
V
TT PU

BLICA
TIO

N
S 535

D
evelopm

ent and Evaluation of Softw
are Process Im

provem
ent M

ethods
Seija K

om
i-Sirviö

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000

02044 VTT 02044 VTT FIN–02044 VTT, Finland
Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. +358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax +358 9 456 4374

ISBN 951–38–6388–5 (soft back ed.) ISBN 951–38–6389–1 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2004ESPOO 2004ESPOO 2004ESPOO 2004ESPOO 2004 VTT PUBLICATIONS 535

Seija Komi-Sirviö

Development and Evaluation of
Software Process Improvement
Methods

1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456

VTT PUBLICATIONS

514 Koskela, Juha. Software configuration management in agile methods. 2003. 54 p.

516 Määttä, Timo. Virtual environments in machinery safety analysis. 2003. 170 p. + app.
16 p.

515 Palviainen, Marko & Laakko, Timo. mPlaton - Browsing and development platform of
mobile applications. 2003. 98 p.

517 Forsén, Holger & Tarvainen, Veikko. Sahatavaran jatkojalostuksen asettamat vaatimuk-
set kuivauslaadulle ja eri tuotteille sopivat kuivausmenetelmät. 2003. 69 s. + liitt. 9 s.

518 Lappalainen, Jari T. J. Paperin- ja kartonginvalmistusprosessien mallinnus ja dynaamin-
en reaaliaikainen simulointi. 2004. 144 s.

519 Pakkala, Daniel. Lightweight distributed service platform for adaptive mobile services.
2004. 145 p. + app. 13 p.

520 Palonen, Hetti. Role of lignin in the enzymatic hydrolysis of lignocellulose. 2004. 80
p. + app. 62 p.

521 Mangs, Johan. On the fire dynamics of vehicles and electrical equipment. 2004. 62 p.
+ app. 101 p.

522 Jokinen, Tommi. Novel ways of using Nd:YAG laser for welding thick section austenitic
stainless steel. 2004. 120 p. + app. 12 p.

523 Soininen, Juha-Pekka. Architecture design methods for application domain-specific in-
tegrated computer systems. 2004. 118 p. + app. 51 p.

524 Tolvanen, Merja. Mass balance determination for trace elements at coal-, peat- and bark-
fired power plants. 2004. 139 p. + app. 90 p.

525 Mäntyniemi, Annukka, Pikkarainen, Minna & Taulavuori, Anne. A Framework for Off-
The-Shelf Software Component Development and Maintenance Processes. 2004. 127 p.

526 Jäälinoja, Juho. Requirements implementation in embedded software development.
2004. 82 p. + app. 7 p.

527 Reiman, Teemu & Oedewald, Pia. Kunnossapidon organisaatiokulttuuri. Tapaustutkimus
Olkiluodon ydinvoimalaitoksessa. 2004. 62 s. + liitt. 8 s.

528 Heikkinen, Veli. Tunable laser module for fibre optic communications. 2004. 172 p. +
app. 11 p.

529 Aikio, Janne K. Extremely short external cavity (ESEC) laser devices. Wavelength tuning
and related optical characteristics. 2004. 162 p.

530 FUSION Yearbook. Association Euratom-Tekes. Annual Report 2003. Ed. by Seppo Kart-
tunen & Karin Rantamäki. 2004. 127 p. + app. 10 p.

531 Toivonen, Aki. Stress corrosion crack growth rate measurement in high temperature
water using small precracked bend specimens. 2004. 206 p. + app. 9 p.

532 Moilanen, Pekka. Pneumatic servo-controlled material testing device capable of oper-
ating at high temperature water and irradiation conditions. 2004. 154 p.

535 Komi-Sirviö, Seija. Development and Evaluation of Software Process Improvement
Methods. 2004. 175 p. + app. 78 p.

VTT PUBLICATIONS 535

Development and Evaluation of
Software Process Improvement

Methods

Seija Komi-Sirviö
VTT Electronics

Academic Dissertation to be presented with the assent of the Faculty
of Science, University of Oulu, for public discussion in the Auditorium YB210,

Linnanmaa, on June 18th, 2004, at 12 noon.

 2

ISBN 951�38�6388�3 (soft back ed.)
ISSN 1235�0621 (soft back ed.)

ISBN 951�38�6389�1 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1455�0849 (URL: http://www.vtt.fi/inf/pdf/)

Copyright © VTT Technical Research Centre of Finland 2004

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

VTT, Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

VTT Technical Research Centre of Finland,
Vuorimiehentie 5, P.O.Box 2000, FIN�02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde (08) 551 2111, faksi (08) 551 2320

VTT Elektronik, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel (08) 551 2111, fax (08) 551 2320

VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN�90571 OULU, Finland
phone internat. + 358 8 551 2111, fax + 358 8 551 2320

Technical editing Maini Manninen

Otamedia Oy, Espoo 2004

http://www.vtt.fi/inf/pdf/
http://www.vtt.fi/inf/pdf/

 3

Komi-Sirviö, Seija. Development and Evaluation of Software Process Improvement Methods.
Espoo 2004. VTT Publications 535. 175 p. + app. 78 p.

Keywords software process improvement (SPI), SPI measurement, software quality,
knowledge management, Pr2imer, Profes

Abstract
Software development is in constant change. New software development
strategies, methods, processes, and tools are constantly introduced and taken in
use. Simultaneously, the growth and importance of software has accelerated, and
software has become a fundamental part of a whole range of different products.
Software development strategies are changing as well: globally distributed
software development, use of commercial off-the-shelf (COTS), and Open
Source development are some examples of the latest tendencies. Ever-tightening
competition has led to shortened lead-time requirements and variety of
customised software versions targeted to divergent markets. Software
development needs to be optimised to meet these challenges - without sacrificing
quality. To keep abreast of change software process improvement (SPI) should
develop, too, over time.

Well-managed software development processes has become strategic core
competency in many organisations, enabling high-class software development,
quality estimation, control, and prediction. However, improving software
development processes is demanding and complex task. Numerous software
process improvement (SPI) methods in the market offer help and guidance, but
unfortunately they only partially address factors found essential for achieving
SPI success.

This dissertation develops, presents and argues for the SPI methods embodying
characteristics directing towards successful process improvement. As the results,
the thesis extracts critical success factors for SPI initiatives using SPI lessons
learnt. Furthermore, it incrementally develops and evaluates SPI methods,
incorporating means to achieve the above-mentioned critical success factors.
The research is based on several industrial case studies.

 4

Preface
This thesis is based on the software process research I was involved in at VTT
Electronics during the period 1994 through 2003. My interest towards software
and software process quality was raised as early as 1991 while working on my
master�s thesis on Total Quality Control at CCC companies. Later, at VTT
Electronics, I was able to continue the quality related research and carry out a
series of Tekes and EU funded research projects focusing on software process
improvement and measurement.

I wish to express my sincerest gratitude to Professor Veikko Seppänen, the
supervisor of this thesis at the University of Oulu and my former superior, who
has greatly encouraged me through all these years to continue the research and to
finalise it in the form of a doctoral thesis. I cannot thank him enough for all the
guidance and valuable comments he has given on the several drafts of this thesis.
The reviewers of the thesis, Professor Victor Basili and Professor Jyrki Kontio
deserve my sincere thanks for their time and effort they have spent in reviewing
my research and giving their profound comments, which have helped me to
improve the quality of the thesis dramatically.

I wish to give my special thanks to my former superior Professor Markku Oivo
for his expert comments on the work in hand. Dr. Ioana Rus deserves a special
mention for her valuable comments and continuous encouragement during the
final stages of the writing process of this thesis.

During the long course of the research I have had countless fruitful discussions
and debates with my colleagues and friends. I wish to express my sincere thanks
to all VTT colleagues in general and my research fellows in the embedded
software engineering research group in particular, with whom I have had an
opportunity to enjoy and carry on this research. The period of research has been
one decade which makes it difficult to thank individually all those colleagues
and friends home and abroad who have influenced and contributed the work at
hand; thus I would like to thank anonymously all of them.

Without the industrial interest and involvement this research would not have
been possible. ABB Transmit Oy Relays and Network Control, Datex Ohmeda
Finland (former Datex Instrumentarium), Dräger Medical Technology,
Instrumentarium Imaging, LM Ericsson, Nokia Networks, Nokia Paging,

 5

Tokheim (former Schlumberger Retail Petroleum Systems), and Valmet
Automation deserve my sincere thanks for enabling this research by providing a
challenging software development environment for developing, testing and
further developing the results of this research in various stages. Their feedback
and co-operation has been vital to this research and deserves the deepest
gratitude.

I would like to express my sincere gratitude to VTT Electronics for providing
me with the opportunity and resources needed to carry out and finalise the
research at hand. In addition, I have also received financial support from the
following foundations: Tauno Tönning säätiö, Seppo Säynäjäkankaan rahasto
and Tekniikan säätiö. This support is gratefully acknowledged.

I also wish to thank Mr. Seppo Keränen for checking the language of this thesis.

Finally, I wish to express my sincere gratefulness to my beloved ones for their
loving support and understanding. My mother has always believed in me and
encouraged me to proceed with my studies. Ever since I began school I heard
how important it is to study. My beloved children Ellinoora and Ruupe, my
endless source of joy and inspiration, gave me the best reason to finalise this
research, for then I would be able to spend more time with them. My husband
Pekka has been my encourager during all these years. He has shown endless
understanding of my evening and weekend working periods by unselfishly
providing me the possibility to concentrate on the research. His love, support
and understanding made this work at large possible.

Kiiminki, April 2004-04-25 Seija Komi-Sirviö

 6

List of Original Papers
This thesis includes the following original papers published in the proceedings
of international conferences and journals (Appendices I�VII).

I Karjalainen, J., Mäkäräinen, M., Komi-Sirviö, S. & Seppänen, V. 1996.
Practical process improvement for embedded real-time software, Quality
Engineering. Vol. 8, No. 4. Pp. 565�573.

II Komi-Sirviö, S., Oivo, M. & Seppänen, V. 1998. Experiences from
practical software process improvement. In the Proceeding of EuroSPI'98.
Gothenburg, Institutet för verkstadsteknisk forskning IVF. November 16�
18, 1998. Pp. 5.31�5.45.

III Parviainen, P., Komi-Sirviö, S. & Sandelin, T. 1998. Measurement-based
improvement of critical software subprocesses: Experiences from two
industrial cases. In the Proceedings of European conference of Software
Process Improvement (SPI'98). Monaco, December 1�4. 10 p.

IV Komi-Sirviö, S., Parviainen, P. & Ronkainen, J. 2001. Measurement
Automation: Methodological Background and Practical Solutions � A
Multiple Case Study. In the proceedings of the 7th International Software
Metrics Symposium, IEEE Computer Society. London, April 4�6, 2001.
Pp. 306�316.

V Birk, A., Järvinen, J., Komi-Sirviö, S., Kuvaja, P., Oivo, M. & Pfahl, D.
1998. Profes - A product driven process improvement methodology. In the
Proceedings of European Conference on Software Process Improvement
(SPI'98). Monaco, December 1�4, 1998. 9 p.

VI Järvinen, J., Komi-Sirviö, S. & Ruhe, G. 2000. The Profes Improvement
Methodology - Enabling Technologies and Methodology Design. In the
Proceedings of the Second International Conference on Product Focused
Software Process Improvement (Profes 2000). Oulu, June 20�22. Pp.
257�270.

 7

VII Komi-Sirviö, S., Mäntyniemi A. & Seppänen V. 2002. Toward a Practical
Solution for Capturing Knowledge for Software Projects, IEEE Software
May/June 2002. Pp. 60�62.

The papers will be referred to in the text by the corresponding Roman numerals.

Paper I introduces the main ideas, principles, and basic functionality of Pr2imer,
the practical process improvement method, which, as an SPI method, unites
various SPI approaches, e.g., process analysis, measurement and process
modelling, to a functional ensemble. Paper II summarises the experiences and
lessons learnt that have been gained from applying the Pr2imer method to SPI in
the course of five years. Paper III reinforces Pr2imer with strengthened goal
driven measurement activities and applies the enhanced method to testing and
requirements engineering processes. Furthermore, Paper IV illustrates how
measurement automation can be utilised to facilitate SPI and management
processes. Paper V describes the change in SPI strategy. The paper presents how
to move the improvement basis beyond processes, to the quality of the end
product. It introduces Profes, the product quality driven improvement
methodology, which supplements the Pr2imer method with a product focus.
Paper VI recapitulates the status of the Profes improvement methodology and
design rationale. Paper VII is concerned with the lesson learnt and the necessity
of a need based approach in the area of knowledge management driven SPI.

The author of this dissertation is the principal author of papers II, IV, V, and VII
and wrote papers I, III, and VI together with the co-authors. In paper I, the
author was responsible for putting the improvement cycle together as a
comprehensive method. In papers III and VI the author was involved in the
design of the key methodological elements.

 8

Contents

ABSTRACT... 3

PREFACE.. 4

LIST OF ORIGINAL PAPERS... 6

LIST OF ABBREVIATIONS .. 13

1. INTRODUCTION.. 14

1.1 BACKGROUND.. 14
1.1.1 The Role of Software ... 14
1.1.2 Software Development Strategies.. 15
1.1.3 Software Development Process Models .. 15
1.1.4 The Quest for Improvement... 16

1.1.4.1 Quality.. 16
1.1.4.2 The Quality Movement... 17

1.1.5 SPI Experiences .. 18
1.1.5.1 Success Stories ... 18
1.1.5.2 SW-CMM Reversals .. 19
1.1.5.3 ISO 15504 Reversals .. 19
1.1.5.4 European Experiences of SPI Failures ... 20

1.1.6 Summary ... 21
1.2 RESEARCH SETTING ... 22

1.2.1 Research Problem ... 22
1.2.2 Research Questions... 23
1.2.3 Scope of the Research ... 24
1.2.4 Nature of the Research.. 24
1.2.5 An Overview of the Research Process and Methods 25

1.2.5.1 Observe Existing Solutions .. 26
1.2.5.2 Propose and Develop a Better Solution .. 26
1.2.5.3 Measure and Analyse ... 27
1.2.5.4 Repeat until no Further Improvements are Possible 27
1.2.5.5 Development of Critical Success Factor Criteria.. 27

1.2.6 Summary ... 28
1.3 AUTHOR'S CONTRIBUTION TO THE RESEARCH.. 29

 9

1.3.1 SPI Management and Process Quality.. 29
1.3.2 Strengthened Measurement Practices ... 30
1.3.3 Product Quality Focus .. 31
1.3.4 Knowledge Management Enhancement .. 32

1.4 STRUCTURE OF THE THESIS .. 32

2. AN OVERVIEW OF RELATED RESEARCH... 34

2.1 SPI MANAGEMENT METHODS.. 34
2.1.1 Deming�s cycle and TQC .. 35
2.1.2 Quality Improvement Paradigm (QIP) ... 37
2.1.3 The IDEAL Model ... 39
2.1.4 ISO 15504 Part 7 .. 40

2.2 SOFTWARE PROCESS BEST PRACTICES... 41
2.2.1 Assessment Based Approaches.. 41

2.2.1.1 SEI Capability Maturity Models... 42
2.2.1.2 Bootstrap .. 44
2.2.1.3 ISO 15504 (Spice) .. 46

2.2.2 Software Process Standards.. 47
2.2.2.1 ISO 9000 series .. 48
2.2.2.2 SWEBOK... 48

2.3 MEASUREMENT .. 49
2.3.1 The Goal/Question/Metric Method (GQM)... 49
2.3.2 Statistical Process Control (SPC) ... 51
2.3.3 Practical Software Measurement (PSM)... 52
2.3.4 Balanced Score Card (BSC).. 53

2.4 PRODUCT QUALITY .. 54
2.4.1 ISO 9126 ... 55
2.4.2 IEEE Std 1061... 56

2.5 KNOWLEDGE MANAGEMENT.. 56
2.5.1 KM Research... 56
2.5.2 Experience Factory (EF)... 58

2.6 DISCUSSION.. 60

3. DEVELOPMENT OF THE SPI METHOD EVALUATION CRITERIA...... 61

3.1 BACKGROUND.. 62
3.1.1 Related Research... 62
3.1.2 Development Process .. 64

3.2 FACTORS FACILITATING SPI .. 65

 10

3.2.1 Industrial Experiences .. 66
3.2.1.1 Two Small Companies in the United Kingdom.. 66
3.2.1.2 Danish Delta... 66
3.2.1.3 Italtel .. 67
3.2.1.4 Onion.. 68
3.2.1.5 Alcatel .. 69
3.2.1.6 CISI Software House.. 70
3.2.1.7 Five Irish Case Studies ... 70
3.2.1.8 Frequents Nachrichtentechnik Gesellschaft M.B.H...................................... 72
3.2.1.9 Tokheim ... 72
3.2.1.10 Two Finnish Organisations... 73
3.2.1.11 Ten Small Finnish Organisations ... 74
3.2.1.12 Summary of the Cases.. 74

3.2.2 Surveys to Detect SPI Success Factors ... 75
3.2.2.1 Extensive SEI Survey... 75
3.2.2.2 Large Survey within an American Organisation .. 76
3.2.2.3 Results of SPICE trials ... 76

3.2.3 Arguments for Successful SPI ... 77
3.2.4 Summary of SPI Success factors ... 78

3.3 EVALUATION OF CSF CLASSES .. 80
3.3.1 Improvement Management.. 80

3.3.1.1 General SPI Guidance .. 81
3.3.1.2 Staffing the SPI Initiative ... 82
3.3.1.3 Training.. 84

3.3.2 Commitment .. 85
3.3.3 Cultural Issues .. 86
3.3.4 Plan... 87

3.3.4.1 Current State Analysis.. 88
3.3.4.2 Goal Definition... 89
3.3.4.3 Improvement Planning ... 90

3.3.5 Do.. 91
3.3.6 Check... 91
3.3.7 Act ... 92

3.4 THE CSF CRITERIA .. 93
3.5 VALIDATION OF CSF CRITERIA.. 94
3.6 DISCUSSION.. 96

4. EVALUATION OF RELATED RESEARCH... 97

 11

4.1 EVALUATION OF RELATED RESEARCH ... 97
4.1.1 SPI Management Methods .. 97
4.1.2 Software Process Quality .. 98
4.1.3 Measurement Methods .. 99
4.1.4 Product Quality... 101
4.1.5 Knowledge Management... 102

4.2 CONCLUSIONS .. 102

5. TOWARDS AN INTEGRATED SPI APPROACH.. 105

5.1 BACKGROUND.. 105
5.2 THE IMPROVEMENT PROCESS... 106

5.2.1 Analysis of Software Process Current Status .. 106
5.2.2 Definition of Target State.. 107
5.2.3 Planning of Development Measures ... 108
5.2.4 Piloting and Commissioning ... 109
5.2.5 Summary of the Process .. 110

5.3 EVALUATION.. 111
5.4 SUMMARY .. 114

6. ENHANCED ROLE OF MEASUREMENTS IN SPI..................................... 115

6.1 BACKGROUND.. 115
6.2 THE MEASUREMENT STRATEGY... 117
6.3 TOOL SUPPORT FOR MEASUREMENT .. 119

6.3.1 MetriFlame ... 120
6.3.2 Measurement Automation ... 121

6.4 EVALUATION.. 123
6.5 SUMMARY .. 124

7. PRODUCT QUALITY FOCUSED SPI ... 125

7.1 BACKGROUND.. 125
7.2 CHANGE IN THE IMPROVEMENT STRATEGY.. 126
7.3 UPGRADED IMPROVEMENT PROCESS.. 127

7.3.1 Characterise.. 128
7.3.2 Set Goals ... 130
7.3.3 Plan... 130
7.3.4 Execute.. 131
7.3.5 Analyse.. 131
7.3.6 Package... 131

 12

7.3.7 Summary of the Process .. 132
7.4 EVALUATION.. 133
7.5 SUMMARY .. 135

8. KNOWLEDGE MANAGEMENT SUPPORTED SPI 137

8.1 BACKGROUND.. 137
8.2 TOWARDS A KNOWLEDGE CAPTURING SOLUTION 139

8.2.1 Lessons Learnt from Past Improvement Attempts 139
8.2.2 Need Based Experience Capturing Process.. 141
8.2.3 Conclusions... 142

8.3 EVALUATION.. 143
8.4 SUMMARY .. 143

9. SUMMARY AND CONCLUSIONS... 145

9.1 ANSWERS TO RESEARCH QUESTIONS ... 145
9.2 LIMITATIONS OF THE RESULTS ... 149
9.3 FURTHER RESEARCH .. 150

10. INTRODUCTION TO THE ORIGINAL PAPERS 152

10.1 TOWARDS AN INTEGRATED SPI METHOD ... 152
10.1.1 Paper I .. 152
10.1.2 Paper II... 153

10.2 ENHANCED ROLE OF MEASUREMENT... 153
10.2.1 Paper III ... 153
10.2.2 Paper IV.. 154

10.3 PRODUCT QUALITY FOCUSED IMPROVEMENT .. 154
10.3.1 Paper V... 154
10.3.2 Paper VI.. 155

10.4 MANAGING SPI KNOWLEDGE .. 155
10.4.1 Paper VII .. 155

REFERENCES.. 156

Appendices:

Appendix A�C
Papers I�VII

Papers I–VII of this publication are not included in the PDF version.
Please order the printed version to get the complete publication
(http://www.vtt.fi/inf/pdf/)

http://www.vtt.fi/inf/pdf/

 13

List of Abbreviations

BSC Balanced Scorecard
CMMI Capability Maturity Model Integrated
CSF Critical Success Factor
DoD Department of Defence
ESPRIT European Strategic Program for Research and development in

Information Technology
EF Experience Factory
EFQM European Foundation for Quality Management

(http://www.efqm.org)
GQM Goal/Question/Metric paradigm (e.g. http://www.gqm.nl)
IEEE Institute of Electrical and Electronics Engineers (http://www.ieee.org)
ISO The International Standardization Organization (http://www.iso.ch)
KM Knowledge Management
NASA National Air and Space Agency
PPD Product-Process Dependency
Pr2imer Practical Process Improvement for Embedded Real-Time Software
PROFES Product Focused Software Process Improvement methodology
PSM Practical Software Measurement
QIP Quality Improvement Paradigm
SEI The Software Engineering Institute
SE-CMM Systems Capability Maturity Model
SPC Statistical Process Control
SPI Software Process Improvement
SPICE Software Process Improvement and Capability determination

(http://www.sqi.gu.edu.au/spice/)
SW-CMM Software Capability Maturity Model (http://www.sei.cmu.edu/cmm)
TQC Total Quality Control
TQM Total Quality Management
TTM Time to Market
VTT Technical Research Centre of Finland (http://www.vtt.fi)

http://www.efqm.org
http://www.gqm.nl
http://www.ieee.org
http://www.iso.ch
http://www.sqi.gu.edu.au/spice/
http://www.sei.cmu.edu/cmm
http://www.vtt.fi

 14

1. Introduction
The introduction summarises the background to the research, puts forward the
research setting and describes the author's contribution to the research.

1.1 Background

The purpose of this chapter is to lay the background for SPI by discussing the
role of software, the changes in software development strategies and software
development process models, and the quality movement. Furthermore, SPI
experiences are discussed.

1.1.1 The Role of Software

Software is everywhere. In the eighties, it spread out from mainframes to PC�s.
Today it is hidden in the products we use daily, such as home appliances, mobile
phones and vehicles. Software controls vital functions in operating theatre; it
keeps aeroplanes in the sky and factories in operation. It is embedded into the
houses we live in; it controls temperature and lights along with providing safety.
In future, we may be wearing smart clothes; and it will be possible for rooms to
adapt to our personal needs as we enter them. The economic importance of
software is incontestable as well as the dependence of society on software. A
concrete example of this was the Year 2000 bug along with the global fear of
software systems collapsing with disastrous effects. Another example is
provided by the transition to Euro that kept software developers busy all over the
world for a long time.

The role of software is today more important than ever, and its importance is
continually increasing. The functionality and parallel versions of products
realised by software have increased greatly along with the rising significance of
software quality. Software has become a strategic core technology and an
inseparable part of many systems (cf., e.g. Seppänen et al. 1996). The amount
and complexity of software have also increased enormously, while at present the
functionality and customisation of many systems is often realised by software. In
addition, market requirements have led to tightened lead-time requirements, i.e.,

 15

software should be produced more and more rapidly. Unfortunately, this
combination can cause a great amount of quality problems.

1.1.2 Software Development Strategies

The world of software development is changing radically with accelerated speed
(Wang & King 2000). In addition to technological and methodological changes,
the business strategies of software development have been changing and are
changing remarkably as well. In the 1980�s, software development was
exclusively in-house activity, and no commercial off-the-shelf (COTS) were
known (Niemelä et al. 2000), not to mention the Open Source development
approach (Fuggetta 2003), which is one of the most recent strategies used for
enhancing software development. Through these changes, companies have been
seeking, e.g., to enhance the ways of developing software, to improve quality, or
to strengthen their competitive position. Another example of the latest
tendencies in software development is the building of virtual organisations, in
which partners may be sought separately for each project (Mowshowitz 1997,
Rahikkala 2000). Currently software development is often multi-site operation,
software is either developed within one organisation but by different sites spread
out geographically or by co-operation with other companies using, e.g., a
subcontracting schema. According to (Nasscom 2000), 185 major software
development companies out of 500 had outsourced software development to
India, the yearly growing rate being 53% at present.

1.1.3 Software Development Process Models

Software development process models guide software development. Trying to
keep abreast with technological development and new development strategies,
software development process models have gone through a long path starting in
1970, when the first software development model called the Waterfall model
was introduced by Royce (1970). The basic idea was that software development
should progress from phase to phase, each producing outputs that are used as
inputs in the next phase. The model defined phases, activities and outputs that
should be completed in strict order. Since then various software development
models like Iterative Enhancement (Basili & Turner 1975), Incremental (Mills et
al. 1980), Evolutionary (Gilb 1988), Prototype (Curtis et al. 1987), Spiral
(Boehm 1988), or V-model (GMOD, 1992) have been introduced. These models

 16

try to improve the demerits of existing ones and/or to answer the new challenges
software development has faced. The creation of new software development
models has not stopped; the latest arrivals are called Agile methods
(Abrahamsson et al. 2002). One well-known Agile method currently gaining a
lot of interest among practitioners and in the software research community is
Extreme programming (Beck 1999). Further representatives of agile methods,
often called light software development methods are, e.g., the Scrum (Schwaber
& Beedle 2002) and Crystal methods (Cockburn 2001). These methods are often
utilised in developing applications rapidly and incrementally in situations where
the time to market is a crucial driver for development.

1.1.4 The Quest for Improvement

The purpose of improvement is often to enhance software development in order
to raise the quality of software (Basili & Galdiera 1995). On the other hand, the
goal may be to shorten the delivery cycle, to lower the costs and thus improve
profitability, or to strengthen the market position (Herbsleb et al. 1994). There
may also be a need to prove the maturity of development (Humphrey & Sweet
1987), which may require changes in software development processes.

1.1.4.1 Quality

It is difficult to define the term quality unambiguously; it is a matter of opinion
and viewpoint. ISO 9000 defines quality as a "degree to which a set of inherent
characteristics fulfils requirements" and requirement as a "need or expectation
that is stated, generally implied or obligatory" (ISO 9000 2000, p. 23).
Characteristic is defined as "distinguishing feature", which can be inherent or
assigned, qualitative or quantitative and it can have various classes (ISO 9000
2000, p. 31). When defining Total Quality Control Ishikawa (1985) approaches
quality strictly from the customer point of view, the goal being to satisfy the
requirements of customers. Juran (1999) defines this customer-based quality as
fitness for use. It is generally accepted that competitiveness largely depends on
the quality of products or services ultimately evaluated by customers.

When interpreting quality more broadly Ishikawa lists further quality aspects
such as �quality of work, quality of service, quality of information, quality of
process, quality of division, quality of people, including workers, engineers,

 17

managers, and executives, quality of system, quality of company, quality of
objectives, etc.� (Ishikawa 1985, p. 45). Accordingly, quality cannot be added
later to the product, neither in the context of manufacturing (Ishikawa 1985) nor
in software development, as also pointed out by Humphrey (1989).

The quality of software is often measured in the form of �ilities�. Some
examples of these quality attributes are reliability, usability, maintainability,
portability, scalability, availability, and testability (McConnell 2002). Some of
these quality attributes are more visible to customers, like reliability or usability,
while others are more important for software development, e.g., maintainability.
This list of �ilities�, or features may be augmented with further quality criteria
such as security or time to market (Offutt 2002).

The definitions of quality models for achieving, assessing or predicting software
quality attributes are still under study. For example, the definition of a quality
model for high-dependability incorporating many of these quality attributes is
currently being prepared. In 2001 NASA launched a 5-year project called HDCP
(High Dependability Computing Project, http://www.hdcp.org/) aiming to
develop and experiment high-dependability quality models, techniques and tools
to be applied to mission software.

1.1.4.2 The Quality Movement

The quality movement started in Japan as early as the late 1940�s. In 1949 the
Union of Japanese Scientist and Engineers organised the Quality Control
Research Group and started a nation-wide quality-training project (Noguchi
1995). In 1982, Deming, one of the main opinion leaders in the Japanese quality
movement, introduced Plan-Do-Check-Act, the improvement oriented
management model (Deming 1982). The PDCA circle also known as the control
circle was later applied to software development as well.

The quality movement entered into software development rather late, as it was
only in the mid 80's that practitioners and researchers started to become
interested in developing SPI models and approaches. Up to this date this
development has continued producing various new and enhanced models, which
are sometimes even conceived as competitors to one another. Since the
introduction of Software Capability Maturity Model (CMM, later known and

http://www.hdcp.org/

 18

referred using SW-CMM abbreviation) (Humphrey & Sweet 1987) the quality of
the software development process has been widely addressed. Thereafter a
variety of process maturity models using similar principles have been announced
such as Bootstrap (Kuvaja & Bicego 1993, Kuvaja et al. 1994) and ISO 15504
(El Emam et al. 1998). In addition to the capability or maturity based process
quality models, numerous process standards (for example ISO 9000 standard
series or IEEE standards) and application area specific standards have put
forward examples of quality software process. In addition to these models, there
are some further improvement instruments such as the ISO 9000 certification,
the European Quality Award (EFQM 2003) and Malcolm Baldrige Award
(BNQP 2003) that are used by some software developing organisations today.

For the sake of competitiveness, companies have invested a lot of resources in
improving software quality. However, the success has not been straightforward
or easy to achieve. To facilitate SPI in Europe, the European Systems and
Software Initiative (ESSI) was established and executed by the European
Commission during 1998�2000. Under this initiative, more than 470 projects in
the area of software and systems improvement were funded (Haug et al. 2001).

1.1.5 SPI Experiences

SPI denotes activities aiming at improving the software development process
and is used for reaching a desired improvement goal. SPI methods are the
instruments used for guiding and managing improvement activities in practice.

1.1.5.1 Success Stories

Many successful SPI studies have been published in the literature. For example,
Fitzgerald and O�Kane (1999) have reported how the Motorola Cellular
Infrastructure group has successfully reached SW-CMM level 4 and is heading
for level 5. Motorola had also previously reported good results using the SW-
CMM-based process improvement method. They have even calculated the total
return of investment to have soared to 677% when raising their capability from
SW-CMM level 2 to 5. This calculation is based on required SPI investment,
rework originating from defects, and differences in defect rates between the SW-
CMM level 2 and level 5 projects (Diaz & Sligo 1997). L. M. Ericsson has
described their successful SPI initiatives in the terms of quality, delivery

 19

precision and lead times (Dyne 1998). The Software Engineering Institute
collected data from 13 organisations to analyse SW-CMM-based SPI results
(Herbsleb et al. 1994). According to this analysis, the productivity improved per
year varied from 9% to 67% (median 35%), the yearly reduction in time to
market improved from 15% to 23%, and the Return of Investment (ROI) was
calculated to have raised from 4.0 to 8.8. Detailed examples of the benefits were
reported as follows: defects/KSLOC dropped from .4 to .11 (Hewlett Packard),
product planning slippage reduced during 1990�1992 from 50% to 5%
(Schlumberger), every invested $1 showed a $7.80 avoidance of rework costs
(Raytheon) and the find and fix time for defects reduced from 8 hours each to 11
minutes (Texas Instruments).

1.1.5.2 SW-CMM Reversals

Although there are a number of published SPI success stories where, e.g., the
SW-CMM assessment method has been applied in SPI, the extensive survey
done by SEI in 1995 put forward a slightly different scene (Goldenson &
Herbsleb 1995). The SEI survey studied a total of 138 completed questionnaires
from 56 appraisals from the United States and Canada; the assessment was
conducted during the years 1992�1993. 75% of the respondents stated that the
assessment was worth the money and effort spent and that it had had a major
positive effect on the organisation. However, at the same time 26 % claimed that
nothing much had changed since the assessment and even 79% reported that the
process improvement was overcome by various events and crises � other things
had taken priority. Based on the survey results, the authors admit that it is not
clear how to proceed after the appraisal: �We need to learn more about how to
make change happen, not just what needs to be improved� (Goldenson &
Herbsleb 1995, p. 9). Even this can be questioned, since, based on assessment
results, it might not yet be certain enough what would be wise to improve and
what should be improved first.

1.1.5.3 ISO 15504 Reversals

El Emam and others (1999) have applied the same question schema as
Goldenson and Herbsleb and present their results from the 14 Spice (ISO 15504)
trial projects. They surveyed 14 Spice assessment based SPI cases where the
assessment had been conducted earlier than 30 weeks before the survey took

 20

place. The results were saddening: in most cases not much had changed since the
assessment (72%), almost two thirds of the respondents shared the opinion that
the assessment was not worth the money and effort spent, and that it had had no
major positive effect on the organisation. Furthermore, the cost of the process
improvement effort surprised more than half of respondents (54%). There may
be several reasons for the failure, the most obvious ones being those listed in the
survey. The results state that in 79% of the cases other things than SPI were
regarded as more important, and that SPI was overcome by various events and
crises. The Spice survey results show that companies were also struggling with
resource problems, only one case out of 14 was not suffering from time or
resource limitations. The speed of results was another disappointment; the
process improvement effort had taken longer than expected according 85% of
the respondents.

1.1.5.4 European Experiences of SPI Failures

The VASIE database (Value Added Software Information for Europe)
established in 1998, supported by the European Union and maintained by the
European Software Institute (ESI), provides SPI data for over 250 process
improvement projects. Using this publicly available data, it has been calculated
that over one third of Norwegian and Swedish Process Improvement Initiatives
(PIE) supported by the European Union ESSI program were reported to have
failed (Conradi and Fuggetta 2002). In Finland, the results of PIE projects have
been similar to these. Out of 8 projects 3 had achieved their improvement goals,
1 failing to reach them and the results of 4 projects not being observable or
visible at the time the PIE project ended (VASIE 2003). Kautz & Nielsen (2000)
have recently reported failed SPI case studies, which is not commonly done by
researchers. A large study on the utilisation of software best practices in
European companies concluded the research results as follows: �For European
organizations, the message is clear: we need to be more aware of best practices
and process-improvement techniques. The European software industry lags far
behind the US in both awareness and application of software process
improvement�(Dutta et al. 1999, p. 89).

 21

1.1.6 Summary

While there is a universal concern about the improvement of software
development, at the same time there is also a lot of uncertainty about the best
means of carrying out this task. Despite all the effort given to SPI and quality
research since the 1980�s, many questions still remain unresolved. In addition to
the SPI problems discussed above, the link between maturity-based SPI success
and business success seems to be faint. For example, Motorola (Daskalantonakis
1994, Diaz & Sligo 1997) and Ericsson (Heijstek 1998, Bang 2000, Linders
2001) have announced to have high SW-CMM ratings, while Nokia has not
reported any process maturity levels of the kind. Software developing
organisations operate in a dynamic market with competing products, thus
subjected to tight constraints concerning schedule and cost. A fundamental
factor for success is the capability to focus on the right processes in
improvement lest resources be wasted for nothing. A summary illustration of the
ever changing and complex environment of software development and SPI is
shown in Figure 1.

Figure 1. The environment of software process development and process
improvement.

Quality
evaluated by
customers

Competition
in market

Software Development Process

SPI process

SPI methods

Software development methods,
techniques and tools

Software
development

business
strategies

Guide

Aims to improve

SW

Influence

e.g. cost,
functions and
quality
requirements

Influence
selection of

Influence

Product

Influence

Influence

Influence

Quality
evaluated by
customers

Competition
in market

Software Development Process

SPI process

SPI methods

Software development methods,
techniques and tools

Software
development

business
strategies

Guide

Aims to improve

SW

Influence

e.g. cost,
functions and
quality
requirements

Influence
selection of

Influence

Product

Influence

Influence

Influence
Competition

in market

Software Development Process

SPI process

SPI methods

Software development methods,
techniques and tools

Software
development

business
strategies

Guide

Aims to improve

SW

Influence

e.g. cost,
functions and
quality
requirements

Influence
selection of

Influence

Product

Influence

Influence

Influence

 22

1.2 Research Setting

This chapter introduces the research problem and related questions. It also
discusses the nature and scope of the research and gives an overview of the
research process and methods.

