

VTT PUBLICATIONS 519

Lightweight distributed service
platform for adaptive mobile services

Daniel Pakkala
VTT Electronics

ISBN 951�38�6269�0 (soft back ed.)
ISSN 1235�0621 (soft back ed.)

ISBN 951�38�6270�4 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1455�0849 (URL: http://www.vtt.fi/inf/pdf/)

Copyright © VTT Technical Research Centre of Finland 2004

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

VTT, Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O.Box 2000, FIN�02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde (08) 551 2111, faksi (08) 551 2320

VTT Elektronik, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel (08) 551 2111, fax (08) 551 2320

VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN�90571 OULU, Finland
phone internat. + 358 8 551 2111, fax + 358 8 551 2320

Technical editing Marja Kettunen

Otamedia Oy, Espoo 2004

3

Pakkala, Daniel. Lightweight distributed service platform for adaptive mobile services
[Kevytrakenteinen hajautettu palvelualusta mukautuville liikkuville palveluille]. Espoo 2004. VTT
Publications 519. 145 p. + app. 13 p.

Keywords adaptation, middleware services, Generic Service Elements (GSE), context-
awareness, service personalization, pervasive computing architectures

Abstract
Distributed computing environments are becoming more heterogeneous due to
the integration of different wireless and fixed networks and variety of terminal
devices that can be used to access content and services on the Internet. Also,
increasing user expectations of personalizable, adaptive, and context-aware
mobile services bring complexity to the development of future mobile services.
The distributed and heterogeneous computing environment, together with
increasing user expectations, set requirements for future mobile services that are
difficult to meet without service platform support alleviating service
development.

In this work, a lightweight distributed service platform that has been designed
with a practical design approach to support the adaptation of mobile services,
and partly also personalization and context-aware functionalities of the services,
is presented. A requirement analysis for future mobile services is carried out by
an extensive literature review. The mobile service adaptation support
functionality of the service platform is designed based on the identified
requirements. Further architecture based on the concept of Generic Service
Elements is designed for the service platform. The validation of the architecture
is achieved by a prototype implementation. The validation was successfully
achieved by the prototype implementation. It also proved the service platform�s
applicability to resource-constrained distributed mobile computing environments
as the prototype resulted in an overall size of less than 360 KB, of which
approximately one third is allocated to the mobile terminal domain.

4

Pakkala, Daniel. Lightweight distributed service platform for adaptive mobile services
[Kevytrakenteinen hajautettu palvelualusta mukautuville liikkuville palveluille]. Espoo 2004. VTT
Publications 519. 145 p. + app. 13 p.

Avainsanat adaptation, middleware services, Generic Service Elements (GSE), context-
awareness, service personalization, pervasive computing architectures

Tiivistelmä
Langattomien ja kiinteiden verkkojen yhdentymisen sekä moninaisten Internetin
sisällön ja palveluiden käyttöön tarkoitettujen päätelaitteiden ansiosta hajautetut
tietokoneympäristöt ovat epäyhtenäistymässä. Lisäksi käyttäjien lisääntyvät
odotukset koskien räätälöitäviä, mukautuvia ja tilannetietoisia liikkuvia palve-
luita tuovat monimutkaisuutta tulevaisuuden liikkuvien palveluiden kehitykseen.
Tulevaisuuden lisääntyvät käyttäjien odotukset sekä epäyhtenäiset hajautetut
tietokoneympäristöt asettavat vaatimuksia liikkuville palveluille, jotka niiden on
vaikea täyttää ilman palvelun kehitystä helpottavia palvelualustoja.

Tässä työssä esitellään kevytrakenteinen hajautettu palvelualusta, joka on
suunniteltu käyttäen käytäntöön perustuvaa lähestymistapaa. Palvelualusta on
suunniteltu tukemaan liikkuvien palveluiden mukautuvuutta, sekä osittain myös
palveluiden räätälöitävyyttä sekä tilannetietoisuutta. Laajassa kirjallisuus-
katsauksessa on tehty vaatimusmäärittely tulevaisuuden liikkuville palveluille.
Palvelualustan liikkuvien palveluiden mukautuvuutta tukeva toiminnallisuus on
suunniteltu kirjallisuuskatsauksessa tunnistettujen vaatimusten pohjalta.
Palvelualustan arkkitehtuuri on suunniteltu pohjautuen ideaan yleisistä
palveluelementeistä. Suunniteltu arkkitehtuuri on vahvistettu toimivaksi teke-
mällä palvelualustasta prototyyppi, joka toimi odotetusti. Lisäksi palvelualustan
prototyyppi toteutus osoitti alustan soveltuvan resursseiltaan rajoitettuihin
hajautettuihin liikkuviin tietokoneympäristöihin, koska sen lopullinen koko oli
alle 360 Kt, josta noin kolmasosa sijoittuu liikkuvaan päätelaitteeseen.

5

Preface
The research work that has lead to this thesis was carried out at the VTT
Technical Research Centre of Finland in the Embedded Software Design and
Testing group of the Embedded Software research field, which was one of the
operating units of VTT Electronics during the years 2001�2003. Contribution to
this thesis emerges from a few different research projects, related contributing
research was completed in MIDAS in 2001�2002 within the PLA program and
OPERA in 2002�2003; both being internal strategic projects of the Embedded
Software research field. Additionally, the prototype implementation was
achieved in ITEA/Mobilizing Internet in 2003. Although the research that has
lead to this thesis has been carried out in many different projects, the concept has
developed along the way and valuable experiences have been gained from
various research cases.

Many people have provided their support during the years that have lead to this
thesis. I would especially like to thank Mr. Juhani Latvakoski for providing
valuable reviews, discussions, guidance and support during the work. I would
also like to express my gratitude to Research Professor Eila Niemelä for
comments provided during the writing of this thesis. Additionally, thanks to all
of my colleagues at VTT Electronics that I have had many interesting and
constructive discussions with. I would also like to acknowledge the CCC Group
Inc., ITEA/AMBIENCE project, and the Telecommunications Systems
operating unit of VTT Electronics for providing drivers and hardware for the
SoapBox needed in the prototype implementation. Finally, my supervisor at the
university, Professor Tapio Seppänen, and the work's 2nd reviewer, Professor
Jukka Riekki receive my appreciation for the comments and guidance that they
have provided during the writing process.

Besides the work itself, there has been a lot going on in my life during my
studies, both ups and downs. Therefore I would like to express my deepest
gratitude to my family and closest friends for the support in bad times and
sharing of joy in good times. Also thanks to all of the people that have enriched
my life by providing things other than work and studies to be occupied with.

6

Finally, I thank you Anni, for understanding, inspiration, and the encouragement
that you have provided me during these years.

Oulu, December 23, 2003

Daniel Pakkala

7

Contents

Abstract ... 3

Tiivistelmä .. 4

Preface .. 5

Abbreviations.. 11

1. Introduction... 14
1.1 Motivation and Background .. 14
1.2 Scope and Objectives .. 15
1.3 Structure of the Work .. 17

2. Related Research and Technologies ... 18
2.1 Introduction of the Domain ... 18

2.1.1 Research Framework... 19
2.1.2 Service Management ... 22
2.1.3 Adaptation and Adaptability ... 24
2.1.4 Personalization .. 27
2.1.5 Context-awareness .. 28
2.1.6 Functionality Distribution ... 32
2.1.7 Middleware ... 33
2.1.8 Generic Service Elements ... 34
2.1.9 Profiles and Profiling .. 36

2.2 Technologies.. 37
2.2.1 Common Object Request Broker Architecture 38
2.2.2 Remote Procedure Calls .. 40
2.2.3 Java Remote Method Invocation... 40
2.2.4 Extensible Markup Language ... 41
2.2.5 Simple Object Access Protocol ... 42
2.2.6 Composite Capability/Preference Profiles 42
2.2.7 Open Services Gateway Initiative ... 43
2.2.8 Java 2 Platform.. 44
2.2.9 Super Distributed Objects ... 46

2.3 Existing Architecture Solutions... 48

8

2.3.1 Project Aura .. 48
2.3.2 Gaia Metaoperating System .. 50

2.4 State of the Art Summary .. 52
2.4.1 Term Definitions Summary... 53

3. Design of Adaptation Support .. 56
3.1 User Context Information.. 57

3.1.1 Internal Presentation and Processing....................................... 58
3.1.2 Privacy .. 60
3.1.3 User Context Sensing and Delivery .. 61

3.2 Static Adaptation ... 63
3.2.1 The User Preferences Profile... 64
3.2.2 The User Characteristics Profile ... 67
3.2.3 The Terminal Profile ... 68

3.3 Dynamic Adaptation.. 69
3.3.1 Environment Profile .. 69
3.3.2 Service Profiling.. 71

3.4 Adaptation Process .. 74
3.5 Adaptation Support Middleware ... 77

3.5.1 Dynamic Adaptation Service .. 78
3.5.2 Static Adaptation Service.. 79

3.6 Adaptive Distributed Mobile Services .. 80
3.7 Requirements Summary .. 82

4. Architectural Design ... 85
4.1 Architecture Overview .. 86

4.1.1 Service Layer .. 87
4.1.2 Middleware Layer ... 87
4.1.3 Communications Layer ... 88

4.2 Generic Service Elements.. 88
4.2.1 Outlining Service Platform GSEs ... 94
4.2.2 Environment Monitoring... 95
4.2.3 Event Notification ... 97
4.2.4 Permanent Storage .. 98
4.2.5 Access Control .. 101
4.2.6 Generic Profiling... 102
4.2.7 Service Delivery.. 104

9

4.3 Platform Control and Management ... 106

5. Prototype Implementation and Testing... 107
5.1 Implemented Services ... 107

5.1.1 Adaptive Context Service ... 107
5.1.2 Adaptive Video Service .. 108

5.2 Configuration... 109
5.2.1 Hardware Configuration.. 109
5.2.2 Software Configuration... 111

5.3 Use Cases .. 113
5.3.1 User Authorization .. 113
5.3.2 Service Browsing .. 114
5.3.3 Editing Profiles.. 115
5.3.4 Using Adaptive Context Service ... 118
5.3.5 Using Adaptive Video Service.. 119

5.4 Evaluation of Prototype... 121
5.4.1 Context-Awareness ... 121
5.4.2 Scale of Prototype ... 123
5.4.3 Validation.. 123
5.4.4 Testing... 124
5.4.5 Shortcomings... 124
5.4.6 Strengths.. 125

6. Discussion... 127
6.1 Generic Service Elements.. 127
6.2 Architecture Review.. 129

6.2.1 Comparison to Aura .. 130
6.2.2 Comparison to Gaia... 131

6.3 Targets for Development ... 132
6.3.1 Representation of Context Information................................. 132
6.3.2 High-Level Context Sensing ... 133
6.3.3 Event Notification Enhancements... 133
6.3.4 Communications Solution Enhancements............................. 134
6.3.5 Technologies ... 134
6.3.6 Service Platform Adaptability... 135

6.4 Achievement of Objectives ... 135

10

7. Conclusions... 137

References... 139

Appendices
Appendix 1: Conceptual architecture of the service platform
Appendix 2: Service authorization event trace
Appendix 3: Service authorization event trace description
Appendix 4: User authorization event trace
Appendix 5: User authorization event trace description
Appendix 6: Service browsing and selection event trace
Appendix 7: Service browsing and selection event trace description
Appendix 8: Profile editing event trace
Appendix 9: Profile editing event trace description
Appendix 10: Using Adaptive Context Service event trace
Appendix 11: Using Adaptive Context Service event trace description
Appendix 12: Using Adaptive Video Service event trace
Appendix 13: Using Adaptive Video Service event trace description

 11

Abbreviations
API Application Programming Interface, interface to existing application

CC/PP Composite Capability/Preference Profile, profiling technology

CDC Connected Device Configuration, configuration of Java 2 micro
edition

CLDC Connected Limited Device Configuration, configuration of Java 2
micro edition

CORBA Common Object Request Broker Architecture, middleware
technology

CPU Central Processing Unit, processing unit of a computing device

CTI Computer Telephone Integration, term describing the convergence of
computing and telecommunication systems

GSE Generic Service Element, architectural concept for middleware
services

GSM Global System for Mobile Communications, telecommunications
technology

GUI Graphical User Interface, graphical interface for the user to interact
with a computing system

HTTP Hypertext Transfer Protocol, application layer protocol

IDL Interface Description Language, language for describing software
interfaces

JAR Java Archive, compressed file type of Java programming language

 12

JMF Java Media Framework, Java-based media processing technology

JVM Java Virtual Machine, platform for executing Java applications

ID Identification, unique identifier of an entity

IP Internet Protocol, network protocol

MIDP Mobile Information Device Profile, profile of Java 2 micro edition
connected limited device configuration.

NA Networked Appliance, appliance connected to a network

OMG Object Management Group, standardization organization for object -
based technologies

ORB Object Request Broker, part of the common object request broker
architecture

OS Operating System, software controlling hardware resources in a
computing device

OSI Open Systems Interconnection, standard for representing network
protocols

OSGi Open Services Gateway Initiative, organization for developing open
service gateway technology

PAN Personal Area Network, small-scale network surrounding a person

PDA Personal Digital Assistant, small size portable computer

PDU Protocol Data Unit, basic transferable data unit of a protocol

RMI Remote Method Invocation, Java middleware technology

 13

RPC Remote Procedure Call, middleware technology for procedural
programming languages

SP Service Platform, software providing commonly needed services

SDO Super Distributed Object, object technology

SMF Service Management Framework, OSGi implementation

SOAP Simple Object Access Protocol, application layer protocol

TCP Transport Control Protocol, session-based protocol

UI User Interface, interface for the user to interact with a computing
system

UML Unified Modeling Language, object-based modeling technology

W3C World Wide Web Consortium, standardization organization for web
technologies

WAN Wide Area Network, spatially large network

WG Working Group, small organizational unit consolidated with common
interests

WLAN Wireless Local Area Network, wireless network technology

WWRF Wireless World Research Forum, forum seeking a consensus on the
visions of the future wireless world

WWW World Wide Web, application layer protocol widely used for the
Internet

XML Extensible Markup Language, information representation technology

 14

1. Introduction

1.1 Motivation and Background

The motivation for this work derives from the next generation of mobile
telecommunication systems and beyond, and the ongoing process of computer
telephone integration (CTI). Mobile devices are not used just for traditional
telephoning any more. In addition, access to services and applications can be
provided to users via mobile devices, just like they are provided to a user�s
Personal Computer (PC). Also, the evolution of home automation systems
towards Internet Protocol (IP) capable networked appliances (NA) enables the
remote computer-based controlling of NAs in a home environment. The trends
are moving towards systems based on utilizing different networks and the
Internet in service provisioning.

This ongoing process of IP convergence enables lots of new application
scenarios, but at the same time it introduces problems that were not present in
the legacy systems. Considering the computing environment, wireless access
networks and the diversity of end-user terminals, combined with the increasing
usability and added value service requirements, raises many essential research
issues to be solved before the introduction of fluent and user friendly mobile
services. These research issues include the personalization of mobile services
along user preferences, fluent adaptation of services to changing conditions in
the distributed and heterogeneous computing environment, and context-
awareness of services [1].

The latest trends in the telecommunication world are moving towards Internet
protocol-based services and application frameworks and platforms [2]. Service
and application platforms are also the answer to the requirement for faster
service development and deployment. All of the problems introduced by the
heterogeneous computing environments and IP convergence cannot be solved
with new IP-based protocols, as middleware is also needed. The role of the
middleware and service frameworks and platforms is growing all the time as
services and applications are becoming more sophisticated and requirements for
adaptive, personalizable and context-aware services are introduced [2].

 15

While the amount of mobile services is growing all the time, users will face a
new problem of service management. Without service management, services
will be scattered over different terminals and systems resulting in an unfriendly
situation from the user�s point of view, where the user has multiple service
access points and services are bound to different terminals. The growing amount
of content, services, applications and NAs that need to be controlled and
monitored by the user suggest that service gateway-based systems are one
possible solution towards user-centric and smoothly manageable systems. These
kinds of systems have only one service access point for the user, and therefore
services are easily manageable and accessible. This approach has been taken in
this work and addressed in [3].

Service gateway-based systems with a presence of home automation services
have been identified to be a good research and validation framework for service
platforms [4]. This is because the setup introduces new challenges when
compared to traditional mobile services by providing an interaction-based
approach to mobile systems construction [5]. Previous research has been carried
out regarding the remote controlling of NAs in a service gateway-based system
[6]. This research shows that service gateways can be used as intermediaries
when controlling IP incapable devices from IP-based networks.

One of the research issues to be solved regarding future computing systems is
the adaptation of mobile services to user context and preferences, current
terminal capabilities and dynamic network characteristics. Adaptive mobile
services provide added value for the end user by adapting to the user�s current
situation, environmental conditions, preferences and motivations to use the
services. Fundamentally, the research problem is how to provide support for
mobile services to meet all of the requirements, including adaptability, that are
set for them, and thereby alleviate the mobile service development.

1.2 Scope and Objectives

The focus of this work is the adaptation support issues of mobile services.
Because service gateways have been identified as one possible solution for
future service management problems for the end user [3], this work recognizes
this and tries to clarify the adaptation issues in the context of service

 16

architectures based on the functional division between service gateways and
variety of mobile terminals. The work will present distributed service platform
architecture supporting the adaptation of mobile services in the service gateway-
based service architecture model where the two main domains are the service
gateway domain and the mobile terminal domain.

The fundamental research problem that this work is focused on is: how to
support future mobile services to meet the manifold requirements set for them?
These requirements are set by raised user expectations of personalized and
context-aware services and by the distributed heterogeneous computing
environments with characteristics such as variable quality wireless
communication channels. This work studies how the adaptation of mobile
services can be supported by a service platform alleviating service development
to meet the requirements set for them. The objectives set for the work to be
presented are manifold.

Firstly, a goal is to identify the basic requirements and perform a requirement
analysis for future mobile services and service provisioning in distributed and
heterogeneous computing environments. In particular, the goal is to identify the
requirements that future mobile computing environments and users pose
regarding the adaptation of mobile services. The only way to identify the central
requirements and issues concerning adaptation support for future mobile services
is a wide literature review of the state of the art research and technologies
regarding adaptation support, future service provisioning trends, technologies,
and closest related software architectures.

Secondly, a goal is to develop a distributed service platform providing
adaptation support and alleviating the design and implementation of adaptive
mobile services that is based on the requirements gathered from the literature
review. A practical design approach for the design of the service platform is
taken to result in small yet efficient implementations that can be introduced to
resource-constrained mobile computing environments.

Thirdly, a goal is to identify and present an adaptation process that is to be
implemented by the service platform to be developed and widely utilizable by
different kinds of adaptive mobile services.

 17

Finally, aside from the actual service platform functionality, an important goal is
to come up with a small size extendable architecture that is based on the latest
architectural concepts, applicable in resource-constrained mobile computing
environments and would contribute to the state of the art regarding architectures
supporting adaptation functionality. The latest architectural concepts are also to
be derived from the wide literature review.

1.3 Structure of the Work

The domain of the work, related technologies and research including a couple of
architecture solutions from the field of pervasive computing, are presented in the
literature review in chapter 2. The adaptation of mobile services is discussed and
the requirements for a distributed service platform supporting adaptation are
raised and summarized in chapter 3.

Once the requirements for a distributed service platform supporting the
adaptation of mobile distributed services are gained, an architecture and the
components for such a platform are designed and presented in chapter 4. The
presented architecture is validated, tested and evaluated in a prototype
implementation, which is described in chapter 5.

In chapter 6, the outcome of this work is discussed and reviewed with existing
architecture solutions of pervasive computing, and the middleware structure is
compared to ideas raised in the Working Group (WG) 2 at the Wireless World
Research Forum (WWRF) [6]. Targets for development are also identified and
presented. Finally, conclusions from the work are presented in chapter 7.

This work has been partially published previously. Firstly, regarding the service
platform that will be presented in this work, it is to be published in [1].
Secondly, the service management issues that have a strong role in the research
framework selection of this work, and are utilized in the service platform design,
have been previously published in [3]. Previous research that is not closely
related, but outlined the service platform scenarios regarding NA controlling,
has been carried out in [6].

 18

2. Related Research and Technologies

2.1 Introduction of the Domain

The research carried out in this work includes elements from many different
fields of computing. There are many terms used in the context of a distributed
computing system dealing with NAs, PDAs, wireless networks, sensors, mobile
services, middleware, context-awareness, and network servers similar to this
work. A short introduction to these terms is provided.

The concept and term of ubiquitous computing [8, 9] was introduced and defined
by M. Weiser in the early 90's. Weiser stated that the most efficient technologies
are essentially invisible to the user. His goal was to make computing as
commonplace and ubiquitous as electricity. At first, the research focused on
small special purpose devices, network protocols and new styles of applications.
Since then the field has evolved and includes a wide variety of research topics, a
good overview of ubiquitous computing is provided in [10]. R. Bagrodia et al.,
in the mid 90's introduced the term nomadic computing [11]. Nomadic
computing is defined to exploit advanced wireless communications technologies,
the Internet, positioning systems and distributed computing to provide anyplace
and anytime access for the user. There is also a third closely related term -
pervasive computing, it has many common interests with ubiquitous and
nomadic computing. Pervasive computing is a term widely used and has a
variety of research interests [12]. A lot of research in pervasive and ubiquitous
computing has focused on active or smart spaces [13, 14], and the services
needed in this kind of environment. The term mobile computing refers to a
distributed computing environment where the nodes of execution are not static,
but connected via wireless networks to enable mobility of the nodes. The
challenges of mobile computing are due to resource poor elements, variation of
connection performance and reliability, security, and reliance on finite energy
sources [15].

All of the terms presented have a slightly different approach, but are very much
overlapping and the research interests in these fields are nowadays somewhat the
same dealing with latest technologies and heterogeneous distributed computing
environments.

 19

2.1.1 Research Framework

The research framework for this work is derived from recent concepts presented
for the interaction of the user with mobile services. One of these is the I-centric
communication model [16, 17], where the user is placed at the central position of
the communication system and interacts with the services within his individual
communication space. In the I-centric communication model, the user may have
several individual communication spaces depending on the services present in
his surroundings, and these services are adapted to these communication spaces.
In another concept, called the personal service environment [18], the user is
provided with a computing environment where user preferences towards the
services remain the same even when roaming in different networks, and services
are personalized and adapted to user preferences. The personal service
environment is defined to be an environment that assists a user in finding,
adapting, and using mobile services that fulfill the user's needs given his
personal profile, mobility, and context [18]. The personal service environment
concept includes functionality for discovering services, using services, managing
user profiles, and sensing context.

Figure 1 presents a scenario that summarizes the research framework used in this
work at a conceptual level. In the scenario, the user has access to any service
within his individual communication space using any terminal, over any network
and at any time. The research framework tries to realize this scenario in service
gateway-based service architecture.

 20

Figure 1. The scenario of the research framework.

As illustrated in Figure 1, and derived from the related research, there are three
research issues and requirements regarding future mobile services in a
heterogeneous distributed computing environment. These are the requirements
of adaptation, personalization, and context-aware functionality of mobile
services [2]. Additionally, aside from the individual services, service
management is an important research issue in the kind of scenario presented.
This is because the amount of services available to the user is growing all the
time and the service configuration may be dynamically changing depending, for
example, on the user's location.

This work studies the adaptation of mobile services in a distributed and
heterogeneous computing environment and especially in service gateway-based
service architecture. The goal is to develop a distributed service platform to
support the adaptation of mobile services in service gateway-based service
architecture. The requirements for the service platform are partly set by the
scenario of Figure 1 and partly by the service architecture that is defined as
service gateway-based. Literature related to this work can be found from the

 21

fields of ubiquitous, pervasive, nomadic, and mobile computing. A conceptual
framework for research on the adaptation of mobile services carried out in this
work is presented in Figure 2. The research framework presented in Figure 2 is
conceptual and does not define any specific technologies to be used on any of
the framework components. The spectrum of technologies for implementing
service gateway-based systems is very wide and the same technologies can be
utilized in many different components of the research framework. There are
technologies that can be utilized in any of the components of the research
framework. These technologies are usually related to a way of representing
information in a structured format, middleware technologies for hiding
computing environment heterogeneity, and application protocols independent of
transport layer protocols and different network technologies.

Figure 2. Research framework.

As seen from the research framework, the services of interest are distributed
over different computational nodes of the system connected via a network.
When mobile services are distributed, there are at least two different parts to a
service; the service part, which can contain heavy calculation processes and
implements the service logic and is executed at the service gateway. Service
gateways are usually network servers having a good deal of processing
capability and resources, therefore the program size is not an issue in this
domain. The other part, referred as a service instance in this work, is the part that
is executed in the mobile terminal domain. Mobile terminals are usually quite
resource-constrained wirelessly connected devices having limited processing
capabilities; therefore the program size and workload allocation can become a
bottleneck in the mobile terminal domain. The distribution of mobile services to
services and service instances as described enables the possibility for a service
that is too big to be executed by the mobile terminal to be divided into two parts

 22

that work together to implement the service. The familiar example of this kind of
division is the division between the service logic and the service Graphical User
Interface (GUI) also known as the thin-client approach. However, to emphasize
the fact that the mobile resident part of the service can and will be much more
than just a GUI in future mobile services, the term service instance is introduced
and used in this work. A service instance can contain functionality related to
service adaptation, off-line functionality, and much more in addition to the GUI.
The configuration of the service instance may also change dynamically as a
result of service adaptation. In addition, there may be a number of network
servers hosting network services that can include services like network file
systems or media gateways, for example.

2.1.2 Service Management

Earlier research and experiences from service management issues in service
gateway-based systems [3] encouraged using the same research framework for
the adaptation of mobile services. In previous research [3], it was noticed that
service gateway-based systems are one possible solution to service management
problems of future computing environments related to interaction with mobile
services. Service gateway-based systems can also be designed in a user-centric
fashion, where the user is at a central position in relation to all of his services.
Figure 3, from [3] presents the problem scenario and possible solution from a
user-centric approach. In the figure, the services are the remote controlling of
different kinds of NAs from a mobile terminal.

 23

Figure 3. Approaches for service provisioning.

