
V
TT PU

BLICA
TIO

N
S 538

Secure auction for m
obile agents

A
rto W

allin

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000

02044 VTT 02044 VTT FIN–02044 VTT, Finland
Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. +358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax +358 9 456 4374

ISBN 951–38–6394–8 (soft back ed.) ISBN 951–38–6395–6 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2004ESPOO 2004ESPOO 2004ESPOO 2004ESPOO 2004 VTT PUBLICATIONS 538

Arto Wallin

Secure auction for mobile agents

VTT PUBLICATIONS

517 Forsén, Holger & Tarvainen, Veikko. Sahatavaran jatkojalostuksen asettamat vaatimuk-
set kuivauslaadulle ja eri tuotteille sopivat kuivausmenetelmät. 2003. 69 s. + liitt. 9 s.

518 Lappalainen, Jari T. J. Paperin- ja kartonginvalmistusprosessien mallinnus ja dynaamin-
en reaaliaikainen simulointi. 2004. 144 s.

519 Pakkala, Daniel. Lightweight distributed service platform for adaptive mobile services.
2004. 145 p. + app. 13 p.

520 Palonen, Hetti. Role of lignin in the enzymatic hydrolysis of lignocellulose. 2004. 80
p. + app. 62 p.

521 Mangs, Johan. On the fire dynamics of vehicles and electrical equipment. 2004. 62 p.
+ app. 101 p.

522 Jokinen, Tommi. Novel ways of using Nd:YAG laser for welding thick section austenitic
stainless steel. 2004. 120 p. + app. 12 p.

523 Soininen, Juha-Pekka. Architecture design methods for application domain-specific in-
tegrated computer systems. 2004. 118 p. + app. 51 p.

524 Tolvanen, Merja. Mass balance determination for trace elements at coal-, peat- and bark-
fired power plants. 2004. 139 p. + app. 90 p.

525 Mäntyniemi, Annukka, Pikkarainen, Minna & Taulavuori, Anne. A Framework for Off-
The-Shelf Software Component Development and Maintenance Processes. 2004. 127 p.

526 Jäälinoja, Juho. Requirements implementation in embedded software development.
2004. 82 p. + app. 7 p.

527 Reiman, Teemu & Oedewald, Pia. Kunnossapidon organisaatiokulttuuri. Tapaustutkimus
Olkiluodon ydinvoimalaitoksessa. 2004. 62 s. + liitt. 8 s.

528 Heikkinen, Veli. Tunable laser module for fibre optic communications. 2004. 172 p. +
app. 11 p.

529 Aikio, Janne K. Extremely short external cavity (ESEC) laser devices. Wavelength tuning
and related optical characteristics. 2004. 162 p.

530 FUSION Yearbook. Association Euratom-Tekes. Annual Report 2003. Ed. by Seppo Kart-
tunen & Karin Rantamäki. 2004. 127 p. + app. 10 p.

531 Toivonen, Aki. Stress corrosion crack growth rate measurement in high temperature
water using small precracked bend specimens. 2004. 206 p. + app. 9 p.

532 Moilanen, Pekka. Pneumatic servo-controlled material testing device capable of oper-
ating at high temperature water and irradiation conditions. 2004. 154 p.

534 Kallio, Päivi. Emergence of Wireless Services. Business Actors and their Roles in Net-
worked Component-based Development. 2004. 118 p. + app. 71 p.

535 Komi-Sirviö, Seija. Development and Evaluation of Software Process Improvement
Methods. 2004. 175 p. + app. 78 p.

537 Tillander, Kati. Utilisation of statistics to assess fire risks in buildings. 2004. 224 p. +
app. 37 p.

538 Wallin, Arto. Secure auction for mobile agents. 2004. 102 p.

VTT PUBLICATIONS 358

Secure auction for mobile agents

Arto Wallin
VTT Electronics

ISBN 951�38�6394�8 (soft back ed.)
ISSN 1235�0621 (soft back ed.)

ISBN 951�38�6395�6 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1455�0849 (URL: http://www.vtt.fi/inf/pdf/)

Copyright © VTT Technical Research Centre of Finland 2004

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

VTT, Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O.Box 2000, FIN�02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde (08) 551 2111, faksi (08) 551 2320

VTT Elektronik, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel (08) 551 2111, fax (08) 551 2320

VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN�90571 OULU, Finland
phone internat. + 358 8 551 2111, fax + 358 8 551 2320

Technical editing Marja Kettunen

Otamedia Oy, Espoo 2004

3

Wallin, Arto. Secure auction for mobile agents [Tietoturvallinen huutokauppa liikkuville agenteille].
Espoo 2004. VTT Publications 538. 102 p.

Keywords multi-agent systems, mobile agent systems, security architecture, robustness,
security threats, protection

Abstract
In this work, a secure auction place for mobile agents has been developed and
implemented. In the implemented auction application, software agents are able
to bid on different products independently without user intervention in a secure
manner. For implementation, quality requirements for mobile agent systems
were studied. By defining the possible threats that a mobile agent system may
face, a set of protection mechanisms were selected to build a security
architecture that was used in protecting the agent system. The agent platform and
the agents were designed based on the security architecture and the
implementation was carried out using Java. Finally, in order to provide proof
about the robustness of the implemented system, it was tested using a mini-
simulation method.

As a result of the implementation, the communication security for transferring a
mobile agent between nodes could be provided effectively by using traditional
security mechanisms. However, the distribution of keys and certificates is
required to be done manually so that the counterparts of the auction events can
trust each other, which on the other hand, causes scalability problems. As a
difference to most other agent platforms, the type of agent mobility was more
restricted and code mobility was not used. For this reason, the security of the
agent platform could be provided better. However, restrictions that had to be
made to the system were quite big resulting in a decrease in the agent system�s
ability to adapt dynamically.

In summary, there are still a few problems that have to be overcome before the
time is ready for large-scale mobile agent auctions. In particular, the security of
the mobile agent residing on a remote platform has to be guaranteed without the
assumption of trusted platforms.

4

Wallin, Arto. Secure auction for mobile agents [Tietoturvallinen huutokauppa liikkuville agenteille].
Espoo 2004. VTT Publications 538. 102 s.

Keywords multi-agent systems, mobile agent systems, security architecture, robustness,
security threats, protection

Tiivistelmä
Tässä työssä kehitetään ja toteutetaan huutokauppasovellus liikkuville ohjelmisto-
agenteille siten, että tietoturvallisuutta painotetaan tärkeimpänä laatuattri-
buuttina. Toteutettavassa sovelluksessa agentit, jotka pystyvät toimimaan
itsenäisesti ilman ulkopuolista käyttäjän apua, käyvät huutokauppaa keskenään.
Toteutusta varten määriteltiin liikkuvien agenttien laatuvaatimukset agentti-
järjestelmälle. Lisäksi selvitettiin agenttien kohtaamat mahdolliset uhat, jotta
voitiin muodostaa tietoturva-arkkitehtuuri, jonka avulla voitaisiin suojella
agentteja toteutetussa agenttijärjestelmässä. Agenttijärjestelmän toteutuksessa
kehitettiin sekä kaksi erillistä agenttityyppiä (ostaja ja huutokaupanpitäjä) että
agenttialusta niille. Järjestelmä toteutettiin Java-ohjelmointikielellä. Lopuksi
järjestelmän kyky sietää virheellistä informaatiota testattiin käyttämällä hyväksi
minisimulaatiomenetelmää.

Työstä saatujen tulosten perusteella agentin siirtyminen agenttialustojen välillä
pystytään turvaamaan hyvin perinteisiä tietoturvamekanismeja käyttäen.
Avainten ja sertifikaattien vaihtaminen osapuolten välillä tuottaa kuitenkin
ongelmia. Jotta vaihtaminen voitaisiin tehdä täysin luotettavasti, olisi se tehtävä
henkilökohtaisesti. Tämä aiheuttaa puolestaan ongelmia järjestelmän skaalat-
tavuutta ajatellen. Monista muista agenttialustoista poiketen tässä työssä
käytettiin liikkuvaa koodia yksinkertaisempaa liikkuvuuden tyyppiä. Tämän
ansiosta järjestelmän tietoturva, etenkin agenttialustan osalta, saatiin hieman
paremmaksi, mutta käytetty liikkuvuuden tyyppi aiheutti vastaavasti agenttien
dynaamisuuden heikkenemistä.

Yhteenvetona voidaan todeta, että liikkuvien agenttien järjestelmään liittyy vielä
ongelmia, joita ei ole kyetty ratkaisemaan. Erityisesti etäagenttialustalla
asustavan liikkuvan agentin tietoturvallisuutta ei kyetä suojelemaan tarpeeksi
hyvin. Näin ollen täysin turvallisen liikkuvien agenttien huutokaupan
toteuttaminen ei ole vielä toistaiseksi mahdollista.

5

Preface
This thesis was completed within the VTT Electronics' Software architectures
group. Work for this thesis was carried out under three different projects, all of
which are somehow connected to each other.

The development of the agent system started in the PLA (Product Line
Architectures) programme during the summer of 2002. One of the project tasks was
to develop the architecture for intelligent services and apply it in practice. Generic
agent architecture for mobile agents was developed, and to demonstrate its
applicability in practice, an example of a primitive auction place was implemented.
As a result of the case study, new research possibilities for future multi-agent
systems were identified, and the research on it was decided to continue.

The second part of the research started in the beginning of 2003 in the OPERA project,
which was a follow-up project to PLA. The project contained a work package, which
focused on researching multi-agent systems, especially mobile agent security problems.
The objective of the work was to first find out the quality requirements of the multi-
agent system, then develop security-based architecture for them and finally, refine the
previously implemented auction application to meet the detected requirements. The
work completed in this project forms the basis for this thesis, although, lots of important
background work had already been carried out in the PLA programme.

The final part, the writing of this thesis, was addressed mainly in the project
Minttu and was completed in January 2004.

I would like to thank Research Professor Eila Niemelä from VTT Electronics
and Professor Juha Röning from the University of Oulu for guiding me through
this work. My second supervisor, Professor Janne Heikkilä, also deserves my
appreciation. I would also like to express my gratitude to Mr. Rauli Kaksonen
from Codenomicon, who provided valuable information about robustness testing
and help with the testing process. In addition, Mika Hongisto who helped me
especially at the beginning of the work, and Jarkko Holappa who guided me with
the security issues, deserves my appreciation. And last, but not least, I would like
to thank Katri Kemppainen for love and support during the entirety of this thesis.

Oulu, 28th January 2004

Arto Wallin

6

Contents

Abstract ... 3

Tiivistelmä .. 4

Preface .. 5

Abbreviations.. 9

1. Introduction... 10

2. Agent technology.. 13
2.1 Introduction and terminology .. 13
2.2 Status of the mobile agent technology... 17
2.3 Towards the standardisation of agent technologies 17
2.4 Mobile agent systems .. 19

2.4.1 Architectural models of mobile agent systems 19
2.4.2 Mobile agent platforms ... 23

2.5 Quality requirements for multi-agent systems..................................... 25
2.5.1 Interoperability.. 26
2.5.2 Scalability.. 27
2.5.3 Mobility... 28
2.5.4 Security ... 29
2.5.5 Robustness .. 31

3. Security technologies for mobile agents ... 33
3.1 Cryptographic algorithms.. 33
3.2 Digital signature .. 35
3.3 Certificates... 37
3.4 Java security .. 38

3.4.1 Class verifier ... 40
3.4.2 Security management .. 40

4. Mobile agent security threats and protection .. 42
4.1 Threats ... 42

4.1.1 Agent against agent platform .. 43
4.1.2 Agent against other agents .. 44

7

4.1.3 Agent platform against agent .. 45
4.1.4 Other entities against agents and agent platforms 46

4.2 Protecting the platform .. 46
4.2.1 Authentication ... 47
4.2.2 Authorisation... 48
4.2.3 Cryptographic service ... 49
4.2.4 Execution tracing .. 49
4.2.5 Proof.. 50

4.3 Protecting the agent ... 51
4.3.1 Path histories ... 52
4.3.2 Partial Result Encryption .. 52
4.3.3 Proof of agent's identity .. 53
4.3.4 Co-operating agents .. 54

5. Case study: auction for mobile agents .. 55
5.1 Description of the agent system... 55
5.2 Agent platform... 57

5.2.1 Management.. 58
5.2.2 Registration ... 60
5.2.3 Security ... 60
5.2.4 Communication ... 60

5.3 Agents.. 61
5.3.1 Shopper agent.. 62
5.3.2 Auctioneer agent ... 63

5.4 Concrete architecture... 64
5.4.1 Structural view .. 64
5.4.2 Behavioural view .. 65
5.4.3 Deployment view .. 68

5.5 The security framework of the mobile agent system........................... 70
5.5.1 Platform security ... 71
5.5.2 Agent security ... 77

5.6 Results of the implementation ... 79

6. Robustness testing .. 82
6.1 Mini-simulation method .. 83
6.2 Mini-simulation toolkit.. 83
6.3 Test cases... 84

8

6.4 Results of the tests ... 88

7. Discussion... 90
7.1 Realised quality requirements in the case study 91
7.2 Future of mobile agent systems ... 96

8. Conclusions... 98

References... 100

9

Abbreviations
AES Advanced Encryption Standard

API Application Program Interface

CA Certificate Authority

COTS Commercial Of The Shelf

CORBA Common Object Request Broker Architecture

DSA Digital Signature Algorithm

DES Data Encryption Standard

FIPA the Foundation for Intelligent Physical Agents

IETF Internet Engineering Task Force

IP Internet Protocol

JVM Java Virtual Machine

MAS Multi agent system

MASIF OMG's Mobile Agent System Interoperability Facility (standard)

MD5 Message Digest, version 5 (Message-digest algorithm)

NIST National Institute of Standards and Technology

OMG Object Management Group

PDA Personal Digital Assistant

PLA Product Line Architectures

QADA Quality-driven Architecture Design and quality Analysis method

RSA Rivest-Shamir-Adleman (encryption algorithm)

SHA Secure Hash Algorithm

SSL Secure Socket Layer

TCP Transmission Control Protocol

W3C World Wide Web Consortium

10

1. Introduction
Software agents have been a popular topic in the area of information engineering
for several years. Lots of expectations have been laid on them, but large-scale
usage of agents is still waiting. One of the main reasons for the immaturity of
agent technology is that we have not been able to make it secure enough to meet
the strict requirements put on it [1].

The initiative for developing an auction for mobile agents was originated from a
project that had developed a model for generic agent architecture but was
missing an application that would make use of it. A mobile agent system, where
agents could place bids by themselves in a virtual auction without user
intervention, was decided to be developed and implemented, and the author of
this thesis was assigned to the work.

Implementation of the demonstration can be roughly divided into two different
tasks. The first task was to develop an agent platform, which embodied different
services for agents (registration, communication and management) and services
for the user, for example, creating new agents and managing connections. The
second task included the implementation of different agents: a shopper and an
auctioneer, which are actual participants of the auction event. Agents had to be
designed in such a way that they were able to act independently and reliably also
in remote nodes, where an agent owner could not help them. As a result of the
demonstration, the developed architecture proved useful, however, there also
seemed to be fundamental deficiencies in it. Security of the system or weakness
of it caused the greatest concern when thought about applying the researched
architecture to commercial applications. The problems that emerged from the
demonstration form the basis for this thesis and are considered through the
following research questions:

• What are the requirements for a secure mobile agent system?

• What security mechanisms are needed to build an extensive security-based
architecture that can be applied in an auction application for mobile agents?

11

• How can a secure auction place for mobile agents be implemented, and what
are the difficulties of implementation and possible solutions of these
problems?

• How can quality requirements be met in a real life multi-agent system and
what are the conflicts between them?

The field of software agents is still arguing about the right definitions. In this
work, we consider software agents to be autonomous problem-solving entities
that do not need permanent guidance from the user [2]. More accurately, our
agent system is a multi-agent system, which consists of both mobile and
stationary agents. In this thesis, mobile agents are not based on mobile code;
instead they are considered to be serialised Java objects that contain all of the
agent's knowledge packed into the knowledge base. When the mobile agent is
transferred to a new platform, an agent is recreated according to the knowledge
base. Therefore, the data and knowledge according to which an agent acts is
personalised, however, an agent's code on the remote platform originates from
the platform itself and only provides functionality predetermined by the
platform.

In the security consideration of this thesis, we will concentrate on the security of
the mobile agents. However, our purpose is not to go too deep into specific
security mechanisms, but to come up with a collection of security mechanisms
put dynamically into one. This security framework is then applied to the multi-
agent auction system to provide the possibility for mobile agents to participate in
a secure virtual auction. We also want to receive feedback about our architecture
model and its applicability in practice.

The goal of this thesis is to develop a security-based mobile agent application,
which is further defined to be a virtual auction place for mobile agents. In order
to be able to develop the agent system successfully, we have to first consider the
quality requirements of mobile agent systems, in particular from a security point
of view. Then we will develop security-based agent system architecture by
refining the architecture, which was initially developed for the auction
demonstration, with security mechanisms. This architecture has not been
designed from a security perspective and is missing essential components, thus
components for security and the glue to fit those into the system architecture

12

have to be developed. Since the security of the agent system is an inseparable
combination of platform and agent security, both issues have to be considered.
Furthermore, the mobile agent system will be implemented by refining the
earlier work of an author with the security mechanisms. In order to provide
proof of the security of the developed agent system, the system's robustness is
tested with the help of a robustness testing toolkit provided by Codenomicon [3].
Finally, we analyse the results of the implementation. Difficulties in making a
secure agent system are presented as well as a discussion on how the
implementation succeeded and what could/should have been done in another
way.

13

2. Agent technology

2.1 Introduction and terminology

The idea about agent, autonomous entities able to solve problems by themselves
has been fascinating people for a long time. Nowadays, various kinds of agents
can be found around us, we just might not realise all of them. Classification of
the agents at the main level can be divided into three categories: biological,
robotic and computational agents [4]. Our interest focuses on computational
agents, which can be further divided into artificial-life agents and software
agents, which we will take a closer look at.

Although the definition of a software agent varies largely between different
interest groups, there are some common characteristics that fit with most
definitions of software agents. At minimum, a software agent is defined to be an
autonomous software entity that is able to interact with its environment. Thus, it
is able to react independently without user intervention to stimulus from outside,
for example, from humans, platforms or other agents [5]. A few other properties
of software agents are listed in Table 1 [4, 5, 6].

Table 1. Agent properties.

Property Explanation
Adaptive Being able to learn and improve with experience.
Character/
Personality

An agent has personality and emotional state.

Co-operative/
Collaborative

An agent can act together with other agents for a common
purpose.

Intelligence Ability to sense its environment, reflect upon it, and take
actions to achieve a goal. State is formalised by knowledge.

Proactive Agent's actions are goal-orientated. It is able to choose if
certain action will bring it closer to its goal and acts
accordingly.

Reactive Responds in a timely fashion to changes in its environment.
Social Can communicate with other agents or people.
Temporally
continuous

Is a continuously running process.

14

One of the most interesting additional properties of software agents from our
point of view is mobility, which means that the agent is able to transport itself
from one execution environment to another. This moving mechanism is also
referred to as migration. A mobile agent is a specific form of software agent,
which is a self-contained and identifiable computer program that can move
within a network and act on behalf of the user or another entity [7].

