
V
TT PU

BLICA
TIO

N
S 523

A
rchitecture design m

ethods for application dom
ain-specific integrated com

puter system
s

 Soininen

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000

02044 VTT 02044 VTT FIN–02044 VTT, Finland
Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. +358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax +358 9 456 4374

ISBN 951–38–6363–8 (soft back ed.) ISBN 951–38–6364–6 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2004ESPOO 2004ESPOO 2004ESPOO 2004ESPOO 2004 VTT PUBLICATIONS 523

Juha-Pekka Soininen

Architecture design methods for
application domain-specific
integrated computer systems

It has become technologically possible to implement several computer
systems into a single chip presuming that the design complexity and power
efficiency challenges can be conquered. With these billion-transistor ASICs,
we have to adopt new on-chip network-based system architectures and to
extend the level of design reuse into the use of predesigned architectural
platforms. The new architecture paradigm and increasing complexity of
applications introduce new challenges for architecture design methods for
embedded and mobile systems.

The presented backbone-platform-system design methodology helps in
encapsulating circuit design, platform architecure design and application
development phases, which makes the management of complexity easier. It
also provides a system design framework for the new architecture design
methods that are used for decision support and quality validation. The
complexity-based estimation is used for the system scaling. The mappability-
based estimation is used for the selection of computing resources. The
capacity-based estimation is used for supporting application mapping and
architecture validation. The main objective is to provide means for rapid
evaluation of design alternatives at early phases of design.





 

 

VTT PUBLICATIONS 523 

Architecture design methods for 
application domain-specific 

integrated computer systems 
 

 

Juha-Pekka Soininen 
VTT Electronics 

 
Academic dissertation to be presented  

with the assent of the Faculty of Technology, University of Oulu, 
 for public discussion in Kajaaninsali (L6), Linnanmaa, Oulu,  

on May 7th, 2004, at 12 noon. 



 

 

ISBN 951�38�6363�8 (soft back ed.) 
ISSN 1235�0621 (soft back ed.) 

ISBN 951�38�6364�6 (URL: http://www.vtt.fi/inf/pdf/) 
ISSN 1455�0849 (URL: http://www.vtt.fi/inf/pdf/) 

Copyright © VTT Technical Research Centre of Finland 2004 

 

JULKAISIJA � UTGIVARE � PUBLISHER 

VTT, Vuorimiehentie 5, PL 2000, 02044 VTT 
puh. vaihde (09) 4561, faksi (09) 456 4374 

VTT, Bergsmansvägen 5, PB 2000, 02044 VTT 
tel. växel (09) 4561, fax (09) 456 4374 

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O.Box 2000, FIN�02044 VTT, Finland 
phone internat. + 358 9 4561, fax + 358 9 456 4374 

 

VTT Elektroniikka, Kaitoväylä 1, PL 1100, 90571 OULU 
puh. vaihde (08) 551 2111, faksi (08) 551 2320 

VTT Elektronik, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG 
tel. växel (08) 551 2111, fax (08) 551 2320 

VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN�90571 OULU, Finland 
phone internat. + 358 8 551 2111, fax + 358 8 551 2320 

 

 

 
 
Technical editing Leena Ukskoski 
 
 
 
Otamedia Oy, Espoo 2004 

http://www.vtt.fi/inf/pdf/
http://www.vtt.fi/inf/pdf/


 

3 

Soininen, Juha-Pekka. Architecture design methods for application domain-specific integrated 
computer systems. Espoo 2004. VTT Publications 523. 118 p. + app. 51 p. 

Keywords decision support methods, quality estimations, mappability estimation, platform 
based design 

Abstract 
The role of the single computer inside application-specific integrated circuits is 
changing with the increasing capacity of semiconductor technology. The system 
functionality can be partitioned to a set of communicating application domain-
specific computers instead of developing the most efficient general-purpose 
computers that fulfil all kinds of computing needs. The main design challenges 
are the complexity and diversity of application-domains and the complexity of 
platforms which can provide enough capacity for those applications. 

The architecture design methods presented in this thesis are targeted at 
application domain-specific computers that are implemented as integrated 
circuits. Backbone-platform-system design methodology separates the 
technology, platform design efficiency and application development problems 
from each other. It also provides a system design framework for the architecture 
design methods presented. The methods are based on complexity, mappability, 
and capacity-based quality estimations that are used as decision support and 
quality validation tools. Abstract models of both applications and architectures 
enable rapid estimations and adequate coverage in design space exploration. 

The methods have been applied to various case examples. Complexity-based 
estimation provided a systematic approach to the selection of an architecture 
template that takes into account the changes in technologies and design 
efficiency. Mappability-based processor-algorithm quality estimation enabled us 
to study more than 10,000 processor architectures for WLAN modem transceiver 
example. Capacity-based quality estimation was used in the performance 
evaluation of configurable multiprocessor architecture. In all cases the respective 
simulations using for example instruction-set simulators would have taken much 
longer and required advanced post-processing of results.  



 

4 

Preface 
This research was carried out in VTT Electronics between 1999 and 2002. Most 
of the research was done in MULTICS, SCIFI and NOCARC projects. I want to 
express my gratitude to all companies involved in those projects and, especially, 
to Tekes for funding them.  

Very many people have supported, encouraged and inspired me during this 
work. Docent Martti Forsell and Research Professor Aarne Mämmelä have 
constantly encouraged me, guided me into scientific research methods and 
emphasized the importance of research and education. Mr. Kari Tiensyrjä has 
been in a key role in setting up the research projects and research atmosphere in 
which this work has been done. This thesis would not have been possible 
without his help. Mr. Jari Kreku, Mr. Antti Pelkonen, and Mr. Jussi Roivainen 
have been developing and implementing the ideas in this thesis with me. Their 
role has been indispensable and I owe them a lot.  

Mr. Tapio Rautio, Ms. Anu Purhonen, Mr. Klaus Melakari and Mr. Mika 
Kasslin from Nokia provided a lot of interesting ideas during the MULTICS 
project. The large steering group of the SCIFI project was a challenging and 
productive discussion forum. The comments and feedback from all the steering 
group members and the project group was extremely valuable. In the NOCARC 
project the co-operation with Royal Institute of Technology in Sweden, and 
Nokia and Ericsson resulted in an excellent exchange of ideas. The discussions 
and co-operation with Professor Axel Jantsch and Professor Shashi Kumar from 
the Royal Institute of Technology and Mr. Klaus Kronlöf from Nokia was very 
fruitful. 

I also appreciate the work of all the other co-authors of original papers not 
mentioned so far, i.e. Ms. Sandrine Boumard, Professor Ahmed Hemani, 
Professor Hannu Heusala, Mr. Michael Millberg, Professor Petri Mähönen, Mr. 
Yang Qu, Mr. Jussi Riihijärvi, Mr Mika Saaranen, Mr Tommi Salminen, and 
Professor Johnny Öberg. 

VTT has supported me in this work by providing excellent research facilities and 
working environment. I want to thank the management and all the people at 
VTT. I especially want to thank the support services at VTT Electronics. 



 

5 

Because of their professional way of managing everything from travelling 
arrangements to daily routines, I have been able to concentrate on my research 
work. 

I want to thank Professor Hannu Heusala for supervising this thesis and for 
several encouraging discussions. I also wish to thank Professor Jari Nurmi and 
Professor Rolf Ernst, the reviewers of the thesis, for their comments and 
suggestions.  

I want to thank HPY:n tutkimussäätiö and Seppo Säynäjäkankaan tiedesäätiö for 
their very motivating and important economical support.  

Matti and Vappu Turunen let me to use their apartment as a peaceful place to 
complete this thesis. Most of this thesis was written there during November 2002 
and October 2003. Thank you. Kiitos. 

Finally, I want to thank my wife Tuija and our children Ulla and Otto for their 
patience and support. Allowing one to concentrate on the work is one part of it; 
the other part is to force the mind to think about the more important issues, such 
as simulated combat flights.  

 

Juha-Pekka Soininen  

7.2.2004  

 



 

6 

List of original papers 
This thesis includes seven original papers published in scientific international 
journals or proceedings of international conferences. They are included here 
with the permissions of the original publishers. 

1. Kumar, S., Jantsch, A., Soininen, J.-P., Forsell, M., Millberg, M., Öberg, J., 
Tiensyrjä, K. and Hemani, A. A Network on Chip Architecture and Design 
Methodology. Proceedings of 2002 IEEE Computer Society Annual 
Symposium on VLSI, Pittsburgh, Pennsylvania, USA, 24�25 April 2002. 
IEEE Computer Society Press 2002. Pp. 117�124. 

2. Soininen, J.-P., Forsell, M., Pelkonen, A., Kreku, J., Jantsch, A. and Kumar, S. 
Extending platform based design to Network on Chip systems. Proceedings 
of 16th International Conference on VLSI Design 2003, New Delhi, India, 4�
8 January 2003. IEEE Computer Society Press 2003. Pp. 401�408.  

3. Roivainen, J., Riihijärvi, J., Mähönen, P., Soininen, J.-P. and Saaranen, M. 
Minimisation of functionality and implementation of embedded low-power 
WWW-server. Electronics Letters 2002. Vol. 38, No. 2, pp. 100�101. 

4. Soininen, J.-P., Boumard, S., Salminen, T. and Heusala, H. Application of 
decision-making method for architecture selection of ADSL modem. 
Proceedings of Euromicro Symposium on Digital Systems Design, DSD 
2001, Warsaw, Poland, 4�6 September 2001. IEEE Computer Society Press 
2001. Pp. 21�28. 

5. Soininen, J.-P., Kreku, J., Qu, Y. and Forsell, M. Mappability Estimation 
Approach for Processor Architecture Evaluation. Proceeding of 20th 
NORCHIP Conference 2002, Copenhagen, Denmark, 11�12 November 
2002. Technoconsult, Cogenhagen NV, Denmark 2002. Pp. 171�176. 

6. Soininen, J.-P., Kreku, J., Qu, Y. and Forsell, M. Fast Processor Core Selection 
for WLAN Modem using Mappability Estimation. Proceedings of the 10th 
International Symposium on Hardware/Software Codesign, CODES 2002, 
Estes Park, Colorado, USA, 6�8 May 2002. ACM Press 2002. Pp. 61�66. 



 

7 

7. Soininen, J.-P., Pelkonen, A. and Roivainen, J. Configurable Memory 
Organisation for Communication Applications. Proceedings of Euromicro 
Symposium on Digital System Design, DSD2002, Dortmund, Germany, 4�6 
September 2002. IEEE Computer Society Press 2002. Pp. 86�93. 

I was the principal author of all except Paper 1 and Paper 3. However, my 
contributions to these papers have also been essential.  

 



 

8 

Contents 

Abstract ................................................................................................................. 3 

Preface .................................................................................................................. 4 

List of original papers ........................................................................................... 6 

List of acronyms ................................................................................................. 10 

1. Introduction................................................................................................... 15 
1.1 Problem definition ............................................................................... 16 
1.2 Research hypothesis ............................................................................ 20 
1.3 Research methods................................................................................ 21 
1.4 Organisation of thesis .......................................................................... 22 

2. Design methods for IC-based systems.......................................................... 24 
2.1 Basic blocks of integrated computers .................................................. 25 
2.2 Models and languages ......................................................................... 31 
2.3 Design flows........................................................................................ 33 

2.3.1 Dedicated hardware systems ................................................... 35 
2.3.2 Computer-based system design............................................... 39 
2.3.3 System-on-Chip design ........................................................... 43 

2.4 System-level design methodologies .................................................... 49 
2.5 Quality validation ................................................................................ 50 

2.5.1 Performance evaluation........................................................... 52 
2.5.2 Estimation methods................................................................. 54 

3. Architecture design challenges in future SoC-based systems....................... 59 
3.1 Technology capacity............................................................................ 60 
3.2 Product requirements and economics .................................................. 61 
3.3 Management of diversity and complexity ........................................... 63 

4. Architecture design....................................................................................... 66 
4.1 Backbone�Platform�System design methodology.............................. 67 

4.1.1 Separation of layers................................................................. 68 
4.1.2 Separation of infrastructure from applications........................ 69 
4.1.3 Design flow ............................................................................. 70 



 

9 

4.2 Design of application domain-specific computer ................................ 72 
4.2.1 Definition of concept model of architecture ........................... 76 
4.2.2 Definition of implementations of architectural objects........... 77 

4.3 Decision support methods ................................................................... 79 
4.3.1 Complexity-based quality estimation...................................... 80 
4.3.2 Mappability-based quality estimation ..................................... 83 
4.3.3 Capacity-based quality estimation .......................................... 87 

5. Introduction to papers ................................................................................... 91 

6. Conclusions................................................................................................... 94 

References........................................................................................................... 97 

Appendices 
Papers I�VII 

 

Appendices of this publication are not included in the PDF version.
Please order the printed version to get the complete publication
(http://www.vtt.fi/inf/pdf/)

http://www.vtt.fi/inf/pdf/


 

10 

List of acronyms 
ACM Association for Computing Machinery 

ADSL Asymmetric Digital Subscriber Line 

ALAP As Late As Possible 

ALU Arithmetic Logic Unit 

ASAP As Soon As Possible 

ASIC Application Specific Integrated Circuit 

ASIP  Application Specific Instruction-set processor 

ATPG Automated Test Pattern Generation 

BiCMOS Bipolar Complementary Metal-Oxide Semiconductor 

BPS Backbone-Platform-System design methodology 

CAD Computer Aided Design 

CFI CAD Framework Initiative 

CFSM Communicating Finite State Machine 

CIF Caltech Intermediate Format 

CISC Complex Instruction Set Computer 

CMOS Complementary Metal-Oxide Semiconductor 

COTS Commercial Off-The-Shelf 



 

11 

CPI Cycles Per Instruction 

CPU Central Processing Unit 

DASC Design Automation Standards Committee 

DLP Data Level Parallelism 

DMA Direct Memory Access 

DRAM Dynamic Random Access Memory 

DSP Digital Signal Processing 

EDA Electronic Design Automation 

EDIF Electronic Design Interchange Format 

FFT Fast Fourier Transform 

FOM Figure Of Merit 

FPGA Field Programmable Gate Array 

FSM Finite State Machine 

GDSII Graphic Design System II  

GPP General-Purpose Processor 

HDL Hardware Description Language 

HW  Hardware 

I/O Input/Output 



 

12 

IBM International Business Machines 

IC Integrated Circuit 

IEEE Institute of Electrical and Electronics Engineers 

IHIP Information Highway Interface Platform 

ILP Instruction Level Parallelism 

IP Intellectual Property or Internet Protocol 

IPC Instructions Per Cycle 

ISA Instruction Set Architecture 

ISS Instruction Set Simulator 

ITRS International Technology Roadmap for Semiconductors 

MAC Multiply and Accumulate 

MESCAL Modern Embedded Systems, Compilers, Architectures, and 
Languages project 

MIPS Million Instructions Per Second 

MMX Multimedia extension 

MOPS Million Operations Per Second 

MPEG Moving Picture Expert Group 

NoC Network on Chip 

PC Personal Computer 



 

13 

PDA Personal Digital Assistant 

PLD Programmable Logic Device 

PLP Program Level Parallelism 

QFD Quality Function Deployment 

RASSP Rapid prototyping of Application-Specific Signal Processors 

RDPA Reconfigurable Data Path Array 

RISC Reduced Instruction Set Computer 

ROM Read Only Memory 

RTL Register Transfer Level 

RTOS Real Time Operating System 

SMS Short Message Service 

SoC  System on Chip 

SOI Silicon On Insulator 

SRAM Static Random Access Memory 

SW Software 

TLP Thread Level Parallelism 

TOSCA Tools for System Co-design Automation 

TSMC Taiwan Semiconductor Manufacturing Company 



 

14 

UML Unified Modeling Language 

WAP Wireless Access Protocol 

VCI Virtual Component Interface 

VCX Virtual Component eXhange 

VHDL  Very High Speed Integrated Circuit Hardware Description 
Language  

VIS Visual Instruction Set 

WLAN Wireless Local Area Network 

VLIW Very Long Instruction Word 

VLSI Very Large Scale Integration 

VSIA Virtual Socket Interface Alliance 



 

15 

1. Introduction 
The development of semiconductor technology has been rapid since the 
invention of an integrated circuit in 1958 by Kilby and Noyce. Since then, the 
complexity of a single chip, the number of gates, has approximately doubled 
every 18 months, according to the prediction/estimation known as Moore�s law 
(Moore 1965). Current state-of-the-art processors, such as Pentium4, have more 
than 40 million transistors in a single chip (Bentley 2001) and the design of over 
50 million gates ASICs has already been started (Koehl et al. 2003). The silicon 
complexity, the number of gates per chip, is the product of chip size and gate 
density. It measures only the structural complexity of the chip. The silicon 
capacity, the product of silicon complexity and clock frequency, also measures 
the functional complexity of the chip. The internal clock frequencies of state-of-
the-art chips have increased with the shrinking feature size, and local clocks 
approaching gigahertz range frequencies are nowadays possible inside ASICs 
(Carrig 2000).  

The impact of integrated circuit-based systems on our everyday lives has been 
enormous. In addition to personal computers (PC) and laptops, we daily use tens 
of computers that are embedded in products and integrated into application-
specific integrated circuits (ASIC). There are integrated circuits and embedded 
computers, or even computer networks, in clocks, stereos, TVs, ovens, 
refrigerators, mobile phones, cars, etc. Almost every product that uses electricity 
nowadays also uses integrated circuit technology. In the year 2000 alone, more 
than 1 billion embedded processors were being sold and the total value of the 
semiconductor market was about 200 billion Euro (IC Insights 2001).  

The silicon content, the value of integrated circuits, of an electronic product has 
also increased steadily. The �intelligence� of ASICs has increased. System-on-
chip, SoC, is an ASIC that contains one or several processor cores and 
embedded software. The number of SoC designs has been predicted to 
outperform the number of standard logic designs in 2003 (IC Insights 2001). 
According to the international technology roadmap for semiconductors (ITRS 
2001), the trend of increasing silicon capacity and structural complexity will 
continue at least until 2016, when the ultimate physical limits of silicon and 
manufacturing equipment are reached. This means that from the current 0.13 µm 
technology generation we will move to 90 nm technology in 2004 and 65 nm 



 

16 

technology in 2007. In fact, some news announcements from silicon vendors 
such as TSMC and IBM indicate development that is even more rapid. The 
overall maximum complexity of a single chip system in production will increase 
from 899 million transistors to 1,020 billion transistors and 2,041 billion 
transistors respectively. In 2016 the complexity will be about 16.3 billion 
transistors with 22 nm technology.  

Computers have been divided into servers, desktop computers and embedded 
computers (Hennessy & Patterson 2003). Particularly in the high-end embedded 
computing domain, such as telecommunications and image processing, the 
optimal processor architectures have been application-specific (Parhi 1999). The 
applications of embedded computers are typically fixed at system design time 
and the system designer can optimise his architecture for those specific 
applications. In general-purpose computing the computer system designer 
provides computational and storage capacity for general problems. The 
application domain-specific computers combine the benefits of both approaches 
for a limited set of application types. The objective is to design platforms for a 
variety of products or product variants that are optimised for the characteristic 
requirements of the application types. 

The full exploitation of future silicon capacity requires new architecture 
approaches and new design paradigms. Multiple computers in a single chip 
(Cesário et al. 2002), message-based communication networks (Guerrier & 
Greiner 2000), reconfigurable processing arrays (Compton & Hauck 2002), and 
different embedded memory technologies such as SRAM, DRAM and FLASH 
are already reality. Traditional computer architectures are not scalable because 
they will have significant communication and performance overheads. The 
limitations of ASIC technology, such as power consumption, communication, 
I/O, testability, etc., will require new solutions. In addition, the required design 
effort is becoming a major limitation to system complexity.  

1.1 Problem definition 

The problem with architecture design methodology will be the complexity of the 
target system. The number of objects in a computer system architecture is 
increasing rapidly due to the achievements in ASIC technology. The amount of 



 

17 

software and the complexity of software systems are also increasing. The 
evaluation of design alternatives and the optimisation of system parameters 
cannot be done using traditional methods because of the required work and 
resources. 

A system-on-chip architect has to integrate the views of other experts in the 
design team when real systems are developed. Integrated circuit technology sets 
the boundary that limits the architectural choices. The theory of computing 
systems and their architectures define alternatives from which the system 
architect has to choose the basic approach. The application requirements that 
result from customer needs and expectations give the system architect measures 
of the goodness of his choices. Finally, the design methodologies, design flows, 
languages, methods, and tools are the means for organising and executing the 
system architect�s tasks. Architecture design methodology must take these 
different aspects into account and provide the means for selecting most feasible 
alternatives. 

The most significant CMOS technology-dependent architecture design 
constraints are caused by the signal delays (Sylverster & Keutzer 1999, Ho et al. 
2001) and power dissipation. The speed of signal is a constant that depends on 
the characteristics of the wire. The synchronous design style used in current 
designs cannot be used when the size of the chip increases, the gate delay 
decreases and the clock frequency increases. The power dissipation is a problem 
because every logic operation and signal transition consumes energy and 
although voltage scaling, etc., can reduce the energy consumption, the overall 
complexity of the chip increases far more rapidly. It will not be possible to deal 
with the required electric currents and dissipate the resulting heat. 

System-on-Chip architectures are a special case of computer architectures. They 
have usually been based on RISC processors, DSP processors, embedded SRAM 
memories and dedicated hardware accelerators. However, the more complex 
processors and architectures are now becoming feasible as integrated computer 
architectures as well. Parallel and distributed architectures implementing 
asynchronous communication schemes and package-based messaging with on-
chip networks have also been proposed recently (Guerrier & Greiner 2000, Dally 
& Towles 2001, Benini & De Micheli 2002). Reconfigurability as an intellectual 



 

18 

property block and new coarse-grain reconfigurable platform has introduced a 
new dimension to architecture design space (Hartenstein et al. 1996). 

In embedded systems, application-specific architectures can lead to better 
performance and more power efficient solutions. Customisation can be done at 
various levels from products and architectures to components. The problem is to 
find the balance between generality and optimality. The identification of a 
product platform and a product kernel is essential at the product level. At the 
architectural level the question is how to fix the interconnections between the 
computational resources and the communication resources. The design space 
varies from generic interconnect networks to fixed hardware architectures. 
Reconfigurable processors are examples of design-time customisation at the 
component level. Optimisation of the instruction-set architecture of the 
processors for specific applications has been reported to give significant benefits 
over general-purpose processors (Wang et al. 2001).  

Design productivity is becoming the major obstacle to system-on-chip 
development. It has increased significantly more slowly than silicon capacity 
and is, therefore, going to be the limiting factor to the size and complexity of an 
ASIC. High-level synthesis and higher abstraction levels in design were the first 
attempts to deal with complexity in the early 1990s. The applicability of the 
developed approaches turned out to be limited to a very special type of system. 
Intellectual property block-based design was the second attempt to tackle the 
problem, but even the extensive reuse of third-party design seems not to be 
enough. Currently the focus is on platform-based design approaches, where the 
application and computing platform development are separated from each other, 
and where the idea is to use existing platforms as a basis onto which new 
functionalities or resources are added. 

The design process can be viewed as a sequence of design decisions. In the 
beginning the number of alternative implementations is largest and each decision 
actually reduces the design space, as depicted in Figure 1. At the end of the 
process there is only one alternative and the implementation of the product 
instance remains. Simultaneously, the number of design objects increases and 
the cost of making changes to the design increases. Therefore, the ability to 
understand the consequences of early technology and architecture-related 
decisions are essential in reducing the design costs and time. 



 

19 

The architecture design methodology and design flow depends on the type of 
system. With fixed hardware architectures, the functional modelling of the final 
application precedes the structural design. With computer and software-based 
systems, the processor is designed based on the generic idea of the application 
software characteristics. The system-on-chip technology enables co-optimisation 
of both the architecture and the functionality software. Because of complexity, 
abstract presentations of models and applications are needed, and special focus 
must be put on decision-making criteria. 

Conceptual design

Architecture design

Implementation design

Design decisions

N
um

be
r o

f d
es

i g
n 

al
t e

rn
at

i v
es

 
Figure 1. The effect of design decisions on the number of possible 
implementations of the system. 

Three approaches are used for system architecture quality estimation today: 
analytical modelling, simulation and benchmarking (Heidelberger & Lavenberg 
1984, Jain 1991). Analytical modelling can be applied when the problems are 
relatively simple. Benchmarking requires that the hardware is available, and the 
results are strongly dependent on benchmark program characteristics. In the case 
of embedded systems in particular, the final application may have so many 
unique characteristics that benchmarks are not applicable. Simulation 
alternatives can be used, but in the case of performance simulation the 
construction of a simulation model requires much work, and in the case of 
hardware simulation, the simulation performance is a major bottleneck.  



 

20 

1.2 Research hypothesis 

The objective of the research was to develop methods and techniques that help in 
making system architecture decisions during system-on-chip design. The 
particular aim has been to provide fast techniques that use abstract models, and 
to develop simple estimation algorithms. Component selection, allocation of 
functionality and performance design are the design activities that differ from 
traditional electronic system design when complex system platforms are the 
target. The basic questions that describe the problem are: Why does some 
computer system architecture give better performance and cost characteristics 
to some applications than some other architectures? How could we use abstract 
models for the analysis of the potential of the architecture? The system 
architecture contains both hardware architecture and software architecture. The 
methods presented in this thesis are targeted at the hardware architecture design. 