1.2.1 Research Problem

SPI has been a problematic mission to carry out successfully, as already
discussed and also stated by many other researchers (e.g. Ould 1996, Kasse and
McQuaid 1998, Kinnula 1999). By nature, software development is human-
based and complex. Software engineering has features that cannot be planned or
controlled similarly to some other fields of engineering. It is, at the same time,
an intellectual and a sociological design activity carried out in an environment of
learning (Ould 1996). The intangible and complex nature of software
engineering makes planning and controlling difficult. Reel (1999, p. 19) has
determined the situation as follows: �Software systems are exceptionally
complex. In fact, many agree that the basic problem of computing is the mastery
of complexity. Because software developers must deal with complex problems,
they are generally very intelligent and complex individuals, which also
complicates the management formula�. Process improvement involves making
changes to current situation, which is hardly ever easy and tends to get even
more difficult when it influences software specialist with high self-respect.

In the context of embedded systems, the share of software-related development
work is currently often more than half of the development of the whole system.
Alcatel has even estimated the software cost for switching systems to be approx.
80% of the overall cost (Debou et al. 1999); 20 years ago this product was
implemented only with hardware solutions. Telecommunication organisations
like Ericsson, Alcatel or Nokia once known as electronics-oriented companies
now admit that their further success is solely determined by the capability to
make business out of software (Dyne 1998, Debou et al. 1999). Making
transformations in core engineering activities is not an easy task; to be
successful, these transformations require changes in attitudes, software
development models, methods and tools, work procedures, and in project
management.

 23

Continuous changes in business goals or strategies and in software development
augmented with quality goals or tightened TTM requirements require changes in
the ways of action as well. By improving the software processes companies seek
to be more competitive and productive. While SPI is necessary for companies, it
also presents challenges � and risks. And finally, the problem remains: how to
execute SPI to good effect?

1.2.2 Research Questions

The continuous development of SPI methods and approaches within the ever-
changing environment of software development raises the question of
compatibility between developed methods and SPI needs. Thus, the research
questions can be derived from the discussion above as follows:

How to develop and evaluate industrial SPI methods?

This leads to the following research questions:

Q1. What are the most typical industrial SPI needs regarding SPI methods?

Q2. What kinds of SPI methods are suited to these needs?

Q3. How to gather and analyse the practical experiences of SPI methods in
order to develop them further?

The fundamental assumption of this research is that the quality of software
depends on the characteristics of the processes used for producing the software
as stated by (Humphrey 1989). This places great demands on the quality of the
software development process. From the viewpoint of research, it is believed
that SPI methods both should and can be used rationally in SPI. It has been
stated in a recent research on information system development methods
(Tolvanen 1998) that these methods are not to be considered as finished products
but rather as evolving continuously, as dictated by technical evolution and
business needs, or current information system development at hand.
Consequently, the underlying proposition of this research is that the
development of SPI methods is evolutionary by nature as well.

 24

This thesis defines an SPI method as a predefined set of steps designed to guide
the improvement work towards an improvement goal or goals selected by a
software development project or an organisation. An SPI method may also
include detailed descriptions of either recommended or needed techniques (such
as brainstorming or process analysis), resources (such as tools or persons) or
knowledge (such as needed expertise) on how to conduct an SPI initiative and
how to implement an SPI infrastructure in an organisation. However, the
definition of an SPI method in this research is closer to the dictionary definition:
�the procedure of obtaining an object� (Baskerville 1996).

1.2.3 Scope of the Research

ISO 9000 defines process as a �set of interrelated or interacting activities which
transforms inputs into outputs� (ISO 9000 2000, p. 21). The ISO Standard
further defines that product is the "result of a set of interrelated activities which
transforms inputs into outputs" (ISO 9000 2000, p. 23). ISO 15504 expands the
definition of software process as follows: "the process or set of processes used
by an organisation or project to plan, manage, execute, monitor, control and
improve its software related activities" (ISO 15504-9, 1998, p. 5). It further
defines process improvement as an �action taken to change an organisation�s
processes, so that they meet the organisation�s business needs and achieve its
business goals more effectively� (ISO 15504-9 1998, p. 5).

The scope of this research is relatively extensive: process improvement in the
context of software development. While software development methods and
techniques themselves fall out of the scope of this research, and thus are not
dealt with, the interfaces and interaction between software engineering and SPI
are included in the study.

1.2.4 Nature of the Research

According to the OECD research characterisation, dated in 1966, research and
development can be divided into basic or fundamental research, applied
research, and development (adapted from Niiniluoto 1993, Sintonen 1990).
Basic research boosts scientific knowledge, and searches for knowledge for its
own sake. Although applied research seeks knowledge accretion, too, the general
aim is to �put to use the findings of basic research or even to discover new

 25

knowledge which might have immediate practical application� (Sintonen 1990,
p. 24). Using these definitions, this research falls into the category of basic
research.

The aim of this constructive research is to develop and to trial SPI methods in
software development so as to make SPI more successful. The research strategy
is to gather the relevant knowledge and to put it to use in the development and
evaluation of SPI methods.

1.2.5 An Overview of the Research Process and Methods

Due to the characteristics of this research, the methods used are variform. The
aim has been to develop solutions on the basis of the observed industrial
problems and needs. The author has worked as a change agent in the case
organisations trying to gain an understanding of the environment and projects of
the organisation and its improvement needs in order to be able to propose
changes and analyse the results from the viewpoints of SPI initiative success and
SPI method development. Hence the action research method, as accumulated by
Järvinen (1999), provides the primary research method used in this study.
Rapoport (1970) was among the first to expand the change process in action
research to five cycle steps (diagnosis of a problem, examination of options to
solve the problem, selection of an option and execution, analysis of the results
and identification of findings). However, the emphasis in this cycle is on options
selection, though the approach fails to provide an adequate enough framework to
support SPI method development. Later on, Adrion (1993) has put forward four
further methods, one of them being the engineering method based on an
evolutionary paradigm. This engineering research method provides a viable
approach for SPI method development research, due to its in-built idea of
continuous evolution and improvement. The engineering research method
comprises the following steps (Adrion 1993, Glass 1994):

Step 1. Observe existing solutions,
Step 2. Propose better solution,
Step 3. Build or develop,
Step 4. Measure and analyse, and
Step 5. Repeat until no further improvements are possible.

 26

This engineering research cycle was repeated four times in total. In practice, the
steps 2 and 3 were joined to a single step. This was because, in the context of
SPI method development, proposing better solutions was a natural part of
building and developing activities, and furthermore, steps 2 and 3 were
implemented iteratively during the method development cycles.

The engineering cycles were executed using several practical techniques such as
interviews, teamwork, brainstorming sessions, co-writing, reviews, etc. In the
third engineering research cycle also external SPI expert opinions were
requested regarding the method under development.

The case companies of the research projects were selected mainly from among
embedded software development companies. The only selection factors were a
common interest towards SPI along with the readiness and willingness to invest
in it as well.

1.2.5.1 Observe Existing Solutions

In all the engineering research cycles, a literature survey was conducted to study
existing solutions and the evidence of their usefulness. The purpose was to
critically analyse existing methods and to compare these methods and results
with the industrial needs so as to identify any improvement areas.

1.2.5.2 Propose and Develop a Better Solution

In the first engineering research cycle, the developed answer was largely based
on the best guess on the basis of the literature survey and the initial ideas of
shortcomings regarding the existing methods. These ideas were processed in
several brainstorming sessions, for example, and reviewed with other researchers
and organisation representatives before formalising them in a proposed
improvement method. In the second engineering research cycle, the
enhancements of the improvement method were based on the experiences
gathered and lessons learnt from the first engineering research cycle. In the third
engineering research cycle, the specification of the method was composed on the
basis of the general requirements set for the project, the analysis of existing
improvement approaches, and industrial needs. The organisations involved in
this phase stated several requirements they had set for the improvement method.

 27

The third engineering research cycle involved two replicated method
development cycles. In the first sub-cycle, the overall structure and dynamics of
the methodology were formed and tested in case environments. After this, in the
second sub-cycle, the method was fine-turned with more accurate and enhanced
elements.

1.2.5.3 Measure and Analyse

In all engineering research cycles, the progress and intermediate results from
method use were continually analysed. The analysis and follow-up of progress
were based on the data collected as defined up front. The data was analysed and
evaluated together with researchers, software engineers and managers. The data
was used in two ways: in fine-tuning the changed software development
practices and as feedback to method development.

1.2.5.4 Repeat until no Further Improvements are Possible

The steps of the engineering research method as described above were repeated
four times in total. Unfortunately, in the dynamic area of software engineering it
will not be conceivable to state that further SPI method enhancement would not
be possible.

1.2.5.5 Development of Critical Success Factor Criteria

Critical success factor (CSF) criteria for evaluating SPI methods were also
developed as a part of this research. The criteria were developed by analysing
and categorising SPI success factors as presented in the literature. Here, the
grounded theory research method by Glaser & Strauss (Bryant 2002, Heath &
Cowley 2004) was applied in formulating the theory of SPI success factors on
the ground of collected data.

 28

1.2.6 Summary

In Table 1 the research process and the steps taken are summarised.

Table 1. Summary of the research process.

Research cycles The
Engineering
Research
Process The 1st cycle

1994�1995
The 2nd cycle
1997�1998

The 3rd cycle
1997�1999

The 4th cycle
2000�

Including: Observe
existing
solutions TQC, TQM

GQM, Process
Modelling
ISO 9000 series
Bootstrap
SW-CMM
Trillium

Pr2imer
SPC
PSM
BSC
GQM

Pr2imer
Bootstrap
GQM
Ideal
QIP
EF
ISO 15504
ISO9126

Pr2imer
Profes
KM
EF

Results: Propose and
develop better
solution Initial

integrated SPI
method
(Paper I)

SPI method
enhanced with
strengthened
measurement
support
(Paper III & IV)

SPI method
enhanced with
product quality
focus
(Paper V & VI)

SPI method
enhanced with
knowledge
management
principles
(Paper VII)

Measure and
analyse

Measurement
and analysis of
3 case
companies
(Paper II)

Measurement
and analysis of
3 case
companies and
survey of 20
companies
(Paper II)

Measurement
and analysis of
3 case
companies and
use of experts�
opinions

(Paper VII)

Repeat until no
further
improvements
are possible

Continue to the
2nd cycle

Continue to the
3rd cycle

Continue to the
4th cycle

Work on
progress

 29

Paper I describes the result of the first engineering research cycle, i.e., the SPI
method for embedded real time software process improvement (Pr2imer). Paper
II discusses the experiences of using the Pr2imer method. Paper III presents the
Pr2imer method supplemented with emphasised measurement functions and
paper IV with the measurement tool support. The result of the third engineering
research cycle, i.e., the description of the Profes improvement methodology is
presented in paper V. Paper VI is concerned with the design rationale of Profes.
Paper VII is concerned with the result of the fourth engineering research cycle,
dealing with how the knowledge related to software development should be
managed and used in SPI, and describing the need based approach to SPI and
knowledge management.

1.3 Author's Contribution to the Research

Since 1994 the author has participated in SPI method development in four
successive research projects, of which two were partly founded by Tekes, the
National Technology Agency of Finland, and one by the European Commission
and one by the Finnish Academy. These projects constitute the foundation of the
almost ten-year long SPI research carried out by the author.

1.3.1 SPI Management and Process Quality

The first SPI method development and trial use project called ProMETRI
(Komi-Sirviö 1995) was part of the larger ProHAKE program (Känsälä 1995)
focused on the management and improvement of software development process.
The program was started in 1994 and lasted approximately 2.5 years. The main
goal of this program was to accelerate the throughput of the software
development process and to enable more effective software development
through selecting, applying and enhancing existing methods, instructions, and
tools. The ProMETRI project was carried out by the author, the focus being on
building a comprehensive and practical SPI approach using the newly developed
and introduced GQM method (Basili & Rombach 1988). In this project, several
industrial partners offered software development problems for practical process
improvement studies. As the main result of the project, the first definition of a
practical SPI method was formulated and packaged into the Pr2imer approach. In
addition to working as the main developer of the Pr2imer method, the author was

 30

responsible for applying the method in industrial settings, including
improvement planning and providing support for software development projects
during the piloting period. In the course of the ProMETRI project, two industrial
cases using the Pr2imer method were carried out by the author. Table 2
summarises the author�s role concerning the related papers.

Table 2. Author�s contribution to SPI management and process quality.

Year Project Author�s contribution
to the related papers

1994�1997 ProMETRI Paper I: The overall
Pr2imer method and the
case results.

Paper II: Main author

1.3.2 Strengthened Measurement Practices

The promising experiences and new ideas led the author to plan and implement
another Tekes funded process improvement program called Soihtu. The main
goal of the Soihtu program was to develop, in close co-operation with
companies, a set of computer-aided process modelling, assessment and
measurement methods suitable for continuous improvement of the embedded
software process. The program lasted two years and ended in March 1998.
Within Soihtu (Soihtu 1996), the Roihu project (Roihu 1996) focused on
improving software development sub-processes using the formerly developed
Pr2imer method. The results of this project strengthened the ideas concerning
how SPI projects should be conducted and further pinpointed the importance of
measurement within and after the improvement program. Measurements
improved the visibility of software process, and as a result the development
process become more manageable. Moreover, the influence of the improvement
actions could be more easily followed up and measured. To facilitate and to
uniform measurement, a measurement tool environment called MetriFlame was
developed. MetriFlame supports GQM-based measurement activities through the
whole measurement process, from measurement goal definition to results
presentation. The Soihtu program was partially managed by the author. Table 3
summarises the author�s role concerning the related papers.

 31

Table 3. Author�s contribution to strengthened measurement practices.

Year Project Author�s contribution to
the related papers

1997�1998 Roihu Paper II: Main author

Paper III: The overall
improvement framework
and definition of how
measurement relates to it

Paper IV: Main author

1.3.3 Product Quality Focus

SPI method development was continued in the Profes project, which was
financially supported by the European Commission. The project started at the
beginning of 1997 and continued until September 1999. The goal of Profes was
to formulate a product quality based SPI methodology using and enhancing
existing process improvement approaches. The basic functionality and dynamics
of Pr2imer supported with the QIP principles (Basili et al. 1994b) formed the
basis for Profes methodology development. One new element, product-process
dependency (PPD), was introduced to enhance the product quality focused
process improvement process. In addition to working as a local project manager,
the author was responsible for planning and co-ordinating the methodology
development work package of the Profes project during 1998. During this
period, the author was responsible for developing and managing the
development of the first full version of the Profes methodology. More
specifically, the author�s main contribution and sphere of responsibilities were
focused on the definition of Profes phases and steps. Furthermore, the author
was working as a full time researcher in methodology development work during
the whole course of the project. Table 4 summarises the author�s role concerning
the related papers.

 32

Table 4. Author�s contribution to product quality focused research.

Year Project Author�s contribution
to the related papers

1997�1999 Profes Papers V: Main author

Papers VI: Profes
methodology and
design rationale.

1.3.4 Knowledge Management Enhancement

During the SPI method development and usage the author became more and
more conscious of the fact that software development, and also SPI, involved
capturing, using and managing an enormous amount of data. The Totem research
project was initiated to study the knowledge processes associated with SPI
(Totem 2001). To continue this research, the Finnish Academy funded the
Knots-Q project, which was started in the year 2001 (Knots-Q 2002). The goal
of this project was to develop knowledge-centred tools and methods for
improving the quality of software production. Through these projects the first
baseline for knowledge based SPI was encapsulated. Table 5 summarises the
author�s role concerning the related paper.

Table 5. Author�s contribution to KM enhancement.

Year Project Author�s contribution
to the related papers

1999�2000
2000�2003

Totem
Knots-Q

Paper VII: Main author

1.4 Structure of the Thesis

This thesis is concerned with the development and use of SPI methods. The
structure of this dissertation is presented in the following:

 33

− Chapter 1 introduces the background of this research and outlines the
research setting and the author�s contribution to the research.

− Chapter 2 provides an overview to the various SPI research results relevant
to this research. Related research is divided into SPI management research,
software process best practices, measurement, product quality, and
knowledge management. In SPI method development, many of these are
attached to new or further enhanced SPI methods.

− Chapter 3 captures the SPI lessons learnt from literature using the results of
industrial SPI case studies, SPI surveys and expert opinions. Using this
information, the Critical Success Factor (CSF) criteria are developed for
evaluating SPI methods.

− Chapter 4 evaluates the related research using the CSF criteria and showing
the deficiencies and strengths of the various approaches.

− Chapter 5 presents and evaluates Pr2imer, the integrated improvement
management method. Pr2imer is the first integrated SPI method to tie several
SPI approaches into a single functional ensemble.

− Chapter 6 clarifies the role of measurement as an important part of the SPI
initiative and proposes automating away repetitive tasks and some of the
complexity associated with measurements and data management.

− Chapter 7 encapsulates and evaluates Profes, the product quality based
process improvement method. Profes changes the SPI strategy by proposing
the paradigm shift from process quality based improvement to product
quality based improvement.

− Chapter 8 shows how to utilise knowledge management in SPI and discusses
one practical and tested solution used for capturing and providing
knowledge for a software engineering project.

− Chapter 9 sums up the research results in the light of the research questions
and presents directions for further research.

− Chapter 10 recapitulates the original papers used in this thesis.

 34

2. An Overview of Related Research
Various SPI methods and software process and quality standards have been
researched actively since the late 1980's to support software development and
software process improvement. For the purpose of this research, the related
research relevant to executing SPI is structured into five categories: SPI
management, process quality standards and appraisals, measurement, product
quality, and knowledge management (KM). There are several potential ways of
classifying approaches to improving software engineering activities. Kinnula
(2001), for example, classifies available SPI related methods into two main
broad classes, these being software process engineering process models and
software process engineering infrastructure models. The categorisation applied
in this research originates from the evolutionary path SPI method development
has proceeded. The categorisation complements the taxonomy of Kinnula (2001)
with measurement models, software process standards, product quality standards
and knowledge management. Table 6 presents the related research organised to
categories originating from the SPI method development path.

Table 6. Related research.

Process Quality SPI
Management Appraisals Standards

Measurement Product
Quality

Knowledge
Management

PDCA
QIP
Ideal
ISO 15504-
Part-7

SW-CMM
Bootstrap
ISO 15504-
Part-2

ISO 9000-3
SWEBOOK

GQM
SPC
PSM
BSC

ISO9126
IEEE Std 1061

Experience
Factory

2.1 SPI Management Methods

In this section an overview is given of Deming�s cycle (Deming 1986), Quality
Improvement Paradigm (QIP) (Basili et al. 1994b), the IDEALSM model
(McFeeley 1996), and ISO 15504 Part 7 (ISO 15504-7 1998). These methods
propose an approach to managing an improvement initiative; furthermore, they
are well known and commonly applied.

 35

The basis for improvement management methods was established by Deming in
1986. Although he developed the 4-staged model for the needs of the
manufacturing environment, the improvement principles have been applied in
SPI. QIP, for example, represents a modified and fine-tuned model of the
Deming�s cycle in the context of software development. The IDEAL model
divides improvement management activities into strategic and tactical levels. It
has been developed to support SW-CMM based SPI. The aim of ISO 15504 Part
7 (ISO 15504-7 1998) is equivalent to that of IDEAL, except for the fact that the
former has been designed to support ISO 15504 assessment based SPI. In the
following, these models are briefly introduced.

2.1.1 Deming�s cycle and TQC

The original Shewhart cycle (Shewhart 1931), later better known as the Deming
or PDCA cycle (Deming 1986), was the first model to stress the importance of
methodicalness and continuity in improvement actions. In addition to these
aspects, the data involved in the planning and analysing phases was given a
significant role. Ishikawa (1985) redefined Deming�s cycle to six categories and
named it as a Control Circle (Figure 2) within the Total Quality Control (TQC)
improvement model. The model stresses the importance of the defined policy
before establishing the improvement goals. Precise and purposefully expressed
goals have to be based on the problems that the organisation needs to solve. The
data supporting the control of the goal achievement needs to be clearly defined
also.

 36

Figure 2. Control circle (Ishikawa 1985).

The TQC approach emphasises that, to be successful, goal definition has to be
accompanied by scientific and rational methods. It is even stated that otherwise
nothing can be accomplished. While it is not explicitly fixed what is included in
the scientific methods, the role of data and statistical data analysis is
emphasised. The Cause and Effect Fishbone Diagram, also known as the
Ishikawa Diagram, is presented as one method that can be used for collecting
cause factors (called process), which may have an influence on implementing
the desired quality characteristics. Here, the importance of the opinions of
people who are familiar with the process in question is underlined. An open and
frank atmosphere in the analysis sessions is promoted. The opinions need to be
checked against the data available, so that the conclusions can be accepted by all
and the first steps towards a standardised process or regulations can be taken.
The standardised process is presented as a key success factor, even though the
danger of over-standardisation and over-regulation is recognised. To avoid this
pitfall and to highlight humanity and employee participation, the improvement
statement is put forward as follows (Ishikawa 1985, p. 62): �Detailed standards
and regulations are useless if they are established by headquarters staff and
engineer-specialist who do not know or do not try to know the workplace and
who ignore the wishes of the people who have to use them.� Besides, TQC
stresses that standards and regulations are imperfect and thus need to be
reviewed and revisited regularly. In addition, education not only by giving
lectures but also through actual work is highlighted. Regarding work standards,

Plan

Check Do

Act Determine
goals and
targets

Determine
methods of
reaching goals

Implement
work

Check the
effects of
implementation

Take
appropriate
action

Engage in
education
and training

 37

it is stated that if the standards are only distributed among workers, they may not
read them, or they might not understand them correctly. Ishikawa (1985) further
states that implementation is a straightforward action if TQC principles are
followed, and therefore no special guidance for implementation is given. The
implementation will merely be checked through the causes and the effects. First,
it is studied whether all cause factors are under control. In practice this denotes
checking if each of the processes conforms to the standard set. Secondly, the
attainment of the wished effect on process or work is verified. In the checking
step, the role of managers emerges, and checking is clearly seen as a function
executed by managers, while workers receive feedback through the results
gained. Taking an appropriate action as a concluding step means eliminating
exceptions in wished effects. Appropriate actions are planned by studying the
cause factors.

Despite the fact that Deming�s circle and the TQC model were originally
developed in the context of manufacturing industry, the improvement approach
and philosophy have also been adapted to software engineering and SPI, e.g., in
QIP, and therefore they can be regarded as relevant in the context of this
research.

2.1.2 Quality Improvement Paradigm (QIP)

The Quality Improvement Paradigm (QIP) (Basili et al. 1994b, Basili & Caldiera
1995) can be seen as a fine-turned and more detailed model drawing upon
Deming's cycle, and developed in the context of software engineering. QIP
recognises three overall phases (planning, execution and evaluation) that
comprise a total of six guiding steps for improvement actions (Figure 3).
Compared to Deming�s cycle, QIP introduces a new concept: experience
packaging. What is learnt should be transferred to a form of experience package
that could be utilised later (Basili et al. 1994b). QIP divides improvement
activities into project and organisational levels. QIP is grounded on the idea that
each project provides an opportunity for an organisation to learn about its
processes, its products and related quality aspects, and to build and refine
models for these objects.

The improvement approach incorporated into QIP is defined as an iterative
process that repeatedly implements two feedback cycles, which are illustrated in

 38

Figure 3. According to the QIP principles, the project level cycle incorporates
feedback that is provided for the project during project execution. Furthermore,
QIP stresses the use of data at project level for preventing and solving problems.

The project learning cycle provides two types of information for the corporate
learning cycle. Firstly, project performance information is compared to existing
project data and analysed regarding its concordance and ambiguity. Secondly,
reusable and improved software assets that may be applicable to other projects
are generalised and taken in use.

Figure 3. The corporate and project cycles of QIP (Basili & Caldiera 1995).

The organisational learning cycle consists of the following steps: Characterise
and understand, Set goals, Choose processes, Methods, Techniques and tools,
Execute, Analyse results, and Package and store experience. The exact names of
the steps vary slightly depending on the source.

The purpose of the �Characterise and understand� phase is to establish a baseline
for any further actions by gathering knowledge of a project and its environment
(organisation) regarding models and metrics that are in use. In the �Set goal�
phase the goals are set for successful project performance and improvement. The
baseline established in the previous phase is used for defining reasonable and

Choose
Processes,
Methods,
Techniques,
And tools

Characterize
and understand

Set
goals

Analyse
results

Execute

Package and
store experience

Analyse
results

Provide process
with feedback

Corporate
learning

Project
learning

 39

quantifiable goals. The �Choose processes, methods, techniques and tools�
phase describes models needed by a project to achieve the goals set earlier. The
�Execute� phase consists of implementing the plans, collecting and validating
the measurement data, and providing feedback to the project. In this phase, the
operations are executed on a project level with the support of the organisation.
After the project has been terminated the overall evaluation takes place in the
�Analyse results� phase, in which project practices, problems, findings and
recommendations are analysed. In the last phase �Package and store
experiences� the structured knowledge, which may include models, metrics,
lessons learnt and so on, is stored and made available to other projects. The QIP
steps are performed repeatedly to achieve continuous improvement.

2.1.3 The IDEAL Model

While QIP proposes an open approach and ideology for managing improvement,
IDEAL builds its improvement model on the process assessment results of SW-
CMM, the Software Capability Maturity Model (Paulk et al. 1994). The IDEAL
model developed by CMU/SEI is an improvement programme oriented model,
which gives guidance on how to execute and manage an improvement
programme (McFeeley 1996). The need to develop the IDEAL model arose from
the application of SW-CMM: there was no guidance available on how to
continue the work after the assessment. The model divides improvement
activities into five phases: Initiating, Diagnosing, Establishing, Acting, and
Leveraging. IDEAL recognises process improvement activities in two-
dimensions: on strategic and tactical levels (Figure 4). When operating on the
strategic level (Initiating phase), the processes that are of concern of senior
management are the subjects of the improvement programme. On this level, SPI
infrastructure is established, the improvement context defined, and the
commitment to the improvement programme ensured. The improvement work is
carried out on the tactical level (Diagnosing, Establishing and Acting phases) by
line managers and practitioners. When entering into the Leveraging phase, the
nature of improvement programme becomes strategic again. Then, the purpose is
to review past activities and to make decisions for further actions.

 40

Figure 4. Two-dimensional view of the IDEAL model (McFeeley 1996).

The division between strategic and tactical level operations is identical to the
QIP model, in which activities are divided into corporate and project levels.
IDEAL can be seen as a Top-Down improvement approach where improvements
are introduced to a software development project rather than developed on the
basis of specific project needs.

2.1.4 ISO 15504 Part 7

In addition to ISO 15504, the process reference model (ISO 15504-2 1998) and
assessment model (ISO 15504-5 1998), ISO has developed the ISO 15504 - Part
7: �Guide for use in process improvement� (ISO 15504-7 1998) to promote ISO
15504 assessment based SPI. ISO 15504 Part 7 is the counterpart to the SW-
SW-CMM based IDEAL improvement model.

ISO 15504 Part 7 lists the SPI activities as follows:

1. Examine organisation's needs,
2. Initiate process improvement,
3. Prepare and conduct process assessment,
4. Analyse results and derive action plan,
5. Implement improvements,
6. Confirm improvements,
7. Sustain improvement gains, and
8. Monitor performance

2. Diagnosing 3. Establishing 4. Acting

6. Managing SPI program

Tactical level

Strategic level

Communication,
Commitment, and
Involvement

5. Leveraging1. Initiating

 41

In the ISO 15504 Part 7 model, the driving force of SPI can be found in the
following statement: �software process improvement is based on process
assessment results and process effectiveness measures� (ISO 15504-7 1998, p.
2). Although the starting point of improvement based on assessment is visible
also in the IDEAL model, it is more clearly emphasised in ISO 15504 Part 7
(1998). ISO 15504 is developed by the Spice project thus it is often referred as
Spice method as well.

2.2 Software Process Best Practices

This chapter introduces approaches that aim to improve software development
using the knowledge embodied in the form of good software development
practices. Based on the way this knowledge is used, two perspectives may be
distinguished: the use of software process standards and the use of process
assessment methods. Process standards are used as examples of the best
practices that are adapted as is or reworked to fit the needs of the subject
company. Software process assessment methods evaluate the maturity of the
software development processes in the company, comparing them to the
reference process model the method is based on. Nonetheless, the exploitation of
the ideas of good software development process is similar in both of these
approaches.

2.2.1 Assessment Based Approaches

The core idea of assessment-based SPI is that software practices should be
organised according to the reference process model. Humphrey presents the
principles of assessment-based SPI in his work �Managing the Software
Process� (Humphrey 1989).

Assessment-based SPI approaches concentrate on assessing existing software
development processes and comparing them with the specific reference process
model the particular assessment method is based on. The used technique to
conduct an assessment is to interview personnel using structured questionnaires.
The assessment results are an indication of how well existing processes fulfil the
requirements of the method.

 42

In the sections below, the widely used (ref. e.g. Debou et al. 1999, Goldenson &
Herbsleb 1995, Haley 1996, Hollenbach et al. 1997, McGuinnes 1996,
Lanzerstorfer & Scherzer 1999) SEI assessment method SW-CMM (Paulk et al.
1993, Paulk et al. 1994) and the newcomer CMMI (2000) are summarized. In
addition, the Bootstrap method, the European counterpart to the above-
mentioned methods, will be shortly presented. Lastly, ISO 15504, or Spice
(Emam et al. 1998), i.e., the output of an international research effort, is
introduced.

2.2.1.1 SEI Capability Maturity Models

SW-CMM, the Capability Maturity Model for Software, is the oldest, the best
known and the most applied assessment method (name refined from CMM)
provides an assessment driven approach to SPI. It was published by SEI (Paulk
et al. 1994, Paulk et al. 1993) and it has been widely used ever since. It was
originally developed for assessing the capability of DoD contractors (Humphrey
& Sweet 1987), but it soon became a reference guide for subcontractor SPI and
shortly after that a guideline for any organisation seeking to improve its software
processes. SW-CMM organises software development practices (called Key
Process Areas) to five maturity levels (Figure 5). The organisation of processes
is not justified, for which the method has received criticism. Each maturity level
builds on its predecessors, which is why reaching a higher maturity level
requires that all practices must be fulfilled at lower levels. For this reason, the
organisation must progressively implement all the practices one by one at each
level from levels 2 to 5. When SW-CMM is applied to the letter, it is likely to
restrict the flexibility organisations might need to improve their software
development to best results.

 43

Figure 5. SW-CMM Key Process Areas by maturity level (Paulk et al. 1993).

Despite its broad usage, the further enhancements of SW-CMM were stopped
and development efforts were directed from 1998 onwards to the Capability
Maturity Model-Integrated (CMMI 2000). SEI thus started to integrate existing
capability models and to develop a new integrated model. CMMI integrates SW-
CMM and SE-CMM (1995), of which the latter was developed for assessing
systems engineering processes. A further CMM Integration project goal has been
to include features from other models such as EIA/IS-731 (1998) and IPD-CMM
v0.9a (1997). According to (CMMI 1999) the new integrated model aims to be
compliant with the ISO 15504. CMMI has adjusted the assessment approach
according to Bootstrap (Kuvaja et al. 1994) and ISO 15504 (ISO 15504-5 1998).
CMMI recognises two approaches to assessment and improvement: a traditional
staged model and a continuous model allowing one to work with only selected

 O ptimizin g (5)

 Initial (1)

 R ep eatable (2)
 Software configurat ion management
 Software quality assurance
 Software subcontract management
 Software project tracking and oversight
 Software project planning
 Requirements managem ent

 Defined (3)
 P eer reviews
 Intergroup coordination
 Software product engineering
 Integrated software management
 Training program
 Organization process definition
 Organization process focus

 M anaged (4)

 S oftware quality management
 Q uantitative process m anagement

 P rocess change managem ent
 Technology change management
 Defect prevention

 44

process areas. CMMI has defined the A, B and C types of assessment: Class A is
the most formal appraisal and it is conducted by an official lead assessor; this
class is often called the SCAMPI (Standard CMMI Assessment Method for
Process Improvement) assessment. SCAMBI Class B is a less formal appraisal
for investigating process capabilities without producing ratings of process
capability. Class C assessment, again, is a quick look over the risk areas of
processes done by the organisation itself (SCAMPI 2001).

A possible future development of the SW-CMM model was, again, under
discussion at the end of 2002. A press release (Watzman & Perdue 2002)
announced the continuation of SW-CMM, and later this information was
abrogated by SEI.

2.2.1.2 Bootstrap

The European counterpart to SW-CMM is the Bootstrap assessment method
developed using several standards as the ISO 9000 series, ESA PSS-05-0 (1994),
the European Space Agency standard, the DoD standard DoD-STD-2167A, and
SW-CMM (Kuvaja et al. 1994). Compared to SW-CMM, the Bootstrap method
widened the scope of assessment activities. While SW-CMM focuses on project
level processes, Bootstrap also assesses the software development organisation
and its processes. At the organisational level, the purpose is to clarify what kind
of assets the subject organisation is capable of providing for software
development projects (e.g. quality manuals and instructions). In addition to
assessing organisational processes such as �human resource management�,
Bootstrap applies a fine-turned evaluation approach: instead of just �yes� and
�no� the evaluation answers may vary between �fully�, �largely�, �partially�,
�not� and �not applicable (NA)� (BootCheck 1997). Another assessment reform
Bootstrap carried out was the possibility to select a set of processes for
assessment.

 45

Figure 6. The Bootstrap version 3.0 process architecture (Bicego et al. 1998).

Bootstrap decouples the process model and the capability model. In Bootstrap,
the improvement philosophy states that improvement should be driven by
organisational needs, whereas the process model provides an outline for the
improvement of individual processes. Compared to SW-CMM, the organisation
maturity level is replaced by process capability profiles showing the capability
level of each process.

Documentation
Configuration Management
Quality Assurance
Verification
Validation
Joint Review
Audit
Problem Resolution

System Requirements Analysis
System Architecture Design
Software Requirements Analysis
Software Architecture Design
Software Detailed Design
Software Implementation & Testing
Software Integration and Testing
System Integration and Testing
Maintenance
Migration
Retirement

Business Engineering
Human Resource Management
Infrastructure Management

Process Definition
Process Improvement

ORGANISATION METHODOLOGY

LIFE CYCLE
INDEPENDENT

LIFE CYCLE
 DEPENDENT

PROCESS-
RELATED

BOOTSTRAP version 3.0

Technology Innovation
Technology Support for Life

Cycle Processes
Technology Support for Life

Cycle Independent Processes
Tool Integration

Acquisition
Customer Need Management
Supply
Software Operation
Customer Support

MANAGEMENT SUPPORT CUSTOMER-SUPPLIER
Project Management
Quality Management
Risk Management
Subcontractor Management

TECHNOLOGY

 46

Figure 7. Bootstrap capability levels.

The capability of processes is rated from 1 to 5, but it is further defined by
quarters (Figure 7). For example, the capability of �risk management� may be
1.75 or that of �quality assurance� 2.5.

Until Spring 2003 the Bootstrap method was only available under a licence,
which may have prevented a large-scale use of it.

2.2.1.3 ISO 15504 (Spice)

 To answer the harmonising need for assessment, the International
Standardisation Organisation (ISO) established the Spice project to carry out the
standardisation process (Drouin 1999). ISO had previously published software
life cycle processes in the ISO 12207 standard (1995/2002) that formed a basis
for the reference process model for ISO 15504 Part 2 (1998). The development
of ISO 15504 brought experts together from all over the world. The goal of the
project was to produce an assessment method for organisations of different sizes,
application domains, and management styles that may have different
improvement priorities. The ISO 15504 method includes a process model with
six capability levels, and a set of reference processes aligned to the ISO 12207

(0) 1
2

4
5

3

Performed
Process

Managed
Process

Established
Process

Predictable
Process

Optimizing
Process

Incomplete
Process

Performed

Established

Predictable

Optimizing

Managed

 47

definition. The capability levels of ISO 15504 are applied to each individual
process. No predefined sequence is demanded which means that priorities are
not fixed to improve certain processes. Priority definition is based on each
organisation�s requirements and business goals.

Figure 8. Relationship between the ISO 15504 reference model and the
assessment model (ISO 15504 Part 5, 1998).

Process performance, in other words the achievement of the process purpose, is
evaluated using the base practices associated to each process. Process capability
is rated by assessing the demonstrated achievement of sets of management
practices associated to the different capability levels (0�5). The assessment
model is illustrated in Figure 8.

2.2.2 Software Process Standards

Software process standards document a standardised definition of software
development practices. They are often produced by software acquirers such as
the Department of Defence (DoD) in the USA or the European Space Agency
(ESA) for the use of subcontractors. This being the case, the use of standards
may be mandatory or at least recommended. Standards define also vocabulary

REFERENCE
MODEL
(Part 2)

PROCESS DIMENSION

Process categories
Processes
 (with definition

of process purpose)

Indicators of
 process performance :

- Base practices
(Clause 5)

- Work Products
 & WP Characteristics

(Annexe A & C)

Assessment
indicators

CAPABILITY DIMENSION

Capability levels
Process Attributes

Indicators of
process capability :

- Management practices
(Clause 6)

- Practice performance
 Characteristics

(Annexe B)
- Resource & Infrastructure

 Characteristics
(Annexe B)

ASSESSMENT MODEL
(Part 5)

 48

and terminology, which should help the communication and clarify the
expectations between stakeholders. All software developing organisations may
use the available standards as reference process models for improving their
processes. An example of a widely applied standard in software development is
ISO 9000-3 (1997), either used for establishing ISO conformant software
development processes or for acquiring the official ISO 9000 certificate.

Since from the SPI work point of view all process standards share the same
principles, only a brief overview of the well-known ISO 9000 series and the
ongoing international SWEBOK effort is given in the following. Due to the
nature of the ISO 15504, it is presented in Chapter 2.2.1, in which assessment
based SPI approaches are introduced.