Most mobile agent systems base their agent mobility on code mobility, where
both the data and the code of the agent are transferred during migration. This
kind of agent mobility can be classified as either strong or weak. The difference
between these is that strong mobility allows the code and entire execution state
of the agent to be transferred, while weak mobility only makes the code to
transfer. Strong code mobility is more complex to achieve, it negatively affects
performance and introduces more security risks than weaker mobility, however,
it allows an agent to restart execution from the exact point where it was before
migration. Weak code mobility also has some unsolved weaknesses in security
when applying it to mobile agent systems [8].

Because there are still deficiencies in the security of code mobility, which cannot
be fully prevented, we do not use it in this thesis. Instead, we resort to mobile
agent technology, which restricts the mobility a little more but correspondingly
enhances the security to a new level. Thus, mobile agents in this work are
serialised Java objects, which can migrate according to following steps:

1. Execution of the agent is stopped.

2. Knowledge of the agent is packed to the knowledge base.

3. The knowledge base and any possible additional information of a
migrating entity are shipped to the destination node.

4. The agent is recreated at the destination node according to information
obtained from the knowledge base.

5. Execution of the agent is restarted.

As a result, when the mobile agent migrates between nodes, its "brain" (referring
to knowledge base) migrates, but its "body" (referring to the code), which the
agent's brain uses in order to be able to perform actions, is not transferred.

15

Instead, the destination platform has a clone of the body, where the agent's brain
is placed and the agent is thus able to act again.

A drawback of the chosen type of mobility is that the dynamics and functionality
of the agents are restricted by the platform. Therefore, all agents of a certain type
have the same set of operations that they are able to perform and any new
operations have to be first updated to the agent platforms. These same things
also improve the security of the agent system, since the platform always knows
what operations residing agents are able to perform, the set of malicious acts
made by agents against the agent platform is narrower, and thus the agent
platform is able to trust residing agents better. However, there are many other
security-related questions that have still to be answered.

There must also be some reasons that make the use of mobile agent technology
worthwhile. One main benefit of a mobile agent system for a traditional system
is visualised in Figure 1, where communication between nodes is represented
with arrows. Traditionally, a lot of communication is required between nodes in
order to handle difficult tasks, such as an auction. However, if mobile agents are
used, data needs to be transferred between nodes only when the mobile agent is
moved to accomplish its tasks and when it returns home. Thus, mobile agents
reduce communication and data transfer between nodes considerably. Other
main benefits of mobile agents are asynchronous and autonomous execution,
overcoming network latency, robust and fault-tolerant behaviour, operating in
heterogeneous environments and adapting dynamically [9].

Figure 1. Traditional system vs. agent system.

16

Multi-agent systems (MAS) are systems composed of agents co-ordinated
through their relationships with one another. Agents can collaborate either
through co-operation, competition or a combination of both, but they cannot
solve problems by themselves. Other special characteristics for MAS are [10]:

• system is open and therefore doesn't have global control,

• data is decentralised, and

• computation is asynchronous.

It would be much easier to implement single agent systems, but there are some
rationales that speak on behalf of MAS. One large multi-skilled agent could be
able to do the same things as many smaller agents, however, in most cases, the
agent would be too slow, hard to maintain and probably not even reliable. If we
use smaller agents and divide functionality between them, it will improve system
modularity, flexibility, modifiability and extensibility [5]. The security of the
system can also be improved by giving security-critical functions to strictly
controlled agents and letting other more open agents do less risky functions.

Our auction implementation is a good example of a multi-agent system. There
exist different roles (shopper and auctioneer) that have the ability to
communicate with each other. Agents have different specialised knowledge, they
do different tasks that complement each other, and they can also compete against
other agents, thus fitting the definition of MAS.

Another term that is often referred to when talking about an agent system
containing multiple agents is mobile agent system. The difference in the
definition of terms is that a mobile agent system, as the name says, always
contains at least one agent that is mobile, but there may or may not be other
agents in the system. On the other hand, a multi-agent system does not necessary
contain any mobile agents, but instead, it always has more than one agent. Thus,
the most descriptive term for the agent systems discussed in this work would be
mobile multi-agent system. However, the term used is selected based on which
characteristics, mobility or multiple agents, is wanted to be emphasised at that
time.

17

2.2 Status of the mobile agent technology

It is evidently clear that there are some deficiencies in agent technology. First of
all, the development of multi-agent systems is still in the hands of top experts in
the domain. We are missing efficient tools that would make it possible for non-
specialists to unlock the power of agents, which would make it easier to spread
mobile agent technology. Secondly, among others, there are also some unsolved
problems with interoperability, scalability and security. Most of the developed
multi-agent systems are built from scratch for specific purposes in an ad hoc
manner, thus they are on quite a small scale, without good reusability
possibilities, and unable to co-operate with other multi-agent systems [1].
Development towards large-scale multi-agent systems and connecting them to
each other thus forming large interconnected networks of multi-agent systems
has begun lately, but it has raised complexity issues that we are still not able to
cope with [11]. Security, the issue in which this thesis is concentrating on, has
also proved to be very complex. Some have even claimed that mobile agents will
never be secure enough to be trustworthy, but this is what we will discuss later
on.

Despite of its deficiencies, it can easily be shown that multi-agent systems have
already been applied successfully in a wide range of application domains. At the
head we have e-commerce, which has for a long time shown potential benefits of
agents in theory, and lately proven many agent solutions to be functional also in
practice. Another creditable participant in the research of mobile agent
technology is the telecommunication industry, which has successfully adapted
mobile agents in their applications.

2.3 Towards the standardisation of agent technologies

Today there are numerous different research groups and commercial actors
researching agent technologies and implementing various agents and platforms
for them. Because of the diversity of the agent technology research, a common
standardisation organisation was needed. The Foundation for Intelligent Physical
Agents (FIPA) was formed in 1996 to fill this gap and since then it has
contributed a lot to agent technology. FIPA is a non-profit organisation that
produces software standards for heterogeneous and interacting agents and agent-

18

based systems. In the production of these standards, FIPA requires input and
collaboration from its memberships and from the agent�s field in general to build
specifications that can be used to achieve interoperability between agent-based
systems developed by different companies and organisations. Also these days,
FIPA is the main driving force aiming to produce standards for the
interoperation of heterogeneous software agents [2].

FIPA's core standardisation activities are mainly handled by Technical
Committees, which concentrate on creating and maintaining specifications.
There are currently many active Technical Committees including, for example,
ontology, interaction protocols, semantics and security, which is particularly
interesting to us. The Security Technical Committee's objective is to lead the
research and development of multi-agent systems. Its area of responsibility
covers the understanding of security requirements and properties, defining
FIPA-based abstract security specification and to concretise security
specifications to form an agent-based security service for deployment in
application domains. The Security Technical Committee's work started in the
beginning of 2003 and is planned to be ready at the end of 2004 [2]. The
objectives of the FIPA's security work seem to be very close to our research and
thus it will be interesting to see how its work proceeds in the future.

Another major standardisation organisation and contributor in the field of mobile
agent technology is the Object Management Group (OMG), which has been
particularly active in making initiatives and standards for interoperability and
security. OMG's core infrastructure for mobile agent technology is specified in
MASIF (Mobile Agent System Interoperability Facility) [12] with its main
objective to enable interoperability between agents systems. Although MASIF
addresses security quite extensively, concentrating on authentication and
authorisation, it has a few deficiencies and limitations. For example, MASIF
does not address multi-hop authentication, thus agents are only allowed to
migrate one-hop from the source system. An agent�s itinerary is also restricted to
only trusted nodes, which limits autonomous agent activity. MASIF's security
solutions conform extensively to CORBA security services. Agent
communication is also dependent on CORBA standards, since communication
goes through the ORB communication channel [13]. Despite the promising
standardisation work OMG has carried out mainly in the late 1990's, a number of
its contributions seem to have diminished noticeably in recent years. It remains

19

to be seen how important a part OMG will have in the future of mobile agent
technology.

In addition to FIPA and OMG, there are also a few other standardisation
organisations that are working towards initiations and standards for mobile agent
technology. IETF (Internet Engineering Task Force) has paid special interest to
Internet-agent technologies. Another standard body, W3C has addressed Web
languages and ontology for mobile agents. Some other research groups and
formal forums that have promoted mobile agent technology are the Agent
Society, NIST and the Agent InteropWorking Group [13].

Standardisation is always very important from interoperability and reusability
points of view, having thus also an important effect on extended use of any new
technology. On the other hand, standardisation is a compromise, and the
standardisation process itself can be very slow. Therefore, there is also a
possibility that the standardisation process itself prevents the broad use of new
technology. In the area of multi-agent systems, the main problem of
standardisation is the lack of consistent theory and definitions, although agent
communities are working all the time to bridge these problems.

2.4 Mobile agent systems

This section takes a brief look at a few earlier developed architectural models for
mobile agents, which have influenced the agent system introduced later in this
thesis. In addition, two mobile agent platforms that have many similar aspects to
the one presented in this thesis are described in order that the developed agent
system can be compared to already existing implementations. When examining
these agent systems, special attention is paid to the mobility and security issues
provided by the platforms.

2.4.1 Architectural models of mobile agent systems

Many agent standards, such as FIPA and MASIF, define architectural models for
mobile agent systems. However, these architectural models are, in most cases, at
a quite abstract level, which leaves free hands for agent system designers to

20

apply and develop concrete architecture for the agent system. A visualisation of
the FIPA abstract architecture is presented in Figure 2 and detailed information
about it can be found in [2].

Figure 2. FIPA abstract architecture.

Additionally, these architectural models usually only concern agent platform
architecture, thereby ignoring the architecture of mobile agents. However, the
architecture of mobile agents and their co-operation is a very important part in
the case study presented in this thesis. Therefore, two agent co-operation
architecture types and the internal architecture model of a mobile agent are
examined briefly in the following.

Centralised vs. distributed agent co-operation

Agent systems have two main co-operation architectures, which distinguish from
each other clearly. The first, presented in Figure 3, is centralised co-operation
hierarchy. This architecture contains multiple agents, but only one works as a
central agent in the server platform, while the other agents are clients. All inter-
agent communication, presented in the picture with lines connecting agents, goes
through the central agent. Thus, other agents are subordinate to external control
by the central agent.

The scheme of agent co-operation architecture where a single agent acts as a
global manager might be workable on a small scale, however, the scheme
becomes impractical when the number of agents in the system increases. For this
reason, centralised architecture is applicable for a limited amount of agents, but
should not be used in large-scale distributed systems [6, p. 13].

21

Figure 3. Centralised architecture.

Another approach for the agent co-operation hierarchy is to provide agents with
the ability to control their communication by themselves without external
control. This requires more advanced intelligent co-operation from the agents,
and the number of possible inter-agent communication links is much more
numerous. An example of the agent hierarchy model without external control
referred to here as distributed architecture is presented in Figure 4 [6, p. 13].
This model is particularly challenging for mobile agents, since under these
circumstances they have to be aware of their locations and also know where co-
operating agents currently are, although the agent platform also has
responsibility for providing the required services.

Figure 4. Distributed architecture.

The agent system introduced in this thesis uses co-operation architecture, which
is a combination of both architectures presented previously. It can act both ways,
but usually consists of a few central agents called auctioneer agents and several

22

other agents called shoppers that act in certain events under the auctioneer's
supervision. In contrast to centralised architecture, there can be many central
agents at the same time working on the same problem field, thus reducing
burden from the shoulders of other agents. Additionally, non-central agents
(shoppers) can also interact with each other without control from the central
agent. Thereby, architectural bottlenecks that are faced by centralised
architecture can be avoided.

Layered agent architecture

Generic agent architecture introduced in [14] has had greatest influence on the
mobile agent architecture further developed in this thesis. It is a conceptual view
of an agent, based on vertically layered architectural style. According to it, an
agent is composed of three layers: a definition layer, an organisation layer and a
co-operation/co-ordination layer. The agent architecture and its three agent
layers are depicted in Figure 5. The two other layers are included in the figure
for completeness sake; the communication layer provides low-level details for
inter-agent communication and the application programmer's interface (API)
layer links the agent to its physical resources. Further information about
Ndumu's agent architecture, and also complete explanation of the presented three
layers, can be found from [14].

Figure 5. Layered architecture for agents.

23

2.4.2 Mobile agent platforms

A few years ago, when the success of mobile agent technology was at the peak
of its wave, new mobile agent systems and platforms were built by numerous
groups around the world. A summary of mobile agent systems and technologies
used in building them is represented in [5]. However, now the dust has settled,
and it can be seen that many of those implementations have been forgotten and
only the best mobile agent systems have survived. Research on agent systems
has still proceeded and recently some agent platform research groups and
companies have already released second generations of their mobile agent
systems, such as Grasshopper 2 and Ajanta, which will be studied in more detail
in the following.

Grasshopper 2

As said, Grasshopper 2 is already the second generation of the agent platform
developed by the IKV++ Technologies AG. It is based on specifications from
FIPA and OMG MASIF and has gained worldwide success since the release of
its first version in 1998.

Grasshopper�s core is a Java-based mobile agent platform that provides the
possibility to develop and run agent applications. The agent environment is built
from one region registry and several agencies, which can be compared to agent
platforms in our agent system. The agency contains several services, which are
security, registration, persistence, management, transport, and communication.
The main purposes of these services are similar to our agent platform services,
except the persistence service, which is used for saving agent-related data in case
of system crashes. In this way, agents can continue their task after the restarting
the agency. Agent mobility in the Grasshopper is based on weak code mobility,
and thus an agent�s state is restarted each time it migrates to a new location [15].

The agency's security service uses many traditional security mechanisms to
provide external security: Secure Socket Layer (SSL) protocol protects agents
during the migration, certificates are used in authentication purposes, and
cryptographic algorithms for encrypting the data packets under transmission.

24

Internal security of the agent system is strongly dependent on the security
mechanisms in Java 2, where access control forms the core of protecting the
agency against agents. Surprisingly, none of the agent specific security
mechanisms are reported to be used in the protection of the agent system, which
raises the question to be discussed: can the security of the agent system be
provided just with conventional security mechanisms?

Ajanta - Mobile Agent Research Project

Ajanta is a mobile agent programming system developed at the University of
Minnesota. The first evaluation version of Ajanta was made publicly available in
1999 and few years later in 2003, Ajanta's second commercial version was
released. The reason for its introduction here is that it is one of the most
interesting ongoing mobile agent research projects related to our work, since its
main focus is on the design of secure and robust execution of mobile agents in
an open environment [16].

The Ajanta agent system is implemented using Java language and is built from
agent platforms called agent servers and mobile agents. The agent server makes
the host's resources available to agents in a controlled manner. It also provides
some basic primitives to agents, such as communication and migration. Mobile
agents are mobile Java objects based on weak code mobility. Mobility of the
objects is implemented using Java's serialisation facility, which allows the
capture of the objects state, transmitting it to some other agent server and
recreation of objects on that server.

Security of the Ajanta is mostly based on Java's security model. It contains many
conventional security mechanisms, for example, tamperproof certificates called
credentials, cryptographic mechanisms, and access control mechanisms provided
by the Java virtual machine. Furthermore, some special mobile agent protection
mechanisms are used, such as itinerary recording and mechanism for protecting
the agent�s state at the remote hosts [17].

25

2.5 Quality requirements for multi-agent systems

Quality requirements for a multi-agent system depend strongly on the purpose of
the system. Therefore, exact quality requirements for all multi-agent systems
cannot be defined. However, general guidelines can be drawn up to help
designers choose which quality requirements are particularly important for their
applications.

In certain cases, multi-agent systems are required to be adaptive. It means that
agents are able to learn and improve with experience [10]. Such agents may be
required to adapt to modifications in their environment. They may include
changes to the component's communication protocol or possibly the dynamic
introduction of a new kind of component previously unknown or the
manipulation of existing agents [18].

Another quality requirement that is often associated with multi-agent systems is
modularity, which increases the efficiency of task execution, reduces
communication overhead and usually enables high flexibility and better
reusability. On the other hand, it implies constraints on inter-module
communication [18].

There are also many other quality requirements concerning multi-agent systems
such as maintainability, portability, flexibility and integrability, which partly
overlap with others introduced here. However, our purpose is not to go too deep
into the requirements, but we try to concentrate on the essential qualities.
Therefore, we take security, which is a very important quality requirement in
many multi-agent systems including the one in our case study, and pay special
attention to it in the following review. Other requirements, which are also
considered to be important from the viewpoint of the case study presented in this
thesis, are interoperability, scalability, mobility and robustness. Reasons why
these quality requirements are selected and information about those is discussed
separately in the following subsections.

26

2.5.1 Interoperability

FIPA defines interoperability in multi-agent systems to be the ability of agents
from different agent platforms to be able to communicate with each other. In
other words, agents should be able to interact and share information, knowledge
and tasks to achieve their goals [10]. This is one of the most essential quality
requirements involved, since without it, an agent system could not even be
considered as a multi-agent system.

Interoperability between agents can be achieved with help of three key elements
[10]:

• common agent communication language and protocol,

• common format of context of communication, and

• shared ontology.

In our case study, the well-defined structure of messages plays an important part
in interoperability. It enables agents to understand messages from other agents
and thus forms the basis for co-operation between agents. Also, communication
protocols such as an auction protocol, plays a key role when considering
interoperability issues.

As we noticed earlier, a multi-agent system consists of various agents that are
not able to reach their goals by themselves but need to work together and co-
operate in order to achieve their shared objectives. However, agents inside the
MAS do not always work together towards the same goals. Sometimes agents'
goals may be mutually exclusive, and thereby, if one agent achieves its goal,
another no longer can. These agents are competitive. However, this is not in
conflict with interoperability between agents, because although agents are
competing against each other, they may work towards the common goal of the
whole system.

In addition to interoperability between agents, there also exists interoperability
between multi-agent systems. Standardisation, and thus developing common
interfaces and communication methods, is a common technique to attain
interoperability between agents and agent systems. A well-known example is the

27

effort of FIPA to provide a framework for interoperability between different
agent systems.

2.5.2 Scalability

Generally, scalability refers to how well the capacity of a system to do useful
work increases as the size of the system increases [19]. In multi-agent systems
this is a great challenge, because the size can vary largely from tight interaction
between two agents to a community of thousands of agents working together. In
spite of this, systems should be able to operate both on a small- and a large-scale
without problems.

Scalability can be divided into two different views - macro and micro. A micro
view considers issues from the viewpoint of a single agent in the society: How
this particular agent is affected when the size of the overall system or the
number of agents increases. If it is more difficult or slower for the agent to get
services or access to computational resources, then scalability is poor. Also, the
need to interact with more agents when the size of the system increases puts
stress on an agent and can cause degradation of its performance.

From the macro point of view, the main question is how the system reacts when
the number of agents increases. A system has several options: It can increase its
performance thanks to new agents� computational capacity, it may be
unaffected, or if the scalability is poor, system performance will be degraded. In
the worst case, even a system failure may occur, which can cause the whole
system to shut down.

When we look at scalability from the viewpoint of our auction implementation,
its importance can clearly be seen. Possible scalability problems do not come up
in the development phase, when just a few agents are involved in the system.
However, when considering the real purpose of the use of the application, where
numerous agents and agent platforms would be connected to the agent system,
the importance of scalability cannot be underestimated. Without good
scalability, functionality of the auction application can be questioned since its
real advantages come up only when it is used by a large number of agents from
different owners.