The hypothesis in this research is that by applying quality estimation techniques 
at the architectural level it is possible to distinguish better alternatives from 
worse, and thereby limit the design space effectively. The applicable estimation 
techniques include complexity, mappability and capacity estimations. 

The complexity-based quality estimation can be used in identifying the capacity 
boundaries and characteristics of processing and communication resources. The 
hypothesis in this thesis is that the evaluation of architecture and technology 
candidates can be done using a complexity estimate-based figure of merits. 

The hypothesis in mappability-based quality estimation is that it can reveal the 
potential of the system before it is actually implemented. This can be done by 
studying the characteristics of the system from different viewpoints, e.g. by 
analysing the logical execution flows of algorithms and by studying the 
operation of the processing resources. Such techniques that can estimate the final 
quality of a system can be used for helping to decide which components to use, 
how to modify the components, and what kind of components to use. 

With capacity-based quality estimation the hypothesis is that modelling 
workload characteristics and mapping to architecture capacity models allows 
rapid and simple evaluations of the quality of architecture. New transaction-level 



 

21 

modelling and simulation methods should be very suitable for these kinds of 
feasibility studies. 

The novelty of the proposed approach is in the chosen abstraction levels, and in 
the idea of estimating the potential rather than the characteristics of the system 
model. The benefit of the chosen approach is that the estimators can be simpler 
because they do not need detailed system models. Secondly, the ability to design 
an optimal system is not restricted because of abstract models. In this approach 
optimistic guesses on system quality are made during the estimation. This allows 
the evaluation of more alternatives more rapidly, which will be a necessity in the 
future. 

1.3 Research methods 

Industrial design methodologies for complex systems-on-chips are the results of 
evolutionary processes inside the companies. Success has depended on the 
ability to integrate the required competence areas with the ability to learn from 
mistakes. The role of academic research and the various EDA tool vendors has 
been to provide the material in the form of theories, methods and tools. 
Revolutionary, complete solutions for all aspects of SoC design have not been 
successful so far. 

The research method in this thesis follows the evolutionary nature of industrial 
SoC design methods. The architecture design methodology presented here is a 
synthesis of technology trends, architecture trends, product market trends, 
research trends and my background and experience in this field. 

The complexity of target architectures is such that the formal, detailed and 
complete modelling and measurement type of validation is not economically 
feasible. Therefore, in this thesis the complete design methodology is not 
validated as such. Instead, the feasibility of the approach is demonstrated by 
developing three methods, applying them to the case example systems, and 
comparing the results with more detailed implementations or simulations. Each 
of the estimation methods studied in this thesis is a potential topic for further 
research. In this work the focus is on the overall methodology and the estimation 
methods are only studied to the point where the potential and feasibility is 



 

22 

proven. The value of the overall methodology can only be assessed using 
common sense and intuition. 

1.4 Organisation of thesis 

This thesis consists of an introduction and seven original papers. The selected 
papers represent the latest results of the research I have carried out. They have 
been written between 2000 and 2002. However, the ideas in the thesis are the 
outcome of fifteen years of research starting from the late 1980s, when ASIC 
design was taking its first steps in using hardware description languages (HDL) 
instead of graphical block diagrams. 

The introduction of VHDL in 1987 revolutionised ASIC design and enabled the 
transition from a very structural gate array ASIC to register-transfer level (RTL) 
synthesis and cell-based designs. At the same time, the technology allowed the 
integration of a processor core and dedicated logic into the same chip. System 
modelling, simulation and SW/HW partitioning were research topics that 
initiated a number of papers. (Juntunen et al. 1988, Soininen et al. 1989, Sipola 
et al. 1991, Kauppi & Soininen 1991, Kauppi et al. 1992, Sipola et al. 1992) 

In the 1990s it was obvious to the research community that using processors in 
the ASIC enabled new system optimisation possibilities. Silicon technology 
enabled the integration of more complex processors, embedded memories and 
analogue functions into the same chip. System-level simulation and verification 
became more important (Soininen et al. 1995, Soininen et al. 1997, Soininen et 
al. 1998a). In the late 1990s the system-on-chip projects started to be too 
expensive and complicated. In order to increase the usability of the design at 
system-level, the product platform and platform chip concepts were introduced 
and studied also in Soininen (1997), Soininen et al. (1998b), and Soininen 
(1999). The first ideas for a new architecture design method were presented in 
Soininen et al. (2001). The concepts of intellectual property block or virtual 
component were needed to enable reuse at block level. These issues were studied 
in Riihijärvi et al. (2001) and Pelkonen et al. (2001). 

Today we are facing a paradigm shift from analogue to the introduction of 
VHDL. SystemC is a new language, which is claimed to integrate software 



 

23 

development and hardware development in a way that enables system-level 
design. The system designer is again drawing blocks and mapping functionality 
into them. In architecture research the new computing element array ASICs 
integrate computers, processors or ALUs into flexible fabrics that can be reused 
in various types of products. It remains to be seen whether these innovations can 
fulfil their promises. Anyway, if we look at the topology of these innovations, 
they have interesting similarities with gate array ASICs. The circle seems to be 
closing. 

The introduction part of this thesis is organised as follows. Chapter 2 briefly 
introduces the design methods for IC-based systems; Chapter 3 introduces the 
main design problems the system architect has to face when developing complex 
systems; Chapter 4 presents the main ideas of the original papers in a condensed 
form; Chapter 5 introduces the original papers; and Chapter 6 gives the 
conclusions. 



 

24 

2. Design methods for IC-based systems 
Integrated circuit technology has provided a variety of implementation formats 
for system designers. Implementation format defines what technology is used, 
how the switching elements are organised on the surface of chip and how the 
system functionality will be implemented. The implementation format also 
affects how systems are designed and limits the system complexity. Examples of 
the alternatives are a combinational logic implemented with discrete components 
and a billion-transistor Network-on-Chip consisting of tens of computers. 

The integrated circuit technology has mostly been based on silicon. Today the 
majority of IC-based systems are based on CMOS technology (IC Insights 
2001). The CMOS switching elements that implement basic Boolean functions 
such as AND, OR and NOT in the digital systems are the dominant technology. 
The current trend is to use Silicon-on-Insulator (SOI) technology to improve the 
circuit speed and power efficiency. However, the bipolar technology is widely 
used in analogue devices, BiCMOS technology is used in mixed-signal and 
microprocessor designs, and Gallium-Arsenide and Silicon-Germanium-based 
products are used in high-performance products. 

If we look at the organisation of switching elements, regularity of organisation 
and granularity of elements are the essential parameters. Examples of regular 
formats are gate arrays, programmable logic devices (PLD), memories, field 
programmable gate arrays (FPGA), reconfigurable data path arrays (RDPA), and 
vector processors. Regularity has a strong impact on the required design effort, 
because the reuse of the design is very simple. The problems with regularity are 
that the usability and performance of resources may be limited because of the 
structure. The granularity expresses how much functionality is encapsulated into 
one design object. In fine-grain, medium-grain and coarse-grain formats the 
examples of basic units are the logic gates, standard cells � such as arithmetic 
logic units (ALUs) or multipliers � and intellectual property blocks � such as 
processor cores, network interfaces, etc. � respectively. The granularity affects 
the number of required design objects and, thereby, the required design or 
integration effort. 

The three main approaches for implementing the system functionality are 
dedicated systems, reconfigurable systems and programmable systems. The 



 

25 

differentiating factor is the configuration frequency, i.e. how often the structure 
of the system is changed. In dedicated systems the structure is fixed at the design 
time, as in ASICs. In programmable systems the data path of the processor core, 
for example, is configured by every instruction fetched from memory during the 
decode-phase. The traditional microprocessor-based computer is the classical 
example. In the reconfigurable systems the structure of the system can be altered 
by changing the configuration data, as in field programmable gate arrays 
(FPGA). In dynamically reconfigurable systems the configuration can be done 
during run-time; in statically reconfigurable systems the configuration is done 
off-line.  

2.1 Basic blocks of integrated computers 

The basic building blocks for application domain-specific integrated computers 
are input, output, data path, memory and control � as with an ordinary computer 
(Patterson & Hennessy 1998). The implementation format of each basic block 
can, at least theoretically, be any combination of the previous classes. For 
example, the data path and control can be implemented using fixed dedicated 
hardware, as in ASICs (Smith 1997), or reconfigurable logic (Caspi et al. 2001, 
Compton & Hauck 2002) or microprogrammed units, as in processors (Anceau 
1986). The data path can consist of regular elements, as in reconfigurable arrays, 
or dedicated, pipelined blocks, as in superscalar processors. The granularity of 
data path elements can vary from single gates in ASIC to complete processors in 
multiprocessor architectures. However, an integrated computer system typically 
consists of a processor or processors, memory organisation and communication 
network. The tasks of the system architect are to know them, to identify the best 
alternatives and to join them, so that the system fulfilling the quality targets can 
be quantified and designed. 

The diversity of the applications has led to a variety of processor architectures 
that exploit parallelism differently (Forsell 2002a). The basic taxonomy of 
processor architecture was presented by Flynn (1966) and used the number of 
instruction streams and data elements being processed as the criteria. Skillicorn 
(1988) extended Flynn�s taxonomy to multiprocessor architectures and took into 
account the internal structure of the processor, e.g. pipelining and parallelism. 
Corporaal (1998) used the instruction issue rate, number of operations per 



 

26 

instruction, number of data elements in each operation and degree of 
superpipelining as the dimensions of the architecture design space.  

The first microprocessors were sequential processors based on Von Neuman 
architecture (Mazor 1995). Initially, the lack of processor-memory bandwidth 
and poor compilers resulted in complex instruction sets, and they were called 
complex instruction set computers, CISC. In the early 1980s the invention of 
reduced instruction set architecture, RISC, and the development of VLSI 
technology enabled the implementation of a pipelined architecture, larger 
register banks and more address space in a single chip processor. In the 1990s 
the focus was on the exploitation of instruction-level parallelism, ILP, which 
eventually resulted in the modern general-purpose processors (Slater 1996). 
Superscalar and very long instruction word architectures, VLIW, are examples 
of dynamic and static parallelism. Data-level parallelism, DLP, has been 
exploited in instruction set extensions such as Intel�s MMX and Sun�s VIS, 
where the objective has been to improve the performance of multimedia 
applications. Recently the silicon capacity has enabled the implementation of the 
first microprocessors that exploit thread-level parallelism, TLP (Koufaty & Marr 
2003), and process-level parallelism, PLP, where several processor cores are 
integrated into a single chip. OMAP processors from Texas Instruments are 
well-known examples. Research approaches that are even more complex have 
been proposed by Taylor et al. (2002) and Mai et al. (2000). 

Another dimension in processor architectures has been the application 
orientation that has led to a variety of different types of instruction sets and 
organisations. Today, in addition to general-purpose processors, we also have 
microcontrollers, in which the memory organisation and peripherals are 
integrated into the same chip. Digital signal processors were invented to 
perform simple stream-based processing, such as filtering. The Harvard and 
SuperHarvard architectures, advanced addressing, efficient interfaces, and 
powerful functional units such as multiplier and barrel shifters give superior 
performance in the limited application space (Madisetti 1995). Multimedia 
processors are targeted at applications where data parallelism can be exploited 
efficiently, i.e. real-time compression and decompression of audio and video 
streams and generation of computer graphics. Multimedia processors can be 
divided into microprocessors with multimedia instruction extensions and highly 
parallel DSP processors (Kuroda & Nishitani 1998). Network processors have an 



 

27 

effective interconnection network between the processing elements that operate 
in parallel and efficient instructions for packet classification (Wolf & Turner 
2001). Reconfigurable data path arrays, RDPAs, have coarse-grain functional 
units, such as ALUs or multipliers, as configurable elements (Hartenstein et al. 
1996). Bondalapati & Prasanna (2002) and Compton & Hauck (2002) give 
extensive overviews of configurable systems, technologies and use. 

Customisation of instruction set is another technique for improving the 
performance of a processor in a specific application domain. Coprocessors are 
hardware accelerators for specific types of applications, such as floating-point 
arithmetic or multimedia. In the reconfigurable coprocessors and reconfigurable 
computers the idea is to dynamically load the instruction into an FPGA block 
(Mangione-Smith et al. 1997). Configurable processors are targeted at System-
on-Chip products. The idea is that the processor�s instructions are optimised for 
the application during the SoC design. The basic architecture is typically a 
pipelined RISC architecture, and new instructions are either integrated into the 
pipeline or implemented as coprocessors or architectural extensions (Wang et al. 
2001, Campi et al. 2001). Application specific instruction processors, ASIP are 
designed for a particular application set. The idea is that the complete instruction 
set, and the selection of the architecture template, is based on the application 
analyses (Jain et al. 2001, Itoh et al. 2000). Application specific processors are 
processors that are synthesised from the application description using a built-in 
architecture template of the synthesis system. The idea is to extract computation 
resources from the application description and to synthesise the control that 
minimised the resources within given performance constraints (De Man et al. 
1990). 

Memory can be characterised with size, number of ports, latency and bandwidth. 
Latency is the access delay of a randomly chosen data element and bandwidth is 
the data rate of the elements. Semiconductor memory components are typically 
2-dimensional regular structures, and latency is inversely proportional to the size 
of memory. The bandwidth depends on the memory buses, internal organisation 
of memory and access logic.  

Computer memory is typically composed of hierarchically organised memory 
components or blocks. The levels of the hierarchy are called layers. The faster 
and more expensive memories are in the upper layers; the slower, bigger and 



 

28 

cheaper memories are in the lower layers. The objective is to keep the most 
accessed data items at the top of the hierarchy (Patterson & Hennessy 1998). 
Cache memories are fast memories between processors and the main memories 
that keep the most frequently used data items easily accessible. The idea is to 
benefit from spatial and temporal locality of memory accesses. Smith (1982) 
gives a good overview of cache memories. Virtual memory is a technique that 
implements the translation of a program�s address space to a physical address 
space (Killburn et al. 1962). The benefits are that separately compiled programs 
can share the same memory and that by moving code and data between the main 
memory and the secondary storage a single program can exceed the physical 
address space (Jacob & Mudge 1998). Shared memories can be accessed by 
more than one processor in a multiprocessor system. 

The main memory classes are volatile memories, e.g. static random access 
memory, SRAM, dynamic random access memory, DRAM, and non-volatile 
memories, such as read-only memory, ROM, and FLASH memory. SRAM is a 
fast memory, but typical implementation takes six transistors per bit. DRAM is a 
dense memory, only one transistor per bit, but the latency, e.g. access delay, is 
high. The FLASH memory also suffers from high latencies � the writing takes 
time, because it must be done for large blocks (Bez et al. 2003). The DRAM and 
FLASH memories are internally asynchronous and have different latencies for 
random and sequential accesses. For DRAM in particular, this has led to a 
variety of solutions for speeding up the overall performance, such as fast page 
mode accesses, synchronous interfaces, and intelligent control interfaces (Cuppu 
et al. 1999).  

The design of memory organisation for an integrated computer system using 
embedded memories differs from a component-based memory system, because it 
is possible to change the parameters of the blocks, such as bus widths and 
memory capacity (Panda et al. 1999). The number of memory blocks does not 
cause a significant price increase, as is the case with discrete memory 
components. Only the total area is significant, because the design is relatively 
simple due to the regular structures of memories. Therefore, it is possible to 
divide the memory into smaller blocks according to the application requirements 
and architecture characteristics (Panda et al. 2001). The size of the memory 
blocks is very simple to change, making it possible to optimise the total area. 
The communication inside the chip is fast, which means that it is often possible 



 

29 

to simplify the memory organisation by reducing the number of layers. 
Removing caches or replacing them with scratchpad memories, for example, 
also improves power efficiency and simplifies the memory management units 
(Banakar et al. 2002). It is also possible to use wide buses and exploit data 
parallelism in communication as it is done between the cache and main 
memories.  

Communication network is the third main component of a computer system. 
Communication channels can be divided into dedicated channels, e.g. signals, 
and shared channels, e.g. buses and networks. The buses connect subsystems, 
and networks connect computers according to the classical definition. The 
dedicated channels may be static point-to-point connections or dynamic switched 
connections. However, these distinctions are becoming very difficult with 
advanced buses and interconnect networks in multicomputer ASICs. 

The buses can be further divided into CPU-memory and I/O buses, parallel and 
serial buses, or synchronous and asynchronous buses, according to their purpose 
or physical implementation. A typical personal computer has a CPU-memory 
bus that connects the cache and main memory, a high-speed bus for graphics 
processing, a peripheral bus and an I/O bus for external devices. The bus 
transaction is the basic read or write operation in the bus. The bus master is the 
component that can initiate transactions. The bus slave is the passive 
counterpart. In the case of multiple masters, the bus arbiter controls which one 
gets the bus. Several techniques, such as split transactions, pipelining and 
packet-switched buses, have been proposed for improving bus efficiency. The 
basics of buses, the main components and principles of operation are explained 
in more detail by Hennessy & Patterson (2003). 

The AMBA bus is a typical example of a System-on-Chip bus. It consists of a 
high-speed bus for the CPU-memory interface and a low-speed peripheral bus 
for other, less demanding blocks (ARM 1999). Virtual Socket Interface Alliance 
has developed a standard interface for virtual components to on-chip buses, but 
real buses must be adapted to this interface with glue logic (Lennard et al. 2000). 
The MicroNetwork approach uses concurrent protocols, scalable data path 
widths and pipelining for decoupling the IP block design from the 
communication design (Wingard 2001). Lahtinen et al. (2002) distributes the 
arbitration among the connected agents. The approach is especially suitable for 



 

30 

continuous media systems. As examples of more complex buses, Leijten et al. 
(1998) have proposed a communication architecture that consists of FIFOs and 
time-multiplexed switches, and Lahiri et al. (2001) have introduced a 
randomised arbitration approach that improves bus performance. Salminen et al. 
(2002) gives an overview of System-on-Chip buses.  

In some single-chip computer systems crossbar-switches and multistage 
interconnection networks based on packet-based messaging networks have 
replaced buses as communication channels. Interconnection networks originate 
from parallel supercomputer systems. Culler & Pal Singh (1999) give an 
introduction to the concepts, Sivaram et al. (2002) introduce taxonomy to switch 
architectures and Duato et al. (1997) describe the network topologies and 
networking principles in more detail. Dally & Towles (2001) have proposed on-
chip interconnection networks instead of top-level wiring of ASICs. The idea is 
partitioning of the chip area into tiles and network and increasing the modularity 
and the efficiency of the system. The basic topology is 2-dimensional mesh with 
buffered routers and processing tiles. Guerrier & Greiner (2000) presented a 
generic packet-switched interconnection template for on-chip communication 
and assessed its feasibility with regard to cost and performance. The basic 
topology is fat-tree and the router is based on a partial crossbar with input 
buffers and shared output buffers. A multitude of Network-on-Chip related 
architectures have been published since these early papers (Karim et al. 2002, 
Benini & De Micheli 2002, Sgroi et al. 2001, Saastamoinen et al. 2002, Wielage 
& Goossens 2002.). Jantsch & Tenhunen (2003) summarise the main results. 

Today, the integrated computers are eventually manufactured in ASIC foundries 
using silicon-processing technology. This applies to System-on-Chip solutions, 
FPGA-based devices and reconfigurable data path arrays, and, most likely, it 
will apply to Networks-on-Chip. This leads to two main requirements for system 
architecture and design methodology. First, it must be possible to implement all 
the building blocks with the chosen process. This means that we have to be able 
to use the technologies, such as, for example, DRAM memories and FPGAs, as 
part of the ASIC manufacturing process. Second, we have to be able to design 
the complete system. This means that we have to be able combine the 
information from different areas such as algorithm design, software design, 
hardware design, so that decision making at the system level is possible. 



 

31 

2.2 Models and languages 

The purpose of the design is to convert the user�s requirements into a system that 
fulfils those requirements. In order to perform this task we need to have models 
of the system at different levels of details, i. e. abstraction levels, and languages 
that describe the contents of those models. The design process is basically a 
sequence of steps that takes a model of a design at a higher level and transforms 
or refines it into a lower level model, so it consists of both models and methods. 
At every abstraction level we have a model that is based on a language 
consisting of syntax and semantics. The model of computation defines how the 
abstract machine can behave in operational semantics. It is important to notice 
that one language can contain several models of computation, and one model can 
have parts described in different languages.  

Edwards et al. (1997) define the most common models of computation used in 
embedded systems.  

- Discrete event models are based on the idea that tokens or events carry a 
totally ordered time stamp, as in VHDL simulation. The major problem is 
non-determinism in case of simultaneous events.  

- Communicating Sequential Processes were proposed by Hoare (1985). Harel 
(1987) introduced hierarchy, concurrency and non-determinism into 
traditional finite state machines. Finite State Machine-based languages have 
been used by Balarin et al. (1997).  

- The synchronous and reactive models (Berry & Gonthier 1992) are based on 
the idea that all signal event pairs are totally ordered and globally available, 
as in cycle-based simulators where all the values of signals are evaluated at 
every clock cycle.  

- Dataflow Process Networks (Lee & Parks 1995) describes the systems as 
directed graphs where computation occurs in nodes, communication happens 
via arcs, and events and data are presented as tokens. 

Other models of computation include rendezvous-based models that are used in 
process calculus. Lee & Sangiovanni-Vincentelli (1998) have proposed a 



 

32 

framework for comparing models of computation in the form of a meta-model. 
The goal is to enable transformation between modelling languages, which is 
needed in system synthesis from heterogeneous specification. Gajski et al. 
(1994) presented a model taxonomy for codesign methods, which divided 
models into state-oriented models, activity-oriented models, structure-oriented 
models, data-oriented models and heterogeneous models. The RASSP taxonomy 
targeted mainly at DSP systems used temporal, data value, functional and 
structural resolutions and programming level as classification criteria (Hein et al. 
1997). 

The abstraction levels and design domains have developed with the ability to use 
more abstract design methods and new technologies. The Y-chart by Gajski 
(1988) divided system models into behavioural, structural and physical domains, 
which each had five abstraction levels: system level, algorithm level, 
microarchitecture level, logic level and gate level. Later, Gajski et al. (1996) 
refined the levels more suitable for Systems-on-Chip. The new levels were 
processor level, register level, gate level and transistor level. The D-cube 
classification by Ecker (1995) divides the systems according to views, values 
and timing. The view can be sequential, concurrent or structural. The values can 
be abstract, composite or bits. The timing can be based on causality, clocking or 
propagation delays. The RASSP project collected and classified the most used 
techniques in the DSP domain; the subsystem�s hierarchy and emphasising 
performance issues were the main enhancements (Hein et al. 1997).  

There is a lot of variety in abstraction levels, design domains and design tasks in 
the design of a complex integrated multiprocessor system. This has led to a 
variety of languages for different purposes. The languages targeted at the 
modelling of complete systems are very difficult to classify according to 
traditional classification criteria. Therefore, only a brief introduction to the most 
important language classes is given. 

Formats are used for presenting design information. CIF (Caltech Intermediate 
Format) and GDSII Stream are formats used for presenting the final layout of the 
ASIC. EDIF (Electronic design interchange format) is used for presenting design 
data such as netlist, so that it can be transferred between design environments 
and design tools. The CAD framework initiative, CFI, has defined a standard for 



 

33 

design representation, which is based on an information model for electrical 
connectivity information. (Smith 1997) 

Hardware description languages (HDL) can be roughly divided into structural 
languages that replaced the schematic entries and behavioural languages that are 
used as higher abstraction level inputs for synthesis tools or simulation tools. 
VHDL and Verilog are currently the most used languages and include features 
of both classes (Smith 1997). Using C and, currently, C++ as a basic of HDL has 
been considered an attractive alternative and has generated a variety of 
languages, such as HardwareC (Gupta & De Micheli 1993) and SystemC 
(Grötker et al. 2002). Architecture description languages (Bashford et al. 1994, 
Fauth et al. 1995, Pees et al. 1999) are a special case of HDLs. They have been 
targeted at the modelling of computer and processor architectures.  

Software languages were developed for easing up the program development. The 
microprogramming languages define how the processor is configured during the 
execution of an instruction. The machine code is the sequence of instructions 
executed by the processor. The programming languages or high level languages, 
such as ALGOL, Fortran, Basic or C, are transformed into machine code by 
compilers or interpreters (Aho et al. 1986). In Java language, the whole 
computer is emulated by a virtual machine program.  

Specification and modelling languages are targeted at design capture instead of 
implementation description. Data flow process networks have been widely used 
in digital signal processing systems (Lee & Parks 1995). The actual content of 
the processes has been modelled with host languages like Prism or C. Formal 
specification languages, such as Synchronized Transitions, Unity and LOTOS, 
enable mechanical model checking of system properties. System-level design 
languages (Bahill et al. 1998) are used for creating high-level abstraction of the 
desired system. Unified Modelling Language, UML is an attempt to combine 
different approaches under one framework (Fowler & Scott 1997). 

2.3 Design flows 

Every product consists of two parts � functionality and physical realisation, e.g. 
resources � and the design flow is a process in which the system requirements 



 

34 

related to these parts are transformed into a product fulfilling them. In the 
process the designer adds implementation details to a system model until the 
product is designed. These additions concern either functionality or resources, as 
depicted in Figure 2. The design flow can then be considered a path on a plane, 
from a point where no implementation details exist to the point where the 
product�s implementation is fully specified. 