In Figure 3, on the left, the legacy approach for service provisioning is
illustrated. In this approach, each service has its own independent UI. The
services accessible directly via IP networks each have their own UI in the mobile
terminal. The services not accessible directly via IP networks can be accessed
using the service gateway as a gateway to IP incapable NAs. These services are
usually accessed, for example, via a browser. The legacy approach is functional,
but becomes cumbersome from the user�s point of view when the number of
services is increased. The problem is that in the legacy approach, service
management is left to the responsibility of the user and the user will have an
equal number of UI applications to IP-based services. Thereby the user will have
multiple service access points in the legacy approach. A proposed solution to the
service management problem is the user-centric approach presented on the right
of Figure 3. In the user-centric approach, the service gateway is used as a central
arbitrator of all services accessible to the user. As can be seen from the picture,
all services are represented in the service gateway by their agents, regardless of
where the service is actually located. In this way, the responsibility of service

 24

management is transferred to the service gateway and can be automatic. In the
user-centric approach, the user has only one service access point and the number
of services does not affect the workload or number of UI applications needed in
the mobile terminal. The user can fluently access all of his services via one UI
provided by the service gateway management software. Using this UI, the user
selects the service he wants to use, and the final UI that is sent to the mobile
terminal is created from the UI components that service agents provide to the
service gateway. When the UI is received by the mobile terminal it automatically
establishes the needed control connections to the location where the service in
question is located and when done it appears to the user.

As we are able to see from Figure 3 and its description, the service gateway-
based systems have clear advantages when it comes to service management.
This is why in this work, service gateway-based systems are chosen as the
research framework for research on the adaptation of mobile services.

2.1.3 Adaptation and Adaptability

Adaptation and adaptability is recognized to be an important research topic in
many different fields of computing [2, 12, 13, 14, 15, 19]. The requirement for
adaptation is present on many different layers of a computing system, and should
therefore be acknowledged in the overall architecture design of computing
systems. When using the words adaptation or adaptability, attention should
always be paid to questions like: Why something is adapted and what are the
attributes creating the need for adaptation? Because of the many different system
levels where the need for adaptation is present, many definitions are also
available for adaptation. For example, in his article [12] Satyanarayanan defines
adaptation in the context of pervasive computing:

"Adaptation is necessary when there is a significant mismatch between the
supply and demand of a resource. The resource in question may be wireless
network bandwidth, energy, computing cycles, memory and so on."

In the WWRF WG 2 [2], adaptation is defined a little bit differently and closer
to the definition found in this work:

 25

"By adaptation we mean the ability of services and applications to change their
behavior when the circumstances in the execution environment change"

Further, in the context of mobile computing the need for adaptation is identified
in [15]:

"...as the circumstances of a mobile client change, it must react and dynamically
reassign the responsibilities of client and server. In other words, mobile clients
must be adaptive."

The definitions presented for adaptation and adaptability in this work are generic
and are simply close to what can be found in any English dictionary. The
definitions are provided in the following:

Adaptation: Modifying an entity to best fit the current situation regarding the
attributes creating the need for adaptation.

Adaptability: An entity's capability to accommodate the attributes creating a
need for adaptation.

There are many strategies regarding the adaptation of applications, two extreme
adaptation strategies and many collaborated ones can be identified [15]. Figure 4
from [15] illustrates the taxonomy of the adaptation strategies.

Figure 4. Range of adaptation strategies.

In the Laissez-faire approach, the responsibility of adaptation is left to individual
applications and no system support is provided for the adaptation. However, this
approach lacks the central arbitrator to resolve the incompatible resource
demands of different applications and to enforce limits on resource usage. Even

 26

though the system support for adaptation can be avoided in this approach, the
applications become more difficult to implement and the size of the applications
increases because each application needs to implement its own adaptation
functionality individually.

The other extreme to adaptation strategies is the application-transparent
approach, where no changes to applications are needed in order to enable
adaptation, but the adaptation is left fully at the responsibility of the system.
Even providing backward compatibility with existing applications, this approach
has drawbacks. There may be situations where the adaptation automatically
performed by the system is inadequate or even harmful.

Between these two extremes of adaptation strategies lies a number of brew
solutions that are collectively referred to as application-aware adaptation. This
approach emphasizes the collaborative partnership of applications and the
system in the adaptation functionality. This approach permits applications to
determine the best adaptation behavior for the situation, but preserves the ability
of the system to monitor resources and enforce allocation decisions. Application-
aware adaptation also decreases the application size compared to Laissez-faire
adaptation, because part of the adaptation functionality is provided by the system
and each application does not have to have an embedded adaptation
functionality.

The requirements for the adaptation of mobile services are due to user
requirements of added value services [2] and the characteristics of the mobile
computing environment [15]. Figure 5 illustrates the issues creating a need for
the adaptability of future mobile services.

Figure 5. Issues showing requirements for the adaptability of mobile services.

 27

The required features of future mobile services, especially context-awareness
and personalization, put requirements on adaptation functionality. In context-
aware computing, entities modify their behavior based on context information,
in other words, the entities adapt to context information. Also, in personalization
the entities are tailored or modified along user preferences, characteristics, and
skills, in other words, entities are adapted to this information. On the other hand,
the varying terminal characteristics like screen size, processing capability, input
method etc. create a need for the adaptability of mobile services as well.
Additionally, the changing quality of wireless network connections pose
requirements for adaptability. In summary, adaptation functionality will be an
integral requirement for future mobile services.

2.1.4 Personalization

There is no inclusive definition for personalization in the academic world. The
term is widely used in many different contexts. In [20], personalization is
defined as a technique aiming to increase the acceptance of information or an
Internet portal by letting the user manage his own individual range of interests.
The WWRF WG2 also provides a definition for personalization in their white
paper [20]:

"Personalization means the appliances of actor's needs or interests to the
problem of offered sets of information and control." [20 p. 4]

This definition does not provide a very clear and inclusive picture of
personalization. Thereby to provide more understanding on personalization, it
can simply be thought of as a technique used to personalize or tailor entities like
products, services, or the information content best accepted by the consumer of
the entities.

Personalization functionality in a context-aware computing system can be based
on utilizing the context of the user, which may contain needs, preferences,
history, behavior of the user, and location related aspects. In [20],
personalization is divided into two different types, implicit and explicit
personalization. Implicit personalization is defined as taking place without the
knowledge of the actor (user) within the system, and the actor has no influence

 28

on the personalization consciously. An example of implicit personalization is the
adjustment of the navigation paths on web sites by learning the user's behavior.
Explicit personalization extends its range outside the system boundaries and is
controlled or steered by the user. In explicit personalization, the user can affect
the appearance of objects. For example, a user can select so-called "skins" and
"themes" for his applications. In explicit personalization, the user consciously
affects personalization.

The personalization of services is adapting a service according to a user�s
individual needs, characteristics, and desires. Profiling is a widely used
technique used when implementing personalization functionality to different
systems [20, 21].

2.1.5 Context-awareness

Context-awareness, in short, is a feature of a computing system utilizing the
relevant information about current situations in the execution environment, to
provide added value in the form of behaving acceptably and according to the
situation. The added value can come from many different operations of a
context-aware system, for example, distraction elimination in certain situations,
automatic controlling of NAs based on current situation, or targeted information
presentation according to the situation.

There are many coexisting definitions available for context-awareness. In the
field of ubiquitous computing, context-awareness is amongst other definitions
defined in [10], where the following text can be found:

"Ubicomp applications need to be context-aware, adapting their behavior based
on information sensed from the physical and computational environment." [10 p.
30]

Context-awareness is also defined in the field of pervasive computing [12],
where we can see that context-awareness is also a key requirement for pervasive
computing systems:

 29

"A pervasive computing system that strives to be minimally intrusive has to be
context-aware. In other words, it must be cognizant of its user's state and
surroundings, and must modify its behavior based on this information." [12 p.
15]

There are many other definitions for context-awareness not presented here that
have slight differences in their meanings. From the two definitions presented
here it can be seen that adaptation functionality is an integral part of a context-
aware system.

There are many coexisting definitions for the context available, all of these
definitions are not presented here but extensively discussed in [10]. The
definition of context made in [22] is general enough to be used widely, when
some of the other definitions are more or less application-specific. In [22],
context is defined as follows:

"Context is any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and
applications themselves." [22 p. 3]

This is the definition adopted and used in this work for context. When
conceptualized further, context can also be thought of as a snapshot of the state
of the environmental conditions surrounding an entity in a certain situation.
Respectively, context information is simply information describing the
environmental conditions surrounding an object. In context-aware computing,
entities utilize context information to modify their behavior to be best suited to
the current context. The main contribution of context-awareness to a computing
system is to provide added value services to the user by utilizing the relevant
information about the user's surroundings and the user himself.

Until recently, context information has been unreachable for computing systems,
but with developments in sensor technology, smaller sensors can be embedded,
for example, in clothing [23], terminals [24], physical objects and spaces, and
some context information can be retrieved using the sensors available. The
unprocessed measurement data from the sensors themselves is not very usable
within the computing system, but with semantics given to the measurement data

 30

it becomes useful for a computing system as context information. For example,
if the location of a user is known, and it is known that the location refers to a
meeting room, it can be assumed that the user is currently in a meeting and
should not be disturbed with issues irrelevant to him while he is in a meeting.

There are many different ways of presenting and utilizing the context
information. In [25], the context is divided into five different categories:
physical context (i.e. location, time), environmental context (i.e. weather,
lighting, sound), personal context (health, mood, schedule), social context
(group activity, presence), and application context (i.e. visited web sites,
sent/received e-mails). In addition, many different classifications of context
information can be found that are not in coherence with each other. For example,
[26] divides context into four different categories: computing context (i.e.
connectivity, communication costs, bandwidth, resources), user context (i.e. a
user's profile, location, presence of other people, social situation), physical
context (lighting, noise levels, traffic conditions, temperature), and time context
(time of the day, week, month, season of the year).

As we can see, the different classifications of context information are not in
coherence and different terms are used quite freely. However, the classification
of context information at a conceptual level is not a very fruitful approach to
context-aware system design. The needed context information in a context-
aware computing system is always dependent on the application. For example, a
health monitoring application does not need to know about the sent and received
e-mails of a user. Therefore, the context information presentation mechanisms
are often designed to be extendable by utilizing basic ontology and semantics for
context information presentation.

When divided roughly, there are two abstraction levels of context information,
low- and high-level context information. Low-level context information can be
collected using the sensors available in the system, and by giving pre-defined
value limits to the measuring results. As an example of low-level context
information, the body temperature of a user might be 38 degrees Celsius and a
priori definition states that with this temperature value the user has a fever.
High-level context information, like the users social situation, can be derived
from the lower level context information (i.e. surrounding sounds). The
accumulation of low-level context information using sensors is a rather simple

 31

task when compared to deriving high-level context information from low-level
context information. Recent research for deriving high-level context information
relies on the heavy usage of Artificial Intelligence (AI) methods. For example, in
[27], Naive-Bayes networks and classifier are used for deriving the high-level
context information from low-level context information available to the system.

Context-aware systems are found in many different applications. Context-
awareness has been utilized, for example, in tour guides [28, 29], active spaces
[13, 14], home environments [30], and communication [25].

Context-awareness has been identified as one of the requirements for future
mobile services and computing systems [2]. By designing future computing
systems to be context-aware, the systems provide added value to their users by
observing the users current situation and adapting their behavior to it.

When considering context-aware systems in general, there are some basic issues
and components found in almost every system. These include context sensing,
context information presentation and processing, adaptation, and on top of all,
the context-aware applications utilizing the context information.

The behavior of a context-aware system can be reactive or proactive, or at its
best both of these. Reactive systems are only able to sense the current context
and behave according to it, but when proactivity is added to the context-aware
system it can make assumptions of the near future and behave more sophistically
than purely reactive systems. Even though proactivity is a useful characteristic
of a context-aware system, it is very hard to implement. However, at least one
example of proactive systems already implemented can be found, as the Aura
architecture is capable of proactive behavior [13].

Context-aware systems are still under heavy research, most of the research done
in the field of context-aware computing is focused on certain application areas
and therefore the solutions found are not interoperable as they should be in
commercial products. This is one challenge for future research on context-aware
computing, because if service vendors have a common tool or method to model
context in a unified way, they would be able to provide the users with context-
sensitive, personalized services and products, independently of the runtime
technology [31].

 32

2.1.6 Functionality Distribution

A basic issue to be solved when designing any kind of distributed system is the
distribution of resources, functionality and workload between the separate
computational nodes of the system [32]. In the kind of environment presented in
Figure 2, the workload allocation becomes an important factor because the
mobile terminals are resource-constrained devices unable to execute big
workloads. The available resources in mobile computing environment may vary
a lot depending on the terminal used and the network connection. This indicates
that the workload allocation of a mobile system should be dynamic and adaptive,
instead of static.

The term client thickness refers to the workload allocated for a client of the
client server communications model. The client thickness of a mobile node in a
pervasive computing environment is an issue when there is no one size fits all
solution. This issue is covered in [12], where a good definition for a minimum
acceptable thickness for the client is provided:

"For a given application, the minimum acceptable thickness of a client is
determined by the worst-case environmental conditions under which the
application must run satisfactorily." [12 p. 15]

This approach keeps the client small enough to be executed in constrained
environments like in mobile nodes with small CPU and memory capacity, but
still able to cope with the challenges set by the environmental conditions of the
mobile computing environment.

The requirements set for the future mobile services like adaptability,
personalization and context-awareness will affect the client thickness of a
mobile node, as more and more functionality in the mobile terminal domain is
needed to support these requirements, the workload allocated to the mobile
terminal keeps increasing. So the thin-client approach will be inadequate for
future mobile services to tackle problems like sudden disconnection, variable
network bandwidth, and to answer to the need for adaptation, personalization
and context-awareness. Instead, a distributed service platform that provides
middleware support in both the mobile terminal and network server domains is
needed.

 33

2.1.7 Middleware

No commonly accepted definition for middleware is available in the academic
world that would cover all of the areas where the term is used. Middleware was
first introduced in the context of distributed enterprise systems. In enterprise
systems, middleware is all about the integration of different systems [33].
Recently, with the development in software and hardware technology,
middleware has also been introduced to the field of mobile [19, 34] and
pervasive computing [13, 14], and embedded systems [33]. The common factors
for mobile and pervasive computing are that often they are both distributed and
heterogeneous computing environments including a variety of different
hardware, operating systems, and networks. In embedded systems, middleware
is needed to provide transparency from heterogeneous hardware platforms.

The clear role of middleware is to provide transparency from the distributed
heterogeneous computing environment underneath it for the application and
service domain. Figure 6 illustrates the role and structure of middleware in a
computing system as a transparency provider for the applications and services
from different operating systems, networks and network protocols, different
types of terminal devices, various types of hardware platforms, and software
from various vendors.

Figure 6. Role of middleware in a computing system.

Middleware is software that resides over the operating system and hardware and
below the applications and services. It can be divided into middleware
technologies and middleware services that utilize the middleware technologies to
provide services for applications and services. These middleware technologies
include technologies like CORBA, Java RMI, and RPC or can be based on
customized solutions for providing transparency from heterogeneous execution

 34

environment in a distributed computing environment. One role assigned to
middleware, in addition to integration, is to provide commonly needed services
that can be utilized by the applications. These upper middleware layer entities
are called middleware services. Middleware services are one approach to
alleviate the development of future mobile services to meet the requirements of
adaptive, personalizable, and context-aware functionality. As the functionality
that is widely and commonly needed by the applications and services is provided
from a middleware service, the workload and size of the applications and
services decreases. This is because the commonly provided functionality is not
implemented by the services and applications individually. One type of
middleware services are Generic Service Elements (GSE), that fall within the
main focus of this work and which are introduced and discussed in [2, 34], and
in the following chapter.

2.1.8 Generic Service Elements

The Wireless World Research Forum (WWRF) [7] defines Generic Service
Elements (GSE) to be upper middleware layer services that provide functionality
needed by the services and applications [2]. Working Group 2 of WWRF has
identified eight generic service elements supporting adaptive applications [2]:
environment monitoring, event notification, distributed application framework,
perception service, modeling services, mobile distributed information base,
ontology service and semantic matching engine. These GSEs are presented as
the corner stones for the success of systems beyond 3rd generation
telecommunication systems. The eight GSEs identified in [2] are shortly
described in the following:

Environment Monitoring: An environment monitoring component allows
software to observe its changing conditions in its surroundings using rules that
have been defined a priori. The observed changes in the environment are
expressed to other software components that have an interest in them. For
notifying these changes, an event notification service may be utilized. The
observed changes may be used for creating various models of the environment,
the middleware system, and the user.

 35

Event Notification: Event notification service is responsible for transporting
events that have been previously observed by the environment monitoring
service. It has to be able to solve the correct set of recipients for a given event,
and deliver the events to the recipients using a proper representation format and
medium. Decoupling of event producers and consumers is required from the
event notification service.

Distributed Application Framework: One of the main requirements for the
distributed application framework is to allow the creation of new services from
existing ones. Further requirements for the distributed application framework are
to support dynamic auto-configuration of services and service discovery.

Perception Service: The perception service is responsible for collecting and
storing values of perceptions within a certain time interval. Perceptions in this
context are observable entities or anything that can be used for learning
purposes.

Modeling Services: The primary mission of modeling services is to collect data
and build models of the phenomenon they are trying to learn. The models are not
used by the modeling services themselves, but are provided as support services
for intelligent applications learning services. The modeler does not have to
understand the semantics of the data it is learning, just learn dumbly following
its learning algorithm. The client of the modeler, however, is aware of the
semantics of the data used in the learning process.

Mobile Distributed Information Base: The mobile distributed information
base should be especially suited for storing XML documents, because it is a
format widely used for representing information. The essential characteristics of
the information base include high availability, consistency, support for weakly
connected and disconnected operations, and intelligent data synchronization.

Ontology Service: The ontology service is required to support representation,
manipulation and storage of ontologies of varying detail level. The ontologies
should be extendable to incorporate new concepts and sub-concepts. The service
needs to support reasoning over ontological information and share it with third
parties. It also needs to be able to cope with problems of fragmented knowledge

 36

caused by heterogeneous environments by supporting partial mappings and other
techniques between ontologies.

Semantic Matching Engine: Semantic matching uses ontological information
provided by the ontology service to match and reason over instances of
ontological knowledge, such as profiles. It has to be able to determine whether a
given document of semantic information conforms to ontology and supports
manipulation of semantic information, for example, combining two or more
overlapping semantic information sets.

From the GSE definitions presented, it can be seen that definitions emphasize
the role of AI methods, ontologies, semantics, models, and learning as
supporting technologies to support adaptive applications. However, these
technologies are still under heavy research and are not mature enough to be used
widely in the commercial solutions of today. In addition, the mentioned
adaptation support technologies typically require a lot of processing capability,
which can become a bottleneck in very resource-constrained mobile computing
environments. The research related to GSEs is at its starting point and therefore
the set of the GSEs identified in [2] may not be final but changing. This can be
seen for example in [34], where service discovery and auto-configuration are
identified to be GSEs, but [2] states that these two are not GSEs, but included in
the distributed application framework. However, it should be noted that GSEs
are defined only at the conceptual level and therefore based on the definitions of
[2], it is difficult to say how they will be realized.

2.1.9 Profiles and Profiling

Profiles in general describe information about an object. This information can be
anything seen as relevant in the application the profile will be used for. For
example, user profiles can describe characteristics of a user, such as name, age,
and occupation. In profiles, this information can be presented in a specified
format understandable to both humans and computing systems. However, it is
not required that all profiles should be understandable to the user of the system.
This is the case, for example, regarding a terminal profile describing terminal
capabilities within the computing system. Profiling in general is presenting and
processing the profiles within the computing system with a set of tools for

 37

processing the profiles. To avoid misunderstandings, the definitions for a profile
and profiling as used in this work are provided in the following:

Profile: Structured set of information describing an object.

Profiling: Presenting and processing of information using profiles for
information presentation and set of tools for processing the profiles.

Because some of the profiles have to be understandable to both humans and
computing systems, self-descriptive technologies for structured information
presentation like XML, for example, are often used in profiling. By using
standardized XML-based technologies in profiling an interoperable, profiles
between the systems of different vendors are achieved. However, if the profiling
is used for internal data presenting and processing of a system and is not visible
outside the system, customized proprietary solutions for profiling can be used as
well. User profiles are used in the context of personalization of
telecommunications and Internet services [35]. Profiling can also be used in
context-aware computing to present and deliver context information within a
context-aware system.

2.2 Technologies

Some relevant and promising technologies that can be utilized within the
research framework of this work are presented in this chapter. Firstly,
middleware technologies like CORBA, Java RMI, and RPC are needed to hide
the distributed and heterogeneous nature of the underlying computing platform.
When the computing environment diversity is hidden by the middleware
technologies, middleware services can be built for utilizing the middleware
technologies. The middleware services can provide support for the mobile
services in adaptation, personalization and context-aware functionality. The
technologies that seem promising in this context include technologies for
structured information representation like XML, for information exchange like
SOAP, and for profiling like CC/PP. The same technologies that are useful for
middleware services can be utilized in the service domain as well. When moving
upwards, application or service framework technologies like OSGi will be
needed to execute the services and the middleware services. From a

 38

programming language point of view, the Java 2 Platform, spanning the whole
spectrum of computing from embedded to enterprise systems, forms a promising
platform for pervasive and mobile computing. The field of technologies is
evolving all the time and new technologies like Super Distributed Objects (SDO)
that extend the object model to represent real world entities as interworking
autonomous and cooperating objects in a distributed computing environment are
being standardized. The technologies mentioned and to be presented are just
examples and many other technologies useful within the research framework
selected can be found.

2.2.1 Common Object Request Broker Architecture

Common Object Request Broker Architecture (CORBA) [36] is an open
distributed object computing infrastructure being standardized by the Object
Management Group (OMG) [37]. CORBA specifies a system, which provides
interoperability between objects in a heterogeneous distributed environment and
provides transparency from the network, different operating systems, and
different programming languages in a distributed computing environment.
CORBA does not specify an implementation of a component but the interfaces
of it, this way interoperability between components can be achieved. Component
interfaces are described using the OMG Interface Description Language (IDL),
which has a technology independent syntax for describing object encapsulations.
IDL specified interfaces can be written and invoked from any programming
language that provides bindings to CORBA; bindings to CORBA are available
in most popular programming languages like Java, C, and C++. CORBA is a
widely used middleware technology in distributed enterprise environments,
because it provides clear advantages by automating many common object
oriented distributed programming tasks and provides a common framework for
interoperability of the different parts of a system. Figure 7 provides an overview
of CORBA ORB architecture with an example function call flow.

The object is a CORBA entity consisting of identity, interface, and
implementation. Objects are also referred to as Servants. A Servant is an
implementation of operations that support the CORBA IDL interface. The client
is the program entity that invokes the function call from an object
implementation. The fact that the client might be invoking a remote function call

 39

should be transparent to the client and the function call should be as simple as
the calling method of an object.

Figure 7. Function call in CORBA ORB architecture.

The ORB provides a mechanism for transparently communicating the client
requests to the target object implementation. This simplifies distributed
programming because the function calls made to remote objects appear to be
local. ORB is also responsible for finding the object implementation,
transparently activating it if necessary, delivering the request from the client to
the object, and returning any response to the client. The IDL Stub of the client
and the IDL Skeleton of an object serve as connectors between the client and
server applications and the ORB. The role of the IDL compiler is to perform
automatic transformation between the IDL definitions and the target
programming language.

In summary, when the logical function call takes place between the client and
the object, the actual function call request is passed through the IDL interfaces
and ORB in the CORBA.

 40

2.2.2 Remote Procedure Calls

Remote Procedure Calls (RPC) is a technique used in distributed systems and
procedural programming for enabling the calling of a remote process to appear
as a local process call to the calling party [32]. Usually the remote process is
executed on a different machine than the calling process and the call is
performed over the network. RPC enables such an arrangement in procedural
programming languages, so that the client of the client-server communication
model can call processes on the server, as if they were local processes. Figure 8,
applied from [32], illustrates phases and needed functionalities of a RPC
implementation.

Figure 8. RPC implementation structure.

2.2.3 Java Remote Method Invocation

The Java Remote Method Invocation (RMI) [38] is an object-oriented version of
the RPC. The RMI enables objects to call the methods of a remote object
executed on another computer. The RMI provides transparency from the object
distribution by providing a mechanism that enables the method calling of remote
objects, residing on different virtual machines and hosts, in the same way that
local methods are called. Java-based programs can call methods of remote
objects after obtaining a reference to the remote object. The reference can be

 41

obtained from the naming service provided by Java RMI or receiving the
reference as a return value. Java RMI uses object serialization to marshal and
unmarshal parameters.

The basic Java RMI is not designed for wireless environments and is not suited
for mobile computing as such [19]. This is because of Java RMI�s heavy and
wasteful usage of TCP connections. For example, getting a single object
reference using GSM data connection takes 8 to 20 seconds, depending on the
Java virtual machine used. However, because Java RMI is becoming more and
more popular in distributed computing as a middleware technology, some
attempts to modify Java RMI to wireless environments has been made [19, 39].

2.2.4 Extensible Markup Language

Extensible Markup Language (XML) [40] is a simple and flexible text format
that was originally designed for large-scale electronic publishing. Nowadays,
XML is widely used for exchanging data on the web and elsewhere, and its role
is emphasizing all the time. The clear advantage that XML provides is that it is a
platform, software, and hardware independent way of describing and exchanging
information. The purpose of XML is to describe data; it provides a structured
format for storing and sending data and is designed to be self-descriptive. In
Figure 9 an example message stored in XML format.

Figure 9. Message stored in XML format.

The example in Figure 9 contains a message from Michael to John, where
Michael invites John to play football on Friday. As one can see from the
example, XML is a self-descriptive way of presenting information. The tags,

 42

marked <tag>, are not specified by XML, but specified by the author of the
XML description. The example demonstrates the main advantage of XML,
flexibility as a format for representing structural information.

2.2.5 Simple Object Access Protocol

Simple Object Access Protocol (SOAP) [41] is a lightweight XML-based
protocol for exchanging information in a decentralized, distributed computing
environment. SOAP provides a message framework, by defining the structure of
the message and processing mechanism for the messages. SOAP does not
provide transport capabilities between the communicating peers, but can be used
in conjunction with some Internet transport technology like HTTP for example.

SOAP consists of three parts: an envelope, a set of encoding rules and
conventions for RPC usage. The envelope defines a framework for describing
what is in the message and how to process it, and the encoding rules are for
expressing instances of application-specific data types. The conventions for RPC
usage include conventions for remote procedure calls and responses.

