
V
TT PU

BLICA
TIO

N
S 542

M
apping C++ D

ata Types into a Test Specification Language
Pekka Pulkkinen

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000

02044 VTT 02044 VTT FIN–02044 VTT, Finland
Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. +358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax +358 9 456 4374

ISBN 951–38–6402–2 (soft back ed.) ISBN 951–38–6403–0 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2004ESPOO 2004ESPOO 2004ESPOO 2004ESPOO 2004 VTT PUBLICATIONS 542

Pekka Pulkkinen

Mapping C++ Data Types into a Test
Specification Language

VTT PUBLICATIONS

522 Jokinen, Tommi. Novel ways of using Nd:YAG laser for welding thick section austenitic
stainless steel. 2004. 120 p. + app. 12 p.

523 Soininen, Juha-Pekka. Architecture design methods for application domain-specific in-
tegrated computer systems. 2004. 118 p. + app. 51 p.

524 Tolvanen, Merja. Mass balance determination for trace elements at coal-, peat- and bark-
fired power plants. 2004. 139 p. + app. 90 p.

525 Mäntyniemi, Annukka, Pikkarainen, Minna & Taulavuori, Anne. A Framework for Off-
The-Shelf Software Component Development and Maintenance Processes. 2004. 127 p.

526 Jäälinoja, Juho. Requirements implementation in embedded software development.
2004. 82 p. + app. 7 p.

527 Reiman, Teemu & Oedewald, Pia. Kunnossapidon organisaatiokulttuuri. Tapaustutkimus
Olkiluodon ydinvoimalaitoksessa. 2004. 62 s. + liitt. 8 s.

528 Heikkinen, Veli. Tunable laser module for fibre optic communications. 2004. 172 p. +
app. 11 p.

529 Aikio, Janne K. Extremely short external cavity (ESEC) laser devices. Wavelength tuning
and related optical characteristics. 2004. 162 p.

530 FUSION Yearbook. Association Euratom-Tekes. Annual Report 2003. Ed. by Seppo Kart-
tunen & Karin Rantamäki. 2004. 127 p. + app. 10 p.

531 Toivonen, Aki. Stress corrosion crack growth rate measurement in high temperature
water using small precracked bend specimens. 2004. 206 p. + app. 9 p.

532 Moilanen, Pekka. Pneumatic servo-controlled material testing device capable of oper-
ating at high temperature water and irradiation conditions. 2004. 154 p.

534 Kallio, Päivi. Emergence of Wireless Services. Business Actors and their Roles in Net-
worked Component-based Development. 2004. 118 p. + app. 71 p.

535 Komi-Sirviö, Seija. Development and Evaluation of Software Process Improvement
Methods. 2004. 175 p. + app. 78 p.

537 Tillander, Kati. Utilisation of statistics to assess fire risks in buildings. 2004. 224 p. +
app. 37 p.

538 Wallin, Arto. Secure auction for mobile agents. 2004. 102 p.

539 Kolari, Juha, Laakko, Timo, Hiltunen, Tapio, Ikonen, Veikko, Kulju, Minna, Suihkonen,
Raisa, Toivonen, Santtu & Virtanen, Tytti. Context-Aware Services for Mobile Users.
Technology and User Experiences. 2004. 167 p. + app. 3 p.

540 Villberg, Kirsi, Saarela, Kristina, Tirkkonen, Tiina, Pasanen, Anna-Liisa, Kasanen, Jukka-
Pekka, Mussalo-Rauhamaa, Helena, Malmberg, Marjatta & Haahtela, Tari. Sisäilman
laadun hallinta. 2004. 172 s. + liitt. 20 s.

541 Saloheimo, Anu. Yeast Saccharomyces cerevisiae as a tool in cloning and analysis of
fungal genes. Applications for biomass hydrolysis and utilisation. 2004. 84 p. + app.
51 p.

542 Pulkkinen, Pekka. Mapping C++ Data Types into a Test Specification Language. 2004.
89 p. + app. 13 p.

VTT PUBLICATIONS 542

Mapping C++ Data Types into a Test
Specification Language

Pekka Pulkkinen
VTT Electronics

2

ISBN 951�38�6402�2 (soft back ed.)
ISSN 1235�0621 (soft back ed.)

ISBN 951�38�6403�0 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1455�0849 (URL: http://www.vtt.fi/inf/pdf/)

Copyright © VTT Technical Research Centre of Finland 2004

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

VTT, Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O.Box 2000, FIN�02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde (08) 551 2111, faksi (08) 551 2320

VTT Elektronik, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel (08) 551 2111, fax (08) 551 2320

VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN�90571 OULU, Finland
phone internat. + 358 8 551 2111, fax + 358 8 551 2320

Technical editing Marja Kettunen

Otamedia Oy, Espoo 2004

3

Pulkkinen, Pekka. Mapping C++ Data Types into a Test Specification Language [C++-tietotyyppien
määrittely testienkuvauskielellä]. Espoo 2004. VTT Publications 542. 89 p. + app. 13 p.

Keywords Testing and Test Control Notation 3 (TTCN-3), software testing, software development

Abstract

Software testing is becoming a more and more important and challenging part of software
development nowadays. Since the complexity and size of software is growing day by day,
software developers must concentrate increasingly on testing, which costs both time and
money. Therefore, different methods and tools have been developed to facilitate and pre-
cipitate software testing and also improve the quality of software.