The optimal design flow depends on various aspects, including technologies, 
design tools, business strategies, and market situation. The design flows for 
mass-market products emphasise optimisation of manufacturing and material 
costs, which are mostly dependent on resource optimisation. The competitive 
advantages of high-end products are often related to functional performance. In 
these cases the management of functional complexity, advanced algorithms and 
performance benefits via optimisations of functionality are critical. In emerging 
markets the time-to-market issues are important and the emphasis is, therefore, 
on the reuse of existing knowledge and parallel development of new features.  

Resource development

Fu
nc

t io
n 

d e
ve

lo
pm

e n
t

System ready

System
does
not exist

Algorithm
ready

Computer
ready

 
Figure 2. Design plane concept. 

The IC-based systems can be roughly divided into three classes: ASICs, 
computers-based systems and System-on-Chips. The ASICs are mainly 
dedicated hardware implementations of algorithms, e.g. algorithm-on-chip-type 



 

35 

systems. The algorithm design precedes the resource design in the design flow. 
The computer-based systems are embedded system-type designs and the generic 
resources are designed before the actual functionality is implemented using 
software. In the System-on-Chip design the idea is find the optimal balance 
between the two earlier approaches. In practice this means the implementation of 
independent models and system-level optimisation criteria during architecture 
definition.  

2.3.1 Dedicated hardware systems 

ASICs are, by definition, applications implemented as integrated circuits. 
Designing and implementing an ASIC is an expensive and time-consuming 
process. It typically takes from 6 to 18 months to complete and the mask costs of 
an advanced manufacturing process alone are several hundred thousand Euros. A 
characteristic feature of an ASIC is that design mistakes or errors cannot be 
corrected from the final chip. Redesign and a new manufacturing iteration are 
required instead, taking at least one month to complete. Therefore, validation of 
the system functionality and verification of the design is extremely important. 
(Smith 1997) 

Specification of functionality and algorithms 

The dedicated hardware system design starts from definition and validation of 
functionality. In most of the design flows the design of functionality is separated 
from the design of implementation, e.g. resources and their control. The 
motivation has been the separation of concerns. Functionality has been 
considered independently of implementation and, therefore, has been modelled 
and validated using methods that are specific to the types of systems. The state-
based models and algorithms are the two most common classes of functional 
specifications. In reactive systems the state-based approaches are more common 
because it is easier to model the input-output responses and internal states of a 
system. In the case of data manipulation, the algorithmic approaches are more 
natural. 

The quality of the functional description depends on the functional correctness, 
refinement process and complexity. Functional simulation is the most common 



 

36 

approach for the validation of correctness, but formal approaches have also been 
proposed. Functional correctness is especially important in the case of dedicated 
hardware implementation, because of the extremely high cost of redesign and 
manufacturing. The main problem with simulation-based validation is simulation 
coverage. The state-space explosion problem is especially significant in user 
interfaces and reactive products. The number of use cases or use scenarios can 
easily exceed any simulation capacity. Formal approaches, such as state 
reachability analysis and property checking, have been applied to life-critical 
systems because they provide complete coverage and certainty, but the cost of 
use, e.g. the modelling effort, is high.  

The functional specification itself may contain several abstraction levels, from 
pure behaviour to implementable behaviour, and the design flow must support 
this refinement process so that the final implementation complexity can be 
minimised. For example, in digital signal processing systems the design 
typically starts from mathematical models, e.g. sets of equations. Then they are 
partitioned into modules that are described using algorithms and real numbers, 
e.g. floating point arithmetic. These algorithms are validated using functional 
simulations. However, the implementation is normally much cheaper if the total 
cost function, which has number of bits in data, number of operations between 
data, the required storage for data, and the control of operations as the main 
factors, is minimised. Part of this minimisation must be done in the functional 
specification. For example, the number of bits can be affected by the selection of 
number system and by scaling. The effects of these decisions must be modelled 
in a fixed-point model and validated by simulations. 

ASIC design 

The ASIC design itself means the development of resources that implement the 
desired functionality. The ASIC design flow consists of logical design 
comprising design entry, netlist generation, system partitioning, logic simulation 
� and physical design � comprising floorplanning, placement, routing, circuit 
extraction and post-layout simulations (Smith 1997). The design entry contains 
the architecture design activities in this model, netlist generation refers to logic 
synthesis, and system partitioning refers to partitioning the system into different 
ASICs. The actual tools and design methods that have been used in various 



 

37 

phases changed with the advances in the EDA industry, from hand design to 
behavioural synthesis and formal verification (MacMillen et al. 2000). 

Current ASIC design flows are based on synthesis. The input to synthesis is 
either a behavioural or RTL-level HDL description of the system. These 
approaches are called behavioural synthesis and logic synthesis respectively. 
The result of behavioural synthesis is RTL-level description, which must then be 
synthesised using logic synthesis. Behavioural synthesis, also called high-level 
synthesis, comprises the compilation, transformation, scheduling, allocation, 
partitioning and output generation phases (Walker & Camposano 1991, Gajski 
1988). Compilation generates an internal presentation from the source language. 
Transformations are compiler optimisations or hardware-specific optimisations 
that try to optimise the behaviour of the design. The scheduling assigns 
operations to a point in time that is a control step in case of synchronous design. 
The allocation can be divided into register allocation, function allocation and 
interconnection binding. The idea is to define what resources are used for the 
execution of operations, and how to control the execution. It is mostly resolved 
using graph-theoretical methods. In order to process the design more efficiently 
it may be feasible to partition it into smaller, independent pieces. This can be 
done in various phases of the synthesis process. Output generation generates the 
RTL description for logic synthesis. Logic synthesis consists of translations and 
optimisations, but the output of synthesis is mostly determined by the coding 
style (Kurup & Abbasi 1997, Keating & Bricaud 1999). The basic flow is that 
the HDL is first translated to a network of generic logic cells that are technology 
independent. Second, the generic network is optimised using logic optimisation 
techniques; the optimisation is controlled by design constraints given by the 
user. Finally, the generic cells are mapped to cells from the target library that is 
technology-dependent. The optimisation goal in synthesis tools has been to meet 
timing constraints while minimising the area that is the main cost factor in 
ASICs. Advanced scheduling and allocation techniques, more complex library 
components, static timing analysis and timing-driven optimisations at the 
generic netlist level have been used for achieving these objectives. The current 
challenge in synthesis is taking the interconnect delay into account. The timing 
estimation has been based on gate delays and average wiring delays, but with 
shrinking feature sizes, interconnect delays are so dominating that average 
models are not accurate enough. Physical synthesis approaches try to solve these 
problems. 



 

38 

Figure 3 depicts the activities needed in ASIC design flow. The physical design 
and verification are the most time-consuming activities. Physical design, which 
is also called layout synthesis, is largely done using automated tools. However, 
there have recently been attempts to integrate the physical design and synthesis 
tools in order to manage the timing closure problems better (Chan et al. 2003). 
The verification consists of two parts: verification of design, which is done using 
simulation and formal methods, and verification of implementation, which 
means the design of tests � e.g. automated test pattern generation (ATPG) � and 
design for testability � e.g. insertion of scan structures and test ports. Current 
hardware simulators create native language executables, use event-based and 
cycle-based simulations, and support external executable models and hardware 
acceleration. 

Specification
development

RTL-code
development

Functional
verification

Synthesis
process

Pre-layout
timing verification

Place and 
route

Post-layout
timing verification

Synthesis script
generation

Synthesis

Scan 
insertion

ATPG

Functional
timing verification

Manufacturing test 
timing verification

Chip
testing  

Figure 3. ASIC design flow. 



 

39 

In dedicated hardware design flow the functionality is designed before the 
resources. Only minor changes to functionality are possible when a typical 
industrial ASIC design is started. The fixed-point model design in digital signal 
processing is one example where this kind of optimisation is possible. If we use 
the design space representation of Figure 2, the path goes from bottom-left 
corner to top-left and from there to top-right. 

2.3.2 Computer-based system design 

The computer-based systems consist of computer hardware, software 
environment and applications as depicted in Figure 4. The design flow of 
computer-based systems has two distinct phases. Before the actual functionality 
of the system can be designed, we have to have an existing computer and 
software development tools and an environment for software. Typically, the 
computers are not designed with a single application in mind. Instead, the 
objective is to provide computation and storage capacity for a set of applications. 
The application set can be anything between arbitrary functions to a set of few 
predefined functions only, but in general, the computer design aims at providing 
generic resources for various types of systems. Naturally, the benefit is to be 
able to reuse the hardware design in several products and thereby improve the 
design productivity.  

The same objectives have also affected software development. First, the high-
level programming languages and compilers divided the software development 
into coding and compilation that were processor-independent and dependent 
respectively. Second, the operating systems encapsulated hardware-related 
functionalities into system services that could be called from the applications. 
The result was that application development became computer-independent. 
Recently, the Java virtual machine has moved the abstraction level even higher; 
the application can be developed without knowing anything about the actual 
implementation of the hardware or software platform. 



 

40 

Operating systems

Processing
units

Memory
system

Communication 
system Peripherals

Computer organisation

Drivers Hardware
configuration 

codes

Middleware 

Virtual machines

System
functions

Applications

Java
applications

Application
services

 
Figure 4. Basic structure of a computer-based system. 

The cost of using existing hardware and software platforms is the 
implementation overheads. The economical and physical constraints are difficult 
to meet. Therefore, the choice of reuse level is an important design decision. 

Designing computer resources 

In the computer design the problems are to understand which design attributes 
are important and to maximise the performance and power efficiency under the 
design constraints. This process is covered in detail by Hennessy & Patterson 
(2003). The main activities are instruction set design, functional organisation � 
e.g. memory system design, processor design, bus architecture, I/O system 
design � logic design and implementation. 

The actual design flow and tools naturally depend on the degree of freedom we 
have. However, the generic principle is that first the characteristic features of the 
application domain are analysed and the model of the workload is generated. 
Second, the system model is implemented and the workload is mapped to it. 
Third, the quality characteristics of the system are evaluated; in the case of the 
computers, the performance has been considered most important. Fourth, the 
system model is refined until a satisfactory quality is reached. The process is 
then repeated with a more detailed system model until the implementation exists. 



 

41 

If it is possible to change the internal structure of the processor, there are lot of 
design alternatives. In addition to the instruction set architecture � e.g. basic 
architecture style, memory addressing, operands, operations and control flow 
issues � pipelining and parallelism must also be studied in order to maximise the 
performance and resource utilisation. The most important objectives are �to 
make the common case fast�, to benefit from overlapping of instructions. In 
addition to the hardware, compatibility and software development must also be 
considered. The processor design typically starts with analytical modelling, 
analysis and performance simulation. Several architecture languages and 
simulation environments have also been developed (Bashford et al. 1994, Fauth 
et al. 1995, Pees et al. 1999). 

If we are limited to modifying the processor instruction set or memory 
organisation, a better understanding of the application domain becomes more 
important. In the case of processors, the profiling and identification of the 
critical functions are techniques that can help in the optimisation of the 
instruction set. These are especially important in the case of application-specific 
instruction-set processors and reconfigurable processors (Wang et al. 2001). 
Instruction-set simulation is the validation technique used at this level. The 
analysis of the memory footprints and locality of data, and the modelling of 
memory bandwidth with analytical methods or trace-based simulations are tools 
for cache and main memory optimisation (Panda et al. 2001). 

The role of performance analysis using simulation or monitoring with 
benchmark programs is important when the objective is to balance the system 
performance and identify possible bottlenecks, as in designing computers using 
existing components (Bose & Conte 1998). At this level the system model is 
constructed using the models of existing building blocks, and, instead of 
designing components, the focus is on the selection of components.  

In all phases of computer design the evaluation of performance depends on the 
workload model. Therefore, the quality of the workload model is essential and 
workload modelling is a widely studied topic (John et al. 1998). The main 
problem is that the applications run by the end users are unknown and their 
characteristics are always more or less guesses. It has also been shown that 
typical workloads do not exist and the characteristics of different applications 
are contradictory. 



 

42 

Designing functionality as software 

In a computer-based system the system functionality is implemented as a 
software system. Two fundamental abstractions in software systems are 
processes and operating system (Wolf 2001). Process is a unique execution of a 
program and operating system provides mechanisms for sharing the computer 
resources for the processes and for communication between processes. 
Typically, the software systems are so complex that models and concepts that 
are significantly more abstract are needed (McDermid 1991). Three basic 
problems have to be solved during the design. First is the formulation of the 
problem, which is done during the requirement analysis and definition of the 
software architecture. Second is the design of implementation, which means 
selection of algorithms, operating systems and programming languages, and the 
actual coding. The third is mapping of functionality onto the hardware, e.g. 
development of hardware-dependent code, compiling and testing. 

The software architecture is defined as a structure or structures of the computing 
system, which comprises software components, the externally visible properties 
of those components, and the relationships among them (Bass et al. 1998). The 
software architecture model by Kruchten (1995) includes several structures, 
which address different sets of concerns. It is divided into the logical, process, 
physical and development views. The functional specification gives a logical 
view of the software architecture. It is a static model of the system. A physical 
view is needed for mapping functionality into the hardware architecture. In the 
process view the objects are mapped to processes and threads, which are 
lightweight processes. The physical view and the process view together create a 
runtime view of the system. Finally, in the development view the software is 
divided into modules that represent the actual code blocks. The methods for the 
evaluation of the software architectures aim at identifying potential risks and 
validating the quality attributes (Dobrica & Niemelä 2002). The most common 
approaches are scenario-based questioning, reasoning and measuring. 

The implementation of functionality starts with a more detailed design. We have 
to define a more detailed structure of the software, and to identify solutions to 
design problems. The operating systems and other middleware services define 
the basic operational principles of the system. The design patterns define how 
different general-purpose problems should be solved (Gamma et al. 1995, Tichy 



 

43 

1997, Buschmann et al. 1996). The selection or design of algorithms, data types 
and data structures specifies in detail what must be implemented (Aho et al. 
1983). The final coding must be done using some programming language. There 
are a number of alternatives and the selection and feasibility of the language 
depends on the design goals. Different languages emphasise different issues, 
such as portability, compatibility, security, data processing, parallelism, etc. 
Kale (1998) gives an overview of the available languages and their use. 

The mapping of application code to a processor is done automatically by a 
compiler, but the applications also use system services that are hardware-
dependent programs provided by operating systems and hardware drivers. The 
most important tasks of RTOS are process management � e.g. process control 
and scheduling � interprocess communication, memory management and I/O 
management. 

A compiler is a program that generates machine executable code from a source 
code representation (Aho et al. 1986). The compiler maps the source code 
functionality into data addresses and instructions that are eventually decoded in a 
processor to signals controlling the data flow. The compiler is thus partly 
responsible for producing efficient code that uses the hardware resources 
efficiently. Therefore, different code-optimisation functions are critical parts of 
the compilers (Muchnick 1997). The performance of the final program depends 
on the compilation quality and most of the time-critical functions, such as 
interrupt handlers, or functions that require special processors, such as DSP 
processors, are hand-coded in assembly language. 

2.3.3 System-on-Chip design 

The embedded system design was the predecessor of codesign. Early embedded 
systems were based on COTS components, but very soon complete computers 
called microcontrollers were integrated on single chips. The main design 
problems considered performance and memory limitations, and, because of fixed 
architecture, there was no need to consider software and hardware together 
before the integration phase. The system-level modelling (Zave 1982, Ward 
1986, Harel 1987, Rumbaugh 1991) and experiments with hardware/software 
system simulators (Smith et al. 1985) initiated the codesign ideas. 



 

44 

In the late 1980s it became possible to develop and implement computer 
organisations and architectures using ASIC design methods. This introduced 
new possibilities for system optimisation, because hardware/software 
partitioning is more flexible and not constrained by costs, as it was earlier. The 
first System-on-Chip design flows were based on an embedded system design, 
as depicted in Figure 5. The design started with a functional specification that 
was partitioned to software and hardware that were designed separately. The 
partitioning was based on a fixed or predesigned architecture template, and the 
results were verified using cosimulation. 

The first software/hardware-partitioning or cosynthesis approaches focused on 
improving the characteristics of algorithm implementations. The COSYMA 
approach developed by Ernst et al. (1993) had a C-code as a starting point and 
moved code segments to the hardware in order to meet performance 
requirements. The VULCAN approach by Gupta and De Micheli (1993) had an 
opposite approach; the functionality was modelled with HardwareC and 
functions were moved to the software in order to reduce cost.  

Functional
Specification

SW/HW
Partitioning

Integration
and

testing

HW
Design

SW
Design

Architecture
template

 

Figure 5. Specification-oriented SoC design flow. 



 

45 

The codesign of instruction-set architecture was an alternative to coprocessors, 
which first lead to the codesign of application-specific instruction-set processors 
(ASIPs) and later to reconfigurable processors (Heinrich et al. 1997). The 
objective was to improve the performance of the processor architecture for a 
given algorithm. The optimisation was done from application programs to 
operating systems and instruction-set definition.  

The need for considering complete systems rather than algorithms required 
implementation-independent functional specifications, system-level optimisation 
and functional verification, which resulted in the SW/HW codesign approaches 
(De Micheli 1994). The SW/HW codesign was defined by the IEEE DASC 
study group as a design methodology supporting the concurrent development of 
hardware and software (cospecification, codevelopment and coverification) in 
order to achieve shared functionality and performance goals for a combined 
system. The more detailed specification-oriented codesign flow showing the 
main phases and activities is presented in Figure 6. Simulations at different 
abstraction levels are needed for the validation of performance. Estimations and 
analyses are need for the making of the design decisions. 

Architecture
design

System
partitioning

HW/SW
design

Block
partitioning

Co-
specification Quantification

and
qualificationSy

st
em

re
qu

ire
m

en
ts

Emulation 
and

prototyping

Behavioural
simulation

Task-level
simulation

Instruction-
level

simulation

U
se

Quality
monitoring

Static 
analysis

Quality
estimation

Quality
analysis

Functional
partitioning

Validation and verification

Analysis and estimation  
Figure 6. SW/HW codesign process (Soininen et al. 1998a). 



 

46 

Different aspects of SW/HW codesign have been reviewed by De Micheli 
(1994), De Micheli and Gupta (1997), Ernst (1998) and Wolf (2003). The 
functional specification can be either homogeneous, where a single system-level 
language is used (Kumar et al. 1996, Ismail et al. 1994) or heterogeneous, where 
the specification consists of several application-specific languages (Buck et al. 
1994, Madsen et al. 1997). Granularity of language defines the sizes of the 
objects that are mapped to the technologies. Approaches using fine-grained 
(Barros & Rosenstiel 1992), medium-grained (Ernst et al. 1993) and coarse-
grained (D�Ambrosio & Hu 1994) objects have been presented. The 
architectures have been based on coprocessors (Ernst et al. 1993) or 
communication synthesis (Daveau et al. 1997). Approaches that aim at 
optimising memory systems (Li & Wolf 1999, Panda et al. 1999) or 
communication (Ismail et al. 1994, Madsen et al. 1997) have also been 
proposed. System partitioning objectives have been described using cost 
functions. Typical criteria have been performance, speed up, utilisation, and 
other constraints, such as cost or power consumption (Fornaciari et al. 1998). In 
addition, more generic quality criteria have been proposed by Jóźwiak (2001). 
Partitioning algorithms are typically either constructive or iterative. The 
problems with design space exploration are the number of design alternatives, 
the accuracy of implementation estimates and the exploration time limitations. 
The partitioning generates software, hardware and interfaces that must be 
designed or generated, and their operations must be scheduled and synchronised. 
Scheduling is a widely studied topic and both instruction-level and process-level 
approaches are needed in the codesign system. Different partitioning and 
scheduling approaches are presented in De Micheli & Gupta (1997). The 
approaches that try to automate the whole codesign process are called the system 
synthesis approaches (Chou et al. 1995, Madsen et al. 1997, Gajski et al. 1998, 
Eles et al. 1998). 

The increasing complexity of the designs demanded efficient reuse and more 
reusable hardware implementations. In the mapping-based approaches the idea is 
to evaluate different mappings of functions to architectural elements. These 
function/architecture codesign approaches allowed the use of existing 
architectures, or separately modelled architectures, and the role of quality 
evaluation increased (Balarin et al. 1997). The intellectual property (IP) blocks 
and virtual components were proposed as a solution to design productivity 
problems in the late 1990s. The virtual socket interface alliance (VSIA), which 



 

47 

defined the concept of virtual components and virtual component exchange 
(VCX), has developed the required business practices. The IP-block concept 
contains both the functionality and the implementation. In IP-based design the 
main problems are related to the evaluation of IP-block quality and integration 
issues (Keating & Bricaud 1999). Gajski et al. (1999) have proposed an IP-
centric embedded system design methodology, where the major challenges are 
the interface synthesis among the various IP blocks and system verification. This 
SpecC approach integrates IP-blocks into a specification-oriented design flow 
(Gajski et al. 2000). The SystemC approach relies on mapping and performance 
simulations (Grötker et al. 2002). 

Applications

Mapping

Integration
and testing

Architecture

Performance
evaluation

 
Figure 7. Mapping-centric SoC design flow. 

Platform-based design integrated and extended the earlier methods by reusing 
system architectures and topologies in addition to components. Chang et al. 
(1999) divided the SoC design into block authoring and SoC integration, and 
introduced three levels of platforms. The platform was defined as an 
architectural environment created to facilitate the reuse. The first level was the 
IC integration platform, which consisted of high-value general-purpose IP cores, 



 

48 

such as processor cores, memories and buses. The second level was the system 
integration platform, which was process-specific and contained application 
domain-specific IP blocks and support for embedded software architecture. The 
third level was the manufacturing integration platform, which was a fixed 
hardware chip except for FGPA and processor programming. Ferrari and 
Sangiovanni-Vincentelli (1999) define platforms as precisely defined layers of 
abstraction through which only relevant information is allowed to pass. The 
platform design consists of application domain-oriented platform definition and 
selection of platform instances The designs implemented on top of the platforms 
are isolated from irrelevant system details (Horowitz et al. 2003). Keutzer et al. 
(2000) introduce a software platform on top of the hardware platform and tackle 
the complexity problems by separating functions from architectures and 
communications from computations. The software platform is an application 
programming interface and an abstraction of a multiplicity of computing 
resources and device drivers. In the MESCAL approach the focus is on the 
simple programming of the platforms (August et al. 2002). The Metropolis 
environment (Balarin et al. 2003) is based on a metamodel that supports 
functional capture and analysis, architecture description and mapping, and an 
application-programming interface, which enables tool integration and the use of 
different design languages.  

The verification of a partitioned system requires cosimulation tools, which can 
simulate both software and hardware (Staunstrup & Wolf 1997). System 
verification has two main approaches. Homogeneous models are simulated using 
one or more simulators that communicate with each other. In the heterogeneous 
approaches different parts of the system are modelled using different languages 
and abstraction-levels and then simulated or executed using language-specific 
tools. The problem in coverification is the differences in time scales. In 
hardware the basic time-step is in the nanosecond range; in a typical software 
operating system the time-step is in milliseconds. One has to either abstract the 
software execution, e.g. to model the processor hardware at a higher abstraction 
level than the rest of the hardware, or abstract the hardware. Commercial 
cosimulation environments are mainly used for verification of interface 
functionality. Hardware emulator-based approaches provide more performance, 
but they also require almost-final designs.  



 

49 

2.4 System-level design methodologies 

The system design methodology and design flow consists of a set of activities 
that have to be performed. A good methodology helps to solve the most essential 
problems. Its purpose is to partition the design problem into manageable tasks 
and define the tools and practices for those tasks. 

The actual design problems depend on the type of system; thus the methods and 
tools for executing these activities are system-specific. For example, the 
exploitation of the capacity of the physical channel is very important in 
telecommunication systems and is determined by the quality of the algorithms. 
Therefore, the development of methods focuses on the algorithm modelling, 
specification and performance evaluation. In software development the 
interfacing with a variety of hardware platforms and operating systems, and the 
management of the complexity puts high demands on system modelling and 
analysis. Safety is essential in life-critical systems and the quality of the 
verification of implementation is important. 

Another dimension is the principle on which the systems are developed. Martin 
(2002) presents six scenarios for system-level design. The classification is based 
on IC technology and the EDA industry�s view. The basic differences in the 
approaches are in the architectural template and the usability of the technologies 
and tools. The most commonly used approach is to organise the work and 
workflows as the basis for the methodology and design process modelling. 

The waterfall model divides the software development process into the 
requirement analysis, architecture design, coding, testing and manufacturing 
phases that are executed sequentially in a top-down fashion (Royce 1970). In the 
V-model the role of testing and verification is emphasised. Each phase of the 
waterfall model is accompanied by the respective validation or verification 
phase (McDermid 1991). 

The spiral model is based on the idea that the phases of the waterfall model are 
repeated for different versions of the system (Boehm 1988). These sequences of 
versions include conceptual models, specifications, prototypes and product 
versions. This successive refinement approach is also called the incremental 



 

50 

development approach, because the idea is to bring in more details during the 
development. 

The meet-in-the-middle principle combines the top-down and bottom-up 
approaches (De Man et al. 1990). The idea is to define the primitive components 
and objects and to develop them and the system structure simultaneously, so that 
the final system is constructed from these primitives in the middle of the design 
process. ASIC synthesis tools with libraries and IP-based design are derivatives 
of this principle. In the hierarchical design methods the system is partitioned to 
subsystems that are designed separately. 