2.2.2.1 ISO 9000 series

Several international standards are used largely as reference models when
building or improving software quality and development practices. ISO 9001
(2000) provides a model for quality assurance in design, development,
production, installation, and servicing. It contains basic requirements for
building and maintaining a quality system. ISO 9000-3 (1997) provides
guidelines for the application of ISO 9001 in software development. The
advantage of these models is that they are not too complex, which has made
them useful and popular in industry in defining software development practices.
Unfortunately, due to the static nature of standards the drawback is that they do
not provide any guidance on improvement actions.

2.2.2.2 SWEBOK

The ongoing international SWEBOK project (http://www.swebok.org/) aims to
"provide a consensually validated characterisation of the bounds of the software
engineering discipline and to provide a topical access to the Body of Knowledge
supporting that discipline" (SWEBOK 2001, p. i). The project is promoted by
the IEEE Computer Society and the ACM. The aim of this international project
is to provide a consistent view of software engineering for private and public
sectors. SWEBOK defines nine knowledge areas for software engineering:
− Software requirements
− Software construction

http://www.swebok.org/

 49

− Software testing
− Software maintenance
− Software configuration management
− Software engineering management
− Software engineering process
− Software engineering tools and methods
− Software quality.

All these areas and their sub-areas are described in detail. The project is
currently in a trial phase and the final version of SWEBOK should be available
after the end of the year 2003, when the third phase of the project called the
�Iron Man Phase� is scheduled to be finalised.

2.3 Measurement

Measurement is a mean to acquire quantitative information of software
development processes and products for the purpose of managing them.
Measurement can be used to define the status of processes or product quality, to
analyse the effects of changes, or to follow-up the progression of improvement
actions. Here, four different measurement methods are introduced:
Goal/Question/Metric (Basili & Weiss 1984, Basili et al. 1994a, van Solingen &
Berghout 1999), statistical process control (Florac & Carleton 1999, Florac et al.
1997), practical software measurement (PSM) (PSM 2000) and, lastly, the
balanced score card (BSC) (Kaplan & Norton 1996, Olve et al. 1999). These are
all well-known measurement methods applied in software process management
and improvement and thus shortly described here.

2.3.1 The Goal/Question/Metric Method (GQM)

During the 1990�s the Goal/Question/Metric (GQM) measurement method
introduced by Basili & Weiss (1984) matured from state-of-the-art (Basili et al.
1994a) to state-of-the-practice (van Solingen & Berghout 1999). The GQM
method built on the QIP paradigm (Basili et al. 1994b, Basili & Caldiera 1995)
aims to provide information needed for understanding, guiding, and changing
the software processes of a software development project.

 50

The GQM method represents a systematic top-down approach to defining and
collecting measurements and, on the other hand, a bottom-up approach when
analysing data against stated measurement goals. One of the method�s main aims
is to establish a visible link from measurement goals to the data collected. The
underlying idea is to avoid the high risk of wasting resources when measurement
data is collected without an idea of its usage. GQM adapts and integrates
organisational objectives into measurement goals, and refines them into
measurable attributes on a step-by-step basis; therefore, GQM helps to identify
the exact metrics necessary for meeting case-specific objectives.

Figure 9. The activities of a GQM measurement programme (Gresse et al.
1995).

Unlike assessment-based approaches, GQM is not based on any software best
practice model. First and foremost, GQM is a method for defining measurements
according to measurement goals and therefore, from the SPI point of view,
GQM users are not directly supported to identify what to improve or how to
improve the performance. However, GQM can support the fine-tuning of
improvement initiatives in the course of process improvement, it provides
methodological support for defining metrics used for monitoring the results of
process changes during and after an improvement initiative.

Prestudy

Identify GQM goals

Produce GQM plan

Package

Collect and validate data

Analyze data

Produce measurement plan

 51

The GQM method has been widely applied in software engineering and it has
become the de-facto standard in the field of measurement.

2.3.2 Statistical Process Control (SPC)

Meaningful SPC may take place when functional measurement practices and
environment already exist. Florac & Carleton (1999) suggest some other
measurement methods to be used for establishing measurement activities before
applying SPC. SPC focuses mainly on analysing process performance using the
control chart principles, but also suggests a six-step strategy to be applied in the
measurement programme. These steps are introduced in Figure 10.

Figure 10. SPC measurement process (Florac & Carleton 1999).

The main emphasis has been placed on clarifying the statistical means in step 5.
Using any statistical analysis requires a larger sample; to conduct any reasonable
analysis at least four or five similar kinds of projects will have to be involved.

6. Evaluate process performance

1. Clarify business goals

5. Analyze process behavior

4. Collect, verify, and retain data

3. Select and define measures

2. Identify and prioritize issues

Remove
assignable

causes

Continually
improve

Change
process

New goals,
strategy?

Process
stable?

Process
capable?

New
measures?

New issues?

No

Yes

No

No

No

No

Yes

Yes

Yes

Yes

 52

However, SPC provides help for measurement analysis and underlines the
importance of linking measures with the business goals of an organisation.

2.3.3 Practical Software Measurement (PSM)

The development of the Practical Software Measurement (PSM) method was
initiated by DoD (Sanders 1997). The purpose of this issue-based measurement
method is to guide project managers in selecting, collecting, defining, analysing
and reporting the specific software issues and objectives of each program. To be
successful, projects have to be able to manage several issues: e.g. objectives,
risks, lack of information, and problems (PSM 2000, part 1). The focus of PSM
is primarily on individual project level measurement, while the measurement
should be guided by the concerns, objectives and the context of the project.

Figure 11. PSM measurement process (PSM 2000, Part 1).

PSM divides the measurement program into five main phases, each of them
including several sub-activities. The PSM core measurement process consists of
two phases: Tailor Measures and Apply Measures (Figure 11). In the Tailor
Measures phase, the project prioritises project issues, selects and specifies
measurements and integrates them to the project life cycle. In the Apply

Tailor
Measures

Technical and
Management

Processes

Evaluate
Measurement

Apply
Measures

Implement
Process

Measurement
Plan

Scope of PSM

Information
Needs Analysis Results

User Feedback

New Issues

Analysis results and
Performance
Measures

Improvement
Action

Core Measurement Process

 53

Measures phase, measurements are collected, analysed, and based on analysis
recommendations are given. PSM emphasises the fact that the measurement
analysis should be done by persons familiar with the project context. In the
Evaluate Measurement phase, the measurement program itself is assessed and
improvements are proposed. The Technical and Management Processes phase is
external to PSM because it describes the technical and management processes of
each software development project. These can be carried out by an external unit
if software development is subcontracted. The maturity of technical and
management activities may have an influence on which measurements it is
meaningful to collect. In the Implement Process phase, the environment for
carrying out measurement activities is ensured; the cultural and organisational
changes needed are addressed, resources provided, and practical support for
managers and teams is given.

2.3.4 Balanced Score Card (BSC)

The balanced scorecard (BSC) is an organisational management system with a
strong measurement emphasis. This top-down approach aggregates four different
types of stakeholders under one management system. The development of BSC
started in 1990 from the notification that financial measures solely do not
provide enough information for properly managing organisations operating in a
complex environment. In addition to financial measurement, three other views
were included: customer, internal business process, and learning and growth
(Figure 12). The goal of BSC is to make the organisation strategy specific and
actionable, to engage everyone in the organisation in target setting, and to
provide feedback and learning. A successful use of BSC requires that the
organisation strategy be translated to the language of the various stakeholders.
BSC recognises the following measurement steps: define metrics, collect data,
analyse data, and decide on changes. (Kaplan & Norton 1996).

 54

Figure 12. BSC structure (Kaplan & Norton 1996).

Olve and others (1999) describe an 11-step procedure for building BSC. These
steps start on defining the context of the organisation, establishing the vision and
perspectives of the organisation, breaking down the vision to strategic goals with
critical success factors, and developing a balanced, top level BSC with
measures, causes and effects. BSC is further broken down according to
organisational units, formulating lower level goals and an action plan for guiding
the implementation of BSC. Providing a remarkably broad view on management
and measurement, BSC has the capability to link SPI with an organisational
context.

2.4 Product Quality

The aim of SPI actions is often to raise the quality of software. Despite this,
there are not that many standards or methods focusing on the quality of software
products. The oldest and best-known method is the recently updated ISO9126-1
(2001) standard for software product quality. In addition, IEEE has published the
standard for software quality metrics methodology (IEEE Std 1061-1998). Both
of these standards pinpoint the definition of software quality requirements and

 55

identification of metrics needed for following and assessing the satisfaction of
them. There have been research attempts towards defining more detailed
software product quality methodologies and assessment frameworks at European
level such as the Esprit 4 project SPACE-UFO (1998) and Esprit 2 project
SCOPE (1993) but, unfortunately, the results of these projects have not been
widely adopted, if at all, by industry.

In the following, the ISO9126 and IEEE 1061 standards are recapitulated.

2.4.1 ISO 9126

The ISO 9126-1 (2001) standard divides product quality into six characteristics:
functionality, reliability, usability, efficiency, maintainability and portability.
These characteristics are further broken down into several sub-characteristics.
Figure 13 presents an overview of the ISO 9126 standard. While the standard
ISO 9126 has received some criticism (Mellor 1992), its advantage can be found
in the fact that it suggests a common vocabulary to use.

Figure 13. The ISO 9126 model (2001).

In addition to the quality model presented above, the ISO 9126 standard also
recommends a three-stage evaluation process model by which software product
quality assessment may be performed. The advocated assessment process
involves the definition of quality requirements for a product, the selection of
appropriate metrics and the collection of measurements from selected product
parts (ISO 14598-1 1999).

external and
internal
quality

external and
internal
quality

suitability
accuracy

interoperability
security

functionality
compliance

maturity
fault tolerance
recoverability

reliability
compliance

 understandability
learnability
operability

attractiveness

usability
compliance

time behaviour
resource

utilisation

efficiency
compliance

analysability
changeability

stability
testability

maintainability
compliance

adaptability
installability
co-existence
replacebility

portability
compliance

reliabilityreliability usabilityusability maintainabilitymaintainability portabilityportabilityefficiencyefficiencyfunctionalityfunctionality

 56

2.4.2 IEEE Std 1061

The IEEE standard 1061 (IEEE Std 1061, 1998) guides the setting of quality
requirements and software metrics, while, unlike ISO 9126 (ISO 9126-2 2003,
ISO 9126-3 2003), it does not describe any specific metrics. Furthermore, it
gives instructions on how to implement, analyse and validate software quality
metrics. For an informative framework, the standard proposes the GQM
paradigm (Basili et al. 1994a) or PSM (PSM 2000) to be considered when
establishing a metric framework for an organisation.

2.5 Knowledge Management

Knowledge Management (KM), SPI and software engineering research along
with their relationship have been of the interest of many researchers and
practitioners. As is known, software engineering itself is extremely knowledge
intensive and creative features-bearing discipline (Ruhe 2001, Rus & Lindvall
2002). Furthermore, given that only part of the knowledge is documented,
creating, capturing and sharing knowledge effectively is a major challenge for
organisations.

In the following, KM research and terminology is recapitulated. Furthermore,
Experience Factory (EF), which uses KM principles, is introduced. The EF
concept developed in the field of software engineering put forward an
organisational structure that supports knowledge creation and usage.

2.5.1 KM Research

The organisational knowledge creation theory of Nonaka & Takeuchi (1995)
assumes that knowledge is created through social interaction between tacit and
explicit knowledge. It is rather difficult to formalise or communicate tacit
knowledge, as it comprises personal experience, ability, and beliefs. Tacit
knowledge is associated with personal intention and commitment. A simple
example of the use of tacit knowledge would be the skill to ride a bike. Explicit
knowledge, again, refers to a formal form of knowledge that is transformable
using systematic language.

 57

Figure 14. Four modes of knowledge conversion.

In Socialization, experience is shared between individuals using observation and
imitation, no language is used. For example, by observing we learn the unwritten
norms and values that a home, organisation, or country may have. Acquiring
tacit knowledge is a gradual knowledge creation process. When externalisation
takes place, tacit knowledge is verbalised and transformed to explicit
knowledge. The purpose is to formalise knowledge to reusable and
transformable forms such as memos, documents, models, concepts, formulae etc.
Combination covers activities aiming to create new knowledge by utilising
explicit knowledge. Combination occurs when manipulating the knowledge
system, e.g., by adding, sorting, or categorising in order to create new
understanding based on existing explicit knowledge. In Internalisation, explicit
knowledge transmutes again to personal tacit knowledge. By reading, or
listening, explicit knowledge may become tacit knowledge. This way we may
benefit from the experiences of others and avoid doing the same mistakes as
others, and also find ways to improve our actions.

Tagic

Tagic

Explicit

 Explicit
Knowledge
conversion

SOSIALIZATION

IN
TERNALIZ

ATIO
N

COM
BINATION

EXTERNALIZ
ATIO

N

 58

KM within software engineering and SPI is addressed from several perspectives,
e.g., Kucza and others (2001) have studied the interface between the software
reuse process and KM. Dingsøyr (2002) has investigated how intranet-based KM
tools are used in organisations to support software development. Kneuper (2002)
has studied the knowledge needs of software developers and the means of
providing the needed knowledge for them. Birk et al. (2002) emphasise the post-
mortem analysis of software development projects as an efficient way to initiate
KM in small- or medium size projects. Pourkomeylian (2002) has researched the
challenges of SPI from the KM point of view. Before KM became well known
as a research subject, Basili and others (1994b) developed the Experience
Factory concept embodying the prominent KM terminology defined by others
(Davenport & Prusak 1998, Nonaka & Takeuchi 1995).

2.5.2 Experience Factory (EF)

Davenport & Prusak (1998) define that Experience refers to the past events and
it provides a historical perspective for predicting forthcoming events.
Furthermore, Knowledge arises from experience; it is attached to values, context
information, and individual comprehension and insights. Nonaka & Takeuchi
(1995) divide knowledge into two classes, tacit and explicit knowledge.

In pursuance of KM principles, Basili and others (1994b) claim that an efficient
and systematic reuse of experience necessitates an organisational structure that
supports it. They call this the organisational structure Experience Factory (EF).
The EF concept builds on understanding that product and SPI assume a
continuous accumulation of experience, in other words combination of explicit
knowledge. EF is illustrated in Figure 15.

 59

Figure 15. Experience Factory (Basili et al. 1994b).

The EF concept consists of two separate organisations: Project and Experience
Factory organisation. The latter is further separated to two parts: analysis and
support organisation. Software project exploits the models and experience
provided by the analysis organisation. The project organisation concentrates on
software development obeying models that support reuse, but is expected to
provide project related information such as project and process characteristics,
development data, cost and schedule information, quality records, and feedback
to the analysis organisation. The analysis organisation provides on demand
artefacts analysed to suit the project. The support organisation facilitates
communication by taking care of interactions between developers and analysts.
In addition, it is responsible for experience management from the information
technology point of view, i.e., taking care of packaging, storing and retrieving
project experiences (Basili et al. 1994b).

The basic principle in developing EF is the notion that experience sharing is not
a matter-of-course within organisations and projects, hence it has to be organised
and managed systematically. The knowledge repository, where the packaged,
organised and reusable experience packages are stored and retrieved from is
called Experience Base (EB). Experience packages may include information of

Analyze

EXPERIENCE
BASE

Package

Generalize

Tailor

Formalize

Environment
characteristics

Goals, Processes,
Tools, Products
Resource models,
Defect models, �

Data,
 Lessons
 learned

Project
analysis

Execution
plans

Project Organization Experience Factory

Execute
process

Characterize
Set Goals
Choose process

Project
support

 60

products, processes, practices, methods, lessons learnt, techniques, and tools etc.
(Basili et al. 1994b).

EF puts forward a framework for managing experiences according to the QIP
principles and offers facilities for utilising packaged software development
knowledge as an input to SPI.

2.6 Discussion

SPI related research and interest has been very active both in academia and in
industry. As a result, various assessment and measurement based SPI methods
have been introduced in addition to the SPI management methods, quality
standards, and solutions for managing SPI knowledge. The proposed methods
have been applied to SPI by various practitioners with manifold results. There
are quite a few success stories (Herbsleb et al. 1994, Dyne 1998, Fitzgerald and
O�Kane 1999) as well as recognised method limitations (Card 1991, Lehman
1995) and failures in achieving goals (Goldenson & Herbsleb 1995, El Emam
and Smith 1999, Conradi & Fuggetta 2002, Kautz & Nielsen 2000).

As noted by many researchers (Quinn 1996, Conradi & Fuggetta 2002,
Humphrey 1989), SPI is a complex activity requiring diverse expertise.
Individual SPI approaches are often recommended and thus also selected by
industry as a mean to solve a quality or other software development related
problem. The different methods may even have been seen as competitors to each
other. SPI methods are often applied separately, and furthermore, there seems to
be a lack of understanding as to how to integrate them to achieve better results.

 61

3. Development of the SPI Method
Evaluation Criteria

In this Chapter, the findings of the literature review of SPI success factors are
presented and analysed. The review sources include 11 SPI case study reports
covering 35 SPI cases and the results of three large SPI surveys, which are
augmented with three expert opinions based on long-term involvement in SPI.
The ultimate purpose of this review is to develop Critical Success Factor (CSF)
criteria for evaluating SPI methods.

Although the concept of CSF was first introduced by information system
development as early as the late 70�s, it has not yet been widely used by
software development (Fitzgerald & O�Kane 1999). The application of CSF
criteria is now introduced for the first time in the area of process improvement.
Many researchers and practitioners have reported experiences of SPI arguing for
various reasons for success. Here, these statements are utilised as building
blocks in defining the CSF criteria. Later, the CSF criteria are used to evaluate
related research and SPI methods developed during the four engineering
research process cycles.

In the following sections, first the background of the CSF criteria development is
clarified including related research. Second, the unique SPI cases, survey results
and expert opinions are shortly presented in an author-centric way, as guided by
(Webster & Watson 2002). Appendix B presents success factor statements as
captured from literature. Using the findings of the review, based on success
factor statement evaluation and synthesis, SPI success factor statements are
compiled to seven categories: improvement management, commitment, culture,
and four general SPI engineering activity classes (plan, do, check, action). In
some of these categories, there were competing statements, the most often
highlighted one of which was then selected and formulated in a form of CSF
proposition. The CSF criteria consist of critical propositions, the fulfilling of
which is likely to lead to improvement success. The definition of improvement
success is case dependent; it may mean improving the quality of software in
terms of defects, achieving a specific quality certificate, or decreasing the time
to market, for example.

 62

3.1 Background

The fundamental assumption is that the issues pinpointed as SPI lessons learnt
are explanatory factors for the results gained and the explicitly stated success
factors are elements facilitating improvement, at least in the individual cases
they were extracted from. When a lesson or a factor is raised again and again, it
becomes a general canon. Thus, SPI literature is analysed to extract common
premises and components for successful improvement actions. These factors are
further studied to specify how they could be supported by an SPI method. As a
result, the requirements for an SPI method are generated.

3.1.1 Related Research

Objective evaluation and comparison of SPI frameworks and supportive
methods is difficult: they differ in scope, in detail, and also in the basic
philosophy they apply. In spite of this, literature reveals a few ways to evaluate
SPI frameworks and methods. Halvorsen & Conradi (2001) developed the
Characteristics comparison method and came up with the following four SPI
method comparison classes:

1. The Characteristics comparison method is based on a list of characteristics,
as objective, measurable and comparable as possible, such as popularity,
assessment, organisation size, quality perspective, certification. To this class
Halvorsen & Conradi (2001) developed a total of 25 characteristics and
divided them in five classes (general, process, organisation, quality, and
result).

2. The Framework mapping comparison method concentrates on creating a
map from the kernel statements or concepts of one framework to those in
other frameworks. The mapping is useful, for example, for organisations
wishing to apply several methods and desiring to eliminate redundant work.
Framework mapping is a more detailed analysis than Characteristics
comparison method as comparison is done at more specific levels. An
example of this kind of mapping is to link the ISO 9001 Clause 4.6
�Purchasing� with the SW-CMM Key Process Area �Software Subcontract
Management� (Paulk 1995).

 63

3. The Bilateral comparison method compares two frameworks and
summarises the findings in textual descriptive format: �ISO 9001 requires an
organisation to be able to identify and trace a product through all stages of
production, delivery, and installation. The SW-CMM covers this clause
primarily at level 2 in the context of configuration management, but states
the need for consistency and traceability between software work products at
level 3� (Paulk 1995).

4. The Needs mapping comparison method does not compare methods to each
other but uses needs and goals of an organisation in a method selection, as
an example an organisation may have to adjust processes according to ISO
9000 standard to get the certificate and thus be able to win contracts.

The first three of the methods presented above are developed for comparing the
characteristics of SPI methods, for creating maps between their statements, and
for analysing the software engineering statements incorporated in the methods.
Although these comparison methods provide useful information of SPI methods,
they are, unfortunately, limited in analysing them from the viewpoints of
effectiveness and success.

Dybå (2000) has developed an instrument for measuring the key factors of
success in SPI. The instrument contains six key factors for SPI success and 37
related indicators that can be used for guiding or evaluating SPI actions. The six
key factors developed using literature reviews, expert opinions and company
studies are:

1. Business orientation

2. Leadership involvement

3. Employee participation

4. Concern for measurement

5. Exploitation of existing knowledge

6. Exploration of new knowledge

The instrument uses scales from 1 to 5 to evaluate a single indicator. For
example, the leadership involvement key factor comprises five indicators, e.g.,

 64

�Management accepts responsibility for SPI� and �SPI issues are often discussed
in top management meetings� (Dybå 2000, p. 372). The respondent rates these
indicators using a given scale (strongly disagree � disagree - neither agree nor
disagree - agree - strongly agree). Dybå�s measurement instrument is designed
for measuring to what extent the conducted SPI actions support extracted SPI
key factors, but not for evaluating the characteristics of SPI methods.

3.1.2 Development Process

The purpose of CSF criteria development has been to build a set of criteria for
evaluating how SPI methods support critical SPI success factors in establishing
and in the course of an SPI initiative. The underlying idea is that if general SPI
CSFs can be extracted, they should be valued by an SPI method as well. CSFs
stand for issues that are generally important for successful SPI and therefore
they should be supported by SPI methods. Furthermore, the hypothesis is that
the more CSFs are supported the lower the risk of failure and the higher the
possibilities for SPI success.

Since the related research review did not reveal any suitable means for
evaluating SPI methods, it was decided to develop a new, generally applicable
set of CSF criteria. The criteria is developed on the basis of the related literature
review. The scope of the review covers software quality related conferences and
magazines. These are expected to provide the best sources for industrial case
study reports of SPI. In addition, the book by Messnarz & Tully (1999) provides
versatile set of industrial SPI cases for evaluation. The search was completed
using a literature review completion condition as proposed in (Webster &
Watson 2002). At the point of review completion found new articles did not
provide any further success factor statements to be considered.

Based on the review of SPI lessons learnt and explicitly stated success factors,
the unique success factor statements are compacted to 15 CSF propositions
linked to seven classes. While the classes Improvement management,
Commitment, and Cultural issues deal with the starting and overall planning of
an SPI initiative, the classes Plan, Do, Check and Act focus on factors that are
important when improvement activities are executed. The development process
of the CSF criteria is illustrated in Figure 16.

 65

Figure 16. CSF development process.

3.2 Factors Facilitating SPI

In the following three sections, the results of the literature review are presented.
First, 11 SPI case study reports including a total of 34 SPI industrial SPI cases
are discussed. These case publications comprise both single case studies
(Jakobsen 1998, Delmiglio et al. 1999, Bazzana & Fagnoni 1999, Debou et al.
1999, Simon 1999, Rodenbach et al. 2000) and multiple case studies (Quinn
1996, McGuinness 1999, Lanzerstorfer & Scherzer 1999, Kauppinen & Kujala
2001, Lepasaar et al. 2001). Second, in addition to the case studies, the results of
three large surveys targeted to a certain group of organisations are studied: a
questionnaire survey conducted by Goldenson & Herbsleb (1995) reporting the
results of 56 SW-CMM unique appraisals; a similar survey by El Emam and
others (1999) on 14 SPICE improvement cases; and a review by McGuire (1996)
of the opinions of 64 software professionals. Last, to augment the review, three
publications concerned with a longitudinal involvement in SPI are evaluated
(Humphrey 1989, Kunzmann-Combelles 1996, Conradi & Fuggetta 2002).

SPI literature review

Related research review

Aggregating SPI lessons
learned and success factors

Grouping the findings to
CSF classes

Defining CSF propositions
for CSF classes

Defining CSF criteria Expert review of CSF criteria

 66

3.2.1 Industrial Experiences

3.2.1.1 Two Small Companies in the United Kingdom

Quinn (1996) reports the experiences of implementing a quality management
system in two small organisations in the United Kingdom. She describes the
following success factors for meeting the requirements of ISO 9000 (2000) and
ISO9000 based TickIT (TickIT 2001).

− Commitment to improvement. In one of the companies, re-organisations and
changes in management set back the improvement program many times;

− Establishment of clear responsibilities and a mechanism for implementing
changes in practice in the form of a project;

− Using audits to start the improvement actions;
− Understanding the key role of human resources. The tasks should be

occupied with the right persons with the right skills. For example,
developers gained early success once they took over their own key practices;
and

− Understanding the fact that change is difficult to accomplish. Mistrust and
protectionism can be overcome by open discussion, training and awareness
sessions conducted, for example, by an external consultant.

When setting the basis for improvement, it turned out that both organisations
wanted to develop their own specific kind of approach. One goal of the
researchers was to transfer the Quality Management System (QMS) from a more
advanced organisation A to organisation B, but it soon became obvious that it
would not be just a matter of simple transfer operations � the differences in
organisation culture and aptitude for QMS turned out to be too big.

3.2.1.2 Danish Delta

Jakobsen (1998) implemented a process improvement program at Danish Delta
Software Engineering. Jacobsen�s approach to improvement is quite humane and
people centric; accordingly, he has stated that SPI can be a two-way street:
improvement can be initiated from the bottom as well as from the top. For the
former, management approval is, of course, required. Jacobsen recapitulates his
experiences in the following:

 67

− Prepare the field for improvement by personally talking to people and
fathom out their aims and wishes towards improvement; this will help
planning the future and make people more committed to the forthcoming
work;

− Start from the problems, not the solutions;
− Be out there. If a quality-concerned group of people operate just on their

own, they easily become isolated from projects. These people need to spread
out and provide support to project personnel;

− Plan how to keep the project in continuous improvement progress, e.g. by
means of small review sessions held several times per week;

− Conduct reviews, which facilitate spreading out knowledge and promote
team spirit;

− Invest on teamwork operating on the �your success is my success� principle;
and

− Avoid long textual documents, rather trying to visualise as much as possible.

With the principles described above, successful project improvement was
gained. The effort was, however, undermined by an obvious lack of management
commitment and resources. Jakobsen refers to this as follows: �Unfortunately, as
so often happens in real life, the ideal of theory fell short when applied to the
reality of practice. We simply didn�t have the time or resources to give these
people the proper education, and one team suffered severely from this because
they couldn�t learn and implement the entire process� (Jakobsen 1998 p. 66).

3.2.1.3 Italtel

Delmiglio et al. (1999) encompass the top twelve lessons learnt from an
assessment based SPI programme executed in the GSM application domain at
Italtel as follows:

− SPI should utilise different improvement approaches along the different SPI
phases;

− The SPI program is best started with an assessment performed by an external
actor;

− The SPI program has to be stuffed by SPI experts, middle managers and
affected staff members;

 68

− The commitment of senior management has to be 100%, and the support has
to be visible;

− The results collected using metrics have to be reported regularly, e.g.
monthly;

− Case studies have to be performed before launching the big process and/or
technological changes;

− A detailed plan for deployment has to be prepared;
− New technology and tools are often a necessity for a successful SPI effort;
− A training program has to be defined and regularly executed;
− Special attention should be paid when introducing improvements to

technical staff, which is proud of its work and not willing to change work
procedures for fun;

− SPI should be run faster than the development project, so as not to allow the
complexity and product size to override improvement efforts made at project
level; and

− The audits performed by a customer boost the improvement actions and help
to sustain management commitment.

3.2.1.4 Onion

Bazzana & Fagnoni (1999) report their experiences with SPI as applied at
ONION, the Italian Internet Service provider. The authors used the
Plan/Do/Check/Act improvement paradigm (Deming 1986) and Bootstrap
assessment (Kuvaja et al. 1994) in the planning phase and again in the checking
phase, which took place three years after the first assessment. The authors
attributed their success to the following three main aspects:

− Involvement of people from different departments;
− Deployment in two pilot projects; and
− Combination of technical and methodological aspects.

For avoiding SPI pitfalls, the authors recommend deploying new guidelines
using the bottom-up approach and doing that only under the authorization of the
project leader, him or her having discussed and accepted the new guidelines with
involved engineers. Here again, the independent and self-respecting role of
project managers and engineers is emphasised. In addition, if the pilot project
does not show any results, no deployment should take place. Quantitative results

 69

play a major role in deciding upon further actions. Bazzana & Fagnoni also
stress the significance of internal training, information dissemination, and
detailed improvement planning.

3.2.1.5 Alcatel

Debou et al. (1999) report their lessons learnt after several years of SPI
experience at Alcatel Italy, another company operating in telecommunication
business. Alcatel had started SPI several years earlier and had been using ISO
9001 (ISO 9001 2000), European Quality Award (EFQM 2003) and SW-CMM
(Paulk et al. 1994, Paulk et al. 1993) as improvement methods. Based on their
long experience with SPI, Alcatel put forward the following issues:

− SPI methods have to be tailorable. According to Alcatel �It is a dream to
think that the same improvement approach can be applied everywhere� (p.
283);

− Before launching any major assessment effort, it should be ensured that the
organisation is ready for improvement. Debou et al. argue that the
assessment process has been greatly overemphasised and that it should be
seen only as a starting point, or as �just a tiny part of the iceberg� as they put
it (p. 282);

− It is critical to define the strategy for proceeding from assessment results to
implementation actions. The experience has shown that if too much time
elapses from the assessment to the first impact on projects, the motivation is
likely to decrease at all levels;

− The managers� attention can be improved and the improvement speed
accelerated by using external consultants in the improvement start-up phase;

− The link to business goals and an active role of business managers are
essential for success. A continuous follow-up with metrics is emphasised as
well;

− From the methodological point of view, further success factors are to be
found in a wise interpretation of ISO 9001 and SW-CMM, and in the
willingness for change; and

− The cultural specialities at national and organisation levels need to be
understood to be able to speak the same language.

 70

3.2.1.6 CISI Software House

Simon (1999) made his analysis on the basis of his involvement in an
improvement program at the CISI software house. The departments of the
organisation had been aligned with new business strategies, which changed the
structure and composition of software projects. ISO 15504 and ISO 12207 had
been selected as input models to support this transformation, which was
executed according to the Plan/Do/Check/Act cycle as suggested. Simon
concludes his experiences as follows:

− A detailed improvement plan including fixed tasks, schedules and resources
needs to be established. This project plan type of plan serves the quality
manager as a road map;

− A quality plan or quality requirements need to be drawn out and monitored
during the improvement project;

− Operational guidelines for software development projects are very useful
and provide a common framework for projects to proceed in practice; and

− Standards provide concepts and good practices, which can be adapted and
integrated into organisation-specific process definitions.

3.2.1.7 Five Irish Case Studies

McGuinness (1996, 1999) reports the experiences and lessons learnt of five Irish
case studies. The cases cover a large variety of industry sectors: manufacturing
(Motorola Manufacturing), financial (Quay Financial Software), insurance
(Voluntary Health Insurance) and telecommunication (Tellabs and Telecom
Eireann). In their improvement programs, all the organisations except Voluntary
Health Insurance applied SW-CMM and all of them some modified form of the
Plan/Do/Check/Act cycle. McGuinness recapitulates the feedback from the
organisations in the following:

− The role of a sponsor is critical for success. Two strong responsible sponsors
were changed during the improvement projects and, despite anticipatory
actions, both organisations started to suffer from a decline in improvement.
Unless SPI is given strong, visible and active senior management
sponsorship with an accompanying vision, SPI is likely to fade and give just
moderate results, or even lead to a total failure;

 71

− All the variations of CMM as used by the assessment organisations showed
equally good results in initiating the SPI program. The type of assessment
may vary, while a clear picture of the starting point is a necessity for SPI;

− The improvement program needs to be guided by an improvement approach
or a life cycle. There is no point to proceed without it;

− Improvement does not happen by itself. It has to be planned and tracked as a
project with a stretch goal;

− Organisations underline the role of the training, which needs to planned
carefully and have clear objectives. Goal-oriented workshop, coaching
sessions, short guides, and on-the-job training were found as good training
methods;

− Four organisations were deploying the Groupware tools to support process
implementation. These organisations pointed out that even though the
investment in setting up such an environment requires more resources than
estimated and provides less profit than expected, it does have great potential
if introduced correctly. Automated support should be provided whenever
possible;

− When studying the improvement results, it was found out that large
organisations would have to survey all the methods and approaches available
on the market before piloting or implementing solutions across the company.
Metrics provide help in verifying the improvements and in fathoming out
further improvement potentials; and

− Process improvement is not an easy task at all and lots of continuous
investment in improvement is needed to keep the progression alive. An
overall SPI strategy or an approach is essential for sustaining the obtained
level or improving it. It is advisable to have an advance vision of where to
go after the initial improvements have been made.

Regarding the question list for SPI success, McGuinness also points out the
following factors:
− Start small, step by step, �take a one bite of the elephant at a time� and wait

for benefits before extending the improvement areas;
− Ensure strong participation of as many of the people involved as possible.

Improvement should be done by people to people. Although the imposed
solutions are often strongly opposed, serious actions are appreciated by
engineers.

 72

3.2.1.8 Frequents Nachrichtentechnik Gesellschaft M.B.H.

Lanzerstorfer and Scherzer (1999) have combined the ISO 9001 and SW-CMM
approaches to a model called BICO (Benchmarking and ISO Combined). The
model has been designed for small and middle size organisations that cannot
make the investments needed for official audits or assessments. The authors
applied this model to nine organisations, and based on their experiences they
concluded:

− �Common sense is the most valuable tool for a process improvement expert.
If you are an expert, you don�t need a quantitative assessment to identify
major improvement potentials� (Lanzerstorfer & Scherzer 1999, p. 378).

The case study of Frequents Nachrichtentechnik Gesellschaft M.B.H. was
described in detail. The company operates in air traffic control business and
shows a very strong management commitment. At the time of the study, the
company had held the ISO 9001 quality certification for five years. Based on
this study they conclude that:

− Management commitment and strong project management are key success
factors; and

− Distribution of the information of what is going on facilitates buy-in.

3.2.1.9 Tokheim

Rodenbach et al. (2000) describe their ten years of experience with SPI at
Schlumberger RPS, which later became part of Tokheim. In this project, the
authors used various improvement approaches: ISO 9001/TickIT, SW-CMM,
Bootstrap, Goal/Question/Metric, Spirits, and later also the Profes methodology.
The essential factors are described as follows:

− Commitment is crucial and should be present at all levels, including high-
level management, project management and software engineers;

− Management commitment is often sought at the beginning of the
improvement actions, but it should be addressed continually. They learnt
real risk for improvement programs is to be found in the changes in
management; after a change it takes a while before the commitment is re-
established. The even experienced a fallback in process maturity when they
did not take these changes seriously enough;

 73

− Commitment of software engineers is important as well, and often
underestimated too. There is a big risk involved when fully-fledged
solutions from standards and best practices are imposed on engineers. Based
on their experiences the authors claim that the acceptance and commitment
of engineers is achieved by introducing improvements that are based on their
own ideas. �Treat software engineers as what they are: intelligent creative
professionals. Let them define their own goals for improvement�
(Rodenbach et al. 2000, p. 227);

− Practical support offered by an internal support group is essential. Support
should be provided in a form of implementation assistance, coaching all the
way through the project, in gathering measurement data and analysing it and
in assuring management commitment; and

− Successful SPI programs cannot be transferred as such from another culture.
Different countries, companies, types of site, all form different cultural
entities.

3.2.1.10 Two Finnish Organisations

Kauppinen & Kujala (2001) reported their experiences of requirements
engineering process improvement in two Finnish organisations. As an
improvement approach they used selected parts of the IDEAL model and the
ISO 15504 standard. The researches have noted that often organisations do not
have enough resources or expertise to use such sophisticated approaches.

The case companies operate in the area of real-time embedded software and
interactive software development. The following SPI success factors were
stated:

− Setting of measurable goals;
− Ensuring management support;
− Use of improvement teams formed of experienced practitioners; and
− Capability to select realistic improvement actions.

According to the researchers, change may require a culture change in addition to
changes in process and technology. The change in culture requires that the
personnel understand the reasons for the change.

 74

3.2.1.11 Ten Small Finnish Organisations

Lepasaar et al. (2001) have been involved in a regional SPI network initiative
called SataSPIN consisting of over 10 small Finnish software organisations.
These organisations provided a prioritised list of the most important SPI factors:

− SPI related training;
− External guidance of the SPI work;
− Company�s commitment to SPI activities;
− External support for SPI;
− SPI environment support for a sufficiently long period of time (external

mentoring);
− Availability of information about SPI;
− External financial support;
− Availability of company�s own resources; and
− Measurable targets set for SPI work.

Based on their analysis and comparison of SataSPIN organisations the
researchers named four main factors affecting SPI in small organisations:

− Public funding to start the initiative (particularly in case of small
organisations);

− Learning environment including the means of knowledge acquisition and
training and a mentor that could be an external consultant to provide help in
assessments and improvement activities;

− Readiness to invest resources in SPI; and
− Establishment of continuity in the SPI work.