One emerging new testing technology is TTCN-3 (Testing and Test Control Notation 3),
which is a standardized test specification and implementation language. TTCN-3 pro-
vides a broad spectrum of testing abilities and is among others designed for testing soft-
ware modules. It is also intended to be used for several applications with several data de-
scription languages. Even if C++ is one of the most popular programming languages
nowadays, TTCN-3 cannot be yet efficiently utilize for testing C++ software. In order to
take advantage of TTCN-3 in testing C++ modules, the interface of the tested component
should be defined at the TTCN-3 language level. Therefore, C++ data types need to be
mapped to TTCN-3.

The purpose of this thesis is to provide data type mappings from C++ to TTCN-3, and to
implement a TTCN-3 based test system in order to test a C++ software module. Due to
the differences between C++ and TTCN-3, such as lacking of object model in TTCN-3
and ambiguity of C++ pointers, several challenges are faced during this work. However,
fairly comprehensive data type mapping is provided, which is finally verified in a real
world-like situation by using TTCN-3 to test a C++ module. This example gives a clear
insight of the usability and advantage of data type mappings and also valuable experience
on the suitability of TTCN-3 in testing C++ software module is gained.

4

Pulkkinen, Pekka. Mapping C++ Data Types into a Test Specification Language [C++-tietotyyppien
määrittely testienkuvauskielellä]. Espoo 2004. VTT Publications 542. 89 s. + liitt. 13 s.

Avainsanat Testing and Test Control Notation 3 (TTCN-3), software testing, software development

Tiivistelmä

Ohjelmistotestaus on yhä tärkeämpi ja haastavampi osa ohjelmistonkehitysprosessia. Oh-
jelmistojen koon ja kompleksisuuden kasvaessa testauksen merkitys korostuu. Tämän
vuoksi ohjelmistotestauksen helpottamiseksi ja nopeuttamiseksi sekä ohjelmistojen laa-
dun parantamiseksi onkin kehitelty erityisiä menetelmiä ja työkaluja.

Eräs testaukseen kehitetyistä uusista menetelmistä on TTCN-3 (Testing and Test Control
Notation 3), joka on standardoitu testien kuvaus- ja toteutuskieli. TTCN-3 tarjoaa laajan
valikoiman eri testausmenetelmiä ja sitä voidaan käyttää muun muassa ohjelmistomoduu-
lien testaukseen. TTCN-3 on myös suunniteltu käytettäväksi yhdessä monien kuvauskiel-
ten kanssa erityyppisten sovellusten testaamisessa. Vaikka C++ on nykyään eräs suosi-
tuimmista ohjelmointikielistä, ei TTCN-3:a voida vielä tehokkaasti käyttää C++-ohjel-
mistojen testaamiseen. Käytettäessä TTCN-3:a C++-ohjelmistomoduulin testaukseen tu-
lee testattavan komponentin rajapinta määritellä TTCN-3-kielellä. Tämän vuoksi tarvi-
taan määrittelysäännöt C++-tietotyyppien muuntamiseksi TTCN-3-kielelle.

Tässä diplomityössä määritellään C++-tietotyypit TTCN-3-kielellä sekä toteutetaan
TTCN-3 testijärjestelmä C++ moduulin testaamiseksi. TTCN-3- ja C++-kielten välillä on
suuria eroavaisuuksia, kuten olio-ohjelmointimallin puuttuminen TTCN-3:sta sekä C++-
osoittimien moniselitteisyys, minkä vuoksi työn aikana kohdataan useita ongelmia. Tästä
huolimatta työssä toteutetaan suhteellisen kattavat tyyppimäärittelyt, joita verifioidaan
käyttämällä TTCN-3:a erään C++-moduulin testaukseen. Tämä esimerkki antaa selkeän
kuvan tyyppimäärittelyjen käytettävyydestä ja hyödyllisyydestä. Lisäksi saadaan arvokas-
ta kokemusta TTCN-3:n soveltuvuudesta C++-ohjelmistojen testauksessa.

5

Table of Contents

Abstract ... 3

Tiivistelmä .. 4

Table of Contents .. 5

Foreword ... 8

Acronyms and Abbreviations.. 9

1. Introduction.. 12

2. Software Testing .. 14

2.1. Testing Process ... 14
2.2. Testing Techniques... 16

2.2.1. Functional Testing.. 17
2.2.2. Structural Testing ... 19
2.2.3. Static Testing.. 19

2.3. Types of Testing ... 20

3. Software Testing with TTCN-3 ... 21

3.1. TTCN-3 Overview.. 21
3.1.1. TTCN-3 Test System ... 22
3.1.2. Basic Language Elements .. 24
3.1.3. TTCN-3 Control and Runtime Interfaces... 26
3.1.4. TTCN-3 Presentation Formats ... 26