Concurrent engineering attempts to take all the aspects of system design into 
account from the very beginning of the development process. It aims at 
developing subsystems simultaneously and increasing the communication 
between different design teams. Cross-functional teams and information sharing 
are the main enablers (Linton et al. 1992). 

In product family development the idea is to simultaneously develop a complete 
set of product variants (Wheelwright & Clark 1992). These approaches are based 
on the ideas of mass customisation, development of a platform product that is 
easy to modify, or development of a core product that can be extended by 
product features. 

2.5 Quality validation 

In product development the design methodology is responsible for product 
success in the sense that it must guarantee that the company performs the 
activities that are needed in quality validation. In the requirement analysis phase 
the system requirements should be transformed into quality criteria that can be 
used in the validation of design tasks. System quality is a broad topic, as 
depicted in Figure 8. When considering complex computing systems, the three 
most important quality dimensions are performance, cost and variability, but 
their importance is naturally dependent on the product and its services. 



 

51 

Figure 8. System quality criteria. 

The quality characteristics in Figure 8 are very generic and cannot be directly 
used in product development. The task of the system designer is the 
transformation of user needs to physical requirements in different abstraction 
levels and the partitioning of those needs and requirements to subsystems and 
technologies. 

Different abstraction levels of product models of embedded computer-based 
systems have different quality criteria. If we think about the main abstraction 
levels then the quality criteria such as performance, power efficiency, area, etc. 
are mostly dependent on technologies that are chosen for the implementation. 
The computational capacity, utilisation of system resources, modularity, etc. are 
typically important when considering architecture models. In communication 
systems, for example, the functional performance depends on chosen algorithms 
and their characteristics. The customer satisfaction or product�s success in 
market are measures of quality, when complete products are discussed. It is 
important to notice, however, that the quality criteria of different levels are not 
independent from each other. The customer satisfaction, for example, results 
from the decisions that have been done related to algorithm, architecture, 
implementation style, and technology selections. 

System
Quality

Performance

Capacity
Energy

Functionality

Computation
Communication
Storage

Fault tolerance
Result quality (accuracy)
Responsiveness

Utilisation
Scalability
Efficiency

Implementation

Development

Volume
Manufacturability
Lifetime
Usability

Effort
Time
Risk

Materials
Licensing
Production

Cost

Modifiability
Flexibility

Complexity

Modularity
Coupling
Cohesion

Applicability
Configurability
Programmability 

Structural
Functional
Control

Variability

System
Quality

Performance

Capacity
Energy

Functionality

Computation
Communication
Storage

Fault tolerance
Result quality (accuracy)
Responsiveness

Utilisation
Scalability
Efficiency

Implementation

Development

Volume
Manufacturability
Lifetime
Usability

Effort
Time
Risk

Materials
Licensing
Production

Cost

Modifiability
Flexibility

Complexity

Modularity
Coupling
Cohesion

Applicability
Configurability
Programmability 

Structural
Functional
Control

Variability



 

52 

The main problem is how to transfer the customer satisfaction-type of criteria 
into the technical requirements. Techniques such as the Taguchi method and 
quality function deployment (Ross 1988, Day 1993) try to solve this problem by 
introducing loss functions and correlation matrixes for quality characteristics and 
technical requirements. 

2.5.1 Performance evaluation 

Performance, P is defined as WLCP s ⋅= , where Cs is the computing system and 
WL is the workload. So, the performance is always dependent on the computing 
system and the workload, but the choice of performance criteria is free. Typical 
performance metrics of the computer system are the execution time and power 
consumption (Hennessy & Patterson 2003). Only the execution time of the 
workload is considered in this chapter, but other criteria such as latencies or 
capability to meet deadlines could be similarly analysed. The computing system 
can be a complete system, a computer system, or a processor. With the complete 
system, the workload is the final code and use case and the performance is 
basically the systems capability to process events or data, which results from the 
real execution time taken by the application functions. With computer systems, 
the workload tries to emulate the real applications. The performance is then the 
average processing capacity, which is typically expressed as millions of 
instructions or operations per second, MIPS or MOPS. With processors, the 
focus is on the architectural performance, which is typically measured as clock 
cycles per instruction, CPI, or its inverse, instructions per cycle, IPC (Bose & 
Conte 1998, Flynn et al. 1999). 

Performance evaluation methods can be classified into three main classes: 
analytical methods, simulation methods and measurement methods (Jain 1991). 

Analytical methods are based on a mathematical model of the system and 
workload. Markov chains, queuing models, Petri-nets, etc., are typical examples 
(Krishna 1996). Analytical performance modelling and simulation are only 
applicable to the earlier stages of design because of the complexity problems 
(Heidelberger & Lavenberg 1984). Capacity planning � especially determination 
of computing, caching and buffering capacity � I/O design, scheduling decisions 
and helping in resource organisation design are typical tasks. Analyses are 



 

53 

typically based on solving the equations, but, in many cases, simulation is also 
used as a supporting tool.  

In the simulation the execution of a workload is simulated using a computer 
program. In hardware simulation the behaviour of the hardware elements is 
simulated. In functional simulation only the functionality is simulated. 
Typically, instruction-set simulators (ISS) are used as simulation engines. In 
performance simulation only the effects of the workload are simulated. The 
simulation can be a stand-alone computer program or it can be based on a 
simulator kernel, which can be further supported with a hardware accelerator. 

The monitoring or measurement-based approaches need working prototypes or 
final hardware. The working prototype need not run at the final speed, so it can 
be based on FPGAs or emulators. The basic technique is that the prototype or 
product is instrumented so that performance data-related information can be 
collected during the execution of the workload. It is possible to apply the same 
workload generation approaches to the measurement-based approaches as in 
simulation. 

In the simulation and execution-based approaches the workload can be based on 
several alternatives. In the execution-based simulations the workload is an 
executable program (Rowson & Sangiovanni-Vincentelli 1997) or execution 
trace of the program (Lahiri et al. 2000). The executable program can be a real 
application or a benchmark program, which can be simple instruction sequences, 
instruction mixes, program kernels of widely known programs, or synthetic 
programs that try to mimic different types of instruction sequences (Guthaus et 
al. 2001, Lee et al. 1997, Skadron et al. 2003). Krishnaswamy & Scherson 
(2000) unified coarse-grain and fine-grain benchmarks into an evaluation 
technique that uses a performance vector, where each component presents a 
speed of a dedicated subsystem. The performance vector is computed from the 
benchmark execution results, where a representative set of benchmarks is 
required. The approach speeds up the evaluation time when compared with 
simulations, but it requires an existing processor or processor model in which the 
benchmarks are run. The main benefit is that details of the processor architecture 
behaviour can be analysed using larger coarse-grain benchmark programs. 



 

54 

If we compare the accuracy of the results, it is clear that execution and 
simulation provide the best results. In the functional simulation the instruction-
set simulators are typically cycle accurate, but there can be a lot of variety in the 
accuracy of the functional models of HW blocks. The accuracy of the 
performance simulation totally depends on the accuracy of the workload and 
architecture models. It is a trade-off between modelling costs, simulation speed 
and accuracy. Analytical approaches are usually based on very abstract 
architecture models, but the cost is the accuracy of the results. 

The cost of performance evaluation depends on the maturity of the functions and 
resources. Performance evaluations using analytical approaches and 
performance simulations that utilise existing simulator kernels are relatively 
simple to conduct. With functional simulations and hardware simulations, the 
design cost starts to dominate very rapidly. If the design is based on existing 
architectures, where simulation models are available, these effects are naturally 
smaller, but they do still exist. Monitoring-based approaches are only 
economically feasible when a prototype exists. Even the instrumentation costs 
may become significant, especially if we need to collect information on the 
internal behaviour of the hardware system. 

2.5.2 Estimation methods 

Estimations are needed when making decisions about a system in the early 
phases of design. Complexity estimations are needed, especially when feasibility 
is considered. Performance estimations are mainly used when choosing the 
implementation techniques. However, the estimation metrics are similar in both 
cases. The purpose is to estimate the cost in terms of area, code size, complexity, 
power or design effort, or time in terms of physical time or number of 
operations. 

Hardware estimation 

The methods that can be applied in architecture evaluation vary depending on 
the type of target architecture. Complexity estimation of algorithms is used when 
designing dedicated hardware implementations. Ward et al. (1984) present the 
basic concept of figure of merit and a system cost function. This extends 



 

55 

operational complexity-based methods into an estimation of hardware 
complexity that takes both control functions and address generation into account. 

Estimation of hardware performance and cost is a critical part of the hardware 
synthesis system. There are two main approaches. The first is to assign cost 
values for system functions. The second approach is to use synthesis tools 
without going into detailed time-consuming optimisations. For example, Jain et 
al. (1992) present an estimator of area-delay curve that is based on the data flow 
graph properties and cost characteristics of library components. An estimator of 
hardware resources or performance has been presented by Sharma and Jain 
(1993). Mitra et al. (1993) have presented an estimator for FSM complexity. The 
estimator analyses the structure of FSM and evaluates the state encoding 
optimisation and minimisation possibilities. Henkel and Ernst (1998) use path-
based estimation in a cosynthesis system, which takes both controller and data 
path parts into account. Salchak & Chawla (1997) take the design complexity 
issues into account by analysing the structure and relationships of VHDL code.  

Software estimation 

The idea in software estimation is to analyse the running time or execution time 
of the program. The running time depends on the input data set, the quality of 
code generated by the compiler, the characteristics of the computer, and the time 
complexity of the algorithm.  

At the algorithm level both the compiler and computer are unknown. Therefore, 
time complexity ( )nO  can only be presented as a function of the size of the input 
data set (Aho et al. 1983).  

At the specification-level the execution-time information is added to the 
specification language objects, and the overall performance is estimated from the 
specification structure. In the POLIS approach (Suzuki & Sangiovanni-
Vincentelli 1996) typical execution times of nodes in s-graphs or CFSM 
specifications are obtained by running simple benchmark programs in a target 
processor that has similar instruction mixes as the C-code generated from the 
specifications.  



 

56 

At the source-code level the idea is to use the structure of the source code as a 
basis for the estimation. Puschner & Koza (1989) introduced new language 
constructs for the specification of the execution bounds of program segments. 
The worst-case execution time is then analysed from the extended source code. 
Engblom et al. (1998) map program execution information to the source code 
level from the compilation process. The approach takes the effects of compiler 
optimisations into account but still enables source code analysis techniques. 
Brandolese et al. (2001) combine source code analysis, timing information of 
elementary operations and profiling data with statistical measures of source code 
characteristics. 

At the compiled code level it is possible to take the effects of the compilation 
process into account, and, especially, the target-independent optimisations. 
Malik et al. (1997) divide the analysis problems into path analysis and resource 
utilisation analysis techniques. Their approach is based on using graph 
techniques and the statically analysed execution bounds of basic blocks. Gong et 
al. (1994) have used three-address code representation and a generic estimation 
model. The program path is based on the branching probabilities. The estimator 
computes such software metrics as execution time, program memory size and 
data memory size based on the generic instructions and technology files of the 
target processors. The technology files contain the execution times of the generic 
instructions. The approach was extended for application-specific instruction set 
processors having VLIW architectures in Gong et al. (1995). Wolf & Ernst 
(2000) extend the basic blocks into program segments and take the execution 
context into account. The execution cost of the segment is determined using 
instruction execution costs or simulation with known input data and a cycle-true 
processor model. Lăzărescu et al. (2000) use an assembly-level C-code 
containing the timing information that is generated from the optimised 
assembly-code in their cosimulation approach. The idea is that the target 
compiler optimisations can be taken into account in the host-based simulation. 
Giusto et al. (2001) present a statistical approach for the generation of the 
instruction�s timing information. In the TOSCA approach the software execution 
time is estimated by calculating the average process execution times (Allara et 
al. 1998). First, minimum and maximum values are generated using the compiler 
and unbounded and highly restricted processor architectures. Then the average 
values are calculated using characterisation of the target processor-compiler pair 
with benchmark programs. 



 

57 

System estimation and mappability 

The traditional technique for the analysis of a system consisting of a computer 
and software is cosimulation. The cosimulation environments can be 
characterised according to the abstraction levels of the hardware models, 
interface models and software models. The software can be executed using real 
processors, emulated processors, RTL-simulation models of the processors, 
instruction-set simulators of the processors (Hughes et al. 2002, Austin et al. 
2002), or more abstract functional simulation models (Chandra & Moona 2000). 
Similar abstraction levels are available for the other hardware parts. In the 
processor-hardware interface bit-accurate models, bus-accurate functional 
models and abstract communication channels have been used (Benini et al. 
2003). The software itself has been compiled to the target processor or the host 
processor. In order to speed-up the simulation performance, parallel computers 
or hardware accelerators have been used. 

When cosimulation is used for system-level estimation, the problem is the trade-
off between modelling effort, accuracy and performance. Complex software 
systems cannot be simulated using a clock-accurate processor or bus models. 
There are three basic approaches for solving the performance problems. The first 
is to increase the abstraction level of the hardware simulation by, for example, 
using concurrent processes that communicate using channels (Buck et al. 1994, 
Grötker et al. 2002). The second is to use host-based execution of the software 
instead of trying to execute machine code instructions (�ivojnović & Meyr 
1996). The third is to replace the final code with a more abstract workload model 
that only generates events for the hardware architecture instead of implementing 
the complete functionality of the software (Lahiri et al. 2000). The abstracted 
code can be based on the software estimations presented earlier or statistical 
workload generators, as in network simulations. 

Mappability estimation means the evaluation of the potential quality of the 
processor architecture-algorithm combination. This differs from the 
cosimulation-based approaches in that the idea is to estimate the potential quality 
by comparing the application and architecture characteristics. In cosimulation 
the idea is to study the quality of the combination using abstracted models and 
simulation. In the mappability estimation the quality of mapping process, e.g. 
how the optimal implementation can be designed, is included in the estimation. 



 

58 

Mappability estimation is an emerging topic, because it is most feasible when 
both the architecture and application can be affected, which is possible in SoC 
designs. Retargetable compilation (Bhartacharyya et al. 2000) and estimation 
(Ghazal et al. 2000) have been used in estimation of DSP architecture 
performance. In the approach by Ghazal et al. (2000) the parameterised 
architecture model allows study of the potential of the architecture. The idea is 
that aggressive compiler optimisation techniques are applied to application code 
using the different architecture parameters. The attempt is not to produce 
executable code but to study the potential consequences of the optimisations and 
the potential mapping quality. 

Carro et al. (2000) calculate application profiles (control, memory and data) 
using target-independent three-address code and virtual machines for 
microcontroller, RISC and DSP types of processors. The real processors are 
modelled using the relative costs of different types of instructions that are 
analysed using the virtual machine of a processor that is based on the processor 
characteristics, e.g. the main parameters. The applicability of a processor is 
analysed by calculating the application performance distances of the processor 
parameters and the application profile values. 

Sciuto et al. (2002) uses affinity values for determining most suitable processing 
element class for each system functionality. The possible processing element 
classes are GPP, DSP and ASIC-like device architectures. The affinity value 
provide quantification of a matching between structural and functional features 
of possible implementation. The affinity value is based on data involved in the 
execution of functionality and on its structural properties. 

Gupta et al. (2000) have developed a two-stage processor evaluation method for 
embedded system design. The first stage is a processor selector that extracts the 
application parameters and compares them with the processor description. The 
parameters, such as average block size, number of MAC operations, ratio of 
address and data computation instructions, ratio of I/O and total instructions, 
average arc-length in data flow graphs and unconstrained ASAP schedule 
analysis results, are related to operational concurrency. The second stage is a 
code-size and performance estimator, which creates a cycle estimate based on 
simplified list scheduling of the algorithm using the target architecture 
parameters. 



 

59 

3. Architecture design challenges in future 
SoC-based systems 

New approaches for architecture design are needed because the complexities of 
user needs, algorithms and technology capability are increasing more rapidly 
than design productivity and verification capability (ITRS 2001), as illustrated in 
Figure 9. The architecture design method mostly affects design productivity, but 
its role is to narrow all the gaps in Figure 9. The architecture can enable better 
exploitation of the silicon capacity and may simplify the verification burden. 
However, it also affects how the user requirements and algorithms can be 
implemented within the economic constraints. Essentially, from the technology 
and implementation perspective, the problem is how to divide and separate the 
system into manageable units. From the product requirement perspective, the 
problem is how to join or link the variety of needs and alternatives so that the 
right choices and selections can be made. 

Complexity

Time

Algorithm requirements

Technology capability

Design productivity

Verification capability

User needs

Tools and
methods

Design
practices

Manufacturing
technology &
physics

Theories &
Science

 
Figure 9. The development and relationships of relative complexities of user 
needs, computational requirements of algorithms, implementation capability, 
design capability and verification capability as a function of time. 



 

60 

3.1 Technology capacity 

The number of transistors in a single chip is going to increase for the next ten 
years. With 65 nm technology the number of transistors will exceed 2.4 billion. 
The maximum internal clock frequency will increase to the gigahertz range 
(ITRS 2001). This will cause serious problems for current system architectures 
and design styles because they do not scale up to such dimensions and 
complexities. 

If we consider the available silicon surface and the characteristics of the gates 
and wires from the digital design view, it is clear that the area that is reachable 
during a single clock is far less than the chip area. Therefore, we have to 
partition our chip area to several clock domains that communicate with each 
other asynchronously. Similar partitioning is required for testability, energy 
distribution and communication reasons. We need to reserve a part of the chip area 
for this kind of infrastructure and to partition the rest for application purposes, 
where each part has its own synchronisation, as illustrated in Figure 10. 

f1

f2

f3

Origins 
of clocks

Chip area

Synchronous regions

Infrastructure
space

Application 
space

 
Figure 10. Partitioning of chip area to applications and infrastructure. 



 

61 

The silicon surface is a high-capacity computation platform that can be exploited 
in different ways. A sequential processor cannot exploit such a capacity 
effectively because of synchronisation problems. Operation-level parallelism 
leads to an extremely complex, expensive and time-consuming design of 
dedicated hardware. Instruction-level parallelism (ILP) leads to extremely 
complex control of execution, and, besides, it is difficult to extract enough ILP 
from large applications (Jouppi & Wall 1989). Thread-level parallelism could be 
a viable alternative, but it requires significantly more threads than in current 
processors (Forsell 2002b). Task and process-level parallelism leads to parallel 
computer architectures, which have problems related to shared memories and 
communication, but these architectures could exploit the area more effectively. 
Besides, the programming model would be simple. Application-level parallelism 
means integration of embedded systems into a single chip and a design approach 
that resembles the distributed system design. Such architecture could exploit all 
the possible areas, but the feasibility requires that the ratio of local and global 
computations is high. 

Both integration and effective use of different implementation technologies must 
be supported by architecture design methodology. Technology embedding 
means additional costs in the ASIC manufacturing process, but the use of 
different technologies can also improve the final product characteristics. 
Advanced memory technologies and reconfigurable arrays or areas are good 
examples. The linkage between the costs and benefits of the technologies and 
applications must be created in the design process. 

3.2 Product requirements and economics 

Complex SoC projects stretch the capabilities of companies. Managing 
functional diversity and complexity are product requirement-related issues that 
must be addressed by system architecture and design methodology. For example, 
personal communication devices will have both local and mobile communication 
capabilities, various types of multimedia features, intelligent user interfaces, etc., 
as depicted in Figure 11. Good implementation will require various types of 
technologies and computing architectures, which means that the implementation 
of total functionality may consist of a set of optimised subsystems that are 
integrated by common functional �glue�. 



 

62 

Figure 11. Diversity of services in mobile terminals. 

Commercial products must meet both the market window and target cost 
constraints. Design productivity and design reusability are the critical parameters 
in this respect. The cost/object can be used as measure of effectiveness. If we 
analyse the cost/transistor in different types of designs, it is easy to see that 
dedicated logic is more costly than IP-block-based design or memory design, 
which benefits from regular and repeatable blocks. If we use cost/function, the 
software approaches are better than the reconfigurable or hardware approaches. 
This means that we must favour flexibility over fixed solutions and regularity 
over ad hoc solutions. 

The cost of design will be such that design reuse must be exploited at all levels 
and reusable units must very large. In addition to IP-block reuse, we have to 
reuse the computation architectures, network architectures, software platforms, 
existing chips and design methods. This means that we have to have very clearly 
defined interfaces for connecting resources to the infrastructure and for using the 
resources with the hardware or software. The reuse of architecture requires 

 
 

SMS 

Modem 

Clock

Phone Book 

Calculator

Electronic 
Game 

Camera

Internet
Browse

Money
Game console 

Radio 

MP3 Player 

MPEG4 Player 

Answering 
machine 

E-mail 

Videophone 

PDA

WAP 

Communication 

Information
search 

Electronic
commerce

Personal 
assistant 

Phone

Entertainment 

 



 

63 

means to modify and configure the architecture model so that application area-
specific platforms can be designed. The reuse of a complete chip needs 
standardised application mapping procedures that hide the architecture and 
hardware details from the application designers. 

3.3 Management of diversity and complexity 

The product development comprises several areas of expertise and, in the 
decision-making process, we have to be aware of the effects on all aspects of the 
design. When we start to develop our ideas into products, the number of details 
increase rapidly and the design methods and practices become diverse, as in 
Figure 12. Working simultaneously in multiple technologies requires that we 
partition our system functionality to the technologies. Partitioning requires that 
we have portable models for validation and estimation that can be transferred 
between technologies and subsystems. We must also derive quality criteria for 
each abstraction level from the quality criteria of the product. Then we have to 
make a trade-off between different technologies and optimise the complete 
system instead of subsystems. This means that we need analysis and estimation 
methods that can be used in early phases of the design and that take into account 
the couplings between the quality characteristics, the partitioning, the functions 
and the technologies. Naturally, we have to validate our decisions at various 
levels of abstraction. This needs an ability to combine different models. Finally, 
we have to be able to use technology-dependent methods and tools. This requires 
encapsulation and interfacing capabilities. 



 

64 

Requirement
analyses

Business
analyses

Feasibility
analyses

System
design

Project
design

Algorithm
design

Functional
design

Conceptual
design

Physical requirements
Architectural requirements
Functional requirements

Design

Production
design

Software
architecture

System
Structure
design

Architecture
design

IDEA

Software
design

Mechanical
design

Manufacturing
design

Computation
resource
design

Functional
HW
design

 
Figure 12. Diversity in system design. 

In addition to the management of work and implementation-dependent issues, 
business and economic issues also have a significant effect on how we should 
develop our products. Economical constraints such as time to profit require a 
reduction in the design effort and design time, which can be achieved with the 
platform-based approach with reuse, both at the implementation level and the 
design level. The problem is how to guarantee adequate performance and 
variability. The market success depends on the product�s ability to satisfy the 
users. User needs are diverse and the trend is to customise the products and 
services. If it is done with software, we sacrifice the performance features. If we 
do it in hardware, it is not cost effective. Naturally, the problem is more complex 
and we should consider the competitive strategy and market situation too. 

In design methodology we must find out how to balance the system 
characteristics. The most important are complexity vs. feasibility, flexibility vs. 
suitability for purpose, and generic vs. dedicated solutions. These relate to the 
problem of when and how we should apply reuse instead of design. 



 

65 

Complexity/feasibility relates to the principles on which we design our systems. 
It relates to both hardware architectures and software architectures. Flexibility 
issues relate to how we identify and encapsulate those parts of the system that 
must be optimised without losing the programmability and configurability of our 
system. The generic/dedicated trade-off is mainly a design effort issue. The 
problem is the separation of common or generic problems from those that need 
special methods. The generic problems should be solved so that they become a 
part of the reusable system infrastructure. 



 

66 

4. Architecture design 
The architecture of an application domain-specific integrated computer is a 
combination of platform, computer, network and hardware architectures, as 
shown in Figure13. The implementation technology requires using hardware 
architecture design principles. The target is computer architecture, which is 
optimised for some specific application domain. Because of the complexities of 
the implementation and system, it also has to be a platform-type of architecture 
and it has to contain, or has to be connected to, an on-chip network. 

System
architecture

Software
architecture

Hardware
architecture

Platform
architecture

Computer
architecture

Network
architecture

Application-domain
specific integrated

computer
architecture

 
Figure 13. Classification of architectures. 

The architecture design is a process that produces the architecture description of 
the system. The process and the methods used depend on the system 
requirements and constraints. The approach and methods presented in this thesis; 
the complexity, mappability and capacity estimations as such can be applied to 
the design of any application domain-specific integrated computer. However, the 
real potential can be achieved when the interfaces to complete system 
development are understood, e.g. how the computer architecture relates to the 
system architecture, platform architecture and networks, and how an IP block-
based hardware design can be exploited most efficiently. 

In this thesis the methodology framework for architecture design methods is 
Backbone-Platform-System (BPS) design methodology that is targeted for the 
development of Network-on-Chip (NoC) systems, where the total complexity is 
expected to be above one billion transistors. The NoC architecture that is part of 
the BPS methodology provides an environment where application domain-specific 
integrated computers will be needed. It also motivates the reuse of existing 



 

67 

designs, e.g. to use the principles of IP block-based design. Supporting reuse has 
been the main objective when developing the presented estimation methods. 