SOAP messages consist of three main elements: SOAP envelope, SOAP header,
and SOAP body. The envelope and the body are mandatory elements, while the
header is optional. The header and the body are encapsulated inside the
envelope.

2.2.6 Composite Capability/Preference Profiles

Composite Capability/Preference Profile (CC/PP) [42] is a profile that describes
device capabilities and user preferences, and can be used in the adaptation of
content that is to be presented to the device provided by the CC/PP Profile. The
CC/PP is based on Resource Description Framework (RDF) [43], which has
been designed as a general-purpose metadata description language by the W3C
[44]. The RDF provides a framework with the basic tools for both vocabulary
extensibility and interoperability. RDF is based on XML and is designed to
describe metadata or machine understandable properties of the web.

 43

A CC/PP profile contains a number of CC/PP attribute names and association
values for the attribute names. A server uses these values to determine the most
appropriate form of a resource to be delivered to the client, who provides the
CC/PP profile and is requesting the resource. The CC/PP attribute names and
permissible values with their associated meanings constitute a CC/PP
vocabulary.

The CC/PP profiles might include some sensitive and private data of the user.
The CC/PP itself does not provide adequate security or privacy mechanism, but
it can still be used in conjunction with a system providing these features.

2.2.7 Open Services Gateway Initiative

The Open Service Gateway Initiative (OSGi) [45] is an alliance forum of over
forty companies formed for the development of open specifications for the
delivery of multiple services over wide-area networks to local networks and
devices. The OSGi Alliance provides OSGi Framework and a service platform
specification for an open service gateway. The specification consists of
standardized OSGi APIs that define interfaces between the inter service
interaction, services and OSGi Framework, device access, service management
system and the OSGi Framework. Client interface to services is not specified in
the OSGi service specification. Figure 10 presents the structure and standardized
APIs of the OSGi service platform specification.

Figure 10. OSGi specification structure and standardized APIs.

 44

The OSGi Service Platform specification [46] is currently in release 3. In
addition to the framework specification, it specifies services like: message
logging, service tracking, XML parsing, saving preferences, registering
resources and servlets to HTTP and administrating services. The OSGi
specification also specifies service cradle-to-grave life cycle management, inter-
service dependencies, data management, device management, client access,
resource management and security.

The OSGi compliant services, also called bundles, are JAR packets that include
the control interface, service code and possible service interfaces of the service.
If a bundle provides some service for other services it registers its service
interface, which is separated from the implementation of the service within the
OSGi Framework. If a bundle uses a service of another service it fetches the
service interface within the OSGi Framework where it has been registered. The
OSGi specification also includes a device access specification, which defines
how different devices are connected to the OSGi service platform. The OSGi
bundles can be downloaded to a service gateway (set-top box, cable or DSL
modem, PC, Web phone, automotive, multimedia gateway or dedicated
residential gateway) over the network on demand, while the gateway manages
the installation, versioning and configuration of these services.

2.2.8 Java 2 Platform

The Java 2 platform [47] is based on the efficient utilizing of networks and the
idea that the same software should run on many different kinds of computers,
consumer gadgets, and other devices. The Java 2 platform consists of editions,
optional packages, profiles, and configurations and, at the lowest level, APIs.
There are three different editions in Java 2 Platform: Enterprise, Standard and
Micro edition. Figure 11 from [47], gives a good overview of the Java 2
Platform organization.

 45

Figure 11. Java 2 Platform organization.

The Java 2 Enterprise Edition (J2EE) is targeted at developing and running
multi-tier enterprise applications for enterprise systems. The usual environment
for J2EE is an enterprise server with a high processing capability. The virtual
machine used in J2EE is the same as in J2SE. J2EE simplifies enterprise
applications by defining a standardized, modular and re-usable component
structure called Enterprise JavaBeans (EJB), and providing a set of services for
these components. The services provided by the J2EE include database access,
CORBA technology, a security model, Java servlets API, JavaServer Pages and
XML technology. J2EE technology can be used for integrating enterprise
applications from different vendors with middleware.

The Java 2 Standard Edition (J2SE) is targeted at developing and running client
applications to enterprise and web systems and for developing normal
applications for PCs. The usual environment for J2SE is a normal desktop PC.
J2SE includes libraries for networking, graphical UIs, security, Remote Method
Invocation (RMI) and much more in optional packages.

The Java 2 Micro Edition (J2ME) is targeted at developing and running
applications in constrained environments. The constrained environment can be,
for example, a mobile phone, smart card, PDA or a set-top-box. J2ME consists
of two different configurations; Connected Device Configuration (CDC) that is
targeted at embedded devices like PDAs and set-top-boxes or devices that share
similar characteristics of network connectivity and memory footprints. Another

 46

configuration, Connected Limited Device Configuration (CLDC), is targeted at
smaller and more constrained embedded devices like mobile phones, NAs and
pagers. Perhaps the most known setup of J2ME is the CLDC with Mobile
Information Device Profile (MIDP), this setup can be found in most new mobile
phones sold today. The MIDP is currently in its version 2 and downloadable
Java applications targeted at J2ME MIDP 2.0 are already available
commercially.

The Java 2 platform, as we can see, spans the while spectrum of computing from
enterprise to embedded systems. Therefore, it forms an important enabler
technology for pervasive [48] and mobile [49] computing.

2.2.9 Super Distributed Objects

The Super Distributed Objects (SDO) is a standardization effort of the super
distributed objects special interest group in OMG [37]. The idea of SDOs is to
provide a standard computing infrastructure to enable the modeling of real world
entities like devices, software components, and services as objects and deploy
them in a highly distributed environment [50, 51]. The SDOs are also defined to
seamlessly interwork in a platform independent manner with each other, and to
ubiquitously aid users in accomplishing their tasks. The super distribution refers
to the massive number of objects beyond centralized control therefore
autonomously or cooperatively performing their tasks. The autonomous behavior
of the SDOs enable them to join and leave a network, discover other SDOs,
provide their functions, form an application service without the intervention of
users or other SDOs. The SDOs are also able to establish and maintain dynamic
relationships to represent their acquaintances, discover other SDOs,
communicate with other SDOs, or form groups of interworking SDOs. There is
no fixed infrastructure for SDOs to communicate with each other within a
system or application service, therefore each SDO has the role of access point or
gateway and the communication path between SDOs may continuously change.
Therefore, SDOs communicate in an ad-hoc and peer-to-peer manner. SDOs and
application services formed out of single SDOs are defined to adapt and
customize their structure and behavior according to the current environmental
conditions and the user�s individual situation to be able to provide self-adapting
and context-aware services.

 47

Figure 12, redrawn from [50], presents the functional components of the
reference architecture presented for SDOs. The SDOs themselves are logical
representations of a hardware or software entity of the environment providing
well-known functionality in a standard way. In addition to SDOs, there are two
other functional components in the reference architecture, user interface and
service logic. These components utilize SDOs in their execution. The user
interface is responsible for human-machine-interaction and adapts to a user�s
preferences and terminals, as well as to different application services provided
by the SDOs. The service logic component is responsible for controlling the
behavior of the SDOs by utilizing profiles. These profiles can contain user
preferences and service parameters.

Figure 12. Functional components in the SDO reference architecture.

A single SDO is proposed to have two different types of interfaces, operational
interfaces that enable access to SDO�s services and management interfaces that
enable the announcement and discovery of the SDO services, service control,
monitoring and configuration of its resource data [51]. The SDOs are also
proposed as a solution to model and capsulate services and other real world
entities in the I-centric communication model at the middleware layer of a
computing system [51].

 48

2.3 Existing Architecture Solutions

There are many interesting projects in the field of pervasive and ubiquitous
computing that have studied adaptation and adaptability [13, 14]. A couple of
these projects are presented in this chapter to provide an insight to existing
architecture solutions related to this work to some extent. Both of the
architectures to be presented are focused on active spaces [14], which are also
referred to as smart spaces [13], and integrated environments in the literature.

Although the presented architectures have a strong focus on pervasive and
ubiquitous computing and active spaces, there are some interesting issues
common to the architecture to be presented in this work. In particular, the
services provided by the systems presented and the solutions related to
adaptation and context representation and utilization are of special interest. It
should be noted that both of the systems to be presented rely on an extensive
amount of computing resources to be available in order to be utilized.

2.3.1 Project Aura

Project Aura [13] is a research project focusing on distraction free pervasive
computing, especially in the context of active spaces. The project aims to reduce
user distraction and thereby increase the effectiveness of the system by
exploiting the plentiful computing resources. The fundamental principle of
project Aura is captured in the following [13]:

�The most precious resource in a computing system is no longer its processor,
memory, disk or network, but rather human attention. Aura aims to minimize
distractions on user�s attention, creating an environment that adapts to the
user�s context and needs.� [13 p. 22]

Aura is specifically targeted at integrated pervasive computing environments
involving wireless communication, wearable and handheld computers and smart
spaces. The research carried out in Aura spans every system level from the
hardware to applications and end users. To accomplish its goal, Aura applies two
broad concepts. The first concept is proactivity, which is defined as a system
layer�s ability to anticipate requests from higher layers. The second concept is

 49

self-tuning, which is defined as a system layer�s ability to adapt by observing the
demands made on them and adjusting their performance and resource usage
characteristics accordingly. Both of these techniques are used for lowering the
demand for human attention towards the computing system. Figure 13, from
[13], presents the Aura architecture including its main components and their
roles.

Figure 13. Aura architecture.

The Aura architecture is divided into different layers. The lowest layer is
Intelligent Networking that supports network weather monitoring and
proactivity. Intelligent Networking is based on two components periodically
gathering information from wireless access points and performing monitoring
and predictions on the network state based on the gathered information. Over the
networking layer is the OS layer, which is based on a Linux kernel in Aura. Over
the Linux kernel, Aura has modified versions of the Coda [52] file system for
nomadic, disconnectable, bandwidth-adaptive file access and Odyssey [53]
supporting application-aware adaptation and resource monitoring. On the next
layer of the architecture is a component called Spectra, which is a remote
execution mechanism that uses context to decide how to best execute the remote
call. The other Aura runtime support is also found on this layer. Over the
presented layers reside the Aura applications that utilize the service provided by
the lower layers. Traditionally, the application layer is the topmost layer of a

 50

computing system architecture, but the Aura architecture introduces a new layer
residing over the application layer � a task layer, also called Prism.

Prism supports user task monitoring, user intent monitoring and high-level
proactivity. The key ingredients of the prism architecture are: explicit
representation of tasks as coalitions of abstract services, task configuration
appropriate to the environment by context observation and environment
management infrastructure that assists with resource monitoring and adaptation.
The capabilities of Prism are encapsulated in components: Task Manager,
Context Observer, and Environment Manager. In addition, a set of components
called Service Suppliers provide services to support a user�s task. The Prism�s
infrastructure supports interactions between the components and is built on
existing middleware such as remote procedure call or CORBA.

2.3.2 Gaia Metaoperating System

The Gaia metaoperating system [13] has been designed to support the
development and execution of portable applications for active spaces. Gaia has
been built as a distributed middleware infrastructure that coordinates software
entities and heterogeneous NAs contained in active spaces. Gaia is based on
CORBA technology. Gaia provides services to query, access, and use existing
resources and context of active spaces. It also provides a framework to develop
user-centric, resource-aware, multidevice, context-sensitive, and mobile
applications. By extending the concepts of traditional operating systems to
ubiquitous computing spaces, Gaia simplifies space management and application
development for active spaces and provides a single programmable entity
instead of scattered resources. The services provided by Gaia are comparable
with services provided by traditional operating systems including program
execution, I/O operations, file-system manipulation, communications, error
detection and resource allocation. Figure 14, from [14], presents the Gaia
architecture and its main components.

 51

Figure 14. The Gaia architecture.

Gaia architecture has three main components: the kernel, application framework
and the applications. The Gaia kernel is further divided into the component
management core and a set of basic services used by all Gaia applications. These
services are Event Manager, Context Service, Presence Service, Space
Repository, and Context File System.

The Event Manager is based on a decoupled communication model and utilizes
event channels to distribute events in the active space. Context Service lets
applications query and register for context information, which helps applications
to adapt to their environment. Presence service maintains information about
resources in active space. Space Repository provides XML-based information
storing active space entities. Context File System enables the use of context to
distinguish meaningful information from the irrelevant.

The infrastructure of the Context Service of the Gaia kernel is based on
components called context providers, which offer information about the current
context. The context providers include sensors that track people�s location, room
conditions like temperature and sound, weather and current stock prices. Other
components infer higher-level contexts on the basis of sensed information. The
context model is based on first-order logic and Boolean algebra, which enables
simple rule writing to describe context information.

 52

2.4 State of the Art Summary

The latest trends regarding service provisioning are clearly moving towards
individually provided services instead of mass-produced. This can be seen from
the concepts of I-centric communication model [16, 17] and Personal Service
Environment [18].

The basic requirements identified for future mobile services are adaptability,
personalization, and context-awareness. These features are partially overlapping
resulting in a situation where the features of personalization and context-
awareness can be seen as features utilizing and therefore setting requirements for
adaptation functionality.

As the amount of available services is growing all the time, service management
becomes an important issue in future computing systems. Service gateway-based
systems have been identified as one possible solution regarding service
management [3] and are therefore selected as the research framework in this
work.

As the mobile terminals that can be used to access the services via the service
gateway are often quite resource-constrained, and the design approach in the
work is practical, the functionality distribution becomes an issue to be taken into
account in the service platform design. The system workload allocated to the
mobile terminal should be as small as possible, without jeopardizing the
operation of the system in mobile computing environments.

Profiling, as a technique, provides a useful way of representing processing
structured information in a way that it can be understandable to both humans and
computing systems. Therefore, it is possible to describe user preferences towards
a computing system. Profiling is also a technique that can be implemented quite
easily within the computing system with small resources and processing
capability requirements.

Middleware services, more specifically the GSE concept, provide a good starting
point for the architecture design of distributed service platform supporting the
adaptation and alleviating of the development of adaptive mobile services. The
GSEs currently defined only at the conceptual level rely on a strong utilization

 53

of AI methods that usually require a lot of processing capacity. A practical
design approach targeting lightweight service platforms taken in this work
provides an alternative and possibly complementary approach to the GSE
concept. Additionally, the existing architectures from the field of pervasive and
ubiquitous computing, like Aura and Gaia, supporting adaptation and context-
aware functionality, provide a good reference for the architecture design.

Middleware technologies such as CORBA, Java RMI, and RPC have an
important role in providing transparency from the underlying heterogeneous and
distributed computing environment and for being the enablers of middleware
services. Other technologies, like OSGi and SDO, are needed as frameworks for
executing the service platform and services, and modeling real life entities as
accessible interworking objects within a computing system.

2.4.1 Term Definitions Summary

For the convenience of the reader, the definitions of the central terms made in
chapter 2 are summarized and presented as used in this work in Table 1.

Table 1. Definitions of the central terms used in the work

Adaptability An entity's capability to accommodate accord-
ing to the attributes creating a need for
adaptation.

Adaptation Modifying an entity to the attributes creating a
need for adaptation.

Context Any information that can be used to charac-
terize the situation of an entity. Can also be
thought of as a snapshot of the state of the en-
vironmental conditions surrounding an entity.

 54

Dynamic Adaptation Modifying an entity to attributes that are

dynamic and continuous in their nature within a
short time frame. For example, modifying a
service instance to the available network
bandwidth.

Environmental conditions Any information related to the user and user
interaction within a computing system. (E.g.
terminal capabilities, temperature, time, location,
bandwidth, user preferences, etc.)

Generic Service Element Generic Service Element is a distributed
middleware entity performing a well-defined
task and providing support for other middleware
entities and services. The distributed structure is
transparent to client entities of a generic service
element.

I-centric communication I-centric communication describes the com-
munication relations surrounding the user himself
and is driven by the user and his needs. In I-
centric computing, the human with his natural
characteristics is placed at the central position
of the computing system.

Mobile Service A service that is available and accessible
independently of the user�s location, access
network and terminal.

Profile Structured set of information describing an
object.

Profiling Presenting and processing of information using
profiles for information presentation and a set
of tools for processing the profiles.

 55

Service Any entity providing additional value or
functionality to the user or the system. The term
service in this work also includes applications.

Service Instance A service as the user sees it. The same service
can have multiple service instances each having
different outlooks from the user�s point of view.
The service instance can be seen as a user
interface to the service from where it was
instantiated. Service Instances can include
much more functionality than just a GUI.

Static Adaptation Modifying an entity to attributes that are static
and discrete in their nature within a short time
frame. For example, modifying a service instance
to terminal capabilities.

User Context Any information that can be used to charac-
terize the situation of the user. Can be imagined
as a snapshot of the user in a current situation
with current environmental conditions.

 56

3. Design of Adaptation Support
The requirements for adaptive mobile services are set by the nature of future
computing environments and added value service requirements of the user. The
heterogeneous user terminals, unreliable and variable quality of wireless links
together with raised user experience expectations present a difficult challenge
for future mobile services. One method to alleviate the service development to
meet the requirements set for the services is to provide commonly needed
functionality such as adaptation support from middleware services. The
adaptation of mobile services has been researched in many interesting projects
[13, 14]. However, this work focuses on the adaptation of mobile services in the
service gateway-based distributed service architecture where the services are
distributed as well. The work especially tries to identify the vital functions that
are needed in the form of GSEs to provide a service platform capable of
supporting the execution of adaptive mobile distributed services. Thereby the
adaptation strategy selected for the service platform is application-aware
adaptation where the services of the system have the final word in adaptation
behavior, but the service platform provides the tools and framework for the
services to decide the best adaptation behavior.

Adaptation of mobile services in general is seen as one of the basic requirements
for future mobile computing and telecommunications systems along with
personalization and context-awareness [2]. These three features of future mobile
services complement and partly utilize the same functionalities in their
execution. These functionalities can be provided to services by a distributed
service platform providing the needed functionalities as middleware services.

The goal is to provide an open API to service platform as a "toolbox" to be used
in the creation of adaptive mobile services. This open API will be the Service
Platform API that should provide all of the needed data types, service interfaces
and classes for services to use in order to have access to platform services, and
also to be executable on the service platform. Adaptation will span many
different system layers in future computing systems, therefore when we talk
about adaptation, it is always important to define what we are adapting and why.
In this work, the mobile distributed services are adapted to user context, and
adaptation is studied as a part of a small-scale context-aware system. This kind

 57

of adaptation includes the adaptation of mobile services to different terminal
capabilities, user environmental conditions, and user preferences.

In the following subchapters, the adaptation of mobile distributed services is
discussed. Requirements for a service platform supporting the execution of
adaptive mobile distributed services also are presented and summarized.

3.1 User Context Information

A service platform supporting the adaptation of mobile services should be aware
of the user context in order to be able to provide the attributes creating the need
for adaptation to services utilizing the service platform. The service platform
should also provide the means for internal representation of the context
information.

User context information contains the attributes creating the need for the
adaptation of mobile services. This context information includes all of the
environmental conditions surrounding the user that are relevant in the interaction
between the user and a mobile service from a service point of view. The user
context information can be divided to include two kinds of information:
information that is static and discrete and information that is dynamic and
continuous in its nature within a short time frame. For example, user terminal
capabilities and user age are static context information, as the available network
bandwidth and lighting conditions are dynamic context information. The
division of context data into these two classes implicates that two type of
adaptation is needed as well: static and dynamic adaptation.

There are a few central issues related to user context information that should be
taken into account when designing a service platform providing user context
information as attributes for the adaptation of mobile services. These issues
include internal presentation of context information, processing of context
information, and privacy of the user context information.

 58

3.1.1 Internal Presentation and Processing

The processing and representation of user context information can be carried out
in many different ways. One possibility would be to rely on heavy usage of
methods of artificial intelligence like the use of ontologies, semantics, modeling,
and learning in the context representation and processing. However, this kind of
approach evidently increases the system's capability requirements for the
execution environment and system size.

The processing and representation of the context information can also be carried
out by utilizing profiling techniques and keeping the representation and
processing of the context information simple but efficient. This approach has
been taken in this work and it keeps the system size acceptable for resource-
constrained mobile computing environments, while providing added value for
the system utilizing the context information.

In the service platform to be designed, profiling techniques will be used for
implementing the adaptation support functionality of the service platform. First,
the user context information is managed and delivered by profiling. In the
profiling of user context information, four different profiles will be needed.
First, a user characteristics profile that describes the characteristics of the user,
second, a user preferences profile that describes the user's preferences towards
the service domain, third, a terminal profile describing the user terminal
characteristics, and finally, the environment profile that describes the
dynamically changing environmental conditions around the user. The first three
profiles contain static context information and the last profile contains dynamic
context information.

In addition to the profiling of user context information, profiling will be used for
describing the a priori context states in the interest of the adaptive services
utilizing the service platform to be developed. These profiles are called service
profiles and the processing of these profile services, profiling. Figure 15
illustrates the roles of both the service profile and the environment profile to be
utilized in the dynamic adaptation functionality of the service platform. The
environment profile consists of dynamic user context information and the
service profile consists of a priori context definitions that the services are
adaptive to. The role of the dynamic adaptation middleware is shown in the

 59

middle, comparing these two profiles using simple first order logic and Boolean
algebra and notifying the service if a service profile matching the current user
context is found.

Figure 15. Profiles used in the dynamic adaptation.

As we can see, profiling will be an important and heavily used technique in the
service platform to be developed. All of the profiles of the service platform
except service profiles will use the same profile structure and processing
methods for profiles. Therefore, the service platform should include a
middleware service supporting profiling, a Generic Profiling GSE. The services
of this GSE will also be useful for mobile services utilizing profiling in their
operation. Other GSEs whose responsibility covers the hosting of profiles,
utilize the services of the Generic Profiling GSE in profiling. The user
preferences profile, user characteristics profile and terminal profile will be
hosted by the Access Control GSE, and the environment profile by Environment
Monitoring GSE. More details about these GSEs and their functionality will be
provided later in chapter 4.

The service profiling differs a great deal from the other profiling carried out in
the service platform in that a service profile and tools for processing the profiles
have to be developed separately and embedded into the service platform
adaptation middleware services. Figure 16 summarizes all of the needed profiles,
their information content, and hosting entities in the service platform to be
developed.

 60

Figure 16. Profiles, their content and hosting entities.

All of the profiles to be included in the service platform will be described in
more detail later in chapter 3.

3.1.2 Privacy

A big concern related to context-aware computing in general, is the privacy of
the user. Privacy risks arise from the data used and needed in context-aware
computing: the user context information, which can be very private in its nature.
Unless special attention is not paid to the privacy issues, the misuse of user
context information is possible and the privacy of the user will suffer.

For example, in a study of location-aware mobile services from the user point of
view, users were worried about their privacy and the "big brother" phenomenon
when considering services enabling people to be located [28]. Although security
issues are not in the main scope of this work, special attention should be paid to
guarantee the privacy of user context information sensed and processed in the
service platform to be developed.

The user should be able to control the privacy level of his context information.
The user should be able to set the context information that she/he provides in the
profiles to be guarded, resulting in a situation where only trusted services and
the service platform itself has access to this information. Not-trusted services

 61

should only have access to abstract context information, and to information that
is defined not to be guarded by the user. In this way, not-trusted services
executing at the service platform cannot have access to private data and possibly
misuse it. The trusted services that need to have access to guarded context
information can gain their trusted status via the service authorization process,
which should be provided by the service platform. The authorization process can
be based on a simple user query. In this process the service requesting the trusted
status is described to the user in detail. The description should include
information about the service provider, contact information of the service
provider, the description of the service, explanation why access to private
context information is needed and how this information will be utilized and
protected. If the user accepts the service's trusted status query, the service gains
the trusted status and is authorized to access private context information. The
service authorization process that will be a part of the service platform to be
developed is illustrated in an event trace diagram in Appendix 2 and the event
trace is described in detail in Appendix 3.

The basic adaptation support functionality, provided by the service platform,
should not require services to have trusted status. This is because the adaptation
process used in the service platform should be based on utilizing the abstracted
context data and to be open for use by all services to gain the benefits from
application-aware adaptation approach. In case the service includes its own
adaptation process independent of the adaptation mechanism provided by the
service platform, the service needs to gain trusted status in order to get access to
the raw context data. However, the adaptation functionality provided by the
service platform should be designed universally applicable, so that the majority
of services do not have to rely on the Laissez-faire adaptation approach, but
utilize the adaptation support provided by the service platform.

3.1.3 User Context Sensing and Delivery

The service platform supporting the adaptation of mobile services has to be
context-aware. Therefore it must have the functionality to sense the user context
information and be able to deliver it to the services consuming the context
information.

 62

The sensing of user context should take place near the user, therefore it would be
natural that the context data be gathered inside a Personal Area Network (PAN)
and delivered to a system using the end user�s terminal as a communication
gateway to the Wide Area Network (WAN). Another option is to sense the user
context via embedded terminal's sensors. Context sensors are becoming more
popular, for example, in mobile phones, where proximity sensors can be found
even today. However, if the context sensing takes place via the terminal, the
context is actually terminal context instead of user context. Therefore, if the
actual user context is needed, the sensing of context should take place in the
user�s PAN where the sensors can be embedded, for example, in clothing and
short range communication technologies, like Bluetooth [54], for example, can
be used for context information delivery inside the PAN. Figure 17 illustrates the
data flows of user interaction and context data flow from the context producing
user's PAN to the context consuming context-aware service in execution at the
service gateway.

Figure 17. User interaction and context data flow.

In Figure 17, user interaction with a context-aware mobile service is illustrated.
As can be seen, the communication channels for user interaction data and user
context data are different. The user�s interaction with the service takes place
between the terminal and the service gateway, while the context data flow
originates from the user�s PAN, which is connected to the user�s terminal. The
delivery of user context data should be as automatic and transparent a process as
possible from the user's perspective. This approach for context information
delivery is derived from the recent development of sensor technology and

 63

wearable computing [23, 24]. The approach in which user context data is derived
from the PAN has a major advantage when compared to the approach in which
the context information is gathered using the terminal. Users prefer to use many
different terminals to access the same services. When context information is
derived from the PAN, which is always present when the user is near a terminal,
the amount of sensors and computing at the terminal device can be reduced,
freeing more resources for the services to execute. Additionally, the context
information derived from the PAN also describes the actual user context instead
of just the terminal context.