3.2. Implementing Tests with TTCN-3.. 27
3.3. Using TTCN-3 in Testing C++ Software Modules .. 31

3.3.1. Type Mappings... 32
3.3.2. Runtime Behavior .. 33

3.4. TTCN-3 Related to Other Languages... 34
3.4.1. ASN.1... 34
3.4.2. IDL ... 35
3.4.3. XML... 35

6

4. Mapping of C++ Fundamental Types to TTCN-3 .. 37

4.1. Boolean Type.. 38
4.2. Characters ... 38
4.3. Integers ... 40
4.4. Floating Point Types... 42

5. Mapping of C++ Compound Types to TTCN-3 .. 43

5.1. User-defined Types... 43
5.1.1. Class and Structure... 43
5.1.2. Union.. 47
5.1.3. Enumerated Types.. 48

5.2. Pointers ... 49
5.2.1. Review of C++ Pointers ... 49
5.2.2. Pointer to Basic Types.. 51
5.2.3. Pointer to Class... 55
5.2.4. Pointer to Pointer.. 56
5.2.5. Pointer to Other Types ... 57

5.3. References .. 58
5.4. Arrays .. 58
5.5. Type Definition... 60
5.6. Templates ... 60
5.7. Conclusion.. 61

6. Case Study: Using TTCN-3 to Test a C++ Module... 63

6.1. Testing Environment .. 63
6.2. Tested Module .. 66
6.3. TTCN-3 Test Software ... 68

6.3.1. Mappings for C++ Fundamental Types and Pointers........................... 69
6.3.2. Mapping for the CFile Class .. 70
6.3.3. Other Data Types ... 71
6.3.4. Test Cases... 72

6.4. Runtime Implementation .. 75
6.5. Test Runs and Results... 76

7. Discussion.. 78

7.1. General Evaluation ... 78
7.1.1. Evaluation of Type Mappings .. 78

7

7.1.2. Evaluation of the Case Study ... 80
7.2. Problems and Solutions .. 81
7.3. Usability and Advantage of Type Mappings .. 82
7.4. Conclusion.. 83

8. Summary.. 84

References... 86

APPENDIX 1 TTCN-3 Test Script: Mapping of C++ Basic Data Types and Pointers

APPENDIX 2 TTCN-3 Test Script: Mapping of the Interface of CFile Class

APPENDIX 3 TTCN-3 Test Script: Mapping of Other Necessary Types

APPENDIX 4 TTCN-3 Test Script: Implementation of the Test Cases

8

Foreword

The research work for this thesis has been carried out at VTT Technical Research Centre
of Finland, in the group of Software Platforms during the fall of 2003 and spring 2004.
The foundation of this research was achieved from the TT-Medal project (Tests & Test-
ing Methodologies with Advanced Languages), which is a consortium of eight industrial
partners and four research partners from Finland, Germany and Netherlands.

I would like to thank all of those people who have supported me during this work. Espe-
cially I wish to thank my supervisor Mr. Matti Kärki for the several great discussions, his
guidance and support for this thesis. I would also like to thank my agreeable colleagues at
VTT for many interesting discussions and useful working knowledge. Additionally, I ap-
preciate the comments and proposals for improvement that I have received from my su-
pervisor at the University of Oulu, Prof. Jukka Riekki, and the work's 2nd reviewer, Prof.
Junzhao Sun.

Oulu, April 18, 2004

Pekka Pulkkinen

9

Acronyms and Abbreviations

API Application Programming Interface, an interface that is used for accessing
an application or a service from a program.

ASCII American Standard Code for Information Interchange, the standardized set
of 128 characters including letters, numbers, punctuation, and control codes.

ASN.1 Abstract Syntax Notation One, a language used for defining data types.

ATS Abstract Test Suite, the test specification document.

CD Coder/Decoder, that part of a TTCN-3 test system, which is responsible for
the encoding and decoding of test data.

CH Component Handler, an entity of TTCN-3 test system, which is responsible
for distributing parallel test components.

CORBA Common Object Request Broker Architecture, the OMG's standard that
provides a set of common interfaces through which object-oriented soft-
ware can communicate, regardless of computer platform.

ETS Executable Test Suite, an implementation of the abstract test suite (ATS)
that runs on a given test platform.

ETSI European Telecommunications Standards Institute

GFT The Graphical Presentation format of TTCN-3 behavior definitions.

HCI Human-Computer Interaction, the study of how people work with the computers
and how computers can be designed to help people effectively use them.

IDL Interface Definition Language, a simple language for describing software
interfaces.

ISO International Standardization Organization

10

ITU International Telecommunication Union

ITU-T Telecommunication Standardization Sector of ITU

MFC Microsoft Foundation Class library for Microsoft Visual C++.

MSB Most Significant Bit, the binary digit in a binary number that represent the
most significant value, typically the leftmost bit.

MSC Message Sequence Chart, a graphical means for describing the behavior of
systems runs (traces) within communication systems.

MSDN The Microsoft Developer Network, a set of services for developers to help
write applications using Microsoft products and technologies.

MTC Main Test Component

MTS Methods for Testing and Specification, a group of ETSI.

OMG Object Management Group, a consortium of software vendors, developers,
and users that promotes the use of object-oriented technology in software
applications.

PA Platform Adapter, an adapter in a TTCN-3 test system, in which external
functions and timers are implemented.

PTC Parallel Test Component

SA System Adapter, an adapter in a TTCN-3 test system, which adapts message
and procedure based communication to the particular execution platform.

SUT System Under Test

TCI TTCN-3 Control Interface, a standardized interface that specifies the inter-
action between Test Management (TM) and TTCN-3 Executable (TE) in a
test system.

