
and attribute dialogs) components. In other words, XMLController separates
XML editing components from XML view so that various kinds of XML editing
components can be used in various kinds of XML views.

67

XMLControllerXMLView

XMLViewImpl XMLControllerImpl

InputEventListenerExternal input
events

Input events
in view

EditingUI4
EditingUI3

EditingUI2
EditingUI1

Figure 6.5. XML controller implementation.

6.3.4 Constructing configurable XML editors

There are methods for configuring

! the model (cf. the Validation interface),

! the visual appearance (XMLNodeFormatter and XMLFormattingObject
interfaces) of XML editor, and

! the editing operations (the DOMOperation interface) of XML editor.

The XML model can be configured to fit for a specific XML language by using
the validators. Validators enable implementations of external language-specific
features for validation like dynamic checks (e.g., for checking some attribute
values in SMIL demonstration) and methods for passing tutoring and warning
messages to the user of XML editor.

The user interface of the XML editor can be configured by formatting the visual
appearance of the XML views and controls. XMLNodeFormatter enables to

! hide,

! arrange, and

! attach formatting objects to the nodes of XML document.

68

The possibility to format objects enables the attachment of style declarations
(e.g., defined in style sheet) to the nodes of XML document and to define the
layout (e.g., fonts, colours, icons and visible parts) for the XML content.
XMLNodeFormatterManager manages the various kinds of XML node formatter
implementations. It offers methods for selecting the active node formatter, for
adding and removing node formatters, for getting the active and default node
formatter name and for getting the enumeration of names of available node
formatters (Figure 6.6). When the active XML node formatter is changed, UI
components related to it are updated. The UI components can use the
XMLNodeFormatterUser interface for sharing XML node formatters. For
example, an XML editing popup menu can get the active XML node formatter
of the view and can use it for hiding and emphasising the content in the menu.

XMLNode
FormatterUser

XMLNode
FormatterManager

XMLNodeFormatter

FormattingObject

XMLView /
XMLControl

Implementation

UI for selecting
the

XMLNode
Formatter

Figure 6.6. XML node formatter can be used with XML views or controls.

XML editing can be further enhanced by constructing macros, wizards and
XSLT based editing operations. The DOMOperation interface enables to
implement different kinds of editing operations for XML editing. XML editing
operations are executed in the DOMOperationExecution component (as
described in Section 6.4.1).

6.4 Reference implementations

We have made reference implementations of FEdXML interfaces, which can be
used to

! query what editing operations are allowed for the document according to the
grammar,

! execute editing operations,

69

! validate the XML content against the grammar,

! update changes in XML model to the other parts of XML editor, and

! undo and redo editing operations.

Reference implementations for DOM level 3 validation interfaces use a
Grammar interface for obtaining validation information, e.g., from DTD or
XML Schema (Figure 6.7). We have implemented the Grammar interface by
using the Xerces parser [Apa]. The Grammar interface contains methods for
obtaining grammatical rules of the current XML document. It offers methods for
obtaining the defined element types and the content types of the elements,
methods for obtaining attributes and their default or fixed values, and a method
for validating the children of the current node. The Xerces parser includes
methods for getting grammatical rules from DTD or XML Schema and, so, it
can be used for implementing the Grammar interface. When the XercesImpl
build an XML document it registers the Grammar implementation to the XML
document services. The grammar service can be used in DOM level 3 validation
implementations. In our tests grammatical rules were obtained only from DTDs,
because currently supported languages (WML, XHTML, SVG and VoiceXML)
are defined by using the DTD notations.

DOM3Validator

XMLDocument

XMLDocumentImpl

Grammar XMLDocumentBuilder

XercesImpl

FEdXML Validation

validate(node)

RangeVAL

DocumentEditVAL

CharacterDataEditVAL

ElementEditVAL
NodeEditVAL

D
O

M
 L

ev
el

 3

V
al

id
at

io
n

uses

 creates

V
al

id
at

or
s

 ...
Validator2

uses

Validator3

Figure 6.7. Use of FEdXML with the Xerces parser.

70

FEdXML offers a DOM3Validator implementation, which validates the XML
content by using the methods offered by DOM level 3 validation.
DOM3Validator can be used for directing the editing process. E.g., if a required
child element is not defined, it throws a define child exception. This exception
can be caught and a UI component for defining child element can be shown.
Now the same editing operation can be tried to execute again and if exceptions
are not thrown the editing is updated to XML document.

For getting language specific validation mechanism, new validators can be
defined. We have made validator implementations for WML and SMIL. They
validate, e.g., element structure, and attribute values of the edited content.
Language specific validators can tutor the user (Figure 6.8). For example, if the
user has defined an attribute value, which does not follow the language
specification, a validation exception is thrown where there is an additional
information message for the user (e.g., "For 'width' only percentages and pixel
values are accepted (e.g., 10% or 150px)"). There are also warning mechanisms
like "The element 'excl' is not supported by the current implementation, use 'par'
or 'seq' elements instead".

Figure 6.8. Validator based tutoring message.

FEdXML offers methods for configuring the visual appearance of XML
document. XMLNodeFormatter can be used for hiding, arranging and
emphasising visible elements in the XML editor UI. FEdXML offers default
implementation for XMLNodeFormatter, by which it is possible to define

! named visible nodes,

! attribute groups, and

! formattings for named nodes.

71

We have implemented XMLNodeFormatter for SMIL documents. A generic
configurable XML view is shown in Figure 6.9, where the XMLNodeFormatter is
used for grouping (e.g., layout and timing) attributes, for emphasizing different
kinds of attribute groups (are shown with certain color and font) and for hiding
the elements and attributes (e.g., so that only timing information is shown).

Figure 6.9. XML node formatters for SMIL: A generic configurable XML view
on the left and a browser for SMIL presentations on the right.