28

2.5.3 Mobility

The main reason why agents should be mobile is the improved performance that
is achieved by moving agents closer to the services available on the new host
[5]. However, mobility is not suitable for all agents and thus it should be
carefully considered, which transactions are performed by mobile agents. As a
rule of thumb, it can be said that when an agent's transaction gets more sensitive,
correspondingly mobility should be decreased [9]. It is also good practice to
divide responsibilities in a multi-agent system so that stationary agents handle
security-critical tasks such as money transactions, and smaller mobile agents are
assigned to specific tasks that are not so sensitive, for example, information
gathering.

The requirement for the multi-agent system to support agent mobility sets also
additional requirements on the system. Agent management has to be considered
carefully and many questions related to it arises [5]:

• Does mobile agents need possibility to be controlled remotely from the home
platform and how can it be done?

• What if a network failure occurs and the agent dies? If the user does not get
information about this, he waits unnecessarily for the mobile agent to return.

• Mobility also introduces a new complexity of security issues that are not
faced if agents are stationary.

• And finally, what distinguishes an unreasonably roaming mobile agent from
a virus?

Wireless computing creates a challenging environment for agent mobility.
Firstly, wireless transmission of data is still much more limited because of the
lack of bandwidth. That gives an advantage to mobile agents, because they
reduce communication over the network, but data transmission still has to be
optimised. This can be achieved with the help of packing data and agents for the
migration. Secondly, connection to the services should be independent of the
user�s location. This can be implemented to some degree, but nevertheless, the
wireless connection can get cut of in some situations. Thus, the systems ability
to reconnect should be as good as possible.

29

2.5.4 Security

Security requirements for agents and mobile agent frameworks are mainly
similar to those in traditional networked computer systems. These requirements
can be divided into four main categories, which are confidentiality, integrity,
accountability and availability [9]. These main security requirements are
reviewed next, one by one, and their special characteristics are described in
detail.

Confidentiality

A general definition for confidentiality can be stated as follows: it ensures that
the information in a computer system and transmitted information are accessible
for reading only by authorised parties [20, p. 5]. This definition seems to fit quite
well with multi-agent systems, where a lot of different communication that
should be kept confidential takes place. A platform sends messages and controls
information to agents, agents reply to the platform and agents send messages
between each other. Every time data is transferred across the network without
the proper security action, it is vulnerable to malicious principle eavesdropping.
Even if transferred data is encrypted and its content thus cannot be revealed, an
eavesdropper can gather information based on the message flow between
communication participants. Consequently, any private data transferred between
principals of the multi-agent system must be kept confidential.

When a mobile agent migrates to a remote platform, the requirement for
confidentiality is put to the real test. Private data inside the mobile agent should
be kept confidential even if the agent platform turns out to be malicious.
However, providing confidentiality for mobile agents inside the malicious
platform is extremely difficult to attain.

The agent platform also contains private data that must be carefully protected
and remain confidential. Such sensitive information is, for example, found in
audit logs, which are records for storing agent activities on the platform. Key
stores and especially private keys must also be protected carefully, because there
would be serious security problems if some malicious principle would get access
to keys and thus to all data that is encrypted with those keys.

30

Another issue about confidentiality is that mobile agents should be able to keep
their identity and location unknown to other agents, except in some special cases
where collaboration between agents is needed. Platforms, however, should be
able to identify agents in order that agents can be held responsible for the actions
they perform and services they use on the platform.

Integrity

Data integrity refers to data that cannot be manipulated by unauthorised parties
without being detected [21]. In multi-agent systems, data integrity is threatened
in many ways. Inter-platform messages and migrating agents must be protected
from attempts at tampering and unauthorised modification. The agent itself
cannot be effectively protected from malicious hosts attempting to alter the
agent, however, measures can be taken to detect this data alteration [9]. Also, the
agent platform�s integrity has to be protected from unauthorised principals. In
the case of mobile agents, which use code mobility, the integrity of the platform
must be handled with special care because of the possibility that a malicious
agent may try to attack an agent platform.

Integrity of the multi-agent system can be protected using replicated agents or
multiple agents capable to perform similar tasks. Hence, the failure of one agent
does not necessarily crash the whole system; instead other agents can perform
actions on behalf of the failed agent [18].

Accountability

Accountability is the ability of a system to keep track of who or what accessed
and/or made changes to the system [22]. In the MAS, it means that agents and
human users can be held responsible for actions they have performed. That is
why every agent and human user has to be uniquely identified, authenticated and
all of their security-relevant actions have to be recorded on an audit log. Audit
logs also have to be protected carefully and they can be used when the platform
is trying to recover from the failure.

The authentication mechanism is essential in order that the platform can decide
who is the owner of the remote agent and thus responsible for its actions.
Despite the fact that a platform has to be able to identify the actors in the system,

31

agents should be able to keep their identity unknown to other agents. However,
anonymity between agents has to be broken if, for example, a commercial
transaction is about to take place between them. If a malicious principal can
cheat in authentication so that it is thought to be someone else, it does not only
harm the platform, but also the person who it is falsely claiming to be. That is
why accountability has an important part in building trust in multi-agent
systems.

Availability

Availability is an assurance that the communication or data reaches its intended
recipient in a timely fashion [21]. In the MAS, an agent platform should be able
to ensure availability for both local and remote agents to data and services. It
should also be able to handle all service requests within a reasonable time. If
requests cannot be handled, either an intentional or unintentional denial-of-
service situation occurs. In the case of an intentional denial-of-service attack,
someone is purposely exploiting platforms computational resources or services
in order that the platform cannot handle real service requests. When the event
that the platform cannot handle the computation or communication load
happens, it should be able to provide graceful degradation of services, notify
remote agents residing in it that it can no longer provide services, and give the
chance for remote agents to migrate back to their home platforms.

Agent platforms should be able to detect and recover from software and
hardware failures. Agents, however, can usually be assumed to handle their
fault-recovery on their own [9]. This ability to recover from faults is sometimes
considered as a separate quality attribute, survivability, but here it is handled
under availability.

2.5.5 Robustness

Robustness is the ability of software to withstand exceptional input and stressful
environment conditions. A piece of software that is not robust, fails when facing
such circumstances. Lack of robustness also offers the possibility for a malicious
intruder to take advantage on the situation, for example, through a denial-of-
service attack [3].

32

Although robustness weaknesses are caused by programming mistakes, those are
not usually detected during programming. Robustness problems do not either
manifest themselves during normal operations but they become visible only
when something exception happens, such as someone injects corrupted data
inside the software [3].

Even if the mobile agent system could be made theoretically secure with the help
of cryptographic algorithms and various other security mechanisms,
implementation vulnerabilities can weaken the security of the agent system and
make it vulnerable. Implementation vulnerabilities are defined as security
hazards resulting from programming mistakes [23]. Unfortunately,
implementation vulnerabilities cannot be completely avoided. Since, despite
careful programming, it is not economically reasonable to search for every
vulnerability in the software. At some point, it is more profitable to release the
product and take care of any possible consequences in other ways.

There are three different ways of handling software faults proactively and thus
enhance the robustness of the software [23]:

• Vulnerability avoidance: Developing software using techniques that prevent
the introduction of vulnerabilities into it.

• Vulnerability elimination: Searching for the vulnerabilities from software
using testing or other activities and removing problems.

• Vulnerability tolerance: Building tolerance to the (potential) vulnerabilities
in software and ensuring that acceptable results are produced despite of
them.

In this thesis, vulnerability elimination is used to point out programming errors
from the implemented mobile agent system. Robustness testing is addressed in
Chapter 6. Although vulnerability avoidance and vulnerability tolerance are not
used as special techniques in this work, the implemented system is programmed
carefully trying to avoid programming mistakes. Because all software faults and
vulnerabilities cannot be pointed out, even with a special robustness testing
method, also run-time management of programming mistakes has to be
considered. However, in this study the discussion is limited to vulnerability
management during the development of the agent system.

33

3. Security technologies for mobile agents
Security technologies that are used in mobile agent systems are in many ways
closely related to or even the same as standard technologies used in distributed
computer systems. This chapter gives a short introduction to what these common
technologies that are used as basic building blocks for providing security for
mobile agent systems are.

In the first section, we take a look at the few cryptographic algorithms, which
are used in our case study to protect agents during their migration. The second
section concentrates on introducing digital signatures based on public key
infrastructure, which are used in the case study to provide authenticity of the
agent or the message. Certificates are presented in the next section in order to
provide background information about the authorisation mechanisms used in the
auction implementation. In the last section, Java security architecture is
considered from the viewpoint of the case study, where a few of the most
essential features are examined in detail.

3.1 Cryptographic algorithms

A mobile agent system has to provide communication security for agent
migration and the messages that are sent between agent platforms. One way to
attain the required security is to use cryptographic algorithms and digital
signatures to provide confidentiality and integrity of exchanged messages. This
section introduces basic cryptographic algorithms that are used in the case study
of this thesis and are thus essential to understand.

Symmetric algorithms, also called secret-key algorithms, are algorithms, where
the same key can be used for both the encryption and decryption of data. If the
key is revealed, security is lost and can no longer be used. Therefore, secret keys
have to be kept secret from unauthorised parties. There are two categories of
symmetric algorithms: stream algorithms, which operate on plain text a single
bit at a time, and block algorithms, which encrypt larger blocks of data. Maybe
the most important advantage of using symmetric algorithms is their efficiency.
However, there are also several problems related to them that have to be taken
into consideration. Firstly, key distribution must be kept secret, otherwise keys

34

are revealed and security is compromised. Secondly, every communication
channel needs a specific key and the task of maintaining a large number of
shared secret keys may turn out to be quite burdensome [24, pp. 211�212].

The most well known symmetrical algorithm is the Data Encryption Algorithm
(DES). It encrypts data in 64-bit clear text blocks, with a key size of 56 bits. The
algorithm itself is quite old since it has become a standard in the 1970's. Despite
its age, it is still widely used in the world. The major weakness of DES is in its
key size, because an exhaustive search through 56-bit key space can be done in
weeks or moths, even with common equipment. Because of the limitations of
DES, Advanced Encryption Standard (AES) has been introduced to replace it.
AES specifies an algorithm that supports larger block and key sizes. Another
option to extend the key size is triple DES, which uses three 56-bit DES-keys
instead of one. It has also proved to be practical and is widely accepted [24, pp.
212�213]

The auction implementation presented in Chapter 5 supports both DES and triple
DES encryption algorithms. The default key size of the triple DES algorithm
used is 112 bits, which is achieved with two intermediate keys, but a key size of
168 bits can also be used. In addition, AES could be used with minor changes,
but both the DES and at least the triple DES should provide adequate protection
for agent migration.

Asymmetric algorithms (also called public key algorithms) use different keys for
encryption and decryption. Encryption can be made public using a public key
that can be openly distributed, but decryption is achieved with a private key that
must remain secret. The public key and the private key compose a key pair,
which are algorithmically related to each other. However, deriving the private
key from its corresponding public key should not be feasible. Thus, anyone can
encrypt data with the public key of the intended receiver, but only the receiver
(assuming that no one else has its private key) can decrypt the data. Also, digital
signatures use public-private key pairs, but with those, messages are encrypted
with a private key and decrypted with a public key [24, pp. 211�212].

The RSA algorithm is a well-known public key algorithm and is also used in
many mobile agent systems, including our case study. It is named after its
developers, who are Rivest, Shamir and Adleman. RSA is suitable for both the

35

encryption of the data and digital signatures. The mathematical base of RSA
encryption will not be discussed in this paper, however, the description of the
algorithm can be found from [20, pp. 173�182]. The RSA algorithm has two
major weaknesses: encryption with RSA is quite slow compared to symmetrical
algorithms and it is not sensible to use RSA in large data blocks, because
encrypted data would have to be divided into blocks that are smaller than the
common part of the RSA key pair [20, pp. 173�178].

3.2 Digital signature

The objective of using digital signatures in mobile agent systems is to ensure the
authenticity of inter-platform messages and migrated agents. The message
sender adds a digital signature to the message, whereupon the receiver is able to
verify that the received message came from the claimed source and it has not
been altered en route. Digital signatures also support non-repudiation, since only
the owner of the private key can be the sender of the message signed with it.
Non-repudiation can be, however, invalidated if the sender's private key is
exposed or stolen by some malicious entity that then uses it to send messages
with a false identity.

The digital signature scheme consists of creating the digital signature and
verification of it. There are two ways of creating digital signatures; they may be
formed by encrypting the entire message with the sender's private key, or as
depicted in Figure 6 by encrypting a hash-value of the message with the sender's
private key. A hashing algorithm is used for calculating fixed-size hash-value
sometimes also called a message digest. Some well-known hash algorithms are,
for example, MD5 and SHA (Secure Hashing Algorithm) from which the SHA
is considered to be the more secure against cryptanalysis and brute-force attacks.
After calculating the hash-value, the digital signing algorithm is used to encrypt
the hash-value and the digital signature is formed. The RSA algorithm can be
equally used for signing as for encryption. However, on the contrary to
encryption, digital signature algorithms do not need to be reversible. Another
generally used signing algorithm is the Digital Signature Algorithm (DSA) [20,
pp. 299�301].

36

Figure 6. Creation of digital signature.

Verification of the digital signature calculated from the hash-value is a two-stage
process. The original hash-value is decrypted from the digital signature using the
receiver's public key. In addition, the new hash-value is calculated from the
signed message using the same hashing algorithm as the original one. Then these
two hash-values are compared to each other and, if they are equal, the message
is authenticated and its integrity is proved. Otherwise, a message has been
changed during transmission and neither its sender's identity nor message
content can be trusted. Figure 7 visualises the verification process of digital
signatures [20, pp. 299�301].

Figure 7. Verification of digital signature.

37

3.3 Certificates

A public-key certificate is a digitally signed statement from one entity that
serves to validate the subject's authority and name. Certificates are usually
signed by the Certificate Authority (CA). The CA acts as a Trusted Third Party,
who issues and manages public keys and thus guarantees the link between the
user and the cryptographic key used [24, p. 219]. The CA is assumed to create
only valid and reliable certificates. Thereby, entities that are applying for the
certificate have to be able to authenticate themselves to CA. Currently there
exists many public Certificate Authorities, such as VeriSign [25] and Entrust
[26], who offer chargeable certification services for organisations and
individuals.

In mobile agent systems, certificates may have various purposes of use. For
example, in the Grasshopper 2 agent platform introduced in 2.4.2, certificates are
used for authentication purposes. Our agent implementation also uses certificates
in the authentication of agents and the agent platform. In addition, certificates
are used by agent platforms for storing the public keys of trusted communication
parties.

The X.509 Standard defines the information from which the certificate is built
upon. In addition to the signature field, all X.509 certificate versions include the
following fields [27]:

1. Version: Identifies which version of the X.509 standard applies to the
certificate. Currently there are three different versions defined.

2. Serial Number: The entity that has created the certificate is responsible
for issuing a unique serial number to distinguish it from other
certificates it issues.

3. Signature algorithm identifier: This field identifies the algorithm that is
used by the CA to sign the certificate.

4. Issuer name: X.500 name of the CA that has created and signed the
certificate.

5. Period of validity: This field includes the starting and ending dates and
time when the certificate is valid.

38

6. Subject name: The name of the entity whose public key this certificate
identifies. All of the names use the X.500 standard and are intended to
be unique.

7. Subject's public key information: The public key of the entity being
named and all necessary algorithm identifiers.

8. Signature: Contains the hash code of the other fields encrypted with the
CA's private key. Algorithm identifiers and parameters are also
included.

The fields describe all of the data that is found from the X.509 certificate
Version 1, which is the most generic certificate format. Newer versions include
additional fields: Version 2 also has issuer and subject unique identifier fields,
which are used to uniquely identify the entities. Version 3 includes a field for
extensions, whereby anyone can define an extension and include it in the
certificate, for example, to limit key usage to particular purposes.

3.4 Java security

For several years, Java has been the most used programming language in the field
of developing mobile agent systems. Reasons for that may be various, but the
advanced security model that Java provides, is not certainly the smallest of those.

Java is not just a programming language, rather a complete software platform
including application program interface (API) and Java Virtual Machine (JVM).
JVM has many built-in security mechanisms that enable the creation of a secure
mobile agent system. From a robustness and security point of view, the
following properties can be considered as important [28, pp. 59�61]:

• type-safe reference casting,

• structured memory access (no pointer arithmetic),

• automatic garbage collection,

• array bounds checking, and

• checking references for null.

39

The reason why Java security is considered in this thesis is that the case
example, presented in Chapter 5, is implemented using Java. Therefore, being
aware of Java's security mechanisms is required. In particular, when proceeding
to robustness testing in Chapter 6, knowledge of Java's built-in security
mechanisms is needed for the successful test design.

The Java security architecture, presented in [29], consists of several built-in
security mechanisms. These mechanisms play an important part in developing
secure mobile agent systems and the most essential of them from the viewpoint
of agent systems are listed as follows:

• sandbox model,

• secure class loading,

• class verifier,

• access control mechanisms, and

• security management.

Most mobile agent systems whose agent migration is based on mobile code
make use of these mechanisms. The sandbox model is used since it provides an
agent platform possibility to categorise remote code into individual domains. A
secure class loader co-operates with the sandbox model and its function is to
import binary data that defines the running program's classes and interfaces into
the JVM. Access control mechanisms, on its behalf, can be used in defining
access rights for mobile code. In spite of the importance of these mechanisms to
some mobile agent systems, these are not essential parts of the agent system
presented in this thesis, and therefore, they are not reviewed in detail. However,
two of these security mechanisms are needed for our case study in order to make
it as secure as possible. Class verifying and security management are discussed
separately to give a brief introduction to these important features. In addition,
two security-related tools needed for the case study (PolicyTool and keytool) are
also presented shortly.

40

3.4.1 Class verifier

The main purposes of the class verifier is to check that a particular class file
conforms to the Java language specification and that there are no violations of
the Java language rules or name space restrictions. The class verifier also
confirms that common memory management violations, such as stack overflows
or illegal data type casts, do not occur [30, p. 5]. In mobile agent systems, the
importance of the class verifier comes up when considering the robustness of the
agent platform, since the verifier recognises and rejects malformed mobile
agents and, as a result, the exception will be thrown. The class file verifier
catches problems caused by buggy compilers, malicious crackers or innocent
binary incompatibility. Thus, the verifier improves the security of Java greatly
compared to other programming languages where, for example, stack overflows
may present serious security risks.

The class verifier shows its importance to the agent system implemented in this
thesis when moving to the testing phase. Testing includes inserting invalid
elements to the mobile agents, which are then tried to inject back into the agent
platform. Also, some invalid elements that break the rules of Java will be
inserted, which might cause serious misbehaviour. However, because of the
existence of the class verifier, invalid elements are recognised and exception is
thrown before a malformed agent is allowed to enter to the platform and damage
is done.