11

TE TTCN-3 Executable, the part of a test system that deals with interpretation
or execution of a TTCN-3 executable test suite (ETS).

TFT The Tabular Presentation Format for TTCN-3, a graphical format that is
similar in appearance and functionality to earlier versions of TTCN.

TM Test Management, an entity that provides a user interface and administers
the TTCN-3 test system.

TRI TTCN-3 Runtime Interface, a standardized interface that defines the inter-
action of the TTCN-3 Executable (TE) with the SUT adapter (SA) and
Platform Adapter (PA).

TTCN Tree and Tabular Combined Notation, the first version of TTCN.

TTCN-2 Tree and Tabular Combined Notation second edition, former version of
TTCN-3.

TTCN-3 Testing and Test Control Notation Version 3.

UML Unified Modeling Language, a programming language that is used for ob-
ject-oriented software development.

XML Extensible Markup Language, a metalanguage for creating new markup
languages. XML is a flexible way to create information formats, and share
both data and meta-data with other applications and users.

 12

1. Introduction
Software testing is becoming a more and more important and challenging part of software
development nowadays. The complexity and size of software is growing day by day and
thus more failure possibilities are expected and software becomes more unreliable. That is
why software developers must concentrate increasingly on testing, which costs both time
and money. Therefore, different methods and tools have been developed to facilitate and
precipitate software testing and also improve the quality of software.

Software testing can be thought to be the process of uncovering evidence of defects in
software systems [1]. A defect can occur in any phase of development and it is the result
of bugs, misunderstandings, omissions and other this kind of mistakes. Testing is not
tracking and fixing the bugs, but its purpose is substantially to ensure that a software ap-
plication does what it is supposed to do, and does not do what it is not supposed to do.

TTCN-3 (Testing and Test Control Notation 3) is a standardized test specification and
implementation language for all kind of black-box testing. TTCN-3 can be used in variety
applications in the telecommunication area, for example protocol testing, service testing,
module testing, testing of CORBA based platforms and testing of APIs. This language is
very powerful and flexible and it supports a broad spectrum of testing types. In addition
the possibility for different presentation formats and interfaces to different data descrip-
tion languages are provided. [2]

Since TTCN-3 is a test specification language, its main purpose is to implement test cases
at an abstract level. That is, TTCN-3 test script concentrates on the purpose of test cases
and the test system details are hidden. However, in order to be able to implement tests,
tested component should be represented at the TTCN-3 language level. Thus, the inter-
face of the tested component including the data types and the entry points must be
mapped to TTCN-3. Furthermore, in order to fully implement tests the adaptation be-
tween the TTCN-3 test system and tested component is also required. This adaptation can
be realized through standardized TTCN-3 execution interfaces. [3]

At this moment, C++ is a very popular language in software development. That is why
there will be additional interest to use TTCN-3 in testing C++ based systems in the future.
Even if TTCN-3 can be used for several applications with several data description lan-
guages, C++ is not directly supported to be used with it. TTCN-3 cannot be widely utilized
for testing C++ software before C++ has been mapped to TTCN-3. However there are not
even mapping rules between C++ and TTCN-3 to manually implement the conversion. [4]

 13

TTCN-3 is an effective and flexible language and its syntax is similar to C++ or other
high level programming languages but, however, there are considerabe differences in the
concepts they are based on. One major difference is that C++ is an object-oriented lan-
guage, whereas TTCN-3 is a pure procedural language. Another difference is that in C++
pointers play the major role, but TTCN-3 does not provide pointers at all. Due to these
differences several challenges will be faced, when C++ features are being implemented at
the TTCN-3 language level [4].

The purpose of this thesis is to gain experience in using TTCN-3 in testing C++ software.
The main goal is to provide data type mapping from C++ to TTCN-3 and verify the map-
ping in practice by testing a C++ software module. The mapping of the following C++
data types will be dealt with:

− basic types (e.g. int, double, char),
− user-defined types (e.g. class, union),
− pointers,
− references,
− arrays, and
− templates.

Some of these types can be mapped to TTCN-3 pretty straightforwardly, but some of
them are more complicated and perhaps can not be even solved at all. However, at least
some kind of solutions will be provided.

As an introduction to the topic, Chapter 2 gives a general description of the software test-
ing process and introduces common software testing techniques. Chapter 3 will provide
an overview of TTCN-3 test system and give an insight of TTCN-3 relation to C++ as
well as other languages, in which research has been made so far. Then the primary goal
for this thesis work, mapping of C++ data types to TTCN-3, is divided into two groups in
Chapters 4 and 5, which provide data type mappings for C++ fundamental types and
compound types, respectively. These type mappings are verified in Chapter 6, in which a
case study is implemented for using TTCN-3 to test a C++ software module. Chapter 7
gives a general discussion about the work performed in this thesis. Also some problems
with solutions are presented, and advantages of the type mappings are discussed when
TTCN-3 is used for testing C++ software. Finally, Chapter 8 gives a brief summary and
presents the results that were achieved in this thesis.

 14

2. Software Testing
Software testing has always been a challenging and laborious part of software develop-
ment. Especially nowadays, when the complexity of software is growing increasingly and
development times are getting shorter, testing is taking a more important role in the de-
velopment process.