The user context information that is provided by the distributed service platform
should be available in both the service gateway and mobile terminal domains to
allow continuous operation and adaptation support for distributed services
utilizing the service platform even in dynamically changing environmental
conditions. For example, if the connection between the mobile terminal and the
service gateway is not available, the context information should still be available
for service instances executing in the mobile terminal domain. In this situation,
the user context delivery to services executing at the service gateway is
impossible.

3.2 Static Adaptation

Static adaptation is adaptation that utilizes the static context information and can
also be seen as a more familiar function of personalization. Personalization, in
the context of a computing system, means filtering and adapting information
sources and services to user needs, preferences, skills and environmental
conditions [20]. Personalization is also referred to as tailoring [31], with this
definition personalization can be thought of as the tailoring of services for
individual users so that users get the feeling that the service is specifically
tailored for his needs and preferences. Thereby a tailored service has more value
to the user and the overall user experience is better than in the mass produced
services.

The requirement of personalization supporting functionality of the service
platform architecture is set by the user's added value requirements. In the future
when there will be lots of content and mobile services available for the users to

 64

select from, the user experience affected by the personalization of mobile
services will play a major role in a service's success on the market. As there will
be more and more content and mobile services available in future computing
systems, an average user is not able or willing to adopt these new services if
special attention is not paid to the personalization of the services.

The personalization of mobile services is very closely related to the adaptation
of mobile services. Personalization can be seen as a part of the overall adaptation
process and specifically part of static adaptation. Personalization of a service
takes place at the beginning of the static adaptation process, when the user
requests to use the service. At this point, the service is instantiated and the
service instance is personalized to user preferences before it is sent to the user.
The personalization support functionality of the service platform of this work is
to be implemented by the static adaptation service residing on the middleware
layer of the service gateway domain.

In this work, the focus is in the personalization of mobile services to user
preferences, characteristics, and terminal equipment. In other words,
personalization is seen as part of the overall adaptation process of mobile
services by utilizing the user context data available. Other aspects of
personalization, like filtering of information content, are neither in the focus or
covered in this work.

3.2.1 The User Preferences Profile

User preferences towards a computing system and services it provides can be
very manifold. This is especially true in the context of services of pervasive
computing system that can have the nature of being always "on" or active. For
example, a user could prefer a computing system that realizes via his mobile
terminal, not to disturb him, when he is in a meeting or other situation where
disturbance is not welcome. A user could also prefer that when he is preoccupied
with some other task like driving a car, for example, that the computing system
would not require much interaction with the user. Also, willingness of the user to
use a computing system may vary a great deal depending on the situation the
user is in. For example, if the user is at sleep, he probably is not interested in the
latest offers from his service provider, however, if the user is not preoccupied in

 65

any way and is awake, he might well be interested in this kind of information.
As we can see, user preferences towards a computing system can be very
difficult to be taken account of from a computing system point of view.

It is very important to identify the common preference variables between a user
in any situation and the computing system including any kind of services. This is
achieved in this work and a set of preference variables for describing the user
preferences towards the service domain is proposed. The preference variables
are identified to be willingness, interaction, and disturbance. These variables are
managed and presented by means of profiling and used by the services to adapt
their behavior to the preference variables.

The user preferences profile should provide and store a user�s semantic context
by naming the preferences profiles and also present user relation and attitude
towards the service domain. The user preferences towards the service domain
are derived from the preferences profile information by the static adaptation
middleware. The role of the user preferences profile and identified preference
variables between the user and the service domain are illustrated in Figure 18.

Figure 18. User preferences regarding the service domain.

Each preferences profile should include values for the three preference variables
that describe the user's preferences towards any type of service present in a
computing system. The identified preference variables disturbance, willingness
and interaction can have numerical values from 1 to 4 describing the level of

 66

disturbance allowed, willingness to use the services, and interaction limits for
the services. The semantics for all of the preference variables values are
following: 1 = NOT, 2 = LOW, 3 = NORMAL and 4 = HIGH. The descriptions
for the identified preference variables are provided in the following.

Disturbance: This preference variable describes how much the system or a
service is allowed to disturb the user in a way that the service's actions will have
an immediate effect on the user�s environment or are perceived by the user. An
example of this could be if the user is in meeting his disturbance preference
variable would be set to NOT, meaning that the system or any service is not
supposed to disturb him with any kinds of perceivable notification sounds or
vibrations of the terminal. If the disturbance variable is set to LOW, the user is
not so against disturbances originated from the system and the services,
however, unnecessary disturbances should be avoided when this value is set. If
the disturbance variable is set to NORMAL, the user does not see the alarms and
notifications as a disturbance, rather just normal computing system interaction
methods. In this case, the system can use the alarms and notifications normally.
If the variable is set to HIGH, the system and the services are encouraged to
produce as much push type information and notifications for the user as possible.
This could for example be the triggering value for advertising services.

Willingness: This preference variable describes the user's willingness to use the
system or any of its services. So, the variable actually describes the user�s
attitude and interest towards the system and the services it is providing. If the
willingness preference variable is set to NOT, this means that the user is not at
all interested in the system or any service. This could be the situation if the user
is asleep or wants the system to sleep. If the variable is set to LOW, the user is
not very interested in the system. However, in this case, the user observes the
system at some degree and if something very interesting happens, the user
possibly will use the service of interest. If the variable is set to NORMAL, the
user is normally willing to use the system and its services and is fully aware of
the system. If the variable is set to HIGH, the user is highly aware of the system
and very willing to use any service.

Interaction: This preference variable describes the user's capability to interact
with the system. For example, if the user is asleep, the variable would be set to
NOT, meaning that the user is not capable of any kind of I/O interaction with the

 67

system and its services. If the variable is set to LOW, the user is capable of
simple interaction with the system; for example, the user can answer a query but
not give text-based input or control anything. If the variable is set to NORMAL,
the user is available for normal interaction with the system. This can be the case,
for example, if the user is at his PC using the keyboard and mouse. If the
variable is set to HIGH, the user is available for very rich interaction with the
system and the services and the services are encouraged to interact with the user.

Figure 19 illustrates and describes the relations between the example set of
preferences profiles and the values of the preference variables in these profiles.

Figure 19. Example preference profiles and their preference variables.

Even though there may be a default set of preference profiles, the user should be
able to create and use his own preference profiles by defining the three
preference variable values for each preference profile. The new preference
profiles created by the user should be automatically saved by the system.

3.2.2 The User Characteristics Profile

The user characteristics profile describes the characteristics of the user using the
service platform and its services. The characteristics profile of the user is to be
managed by the Access Control GSE. The user characteristics can be used for
service personalization if the user allows the publication of the characteristics he
provides for the characteristics profile.

The user characteristics profile contains information entities describing user
characteristics. These information entities can be, for example, last and first

 68

name, favorite and disliked colors, age, address, e-mail address, phone number,
fax number, occupation, and the hobbies of the user. The information provided
in the characteristics profile can be used for personalization of services and
service outlook. An example of utilizing the characteristics information of the
user would be filtering of advertises to user interests, or modifying the outlook
of a UI to a user's favorite colors.

The user characteristics profile includes information that a user might consider
private and therefore he may not be willing to expose all of the information of
the characteristics profile to all services. This is why the profiling mechanism
used in the user characteristics profile should provide the possibility to guard
and protect this private information from not-trusted services. The user should
also control the level of publishing of this information. The characteristics
profile should be editable by the user via the profile editor service that can be
provided as a system service.

The characteristics profile can be extended to include almost any characteristic
of a user, because the implementation of the characteristics profile is based on
the profiling mechanism to be provided by the Generic Profiling GSE. The
characteristics provided by the user should also be saved permanently.

3.2.3 The Terminal Profile

The terminal profile is needed for describing the user's current terminal
capabilities. Having this information, the services can adapt to a user's current
terminal. For example, a PDA and a laptop differ very much in their
characteristics and capabilities as an execution environment for the service
instances. The same service can have a different outlook and behavior depending
on the characteristics of the terminal. For example, if the user is using a PDA
with a touchscreen and no keyboard, services should be provided, for example,
from dropdown menus instead of textual input where applicable.

The terminal profile is hosted by the Access Control GSE and utilizes the
profiling services provided by the Generic Profiling GSE. The terminal profile
should contain at least the information about screen size, screen coloring,
processing capability, input method, and energy source of the user terminal. By

 69

providing this information, as context information to services, the service
platform supports adaptation of services to the terminal capabilities and
characteristics.

3.3 Dynamic Adaptation

Dynamic adaptation utilizes the dynamic context information and is a
continuous process that takes place while a service is in use and active. The
requirements for dynamic adaptation are set by the continuously changing
environmental conditions in a user's surroundings. One good example of an
attribute creating a need for dynamic adaptation is the network bandwidth that
can vary a lot in a short time frame in distributed computing systems that
includes wireless communication links.

In the field of context-aware computing, the role of dynamic adaptation
pronounces. This is because context-aware services must sense the context and
adapt their behavior to the sensed context continuously.

In this work, the dynamic adaptation support will be provided as a middleware
service of the distributed service platform developed in this work. The dynamic
adaptation functionality will be based on the profiling of dynamic context
information to environment profiles, constructing the current context from the
information in environment profiles, and comparing the current context with the
a priori context definitions in the service profiles.

3.3.1 Environment Profile

The Environment Monitoring GSE will be responsible for managing and hosting
the environment profile that describes the user context information that is
dynamic in its nature. The environment profile should be retrievable from the
Environment Monitoring GSE via its service interface for the middleware layer
components. When a service is in use and the dynamic adaptation process is
active, the adaptation middleware retrieves the environment profile with certain
frequency and compares the user context to the available service profiles
containing the a priori context definitions made by the services.

 70

The environment profile contains up to date information about users dynamic
context. It is the only profile used for defining the user dynamic context and is
necessary from the viewpoint of implementing the support for dynamic
adaptation of services. It contains three kinds of information: spatial-,
connectivity- and sensor-information. This information can be utilized in service
instantiation and adaptation process.

Not-trusted services are adapted based on the service profiles and cannot have
direct access to raw sensor measurements because of the privacy reasons. Only
trusted services, for example, services related to health care and managed by a
trusted party can have direct access to actual measurement data like heart rate,
blood pressure, respiration rate, and body temperature. This is a security issue
that must not be discarded but taken into account at the architecture level. The
raw measurement data will be accessible to trusted services via the platform
interface.

The environment profile to be managed by the Environment Monitoring GSE
consists of three kinds of context information. These information types are
categorized as follows: connectivity information, spatial information, and sensor
information, and are described in the following:

The connectivity information includes information about the active connection
between the service gateway and the user. This information includes retrievable
and relative values of bandwidth and latency information.

The spatial information consists of the spatial relations of the user. The
platform supports the delivery of any type of location objects. The location
object can contain information like: latitude- and longitude resolution, latitude,
longitude, altitude resolution, measurement unit for altitude, orientation of the
user in relation to the terminal and distance of the user in relation to the terminal.
Retrieval of this kind of information is not a trivial task, but these kinds of
research results have already been presented [24, 29]. Because it is not likely
that there will be only one valid presentation for location information, the
Environment Monitoring GSE accepts delivery of any kind of location objects.
The Environment Monitoring GSE will provide a tag field for the delivery of
location objects, so that the receiving peer can identify the location object
currently in use. Because the focus of this work does not cover location-based

 71

systems, no location information or objects are used, but the delivery mechanism
will be tested in the prototype implementation.

The sensor information includes any information that can be derived from the
user or the user's surroundings using sensors. There are many different things
that can be measured from the user�s surroundings with sensors, but the
Environment Monitoring GSE takes a practical approach and by default it
supports only sensor information that is retrievable with current or near future
technology with reasonable costs. This sensor information is following: heart
rate of the user, blood pressure of the user, respiration rate of the user, noise
level in the user's surroundings, body temperature of the user, humidity in the
user�s surroundings, environment temperature in the user�s surroundings,
lighting conditions, and proximity of the user from the terminal. In addition to
these default types of sensor data, the Environment Monitoring GSE will accept
delivery of any sensor data by providing a tag field for unknown sensor data
delivery. Based on the value of this tag field the receiving peer of the sensor data
flow knows which sensor is broadcasting the data and thereby can also receive
sensor data not supported by default by the Environment Monitoring GSE.

3.3.2 Service Profiling

Service profiling is a technique used for implementing the adaptation process.
Each service can have one or more service profiles, each describing different
contexts. The adaptation middleware monitors these service profiles and
compares them to the current context, and if new service profile conditions are
found to match the current context, the service is requested to adapt to
conditions defined in its matching service profile.

The service profiling solution of this work will not be based on the profiling
mechanism provided by the Generic Profiling GSE, because it differs so much
from other profiling carried out on the service platform. The service profiling is
based on a different profiling mechanism that uses simple first order logic and
Boolean algebra for defining a priori context definitions. The service profile
implemented in this work will support four different a priori context definitions
and the AND and OR operations between them. The number of a priori context
definitions made in the service profile is usually smaller or equal to four. This is

 72

because if more than four a priori context definitions are made in the same
service profile, context conditions of the service profile become so rare that they
are almost never met.

On the other hand, if the number of the service profiles for one service is big,
this can be a sign of too much reactivity of a service. Although the number of
service profiles for one service is not limited, because the amount of service
profiles is dependent on the service functionality. For example, a health
monitoring service can have a great number of service profiles without being too
reactive. To provide a better insight into the operation of the service profiling, an
example pseudo code algorithm of a service profile containing two a priori
context definitions is provided in the following:

if(user near desktop PC)

AND

if(lighting at the PC is not sufficient)

THEN

send(adaptation request)

So the basic logic of the adaptation based on service profiling is to define a
priori context conditions in the service profiles and bind the actions related to
these conditions to the adaptation request. The data types and classes needed for
creating service profiles and using the adaptation functionality of the platform
are to be provided by the Service Platform API. The UML structure diagram of
the service profile designed for the service platform is shown in Figure 20. In the
figure, one can see the structure of the service profile and the data types, utilities,
and interfaces related to it.

 73

Figure 20. UML structure diagram of the service profile.

As can be seen from Figure 20, the service profile implements a
ServiceProfileInterface, which defines operations to be used in the matching
process with dynamic and static context information. The entities calling this
interface will be the static and dynamic adaptation middleware. The service
profile also utilizes an AdaptationListener interface, which is an interface to
notify the service profile owner about matching or unmatching service profiles
with the current context information. Each service profile contains its owner's
ServiceID and ServiceProfileID given to the profile by the owning service. The
service profile uses this identification information when sending adaptation

 74

requests to services to be able to target the request to the right service and inform
about the right service profile. This information is needed because each service
can have multiple service profiles in use at the same time.

The service profile contains operations to set one to four a priori context
elements with defined context values under monitoring. CharacteristicsInfo,
PreferencesInfo, and EnvironmentInfo utilities that refer to respective profiles
define the a priori context elements and the context values. When generalized,
these utilities define the a priori context elements and the possible values of
these elements. For example, lighting in the user�s surroundings is a context
element, and dark is a possible context value for this context element. The
service profile also utilizes the ProfilingRules utility, which contains tags for all
possible AND and OR logical combinations of the four context elements.

3.4 Adaptation Process

This chapter describes the adaptation process designed for the service platform
to be developed. The adaptation process is the end-to-end process including both
static and dynamic adaptations presented earlier. It is based on the application-
aware adaptation approach [15], where some of the adaptation functionality is
provided by the system, but final adaptation decision is left to the services.
Figure 21 presents the adaptation process as a sequentially advancing block
diagram and it is used for going through the process, step by step.

 75

Figure 21. The adaptation process.

The following description assumes that the service is installed on the service
platform and the first thing the service does after installation is register its
service profiles with the service platform, using the platform interface.

1. The service has been installed and it registers its service profiles with the
service platform using the services provided by the platform interface.

2. The dynamic adaptation process takes place immediately. The dynamic
adaptation process starts by retrieving the profiles that contain dynamic
context information. On the service platform, there is only one profile
containing dynamic context information - the environment profile.

3. The dynamic adaptation process continues by matching the dynamic context
information in the profiles with the a priori context definitions made by the
service profiles.

 76

4. The third step of the dynamic adaptation process is to send an adaptation
request to services owning the service profiles depending on if the service
profile matches the current dynamic context. If the service profile matches the
current context, an adaptation request with TRUE as its parameter is sent to
the service owning the service profile. If profile does not match, the request
will be sent but with the parameter FALSE. After the adaptation request has
been sent, the responsibility of the service platform ends and the final decision
about adaptation behavior is left to the service itself. The dynamic adaptation
process returns to step 2 and continuously executes steps 2 to 4.

5. When the service receives an adaptation request from one of its service
profiles, it can freely decide on its actions. Possibilities are manifold, if the
service instance exists, the service can adapt the service instance to fit in
with the new context. The service can also change its logical behavior,
adjust resource usage, perform a control action or even discard the
adaptation request.

6. Now the service profiles have been installed and the dynamic adaptation
process is active. Next the user browses the services to select the one he
wishes to use and selects it.

7. At this point, the profiles containing the static context data are retrieved. In
the service platform, these profiles are terminal profile, user characteristics
profile, and user preferences profile.

8. The static context information in profiles is taken into account in the process
of service instance creation. The service instance is created to best fit with
the static context.

9. When the service instance has been created, it will be delivered to the user's
mobile terminal for execution.

10. Now the service instance has been adapted to best fit with the current static
context and the dynamic adaptation process of the service is active. At this
point, the user is able to see the UI of the service and is able to use the
service. If the service receives an adaptation request as a result of the
dynamic adaptation process, it can adapt the service instance in use
dynamically.

 77

11. Finally, when the user doesn't want to use the service any more, the user
terminates the service instance. The dynamic adaptation process is, however,
still active until the service profiles are unregistered by the services having
registered them.

As one can see from Figure 21, the dynamic adaptation process is continuous in
its nature. This is advantageous for services that are not targeted at interaction
with the user, but, for example, for automatic controlling of NAs based on the
context information. The dynamic adaptation process is active until the service
has unregistered its service profiles from the service platform using the services
provided in the platform interface. The static adaptation process takes place only
once in conjunction with the service instance creation in the presented process in
Figure 21. However, the static context information can be consulted when
needed using the services provided by the platform interface.

As we were able to see from Figure 21, a service for delivering the service
instances for remote execution in the mobile terminal domain is needed on the
platform. This service is to be implemented by the Service Delivery GSE of the
service platform. Also, a service providing the delivery and creation of events in
a distributed service platform is needed to support, for example, the adaptation
of service instances. This service is to be implemented by the Event Notification
GSE of the service platform.

3.5 Adaptation Support Middleware

The middleware supporting adaptability in this work is divided in two different
parts. The division is made along the fact that some of the functionality needed
in the adaptation process is static and discrete and some dynamic and continuous
in its nature. These two middleware services, supporting the execution of the
overall adaptation process, are Dynamic Adaptation Service and Static
Adaptation Service. Both of these services are used at the beginning of the
adaptation process, but once the service has been instantiated and delivered, the
static adaptation phase is over and the main responsibility of the adaptation
remains with the Dynamic Adaptation Service. Requirements for both of these
adaptation middleware services introduced are described in more detail in the
following subchapters.

 78

3.5.1 Dynamic Adaptation Service

The dynamic adaptation service is responsible for supporting the continuous
adaptation that starts when a service registers its service profiles and ends when
the service profiles are unregistered. The function of the dynamic adaptation
service is based on retrieving the environment profile containing the dynamic
context information from the Environment Monitoring GSE, and comparing the
dynamic context information with the a priori context definitions in the service
profiles provided by the services. After the comparison, an adaptation request is
sent to the service owning the service profile. If the service profile matches the
adaptation request, the parameter TRUE is sent, and if the service profile does
not match, FALSE is sent.

The structure and the logic of this middleware service will not be very
straightforward, therefore the functionality of the dynamic adaptation service
and entities involved are explained in more detail in the following Figure 22 and
its step-by-step description.

Figure 22. The logic and structure of the dynamic adaptation service.

 79

1. First, a service creates a service profile and gives its ServiceID and a unique
ServiceProfileID to the service profile. The service also provides the
Adaptation Interface what is needed later for the service profile.

2. When the service profile is created, the service registers the profile to
Service Profile Manager.

3. The Service Profile Manager provides the functionality for service profile
registering and unregistering. It adds all of the registered service profiles to
the Adaptation Engine and removes all of the unregistered profiles from the
Adaptation Engine.

4. The Adaptation Engine retrieves the dynamic context information
periodically and compares the current dynamic context to the a priori
context definitions found in the service profiles. The Adaptation Engine
retrieves the dynamic context information using a Context Abstractor, which
abstracts the raw measurement data into useful context data. In the service
platform, the dynamic context is found from the environment profile.

5. After comparing the dynamic context data with service profiles, adaptation
requests will be sent to the owners of the service profiles using the
Adaptation Interface. If the service profile matches current context the
adaptation request, the parameter will be TRUE, otherwise FALSE.

6. The Adaptation Interface receives the adaptation request in the service
domain. The adaptation request also contains the ServiceID and the
ServiceProfileID of the target service.

7. The service receives the adaptation request and the final decision about
adaptation behavior is left to the service taking the application-aware
adaptation approach.

3.5.2 Static Adaptation Service

The static adaptation service is responsible for the static adaptation support
functionality provided by the service platform. The basic operational principles

 80

of the static adaptation service are the same as in the dynamic adaptation service:
both are based on profiling and processing of profiles. Where the profile data
processed in the dynamic adaptation service is dynamic and continuous in its
nature, the data processed in the static adaptation service is static and discrete in
its nature.

The profiles processed at the static adaptation middleware include terminal
profile, user preference profile and user characteristics profile. In
implementation, the main focus will be on adaptation and not personalization, so
the implementation of the static adaptation service will be a minimum
implementation that will support personalization only by providing the needed
information in the form of profiles. The static adaptation service will provide
services for retrieving the terminal profile, user characteristics profile, and user
preferences profile. The services can retrieve these profiles whenever needed,
and use the static context information contained in these profiles as applicable.

The information can be used for personalization purposes, and also to retrieve
information about user preferences towards the service domain. The user
preference information should always be consulted by the services before taking
any kind of action that will have a direct effect on the user context. For example,
any kind automatic controlling of NAs, based on the context information should
not take place if the user has set his preferences to the sleep profile, where the
three preference variables have value 1.

In summary, the Static Adaptation Service should provide services for the
retrieval of profiles containing static context information that can be used for
personalization purposes and for guiding service behavior according to user
preferences.

3.6 Adaptive Distributed Mobile Services

The adaptation of distributed mobile services cannot just be the responsibility of
the middleware services. Middleware services can provide important support for
adaptation process, but it is quite clear that the services should also be designed
to be adaptive as well. This is due to the adaptation strategy selected for the
service platform, the application-aware adaptation.

 81

The distributed mobile services and services in general have two different parts:
service logic and the user interface. The part implementing the service logic and
containing all of the heavy calculation processes is referred to as a service in this
work. The part implementing the user interface and additional functionality
related to user interface and service adaptation is referred to as a service instance
in this work.

In summary, a functional adaptive distributed mobile service contains two parts:
service, which is executed in the service gateway domain and the service
instance, which is executed in the mobile terminal domain. The life cycle of a
distributed service executed by the service platform developed in this work is
presented in Figure 23.

Figure 23. Life cycle of a distributed service.

As seen from Figure 23, the service is first installed to the system and registered
to the service platform in the service gateway domain. When a user selects a
service to be used, it is instantiated and deployed to the user�s mobile terminal.
The actual usage and interaction with the service takes place via the service
instance in the mobile terminal. After the user stops using the service, the service
instance will be terminated. The services from the service gateway domain can
also be uninstalled from the system and the service platform.

In this work, the Service Platform API sets the requirements for the services to
be adaptive, and provides the tools for the service's adaptation. There are some
requirements for the adaptive services that have to be recognized when
designing the services. These requirements are brought to attention in the
following:

 82

Reactivity: The platform provides a dynamic adaptation service that gives
adaptation requests to services about the changes of user context. It should be
noted that services should not be designed to be too reactive to the context
changes, because this will generate overhead in the network usage and also the
usability of the service will suffer if the service instance changes all the time.
Basically, the level of reactivity is dependent on the service, but the usability of
the service and resource optimization should be the guiding factors when making
the design decisions related to the reactivity of adaptive services.

Bifunctionality: Distributed services must have two different operational modes
in the service lifecycle presented in Figure 23. First an operational mode for the
state service present. In this state, the user is not using the service, but the
service can have background processes that require no user interaction (e.g. data
gathering from the network). In this state, the service may not have any
knowledge of user context or no means of interacting with the user. The second
operational mode is the state in which the service has been selected and
instantiated. In this mode, the service can be in interaction with the user and the
user context data is available for the service. This is also the operational mode
where the reactivity of the service becomes an issue.

3.7 Requirements Summary

In this chapter we have taken a look at the functionality needed to support the
adaptation of mobile services. Now it is time to summarize the requirements of a
service platform and its architecture supporting the adaptation of mobile
services.

The first issue to be solved when designing a service platform supporting
adaptability of mobile services is to decide on the distribution of the
functionality of the adaptation process. Whether to leave the adaptation
completely to the responsibility of individual services and only provide the
context information via the service platform, or to include all of the functionality
in the service platform making the adaptation fully transparent to the services. A
third option is to combine the first two and provide some adaptation
functionality via the service platform while retaining some of the responsibility
with the service itself. The third option is an approach for the distribution of the

 83

adaptation functionality used in this work. In this way, the adaptation
functionality can be provided in such a way that the privacy of user context data
can be guaranteed and the functionality is general enough to be used by different
services designed to have different tasks. This approach also decreases the
service size when compared to the option where each service has its own
adaptation process and mechanism.

The GSEs will be the basic building blocks of the architecture to be presented
for the service platform. The role of the GSEs, providing commonly needed
services for the services and other middleware entities, is one of the obvious
advantages of the GSE concept. GSEs have been briefly mentioned in previous
chapters mainly as hosting entities for the profiles and implementing entities of
needed platform functionality. The GSEs and the architecture based on them will
be further discussed in chapter 4.

 A clear need for context sensing and delivery functionality was recognized for a
service platform supporting the adaptation of mobile services. This was due to
the fact that the phenomena that the context information describes create a need
for adaptation in the first place. The context sensing and delivery functionality
will be implemented in the mobile terminal domain of the service platform; the
implementing component will be the Context Sensing middleware service.