3.4.2 Security management

The purpose of the security manager is to control access to external resources
like files or network connections. This is realised in a way that the Java API
supports the security policy by asking the security manager for permission
before any possibly unsafe actions will be taken. Asking for permission is
carried out by invoking check methods on the security manager object. For
example, when a ServerSocket receives a connection request, the checkAccept()
method in the security manager is called to check if it is allowed to open a new
socket to the specified host address and port number. The security policy that is
followed by the security manager is defined in the policy file. The policy file, on
its behalf, can be configured by the PolicyTool, which is a graphical user

41

interface that assists a user in specifying, generating, editing, exporting, or
importing a security policy. The tool can be run from the command line [29].

PolicyTool can be used in our agent system implementation to restrict allowed
connections between agent platforms. This form of security management is
particularly useful if the agent platform is repeatedly disturbed by, for example,
malicious agents from a particular address. In this case, all connection requests
from that specific address can be denied and platform resources will be saved.

Another important security-related tool provided by Java is the keytool, which is
a key and certificate management utility. With the keytool, users can
administrate their own public/private key pairs and associated certificates. Also,
certificates referring to trusted communication parties can be managed by the
keytool. User's own keys, certificates and certificates from trusted parties are all
stored in the same key store from where they can be referenced by an "alias".
This key store is protected with a password from unauthorised users. In addition,
private keys are also protected with individual passwords to guarantee that they
do not unintentionally fall into the wrong hands. The keytool can be run either
from the command line or users can create their own security applications using
the KeyStore class provided by the java.security package. With the keytool users
can display, import and export X.509 certificates. It also allows users to specify
any key pair generation and signature algorithms supplied by any of the
registered cryptographic service providers [29].

In the case study presented in this thesis, the keytool is used to generate
public/private key pairs and certificates from the command line. Management of
the key store, instead, is handled by the key management service implemented
particularly for the case study. (More information about implemented
management service is presented in subsection 5.5.1.)

42

4. Mobile agent security threats and
protection

Although security plays a very important role in developing mobile agent
systems, many of them are developed without a deeper knowledge of the
security, leaving it open to be taken care of in the future. However, in order for
mobile agent technology to make a breakthrough in the area of commercial
applications and gain widespread use, security issues need to be first addressed
properly [21].

Security and openness are often said to be opposites in a sense that you cannot
have both of them at the same time. There seems to be a dilemma about how the
same agent can be both secure and mobile. The answer is simple, mobile agents
do not have to be perfectly mobile and they are not also meant to be fortresses
that can hold massive attacks. They are a combination of both on a suitable scale
and the relation of those usually depends on the task that agent is intended for.

This chapter discusses the security issues of mobile agents. It has been divided into
two main parts. The first part concerns security threats of the mobile agents, while
the second tries to find out ways how to protect the agent system against those.

4.1 Threats

Many threats in mobile agent systems can also be found in traditional distributed
network environments. However, introducing mobile agents significantly
broadens the opportunities for misuse. Making an agent able to migrate between
nodes exposes the agent to danger. A migrated mobile agent residing in a remote
platform also raises numerous security issues to be taken care of.

To be able to protect agent platforms and mobile agents, which move between
them, we have to know exactly what kind of threats an agent system faces.
These threats can be divided into four main categories [31]:

1. agent against agent platform,

2. agent against other agent,

43

3. agent platform against an agent, and

4. external entities against agents and agent platforms.

Security threats of the mobile agent system are visualised in Figure 8. Each
threat is also discussed in detail in the following subsections.

Figure 8. Security threats of the mobile agent system.

4.1.1 Agent against agent platform

The attacking agent has two main ways to inflict harm to the agent platform. An
agent can try to gain unauthorised access to the information residing inside the
agent platform, or an authorised agent can try to cause harm to the platform.
Unauthorised access can be acquired by masquerading, which means that an
agent pretends to be some other agent that is trusted by the agent platform [31].
When unauthorised access has been gained, an agent has several ways to cause
serious harm to the platform, for example, by revealing classified information. It
is much harder to protect the platform from an agent that has authorised access
to the platform and thus is trusted. However, losing one�s trust works as an
efficient deterrent for trusted agents to not behave irresponsibly.

An agent can attack the agent platform even without gaining access to it. This
can be achieved with a denial-of-service attack, which is used to deny platform
services to other agents by exhausting the platform�s computational resources

44

[31]. The denial-of-service attack can be performed, for example, by creating an
innumerable amount of malicious agents trying to simultaneously log into the
agent platform, with their only intention to exhaust it, and thus preventing
benevolent agents accessing the platform.

4.1.2 Agent against other agents

A malicious agent has several approaches to attack other agents. It can take
actions to falsify transactions, eavesdrop on conversations, or interfere with an
agent's activity [31]. One of the threats is masquerading, where an agent
pretends to be an agent other than it really is, causes some kind of harm to the
agent system and then leaves the accusations of the community to the real agent.
This may cause serial damage to the trust relationships and the agent whose
trustworthiness has been hurt has a great deal of work to vindicate itself.

Denial-of-service is another attack that an agent can direct at other agents. It can
be achieved in two ways:

1. An agent that provides important services denies those services from a
particular agent, thus causing its performance to degrade.

2. Some malicious agent continuously sends service requests to a service
provider agent, thus placing undue burden on it.

Success of the denial-of-service attack also depends on the architecture of the
agent system. If the agent platform allows direct inter-platform agent-to-agent
communication, an agent's denial-of-service attack against other agents would be
easier than in the case where all inter-platform messages go through the
platform's communication service [9].

Repudiation is the form of an attack in which an agent denies that a legitimate
transaction has ever occurred. Repudiation may be caused either deliberately or
unintentionally by a misunderstanding between parties. In both cases, it may
result in a serious weakening of trust relationships and is a difficult dispute to
solve. However, with proper countermeasures, non-repudiation between agents
can be rather well assured.

45

If the agent system uses mobile code in migration and agent platform does not
have good control mechanisms, it may result in serious threats between agents
inside the platform. An agent may be able to eavesdrop on the conversation of
other agents or even worse, it may be able to access other agent's resources
without permission or modify agent's code [31].

4.1.3 Agent platform against agent

How to protect an agent from the agent platform is probably the most difficult
and discussed problem in the field of mobile agent security. It is usually referred
to as a malicious host problem and occurs when the agent has arrived at the
remote platform. After that, the home platform looses its control over the agent
and little can be done to stop the remote platform from treating the agent as it
likes [21]. The remote platform can easily, for example, check the information
that the agent is carrying, deny requested services, alter the agent's data or even
terminate the agent completely [31].

Masquerading is one possible threat carried out by a malicious platform that
falsely pretends to be another trusted platform. It is directed towards mobile
agents, which are not yet inside the platform and thus can be deceived about the
destination where they will migrate to. Consequently, agents will log themselves
into the malicious platform believing that they have arrived at some other
platform that is trusted. Once the fake platform has succeeded in deceiving, it
has several other possible attacks that may be launched at agents residing in it.

An agent under a remote platform's control is vulnerable to several threats and
protection against those threats is very difficult. If the agent consists of data and
state information, the platform is able to eavesdrop on all unencrypted data and
communication associated with the agent. The life-cycle of the agent is also
under control of the remote platform and if the platform wants, it can choose to
suspend or even terminate the agent completely. In the case of mobile code there
is still another threat, even more serious: The platform may be able to alter the
mobile agent's code and thus is able to turn a benevolent agent into malicious
one and change the agent's behaviour.

46

4.1.4 Other entities against agents and agent platforms

Even if agents and agent platforms could be trusted to behave properly, there
still exist other entities that may try to disrupt, harm, or subvert the agent system
[21]. Possible threats in this category are wide, because it includes many
conventional attacks. For example, an external entity may direct its attack at the
operating system level under the agent system and thereby try to gain
unauthorised access to the agent platform. Also, attacks aimed at communication
protocols are possible and quite an effective way to break into the agent system.
Because there is such a range of these conventional attacks, discussion of these
is beyond the scope of this thesis, and we concentrate on direct attacks against
either agents or agent platforms.

Eavesdropping, altering, copying or replaying migrating agents or inter-platform
communication are serious threats that can be caused by an external entity that is
simply monitoring network traffic, for example, by using some freeware
analyser program. Most of these threats can be effectively protected by taking
proper countermeasures such as the encryption of a migrating agent or using
timestamps and sequence numbers.

Termination of migrating agents and inter-platform messages is also a serious
threat that has to be considered. Although it is very hard to protect against
termination, some actions can be performed in order that the termination can be
detected and proper countermeasures can be taken. These protecting actions are
discussed in the following sections in more detail.

4.2 Protecting the platform

The agent platform is vulnerable to attacks by malicious platforms, malicious
agents and other malicious entities unless it takes proper action to protect itself.
Fortunately, a platform has a wide range of common protection mechanisms
traditionally used in communication security or trusted systems that can be used
to provide analogous protection mechanisms for it [32].

A number of security mechanisms have been introduced in papers concerning
mobile agent security. Some of them are designed for unsafe languages like C as

47

a software-based fault isolation, which isolates application modules into distinct
fault domains [20]. Others, for example, safe code interpretation, are
implemented in interpretative programming languages like Java. The idea
behind safe code interpretation is that security is enforced through strong type
safety, and byte code verification is used to check the safety of the code [32].
Many of these mechanisms concentrate on mobile code problems, and thus they
are not essential or directly applicable in our case. However, the best practices of
them have been applied in our conceptual architecture of the agent platform
security services introduced in Figure 9.

Despite the fact that protection of the agent platform and the agent itself are
concerned separately here, the overall security of the agent system is their
integration, and thus they should be developed simultaneously.

Figure 9. Architecture of the agent platform security services.

4.2.1 Authentication

When a migrating mobile agent arrives at an agent platform, it is an important
part of the platform's security to authenticate the incoming agent and thus clarify
the agent's identity. The platform can try to associate an agent with the agent's
original author, the agent's sender or both [33]. If authentication uses the agent's
sender to identify an agent, it must be able to trust it explicitly, thus knowing
that the trusted platform would not have sent anything suspicious. This may lead
to complex trust chains, where the system trusts someone, that trusts someone
else and so on, leading to that the system does not exactly know what it is
trusting. For this reason, if misuse occurs, it is hard to track down who is
responsible for it. However, if the platform authenticates agents according to

48

their original authors, it knows exactly whom it is trusting and such confusion
will not occur.

Authentication is commonly carried out using digital signatures introduced in
Section 3.2. A public key cryptography is usually used for signatures. The
signing party computes the hash value over the bits of the agent and encrypts the
result with its private key. Then the agent migrates and the receiving platform
verifies the signature with the public key and compares it with a locally counted
hash value [33]. As a result, if the verification of the digital signature succeeds,
the agent platform is assured about the agent's identity and the integrity of the
data inside the agent.

Every mobile agent that migrates to the agent platform, including mobile agents
that are returning to their home platforms, has to be authenticated. Otherwise
access has to be denied or access rights must be restricted to the lowest level,
making it impossible for the agent to maliciously cause harm to the platform.

4.2.2 Authorisation

Once we know who is responsible for the mobile agent, we can assign rights to
it. Agent platforms usually have different levels of access rights, which are
defined in the security policy. The common formalisation of a security policy is
an access control list that associates principles with their rights [33]. Decisions
on the level of access rights and thus defining which resources and services the
agent is allowed to use, are carried out according to the trust that the agent
platform has on the visiting agent.

Defining the level of trust is far from simple. If the mobile agent comes directly
from a trusted agent platform and the author of the agent is also trusted then
there is no problem. However, this is an ideal case but not quite usual.
Consideration as to what should be done if things are not that simple has to be
taken. For example, a mobile agent may come through an untrusted platform, or
the validation date of the certificate corresponding to the digital signature in the
agent might have expired. These questions have to be considered in advance,
and the decisions to be taken depend on the security policy that the platform
wants to impose.

49

4.2.3 Cryptographic service

A cryptographic service has two purposes: it is used by the agent platform to
encrypt and decrypt inter-platform communication, and it provides an encryption
service for residing agents. Partial result encryption that uses an encryption
service is discussed separately in subsection 4.3.2. This part concentrates on
another issue in a cryptographic service.

Because all of the threats that a mobile agent faces during migration, it has to be
encrypted before transmission at the sending platform and decrypted after
migration at the receiver�s side. This encryption is managed by the
cryptographic service, which can use, for example, the public key method in
encryption and decryption process. The sending party uses the public key of the
intended receiver, which is generally available to encrypt data to be sent. Once
data has been received, the destination receiver decrypts data with its private
key. Because the private key is kept in secret, no one else is able to find out the
content of the message even if the sent message gets into the wrong hands.

4.2.4 Execution tracing

Although execution tracing is a mechanism for providing security mainly for
mobile agents, its actions are mostly executed by the agent platform, and
therefore it is categorised here under platform security. Execution tracing is a
technique for detecting unauthorised modification of an agent by sustaining an
indisputable log of security relevant actions of agents and platforms [34]. The
work is done by the agent platform, which creates the audit log and adds traces
of agents residing in the platform to it. Many agent systems submit a trace
summary to the mobile agent, when it is about to migrate to a new platform.
However, in large-scale mobile agent systems, the size of the log that the agent
would be sustaining would probably get too big to retain. Therefore, in the case
study presented in this thesis, audit logs are stored by agent platforms.

In addition to benefits of detecting unauthorised modifications and making
repudiation more difficult, execution tracing can be used to improve system
survivability. Since an audit log contains specific state information of the agent

50

and the platform, it is easier for the platform to recover from an error with the
help of an audit log.

The confidentiality of the audit log is very important for the platform and agent
security. Therefore, proper security mechanisms must be taken to retain the
confidentiality and integrity of the audit log. This can be achieved, for example,
by using cryptographic mechanisms to encrypt an audit log and keeping
encryption keys safe from unauthorised entities.

4.2.5 Proof

When a mobile agent is about to migrate to a new agent platform, the agent or
the author of it should consider the reliability of the platform. If the platform is
not able to assure the agent about its security and benevolence, the agent might
decide to cancel its migration to the possibly malicious platform. Thus, to
achieve the trust of agents, the platform needs to prove that it possesses the
safety properties previously stipulated by agents. Verification of proof can be
carried out by sending the proof to the trusted platform where the agent is
waiting for migration and the safety properties can be verified [32]. If the
verification succeeds the agent migrates, but otherwise, migration is cancelled.
Proof should be structured so that verification can be handled without complex
cryptographic techniques.

Proof can be provided by the trusted third party that is generally trusted by the
agent society. A major drawback is the cost of generating proof and updating it
due to the updates to the platform, because proof has to be designed in such a
way that attempts of tampering with either the proof or the platform's code will
result in a verification error of the proof [32].

Trust of the agents can also be improved by introducing trusted hardware, where
the whole agent platform runs on hardware supplied by a trusted third party. In
this way, the trusted third party can control security sensitive tasks executed on
the platform and assure that the platform acts fairly to all residing agents [21].
However, the high cost of the solution is a major drawback.

51

4.3 Protecting the agent

Traditionally, program developers have been able to rely on the execution
environment not to act maliciously against the executing program. When
considering the protection of the mobile agent, the traditional scenario is no
longer valid. Mobile agents have to be designed paying attention to the idea that
attacks can also arise from the execution environment in this case being the
agent platform itself [32].

Security risks cause different problems depending on how far from the home
platform an agent is allowed to move. Arising risk is referred to as a single-hop
problem when the agent migrates from the home platform to the remote
platform, does what it is intended to do and returns directly back to the home
platform. If a mobile agent is allowed to visit several platforms before returning
home, the risk resulting from this is referred to as a multi-hop problem and it is
much harder to mitigate. The multi-hop problem usually means that the mobile
agent leaves the trusted network. Problems can be postponed by extending this
network of trusted platforms to some extent, but finally the decision between
free mobility of agents and scalability of the network has to be made. If the
mobile agent is still allowed to enter untrusted platforms, new security
mechanisms have to be introduced to protect the agent through its itinerary.

Today, there exist several protection and detection mechanisms introduced to
cope with the security problems of mobile agents. Some of them such as
obfuscated code are still at a quite theoretical level and there are problems in
applying them in practice [35]. Others seem to be quite practical and these are
introduced in a security layer for mobile agents as depicted in Figure 10, on
purpose to cover diverse aspects of the security of mobile agents. These security
mechanisms are discussed in detail in the following subsections.

52

Figure 10. Security layer for mobile agents.

4.3.1 Path histories

The basic idea behind Path Histories [32] is to maintain an authenticatable
record of a mobile agent�s itinerary. Records consist of path entries, which
include the current platform and next platform's identity signed with a digital
signature in order that authenticity can be verified. A complete itinerary record is
transmitted along with the migrating agent, and each platform adds a new entry
to the path in addition to the previous ones. With the help of path histories, each
platform can view the agent's itinerary in order to check if the mobile agent has
been in untrusted platforms. As a result, an agent platform is able to decide if the
mobile agent can be trusted and thus be given access to the platform. At the end
of agent itinerary at the trusted platform, the agent�s path history can be viewed
or every signature of each path entry in the history can be individually
authenticated to confirm the identities of visited platforms. If verification of
some specific platform identity fails, information gathered from that platform
can be neglected or considered with special caution. While the path history does
not prevent agent platforms acting maliciously towards agents, it acts as a strong
deterrent, since signed path entry is non-repudiatable. Major drawbacks of this
mechanism are the growing size of the path history, while a number of visiting
platforms increases, and the cost of the verification of those entries [32].

4.3.2 Partial Result Encryption

In a multi-hop situation there exists a severe security problem: how to protect
confidential information that one platform has received from other platforms,
when the agent is continuing its itinerary. A practical approach to this is to
encapsulate the results of the agent's actions at each visited platform.

53

Encapsulation may be carried out for different purposes with different
mechanisms: For example, providing integrity and accountability using digital
signatures or providing confidentiality using encryption. There are three
alternative ways to carry out the encapsulation of results [32]:

• providing an agent that is able to encapsulate received information,

• relying on the agent platform�s cryptographic service for encapsulation, or

• relying on the trusted third party which is capable to encapsulate results of a
mobile agent.

All of these ways have their pros and cons and none of these alternatives
prevents a malicious platform from terminating the results attained by previously
visited platforms. However, eavesdropping and the alteration of information can
be effectively prevented.

Usually the amount of information that an agent has gathered is quite small
compared to the size of the encryption key and thus the size of resulting cipher
text. A solution called sliding encryption [36] has been introduced allowing
small amounts of data to be encrypted and added to cryptogram, still yielding
efficient sized results. In the encryption of the data, a public key that the mobile
agent carries is used. Due to the nature of asymmetric cryptography, a
corresponding private key is required to get access to encrypted data. However,
even a mobile agent itself cannot access the encrypted payload until it returns to
its home platform, which contains the private key for the decryption [21].

4.3.3 Proof of agent's identity

Proof is a security mechanism for providing an assurance of a mobile agent's
identity to agent platforms. Thus, this mechanism is quite similar to the proof
considered in subsection 4.2.5. Proof can be provided in many ways. One
method is to calculate a digital signature from the mobile agent. The agent is
then sent with the signature and a certificate including a public key that
corresponds to the signature. In consequence, a receiving agent platform can
verify the identity of the mobile agent. As a drawback, an agent's signature
expires if information in the agent changes. Therefore, either information has to

54

be stored somewhere outside the agent or the signature must be recalculated
every time the agent is changed.