The two main reasons for testing are to make a judgment about the quality or acceptabil-
ity of software and, the other hand, to discover problems [5]. These are, however, fairly
extensive concepts; we do not necessarily know how to determine a good quality measure
for software, or when the problems have been discovered.

This chapter gives a general insight into the software testing process and describes differ-
ent software testing techniques. Also a brief summary of different types of testing is pro-
vided.

2.1. Testing Process

Testing is usually thought to be the last activity in the software development process after
implementation. However, testing is such a type of activity that is performed all the time
during the development phase and even after development, not just at the end of coding.
Even if a testing process is separated from development process, they are intimately re-
lated to each other [1]. This can be observed in the software development life cycle,
which is often described by the V-model shown in Figure 1. This model emphasizes the
correspondence between software testing and development activities that are shown on
the right side and on the left side of the model, respectively [5].

 15

Figure 1. Abstraction levels of the software and testing development in the V-model.

The testing process has different goals and measures of success from the development
process. That is, the testing process is for specifying if the product behaves as it is sup-
posed to do, whereas the development process is for trying to build a product that meets
the requirements. Normally these two processes are assigned to different people, which is
very important from a system test perspective. The testers should write the test code in-
dependently from the developers, because different people may interpret the meaning of
requirements differently. This ensures that the resulting system really corresponds with
the requirements rather than that the system does what the developer has imagined the
requirements to mean.

An interesting aspect of the testing process is how the occurred faults or errors are lo-
cated. Sometimes failures can be caused by the test cases themselves or the drivers that
execute them, not because of the tested software. In the real world, test software may ac-
tually contain more bugs than the software under test. That is why sometimes also the test
case need to be tested.

The feedback loop in Figure 2, which often operates between the testing and development
processes, will help to identify defective test cases [1]. The testing process feeds test re-
sults back to the development process. After revising the designs and implementations,

 16

the development process feeds them to the testing process. By testing development prod-
ucts again a tester may determine that a failure occurred due to problems with the test
system itself.

Figure 2. A feedback loop of the testing and development processes.

The testing process can be divided into three phases: design, construction and execution
and evaluation. The test design part also includes several steps; first the system to be
tested is examined and analyzed to identify its features and responsibilities. Then test
cases are designed according to these results. Finally the expected results for each test
case are developed. In the test construction part the artifacts that are needed for testing are
constructed. For example, test cases are translated into programming language. The test
execution and evaluation phase is normally the quickest part, and also the most visible
part of the testing. In this phase earlier constructed test cases are executed and the results
of each test case are evaluated as pass or fail. [1] [6]

These test steps can be performed at each level illustrated in Figure 1, that is, unit testing as
well as integration, system and acceptance testing consist of design, construction, and execu-
tion and evaluation steps. Usually tests are designed and constructed on the left side of the
V-model and the execution and evaluation are performed on the right side of the V-model.
That is, test design and construction can be done before actual software has been written. [7]

2.2. Testing Techniques

Identifying test cases can be roughly divided into two groups; functional testing, which is
also called specification-based or black box testing, and structural testing, which is also
referred to as implementation-based or white box testing [1]. Both of these approaches
include several distinct identification methods, such as robustness testing, path testing
and data flow testing.

 17

Another way to split testing techniques in half is to use the terms static testing and dy-
namic testing. Dynamic testing is the usual way of testing, that is, testing software by
running and using it, whereas static testing is something that is not running, it is per-
formed by examining and reviewing the code or specification.

2.2.1. Functional Testing

The software specifications are an essential part of functional testing, since the test cases
are developed based on the specifications. Thus, it is not important how the actual soft-
ware is implemented. Therefore, test cases can be implemented concurrently with, or
even before the coding. [1]

Functional testing can be thought of as a mathematical function, in which the inputs are
mapped to its outputs. There are several approaches to the functional testing [5]: bound-
ary value analysis, robustness testing, worst case analysis, special value testing, equiva-
lence class testing, and decision table based testing. The first four of these techniques are
so called boundary-based approaches and they are the most common functional testing
techniques. In the two other techniques different methods are used to find a comprehen-
sive set of input value combinations that will verify the tested module as well as possible.

Boundary value analysis, as the name indicates, focuses on the boundary of the input
space. Basically, when the test cases are being constructed, the input values are chosen in
the way that they are at their minimum and just above the minimum, a normal value, and
values at their maximum and just below the maximum. This model is based on the fact
that the errors usually occur near the extreme values. [5]

The second model of boundary-based techniques is called robustness testing, which is
actually a simple extension of the boundary value analysis. In robustness testing, in addi-
tion to the extreme values used in the boundary value analysis, also values outside the
accepted range are used, that is the values slightly greater and slightly less than maximum
and minimum, respectively. The most important aspect in the robustness testing is the
expected output with the prohibited input. That is why the main attention is paid to excep-
tion handling. [5]

The boundary-based techniques described so far are used in the situations in which only
the single fault assumption is made, that is, an extreme value is given only to a single

 18

variable at a time. In the worst case testing what happens when several values have an
extreme value is tested. This model needs much more effort than other boundary-based
techniques, since a much greater number of test cases is needed for it, but then it is clearly
more exhaustive. [5]