XML content is edited by using XML editing controllers. They can be
constructed by using the validation methods offered by the DOM level 3
validation interfaces. By those, queries can be made to the underlying grammar
to check what is possible to do at certain location of XML document. In fact,
FEdXML offers validating implementations for all the core interfaces of DOM.
Editing controls can use editing commands of those interfaces, and, so, the
edited content is validated against defined validators. DOMOperations enables
the implementation of macros and wizards for XML editing. The operations can
be implement undoable. The reference implementation of FEdXML offers a
default implementation for undo and redo operations (UndoManager).

FEdXML is tested in mobile and desktop environment. In desktop environment,
we have constructed a development tool for mobile applications, named
"mPlaton Toolkit", which is a tool for editing, creating and browsing different

72

kinds of XML languages in a mobile environment (currently WML, XHTML,
SVG and VoiceXML). It can emulate various mobile devices by utilising User
Agent Profiles. A more detailed description of the mPlaton Toolkit is provided
in Chapter 7.

Figure 6.10. XML editor in Java MIDP enabled (Nokia 3650) phone.

We have tested FEdXML in mobile environment by implementing a WML
editor for Java MIDP enabled phones (Figure 6.10). The implementation
consists of browser and WML editor parts. The WML editor includes methods
for navigating in the document structure and for editing the WML content. The
visible elements of XML document are visualised in the editor as a list and the
XML text and attribute values can be edited by selecting elements in the list. The
editor does not currently support editing of the document structure (e.g.,
elements can not be added), but we plan to enhance the editor with new editing
features. The WML editor can be used for template based editing, where the user
gets a WML document template and can edit some parts of it (e.g., add own
images to the presentation or edit some attributes and texts in the template). The
editor uses a WMLValidator component (previously implemented for desktop
environment [PLK00]) for validating the edited WML content. When editing is
done the updated document is presented in WML browser.

73

7. Applications
mPlaton frameworks have been tested by making separate application
implementations for Java 2 SE, Personal Java and Java MIDP environments.

Examples of the applications include

- mPlaton Toolkit - a comprehensive development tool for mobile browsing
applications,

- µBrowser - a micro browser implementation for PDA devices, and

- MIDPBrowser - a very light browser implementation for Java MIDP enabled
mobile phones.

Descriptions of mPlaton Toolkit, µBrowser and MIDBrowser implementations
are in Sections 7.1-7.3.

7.1 mPlaton Toolkit � a development toolkit for mobile
browsing applications

mPlaton Toolkit is a comprehensive development toolkit for mobile browsing
applications. It is implemented with Java 2 SE, and is used in desktop
environments where there are more memory resources and processing power
available.

With the toolkit (see Figure 7.1), it is possible to construct different kinds of
XML based (e.g., XHTML, WML and SMIL) presentations and to simulate the
presentations by using profile information (e.g., User Agent Profiles, style sheets
and user preferences). It utilizes all the frameworks of the mPlaton platform.

74

Figure 7.1. The main window of mPlaton Toolkit.

When the XML content is loaded to the editor the XML parser checks the
validity of the document. If XML document is not valid the XML source view is
shown (Figure 7.2).

Figure 7.2. XML code view. The XML source is shown on the top and a list of
the errors is shown on the bottom.

75

The source view shows the document source and the error lines. When clicking
an item in the error list, the related source code line is emphasized with color.
After correcting errors, the XML source can be parsed again. If there are no
errors, the parsed XML document can be loaded to visual XML editor. The
toolkit offers tree, visual and text view for XML editing (Figure 7.3). Views are
generic, which means that they can present any kind of XML languages.

Figure 7.3. Generic views for XML editing. A tree view on the left, an XML text
view and an XML visual view on the center and a simulator for visualizing the
created XML content on the right.

All the time when the XML content is edited, the created content is shown in the
simulator view. In many cases, there is a lot of information in an XML
document that makes it hard to find out the essential parts. The usability can be
improved by using profiling mechanisms. The generic XML views offered by
mPlaton Toolkit can be profiled to work with some specific XML based
language. We have implemented profilers for WML and SMIL documents. For
example, the profilers enable to hide the content of XML document (e.g., some
attributes and elements can be hide), arrange the content (e.g., attributes can be
arranged to certain order) and to emphasize the visual elements (e.g., to attach
icons and to define colors for XML elements and attributes) in the XML view.

The toolkit offers editor views for WML and SMIL documents (Figure 7.4). In
WML view there are graphical elements for WML elements. The layout and
timing views are for SMIL editing. In the layout view, it is possible to edit the

76

layout of SMIL presentation, and, in the timing view, it is possible to visualise
the timing of the edited SMIL presentation.

Figure 7.4. mPlaton Toolkit offers specific views for WML and SMIL documents.
A visual view for WML documents on the left and layout and timing views for
SMIL documents on the right.

With an XML popup menu it is possible to add and remove elements and define
attributes and textual values (cf. Figure 7.5). For defining the attribute values,
there is an attribute dialog. For textual values, there is a text editor, by which it is
possible to edit and load textual content to the XML document. XML editing
operations can be cancelled by using the undo and redo controls. The controls of
mPlaton Toolkit are generic (can be used for editing any kinds of XML based
languages), but they support profiling too. In mPlaton Toolkit, controls can be
profiled, e.g., menus can be emphasised (e.g., icons can be attached to the
selections) and selections can be reduced (e.g., some selections in XML control
menu can be hided).

The XML content is validated by using the information in DTD. In addition,
mPlaton Toolkit supports the use of validator components to construct language
specific validation mechanisms. For example, for SMIL presentation there is a
validation component that gives tutor messages for the user: if attribute values
defined by user are not valid the validator throws an exception with the
information about the acceptable attribute values. This exception is shown in a
tutor message dialog.

77

Figure 7.5. Controls for XML editing. An XML editing popup on the left, an
attribute edit dialog and a text editor on the centre and an XML edit menu on the
right.

The mPlaton Toolkit supports the presenting of browsing content (e.g., text,
images, audio, video and container types like XHTML, WML, SMIL) in
simulators. The simulators can utilize profile information like UAProfs, style
sheets (CSS2) and user preferences. mPlaton Toolkit includes a special purpose
UI for defining user agent configurations (Figure 7.6). User agent configuration
is saved in XML format and, thus, the user agent configuration can be easily
extended with new definitions. It is possible to define UAProfs, style sheets and
skins for mobile browsing application simulation. A user agent configuration
defines also information related to the simulator layout like the background and
foreground colors of the simulator.