Security risks arising from the mobile code are very complicated to cope with.
The main problem from the viewpoint of the agent itself is the risk of a
malicious entity altering the code of the mobile agent and thus turning it into a
malicious one. One possibility to protect the agent�s code against that is a
security mechanism called Proof Carrying Code [20]. However, defining
accurate protecting mechanisms for agents that use mobile code is again out of
the scope of this thesis.

4.3.4 Co-operating agents

One of the main quality requirements of the mobile agent systems was
interoperability. One form of it, co-operation between agents, can also be used to
protect agents against malicious entities. Information and functionality can be
split between two or more agents in such a way that even if malicious entity gets
access to resources or gains control of one particular agent, it cannot perform the
whole task [21].

Probably the most well known realisation of co-operative agents is to divide
functionality between mobile agents and stationary agents in order that they
complement each other. A stationary agent is assigned to do most security-
critical functions, which would be too risky for mobile agents to carry out. A
mobile agent on its behalf is assigned to carry out tasks that can be performed
most efficiently on remote platforms and are not too risky.

Co-operative agents can also be used in a variation of Path Histories called
Mutual Itinerary Recording [37] where an agent's itinerary is tracked and
recorded by another co-operating agent. A mobile agent moving between agent
platforms conveys the last platform, current platform and next platform
information to the co-operating peer through an authenticated channel. Thereby,
malicious actions by the platform against the mobile agent can be detected
efficiently and the proper action can be taken if misuse is noticed. Co-operative
agents should avoid migration to the same untrusted agent platform, since in that
case misbehaviour may not be detected.

55

5. Case study: auction for mobile agents

5.1 Description of the agent system

The system implemented in this case study is a mobile agent system, which is
used as an auction place for software agents. The system is composed of various
nodes that can be, for example, personal computers or PDA's. Every node that is
connected to the system needs an agent platform running on it to be able to
provide services and a place to reside for the agents. The agent platform and
agents are implemented with the Java language, thus the Java virtual machine
makes the system platform and operation system independent and easily
portable. The only additional packet needed by the agent system is the
cryptography API provided by BouncyCastle [38]. Agent platforms in different
nodes are usually homogenous, though a restricted version may be used on
handheld devises because of resource limitations. Nodes are connected to each
other via the TCP/IP interface. Visualisation of the simple agent system that is
used for the auction is depicted in Figure 11.

Figure 11. Overall view of the system.

56

The system includes at least two different types of agents: shoppers and an
auctioneer. As seen in Figure 11, the platform in the middle named auction node
contains the auctioneer agent while other nodes contain shopper agents. When
an auction event begins, shopper agents migrate themselves to the auction node,
where the auction takes place. After completion of the auction, shoppers migrate
themselves back to their home nodes.

Co-operation of the agents is based on client-server architecture, where the
auction node acts as a server as depicted in Figure 11. However, the system�s co-
operation architecture is actually much more complicated, since any node can
act as an auction node. Therefore, it does not have a permanent structure and the
co-operation architecture can be even changed at run-time.

Certain decisions have been made to limit the size of the system and to simplify
the implementation. At first, the home platform is always considered as trusted
and protected. Thus, agents do not face any threats while residing in the home
platform. In addition, the remote platform has to be trusted by the home platform
in order to allow confidential communication between platforms. For this
reason, the platform requires either a safe way to deliver its certificates or valid
certificates, provided by the trusted third party, to be made available. However,
providing a trusted third party to accept and deliver certificates would be too
costly for this work. Therefore, the certificate delivery is handled manually in
this case study.

For another thing, the auction node is in direct contact with all other nodes from
which agents migrate to the auction place. Thus, nodes do not need to act as a
mediator in the message sending process and if the message is not interesting to
them it can be trashed without worry. Consequently, implementation mainly
uses single-hop agents, which means that mobile agents are usually only one hop
away from their home platform. This leads to a higher level of trust in the source
of an agent, because it is well known in advance where the agent will visit
during its itinerary. Nevertheless, multi-hop agents can also be used and the
security implementation has been designed considering issues arising from
multiple hops. However, this requires either extra control from the users of the
agent platform or the introduction of new functionality to the platforms.

57

The objectives of this case study are to find out answers to following questions:

1. How can a secure mobile agent system be implemented?

2. What compromises have to be made between agent mobility and the
security of the system?

3. What obstacles have to be overcome to apply the developed technology in
commercial applications, which will require significant security?

The adaptability of the developed architecture to different implementations is
also an interesting issue, but understandably only one agent system has been
implemented and references to make a comprehensive summary are too scarce.

5.2 Agent platform

The major function of the agent platform is to provide services for agents living
in the agent system. Usually, an agent has to be inside the platform to be able to
access platform services. For that, a platform has an abstract place called
"place", where agents reside while they are logged into the agent platform. An
agent platform also provides some services for the users that support the
operation of the agents. The platform has, for example, user interfaces for
controlling agents, assigning tasks to them, managing platform security and
controlling communication interfaces between nodes.

Visualisation of the agent platform is depicted in Figure 12. Platform services
have been divided into four service components: management, registration,
security and communication. All of these components cover one aspect very
extensively, but interaction between these is also very important. Each service
component is discussed in detail in the following subsections.

58

Figure 12. Agent platform.

5.2.1 Management

The management service is the most versatile of the platform�s services. It
provides, for example, agent life cycle management. The first time the user
usually realises it is when a user interface for the agent creation is needed. A
user interface consists of an agent pool, where a user is able to select the type of
agent that will be created. After the selection, the agent's parameters are entered
and with help of a profiler, a new profile for the agent is created. Finally, the
new agent is injected into place and a user interface for the agent is created. Now
the agent is fully operational and the management service can be used, for
example, to force the agent to migrate to a new platform or to reconfigure the
agent�s parameters. An agent�s life-cycle is depicted in Figure 13 [39] and its
state transitions are described more specifically in Table 2. An agent�s life-cycle
is similar to all primary agents with one exception; only mobile agents are able
to migrate between nodes, whereas this function is lacking from stationary
agents.

59

Figure 13. Agent life cycle.

Table 2. Description of the state transitions.

Transition Description
Create Creation of a new agent is initiated by the user. Agent�s

life cycle begins.
Prepare The agent is prepared for action.
Invoke The agent is invoked by the management service. It is

fully operational and can make its own decisions.
Suspend Agent execution is halted temporarily by either the

management service or the agent itself.
Resume The agent is resumed from the suspended state.
Wait The agent puts itself into the waiting state.
Wake up The agent is woken up by the management service.
Migrate The agent is serialised and put into migrating state. The

decision to migrate can be made by the agent itself or by
the management service.

Recreate The agent is deserialised and recreated after migration.
Quit The agent itself chooses to end its life cycle.
Terminate The management service forces the agent to terminate.

60

In addition to controlling agent�s life cycle, the management service also
provides an interface for the user to send messages to agents residing on the
same platform and to manage connections between nodes.

5.2.2 Registration

The registration service creates the place where agents reside inside the
platform. New agents can be added or old ones removed from the place, and
information about residing agents is available to authorised users. Agents are
able to reside only in one place at a time. Therefore, if an agent migrates to a
new place, it will be removed from the earlier one. The registration service is
also used to join together agents acting for the same purpose. For example,
agents participating in a certain auction are registered to it with the help of the
registration service.

5.2.3 Security

Security of the agent system can be divided into security provided by the
platform�s security services and the agent�s security layer. Although the security
of the agent system is a tight combination of both of these components, in order
to clarify the discussion of different security mechanisms, platform and agent
security are considered in this thesis separately.

The platform�s security service contains various services that can be used to
protect the platform, agents residing in it, and the communication between
nodes. These services are key management, authentication, authorisation,
encryption and decryption, execution tracing services, and proof. Functionality
of the security service is described in detail in Section 5.5.

5.2.4 Communication

The communication service provides a transparent channel for inter-agent
communication. Therefore, agents do not have to know the location of their
communication partners. Possible communication types are localcast, broadcast

61

and unicast messaging. Localcast messages are sent only to the agents residing
in the same platform, thus being the most secure communication type. The two
other communication types use TCP/IP and are more vulnerably to malicious
action. Broadcast messages are sent to every platform and agent that can be
contacted. Thus, it is the responsibility of the receiving platform to decide what
to do with a received message. If the size of the agent system increases, useless
sending of broadcast messages may cause a massive burden on the
communication channels. Therefore, using this communication type should
always be carefully considered. The third communication type, unicast message,
is used to send messages to a predefined receiver. Sensitive information that has
to be delivered between two agents residing in different nodes is sent using
unicast messages.

5.3 Agents

There exist two main agent types, referred to as a shopper agent and an
auctioneer agent, which are used in auction events. Both agent types are
descendants of the agent super class and have similar functions, for example, the
same communication interfaces. Both of the agents also use the same agent
language that enables co-operation between them.

Auxiliary agents could be used to support the actions of primary agents. Such an
agent could be a banker agent, which could help the user in money transactions.
However, secure implementation of the agent that has access to the user�s bank
account or carries a users credit card number is very difficult, and therefore
money transactions should be the responsibility of the user. Another auxiliary
agent that is used mostly in generating and maintaining agents� profiles is a
profiler agent. However, the profiler agent does not have the same significance
as shopper agents or auctioneer agents. In addition, it is not as agent like as the
other agents in the system, because it is mainly controlled by the user and thus it
doesn't act very autonomously.

62

5.3.1 Shopper agent

A shopper agent is the most intelligent agent in the system. Its main goal is to
buy items, which its author is interested in. When a user creates a shopper agent,
he/she is requested to fill up a profile of his/her own interests. An example of a
simple profile intending to be used in a furniture auction is depicted in Figure 14.

Figure 14. Screenshot of the user profile creation.

After a shopper agent has analysed the profile, it uses the information received
to decide if the user is interested in a particular product that has been offered by
the auctioneer agent. Thus, the agent can filter out all of the product offers that
do not attract its author. Only the most interesting product offers are forwarded
to the agent's author, who is asked to confirm his/her interest in the product. An
example of a product offer and confirmation request is presented in Figure 15. If
the user accepts the request, a shopper agent will migrate to the auction place to
take part in the auction. An agent�s ability to autonomously make decisions can
also be used in the bidding situation, where the agent itself decides, according to
the user profile, how high bids it should place. If the author does not feel
confident on an agent�s ability to decide on the bidding price, he or she can set
an absolute limit price that will not be exceeded by the agent.

63

Figure 15. An example of a product offer.

The shopper agent has certain requirements for its size and security. Since it is a
mobile agent, it should be able to easily migrate from one platform to another.
Thus, it should not be too heavy even for wireless devices. This sets some
restrictions on how extensive the profiles gathered from the user can be. Security
issues that the shopper agent must take care of are considered in subsection
5.5.2.

5.3.2 Auctioneer agent

The purpose of the auctioneer agent is to sell products to the shopper agents and
try to get as high a price as possible. The auctioneer agent knows the products
that it is auctioning and knows their value. It may have a minimum price for
products so that if shoppers are not willing to bid above that, it will buy the
product back for itself. The auctioneer can receive assignments from clients
containing product lists with numerous products on them. Those products are
then auctioned one by one from the list and the results of the auction are
transmitted to the client. In addition to managing the auction event, the
auctioneer sends adverts of products, which are going under the hammer.
Adverts are only sent to those shopper agents that are registered with the auction
in order to reduce network traffic.

The auctioneer agent is a stationary agent and it does not have such a complex
profile as shopper agents have. Therefore, implementation of the agent is simpler

64

and it is smaller in size. Security threats against the stationary agents are much
easier to cope with than in the case of mobile agents. Thus, the agent platform
provides the necessary protection mechanisms in order to guarantee the security
of the auctioneer agent.

5.4 Concrete architecture

This section describes the concrete architecture of the designed and implemented
agent system. The architecture is divided into three views, which are named
structural view, behavioural view and deployment view. Each view is a
representation of the whole system from the perspective of a related set of
concerns. The architecture model specified in this section has been drawn
according to the QADA-method [40].

5.4.1 Structural view

The Structural view describes an agent by defining its components and
connections between them. The structural view is represented using the
composition diagram of the agent, which is depicted in Figure 16.

An agent architecture model that is used in the agent system is based on the
layered agent architecture introduced in subsection 2.4.1. According to the
presented agent architecture [14], the agent has an internal structure, which
consists of co-ordination layer, organisation layer and definition layer. In
addition, a new layer is presented in this work, which is referred to as a security
layer. It has been added to the agent�s architecture in order to enhance the
security of agent mobility. Another addition to the agent architecture is the
introduction of agent management, which controls these agent layers with
control signals. Messages from the platform are first directed at agent
management. If the message concerns the agent, it is forwarded to the security
layer, which is able to ensure its security. Implementations of the mechanisms in
the security layer are described in more detail in Section 5.5.

When the security layer has checked and accepted the received message, it is
forwarded to the co-ordination layer, which is responsible for the co-ordination

65

between agents. In this case study, agent co-ordination is most clearly seen
between the auctioneer agent and shopper agents during the auction event, where
agents negotiate the price using the auction protocol. Next, data is forwarded to
the organisation layer, which can refine received data. An agent's knowledge of
its responsibilities in the organisational level is located on this layer.

Finally, data is forwarded to the definition layer, which contains the actual
intelligence of an agent. In this layer, the agent makes decisions on how it
should act, for example, if a new product offer is received. Decisions to raise the
bid or to give up are also originated in the definition layer. When the agent
decides to send a message, initiation comes from this layer and in order that the
message can be sent, it has to go through layers in reverse order.

Figure 16. Structural view of the agent.

5.4.2 Behavioural view

The purpose of the behavioural view is to describe the behaviour of a concrete
system [40]. This is achieved mainly using sequence diagrams that visualise
different events such as auction and agent migration.

Figure 17 describes the migration of a shopper agent from node A to node B.
The initiative for migration is usually induced by the product offer received from

66

the auctioneer agent. Thereafter, the agent requests the platform's management
service to carry out migration and the agent's knowledge base is packed into the
message. The message is sent to the security service, which takes care of
protecting the agent for migration with help of data encryption, digital signatures
and time stamps. Then the message is wrapped into an envelope and the
communication service serialises the envelope; after that, the serialised data is
sent to node B.

On the receiver�s side, the communication service receives the data and
deserialises it. The received envelope is forwarded to the security service, which
decrypts it and verifies both the signature and the time stamp. If there are no
detected errors, the knowledge base of the migrated agent is transmitted to the
management service that recreates the agent. In order to complete agent
recreation, the agent must also be registered in node B, which is carried out by
the registration service. When an agent�s recreation and registration to the new
platform has successfully been completed, an acknowledgement is sent back to
node A to notify that migration has succeeded and that the instance of the
migrated agent can be removed. If the acknowledgement is not sent, node A
considers agent migration to have failed and tries to send the agent again until it
receives an acknowledgement or an agent's task becomes obsolete.

Figure 17. Agent migration.

67

The auction protocol used in the case study follows the pattern of an English
auction, in which an auctioneer directs participants to beat the current, standing
bit. At the beginning of the auction, the auctioneer predefines a minimum bid,
and since the first bid, every new bid must increase the current bid by a
predefined minimum increment. The auction ends, when no one is interested in
outbidding the current standing bid. The auction protocol is presented in Figure
18.

The auction protocol begins with the auctioneer agent sending a product offer to
shopper agents. Shopper agents compare the offer received to the profiles
representing their authors� interests. If a product is interesting and the author
also agrees it, the agent accepts the offer by migrating to the node where auction
takes place and registers itself with the auction. If the predefined time to start the
auction is on hands, and only one shopper agent is registered with the auction,
the auctioneer has to inform the shopper that the auction has been cancelled due
to the lack of participants. However, usually there are enough bidders and when
the predefined time has come, the auction begins and shopper agents can start
bidding. When a new bid is sent by a shopper agent, the auctioneer checks it and
if it is appropriate, a message informing acceptance of the bid is sent back. Also,
every other participant is informed about the new bid. This continues until no
one can be found to outbid the current standing bid. Then, the auctioneer agent
waits a while and announces that the auction has finished and the participant,
who made the final bid, is the winner and is obligated to pay the bid amount.

68

Figure 18. Auction protocol.

5.4.3 Deployment view

The deployment view describes the system's hardware and software components
and their relationship. To visualise the view, we introduce the deployment
diagram presented in Figure 19, which is a graph of nodes connected by
communication associations. The system's auction and shopper nodes are similar
to each other in the way that they contain the same agent platform and thus
provide the same services. However, there are differences in the active objects
between nodes, because usually only one node is assigned as an auction node,
containing the instance of the auctioneer agent, while other nodes contain only
instances of shopper agents. Instances of the agents can be created and

69

terminated during the run-time, thus the auction place can be changed without
reinitialising the agent platforms.

Nodes are connected to each other through the Internet using the TCP/IP
protocol. Every node has the ability to accept a new connection request and
make connection requests to other nodes. Connections are handled manually by
the agent platform administrator, although only one connection to the auction
node is usually needed. Since the administrator has to create a connection to the
auction node, he or she has to know the host IP address and the port number. If
the system would contain a large amount of nodes, the directory facilitator
would be needed to get information about the addresses of auction nodes and
improving their availability. However, the directory facilitator is not
implemented in this case study, since the functionality of the agent system can
also be proved without it. A certificate authority is another node that should be
implemented, if the system is used on a large scale and no other secure way of
changing certificates can be found. The directory facilitator and the certificate
authority are depicted with boxes of dashed lines to represent their absence in
this case study.

70

Figure 19. Deployment diagram of the system.

5.5 The security framework of the mobile agent system

Security of the mobile agent system is based on the security services provided by
the agent platform and agent security layer. These build up the security
framework for the agent system, which is a diverse combination of different
security mechanisms. Each of these security mechanisms has a specific purpose
and all of them are kind of a compromise with the availability of the system or
trust upon the other parties involved. In the implementation of this mobile agent
system, we have covered the security mechanisms as widely as reasonable
without going too deep into specific details of certain mechanisms. Our aim has
been to guarantee the well-balanced overall security of the agent system,
because the security of the system is always as weak as its weakest link.

71

The principles of the mechanisms used in this Section are described in Chapters
3 and 4. In the following subsections, we explain how these mechanisms are
implemented in our case study.

5.5.1 Platform security

The security of the agent platform is based on the security services it provides.
Each of these services provides security for the platform from one aspect. For
example, the key management service manages keys and certificates effectively
and securely. However, security cannot be provided by the individual
mechanisms, which would leave too big vulnerable gaps between them, but by a
tight combination of these mechanisms. Thus, there are various interactions
between these services that shape the security services into a tight net that cannot
be passed easily without authorisation.

An overview of the platform security services is depicted in Figure 20. The
figure illustrates the security services provided by the platform and files that are
connected to those services. The internal connections of the security services are
not provided in this figure to keep the representation clear. A description and
implementation of each service are presented in the following.

Figure 20. Platform security services.

Many of the security threats that the agent system faces are connected somehow
to inter-platform communication. Thus, the form of messages sent between
platforms is also essential when considering the security of the system. Figure 21
illustrates the type of envelope and message that are used to send data between
agent platforms. Both include certain fields that are used to protect data during

72

transmission. The purpose of those fields is described in detail in the following
subsections.

Figure 21. Structure of the message and the envelope.