Special value testing is probably the most common, the most comfortable and sometimes
very useful form of functional testing. This model is based on the tester's knowledge and
earlier experience of weaknesses of the program while devising test cases. There are no
guidelines for input values and thus it is very dependent on the tester's abilities. However,
it often reveals faults more efficiently than other boundary-based techniques. [5]

The term "equivalence class" means a set of input values that produce the same result as
another similar set. That is, if one test case that use the equivalence class works correctly,
the remaining similar test cases can be assumed to work correctly as well, even if they are
not tested. The idea of equivalence class testing is to use one element from each equiva-
lence class when identifying test cases. This model is used when complete testing with
small redundancy is wanted. [5]

Decision table based testing is useful in the situations in which varying sets of conditions
produce numbers of combinations of actions. Hence, this technique uses tables, which
show a set of conditions and actions resulting from them. These tables are then used to
identify test cases. Decision table based testing is very useful for applications in which
lots of decisions have to be made or where several logical relationships exist among input
variables, but for some applications it is somewhat worthless. [5]

All of the functional testing techniques described above exhibit the tested program as a
mathematical function that maps its inputs into outputs. When one is considering the
technique that would be the best, it is important to pay attention to that part or those prop-
erties of the program that are most likely to be defective. However, these techniques can
be thought to test only for a single function. There are also testing techniques that can be
categorized into functional testing techniques, such as state based testing. These are not
testing only for a single function but rather function interactions. State-based testing ex-
ercises an implementation for different test case and input sequences and the system un-
der test (SUT) is modeled as a state machine. [6]

 19

2.2.2. Structural Testing

In contrast to the functional testing, which is based on the specification of software, struc-
tural testing is based on software itself. When constructing the test cases in structural test-
ing, input values can be determined by examining the source code of the tested system,
and thus generate various execution paths by using different inputs. However, outputs of
test cases must fulfill the requirements of the specification. The main advantage of struc-
tural testing compared to functional testing is that it improves the coverage, i.e. more
comprehensive test results can be achieved. [1]

The two most common forms of structural testing are path testing and data flow testing. Path
testing is based on the control flow of the tested program, from which test cases are generated,
whereas data flow testing focuses on the links at which data objects are being used [8].

Path testing is the oldest technique in structural testing, and the most common basic test
technique for programmers, but it should be common also for the testers. Several path
testing techniques have been invented during past decades, such as DD path testing (deci-
sion-to-decision), basis path testing and branch coverage testing. DD path is a sequence
of statements that begins from the decision statement and ends with another decision
statement. In this technique, the test cases are constructed according to the DD paths of a
program. When every DD path has been executed, we know that each predicted outcome
has been examined. However, a simple program may have billions of different alterna-
tives, thus comprehensive path testing is impossible. Normally testers do not construct
paths by themselves, but they use a tool for it. [8] [5] [9]

Data flow testing includes the test strategies that select paths of control flow in order to con-
struct and examine the sequences of events that are related to the status of a data object. The
aim might be, for example, to ensure that all data objects, which have been initialized, are
used somewhere. Data flow testing is often thought of as one form of path testing. [5] [8]

2.2.3. Static Testing

The process in which the source code, software architecture and design are reviewed
without executing the program, is called structural analysis or static testing [9]. This type
of testing is performed early in the development cycle and its purpose is to reveal bugs
that are difficult to find with functional testing techniques. This kind of testing is some-
times pretty time-consuming and not productive enough and therefore it is not always
performed. [9]

 20

2.3. Types of Testing

The previous sub-chapter introduced several testing techniques which are normally used
to test an abstract model of system capabilities and they do not require any specific im-
plementation. However all capabilities of the system under test should be exercised when
system testing is performed [6]. Over the course of time, several different types of testing
have been developed. In most cases, these tests are performed after functional testing and
they are usually closely tied to an implementation. The following list gives a brief sum-
mary of some implementation-specific types of testing [6].

− Conformance testing is for determining to what extent an implementation conforms
the specification on which it is based. This is usually applied to a formal standard.

− Interoperability testing, to determine that two or more implementations are able
to work with each other (i.e. interworking).

− Configuration testing is for identifying legal combinations of the environments
for which a system under test fails.

− Stress testing is conducted to evaluate a system or component when the load is
maximum or higher compared to its requirements.

− In volume testing an attempt to crash a system is tried by using the largest possible
input (i.e. maximum amounts of data).

− Performance testing is conducted to evaluate a system's or component's actual
performance against performance requirements.

− Usability testing evaluates the ergonomics of an HCI (Human-Computer Interac-
tion) design.

− Security testing evaluates the ability to break into the security of the system by
criminals or by accident.

− Restart/recovery testing evaluates automatic or manual recovery facilities of the
system under test.

− Maintainability testing evaluates if the system will be maintainable.

− Regression testing retests a system or component to detect side effects of modifications.

− Acceptance testing determines whether or not a system satisfies its acceptance crite-
ria, i.e. the system must fulfill its specification, be usable in practice and be reliable.