Figure 7.6. Defining the user agent configuration.

78

UAProfs can be defined by using the UAProf editor (Figure 7.7). The UAProf
editor offers tools for editing the values of UAProf descriptions. After the
edition, the modified UAProf can be exported to textual UAProf schema
descriptions. Style sheet descriptions can be defined by using a text editor in
mPlaton Toolkit.

Figure 7.7. UAProf editor.

mPlaton Toolkit supports the use of images of mobile phones as skins in mobile
browsing application simulation (Figure 7.8). With the skin editor it is possible
to define layout for the skin image of mobile device. Also, it is possible to define
bounds for buttons and for the display. After the skin is defined it can be used in
simulating the mobile browsing application. Skin simulator supports controlling
the mobile browsing applications with the keyboard in the skin. It is also
possible to set multiple values for keys. Then, the alternative values can be
obtained by pressing the button multiple times. Skin can be presented in
different sizes by using the zoom feature of the Skin editor and simulator.

79

Figure 7.8. Skin editor and simulator.

Whenever defined user agent configurations exist, the edited content can be
presented in simulator by using the information in the user agent configuration.
Figure 7.9 shows a segment of XHTML content simulated in three different
kinds of simulator configurations.

80

Figure 7.9. XHTML document simulated in various kinds of simulator
configurations. UAProfs and style sheets are used in presenting the content.

7.2 µBrowser - a micro browser implementation for PDA
devices

For making usable applications for PDA devices, it is essential that used
algorithms are efficient and designed to work in the device platform. All kind of
processing overheads should be minimised and, e.g., the construction of new
objects should be reduced for minimising garbage collection overhead in the
program.

µBrowser is implemented using Personal Java (works with JDK 1.1.8; see
Figure 7.10). Personal Java supports only a reduced set of Java 2 SE classes and,
e.g., it does not directly support Java Swing components. µBrowser supports
browsing of various kinds of MIME types (e.g., text, images (jpeg, png, SVG),
audio, video, WML, SMIL and XHTML MP) and it has been tested in the
Compaq IPAQ PDA device. It includes navigating, browsing history operations
(e.g., back, forward, reload) and caching and asynchronous browsing in the
fetching of the mobile content.

81

Figure 7.10. µBrowser - a micro browser implementation for PDA devices.

7.3 MIDBrowser - a browser implementation for Java
MIDP enabled mobile phones

MIDBrowser is a browser implementation for Java MIDP environment (Figure
7.11). Java MIDP environment differs greatly from Java SE 2 and Personal Java
environments. In particular, Java MIDP is designed to work in mobile devices,
which have very reduced memory and processing power resources available.
Especially, the memory saving is important for Java MIDP enabled mobile
phones. The Kilobyte Virtual Machine (KVM) has normally only few hundred
kilobytes of memory available and, thus, the memory limitations have to be
taken into account in the implementations [NOK02]. Java MIDP does not
support floating-point data types, which also has a significant effect on mobile
application design. The finalisation is not supported for objects and error
handling is limited. Further, Java MIDP does not support Java Native Interface
(JNI), user-defined class loaders and Remote Method Invocations (RMI). When
writing this, in our knowledge, there are no full DOM parsers for Java MIDP
environment. Available XML parser implementations are unconditional
implementations and, so, the direct use of them may reduce the reusability of
created components. For resolving this problem, we created a reduced
implementation for DOM data type interfaces so that the DOM can be
constructed by using existing XML parser of Java MIDP environment (e.g.,
kDOM or Al Sutton parser). Consequently, the XML document can be handled

82

by using the DOM interfaces and the plugin implementations that are not bound
to any specific parser implementation.

Figure 7.11. Java MIDP browser.

Currently, the MIDPBrowser implementation includes only plugins for WML
and SVG, but we aim to implement several new plugins for the Java MIDP
environment in the short run.

83

8. Discussion
This chapter provides evaluations of the mPlaton frameworks based on usage
experiences and expert evaluations. The aspects related to AGB, MIMEFrame
and FEdXML are in the following Sections 8.1 � 8.3, respectively.

We have constructed reference implementations for the mPlaton frameworks
with Java (cf. Sections 4.2, 5.3 and 6.4). We have tested the frameworks in Java
2 SE, Java Personal Profile and Java MIDP environments, but they can also be
implemented with other object-oriented languages (like C++). In our tests the
frameworks are proved to be suitable for mobile use.

8.1 AGB

AGB contains only the core features of mobile browser. It offers a solution for
mobile browsing, but is also suitable for any browsing applications where
navigation, caching or push and pull operations are needed. The reference
implementation of AGB is very light, and it can be embedded to applications,
where there are needs for browsing services.

In contrast to available browsers, the aim of the AGB is not only to offer
browser services for the human users, but AGB can be seen as a middleware
software offering browsing services for various kinds of mobile applications.
With AGB it is possible to implement conventional browsers, but it can also
used as a base for dedicated and embedded mobile browser implementations.

AGB shows how various kinds of pull and push connections can be combined to
work together in mobile environment. AGB has more generic approach to
handle connections than conventional browsers have. In AGB, the connection
can be any kind of pull or push typed connection, which makes it possible to
construct new objects. A connection is not necessarily only of network
connection type, but it can be a resource in mobile device (e.g., location
coordinates), which makes it possible to construct asynchronously objects to
browse (e.g., a map of the locations). Connections can be persistent, temporal
(e.g., HTTP connection with cache-control mechanism) or disposable (e.g.,

84

reader typed) connection. Temporal and disposable connections can also be used
for saving the memory and the battery of mobile device.

AGB push connections are used to notify of services offered outside. For
example, WAP push, SMS, MMS and instant messaging type of services can be
introduced as push connections. Further, push connections can be mapped to pull
operations, because push messages can offer the location or source data for the
content to browse. This information can also be used for fetching and
constructing the browsing content in asynchronous pull operation. The used
approach separates the receiving of the push messages from fetching the content.