Authentication

The main function of the authentication service is to sign agents and messages,
and correspondingly verify their signatures. Digital signatures, introduced in
Section 3.2, are created using the sender's private key for encryption. The
algorithm used to calculate message digest is SHA-1. The encryption algorithm
used in the process is RSA, which is reviewed in Section 3.1. Since Java does
not provide the RSA algorithm, Bouncy Castle Crypto API has been used as the
provider of the algorithm. Verification of the signature is performed using the
public key of the sender. Digital signatures can also be used as proof of message
integrity.

The reason that both the message and the envelope include a field for a signature
is in their different usage. The envelope is signed by the sending platform, which
guarantees the authenticity of the message, whereas the message signed by the
agent proves the agent�s identity. Envelope signature changes every time a
message changes. Therefore, the signature of the envelope is valid for only one
transmission. On the contrary, an agent's signature can be used for the whole
itinerary. However, the requirement for this is that all changes to the agent and
the results are stored outside of the core agent, which thus remains unchanged.

The authentication service is used to verify an agent�s path history and to sign
new path entries to it. Signing and verifying path histories uses the same
algorithms that are used in singing messages and agents. If the agent platform
notices that the path history of the mobile agent is deficient or invalid, the

73

authorisation service is notified of that, and proper action is taken to handle the
found defect.

Authorisation

When a new mobile agent has migrated to the platform and its identity has been
authenticated, the authorisation service is asked to issue rights for the agent. This
is achieved by verifying the identity of the agent with the database of trusted and
untrusted identities. If an agent's identity is found to be trusted, it is assigned
with full access rights to the platform�s services. On the other hand, if agent�s
identity is found from the list of untrusted identities, the agent's access to the
platform may be totally denied or it may be assigned with restricted access
rights. In the third case, if the agent�s identity is not known to the platform, it is
also assigned with restricted access rights. In the implemented system, agents are
divided into four groups whose access rights can be separately defined. Those
groups are local agents, trusted visitors, restricted visitors and untrusted visitors.
If an agent is untrusted, its access to the platform is denied. Unknown visiting
agents receive restricted access rights and they are not allowed to participate in
auctions. Local agents and trusted visiting agents have full access to the
platform�s services.

Decisions on granting access to the platform and the level of access rights are
dependent on the platform�s security policy. It defines, for example, if an agent
can be trusted, when a certificate including agent�s public key has expired, how
to act if an agent cannot be identified, or what to do if the time stamp of the
message including an agent is no longer valid. These are questions that have to
be considered beforehand in order for the platform to be able to make decisions
by itself and those decisions are in a clear line with each other.

Cryptographic service

The cryptographic service is used by the platform to encrypt the message that is
about to be sent. Since the principles of encrypting messages using both
symmetric and asymmetric algorithms have already been discussed in Section
3.1, this section concentrates on defining their implementation in this case study.

74

Encrypting of the message begins with creating a random session key that by
default uses the triple-DES encryption algorithm. With this symmetric key, a
whole message is encrypted reliably, however, the delivery of the session key
has still to be protected. Thereby, the session key is encrypted once more with
the receiver�s public key using the RSA encryption algorithm. As a result, the
message is encrypted with the session key and the session key is encrypted with
the public key and all of them are stored in the same envelope. A private RSA
key cannot be used directly to encrypt the message, because the size of the
message is too large for the algorithm and encryption with the public key
algorithm is also much slower than using the conventional symmetrical
algorithm.

The decryption procedure on a receiving platform begins after the
communication service has deserialised the envelope and passed it to the
security service. First, the encrypted session key is decrypted with the receiver�s
private RSA key, and after that, the resulting session key is used to decrypt the
message inside the envelope. Now the plain text message can be read and proper
action can be taken depending on the content of the message.

If there are shopper agents that are continuing their itinerary from one remote
platform to another, and if the data they have gathered from a particular platform
is too sensitive to be revealed to other platforms, the cryptographic service can
be used by agents to encrypt sensitive gathered data. This encryption is carried
out by the platform, but the key used in the encryption is the agent's public key,
which it carries during its itinerary. These encrypted results are stored outside
the core agent, which makes it possible for the next platform to authenticate the
agent by verifying its signature. If the core of the agent, where the agent�s
personality is located, is changed, the signature is no longer valid and agent
migration to new platforms is denied because of mistrust. When the agent finally
returns to its home platform, the agent's private key, found from the platform's
key store, can be used to decrypt the data that is collected during agent itinerary.

Execution tracing

Execution tracing monitors security-critical operations that are performed either
by the platform or by the agents residing in it. The most important of such
operations are:

75

• migration of an agent,

• recreation of a migrated agent,

• termination of an agent, and

• announcing a bid in an auction.

Single trace contains, at least, the identity of the principal that made the
operation, the description of the operation and the time when it occurred.

Traces of the security-critical operations are stored in a non-repudiatable audit
log, which is a file locating on the same node as the platform. The audit log is
protected from unauthorised parties, because some of the information it contains
may be used, if in the wrong hands, to do harm either to the agent platform or to
some agents whose information can be found from the log.

Key manager

The key manager has an important task in the system, since it is responsible for
all cryptographic keys and certificates that are used by the agents and agent
platforms. These keys and certificates are stored in the key store file, located in
the node where the agent platform is running. A screenshot of a key manager
implemented for the agent system is depicted in Figure 22.

Figure 22. Screenshot of the key manager.

The key manager is responsible for storing users' own public/private key pairs
and public keys in the form of certificates of their communicating peers. Only

76

secret keys, which are created randomly and used only once, are not stored in it.
Although the key manager lacks the possibility to create certificates, Java's
keytool (introduced in Section 3.4) provides creation of self-signed certificates,
which are used in the system. If some certificate authority was linked to the
agent system, it could be used to create real certificates. However, because of the
high cost of using services from certificate authorities, self-signed certificates
will meet the cause. The key manager can be used for adding already created
certificates, which have been received with messages from the communication
peer, to the key store or removing existing certificates from it. With the key
manager, a user can also create new key stores, load already existing key stores
from files or save key stores to files. The default key store is loaded during the
platform initiation phase.

Using cryptographic methods to protect communication between nodes
effectively solves communication security problems. Attackers are not usually
interested in wasting their time on complex cryptanalysis. Instead, they might be
looking for an easier way to break into the system, such as gaining access to the
cryptographic keys, which would make all communication encrypted with those
keys available for to attacker. That is why the key stores used are protected
against malicious principals with passwords. In addition, all private keys within
the key store are protected with specific passwords that are only known by the
authorised principals. This password protection is provided by Java, thus the
reliability of the technical implementation will not be concerned in this thesis.

Proof

Proof (also called as credentials) introduced in subsection 4.2.5, provides an
assurance that the agent platform conforms to a certain security policy. Reliable
implementation of the proof would require a trusted third party that would be
able to certify the agent platform, assure that it does not act maliciously, and that
it is what it claims to be. However, because of the lack of a trusted third party,
we have to either trust blindly unknown platforms or restrict an agent�s
operational area to trusted platforms. Neither of these two options is good, but
we decided to limit the agent system to trusted platforms in order to keep the
security of the platform at a high level. As a result, agents know every agent
platform in the system personally. Therefore, being able to authenticate a
platform should provide acceptable proof of its benevolence. If the agent

77

platform cannot be authenticated, agent migration to it can be denied until it has
identified itself.

5.5.2 Agent security

Assuring the security of mobile agents in multi-agent systems is a very
complicated task. In order to make this task a little easier, some assumptions and
restrictions to the system have to be made. Introducing trusted platforms, which
do not act maliciously against residing mobile agents, make it easier to cope
with security problems, since without it the mobile agent is exposed to many
severe threats on remote platforms.

Despite the fact that agent security against the platform it resides in cannot be
effectively assured without trust, few other security mechanisms for agents can
be introduced to make mobile agents� journeys safer. The agent security layer
contains three mechanisms, as depicted in Figure 23, which provide protection
for the agent in a particular aspect. Specific details of these mechanisms are
presented in the following subsections.

Figure 23. Agent security layer.

Path histories

Path history is a mechanism for protecting the agent by authenticating the
itinerary that the agent has travelled during its journey. Path history provides the
ability to detect if the agent has been to untrusted platforms. If this is the case,
results from the agent can be regarded with suspicion. An incomplete path
history is also a signal that something suspicious may have happened during the
agent�s journey. Detailed background information about the Path histories
method is presented in subsection 4.3.1, and thus only the implementation is
described here.

78

Digital signatures used in path entries are signed and verified by the agent
platform authentication service, which provides specific methods for this. The
signing algorithm used by the platform is the same that is used in signing agents
and envelopes. Path histories are stored outside an agent�s knowledge base,
because they have to be easily accessible to remote platforms, and platforms
should be able to add their own path entries to it. Updating the agent�s path
history is the agent platform�s responsibility and thus success of this protecting
mechanism requires good co-operation between the agent and agent platforms.

Encrypted payload

Encrypted payload is a mechanism to protect sensitive information, which a
mobile agent has gathered during its itinerary from other agent platforms. The
mechanism is based on partial result encryption introduced in subsection 4.3.2.
The information that the mobile agent has gathered is encrypted with the agent�s
public key, stored inside the agent. Because of the characteristics of the public
key cryptography, encrypted data cannot be decrypted without the private key,
which is located at the agent's home platform.

To be able to encrypt received data, the agent needs help from the platform�s
security service that performs encryption on behalf of the agent. In the
implemented system, information achieved from a particular platform is
encrypted in one single block of encrypted data, while some data collected from
another platform is encrypted and stored in another block. Although the system
does not thereby support sliding encryption, this approach is more suitable for
the mobile agent systems, where agents� itineraries are not very long. As a
result, the encryption of results can be done easier but the size of the encrypted
data becomes bigger when the itinerary gets longer.

Authorisation

In addition to the agent platform deciding which agents can be authorised to act
within the agent platform, the agent itself can decide which agents they want to
co-operate with. A precondition of the succeeded authorisation by the agent is
that the agent platform has authenticated every principal that is acting inside the
platform. Also, communication coming from principals outside the agent
platform has to be authenticated.

79

Authorisation is realised with the list of principals that are unwanted
communication partners by the agent. Every time the agent receives a message
from another agent, it is forwarded to the agent's security layer. The identity of
the message sender is compared to the list of unwanted identities, and if
correspondence is found, the message is rejected. This method prevents direct
intercourse with agents that do not want to collaborate, but indirectly this is still
possible. In the auction event, for example, two shopper agents that deny
collaborating with each other may, however, bid on the same product at the same
time without any problem.

5.6 Results of the implementation

Implementation of the mobile agent system was a challenging and time-
consuming task. Building the system started with relatively light objectives, but
in time, new requirements for the system came up. Basically, iterative
development process meant that new functions were added with slight changes
to the existing system. However, in the development phase where security
became the main viewpoint, some thorough changes to system architecture had
to be made and many already existing software components needed some sort of
revision.

The biggest decision that guided the development of the agent system was made
already at the beginning. The degree of agent mobility, which was quite
exceptionally decided not to support code mobility, set restrictions on many
things, especially on the security architecture. Because of the chosen type of
mobility, the decision that agents are only allowed to migrate to trusted
platforms had to be made, since otherwise mobile agents would be unacceptably
vulnerable to various threats caused by remote platforms. The most positive
issue of the selected agent mobility was that the implementation of the platform
security became easier, and protection of the platform could be mainly
concentrated on authentication and authorisation of mobile agents.

The introduction of trusted platforms lead to two new problems: how to prove
the trustworthiness of an agent platform and how certificate distribution and
revocation can be arranged. The answer to the problems is a trusted third party,
but the cost of building it proved to be beyond our capacity. Thus, only self-

80

signed certificates that can easily be created with Java were used in the agent
system. However, it is evident that self-signed certificates do not provide enough
security and trust. In addition, even trusted third parties are not completely safe
unless the identities of principals are authenticated personally, which is without
doubt unfeasible in large-scale agent systems. Therefore, this issue has to be
solved before the developed agent system can be applied in commercial
applications.

In some cases, the number of agent platforms connected to the agent system may
increase so that the assumption of extending the network of trusted platforms is
no longer reasonable. This scenario shows one weakness of the implemented
agent system, which is poor scalability. Every new platform that is about to join
the agent system has first to be able to assure its trustworthiness, and only after
that it is it accepted to the system. This is an important issue to be taken care of
in order to apply the developed agent system on a large-scale.

Although there are many things in the agent system that have some deficiencies,
agent security against other agents and attacks from outside the agent system is
implemented quite effectively. Implementation of inter-platform communication
and agent migration has been realised using cryptographic mechanisms.
Therefore, possible attackers do not waste their time with cryptanalysis, but they
probably look for other vulnerabilities that can be more easily exploited. The
agent system is also developed in such a way that agents residing in the same
platform do not pose notable threat to each other.

An additional objective of building the agent system was to research the
reusability possibilities of agents. Reusability of an agent platform has already
been proved, for example, by FIPA. It can be achieved using standardised agent
languages and communication interfaces, but there is still little evidence of
agents� reusability. Agents developed for the auction are designed with a layered
architectural style that should support reusability well. The case study showed
that the agent definition layer, which is the "brain" of an agent, is very specific
and its reuse is pointless in most cases. Developed agents also had co-ordination
and organisation layers but functionality of these layers turned out to be quite
low. One possibility might be to combine these layers into one in order to reduce
complexity in agent data flow. However, too direct conclusions from their
reusability should not be made based on this case study. In conclusion, the agent

81

security layer seems to be the most easily reusable, since it can quite directly be
applied to different agents. However, it should be remembered that even adding
a well-designed security layer to a new agent will not guarantee an agent's
security. The security must be considered comprehensively on the agent level,
because it is, at least, indirectly linked to every component of the system.

82

6. Robustness testing
When complex software is developed, its developers want to assure other parties
that the software obeys the quality requirements put on it. This is not easy
without some kind of concrete proof. Therefore, this chapter focuses on
providing satisfying proof of the security of the implemented agent system.

As we have seen in this work, the security of mobile agent systems is a very
broad issue. The main security mechanisms that were implemented in the case
study, like authentication or agent encryption, rely on cryptographic algorithms,
which are mostly provided by Java. It would be interesting to test the
vulnerability of these algorithms with the help of cryptanalysis tools, however,
in that case the test would be mainly directed at the security of the cryptographic
algorithms provided by Java, which is not our purpose. Many other attack
scenarios against the system also seem interesting. For example, eavesdropping
or replaying the packet can be seen as potential threats. However, thorough
testing of the security of the auction implementation would require too many
resources to be feasible for this thesis. Therefore, testing of the developed agent
system is limited to testing its functional robustness.

Robustness of the auction implementation is tested by inserting illegal
exceptional elements, called anomalies, inside the mobile agent. The agent then
migrates to the auction place in order to participate in the auction. The agent
platform's reactions to the altered agent are observed and all misbehaviour is
reported. If the agent platform detects that the received agent has been altered,
its access to the platform is denied. However, the platform�s ability to detect
altered agents is not perfect, and an altered agent may be accepted into the
platform. When the platform is exposed to a misbehaving agent, various
problems may occur since the platform has not been specially designed to handle
agent misbehaviour.

Testing of the system�s robustness is based on a mini-simulation method, which
uses multiple simple miniature simulations instead of a single complete one.
Background information about robustness testing and a mini-simulation method
is discussed in the following section. Actual test cases are generated using the
Codenomicon mini-simulation toolkit that is described in Section 6.2.

83

6.1 Mini-simulation method

Software robustness can be considered as the ability of software to tolerate
exceptional input and stressful environment conditions. If a software component
that is not robust faces such a circumstance, it will fail, and the opportunity for a
malicious intruder to take advantage of robustness shortcomings is offered.
Deficiencies in software robustness can be identified and quantitative figures
about software's robustness can be provided with the help of robustness testing.
Thereby, robustness testing also provides the possibility to increase software
quality particularly through the enhancement of security and reliability [3].

The mini-simulation method was originally developed for functional robustness
testing. The robustness testing methodology can be used to test any protocol
implementation. The testing method is intended for use during the initial
implementation phase, all the way to validating released products and evaluating
other available implementations. The method's main requirement is the ability to
generate a large amount of messages with one or few exceptional elements but
otherwise legal content [23].

The mini-simulation method is based on software fault injection, which means
that artificial faults called anomalies are intentionally injected into software
components for analysis purposes. Analysing is realised by monitoring the
output of the software after an anomaly has been injected into the system. The
anomaly is considered to be an unexpected event that has the potential to alter
software behaviour through the alteration or corruption of its internal state. The
main objectives of fault injection are to understand the effects of real faults,
forecast expected system behaviour and get feedback for system correction and
enhancement. Software faults are always the result of incorrect design or
implementation [23].

6.2 Mini-simulation toolkit

A prototype of the mini-simulation toolkit was originally developed in the
PROTOS project, which was a joint effort of Oulu University Secure
Programming Group (OUSPG) and VTT Technical Research Centre of Finland.

84

Later on, in 2001, Codenomicon was founded to carry on the development work
of the testing framework.

Building of the test tool begins by writing a protocol specification using a formal
language for input into the toolkit. Then the toolkit reads the specification and
builds an internal model of the protocol grammar. In the next phase, the model
can be modified by inserting various anomalies into it. When the protocol model
has been modified, all valid and invalid protocol exchanges are produced one by
one. As a result, a number of individual test cases are created.

6.3 Test cases

This section takes a closer look at test case design and the test cases, which were
implemented for testing the security of the case study. Before the test material
for studying the robustness of the agent system was ready to be run, a lot of test
design and work with the mini-simulation toolkit had to be done. The test design
process that was followed before entering the actual testing stage, included five
phases:

1. Writing the protocol specification.

2. Creating a valid test case.

3. Designing and inserting anomalies.

4. Selecting test cases.

5. Generating and running test material.

The first step of the test design had fortunately already been provided by the
Codenomicon toolkit, since it supported the Java serialisation format, which is
also the format used in agent migration. Thus, the test design could proceed
straight on to creating a valid test case. A valid test case was needed to confirm
that the agent platform accepts the agent, which was processed with the toolkit,
although anomalies had not yet been injected in it. After validating the valid
case, anomalies were designed and injected into agents. The shopper agent that
was used for test purposes was intentionally made simple enough to keep the
number of invalid test cases reasonable. The decision on which anomalies to be

85

used in the test cases was made by considering the possible effects they would
have on the system. Finally, a set of individual test cases was generated with the
toolkit and they were injected into the agent system one by one straight from the
output of the toolkit.

Although there are a number of different complications and problems that
inserted anomaly may cause to the testable system, robustness testing has few
very common mistakes that may be caused by tested software components.
While testing the agent system, these expected mistakes were monitored very
carefully. Three of the most common and severe misbehaviours are [3]:

• Crash, followed by a possible restart.

• Hang: a busy loop leading to a denial-of-service situation.

• Failure of a component leading to a denial-of-service.

Selected and implemented test cases are reported in Table 3. The table contains
the test case number (#), type and name of the variable where the anomaly is
inserted, original value of the variable, inserted anomaly, and the effect of how
the system responded to the inserted anomaly. In most test cases, several
anomalies are linked to the same variable with the same original value. Although
there exist numerous anomalies that would have the potential to inflict the
system, to keep the test case number reasonable, only those that were seen as
most potential sources of misbehaviour were included in Table 3.

86

Table 3. Test cases.