3.2.1.12 Summary of the Cases

The experiences of 34 industrial SPI cases are summarised above. For each case,
a body of success factors and lessons learnt were pointed out. It can be
concluded that almost all the cases used more than one SPI method, most often a
combination of two methods, one of these methods often being an assessment
method (SW-CMM, ISO 15504 or Bootstrap). ISO 9001 is also used regularly as
a guideline for improvement. The raised success-related issues soon started to be
refined into statements. When no more new factors seemed to be found, the
literature review of SPI cases was finished. The success factor cited most often

 75

was the need for commitment at various organisational levels. The found success
factors groups and the number of related statements are presented in the end of
this Chapter.

3.2.2 Surveys to Detect SPI Success Factors

3.2.2.1 Extensive SEI Survey

A comprehensive study conducted by SEI (Goldenson & Herbsleb 1995)
surveyed possible SPI barriers and success factors. The survey took place in
1994 and it was targeted at organisations in the United States and Canada, where
SW-CMM assessment had been carried out during the years 1992 and 1993. The
sample consisted of a total of 138 filled questionnaires representing 56 unique
appraisals. The largest number of answers, 37%, came from US government
contractors, 22% from the federal government and military services.
Organisations with their own product development sections were represented by
36% of the replies. Based on the survey SEI summarised the success factors as
follows:

− SPI monitoring by senior management;
− General awareness of SPI goals;
− Senior management understanding of technical issues;
− Respect of SPI personnel;
− Technical staff involvement in SPI;
− Willingness of management to take risks; and
− Clear, compensated SPI assignments.

In addition to success factors, barriers were also studied by SEI, and as a result
the following factors were found to be of substantial or moderate importance:

− SPI gets in the way of �real� work;
− Paperwork required;
− Organisational politics;
− Reorganisation/staff downsizing;
− Discouragement about SPI prospects;
− Senior management turnover; and
− �Turf guarding� inhibiting SPI.

 76

3.2.2.2 Large Survey within an American Organisation

McGuire (1996) conducted a three-phase survey in a large American software
development project. The survey comprised 64 software professionals
representing various positions in the organisation. The research was concerned
with, among other things, the success factors for SW-CMM based SPI. From the
survey results the following key issues were obtained:
− Organisational culture and related change management strategy coupled

with appropriate training and information sessions can have a decisive effect
on the rate of improvement progress;

− Specific, just-in-time training and information enhance team performance;
− Increased emphasis on team-based, quality-focused, process-dependent

organisational culture and structure is likely to pay off; and
− Feedback loop and facilitation are factors that enable successful process

improvement, also sustaining it.

McGuire also makes the remark that, in the context of SW-CMM-based SPI, it is
unlikely that an organisation will understand all the aspects and needs of a large
and long-term improvement project.

3.2.2.3 Results of SPICE trials

El Emam et al. (1999) made a questionnaire survey of 14 SPI cases to find out
what the success factors affecting assessment based improvement when ISO
15504 was used as an improvement method. The authors drew upon an earlier
survey on SW-CMM appraisals (Goldenson & Herbsleb 1995), which had been
executed by the Software Engineering Institute, and adapted the questions to
their own project. It was found out that the awareness and understanding of SPI
goals and technical staff involvement in SPI are among the most critical success
factors for assessment based SPI efforts. The essential SPI factors are:

− SPI monitoring by senior management;
− Compensated SPI responsibilities;
− Staff and time resources made available for SPI; and
− High respect of SPI people.

 77

All the factors mentioned above should increase the likelihood that the SPI effort
is correctly determined by the initial assessment findings, which was interpreted
to be one of the cornerstones of SPI success. The SEI survey had came to the
same conclusion four years earlier.

3.2.3 Arguments for Successful SPI

SW-CMM (Paulk et al. 1993, Paulk et al. 1994) has become the most widely
used method in SPI; its ideas were initially introduced by Humphrey (1989). The
author of the SW-CMM model came up with a list of six basic principles for
software process change (Humphrey 1989, p. 19):
− Major changes to the software process must start at the top. Senior

management leadership is required to launch the change effort and to
provide continuing resources and priority;

− Ultimately, everyone must be involved. Software Engineering is a team
effort, and anyone who does not participate in improvement will miss the
benefits and may even inhibit progress;

− Effective change requires a goal and knowledge of the current process. To
use a map, you must know where you are;

− Change is continuous. SPI is not a one-shot effort; it involves continual
learning and growth;

− Software process changes will not be retained without conscious effort and
periodic reinforcement; and

− SPI requires investment. It takes planning, dedicated people, management
time, and capital investment.

As a supplement, Kunzmann-Combelles (1996), based on her involvement in
various SPI cases, complements Humphrey�s list by stating that the appraisal
model is not as important a factor as business goals, which are considered the
key driver of the improvement program. She expands the leadership role from
senior management to middle management and also stresses the need of
effectiveness measurement. She claims that if the above-mentioned criteria are
not satisfied, there will be no successful SPI.

In their recent publication, Conradi & Fuggetta (2002) put forward six SPI
requirements based on their involvement on SPI:

 78

− SPI framework should support improvement strategies focusing on goal-
orientation and product innovation;

− Developers are motivated for change; if possible, start bottom-up with
concrete initiatives;

− Automated software process support has been overemphasised;
− Cost-benefit analysis requires novel amortisation models;
− SPI assumes cultural changes, so we need expertise from the social sciences;

and
− SPI is about learning � not control, as in QA.

While SPI initiatives need to be directed towards business goals, they should
also start from the most pressing needs of organisation or projects. At the same
time as improvement goals have to be realistic and visible, the improvement has
to start with small steps, one well-defined SPI effort at a time. An SPI initiative
should not be started with a large assessment, but rather by using a simple and
focused scorecard. The role of mid-managers in SPI is essential, too. Too high
expectations of the engagement party should be dampened because of the fact
that achieving convincing and repeatable results may take some time. Conradi &
Fuggetta emphasise the role of the cultural, learning, and long-term dimensions
of SPI work and promote establishing participative engagement with all process
changes. The authors even propose using multidisciplinary improvement teams
for performing empirical studies on how people actually work. To motivate
people for continuous process improvement, a rewarding system for reported
problems and suggested improvements is considered important. As it is
generally difficult to demonstrate the return of investment in SPI, the need for
developing organisation-specific cost-benefit models is raised. (Conradi &
Fuggetta 2002).

3.2.4 Summary of SPI Success factors

The SPI success factor statements as obtained from the SPI literature review are
presented above. These statements are organised into seven statement classes.
The classes improvement management, commitment, and cultural issues are
developed based on the author�s statement evaluation and synthesis. The PDCA
cycle is used for organising the success factors concerning SPI engineering
itself.

 79

The results show that the overall quality of SPI management is the most decisive
factor for success (36% of all statements). Figure 17 illustrates how the
statements are distributed over the success factor classes. It can be concluded
that the success factors related to improvement management and planning are
greatly emphasised in the literature. It is also interesting how the improvement
cycle itself (Plan-Do-Check-Act) is stressed: 59% of all remarks concern the
starting phase of the initiative. Least attention is paid to the period when the
improvement project should shift from planning phase to piloting or taking the
results in use in large scale.

 Figure 17. Success factor statements by classes.

Judging by the number of statements, three areas rise above the others:
improvement management, commitment, and the plan phase. The improvement
management success factor area consists of general guidance, training, and
staffing issues. Commitment as a success factor area appears highly solid and
unequivocal thus highlighting its meaning. The thirdly critical activities for
improvement success are to be found in careful and intelligent planning phase
execution, which is when current state is analysed, improvement goals are set,
and a concrete improvement plan is developed.

40

21

7

26

6 8
4

0
5

10
15
20
25
30
35
40
45

Im
pr

ov
em

en
t

M
an

ag
em

en
t

C
om

m
itm

en
t

C
ul

tu
ra

l
Is

su
es

P
la

n

D
o

C
he

ck A
ct

Classes of success factor statements

N
um

be
r o

f
st

at
em

en
ts

 80

In Table 7, the success factor statements are divided into seven main classes and
eight sub-classes. Appendix B presents all statement items grouped to seven
main classes.

Table 7. SPI success factors as observed in literature.

Main Classes Number of statements
 Sub-classes
1. Improvement
 Management

 40

 General guidance 19
 Staffing the SPI initiative 13
 Training 8

2. Commitment 21
 Manager commitment 17
 Engineer commitment 4

3. Culture 7
4. Plan 26

 Current state analysis 8
 Goal definition 11
 Improvement planning 7

5. Do 6
6. Check 8
7. Act 4
Total 112

In the following sections, the success factor classes and statements are studied
by the developed CSF groups. Based on the evaluation of the original success
factor statements, the requirements for SPI methods are formulated into
propositions, and the result is called the CSF criteria.

3.3 Evaluation of CSF Classes

3.3.1 Improvement Management

According to a large body of researchers, competent SPI management is
essential for the success of SPI activities (Humphrey 1989, Goldenson &

 81

Herbsleb 1995, McGuinness 1996, McGuinness 1999, McGuire 1996,
Kunzmann-Combelles 1996, Quinn 1996, Jakobsen 1998, Bazzana & Fagnoni
1999, Debou et al. 1999, Delmiglio et al. 1999, El Emam et al. 1999,
Lanzerstorfer & Scherzer 1999, Kauppinen & Kujala 2001, Lepasaar et al. 2001,
Conradi & Fuggetta 2002). Even though this success factor may appear self-
evident, it is not obvious, in the context of SPI, what good management means in
practice. Based on the literature evaluation, three associated success factor sub-
classes for improvement management were distinguished: general SPI guidance,
staffing of the improvement initiative, and training.

3.3.1.1 General SPI Guidance

This class contains a number of various success factors such as �Management
should be willing to take the risk that is always related to change� (Goldenson &
Herbsleb 1995), �Senior management should monitor SPI� (Goldenson &
Herbsleb 1995, El Emam et al. 1999), and �Understand technical issues�
(Goldenson & Herbsleb 1995). According to Jakobsen (1998), the software
quality group should not isolate itself from projects, but spread out and provide
hands on support. Debou et al. (1999) maintain that the readiness of an
organisation for improvement should be ensured before SPI actions could take
place. Debou et al. also argue that the management should understand the fact
that software process assessment is only the starting point for SPI. McGuinness
(1996, 1999) recommends for large organisations to survey the methods and
approaches available on the market before piloting or implementing solutions,
while other researchers counsel to dampen any overly positive expectations of
all parties involved, as attaining convincing results may take some time (Conradi
& Fuggetta 2002).

Those who have been using various improvement models or approaches in SPI
recommend this as a general success factor. Delmiglio et al. (1999) contend that
an SPI effort should utilise different improvement approaches along the
initiative phases of SPI. Debou et al. (1999) suggest that SPI methods should be
tailorable, and they further argue that a single improvement approach cannot be
applied everywhere and that a sound strategy is required for proceeding from the
assessment results. McGuinness (1996, 1999), for his part, makes a general
remark concerning the importance of the improvement approach or the life cycle
as a backbone of the improvement program. The author also argues that any

 82

variation of the SW-CMM assessment showed equally good results. The latter
observation is stated also by Kunzmann-Combelles (1996), who claims that the
model used for appraisal is not as important as the role of business goals. These
statements advocate a broadminded approach and wise interpretation of models
within SPI.

In the first paragraph of the general guidance discussion section, it was not
possible to define any general success factor requirements due to the lack of
uniformity among the statements. However, from the success factor discussion
regarding improvement models presented above, the following general SPI
proposition was captured:

CSF-1: Capability to include or support different SPI approaches.

CSF-1 description:

CSF-1 means that the SPI method used for managing the SPI initiative should
not only determine the main phases of the improvement initiative but also to
recognise and point out opportunities for using various approaches, methods, or
techniques along the improvement process.

Characteristics of an SPI method supporting CSF-1:
- Presents an overall improvement path and philosophy to follow,
- Refers to improvement approaches, methods or techniques that may be

utilised during the course of the improvement work,
- No predetermined set of improvement techniques are set,
- No predetermined set of improvement targets are set.

3.3.1.2 Staffing the SPI Initiative

It should have a great importance how an SPI initiative is manned. A large SW-
CMM study by Goldenson & Herbsleb (1995), which was later repeated for
SPICE trials (El Emam et al. 1999) asserts the following staffing factors to be
cornerstones for success: SPI people should be well respected; and SPI
assignments should be compensated and technical staff should be involved in
SPI. The importance of technical personnel participation, in particular, which
was expressed in several forms such as involvement of �experienced

 83

practitioners�, �people from different departments� or �affected staff members�,
was strongly promoted by other researchers as well (Humphrey 1989, Delmiglio
et al. 1999, Bazzana & Fagnoni 1999, Kauppinen & Kujala 2001). Quinn (1996)
argues on behalf of active participation of staff by stating that once developers
took over their own processes early success was gained. The Irish SPI study
including five organisations reports similar experiences; imposed solutions are
strongly opposed by software engineers (McGuinness 1999).

From the above statements, two propositions for successful SPI may be put
forward:

CSF-2: Active participation of all affected parties.

CSF-2 description:

This means that active participation denotes taking part in developing improved
practices and, on the other hand, reviewing and commenting proposed new
practices. Affected party refers to persons or organisational units whose
practices will be influenced by improvement changes. Affected parties may thus
include line managers, product managers, quality managers, and representatives
of pilot projects or project groups. The group of affected parties should also vary
during the lifecycle of an improvement program (a smaller pilot project versus
institutionalising new practices).

Characteristics of an SPI method supporting CSF-2:
- Affected parties are consulted when selecting improvement goals,
- Affected parties are consulted when developing improved practices to

achieve the goals.

CSF-3: Co-operation with software engineers.

CSF-3 description:

This means that software engineers are concretely involved in actual
improvement work stating their needs and ideas for improvement, actively
taking part in change planning, and providing feedback.

Characteristics of an SPI method supporting CSF-3:
- Software engineers are encouraged to take part in improvement planning,

 84

- Software engineers� feedback to plans is sought and regarded as important
and valuable.

3.3.1.3 Training

Training is an important management asset when heading for successful SPI
(McGuire 1996, Quinn 1996, McGuinness 1999, Delmiglio et al. 1999, Bazzana
& Fagnoni 1999, Lepasaar et al. 2001). While some researchers advocate
specific, just-in-time training (McGuire et al. 1996), others underline the
meaning of careful planning of training with clear goals in mind and regularity
of training sessions (McGuinness 1999, Delmiglio et al. 1999). Quinn (1996)
points out that training is a mean to overcome mistrust and protectionism. Those
researchers who regard training as a success factor argue strongly for it. In view
of the fact that mentoring or practical support is essential in a form or another,
Rodenbach et al. (2002) argue for setting up an internal support group, while
Jakobsen (1998) reports weekly sessions as a mean to sustain the improvement
rhythm.

The following training related SPI proposition can be generalised from the above
statements:

CSF-4: Training is planned and made part of the initiative.

CSF-4 description:

This means that training needs are clarified, the content, schedule and
participants are planned, and training is provided for any new practices. Rather
than providing general level SPI motivation presentations, training should be
case specific and repeatable, in view of the fact that the use of new practices is
likely to expand in an organisation.

Characteristics of an SPI method supporting CSF-4:
- Training needs are clarified and training plan is developed,
- SPI facilitator or support person is assigned to assist software engineering

projects in practice.

 85

3.3.2 Commitment

Commitment is strongly emphasised by many researchers, there is no argument
against its great significance to the outcome of the SPI effort (Humphrey 1989,
Quinn 1996, Kunzmann-Combelles 1996, McGuinness 1996, McGuinness 1999,
Jakobsen 1998, Delmiglio et al. 1999, Lanzerstorfer & Scherzer 1999, El Emam
et al. 1999, Rodenbach et al. 2000, Kauppinen & Kujala 2001, Lepasaar et al.
2001, Conradi & Fuggetta 2002, Abrahamsson 2002). Opinions diverge,
however, when it comes to the focal point of commitment. Humphrey (1989),
representing the SW-CMM assessment based top-down SPI approach,
consequently stresses the commitment of senior leadership and top managers.
Kunzmann-Combelles (1996), again, argues for expanding this perspective to
include middle management as well. In the late 1990�s, the first strong
statements were presented advocating strong engineer commitment (Jakobsen
1998, McGuinness 1999, Rodenbach et al. 2000). Many researchers see that SPI
benefits are best acquired through ensuring a strong team or project level
commitment. Rodenbach and others (2000, p. 227) claim that �Commitment of
software engineers is important as well, and often underestimated too�, and
continue �We experienced that the best way to get acceptance and commitment
of engineers is to introduce only improvements that are based on their own
ideas�. Top management commitment seems to be crucial in launching and
sustaining an SPI initiative, allocating resources and providing support. In
addition to this, the desired outcome is better achieved if software engineers are
committed to the change. Despite increased engineer centrism, commitment still
cannot be seen to be formed solely with a bottom-up approach; it is more likely
to come about in a well-balanced top-down and bottom-up game plan.

On the basis of above discussion, the following three propositions may be
extracted:

CSF-5: Commitment of top managers.

CSF-5 description:

This means that top managers have to be motivated and actively made aware of
the importance of the improvement initiative and the gained results.
Commitment has to be re-ensured intermittently to ensure adequate resources for
SPI in the future.

 86

Characteristics of an SPI method supporting CSF-5:
- Top managers are consulted and made aware of justified improvement

actions,
- Top managers are informed of the status and results of the work.

CSF-6: Commitment of middle managers.

CSF-6 description:

This means that when it comes to resources, middle managers often play a
similar role as top managers, the impact of middle managers often being the
more important the bigger the organisation.

Characteristics of an SPI method supporting CSF-6:
- Middle managers are consulted and made aware of justified improvement

actions,
- Middle managers are informed of the status and results of the work.

CSF-7: Commitment of software engineers.

CSF-7 description:

This means that special attention has to be paid to making software engineers
committed to SPI. Researchers and practitioners argue this is best ensured by
actively involving engineers in determining the required new practices.

Characteristics of an SPI method supporting CSF-7:
- Software engineers are encouraged to take part in improvement planning,
- Software engineers are consulted and made aware of justified improvement

actions,
- Software engineers� feedback to plans is sought and regarded as important

and valuable,
- Software engineers are consulted for the status and results of the

improvement actions.

3.3.3 Cultural Issues

Several studies underlined the importance of being aware of the differences
between the various national, organisational and site level cultures affected by

 87

SPI (McGuire 1996, Debou et al. 1999, Rodenbach et al. 2000, Kauppinen &
Kujala 2001, Conradi & Fuggetta 2002). This means that neither SPI solutions
nor programs can be transferred successfully as such. The specific cultural
features need to be understood to be able to speak even the same language
(Debou et al. 1999). Based on a survey on 64 software professionals McGuire
(1996) binds cultural aspects with change management strategies and training,
and reasons that if put together these may have a substantial effect on the rate of
the improvement progress. Kauppinen & Kujala (2001) propose that SPI calls
for a cultural change, and they go on to argue that, basically, cultural change
requires that the personnel understand the reason for the change. To alleviate the
difficulty of cultural transformation, Conradi & Fuggetta (2002) propose that
SPI should even utilise expertise from the social studies. As it is ineluctable that
culture differs from organisation to organisation, and from country to another, it
can be understood that ready wrapped solutions are bound to be insufficient and
thus also likely to cause opposition.

The culture-related observations and statements led to the following SPI
proposition:

CSF-8: Improved solutions are developed on a case-by-case basis.

CSF-8 description:

This means that even if some well-known best practices are used as a basis to
improve processes they always have to be adapted to the specific use.
Consequently, the needs, characteristics and culture of the organisation and
projects in focus have to be detected and understood.

Characteristics of an SPI method supporting CSF-8:
- Organisational and project characteristics and culture form the basis for

developing improved solutions,
- No ready made resolutions are introduced or transferred as solutions.

3.3.4 Plan

Planning-related success factors are divided into three categories according to
their content: current state analysis, goal definition, and improvement planning.

 88

3.3.4.1 Current State Analysis

Humphrey established the basic success factor for any improvement initiative in
the following words, which have been eagerly cited by others ever since: �To
use a map, you must know where you are� (Humphrey 1989, p. 19). Even
though there is unanimity on this factor, i.e., that the current status of processes
must be fathomed out in order to be able to set any meaningful improvement
goals, opinions vary on how to determine the position on the map. Although
assessment-based approaches such as SW-CMM or ISO 15504 rely solely on
assessment results, they accept various approaches to conducting the assessment
(McGuinness 1999, Delmiglio et al. 1999). Still, assessment is not considered as
the only mean to start the improvement; audit, for example, has been proposed
as an effective approach, too (Quinn 1996). Furthermore, even the simple and
focused scorecard method has been recommended instead of extensive
assessments (Conradi & Fuggetta 2002). Lanzerstorfer & Scherzer (1999, p.
378), for their part, rely on expertise, arguing that �Common sense is the most
valuable tool of a process improvement expert. If you are an expert, you don�t
need a quantitative assessment to identify major improvement potentials�.
Conradi & Fuggetta (2002) have moved down a long way from the top-down
SPI approach to grass-roots level: They put out the flag for using
multidisciplinary improvement teams to perform empirical studies on how
people actually work and also advocate starting improvement bottom-up with
concrete initiatives.

Based on the success factor discussion above, the following SPI proposition can
be presented:

CSF-9: Current status of processes is clarified.

CSF-9 description:

This means that an understanding of current software development process and
its weaknesses and strengths is established.

Characteristics of an SPI method supporting CSF-9:
- Current software development process is evaluated,
- The weaknesses and strengths of current practices are known.

 89

3.3.4.2 Goal Definition

Goal definition presents a critical improvement phase since prudently selected
improvement goals build the backbone for all further actions within the SPI
initiative. Improvement goals have to be realistic and visible (Conradi &
Fuggetta 2002), measurable (Kauppinen & Kujala 2001, Lepasaar et al. 2001)
and well understood (Goldenson & Herbsleb 1995, El Emam et al. 1999).
Kauppinen and Kujala further claim that the success of an SPI program relies on
the capability to select realistic improvement actions. The importance of a link
from business goals to improvement goals is stressed as well (Kunzmann-
Combelles 1996, Debou et al. 1999, Conradi & Fuggetta 2002). Successful
improvement initiative is not an isolated action but linked to the overall goals of
the organisation. Jakobsen (1998) proposes starting from the problems, not from
the solutions. This is recommended by Conradi & Fuggetta (2002) as well, who
suggest starting from the most pressing needs of the subject company or project.
The authors also advocate for starting small, one SPI effort at a time, as is also
suggested by McGuinness (1996).

From this discussion it may be concluded that an SPI method should fulfil the
following two propositions:

CSF-10: Link between business goals and improvement goals is established.

CSF-10 description:

This means that the selected improvement goals should support the achievement
of business goals and the link between the goals is defined and visible.

Characteristics of an SPI method supporting CSF-10:
- Business goals are clarified and taken into consideration when improvement

goals are set,
- How the achievement of an improvement goal supports the satisfaction of a

business goal is addressed.

CSF-11: Improvement goals are measurable.

CSF-11 description:

This proposition refers to the issue that without setting measurable improvement
goals it is difficult to justify whether SPI has been successful or not. Measurable

 90

goals set a basis for selecting metrics for evaluating the effects of actions.
Initially, there was a competing proposition for measurable improvement goal
setting: �the improvement goal needs to be realistic and well understood�. Even
though this statement is valid and important from a SPI success point of view, it
was not selected due to the difficulties concerning the capability of SPI methods
to support this proposition, and also due to its problematic evaluation. The
prowess of setting realistic goals refers more to the capability of SPI personnel.
The statement of improvement goals being well understood is rather a vague
one, though this type of knowledge creation is an inbuilt issue in many CSF
propositions, such as CSF2 �Active participation of all affected parties� or CSF4
�Training is planned and made part of the initiative�.

Characteristics of an SPI method supporting CSF-11:
- Improvement goals are quantitative in nature, and indicative of wanted

results.

3.3.4.3 Improvement Planning

Even though the features of improvement planning as a success factor fail to
attract any major attention, the important role of detailed improvement planning
including task, schedule and resource planning is addressed by a number of
researchers (Delmiglio et al. 1999, Bazzana & Fagnoni 1999, Simon 1999,
McGuinness 1996). This plan is called an improvement plan or a quality plan.
Based on five case studies, McGuinness (1999, p. 335) puts the lessons learnt
briefly in the following: �Improvement doesn�t happen by accident. It has to be
planned.� He further points out that improvement has to be planned and tracked
as a project and the results should be at hand before extending improvement
areas.

To form the basis for a successful execution of an improvement initiative,

CSF-12: An improvement plan is generated.

CSF-12 description:

This proposition means that the tasks, schedule, resources, reporting, and follow-
up have to be planned and documented.

 91

Characteristic of an SPI method supporting CSF-12:
- A practical improvement implementation plan is generated.

3.3.5 Do

The previously developed plans are implemented in this phase to achieve the
desired improvement goals. It is more certain to execute the take up phase
successfully if it is started with case studies or pilot projects before launching
major changes (Delmiglio et al. 1999; Bazzana & Fagnoni 1999). Furthermore,
the deployment is recommended only if the project manager is in charge of the
changes and new guidelines are mutually agreed upon by project managers and
software engineers. Besides, in a situation where the project manager has been
authorised to execute the software project as she or he sees most reasonable this
is the only way to succeed. Operational guidelines are named as one practical
success factor by Simon (1999), referring to detailed process instructions as to
what to do in the different phases of a software development project. Debou and
others (1999) point out that external consultants may accelerate the improvement
speed.

From this slightly discursive discussion the following proposition may be
extracted:

CSF-13: Developed solutions are tested before large-scale use.

CSF-13 description:

This means that improved solutions are tested and validated in a pilot project or
projects before proposing them for a large-scale use in an organisation.

Characteristics of an SPI method supporting CSF-13:
- Pilot project is selected, or other case studies are planned,
- Improved practices are developed taking into account pilot project needs.

3.3.6 Check

Monitoring and following up of improvement actions using metrics is advocated
by several authors as critical actions in the process improvement endeavour
(Kunzmann-Combelles 1996, Debou et al. 1999, McGuinness 1999, Conradi &
Fuggetta 2002, Rodenbach et al. 2000). McGuinness (1999) states explicitly that

 92

metrics provide help in the verification of improvements and in addressing
possible improvement areas. Similarly, Debou et al. (1999) argue strongly for
quantitative results; if, for example, a pilot project shows no improvement, no
deployment should take place. Rodenbach and others (2000) consider
measurement vitally important to SPI and recommend easing the overhead of a
project by assigning the measurement gathering and analysis tasks to a support
group. Conradi & Fuggetta (2002) approach checking from the �return of invest�
point of view and raise the need to establish novel approaches to calculating
company-specific cost-benefits. Delmiglio et al. (1999) suggest paying special
attention when showing any results to software engineers.

The following SPI proposition can be extracted from the above statements:

CSF-14: Improvement actions are regularly monitored using metrics.

CSF-14 description:

This means that a measurement plan for monitoring improvement actions is
developed and used as a tool during the improvement initiative and also
afterwards when analysing the results. The essential prerequisite for this is that
the improvement goals are measurable.

Characteristics of an SPI method supporting CSF-14:
- A measurement plan is generated,
- Measurement data is analysed during the course of the improvement

initiative.

3.3.7 Act

How to successfully keep SPI in continuous action? Event though this difficult
question is faced by all SPI initiatives, it was the one receiving the least attention
in related literature. Humphrey (1989) is concerned about continuous
improvement and points out that changes will not be retained without serious
involvement and periodic reinforcement. Lepasaar et al. (2001), again, simply
makes an argument for establishing continuity in SPI work. McGuire (1996), for
his part, regards the existence of feedback loop and facilitation as further success
factors. McGuinness (1999), finally, emphasises the role of metrics in clarifying

 93

further improvement potentials, thus considering metrics as a means of
sustaining improvement.

Consequently, the following general SPI proposition can be formulated:

CSF-15: Sustainability of an improvement initiative.

CSF-15 description:

This means that a plan to sustain improvement is generated and agreed on. The
actions for sustaining the improvement initiative may be planned in connection
with improvement planning and willingly linked with the higher level
improvement or organisational plans, e.g., with the business plan of the subject
organisation.

Characteristics of an SPI method supporting CSF-15:
- A master plan is developed that relates individual improvement initiatives to

larger entities.

3.4 The CSF Criteria

The success factor propositions extracted from the literature survey are
recapitulated in Table 8. The CSF criteria involve 15 propositions, which are
grouped to seven classes of similar statement types. Three of the classes are
topics that enable or support successful improvement work (improvement
management, commitment, and cultural aspect), while four classes are formed
according to the generally accepted problem solving process model (plan-do-
check-act).

These qualitative CSF criteria are used for evaluating whether an SPI method
satisfies these propositions. The assumption is that the more propositions are
supported the better the possibilities for success. However, it is also
acknowledged that process improvement requires expert knowledge, which can
never be substituted by any method. Still, an SPI method can guide improvement
actions in a way that helps the project succeed. Appendix A presents the
propositions in a form of questions, for which answers are sought by the SPI
method evaluation. For the sake of simplicity, the CSF criteria use the �yes - no�
measurement scale.

 94

Table 8. The factors for a successful SPI Initiative.

Main Classes Success factor propositions

− Sub Classes

1. Improvement Management

− General Guidance 1. Capability to include or support different SPI approaches.

− Staffing the SPI
Initiative

2. Active participation of all affected parties.

 3. Co-operation with software engineers.

− Training 4. Training is planned and made part of the initiative.

2. Commitment 5. Commitment of top managers.

 6. Commitment of middle managers.

 7. Commitment of software engineers.

3. Cultural Issues 8. Improved solutions are developed on a case-by-case
basis.

4. Plan

− Current State
Analysis

9. Current status of processes is clarified.

− Goal Definition 10. Link between business goals and improvement goals is
established.

 11. Improvement goals are measurable.

− Improvement
Planning

12. An improvement plan is generated.

5. Do 13. Developed solutions are tested before large-scale use.

6. Check 14. Improvement actions and results are followed regularly
using metrics.

7. Act 15. Sustainability of improvement initiative.

3.5 Validation of CSF Criteria

The evaluation of the validity of the CSF criteria is based on the measures set by
the grounded research theory. Glaser (Bryant 2002) names four criteria which
should be met by the grounded theory, i.e. by the CSF criteria, by stating: �They
should have fit and relevance, they must work and be modifiable� (Bryant 2002,
p. 256). The criterion fit is met thanks to the CSFs being developed based on the
success factor data. Expert opinion was used for evaluating the developed CSF

 95

criteria; the CSFs were collegially assessed to be a valid embodiment of factors
for successful SPI. When a theory works, it explains what has happened,
interprets what is happening, and predicts what will happen. The CSF criteria
condense unique success factor statements to 15 general principles which SPI
initiatives have shown in the past when improvement success has been achieved.
The CSF criteria are based on the assumption that the better the SPI initiative is
able to cover the CSFs the better the possibilities are for improvement success.
Therefore, the CSF criteria adequately fulfil the criterion of working theory. A
theory is relevant if it fits and if it works. Consequently, it can be stated that the
CSF criteria are relevant. The requirement of modifiability is also met: as new
data is collected and analysed, the emerging theory, thus the CSF criteria, can be
modified accordingly when needed.

In addition to the evaluation of validity based on the grounded theory, CSF
criteria validation is carried out as proposed by (Straub 1989). Measurement
instrument validation consists of three components: content validity, construct
validity and reliability. Content validity means that the instrument contains
representative questions of all possible questions that could be stated. The
development of CSF criteria followed the general recommendations given by
Straub (1989). After an extensive literature review, the 7 CSF classed were
defined and the criteria were reviewed and commented by SPI experts. Using
this body of SPI knowledge it can be argued that the measurement instrument
has content validity. Construct validity is an operational concept that clarifies
whether the developed instrument measures what it should measure. This is a
relevant assumption as the CSF criteria are developed using existing SPI success
factor data. Reliability, again, refers to the stability of the results retrieved using
the instrument. The use of CSF criteria is based on a qualitative analysis of the
material available on SPI methods. To enhance the reliability of the CSF criteria,
method characteristics supporting each of the CSF criteria are developed.

The findings of other researchers support the developed CSF criteria. Dybå
(2000) found 6 main SPI success factors using a literature review and a
questionnaire survey. Of these factors, 5 overlap with the defined CSF criteria
(business orientation, leadership involvement, employee participation, concern
for measurement, and exploitation of existing knowledge) and 1 is partially
covered by the CSF criteria (exploration of new knowledge). Another very
recent study of critical SPI success factors by Niazi et al. (2004) highlighted

 96

issues concerning improvement management and commitment. Based on a
literature review and an empirical study, the authors list eight critical success
factors most often raised: senior management commitment, staff involvement,
staff time and resources, experienced staff, SPI awareness, formal methodology,
training and mentoring, creating process action, and reviews. Of this list of
factors, all the defined CSF criteria were covered with the exception of review,
which failed to be raised by any of the references used here.

3.6 Discussion

In this chapter the CSF criteria are established. The CSF criteria are based on the
analysis of the success factors of industrial SPI cases, results of surveys
revealing improvement facilitators and expert opinions. Based on the evaluation,
seven main success factor classes and 15 related propositions are defined. The
resulting CSF criteria are utilised later in this research in assessing how well an
SPI method supports the facilitator factors that are found to be important in
industry. The possible interdependences of propositions are not studied due to
the fact that the available review material did not provide adequate enough
information for the purpose.

In the CSF criteria, all the success factors are presented as if they should
exclusively relate to a single method, which, however, is not the case. The CSF
criteria, essentially, name factors that generally support the achievement of
improvement success. CSFs may be fulfilled by several means: by compiling
various methods supplementing each other, by addressing organisation level
activities (for example CSF 2, 3, 4, 5, 6, and 7), while some may even prove to
be irrelevant in certain specific improvement contexts. For example, if the
organisation is small, no middle managers may exist, which will make CSF 6
irrelevant in that specific improvement context.

The CSF criteria are used in the following chapters as a means of evaluating
related research and also the results of this research.

 97

4. Evaluation of Related Research
In this chapter the developed CSF criteria set is used for evaluating related
research. The purpose is to assess how well SPI methods are able to support the
critical success factors arisen form the notifications of the industry. As software
process and product quality standards are addressed in this evaluation only
briefly, they do not fall into the category of SPI methods, but yet are relevant
elements of SPI in the context of this thesis. The principles of related research
are studied by the author as they are generally presented in the literature, and
compared to the CSF propositions. The purpose of this qualitative and subjective
study is to gain an understanding of how well these methods support the areas
found essential for improvement success.

4.1 Evaluation of Related Research

4.1.1 SPI Management Methods

SPI management methods guide the SPI initiative by pointing out what to do and
in which order.

When evaluating the PDCA Control Cycle as presented by Ishikawa (1985), it
can be argued that the PDCA cycle is the best choice for addressing critical
success factors. It is also the only method in its class to extend commitment
verification to the engineer level. However, the co-operation with engineers in
solution development is not clearly stressed. The deficiencies of the PDCA
method have to do with managing the improvement initiative according to the
detailed improvement plan and testing solutions in pilot projects before
institutionalising them.

The references used for analysing QIP fail to emphasise commitment for
improvement at any level. Training is ignored as well, as is also the management
of SPI initiatives according to the improvement plan. Quite surprisingly, there is
neither any explicit reference to practical support for software development
projects to be found nor are the improvement goals linked with the business
goals. Thus it may be concluded that QIP makes a distinction between
organisational and project level improvement activities. Even though QIP has

 98

been broadly referred to as the major underlying method for SPI (Ruhe 2001), a
detailed description of its functionality is lacking. Also, it remains unclear what
the possible scenarios are for spinning the project and the organisational cycles
in practice. The strengths of QIP lie in its tailorability, in the plan and check
phases, and in the focus on continuity.

The IDEAL and ISO 15504 Part 7 improvement methods both did quite well in
the CSF comparison, their results differing only slightly. IDEAL advocates SW-
CMM assessment, while ISO 15504 Part 7 has been developed to be used
together with ISO 15504 assessment; accordingly, the two methods do not
support different SPI approaches. In both methods, commitment is regarded as
important but is not clearly sought at engineer level, nor are new solutions
developed with engineers but rather by separate, dedicated groups, e.g., by the
Software Process Engineering Group (SPEG) in the IDEAL method. Both build
improvement actions strictly on process assessment results, though ISO 15504
Part 7 considers cultural aspects too. The continuous improvement model of ISO
15504 allows flexibility in the improvement targets, but the staged improvement
model of SW-CMM requires all processes to be on a certain level, thus strictly
channelling the needed improvement. Certain SW-CMM maturity levels may be
required by some customers, which is why these maturity levels may constitute a
real need for organisations. However, this is not quite in line with the spirit of
this success factor. Both IDEAL and ISO 15504 generate detailed improvement
plans. Contrary to ISO 15504, IDEAL considers piloting important, while both
methods lay emphasis on the support for software development projects during
the improvement initiative. IDEAL recommends using metrics for managing the
improvement initiative, whereas ISO 15504 Part 7 does not pay any attention to
this. Both also acknowledge the importance of sustaining the improvement
actions with feedback.

4.1.2 Software Process Quality

In the second category, software process assessment methods and software
process standards are evaluated. The assessment methods provide guidance on
how to determine process capability using a reference process model assessment
method is build on where as the software process standards put forward an
example of how software development should be organised.