 21

3. Software Testing with TTCN-3

3.1. TTCN-3 Overview

TTCN-3 (Testing and Test Control Notation 3) is a standardized test specification and
implementation language for all kind of black-box testing. The TTCN-3 standard has
been produced by the ETSI Technical Committee Methods for Testing and Specification
(MTS) [10][11][12][13][14][15] and afterwards the International Telecommunication
Union (ITU-T) has made some refinements to it and produced their own standards
[16][17][18]. TTCN-3 can be used in a variety of applications in the telecommunication
area, for example protocol testing, service testing, module testing, testing of CORBA
based platforms and testing of APIs. This language is very powerful and flexible and it
supports a broad spectrum of testing types. In addition, different presentation formats,
and interfaces to different data description languages are provided. [2]

The previous version of TTCN was TTCN-2 (Tree and Tabular Combined Notation, Edi-
tion 2) which was restricted only to conformance testing. Even if TTCN-3 has evolved
from TTCN-2, it is very different both syntactically and functionally and provides a much
wider range of testing including interoperability, robustness, regression, system and inte-
gration testing. However, some basic functionality of TTCN-2 has been retained.

The following list shows some of the new features that TTCN-3 provides [16]:

− the ability to specify dynamic concurrent testing configurations,

− operations for procedure-based and message-based communication,

− the ability to specify encoding information and other attributes,

− the ability to specify data and signature templates with powerful matching
mechanisms,

− type and value parameterization,

− the assignment and handling of test verdicts,

− test suite parameterization and test case selection mechanisms,

− combined use of TTCN-3 with ASN.1 and potentially with other languages, and

− well-defined syntax, interchange format, and static semantics.

 22

3.1.1. TTCN-3 Test System

TTCN-3 test system is basically a set of interacting entities, in which each entity imple-
ments a particular functionality needed to construct the entire test system. A central entity
of a test system is TTCN-3 executable (TE), which implements the execution of a TTCN-
3 test suite. The TE interacts with the user and system under test (SUT) through the stan-
dardized interfaces, TTCN-3 runtime interface (TRI) and TTCN-3 control interface
(TCI). These interfaces unify the way of realizing the TTCN-3 test system and provide
adaptation for communication, management, component handling, external data and log-
ging [2]. Overall view of a TTCN-3 test system is illustrated in Figure 3 [15].

Figure 3. Overview of a TTCN-3 test system.

The TE is an abstract implementation of a TTCN-3 module and other entities make these
abstract concepts concrete [2]. Test management (TM) is for overall management of the
test execution, component handling (CH) is used to administer test components, and
Coder/Decoder (CD) is for handling of types and values. The system adapter (SA) im-

 23

plements the communication with the SUT and platform adapter (PA) realizes timers and
external functions. [15]

The communication of the TTCN-3 test system is based on the interconnected test com-
ponents and an explicit test system interface, which are connected to each other by well-
defined communication ports. Every test system contains exactly one main test compo-
nent (MTC), which is generated automatically at the beginning of each test case execu-
tion. In addition one or more parallel test components (PTCs) can be created dynamically
during the execution. Each component has a set of communication ports. These ports are
modeled as an infinite FIFO queue and they can have either in-, out-, or inout-direction.
A conceptual view of a TTCN-3 test system communication is shown in Figure 4.

Figure 4. TTCN-3 test system communication. The elliptical circles describe the local
ports and the in-directions of the ports are modeled as infinite FIFO queues.

 24

3.1.2. Basic Language Elements

The top-level unit of TTCN-3 is a module which is an entity including all other elements.
The module is usually divided into two parts: definition part and optional control part.
Modules cannot be nested, i.e. a module cannot include other modules, but they can im-
port definitions from other modules. Figure 5 gives a general overview of TTCN-3 lan-
guage elements.

The module definitions part consists of data type definitions, test data, test system archi-
tecture, and test system behavior. Data type definitions are either simple predefined types
(i.e. integer, float, charstring) or user defined types, such as arrays or other structured
types (i.e. record, set).

Test data is fed to or received from the tested function or module. It can be constructed
from constants, variables or message templates. Templates are used to either transmit a
set of distinct values or to test whether a set of received values matches the template
specification. Templates provide several possibilities, such as organize and reuse test data
including a simple form of inheritance.

The architecture definitions describe messages, signatures, test components, and
communication ports. The test components define the interface to the system under test,
and they communicate through the communication ports with the system and other test
components. Procedure signatures and messages are the entry points of the test com-
ponents.
Test behavior definitions describe the modular structure of the tests by taking advantage
of altsteps, functions and test cases. A TTCN-3 alt statement, which consists of several
altsteps, provides a specific feature of the TTCN-3 semantics. Altstep defines an ordered
set of alternatives, and it is a scope unit similar to function. They are used to specify de-
fault behavior or to structure the alternatives of the tests.

The module definitions part specifies the top level definitions of the module and these
definitions are global in the entire module. The module control part can be thought as the
main program of the TTCN-3 module. Its main purpose is to execute test cases in a cer-
tain order, but the local declarations, such as timers and variables, may be defined in the
control part, as well. [10]

 25

Figure 5. TTCN-3 language elements.