AGB optimises the use of network resources. Both opening the connections and
fetching the content can be done asynchronously and, so, there can be several
concurrent object pull operations at time. Caches for connections and fetched
content minimise the requests sent to mobile networks. It is also possible to
create connections with attached profile information that can be utilised in
various kinds of adaptation (content, network and terminal adaptation etc).

We have tested AGB in Java 2 SE, Java Personal Profile and Java MIDP
environments. The reference implementation offers a well-tested and modular
base for mobile pull/push capable mobile browser implementations. We started
the development work of AGB in desktop environment, but later we
implemented AGB in PDA (Java Personal Profile enabled) devices and, finally,
in Java MIDP enabled mobile phones.

In all, AGB saves a lot of implementation effort, since instead of implementing
the mobile browser once again, the AGB is used as a base of browser
implementations in separate environments. The reference implementation of
AGB suits well for the mobile environment, because it

! is very light (size of the compiled Java classes is about 61 Kbytes),

! is scalable and highly configurable (all parts related to AGB are added as
components and can be replaced by changing the configuration),

! supports reusability (implemented browser modules can be used in separate
browser configurations),

85

! supports different kinds of communication protocols and connections (can
be added as components), and

! optimizes the use of network capabilities (offers methods for asynchronous
browsing and for caching).

In practise, implementing a MIDBrowser for Java MIDP enabled phone took
only a few days to implement. Although there are great differences between Java
MIDP and Java 2 SE environments, the most parts of AGB reference
implementation were used directly in Java MIDP environment. The lack of the
constructors introduced in Java 2 SE caused some extra work. We implemented
few new interfaces to obtain constructors for plugins as well as a new
implementation of the object factory mechanism for Java MIDP environment.
Most of the effort needed for MIDBrowser implementation caused of the
differences between UI components of Java SE and Java MIDP environments.

We converted the WML plugin (previously implemented in Java 2 SE
environment) to Java MIDP compliant and the HTTP connection component
were rewritten. In all, the AGB saved a huge amount of implementation and
testing work and improved the quality of the results, because the most parts of
the browser were implemented by using well-tested modules of the reference
implementations.

A drawback of AGB is the fact that the extensive use of abstract interfaces spent
memory resources (the size of the compiled interfaces of the AGB reference
implementation is about 8 KBytes), which can be a problem in mobile devices
with very limited memory (e.g., there are Java MIDP enabled phones with only
30 KBytes program memory available). On the other hand, AGB saves a lot of
effort and improves the quality of browser products by offering the architecture
and reference implementations for the core modules of mobile browser. By
using AGB, the developer can put more efforts to implementing more advanced
browser and application modules instead of implementing the whole browser
from scratch once again.

86

8.2 MIMEFrame

The reference implementation of MIMEFrame can be embedded to other
applications, whenever there are needs for client-side implementations of mobile
browsing applications.

We have tested MIMEFrame in different kinds of environments, e.g., in a
desktop computer, in a PDA device and in a Java MIDP enabled mobile phone.
We have implemented various kinds of content types, which can work together
(e.g., text, image, audio, video and SMIL, SVG). Further, we have implemented
content types (e.g., XHTML and WML) that applied browsing services and
various kinds of resources (e.g., user agent profiles, style sheets) in presenting
the content. We have tested multimodal controls by using WML and VoiceXML
together where keyboard, mouse and voice controls are available. Generally, the
reference implementation of MIMEFrame is scalable and light (the size of the
compiled Java classes of the reference implementation is about 59 Kbytes).

MIMEFrame introduces a generic architecture, which describes a skeleton for
the client-side of mobile browsing application implementations. Instead of
designing the whole client-side architecture for the mobile browsing applications
once again the efforts can be targeted on designing modules for mobile browsing
applications.

The possible drawback of the modular approach is the computational overhead.
The defined interfaces of the framework consume memory (the size of the
interfaces of the reference implementation is about 13 Kbytes), which can be a
problem in devices with very limited memory resources. On the other hand, in
comparison to the monolithic structure, the modular approach enables to
construct mobile browsing applications of small replaceable and well-tested
modules, which saves a lot of effort and improves the quality of the resulting
mobile browsing applications.

8.3 FEdXML

FEdXML introduces a generic architecture for modular XML editors, which
defines the core parts of XML editor, and shows how to apply these parts. From

87

the software developer points of view, FEdXML enables the developer to
concentrate on developing of new components of XML editor.

The used modular approach makes it easy to replace specific parts of XML
editor implementation with new ones. For example, XML editor views and
controls should be implemented so that they can be used with small displays and
in devices with very limited input methods available (e.g., no pointing device
available). In comparison to the monolithic structure, the drawback of the
modular approach is the computational overhead. On the other hand, the
modular approach enables to construct XML editors of small replaceable and
well-tested modules, which saves a lot of effort and improves the quality of the
results. An experienced developer can put more efforts for optimising the editor
modules suitable for the current usage environment. For new developers, the
modular structure is easier to understand. They can become acquainted with the
XML editor implementation by elaborating the software components provided
by the reference implementations.

In our tests, FEdXML has saved a lot of time and effort. In desktop environment,
we have created XML editors for WML, SMIL, VoiceXML and XHTML by
using the reference implementation of FEdXML as a base. We used the
FEdXML to implement a WML editor for Java MIDP enabled phones. FEdXML
saves the coding effort also because existing editor components can be flexible
reused (e.g., the existing generic view, control and DTD based validation
components). All the core parts of FEdXML are replaceable. For instance, if
FEdXML is to be transferred to a new (e.g., mobile device) environment, any
part related to the FEdXML can be replaced. Also, the designing of completely
new XML editors is easier, because FEdXML offers the base structure of XML
editors. Instead of designing the whole editor architecture for the target XML
based language the efforts can be targeted on designing language specific (e.g.,
XML model, views and controllers) components. In general, the use of the
existing well-tested editor components will improve the quality of new editor
implementations.