Two different types of context information were identified, static and dynamic
context information. It was also identified that profiling will be a technique
much used in internal context presentation of the service platform. Therefore, a
platform component to provide a basic profiling mechanism for the platform and
the services is needed. This profiling mechanism should also guarantee the
privacy of user context data.

Four different profiles based on common profiling mechanism that can be
provided by service platform were identified. These profiles were user
characteristics profile, user preferences profile, terminal profile and the
environment profile.

There was one different kind of profiling mechanism identified that does not
utilize the same profiling mechanism as the others; this was the mechanism for

 84

service profiling. The service profiling mechanism is to be implemented by the
middleware services of the service platform.

In the context of user preferences and user characteristics profile, a need for
saving data permanently was identified. The platform will provide a service for
saving data permanently on a distributed service platform. This service will be
useful for other services and platform components to save certain data
permanently as well.

The need for event delivery within the distributed service platform was also
identified. Therefore the service platform will provide an event creation and
delivery service to be utilized by platform components and services. The event
delivery service is useful, for example, in service instance adaptation or in the
communication between a service and a service instance.

A need for platform service delivering service instances from the service
gateway domain to be executed in the mobile terminal domain. Therefore, this
kind of service delivery component will be provided as part of the service
platform.

Because the service platform of this work is distributed, some kind of
communication mechanism between the parts of the platform is needed. The
communication mechanism will be a customized message-based solution and
will be abstracted in order to gain independence of any specific communication
protocol and platform portability.

Separate platform management components are also needed to manage and join
the service interfaces of different middleware services to one uniform platform
interface that is provided for the services. Last but not least, platform control
components are needed for controlling the overall distributed service platform
consisting of parts presented so far. In the next chapter, the architecture for the
service platform that is based on the requirements presented, and supports
adaptation of mobile services, is presented.

 85

4. Architectural Design
In chapter 3, requirements for a service platform supporting the adaptation of
mobile services were presented. This chapter presents an architecture that is
based on those requirements and provides more detailed descriptions of the
components of the architecture. The architecture presented in this chapter will be
implemented, tested and validated in chapter 5.

The architecture for the distributed service platform supporting the adaptation of
mobile services presented in this work is found in Appendix 1. The notation
used in Appendix 1 is not based on any standard, but is used in [55]. Notation is
called conceptual architecture structure, and the elements used in it are presented
in the following:

Component: Component is a replaceable entity and the symbol for component
is a quadrangle. Components have stereotypes, which define the role of the
component. The stereotype of a component is marked as follows:
<<Stereotype>>.

Service: Service is a component that provides functionality to other components.

Application: Application is a component that utilizes services to perform some
specific tasks useful to the user.

Domain: Domain is a specified part of the system. The execution environment,
physical boundaries or the abstraction level can define a domain. The symbol for
domain is also a quadrangle, but the weight of the line is heavier than in
components. Every component belongs to one or more domains.

Port: The symbol for a port is a directed triangle. A triangle pointing into a
component represents an offered interface, and a triangle pointing out from a
component represents a needed interface.

The entities with their roles and functions seen in the architecture in Appendix 1
are explained in this chapter. As one can see, the architecture of the service
platform is vertically divided into two main domains: service gateway and
mobile terminal. In addition, the architecture is horizontally divided into three

 86

layered domains: connectivity layer, middleware layer and service layer.
Notations (N) and (M), Network and Mobile respectively, in the names of the
entities are used for outlining the fact that these entities may not be equal to their
implementations even if they have the same names and the components reside in
different computational nodes.

4.1 Architecture Overview

The focus of the work is in the adaptation of mobile distributed services.
Therefore, middleware services studied and presented in this work are limited to
services that provide support for adaptive mobile services. Despite this, the
architecture is not bound only to systems for adaptation, but is extendable to
support other functionalities as well.

As already mentioned, the architecture of the service platform is divided into
five different domains. The first division of entities in the service gateway and
mobile terminal domains is due to the distributed nature of the service platform.
The second division of entities on different layers is due to different abstraction
levels in this kind of computing system. An overview of the service platform
architecture with all of the components is presented in Figure 24. For a more
detailed architecture figure, please refer to Appendix 1.

Figure 24. Overview of the service platform architecture.

 87

The fundamental idea of this architecture is simply to provide support in
adaptation functionality for services and service instances that are executed at
the service level by utilizing the middleware layer services and the connectivity
layer services. More detailed descriptions of the horizontal layers of the
architecture are provided in the following three subchapters.

4.1.1 Service Layer

The service layer is the topmost layer of the architecture and can be seen as an
execution framework for services in the service gateway domain and for service
instances in the mobile terminal domain. The service layer is the outlook of the
service platform from the service point of view. The services of the service
platform are accessible via the platform interfaces both in the service gateway
domain and in the mobile terminal domain.

The platform interfaces of the domains are not necessarily equal because of
obvious reasons: The functionality needed for services in the service gateway
domain may differ from the services needed for service instance execution in the
mobile terminal domain. However, the only GSEs of the service platform having
unequal service interfaces in the service gateway domain and mobile terminal
domain are the Service Delivery GSE and the Environment monitoring GSE.
The platform interfaces encapsulate all of the functionalities of the domains
provided by the middleware layer services into one interface, which is the
platform interface.

4.1.2 Middleware Layer

The middleware layer is the layer where the middleware services with different
functionalities are present along with the GSEs. The middleware entities on the
middleware layer utilize GSEs via the GSE service interfaces to provide support
for services in execution on the service layer.

The middleware layer provides a platform interface to the service layer on both
domains of the system: Platform Interface(N) and Platform Interface(M). The
Service Platform API that is provided for services in the service creation phase

 88

includes all of the needed data types and classes to access both of the platform
interfaces. The services are created to utilize the Platform Interface(N) and the
separate service instances to utilize Platform Interface(M).

4.1.3 Communications Layer

The communications layer in this work includes all of the layers of the OSI [56]
model from the presentation layer to the physical layer. The communications
layer is not in the main scope of the work, therefore no standard protocols are
presented in the architecture framework. The communication abstraction for the
service platform is made to completely separate the platform from any transport
or session layer protocol. This is done to guarantee the portability of the
platform.

The communications services, both in the service gateway domain and in the
mobile terminal domain, implement the customized communication abstraction
for the middleware layer services. In other words, the communications services
implement the protocol that the service platform uses in its internal
communications.

The internal protocol of the service platform defines its own Protocol Data Unit
(PDU) and means for sending and receiving the PDUs within the service
platform. The communication solution is message-based and does not require
session-based communications, however, delivery of the platform PDUs must be
guaranteed and no PDU losses are allowed. Because the communications layer is
not in the main scope of this work, no further details will be provided about the
communication solution implementing the platform communications abstraction.

4.2 Generic Service Elements

The drive for the adaptation supporting GSEs of this work derives from the
special characteristics of mobile Internet compared to the Internet at the
moment. In the mobile Internet, there are factors that have effects on the services
and thereby affect the quality of service and service availability. These issues
like changes in connectivity, heterogeneous terminal devices, unreliable wireless

 89

links and handovers between different networks have effects on multiple levels
of the overall system. In addition, growing usability and added value service
requirements introduce services that provide these qualities by adapting to the
user's current situation, also referred to as user context.

If compared to the OSI [56] model, these discrete or continuously changing
variables that the services should adapt to have effects on multiple layers of the
model, and this would mean cross-layer interfaces, for example, between the
transport layer and application layer. This issue is further discussed in [57]. One
possible role for a GSE could be to implement this cross-layer interaction by
providing well-defined interfaces for different architecture layers to interact in a
way that the overall architecture is capable of coping with the special
characteristics of the mobile Internet, and still provide a rich user experience
from a service point of view.

At the moment there is only one definition available for GSEs. The WWRF
WG2 has defined GSEs to be upper middleware layer services [2]. They have
also identified eight GSEs needed for supporting adaptive applications, however,
it should be noted that in [2], GSEs are specified only at the conceptual level and
mostly just initializing requirements are presented for the identified GSEs.

This work acknowledges the definition of GSEs to be upper middleware layer
services, but in addition takes the definition further by defining a structure and
role for the GSEs in a heterogeneous and distributed computing environment. In
the GSE definition in [2], the utilizing of AI methods, ontologies, semantics,
models, and learning to support adaptive applications is emphasized. This work
takes a more practical approach by identifying requirements, designing,
implementing and testing the GSEs proposed to support adaptive mobile
services in a service gateway-based service architecture.

The definition for a GSE as used in this work appears in [1] and is provided in
the following:

Generic Service Elements (GSE) are upper middleware layer services that
provide well-defined functionality and services that are collectively needed and
utilized by the services, applications, and other GSEs in a distributed
heterogeneous computing environment.

 90

GSEs are architectural concepts that do not define or limit the service provided
by a GSE. The definition given sets only two requirements for a GSE. Firstly,
the service provided by a GSE should have a certain level of universal
applicability to be collectively applicable to be used by the applications,
services, and other GSEs. Secondly, GSEs should be able to operate and provide
their services in a heterogeneous distributed computing environment. So the
service provided by a GSE should be accessible and executable in every
computational node of a distributed system where it is needed.

The conceptual structure of a GSE of the service platform and its role as a
platform component is illustrated in Figure 25. As it can be seen from Figure 25
b) the service platform GSEs are distributed to the service gateway and mobile
terminal domains. So a logical GSE is realized as two separate components on
each side of the service gateway-based service architecture. GSE (N) in the
service gateway domain, and GSE (M) in the mobile terminal domain, both
having their own service and control interfaces realize a logical and functional
GSE by interworking. The different parts of the GSEs utilize the
communications solution provided as service platform component in their
internal communications to provide one logical network transparent GSE from
the GSE Client point of view.

Each GSE may use its own protocol that can be standardized or proprietary for
its internal communication because the protocol should not be visible outside the
GSE domain. The GSE-specific protocols can be based on a customized
communications solution provided by the service platform or utilize middleware
technologies like CORBA, Java RMI, and RPC. All service platform GSEs are
controlled by the platform control components via their control interfaces that
are equal.

 91

Figure 25. Basic structure of a GSE as part of the service platform.

When designing the GSEs and the architecture based on them, it should be kept
in mind that the selection of the task specificity level of the GSE will greatly
affect the amount of GSEs needed and the overhead due the amount of the GSEs
used. Here, term task specificity refers to the level of universal applicability of a
service that an entity is providing.

For a GSE to be generic its functionality must not be too task-specific, but the
functionality of a GSE should be well specified in a manner that it is applicable
to be used by many different services cooperatively. On the other hand, there are
risks in making a GSE as generic as possible too. This is due to the fact that if a
component is made as generic as possible, the functionality that the component
provides is oversimplified. Therefore, the amount of generic components needed
to implement the same functionality as provided by a more task-specific
component is higher. If GSEs are designed to be too task-specific or too generic
and simplified, the amount of GSEs present in a system will explode and system
efficiency will suffer because of the increasing overhead caused by the amount
of GSEs present in the system. The overhead is due to the structure and control
needed for GSEs. The amount of GSEs as a function of GSE task specificity and
the overhead as a function of amount of GSEs is presented in Figure 26 a) and

 92

b). Figure 26 is just an estimated illustration of experiences; it is not based on
actual measurements or experiments.

 a) Amount of GSEs as a function of task specificity.

b) Overhead as a function of amount of GSEs.

Figure 26. Illustration of effects of GSE task specificity.

The following example illustrates the role of GSEs as the binding entities and
basic building blocks of the distributed service platform. Figure 27 provides an
example of adapting a service that has already been instantiated and is in use.
The need for adaptation in the example is a change in connectivity.

 93

Figure 27. Example usage of GSEs in the adaptation of a service.

The steps marked on Figure 27 with numbers inside a diamond figure are
explained in the following:

1. An entity on the communications layer notifies the mobile resident part
of GSE #4 about dramatic changes in connectivity. For example, this
could be notification that available bandwidth has decreased by half.

2. The notification is immediately transferred to the network resident part
of GSE #4.

3. On the network resident side, on the middleware layer, the dynamic
adaptation service gets notification of a connectivity change from GSE
#4. The dynamic adaptation service notifies the service in execution
using network resources about the new situation regarding connectivity.

4. The service adapts to the new situation based on the notification from
the dynamic adaptation service. The service creates an updated and
adapted service instance and passes it to the middleware layer using the
services provided by the platform interface. The platform management
component receiving the updated service instance via the platform
interface uses GSE #2 to update the service instance to a new one at the
mobile resident part of the service platform.

 94

5. The mobile resident part of GSE #2 receives the new service instance
from GSE #2 and updates it on the service execution layer.

In the following subchapters, high abstraction level descriptions are provided for
the GSEs that were identified and used in this work to provide the needed
adaptation support for adaptive mobile services.

4.2.1 Outlining Service Platform GSEs

The architecture of the service platform is based on the GSE concept. In this
chapter, the GSEs of the service platform are outlined and functionalities that
were identified for the service platform are allocated to six different GSEs. GSEs
have already been briefly mentioned in previous chapters, mainly as hosting
entities for the profiles and implementing entities for needed platform
functionality.

The need for a component providing generic profiling mechanism within the
service platform was identified earlier. A Generic Profiling GSE will provide
this generic profiling mechanism. The provided generic profiling mechanism
will also guarantee the privacy of user context data.

Four different profiles, based on a common profiling mechanism, were
identified. These profiles were user characteristics profile, user preferences
profile, terminal profile and the environment profile. The first three profiles,
which consist of static context information that is partly provided by the user,
will be hosted by the Access Control GSE. The environment profile, which
consists of dynamic context data that is sensed automatically, will be hosted by
the Environment Monitoring GSE.

Regarding user preferences and user characteristics profile, a need for saving
data permanently was identified. The platform will provide a Permanent Storage
GSE for saving data permanently on the service platform. The Permanent
Storage GSE will be useful for services and other GSEs needing to save certain
data permanently as well.

 95

The need for event delivery within the service platform and for the services in a
distributed environment was also identified. The service platform will provide an
event creation and delivery service implemented by the Event Notification GSE.
Other GSEs and the services executing on top of the service platform can utilize
the service provided by the Event Notification GSE.

A service for delivering service instances from the service gateway domain to be
executed in the mobile terminal domain was identified to be needed. A Service
Delivery GSE implementing this service will therefore be provided as part of the
service platform.

In summary, six different GSEs have been outlined and identified to be the basic
building blocks of the service platform. These GSEs are described and designed
further next.

4.2.2 Environment Monitoring

The Environment Monitoring GSE is responsible for monitoring the changes of
the environmental elements from the user�s point of view. The environmental
elements are entities of the environment surrounding the user in an I-centric
communication model, for example, connectivity, location and sensor
information. This information is collectively referred to as dynamic context
information. The dynamic context information can also include physical
characteristics of the user (e.g. heart rate, respiration rate, and blood pressure).

The Environment Monitoring GSE hosts and manages the environment profile,
which always contains up to date information about the user's dynamic context.
The environment profile can be retrieved from the Environment Monitoring
GSE and used by the dynamic adaptation middleware in supporting service
adaptation. The environment profile is updated mainly from the mobile terminal
domain part of the Environment Monitoring GSE, because most of the user
context information is only available from the mobile terminal domain. The
connectivity information is the only context information of the environment
profile that can be updated from the service gateway domain. The Environment
Monitoring GSE utilizes the service platform basic profiling mechanism
provided the Generic Profiling GSE.

 96

The connectivity monitoring solution is embedded in the Environment
Monitoring GSE and is based on sending a test PDU with certain time intervals
using the communication services provided by the platform. Bandwidth and
latency values are calculated from the round trip time of the test PDU. These
values are not true measuring results, but are relative to the real values and are
therefore usable for estimating connectivity.

There is a basic set of context information that the Environment Monitoring
GSE is capable of delivering by default. Also, optional information can be
delivered to services by providing the information source software (e.g. sensor
measuring software), data types and the middleware entities related to specific
information source (e.g. middleware for an optional sensor). In this way, the set
of context information that can be delivered via the Environment Monitoring
GSE is extendable. To provide a better insight into the role of the Environment
Monitoring GSE on the service platform, a sequence diagram illustrating the
dynamic context sensing and delivery is provided in Figure 28.

Figure 28. Dynamic context sensing and delivery.

 97

As can be seen from Figure 28, the Environment Monitoring GSE is distributed
and has different parts in the service gateway domain in the network (N) and in
the mobile terminal domain (M). The Context Sensing middleware service and
the sensors are located in the mobile terminal domain. The Context Sensing
service first requests the environment profile from the Environment Monitoring
GSE in the mobile terminal domain. The Environment Monitoring GSE (M)
fetches the current data of the environment profile from the Environment
Monitoring GSE (N) and creates a new environment profile from this data. The
new environment profile is returned to the Context Sensing service that updates
the data it receives from sensors in the profile. The Context Sensing service
updates the environment profile with certain frequency by utilizing services
provided by the Environment Monitoring GSE (M). The Environment
Monitoring GSE (M) updates the environment profile further in the Environment
Monitoring GSE (N), where the environment profile used in the adaptation
process is located.

4.2.3 Event Notification

The Event Notification GSE is responsible for delivering both service and
platform-related events between the service gateway and the mobile terminal
domains of the service platform. The services provided by the Event Notification
GSE are accessible to services via the platform interfaces for the services. The
data types needed for event generation and delivery are provided in the Service
Platform API. The event delivery mechanism is designed to be asynchronous so
that the event source and consumer do not have to wait for each other because
the event generating party is not blocked when sending an event.

The event delivery mechanism is designed to be as simple as possible in order to
keep the size of the software residing in the mobile terminal domain small. The
actual event content is unknown and irrelevant to the Event Notification GSE, it
just delivers the generated events to event listeners, and the event content is not
processed in any way.

The implementation of the Event Notification GSE is based on event listeners
that are registered with the Event Notification GSE via the platform interface
and the event generating service that is also accessible via the platform interface.

 98

The events can be generated and received in both domains of the architecture,
and the distributed nature of the Event Notification GSE is fully transparent to
the services.

The Event Notification GSE can be used, for example, in the communication
between the service and the service instance. It can also be used to trigger or
control the adaptation of the service instances.

In summary, the Event Notification GSE has two main responsibilities:
delivering events related to internal platform functionality, and delivering
service-specific events. An example usage of the Event Notification GSE is
provided together with the example use case of Permanent Storage GSE in the
next subchapter.

4.2.4 Permanent Storage

The Permanent Storage GSE provides permanent storage for the different layers
of the overall architecture to save layer-specific parameters and data. For
example, a synchronized calendar service can utilize the Permanent Storage GSE
to save data given by the user, and a middleware entity can save its parameters
in order to maintain it's internal state in erroneous conditions.

The Permanent Storage GSE uses the platform identification from the platform
entities and the service identification from the services for its internal data
management. Each client of the Permanent Storage GSE has its own storage(s),
which can contain multiple retrievable data containers. These data containers are
the basic units of the permanent storage. The size of a data container is not
limited, and it can contain any data in serialized format. However, it should be
noticed that storing large amounts of data that is needed for service purposes
using Permanent Storage GSE is not recommended, because network file
systems are available for this purpose. The basic operating principle of the
Permanent Storage GSE is to store the data locally whenever possible in order to
gain fast access time to the data.

The clients of the Permanent Storage GSE can create and delete storages. Only
storage that is empty and does not contain any data containers can be deleted.

 99

The clients can also create and delete data containers as they wish. Data
containers can only be created and deleted, not updated. In order to perform an
update, the client has to read the old data container and update it and write it to a
new data container. After this, the old data container can be deleted. Figure 29
illustrates the hierarchy and structure of the Permanent Storage GSE elements.

Figure 29. The hierarchy and structure of the Permanent Storage GSE elements.

As can be seen from Figure 29, each client can have one or more storages, which
can be empty or contain a certain amount of data containers. Access to another
client's storage is prevented by the Permanent Storage GSE. To provide an
analogy with file system: storages can be thought as directories and data
containers as files.

Figure 30. Example of Permanent Storage GSE usage.

 100

In Figure 30, an example use case of the Permanent Storage GSE and Event
Notification GSE cooperation can be seen. The service in the use case is
distributed across the two horizontal domains of the service platform. In the
example use case, the network resident part of Service A (NRA) saves some data
using the Permanent Storage GSE and notifies the mobile resident part of
Service A (MRA) by generating an event via the Event Notification GSE. The
MRA receives this event and retrieves the data that has been saved by the NRA.
The MRA can read the data or add its own data and save the data again. Both the
NRA and the MRA are able to delete the data that they have saved.

To provide a more detailed picture about the usage and operation of the
Permanent Storage GSE, the following sequence explains the use case in detail
by following the numbers in Figure 30:

1. The NRA creates a new storage object and a new data container and saves
some data in the container. After saving the data in the data container, the
NRA saves the data container to the storage object created earlier.

2. To save the data permanently, the NRA calls storage's saving method that
will save the storage and the data container permanently via the Permanent
Storage GSE service interface.

3. The NRA creates an event to notify the MRA about the saved storage object
and sends the event to the Event notification GSE for generation and further
delivery. The event includes a reference to saved data.

4. The MRA receives the event, including the reference to the saved data, from
the Event Notification GSE.

5. By passing over the reference to the Permanent Storage GSE, the MRA
requests the storage including the data container saved earlier by the NRA.

6. The storage object requested is passed over to the MRA.

7. The MRA reads the data saved in the data container by the NRA.

8. The MRA creates a new data container and adds it to the Storage.

 101

9. To save the altered storage containing new data permanently, the MRA calls
storage's saving method that will save the storage and the data containers
permanently via the Permanent Storage GSE service interface.

4.2.5 Access Control

The Access Control GSE is responsible for user authorization, terminal
capability profiling, service authentication and user preferences and
characteristics profiling. The profile information about user preferences and the
current terminal information of the user is stored and managed by the Access
Control GSE. This information is utilized by the static adaptation middleware
service of the service platform. The Access Control GSE provides a service for
editing the user profile information: a profile editor. The Access Control GSE
authorizes the user at login and retrieves his current profiles after authorization.

The Access Control GSE contains functionality for trusted services to gain their
trusted status through an authentication process. The authentication of services is
based on a user inquiry. When a service wants to gain the status of trusted
service, having access to private raw context data, it goes through the service
authentication process and the user can either accept or deny the service's trusted
status request.

The service authentication process is implemented so that first the service trying
to gain the trusted status passes over its ServiceCard including the information
about service provider, description of the service, service name and the service
id to the Access Control GSE. The Access Control GSE then describes the
service to the user and inquires if the service should be trusted. The user is able
to see the service provider's name and details of the service described in the
ServiceCard. If the user trusts the service provider and is willing to publish his
private context information to the service, the user accepts the inquiry and a
ServicePass with access rights to raw context data is granted and returned to the
service. Using the ServicePass the service can access the raw context data via
the platform interface.

 102

The sequence diagram in Figure 31 illustrates the role of the Access Control
GSE in service authentication process and in updating information in profiles
hosted by the Access Control GSE.

Figure 31. Service authentication and profile information update.

4.2.6 Generic Profiling

The Generic Profiling GSE provides profiling support for the services and other
GSEs of the service platform. It implements a generic widely applicable
profiling mechanism that is useful and often used by the middleware entities
supporting adaptation. Profiling support is also useful for services that need to
gather user related information and save it in a structured and easily manageable
manner. The services provided by the Generic Profiling GSE include creating,
saving, deleting, and retrieving of profiles in the distributed computing
environment.

 103

The Generic Profiling GSE provides a couple important classes for profiling;
these classes are ProfileSheet and Profile. Profile includes all of the functionality
that is needed in the processing of a profile: updating, adding and removing
profile elements. The profiling mechanism used supports partially protected
profiles, meaning that some of the profile elements are public and some can be
protected with a key that has to be known by the requester of the profile in order
to have access to the protected profile elements. ProfileSheet is for saving the
profile elements of a profile. ProfileSheet can be retrieved from a Profile and
new profiles can be created from ProfileSheets. ProfileSheets do not contain any
processing functionality, just the profile elements. ProfileSheets can be used in
saving and sending profile data as they contain all of the information of a
Profile, but are smaller in size. This kind of solution decreases the network load
caused by profile sending and updating. The main components and structure of
the Generic Profiling GSE is provided in Figure 32.

Figure 32. Main components and structure of the Generic Profiling GSE.

 104

4.2.7 Service Delivery

The Service Delivery GSE provides an important function for delivering service
instances from the service gateway domain to the mobile terminal domain for
execution. When services are installed on the platform, they register their service
instances with a platform management component via the platform interface. As
the user chooses the service he wants to use, the service instance of a chosen
service is delivered to the user using the services provided by the Service
Delivery GSE.

The Service Delivery GSE also includes functionality related to service
browsing and provides a service browser for the user to choose the services he
wants to use. The service browser is provided as a basic platform service and
provides access to all of the other services executed on the service platform.

The Service Delivery GSE is a vital part of the distributed service platform that
is based on the service gateway-based service architecture. It provides a remote
execution environment so that services can be distributed to reside in both of the
horizontal domains of the service platform and thereby, the services being too
big to be executed entirely at the mobile terminal domain, can be distributed
decreasing the workload of the mobile terminal. As an example of Service
Delivery GSE operation, an event trace of delivering a service instance from the
service gateway domain to the mobile terminal domain in the service browsing
process is presented as a sequence diagram in Figure 33.

 105

Figure 33. Service instance delivery.

In Figure 33, the role of the Service Delivery GSE is illustrated as part of the
service browsing process. First, the user activates the Service Browser UI, which
fetches and shows the ServiceCards that describe all of the available services.
The user selects a service from the Service Browser UI and the selected service
is instantiated and the instance is passed to the Service Delivery GSE (N) in the
service gateway domain. The service instance is further delivered to the Service
Delivery GSE (M) residing in the mobile terminal domain, where it is initialized
and given the local service platform interface of the mobile terminal domain to
have access to services provided by the platform. After initialization, the service
instance is started by the Service Delivery GSE (M) and the service UI becomes
visible to the user. The user can now interact with the service located in the
service gateway domain using the service UI in the mobile terminal domain. The
interaction takes place without the intervention of the components used in the
service browsing process.

 106

4.3 Platform Control and Management

Both of the domains, the service gateway and mobile terminal domain have their
own independent platform control components controlling the communications
and middleware layer platform components. Additionally, both horizontal
domains of the service platform have their own platform management
components for handling service registration, unregistration, and platform
interface management.