 99

Software process assessment methods such as SW-CMM, Bootstrap, or ISO
15504 Part 2 assess software development processes, comparing them with the
selected reference process model. Even though appraisals do not perform too
well in CSF evaluation, their strength is to be found in the capability to provide
quick overview of the software development processes, thus providing starting
point for improvement planning and a measurable baseline against which the
effects of improvement actions can later be compared. For the Software process
assessment methods questions like �How to organise the improvement� or �how
to proceed after an assessment� have not been major issues to address. In the
case of SW-CMM and ISO 15504, this lack is remedied by the SPI management
models discussed above (Ideal and ISO 15504 Part 7). In their use, CSF
Comparison SW-CMM, Bootstrap and ISO 15504 Part 2 are very similar; they
focus on clarifying the current status of software development. Bootstrap as the
only method fathoms out business goals first, on the basis of which the
assessment scope is then planned. Moreover, there are some deviations between
the models regarding how assessment itself is performed and how results are
calculated and presented, but these differences are not visible in the context of
the CSF Evaluation.

Software process standards, such as ISO 9000-3, provide a model of how
software engineering should be organised. Still, from the SPI point of view, the
ISO 9000-3 standard stands for a static software engineering process model;
there is little if any guidance on how proposed processes should be established.
Since the CSF criteria address the dynamic aspects of SPI, none of the success
factors is fulfilled by ISO 9000-3.

SWEBOK trial version 1.00 is a collection of scientific type of papers arranged
around software engineering topic areas. They define the terminology, concepts
and approaches for knowledge areas and a great number of references to related
research. SWEBOK is not yet a standard, but it shall come an IEEE standard
after the project is finalised. The CSF criteria do not recognise any CSFs to be
clearly addressed by SWEBOK either.

4.1.3 Measurement Methods

In the third class, four measurement methods are evaluated. Measurement
methods are concerned with describing measurement practices and giving

 100

guidance on how to establish, collect and utilise metrics to support software
development and process improvement.

GQM is a flexible measurement method that ties people from different
organisational levels to measurement activities. It operates especially well on
various organisational levels, which is why thus metrics are defined and
interpreted by managers and engineers working together. While the method does
not explicitly seek commitment, at the software engineer level commitment can
be implicitly established by developing metrics together. Another shortcoming
that can be substituted for can be found in the fact that, even though the GQM
method does not incorporate training as part of the method, this can be overcome
by applying the �learning by doing� principle during GQM feedback sessions, in
which measurement results are evaluated and interpreted by project personnel.
Nonetheless, the importance of training and commitment is not explicitly
addressed. GQM develops metrics on a case-by-case basis, which allows cultural
differences to be properly considered. GQM can be used for clarifying and
understanding the current status of any process. GQM operates at the project
level and the interface to higher organisational level activities is weak.
Accordingly, no link between measurement goals and business goals are
established. In addition to measurement goal definitions, a detailed measurement
plan is developed to support measurement activities. For this reason, the detailed
improvement plan success factor can be regarded as fulfilled. Support is
provided to engineers in the form of GQM feedback sessions. GQM does not
explicitly propose any practices or metrics for process follow-up, nor does it try
to ensure sustainability of improvement or measurement actions.

Statistical Process Control (SPC) focuses on controlling the process and keeping
it within defined upper and lower boundaries. It utilises the data seeking
similarities, differences and explanations of projects using statistical means and
aiming for stabilising the process and making it capable. SPC addresses only few
of the success factors found critical for SPI, and it uses existing data for
controlling the process. Improvement actions are developed on the basis of the
process-related analysis. Thus it may be assumed that the solutions are
developed on a case-by-case basis. SPC addresses business goals, and the issues
for developing measurements are derived from those goals. Although the
emphasis of the method is clearly on statistical means, the method also
incorporates some elements of improvement.

 101

Practical Software Measurement (PSM) is a method guiding project level
measurements using such project issues as risks, problems and concerns as
initiators. However, operating strongly at the project level, PSM does not aim to
create any links from measurement to higher-level goals. Commitment for
measurement activities is not clearly sought, either, though co-operation in
measurement activities at project level may implicitly commit project personnel
to measurement. Measurement activities are planned in detail, training needs are
well addressed, and the project is also supported during metric collection and
analysis. In spite of a detailed measurement planning, neither current status of
measurement nor software development processes is considered to support this
planning. PSM also incorporates a separate activity for improving the
measurement activity itself by evaluating results and performance measures.
Among the measurement methods PSM provides the best coverage of CSFs.

Whereas GQM and PSM are project-level measurement methods, Balanced
Scorecard (BSC) embodies the top-down organisational view on measurements.
BSC is primarily a management method designed for incorporating all
organisation stakeholders under the same management schema. Via its steps the
method seeks commitment at all levels and makes an attempt to link business
goals to measurement. The general goal is to join everyone under one
measurement-guided management system. One of the main features and the
focus of BSC are to be found in the operationalisation and balancing of business
goals in four areas and developing specific metrics for them. BSC not being a
software-specific method, however, little attention is paid by to the development
of lower level metrics, e.g., software development metrics. BSC addresses quite
a few CSFs, including a unique philosophy concerning how to use
measurements for guiding the overall actions of an organisation. In conclusion,
BSC still remains a high-level measurement method with little practical support
for software development or SPI.

4.1.4 Product Quality

The goal of SPI is often to raise the quality of software. Product quality
standards characterise software product quality by naming and describing
several aspects relevant to quality. For this reason, product quality standards are
considered here as well.

 102

In the product quality class, there are two standards to evaluate: the ISO standard
9126 for software quality characteristics and metrics, and the IEEE standard
1061 for software quality and metrics methodology. From the SPI point of view,
neither of these contains any reference quality model to pursue or any
improvement activities. Furthermore, due to their static nature they do not fulfil
any CSFs.

4.1.5 Knowledge Management

Experience Factory (EF) is concerned with the reuse of the software engineering
experiences, knowledge and results of SPI. The lack of detailed descriptions of
the EF method undermines the evaluation, although there are quite a few
scientific publications available on EF. The EF method can be seen as an
enhancement to QIP, as it is built on QIP processes. Similarly to QIP,
commitment to improvement activities or training have not gained attention, nor
are the improvement activities of EF guided by business needs. Furthermore, it
is not clear how the improvement goals for EF are set, planned, tracked or
evaluated. In principle, new solutions are developed based on what software
engineers provide for EF in the form of project models and data. Due to the
bottom-up approach, EF should ensure that project, organisation or country
specific characteristics are considered. Practical support for software
development projects is provided by the support organisation of EF. In EF the
improvement is seen as continuous learning activity, which is sustained through
the EF steps.

4.2 Conclusions

The above analysis brings out that none of the methods covers all the critical
success factors defined for SPI. Table 9 presents the results of this evaluation. A
checked box �!� means that the specific success factor is clearly addressed and
highlighted by the method, while the blank denotes the feature is not addressed
at all, or addressed only weakly. Still, prudence is called for when interpreting
the results, and it should be borne in mind that the methods approach
improvement from different angles, and that the existing references vary from
detailed handbooks to scientific articles.

 103

For their capacity of considering critical success factors, PDCA turned out to be
the best method covering a total of 13 out of 15 defined CSFs. The purpose of
CSF criteria is to detect issues and activities considered vital for the success of a
process improvement effort. Judging by the evaluation results, it can be
concluded that process quality appraisals and both process and product quality
standards, in particular, fail to fulfil the criteria set for SPI. As regards standards,
this is a natural outcome, as standards are static by nature, whereas CSF criteria
evaluate mainly the dynamic aspects of SPI. Yet, it should be noted that process
quality appraisals may be referred to as improvement methods. However, in the
CSF evaluation process, quality appraisals only weakly address issues found
critical for successful software process improvement. Furthermore, when
examining the results in Table 9, the question arises if it is possible to cover all
the CSFs influencing the success of improvement operations using a wise
combination of methods? The questions how to combine these methods
successfully and if other elements are needed will be discussed in forthcoming
chapters.

 104

Table 9. Evaluation of related research.

Process Quality SPI
Management Appraisals Standards

Measurement Product
quality

KM

Critical Success Factor Questions
(Does a method address following)

PD
C

A

Q
IP

Id
ea

l

IS
O

 1
55

04
 -P

7

SW
-C

M
M

B
oo

ts
tra

p

IS
O

 1
55

04
 -P

2

IS
O

 9
00

0-
3

SW
EB

O
O

K

G
Q

M

SP
C

PS
M

B
SC

IS
O

91
26

IE
EE

 S
td

 1
06

1

EF

Improvement Management
1. Does the method support different

SPI approaches? !! ! !! !
2. Does the method support

participation of all affected parties?
! ! !!

3. Does the method support co-
operation with software engineers?

 ! ! ! !
4. Does the method support planning

and carrying out training as a part of
the initiative?

! !! ! !

Commitment
5. Does the method support

commitment of top managers? ! !!!!! !

6. Does the method support
commitment of middle managers? !

 !!!!! !

7. Does the method support
commitment of engineers? !

Cultural Aspect
8. Does the method support that

improved solutions are developed on
a case-by-case basis?

!! ! !!!! !

Plan
9. Does the method support that the

current status of processes is
clarified?

!!!!!!!

10. Does the method support that the link
between business and improvement
goals is established?

! !! ! ! !

11. Does the method support that
improvement goals are measurable? !!

 !!! !!!!

12. Does the method support that an
improvement plan is generated?

 !! ! !!

Do
13. Does the method support developed

solutions are tested in a pilot project?
 !! ! ! !

Check
14. Does the method support using

metrics in monitoring improvement
actions and results?

!!! !

Act
15. Does the method support

sustainability of an improvement
initiative?

!!!! ! !

 105

5. Towards an Integrated SPI Approach

5.1 Background

The development of the first comprehensive SPI approach originates as a part of
this research as early as the 1990's. At that same time, the development and use
of software assessment methods such as SW-CMM (Paulk et al. 1994, Paulk et
al. 1993) and Bootstrap (Kuvaja et al. 1994) was in the focus of interest of
numerous researchers. Simultaneously, the GQM measurement method (Basili et
al. 1994a) was maturing and taken in industrial use with the first promising
results (Barnard and Price 1994, Oivo 1994). It was also acknowledged that
GQM alone could not adequately define a measurement program, but rather
needed to be linked with a more general framework and with organisational
goals (Card 1993). The PDCA improvement cycle (Deming 1986) was refined
into the form of the QIP paradigm (Basili et al. 1994b), proposing general phases
for an improvement program. The research efforts were focused on developing
disconnected approaches, yet all of them aiming at improving the quality of
software. The stated research question was how improvement should be
organised and whether existing approaches could be united, and if, how should
that be realised in practice.

Deming�s PDCA improvement cycle stresses the continuation of actions and the
use of data, both factors considered as important. Data is needed for taking
rational decisions, e.g., in selecting the improvement target, following the
progress of actions or evaluating the achieved results. Deming�s cycle was
selected also due to its straightforward but also functional and well-defined
phases. Moreover, the PDCA cycle provides best coverage for the CSFs. This
bedrock formed by the PDCA cycle, emphasising teamwork and collaboration
software process analysis, was complemented by modelling, measurement, and
improvement techniques so as to be able to satisfy the SPI success factors.

Papers I and II describe and evaluate the results of this work. The resulting
approach is called Pr2imer, which stands for �Practical Process Improvement for
Embedded Real-Time Software�. In the following sections, the main features
and functionality of Pr2imer are recapitulated and assessed by using CSF criteria.
CSF-n refers to an answer to the CSF question presented in Appendix A.

 106

5.2 The Improvement Process

5.2.1 Analysis of Software Process Current Status

The improvement work starts with analysing the current situation of software
development processes, methods and tools. The purpose of software process
analysis is to evaluate and describe current software development practices
(CSF-9), to identify the most serious problems, and also to define objectives for
improvement (CSF-11).

The Pr2imer method recognises two forms for analysing the software process:
quantitative and qualitative. Examples of the quantitative approach are provided
by the use of software process maturity models such as Bootstrap (Kuvaja et al.
1994), SW-CMM (Paulk et al. 1994, Paulk et al. 1993), and the use of
measurement data. Qualitative analysis methods, again, generally employ a
question scheme for modelling the actual process. The qualitative analysis
approach employed in Pr2imer has been developed in the AMES project
(Application Management Environments and Support) within the Esprit-3
project. The Pr2imer method also allows using international software quality
standards such as ISO 9000-3, and even follow-up of software development can
be applied.

Pr2imer emphasises the necessity of selecting the analysis technique or
techniques according to the specific needs of the subject organisation or process.
In process analysis, it is important to model the actual process in order to be able
to develop improvement solutions that will best fit the target organisation or
project (CSF-8). Therefore, Pr2imer recognises the descriptive process modelling
approach as a vital element for SPI. The best combination of methods for current
state analysis is to use both quantitative and qualitative analysis techniques.
Quantitative methods will help detect possible areas for improvement and
provide a baseline for the SPI actions, while qualitative approaches provide
guidance for improvement planning.

The results of this phase include understanding the current status of software
processes, which is captured in the form of process models, maturity
information, or quality models developed using measurement data. The

 107

identified problems are described and prioritised together with project personnel
and managers (CSF-2, CSF-3) and used as basis for improvement goal selection.

The improvement techniques applied include reviewing and analysing quality
manuals, measurement databases, project plans and other relevant project results
before conducting interviews. A successful approach to problem prioritisation
has been found in brain storming and in other group work techniques carried out
together with persons representing various areas of software development (CSF-
2, CSF-3).

5.2.2 Definition of Target State

The improved process which is expected to support achieving selected
improvement goals is described in the form of prescriptive process model. The
aim is to produce practical descriptions to be taken in use by a pilot project
(CSF-13). Thus, a descriptive process model can be used for proposing
templates, checklists or other practical guidelines for a pilot project. The format
of the prescriptive process model should fit the subject organisation; for
instance, if an organisation or projects are accustomed to using a specific
modelling language or specific tools, those should be preferred as an option
(CSF-8), while also considering any other methods and tools required by the
improvement endeavour.

The improvement goals selected during the current state analysis should allow
measurable goals to be defined for the SPI initiative. In Pr2imer, the success and
follow-up of process improvement have been implemented using the GQM
measurement method (Basili et al. 1994a). The improvement goals defined
earlier are translated into measurement goals in a GQM plan, aiming at
measuring the achieved progress in adapting new practices and in improvement
results.

The main results of the second Pr2imer phase include definitions of improved
practices presented in shape of process models, templates, guidelines, or other
forms of instructions. Furthermore, the measurements are planned for evaluating
the achieved results, but also for supporting the improvement management in the
course of the initiative (CSF-14). The applied techniques comprise, once again,
teamwork including interviews, brainstorming, and other creative techniques.

 108

Process standards and reference models may also be consulted when developing
better practices. Here, the Pr2imer considers it important that people representing
different roles in the organisation take part in planning, i.e., not only possible
quality professionals but also other knowledgeable software engineering experts
(CSF-2). It is of great advantage if the pilot project is already known in this
phase, which will allow improvement to be flexibly tailored to the needs of the
particular project (CSF-8). Pr2imer uses the measurement goal definition
template provided by the GQM method for structuring the measurement goals,
while also employing an abstraction sheet (Gresse et al. 1995) to find the right
metrics.

5.2.3 Planning of Development Measures

The third phase of Pr2imer is devoted to detailed planning, which is to be
completed before piloting can take place. As it is generally acknowledged that
SPI involves high risks and complicated effort, the planning and tracking of the
improvement process needs to be carried out with extreme care so as to lower
the risk as much as possible. To facilitate the planning process of improvement
implementation, the pilot project will have to be known at the time of planning,
which will allow the improvement actions to be well timed and adjusted to the
schedule and needs of the development project itself.

The planning phase produces precise plans describing how to proceed in practice
from the current situation towards the desired process state. The improvement
plan defines the responsibilities, tasks, schedule, and checking points to follow
along the improvement progress, while also including planned training sessions
(CSF-12, CSF-4). The planning phase involves detailed planning for
measurement activities as well (CSF-14). A measurement plan is constructed to
support the implementation of improvements in a pilot project and also to
evaluate the success. The GQM method is used for establishing a measurement
plan describing how the metrics defined are to be implemented. The
measurement plan further proposes expedient procedures for metrics collection
by pointing out by whom, when, and how measurements shall be implemented.

The third Pr2imer phase produces plans for improvement implementation and
measurements customised to the use of the planned pilot project. The

 109

preparation of these plans is carried out by SPI experts with the support of pilot
project representatives (CSF-8, CSF-3).

5.2.4 Piloting and Commissioning

The fourth Pr2imer phase consists of two parts: piloting and commissioning. In
the piloting phase, the revised software development process and possible
methods and tools are tested in a pilot project or projects. This is done to lower
the risks involved in adopting new practices, and also to adjust and fine-tune the
practices to best fit for the organisation in question. Any good piloting results
can be used as a �sales argument� when launching the new practices on a large
scale.

The progress of piloting is tracked on a regular basis and the improvements are
measured according to the measurement plan. The improvement plan,
prescriptive process models, templates etc. are changed if necessary on the basis
of measurement results or any other feedback obtained from the pilot project.
The most important purpose of piloting is to field test the practices before
making the decision of adopting them for large-scale use. After piloting, the
success of the initiative is evaluated using the collected measurement data. If
piloting indicates improvement and the general feedback from the project is
positive as well, the remodelled practices can be institutionalised within the
organisation.

Pr2imer recommends writing an SPI evaluation report for later use. This post
mortem evaluation should consider the SPI initiative as a whole and describe the
actions taken and results achieved while also pointing out any further
improvement areas detected. The aim is to gather general lessons learnt to be
subsequently used by forthcoming SPI initiatives.

Piloting takes up the most time of all phases, depending largely on the pilot
project schedule. This phase produces measurement data, analysis results and an
overall SPI evaluation report. In this phase, the project has the most active role
of all actors involved, SPI experts attending the measurement analysis sessions
and providing support when necessary (CSF-4).

 110

5.2.5 Summary of the Process

Figure 18 summarises the Pr2imer phases. While the phases and activities may
run partially parallel, Pr2imer proposes the main path to proceed. The activities
in the different phases need to be revisited as needed, as is made explicit in the
piloting phase. It is thus acknowledged that plans are rarely perfect at first.
Pr2imer identifies and links the important elements of SPI by presenting a basic
improvement strategy embodying process analysis, goal setting, process
modelling and measurement. The emphasis on co-operation and teamwork is
also integrated in the concept.

Figure 18. Pr2imer improvement method.

Figure 19 illustrates the main results and phases of Pr2imer. The triggering
impulse for improvement may come from inside a company, e.g., as a result of
the piloting and commissioning phase, or it may come from outside, e.g., in form
of a customer with ISO standardisation requirements. Sometimes software
development has to comply with some standard; new software development
strategies may also require changes in the software development process. The
change or improvement of software development processes may be triggered by
a whole range of different catalysts.

CURRENT
STATE
ANALYSIS

DEFINITION
OF TARGET
STATE

PLANNING OF
DEVELOPMENT
MEASURES

PILOT
OPERATION

COMMISSION

PRODUCT
DEVELOPMENT

 111

Figure 19. The functionality and results of Pr2imer.

5.3 Evaluation

By 1998, Pr2imer had been applied to over 20 industrial SPI cases, which
provided a sound basis for canvassing customer feedback. The survey
approached the issue from various angles provided by past industrial SPI
initiatives, using a total of 72 questions to clarify various aspects, such as
customer expectations, benefits achieved, and the applicability of Pr2imer. In
total, 10 answers were retrieved. The construction and process of the survey,
including detailed results, are reported in (Tanner 2000).

One of the questions focused on the effects of SPI actions. Half of the
respondents pointed out several implemented process changes; others stated that
changes were under way. According to one respondent, the improvement had
happened only on a mental level. It also turned out that although the current state
analysis had opened the eyes of managers, this had not led to any concrete
improvement actions. The biggest problems faced by SPI in the various
organisations were the lack of SPI resources and changes in project staff and/or
organisation. In a few cases, these resulted in a suspension of the improvement
project.

Improvement context

Improvement
goals

Model of the target process
Measurement goals

Improvement plan
Measurement plan

Definition of
target state

Analysis of
current state

Planning of
development measures

Piloting and
commissioning

Awareness of
improvement
opportunity or
need

Evaluation report

Improvement Trigger,
for Example
- Quality requirements
- Customer requirements
- Market requirements

 112

The question focusing on respondent satisfaction (�Estimate how well the goals
set have been reached?�) indicated that, when using the scale 1 to 5, the average
satisfaction was 3.14. Unfortunately, no quantitative data of SPI effects could be
retrieved via the survey.

 �The analysis of current state� was considered the most mature phase of Pr2imer
by 80% of respondents, while an equal amount of replies named GQM and
measurement planning as requiring the most clarification and fine-tuning within
the method. Based on the survey, it can thus be concluded that the improvement
areas of the Pr2imer method are to be found in the clarity of measurement and in
its capacity to bind improvement activities to organisation level activities.

In Table 10, Pr2imer is evaluated using the developed CSF criteria.

Table 10. Pr2imer method evaluation using CSFs.

CSF evaluation The Pr2imer method
Improvement Management
1. Does the method support

different SPI approaches?
Yes. Pr2imer proposes improvement phases and
activities and suggests methods that can be used during
the course of work. Improvement strategy does not build
on any software reference model but on the needs of the
target organisation.

2. Does the method support
participation of all affected
parties?

Yes. This is emphasised throughout the method.
Improvement goals should be selected and the
improvement planned together with the people who will
be affected by the improvement.

3. Does the method support co-
operation with software
engineers?

Yes. Pr2imer builds on co-operation and teamwork with
software engineers in all phases.

4. Does the method support
planning and carrying out
training as a part of the
initiative?

Yes. The method promotes clarifying training needs and
planning of training. Furthermore, practical support is
given, e.g., in form of GQM feedback sessions.

Commitment

5. Does the method support
commitment of top managers?

No. The commitment of top and middle managers is not
directly addressed on method description level. The
commitment is assumed come about through the
agreement on improvement work.

6. Does the method support
commitment of middle
managers?

No. The commitment of middle managers is not directly
addressed.

 113

7. Does the method support

commitment of engineers?
No. The commitment issue is not explicitly addressed.
However, the involvement in selecting improvement
goals and in the planning of improvement actions in co-
operation with managers increases the engineers� level
of commitment.

Cultural Issues

8. Does the method support
developing improved
solutions on a case-by-case
basis?

Yes. The analysis findings and the needs of the
organisation or project guide the improvement goal
selection and improvement planning.

Plan
9. Does the method support

clarifying the current status of
processes?

Yes. In addition to the suggested use of process
assessment and measurement Pr2imer also supports the
development of descriptive process models.

10. Does the method support
establishing a link between
business and improvement
goals?

No. This is not particularly stressed in Pr2imer.

11. Does the method support
measurable improvement
goals?

Yes. The current state of processes is analysed using
diverse methods. The improvement goals are drawn out
together with software engineers and managers based on
analysis results.

12. Does the method support the
generation of an improvement
plan?

Yes. The improvement plan is one of the two main
results of the third Pr2imer phase.

Do
13. Does the method support

developed solutions are tested
in a pilot project?

Yes. The forth phase of Pr2imer contains a specific
piloting period before the institutionalising phase.

Check
14. Does the method support

using metrics in monitoring
improvement actions and
results

Yes. Metrics to follow the improvement progress are
developed and analysed in regular feedback sessions.
The results of improvement actions are analysed in the
last feedback session.

Act
15. Does the method support the

sustainability of an
improvement initiative?

No. Though addressed by Pr2imer, this feature is not
explicitly stressed.

When studying the overall results of the CSF criteria evaluation, it can be
concluded that although Pr2imer already covers a great number of SPI-specific
CSFs, there is still room for improvement. For instance, commitment could be
addressed more clearly, especially at the top management level, and the link to

 114

business goals could be made more explicit for the planning process. Although
measurement was already included in Pr2imer, in form of GQM and
measurement planning, the need to improve and clarify measurement activities
was raised by the survey respondents. Otherwise, the results of the Pr2imer
customer survey and CSF criteria evaluation lead to an identical interpretation of
improvement needs.

5.4 Summary

The research within the first engineering research cycle resulted in a proposal for
an overall structure of the SPI initiative. The result broke the improvement
initiative up into four phases:

1. Analysis of current state,
2. Definition of target state,
3. Planning of development measures, and
4. Piloting and commissioning.

Pr2imer, the first integrated SPI method, states the desired outcome and proposes
several techniques to be applied, while leaving the final decision of techniques
up to the representatives of the case organisation. Pr2imer further proposes how
SPI should be managed by defining SPI as a project requiring to be planned as
any project by clarifying goals, tasks, responsibilities, follow-up mechanisms
and schedule. Moreover, the need of employing measurements and metrics is
explicitly addressed and emphasised by the method.

The evaluation of Pr2imer by means of the CSF criteria showed that most of the
critical SPI success factors were adequately addressed by Pr2imer. Pr2imer
performs particularly well on the project level. The weaknesses of Pr2imer
concerning the CSF criteria had to do with promoting commitment, expanding
SPI activities to organisational level, and linking them with business goals. The
customer survey also indicated that the Pr2imer measurement activities require
further attention and improvement. Thus, the risk of not gaining the full profit of
SPI activities still exist.

 115

6. Enhanced Role of Measurements in SPI
On the basis of the customer survey results, measurement was selected as a
development area for the second engineering research cycle. The other
improvement candidates were achievement of commitment and business goals
related improvement goals. Also, the sustainability of improvement program
presented itself as a further development issue. Measurement was selected due to
it having been pinpointed by customers and due to its importance in providing a
means of following, guiding, and assessing SPI results, as acknowledged by
several researchers (Basili & Rombach 1988, Pfleeger & Rombach 1994,
Briand et al. 1997).

Measurement is a technique that supports the management, understanding, and
prediction of software development processes. In the context of SPI
measurement plays many roles as well. Measurement data can be used to set
improvement goals, but it can also be used to evaluate software quality and
process performance, to monitor actions once improvements are being
implemented, and finally to evaluate the success of the improvement.

6.1 Background

Measurement has been one of the major software research themes since the end
of the 1970�s, when McCabe (1976) and Halstead (1977) presented their work
on software metrics. Several conferences, for example the yearly Software
Metric symposium organised since 1993, and journals such as IEEE Software
March 1990, July 1994 or March/April 1997 have been dedicated to pondering
when, how and what to measure.

Grady (1992) divides measurement activities into tactical and strategic. The
former comprises measurement activities that support project management and
the latter activities that support process improvement. Basili (1993) expanded
the use of GQM from tactical applications to strategic applications by showing
how GQM can be applied within the Quality Improvement Paradigm (QIP) in
the goal setting step. This means that the GQM measurement program could be
used to characterise a current project, its environment, and, consequently, used

 116

in goal setting. However, GQM was not yet explicitly linked to other SPI
activities.

From the beginning of the 1990�s numerous researchers in the area of
measurement support the hypothesis that measurable process improvement is
both possible and desired (Grady 1992, Möller & Paulish 1993, Pfleeger &
Rombach 1994, Fenton & Pfleeger 1999, van Latum et al. 1998, van Solingen &
Berghout 1999, Kitchenham 2000). Despite this consensus, it has not been a
straightforward success in practice, neither in tactical measurement applications
nor in strategic applications for understanding and applying measurements in the
course of an SPI initiative (Pfleeger et al. 1997, Rifkin 2001, Hall et. all 2001).
Burgess (1995) recapitulates the papers of the �Fifth International Conference on
Applications of Software Measurement� and notes how many are quick to point
out the downside of measurement. Mashiko & Basili (1997) describe a study of
four software development projects, which were used to build descriptive
models of software process, defects, and cost in order to understand the factors
influencing SPI. After thorough measurement definition, collection and analysis,
the final conclusions are guarded with the words, �In characterizing the projects,
we found some patterns�� and �We may have gained some new insight about
the cost of defects�� (Mashiko & Basili 1997, p. 31). The results reflect both
the laboriousness and some difficulty of using measurement data, especially as
an initiator for SPI.

In the second engineering research cycle the strategic use of measurements in
the SPI context was focused upon. The research concern was further narrowed to
defining how to improve utilisation of measurements.

Paper III details how measurement activities in the SPI context can be expanded
by presenting two industrial case studies and illustrating how the GQM process
is explicitly bound to the Pr2imer improvement phases. Furthermore, paper III
discusses the tool support to ease measurement. As well, Paper IV illustrates in
relation to the GQM process how measurement can be automated to lessen the
extra bother measurement causes for software projects.

 117

6.2 The Measurement Strategy

Measurement provides a tool for SPI that can be used in various ways, for
example analyses of large defect database may point out places for
improvement. It is proposed as well that a full measurement program can be
initiated to characterise the project and organisational environment (Basili 1993,
Mashiko & Basili 1997). Both of these characterizations are possible, but
unfortunately they have some deficiencies. For example, the result of defect
database analysis can be only as good as the quality and extent of data entered
into the database. Paper III illustrates a case where coding defect was claimed to
be introduced in the requirements definition phase. In this case it was obvious
that there was a mistake in entering the data, and thus validity of data was a
problem. Measurement databases contain flaws that are never detected due to
their nature or lack of analysis by the engineers and managers who produced the
data. To start SPI by establishing a measurement program takes up a lot of time,
including setting up a measurement program, defining metrics, collecting
measurement data and analysing it. In addition, becoming aware of general
difficulties that measurement programs face in industry this is not the easiest
way to start. Furthermore, many organisations are not mature enough to cope
with measurements to a great extent. For example, SW-CMM recognises
measurement activities only after maturity level three.

 118

Figure 20. Primer and GQM processes (Paper III).

Pr2imer recognises measurement as important part of the improvement process,
but to start (Phase I), the model suggests using process assessment and/or
qualitative analysis methods. From Phase I onwards Pr2imer binds the GQM
measurement activities tightly to the improvement process. How measurement
activities are embedded in the Pr2imer process is illustrated in Figure 20.

Two initiators exist to define measurement goals. Firstly, measurement goals are
defined based on selected improvement goals to evaluate if desired improvement
took place. As a simplified example, if the improvement goal is �Improve
customer satisfaction by reducing after delivery defects by 50%� the related
GQM measurement goal could be �Analyse customer feedback for the purpose
of evaluating with respect to the number of defects reported from the point of
view of customers�. Secondly, measurement goals are defined to follow the
implementation of improvements during the course of the SPI project (CSF-14).
In order to reach the improvement goal changes in the software development
process have to be planned and implemented. To continue with the example,
analysis of the current status of the process may have made evident that, in
general, testing procedures are good but the unit testing procedure is poorly
defined resulting in inadequate unit testing. As an improvement action, an

 119

ameliorated unit testing procedure using testing tools is defined. To follow up
the use of new practices the following measurement goal may be formulated as:
�Analyse the unit testing procedure for the purpose of evaluation with respect to
new practices from the point of view of prescriptive unit testing process model�.
This measurement goal may lead to the following metrics: the number of
software modules, the number of produced/reviewed unit test plans, the number
of unit test reports etc. The purpose of this kind of metrics is to observe during
the course of the software development project whether new practices are
actually used. Figure 21 illustrates the two-fold role of measurements in Pr2imer.

Figure 21. Measurement in relation to the SPI context.

6.3 Tool Support for Measurement

Collecting and analysing measurement data can be laborious if done manually.
Adequate tool support is essential in decreasing the work needed for
measurement tasks, thus also helping to reduce the software engineer�s
resistance to measurement activities. Tool support may comprise data collection

Improvement
Goal

Measurement goal
to measure results of
improvement actions

New practices
for achieving
the improvement
goal

Measurement goal for
monitoring the adaptation and
(intermediate) results of new
practices

Software development process

Leads to

Leads to

Requires

Are defined based on

Set of
metrics

 Leads to

Analyse

Produces

Set of metrics

Leads to

Analyses

Result of the Pr2imer phase I

Produces

Conclusions
and further
actions

Produces

Measurement
results

Fine-tunes

Improvement
results

The follow-up of use of new practices

The analysis of improvement effects

 120

templates, measurement databases, automated data collection tools etc. The
definition of proper tool support is related to the size and maturity of software
development. A software development team that consists of a couple of
developers requires a different approach than teams in multinational
organisations with hundreds or thousands of software developers. When
measurement activities are wide-ranging the automation of data collection and
analysis provides opportunities to reduce measurement-related cost and offer
possibilities for extensive data analysis that otherwise would require too much
effort to be executed on regular basis.

To support measurement, the MetriFlame tool was developed. MetriFlame is
presented in Paper III. Paper IV describes the specific features of the
measurement automation process.

6.3.1 MetriFlame

MetriFlame is a measurement tool for collecting measurement data, defining
metrics, calculating them and presenting the results in various ways. Typical
sources for measurement data are documents and databases that are created
during the course of the software development process. The procedure for
collecting the data has been rendered as imperceptible as possible, thus keeping
its hindrance to the software development process small. The core idea of
MetriFlame is to be able to use data from different sources, process the data
according to the defined GQM plan and support data analysis by providing
possibilities for various presentation formats. Figure 22 shows the MetriFlame
architecture at a high level.

 121

Figure 22. MetriFlame measurement environment (Paper IV).

When the development of MetriFlame started in 1996 there were no
measurement tools that supported flexible data collection from various sources
as defined by the user. There were several metric management tools like PC-
Metric, Archimedes BugBase, Metricate etc. (Sulka-P 1994, Ronkainen 2003),
but these tools were only capable of collecting a fixed set of metrics where data
had to be entered manually. Furthermore, the existing commercial tools at the
time did not provide any support for goal-driven measurement programmes with
variable sets of metrics tailored to the needs of a particular project or
organisation (CSF-8). The main functions of MetriFlame include GQM plan
creation, and management of measurement data and results. MetriFlame is an
example of flexible tool support for measurement. The experiences of its usage
can be found in (Parviainen et al. 1997).

6.3.2 Measurement Automation

The idea of measurement automation arose from the use of MetriFlame. The
idea was supported by a general awareness of the importance of automating all
that can be automated. Collection and analysis according to predefined formulas
as required by MetriFlame provided a natural basis for automation

GQM plan GQM plan GQM plan

Set of presentation
formats

Data Analysis

Specific database applications
• Training database
• Defect database
• Effort database

Version Control Systems (VCS)
• Change management

• Document data

Project Management tools
• Resource allocation data

(planned/actual)
• Schedule (planned/actual)

Document management
• Document data & management
• Information & documentation

sharing/distribution

Other source of measurement data
• Review records, test reports, etc.

Data Sources

WWW-
Server

MetriFlame
GQM plan
management

 Metrics
calculation

Result
presentation

Data Processing

- Metrics definitions
- Metrics data

- Metrics results
- History

Database

D
at

a
co

nv
er

si
on

D
at

a
co

lle
ct

io
n

&
co

nv
er

si
on

 122

experimentation. Paper IV outlines the measurement automation process and
describes the experiences of an industrial case study. In Figure 23, the
measurement automation process is seen through Pr2imer and GQM processes.
The advantages of measurement automation are present in the pilot stage where
a software development project experiments with new practices.

Figure 23. Measurement automation in relation to SPI and measurement
processes (Paper IV).

Measurement automation is most feasible if an organisation already has working
measurement practices in place. Where this not being the case, the recommended
and natural way to proceed is first to establish measurement practices and
culture.

1. CURRENT
STATE ANALYSIS

2. DEFINITION OF
TARGET STATE

3. PLAN FOR
DEVELOPMENT
MEASURES

4. PILOT OPERATION

5. COMMISSIONING

PRESTUDY

IDENTIFY MEASUREMENT GOALS

PRODUCE/UPDATE A GQM PLAN

PRODUCE A MEASUREMENT PLAN

PACKAGE EXPERIENCES

GQM PROCESSPR2IMER
PROCESS

7.
Packaging
results and
experiences

1.
Planning of
measurement
automation

2.
Implementation
of measurement
automation
environment

4. PILOT OPERATION

MEASUREMENT
AUTOMATION PROCESS

The automated
parts of the
GQM process

ANALYSE DATA

COLLECT AND VALIDATE DATA

3. Data
recording

4. Data
collection

6. Analysis
of metrics

5. Metric
calculation

 123

6.4 Evaluation

Table 11 accumulates the evaluation of research results after the second
engineering research cycle where the measurement activities were enhanced in
the context of Pr2imer. No new success factors are reached but many of the
already fulfilled ones are strengthened. Because of the nature of enhancement
the CSF evaluation is done from the strengthened measurement practices
viewpoint only.

Table 11. Evaluation of results after strengthened measurement activities.

CSF evaluation Pr2imer with strengthened measurement
Improvement Management
1. Does the method support different

SPI approaches?
Yes. though addressed already by Pr2imer. The
starting point for measurement definition is the
software development project in question. Moreover,
the measurement collection and analysis process is
tailored project by project basis.

2. Does the method support
participation of all affected
parties?

Yes. In defining and using metrics, the GQM
principles highlight the participation of all affected.

3. Does the method support co-
operation with software engineers?

Yes. Software engineers participate in defining
metrics and analysing the results in GQM feedback
sessions.

4. Does the method support planning
and carrying out training as a part
of the initiative?

Yes. Measurement training is provided by GQM
feedback sessions.

Commitment
5. Does the method support

commitment of top managers?
No. This is not particularly addressed.

6. Does the method support
commitment of middle managers?

No. This is not particularly addressed.

7. Does the method support
commitment of engineers?

No. This is not particularly addressed.

Cultural Issues
8. Does the method support

developing improved solutions on a
case-by-case basis?

Yes. Software engineers and managers participate in
measurement definition.

Plan
9. Does the method support

clarifying the current status of
processes?

Yes. Though measurements practices do strengthen
this already well addressed CSF.

 124

10. Does the method support

establishing a link between
business and improvement goals?

No. This is not addressed.