88

9. Conclusions and future work
9.1 Results

The mPlaton browsing and development platform offers frameworks for
constructing mobile browsers (AGB), for presenting various kinds of content
(MIMEFrame) and for constructing the XML editors (FEdXML). In our tests
mPlaton is proved to be a usable base for new implementations (cf. Chapter 8).
We have implemented reference implementations for mPlaton frameworks with
Java, which can be utilized in new mobile browser and XML editor
implementations.

AGB constitutes the core of a modular, reusable browser environment. In
particular, AGB offers a solution for mobile browsing, but it is suitable for any
browsing applications where navigation, caching or push and pull operations are
needed. The key feature of AGB is that it is highly configurable. Furthermore,
AGB is very light and scalable. Because the core modules of AGB can be
replaced with new implementations, the reference implementation of AGB can
be readily improved, e.g., with new optimised cache, history or object pull or
connection initialisation modules. If needed, modules of AGB can be changed
and replaced even in run-time, e.g., the connections and object plugins can be
changed dynamically. All the other parts can be flexibly introduced as modules.
Reusability of the implemented plug-in components is good because existing
components can be used as parts of different browser configurations and
implementations. If environments differ greatly (such as Java MIDP and Java 2
SE), separate versions of the plug-ins may have to be implemented.

The MIMEFrame framework offers generic groundwork for client-side
implementations of mobile browsing applications so that implemented parts are
consistent, generic, and reusable. The core of the framework offers interfaces for
constructing user agents, content types, and control mechanisms. Content type
plugins can offer services, which the other parts of mobile client (e.g., content
types or user agent) can use. MIMEFrame supports use of different kinds of
modal and non-modal controls in mobile browsing applications. Profile
information (e.g., UAProfs, style sheets and user preferences) can be used in
adjusting the presentation of content objects.

89

FEdXML introduces a generic architecture for modular XML editors, where the
XML editor is divided by using the Model-View-Controller structure. FEdXML
is a light, scalable and highly transferable. The core of FEdXML contains only
interfaces and it makes it possible to construct XML editors for various kinds of
(mobile and desktop) environments. FEdXML relies strongly on standard XML
interfaces introduced by W3C.

The frameworks of mPlaton make it possible to construct dedicated browsers
and embeddable application components for mobile devices that could provide
features not offered by available commercial browsers (e.g., specific UIs and
functionality for browsing applications). In particular, the frameworks enable the
developers to construct new kind of mobile browsing applications, where in
addition to the browsing features there could be external capabilities to present,
to edit and to send the browsed data.

In order to bring content to mobile browsers the content producers need
development environments. By combining frameworks of mPlaton it is possible
to construct development and simulator environments. We have constructed a
development toolkit for mobile applications (mPlaton Toolkit) by using the
mPlaton frameworks. The toolkit enables developers to test new mobile
browsing applications before they are adapted to commercial products. If
simulator modules of development environment are suitable for mobile use, they
can be installed directly to mobile devices and be used in mobile browsing. The
advantage of this is that the simulator and the browser in mobile device can be as
similar as possible.

9.2 Future work

Our future research topics include issues related to the browsing and presenting
of mobile multimedia content and support for new kinds of services and
applications such as context-aware services. Also, the multimodality of
applications will bring new research challenges. Further, the construction of
XML editors and application tools for the limited mobile devices will offer
many interesting research topics in the future.

90

We will apply the mPlaton frameworks in various kinds of mobile environments.
The Java MIDP is an especially interesting platform, because it is becoming so
widely supported by various kinds of mobile devices. The mPlaton components
can be embedded in other applications. We plan to implement mobile browser
applications, which can be integrated into other software products (e.g., in Java
MIDP environment). The future research directions related to AGB,
MIMEFrame and FEdXML are concluded in the following paragraphs,
respectively.

We plan to use AGB as a base of dedicated and embedded browsers. AGB offers
capabilities to improve mobile applications with browsing features. AGB makes
it possible to test (e.g., instant messaging, location- and context-awareness)
features not yet found in commercial browsers. New connection (e.g., instant
messaging) and content types (e.g., content related to the location information)
will be implemented. AGB will be used as a test bed for new kinds of mobile
applications.

Our future work related to MIMEFrame will be to implement application
components for new and forthcoming media types, and multimodal controls. The
Java MIDP environment offers many interesting possibilities to construct mobile
browsing applications. MIMEFrame enables to construct new content types,
controls, and user agents, which can present contents. We plan to design
location- and context-based content types (e.g., maps), which can be presented in
Java MIDP enabled mobile phones.

Our future work related to FEdXML will concern the implementation of new
validation, controller and view components. For example, we are planning to
implement new XML Schema-based validation components. Future multimedia
applications will require sophisticated editor components. For that, a goal is to
construct a SMIL editor, which works on Java MIDP enabled mobile phones.
New features can be introduced to the mobile SMIL editor by implementing new
SMIL editor modules for Java MIPD environment. Also, many modules
implemented in desktop environment (e.g., validation) can be used in Java
MIDP environment.

91

Acknowledgements
The work described in this report has been done within several research projects
(cf. http://www.vtt.fi/tte/proj/alllas) at VTT Information Technology between
March 1999 and September 2003. One of the initial aims of this work has been
to support other mobile Internet research projects at VTT by providing a
research and development environment for new mobile services and
applications. Examples of such projects include "WAPproxy" (see
http://ww.vtt.fi/tte/projects/WAP), "Multimedia Services Pilot" (see
http://www.vtt.fi/tte/projects/WAMPPI) and "INMOVE" project (see
http://inmove.org).

In addition to the authors, several other persons have participated the work
documented in this report. Especially, Lauri Mikkola and Juha Sjöholm have
implemented several parts, and Ari Ahonen, Juha Kolari and Tiina Kymäläinen
have attended in user interface design and evaluations of mPlaton. We wish to
thank the evaluators Tarja Systä, Kai Koskimies and Tommi Mikkonen from
Tampere University of Technology for many invaluable comments. Also, we
wish to thank Ari Ahonen, Eija Kaasinen, Juha Leppänen, Jaakko Lähteenmäki,
Vespe Savikko and Timo Tuomisto for the review of the manuscript and useful
advice.