The platform control components are responsible for the overall service platform
control including functions like startup, monitoring and shutdown of the
platform, and the management of the service interfaces and control interfaces of
the platform components. Platform startup is performed in such a way that the
communications layer services are started first. Secondly, the GSEs and the
middleware services relying on the communications services are started, and
finally the platform interface is made available for the services by starting the
platform management components in both horizontal domains of the service
platform.

The shutdown of the platform is executed in reverse order. Platform control
components also handle any error situations so that the platform can recover
from individual component crashes by starting up the component.

Every service component of the service platform has an independent service and
control interface, the platform control components use the control interfaces of
the components to perform their tasks and pass over the service interfaces to the
platform management components. The platform management components
manage the service interfaces of other platform components so that the platform
interface can be built up from the service interfaces of individual components.

 107

5. Prototype Implementation and Testing
In chapter 3, the requirements for a distributed service platform supporting
adaptive mobile services were brought up. In chapter 4, an architecture for such
a service platform was presented. Now it is time to provide a description of the
prototype implementation of the service platform developed. First, the
implemented adaptive mobile services with hardware and software configuration
of the prototype implementation are presented. The use cases to be presented are
used for demonstration, validation and functional testing of the implemented
service platform. Evaluation of the prototype implementation is also provided.

5.1 Implemented Services

Two different services were implemented for service platform validation and
functional testing, adaptive context service and adaptive video service. The
purpose of these services is to validate and test the service platform by utilizing
all of the functionalities provided by the middleware services of the service
platform. Short descriptions of the implemented adaptive services and the
middleware services that they utilize are provided in the following subchapters.

5.1.1 Adaptive Context Service

The adaptive context service automatically controls the NAs in the surroundings
of the user based on the context information provided by the service platform.
Adaptive context service provides two different service instances for the user to
choose: X.10 Control Service and X.10 Context Service.

The "X.10 Control Service" service instance is provided for the remote
controlling of the NAs present in the X.10 network. The service instance adapts
to terminal capabilities by modifying the UI configuration. If the user is using
the service instance via a laptop, the service instance requests textual input for
the house code and the device code of the NA to be controlled. This is due to
fact that the service detects that user terminal has a full keyboard available using
the terminal profile provided by the service platform. If the user is using the

 108

service from a PDA that has no keyboard, but a pen-based touchscreen for input,
the UI provides dropdown menus for the house and the device code selection.

The "X.10 Context Service" service instance is provided for controlling the
adaptive context service. The service instance and its UI are very simple
containing only functionalities for activating and deactivating the adaptive
context service. In this case, the platform services are not used for adapting the
service instance, but used in the service itself. Adaptive context service utilizes
the service profiling mechanism provided by the service platform to define a
priori contexts in which some control actions of a NA are bound to. The adaptive
context service utilizes the user preference profiling mechanism provided by the
platform in a way that if the user preferences comply with sleep profile (all
preference variables have value 1) the context service is automatically
deactivated.

5.1.2 Adaptive Video Service

The adaptive video service provides a service for streaming video from a video
camera to a user�s mobile terminal. Here, the platform services are used for
monitoring the available network bandwidth and using the provided adaptation
services for adapting the service behavior to the current network connection
quality. The adaptive video service utilizes the service profiling mechanism for
defining a priori context regarding the connection quality.

Two service profiles are made: one for defining conditions where video
streaming is reasonable and one for conditions where video streaming is no
longer reasonable. When the conditions correspond to the service profile that
defines the conditions for video streaming, the video is streamed to the user. If
the conditions change so that video sending is no longer reasonable because of
the narrow network bandwidth available, the service adapts its behavior. A
notification about the reason for the adaptation is shown to the user, and the user
can order still images from the video camera using the adapted service. If the
network connection gets better, the service starts the video streaming again.

 109

5.2 Configuration

The prototype implementation included both hardware and software entities that
together constituted an execution and demonstration environment for the
prototype implementation relevant to the validation of the service platform. In
the following subchapters, descriptions of the hardware and software
configurations of the prototype implementation are provided.

5.2.1 Hardware Configuration

The hardware configuration of the prototype implementation includes two
different user terminals, one network server used as a service gateway, a VTT
SoapBox used for context sensing, a video camera, two X.10 Appliance
Modules and a X.10 Programming Interface. The hardware configuration is
illustrated in Figure 34.

The VTT SoapBox (Sensing, Operating and Activating Peripheral Box) [58] is a
light, matchbox-sized general-purpose module with a processor, a set of sensors,
and wireless and wired data communications. It has been developed at VTT
Electronics as a research tool to be utilized in the prototyping of different
systems. The research fields where the SoapBox has been utilized include
ubiquitous computing, context-awareness, multi-modal and remote user
interfaces, etc.

The SoapBox is a configurable platform that can be utilized for many different
purposes. It can be connected to a mobile terminal such as PDA, when it can be
used for wireless data transfer and for sensing user actions and the surrounding
conditions.

The SoapBox that was used in the prototype implementation was connected to
both of the user terminals. Its only function in the prototype was to provide
context information from its sensors to the mobile terminal and for the service
platform. The wireless communication capabilities of the SoapBox were not
utilized in the prototype implementation. The SoapBox was connected to the
terminals via a serial port and provided the readings of its sensors once a second.
This raw context data was received by the mobile terminal resident part of the

 110

service platform and profiled in the environment profile by the Context Sensing
middleware service utilizing the Environment Monitoring GSE services. The
context data was abstracted and further utilized in the dynamic adaptation
process.

The SoapBox used in the prototype implementation had a three-axis acceleration
sensor, light sensor, proximity sensor, and temperature sensor. The only sensor
information utilized in the prototype was the light information and the proximity
information. The data provided by these sensors was utilized by the adaptive
context service implemented in the prototype.

X.10 [59] is a home automation technology that enables normal and simple
electrical appliances to be controlled over electric wiring. The setup used in the
prototype implementation included two X.10 Appliance Modules that are
plugged between the cord of a NA and the electrical wall socket. In addition, a
X.10 Control/Programming interface that is plugged into the electrical wall
socket and to a serial port of a PC was used to control the NAs constituting a
X.10 Network. The programming interface was connected to the OSGi Server.

Internet

PDA

OSGi Server

Fan

Video
Camera

X.10 Network

Laptop

RS232

RGB Video

IP

IP(WLAN)

IP
(W

LA
N

)

Router

Firewall

IP

IP
IP

SoapBox

SoapBox

RS232

RS23
2

Lamp

WLAN AP
& Hub

X.10 X.10

Figure 34. The hardware configuration of the prototype.

 111

As it can be seen from Figure 34, two different user mobile terminals were used
in the prototype in order to be able to demonstrate the service instance
adaptation to different kinds of terminal capabilities. Both of the terminals also
had a wireless network connection in order to demonstrate the effects of variable
network bandwidth to the service behavior and adaptation. A VTT SoapBox was
connected to both terminals for the sensing of user context information.

As mentioned previously, the natural place for sensing user context information
is the PAN, but because of a lack of resources and time, terminal-based context
sensing was used in the prototype implementation. A WLAN access point
connected to a hub was used for connecting the wired and wireless parts of the
network in order to establish one logical interworking network. This network
was further connected to a router in order to be able to use the multicast
addresses supported by the router. These addresses were needed for video
streaming.

One of the services implemented for service platform validation and testing was
the adaptive video service, which used a video camera connected to the OSGi
server. Another implemented service was the adaptive X.10 context service that
uses the X.10 network to control the NAs present in the network. The X.10
network included two X.10 Appliance Modules and on X.10 Programming
Interface for network controlling.

5.2.2 Software Configuration

The software configuration of the prototype implementation is divided into two
main domains: service gateway domain and mobile terminal domain. The
overview of the main software configurations of the domains is illustrated in
Figure 35.

 112

Figure 35. Overview of prototype implementation software configuration.

Figure 35 gives an overview of the main software entities of the prototype
implementation. As it can be seen, the only distributed elements in the
configuration are the service platform and the services utilizing it. The service
platform has two different parts, one residing in the service gateway domain (N)
and one residing in the mobile terminal domain (M) and the services and service
instances distribution is supported by the service platform.

The OSGi technology that has already been introduced previously was utilized
only partly in the prototype implementation. Only the OSGi Framework was
used as an application execution framework for the services and the part of the
service platform residing in the service gateway domain. The services provided
by the OSGi were not utilized. The OSGi implementation that was used was the
IBM Service Management Framework (SMF) [60]; the SMF was based on OSGi
service platform specification release 2.

The service platform and the proposed architecture are completely independent
of OSGi technology and the OSGi Framework was only used to provide a
controllable service execution framework, and a clear way of deploying service
interfaces. The services of the service platform developed were encapsulated in
one service interface that was registered to OSGi and was retrievable for the
developed adaptive services that were executed within the OSGi Framework as
well.

Java Media Framework (JMF) [61] technology was also used in the prototype
implementation to enable the video streaming capability of the adaptive video

 113

service. In other words, the JMF was not an integral part of the service platform,
but used only by the services.

The Java Media Framework API enables audio, video and other time-based
media to be included in Java applications. The versions of the JMF that were
used in the prototype implementation were JMF2.1.1 optimized for windows and
JMF2.1.1 cross-platform version that is a pure Java implementation. Windows
versions were used in laptop and in the OSGi Server and the cross-platform
version was used in the PDA.

5.3 Use Cases

The use cases of the prototype implementation have two different purposes from
the validation point of view. The use cases should validate the architecture by
proving the solution to be functional in practice, and the use cases should also
include adaptation of services, both static and dynamic adaptation, to validate
the adaptation solution of the service platform. Some of the use cases
demonstrate the usage of the services provided by the service platform itself and
some demonstrate the usage of adaptive services implemented for testing and
validation of the architecture and service platform functionality.

Use cases are described in the form of short stories in order to illustrate what
was really demonstrated in the prototype implementation and how the
demonstrations were carried out. Screenshots of the UIs of respective states are
provided as well. More detailed descriptions of the use cases are provided in
Appendices 2 to 13.

5.3.1 User Authorization

First, the user starts the mobile terminal resident part of the service platform.
Once started, a user authorization process takes place. The user is asked to
provide his personal user identification and password. When the user
identification and password is provided, the mobile terminal resident part of the
service platform contacts the part residing in the service gateway domain and
sends the user authorization information. The authorization information is

 114

compared to information about authorized users, which is saved previously using
the Permanent Storage GSE. If the user is authorized, the communications layer
entities establish a connection and the GSE functionality that is distributed is
enabled.

At this point, the service platform is initialized and started in both domains and
becomes fully functional. When the service platform has been started up, a
platform main UI is sent and made visible to the user. Screenshots of the user
authorization query and platform main UI are provided in Figure 36.

a) Authorization query UI.

b) Platform main UI.

Figure 36. The user authorization query and platform main UI.

5.3.2 Service Browsing

The platform main UI that is sent to the user contains links to the profile editing
UI and a link to the service browser. The user selects the service browser link of
the main UI by pressing the Browse Services button, and the service browser is
sent and made visible to the user. The service browser contains links to all of the
service instances of the services that are using the service platform services and
are available to the user to use.

 115

These services in the prototype implementation include adaptive context service
and adaptive video service. Links to the service instances of these services that
are visible to the user include X.10 Control Service, X.10 Context Service and
Video Service. A screenshot of the service browser is provided in Figure 37.

Figure 37. The service browser UI.

A more detailed description of the use case can be found in event trace and its
description in Appendices 6 and 7.

5.3.3 Editing Profiles

By selecting the link to the profile editor UI from the platform main UI, the
profile editor UI is sent and made visible to the user. From the profile editor UI
the user can select either the user preferences profile or user characteristics
profile to be edited. A screenshot of the profile editor UI is provided in Figure
38.

The terminal profile is also editable via the profile editor UI; this is due to the
fact that in the prototype access for editing, the terminal profile was needed to
enable fluent testing. However, terminal profiling in systems other than the
prototype should be an automatic process that does not need user intervention or
attention. Therefore, the terminal profile editing will not be presented here as a
use case.

 116

Figure 38. The profile editing UI.

First, the user selects to edit the user preferences profile and an UI for editing the
profile appears. A screenshot of a preferences profile editor is provided in Figure 39.

Figure 39. The user preferences profile editor.

The user preferences profile editor includes a set of pre-created profiles for the
user to select from. The user can select one of the predefined profiles or if the
user wants to define and create a new profile, he can select the "New..." button
from the UI and he will get a new UI for creating a new preference profile. The
UI for creating new preferences profile is provided in Figure 40.

 117

Figure 40. UI for creating new preferences profile.

When the user creates a new preferences profile he has to provide a name and
values for all of the preference variables of the profile. When the new profile is
ready, it is automatically activated and saved by utilizing the Access Control and
Permanent Storage GSEs when the user presses the "OK" button.

Next the user selects the user characteristics profile editor from the profile
editing UI. Using the characteristics profile editor, the user can provide the
information requested in the profile. The user can also select any piece of
information to be guarded by the platform if he does not want to publish the
information to not-trusted services. A screenshot of the user characteristics
profile editor is provided in Figure 41.

 118

Figure 41. The user characteristics profile editor.

A more detailed description of the use case can be found in event trace and its
description in Appendices 8 and 9.

5.3.4 Using Adaptive Context Service

The user selects the X.10 Context Service from the service browser. The control
UI for the X.10 Context Service is sent and made visible to the user. Using the
control UI, the user can activate or deactivate the adaptive context service. If the
user activates the service and the user preferences profile is not set to correspond
with the sleep profile, the service is active.

Now the user is using the service via the laptop located on his desk and the
nearby desktop light belongs to the X.10 network and is thereby controllable by
the adaptive context service. If the lighting conditions in the user�s environment
are poor, and the user is close enough to the laptop, the desktop light is
automatically turned on to provide better lighting for the user. If the user leaves

 119

the laptop, the light is automatically turned of until he returns. The simple
control UI for the X.10 Context Service is presented in Figure 42.

Figure 42. X.10 Context Service control UI.

A more detailed description of the use case can be found in event trace and its
description in Appendices 10 and 11.

5.3.5 Using Adaptive Video Service

The user selects the video service from the service browser UI and the adaptive
video service UI will be sent and made visible to the user. If the connectivity
between the mobile terminal and the service gateway is good, the user is able to
see the video stream from the video camera.

The adaptive video service UI in this case is presented in Figure 43 a). Now the
connectivity changes as the user moves away from the WLAN access point and
the available bandwidth decreases. At the point where bandwidth is not
sufficient for video streaming, the adaptive video service UI and the operation of
the service itself is adapts to new connectivity conditions.

The adapted video service UI can be seen in Figure 43 b). By pressing the Order
button in the adapted UI, the user can get still pictures from the video camera.

 120

a) Adaptive video service UI when connectivity is good.

b) Adaptive video service UI when connectivity is poor.

Figure 43. Adaptive video service UIs.

A more detailed description of the use case can be found in event trace and its
description in Appendices 12 and 13.

 121

5.4 Evaluation of Prototype

The purpose of the prototype implementation was to validate and test the
architecture of the distributed service platform presented in chapter 4. In
addition, the prototype implementation is used for the functional testing of the
developed service platform.

The evaluation of the prototype implementation is presented in the next
subchapters. The evaluation concerns purely the prototype implementation, not
the presented service platform architecture, the architecture and some other
relevant issues concerning the developed service platform will be discussed in
chapter 6.

5.4.1 Context-Awareness

In [12], issues to be addressed when implementing a context-aware system are
presented. Answering these questions, where applicable, provides some
clarification to the design decisions made in the prototype implementation of this
work:

How is context represented internally?

In the prototype implementation, context is represented internally in profiles.
The environment profile is the main profile for dynamic context information and
in addition, terminal, user preferences, and user characteristics profiles include
static context information. At first, when the context data is sensed via the
sensors in the user�s immediate environment, the data is raw context data that is
saved in string format in the environment profile. The context abstractor of the
dynamic adaptation service retrieves the environment profile and classifies and
abstracts the raw context data according to pre-defined rules. The a priori
context definitions made by the services in their service profiles are also
internally presented in string format.

 122

How is this (context) information combined with system and application state?

The context information is combined with application state by matching the a
priori context definitions that services provide in their service profiles to the
current abstracted context data originating from the environment profile, user
preferences profile, and user characteristics profile. When the a priori context
definitions match the current context, an adaptation request is sent to the service
owning the service profile. It is up to the application/service what action is taken
when an adaptation request is received.

How frequently does context information have to be consulted?

In the prototype implementation, the raw context information from the sensors is
updated once a second in the environment profile, and the context abstraction
process is continuously working in the service gateway domain and matching the
service profiles against the current context it derives from the environment
profile. This is because the dynamic context data is changing all the time and the
only way of noticing the changes in this data is to have a continuous process that
monitors the dynamic context data. The static context data is consulted at the
beginning of the adaptation process for personalization purposes and it can also
be consulted by the services when needed.

What are the minimal services an environment needs to provide to make context-
awareness feasible?

The minimal services needed in the prototype implementation to make context-
awareness feasible are the static and dynamic adaptation middleware, Event
Notification GSE, Generic Profiling GSE, Environment Monitoring GSE,
Access Control GSE, Service Delivery GSE, and the Permanent Storage GSE. In
other words, everything that was implemented is needed to make context-
awareness feasible. In addition, concerning context-awareness, the high-level
context information is missing from the system, which is a conscious decision to
keep the service platform lightweight.

 123

5.4.2 Scale of Prototype

All of the components presented in the service platform architecture and the
required functionality identified in chapter 3 were implemented in the prototype
implementation. However, because of the lack of time and resources, a few
shortcuts were made, but in such a way that the functionality of all of the
components of the service platform remained the same and the architecture
presented was not neglected. The shortcuts made were inside the individual
components and were not visible outside of the components.

The scale of the prototype implementation was big enough to successfully
validate the presented architecture and to test all of the required functionality of
the service platform. Services were implemented on top of the service platform
to test the service platform functionality related to adaptation support and service
delivery, and to demonstrate the outlook and capabilities of these kind of
adaptive services.

5.4.3 Validation

The validation of the distributed service platform and its architecture presented
in this work was successfully achieved by the prototype implementation. In the
prototype implementation, all of the platform components presented in the
architecture were implemented, and to validate the correct functionality of the
platform, a couple of adaptive services were implemented to utilize the services
and were executed on top of the service platform.

The validation was seen as successful because the implemented services were
functional and the adaptation functionality of these services required very little
effort when utilizing the service platform services in implementing their
adaptation functionality. However, the service platform architecture presented is
designed to be scalable and to include functionalities other than adaptation-
related as well, but only adaptation-related components were presented in the
architecture that was validated in the prototype implementation.

 124

5.4.4 Testing

The testing of the prototype implementation was carried out in many different
phases alongside the development of the prototype. Testing the functionality that
the components provide tested the functionality and correctness of the
components after implementation with the black-box testing approach. Once the
tests were successfully passed and all faults were corrected, the work continued
with the implementation of the next component.

The first components that were implemented and tested were the
Communications components that implement the communications abstraction
for the platform. After this, the implementation and testing of the GSEs was
carried out. GSEs utilize the services of the communications components and the
services of other GSEs so at this point the first integration tests took place.

After all of the GSEs were implemented, testing all of the GSEs simultaneously
through their service interfaces performed an integration test of the GSEs. Once
the GSE integration test was successful, the implementation of the adaptation,
platform management, and context sensing middleware components was started.
All of these components utilize the GSEs, so again after all of the middleware
components were implemented, an integration test for the whole platform was
carried out.

Implementing adaptive services that utilize the services provided by the service
platform and running the defined use cases successfully resulted in the final
testing of the service platform functionality.

5.4.5 Shortcomings

One identified weakness of the prototype implementation was the
communication solution implementation below the communication abstraction.
The communication solution was not in the main scope of the work and minimal
resources were used for designing and implementing it. However, the
communication solution was vital to be able to demonstrate and test the
functionality of the service platform.

 125

The shortcomings of the communication solution were related to the TCP
protocol behavior, on which the solution was based, in a wireless environment.
Sudden disconnections caused problems in the communications solution. These
kinds of sudden disconnections should not be considered as exceptions, but as
normal operating modes in future wireless systems. Therefore, more
development on the communications solution would have been required to make
the prototype implementation invulnerable to disconnections.

5.4.6 Strengths

A clear strength of the prototype implementation was that the main goal of
supporting the adaptation of mobile services came through fine. The services
implemented to utilize the adaptation support functionality provided by the
service platform worked fine and the adaptation functionality was fluent. Also,
the main components of the architecture, like GSEs and middleware and control
components, worked as expected.

Another strength of the prototype implementation was that its operation was
quite stable, except for the shortcomings of the communications solution in a
wireless environment.

The prototype implementation also showed the benefits of the service platform
supported adaptation functionality and the application-aware adaptation
approach. The amount of code making implemented services adaptive was very
little, and the usage of a platform ensured that the functionality was fluent and
logical both in the implementation phase and when running the adaptive
services. The service platform clearly decreased the workload required for the
services to be adaptive.

Finally, all of the functionalities that were required from the service platform
were implemented and tested in the prototype and came out working fine. For
example, there were doubts if the service profiling approach for a priori context
definitions would be the way to go, but it turned out to be working well and
served its purpose.

 126

One of the objectives set for the work was to have a minimum size prototype
implementation after taking the practical design approach. This objective was
well met as the prototype implementation of the service platform, Service
Platform (N) and Service Platform (M) in Figure 35, resulted in an overall size
of less than 360 KB. Of the overall size, approximately one third is allocated to
the mobile terminal domain being the resource-constrained domain on the
service platform. The surprisingly small prototype implementation proved the
benefits of the practical design approach, which enables the developed service
platform to be introduced to very resource-constrained mobile computing
environments.

In summary, it can be said that regarding the main scope of the work, the
prototype implementation was properly scaled and successfully served its
purpose in validating the proposed architecture and the adaptation functionality
of the service platform presented.

 127

6. Discussion
Related research and technologies related to the domain area of this work were
presented in chapter 2. Now it is time to compare and discuss the work
completed taking into consideration existing research, and highlight and discuss
technologies that seem promising for future implementations and research on
service platforms supporting adaptability. Existing research and proposals are
especially found in architecture and middleware layer issues.

6.1 Generic Service Elements

Valuable experience about GSEs was gained during the work, especially
concerning their structure and the overall service platform architecture utilizing
GSEs. It should be noted that the definitions of GSEs in WWRF are still at the
conceptual level and the GSEs in this work have the role of implemented
middleware layer entities as well as conceptual level entities. Therefore, the
abstraction level of the definitions is essentially different. WWRF defines
visions and in this work the GSEs have been identified, designed, and
implemented in practice. Hopefully the work presented here provides an
alternative and complementary approach to the work regarding defining GSEs in
WWRF.

As one can see from [2], the GSEs identified by WWRF are partly different from
the ones identified in this work. Both have identified environment monitoring
and event notification, but all of the other elements are different. One of the
goals set for this work was to identify the needed GSE with a practical design
approach and, through a prototype implementation, to gain a better
understanding of GSEs and their structure and role as middleware services. This
goal was achieved, but because the approach of this work was to find a solution
with a minimum set of GSEs for a lightweight service platform supporting
adaptive distributed mobile services, the identified set of GSEs has differences
compared to the ones identified by the WWRF. However, the GSEs in this work
are prototyped and validated to be functional. Even though the names of the
identified GSEs are different, it can be noticed that the same functionalities are
present at least to some extent. A comparison of the GSEs identified,

 128

implemented and validated in this work against the descriptions of WWRF GSEs
[2] is provided.

The Event Notification GSE identified in this work is based on the same
principles that have been identified in [2]. In WWRF, event notification is used
for notifying changes in the context observed by the environment monitoring
GSE. In this work, a more generic approach is taken by providing the services of
the Event Notification GSE to the services as well as to other GSEs. In this way,
the entities of the system can utilize the event notification service for other
purposes like the adaptation of service instances or communication between
service instance and service. The Event Notification GSE in this work is based
on the source-initiated communication model, where the recipients of the events
register their interests directly with the component that is capable of publishing
the events of interest. The same mechanism is used in the Java event system.
The Event Notification GSE of this work utilizes the services of the
communication abstraction that provides asynchronous message-based
communication and platform-specific PDUs. The Event Notification GSE is
therefore immune to disconnections.

The basic operating principle of the Environment Monitoring GSE in WWRF is
the same as in this work. It monitors the changes in environmental conditions
and provides the information about the surroundings to other software
components. In WWRF, the Environment Monitoring GSE is defined to utilize
the Event Notification GSE for informing of changes in environmental
conditions based on a priori rules. In this work, the Environment Monitoring
GSE is based on the profiling of dynamic context data and the changes are
delivered to services via the service profiling and context abstraction methods
that were presented in chapter 3. The basic operation is still the same, in this
work the events are received from the service profiles that include the a priori
context definitions that are in the interest of the services, and in the WWRF
model these interests are directly expressed for the Environment Monitoring
GSE.

The Distributed Application Framework GSE identified by WWRF is used for
combining existing services to provide new ones. It is also defined to support the
autoconfiguration of services and service discovery. The absolute need for this
kind of GSE regarding service adaptability was not identified in this work.

 129

However, it was notified that the kind of functionality would be useful in general
for a distributed service platform in a mobile computing environment where the
dynamic configuration of services is required.

The Perception Service GSE for the automatic collection of values for learning
purposes and the Modeling Service GSE for building a model through learning
are also identified by WWRF. In this work, these kinds of services were not seen
as compulsory to support the adaptation of mobile services, as the design
approach taken was very practical to end up with a lightweight solution.
However, these kinds of services may supplement the system services for
context-awareness.

The Mobile Distributed Information Base GSE identified by WWRF can be
compared to the Permanent Storage GSE identified in this work. However, the
main purpose of the Permanent Storage GSE is to provide fast, reliable, and
distributed services for permanently saving small amounts of data like
parameters or profiles, for example. The Mobile Distributed Information Base is
defined in a manner that it could include the services provided by the Permanent
Storage GSE.

The Ontology Service GSE identified by WWRF is used for representation,
manipulation, and storage of ontologies of varying detail. The Semantic
Matching Engine GSE is identified as responsible for using the ontological
information to match and reason over instances of ontological knowledge, such
as profiles. These services can also be classified as services supporting the
context-awareness of the system and were not seen as compulsory from the pure
adaptation point of view. However, the adaptation functionality is a central part
of a context-aware system and these kinds of services are certainly needed, for
example, in utilizing AI methods for deriving higher lever context information
from low-level context information.