11. Does the method support
measurable and well understood
SPI goals?

Yes, though addressed already by Pr2imer.

12. Does the method support the
generation of an improvement
plan?

Yes. A measurement plan as part of improvement
plan is generated.

Do
13. Does the method support

developed solutions are tested in a
pilot project?

Yes, though addressed already by Pr2imer.

Check
14. Does the method support using

metrics in monitoring
improvement actions and results

Yes, further addressed with enhanced measurement
activities.

Act
15. Does the method support the

sustainability of an improvement
initiative?

No. This is implied but not stressed.

6.5 Summary

The use of measurement data provides a solid base for the management of
improvement programmes and evaluation of the achieved results thus
measurement should always be part of an improvement programme. In Pr2imer,
the GQM method is favoured for various reasons. It is a top-down measurement
method that starts the definition of metrics from measurement goal definition.
Pr2imer adds an antecedent level to this, an improvement goal level that guides
measurement goal definition. The co-operative nature of GQM is another reason
for its utilisation. GQM develops metrics case-by-case thus taking into account
the needs of software development projects and the organisation in question.
Furthermore, the measurement feedback sessions as embodied by GQM have
turned out to be important for data validation and right interpretation. Defining
how measurements are linked to SPI and how mature measurement
environments can take advantage of measurement automation complements the
measurement aspect of SPI. Even though no new CSFs are clearly addressed
many already fulfilled ones are further strengthened with measurement
approach.

 125

7. Product Quality Focused SPI

7.1 Background

�The underlying premise of software process management is that the quality of a
software product is largely determined by the quality of the process used to
develop and maintain it� (Paulk et al. 1994, p. 8). Among the SPI research and
practitioners community this hypothesis is supported widely: Software quality is
dependent on the quality of process, and the better the software development
process is, the better the quality of the software becomes. The above-mentioned
hypothesis forms the basis of this research as well; the �method development
engineering research cycles� are based on this hypothesis.

In addition to �quality of the software development process� viewpoint, another
important viewpoint was not yet explicitly used by any SPI method: quality from
the business point of view. What kinds of quality factors are important in a
product? Required, or needed, quality level differs from product to product and
is context related. Flaws tolerated in word processors in an office environment
may be safety-critical if occurring in hospital operation theatres� monitors.
Quality factors critical for one product may be less valuable for another, but this
fact was neither recognised nor explicitly addressed by any SPI method.
Software quality models have been studied by many. There exist models for
expressing product qualities such as McCall�s quality model (McCall et al.
1977), Boehm�s model (Boehm et al. 1978) or ISO 9126 (2001), but none of
these static quality models are connected to any SPI approach or model. This
leads to the question: How could improvement of a desired software quality
factor be supported by an SPI method?

The initiator for SPI was to be changed from process quality to software product
quality. One of the research questions under study in the third engineering
research cycle was to find means to identify the dependencies between required
product quality and influencing process or processes. Thus, business needs
should become visible as SPI drivers. In method development, the following
aspects were considered:

− How to link customer-driven product quality requirements to process
characteristics (CSF-10);

 126

− How to guide an organisation to focus improvement actions on those parts
and characteristics of the process that are critical for achieving the required
quality; and

− How further to combine and enhance the strengths of goal-oriented
measurement, process assessment, product and process modelling, and how
to take advantage of the �experience factory� concept.

Since how to manage and measure SPI was already known, effort was now
focused on how to do it more effectively. Improvement resources should be able
to be applied to targets with the best return on investment. Accepting the
hypotheses that quality of product is influenced by the quality of process and
that needed quality varies by product, the necessity to change the SPI initiator
was discovered.

The change in the improvement viewpoint is described in Paper V, which
describes how to shift the improvement focus from process quality to end-
product quality. It explains the product quality driven improvement
methodology Profes that supplements the Pr2imer method with product quality
focus. Paper VI recapitulates the status of the Profes improvement methodology
and design rationale. In addition to papers IV and V the full description and
functionality of the method is presented in the Profes User Manual (1999). The
table of contents of the manual can be found in Appendix C. The Profes
improvement methodology will be briefly recapitulated in the following
sections.

7.2 Change in the Improvement Strategy

The underlying idea for the third method development research cycle was that
improvement driven by specific software quality requirements (CSF-8), instead
of just general process quality requirements should result in better focused and
more efficient process improvement. Eventually, from the business point of
view, product quality assessed by users or customers is the factor that should
drive improvement decisions (CSF-10). It was also noted that time-to-market
requirements and cost might set constraints on or demands for improvement
activities and require balancing between them (Paper V).

 127

Where Pr2imer is built on the PDCA improvement cycle (Deming 1986) Profes
operationalises the QIP paradigm (Basili et al. 1994b) by describing in detail the
improvement process and enhancing it by introducing the new concept of
Product-Process-Dependency (PPD) (Oivo et al. 1999). QIP was selected due to
its capability of distinguishing organisational and project level processes and for
its guidance in packaging and reusing lessons learnt. QIP has a close relationship
with the GQM method (Oivo & Basili 1992) that had already proven useful and
led to good results in SPI projects based on the Pr2imer method (Paper I, Paper
II, Paper III and Paper IV). The new PPD technique is developed for finding and
explicitly expressing product quality and process interrelationships (Hamann et
al. 1998, Birk et al. 1998). Developed PPD models are used to propose focused
process changes, so that desired product quality improvement can be reached
efficiently.

7.3 Upgraded Improvement Process

An overview of the phases and related steps in the Profes improvement
methodology are illustrated in Figure 24 which is accompanied by a short phase
description.

 128

Figure 24. Profes phases and steps (Profes User Manual 1999).

7.3.1 Characterise

In the Characterise phase, the bedrock for all forthcoming activities is laid and
assured. The objective is to achieve organisational commitment to improvement,
clarify product quality needs, and gather baseline data of processes and product
to initiate actual planning and preparation of the improvement programme. The
main activities in the Characterisation phase are:

− Establish commitment to improvement,

− Identify existing product quality improvement needs and determine current
product quality, and

1. GAIN COMMITMENT

4. DETERMINE CURRENT PROCESS CAPABILITY

3. DETERMINE CURRENT PRODUCT QUALITY

2. IDENTIFY PRODUCT QUALITY NEEDS

10. IMPLEMENT AND MONITOR IMPROVEMENTS

7 . DESCRIBE PROCESS CHANGES

8. SET METRICS FOR THE PROCESSES AND PRODUCT

11. EVALUATE RESULTS

12 . UPDATE EXPERIENCE BASE

5. SET PRODUCT IMPROVEMENT GOALS

6. DETERMINE NECESSARY PROCESS CHANGES

9. PREPARE IMPROVEMENT IMPLEMENTATION

CHARACTERISE

PLAN

PACKAGE

ANALYSE

EXECUTE

SET GOALS

PROFES PHASES PROFES STEPS

 129

− Characterise and determine the process environment in which the
improvement programme will be executed.

First, commitment to improvement is contrived or ascertained from the
organisation to assure, or re-assure, the existence of the all-important sponsor for
the improvement programme. Not only is the commitment of the organisation
pinpointed but also that of all quarters involved (CSF-2) including software
development team members as well (CSF-5, CSF-6, CSF-7).

When desired product quality is a starting point product improvement needs are
identified first, using customer feedback, market trends, and other available
sources. Here it has to be noted that the needs of customers may be conflicting
and all the needs customers have regarding product quality will not take the
shape of product quality goals. Product quality goals are later defined based on
analysed and prioritised needs (CSF-11).

In addition to product quality needs the current product quality is analysed.
Profes suggests using the ISO9126 (2001) product quality model for quality
characterisation, but other quality models may be used as well (CSF-1). The
current product quality is characterised for better understanding. For example,
this characterisation can be based on available product measurement data, such
as defect data.

Needed improvement actions can be later rationally planned only if current
processes are characterised too. In order to have both an understanding of
current status of software development and management processes and a
quantitative basis to follow the effects of process improvement ISO 15504
(1998), a compliant process assessment method, such as Bootstrap (Kuvaja et al.
1994), is suggested to be applied (CSF-9). Here again, other process assessment
methods such as CMMI (2000) may be used as well (CSF-1). Profes favours
these methods because they focus, when needed, on a set of processes without
having to cover them all, as for example SW-CMM requires (Paulk et al. 1993).
Process maturity information is supported by descriptive process modelling,
which documents how work is executed in practice. Here, the qualitative
analysis approach as suggested by the Pr2imer method is utilised.

 130

7.3.2 Set Goals

In the Set Goal phase, the change in improvement strategy becomes most
visible. The initiator in defining improvement goals is the improvement needs of
the product. After agreeing on the product quality goals based on the needs
clarified earlier, the process improvement goals are set and needed process
changes are defined.

The Profes methodology instructs that the product quality goal setting has to be
guided by the overall business goals of the company (CSF-10). When defining
needed process improvement, the expert knowledge augmented with results of
process assessment and evaluation are used as the basis. Here, PPD models that
represent experimental knowledge of the processes that have significant impact
on the achievement of certain product qualities are used. For instance, an
improvement in requirements analysis processes can be particularly important in
achieving high product reliability. In addition to general PPD models (Profes
PPD Repository 1999), an organisation may maintain its own PPD model
experience base. If relevant product-process dependencies are not readily
available, Profes provides means to identify them, e.g., from existing
measurement databases or assessment results, or with the aid of interviews or
other knowledge acquisition techniques.

7.3.3 Plan

The Plan phase defines how the set improvement goals are to be reached in
practice. This includes prescriptive process modelling that describes process
changes needing to be implemented in order to achieve the required product
quality. To be able to plan, Profes remarks that the software development project
or projects in which the improvement actions shall be implemented should be
known, and moreover the project members should participate in improvement
planning (CSF-3). For follow-up and evaluation purposes, GQM measurement
principles (Basili et al. 1994a) are applied, and a GQM measurement plan is
defined with appropriate process and product metrics (CSF-14). The
measurement planning includes description of the measurement process,
measurement frequency, and utilised information sources. In addition to target
process and measurement planning responsibilities, reporting policies are

 131

determined as well, and further supporting activities, such as training, are
scheduled (CSF-4, CSF-12).

7.3.4 Execute

In the Execute phase, product quality driven process improvement actions are
carried out according to the plans in the selected software projects, and the
defined measurement data is collected, regularly analysed in GQM feedback
sessions (CSF-4, CSF-14) and used to monitor and manage progress and goal
achievement. In the course of the improvement implementation lessons learnt
and other relevant experience are identified and recorded (CSF-15). When seen
necessary, the corrective actions for any plans during improvement project
execution should always be acknowledged.

7.3.5 Analyse

The objective of the Analyse phase is to clarify whether product quality has
improved as required, and whether the process changes introduced have been
effective in reaching this goal. Analysis is mainly based on the collected
measurement data in GQM feedback sessions. These sessions are understood as
a core learning activity that drives continuous improvement (CSF-15). After
improvement activities are implemented, one potential way to analyse the effect
of the improvement project is to conduct process re-assessment for those
processes that were amended, which will help to understand the changes in
process performance. During the analysis phase, experiences should be gathered
from the areas involved in product improvement. Examples of important areas
are: experiences of implemented process changes, used measurements,
developed or enhanced PPD models, models for project planning, lessons learnt
in general, etc.

7.3.6 Package

The Package phase translates the results of analysis into reusable objects from
which future projects and improvement programmes can benefit (CSF-15).
Therefore, the analysis results need to be packaged into a form that easily
facilitates reuse. For instance, suggested improvements to the software
development process should result in changes to the organisation�s process

 132

handbook. In packaging, the Experience Factory infrastructure (Basili et al.
1994b) facilitates the understanding of efficient experience retrieval,
organisational learning and knowledge reuse.

7.3.7 Summary of the Process

The Profes improvement methodology aims to create a link between the
software development process and product quality. This is illustrated by the
Profes improvement cycle in Figure 2. The link has been earlier either implicit
or missed completely, e.g., when improvement has primarily focused on
reaching higher maturity levels. As well, when process improvement is clearly
linked to achievement of the required product quality, the effects of
improvement initiatives becomes more visible.

Figure 2. The QIP based Profes improvement cycle.

Profes improvement phases and main activities are summarised in Table 12.

Table 12. An overview of the Profes improvement phases and main activities.

Phase Main activities

1. Characterise Identify product quality needs and current product quality;
characterise the environment of the improvement programme

2. Set Goals Set product improvement goals, identify process
improvement needs, and define improvement goals in
measurable terms

SE T G
O

A
LS

PLAN

A
N

A
LY

S
E

CHARACTERISE
PACKAGE

EXECUTE

Pr
od

uc
t -Process-Dependency

PPD

PRODUCT

O
rg

an
isa

t io
nal and Project Processes

PROCESS

 133

3. Plan Plan and prepare the improvement programme; select (pilot)
projects to implement improvements (CSF-13)

4. Execute Perform (pilot) projects and collect measurement data

5. Analyse Analyse (pilot) projects and evaluate achievement of
improvement goals

6. Package Package experiences and ensure use in future projects

7.4 Evaluation

The Profes improvement methodology was developed with three industrial
partners (LM Ericsson, Dräger, and Tokheim) who provided their software
development environment for method development and trial use. The industrial
experiences of Profes are, e.g., described by (van Solingen at al. 1999a, van
Solingen et al. 1999b, van Solingen at al. 1999c, Bicego et al. 1999, Birk et al.
1998). In addition to industrial experiences and Papers IV and V, the
comprehensive Profes User Manual (1999) is used here to evaluate the method
as well.

Table 13. The Profes improvement methodology evaluation using CSFs.

CSF Evaluation Product quality focused SPI
Improvement Management
1. Does the method support

different SPI approaches?
Yes. Profes utilises several improvement methods
during the course of an SPI initiative and proposes
alternative methods to use as well. Moreover, Profes
provides ways in which an organisation can tailor the
method.

2. Does the method support
participation of all affected
parties?

Yes. This is strongly highlighted, for example
commitment and involvement of software engineers is
pinpointed as an issue by the method. For example
various stakeholders should be included to the work and
consulted regarding quality needs.

3. Does the method support co-
operation with software
engineers?

Yes. Co-operation is seen as a way to commit software
engineers to improvement.

4. Does the method support
planning and carrying out
training as a part of the
initiative?

Yes. Planning of training is part of the plan phase,
especially steps 9 and 10 in the Profes User Manual are
concerned with training issues. The improvement
initiative is managed by a Profes team showing three
roles: manager, experts and support roles. This team
provides support and guides actions during the course of
an improvement project (Profes User Manual 1999).

 134

Commitment
5. Does the method support

commitment of top managers?
Yes. This is an issue of the first phase of Profes but
raised later in the form of re-assuring commitment.
Furthermore, using business needs, market analysis and
product quality needs as the starting point for SPI binds
managers to the decision process.

6. Does the method support
commitment of middle
managers?

Yes. For example, in step 5 (Profes User Manual) when
product quality goals are set, the achievement of
management commitment is crucial.

7. Does the method support
commitment of engineers?

Yes. Step 1 Verify Commitment tries to ensure that
commitment exists from everyone involved including
software project members. The role of software
engineers is essential for success.

Cultural Issues

8. Does the method support
developing improved solutions
on a case-by-case basis?

Yes. This is an inbuilt and emphasised improvement
strategy of Profes.

Plan

9. Does the method support
clarifying the current status of
processes?

Yes. This is an important part of the Characterise phase.

10. Does the method support
establishing a link between
business and improvement
goals?

Yes. Product quality needs arise, inter alia, from
business needs and analysis. These needs are used in
setting the improvement goals.

11. Does the method support
measurable improvement
goals?

Yes. Current product quality needs guide improvement
goals set in co-operation with a software development
project (Set goals phase).

12. Does the method support
generating an improvement
plan?

Yes. This is part of the Plan phase. Profes provides, for
example, a template for this plan (Profes User Manual,
1999, Appendix 2).

Do

13. Does the method support
developed solutions are tested
in a pilot project?

Yes. In the general guidance part of the Profes User
Manual there is the advice to test solutions in a pilot
project.

Check

14. Does the method support using
metrics in monitoring
improvement actions and
results?

Yes. This is emphasised by Profes. Step 8 guides the
setting of metrics for processes and product
improvement; Step 10 instructs on the collection and
analysis of metrics and Step 11 to evaluate the results.

Act
15. Does the method support the

sustainability of an
improvement initiative?

Yes. This is approached in several ways. Steps 11 and 12
guide evaluating results and lessons learnt and updating
the Experience Base. Setting up the infrastructure for the
current improvement project as well as sustaining the
improvement within an organisation is guided as well.

 135

When analysing the results of Table 13 it can be noted that in the method level
Profes addresses all factors that are understood to be critical for SPI success.

7.5 Summary

Profes enhances and packages various SPI approaches (including process and
product assessment, process modelling, measurement, and experience factory) as
a form of product quality focused process improvement methodology. Profes
proposes 6 improvement phases and 12 related steps with well defined set
activities, methods, techniques, tools, templates, work products, resources roles,
and other practical instructions. As a new improvement strategy Profes
understands product quality as an initiator and a starting point for an
improvement programme and therefore focuses on finding and using
relationships that exist between product quality characteristic and process
quality. Focusing improvement efforts on those processes that will return on the
investment most effectively should avoid wasting meagre resources that
organisations often have to allocate for SPI. Known resource constraints
including time, money, and persons, are the reasons why Profes focuses on the
improvement activities rather than trying to improve all processes equally.
Figure 26 illustrates the SPI paradigm shift between the second and third
engineering research cycles.

 136

Figure 26. The paradigm shift in SPI.

SPI started with process analysis to clarify what the software process
improvement needs are (1). Based on this understanding of deficiencies (2) the
needed changes in software development were planned and implemented (3).
The new paradigm suggests that SPI should start with clarifying what the
product quality needs are (I). By understanding the deficiencies of software
development (II) in relation to product quality needs, the needed improvements
are planned (III) and implemented (IV).

Evaluating Profes with CSF (Table 13) indicates it to fulfil all factors understood
as important for SPI success. Profes answers also those CSFs that were not
stressed by Pr2imer or Pr2imer enhanced with measurement focus. The new
factors covered are commitment related (CSF-5, CSF-6 and CSF-7), the
influence of business goals on improvement goals (CSF-10), and the
sustainability of improvement initiative (CSF-15). Related to sustainability, the
knowledge management issues entered SPI method development research in the
third method development research cycle. Profes employs the Experience
Factory approach by packaging the results in an Experience Base for further use.
Despite this, it was noted that there was room for improvement in reusing
lessons learnt in SPI.

Software Development Process SW

The question starting SPI:
What are the software
improvement needs?

The question starting SPI:
What are the software

liimprovement needs?

The improvement question to ponder:
Considering the software quality
improvement needs, what improvements
should be implemented in the software
development process?

The improvement question to ponder:

Considering the process improvement needs,
what improvements should be implemented
in the software development process?

PA
R

A
D

IG
M

 SH
IFT

1

I

2

II

3

III

IV

 137

8. Knowledge Management Supported SPI

8.1 Background

It is commonly agreed that software engineering is a knowledge-intensive
activity (Basili et al. 2001, Henninger & Schlabach 2001, van Solingen &
Berghout 2001, Rus & Lindvall 2002). Consequently, it may be argued that SPI
is very knowledge-intensive activity. Besides required software engineering
knowledge, people involved in SPI have to be aware of SPI models, methods,
tools and techniques. SPI experts also need to know how and when to apply
different techniques, what past experiences and lessons have been learnt, what
the company culture is, what the business objectives are, etc. SPI is not a process
that can be entirely automated and, once installed, executed as desired.
Unfortunately quite to the contrary, SPI needs skilful and knowledgeable
persons who understand both software and improvement engineering, for SPI is
an activity that combines technical (software and improvement engineering),
managerial (software and SPI management) and even human behaviour related
aspects (cultural and psychological perspective) in a complex business
environment. Due to these complicated interrelationships, SPI becomes an
intricate task to execute and thus help from other disciplines is looked for.

In the context of software development two main streams to approach and utilise
KM can be distinguished, yet both of them share the same goal: to improve
software development (Figure 27). The first approach studies ways in which
software development itself could be supported with the ideas of KM. This may
mean, for example, studying in what form and ways the product requirements
should be communicated to the software project team, or how best to capture
and provide information about software development project needs during the
course of development. For example, Kucza et al. (2001) describe experiences
with improving software reuse process utilising KM. Birk & Tauz (1998)
present a process and general organisational infrastructure for generalising
existing still non-reusable experience statements into a form of lessons learnt
repository. The emphasis is on how to transform and store existing experiences
in a reusable format.

 138

Acknowledging the knowledge intensity SPI in overall has, the other stream
explores how SPI activities could be supported via KM. For instance,
Pourkomeylian (2002) studied SPI from the KM point of view and concludes
that the key challenge for SPI is knowledge sharing. Furthermore, various tools
that support KM has been of great interest to many. KM tools comprise both
enterprise level KM tools (Wei et al. 2002) and smaller specific applications to
acquire and save information (Lindvall et al. 2001). Dingsøyr (2002) studied
how intranet-based KM tools can support building a learning environment and
examined how KM tools in general are used in organisations. The study pointed
out that many KM tools organisations had acquired were later abandonment as
unhelpful. Henninger & Schlabach (2001) claim that instead of static search
engine based applications, a tool that alerts software engineers of relevant
knowledge leads to better results. Based on five years experience building and
using repositories to support software engineering at DaimlerChrysler, Schneider
and Hunnius conclude: �Without a learning attitude and some appreciation for
continuous process improvement, even the best repository will not make
experiences �fly� (Schneider & Hunnius 2003, p. 539). KM tools, including
experience repositories or databases, are solely insufficient to improve SPI
activities and to help software development, but they provide important
technologies to acquire, organise, archive, search, and push information.

Figure 27. KM in the context of SPI and software engineering.

The KM research studying software development and improvement builds
greatly on the ideas of Nonaka & Takeuchi (1995) by adapting the definitions of
tacit and explicit knowledge and transformations between them. In addition, the

SPI

Software development

Knowledge Management

SPI lessons learned
SE lessons learned

SPI knowledge
- acquisition
- sharing

SE knowledge
- acquisition
- sharing

U
til

is
ed

 to
 Im

pr
ov

e

Tool support

 139

Experience Factory concept (Basili et. 1994b) proposing organisational
infrastructure for experience collection and packaging in a form of Experience
Base is researched as well. The Experience Factory developed in the early
1990�s at the NASA Software Engineering Laboratory was soon also adapted to
a learning-organisation concept (Basili & Seaman 2002). Improving by learning
is the inbuilt idea of both Experience Factory and KM.

In the previous three method development research cycles, the one fundamental
idea has been to start the improvement from a project or product perspective
instead of general improvement activities over the organisation. So far this
focused improvement path had turned out to be fruitful. This notification with
awareness of the possibilities KM could provide to SPI initiated the forth
method development cycle. During that it was studied how KM, as presented by
Nonaka & Takeuchi (1995) and the software development specific Experience
Factory approach (Basili et. 1994b), could be operationalised in a software
development project environment in practice.

The output of this research is described in Paper VII. In the following, its main
results and observations are recapitulated.

8.2 Towards a Knowledge Capturing Solution

The study was conducted in an independent business unit of a global corporation
developing software-intensive electronic products (Tauriainen 1999). Pr2imer
(Papers I, II, III, IV) and Profes (Papers V and VI) method principles were
applied to structure this KM originating improvement initiative. The
organisation was looking forward to improving the software development
knowledge capturing and reusing process. There had already been several
attempts to improve knowledge reuse, which provided an opportunity to learn
from experiences of past knowledge capturing and sharing efforts.

8.2.1 Lessons Learnt from Past Improvement Attempts

The setting in the organisation led to the study of two main questions: 1) Why
did the earlier attempts not succeed? and 2) What would be a working solution?

 140

The clarification of past experiences and of the current status of knowledge
capturing and sharing means and activities was carried out by interviewing
employees and analysing relevant documents. This brought forward that both
managers and designers felt that a lot of knowledge was being wasted. Existing
knowledge was difficult to find and when found it was not in a reusable form.

The underlying organisational goal was to reduce software defects by increasing
the knowledge transfer between different projects. The information to be shared
was stored in the Lessons to Learn Database. Interviews indicated clearly that
project managers' awareness of the database was very low, and its use poor. An
analysis of the database revealed that there were a number of incomplete entries
and only one of the four thematic sections was in active use. According to the
database concept owner, the reason was that the preparation of database entries
required a lot of effort and that administering the data was difficult. Moreover,
the accuracy and relevance of the data was not always obvious, because �there
has to be a balance between enabling free expression and maintaining control�.

Data Transfer Days was another form of sharing knowledge between projects.
Their purpose was twofold: to identify and to analyse problems faced in the
projects in order to avoid them in the future, and to analyse past success stories.
These meetings were unanimously regarded useful. Important knowledge was
captured and shared, even though people found it hard to remember past
successes and pitfalls once their projects had ended. The results of these events
were planned to be analysed, packaged and followed-up for new projects, but,
unfortunately, at this point enthusiasm usually disappeared. The meetings were
useful mainly for those who were able to attend. Nevertheless, free face-to-face
conversation between group members turned out to be a better way of sharing
knowledge than the database (notification supported by Davenport and Prusak
1998 as well).

In summary of the current status, neither the Data Transfer Days nor, in
particular, the Lessons to Learn Database was working as initially intended. The
reason for the latter was that neither filing nor searching of knowledge was
incorporated into the project processes. An efficient use of the database would
have required more disciplined processes and a lot more effort at capturing,
packaging, searching, maintaining and reusing the knowledge. Furthermore,
most projects were too busy with coping with their everyday problems to be

 141

willing to contribute to any additional overhead duties. In general, software
designers tended to trust anyone nearby, rather than experts or even less the
shared database.

8.2.2 Need Based Experience Capturing Process

Based on the problems discovered while analysing the current status of
knowledge reuse several process improvement actions could have been chosen.
For example, software process management could have been improved by
defining additional processes to search and update the Lessons to Learn
Database or to improve analysis and packaging of the results of Data Transfer
Days or to use training as a means to build awareness of existing reuse
possibilities. Eventually, improvement actions that would add duties to software
managers and engineers was not favoured for the following reason: knowledge
searching and capturing was seen by software managers as extra work. Busy
with their daily duties, they expected to be served by knowledge they needed.
The favouring of knowledge pushing is also supported, e.g., via Henninger�s and
Schlabach�s (2001) alert system. Moreover, NASA�s Goddard Space Flight
Center has reported building a user-profile-based push feature to shift from
passive to active dissemination of lessons learnt and thus facilitate better
knowledge sharing (Liebowitz 2002).

To summarise, the goal for the new solution was that it should affect the
software development projects and processes as little as possible and not require
new technologies. The goal was to establish a process for capturing experience
by SPI experts as knowledge capturing agents. Thus the aim of this SPI action
was not to create or enhance any KM system, but rather a process that would
help to acquire experience from existing sources, such as the company�s
databases and individual persons, based on the identified needs of ongoing
software engineering projects.

Since the existing processes should not be touched, simple manual off-line
means were preferred. The software development projects were regarded as a
customer, who are to be served by the knowledge they need as an opposite to a
large-scale acquisition, analysis, packaging, sharing and updating of knowledge
for projects to come. A process model for capturing knowledge by using SPI
experts was established. The new model consisted of the Knowledge Capturing

 142

Project and Customer Projects, which stated the needs for experience capturing.
The Capturing Project was responsible for gathering knowledge from relevant
sources, packaging and providing it to a Customer Project to use. The solution
did not change the organisational setting, nor did it require new tools.
Knowledge was expected to be found from existing sources, such as project final
reports, error databases, discussion forums, and, most importantly, from people.
The experience capturing process itself consisted of three separate base
practices: (1) definition of scope and requirements for knowledge capturing, (2)
knowledge acquisition, and (3) packaging knowledge. These processes were
further divided into sub phases with detailed process descriptions with goal
statements, inputs, entry and exit criteria and so on to assist the capturing project
to create an experience package that fulfilled the knowledge needs of a customer
project. A simplified capturing process is illustrated in Figure 28.

Figure 28. The simplified knowledge capturing process (Paper VII).

The developed approach was tested in an industrial environment. The needs of
the customer project were structured to indicate what knowledge was required,
in what form, and how it was intended to be reused. The delivered interface-
related knowledge package met the requirements set for it completely. The
approach proved to work well, and the project was served just in time with the
knowledge package they needed.

8.2.3 Conclusions

Product development goals and the expected value of reuse of design expertise
drove the KM based SPI effort. The organisation�s autonomous project
managers were committed to the short-term goals of producing a specific
product with required features within determined schedule. They did not have
time either to seek extensively for stored knowledge, or to provide it to others.

Customer
Project

Knowledge Capturing ProjectCustomer
Project

Knowledge
Package

2. Acquire
knowledge

3. Package
knowledge

1. Define scope
and requirements
for knowledge
capturing

Need Contract

xxxx xxx
xxxx xxx
xxxx xxx

 143

They needed to be served with relevant knowledge in the right form and at the
right time. For this reason the earlier database-driven approach where the
software engineers and managers had been responsible for acquiring and
maintaining the knowledge did not succeed. Knowledge sharing events between
group members had proven to be a better way of sharing knowledge than the
database. Nevertheless, the plan to package the results of these events for reuse
in forthcoming projects never materialised. To succeed, the SPI organisation had
to take the leading role of knowledge acquirer and broker. The SPI-based KM
became, to a large extent, a need-based service for software development
projects.

8.3 Evaluation

Where the previous method development research cycles proposed the Pr2imer
and Profes improvement methods the fourth cycle concentrated on studying and
understanding the KM problems and constraints companies may have. Based on
this study, the need-based knowledge capturing process was defined and
executed in an industrial environment. In this KM-based SPI, the improvement
approach proposed by Pr2imer and enhanced by Profes was applied successfully.
The new knowledge capturing process improved software engineering by
capturing and offering the required technical type of information for the project.
Using knowledge that was built on this information, the project was better able
to continue with technical planning. Thus, the result of this engineering research
cycle is not a new SPI method as such but rather an instantiation of earlier
developed SPI methods caring for a need-based knowledge capturing process
serving projects on a case-by-case basis. Because of the nature of the fourth
engineering research cycle, the CSF evaluation is not utilised.

8.4 Summary

The aim of this research was to clarify how software engineering knowledge
acquisition and sharing could be supported by using SPI principles found critical
for success.

 144

The lessons learnt from building the experience capturing process again raised
again a flag for clarifying the existing, actual needs for action and, based on that,
seeking a solution. Attempts to manage software engineering knowledge, to
search for and share it extensively, turned out to be a rocky and resource-
consuming approach. The developed and piloted need-based knowledge
capturing process is an example of just-in-time service for a project that
critically needed existing technical knowledge about software and system
interfaces, knowledge that directly affected the quality of project�s design phase.
The needed knowledge was located in various sources and thus difficult to
capture. The fact that SPI experts successfully took over this knowledge
management problem advocates the supportive and assisting role an SPI
organisation should have regarding software development projects.

 145

9. Summary and Conclusions
In the previous chapters three research questions posed in Chapter 1 have been
studied. Chapter 1 introduced the background of this research and depicted the
research setting and the author�s contribution to the research. Chapter 2 provided
an overview to various SPI research results that are relevant to this research. In
SPI method development research, many of them are attached to the new or
further enhanced SPI methods. Chapter 3 captured SPI lessons learnt from
literature and developed the CSF criteria that was first used in Chapter 4 to
evaluate related research. Chapter 5 presented and evaluated an integrated
improvement management method Pr2imer. Chapter 6 enhanced the role of
measurement as an important part of an SPI method. Based on experiences and
new ideas, further development and enhancement of the SPI method was
recapitulated and evaluated in Chapter 7. This product quality based process
improvement method is called Profes. In Chapter 8 the use of KM in SPI was
discussed and one practical and tested solution for capturing knowledge was
presented. In this Chapter 9 the research results are recapitulated in the light of
the research questions; moreover, further research is discussed.

9.1 Answers to Research Questions

The research results presented in this thesis are based on the author�s long-term
involvement in several industrial SPI projects and in SPI method development
according to the engineering research method (Adrion 1993, Glass 1994).

The main research question studied was �How to develop and evaluate
industrial SPI methods?� To be better able to find an answer to this question it
has been divided into three sub questions that have been studied in four method
development research cycles in various industrial settings.

Q1. What are the most typical industrial SPI needs regarding the SPI methods?
The means to seek answer to this questions are presented in connection with the
third research question. The extracted needs are condensed into the following 15
propositions that are organized under management, commitment and cultural
related subheadings, and further to four improvement engineering related steps:
plan, do, check and act according to the PDCA cycle. This body of propositions

 146

form a framework any SPI method should be able to answer in order to
maximise possibilities for success and minimise risks for failures.

Improvement management
1. An SPI method supports different SPI approaches.
2. An SPI method supports active participation of all affected parties.
3. An SPI method supports co-operation with software engineers.
4. An SPI method supports training being planned within and as a part of the

initiative

Commitment
5. An SPI method supports commitment of top managers.
6. An SPI method supports commitment of middle managers.
7. An SPI method supports commitment of software engineers.

Cultural aspect
8. An SPI method supports developing improved solutions on a case-by-case basis.

Plan
9. An SPI method supports clarifying the current status of processes.
10. An SPI method supports establishing a link between business goals and

improvement goals.
11. An SPI method supports measurable improvement goals.
12. An SPI method supports generating an improvement plan.

Do
13. An SPI method supports developed solutions are tested before large-scale use.

Check
14. An SPI method supports using metrics in monitoring improvement actions

and results.

Act
15. An SPI method supports the sustainability of an improvement initiative.

Q2. What kinds of SPI methods are suited to these needs? The answer to this
question has been researched via four method development research cycles. The
analysis of various existing methods provides the understanding that none of
them was able to meet the needs industry had, but that wisely combining and
enhancing them should lead to better results. Chapters 5 - 8 presented results of

 147

this work. First, Chapter 5 presented and evaluated the SPI method, Pr2imer,
that builds on the ideas of the PDCA cycle (Deming 1986) and teamwork and
integrates software process analysis methods, process modelling and
measurements into one complex. Second, the research interest was in
measurement activities that were enhanced and automated (Chapter 6). Third,
changing the improvement initiator from software process quality to product
quality according to business needs was studied and the research result was
packaged in the form of the Profes improvement methodology (Chapter 7).
Profes builds on the same improvement principles as Pr2imer enhanced with
measurements further packaging the approach to a cookbook type of handbook.
Furthermore, Profes distinguishes the improvement effort on organisational and
project levels according to the QIP principles (Basili et al. 1994b), makes the
commitment process explicit, and introduces the new concept of Product-
Process-Dependency. Last, the question of capturing knowledge that can be
used to improve software development was studied in an industrial setting and
the developed knowledge capturing process was described in Chapter 7.

Q3. How to gather and analyse the practical experiences of SPI methods in
order to develop them further? There were several ways to seek answers to this
question. First, industrial needs were extracted using literature survey
researching references describing industrial SPI cases or reporting larger surveys
of SPI experiences. The lessons learnt from single cases were then grouped and
presented as a group of propositions relevant to any SPI method. The result of
this study was encapsulated in Chapter 3 as 15 success factor propositions that
raise the possibility of successful SPI. These propositions formed a basis for
CSF evaluation that was first used to evaluate the related research (Chapter 4).
Furthermore, this CSF evaluation was used to evaluate the results of method
development research cycles in Chapters 5, 6, and 7. Second, the requirements
for a product-quality-focused method development cycle were clarified by
enquiring among three organisations offering their software development
environment for method development and validation. Examples of requirements
stated by these organisations are as follows �the methodology should consist of a
number of building blocks, from which specific items could be selected; the
methodology should be open (e.g. exchangeable with respect to different basic
methodologies, such as ISO9126 versus TQM); the methodology should support
bottom-up as well as top-down process improvement (where bottom-up is
preferred)� (Paper VI). Last, co-operating with organisations and software

 148

project teams in practice provided an opportunities to apply the methods and
thus to follow the actual improvement work and effects of improvement actions,
and to gain immediate feedback. Moreover, it afforded the opportunity to
accumulate knowledge and understanding of industrial needs. Most of these
experiences are described in Paper II.

Table 14 presents how the research focus changed during the method
development research cycles. Legend �XXX� indicates that the area was a target
of research, �X� means that the area was part of the research, and ��� shows an
area that was not yet studied.

Table 14. The changes in research focus.

SPI
Management

Process Quality Measurement Product
Quality

KM The extension of
Research focus

 Appraisa Standards

The first cycle XXX X X X � �
The second cycle XXX � �

The third cycle X X X XXX X
The fourth cycle XXX

The changes in research focus show the learning process as well. First, the main
goal was to find the basic structure in which SPI should be executed. Other
elements understood to be important were the use of various means to clarify the
current status of a process (process quality focus) and the importance of
measurement to support SPI. The measurement was the focus area studied in
more detail during the second engineering research cycle. At that time, no
explicit attention was given to knowledge management or product quality as an
improvement initiator, which became the focus in the third cycle. By that time, it
was already known how SPI should be executed, but the lack of business focus
became obvious. Companies do not do business with good processes but with
the products they sell. This understanding understandably boosted the need to
change the improvement focus from processes to a product. By this time,
organisational environment and software development projects became more
and more complex, raising the question of how to manage the extensive
information related to SPI. This study is still going on.

 149

9.2 Limitations of the Results

This thesis provides an extensive description of the development and maturation
of SPI methods during one decade. The development path has been evolutionary
by nature; each method engineering cycle has augmented the results of previous
cycles. The research results are culminated in two SPI methods, Pr2imer and
Profes. In this thesis, also CSF criteria are developed for evaluating SPI
methods.