This work has benefited from the help and advice of several persons from VTT
and persons attended the above mentioned projects. We would like to thank
them all.

92

References
[AB+01] Altheim, M., Boumphrey, F., Dooley, S., McCarron, S.,

Schnitzenbaumer, S. & Wugofski, T. Modularization of
XHTML�. W3C Recommendation, 10 April 2001.
http://www.w3.org/TR/xhtml-modularization

[AB+01b] Adler, S., Berglund, A., Caruso, J., Deach, S., Graham, T.,
Grosso, P., Gutentag, E., Milowski, A., Parnell, S., Richman, J. &
Zilles, S. Extensible Stylesheet Language (XSL).
W3C Recommendation, 15 October 2001.
http://www.w3.org/TR/2001/REC-xsl-20011015/

[Apa] Apache Xerces2 XML Parser for JAVA.
 http://xml.apache.org/xerces2-j/

[ArD02] Arreymbi, J. & Dastbaz, M. Issues in delivering multimedia

content to mobile devices. Sixth International Conference on
Information Visualisation, 2002. Proceedings, 10-12 July 2002,
pp. 622�626.

[Arn99] Arndt, T. The evolving role of software engineering in the

production of multimedia applications. IEEE International
Conference on Multimedia Computing and Systems, 1999.
Volume 1, Jul 1999, pp. 79�84.

[BC+03] Bellavista, P., Corradi, A., Montanari, R., & Stefanelli, C.

Dynamic binding in mobile applications. IEEE Internet Comput-
ing, Volume 7, Issue 2, March-April 2003, pp. 34�42.

[BeF01] Bertino, E. &, Ferrari, E. XML and data integration. IEEE

Internet Computing, Volume 5, Issue 6, Nov/Dec 2001,
 pp. 75�76.

[BI+00] Baker, M., Ishikawa, M., Matsui, S., Stark, P., Wugofski, T. &

Yamakami, T. XHTML� Basic. W3C Recommendation, 19
December 2000. http://www.w3.org/TR/xhtml-basic

93

[BLE01] Berners-Lee, T., James Hendler, J. & Lassila, O. The Semantic

Web. Scientific American, May 2001.

[BM+96] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.& Stal,

M. A System of Patterns - Pattern-oriented Software Architecture.
Wiley Series in Software Design Patterns (1996).

[BoK01] Boll, S. & Klas, W. ZYX-a multimedia document model for reuse

and adaptation of multimedia content. IEEE Transactions on
Knowledge and Data Engineering, Volume 13, Issue 3, May-June
2001, pp. 361�382.

[BP+00] Bray, T., Paoli, J., Sperberg-McQueen, C. M. & Maler E. Extensible

Markup Language (XML) 1.0 (Second Edition). W3C Recom-
mendation, 6 October 2000.http://www.w3c.org/TR/REC-xml/

[BS+03] van Beek, P., Smith, J.R., Ebrahimi, T., Suzuki, T. & Askelof, J.

Metadata-driven multimedia access. IEEE Signal Processing
Magazine, Volume 20, Issue 2, March 2003, pp. 40�52.

[BW+98] Bos, B., Wium Lie, H., Lilley, C. & Jacobs, I. Cascading Style

Sheets, level 2 (CSS2) Specification. W3C Recommendation 12
May 1998. http://www.w3.org/TR/REC-CSS2/

[CDK01] Coulouris, G., Dollimore, J. & Kindberg, K. Distributed Systems
- Concepts and design. Addison-Wesley - International Computer
Science Series (2001). Pp. 220�231.

[CKR03] Chang, B., Kesselman, J. & Rahman, R. Document Object Model

(DOM) Level 3 Validation Specification. W3C Candidate
Recommendation, 30 July 2003.

 http://www.w3.org/TR/2003/CR-DOM-Level-3-Val-20030730/

94

[CoK99] Couderc, P. & Kermarrec, A.-M. Improving level of service for
mobile users using context-awareness. Proceedings of the 18th
IEEE Symposium on Reliable Distributed Systems, 1999, 19�22
Oct. 1999. Pp. 24�33.

[DS+99] Dey, A.K., Salber, D., Abowd, G.D. & Futakawa, M. The
Conference Assistant: combining context-awareness with
wearable computing. The Third International Symposium on
Wearable Computers, 1999. Digest of Papers, 18�19 October
1999. Pp. 21�28.

[DeC02] Deng, L.Y., Ruei-Xi Chen, Rong-Chi Chang & Teh-Sheng Huang.

Adaptive content model for multimedia presentation. First
International Symposium on Cyber Worlds, 2002. Proceedings.,
6�8 Nov. 2002. Pp. 209�216.

[DiB01] Dimitrova, N. & Bove, V.M., Jr. Connected by media [vision and
 views]. IEEE Multimedia, Volume 8, Issue 4, Oct.-Dec. 2001,
 pp. 13�15.

[DM+00] Decker, S., Melnik, S., van Harmelen, F., Fensel, D., Klein, M.,

Broekstra, J., Erdmann, M. & Horrocks, I. The Semantic Web:
The roles of XML and RDF. IEEE Internet Computing, Volume
4, Issue 5, Sep/Oct 2000, pp. 63�73.

[Fal01] Fallside, D. C. XML Schema Primer. W3C Recommendation,
 2 May 2001.
 http://www.w3.org/TR/xmlschema-0/

[GHJV94] Gamma, E., Helm, R., Johnson, R. & Vlissides, J. Design Patterns

- Elements of Reusable Object Oriented Software. Addison-
Wesley Professional Computing Series (1994).

[GUP] 3GPP. 3GPP Generic User Profile � Data Description Method.
 Technical Report TS 23.241 V1.0.0, 2003.