Type /

Variable
name

Original
value

Inserted
Anomaly Effect

1 0x01 No effect
2

Boolean
isAuctioneer 0x00 null No effect

3
0x00 Exception thrown and handled by

the platform. Creation of the agent
cancelled.

4 0xFF No effect, agent is handled as a
shopper agent.

5

Boolean
isShopper 0x01

null Exception thrown and handled by
the platform.

6 Boolean
isInterested 0x01 0x00 Agent does not start bidding.

7
 null Exception thrown and handled by

the platform.
Creation of the agent cancelled.

8 Integer
priceLimit

negative
values or 0

Agent does not have willingness to
bid at all. If every bidder has
priceLimit<=0, auctioneer buys
product. No errors.

9

 2147483647
or other
extremely
big integer

Agent is actually willing to bid to
the highest price and wins the
auction. If two agents are willing to
bid to the highest price, progress of
the auction will be extremely slow
since they use the smallest allowed
raise (100). Possibility for denial-
of-service attack, by slowing down
the operation of the auctioneer
agent, detected.

10 String
name Smith null Agent creation failed because of

the null pointer exception.

11
 100 x "\r\n" Agent name is displayed

incorrectly every time it is referred.
No other misbehaviour detected.

87

Type /

Variable
name

Original
value

Inserted
Anomaly Effect

12 String
type shopper

null No effect on agent creation, but
null pointer exception is thrown,
when trying to view the list of
agents residing in that platform.
Thus, neither the inserted agent nor
any other agent can be viewed or
reconfigured. Possibility for
denial-of-service detected.

13

 auctioneer The platform displays the wrong
agent type when viewing
information of residing agents. No
other misbehaviour detected.

14 String
homeNode PC2

null Migration back to the home node
failed and null pointer exception
thrown. The agent does not have
the home node, and therefore it will
be terminated by the remote
platform.

15

 PC1 The agent tries to migrate back to
the home node, but it goes to a
wrong platform and will be
terminated.

16
Object
AgentKnowle
dgeBase

null Class not found exception, creation

of agent cancelled.

17

16000 x "a" Java HotSpot(TM) Client VM
warning: increase BUFLEN in
ostream.cpp -- output truncated
java.lang.ClassNotFoundException
. --> Exception caught and agent
creation cancelled.

18 Object
DfBase

 null Exception caught and creation of
the agent cancelled.

88

6.4 Results of the tests

As results of the tests on the implemented agent system, two misbehaviours by
the agent platform were detected. Both of them leaded to the possibility of a
denial-of-service attack, but any severe misbehaviour that would have led to the
crash of the agent system was not recognised. Testing of the system's robustness
was done on a quite small scale, which was reasonable in this thesis. However, it
is probable that there are many implementation vulnerabilities, which were not
found in these tests. Therefore, if the implemented system was a commercial
application, its robustness should be tested much more carefully. If errors are
detected after the release of the product, consequences are much more
troublesome and expensive.

The first misbehaviour occurred when an extremely large integer was inserted in
the priceLimit-variable. Normally this is prevented by checking that the value,
which a user has inserted, is within convenient limits, but if an anomaly is
inserted after the acceptance to participate in an auction, an invalid value will
not be detected. If a malicious user succeeds in infiltrating two altered agents in
the same auction, where both agents have extremely high bidding limits, it will
cause the auction to last for many days or in the worst case for even months. As
a consequence, all participating shopper agents and the auctioneer agent would
be tied to the auction event far too long, which would also burden the platform�s
other resources.

Detected vulnerability is not very easy to implement, since it would require
either an ability to alter the mobile agent during its migration or, alternatively, a
malicious user should inject an anomaly to the agent already at the platform. In
the first case, cryptographic protection mechanisms protecting an agent during
migration would have to be broken, which is not an easy task considering the
time limits due the time stamp included in the message. In the second case, a
malicious user would probably succeed in deceiving the platform, but once the
fraud is detected, the trust on the user would also be lost, which acts as a strong
deterrent. Thus, the criticality of the vulnerability can be considered as moderate
at the maximum.

Another detected misbehaviour is connected to the software component that is
used in viewing and configuring agents residing on the platform. It is exposed to

89

a denial-of-service situation if the value of the type-variable is null. The null
value causes the platform to not be able to view or configure any of the agents
residing inside the platform, because the exception is thrown at every attempt.
Additionally, the platform cannot know which agent causes this denial-of-
service situation. Thus, the only opportunity is to start migrating agents to their
home platforms or terminating them until the failure is found. However, the
criticality of this vulnerability is not very severe, since the platform�s ability to
view or reconfigure agents is not crucial.

Both detected vulnerabilities are quite simple in a sense in what improvements
have to be carried out on the agent system to take these into consideration. Only
small changes to the agent platform�s code have to be made to prevent these
vulnerabilities.

As mentioned before, the implemented agent system involved various security
mechanisms, which would all be good to test in order to confirm the security and
robustness of the agent system. Although, these implemented tests took only one
aspect into account, it was quite essential considering the overall security of the
agent system.

One possible weakness of the implemented testing procedure was that the only
person who participated in the test case design, was the actual designer and
realiser of the agent system. Thus, there is a possibility that during the test case
design, some essential viewpoints that should be considered might have been left
out, because of the system designer�s blindness to its own faults. Therefore, it
would be better if someone from outside the systems development team would
also participate in test design process.

90

7. Discussion
This chapter analyses the presented work against research problems that were
described in Chapter 1. In addition, future development possibilities of the
presented case study and the future of mobile agent systems will be discussed.

In this thesis, the security mechanisms needed for building a secure auction
implementation was studied to build an agent security framework, which
contained the platform's security service and agent security layer. Used
mechanisms covered, a wide-range of different security aspects and the security
framework was implemented quite successfully. In particular, communication
security and the security of the agent platform were provided well. Although
finding a complete answer to the malicious host problem was considered
unlikely beforehand, the problem turned out to be surprisingly severe and caused
greatest concern.

In order to apply the security framework to another application, some basic
things have to be considered. Firstly, the required level of security is dependent
on the purpose of the agent system. Therefore, some mechanisms will probably
be unnecessary and some other has to be added in order that the different
requirements of other applications can be met. Secondly, if the type of mobility
changes by resorting to code mobility, the whole arrangement must be
reconsidered, since code mobility sets additional security requirements that were
not considered in this work.

The difficulties of implementing an auction for mobile agents were numerous.
Most of these were somehow associated with the problem of securing a mobile
agent inside a remote platform. The biggest concern is that there is no efficient
way of preventing the agent platform from eavesdropping data inside the agent.
Thus, the platform can easily find out how high the mobile agent is willing to
bid. Then it can raise the price using its own shopper agents to a suitable level,
and get the highest possible price from the product. Introducing trusted
platforms, which are so reliable that they will not perform malicious actions,
would solve the problem. However, in real life, the reliability of trusted
platforms should be at the same level as banks; otherwise this assumption is not
reasonable. Therefore, the implemented agent system is too insecure to be used
in real life applications.

91

Additionally, people are not yet ready to let mobile agents handle tasks that
involve financial aspects; they would rather do them by themselves. Thus, a
better task for mobile agents would be information gathering. For example, an
agent could find interesting products from different virtual auctions, verify those
with the user profile and inform the user where the interesting product was found
and when the auction is to be held. Then the user could handle the bidding
process, in which case there would not be the possibility to deceive the user to
bid higher than he or she wants.

7.1 Realised quality requirements in the case study

In Section 2.5, various quality requirements for mobile agent systems were
identified. To summarise, five of the most important requirements were
examined in detail. In addition, security, which was emphasised in the case study
as the most important quality requirement, was further divided into four
subcategories. These recognised requirements are:

• interoperability,

• scalability,

• mobility,

• security,

- confidentiality,
- integrity,
- accountability,
- availability, and

• robustness.

In the following, we try to analyse how these quality requirements were met in
the agent system implemented in this thesis.

The implemented agent system included two agent types, which were designed
to co-operate with each other in order that the auction event could be followed
through. In addition, there also existed competition between shopper agents,
which were bidding in the same auction. Interoperability between agents was

92

attained successfully using a shared agent communication language and a
predefined format of context of communication. Another important part of
interoperability between agents was the common auction protocol, which
assured reliability and functionality of auction events. However, interoperability
between agent systems, in other words, the ability of our agents and agent
platforms to communicate or share tasks between other agent systems has not
been taken into account when designing and implementing the agent system.
Thus, this is an independent agent system, which does not obey interoperability
standards developed for mobile agent systems. Therefore, it cannot be used with
the co-operation of other agent systems, at least, without modification.

The fact that the implemented agent system does not obey interoperability
standards also weakens the scalability of the agent system. However, the effect
on scalability is not very severe, since the auction implementation is designed to
be used for special purpose. Thus, it does not have to understand agents from
different agent systems. From the viewpoint of a single agent, the agent system's
scalability can be considered to be quite reasonable. When the number of agents
in a system increases, some systems services may slow down. For example, an
agent may have to wait before it is allowed access to the platform. However,
every agent that takes part in the auction event has similar possibilities to make
their bids despite the number of participating shopper agents. On the other hand,
an increase of the number of agents in the system results in a light weakening of
the system�s ability to provide services to agents. However, if the burden
increases too much, services and auction events can be distributed to new
platforms in order to lighten the load that is directed to the specific platform. The
most severe deficiency in the scalability is the difficulty to add new platforms to
the agent system, which is caused by the assumption of trusted platforms. Every
time a new platform is added to the system, the platform has to be first
authenticated properly in order to provide proof of its trustworthiness. This has
to be done partly manually, which causes additional work for the system
administrator.

Contrary to generally used code mobility in agent systems, our auction
implementation used a more restricted type of mobility. Experiences of the
tested type of mobility were two-fold. On the one hand, the security of the agent
platform can be provided better in this way. Other security threats did not have
significant differences compared to using code mobility. On the other hand, use

93

of this type of mobility restricts the agent system's ability to adapt dynamically.
All agents of the same type have the same available operations. If new
operations are added to agents, all agent platforms have to be updated as well in
order that they can accept these altered agents. Therefore, an agent�s ability to
operate in heterogeneous environments is also decreased.

The agent system has to be able to keep data inside it confidential and accessible
only to authorised principles. Providing confidentiality for the data during its
transmission is handled quite efficiently with conventional security mechanisms.
Also, confidentiality of the agent platform's private data is protected effectively.
However, the biggest problem occurs when a mobile agent that contains private
data, migrates to a remote platform, where it is submitted to the control of the
platform. Thus, if the platform is malicious, it can easily eavesdrop on
confidential information in the mobile agent. One solution for the problem is
partial result encryption, which was used in this work to encrypt the results of
mobile agents to ensure that collected data is not accessible to other remote
platforms. However, this mechanism cannot be used to protect private data,
which has to be accessible to the agent itself during its itinerary. There are also
other proposed protection mechanisms, but one single efficient mechanism for
preventing misuse has not yet been developed. Therefore, most of the agent
systems, including ours, resort on trusted platforms. The trusted platform is,
however, only a temporary solution to the problem and it raises new problems to
be answered. Although trust relationships inside an agent system might work on
a small scale, in a large-scale real-world agent system, there always exists
somebody who will exploit trust. Thus, this is the biggest problem in a way of
making the use of mobile agents secure.

Integrity of the data in the agent system is, along with confidentiality, the most
important security requirements. In the implemented case study, integrity of the
platform�s data was protected effectively. During the migration of mobile
agents, data integrity is also protected efficiently using digital signatures.
Although malicious principals would be capable of altering or terminating the
mobile agent during its transmission, illegal actions are detected and the mobile
agent is sent again until it has been received successfully.

Protecting the integrity of a mobile agent�s data is much more troublesome,
because a malicious agent platform cannot be totally prevented from altering a

94

mobile agent's data or terminating the agent completely. However, there are a lot
of mechanisms for detecting the alteration, which can be used in order to provide
data integrity for mobile agents. In this work, digital signatures were used to
protect the integrity of the mobile agents. Using digital signatures requires that
the mobile agent stays constant during its journey. In other words, all acquired
results have to be stored outside the agent's core otherwise the signature
becomes invalid. In addition, mobile agents should not be irreplaceable, in
which case the termination of the agent would cause significant damage. Instead,
the author of the agent has to prepare for the worst case in which the agent does
not return from its journey. Using replicated agents it is possible to improve a
mobile agent's resistance against the threat of termination.

Accountability is an important quality requirement in e-commerce agent
applications. There has to be the possibility that authors of mobile agents' can be
held responsible for the actions of agents, which they have authorised. In this
work, accountability was carried out by authenticating all principals acting
inside the agent system and recording all security-relevant actions in audit logs.
However, in large-scale applications, there exist some malicious principals that
may succeed in either bypassing the authentication procedure or exploiting the
authority of other principals. If the trust relationships between parties in the
agent system are not personal, the opportunity to misuse trust increases, since
the deterrent of losing ones trust because of misuse is no longer very efficient.
Therefore, a procedure of handling misuses has to be considered beforehand.

Availability of the agent system is very difficult to test, since the number of
agents during tests is much smaller than in real-life applications. However, some
conclusions of it can be made. A possible vulnerability in our agent platform is a
potential denial-of-service situation, where malicious principals intentionally
send a number of mobile agents to the platform in order to block platform
authentication functions. As a result, decent mobile agents are prevented from
accessing the agent platform. If this attack originates from several different
sources at the same time, there is no effective mechanism for preventing it,
which is quite a severe weakness. On the contrary, availability of the services for
agents, which have already been authenticated and accessed the system, is quite
good. Mobile agents cannot intentionally overburden platform services and the
number of agents that are allowed to be registered to the same place at the same
time can be restricted. Thus, except the two denial-of-service possibilities,

95

reported in Section 6.4, availability of platform services for mobile agents is
protected. Yet another thing is the restrictions to the availability because of
relying on trusted platforms. For this reason, the agent system's availability to
possible users who have not been authenticated is weak.

Robustness is the requirement that was tested in Chapter 6. Only two security
vulnerabilities were found, which alludes that the robustness of the agent system
is very good. However, the robustness testing was implemented on quite a small
scale. Thus, the robustness cannot be defined accurately based on these results
and more tests should be made, because there are still probably many
implementation vulnerabilities that have not been detected.

Since many quality requirements have been laid on the agent system
implemented in this work, there exist lots of different interactions between these
requirements. These interactions are reported in Table 4, where the legend is as
follows: o = no interaction, + = positive interaction, and - = negative interaction.
In addition, if there are more + or - marks in the same cell, it means that the
interaction is stronger. The table is read as follows: when the quality requirement
on the vertical column is enhanced, how are the other requirements on the
horizontal rows affected.

Interactions reported in Table 4 are based on the case study in this thesis. Thus,
these results are based only on one reference and therefore direct generalisations
cannot be made. However, the expected results from the affect of mobility to the
security can be seen. An increase in the degree of mobility decreases the total
security of the system and, in particular, confidentiality is affected. In addition,
if the agent system is more robust, it is also able to provide confidentiality of the
data inside it, because malicious principals therefore are not able take advantage
of programming mistakes made to the agent system.

96

Table 4. Interactions between quality requirements.

 Interoperability

Scalability

M
obility

R
obustness

C
onfidentiality

Integrity

A
ccountability

A
vailability

Interoperability o + o + + + +
Scalability + o o o o o o
Mobility o + o o o o o
Robustness o o - o o o o
Confidentiality o - --- ++ + ++ o
Integrity + - -- + + + o
Accountability o - - + ++ ++ +
Availability + + - + o + o

7.2 Future of mobile agent systems

A few years ago, when mobile agents were a big trend, it seemed like agents
would solve almost every problem in the future. Now, when the hype has died
down, we can look at the possibilities of agents more realistically, and see the
real opportunities that they can offer. Future mobile agents are no longer seen as
omniscient applications able to learn and do all kinds of tasks, but rather as
applications, which are designed for specific tasks assigned to them.

Despite the reported security weaknesses in the implemented agent system, the
future of mobile agent systems can be seen as promising, however, a lot of work
has still to be done. In particular, the answer to the question, how the mobile
agent can be protected efficiently while it resides in a remote platform, has to be
answered. If the answer can be found, relying on trusted platforms could be
forgotten, which would open a number of new opportunities for agents. Security
mechanisms such as partial result encryption are small steps in the right
direction, and also many other mechanisms have been proposed in order to
improve mobile agent security. Although the complete answer to the problem

97

could not be found, mobile agents can be used in many tasks using today's
technology.

Degree of mobility is another important question. In this work, we resorted to
the type of mobility, which was assumed to be safer and more appropriate for
applications that require high security. However, the introduced mobility could
not help with the malicious host problem and its advantages, compared to using
mobile code, were relatively small. On the other hand, the advantages of using
mobile code are preferable. Agent mobility based on mobile code might have
been more appropriate for this type of auction application, because if the mobile
agent is running on the restricted area on a remote platform, it has better
possibilities to protect itself than in the agent system implemented in this work.

In the future, research will be probably focus around FIPA, which is developing
interoperability between agent systems and the standardisation of agent
technologies. Therefore, it might have been better if our agent system would also
have been developed according to the interoperability standards of FIPA. In that
case, our agent system would have better supported the challenge of future agent
development, which is concentrating on developing robust large-scale problem-
solving activity and supporting functions for it.

Today, developed agent systems are mainly in the form of applications, but with
time, those will become part of the operating system and application
environment [5]. New tools will arise to make it easier for non-specialists to
develop agent applications. Agent-related COTS-components are also appearing
on the market to provide the building blocks for agent system developers and
thus helping in the building process. The success of mobile agent technology in
the future will depend largely on unsolved security issues around them. If
answers to the problems can be found, the opportunities of mobile agents are
limited only by our imaginations.

98

8. Conclusions
Problems in security have been seen as an obstacle in the way of success of
mobile agent technology. In this thesis, one specific mobile agent application
was developed intending to make it as secure as possible. For this purpose, the
quality requirements of mobile agents were studied and several security
mechanisms were examined in order that the most suitable ones could be
selected to be included in the agent security architecture used in the
implementation.

Security of the implemented agent system was provided with various security
mechanisms. Communication security for agent migration was implemented
successfully using traditional security mechanisms such as cryptographic
algorithms, digital signatures and time stamps. Agent platform security was also
provided effectively, but the biggest problem faced with was the securing of
mobile agents residing in remote platforms. Satisfactory security for mobile
agents could not be provided without resorting to trusted platforms. However,
the use of trusted platforms caused new problems, because the certificate and
key exchange had to be carried out manually, which resulted in scalability
problems. In addition, the assumption that trusted remote platforms are
benevolent and that they do not take advantage of the information, which is
easily available in mobile agents, is not justifiable in real life large-scale
applications. Therefore, in order for this kind of mobile agent auction to be used
as a commercial application, the security problem of the malicious platform has
first to be solved.

The type of mobility used in this thesis provides good protection for the agent
platform. However, if the protection of the agent platform does not need to be
particularly effective, advantages of the presented mobility against code mobility
decreases. In addition, a migration mechanism based on code mobility evidently
has its own advantages in dynamics, and it also provides better possibilities in
protecting mobile agents. In summary, the presented mobility should only be
applied in special applications that require specific protection for the agent
platform, and thus code mobility would be a more appropriate solution for the
migration mechanism to most agent applications.