6.2 Architecture Review

In chapter 2, two interesting architectures from the field of pervasive computing
were presented - Project Aura and the Gaia metaoperating system. Even if these
architectures were designed for active spaces, there are some similarities with

 130

the architecture provided in this work. These similarities are found in the
provided functionality, as the binding factor of the three architectures is the need
for adaptation.

In addition, there are characteristics in Aura and Gaia that could bring additional
value to the service platform presented in this work. The comparison of the
architecture presented in this work to Aura and Gaia architectures, and possible
complementary characteristics of the architectures are discussed in the next
subchapters.

6.2.1 Comparison to Aura

In Aura, the lowest layer of the architecture is the intelligent networking layer,
which supports network weather monitoring and network proactivity. This kind
of networking layer would clearly be useful for adaptive services that would be
able to anticipate the network's state and adapt their behavior from this
information. Aura�s architecture also includes the Coda [52] file system, whose
goal is to offer clients continuous access to data even in the presence of server
and network failures. The adaptation strategy adopted in Coda is application-
transparent adaptation. The principles of the Coda file system provide a good
starting point for distributed file systems in mobile computing platforms as well.

The adaptation approach of Coda was, however, seen as inadequate for some
situations and a component supporting application-aware adaptation called
Odyssey [53] was designed. Odyssey is based on extending UNIX with a small
but powerful set of extensions for mobile computing. The functionality provided
by Odyssey can be compared to adaptation functionality provided by the service
platform presented in this work. The fundamental idea in both systems is to
provide relevant information for applications in order to enable application-
aware adaptation.

Aura also has a component implementing remote execution environment for
applications called Spectra. In this work, the Service Delivery GSE and the
distributed nature of the service platform enable the remote execution of service
instances. The task layer of Aura, also called Prism, performs user task
monitoring, user intent monitoring and high-level proactivity. This kind of layer

 131

is missing from the architecture presented in this work and is worth considering
as an approach for deriving the high-level context information and achieving
proactivity in the service platform. However, the exclusion of high-level context
information usage in the service platform developed was a conscious decision
that was made due to the practical design approach targeting lightweight
implementations.

6.2.2 Comparison to Gaia

The Gaia metaoperating system architecture also has some similarities with the
services provided by the service platform of this work. In particular, the Gaia
kernel components: Event Manager, Context Service, Presence Service, Space
Repository, and Context File System can easily be seen as "relatives" of the
GSEs presented in this work.

The Gaia Event Manager uses a technique referred to as event channels. Event
channels forward supplier's events to the event consumers registered with the
channel. The event manager has a single entry point and one or more event
channel factories. In Gaia, applications can also define their own event channels
for application state change monitoring. The functionality of the event manager
of the Gaia kernel is comparable with the Event Notification GSE in the
architecture presented in this work. Event channeling is not used in the service
platform presented, but would clearly be a possible method for separating the
platform and service-specific event delivery and therefore adding security to the
event delivery solution.

The Gaia Context Service lets applications query and register for context
information, which helps applications adapt to their environment. This is also the
functionality that the Environment Monitoring GSE, together with adaptation
middleware components, provides in the service platform of this work. The
context model of Gaia is based on first-order logic and Boolean algebra, which
enables simple rule writing to describe context information. The same approach
is also used in the service profiling mechanism used in the adaptation of mobile
services in this work.

 132

The Gaia Presence Service and Space Repository are related to the resource
management of active spaces. Therefore, they have no comparable entities in the
service platform architecture presented in this work.

The Gaia Context File System enables the use of context information to
distinguish meaningful information from irrelevant information. The service
platform presented in this work does not provide a context sensitive file system,
but a service for permanently saving data implemented by the Permanent
Storage GSE.

Aura and Gaia architectures are from the field of pervasive computing, designed
for active spaces, and take advantage of context-awareness and adaptation.
Therefore, as seen in this chapter, there are clear similarities in the services that
these architectures provide with the services provided by the service platform of
this work. This chapter has introduced a few targets for development and these
among others are discussed next.

6.3 Targets for Development

Now that we have presented the architecture and prototype implementation of a
distributed service platform supporting the adaptability of mobile services, it is
time to look back and raise some targets for development regarding the
developed service platform. Also, future research issues regarding the developed
service platform and its architecture are to be raised.

6.3.1 Representation of Context Information

Further developments are needed to enhance the scalability of ontology and the
semantics that are used for representing context information. The approach taken
in the prototype implementation was to base ontology and semantics on string
representation of context data. However, another approach would be to utilize
more flexible technologies like XML for context information representation. In
this way the ontology and semantics would become more fluently extendable.

 133

On the other hand, the use of XML introduces XML parsing that is quite a
resource-consuming process and can produce an overwhelming workload for
resource-constrained mobile terminals. So compromises have to be made when
choosing the methods for context information representation in mobile
computing systems.

6.3.2 High-Level Context Sensing

There is a clear need for further research on interpreting higher-level context
information from the lower-level context information. This is an issue that was
not researched extensively because the focus of the work was in the adaptation
and not context-awareness in general.

However, for deriving high-level context information, the methods of AI could
be used. These methods include use of, for example, Bayesian networks and
classifiers as can be seen in [27]. Rule-based systems are also one possible
approach to derive high-level context information [26]. Additionally,
introducing a new architecture layer: a task layer that is found in the Aura
architecture for deriving high-level context information and providing
proactivity for the system is an approach worth considering. Future research
regarding the high-level context interpretation is needed and especially from the
practical design approach point of view that aims to keep the system lightweight
and small in size.

6.3.3 Event Notification Enhancements

The Event Notification GSE of this work was designed to be as simple as
possible to keep the workload small. However, further enhancements are
required regarding the security of the event delivery mechanism. In the
prototype implementation, all of the events were visible to all of the clients of
the Event notification GSE. This should not be the case because of security
reasons. The event delivery of platform-related events should be invisible to the
services. Also, the event delivery between a service and a service instance
should not be visible to other services.

 134

One possible approach to achieve this is to use event channels that are also used
in the Gaia metaoperating system. By using event channels the delivery of
platform-specific events could be separated from service-specific events. And
each service could also have its own secure event channel in use not visible to
other services.

6.3.4 Communications Solution Enhancements

The main purpose of the communications solution of this work was to
implement a communication abstraction separating the platform from any
specific transport layer protocol by providing platform-specific PDUs and
services for communicating between the different domains of the service
platform. The communications solution also provided services for deriving the
available network bandwidth and latency.

However, lots of enhancements valuable for adaptive applications can be made.
For example, the Aura architecture includes the Intelligent Networking layer that
has the capability of providing information about current network conditions and
also provides network proactivity anticipating the network's state in the near
future. In particular, network proactivity would be a valuable enhancement to the
communications solution made in this work.

6.3.5 Technologies

In chapter 2, a set of technologies from the domain of this work was presented.
However, the requirement analysis and architectural design took place in a
technology-independent way focusing on needed service platform functionality.
However, there are technologies that could have been used in the prototype
implementation phase, these were not used, however, as the prototype
implementation was made for concept and architecture validation and
demonstration purposes only.

For example, it would be worth studying to see if CC/PP Profiles can be used in
profiling in general and also for the terminal profiling carried out on the service
platform. Also, the usage of SOAP would be one possibility to implement the

 135

communications components of the platform. Even the taken approach for
communications abstraction implementation was customized and message-based
middleware, the RPC-based solutions could have been used as well.

6.3.6 Service Platform Adaptability

A lightweight distributed service platform supporting the adaptation of mobile
services has been presented in this work. However, during the work it was
noticed that future research is needed to make the service platform and its
components adaptive as well. So further research is required regarding the
adaptability of the GSEs and other platform components.

From the architecture point of view, one possible way to implement the
adaptation of platform components could be to control the adaptation via the
control interfaces of the components. The work completed provides a good
starting point for research on service platform adaptability.

6.4 Achievement of Objectives

This chapter discusses how the objectives that were set for the work in chapter
1.3 have been reached. The first objective was to identify the basic requirements
and perform a requirement analysis for future mobile services and service
provisioning in distributed and heterogeneous computing environments. In
particular, the interest was in identifying the requirements that future mobile
computing environments and users generate regarding the adaptation of mobile
services.

This objective was successfully reached via the wide literature review that
concluded the adaptation, personalization, and context-awareness are the basic
requirements for future mobile services. Additionally, it was noticed that these
requirements and terms are partly overlapping in a way that adaptation is an
integral part of both personalization and context-aware functionality. Therefore,
the personalization and context-awareness, together with the heterogeneous
distributed computing environment, set the requirements for adaptation
functionality that is needed in future mobile services.

 136

From the requirements identified, an adaptation process that consisted of static
and dynamic adaptation was designed and presented. The static adaptation
process can support service personalization and the dynamic adaptation process
enables context-aware applications to monitor context continuously. The overall
adaptation process was taken as the starting point for designing the internal
functionality of the service platform components.

Another objective was to develop a distributed service platform providing
adaptation support and alleviating the design and implementation of adaptive
mobile services. The service platform should be based on the requirements
gathered from the literature review.

This objective was also successfully reached via the architectural design and
prototype implementation of the service platform. The GSE concept covered in
the literature review was taken as the starting point for the architectural design of
the service platform. The GSE concept was taken further by defining GSEs in
more detail and designing, implementing and testing the GSEs as basic building
blocks of the service platform. The service platform architecture supporting the
adaptation of mobile services, and alleviating the service development to meet
all the requirements identified was presented and validated in a prototype
implementation.

An additional objective, aside from the actual service platform functionality, was
to use a practical design approach that should result in a lightweight service
platform that could be introduced to resource-constrained mobile computing
environments.

This objective was also successfully reached as the prototype implementation of
the service platform, service gateway and mobile terminal resident parts
together, resulted in an overall size of less than 360 KB, of which approximately
one third is allocated to the mobile terminal. This proved that the service
platform developed could be introduced to very resource-constrained mobile
computing environments. In summary, it can be said that all the objectives set
for the work were met satisfactorily.

 137

7. Conclusions
In this work, a distributed service platform for adaptive mobile services has been
the main interest of research. At first, an introduction was given about the
research activities that have lead to the development of this kind of service
platform for a service gateway -based service architecture. The service gateway-
based systems were selected for the research framework because in preceding
research they have been identified as one possible solution to future service
management issues [3].

An insight to the domain of the work and related research was given via the wide
literature review carried out to perform a requirement analysis for future mobile
services and service platforms supporting service adaptation. The trend of
providing services individually and personalized way instead of mass-produced
services was clearly emphasized in the literature review. As a result of the
literature review, the three basic requirements for future mobile services
adaptation, personalization, and context-awareness were identified.

It was also identified that the definitions and usage of these terms are partly
overlapping and that the features of personalization and context-awareness
utilize adaptation in their overall operation. Therefore, the features of
personalization and context-awareness together with the computing environment
set the requirements for the adaptation.

Further requirements for the adaptation support functionality were gathered from
the literature with a practical design approach targeting a lightweight service
platform. The basic requirements and operation principles for a lightweight
service platform supporting the adaptation of mobile services were presented.
An adaptation process consisting of static and dynamic adaptation was
presented. Also, profiling mechanisms and profiles to describe user preferences,
user characteristics, terminal capabilities, dynamic context, and a priori context
definitions were outlined and designed. Perhaps the two most vital profiling
techniques presented were the user preference profiling that enables the
representation of user preferences towards the service domain and the service
profiling that enables the services to express their interests regarding the context.

 138

Having gathered the requirements for the lightweight service platform
supporting the adaptation of mobile services in a service gateway-based service
architecture, the architectural design of the service platform took place. The GSE
concept covered in the literature review was taken as the starting point for the
architectural design. Defining the GSE in a more detailed yet universally
applicable way in the work and in [1], advanced the state of the art regarding
GSEs. The work also provided an alternative and more practical approach to
GSEs by identifying, designing, implementing, and testing six GSEs needed to
support the adaptation of mobile services in service gateway-based service
architecture. The architecture for a lightweight distributed service platform that
is based on utilizing GSEs was also provided.

The designed architecture was validated by a prototype implementation that
proved the advantages of the practical design approach as the prototype
implementation resulted in an overall size of less than 360 KB, of which
approximately one third is allocated to the mobile terminal domain. This proves
that the developed service platform and its architecture can be introduced to very
resource-constrained mobile computing environments, which was one of the
goals set for the work.

The fundamental research problem that this work focused on was how to support
future mobile services to meet the manifold requirements set for them. The
requirements are set by the raised user expectations of personalized and context-
aware services and by the distributed heterogeneous computing environments.
This work shows that adaptation of mobile services can be supported providing
the support as middleware services that are part of a lightweight distributed
service platform that hides the heterogeneity and distributed nature of the
underlying computing environment. This kind of service platform considerably
alleviates the development of future mobile services to meet the requirements of
personalization, adaptation, and context-awareness.

 139

References
[1] Pakkala, D. & Latvakoski, J. (2004). Distributed Service Platform for

Adaptive Mobile Services, to be submitted to The 2004 International
Conference on Pervasive Computing and Communications (PCC-04),
June 21�24, Las Vegas, Nevada, USA.

[2] Raatikainen, K., Hohl, F., Latvakoski, J., Lindholm, T. & Tarkoma, S.
(2003). Generic Service Elements for Adaptive Applications, WWRF
WG2 White Paper, p. 12.

[3] Pakkala, D., Välitalo, P. & Latvakoski, J. (2003). User Centric Peer-to-
Peer Service Environment for Interaction with Networked Appliances. In:
Proceedings on 23rd International Conference on Distributed Computing
Systems Workshops, 19�22 May, Providence, Rhode Island, USA. Pp.
242�247. ISBN 0-7695-1921-0.

[4] Pakkala, D., Välitalo, P., Pääkkönen, P. & Latvakoski, J. (2003). User-
Centric Peer-to-Peer Service Environment for Interaction with Networked
Appliances. ERCIM News, July, No. 54, pp. 12�13.

[5] Latvakoski, J., Pakkala, D. & Pääkkönen, P. (2003). An Interaction based
Approach to Mobile System Construction. In: Proceedings on 3rd
Workshop on Applications and Services in Wireless Networks, 2�4 July,
Bern, Switzerland. Pp. 243�252. ISBN 3-9522719-0-X.

[6] Latvakoski, J., Pääkkönen, P., Pakkala, D., Tikkala, A., Remes, J. &
Välitalo, P. (2002). Interaction of All IP Mobile Internet Devices with
Networked Appliances in Residential Home. In: Proceedings on 22nd
International Conference on Distributed Computing Systems Workshops,
2�5 July, Vienna, Austria. Pp. 717�722. ISBN 0-7695-1588-6.

[7] Wireless World Research Forum Working Group 2 (19.11.2003). Home
Page, URL: http://www.comtec.e-technik.unikassel.de/content/conference
/wwrf-wg2/

 140

[8] Weiser, M. (1991). The Computer for the 21st Century. Scientific American,
September, vol. 265, issue 3, pp. 94�104.

[9] Weiser, M. (1993). Some Computer Science Issues in Ubiquitous
Computing. Communications of the ACM, vol. 36, pp. 75�84.

[10] Abowd, G. D. & Mynatt, E. D. (2000). Charting Past, Present, and Future
Research in Ubiquitous Computing. ACM Transactions on Computer-
Human Interaction, vol. 7, pp. 29�58.

[11] Bagrodia, R., Chu, W. W., Kleinrock, L. & Popek, G. (1995). Vision,
Issues, and Architecture for Nomadic Computing. IEEE Personal
Communications, vol. 2, pp. 14�27.

[12] Satyanarayanan, M. (2001). Pervasive Computing: Vision and Challenges.
IEEE Personal Communications, vol. 8, pp. 10�17.

[13] Garlan, D., Siewiorek, D. P., Smailagic, A. & Steenkiste, P. (2002).
Project Aura: Toward Distraction-Free Pervasive Computing. IEEE
Pervasive Computing, vol. 1, pp. 22�31.

[14] Roman, M., Hess, C., Cerquiera, R., Renganathan, A., Campell, R. H. &
Nahrstedt K. (2002). A Middleware Infrastructure for Active Spaces.
IEEE Pervasive Computing, vol. 1, pp. 74�83.

[15] Satyanarayanan, M. (1996). Fundamental Challenges in Mobile Computing.
In: Proceedings of the 15th Annual ACM Symposium on Principles of
Distributed Computing, May, Philadelphia, Pennsylvania, USA, ACM
Press, New York. Pp. 1�7.

[16] Meer, S. v. d. & Arbanowski, S. (2001). From Unified Messaging Towards
I-centric, Services for the Virtual Home Environment. In: Proceedings of
IEEE Intelligent Network Workshop (IN 2001), Boston, MA, USA. Pp.
489�492. ISBN 0-7695-1198-8.

 141

[17] Steglich, S. & Popescu-Zeletin, R. (2001). Towards I-centric User
Interaction. In: IEEE International Conference on Multimedia and Expo,
Tokyo, Japan, 2001.

[18] Biemans, M., Kranenburg, H. v. & Lankhorst, M. M. (2001). User Evaluations
to Guide the Design of an Extended Personal Service Environment for
Mobile Services. In: Proceedings of IEEE Fifth International Symposium
on Wearable Computers, Zurich, Switzerland. Pp. 94�101.

[19] Campadello, S. (2003). Middleware Infrastructure for Distributed Mobile
Applications. PhD Thesis, Department of Computer Science, University
of Helsinki. Helsinki, Finland. 155 p.

[20] Lauer, H. et al. (2003). Personalization, Wireless World Research Forum
Working Group 2 White Paper. 36 p.

[21] Arbanowski, S. & Meer, S. v. d. (1999). Service Personalization for
Unified Messaging Systems. In: Proceedings of 4th IEEE International
Symposium on Computers and Communications, ISCC'99, Red Sea,
Egypt. Pp. 156�163.

[22] Dey, A. K. & Abowd, G. D. (2000). Towards a Better Understanding of
Context and Context-Awareness. In: Proceedings of Computer-Human
Interaction 2000 (CHI 2000), Workshop on The What, Who, Where, When
and How of Context-Awareness, April 3, Hague, Netherlands. 12 p.

[23] Korhonen, I., Pärkkä, J. & Gils, M. V. (2003). Health Monitoring in the
Home of the Future. IEEE Engineering in Medicine and Biology
Magazine, vol. 22, issue 3, May/June, pp. 66�73.

[24] Lee, S.-W. & Mase, K. (2002). Activity and Location Recognition Using
Wearable Sensors. IEEE Pervasive Computing, vol. 1, issue 3, pp. 24�32.

[25] Ranganathan, A. & Lei, H. (2003). Context-Aware Communication. IEEE
Computer, vol. 36, issue 4, pp. 90�92.

 142

[26] Chen, G. & Kotz, D. (2001). A Survey of Context-Aware Mobile Computing
Research. Dartmouth College Department of Computer Science, Dartmouth.
Technical Report TR2000-381, 16 p.

[27] Korpipää, P., Mäntyjärvi, J., Kela, J., Keränen, H. & Malm, E.-J. (2003).
Managing Context Information in Mobile Devices. IEEE Pervasive
Computing, vol. 2, issue 3, July�September, pp. 42�51.

[28] Kaasinen, E. (2003). User Needs for Location-aware Mobile Services.
Personal and Ubiquitous Computing, issue 7, pp. 70�79.

[29] Davies, N., Cheverst, K., Mitchell, K. & Efrat, A. (2001). Using and
Determining Location in a Context-Sensitive Tour Guide. IEEE
Computer, vol. 34, issue 8, pp. 35�41.

[30] Intille, S. S. (2002). Designing a Home of the Future. IEEE Pervasive
Computing, vol. 1, issue 2, April�June, pp. 76�82.

[31] Göker, A. & Myrhaug, H. (2002). User Context and Personalisation. In:
Workshop on Case Based Reasoning and Personalization, September 4th,
Aberdeen, Scotland. 7 p.

[32] Colouris, G., Dollimore, J. & Kindberg, T. (1994). Distributed Systems
Concepts and Design. 2nd edition, Addison-Wesley, London. 615 p.

[33] Vinoski, S. (2002). Where is Middleware? IEEE Internet Computing, vol.
6, issue 2, March�April, pp. 83�85.

[34] Raatikainen, K. (19.11.2003). Middleware and Protocols for the Future
Mobile Internet, Nokia Featured Arcticle, http://www.nokia.com/nokia/
0,,41256,00.html

[35] Zou, H., Wang, B. & Mao, W. (1999). User Profiles for Access to
Telecom Services. In: Proceedings of IEEE Fifth Asia-Pacific Conference
on Communications, vol. 2. Beijing, China. Pp. 1114�1117.

 143

[36] Object Management Group, Inc. (19.11.2003). Common Object Request
Broker Architecture, URL: http://www.corba.org

[37] Object Management Group, Inc. (19.11.2003). Home Page, URL:
http://www.omg.org

[38] Sun Microsystems, Inc. (19.11.2003). Java Remote Method Invocation,
URL: http://java.sun.com/products/jdk/rmi/

[39] Wall, T. & Cahill, V. (2001). Mobile RMI: supporting remote access to
Java server objects on mobile hosts. In: 3rd IEEE International Symposium
on Distributed Objects and Applications, Rome, Italy. Pp. 41�51.

[40] World Wide Web Consortium. (19.11.2003). Extensible Markup
Language, URL: http://www.w3.org/XML/

[41] World Wide Web Consortium. (19.11.2003). Simple Object Access
Protocol, URL: http://www.w3.org/TR/SOAP/

[42] World Wide Web Consortium. (19.11.2003). Composite Capability /
Preference Profiles, URL: http://www.w3.org/TR/NOTE-CCPP/

[43] World Wide Web Consortium. (19.11.2003). Resource Description
Framework, URL: http://www.w3.org/RDF/

[44] World Wide Web Consortium. (19.11.2003). Home Page, URL:
http://www.w3.org

[45] Open Services Gateway Initiative (OSGi). (19.11.2003). Home Page,
URL: http://www.osgi.org

[46] Open Services Gateway Initiative (OSGi). (19.11.2003). OSGi Service
Platform Release 3 Specification, URL: http://www.osgi.org/resources/
spec_download.asp

[47] Sun Microsystems, Inc. (19.11.2003). Java 2 Platform overview, URL:
http://java.sun.com/java2/whatis/

 144

[48] Helal, S. (2002). Pervasive Java. IEEE Pervasive Computing, vol. 1, issue
1, January�March, pp. 82�85.

[49] Lawton, G. (2002). Moving Java into Mobile Phones. IEEE Computer,
vol. 35, issue 6, June, pp. 17�20.

[50] Sameshima, S., Arbanowski, S. & Suzuki, J. (2001). Super Distributed
Objects, Object Management Group (OMG), Super Distributed Objects
DSIG White Paper, July. 21 p.

[51] Steglich, S., Vaidya, R. N., Gimpeliovskaja, O., Arbanowski, S. &
Popescu-Zeletin, R. (2003). I-Centric Services Based on Super Distributed
Objects. In: IEEE 6th International Symposium on Autonomous
Decentralized Systems (ISADS´2003), Pisa, Italy. Pp. 232�239.

[52] Satyanarayanan, M., Kistler, J. J., Kumar, P., Okasaki, M. E., Siegel, E.
H. & Steere, D. C. (1990). Coda: A Highly Available File System for a
Distributed Workstation Environment. IEEE Transactions on Computers,
vol. 39, issue 4, April, pp. 447�459.

[53] Satyanarayanan, M. (1996). Accessing Information on Demand at any
Location: Mobile Information Access. IEEE Personal Communications,
vol. 3, issue 1, February, pp. 26�33.

[54] The Bluetooth Special Interest Group (SIG), Inc. (19.11.2003). The
Official Bluetooth Website. URL: http://www.bluetooth.com/

[55] OBP Research Inc. (19.11.2003). ReaGeniX tool overview, URL:
http://personal.inet.fi/business/obp/intro.pps

[56] International Organization for Standardization. (1984). The Open Systems
Interconnection (OSI) Model, ISO 7498.

[57] Prehofer, C., Kellerer, W., Hirschfeld, R., Berndt, H. & Kawamura, K.
(2002). An Architecture Supporting Adaptation and Evolution in Fourth
Generation Mobile Communication Systems. KICS Journal of Communi-
cations and Networks, vol. 4, issue 4, December, pp. 1�9.

 145

[58] Tuulari, E. & Ylisaukko-oja, A. (2002). SoapBox: A Platform for Ubiquitous
Computing Research and Applications. In: Lecture Notes in Computer
Science 2414: Pervasive Computing. Zürich, CH, August 26�28, Mattern,
F. Naghshineh, M. (eds.). Springer-Verlag. Pp. 125�138.

[59] Smarthome Inc. (19.11.2003). X.10 Overview, URL:
http://www.smarthome.com/aboutx10.html

[60] International Business Machines (IBM), Corp. (19.11.2003). IBM Service
Management Framework overview. URL: http://www-3.ibm.com/software/
wireless/smf/

[61] Sun Microsystems, Inc. (19.11.2003). Java Media Framework (JMF)
Home Page. URL: http://java.sun.com/products/java-media/jmf/

<<S
ervice>>

E
vent

N
otification(N

)

<<S
ervice>>

E
nvironm

ent
M

onitoring
(N

)

<<S
ervice>>

P
erm

anent
S

torage(N
)

<<S
ervice>>

A
ccess

C
ontrol(N

)

<<S
ervice>>

S
ervice

D
elivery(N

)

<<S
ervice>>

G
eneric

P
rofiling(N

)

<<S
ervice>>

E
vent

N
otification(M

)

<<S
ervice>>

E
nvironm

ent
M

onitoring(M
)

<<S
ervice>>

P
erm

anent
S

torage(M
)

<<S
ervice>>

A
ccess

C
ontrol(M

)

<<S
ervice>>

S
ervice

D
elivery(M

)

<<S
ervice>>

G
eneric

P
rofiling(M

)

<<Domain>> Connectivity Layer

<<Service>> Communications(N) <<Service>> Communications(M)

<<D
o

m
ain

>>
 M

id
d

lew
are L

ay
e

r

<<Service>>
Static Adaptation

<<Service>>
Dynamic

Adaptation

<<Service>>
Platform

Management

<<Service>>
Context Sensing

<<Domain>> Service Layer

 Platform Interface(N) Platform Interface(M)

<<Application>>
Distributed Service A

<<Application>>
Service Instance A

 P
latform

 C
ontrol(M

)

<<Control>>

<<Control>>

<<Control>>

<<
C

on
tro

l>
>

<<
C

on
tro

l>
>

<<Control>>

<<Service>>
Platform

Management

<<Control>>

 <<Control>>

<<Control>>

use r

 Output

 Input
<<

C
on

tro
l>

>

A
PPE

N
D

IX
 1

C
onceptual architecture of the service platform

<<
C

on
tro

l>
>

<<Domain>> Service Gateway <<Domain>> Mobile Terminal

 P
latform

 C
ontrol(N

)

<<Control>>

<<Control>>

<<Service>> Network

Platform Management Access Control GSE UserService
Service Authorization

UI

getTrustedStatus(ServiceCard)

authorize(ServiceCard)

info <- createDescription(ServiceCard)

showUI(info)

accept or reject -buttonpress

if(accept)
new ServicePass(trusted)
else
new ServicePass(not_trusted)

accept / reject

return ServicePass

return ServicePass

A
PPE

N
D

IX
 2

Service authorization event trace

APPENDIX 3 Service authorization event trace description

1. First, a service wanting to gain trusted status within the service platform and
thereby have access to guarded private data starts the service authentication
process by passing its ServiceCard to the Platform Management component
as a parameter in the getTrustedStatus function call. The service makes its
function call via the platform interface from where the call is forwarded to the
Platform Management component.