4.1 Backbone�Platform�System design methodology 

The Backbone�Platform�System (BPS) design methodology has been developed 
based on the �integrated distributed embedded system� concept. Management of the 
diversity in functionality and technologies requires using the principles of distributed 
system development, which partitions the problems into more manageable units. 
Management of the complexity requires using integration, reuse and encapsulation, 
which are common in ASIC and embedded system development. Paper I, Paper II 
and Soininen & Heusala (2003) give more details about BPS methodology. The 
purpose in this chapter is to introduce the main principles. 

The following four objectives have been considered most important in the 
development of BPS methodology. 

1. Layering is needed for separating different concerns during the system 
development (Keutzer et al. 2000). In BPS methodology the layers are called 
the backbone, the platform and the system. The backbone layer is an 
extension of earlier platform-based design research. 

2. Separating infrastructure from applications is necessary for managing the overall 
complexity. This is an extension of the earlier research, where the development 
has gone from software/hardware partitioning to function/architecture codesign 
and to separation of communication and computation (Rowson & 
Sangiovanni-Vincentelli 1997). The infrastructure includes the principles of 
basic system construction in addition to support functions. 

3. Supporting reuse at all levels is a necessity because of design productivity 
reasons (Chang et al. 1999). The organisation of work must be based on 
heavy reuse of existing designs, reuse of software systems and reuse of 
platforms. The encapsulation of IP and the use of IP as a part of the system 
are, therefore, critical. Paper III deals with IP block design. Papers IV and V 
deal with IP block selection. Paper VI considers IP-based system design 
from the validation perspective. 



 

68 

4. Supporting the diversity in methods and technologies. Heterogeneity has 
been considered important in earlier codesign approaches, especially in 
cosimulation (Eker et al. 2003). In BPS methodology the heterogeneity is 
taken into account both in the system architecture and the supporting 
methodology integration. 

4.1.1 Separation of layers 

The purpose of the layered development is to manage the complexity by 
encapsulating the technology-specific and typically generic issues into a product 
backbone, and to encapsulate application area-specific issues into a product 
platform. The product instance-specific issues can then be designed reusing the 
backbone and platform designs. The layering enables the separation of 
infrastructure design from resource design and application design. The main 
problem is that the division between backbone, platform and system does not 
follow the technology boundaries or even traditional design flow phases; every 
layer presents a complete system.  

The backbone layer consists of the infrastructure and communication services. 
The infrastructure part consists of physical components and wiring for clocking, 
energy distribution and testing. The communication services consist of physical 
components, such as channels, switches and network interfaces, and basic 
services, such as protocols for physical and data link layers. The backbone 
provides an integration framework for platform and resource designers and a 
communication model for application developers. 

The platform layer describes the computation platform for the target application 
area and provides a programming model for application designers. At the 
platform layer the hardware of the chip and system services that will the 
provided for the application developers are fixed. The platform serves as a 
manufacturing integration platform for system developers.  

The system layer describes the programmed chip in the final product. The 
resource allocation, optimisation of network usage and verification of 
performance and correctness are the main problems that are basically similar to 
those distributed and parallel system designers have to face. 



 

69 

4.1.2 Separation of infrastructure from applications 

The proposed NoC architecture is 2-D mesh, which consists of resources and 
infrastructure, as presented in Figure 14. The infrastructure in Figure 14 consists 
of network elements, e.g. switches, channels and resource-network interfaces, 
but it also contains other infrastructure services, such as power delivery, testing, 
etc. The resources are embedded systems integrated into this architecture. 
Application domain-specific integrated computers are typical examples, but any 
type of resource that can be implemented in a synchronous area with the silicon 
technology is possible. From the system perspective, the resources are 
independent embedded systems that have standard interfaces to the infrastructure 
services. 

The regions can be used for embedding different technologies, such as large 
memory systems, parallel computers or reconfigurable arrays, into our NoC. The 
region is an area that is isolated from the communication using specific switches, 
e.g. wrappers. The size of the region can be larger than the size of the resource. 

 
Figure 14. Example of a network-on-chip architecture. S = switch, rni = 
resource-network interface, P = processor core, C = cache, M = memory, D = 
DSP core, re = reconfigurable logic, L = dedicated hardware. 



 

70 

4.1.3 Design flow 

The overview of the design flow for NoC-based systems is presented in Figure 
15. The design flow is divided according to system layers into the backbone 
design, platform design and application mapping. The blue area in Figure 15 
shows the area of the design activities, when developing a NoC system, i.e. a 
NoC architecture-based product from scratch. The axes in Figure 15 show the 
completeness of the functions and the resources of the complete system during 
the design flow. 

A generic design activity is divided into analysis, estimation, decision and 
validation phases. The Analysis phase is needed for understanding the input for 
design decision. Estimation is needed for predicting the outcome of possible 
decisions without putting too much effort into it. Decision implements the new 
system model, which typically includes the refinements and transformations. 
Validation measures the effects of decisions using the new system model as 
input. In many cases the validation and estimation methods can be very similar 
and the differentiating factor may simply be the maturity or abstraction level of 
the design data. 

The backbone design combines the technology-dependent implementation and 
very generic architecture considerations. The analysis phase considers the silicon 
characteristics and general principles of system construction. The estimation 
focuses on production yield, power management and infrastructure/application 
area efficiency. The infrastructure services and network topology, switches, 
channels, resource-network interfaces and protocols are designed in the decision 
phase. The quality of these services is measured during the validation phase as 
simplicity of resource integration, cost and performance. 



 

71 

Resource development

Fu
nc

ti o
n  

d e
v e

l o
p m

en
t

NOC System

System
does
not exist

Platform
Backbone

Architecture
design

Application
mapping

System 
Services

Operation 
principles

Communication
channels

Hardware

Product 
differentiation

Product area specialisation

 
Figure 15. Design flow of NoC-based system. 

The platform design can be divided into infrastructure instantiation and 
resource design, which is the design of the application domain-specific 
integrated computer covered in Chapter 4.2. The two major decisions in the 
infrastructure instantiation are the dimensions of the network, and types and 
sizes of the technology regions. The analysis phase focuses on understanding the 
characteristics of a typical application workload. The total complexity of 
computation, communication and storage is needed for scaling, and the 
characteristics of the applications affect the selection of the technology regions. 
These network performance and efficiency estimations are needed for the 
evaluation of the relative costs of the different implementation formats. All the 
regions and resources are designed and implemented in the decision phase. The 
validation phase consists of design validation, which is done using performance 
evaluation methods, and design verification, which is done using ASIC and SoC 
verification methods. It is clear that the current methods are not capable of 
handling the complexity of a real NoC platform. Therefore, the critical feature in 
the selection of methods, tools, and design practices is how to divide these huge 
problems into manageable smaller problems. 



 

72 

The application mapping, the final programming and the configuration of an 
NoC system consists of four activities. First, we have to model the whole 
system. Second, we have to partition the functionality into network resources. 
Third, we have to implement the behaviour. Finally, we have to download the 
complete system description into the NoC platform and verify it. The analysis 
focuses on the modelling of the behaviour of the system and its workload for the 
platform elements. The estimates of system quality are needed for mapping 
functions to resources. Feasibility of platform for a chosen set of functions, 
performances of functions with the chosen mappings and utilisation of platform 
resources are figures of merits that must be considered before committing to 
implementation design that is the decision phase. Validation and verification of 
structure and functionality of a complete NoC-based system are problems, where 
built-in self-test structures and hierarchical testing approaches with separation of 
communication, data storage and computation are the most likely alternatives. 
However, these problems are such that the correct answers will only be seen in 
the future (Vermeulen et al. 2003). 

4.2 Design of application domain-specific computer 

Application domain-specific computers only make sense if they provide better-
quality characteristics for target applications than general-purpose computers. 
Therefore, the goodness of the combination of application and computer is the 
main target. The quality characteristics of the computer system can be improved 
by organisation, operation and implementation. The organisation and operation 
are factors that depend on the application characteristics. 

In the BPS methodology the computing resources have very few preconditions. 
The area is constrained to a resource area that is the size of the synchronous 
clocking domain, the resource-network interface has to be implemented 
according to the backbone specification, and it must be possible to implement 
the resources with the platform technology. The design of the computer and the 
processor from scratch is a significant effort. In this approach the objective is to 
use existing building blocks, such as processor cores, memories and 
coprocessors. The benefit is the reduced design time, and the cost is likely to be 
the reduced goodness of the combination. 



 

73 

The main trade-off is between flexibility and performance. The architecture 
design must be based on application characteristics, which leads to the problem 
of how to characterise the application so that the essential features are covered 
without constraining the design space too much. If the application is too 
dominating, the result will be like a dedicated system that cannot be used in 
other applications. If the application model is too general, performance or 
quality targets may be difficult to reach or the result will be oversized for most 
of the applications. 

The design of application-specific computer architecture must produce answers 
to the following two questions. First, we have to define the kind of objects or 
basic building blocks of integrated computers, e.g. processing units, memories, 
and communication channels, we have in our architecture This means that we 
have to define the types of objects, the number of objects, and the characteristics 
and parameters of the objects, e.g. sizes of memory blocks, etc. Second, we have 
to define how these objects are connected to each other. The problem is that the 
number, types and characteristics of objects and their interconnections depend 
on application mapping, which is unknown at the design time. 

The proposed architecture design method takes a stepwise refinement approach 
to the problem, as shown in Figure 16. The problem is divided into the 
technology selection and scaling problem, which forms the definition of 
architecture concept, and the problem of the selection of the implementations of 
the objects. The definition of architecture concept is described in Paper IV, and 
the selection and validation problems in Papers V�VII. The architectural object 
selection further divides into the selection and refinement phases, and into 
processing, memory and communication architecture selections, but only the 
processing architecture selection is covered in this thesis. 



 

74 

Design

Selection

Architecture 
concept modelComplexity Quality

evaluation
Figure

of merits

Refinement

Workload Performance
evaluation

Architecture 
capability model

Performance
and cost

Architecture 
modelFunctionality Behavioural

simulation
Functionality

and cost

Implementation 
model

Functional
simulationCode Physical

characteristics

Definition

Application
requirements

Requirement 
model Validation Customer

satisfaction

 

Figure 16. The architecture design flow for application domain-specific 
integrated computers. 

Computer architectures have a large number of quality factors that must be 
fulfilled. All the quality factors should be taken into account in all design phases 
The idea in this flow is to enable the evaluation of the architecture quality with 
the application model that is on the same abstraction level as the architecture 
model. This also means that the evaluation criteria at each level must be such 
that it addresses the problems that are tackled by the design decisions in that 
phase. The proposed architecture design approach has three abstraction levels: 
conceptual model, capability model and architecture model. We must take care 
of primary quality objectives, such as minimisation of costs, adequate 
performance and capacity, or correctness of design, in all the phases, but during 
those phases we also have other objectives that are to be completely solved. 
Table 1 summarises some of the most important quality design issues. 



 

75 

Table 1. Quality design issues at different levels of abstraction in the proposed 
architecture design approach. 

 Design 
objectives 

Design 
decisions 

Quality valid-
ation problem 

Design 
method 

Architecture 
Concept 
Model 

Minimisation 
of long-term 
costs 

Technology 
selections  

Accuracy of 
forecasts 

Cost analysis 
using compl-
exity estimates 

Architecture 
Capability 
Model 

Efficiency and 
suitability for 
purpose 

Architecture 
object 
selections 

Number of 
alternatives  

Performance 
simulations 
with workload 
models 

Architecture 
Model 

Optimisation 
of features and 
correctness of 
design  

Architecture 
refinement and 
verification  

Complexity of 
design 

Functional 
simulation 
with applic-
ation or bench-
mark programs 

 

The problem with quality validation is to decide how much uncertainty we can 
tolerate. Long-term decisions must be based on technology and market forecasts 
and roadmaps, which are very sensitive to unexpected changes in technology 
and environment. If we think only about the possibilities of building the 
computing capacity of a computer, the number of alternative solutions is 
enormous. A detailed analysis of all of them is impossible in practice. The 
complexity remains a problem even after the main architecture decisions are 
made. The optimisation of the computer architecture � so that the final mapping 
of the architecture and applications during the system design results in adequate 
quality � must be done using abstracted models. The number of primitive design 
objects and the complexity of implementation prevent the use of prototypes or 
detailed simulations. 

The evaluation of the architecture quality must take the application requirements 
into account throughout the design flow. It is also necessary to support both 
proactive evaluation, which is targeted at decision support, and verification 
evaluation, which is targeted at the validation of the decisions. In addition, we 
have to be able to validate both common quality factors and phase-specific 
quality factors. In the proposed approach this means that the application models 
used in the evaluation of the architecture quality during the different phases are 



 

76 

complexity models, workload models or functional models. The origin of the 
model can be a generic benchmark, an application domain-specific 
representative program or a final application. It is also possible to create the 
application models using bottom-up or top-down approaches, e.g. to refine 
models starting from the requirements or to abstract existing code. 
Simultaneously, the focus of quality evaluation changes from long-tem capacity 
and cost issues to suitability of processing units, to performance and efficient use 
of architecture and resources, and finally to the functionality, optimality and cost 
of the system. 

4.2.1 Definition of concept model of architecture 

Development of an architecture concept is a long-term strategic task, because 
one of the most important aims of the platform-based design is to develop 
platforms that have long lives and high volumes via usability in various product 
variants and generations. Therefore, there are lot of risks and uncertainty in this 
task. The quality criteria for technology selections and definition of basic 
architecture concept are related to the development and manufacturing costs 
during the whole life cycle of the architecture. These costs are related to 
technology development and tool development, and to the need for changing, 
maintaining and modifying the product. 

The architecture concept model describes the technologies, and the main 
architectural objects and their interconnections in the computer. The architecture 
concept model is a network, in which the nodes are architectural objects and arcs 
are interconnections. The purpose of the model is to enable rapid evaluation of 
architecture quality, and to act as a baseline for the selection and design of 
architectural objects. The architectural objects in the model do not describe the 
actual, physical blocks. Instead, they are the capacity requirements for some 
specific types of blocks. Therefore, the basic types of blocks are processing unit, 
communication channel and memory. The granularity into which the 
architectural objects are decomposed in the concept model depends on the 
requirements of the system and on the classes of the reusable objects � e.g. IP 
blocks, such as processor cores. Therefore, it is also possible to further divide 
these units into, for example, DSP, GPP, and dedicated HW processing units, or 



 

77 

different bus or memory types. It may be necessary to further split these objects 
into several physical IP blocks during the design. 

The analysis in the concept model definition includes analyses of the 
characteristics of the target applications and the IP block and technology 
offerings. The estimation means the complexity and cost estimation of the 
architecture concepts with possible functional partitions and technology, tool, 
and design cost development scenarios. The decision means the generation 
architecture concepts and selection of the most feasible architecture concept. 
Paper IV covers these issues. Only a limited validation of the architecture 
concept model is possible. The partitioning of functionality into architecture 
objects can be validated using performance analyses. The complexity estimates 
can be validated by more detailed design or more detailed analyses, but that is 
only applicable to a small set of alternatives. Complete validation of the 
technology and design cost forecasts is not possible. 

4.2.2 Definition of implementations of architectural objects 

The second phase in the architecture design is to define how to implement the 
architectural objects in the architecture concept model. The two alternatives for 
implementing architecture objects are to reuse existing IP blocks or to design the 
implementation as a new IP block (Paper III). The principles in both cases are 
similar. The possible implementations must be first characterised, then evaluated 
as a part of complete system, and finally instantiated into an architecture model. 
The difference is that with existing IP blocks we have limited capability to 
modify the design and the number of design alternatives is typically much 
smaller. The quality of design is another issue to consider. With IP blocks it is 
very difficult or impossible to correct design flaws, but, on the other hand, it is 
difficult or impossible to introduce new design errors too. Cost and availability 
are also factors to be considered. IP block may be a very cost-effective solution, 
especially when the complexity of design or manufacturing increases, as is the 
case with processors and memories. Availability can affect both directions. 
Novel ideas or standardised solutions may be protected by patents, for example, 
which means that using them requires the procurement of IP rights and even the 
IP blocks. Alternatively, the IP is not available. 



 

78 

Object selection 

The first task in the definition of the implementation is to select the types of 
units that will be used in our architecture. The first problem in the selection 
process is to find suitable candidates for architectural objects and to select the 
best candidate. The second problem is to verify that the chosen set of objects 
fulfils the performance and capacity targets of our architecture. In order to do 
this, we need to have an architecture capability model that can be used as an 
evaluation platform for the application workload models. 

The architectural objects in the architecture capability model are described as a 
service capability they can give the applications. Service capability can be, for 
example, processing capacity described as instructions per cycle or data memory 
transfer capacity described as clock cycles of sequential or random memory 
accesses. The interfaces in the architecture capacity model are described as 
abstract channels that communicate via transactions. The main difference is that 
in the architecture concept model the architecture capacity means requirements, 
and is expressed in the form of general capacity; in the architecture capacity 
model the capacity is characterised as the capacity of the chosen unit, and the 
final performance in the performance evaluation depends on the characteristics 
of the application workload. 

The analysis in the architecture capability model definition phase contains the 
analysis of the possible architecture objects and application functions. We have 
to understand the characteristics of the target applications. What kind of 
computation must we perform in the architecture? What is the structure of the 
computation? Is it possible to exploit data, instruction, thread or process-level 
parallelism? We also have to analyse, the kinds of services that are offered by 
the possible architectural objects. The decision is the selection of an architectural 
object. This can be an IP block or a set of requirements for implementation 
design. The goodness of algorithm-architecture pair is essential in the selection 
of the processing units. Chapter 4.3.2 and Papers V and VI give more details 
about the mappability estimation that supports those decisions. Estimation of 
system performance and, especially, of its capability to execute the planned tasks 
is also needed. The validation of the architecture capability model is done using 
performance simulations, where application workloads are mapped to capability 
models, as in Paper VII. 



 

79 

Object refinement 

The second task after selection of the architecture objects is that their 
behavioural models must be selected or designed, and connected to each other so 
that functional verification of the architecture is possible. The result of this phase 
is the final architecture model, which describes the functionality and interfaces 
of the architectural objects. 

The analysis phase contains the study of the available behavioural simulators of 
architectural objects or behavioural specifications of functions, and the study of 
the application software or benchmarks. The decision is the selection, design and 
instantiation of the simulation models into a system simulation environment. The 
estimation and validation should focus on the functionality and cost of the 
architecture. Functional simulation using instruction-set simulators and memory 
models, and hardware and software estimations are usable tools. 

4.3 Decision support methods 

The presented NoC design flow requires new methods for supporting the 
architecture-related decisions. New platform-based design paradigms are 
replacing the specification and synthesis-based approaches. The selection and 
mapping are design activities that need a new type of design space exploration 
support. 

Proactive decision support methods, e.g. estimations, are needed for efficient 
reduction of the design space. Complexity and capacity estimations are needed 
for sizing and scaling so that we know the quantities of the objects. Mappability 
estimates are needed for the selection of physical and functional objects so that 
we know the suitability of the objects. Performance and workload estimations are 
needed for allocation and validation so that we know the effectiveness of our 
design. Cost and quality estimation are needed for a feasibility analysis. We have 
to know as early as possible whether the design work is worth the effort or not. 

Validation methods are needed after the decision for the analysis of the 
consequences. Validation methods can be more detailed because only a small 
number of alternatives are designed in more detail. However, the validation 



 

80 

methods must also be very effective. Validation must cover all the quality 
criteria, but if we consider the performance, for example, the quality validation 
procedure may consist of a network simulation, transaction-level architecture 
simulations and instruction-level processor simulations. 

4.3.1 Complexity-based quality estimation 

The selection of a new architecture concept requires analysis and estimation 
methods that use very abstract information about target applications or available 
technologies. The reason is that new architecture concepts are only designed 
when major changes occur in either area or when a company tries to penetrate 
new markets. 

Paper IV presents a method for estimation of architecture quality using 
complexity-based metrics. The purpose of the method is to enable the 
comparison of the different approaches to system implementation. It uses 
complexity estimates of applications, possible architecture concepts, and 
estimation of design effort and technology development scenarios as a basis for 
the quality evaluation process. The idea is to encapsulate the quality measures 
into a single measure called figure of quality, which can be estimated from early 
mappings of system functionality to initial architectures. 

The figure of quality, FOQ is obtained using following formula 

( ) ( ) ( )tDCtDCtCFOQ SWHWS ++= , (1) 

where CS(t) is the structural complexity of the system. This takes the 
complexities of both the architecture and the applications into account and is, in 
fact, a measure of the implementation cost. DCHW(t) is the hardware design cost 
and DCSW(t) is the software design cost. All the parameters are dependent on 
time, t, since the technology development and the methodology development 
affect different cost factors differently. All the parameters also have weight 
values, because in a different type of system the importance of the 
implementation and design costs may differ. 



 

81 

The estimation combines the functionality of the system, e.g. mathematical 
equations and algorithms, and the complexities of the physical objects of the 
architecture. The process is the following. 

1. Analyse the operational complexities, ( )fCF , of the application functions, 
{ }NffF ,,1 K= , that are the baseline for the system development. 

Operational complexities can be analysed from pseudo-code representation 
and contain information on computation, communication and storage. 

2. Define the set of architecture concepts, { }KAAA ,,1 K= , based on the 
characteristics of the application area and architecture templates. 
Architecture Ai consists of a set of architecture objects, { }Mi aaA ,,1 K= , that 
can be, for example, RISC core, DSP core, coprocessor, SRAM block, etc.  

3. Generate system models, that is map functions to architectural objects, 
AFM →: , so that each architecture object has a set of functions associated 

with it in such a way that each function is associated with one and only one 
architecture object. During the mapping the operational complexity is 
divided into the architecture object types. Computation complexity is 
allocated to the processing objects, storage complexity to memory-type 
objects and communication complexity to communication channels. 

4. Estimate the implementation costs � that is, the structural complexities of the 
objects of the architecture � based on the operational complexity estimates, 

( ) ( )⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=∈∀ ∑

∈ jk af
kFmjSij fCGaCAa : , (2) 

where Gm is architecture object-based estimation function. Then create the 
total structural complexity estimate, 

( ) ( )∑
∈

=
ij Aa

jSiS aCAC . (3) 

The structural complexity measures of implementation are gates per 
function, gates per resource, gates per data transfer, instructions per function 



 

82 

and memory per function. Estimation of the implementation cost of the 
architecture objects based on the operational complexities of the algorithms 
requires either advanced synthesis or hardware estimation tools, or 
cumulative knowledge of the implementations in the form of IP libraries or 
designer experience. Some examples of possible estimation functions, G, are 
given in Paper IV. 

5. Estimate the hardware design costs, DCHW, using the structural complexity 
estimates of the architecture objects, and the software design costs, DCSW, 
using the operational complexity estimates of those functions that are 
mapped to the programmable architecture objects. In both cases estimation 
functions exploit the cumulative knowledge of an organisation. 

6. Analyse the technology and market development trends and create functions 
for weights of quality factors that describe their relative importance as a 
function of time based on product and market scenarios and technology 
improvement functions for the implementation and design costs. 

7. Analyse the figures of the quality of the architecture concepts. 

The method is presented in more detail in Paper IV, which also contains an 
experiment using an ADSL modem as a product example. The method attempts 
to narrow the gap between detailed technical analyses that originate from the 
engineering domain and abstract risk analyses that originate from the 
management domain. The main strengths of the proposed approach are the 
simplifications and possibility of adding organisation-specific cumulative 
knowledge into the estimation process. At the same time, they are also the main 
weaknesses of the approach. The models that are used are very simple and it is 
possible that they do not capture all the necessary details. Some of the 
parameters that are used, especially in the estimation functions, are difficult to 
define and fine tune. It may be tempting to simply experiment with them and 
then end up with the wrong conclusions. The proposed method, however, 
provides a systematic approach for analysing the expected quality of the 
architecture concept. By automating the analysis process and by adding more 
advanced models to the analyses of the technology and market changes, it could 
be a valuable tool for supporting strategic decisions. 



 

83 

4.3.2 Mappability-based quality estimation 

Mappability-based quality estimation is developed for evaluating the goodness 
of the processor architecture and algorithm pair. The processor architecture in 
this context only means the execution architecture, so it excludes cache 
memories and memory organisations. It also only deals with single processors 
and parallelism is only dealt with on the data and instruction levels. 

By mappability of an architecture-algorithm pair we mean the degree of 
matching or correlation between the resources provided by the processor 
architecture and the requirements described by the algorithm. The perfect match 
means that the architecture has exactly the right number of resources and an 
optimal pipeline organisation for the algorithm to be executed. Here the 
optimality is defined so that increasing the number of any resources would not 
improve the performance but only decrease their utilisation. In an ideal case the 
architecture would be executing all the possible computations using all the 
resources of the architecture at every time step. 

Performance and utilisation of resources are typically used as evaluation 
measures of processor-algorithm pairs. The problem with both of them is that 
they only express part of the problem. Performance alone does not tell anything 
about how effectively the resources and architecture are used and how many of 
the resources are waiting idle. Utilisation alone does not reveal anything about 
the potential of an algorithm. With simple architectures it is easy to have high 
utilisation figures without knowing about the possibility of having much higher 
performance by adding resources to the architecture. Metrics such as 
performance/cost and performance/energy try to address this problem, but their 
problem is that they also measure the efficiency of the resource implementation 
in addition to the architecture. 