Pr2imer is the first comprehensive SPI method that unites different SPI
approaches into a single ensemble. It has been developed and applied in a
variform embedded software development environment. Despite its large
coverage, Pr2imer is capable of remaining a simple and easy to follow
improvement model. Pr2imer does not provide any extensive explanations of
improvement steps, but rather captures improvement principles and states
outputs of each improvement phase. Even though Pr2imer has been developed
for the improvement of embedded software, it can be easily applied to any SW
development as it does not contain any specific embedded software development
features. The limitation of Pr2imer is that it provides no guidance for
organisational improvement infrastructure, which narrows its application scope
mainly to the software project level.

The Profes methodology is presented carefully and in detail with a wide
selection of resources, tools, methods, and templates available for supporting the
improvement work. Profes covers and unites elements regarded as important for
SPI, such as process assessment, product assessment, product quality-process
dependency, process modelling, measurement, and learning form experience.
Profes also discusses how to build the infrastructure for SPI and also presents
some advanced improvement techniques to be applied. This broad scope
combined with the detailed presentation format of Profes, however, also shows
some drawbacks; it may easily be classified as a heavy approach to SPI. Yet, it
has to be noted that Profes, as well as Pr2imer, has been developed in a software
development environment in which legacy embedded software is developed and
maintained. Although this gives the primary application area for both methods, it
does not delimit the scope to legacy systems only. Pr2imer can be seen as a light
weight version of Profes, which was also developed to be tailorable and
adjustable. For example, the Profes Step �Gain commitment� guides and

 150

instructs commitment retrieval and can thus also be employed as an
augmentation to any SPI method. This applies to many other steps of Profes as
well.

In this thesis, the CSF criteria set is developed and used for evaluating SPI
methods. CSFs are based on a synthesis of a literature review covering mainly
SPI case results focusing on factors that are important for successful SPI. Thus,
it is expected that the more CSFs are fulfilled, the lower the risk of failure and
the higher the possibility of success. Although CSFs contain propositions that
are in general considered to have a positive effect on improvement success, it is
not claimed that fulfilling all these will inevitably lead to success. This fact also
reveals a limitation of the CSF criteria; the criteria have to be applied by
interpreting the improvement context. Ultimately, to be able to make a well
reasoned and conscious decision over relevant and irrelevant factors, it is crucial
to understand the general SPI success factors. The improvement context will
dictate which CSFs are to be highlighted and which are less important, or even
if they should be considered at all.

To summarize, despite all methodological and tool support, SPI remains,
significantly, an intellectual activity. Even the best fitted SPI methods do not
sway this fact, but still they provide essential and needed support and guidance
for SPI.

9.3 Further Research

This thesis has presented a cross-section of SPI improvement method
development and evaluation conducted during one decade. Still, there remains
room for further research, development and validation. More research is needed
to explore how to take improvement results in use. While the first phases of SPI
initiative are generally known, and there are several ways of determining �what
to improve�, the question �how to improve� has been researched far less, thus
requiring more attention in the future.

The concern with the continuous learning aspect of SPI has only begun to
mature as a research area within SPI. KM support for continuously improving
the execution of SPI and software engineering is an area not yet extensively

 151

explored or structured. Steps in this direction have been taken (cf. Dingsøyr
2002, Pourkomeylian 2002, Lindvall & Rus 2003), but a lot of research is still
needed to create practical and tested solutions for KM supported SPI.

This research introduces SPI methods developed in environments where the
software development has been traditional comprising software projects that last
at least half to one year and are often related to the development of legacy
systems as well. Thus, the research results presented in this thesis fit,
unavoidably, best to the software development of this type. The growing need to
react quickly to the changing customer requirements has boosted the era of new
software process development methods referred to as Agile methods
(Abrahamsson et al. 2002). The one further research areas arise from these
changes in software development business strategies that are supported with new
software development methods. In Agile software development environments,
the role of quality software development process in relation to quality of product
is understood and handled differently from, for example, the development of
legacy systems. It may be asked, what the role of SPI within Agile software
development would be, and furthermore, whether improvement needs of this
type of software development can be directly addressed with any of the existing
SPI methods.

 152

10. Introduction to the Original Papers
This Chapter gives an overview of the original papers constituting the basis of
this dissertation. In the following sections, the content of the papers is discussed.
Table 15 presents basic information of the papers and shows how each one of
them contributes to the research questions studied (Q1, Q2, and Q3).

Table 15. The original papers of the thesis in relation to the research questions.

Related
Original Papers

Published
in

Forum Q1 Q2 Q3

Paper I 1996 Quality Engineering, Vol. 8 !

Paper II 1998 EuroSPI ! !

Paper III 1998 SPI�98 !

Paper IV 2001 Metrics Symposium !

Paper V 1998 SPI-98 !

Paper VI 2000 Profes ! !

Paper VII 2002 IEEE Software May/June 2002 ! !

10.1 Towards an Integrated SPI method

10.1.1 Paper I

Paper I introduces the main ideas, principles, and basic functionality of Pr2imer,
which as the first practical SPI method unites various SPI approaches � process
analysis, measurement and process modelling � to a functional ensemble. The
paper also presents the results of a case study conducted at the leading
manufacturer of medical instruments. The main considerations of the paper are
the following:

− Quantitative and/or qualitative analysis of current software development
practices,

− Definition of measurable goals for improvement,

− Planning of successive and practical process improvement steps, and

− Piloting and trial use of the new practices.

 153

10.1.2 Paper II

Paper II recapitulates the current status of Pr2imer method development, the
main part of the paper summarising the experiences gained and SPI lessons
learnt from applying Pr2imer method to over 20 SPI cases in the course of five
years. Among the key observations presented in the paper are:

− Top management commitment guarantees the resources required for
improvement work at software engineering level,

− Current state analysis using qualitative methods has solely provided a good
basis for improvement,

− Current state analysis does not reveal any unknown problems, but it
documents the situation and provides a basis for improvement discussions,

− People holding various positions in the organisation should be involved in
improvement goal definition and improvement planning,

− To enable follow-up and evaluation, SPI should always be accompanied
with appropriate measurements, and

− Support and feedback to the projects have to be given regularly. The GQM
feedback session provides a good forum for this.

10.2 Enhanced Role of Measurement

10.2.1 Paper III

Paper III reinforces Pr2imer with enhanced goal driven measurement activities
and applies the improved method to testing and requirements engineering
processes. The paper proposes a way to unite the GQM and improvement
processes as described in Pr2imer. It was noted that the act of taking new
measurement practices in use alone would improve the used practices. The first
time of testing measurement automation using the MetriFlame tool yielded
promising results, which led to studying the possibilities to automate
measurement data collection and analysis. The two case studies discussed in the
paper originate from ABB Transmit Oy Relays and Network Control, and
Valmet Automation.

 154

10.2.2 Paper IV

Paper IV proposes a measurement automation process based on goal-driven
measurement. Furthermore, the measurement automation process is presented
and linked to Pr2imer and GQM processes. The paper sets general requirements
for automated measurement tool support, describes the metrics automation
process in detail, discusses experiences of automation, and puts forward the
following points:

− Measurement automation provides many advantages, while simultaneously
requiring planning before automation can take place,

− Data analysis, data sources and scheduling have to be planned in detail, so as
to allow the selected metrics to be automated,

− The optimum for measurement automation would be that an organisation
already had measurement practices in place, and

− Technical solutions and tools play a remarkable role in measurement
automation.

10.3 Product Quality Focused Improvement

10.3.1 Paper V

Paper V describes a change in the improvement strategy. The paper presents
how to move the improvement basis beyond processes, to the quality of the
software. It describes Profes, the product quality driven improvement
methodology, which supplements the Pr2imer method with a product focus. The
main sections of the paper are concerned with:

− Introduction to the background elements

− Description of the Profes improvement methodology

− An example of building and using PPD models in product quality driven SPI.

 155

10.3.2 Paper VI

Paper VI recapitulates the status and design rationale of the Profes improvement
methodology. The enabling technologies for SPI include the following: QIP,
software process and product assessment, Goal-Oriented measurement, process
modelling, and know-how reuse.

10.4 Managing SPI Knowledge

10.4.1 Paper VII

Paper VII recalls the old lesson learnt and highlights the necessity of a need-
based approach in the area of KM driven SPI. The paper discusses unsuccessful
attempts of using a general �Lessons Learnt� database in capturing and sharing
software engineering related knowledge. Based on the analysis of these attempts,
a need-based knowledge capturing process is defined and piloted to gather
information required for a specific software development project. The paper also
recapitulates the background of the KM supported SPI work and describes the
developed solution.

 156

References
Abrahamsson, P. 2002. The Role of Commitment in Software process
Improvement. Acta Univ. Oul. A 386. 158 p.

Abrahamsson, P., Salo, O., Ronkainen, J. & Warsta, J. 2002. Agile Software
Development Methods, Review and Analysis. VTT Publications 478. Espoo,
Finland. 107 p.

Adrion, W. R. 1993. Research Methodology in Software Engineering. Workshop
on Future Directions in Software Engineering, Software Engineering Notes,
Summary of the Dagstuhl. Vol. 18, No. 1.

Bang, S. 2000. CMM Improvements in the fast lane. In the Workshop of
EuroSPI�2000 - European Software Process Improvement. Copenhagen Business
School. November 7�9, 2000. Copenhagen, Denmark.

Barnard, J. & Price, A. 1994. Managing Code Inspection Information. IEEE
Software. March 1994. Pp. 56�69.

Basili, V. R. 1993. Applying the Goal/Question/Metric paradigm in the Experience
Factory. In the 10th Annual CSR Workshop, October 1993. 23 p.

Basili, V. R., Caldiera G. & Rombach, H. D. 1994a. Goal Question Metric
Paradigm. Encyclopaedia of Software Engineering. Vol. 1 ed. John Wiley &
Sons. Pp. 528�532.

Basili, V. R., Caldiera G. & Rombach, H. D. 1994b. Experience Factory.
Encyclopaedia of Software Engineering. Vol. 1. ed. John Wiley & Sons. Pp.
469�476.

Basili, V. R. & Caldiera, G. 1995. Improve Software Quality by Reusing
Knowledge and Experience. Sloan Management Review/Fall. Pp. 55�64.

Basili, V. R. & Rombach, H. D. 1988. The TAME project: Towards
Improvement-Oriented Software Environments, IEEE Transactions on Software
Engineering, Vol. 14, No. 6. Pp. 758�773.

 157

Basili, V. & Seaman, C. 2002. The Experience Factory Organization. IEEE
Software May/June 2002. Pp. 30�31.

Basili, V., Tesoriero, R., Costa, P., Lindvall, M., Rus, I., Shull, F. & Zelkowitz, M.
2001. Building an Experience Base for Software Engineering: A Report on the
First CeBASE eWorkshop. In the proceedings of Third International Conference
of Product Focussed Software Process Improvement. Profes 2001. Eds.
Bomarius, F. & Komi-Sirviö, S. Kaiserslautern, Germany, September 10�13,
2001. Pp. 110�125.

Basili, V. R. & Turner, A. 1975. Iterative Enhancement: A Practical Technique
for Software Engineering. IEEE Transactions on Software Engineering, Vol. 1,
No. 4, 1975. Pp. 390�396.

Basili, V. & Weiss, D. M. 1984. A Methodology for collecting valid software
engineering data. IEEE Transaction on Software Engineering, Vol. 10, No. 6.
Pp. 728�738.

Baskerville, R. 1996. Structural Artifacts in Method Engineering: The Security
Imperative. In the Proceedings of the IFIP TC8 Working Conference on Method
Engineering: Principles of method construction and tool support (eds.
Brinkkemper, S., Lyytinen, K., & Welke, R.) Chapman & Hall, Great Britain.
Pp. 8�28.

Bazzana, G. & Fagnoni, E. 1999. Process Improvement in the Internet Service
Providing. Eds. Messnarz, R. & Tully, C. Better Software Practice for Business
Benefit. Principles and Experiences. IEEE Computer Society. Pp. 267�279.

Beck, K. 1999. Extreme Programming Explained: Embrace Change. Addison-
Wesley. ISBN 0-201-61641-6. 224 p.

Bicego, A., Derks, P., Kuvaja, P. & Pfahl, D. 1999. Product Focussed Process
Improvement: Experiences of Applying the Profes Improvement Methodology at
Dräger. In the Proceedings of Euromicro�99 Conference. September 1999, Milan
Italy. Pp. 55�68.

 158

Bicego, A., Khurana, M., Kuvaja, P. & Lehtonen, J. 1998. SPICE conformant
assessment method for embedded systems, the Profes project report 4.2.B-I.
Version 1.1. September 9, 1998. 26 p.

Birk, A. & Tauz, C. 1998. Knowledge Management of Software Engineering
Lessons Learned. In the proceedings of the Tenth Conference on Software
Engineering and Knowledge Engineering (SEKE 1998). United States of
America, Illinois, Skokie. Knowledge Systems Institute. Pp. 24�31.

Birk, A., Derks, P., Hamann, D., Hirvensalo, J., Oivo, M., Rodenbach, E., van
Solingen, R. & Taramaa, J. 1998. Applications of Measurement in Product-
Focussed Process Improvement: A Comparative Industrial Case Study. In the
Proceedings of the 5th International Metrics Symposium (Metrics�98). Bethesda,
MD. November 20�21, 1998. Pp. 105�108.

Birk, A., Dingsøyr, T. & Stålhane, T. 2002. Postmortem: Never Leave a Project
without It. IEEE Software May/June 2002. Pp. 43�45.

BNQP 2003. Malcolm Baldrige National Quality Award.
http://www.quality.nist.gov/About_BNQP.htm. Accessed: August, 20, 2003.

Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M., MacLeod, G. & Merrit, M. J.
1978. Characteristics of Software Quality. Vol. 1. TRW Series of Software
Technology. Amsterdam, Netherlands.

Boehm, B. W. 1988. A Spiral Model for Software Development and
Enhancement. IEEE Computer, Vol. 21, No. 5. Pp. 61�72.

BootCheck 1997. BootCheck-käyttöohje Versio 1.0. 1997. Nuotio-projekti. 14 p.
(in Finnish).

Briand, L., Differding, C. & Rombach, D. 1997. Practical Guidelines for
Measurement-Based Process Improvement. Software Process Improvement and
Practice Journal, Vol. 2, No. 4. 1997, pp. 253�280.

http://www.quality.nist.gov/About_BNQP.htm

 159

Bryant, A. 2002. Grounding Systems Research: Re-establishing Grounded
Theory. In the proceedings of the 35th Hawaii International Conference on
Systems Sciences. January 7�10, 2002. Big Island, Hawaii. Pp. 253c�263.

Burgess, A. 1995. Mad about or Mad at Measurement. IEEE Software, January
1995. Pp. 115�116.

Card, D. 1991. Understanding Process Improvement. IEEE Software. July 1991.
Pp. 102�103.

Card, D. 1993. What Makes for Effective Measurement. IEEE Software.
November 1993. Pp. 94�95.

Cockburn, A. 2001. Agile Software Development. Addison-Wesley. Boston.
ISBN 0201699699. 256 p.

CMMI. 1999. Capability Maturity Model - Integrated Systems/Software
Engineering, Continuos representation. CMU/SEI. Public-Released Draft. Vol. 1,
Version 0.2b.

CMMI. 2000. CMMISM for Systems Engineering/Software Engineering, Version
1.02. CMU/SEI-2000-TR-028. Carnegie Mellon, Software Engineering Institute.

Conradi, R. & Fuggetta, A. 2002. Improving Software Process Improvement.
IEEE Software. July/August 2002. Pp. 92�99.

Curtis, B., Krasner, H., Shen, V. & Iscoe, N. 1987. On Building Software
Process Models under the Lamppost. Proceedings of the 9th International
Conference on Software Engineering (ICSE 1987). IEEE Computer Society
Press. Monterey. CA. Pp. 96�103.

Daskalantonakis, M. K. 1994. Achieving higher SEI levels. IEEE Software. July
1994. Vol. 11 Issue 4. Pp. 17�24.

Davenport, T. H. & Prusak, L. 1998. Working Knowledge: How Organizations
Manage What They Know. Boston, United States of America. Harvard College
Business School Press, 1998. 199 p.

 160

Debou, C., Courtel, D., Lambert H., Fuchs, N. & Haux, M. 1999. Alcatel�s
Experience with Process Improvement. Eds. Messnarz, R. & Tully, C. Better
Software Practice for Business Benefit. Principles and Experiences. IEEE
Computer Society. Pp. 281�301.

Delmiglio, R., Di Muro, S., Humml, S., Lora, A., Bazzana, G. & Rumi, G. 1999.
From Assessment to Improvement. An Experience in the GSM Application
Domain. Eds. Messnarz, R. & Tully, C. Better Software Practice for Business
Benefit. Principles and Experiences. IEEE Computer Society. Pp. 237�265.

Deming, W. E. 1982. Methods for Management of Productivity and Quality.
George Washington University, Washington, D.C.

Deming, W. E. 1986. Out of the Crises: Quality, Productivity and Competitive
Position. MIT Center for Advanced Engineering Study. Cambridge, MA.

Diaz, M. & Sligo, J. 1997. How software process improvement helped Motorola.
IEEE Software, September-October 1997. Vol. 14, Issue 5. Pp. 75�81.

Dingsøyr, T. 2002. Knowledge Management in Medium-Sized Software Consulting
Companies. Norwegian University of Science and Technology. Tapir Trykkeri.
Trondheim. 238 p.

Drouin, J.-N. 1999. The SPICE Project. In Elements of Software Process
Assessment and Improvement. Eds. El Emam, K. & Madhavji, N. H. IEEE
Computer Society. Los Alamitos, California. 1999. ISBN 0-8186-8523-9. 384 p.

Dutta, S., Lee, M. & Van Wassenhove, L. 1999. Software Engineering in
Europe: A Study of Best Practices. IEEE Software May/June 1999. Pp. 82�89.

Dybå, T. 2000. An Instrument for Measuring the Key Factors of Success in
Software Process Improvement. Empirical Software Engineering, 5. 2001 Kluwer
Academic Publishers, Boston. 2000. Pp. 357�390.

Dyne, K. 1998. Ericsson: Benefits, The Ericsson Strategic Software Initiative. In
the proceedings of the 3rd Annual European Software Engineering Process
Group Conference 1998. London, UK. June 8�11, 1998.

 161

EFQM 2003. European Quality Awards. http://www.efqm.org/welcome.htm.
Accessed: August 20, 2003.

EIA/IS-731. 1998. Electronic Industries Association. Systems Engineering Capability
Model. Washington, DC. http://www.geia.org/eoc/G47/page6.htm. Accessed:
August, 20, 2003.

El Emam, K., Drouin, J. & Melo, W. 1998. SPICE, The Theory and Practice of
Software Process Improvement and Capability Determination. IEEE Computer
Society Press. 486 p.

El Emam, K., Fusaro, P. & Smith, B. 1999. Success Factors and Barriers for
Software Process Improvement. Eds. Messnarz, R. & Tully, C. Better Software
Practice for Business Benefit. Principles and Experiences. IEEE Computer
Society. Pp. 335�371.

ESA. 1994. ESA PSS-05-0 Software Engineering Standards. European Space
Agency. Issue 3. 130 p.

Fenton, N. & Pfleeger, S. 1999. Software Metrics: A Rigorous & Practical Approach.
Second edition. PWS Publishing Company, Boston. ISBN 0-534-95425-1.

Fitzgerald, B. & O�Kane, T. 1999. A Longitudial Study of Software Process
Improvement. IEEE Software May/June 1999. Pp. 37�45.

Florac, W. A. & Carleton, A. D. 1999. Measuring the Software Process. Statistical
Process Control for Software Process Improvement. Massachusetts. Addison-
Wesley Longman, Inc. 250 p.

Florac, W. A., Park, R. E. & Carleton, A. D. 1997. Practical Software Measurement:
Measuring for Process Management and Improvement. CMU/SEI-97-HB-003.
246 p.

Fuggetta, A. 2003. Open source software - An evaluation. Journal of Systems
and Software, Vol. 66, Issue 1. April 15, 2003. Pp. 77�90.

http://www.efqm.org/welcome.htm
http://www.geia.org/eoc/G47/page6.htm

 162

Gilb, T. 1988. Principles of Software Engineering Management. Addison-Wesley.
Reading. MA. ISBN 0-201-19246-2. 442 p.

Glass, R. L. 1994. The Software Research Crisis. IEEE Software November
1994. Pp. 42�47.

GMOD 1992. V-Model: Software Lifecycle Process Model, General Report No.
250, German Ministry of Defence.

Goldenson, D. R. & Herbsleb, J. D. 1995. After the Appraisal: A Systematic Survey
of Process Improvement, Its Benefits, and Factors that Influence Success. Technical
Report. CMU/SEI-95-TR-009. Software Engineering Institute. Pittsburgh. 50 p.

Grady, R. B. 1992. Practical Software Metrics for Project Management and
Process improvement. P T R Prentice Hall, Inc. Englewood Cliffs, New Jersey
07632. ISBN 0-201-60444-2. 270 p.

Gresse, C., Hoisl, B. & Würst, J. 1995. A Process Model for GQM-Based
Measurement. STTI-Report. University of Kaiserslautern. 229 p.

Haley, T. 1996. Software process improvement at Raytheon. IEEE Software.
November, 1996. Pp. 33�41.

Hall, T., Baddoo, N. & Wilson, D. 2001. Measurement in Software Process
Improvement Programmes: An Empirical Study. In the proceedings of IWSM
2000. Springer-Verlag Berlin Heidelberg 2001. LNCS 2006, Pp. 73�82.

Halstead, M. H. 1977. Elements of Software Science. Elsevier, New York, 1997.

Halvorsen, C. P. & Conradi, R. 2001. A Taxonomy to Compare SPI Frameworks.
V. Ambriola (ed.). In the proceedings of Software Process Technology, the 8th
European Workshop, EWSPT 2001, LNCS 2077, Witten, Germany, June 19�21.
Pp. 217�235.

 163

Hamann, D., Järvinen, J., Birk, A. & Pfahl, D. 1998. A Product-Process
Dependency Definition Method. In the proceedings of the Euromicro Workshop
on Software Process and Product Improvement. Ed. Chroust, G. Västerås
Sweden. August 25�27, 1998. Pp. 898�904.

Haug, M., Olsen, E. W. & Consolini, L. 2001. Software Quality Approaches: Testing,
Verification and Validation. Software Best Practice 1. ESSI Practitioners� Reports.
Springer-Verlag Berlin Heidelberg New York. 302 p.

Heath, H. & Cowley, S. 2004. Developing a grounded theory approach: a
comparison of Glaser and Strauss. International Journal of Nursing Studies, Vol.
41. Pp. 141�150.

Heijstek, A. 1998. Ericsson Netherlands Efforts to Reach CMM Level 4. In the
Proceedings of The European Conference on Software Process Improvement,
SPI 1998. December 1�4, 1998. Monte Carlo. 1 p.

Henninger, S. & Schlabach, J. 2001. A Tool for Software Development
Knowledge. In the proceedings of Third International Conference of Product
Focussed Software Process Improvement. Profes 2001. Eds. Bomarius, F. &
Komi-Sirviö, S. Kaiserslautern, Germany, September 10�13, 2001. Pp. 182�195.

Herbsleb, J., Carleton, A., Rozum, J., Siegel, J. & Zubrow, D. 1994. Benefits of
CMM-based Software Process Improvement: Executive Summary of Initial
Results. Special report. CMU/SEI-94-SR-013. September 1994. 16 p.

Hollenbach, C., Young, R., Pflugard, A. & Smith, D. 1997. Combining Quality
and Software Improvement. Communications of the ACM, Vol. 40, No. 6. Pp.
41�45.

Humphrey, W. S. & Sweet, W. L. 1987. A Method for Assessing the Software
Engineering Capability of Contractors. Preliminary Version. CMU/SEI-87-TR-23.
Software Engineering Institute, Carnegie Mellon University. Pittsburgh, Pennsylvania.

Humphrey, W. S. 1989. Managing the Software Process. In: SEI Series in
Software Engineering. Massachusetts: Addison-Wesley Publishing Company.
ISBN 0-201-18095-2. 494 p.

 164

IEEE Std 1061-1998. 1998. IEEE Standard for Software Quality and Metrics
Methodology. IEEE-SA Standards Board, December 8, 1998. 20 p.

IPD-CMM. 1997. Integrated Product Development Capability Maturity Model,
Version 0.98. Enterprise Process Improvement Collaboration and Software
Engineering Institute. Carnegie Mellon University.

Ishikawa, K. 1985. What is Total Quality Control? The Japanese way. Prentice-
Hall, Englewood Cliffs, N.J.

ISO/IEC 12207. 2002. Information Technology � Software life cycle processes.
Geneva, Switzerland. 53 p.

ISO/IEC 14598-1. 1999. Information technology � Software product evaluation
� Part 1: General overview. Geneva, Switzerland. 19 p.

ISO/IEC 15504-2. 1998. Information Technology � Software Process Assessment
� Part 2: A reference model for processes and process capability. Technical
Report type 2. CH-1211 Geneva, Switzerland. 44 p.

ISO/IEC 15504-5. 1998. Information Technology � Software Process Assessment
� Part 5: An assessment model and indicator guidance. Technical Report type 2.
128 p.

ISO/IEC 15504-7. 1998. Information Technology � Software process assessment
� Part 7: Guide for use in process improvement. Technical report type 2. 36 p.

ISO/IEC 15504-9. 1998. Information Technology � Software Process Assessment
� Part 9: Vocabulary. Technical Report. 11 p.

ISO/IEC 9000-3. 1997. Guidelines for the application of ISO 9001:1994 to the
development, supply, installation and maintenance of computer software. Internal
Organization for Standardization. 32 p.

ISO 9000. 2000. Quality management systems � Fundamentals and Vocabulary.

ISO/IEC 9001. 2000. Quality management systems � Requirements. 23 p.

 165

ISO/IEC 9126-1. 2001. Software engineering � Product quality � Part 1: Quality
model. 25 p.

ISO/IEC 9126-2. 2003. Software engineering � Product quality � Part 2: External
metrics. Technical report. 86 p.

ISO/IEC 9126-3. 2003. Software engineering � Product quality � Part 3: Internal
metrics. Technical report. 62 p.

Jakobsen, A. B. 1998. Bottom-up Process Improvement Tricks. IEEE Software
January-February 1998. Pp. 64�68.

Juran, J. M. 1999. Juran's Quality Handbook. Eds. Juran, J. M. & Godfrey, A. B.
The 5th edition 1999. McGraw-Hill. ISBN 0-07-034003-X. 1872 p.

Järvinen, P. 1999. On Research Methods. Opinpaja Oy, Tampere, Finland. ISBN
951-97113-6-8. 129 p.

Kaplan, R. S. & Norton, D. P. 1996. The Balanced Scorecard: Translating Strategy
into Action. Boston: Harvard Business School Press. ISBN 0875846513. 336 p.

Kasse, T. & McQuaid. 1998. Entry Strategies into the Process Improvement
Initiative. Software Process- Improvement and Practice, Vol. 4. Pp. 73�88.

Kauppinen, M. & Kujala, S. 2001. Starting Improvement of Requirements
Engineering Processes: An Experience Report. In proceedings of Third
International Conference of Product Focussed Software Process Improvement.
Profes 2001. Eds. Bomarius, F. & Komi-Sirviö, S. Kaiserslautern, Germany,
September 10�13, 2001. Pp. 196�209.

Kautz, K. & Nielsen, P. A., 2000. Implementing Software Process Improvement:
Two Cases of Technology Transfer. In the proceedings of the 33rd Annual
Hawaii International Conference, HICS 2000. System Sciences. January 4�7,
2000. Pp. 2516�2525.

 166

Kinnula, A. 1999. Software Process Engineering in a Multi-Site Environment,
an architectural design of a software process engineering systems. University of
Oulu. ISBN 951-42-5302-7. 119 p.

Kinnula, A. 2001. Software Process Engineering Systems: Models and Industry
Cases. Department of Information Processing Science, University of Oulu. 2001.
115 p.

Kitchenham, B. 2000. Software Metrics: Measurements for Software Process
Improvement. Blackwell, USA, 1996. ISBN 1-85554-820-8.

Kneuper, R. 2002. Supporting Software Processes Using Knowledge Management.
Ed. Chang, S. K. Handbook of Software Engineering & Knowledge Engineering.
Vol. 2. Emerging Technologies. World Scientific. Singapore. ISBN 981-02-4974-8.
Pp. 579�606.

Knots-Q 2002. Knowledge-centered tools and methods for software production
quality, the project plan. VTT Electronics. September, 2002. 17 p. Project www
pages: http://www.vtt.fi/ele/research/soh/projects/knots-q/index.html. Accessed
October 14, 2003.

Komi-Sirviö, S. 1995. ProMETRI - Ohjelmistoprosessin mittaaminen. Systeemityö,
Vol. 2, No. 3. Pp. 24�28. (In Finnish).

Kucza, T., Nättinen, M. & Parviainen, P. 2001. Improving Knowledge Management
in Software Reuse Process. In the proceedings of the Third International
Conference of Product Focused Software Process Improvement, Profes 2001.
Kaiserslautern, Germany, September 10�13. Springer. Pp. 141�152.

Kunzmann-Combelles, A. 1996. From Assessment to Improvement Actions.
Compared Examples with CMM and SPICE Models. In the proceedings of the
Fifth European Conference on Software Quality. Ireland. 1996. Pp. 60�67.

Kuvaja, P. & Bicego, A. 1993. BOOTSTRAP: Europe�s assessment method.
IEEE Software, Vol. 10, No. 3. May 1993. Pp. 93�95.

http://www.vtt.fi/ele/research/soh/projects/knots-q/index.html

 167

Kuvaja, P., Similä, J., Krzanik, L., Bicego, A., Saukkonen, S. & Koch, G. 1994.
Software Process Assessment & Improvement � The BOOTSTRAP Approach.
Blackwell Publishers. ISBN 0-631-19663-3. 149 p.

Känsälä, K. 1995. ProHAKE - kohti ohjelmistotuotannon parempaa hallintaa.
Systeemityö, Vol. 2, No. 3. (In Finnish).

Lanzerstorfer, S. & Scherzer, H. 1999. Applying Quantitative ISO Auditing
techniques � The BICO Approach. Eds. Messnarz, R. & Tully, C. Better Software
Practice for Business Benefit. Principles and Experiences. IEEE Computer
Society. Pp. 373�387.

van Latum, F., van Solingen, R., Oivo, M., Hoisl, B., Rombach, D. & Ruhe, G.
1998. Adopting GQM-based measurement in an industrial environment. IEEE
Software January/February 1998. Pp. 78�86.

Lehman, M. M. 1995. Process improvement - the way forward. IEE Colloquium
on Are Software Development Technologies Delivering Their Promise? Savoy
place, London, March 21, 1995. Pp. 10/1�10/4.

Lepasaar, M., Varkoi, T. & Jaakkola, H. 2001. Models and Success Factors of
Process Change. In proceedings of Third International Conference of Product
Focussed Software Process Improvement. Profes 2001. Eds. Bomarius, F. &
Komi-Sirviö, S. Kaiserslautern, Germany, September 10�13, 2001. Pp. 68�77.

Liebowitz, J. 2002. A Look at NASA Goddard Space Flight Center�s Knowledge
Management Initiatives. IEEE Software May/June 2002. Pp. 40�42.

Linders, B. 2001. Ericsson: From Staged CMM to Continuous CMMI (and
back). In SPIder conference, September 25, 2001. Utrech, Netherlands.
http://www.st-spider.nl/Plenary/20010925. Accessed August 21, 2003.

Lindvall, M. & Rus, I. 2003. Knowledge Management for Software Organizations.
In: Managing Software Engineering Knowledge. Aurum, A., Jeffery, R., Wohlin, C.
& Handzic, M. (eds.). Springer, 2003. Pp. 73�94.

http://www.st-spider.nl/Plenary/20010925

 168

Lindvall, M., Rus, I., Jammalamadaka, R. & Thakker, R. 2001. Software Tools
for Knowledge Management, DACS State-of-the-Art-Report. The Data & Analysis
Center for Software (DACS) is a Department of Defense (DoD) Information
Analysis Center (IAC). 2001. 55 p.

Mashiko, Y. & Basili, V. R. 1997. Using the GQM paradigm to Investigate
Influential Factors for Software Process Improvement. J. Systems Software 1997,
Vol. 36. Pp. 17�32.

McCabe, T. J. 1976. A Complexity Measure. IEEE Transaction on Software
Engineering, Vol. 2, No. 4. Pp. 308�320.

McCall, J. A., Richards, P. K. & Walters, G. F. 1977. Factors in Software
Quality, Vol. 1 (AD/A-049-014 168 p.), Vol. 2 (AD/A-049-015 155 p.), and
Vol. 3 (AD/A-049-055 41p). NTIS. US Rome Air Development Center Reports.
Sprinfield, Virginia, National Technical Information Service.

McConnell, S. 2002. Real Quality for Real Engineers. IEEE Software, Vol. 19,
Issue 2, March/April 2002 Pp. 5�7.

McFeeley, B. 1996. IDEALSM: A User's Guide for Software Process Improvement.
Pittsburgh, Pennsylvania 15213: CMU/SEI-96-HB-001. 222 p.

McGuinness, É. 1996. Achieving Increases in Software Process Maturity, some
Irish Case Studies. In the Proceedings of the Fifth International Conference on
Software Quality. Dublin. Ireland September 16�20, 1996. Pp. 295�304.

McGuinness, É. 1999. Aiming for Increases in Software Process Maturity. Eds.
Messnarz, R. & Tully, C. Better Software Practice for Business Benefit.
Principles and Experiences. IEEE Computer Society. Pp. 331�353.

McGuire, E. G. 1996. Profiling Quality Management Practices in Software
Process Improvement. In the Proceedings of the Fifth European Conference on
Software Quality. Dublin. Pp. 50�59.

 169

Mellor, P. 1992. Failures, faults and changes in dependability measurement.
Information and Software Technology, Vol. 34, Issue 10.23, October 1992. Pp.
640�654.

Messnarz, R. & Tully, C. 1999. Better Software Practice for Business Benefit.
Principles and Experiences. IEEE Computer Society. 393 p.

Mills, H. D., O�Neill, D., Linger, R. C., Dyer, M. & Quinnan, R. E. 1980. The
Management of Software Engineering. IBM System Journal, Vol. 24, No. 2.
Pp. 414�477.

Mowshowitz, A. 1997. Virtual Organization. Communications of the Association
for Computing (ACM), Vol. 40, No. 9. Pp. 30�37.

Möller, K.-H. & Paulish, D. J. 1993. Software metrics: a practitioner�s guide to
improved product development. Chapman & Hall Computing. IEEE, London,
Piscataway, NJ. ISBN 0-412-45900-0.

NASSCOM. 2000. Annual NASSCOM Report. Available at
http://www.nasscom.org/. Accessed October 1, 2003.

Niazi, M., Wilson, D., Zowghi, D. & Wong, B. 2004. A Model for Implementation
of Software Process Improvement: An Empirical Study. In proceedings of the 5th
International Conference on Product Focused Software Process Improvement,
PROFES 2004. Eds. Bomarius, F. & Iida, H. Kansai Science City, Japan. April
5�8, 2004. Pp. 1�16.

Niemelä, E., Kuikka S., Vilkuna, K., Lampola M., Ahonen, J., Forssel, M.,
Korhonen, R., Seppänen, V. & Ventä, O. 2000. Teolliset komponenttiohjelmistot,
kehittämistarpeet ja toimenpide-ehdotukset. TEKES Teknologiakatsaus 89/00.
Helsinki: Paino-Center Oy. ISBN 952-9621-86-8. 129 p. (Mainly in Finnish).

Niiniluoto, I. 1993. The Aim and Structure of Applied Research. Erkenntnis 38.
Netherlands: Kulver Academic Publishers. Pp. 1�21.

Noguchi, J. 1995. The Legacy of W. Edwards Deming. Quality Progress,
December 1995. Pp. 35�37.

http://www.nasscom.org/

 170

Nonaka, I. & Takeuchi, H. 1995. The Knowledge-Creating Company: How
Japanese Companies Create the Dynamics of Innovation. United States of
America, New York. Oxford University Press. ISBN 0-18-509269-4. 284 p.

Offutt, J. 2002. Quality Attributes of Web Software Applications. IEEE
Software, Vol. 19, Issue 2, March/April 2002. Pp. 25�32.

Oivo, M. 1994. Quantitative management of software production using object-
oriented models. VTT Publications 169. Espoo 1994. 72 p.

Oivo, M. & Basili, V. 1992. Representing Software Engineering Models: The
TAME Goal Oriented Approach. IEEE Transactions on Software Engineering,
Vol. 18, No. 10, October 1992. Pp. 886�898.

Oivo, M., Birk, A., Komi-Sirviö, S., Kuvaja, P. & van Solingen, R. 1999.
Establishing product-Process dependencies in SPI. In the proceedings of
European Software Engineering Process Group. European SEPG�99. Amsterdam,
The Netherlands. June 7�10, 1999. 12 p.

Olve, N.-G., Roy, J. & Wetter, M. 1999. Performance Drivers. A Practical Guide
to Using the Balanced Scorecard. John Wiley & Sons Ltd. Chichester. UK. 347 p.

Ould, M. A. 1996. CMM and ISO 9001. Software Process � Improvement and
Practice, Vol. 2. Pp. 281�289.