99

To conclude, the time is not yet ready for the virtual auction, where mobile
agents make decisions on behalf of their owners. Most people want to decide on
their own business, which include financial aspects, by themselves. At least, if
there is a danger that the mobile agent might make a false decision. However,
mobile agents can be used for many other tasks, which do not involve financial
aspects, and thus are less risky.

100

References
[1] Bradshaw, J.M., Greaves, M., Holmback, H., Jansen, W.A., Karygiannis, T.,

Silverman, B., Suri, N. & Wong, A. (1999) Agents for the Masses? IEEE
Intelligent Systems, Vol. 14, No. 2, pp. 53�63.

[2] The Foundation for Intelligent Physical Agents (23.10.2003) URL:
http://www.fipa.org/.

[3] Codenomicon (16.12.2003) URL: http://www.codenomicon.com.

[4] Franklin, S. & Graesser, A. (1996) Is it an agent, or just a program: a
taxonomy for autonomous agents. In: 3rd International Workshop on Agent
Theories, Architecture, and Languages. Springer-Verlag. Pp. 21�35.

[5] Agent Platform Special Interest Group (2000) Agent technology, Green
Paper. Object Management Group. 67 p.

[6] Bradshaw, J.M. (1997) Software Agents. AAAI Press / The MIT Press, 480 p.

[7] Pham, V.A. & Karmouch, A. (1998) Mobile Software Agents: An Overview.
IEEE Communications Magazine, Vol. 36, No. 7, pp. 26�37.

[8] Cabri, G., Leonardi, L. & Zambonelli, F. (2000) Weak and strong mobility in
Mobile agent applications. In: 2nd International Conference and Exhibition
on The Practical Application of Java, April, Manchester, UK. 15 p.

[9] Jansen, W. & Karygiannis, T. (2000) NIST Special Publication 800-19
Mobile Agent Security, National Institute of Standards and Technology. 38 p.

[10] Flores, R.A. (1999) Towards the Standardization of Multi-agent System
Architectures: An Overview. ACM Crossroads, Special Issue on Intelligent
Agents, Association for Computer Machinery, Vol. 5, No. 4, pp. 18�24.

101

[11] Lucena, C., Garcia, A., Sardinha, J., Castro, J., Romanovsky, A., Alencar, P.
& Cowan D. (2003) Software Engineering for Large-Scale Multi-Agent
Systems. In: International Conference on Software Engineering, May 3�11,
Portland, Oregon, USA. Pp. 1�2.

[12] Milojicic, D., et al. (1998) The OMG Mobile Agent System Interoperability
Facility. In: Rothermel K. & Hohl F. (Eds.) Mobile Agents. Springer-
Verlag, Stuttgart, Germany. Pp. 50�67.

[13] Richards, M. (12.11.2003) The state of security standards for mobile agents.
URL: http://www.sbaer.uca.edu/Research/2002/dsi/papers/053.pdf.

[14] Ndumu, D.T. & Nwana, H.S. (1996) Research and Development Challenges
for Agent-Based Systems. In: IEEE Proceedings on Software Engineering,
Vol. 144, No. 1, pp. 2�10.

[15] Grasshopper (11.12.2003) URL: http://www.grasshopper.de.

[16] Ajanta - Mobile Agent Research Project (11.12.2003) URL:
http://www.cs.umn .edu/Ajanta.

[17] Karnik, N. & Tripathi, A. (2001) Security in Ajanta Mobile Agent System.
Software - Practice and Experience, Vol. 31, No. 4, pp. 301�329.

[18] Mylopoulos, J., Kolp, M. & Giorgini, P. (15.11.2003) Agent-Oriented
Software Development. http://www.science.unitn.it/tropos/hai-jm.pdf.

[19] Lee, L.C., Nwana, H.S., Ndumu, D.T. & Wilde, P.D. (1998) The stability,
scalability and performance of multi-agent systems. BT Technology
Journal, Vol. 16, No. 3, pp. 94�103.

[20] Stallings, W. (1999) Cryptography and Network Security: Principles and
Practice, Second Edition. Prentice Hall, Inc. 569 p.

[21] Borselius, N. (2002) Mobile agent security. Electronics & Communication
Engineering Journal, Vol. 14, No. 5, pp. 211�218.

102

[22] Software Engineering Institute (8.12.2003) URL:
http://www.sei.cmu.edu/str /indexes/glossary/accountability.html.

[23] Kaksonen, R. (2001) A Functional Method for Assessing Protocol
Implementation Security. VTT Publications 448. Technical Research
Centre of Finland, Espoo. 128 p. + app. 15 p.

[24] Gollman, D. (1999) Computer Security. John Wiley & Sons, Inc. 320 p.

[25] VeriSign. Inc. (15.12.2003) URL: http://www.verisign.com.

[26] Entrust (15.12.2003) URL: http://www.entrust.com.

[27] X.509 Certificates and Certificate Revocation Lists (CRLs) (1.12.2003) Sun
Microsystems. URL: http://java.sun.com/j2se/1.4.2/docs/guide/security
/cert3.html.

[28] Venners, B. (1999) Inside the Java 2 Virtual Machine. McGraw-Hill, Inc. 703 p.

[29] Gong, Li (15.12.2003) Java Security Architecture (JDK 1.2). URL:
http://java.sun.com/products/jdk/1.2/docs/guide/security/spec/security-
spec.doc.html.

[30] Fritzinger, J.S. & Mueller, M. (2.12.2003) Java Security, A White Paper.
Sun Microsystems. URL: http://java.sun.com/docs/white/index.html.

[31] Jansen, W.A. (20.1.2004) Mobile Agents and Security. URL:
http://citeseer.nj.nec .com/jansen99mobile.html.

[32] Jansen, W.A. (2000) Countermeasures for Mobile Agent Security.
Computer Communications, Vol. 23, No. 17, pp. 1667�1676.

[33] Tschudin, C.F. (1998) Mobile Agent Security. In: Klusch, M. (Ed.)
Intelligent Information Agents - Agent based information discovery and
management on the Internet. Springer-Verlag, Germany. Pp. 431�445.

103

[34] Vigna, G. (1997) Protecting Mobile Agents Through Tracing. In: 3rd
ECOOP Workshop On Mobile Object Systems, Jyväskylä, Finland. Pp.
137�153.

[35] Hohl, F. (1998) Time Limited Blackbox Security: Protecting Mobile Agents
From Malicious Hosts. In: Vigna, G. (Ed.) Mobile Agents and Security.
Springer-Verlag, Lecture Notes in Computer Science No. 1419. Pp. 92�113.

[36] Young, A. & Yung, M. (1997) Sliding Encryption: A Cryptogarphic Tool
for Mobile Agents. In: Fast Software Encryption: 4th International
Workshop, January 20�22, Haifa, Israel, Lecture Notes in Computer
Science 1267. Pp. 230�241.

[37] Roth, V. (1998) Secure Recording of Itineraries Through Cooperating
Agents. In: 4th Workshop on Mobile Object Systems: Secure Internet
Mobile Computations, Brussels, Belgium. Pp. 147�154.

[38] BouncyCastle (29.12.2003) URL: http://www.bouncycastle.org.

[39] FIPA Agent Management Specification (8.12.2003) The Foundation for
Intelligent Physical Agents, Switzerland. URL: http://www.fipa.org/specs
/fipa00023/.

[40] Matinlassi, M., Niemelä, E. & Dobrica, L. (2002) Quality-driven architecture
design and quality analysis method. A revolutionary initiation approach to a
product line architecture. VTT Publications 456. Technical Research Centre
of Finland, Espoo. 128 p. + app. 10 p.

Published by

 Series title, number and
report code of publication

VTT Publications 538
VTT�PUBS�538

Author(s)
Wallin, Arto
Title

Secure auction for mobile agents

Abstract
In this work, a secure auction place for mobile agents has been developed and implemented. In the
implemented auction application, software agents are able to bid on different products
independently without user intervention in a secure manner. For implementation, quality
requirements for mobile agent systems were studied. By defining the possible threats that a mobile
agent system may face, a set of protection mechanisms were selected to build a security
architecture that was used in protecting the agent system. The agent platform and the agents were
designed based on the security architecture and the implementation was carried out using Java.
Finally, in order to provide proof about the robustness of the implemented system, it was tested
using a mini-simulation method.

As a result of the implementation, the communication security for transferring a mobile agent
between nodes could be provided effectively by using traditional security mechanisms. However,
the distribution of keys and certificates is required to be done manually so that the counterparts of
the auction events can trust each other, which on the other hand, causes scalability problems. As a
difference to most other agent platforms, the type of agent mobility was more restricted and code
mobility was not used. For this reason, the security of the agent platform could be provided better.
However, restrictions that had to be made to the system were quite big resulting in a decrease in the
agent system�s ability to adapt dynamically.

In summary, there are still a few problems that have to be overcome before the time is ready for
large-scale mobile agent auctions. In particular, the security of the mobile agent residing on a
remote platform has to be guaranteed without the assumption of trusted platforms.

Keywords
multi-agent systems, mobile agent systems, security architecture, robustness, security threats, protection

Activity unit
VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN�90571 OULU, Finland

ISBN Project number
951�38�6394�8 (soft back ed.)
951�38�6395�6 (URL:http://www.vtt.fi/inf/pdf/)

E1SU00357

Date Language Pages Price
June 2004 English, Finnish abstr. 102 p. C

Name of project Commissioned by
Puujulkaisujen toiminnallinen paloturvallisuustarkastelu Food Focus Oy

Series title and ISSN Sold by

VTT Publications
1235�0621 (soft back ed.)
1455�0849 (URL: http://www.vtt.fi/inf/pdf/)

VTT Information Service
P.O.Box 2000, FIN�02044 VTT, Finland
Phone internat. +358 9 456 4404
Fax +358 9 456 4374

Julkaisija

 Julkaisun sarja, numero ja
raporttikoodi

VTT Publications 538
VTT�PUBS�538

Tekijä(t)
Wallin, Arto

Nimeke

Tietoturvallinen huutokauppa liikkuville agenteille
Tiivistelmä
Tässä työssä kehitetään ja toteutetaan huutokauppasovellus liikkuville ohjelmistoagenteille siten,
että tietoturvallisuutta painotetaan tärkeimpänä laatuattribuuttina. Toteutettavassa sovelluksessa
agentit, jotka pystyvät toimimaan itsenäisesti ilman ulkopuolista käyttäjän apua, käyvät
huutokauppaa keskenään. Toteutusta varten määriteltiin liikkuvien agenttien laatuvaatimukset
agenttijärjestelmälle. Lisäksi selvitettiin agenttien kohtaamat mahdolliset uhat, jotta voitiin
muodostaa tietoturva-arkkitehtuuri, jonka avulla voitaisiin suojella agentteja toteutetussa
agenttijärjestelmässä. Agenttijärjestelmän toteutuksessa kehitettiin sekä kaksi erillistä
agenttityyppiä (ostaja ja huutokaupanpitäjä) että agenttialusta niille. Järjestelmä toteutettiin Java-
ohjelmointikielellä. Lopuksi järjestelmän kyky sietää virheellistä informaatiota testattiin
käyttämällä hyväksi minisimulaatiomenetelmää.

Työstä saatujen tulosten perusteella agentin siirtyminen agenttialustojen välillä pystytään
turvaamaan hyvin perinteisiä tietoturvamekanismeja käyttäen. Avainten ja sertifikaattien
vaihtaminen osapuolten välillä tuottaa kuitenkin ongelmia. Jotta vaihtaminen voitaisiin tehdä
täysin luotettavasti, olisi se tehtävä henkilökohtaisesti. Tämä aiheuttaa puolestaan ongelmia
järjestelmän skaalattavuutta ajatellen. Monista muista agenttialustoista poiketen tässä työssä
käytettiin liikkuvaa koodia yksinkertaisempaa liikkuvuuden tyyppiä. Tämän ansiosta järjestelmän
tietoturva, etenkin agenttialustan osalta, saatiin hieman paremmaksi, mutta käytetty liikkuvuuden
tyyppi aiheutti vastaavasti agenttien dynaamisuuden heikkenemistä.

Yhteenvetona voidaan todeta, että liikkuvien agenttien järjestelmään liittyy vielä ongelmia, joita ei
ole kyetty ratkaisemaan. Erityisesti etäagenttialustalla asustavan liikkuvan agentin tietoturval-
lisuutta ei kyetä suojelemaan tarpeeksi hyvin. Näin ollen täysin turvallisen liikkuvien agenttien
huutokaupan toteuttaminen ei ole vielä toistaiseksi mahdollista.

Avainsanat
multi-agent systems, mobile agent systems, security architecture, robustness, security threats, protection

Toimintayksikkö
VTT Elektroniikka, Kaitoväylä 1, PL 1100, 90571 OULU

ISBN Projektinumero
951�38�6394�8 (nid.)
951�38�6395�6 (URL: http://www.vtt.fi/inf/pdf/)

E1SU00357

Julkaisuaika Kieli Sivuja Hinta
Kesäkuu 2004 Englanti, suom. tiiv. 102 s. C

Projektin nimi Toimeksiantaja(t)
Puujulkaisujen toiminnallinen paloturvallisuustarkastelu Food Focus Oy

Avainnimeke ja ISSN Myynti:

VTT Publications
1235�0621 (nid.)
1455�0849 (URL: http://www.vtt.fi/inf/pdf/)

VTT Tietopalvelu
PL 2000, 02044 VTT
Puh. (09) 456 4404
Faksi (09) 456 4374

V
TT PU

BLICA
TIO

N
S 538

Secure auction for m
obile agents

A
rto W

allin

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000

02044 VTT 02044 VTT FIN–02044 VTT, Finland
Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. +358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax +358 9 456 4374

ISBN 951–38–6394–8 (soft back ed.) ISBN 951–38–6395–6 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2004ESPOO 2004ESPOO 2004ESPOO 2004ESPOO 2004 VTT PUBLICATIONS 538

Arto Wallin

Secure auction for mobile agents

VTT PUBLICATIONS

517 Forsén, Holger & Tarvainen, Veikko. Sahatavaran jatkojalostuksen asettamat vaatimuk-
set kuivauslaadulle ja eri tuotteille sopivat kuivausmenetelmät. 2003. 69 s. + liitt. 9 s.

518 Lappalainen, Jari T. J. Paperin- ja kartonginvalmistusprosessien mallinnus ja dynaamin-
en reaaliaikainen simulointi. 2004. 144 s.

519 Pakkala, Daniel. Lightweight distributed service platform for adaptive mobile services.
2004. 145 p. + app. 13 p.

520 Palonen, Hetti. Role of lignin in the enzymatic hydrolysis of lignocellulose. 2004. 80
p. + app. 62 p.

521 Mangs, Johan. On the fire dynamics of vehicles and electrical equipment. 2004. 62 p.
+ app. 101 p.

522 Jokinen, Tommi. Novel ways of using Nd:YAG laser for welding thick section austenitic
stainless steel. 2004. 120 p. + app. 12 p.

523 Soininen, Juha-Pekka. Architecture design methods for application domain-specific in-
tegrated computer systems. 2004. 118 p. + app. 51 p.

524 Tolvanen, Merja. Mass balance determination for trace elements at coal-, peat- and bark-
fired power plants. 2004. 139 p. + app. 90 p.

525 Mäntyniemi, Annukka, Pikkarainen, Minna & Taulavuori, Anne. A Framework for Off-
The-Shelf Software Component Development and Maintenance Processes. 2004. 127 p.

526 Jäälinoja, Juho. Requirements implementation in embedded software development.
2004. 82 p. + app. 7 p.

527 Reiman, Teemu & Oedewald, Pia. Kunnossapidon organisaatiokulttuuri. Tapaustutkimus
Olkiluodon ydinvoimalaitoksessa. 2004. 62 s. + liitt. 8 s.

528 Heikkinen, Veli. Tunable laser module for fibre optic communications. 2004. 172 p. +
app. 11 p.

529 Aikio, Janne K. Extremely short external cavity (ESEC) laser devices. Wavelength tuning
and related optical characteristics. 2004. 162 p.

530 FUSION Yearbook. Association Euratom-Tekes. Annual Report 2003. Ed. by Seppo Kart-
tunen & Karin Rantamäki. 2004. 127 p. + app. 10 p.

531 Toivonen, Aki. Stress corrosion crack growth rate measurement in high temperature
water using small precracked bend specimens. 2004. 206 p. + app. 9 p.

532 Moilanen, Pekka. Pneumatic servo-controlled material testing device capable of oper-
ating at high temperature water and irradiation conditions. 2004. 154 p.

534 Kallio, Päivi. Emergence of Wireless Services. Business Actors and their Roles in Net-
worked Component-based Development. 2004. 118 p. + app. 71 p.

535 Komi-Sirviö, Seija. Development and Evaluation of Software Process Improvement
Methods. 2004. 175 p. + app. 78 p.

537 Tillander, Kati. Utilisation of statistics to assess fire risks in buildings. 2004. 224 p. +
app. 37 p.

538 Wallin, Arto. Secure auction for mobile agents. 2004. 102 p.

	Abstract
	Tiivistelmä
	Preface
	Contents
	Abbreviations
	1. Introduction
	2. Agent technology
	2.1 Introduction and terminology
	2.2 Status of the mobile agent technology
	2.3 Towards the standardisation of agent technologies
	2.4 Mobile agent systems
	2.4.1 Architectural models of mobile agent systems
	2.4.2 Mobile agent platforms

	2.5 Quality requirements for multi-agent systems
	2.5.1 Interoperability
	2.5.2 Scalability
	2.5.3 Mobility
	2.5.4 Security
	2.5.5 Robustness

	3. Security technologies for mobile agents
	3.1 Cryptographic algorithms
	3.2 Digital signature
	3.3 Certificates
	3.4 Java security
	3.4.1 Class verifier
	3.4.2 Security management

	4. Mobile agent security threats and
	4.1 Threats
	4.1.1 Agent against agent platform
	4.1.2 Agent against other agents
	4.1.3 Agent platform against agent
	4.1.4 Other entities against agents and agent platforms

	4.2 Protecting the platform
	4.2.1 Authentication
	4.2.2 Authorisation
	4.2.3 Cryptographic service
	4.2.4 Execution tracing
	4.2.5 Proof

	4.3 Protecting the agent
	4.3.1 Path histories
	4.3.2 Partial Result Encryption
	4.3.3 Proof of agent’s identity
	4.3.4 Co-operating agents

	5. Case study: auction for mobile agents
	5.1 Description of the agent system
	5.2 Agent platform
	5.2.1 Management
	5.2.2 Registration
	5.2.3 Security
	5.2.4 Communication

	5.3 Agents
	5.3.1 Shopper agent
	5.3.2 Auctioneer agent
	5.4 Concrete architecture
	5.4.1 Structural view
	5.4.2 Behavioural view
	5.4.3 Deployment view

	5.5 The security framework of the mobile agent system
	5.5.1 Platform security
	5.5.2 Agent security

	5.6 Results of the implementation

	6. Robustness testing
	6.1 Mini-simulation method
	6.2 Mini-simulation toolkit
	6.3 Test cases
	6.4 Results of the tests

	7. Discussion
	7.1 Realised quality requirements in the case study
	7.2 Future of mobile agent systems

	8. Conclusions
	References