2. The Platform Management component calls the authorize function of the
Access Control GSE and passes over the ServiceCard it received in step 1.

3. The Access Control GSE creates a service description from the ServiceCard
including the service's name, provider, description of private data usage and
all other relevant information needed to describe the service.

4. The service description is shown in the Service Authorization UI and the user
is asked if the service described should be trusted to have access to private
data.

5. The user either accepts or rejects the services trusted status query by pressing
either accept or reject button of the Service Authorization UI.

6. The Access Control GSE gets the result of the query. If the user has accepted
the query a ServicePass with trusted status is created, otherwise a ServicePass
with not-trusted status is created.

7. The ServicePass created is returned from by the Access Control GSE as an
authorize function return value to the Platform Management Component.

8. The Platform Management component returns the ServicePass it receives to
the service as a return value to the getTrustedStatus function call.

If the user accepted the service's trusted status query, the service can now access the
guarded and private data using the ServicePass it was given as a result of the service
authorization process. The ServicePass is always required when a service tries to
retrieve private and guarded data. Services can obtain the ServicePass with trusted
status only by going through the service authorization process as described.

Access Control GSE Platform Main UIAuthorization UI

start()

User

showUI()

userID&password

Ok -buttonpress

authorize(userID&password)

return OK

startmainUI() show()

Permanent Storage GSE

getStorage(acse, auth)

return storage

locateStorage(acse, auth)

check(userID&password)

The internal operation of the distributed GSEs
is not presented, GSEs are presented as logical network
transparent entities as the clients of the GSEs see them.

A
PPE

N
D

IX
 4

U
ser authorization event trace

APPENDIX 5 User authorization event trace description

1. When the mobile terminal side of the service platform is started, the
Authorization UI is the first thing visible to the user.

2. The user gives his personal user identification (userID) and password as input
to the Authorization UI.

3. When the user has given the input required he presses the "OK" button in the
Authorization UI.

4. The Authorization UI passes the userID and the password to the Access
Control GSE as parameters to the authorize function call.

5. The Access Control GSE retrieves a Storage containing the information about
authorized usersIDs and passwords from the Permanent Storage GSE by
calling the getStorage function with the ServiceID of the caller and storage
name as parameters.

6. The Permanent Storage GSE locates the requested Storage, which can be
located in either domains of the service platform, and returns the Storage as
a return value to the getStorage function call.

7. Possessing the information about authorized users, the Access Control GSE
compares the userID and password given by the user with the ones retrieved
from the Storage. If they match, OK is returned as a return value to authorize
the function call. If the userID and password are not valid, !OK is returned.

8. If OK is received by the Authorization UI it starts and shows the Platform
Main UI. If !OK is received, the user is requested to give the userID and the
password again.

If the user passes the user authorization process he is given the Platform Main UI that
provides full access to all of the services running on the service platform, including
the platform services for profile editing and service browsing.

Service Browser UI UserPlatform Main UIService Delivery GSE

The internal operation of the distributed GSEs
is not presented, GSEs are presented as logical network
transparent entities as the clients of the GSEs see them.

Platform ManagementAdaptive Video ServiceAdaptive Context Service

register(ServiceCard, instance1)

register(ServiceCard,instance3)

Browse Services -buttonpress

getBrowser()

getServiceCards()

return servicecards

register(ServiceCard, instance2)

new Browser(servicecards)

start()

show()

select(serviceinstance1)

Ok -buttonpress

get(serviceinstance1)

create(serviceinstance1)

instanciate(serviceinstance1)

createinstance1()

return serviceinstance1

deliver(serviceinstance1)

Service Instance1 UI

deliver()

initialize(platforminterface)

start()

show()

Service Usage

A
PPE

N
D

IX
 6

Service brow
sing and selection event trace

APPENDIX 7 Service browsing and selection event trace description

1. When the Adaptive Context Service and the Adaptive Video Service are
installed on the service platform and service gateway they register all of their
service instances by calling the register function of the Platform Management
component and passing the ServiceCards describing the service instances to
be registered as parameters. The services call the register function via the
platform interface from where the call is forwarded to Platform Management
component.

2. The user starts the service browsing process by pressing the Browse Services
button in the Platform Main UI.

3. The Platform Main UI calls the getBrowser function of the Service Delivery
GSE in order to activate and start the Service Browser UI.

4. The Service Delivery GSE retrieves all of the registered ServiceCards from
the Platform Management component by calling the getServiceCards
function.

5. The Platform Management component returns all of the registered
ServiceCards describing the registered service instances.

6. The Service Delivery GSE creates a Service Browser UI, which includes the
list of available services in a dropdown menu and makes it visible to the user
to select the service instance he wants to use. (*)

7. The user selects a service instance from the Service Browser UI and presses
the "OK" button. The Service Browser UI calls the get function of the Service
Delivery GSE with selected service instance name as the parameter to
activate the service instance that the user selected.

8. The Service Delivery GSE calls the Platform Management create function
with selected service instance name as the parameter. The call is forwarded to
the service having registered the service instance selected.

9. The service creates the service instance and returns it to the Platform
Management component that calls the deliver function of Service Delivery
GSE with the created service instance as the parameter to deliver the service
instance to the mobile terminal domain for execution. (The static adaptation
of service and service instance takes place at this point)

10. The Service Delivery GSE delivers the service instance to the mobile
terminal domain where it is initialized and given the local platform interface
to have access to service platform services.

11. The service instance is started and made visible to the user by the Service
Delivery GSE and now the user is able to use the service instance that he
selected in step 7.

(*) The ServiceCards include more information about the service instance than just
a name. Thereby the service browser could have an option to view this information
that describes the service instance and the service. However, this option was not
implemented in the prototype implementation.

Access Control GSE Platform Main UI UserPermanent Storage GSE Profile Editor UI

Edit Profiles -buttonpress

start()

show()

Characteristics Editor
UIPreferences Editor UI New Preferences UI

Preference -buttonpress

showUI(prefprofiles)
New... -buttonpress

showUI()
set(name,willingness,disturbance,interaction)

Ok -buttonpress

newPreferencesProfile(name,willingness,disturbance,interaction)

createPreferenceProfile(name,willingness,disturbance,interaction)updateStorage(prefstorage)

changeProfile(name) User -buttonpress

showUI(charprofile)
update(data)

Ok -buttonpress

updateCharacteristicsProfile(data)

updateCharacteristicsProfile(data)updateStorage(charstorage)

getPreferenceProfiles()

getStorage(prefstorage)

return prefstorage

getStorage(charstorage)

return charstorage
return prefprofiles

getCharacteristicsProfile()

return charprofile

The internal operation of the distributed GSEs
is not presented, GSEs are presented as logical network
transparent entities as the clients of the GSEs see them.

At this point the user could also select one
of the existing preference profiles and it would

be activated by Access Control GSE

*(note)

*(note)

A
PPE

N
D

IX
 8

Profile editing event trace

APPENDIX 9 Profile editing event trace description

1. The user presses the "Edit Profile" button in the Platform Main UI, which
results in the startup of the Profile Editor UI that is shown to the user.

2. The user presses the "Preference" button, which results in the Profile Editor
UI retrieving the currently active and previously created preference profiles
from the Access Control GSE by calling the getPreferenceProfiles function.

3. The Access Control GSE retrieves the existing preference profiles from the
Permanent Storage GSE and returns these and currently active profiles to the
Profile Editor UI, which creates Preference Editor UI showing the currently
active preferences profiles and all of the existing preferences profiles. The
user can select one of these profiles to be activated or create a new
preferences profile that will be activated automatically after creation.

4. The user wants to create a new preferences profile and presses the "New..."
button, which results in the startup of the New Preferences UI into which the
user can define a new preferences profile.

5. The user gives a name for the new profile and defines the three preference
variables, as he likes. After this, the user presses the "OK" button, resulting in
the newPreferencesProfile function call of the Access Control GSE with
parameters given by the user.

6. The Access Control GSE creates and activates a new preferences profile with
the parameters received. The new profile is saved using the Permanent
Storage GSE.

7. Now the user wants to update the user characteristics profile and presses the
"User" button in the Profile Editor UI, resulting in the
getCharacteristicsProfile function call of the Access Control GSE.

8. The Access Control GSE returns the user characteristics profile that it has
saved using the Permanent Storage GSE to the Profile Editor UI.

9. The Profile Editor UI creates and makes visible the Characteristics Editor UI
containing the current user characteristics data. The user updates this data and
presses the "OK" button.

10. The Characteristics Editor UI updates the changed information by calling the
updateCharacteristicsProfile function of the Access Control GSE and giving
the updated data as the parameter.

11. The Access Control GSE updates the user preferences profile and saves the
updated profile using the Permanent Storage GSE.

Context Sensing Service
Environement Monitoring

GSE Dynamic Adaptation Service Adaptive Context Service

Desktor Lamp (NA)

X.10 Context Service
UISensors Platform Management

ServProfile(light,proximity)

register(ServProfile)
add(ServProfile)

Activate -buttonpress

activate()

sensordata(light,proximity)
data<-wrap(light,proximity)

updateEnvProfile(data)

update(data)

getEnvProfile()

return EnvProfile

constructCtx(EnvProfile)

compare(ServProfile,Ctx)

action <- processRequest()

control(action)

adaptationRequest(light,proximity,match?)

changeState(action)

The internal operation of the distributed GSEs
is not presented, GSEs are presented as logical network
transparent entities as the clients of the GSEs see them.

sensordata(light,proximity)

data<-wrap(light,proximity)

updateEnvProfile(data)

update(data)

getEnvProfile()

return EnvProfile

constructCtx(EnvProfile)

*(note #1)

*(note #2)

The sensor periodically update the
data they measure to Context Sensing

Service that processes it further.

*(note #1) *(note #2)

The Dynamic Adaptation Service periodically fetches
the environment profile from the Environemnt Monitoring GSE and

constructs the current context based on it.

Access Control GSE

getPreferenceProfile()

return PreferenceProfile

checkProfile(!sleep)

compare(ServProfile,Ctx)

sensordata(light,proximity)

data<-wrap(light,proximity)

A
PPE

N
D

IX
 10 U

sing A
daptive C

ontext Service event trace

APPENDIX 11 Using Adaptive Context Service event trace description

1. The user has gone through the service browsing and selected X.10 Context
Service -service instance. Now the user presses the "Activate" button in the
UI of the selected service instance.

2. The Adaptive Context Service receives the button press (*) and activates.
This results in the Adaptive Context Service to register its ServiceProfile for
monitoring lighting and proximity context information using the platform
interface.

3. The registration of the ServiceProfile is received by the Platform
Management component that registers the ServiceProfile and adds it to the
Dynamic Adaptation Service for monitoring.

4. The Sensors in the user’s surroundings send measurement results periodically
to the Context Sensing Service that wraps the measurement data and updates
it in the environment profile by calling the updateEnvProfile function of the
Environment Monitoring GSE with wrapped data as the parameter.

5. The Environment Monitoring GSE updates the received data in the
environment profile.

6. The Dynamic Adaptation Service periodically fetches the environment profile
by calling the getEnvProfile function of the Environment Monitoring GSE
and constructs the current context from the environment profile data.

7. The Dynamic Adaptation Service compares the current context with the a
priori context definitions made in the ServiceProfiles. If the definitions and
current context match an adaptation request with a matching ServiceProfile,
identifications will be sent to the service owning the ServiceProfile. In this
case the lighting conditions are not good and the user is near his terminal PC,
this results in an adaptation request to be sent to the Adaptive Context
Service.

8. The Adaptive Context Service receives the adaptation request and processes
it possibly resulting in an action command to be executed. At this point the
Adaptive Context Service consults the Static Adaptation Service by fetching
the user preferences profile and checking that the user has not set a sleep
profile. If not, the Adaptive Context Service turns on the Desktop Lamp near
the user’s PC by calling a control function with an action command as the
parameter.

(*) Even if not drawn in the event trace diagram, the X.10 Context Service -service
instance and the Adaptive Context Service can use the service provided by the Event
Notification GSE of the service platform.

To summarize, the Adaptive Context Service automatically turns on the desktop
lamp if it senses that lighting conditions are not good near the user and the user is
near the terminal. Also, if the user leaves his terminal, the desktop lamp is
automatically turned off until the user gets near to the terminal again.

Dynamic Adaptation Service Adaptive Video Service
Adaptive Video Service

UIPlatform Management
Environement Monitoring

GSE User

ServProfile(bandwidth)

add(ServProfile)
getBandwidth()

update(bandwidth)
getEnvProfile()

return EnvProfile

constructCtx(EnvProfile)

compare(ServProfile,Ctx)

startStreaming()

show(VideoStream)

adaptationRequest(bandwidth,good?)

Event Notification GSE

VideoStream

start()

adapt <- processRequest()

generateEvt(adapt)

new Evt(adapt)

Evt(adapt)

show(Adapt Message)

stopStreaming()

show(Adapted UI)

Order -buttonpress

getPicture()

pic <- captureFrame()

return pic

show(pic)constructCtx(EnvProfile)

compare(ServProfile,Ctx)

getEnvProfile()

return EnvProfile

getBandwidth()

update(bandwidth)

*(note #1)

The Environment Monitoring GSE internally monitors
the available network bandwidth by periodically updating the

bandvisth value to the environment profile.

*(note #1)

*(note #2)

*(note #2)

The Dynamic Adaptation Service periodically fetches
the environment profile from the Environemnt Monitoring GSE and

constructs the current context based on it.

*(note #3)

*(note #3)

In this case the available bandwidth is below the value defined a priori in the
service profile and therefore adaptation takes place. If the value would be above

the service profile definition adaptation would not take place.

A
PPE

N
D

IX
 12 U

sing A
daptive V

ideo Service event trace

APPENDIX 13 Using Adaptive Video Service event trace description

1. The user has selected the Adaptive Video Service -service instance to be
started, resulting in the Adaptive Video Service to register its ServiceProfile
for monitoring available network bandwidth. The ServiceProfile is registered
using services in the platform interface from where the registration call is
forwarded to the Platform Management component, which adds the Service
Profile to Dynamic Adaptation Service for monitoring.

2. The Adaptive Video Service starts the video streaming and the video starts
playing in the Adaptive Video Service UI.

3. The Environment Monitoring GSE includes functionality for available
bandwidth monitoring and it periodically updates the available bandwidth
value to the environment profile it hosts.

4. The Dynamic Adaptation Service periodically fetches the environment profile
by calling the getEnvProfile function of the Environment Monitoring GSE
and constructs the current context from the information in the environment
profile.

5. The constructed context is compared to a priori context definitions in the
ServiceProfiles. If the definition matches up with current context, an
adaptation request will be sent to the service owning the matching
ServiceProfile. In this case, the available bandwidth has dropped below the
value defined in the ServiceProfile of Adaptive Video Service resulting in an
adaptation request to be sent for it.

6. The Adaptive Video Service receives the adaptation request and processes it
resulting in an adaptation event to be generated by calling the generateEvt
function of the Event Notification GSE. (*) Video streaming can be stopped
at this point.

7. The Adaptive Video Service -service instance receives the adaptation event
and adapts accordingly by showing the reason for the adaptation to the user
and changing its operation to picture mode. In picture mode, the user can
order still pictures taken from the video camera.

8. The user presses the "Order" button in the Adaptive Video Service UI that
results in the getPicture function call of the Adaptive Video Service.

9. The Adaptive Video Service captures a frame from the video camera and
returns it to Adaptive Video Service UI as a return value to the getPicture
function call.

10. The Adaptive Video Service UI receives the picture and shows it to user.

(*) If the available bandwidth increases above the value defined in the
ServiceProfile, a new adaptation request is sent resulting in the video streaming
being started and the UI changing to video mode again.

Published by

 Series title, number and
report code of publication

VTT Publications 519
VTT�PUBS�519

Author(s)
Pakkala, Daniel
Title

Lightweight distributed service platform for adaptive
mobile services

Abstract
Distributed computing environments are becoming more heterogeneous due to the integration of
different wireless and fixed networks and variety of terminal devices that can be used to access
content and services on the Internet. Also, increasing user expectations of personalizable, adaptive,
and context-aware mobile services bring complexity to the development of future mobile services.
The distributed and heterogeneous computing environment, together with increasing user
expectations, set requirements for future mobile services that are difficult to meet without service
platform support alleviating service development.

In this work, a lightweight distributed service platform that has been designed with a practical
design approach to support the adaptation of mobile services, and partly also personalization and
context-aware functionalities of the services, is presented. A requirement analysis for future
mobile services is carried out by an extensive literature review. The mobile service adaptation
support functionality of the service platform is designed based on the identified requirements.
Further architecture based on the concept of Generic Service Elements is designed for the service
platform. The validation of the architecture is achieved by a prototype implementation. The
validation was successfully achieved by the prototype implementation. It also proved the service
platform�s applicability to resource-constrained distributed mobile computing environments as the
prototype resulted in an overall size of less than 360 KB, of which approximately one third is
allocated to the mobile terminal domain.

Keywords
adaptation, middleware services, Generic Service Elements (GSE), context-awareness, service
personalization, pervasive computing architectures

Activity unit
VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN�90571 OULU, Finland

ISBN Project number
951�38�6269�0 (soft back ed.)
951�38�6270�4 (URL:http://www.vtt.fi/inf/pdf/)

Date Language Pages Price
March 2004 English, Finnish abstr. 145 p. + app. 13 p. D

Name of project Commissioned by

Series title and ISSN Sold by

VTT Publications
1235�0621 (soft back ed.)
1455�0849 (URL: http://www.vtt.fi/inf/pdf/)

VTT Information Service
P.O.Box 2000, FIN�02044 VTT, Finland
Phone internat. +358 9 456 4404
Fax +358 9 456 4374

Julkaisija

 Julkaisun sarja, numero ja
raporttikoodi

VTT Publications 519
VTT�PUBS�519

Tekijä(t)
Pakkala, Daniel

Nimeke

Kevytrakenteinen hajautettu palvelualusta mukautuville
liikkuville palveluille

Tiivistelmä
Langattomien ja kiinteiden verkkojen yhdentymisen sekä moninaisten Internetin sisällön ja
palveluiden käyttöön tarkoitettujen päätelaitteiden ansiosta hajautetut tietokoneympäristöt ovat
epäyhtenäistymässä. Lisäksi käyttäjien lisääntyvät odotukset koskien räätälöitäviä, mukautuvia ja
tilannetietoisia liikkuvia palveluita tuovat monimutkaisuutta tulevaisuuden liikkuvien palveluiden
kehitykseen. Tulevaisuuden lisääntyvät käyttäjien odotukset sekä epäyhtenäiset hajautetut
tietokoneympäristöt asettavat vaatimuksia liikkuville palveluille, jotka niiden on vaikea täyttää
ilman palvelun kehitystä helpottavia palvelualustoja.

Tässä työssä esitellään kevytrakenteinen hajautettu palvelualusta, joka on suunniteltu käyttäen
käytäntöön perustuvaa lähestymistapaa. Palvelualusta on suunniteltu tukemaan liikkuvien
palveluiden mukautuvuutta, sekä osittain myös palveluiden räätälöitävyyttä sekä tilanne-
tietoisuutta. Laajassa kirjallisuuskatsauksessa on tehty vaatimusmäärittely tulevaisuuden
liikkuville palveluille. Palvelualustan liikkuvien palveluiden mukautuvuutta tukeva toiminnallisuus
on suunniteltu kirjallisuuskatsauksessa tunnistettujen vaatimusten pohjalta. Palvelualustan arkki-
tehtuuri on suunniteltu pohjautuen ideaan yleisistä palveluelementeistä. Suunniteltu arkkitehtuuri
on vahvistettu toimivaksi tekemällä palvelualustasta prototyyppi, joka toimi odotetusti. Lisäksi
palvelualustan prototyyppi toteutus osoitti alustan soveltuvan resursseiltaan rajoitettuihin
hajautettuihin liikkuviin tietokoneympäristöihin, koska sen lopullinen koko oli alle 360 Kt, josta
noin kolmasosa sijoittuu liikkuvaan päätelaitteeseen.

Avainsanat
adaptation, middleware services, Generic Service Elements (GSE), context-awareness, service
personalization, pervasive computing architectures

Toimintayksikkö
VTT Elektroniikka, Kaitoväylä 1, PL 1100, 90571 OULU

ISBN Projektinumero
951�38�6269�0 (nid.)
951�38�6270�4 (URL: http://www.vtt.fi/inf/pdf/)

Julkaisuaika Kieli Sivuja Hinta
Maaliskuu 2004 Englanti, Suom. tiiv. 145 s. + liitt. 13 s. D

Projektin nimi Toimeksiantaja(t)

Avainnimeke ja ISSN Myynti:

VTT Publications
1235�0621 (nid.)
1455�0849 (URL: http://www.vtt.fi/inf/pdf/)

VTT Tietopalvelu
PL 2000, 02044 VTT
Puh. (09) 456 4404
Faksi (09) 456 4374

	Abstract
	Tiivistelmä
	Preface
	Contents
	Abbreviations
	1. Introduction
	1.1 Motivation and Background
	1.2 Scope and Objectives
	1.3 Structure of the Work

	2. Related Research and Technologies
	2.1 Introduction of the Domain
	2.1.1 Research Framework
	2.1.2 Service Management
	2.1.3 Adaptation and Adaptability
	2.1.4 Personalization
	2.1.5 Context-awareness
	2.1.6 Functionality Distribution
	2.1.7 Middleware
	2.1.8 Generic Service Elements
	2.1.9 Profiles and Profiling
	2.2 Technologies
	2.2.1 Common Object Request Broker Architecture
	2.2.2 Remote Procedure Calls
	2.2.3 Java Remote Method Invocation
	2.2.4 Extensible Markup Language
	2.2.5 Simple Object Access Protocol
	2.2.6 Composite Capability/Preference Profiles
	2.2.7 Open Services Gateway Initiative
	2.2.8 Java 2 Platform
	2.2.9 Super Distributed Objects
	2.3 Existing Architecture Solutions
	2.3.1 Project Aura
	2.3.2 Gaia Metaoperating System
	2.4 State of the Art Summary
	2.4.1 Term Definitions Summary

	3. Design of Adaptation Support
	3.1 User Context Information
	3.1.1 Internal Presentation and Processing
	3.1.2 Privacy
	3.1.3 User Context Sensing and Delivery
	3.2 Static Adaptation
	3.2.1 The User Preferences Profile
	3.2.2 The User Characteristics Profile
	3.2.3 The Terminal Profile
	3.3 Dynamic Adaptation
	3.3.1 Environment Profile
	3.3.2 Service Profiling
	3.4 Adaptation Process
	3.5 Adaptation Support Middleware
	3.5.1 Dynamic Adaptation Service
	3.5.2 Static Adaptation Service
	3.6 Adaptive Distributed Mobile Services
	3.7 Requirements Summary

	4. Architectural Design
	4.1 Architecture Overview
	4.1.1 Service Layer
	4.1.2 Middleware Layer
	4.1.3 Communications Layer
	4.2 Generic Service Elements
	4.2.1 Outlining Service Platform GSEs
	4.2.2 Environment Monitoring
	4.2.3 Event Notification
	4.2.4 Permanent Storage
	4.2.5 Access Control
	4.2.6 Generic Profiling
	4.2.7 Service Delivery
	4.3 Platform Control and Management

	5. Prototype Implementation and Testing
	5.1 Implemented Services
	5.1.1 Adaptive Context Service
	5.1.2 Adaptive Video Service

	5.2 Configuration
	5.2.1 Hardware Configuration
	5.2.2 Software Configuration

	5.3 Use Cases
	5.3.1 User Authorization
	5.3.2 Service Browsing
	5.3.3 Editing Profiles
	5.3.4 Using Adaptive Context Service
	5.3.5 Using Adaptive Video Service

	5.4 Evaluation of Prototype
	5.4.1 Context-Awareness
	5.4.2 Scale of Prototype
	5.4.3 Validation
	5.4.4 Testing
	5.4.5 Shortcomings
	5.4.6 Strengths

	6. Discussion
	6.1 Generic Service Elements
	6.2 Architecture Review
	6.2.2 Comparison to Gaia
	6.2.1 Comparison to Aura

	6.3 Targets for Development
	6.3.1 Representation of Context Information
	6.3.2 High-Level Context Sensing
	6.3.3 Event Notification Enhancements
	6.3.4 Communications Solution Enhancements
	6.3.5 Technologies
	6.3.6 Service Platform Adaptability
	6.4 Achievement of Objectives

	7. Conclusions
	References
	APPENDIX 1 Conceptual architecture of the service platform
	APPENDIX 2 Service authorization event trace
	APPENDIX 3 Service authorization event trace description
	APPENDIX 4 User authorization event trace
	APPENDIX 5 User authorization event trace description
	APPENDIX 6 Service browsing and selection event trace
	APPENDIX 7 Service browsing and selection event trace description
	APPENDIX 8 Profile editing event trace
	APPENDIX 9 Profile editing event trace description
	APPENDIX 10 Using Adaptive Context Service event trace
	APPENDIX 11 Using Adaptive Context Service event trace description
	APPENDIX 12 Using Adaptive Video Service event trace
	APPENDIX 13 Using Adaptive Video Service event trace description