Parviainen, P., Järvinen, J. & Sandelin, T. 1997. Practical Experiences of Tool
Support in a GQM-based measurement Programme. Software Quality Journal,
Vol. 6. Pp. 283�294.

Paulk, M. C. 1995. How ISO 9001 compares with the CMM. IEEE Software,
January 1995, Vol. 12, No. 1. Pp. 74�83.

Paulk, M. C., Weber, C. V., Curtis, B. & Chrissis, M. B. 1994. The Capability
Maturity Model for Software, Guidelines for Improving the Software Process.
Addison-Wesley Publishing Company, Inc. 441 p.

 171

Paulk, M., Weber, C., Garcia, S., Chrissis, M. & Bush, M. 1993. Capability Maturity
Model for Software, version 1.1. SEI-93-TR-024. Software Engineering Institute.

Pfleeger, S. L. & Rombach, H. D. 1994. Measurement Based Process Improvement.
IEEE Software, July 1994. Pp. 9�11.

Pfleeger, S. L., Jeffery, R., Curtis, B. & Kitchenham, B. 1997. Status Report on
Software Measurements. IEEE Software March/April 1997. Pp. 33�42.

Pourkomeylian, P. 2002. Software Practice Improvement. Doctoral Dissertation.
Göteborg University. ISSN 1400-741X. 142 p.

Profes PPD Repository. 1999. Understanding Patterns of Product/Process Dependence
(PPD). www.iese.fhg.de/projects/profes/ppdrepository/ppdrepository.html.
Accessed 05.06.2003.

Profes User Manual. 1999. Final version. 338 p. www.vtt.fi/ele/profes/index.html.
Accessed 29.05.2003.

PSM � Part 1. 2000. Practical Software and Systems Measurement. A Foundation
for objective Project Management. Measurement Process. Version 4.0b.
Department of Defence and US Army. 28 p.

PSM � Part 4. 2000. Practical Software and Systems Measurement. A Foundation
for objective Project Management. Apply Measures. Version 4.0b. Department
of Defence and US Army. 52 p.

PSM � Part 7. 2000. Practical Software and Systems Measurement. A Foundation
for objective Project Management. Evaluate Measurement. Version 4.0b. Department
of Defence and US Army. 20 p.

Quinn, B. 1996. Lessons Learned from the Implementation of a Quality
Management System to meet the Requirements of ISO 9000/TickIT in two
Small Software Houses. In the proceedings of the Fifth European Conference on
Software Quality. Dublin, Ireland. September 16�20, 1996. Pp. 305�314.

 172

Rahikkala, T. 2000. Towards virtual software configuration management. VTT
Publications 409. Espoo: VTT. ISBN 951-38-5567-8. 110 p. + app. 57 p.

Rapoport R. N. 1970. Three Dilemmas in Action Research. Human Relations,
Vol. 23, No. 6. Pp. 499�513.

Reel, J. S. 1999. Critical Success factors in Software Projects. IEEE Software
May/June 1999. Pp. 18�23.

Rifkin, S. 2001. What makes Measuring Software So Hard? IEEE Software
May/June 2001. Pp. 41�45.

Rodenbach, E., van Latum, F. & van Solingen, R. 2000. SPI - A Guarantee for
Success? � A Reality Story from Industry. In proceedings of Second International
Conference of Product Focussed Software Process Improvement. Profes 2000.
Eds. Bomarius, F. & Oivo, M. Oulu. Finland. June 2000. Pp. 216�231.

Roihu 1996. Projektisuunnitelma 1996�1997. Aliprosessien kehittäminen ja
tulosten mittaaminen (Improvement and measurement of sub processes). A project
plan. 10 p. 15 p. (In Finnish).

Ronkainen, J. 2003. Automatic Measurement of Change Control in a Virtual
Software Corporation. Diploma thesis, Oulu University. 63 p.

Royce, W. 1970. Managing the Development of Large Software Systems:
Concepts and Techniques, Proceedings of IEEE WESCON. Pp. 1�9.

Ruhe, G. 2001. Learning Software Organizations. Ed. Chang, S. K. Handbook of
Software Engineering & Knowledge Engineering. Vol. 1. Fundamentals. World
Scientific. Singapore. ISBN 981-02-4973-X. Pp. 663�667.

Rus, I. & Lindvall, M. 2002. Knowledge Management in Software Engineering.
IEEE Software May/June 2002. Pp. 26�38.

 173

Sanders, P. 1997. Memorandum for software management review council
(SMRC). Practical Software Measurement: A Guide to Objective Program
Insight. Washington. 1 p. Accessed August 29, 2003.
http://www.stsc.hill.af.mil/crosstalk/1997/09/memorandum.asp.

SCAMPI 2001. Standard CMMI® Appraisal Method for Process Improvement
(SCAMPISM), Version 1.1: Method Definition Document. CMU/SEI-2001-HB-001.
245 p.

Schneider, K. & von Hunnius, J.-P. 2003. Effective Experience Repositories for
Software Engineering. In the Proceedings of the 25th International Conference on
Software Engineering. ICSE 2003. Portland, Oregon, 3�10 May 2003. Pp. 534�539.

Schwaber, K. & Beedle, M. 2002. Agile Software Development with SCRUM.
Prentice-Hall. Upper Saddle River, NJ. ISBN 6130676349. 150 p.

SCOPE. 1993. Software Certification on Program in Europe. Esprit 2 project.
Http:/www.cordis.lu/. Accessed August 29, 2003.

SE-CMM. 1995. A Systems Engineering Capability Maturity Model SM,
Version 1.1. CMU-SEI-95-MM-003. Software Engineering Institute.

Seppänen, V., Kähkönen, A., Oivo, M., Perunka, H., Isomursu, P. & Pulli. P.
1996. Strategic Needs and Future Trends of Embedded Software. Technology
review 48/96. Tekes report.

Shewhart, W. A. 1931. Economic control of quality of manufactured product.
New York: Van Nostrand.

Simon, J. 1999. Software Process Identification: A Case study Using the
ISO/IEC 12207 Software Life Cycle Process Standard. Eds. Messnarz, R. & Tully,
C. Better Software Practice for Business Benefit. Principles and Experiences.
IEEE Computer Society. Pp. 303�315.

Sintonen, M. 1990. Basic and applied sciences � can the distinction (still) be
drawn? Science Studies 3:2. Pp. 23�31.

http://www.stsc.hill.af.mil/crosstalk/1997/09/memorandum.asp

 174

Soihtu 1996. Projektisuunnitelma 1996�1997. Sulautettujen Ohjelmistoprosessien
kehittäminen tukijärjestelmien avulla. (Improvement of embedded software
development utilising support systems). A project plan. 10 p. (In Finnish).

van Solingen, R. & Berghout, E. 1999. The Goal/Question/Metric Method: A
Practical Guide for Quality Improvement of Software Development. London,
UK. The McGraw-Hill Companies. 199 p.

van Solingen, R. & Berghout, E. 2001. On Software Engineering and Learning
Theory Facilitating Learning in Software Quality Improvement programs. Ed.
Chang, S. K. Handbook of Software Engineering & Knowledge Engineering.
Vol. 1. Fundamentals. World Scientific. Singapore. ISBN 981-02-4973-X.
Pp. 679�696.

van Solingen, R., Derks, P. & Hirvensalo, J. 1999a. Product Focused SPI in the
Embedded Systems Industry. In the proceedings of the International Conference
on Product Focussed Software Process Improvement, Profes�99. VTT Symposium
195. VTT Technical Research Centre of Finland, Espoo, Finland 1999. Pp. 86�98.

van Solingen, R., Derks, P. & Hirvensalo, J. 1999b. Product Focussed Process
Improvement in the Embedded Systems Industry. In the proceedings of the 10th
European Software Control and Metric Conference (ESCOM�99). Herstmonceux,
England. April 27�29, 1999. Pp. 345�353.

van Solingen, R., van Uijtregt, A., Kusters, R. & Trienekens, J. 1999c. Tailoring
Product Focused SPI � Application and Customisation of Profes in Tokheim. In
the proceedings of International Conference on Product Focussed Software
Process Improvement, Profes�99. VTT Symposium 195. VTT Technical Research
Centre of Finland, Espoo, Finland 1999. Pp. 363�377.

SPACE-UFO. 1998. Software Product Advanced Certification and Evaluation.
Esprit 4 project number 22292. Http:/www.cordis.lu/. Accessed August 29, 2003.

Straub, D. W. 1989. Validating Instruments in MIS Research. MIS Quarterly,
June 1989. Pp. 147�169.

 175

Sulka-P 1994. Metriikkatyökalut ohjelmistotuotannossa, the Sulka-P project
report, version 1.0. VTT Electronics. 44p. (In Finnish).

SWEBOK. 2001. Guide to the Software Engineering Body of Knowledge. Stone
Man Trial Version 1.0 May 2001. A Project of the Software Engineering
Coordinating Committee. IEEE Computer Society. 219 p.

Tanner, H. 2000. Pr2imer-prosessinparantamismenetelmän kehittäminen yritys-
kokemusten perusteella. Master�s thesis. University of Oulu. 75 p. (In Finnish).

Tauriainen, A. 1999. Experience Capturing process and Its Enactment. Master
Thesis. University of Oulu, Department of Information Processing Science. 103 p.

TickIT 2001. The TickIT guide, Executive Overview. January 2001, Issue 5.0. 6 p.
http://www.tickit.org/overview.pdf. Accessed October 14, 2003.

Totem 2001. Knowledge Management Process and Methodologies and their
application in Software Process Improvement, the project plan. VTT Electronics.
January 2001. 27 p.

Tolvanen, J.-P. 1998. Incremental Method Engineering with Modelling Tools,
Teoretical Principles and Empirical Evidence. University of Jyväskylä. Jyväskylä
studies in computer science, economics and statistics 47. 301 p.

VASIE 2003. VASIE database. Maintained by Software Engineering Institute.

Wang, Y. & King, G. 2000. Software Engineering Processes, Principles and
Applications. CRC Press LLC. ISBN 0-8493-2366-5. 708 p.

Watzman, A. & Perdue, J. 2002. Carnegie Mellon Announces Update of Capability
Maturity Model for Software. Pittsburgh. Press Release. October 28, 2002.

Webster, J. & Watson, R. T. 2002. Analysing the Past to Prepare for the Future:
Writing a Literature Review. MIS Quarterly, Vol. 22, No. 2. Pp. xiii�xxiii/June 2002.

Wei, C.-P., Hu, P. J.-H. & Chen, H.-H. 2002. Design and Evolution of a
Knowledge Management System. IEEE Software May/June 2002. Pp. 56�59.

http://www.tickit.org/overview.pdf

 A1

Appendix A: Success Factor Criteria

Success Factor Criteria for SPI Methods

1. Does the method support different SPI approaches?

2. Does the method support participation of all affected parties?

3. Does the method support co-operation with software engineers?

4. Does the method support planning and carrying out training as a part of the
initiative?

5. Does the method support commitment of top managers?

6. Does the method support commitment of middle managers?

7. Does the method support commitment of engineers?

8. Does the method support developing improved solutions on a case-by-case
basis?

9. Does the method support clarifying the current status of processes?

10. Does the method support establishing a link between business goals and
improvement goals?

11. Does the method support measurable improvement goals?

12. Does the method support generating an improvement plan?

13. Does the method support developed solutions are tested in a pilot project?

14. Does the method support using metrics in monitoring improvement actions
and results?

15. Does the method support the sustainability of an improvement initiative?

 B1

Appendix B: Original Success
Factor Statements

Grouped Success Factors
Commitment References
Managers 17
Start at the top. Senior management leadership is required to launch the
change effort and to provide continuing resources and priority.

Humphrey 1989

The commitment of senior management has to be 100%, and the support
has to be visible

Delmiglio et al. 1999

The role of a sponsor is critical for success. SPI needs strong, visible and
active senior management sponsorship with an accompanying vision,
otherwise SPI gives moderate results, flags, or even a total failure.

McGuinness 1996,
1999

The leadership role, from senior management to middle management Kunzmann-
Combelles 1996

Commitment is crucial and should be present at all levels including high-
level management, project management and software engineers.

Rodenbach et al.2000

Management commitment and a strong project management are key success
factors.

Lanzerstorfer et
Scherzer 1999

Commitment to improvement. In a company, re-organisations and changes
in management were to set back the improvement program many times.

Quinn 1996

The commitment of the company to SPI activities Lepasaar et al. 2001
Management commitment is often sought at the beginning of the
improvement actions, but it should be addressed continually.

Rodenbach et al. 2000

The audits performed by a customer boost the improvement actions and
help to sustain management commitment

Delmiglio et al. 1999

Ensuring management support Kauppinen & Kujala
2001

To motivate people for continuous process improvement, a rewarding
system for reported problems and suggested improvements is important.

Conradi & Fuggetta
2002

Staff and time resources should be made available to SPI El Emam et al. 1999
Software process improvement requires investment. It takes planning,
dedicated people, management time, and capital investment

Humphrey 1989

Readiness to invest resources in SPI Lepasaar et al. 2001
Availability of company�s own resources Lepasaar et al. 2001
Distribution of information about what is going on greatly facilitates buy-in. Lanzerstorfer &

Scherzer 1999
Engineers 4
Preparing the field for improvement by personally talking to people and
clarifying their aims and wishes regarding improvement facilitates future
planning and makes people more committed to the forthcoming work.

Jakobsen 1998

Reviews are a very good way of spreading out knowledge and building
team spirit.

Jakobsen 1998

 B2

The commitment of software engineers is important as well, and often
underestimated too. There is a big risk involved in imposing fully-fledged
solutions from standards and best practices to engineers.

Rodenbach et al. 2000

The commitment of engineers is achieved by introducing improvements
that are based on their own ideas.

Rodenbach et al. 2000

Cultural Issues 7
The roles of cultural, learning, and long-term dimensions of SPI work are
emphasised, and establishing participative engagement in all process
changes is recommended.

Conradi & Fuggetta
2002

Increased emphasis on team-based, quality-focused, and process-dependent
organisational culture and structure.

McGuire 1996

Organisational culture and related change management strategy coupled
with appropriate training and information sessions can have a substantial
effect on the rate of improvement progress

McGuire 1996

Cultural specialities at national and company levels need to be understood
in order to be able to speak the same language

Debou et al. 1999

Successful SPI programs cannot be transferred as such from another
culture. Different countries, companies, types of site, they all form different
cultural entities.

Rodenbach et al. 2000

Change may call for a culture change in addition to changes at process or
technology level. Basically, cultural changes require that the personnel
understand the reason for the change.

Kauppinen & Kujala
2001

SPI assumes cultural changes, so we need expertise from social sciences Conradi & Fuggetta
2002

Improvement Management 38
General Guidance 19
The willingness of management to take risks Goldenson &

Herbsleb 1995
SPI monitoring by senior management Goldenson &

Herbsleb 1995
SPI monitoring by senior management El Emam et al. 1999
SPI is about learning � not control, as in QA Conradi & Fuggetta

2002
Understanding of technical issues by senior management Goldenson &

Herbsleb 1995
Be out there. If a quality-concerned group operates by itself, it easily
becomes isolated form projects. The quality group needs to spread out and
give hands on support to projects. One good way is to select a quality
concerned person from the development group and assign him or her to a
process concerned person.

Jakobsen 1998

Investment in teamwork operating with the �your success is my success�
principle is likely to pay back.

Jakobsen 1998

Combination of technical and methodological aspects Bazzana & Fagnoni
1999

SPI should be run faster than the development project, thus the complexity
and product size will not override the improvement efforts made on project
level.

Delmiglio et al. 1999

New technology and tools are often a necessity for successful SPI Delmiglio et al. 1999

 B3

An SPI approach should utilise different improvement approaches along the
different SPI initiatives phases

Delmiglio et al. 1999

An SPI method has to be tailorable; �It is a dream to think that the same
improvement approach can be applied everywhere, p. 283�.

Debou et al. 1999

From the methodological point of view, in addition to willingness for
change, a success factor can be found in wise interpretation of ISO 9001
and CMM

Debou et al. 1999

Mid-managers play a big role in SPI. It is also recommended to dampen any
overly positive expectations of the engagement parties; achieving
convincing and repeatable results may take some time.

Conradi & Fuggetta
2002

Before starting any huge assessment efforts, the organisation�s readiness for
improvement should be ensured. It is argued that the assessment process has
been greatly overemphasised and that it should be seen only as a starting
point, in their words as �just a tiny part of the iceberg�(p. 282).

Debou et al. 1999

It is critical to define the strategy for proceeding from assessment results to
implementation of actions. The experience has shown that if too much time
elapses from the assessment to the first impact on projects, the motivation is
likely to decrease at all levels.

Debou et al. 1999

Improvement program needs to be guided by an improvement approach or a
life cycle. There is no point in the program if there is no plan for managing
improvement actions.

McGuinness 1996,
1999

A strong participation of as many of the people involved as possible has to
be ensured. Improvement should be carried out �by people to people�.
While any imposed solutions are likely to be strongly opposed, serious
actions are appreciated by engineers.

McGuinness 1996,
1999

Large organisations have to survey all of the methods and approaches
available on the market before piloting or implementing solutions across the
company.

McGuinness 1996,
1999

Staffing the SPI Initiative 13
SPI people should be well respected Goldenson &

Herbsleb 1995
A self test for analysing what kind of persons should be allocated to
different projects tasks is proposed; psychological competence model.

Jakobsen 1998

SPI people should be well respected El Emam et al. 1999
SPI program has to be staffed by SPI experts, middle managers and affected
staff members.

Delmiglio et al. 1999

Clear, compensated SPI assignments Goldenson &
Herbsleb 1995

Compensated SPI responsibilities El Emam et al. 1999
Involvement of people from different departments Bazzana & Fagnoni

1999
Ultimately, everyone must be involved. Software Engineering is a team
effort, and anyone who does not participate in improvement will miss the
benefits and may even inhibit progress

Humphrey 1989, p.
19

Use of improvement teams formed of experienced practitioners Kauppinen & Kujala
2001

Technical staff involvement in SPI Goldenson &
Herbsleb 1995

 B4

Involvement of technical staff in SPI is one of the most critical issues El Emam et al. 1999
Human resources are the key to success. Tasks should be occupied by the
right persons and skills. For example, developers gained early success once
they took over their own key practices.

Quinn 1996

It is important to establish clear responsibilities and also to set up a
mechanism for implementing changes in practice, in the form of a project.

Quinn 1996

Training 8
Change is difficult to accomplish. Mistrust and protectionism can be
overcome by open discussion, training and awareness sessions conducted,
for example, by an external consultant.

Quinn 1996

Specific, just-in-time training and information enhance team performance. McGuire 1996
Training program has to be defined, and performed regularly Delmiglio et al. 1999
Focus on the significance of internal training Bazzana & Fagnoni

1999
Companies underline the role of training, it needs to planned carefully and
have clear objectives.

McGuinness 1996,
1999

SPI related training Lepasaar et al. 2001

It should be planned how to maintain a continuous progression of the
project, by using, e.g., small review sessions several times per week.

Jakobsen 1998

Practical support offered by an internal support group is decisive. Support
should be provided as implementation assistance, coaching all the way
through the project, in gathering measurement data and analysing it, and in
form of assuring management commitment.

Rodenbach et al. 2000

Plan 26
Current State Analysis 8
Effective change requires a goal and knowledge of the current process. To
use a map, you must know where you are.

Humphrey 1989

Using audits to start the improvement actions proved to be successful. Quinn 1996
Developers are motivated for change; if possible, start bottom-up with
concrete initiatives

Conradi & Fuggetta
2002

SPI program is best started with assessment performed by an external actor Delmiglio et al. 1999
The different variations of CMM assessment used by the case companies to
initiate SPI programs showed equally good results. While the type of
assessment may vary, a clear picture of the starting point is a necessity for
SPI.

McGuinness 1996,
1999

It is not recommended to start with a large assessment, but rather to use a
simple and focused scorecard.

Conradi & Fuggetta
2002

It is proposed to use multidisciplinary improvement teams to perform
empirical studies on how people actually work.

Conradi & Fuggetta
2002

�Common sense is the most valuable tool of a process improvement expert.
If you are an expert, you don�t need a quantitative assessment to identify
major improvement potentials� (Lanzerstorfer et Scherzer 1999, p. 378).

Lanzerstorfer &
Scherzer 1999

Goal Definition 11
Link to business goals and active role of business managers are important
for success.

Debou et al. 1999

 B5

SPI Framework should support improvement strategies focusing on goal-
orientation and product innovation

Conradi & Fuggetta
2002

SPI initiatives need to be directed at business goals, while also starting with
addressing the most pressing needs of the company or project.

Conradi & Fuggetta
2002

The model used for appraisal is not as important as the role of business
goals

Kunzmann-
Combelles 1996

SPI goals should be well understood Goldenson &
Herbsleb 1995

Improvement goals have to be realistic and visible, while the improvement
steps have to start small, one SPI effort at a time.

Conradi & Fuggetta
2002

Start from the problems, not the solutions. Jakobsen 1998
The capability to select realistic improvement actions Kauppinen & Kujala

2001
Setting measurable goals Kauppinen & Kujala

2001
Measurable targets set for SPI work Lepasaar et al. 2001
It is important to ensure that SPI goals are well understood El Emam et al. 1999
Improvement Planning 7
Deployment requires a detailed plan Delmiglio et al. 1999
The importance of detailed improvement planning is highlighted. Bazzana & Fagnoni

1999
Detailed improvement plan needs to be established, including tasks,
schedules, and resources.

Simon 1999

Improvement does not happen by itself. It has to be planned and tracked as
a project with a stretch goal.

McGuinness 1996,
1999

Start small, step by step, �take one bit of the elephant at a time� and wait for
benefits before extending the improvement areas.

McGuinness 1996,
1999

Avoid long textual documents, try to visualise as much as possible Jakobsen 1998
A quality plan or quality requirements need to be set and followed up
during the improvement project.

Simon 1999

Do 6
Four companies are deploying the Groupware tools in support of process
implementation. Automated support should be provided whenever possible.

McGuinness 1996,
1999

Case studies have to be performed before major changes in process and/or
used technologies

Delmiglio et al. 1999

Deployment in two pilot projects Bazzana & Fagnoni
1999

It is recommended to deploy new guidelines using the bottom-up approach
and to do that only with the authorisation of a project leader, only after he
has discussed and accepted the new guidelines with involved engineers.

Bazzana & Fagnoni
1999

The managers attention can be improved and the improvement speed
accelerated by using external consultants in the improvement take up phase.

Debou et al. 1999

Operational guidelines for software development projects are very useful
and provide a general framework for projects to proceed in practice.

Simon 1999

 B6

Check 8
Need of assessing effectiveness Kunzmann-

Combelles 1996
Results of collected metrics have to be reported regularly, e.g., monthly Conradi & Fuggetta

2002
In case the pilot project does not show any benefit, no deployment should
take place; quantitative results have to be the major criteria for further
actions to be taken.

Debou et al. 1999

A continuous follow-up with metrics is emphasised. Debou et al. 1999
Special care should be paid when showing improvements to technical staff,
who are proud of their work and not willing to change their work
procedures for fun

Delmiglio et al. 1999

The cost-benefit analysis requires novel amortisation models Conradi & Fuggetta
2002

Since it is generally difficult to show the ROI of SPI, the need for
developing company-specific cost-benefit models is emphasised.

Conradi & Fuggetta
2002

Metrics help verify the improvements and point out further improvement
potentials.

McGuinness 1996,
1999

Act 4
Feedback loop and facilitation are the factors that enable successful process
improvement, while also sustaining it.

McGuire 1996

Establishment of continuity in the SPI work. Lepasaar et al. 2001
Change is continuous. Software process improvement is not a one-shot
effort; it involves continual learning and growth.

Humphrey 1989, p.
19

Software process changes will be not retained without conscious effort and
periodic reinforcement.

Humphrey 1989, p.
19

Appendix C: Profes User Manual,

Table of Contents

1. INTRODUCTION 1�1

2. PROFES IMPROVEMENT METHODOLOGY OVERVIEW 2�1

3. PROFES STEPS 3�1

4. ADVANCED TECHNIQUES 4�1

5. COST/BENEFIT OF PROFES 5�1

6. THE PROFES TOOLS 6�1

7. PRODUCT/PROCESS DEPENDENCIES IN PROFES 7�1

8. BUILDING INFRASTRUCTURE FOR PROFES 8�1

APPENDICES:

APPENDIX 1: OVERVIEW OF THE PROCESS IMPROVEMENT A1�1
ELEMENTS

APPENDIX 2: THE PROFES TEMPLATES A2�1

APPENDIX 3: EXAMPLES OF PRODUCT PROCESS DEPENDENCIES A3�1

APPENDIX 4: COST/BENEFIT MODELS OF PROFES A4�1

APPENDIX 5: THE PROFES TOOLS A5�1

APPENDIX 6: THE PROFES GLOSSARY A6�1

APPENDIX 7: PROFES QUICK REFERENCE CHART A7�1

Papers I–VII of this publication are not included in the PDF version.
Please order the printed version to get the complete publication
(http://www.vtt.fi/inf/pdf/)

C1

http://www.vtt.fi/inf/pdf/

Published by

Vuorimiehentie 5, P.O.Box 2000, FIN-02044 VTT, Finland
Phone internat. +358 9 4561
Fax +358 9 456 4374

Series title, number and report
code of publication

VTT Publications 535
VTT-PUBS-535

Author(s)
Komi-Sirviö, Seija

Title

Development and Evaluation of Software Process
Improvement Methods

Abstract
Software development is in constant change. New software development strategies, methods,
processes, and tools are constantly introduced and taken in use. Simultaneously, the growth
and importance of software has accelerated, and software has become a fundamental part of a
whole range of different products. Software development strategies are changing as well:
globally distributed software development, use of commercial off-the-shelf (COTS), and Open
Source development are some examples of the latest tendencies. Ever-tightening competition
has led to shortened lead-time requirements and variety of customised software versions
targeted to divergent markets. Software development needs to be optimised to meet these
challenges - without sacrificing quality. To keep abreast of change software process
improvement (SPI) should develop, too, over time.

Well-managed software development processes has become strategic core competency in many
organisations, enabling high-class software development, quality estimation, control, and
prediction. However, improving software development processes is demanding and complex
task. Numerous software process improvement (SPI) methods in the market offer help and
guidance, but unfortunately they only partially address factors found essential for achieving
SPI success.

This dissertation develops, presents and argues for the SPI methods embodying characteristics
directing towards successful process improvement. As the results, the thesis extracts critical
success factors for SPI initiatives using SPI lessons learnt. Furthermore, it incrementally
develops and evaluates SPI methods, incorporating means to achieve the above-mentioned
critical success factors. The research is based on several industrial case studies.

Keywords
software process improvement (SPI), SPI measurement, software quality, knowledge management,
Pr2imer, Profes

Activity unit
VTT Electronics, Embedded Software, Kaitoväylä 1, P.O.Box 1100, FIN-90571 OULU, Finland

ISBN Project number
951�38�6388�3 (soft back ed.)
951�38�6389�1 (URL: http://www.vtt.fi/inf/pdf/)

Date Language Pages Price
June 2004 English 175 p. + app. 78 p.

Name of project Commissioned by

Series title and ISSN Sold by
VTT Publications
1235�0621 (soft back ed.)
1455�0849 (URL: http://www.vtt.fi/inf.pdf/)

VTT Information Service
P.O.Box 2000, FIN-02044 VTT, Finland
Phone internat. +358 9 456 4404
Fax +358 9 456 4374

http://www.vtt.fi/inf/pdf/
http://www.vtt.fi/inf.pdf/

V
TT PU

BLICA
TIO

N
S 535

D
evelopm

ent and Evaluation of Softw
are Process Im

provem
ent M

ethods
Seija K

om
i-Sirviö

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000

02044 VTT 02044 VTT FIN–02044 VTT, Finland
Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. +358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax +358 9 456 4374

ISBN 951–38–6388–3 (soft back ed.) ISBN 951–38–6389–1 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2004ESPOO 2004ESPOO 2004ESPOO 2004ESPOO 2004 VTT PUBLICATIONS 535

Seija Komi-Sirviö

Development and Evaluation of
Software Process Improvement
Methods

1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456
1234567890123456789012345678901212345678901234567890123456789012123456

VTT PUBLICATIONS

514 Koskela, Juha. Software configuration management in agile methods. 2003. 54 p.

516 Määttä, Timo. Virtual environments in machinery safety analysis. 2003. 170 p. + app.
16 p.

515 Palviainen, Marko & Laakko, Timo. mPlaton - Browsing and development platform of
mobile applications. 2003. 98 p.

517 Forsén, Holger & Tarvainen, Veikko. Sahatavaran jatkojalostuksen asettamat vaatimuk-
set kuivauslaadulle ja eri tuotteille sopivat kuivausmenetelmät. 2003. 69 s. + liitt. 9 s.

518 Lappalainen, Jari T. J. Paperin- ja kartonginvalmistusprosessien mallinnus ja dynaamin-
en reaaliaikainen simulointi. 2004. 144 s.

519 Pakkala, Daniel. Lightweight distributed service platform for adaptive mobile services.
2004. 145 p. + app. 13 p.

520 Palonen, Hetti. Role of lignin in the enzymatic hydrolysis of lignocellulose. 2004. 80
p. + app. 62 p.

521 Mangs, Johan. On the fire dynamics of vehicles and electrical equipment. 2004. 62 p.
+ app. 101 p.

522 Jokinen, Tommi. Novel ways of using Nd:YAG laser for welding thick section austenitic
stainless steel. 2004. 120 p. + app. 12 p.

523 Soininen, Juha-Pekka. Architecture design methods for application domain-specific in-
tegrated computer systems. 2004. 118 p. + app. 51 p.

524 Tolvanen, Merja. Mass balance determination for trace elements at coal-, peat- and bark-
fired power plants. 2004. 139 p. + app. 90 p.

525 Mäntyniemi, Annukka, Pikkarainen, Minna & Taulavuori, Anne. A Framework for Off-
The-Shelf Software Component Development and Maintenance Processes. 2004. 127 p.

526 Jäälinoja, Juho. Requirements implementation in embedded software development.
2004. 82 p. + app. 7 p.

527 Reiman, Teemu & Oedewald, Pia. Kunnossapidon organisaatiokulttuuri. Tapaustutkimus
Olkiluodon ydinvoimalaitoksessa. 2004. 62 s. + liitt. 8 s.

528 Heikkinen, Veli. Tunable laser module for fibre optic communications. 2004. 172 p. +
app. 11 p.

529 Aikio, Janne K. Extremely short external cavity (ESEC) laser devices. Wavelength tuning
and related optical characteristics. 2004. 162 p.

530 FUSION Yearbook. Association Euratom-Tekes. Annual Report 2003. Ed. by Seppo Kart-
tunen & Karin Rantamäki. 2004. 127 p. + app. 10 p.

531 Toivonen, Aki. Stress corrosion crack growth rate measurement in high temperature
water using small precracked bend specimens. 2004. 206 p. + app. 9 p.

532 Moilanen, Pekka. Pneumatic servo-controlled material testing device capable of oper-
ating at high temperature water and irradiation conditions. 2004. 154 p.

535 Komi-Sirviö, Seija. Development and Evaluation of Software Process Improvement
Methods. 2004. 175 p. + app. 78 p.

http://www.vtt.fi/inf/pdf/
http://www.vtt.fi/inf/pdf/

	Abstract
	Preface
	List of Original Papers
	Contents
	List of Abbreviations
	1. Introduction
	1.1 Background
	1.1.1 The Role of Software
	1.1.2 Software Development Strategies
	1.1.3 Software Development Process Models
	1.1.4 The Quest for Improvement
	1.1.4.1 Quality
	1.1.4.2 The Quality Movement

	1.1.5 SPI Experiences
	1.1.5.1 Success Stories
	1.1.5.2 SW-CMM Reversals
	1.1.5.3 ISO 15504 Reversals
	1.1.5.4 European Experiences of SPI Failures

	1.1.6 Summary

	1.2 Research Setting
	1.2.1 Research Problem
	1.2.2 Research Questions
	1.2.3 Scope of the Research
	1.2.4 Nature of the Research
	1.2.5 An Overview of the Research Process and Methods
	1.2.5.1 Observe Existing Solutions
	1.2.5.2 Propose and Develop a Better Solution
	1.2.5.3 Measure and Analyse
	1.2.5.4 Repeat until no Further Improvements are Possible
	1.2.5.5 Development of Critical Success Factor Criteria

	1.2.6 Summary

	1.3 Author’s Contribution to the Research
	1.3.1 SPI Management and Process Quality
	1.3.2 Strengthened Measurement Practices
	1.3.3 Product Quality Focus
	1.3.4 Knowledge Management Enhancement

	1.4 Structure of the Thesis

	2. An Overview of Related Research
	2.1 SPI Management Methods
	2.1.1 DemingŁs cycle and TQC
	2.1.2 Quality Improvement Paradigm (QIP)
	2.1.3 The IDEAL Model
	2.1.4 ISO 15504 Part 7

	2.2 Software Process Best Practices
	2.2.1 Assessment Based Approaches
	2.2.1.1 SEI Capability Maturity Models
	2.2.1.2 Bootstrap
	2.2.1.3 ISO 15504 (Spice)

	2.2.2 Software Process Standards
	2.2.2.1 ISO 9000 series
	2.2.2.2 SWEBOK

	2.3 Measurement
	2.3.1 The Goal/Question/Metric Method (GQM)
	2.3.2 Statistical Process Control (SPC)
	2.3.3 Practical Software Measurement (PSM)
	2.3.4 Balanced Score Card (BSC)

	2.4 Product Quality
	2.4.1 ISO 9126
	2.4.2 IEEE Std 1061

	2.5 Knowledge Management
	2.5.1 KM Research
	2.5.2 Experience Factory (EF)

	2.6 Discussion

	3. Development of the SPI Method
	3.1 Background
	3.1.1 Related Research
	3.1.2 Development Process

	3.2 Factors Facilitating SPI
	3.2.1 Industrial Experiences
	3.2.1.1 Two Small Companies in the United Kingdom
	3.2.1.2 Danish Delta
	3.2.1.3 Italtel
	3.2.1.4 Onion
	3.2.1.5 Alcatel
	3.2.1.6 CISI Software House
	3.2.1.7 Five Irish Case Studies
	3.2.1.8 Frequents Nachrichtentechnik Gesellschaft M.B.H.
	3.2.1.9 Tokheim
	3.2.1.10 Two Finnish Organisations
	3.2.1.11 Ten Small Finnish Organisations
	3.2.1.12 Summary of the Cases

	3.2.2 Surveys to Detect SPI Success Factors
	3.2.2.1 Extensive SEI Survey
	3.2.2.2 Large Survey within an American Organisation
	3.2.2.3 Results of SPICE trials

	3.2.3 Arguments for Successful SPI
	3.2.4 Summary of SPI Success factors

	3.3 Evaluation of CSF Classes
	3.3.1 Improvement Management
	3.3.1.1 General SPI Guidance
	3.3.1.2 Staffing the SPI Initiative
	3.3.1.3 Training

	3.3.2 Commitment
	3.3.3 Cultural Issues
	3.3.4 Plan
	3.3.4.1 Current State Analysis
	3.3.4.2 Goal Definition
	3.3.4.3 Improvement Planning

	3.3.5 Do
	3.3.6 Check
	3.3.7 Act

	3.4 The CSF Criteria
	3.5 Validation of CSF Criteria
	3.6 Discussion

	4. Evaluation of Related Research
	4.1 Evaluation of Related Research
	4.1.1 SPI Management Methods
	4.1.2 Software Process Quality
	4.1.3 Measurement Methods
	4.1.4 Product Quality
	4.1.5 Knowledge Management

	4.2 Conclusions

	5. Towards an Integrated SPI Approach
	5.1 Background
	5.2 The Improvement Process
	5.2.1 Analysis of Software Process Current Status
	5.2.2 Definition of Target State
	5.2.3 Planning of Development Measures
	5.2.4 Piloting and Commissioning
	5.2.5 Summary of the Process

	5.3 Evaluation
	5.4 Summary

	6. Enhanced Role of Measurements in SPI
	6.1 Background
	6.2 The Measurement Strategy
	6.3 Tool Support for Measurement
	6.3.1 MetriFlame
	6.3.2 Measurement Automation

	6.4 Evaluation
	6.5 Summary

	7. Product Quality Focused SPI
	7.1 Background
	7.2 Change in the Improvement Strategy
	7.3 Upgraded Improvement Process
	7.3.1 Characterise
	7.3.2 Set Goals
	7.3.3 Plan
	7.3.4 Execute
	7.3.5 Analyse
	7.3.6 Package
	7.3.7 Summary of the Process

	7.4 Evaluation
	7.5 Summary

	8. Knowledge Management Supported SPI
	8.1 Background
	8.2 Towards a Knowledge Capturing Solution
	8.2.1 Lessons Learnt from Past Improvement Attempts
	8.2.2 Need Based Experience Capturing Process
	8.2.3 Conclusions

	8.3 Evaluation
	8.4 Summary

	9. Summary and Conclusions
	9.1 Answers to Research Questions
	9.2 Limitations of the Results
	9.3 Further Research

	10. Introduction to the Original Papers
	10.1 Towards an Integrated SPI method
	10.1.1 Paper I
	10.1.2 Paper II

	10.2 Enhanced Role of Measurement
	10.2.1 Paper III
	10.2.2 Paper IV

	10.3 Product Quality Focused Improvement
	10.3.1 Paper V
	10.3.2 Paper VI

	10.4 Managing SPI Knowledge
	10.4.1 Paper VII

	References
	Appendix A: Success Factor Criteria
	Appendix B: Original Success
	Appendix C: Profes User Manual,