The mappability estimation presented in this thesis and in Papers V and VI is 
targeted at supporting decisions related to the processor architecture and 
algorithm selections during the early phases of the architecture design. This 
objective prevents the use of simulation or execution as an evaluation method. 
The basic idea of the estimation method is very simple and presented in Figure 
17. The computation of an algorithm can be presented as a control flow graph 
and data-dependency graphs of its nodes. The control flow graph represents the 



 

84 

dynamic characteristics of the algorithm and the data dependency graphs 
represent the data operations in the basic blocks of the algorithms. The sets of 
data dependency graphs, the operations and their dependencies, describe the 
possible execution boundaries. The execution architecture of a processor core 
consists of execution resources of operations, local data storage capacity � e.g. 
registers � and input and output capacity for operations and data. The execution 
resources are organised in time and space � e.g. pipeline and parallelism - which 
limits their usability. Their ability to execute operations sets additional 
constraints. The mappability of a processor and algorithm is a measure of how 
the algorithm characteristics and processor capability correlate or match with 
each other, e.g. how effectively the architecture resources can be exploited with 
a given computational structure. 

Local storage capacity

Input 
capacity

Output 
capacity

Execution capacity

Computation = 
operations, data and 
dependencies

Parallel in
time and space

 

Figure 17. The basic idea in mappability estimation. 

In the developed approach we consider the mappability of the processor core (c) 
and algorithm (a) from six different viewpoints: instruction set suitability (iss), 
external data availability (eda), internal data availability (ida), control flow 
continuity (cfc), data flow continuity (dfc) and execution unit availability (eua). 



 

85 

Furthermore, we characterise each basic block node of algorithm separately and 
combine the information using basic block execution times as weight values in 
averaging. 

For each viewpoint, { }euadfccfcidaedaissi ,,,,,∈ , we have a mappability estimate, 
( )acM i , , that is a weighted average of the node estimates, ( )jji acm ,, . For each 

node we have a node and viewpoint-specific algorithm characterisation, ( )ji ae , 
and viewpoint-specific core characterisation, ( )cei . The mappability of each 
viewpoint, ( )jji acm ,, , is analysed separately using simple ratios, 

( )
( )
( ) ( ) ( )
( )
( ) ( ) ( )

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<

≤
=

ceae
ce

ae

aece
ae
ce

acm

iji
i

ji

jii
ji

i

jji

,

,
,, . (4) 

The total mappability of a viewpoint is then extended to cover the whole 
algorithm using the weighted average of the mappability values of the nodes, 

( )
( )( )

∑

∑

=

=

⋅

=

Vj
j

Vj
jjij

i w

acmw
acM

K

K

1

1
, ,

, , (5) 

where j is the basic block node in control flow graph V of the algorithm, and wj 
is the weight � e.g. number of execution times of blocks. Total mappability is the 
weighted average of the viewpoints, 

( ) ( )∑ ⋅=
i

ii acMwacM ,, , (6) 

where wi can be used for defining the relative importance of the viewpoints. The 
essential issue in the approach is the characterisation of the algorithm and core. 
The details are given in Paper V, but Table 2 summarises it. 



 

86 

Table 2. Characterisation of algorithm and processor core features. 

 Algorithm characterisation Processor core 
characterisation 

Instruction set suitability Effectiveness and 
exhaustiveness of instructions 
in a core with respect to 
operations in an algorithm  

Cost of execution instructions 
in terms of time and energy 

External data availability Number of instructions to be 
fetched from memory and 
number of data operations 

Bus capacity of a core 

Internal data availability Number of data to be stored in 
registers, e.g. number of data 
dependencies in schedule steps 

Number and availability of 
registers 

Control flow continuity Number of branches The effect and probability of 
branch penalty, e.g. 
superpipelining degree and 
branch prediction efficiency 

Data flow continuity Possibility to data hazards, e.g. 
number of data dependencies 
and mobility of operations in a 
schedule 

Possibility to have data 
hazards in a pipeline, e.g. 
superpipelining degree 

Execution unit availability Possibility to execute 
operations in parallel, e.g. 
average number of operations 
in single scheduling steps in 
ASAP and ALAP schedules 

Number of parallel execution 
paths in core and their 
capability to execute different 
types of instructions 

 
The principles of the estimation and early results are given in Paper V, and the 
results of its use in processor selection are given in Paper VI. The main benefit 
of our estimation approach is that it is based on comparing the characteristics of 
the algorithms and processor cores instead of mimicking the execution. 
Therefore, we can use very simple models of both processors and algorithms. 
This makes the approach applicable to a variety of design problems, such as 
processor selection, instruction-set design, processor configuration, execution 
architecture selection and algorithm selection. 

The main limitation of our approach is that the effects of memory organisation, 
cache and communication are not yet considered because they would require 
more detailed views of partitioning, compilation and application programs. That 
would increase the complexity of the estimation significantly. The approach is 
also limited to very fine-grain parallelism. The absolute performance of a 



 

87 

processor is not yet taken into account in our approach. The designer has to 
explicitly check that the processor is capable of doing the computation within 
the specified time frame. 

4.3.3 Capacity-based quality estimation 

The capacity-based quality estimation method has been developed for evaluating 
the mapping of the applications to the architecture objects. The method can be 
used either when the architectural objects are being defined or when an 
application is being mapped to the final architecture. The figure of quality, FOQ, 
in this context is the function of the performance and utilisation of resources. 
The performance relates to the execution times of the applications and the 
communication latencies. The utilisation of resources relates to the ability of the 
architecture and its objects to perform the tasks allocated to them. The exact 
format of FOQ function depends on the type of system, but it describes the 
hardware platforms ability to execute different type of applications that are 
needed in the different uses of the platform. 

The basic idea in this estimation method is similar to the function/architecture 
codesign or mapping-based codesign presented in the POLIS and 
METROPOLIS approaches: we model the application and the architecture, then 
we map the application to the architectural units and do the performance 
evaluations. The main differences in the approaches are due to the chosen 
abstraction levels of both applications and architectures, which further affects 
the principles on which the performance models operate. 

In our approach the objective is to study multiprocessor systems targeted at 
some application domain, in this case to mobile computation. Both the hardware 
architecture and software system may have a lot of variety in their objects. The 
maturity of the models is low at the time the system must be evaluated. The 
complexity of the whole system is such that detailed modelling-based 
approaches and refinement-based approaches are not feasible. Therefore, we 
have chosen to use abstract models and transaction-based simulations. The 
quality estimation is based on SystemC 2.0 simulations. 



 

88 

In principle, the quality estimation model (QEM) consists of the SystemC 2.0 
simulator kernel (SSK), application workload models (AWM) and architecture 
capacity models (ACM). So, ( )ACMAWMSSKQEM ,,= .  

The application workload models consist of functions that request capacity from 
the architectural objects: ( )AMACCRAWM i ,,= , where iCR  is the sets of 
capacity requests of types { }storcommcompi ,,∈ , AC  represents the control 
behaviour of the workload and AM  is the set of application performance 
monitors. The three capacity request types are computation request, 
communication request and storage request. The capacity requests are in the 
form of quantitative units, which are dependent on the request type; the 
computation requests are modelled with the number of instructions needed by 
the application or the part of the application; and the communication requests are 
modelled with the number of bits to be transferred via the communication 
channel. In this approach the explicit addresses of the communication must be 
known. The storage requests are modelled with the number of bits to be stored in 
a memory. The application control, AC, can be used for generating hierarchical 
AWMs. The only limitation for AC is that it may not interact with SSK or ACM. 
The application performance monitors, AM, can be used for collecting 
application or function execution times from the simulation. Such analysis is 
especially interesting in the early stages of application development, when the 
performance of the architecture with a new application and existing workload 
needs to be validated. 

The architecture capability model, ACM, consists of a set of resource capacity 
models, iRCM  and their interconnections. The resource types are the same as 
the request types in AWM. The resource capacity model further divides into a set 
of capacity parameters, resource control model and performance monitors, 

( )RPMRCCRCPRCM ,,= . 

The resource capacity parameters define the performance behaviour and the 
upper limits of the resources. The parameters for computation resource are 
instructions per cycle and total number of cycles, e.g. { }TCIPCRCPcomp ,= . The 
total number of cycles depends on the length of the simulation and the resource�s 
relative clock rate. In the case of steady state analysis it can be left un- 
specified. The BPTRCPcomm = , where BPT is bits per transaction, and 



 

89 

{ }MSCPARCP jstor ,= , where CPAj is latency of memory access of type j, and MS 
is the size of memory.  

The resource control model, RCC, is a function that controls which capacity 
request is served in the case of simultaneous requests, and how the capacity is 
consumed. For example, the RCC for a bus is a bus arbiter and a timekeeper, 
which decides how many cycles are spent during the transaction. It is also 
possible to model the resource sharing as a part of the application workload 
model. The choice depends on the purpose of the simulation and whether, for 
example, the operating system is considered part of the architecture or not. In the 
future it may well be that RCC functions are integrated as part of the simulator 
kernel, SSK (Kunkel 2003). 

The performance monitors, RPM, collect information on the behaviour and 
states of the architecture objects during the simulation. For the computation 
resources, the states are idle, waiting and running. For communication resources, 
the states are active and idle. For storage resources, the states are writing, 
reading, storing and empty. The RPM can also be architecture service-specific. 
For example, the RPM can collect statistics on the bus or memory operations of 
all the applications. The collected information serves as a basis for the utilisation 
and average performance analyses. 

The approach can be used in a variety of ways, depending on the analysis 
objectives and the maturity of the models. The granularity in which the capacity 
requests are presented can vary from a single instruction to a basic block, a 
function or a complete application. Similarly, the resource control model can 
give instructions or bit transactions for applications or more coarse-grain 
abstract computational capacity. 

One example of the use of this approach is given in Paper VII. The system to be 
studied was an execution platform for future Internet appliances, IHIP. The basic 
architecture consisted of four DSP cores, FFT and Viterbi coprocessors, and 
configurable on-chip embedded SRAM memory organisation. In addition, the 
chip design had an RISC core, DMA, AMBA bus and 16Mbit of on-chip 
DRAM. The MPEG-2 decoder and HiperLan/2 transceiver applications were 
studied because they have very different requirements for the computation 
platform. 



 

90 

The idea in the quality estimation and simulation was to compare the configurable 
memory and shared memory approaches, and to validate the system. Therefore, 
the focus in the modelling and simulation was on the configurable memory 
organisation. The models of the processor and processing capacity request models 
were very abstract. Both the WLAN transceiver and the MPEG-2 decoder are 
applications where most of the processing is steady state data stream processing. 
Therefore, we decided to ignore the application start-up and closing effects. 

The results and the details of the experiment are given in Paper VII. It was 
demonstrated that capacity-based quality estimation could provide information 
for the system designer that is useful and extremely difficult to get otherwise. 
The functional simulation model of the IHIP architecture using instruction-set 
simulators, VHDL simulation models, Denali memory models, and SystemC 2.0 
models was also constructed. Although the IHIP simulation model was based on 
reusing models designed earlier, the performance simulation model was much 
easier to build. It also turned out that we were not able to run the same case 
examples in the functional simulation due to software maturity problems 
(WLAN) and economic constraints (MPEG-2). 

The experiment in Paper VII only covers part of the possibilities presented in this thesis. 
The important issues for future research are how to validate the application workload 
models and how to partition the system to the application model and the resource model. 
The workload model is an abstraction of real application code, existing code or planned 
code. The correctness, accuracy and detail of the application characterisation are the 
major challenges. One possible approach is to integrate the ideas of the mappability-
based quality estimation approach into the workload modelling.  

The platforms seem to be expanding in the platform-based design. When the 
products mature, more and more features are transferred from the application 
side to the platform side. Initially, the platforms were processor-based computer 
architectures. Nowadays, they contain the operating systems and middleware 
functions. Recently, the application domain-specific dedicated functions have 
been integrated into the platform side. The question is how could we try to 
follow this trend in the quality estimation as well. One possible approach could 
be to build interfaces at a high level of granularity, which could lead to an 
application-platform service interface instead of the application function-
resource capacity interface presented in this thesis. 



 

91 

5. Introduction to papers 
Paper I (A Network-on-Chip Architecture and Design Methodology, ISVLSI 
2002) describes the principles of the NoC architecture and design methodology. 
My main contribution to this paper is Chapter 4, about design methodology, 
which is based on my earlier work (Soininen 1997, Soininen et al. 1998b, 
Soininen 1999). The chapter presents the basic ideas about dividing the design 
into backbone, platform and system layers, and outlines the requirements for 
new tools and design methods. I have also contributed to the development of the 
NoC architecture and, especially, to its region concept. My contribution to 
considering the NoC resources as embedded systems that are distributed into the 
silicon surface was also significant.  

Paper II (Extending platform-based design to Network-on-Chip systems, VLSI 
Design 2003) presents the Backbone-Platform-System design methodology in 
more detail. It introduces the design plane concepts and integrates different 
design methods and activities into the methodology. It also considers the 
decision-support methods and their role in the design methodology. The 
methodology presented in Paper II is the basis for Chapter 4.1 in this thesis. It is 
also the target design framework for the decision-support methods presented in 
Chapter 4.3. Paper II was also the basis for Chapter 2 in Jantsch and Tenhunen 
(2003). I am the first author of the paper and it is mostly based on the my 
research. 

Paper III (Minimisation of functionality and implementation of embedded low-
power WWW-server, Electronic Letters 2002) presents an example of an IP 
block. This short paper focuses on presenting the innovation and benefits of 
putting WWW-servers� functionality in hardware, and ignores the fact that 
designing an IP block is two to three times more demanding than designing a 
hardware block. The designed IP block served as a case example in a research 
project that focused on IP-based SoC design. The reusable IP blocks are the 
cornerstones of the architecture design methodology presented in this thesis, 
which is the reason for including this paper here. My contribution to this paper 
was inventing the idea of a hardware WWW-server and the initial design of its 
operation principles and architecture. 



 

92 

Paper IV (Application of decision-making method for the architecture selection 
of an ADSL modem, DSD2001) presents a complexity-based architecture 
quality estimation method. The method is applied to a technology and 
architecture concept selection for an ADSL modem. Modem architectures based 
on dedicated hardware, simple RISC controllers, DSP cores and general-purpose 
processors were compared. The comparison was based on a complexity estimate 
of ADSL functionality, initial mappings of functions to architectures, and 
technology development and design productivity trends within next ten years. 
The best comparable architectures found were similar to those found in 
commercial modems. However, the accuracy of the long-term development 
remains to be seen. The quality estimation method was developed by me. 

Paper V (Mappability Estimation Approach for Processor Architecture 
Evaluation, NorChip 2002) presents the main concepts and approach for the 
mappability-based quality estimation for an architecture-algorithm pair. The 
algorithm-architecture correlation functions are presented and the approach is 
used in simple test cases. The results were validated using instruction-set 
simulations and measurements with real processors. I was the first author in this 
paper. The main contribution is in developing the principles of correlation and 
correlation functions. 

Paper VI (Fast Processor Core Selection for a WLAN Modem using Mappability 
Estimation, CODES 2002) presents how mappability estimation can be used for 
defining most suitable processing architectures for application functions. The 
case example was a HiperLan/2 transceiver, which is very similar to 
IEEE802.11a. The transceiver was decomposed into functions, of which 13 were 
studied. Over ten thousand processor architecture models were generated using 
different combinations of the main architecture parameters. Finally, mappability 
estimates were calculated for all possible mappings and the best architectures for 
the functions were selected. The conclusion drawn in the paper was that 
mappability estimation could be used for the identification of the required 
architecture characteristics for a set of algorithms, or for the selection of 
processor cores in the design of a multiprocessor system-on-chip. The method 
was found suitable for fast reduction of the design space because only simple 
algorithm and architecture models were needed. I was the first author of this 
paper. The main contribution is in developing the mappability estimation 
method, and using it for architecture definition. 



 

93 

Paper VII (Configurable Memory Organisation for Communication 
Applications, DSD2002) presents how the workload modelling and architecture-
level simulations are used in the validation of the configurable memory 
organisation. The architecture simulation ideas are based on my earlier work 
with functional modelling and simulation (Kauppi et al. 1992), cosimulation 
(Soininen et al. 1998a), and system-level simulation (Soininen et al. 1995). The 
configurable memory organisation is an example of an architectural solution that 
increases the reusability and flexibility of the system hardware and makes it a 
platform for a variety of products. I was the first author of the paper. The main 
contribution is in defining the performance simulation methodology and the 
configurable memory organisation. 



 

94 

6. Conclusions 
The development of integrated circuit technology will change the architectures 
of computing and processing systems. Already today, even the hand-held 
products have execution engines that consist of several processors. In the near 
future, the number of processors and processing units will increase to tens and 
even to hundreds if the energy consumption is not a severe product constraint. 
Such a computational capacity enables products that are more intelligent in 
terms of user interaction, information content and resource consumption. The 
same technology development will be used for making the individual processors 
more efficient, more flexible and more adaptive, which will enable us to develop 
more usable and useful products when the minimisation of physical dimensions 
is the target. 

The cost of increasing complexity is the required design effort. There are clear 
indications that the design complexity of an ASIC that uses the total technology 
capacity is reaching the limits of design capacity. The EDA industry, the main 
system developers and the academic research community have tried to respond 
to the design productivity challenge by trying to develop more efficient design 
tools and by trying to promote the reuse of design objects. The most recent 
outcome of these efforts is the platform-based design paradigm, where the idea 
is that the design process consists of a sequence of platforms; a new platform is 
built on top of an earlier platform by mapping or integrating new functionality 
onto it. The main benefit is that the platform can serve as a reusable design 
object that can encapsulate any type of design data. 

The architecture design methods and quality estimation approaches presented in 
this thesis aim at solving the complexity-related problems in the development of 
application-specific computer architectures. The platform-based design consists 
of two phases: platform definition and application mapping. In the case of future 
multiprocessor and NoC architectures, both phases are extremely complex and 
need advanced methods that are based on abstract models and uncertain 
information. 

The Backbone-Platform-System methodology divides the system development 
into three phases. The backbone layer focuses on the physical design problems. 
The separation of the infrastructure from the application computation, which 



 

95 

also means the separation of the communication from the computation already at 
the physical level, helps in isolating the physical design problems from the 
computation architecture and application development problems. The platform 
layer focuses on the computation architecture problems. The design of 
application-specific computers requires that we know how to analyse the 
application domain, how to select the best technologies and units for our 
architecture, and how to validate our decisions. The system layer focuses on the 
application development, especially for application mapping problems. 

This thesis presents three quality estimation approaches for helping platform 
design and application mapping decisions. The complexity-based quality 
estimation can be used for defining architecture concepts and technologies. The 
developed figure of quality metric enables the comparison of different types of 
alternatives at very early stages of the product development process. The 
mappability-based quality estimation can be used for evaluating the goodness of 
processor core-algorithm pairs. The developed mappability metric combines the 
execution time and resource utilisation views of the algorithm execution in a 
core. The method uses abstract parameter-based models of architecture and a 
graph-based model of algorithm, and enables fast reduction of design space. The 
approach can also be used when modelling the application workload for 
performance simulations. The capacity-based quality estimation can be used for 
the evaluation of architecture�s performance with a specified workload. The 
performance in this context is either the performance experienced by the 
application or the performance of the architecture. The estimation is based on a 
performance simulation using abstract workload models and architecture 
capability models. 

The result of this research is that the proposed quality estimation methods can be 
used as part of a decision-support toolkit when developing application-specific 
computer architectures. It is clear though that the current versions of the methods 
are not complete and further work is required. It must be also stated that the 
validation of the system-level estimation method is expensive and time 
consuming. Therefore, the validation in this thesis is partly based on 
comparisons with existing and comparable designs rather than accurate 
measurements. The estimation approaches also have limitations, which affect the 
results, but, on the other hand, estimations always have some risk of error and 
when we make estimations at early stages of design the risks are higher. 



 

96 

Estimator is a calculator, and the responsibility for avoiding the garbage-in, 
garbage-out syndrome belongs to the user. 

Research topics for the future 

Quality-driven development processes will be needed. The essential issue in all 
product development projects is the user�s experience of the product. Therefore, 
the quality attributes must be migrated into the product development so that the 
design objectives will serve the total quality of the product. In the case of 
application-specific computer architectures, the quality comes from the 
mappability of the architecture and algorithms. 

Estimation accuracy is the critical measure of the usability of an estimator. In the 
case of the estimators proposed in this thesis, the main factor is the quality of the 
input data. The essential issues to be studied are the analysis of the algorithm 
characteristics and the modelling of the architecture capabilities. The 
understanding of the operation of a software system and the mapping process 
will become more important with systems that are more complex. 

Decision-support methods and tools will play an essential role when solving the 
design complexity problems. The product development is a sequence of 
decisions. The right decisions lead to a product and the wrong decisions lead to 
iterations. The increasing number of alternatives forces us to make bigger 
decisions earlier, and this calls for advanced support. Modelling, estimations, 
analyses and simulations will be needed. 



 

97 

References 
Aho, A., Hopcroft, J., Ullman, J. 1983. Data Structures and Algorithms. Reading, 
MA, USA: Addison�Wesley Publishing Company. 427 p. ISBN 0-201-00023-7 

Aho, A., Sethi, R., Ullman, J. 1986. Compilers: Principles, Techniques and 
Tools. Reading, MA, USA: Addison�Wesley Publishing Company. 796 p. ISBN 
0-201-10194-7 

Allara, A., Brandolese, C., Fornaciari, W., Salice, F., Sciuto, D. 1998. System-
level performance estimation strategy for sw and hw. Proceedings of 
International Conference on Computer Design: VLSI in Computers and 
Processors, ICCD '98. Austin, TX, USA, October 5�7, 1998. Los Alamitos, CA, 
USA: IEEE Computer Society Press. Pp. 48�53. 

Anceau, F. 1986. The architecture of microprocessors. Wokingham, UK: 
Addison-Wesley Publishing Company. 252 p. ISBN 0-201-14401-8 

ARM. 1999. AMBA Specification (Rev 2.0). ARM Limited. Available at: 
http://www.arm.com  

August, D. I., Keutzer, K., Malik, S., Newton A. R. 2002. A disciplined 
approach to the development of platform architectures. Microelectronics Journal 
33, pp. 881�890. 

Austin, T., Larson E., Ernst, D. 2002. SimpleScalar: An Infrastructure for 
Computer System Modeling. Computer, Vol. 35, No. 2, pp. 59�67. 

Bahill, A. T., Alford, M., Bharathan, K., Clymer, J. R., Dean, D. L., Duke, J., 
Hill, G., LaBudde, E. V., Taipale, E. J., Wymore, A. W. 1998. The Design-
Methods Comparison Project. IEEE Transactions on Systems, Man, and 
Cybernetics � Part C: Applications and Reviews, Vol. 28, No.1, pp. 80�103.  

Balarin, F., Chiodo, M., Giusto, P., Hsieh, H., Jurecska, A., Lavagno, L., Passerone, 
C., Sangiovanni-Vincentelli, A., Sentovich, E., Suzuki, K., Tabbara, B. 1997. 
Hardware-Software Co-Design of Embedded Systems � The POLIS Approach. 
Boston, MA, USA: Kluwer Academic Publishers. 297 p. ISBN 0-7923-9936-6 

http://www.arm.com


 

98 

Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-
Vincentelli, A. 2003. Metropolis: An Integrated Electronic System Design 
Environment. Computer, Vol. 36, No. 4, pp. 45�52.  

Banakar, R., Steinke, S., Lee, B-S., Balakrishnan, M., Marwedel, P. 2002. 
Scratchpad Memory: A Design Alternative for Cache On-Chip Memory in 
Embedded Systems. Proceedings of 10th International Symposium on 
Hardware/Software Codesign, CODES 2002. Estes Park, Colorado, USA, 6�8 
May 2002. New York, NY, USA: ACM Press. Pp. 73�78. 

Barros, E., Rosenstiel, W. 1992. A method for hardware software partitioning. 
Proceedigns of Computer Systems and Software Engineering. Hague, 
Netherlands, 4�8 May 1992. Los Alamitos, CA, USA: IEEE Computer Society 
Press. Pp. 580�585. 

Bashford, S., Bieker, U., Harking, B., Leupers, R., Marwedel, P., Neumann, A., 
Voggenauer, D. 1994. The MIMOLA Language � Version 4.1. Technical 
Report, Computer Science Department. University of Dortmund. 135 p. 

Bass, L., Clements, P., Kazman, R. 1998. Software Architecture in Practice. 
Reading, MA, USA: Addison�Wesley, Inc. 452 p. ISBN 0-201-19930-0 

Benini, L., Bertozzi, D., Bruni, D., Drago, N., Fummi, F., Poncino, M. 2003. 
SystemC Cosimulation and Emulation of Multiprocessor SoC Designs. 
Computer, Vol. 36, No. 4, pp. 53�59. 

Benini, L., De Micheli, G. 2002. Networks on chips: a new SoC paradigm. 
Computer, Vol. 35, No. 1, pp. 70�78. 

Bentley, B. 2001. Validating the Intel Pentium 4 Microprocessor. Proceedings of 
38th Design Automation Conference. Las Vegas, NV, USA, 18�22 June 2001. 
New York, NY, USA: ACM Press. Pp. 244�248. 

Berry, G., Gonthier, G. 1992. The Synchronous Programming Language ESTEREL: 
Design, Semantics, Implementation. Science of Computer Programming, Vol. 19, 
No. 2, pp. 83�152. 



 

99 

Bez, R., Camerlenghi, E., Modelli, A., Visconti, A. 2003. Introduction to flash 
memory. Proceedings of the IEEE, Vol. 91, No. 4, pp. 489�502. 