95

[Hje00] Hjelm, J. Designing Wireless Information Services. John Wiley
 & sons, Inc. 2000.

[HS+03] Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G.,

Altmann, J. & Retschitzegger, W. Context-awareness on mobile
devices - the hydrogen approach. Proceedings of the 36th Annual
Hawaii International Conference on System Sciences, 2003. 6�9
Jan. 2003. Pp. 292�301.

[Jok03] Jokela, T. Authoring tools for mobile multimedia content.

International Conference on Multimedia and Expo, 2003. ICME
'03. Proceedings 2003, Volume 2, 6�9 July 2003. Pp. 637�640.

[KHL02] Kimmel, J., Hautanen, J. & Levola, T. Display technologies for

portable communication devices. Proceedings of the IEEE,
Volume 90, Issue 4, April 2002. Pp. 581�590.

[Kle01] Klein, M. XML, RDF, and relatives. IEEE Intelligent Systems,
 Volume 16, Issue 2, Mar/Apr 2001. Pp. 26 �28.

[KR+03] Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J., Butler,

M. H. & Tran, L. Composite Capability/Preference Profiles
(CC/PP): Structure and Vocabularies 1.0. W3C Proposed
Recommendation 15 October 2003.

 http://www.w3.org/TR/CCPP-struct-vocab/

[Kum03] Kumar, S. White paper: Multimodality on thin clients - a closer

look at current mobile devices and the multimodal experience
possible today. V-Enable Inc, White paper, 2003.

 http://www.v-enable.com/products/
 Multimodality%20on%20Thin%20Clients.pdf

[KuO00] Kunz, T. & Omar, S. A mobile code toolkit for adaptive mobile

applications. Third IEEE Workshop on Mobile Computing
Systems and Applications, 2000. Pp. 51�59.

96

[LaS99] Lassila, O. & Swick, R.R. Resource Description Framework
(RDF) Model and Syntax Specification. W3C Recommendation
22 February 1999.

 http://www.w3.org/TR/REC-rdf-syntax

[LNR96] Larrondo-Petrie, M. M., Nair, K. R. & Raghavan, G. K. A

domain analysis of Web browser architectures, languages and
features. Southcon/96. Conference Record, (1996). Pp. 168�174.

[LR+03] Larson, J.A., Raman, T.V., Raggett, D., Bodell, M., Johnston, M.,

Kumar, S., Potter, S. & Waters, K. W3C Multimodal Interaction
Framework. W3C NOTE 06 May 2003,

 http://www.w3.org/TR/mmi-framework/

[Luo98] Luotonen, A. Web Proxy Servers. Prentice Hall PTR, Upper

Saddle River, NJ 0758, (1998). Pp. 51�54.

[MiP01] Mihovska, A. & Pereira, J.M. Location-based VAS: killer
applications for the nextgeneration mobile Internet. 12th IEEE
International Symposium on Personal, Indoor and Mobile Radio
Communications, 2001, Volume 1, 30 Sept.-3 Oct. 2001.
Pp. B-50�B-54.

[MK+02] Mandato, D., Kovacs, E., Hohl, F. & Amir-Alikhani, H. CAMP: a
context-aware mobile portal. IEEE Communications Magazine,
Volume 40, Issue 1, Jan. 2002, pp. 90�97.

[MMI] Multimodal Interaction Activity. http://www.w3.org/2002/mmi/

[MT+02] Maruyama, H., Tamura, K., Uramoto, N., Murata, M., Clark, A.,

Nakamura, Y., Neyama, R., Kosaka, K. & Hada, S. XML and Java
Developing Web Applications. Second Edition, Addison-Wesley,
Pearson Education, Inc. (2002).

97

[NFP01] Niklfeld, G., Finan, R. & Pucher, M. Multimodal Interface
Architecture for Mobile Data Services. Proceedings of
TCMC2001 Workshop on Wearable Computing, Graz, 2001.

 http://userver.ftw.at/~niklfeld/pub/niklfeld_tcmc2001.pdf

[Nob02] Noble, B. System Support for Mobile, Adaptive Applications.
 IEEE Personal Communications, Feb. 2002. pp. 44�49.

[NOK02] Debugging Wireless J2ME/MIDP Applications: An Introduction.
 Forum Nokia July 9, 2002. http://www.forum.nokia.com/

[OK+01] Okamoto, M., Kamahara, J., Shimojo, S. & Miyahara, H.

Automatic production of personalized contents with dynamic
scenario. IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing, 2001. PACRIM. 2001, Volume
1, 26�28 August 2001. Pp. 91�94.

[OS+01] Ohto, H., Suryanarayana, L. & Hjelm, J. CC/PP Implementors

Guide: Privacy and Protocols. W3C Working Draft, 20 December
2001. http://www.w3.org/TR/CCPP-trust

[Pas98] Pascoe, J. Adding generic contextual capabilities to wearable

computers. Second International Symposium on Wearable
Computers, 1998. Digest of Papers., 19�20 Oct. 1998. Pp. 92�99.

[PLK00] Palviainen, M., Laakko, T. & Kolari, J. Visual WML - a

development tool for WAP applications. VTT Research Notes
2068 (2000).

[RS+01] Rössler, H., Sienel, J., Wajda, W., Hoffmann, J. & Kostrzewa, M.

Multimodal Interaction for Mobile Environments. International
Workshop on Information Presentation and Natural Multimodal
Dialogue, Verona, Italy 14�15 December 2001.

 http://i3p-class.itc.it/papers/sienel.pdf

[SEMW] W3C Semantic Web Activity. http://www.w3.org/2001/sw/

98

[UAPROF] User Agent Profile Specification. Wireless Application Protocol,
WAG UAPROF, Version 20-October-2001.

 http://www.openmobilealliance.org/

[WAE] Wireless Application Environment Specification. Wireless

Application Protocol, Version 2.0, 7 February 2002.
 http://www.openmobilealliance.org/

[Wat94] Watson, T. Application design for wireless computing. Workshop

on Mobile Computing Systems and Applications, 8�9 December
1994, Proceedings, Pp. 91�94.