Bhartacharyya, S., Leupers, R., Marwedel, P. 2000. Software synthesis and code 
generation for signal processing systems. IEEE Transactions on Circuits and 
Systems II: Analog and Digital Signal Processing, Vol. 47, Issue 9, pp. 849�875.  

Boehm, B. 1988. A Spiral Model of Software Development and Enhancement. 
Computer, Vol. 21, No. 5, pp. 61�72.  

Bondalapati, K., Prasanna, V. 2002. Reconfigurable Computing Systems. 
Proceedings of the IEEE, Vol. 90, No. 7, pp. 1201�1217.  

Bose, P., Conte, T. 1998. Performance Analysis and Its Impact on Design. 
Computer, Vol. 31, No. 5, pp. 41�49.  

Brandolese, C., Fornaciari, W., Salice, F., Sciuto, D. 2001. Source-Level 
Execution Time Estimation of C Programs. Proceedings of 9th International 
Symposium on Hardware/Software Codesign, CODES 2001. Copenhagen, 
Denmark, 25�27 April 2001: New York, NY, USA: ACM Press. Pp. 98�103. 

Buck, J., Ha, S., Lee, E., Messerschmitt, D. 1994. Ptolemy: A Framework for 
Simulating and Prototyping Heterogeneous Systems. International Journal of 
Computer Simulation, Vol. 4, April 1994, pp. 152�182. 

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M. 1996. A 
System of Patterns � Pattern-oriented software architecture. Chichester, England: 
John Wiley & Sons. 457 p. ISBN 0-471-95869-7 

Campi, F., Canegallo, R., Guerrieri, R. 2001. IP-Reusable 32-Bit VLIW Risc 
Core. Proceedings of 27th European Solid-State Circuits Conference. Villach, 
Austria, 18�20 September 2001. Paris, France: Frontier Group. Pp. 456�459. 

Carrig, K. 2000. Chip Clocking Effect on Performance for IBM's SA-27E ASIC 
Technology. MicroNews, Vol. 6, No. 3, pp. 12�16. 



 

100 

Carro, L., Kreutz, M., Wagner, F., Oyamada, M. 2000. System Synthesis for 
Multiprocessor Embedded Applications. Proceedings of Design Automation and 
Test in Europe. Paris, France, 27�30 March 2000. Los Alamitos, CA, USA: 
IEEE Computer Society Press. Pp. 697�702.  

Caspi, E., DeHon, A., Wawrzynek, J. 2001. A Streaming Multi-Threaded 
Model. Presented at Third Workshop on Media and Stream Processors. Austin, 
TX, USA, 2 December 2001. 8 p. 

Cesário, W., Lyonnard, D., Nicolescu, G., Paviot, Y., Yoo, S., Jerraya, A., Gauthier, 
L., Diaz-Nava, M. 2002. Multiprocessor SoC platforms: a component-based design 
approach. IEEE Design & Test of Computers, Vol. 19, No. 6, pp. 52�63. 

Chan, Y-H., Kudva, P., Lacey, L., Northrop, G., Rosser, T. 2003. Physical 
synthesis methodology for high performance microprocessors. Proceedings of 
40th Design Automation Conference. Anaheim, CA, USA, 2�6 June 2003. New 
York, NY, USA: ACM Press. Pp. 696�701.  

Chandra, S., Moona, R. 2000. Retargetable Functional Simulator Using High 
Level Processor Models. Proceedings of 13th International Conference on VLSI 
Design, 2000. Calcutta, India, 3�7 January 2000. Los Alamitos, CA, USA: IEEE 
Computer Society Press. Pp. 424�429. 

Chang H., Cooke, L., Hunt, M., McNelly, A., Martin, G., Todd, L. 1999 
Surviving the SOC revolution: a guide to platform-based design. Boston, MA, 
USA: Kluwer Academic Publishers. 235 p. ISBN 0-7923-8679-5 

Chou, P., Ortega, R., Borriello, G. 1995. The Chinook hardware/software co-
synthesis system. Proceedings of the 8th International Symposium on System 
Synthesis. Cannes, France, 1�5 September 1995. New York, NY, USA: ACM 
Press. Pp. 22�27. 

Compton, K., Hauck, S. 2002. Reconfigurable Computing: A Survey of Systems 
and Software. ACM Computing Surveys, Vol. 32, No. 2, pp. 171�210.  

Corporaal, H. 1998. Microprocessor architectures from VLIW to TTA. 
Chichester, UK: John Wiley & Sons. 407 p. ISBN 0-471-97157-X 



 

101 

Culler, D., Pal Singh, J. 1999. Parallel Computer Architecture � A Hardware 
Software Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers. 
1025 p. ISBN 1-55860-343-3 

Cuppu, V., Jacob, B., Davis, B., Mudge, T. 1999. A performance comparison of 
contemporary DRAM architectures. Proceedings of the 26th International 
Symposium on Computer Architecture. Atlanta, Georgia, USA, 2�4 May 1999. 
Los Alamitos, CA, USA: IEEE Computer Society Press. Pp. 222�233 

Dally, W., Towles, B. 2001. Route Packets, Not Wires: On-Chip Interconnection 
Networks. Proceedings of 38th Design Automation Conference. Las Vegas, NV, 
USA, 18�22 June 2001. New York, NY, USA: ACM Press. Pp. 684�689.  

D�Ambrosio, J., Hu, X. 1994. Configuration-level hardware/software partitioning 
of real-time embedded systems. Proceedings of 3rd International Conference on 
Hardware/Software Codesign. Grenoble, France, 22�24 September 1994. Los 
Alamitos, CA, USA: IEEE Computer Society Press. Pp. 34�41.  

Daveau, J.-M., Marchioro, G., Ismail, T., Jerraya, A. 1997. Protocol selection 
and interface generation for HW-SW codesign. IEEE Transactions on Very 
Large Scale Integration (VLSI) Systems, Vol. 5, No. 1, pp. 136�144. 

Day, R. 1993. Quality Function Deployment � linking a company with its 
customers. Milwaukee, Wisconsin, USA: ASQC Quality Press. 245 p. ISBN  
0-87389-202-X 

De Man, H., Catthoor, F., Goossens, G., Vanhoof, J., Van Meerbergen, J.,  
Note, S., Huisken, J. 1990. Architecture-driven Synthesis Techniques for VLSI 
Implementation of DSP Algorithms. Proceedings of the IEEE, Vol. 78, No. 2, 
pp. 319�334.  

De Micheli, G. 1994. Computer-aided hardware-software codesign. IEEE Micro, 
Vol. 14, No. 4, pp. 10�16.  

De Micheli, G., Gupta, R.K. 1997. Hardware/software co-design. Proceedings of 
the IEEE, Vol. 85, Issue 3, pp. 349�365. 



 

102 

Dobrica, L., Niemelä, E. 2002. A Survey on Software Architecture Analysis 
Methods. IEEE Transactions on Software Engineering, Vol. 28, No. 7, pp. 638�653. 

Duato, J., Yalamanchili, S., Ni, L. 1997. Interconnection Networks: An 
Engineering Approach. Los Alamitos, CA, USA: IEEE Computer Society Press. 
515 p. ISBN 0-8186-7800-3 

Ecker, W. 1995. Classification of Design Steps and Their Verification. 
Proceedings of European Design Automation Conference with EuroVHDL. 
Brighton, UK, 18�22 September 1995. Los Alamitos, CA, USA: IEEE 
Computer Society Press. Pp. 536�541.  

Edwards, S., Lavagno, L., Lee, E., Sangiovanni-Vincentelli, A. 1997. Design of 
Embedded Systems: Formal Models, Validation and Synthesis. Proceedings of 
IEEE, Vol. 85, No. 3, pp. 366�390. 

Eker, J., Janneck, J., Lee, E., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, 
S., Xiong, Y. 2003. Taming heterogeneity � the Ptolemy approach. Proceedings 
of the IEEE, Vol. 91, No. 1, pp. 127�144. 

Eles, P., Kuchcinski, K., Peng, P. 1998. System Synthesis with VHDL. Dortrecht, 
Netherlands: Kluwer Academic Publishers. 370 p. ISBN 0-7923-8082-7  

Engblom, J., Ermedahl, A., Altenbernd, P. 1998. Facilitating Worst-Case 
Execution Times Analysis for Optimized Code. Proceedings of 10th Euromicro 
Workshop on Real-Time Systems. Berlin, Germany, 17�19 June 1998. Los 
Alamitos, CA, USA: IEEE Computer Society Press. Pp. 146�153.  

Ernst, R. 1998. Codesign of embedded systems: status and trends. IEEE Design 
& Test of Computers, Vol. 15, No. 2, pp. 45�54. 

Ernst, R., Henkel, J., Benner, Th. 1993. Hardware-Software cosynthesis for 
microcontrollers. IEEE Design and Test of Computers, Vol. 10, No. 4, pp. 64�75.  

Fauth, A., Praet, J., Freericks, M. 1995. Describing instruction set processors 
using nML. Proceedings of The European Design and Test Conference. Paris, 



 

103 

France, 6�9 March 1995. Los Alamitos, CA, USA: IEEE Computer Society 
Press. Pp. 503�507. 

Ferrari, A., Sangiovanni-Vincentelli, A. 1999. System Design: Traditional 
Concepts and New Paradigms. Proceedings of International Conference on 
Computer Design. Austin, TX, USA, 10�13 October 1999. Los Alamitos, CA, 
USA: IEEE Computer Society Press. Pp. 2�12. 

Flynn, M. 1966. Very High-Speed Computing Systems. Proceedings of the 
IEEE, Vol. 54, No. 12, pp. 1901�1909. 

Flynn, M., Hung, P., Rudd, K. 1999. Deep-Submicron Microprocessor Design 
Issues. IEEE Micro, Vol. 19, No. 4, pp. 11�22.  

Fornaciari, W., Gubian, P., Sciuto, D., Silvano, C. 1998. Power estimation of 
embedded systems: a hardware/software codesign approach. IEEE Transactions 
on Very Large Scale Integration (VLSI) Systems, Vol. 6, No. 2, pp. 266�275. 

Forsell, M. 2002a. Architectural differences of efficient sequential and parallel 
computers. Journal of Systems Architecture, Vol. 47, No. 13, pp. 1017�1041.  

Forsell, M. 2002b. A scalable high-performance computing solution for 
networks on chips. IEEE Micro, Vol. 22, No. 5, pp. 46�55.  

Fowler, M., Scott, K. 1997. UML distilled: applying the standard object 
modeling language. Reading, MA, USA: Addison�Wesley Publishing Company. 
179 p. ISBN 0-201-32563-3  

Gajski, D. 1988. Silicon Compilation. Reading, MA, USA: Addison�Wesley 
Publishing Company. 450 p. ISBN 0-201-09915-2 

Gajski, D., Dömer, R., Zhu, J. 1999. IP-Centric Methodology and Design with 
the SpecC Language. In: Jerraya, A., Mermet, J. (ed.). System Level Synthesis. 
Proceedings of the NATO Advanced Study Institute on System Level Synthesis 
for Electronic Design, Il Ciocco, Lucca, Italy, August 1998. Dortrecht, 
Netherlands: Kluwer Academic Publishers. Chapter 10. Nato Science Series, 
Vol. 357. ISBN 0-7923-5749-3  



 

104 

Gajski, D., Narayan, S., Ramachandran, L., Vahid, F., Fung, P. 1996. Aiming at 
100h Design Cycle. IEEE Transactions on Very Large Scale Integration (VLSI) 
Systems, Vol. 4, No. 1, pp. 70�82.  

Gajski, D., Vahid, F., Narayan, S., Gong, J. 1994. Specification and Design of 
Embedded Systems. Englewood Cliffs, NJ, USA: Prentice Hall. 450 p. ISBN  
0-13-150731-1 

Gajski, D., Vahid, F., Narayan, S., Gong, J. 1998. SpecSyn: an environment 
supporting the specify-explore-refine paradigm for hardware/software system 
design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 
Vol. 6, No. 1, pp. 84�100. 

Gajski, D., Zhu, J., Dömer, R. Gerstlauer, A., Zhao, S. 2000. SpecC: Specification 
Language and Methodology. Boston, MA, USA: Kluwer Academic Publishers. 
313 p. ISBN 0-7923-7822-9 

Gamma, E., Helm, R., Johnson, R., Vlissides, J. 1995. Design Patterns: Elements 
of Reusable Object-Oriented Software. Reading, MA, USA: Addison�Wesley 
Publishing Company. 395 p. ISBN 0-201-63361-2 

Ghazal, N., Newton, R., Rabaye, J. 2000. Retargetable Estimation Scheme for 
DSP Architectures. Proceedings of the Asia and South Pacific Design 
Automation Conference. Yokohama, Japan, 25�28 January 2000. Piscataway, 
NJ, USA: IEEE. Pp. 485�489.  

Giusto, P., Martin, G., Harcourt, E. 2001. Reliable Estimation of Execution 
Time of Embedded Software. Proceedings of Design, Automation and Test in 
Europe. Munich, Germany, 13�16 March 2001. Los Alamitos, CA, USA: IEEE 
Computer Society Press. Pp. 580�588. 

Gong, J., Gajski, D., Narayan, S. 1994. Software Estimation From Executable 
Specifications. Journal of Computer and Software Engineering, 2(3), pp. 239�258.  

Gong, J., Gajski, D., Nicolau, A. 1995. Performance evaluation for application-
specific architectures. IEEE Transactions on Very Large Scale Integration 
(VLSI) Systems, Vol. 3, No. 4, pp. 483�490.  



 

105 

Grötker, T., Liao, S., Martin, G., Swan, S. 2002. System Design with SystemC. 
Boston, MA, USA: Kluwer Academic Publishers. 217 p. ISBN 1-4020-7072-1 

Guerrier, P., Greiner, A. 2000. A Generic Architecture for On-Chip Packet-
Switched Interconnections. Proceedings of Design Automation and Test in 
Europe. Paris, France, 27�30 March, 2000. Los Alamitos, CA, USA: IEEE 
Computer Society Press. Pp. 250�256. 

Gupta, R.K., De Micheli, G. 1993. Hardware-software cosynthesis for digital systems. 
Design & Test of Computers, IEEE, Vol. 10, Issue 3, pp. 29�41. 

Gupta, T., Sharma, P., Balakrishnan, M., Malik, S. 2000. Processor Evaluation 
in an Embedded Systems Design Environment. Proceedings of 13th International 
Conference on VLSI Design. Calcutta, India, 3�7 January 2000. Los Alamitos, 
CA, USA: IEEE Computer Society Press. Pp. 98�103.  

Guthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mudge, T., Brown, R. 2001. 
MiBench: A free, commercially representative embedded benchmark suite, 
Proceedings of IEEE 4th Annual Workshop on Workload Characterization. 
Austin, TX, USA, 2 December 2001. Piscataway, NJ, USA: IEEE. Pp. 3�14. 

Harel, D. 1987. Statecharts: a visual formalism for complex systems. Science of 
Computer Programming, Vol. 8, No. 3, pp. 231�274. 

Hartenstein, R., Becker, J., Hertz, M., Nageldinger, U. 1996. A General 
Approach in System Design Integrating Reconfigurable Accelerators. 
Proceedings of Innovative Systems in Silicon Conference. Austin, TX, USA, 9�
11 October, 1996. Piscataway, NJ, USA: IEEE. Pp. 16�25. 

Heidelberger, P., Lavenberg, S. 1984. Computer Performance Evaluation 
Methodology. IEEE Transaction on Computers, Vol. C-33, No. 12, pp. 1195�1220. 

Hein, C., Gadient, A., Kalutkiewicz, P., Carpenter, T., Harr, R., Madisetti, V. 
1997. RASSP VHDL Modelling Terminology and Taxonomy, Revision 2.3, 
June 23, 1997. RASSP Taxonomy Working Group. 



 

106 

Heinrich, M., Ofelt, D., Horowitz, M., Hennessy, J. 1997. Hardware/software 
co-design of the Stanford FLASH multiprocessor. Proceedings of the IEEE, Vol. 
85, No.3, pp. 455�466. 

Henkel, J., Ernst, R. 1998. High-Level Estimation Techniques for Usage in 
Hardware/Software Co-Design. Proceeding of Asia and South Pacific Design 
Automation Conference. Yokohama, Japan, 10�13 February 1998. Piscataway, 
NJ, USA: IEEE. Pp. 353�360. 

Hennessy, J., Patterson, D. 2003. Computer Architecture � A Quantitative 
Approach. 3. ed. San Francisco, CA, USA: Morgan Kaufmann Publishers. 883 p. 
ISBN 1-55860-596-7 

Ho, R., Mai, K. W., Horowitz, M. 2001. The Future of Wires. Proceedings of the 
IEEE, Vol. 89, No. 4, pp. 490�504. 

Hoare, C. A. R. 1985. Communicating Sequential Processes. Englewood Cliffs, 
NJ, USA: Prentice Hall. 256 p. ISBN 0-13-153271 

Horowitz, B. Liebman, J. Ma, C. Koo, T., Sangiovanni-Vincentelli, A., Sastry, S. 
2003. Platform-Based Embedded Software Design and System Integration for 
Autonomous Vehicles. Proceedings of the IEEE, Vol. 91, No. 1, pp. 198�211.  

Hughes, C., Pai, V., Ranganathan, P., Adve, S. 2002. Rsim: simulating shared-
memory multiprocessors with ILP processors. Computer, Vol. 35, No. 2, pp. 40�49. 

IC Insights, Inc. 2001. The McClean Report � 2001 Edition. 13901 North 73rd 
Street, Suite 205, Scottsdale, Arizona, USA: IC Insights, Inc. (CD-ROM) 

Ismail, T., Abid, M., Jerraya, A. 1994. COSMOS: a codesign approach for 
communicating systems. Proceedings of the 3rd International Workshop on 
Hardware/Software Codesign. Grenoble, France, 22�24 September 1994. Los 
Alamitos, CA, USA: IEEE Computer Society Press. Pp. 17�24. 

Itoh, M., Higaki, S., Sato, J., Shiomi, A., Takeuchi, Y., Kitajima, A., Imai, M. 
2000. PEAS-III: An ASIP Design Environment. Proceeding of International 



 

107 

Conference on Computer Design. Austin, TX, USA, 17�20 September 2000. Los 
Alamitos, CA, USA: IEEE Computer Society Press. Pp. 430�436.  

ITRS. 2001. International Technology Roadmap for Semiconductors � Executive 
Summary. 2001 Edition. Semiconductor Industry Association (SIA), the European 
Electronic Component Association (EECA), the Japan Electronics & Information 
Technology Industries Association (JEITA), the Korean Semiconductor Industry 
Association (KSIA), and Taiwan Semiconductor Industry Association (TSIA). 57 p. 
Available at http://public.itrs.net. 

Jacob, B., Mudge, T. 1998. Virtual Memory: Issues of Implementation. Computer, 
Vol. 31, No. 6, pp. 33�43.  

Jain, M. K., Balkrishnan, M., Kumar, A. 2001. ASIP Design Methodologies: 
Survey and Issues. Proceedings of 14th International Conference on VLSI 
Design. Bangalore, India, 3�7 January 2001. Los Alamitos, CA, USA: IEEE 
Computer Society Press. Pp. 76�81.  

Jain, R. 1991. The Art of Computer Systems Performance Analysis: Techniques 
for Experimental Design, Measurement, Simulation and Modeling. New York, 
NY, USA: John Wiley & Sons, Inc. 685 p. ISBN 0-471-50336-3 

Jain, R., Parker, A., Park, N. 1992. Predicting System-Level Area and Delay for 
Pipelined and Nonpipelined Designs. IEEE Transactions on Computer-Aided 
Design, Vol. 11, No. 8, pp. 955�965.  

Jantsch, A., Tenhunen, H. (ed.) 2003. Networks on Chip. Boston, MA, USA: 
Kluwer Academic Publishers. 300 p. ISBN 1-4020-7392-5 

John, L., Vasudevan, P., Sabarinathan, J. 1998. Workload characterization: 
motivation, goals and methodology. Workload Characterization: Methodology 
and Case Studies � based on the First Workshop on Workload Characterization. 
Dallas, TX, USA, 29 November, 1998. Los Alamitos, CA, USA: IEEE 
Computer Society Press. Pp. 3�14. 

Jouppi, N., Wall, D. 1989. Available instruction-level parallelism for superscalar 
and superpipelined machines. Proceedings of the 3rd international conference on 

http://public.itrs.net


 

108 

Architectural support for programming languages and operating systems. 
Boston, MA, USA, April 3�6, 1989. New York, NY, USA: ACM. Pp. 272�282. 

Jóźwiak, L. 2001. Quality-driven design in the system-on-a-chip era: Why and 
how? Journal of Systems Architecture, Vol. 47, No. 3�4, pp. 201�224. 

Juntunen, T., Kivelä, J., Reinikka, A., Sipola, M., Soininen, J.-P., Tiensyrjä, K., 
Tikkanen, T. 1988 Real-time structured analysis in system level design of 
embedded ASICs. Microprocessing & Microprogramming, Euromicro Journal, 
24, pp. 449�454. 

Kale, L. V. 1998. Programming Languages for CSE: The State of the Art. IEEE 
Computational Science & Engineering, Vol. 5, No. 2, pp. 18�26.  

Karim, F., Nguyen, A., Dey, S. 2002. An Interconnect Architecture for 
Networking Systems on Chips. IEEE Micro, Vol. 22, No. 5, pp. 36�45. 

Kauppi, M., Sarkkinen, T., Soininen, J.-P., Tiensyrjä, K. 1992. VELVET � a tool 
for interactive SA/VHDL design and verification of digital systems. 10th 
NORCHIP '92 Seminar. Helsinki, Finland, 3�4 November 1992. Helsinki, 
Finland: Nordisk Industriefond. Pp. 30�35. 

Kauppi, M., Soininen, J.-P. 1991. Functional specification and verification of 
digital systems by using VHDL combined with graphical structured analysis 
(SA). Proceedings of the 2nd European Conference on VHDL Methods, 
Stockholm, Sweden, 8�11 September 1991. Stockholm, Sweden: Swedish 
Institute of Microelectronics. Pp. 204�211. 

Keating, M., Bricaud, P. 1999. Reuse Methodology Manual for System-On-A-Chip 
Designs. 2nd edition. Boston, MA, USA: Kluwer Academic Publishers. 286 p.  
ISBN 0-7923-8558-6 

Keutzer, K., Malik, S., Newton, A., Rabaye, J., Sangiovanni-Vincentelli, A. 
2000. System Level Design: Orthogonolization of Concerns and Platform-Based 
Design. IEEE Transactions on Computer-Aided Design of Integrated Circuits 
and Systems, Vol. 19, No. 12, pp. 1523�1543.  



 

109 

Killburn, T., Edwards, D., Lanigan, M., Sumner, F. 1962. One-Level Storage 
System. IRE Transactions, EC-11(2), pp. 223�235.  

Koehl, J., Lackey, D., Doerre, G. 2003. IBM�s 50 million gate ASICs. Proceedings 
of Asia and South Pacific Design Automation Conference. Kitakyushu, Japan, 21�
24 January 2003. Piscataway, NJ, USA: IEEE. Pp. 628�634. 

Koufaty, D., Marr, D. 2003. Hyperthreading technology in the netburst 
microarchitecture. IEEE Micro, Vol. 23, No. 2, pp. 56�65. 

Krishna, C. (ed.). 1996. Performance Modeling for Computer Architects. Los 
Alamitos, CA, USA: IEEE Computer Society Press. 391 p. ISBN 0-8186-7094-0 

Krishnaswamy, U., Scherson, I. 2000. A Framework for Computer Performance 
Evaluation Using Benchmark Sets. IEEE Transactions on Computers, Vol. 49, 
No. 2, pp. 1325�1338.  

Kruchten, P. 1995. The 4+1 View Model of Architecture. IEEE Software, Vol. 
12, No. 6, pp. 42�50.  

Kumar, S., Aylor, J., Johnson, B., Wulf, W. 1996. The codesign of embedded 
systems: a unified hardware/software representation. Boston, MA, USA: Kluwer 
Academic Publishers. 274 p. ISBN 0-7923-9636-7 

Kunkel, J. 2003. Embedded computing � Toward IP-based system-level soc 
design. Computer, Vol. 36, No. 5, pp. 88�89. 

Kuroda, I., Nishitani, T. 1998. Multimedia Processors. Proceedings of the IEEE, 
Vol. 86, No. 6, pp. 1203�1221.  

Kurup, P., Abbasi, T. 1997. Logic Synthesis using Synopsys. 2. ed. Boston, MA, 
USA: Kluwer Academic Publishers. 322 p. ISBN 0-7923-9786-X 

Lahiri, K., Raghunathan, A., Dey, S. 2000. Performance Analysis of Systems 
with Multi-Channel Communication Architectures. Proceedings of 13th 
International Conference on VLSI Design. Calcutta, India, 3�7 January 2000. 
Los Alamitos, CA, USA: IEEE Computer Society Press. Pp. 530�537. 



 

110 

Lahiri, K., Raghunathan, A., Lakshminarayana, G. 2001. LOTTERYBUS: A 
New High-Performance Communication Architecture for System-on-Chip 
Designs. Proceedings of 38th Design Automation Conference. Las Vegas, NV, 
USA, June 18�22, 2001. New York, NY, USA: ACM Press. Pp. 15�20.  

Lahtinen, V., Kuusilinna, K., Kangas, T., Hämäläinen, T. 2002. Interconnection 
scheme for continuous-media system-on-a-chip. Microprocessors and Microsystems. 
Vol. 26, No. 3, pp. 126�138. 

Lăzărescu, M., Bammi, J., Harcourt, E., Lavagno, L., Lajolo, M. 2000. 
Compilation-based Software Performance Estimation for System Level Design. 
Proceedings of High Level Design Validation and Test Workshop. Berkeley, CA 
USA, 8�10 November 2000. Los Alamitos, CA, USA: IEEE Computer Society 
Press. Pp. 167�172.  

Lee, C. Potkonjak, M., Mangione-Smith, W. 1997. MediaBench: a tool for 
evaluating and synthesizing multimedia and communications systems. 
Proceedings of 13th Annual IEEE/ACM International Symposium on 
Microarchitecture. Research Triangle Park, NC, USA, 1�3 December 1997. Los 
Alamitos, CA, USA: IEEE Computer Society Press. Pp. 330�335. 

Lee, E., Sangiovanni-Vincentelli, A. 1998. A Framework for Comparing Models 
of Computation. IEEE Transactions on Computer-Aided Design of Integrated 
Circuits and Systems, Vol. 17, No. 12, pp. 1217�1229.  

Lee, E., Parks, T. 1995. Dataflow Process Networks. Proceedings of the IEEE, 
Vol. 83, No. 5, pp. 773�799.  

Leijten, J., van Meerbergen, J., Timmer, A., Jess, J. 1998. Stream communication 
between real-time tasks in a high-performance multiprocessor. Proceedings of 
Design, Automation and Test in Europe. Paris, France 23�26 February 1998. 
Los Alamitos, CA, USA: IEEE Computer Society Press. Pp. 125�131. 

Lennard, C., Schaumont, P., de Jong, G., Haverinen, A., Hardee, P. 2000. 
Standards for system-level design: practical reality or solution in search of a 
question? Proceedings of Design Automation and Test in Europe. Paris, France, 



 

111 

27�30 March, 2000. Los Alamitos, CA, USA: IEEE Computer Society Press. 
Pp. 576�583. 

Li, Y., Wolf, W. 1999. Hardware/software co-synthesis with memory hierarchies. 
IEEE Transactions on Computer-Aided Design of Integrated Circuits and 
Systems, Vol. 18, No. 10, pp. 1405�1417. 

Linton, L., Hall, D., Hutchinson, K., Hoffman, D., Evanczuk, S., Sullivan, P. 
1992. First principles of concurrent engineering: A competitive strategy for 
product development. In: Report of the CALS/Concurrent Engineering Electronic 
System Task Group.  

MacMillen, D., Camposano, R., Hill, D., Williams, T.W. 2000. An industrial 
view of electronic design automation. Computer-Aided Design of Integrated 
Circuits and Systems, IEEE Transactions, Vol. 19, Issue 12, pp. 1428�1448. 

Madisetti, V. 1995. VLSI Digital Signal Processors. Boston, MA, USA: 
Butterworth�Heinemann. 525 p. ISBN 0-7506-9406-8 

Madsen, J., Grode, J., Knudsen, P., Petersen, M., Haxthausen, A. 1997. LYCOS: 
the Lungby Co-Synthesis System. Design Automation for Embedded Systems, 
Vol. 2, No.2, pp. 195�236. 

Mai, K., Paaske, T., Jayasena, N., Ho, R., Dally, W., Horowitz, M. 2000. Smart 
Memories: a modular reconfigurable architecture. Proceedings of the 27th 
International Symposium on Computer Architecture. Vancouver, Canada, 10�14 
June 2000. New York, NY, USA: ACM Inc. Pp. 161�171. 

Malik, S., Martonosi, M., Li, Y. 1997. Static Timing Analysis of Embedded 
Software. Proceedings of 34th Design Automation Conference. Anaheim, CA, 
USA, 9�13 June 1997. New York, NY, USA: ACM Inc. Pp. 147�152.  

Mangione-Smith, W., Hutchings, B., Andrews, D., DeHon, A., Ebeling, C., 
Hartenstein, R., Mencer, O., Morris, J., Palem, K., Prasanna, V., Spaanenburg, H. 
1997. Seeking Solutions in Configurable Computing. Computer, Vol. 30, No. 
12, pp. 38�43.  



 

112 

Martin, G. 2002. The Future of High-Level Modelling and System Level 
Design: Some Possible Methodology Scenarios. 9th IEEE/DATC Electronic 
Design Processes Workshop. Monterrey, CA, USA, 21�23 April 2002. 
Available at http://www.eda.org/edps/edp02/ 5 p.  

Mazor, S. 1995. The History of The Microcomputer � Invention and Evolution. 
Proceeding of the IEEE, Vol. 83, No. 12, pp. 1601�1608.  

McDermid, J. 1991. Software engineer's reference book. Oxford, UK: 
Butterworth. 1500 p. ISBN 0-750-61040-9 

Mitra, B., Panda, P., Chaudhuri, P. 1993. Estimating the Complexity of 
Synthesized Designs from FSM Specifications. IEEE Design and Test of 
Computers, Vol. 10, No. 1, pp. 30�35.  

Moore, G. 1965. Cramming more components onto integrated circuits. 
Electronics, April 1965, pp. 114�117.  

Muchnick, S. 1997. Advanced Compiler Design and Implementation. San 
Francisco, CA, USA: Morgan Kaufmann Publishers. 856 p. ISBN 1-55860-320-4 

Panda, P., Dutt, N., Nicolau, A. 1999. Local Memory Exploration and Optimization 
in Embedded Systems. IEEE Transactions on Computer-Aided Design of 
Circuits and Systems, Vol. 18, No. 1, pp. 3�13. 

Panda, P., Dutt, N., Nicolau, A., Catthoor, F., Vandecapelle, A., Brockmeyer, E., 
Kulkarni, C., De Greef, E. 2001. Data Memory Organization and Optimizations 
in Application Specific Systems. IEEE Design and Test of Computers, Vol. 18, 
No. 3, pp. 56�68. 

Parhi, K. 1999. VLSI Digital Signal Processing Systems � Design and 
Implementation. New York, NY, USA: John Wiley & Sons, Inc. 784 p. ISBN  
0-471-24186-5 

Patterson, D., Hennessy, J. 1998. Computer Organization and Design � The 
Hardware/Software Interface. 2. ed. San Francisco, CA, USA: Morgan 
Kaufmann Publishers. 759 p. ISBN 1-55860-428-6 

http://www.eda.org/edps/edp02/


 

113 

Pees, S., Hoffmann, A., �ivojnović, V., Meyr, H. 1999. LISA � Machine 
Description Language for Cycle-Accurate Models of Programmable DSP 
Architectures. Proceedings of 36th Design Automation Conference. New Orleans, 
LA, USA, 21�26 June 1999. New York, NY, USA: ACM Press. Pp. 933�938. 

Pelkonen, A., Soininen, J.-P., Rautio, T. 2001. Configurable DSP Engine for 
Internet Age, Proceedings of 19th IEEE Norchip Conference. Kista, Sweden, 12�13 
November 2001. Copenhagen, Denmark: Technoconsult. Pp. 47�52. 

Puschner, P., Koza, Ch. 1989. Calculating the Maximum Execution Time of 
Real-Time Programs. Journal of Real-Time Systems 1(2), pp. 160�176.  

Riihijärvi, J., Mähönen, P., Saaranen, M., Roivainen, J., Soininen, J.-P. 2001 
Providing Network Connectivity for Small Appliances: A Functionally 
Minimized Embedded Web Server. IEEE Communications Magazine, Vol. 39, 
No. 10, pp. 74�79. 

Ross, P. 1988. Taguchi Techniques for Quality Engineering. New York, NY, 
USA: McGraw�Hill. 279 p. ISBN 0-07-053866-2 

Rowson, J. Sangiovanni-Vincentelli, A. 1997. Interface-based design. Proceedings 
of 34th Design Automation Conference. Anaheim, CA, USA, 9�13 June 1997. 
New York, NY, USA: ACM Inc. Pp. 178�183. 

Royce, W. 1970. Managing the Development of Large Software Systems. IEEE 
WESCON. Pp. 1�9.  

Rumbaugh, J. 1991. Object-oriented modelling and design. Englewood Cliffs, 
NJ. USA: Prentice Hall. 500 p. ISBN 0-13-629841-9 

Saastamoinen, I., Sigüenza-Tortosa, D., Nurmi, J. 2002. Interconnect IP Node 
for Future System-on-Chip Designs. Proceedings of the 1st IEEE International 
Workshop on Electronic Design, Test and Applications, 2002. Christchurch, 
New Zealand, 29�31 January 2002. Los Alamitos, CA, USA: IEEE Computer 
Society Press. Pp. 116�120. 



 

114 

Salchak, P., Chawla, P. 1997. Supporting Hardware Trade Analysis and Cost 
Estimation Using Design Complexity. Proceedings of VHDL International 
Users' Forum. Arligton, VA, USA, 19�22 October, 1997. Los Alamitos, CA, 
USA: IEEE Computer Society Press. Pp. 126�133.  

Salminen, E. Lahtinen, V., Kuusilinna, K., Hämäläinen, T. 2002. Overview of 
bus-based system-on-chip interconnections Proceedings of International Symposium 
on Circuits and Systems, Vol. 2. Phoenix, AZ, USA 26�29 May 2002. 
Piscataway, NJ, USA: IEEE. Pp. 372�375. 

Sciuto, D., Salice, F., Pomante, L., Fornaciari, W. 2002. Metrics for Design Space 
Exploration of Heterogeneous Multiprocessor Embedded System. Proceedings of 
10th International Symposium on Hardware/Software Codesign. Estes Park, 
Colorado, USA, 6�8 May 2002. New York, NY, USA: ACM Press. Pp. 55�60. 

Sgroi, M., Sheets, M., Mihal, A., Keutzer, K., Malik, S., Rabaey, J., 
Sangiovanni-Vincentelli, A. 2001. Addressing the system-on-a-chip interconnect 
woes through communication-based design. Proceedings of 38th Design 
Automation Conference. Las Vegas, NV, USA, 18�22 June 2001. New York, 
NY, USA: ACM Press. Pp. 667�672. 

Sharma, A., Jain, R. 1993. Estimating architectural resources and performance 
for high-level synthesis applications. Very Large Scale Integration (VLSI) 
Systems, IEEE Transactions, Vol. 1, Issue 2, pp. 175�190. 

Sipola, M., Soininen, J.-P., Kivelä, J. 1991. Systems real time analysis with 
VHDL generated from graphical SA-VHDL. Proceedings of the 2nd European 
Conference on VHDL Methods. Stockholm, Sweden, 8�11 September 1991. 
Stockholm, Sweden: Swedish Institute of Microelectronics. Pp. 32�38. 

Sipola, M., Soininen, J.-P., Kivelä, J. 1992. Systems Real-Time Analysis with 
VHDL Generated from Graphical SA-VHDL. In: Mermet, J. (ed.). VHDL for 
Simulation, Synthesis and Formal Proofs of Hardware. Dortrecht, Netherlands: 
Kluwer Academic Publishers. 307 p. ISBN 0-7923-9253-1 



 

115 

Sivaram, R., Stunkel, C., Panda, D. 2002. HIPIQS: A High-Perfomance Switch 
Architecture Using Input Queuing. IEEE Transactions on Parallel and Distributed 
Systems, Vol. 13, No. 3, pp. 275�289.  

Skadron, K., Martonosi, M., August, D., Hill, M., Lilja, D., Pai, V. 2003. Challenges 
in Computer Architecture Evaluation. Computer, Vol. 36, No. 8, pp. 30�36. 

Skillicorn, D. 1988. A Taxonomy for Computer Architectures. Computer, Vol. 
21, No. 11, pp. 46�57.  

Slater, M. 1996. The Microprocessor Today. IEEE Micro, Vol. 16, No. 6, pp. 32�44.  

Smith, A. 1982. Cache Memories. ACM Computing Surveys, Vol. 14, pp. 473�530.  

Smith, C., Frank, G., Cuadrado, J. 1985. An architecture design and assessment 
system for software/hardware codesign. Proceedings of the 22nd ACM/IEEE 
conference on Design automation. Las Vegas, NV, USA, June 1985. New York, 
NY, USA: ACM Press. Pp. 417�424. 

Smith, M. 1997. Application-Specific Integrated Circuits. Boston, MA, USA: 
Addison�Wesley. 1026 p. ISBN 0-201-50022-1 

Soininen, J.-P. 1997. Asiakastarvelähtöinen elektroniikkatuoteperheen suunnit-
telu (Customer oriented design of electronic product family). Licenciate Thesis, 
University of Oulu. 102 p. 

Soininen, J.-P. 1999. Customer oriented product families. ITpress Series on 
Applied Computer Science and Technology. CONSYSE '97, International 
Workshop on Conjoint Systems Engineering. Buchenrieder, K & Sedlmeier, A. 
(eds). Bruchsal, Germany: ITpress. Pp. 19�31. 

Soininen, J.-P., Heusala, H. 2003. A Design Methodology for NoC-based 
Systems. In: Jatsch, A., Tenhunen, H. (ed.). Networks on Chip. Boston, MA, 
USA: Kluwer Academic Publishers. Pp. 19�38. ISBN 1-4020-7392-5 



 

116 

Soininen, J.-P., Huttunen, T., Saarikettu, J., Melakari, K., Ong, A., Tiensyrjä, K. 
1998a. InCo � An interactive codesign framework for real-time embedded 
systems. Espoo, Finland: VTT. VTT Publications 344. 206 p. 

Soininen, J.-P., Huttunen, T., Tiensyrjä, K., Heusala, H. 1995. Cosimulation of 
real-time control systems. Proceedings of European Design Automation 
Conference. Brighton, UK, 18�22 September 1995. Los Alamitos, CA, USA: 
IEEE Computer Society Press. Pp. 170�175. 

Soininen, J.-P., Melakari, K., Tiensyrjä, K. 1998b. Software/hardware codesign 
for platform chips. Proceedings of Embedded Systems Conference 1998. San 
Jose, CA, USA, 1�5 November 1998. San Francisco, CA, USA: Miller Freeman. 
16 p. (CD-ROM)  

Soininen, J.-P., Purhonen, A., Rautio, T., Kasslin, M. 2001. Mobile multi-mode 
terminal: making trade-offs between software and fixed digital radio, In: Del Re, 
E. (ed.), Software Radio, Technologies and Services. London, UK: Springer-
Verlag. Pp. 237�249. ISBN 1-85233-346-4 

Soininen, J.-P., Saarikettu, J., Veijalainen, V., Huttunen, T. 1997. TripleS � a 
formal validation environment for functional specifications. In: Delgado Kloos, 
C., Cerny, E. (eds.). Hardware description languages and their application: 
Specification, modelling, verification and synthesis of microelectronic systems. IFIP 
TC10WG10. 5th International Conference on Computer Hardware Description 
Languages and their Applications. Toledo, Spain, 20�25 April 1997. London, 
UK: Chapman & Hall. Pp. 83�85. ISBN 0-412-78810-1 

Soininen J.-P., Sipola M., Tiensyrjä K. 1989. SW/HW � Partitioning of real-time 
embedded systems. Microprocessing & Microprogramming, Euromicro Journal, 
Vol. 27, No. 1�5, pp. 239�244. 

Staunstrup, J., Wolf, W. 1997. Hardware/software co-design: principles and practice. 
Boston, MA, USA: Kluwer Academic Publishers. 395 p. ISBN 0-7923-8013-4 

Suzuki, K., Sangiovanni-Vincentelli, A. 1996. Efficient Software Performance 
Estimation Methods for Hardware/Software Codesign. Proceedings of 33rd 



 

117 

Design Automation Conference. Las Vegas, NV, USA, 3�7 June 1996. New 
York, NY, USA: ACM Press. Pp. 605�610. 

Sylverster, D., Keutzer, K. 1999. Rethinking Deep-Submicron Circuit Design. 
Computer, Vol. 32, No. 11, pp. 25�33.  

Taylor, M., Kim, J., Miller, J., Wentzlaff, D., Ghodrat, F., Greenwald, B., 
Hoffman, H., Johnson, P., Lee, J.-W., Lee, W., Ma, A., Saraf, A., Seneski, M., 
Shnidman, N., Strumpen, V., Frank, M., Amarasinghe, S., Agarwal, A. 2002. 
The Raw microprocessor: a computational fabric for software circuits and 
general-purpose programs. IEEE Micro, Vol. 22, No. 2, pp. 25�35. 

Tichy, W. 1997. A Catalogue of General-Purpose Software Design Patterns. 
Proceedings of Technology of Object-Oriented Languages and Systems, TOOLS 
23. Santa Barbara, CA, USA, 28 July � 1 August, 1997. Los Alamitos, CA, 
USA: IEEE Computer Society Press. Pp. 330�339. 

Walker, R., Camposano, R. 1991. A Survey of High-Level Synthesis Systems. 
Boston, MA, USA: Kluwer Academic Publishers. 182 p. ISBN 0-7923-9158-6 

Wang, A., Killian, E., Maydan, D., Rowen, C. 2001. Hardware/Software Instruction 
Set Configurability for System-on-Chip Processors. Proceedings of 38th Design 
Automation Conference. Las Vegas, NV, USA, 18�22 June 2001. New York, 
NY, USA: ACM Press. Pp. 184�188. 

Ward, J., Barton, B., Roberts, J., Stanier, B. 1984. Figures of Merit for VLSI 
implementations of digital signal processing algorithms. IEE Proceedings, Vol. 
131, Part F, No. 1, pp. 64�70. 

Ward, P. 1986. Transformation schema: An extension of the data flow diagram 
to represent control and timing. IEEE Transactions on Software Engineering, 
Vol. SE-12, No.2, pp. 198�210. 

Wheelwright, S., Clark, K. 1992. Revolutionizing product development: quantum 
leaps in speed, efficiency and quality. New York, NY, USA: Free Press. 364 p. 
ISBN 0-02-905515-6 



 

118 

Vermeulen, B., Dielissen, J., Goossens, K., Ciordas, C. 2003. Bringing 
Communication Networks on a Chip: Test and Verification Implications. IEEE 
Communications Magazine, Vol. 41, No. 9, pp. 74�81.  

Wielage, P., Goossens, K. 2002. Networks on Silicon: Blessing or Nightmare? 
Proceedings of Euromicro Symposium on Digital System Design. Dortmund, 
Germany, 4�6 September 2002. Los Alamitos, CA, USA: IEEE Computer 
Society Press. Pp. 196�200. 

Wingard, D. 2001. MicroNetwork-Based Integration for SOCs. Proceedings of 
38th Design Automation Conference. Las Vegas, NV, USA, 18�22 June 2001. 
New York, NY, USA: ACM Press. Pp. 673�677.  

Wolf, F., Ernst, R. 2000. Intervals in Software Execution Cost Analysis. 
Proceedings of 13th International Symposium on System Synthesis. Madrid, 
Spain, 20�22 September 2000. Los Almitos, CA, USA: IEEE Computer Society 
Press. Pp. 130�135.  

Wolf, T., Turner, J. S. 2001. Design Issues for High-Performance Active Routers. 
IEEE Journal on Selected Areas in Communications, Vol. 19, No. 3, pp. 404�409.  

Wolf, W. 2001. Computers as components: principles of embedded computing 
system design. San Francisco, CA, USA: Morgan Kauffman Publishers. 662 p. 
ISBN 1-55860-541-X 

Wolf, W. 2003. A Decade of Hardware/Software Codesign. Computer, Vol. 36, 
No. 4, pp. 38�43. 

Zave, P. 1982. An operational approach to requirements specification for embedded 
systems. IEEE Transactions on Software Engineering, Vol. SE-8, No. 3, pp. 250�269. 

�ivojnović, V., Meyr, H. 1996. Compiled SW/HW Cosimulation. Proceedings 
of 33rd Design Automation Conference. Las Vegas, NV, USA, 3�7 June, 1996. 
New York, NY, USA: ACM Press. Pp. 690�695. 

Appendices of this publication are not included in the PDF version.
Please order the printed version to get the complete publication
(http://www.vtt.fi/inf/pdf/)

http://www.vtt.fi/inf/pdf/


 

 

Published by 

 

 Series title, number and 
report code of publication 

VTT Publications 523 
VTT�PUBS�523 

Author(s) 
Soininen, Juha-Pekka 
Title 

Architecture design methods for application domain-
specific integrated computer systems 

Abstract 
The role of the single computer inside application-specific integrated circuits is changing with the increasing 
capacity of semiconductor technology. The system functionality can be partitioned to a set of communicating 
application domain-specific computers instead of developing the most efficient general-purpose computers 
that fulfil all kinds of computing needs. The main design challenges are the complexity and diversity of 
application-domains and the complexity of platforms which can provide enough capacity for those 
applications. 

The architecture design methods presented in this thesis are targeted at application domain-specific computers 
that are implemented as integrated circuits. Backbone-platform-system design methodology separates the 
technology, platform design efficiency and application development problems from each other. It also 
provides a system design framework for the architecture design methods presented. The methods are based on 
complexity, mappability, and capacity-based quality estimations that are used as decision support and quality 
validation tools. Abstract models of both applications and architectures enable rapid estimations and adequate 
coverage in design space exploration. 

The methods have been applied to various case examples. Complexity-based estimation provided a systematic 
approach to the selection of an architecture template that takes into account the changes in technologies and 
design efficiency. Mappability-based processor-algorithm quality estimation enabled us to study more than 
10,000 processor architectures for WLAN modem transceiver example. Capacity-based quality estimation 
was used in the performance evaluation of configurable multiprocessor architecture. In all cases the respective 
simulations using for example instruction-set simulators would have taken much longer and required 
advanced post-processing of results. 

Keywords 
decision support methods, quality estimations, mappability estimation, platform based design 

Activity unit 
VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN�90571 OULU, Finland 

ISBN Project number 
951�38�6363�8 (soft back ed.) 
951�38�6364�6 (URL:http://www.vtt.fi/inf/pdf/ ) 

 

Date Language Pages Price 
April 2004 English 118 p. + app. 51 p. D 

Name of project Commissioned by 
MULTICS, SCIFI, NOCARC The National Technology Agency (Tekes) 

Series title and ISSN Sold by 

VTT Publications 
1235�0621 (soft back ed.) 
1455�0849 (URL: http://www.vtt.fi/inf/pdf/) 

VTT Information Service 
P.O.Box 2000, FIN�02044 VTT, Finland 
Phone internat. +358 9 456 4404 
Fax +358 9 456 4374 

 

http://www.vtt.fi/inf/pdf/
http://www.vtt.fi/inf/pdf/


V
TT PU

BLICA
TIO

N
S 523

A
rchitecture design m

ethods for application dom
ain-specific integrated com

puter system
s

 Soininen

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000

02044 VTT 02044 VTT FIN–02044 VTT, Finland
Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. +358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax +358 9 456 4374

ISBN 951–38–6363–8 (soft back ed.) ISBN 951–38–6364–6 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2004ESPOO 2004ESPOO 2004ESPOO 2004ESPOO 2004 VTT PUBLICATIONS 523

Juha-Pekka Soininen

Architecture design methods for
application domain-specific
integrated computer systems

It has become technologically possible to implement several computer
systems into a single chip presuming that the design complexity and power
efficiency challenges can be conquered. With these billion-transistor ASICs,
we have to adopt new on-chip network-based system architectures and to
extend the level of design reuse into the use of predesigned architectural
platforms. The new architecture paradigm and increasing complexity of
applications introduce new challenges for architecture design methods for
embedded and mobile systems.

The presented backbone-platform-system design methodology helps in
encapsulating circuit design, platform architecure design and application
development phases, which makes the management of complexity easier. It
also provides a system design framework for the new architecture design
methods that are used for decision support and quality validation. The
complexity-based estimation is used for the system scaling. The mappability-
based estimation is used for the selection of computing resources. The
capacity-based estimation is used for supporting application mapping and
architecture validation. The main objective is to provide means for rapid
evaluation of design alternatives at early phases of design.

http://www.vtt.fi/inf/pdf/
http://www.vtt.fi/inf/pdf/

	Abstract
	Preface
	List of original papers
	Contents
	List of acronyms
	1. Introduction
	1.1 Problem definition
	1.2 Research hypothesis
	1.3 Research methods
	1.4 Organisation of thesis

	2. Design methods for IC-based systems
	2.1 Basic blocks of integrated computers
	2.2 Models and languages
	2.3 Design flows
	2.3.1 Dedicated hardware systems
	2.3.2 Computer-based system design
	2.3.3 System-on-Chip design

	2.4 System-level design methodologies
	2.5 Quality validation
	2.5.1 Performance evaluation
	2.5.2 Estimation methods


	3. Architecture design challenges in future
	3.1 Technology capacity
	3.2 Product requirements and economics
	3.3 Management of diversity and complexity

	4. Architecture design
	4.1 BackboneŁPlatformŁSystem design methodology
	4.1.1 Separation of layers
	4.1.2 Separation of infrastructure from applications
	4.1.3 Design flow

	4.2 Design of application domain-specific computer
	4.2.1 Definition of concept model of architecture
	4.2.2 Definition of implementations of architectural objects

	4.3 Decision support methods
	4.3.1 Complexity-based quality estimation
	4.3.2 Mappability-based quality estimation
	4.3.3 Capacity-based quality estimation


	5. Introduction to papers
	6. Conclusions
	References