[WCSS] WAP CSS Specification. Wireless Application Protocol, Version

26-Oct-2001. http://www.openmobilealliance.org/

[WML] Wireless Markup Language Specification. Wireless Application
Protocol, Version 1.3, 19 February 2000.

 http://www.openmobilealliance.org/

[XHTMLMP] XHTML Mobile Profile. Wireless Application Protocol, Version

29-Oct-2001. http://www.openmobilealliance.org/

Published by

 Series title, number and
report code of publication

VTT Publications 515
VTT�PUBS�515

Author(s)
Palviainen, Marko & Laakko, Timo
Title

mPlaton
Browsing and development platform of mobile applications

Abstract
This report describes the mPlaton browsing and development platform of mobile
applications developed at VTT Information Technology. mPlaton supports the
development of client-side mobile browsing applications. It provides frameworks and
solutions how to browse the content in mobile environment, present the content with
profile information in separate user agent implementations with multimodal controls
available and create and edit the browsing content.

The core of mPlaton include frameworks for browsing (AGB), for mobile user agents,
content types and multimodal controls (MIMEFrame), and for XML editors (FEdXML).
The frameworks are designed for mobile environments so that they are very light and
scalable, and can be implemented by using different kinds of object-oriented languages
(e.g., Java and C++). The solutions introduced in this work are implemented in Java SE,
Java Personal Profile and Java MIDP platforms. The solutions are based strongly on
standards (e.g., by Open Mobile Alliance (OMA) and World Wide Web Consortium
(W3C)) and generic object-oriented technologies, and they are designed to be generic
enough to enable the transferability to other platforms.

Keywords
mobile application development, mobile Internet, WAP, XML, XHTML, browsing, mobile platform

Activity unit
VTT Information Technology, Tekniikantie 4 B, P.O.Box 1203, FIN-02044 VTT, Finland

ISBN Project number
951�38�6265�8 (soft back ed.)
951�38�6266�6 (URL:http://www.inf.vtt.fi/pdf/)

T3SU00031

Date Language Pages Price
November 2003 English 98 p. B

Name of project Commissioned by
ALLLAS2 VTT Information Technology

Series title and ISSN Sold by

VTT Publications
1235�0621 (soft back ed.)
1455�0849 (URL: http://www.vtt.fi/inf/pdf/)

VTT Information Service
P.O.Box 2000, FIN�02044 VTT, Finland
Phone internat. +358 9 456 4404
Fax +358 9 456 4374

V
TT PU

BLICA
TIO

N
S 515

m
Platon - Brow

sing and developm
ent platform

 of m
obile applications

Palviainen &
 Laakko

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000

02044 VTT 02044 VTT FIN–02044 VTT, Finland
Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. +358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax +358 9 456 4374

ISBN 951–38–6265–8 (soft back ed.) ISBN 951–38–6266–6 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

Marko Palviainen

mPlaton

Browsing and
mobile applic

This report describes the mPlaton browsing and development platform of
mobile applications developed at VTT Information Technology. mPlaton
supports the development of client-side mobile browsing applications by
providing frameworks and solutions how to browse the content in mobile
environment, present the content with profile information in separate user
agent implementations with multimodal controls available, and create and
edit the browsing content.

The core of mPlaton include frameworks for browsing (AGB), for mobile
user agents, content types and multimodal controls (MIMEFrame), and for
XML editors (FEdXML). The frameworks are designed for mobile environ-
ments so that they are very light and scalable, and can be implemented by
using different kinds of object-oriented languages (e.g., Java and C++). The
solutions introduced in this work are implemented in Java SE, Java
Personal Profile and Java MIDP platforms. The solutions strongly rely on
standards (e.g., by OMA and W3C) and generic object-oriented technologies
and they are designed to be generic enough to enable the transferability to
other platforms.

Mplaton - Browsing and development platform of mobile applicationsMplaton - Browsing and development platform of mobile applicationsMplaton - Browsing and development platform of mobile applications

	Abstract
	Preface
	Contents
	List of symbols
	1. Introduction
	1.1 VTT’s Mobile Internet research and development
	1.2 mPlaton Ł a browsing and development platform

	2. Mobile Internet and browsing
	2.1 Standardization
	2.2 Adaptive and intelligent mobile browsing services
	2.2.1 User Agent Profile
	2.2.2 Style sheets
	2.2.3 Personal preferences and other profile information

	2.3 Multimodality
	2.4 Mobile application frameworks

	3. Overall architecture of mPlaton
	4. AGB Ł Architecture for Generic Browser
	4.1 Architecture
	4.2 Reference implementations
	4.1.4 Triggered browsing
	4.1.3 AGB configuration
	4.1.2 Object push
	4.1.1 Object pull

	5. MIMEFrame - Framework for mobile user
	5.1 Architecture
	5.1.1 User Agent
	5.1.2 Content
	5.1.3 Controls

	5.2 MIMEFrame framework
	5.2.1 User agent
	5.2.3 Controls
	5.2.2 MIME

	5.3 Reference implementations
	5.3.1 MIMEFrame in Java MIDP environment
	5.3.2 Presenting mobile content with resources and multimodal

	6.1 Requirements for XML editor framework
	6.2 Architecture for modular XML editors
	6.3 FEdXML framework
	6.3.1 XML model
	6.3.2 XML view
	6.3.3 XML controller
	6.3.4 Constructing configurable XML editors
	6.3.1.1 Grammar
	6.3.1.2 Editing operations
	6.3.1.4 Change-propagation mechanisms
	6.3.1.3 Validations

	6.4 Reference implementations

	6. FEdXML Ł Framework for XML editors
	7. Applications
	7.1 mPlaton Toolkit Ł a development toolkit for mobile
	7.2 µBrowser - a micro browser implementation for PDA
	7.3 MIDBrowser - a browser implementation for Java

	8. Discussion
	8.1 AGB
	8.2 MIMEFrame
	8.3 FEdXML

	9. Conclusions and future work
	9.1 Results
	9.2 Future work

	Acknowledgements
	References