 26

3.1.3. TTCN-3 Control and Runtime Interfaces

As mentioned earlier, standardized adaptation of the test system is defined by the TTCN-3
execution interfaces, TRI (runtime interface) [14] and TCI (control interface) [15]. The
TCI define entities, interfaces, types and operations, which prepare the way for flexible
management of TTCN-3 based systems. The TCI complements and completes the TRI,
which provides a test and platform specific adaptation layer. These well-defined inter-
faces include sets of operations, and are independent of the implementation language,
SUT (system under test) and processing platform. That is, the code produced by any
TTCN-3 compiler or interpreter and any platform or device are compatible if they all
support these interfaces. [19] [20]

The TRI consists of two parts, TRI SA (SUT Adapter) and TRI PA (Platform Adapter),
as it was illustrated in Figure 3. The TRI SA realizes message and procedure based com-
munication between the SUT and TTCN-3 test system. It is responsible for the mapping
of communication ports to test system interface ports and transmits requests and re-
sponses through these ports. The TRI PA realizes the external functions and timers. That
is, it enables external function invocations and timer operations, i.e. starting, reading,
stopping and inquiring the status of timer. [2]

3.1.4. TTCN-3 Presentation Formats

In addition to fundamental textual format, TTCN-3 provides the tabular presentation for-
mat (TFT) and graphical presentation format (GFT), standardized by [11] and [12], re-
spectively. TTCN-3 core language is represented with normal text-based syntax and it can
be used independently, but TFT and GFT are based on the core language. Different alter-
natives to display the core language and the interfaces to different languages provided are
shown in Figure 6. [2]

 27

Figure 6. Different presentation formats and types provided by TTCN-3.

A TTCN-3 textual core notation can be written using any text editor and the syntax looks
similar to a typical programming language, such as C++ or Java. The tabular presentation
format (TFT) is similar in appearance and functionality of earlier versions of TTCN and
is aimed at the developers that are familiar with the TTCN style of writing test suites. Ba-
sically, the TFT is collection of tables that represent a TTCN-3 module. The graphical
presentation format (GFT) provides the visualization of test behavior by taking advantage
of the message sequence charts (MSC). The GFT provides graphical presentation for each
TTCN-3 behavior description, that is, diagrams for the following behaviors are provided:
the control part of a TTCN-3 module, TTCN-3 test case, TTCN-3 function, and TTCN-3
altstep (i.e. alt statement). [11] [12] [2]

3.2. Implementing Tests with TTCN-3

When tests are being implemented using TTCN-3, the implementation process can be
divided into the following steps:

− defining data types and procedure signatures,

− defining test data,

− defining ports and components,

− defining test behavior, and

− execution of test cases.

 28

These are the steps that can be clearly distinguished from each other, but however, the
order is not always the same. That is, for example, ports and component can be defined at
the beginning of a module or test data can be constructed in parallel with test behavior.

The first step, i.e. definitions of the data types and procedure signatures, may sometimes
be very challenging, since the data types of the system under test are to be defined at the
TTCN-3 language level in order to implement rest definitions (i.e. procedure signatures,
test data, test behavior, etc.). This is because the data types of the SUT may differ consid-
erably from TTCN-3 types. Therefore the mapping from the target language to TTCN-3
must be available. Consequently, this thesis concentrates on specifying data type map-
pings from C++ to TTCN-3.

TTCN-3 provides two different mechanisms for information exchange between the test
components and system under test (SUT); message-based communication is related to
data types and procedure-based communication is related to procedure signatures [2].
TTCN-3 does not have any special message type, but a message can be any value of a
certain TTCN-3 type. A procedure signature consists of the following fields: its name, a
list of parameters, a return value, and a list of exceptions. Parameters, return value and
exceptions are optional. An example of the procedure signature:

 signature MySignature (in integer myPar1, inout float myPar2)

 return boolean exception (reasonType);

Test data, as mentioned earlier, are constructed from constants, variables and templates.
The templates mechanism provides a very comfortable way to specify, organize and
structure test data [2]. In fact, test data is sometimes constructed within the test cases, i.e.
in a test behavior step. However, once test data has been produced, it can be fed to the
SUT as an input or received from the SUT as an output. A signature template myData for
the earlier defined signature MySignature() could be as follows:

 template MySignature myData := {

 myPar1 := 100,

 myPar2 := 1.23

 }

Components and ports are specified by creating a port type or component type, respec-
tively. A port can be message-based, procedure-based or both (i.e. mixed) depending on

 29

whether it is used for message exchange or with the procedure calls. In addition ports can
have three different directions (in, out and inout) for allowed messages or procedures. A
port type definition for MySignature() would be for example:

 type port MySignaturePort procedure {

 out MySignature

 }

In addition to port type definition, also component type definitions must be specified,
which can include constants, variables, timers and ports. Each test component is an in-
stance of a corresponding component type. An example of the component type definition,
which contains MySignaturePort could be:

 type component MyTester {

 port MySignaturePort port1

 }

Because the abstract test system interface can be thought of as a test component, i.e. a
collection of ports, another component type definition is needed. Thus, the following
component type definition is for the abstract test system interface:

 type component MyTestSystemInterface {

 port MySignaturePort SUT_Interface

 }

The abstract test system interface and MTC (Main Test Component) are created auto-
matically, when the execution of a test case starts and they can be referenced by prede-
fined keywords system and mtc, respectively.

Test system behavior consists of altsteps, functions and test cases, as depicted earlier in
Figure 5. The main entities in the definition of test system behavior are test cases, which
are usually for the description of MTC's behavior. Altsteps and functions are used to
modularize of the test case structure, for example by collecting common definitions or
describing the behavior of PTCs (Parallel Test Components) in the functions and altsteps,
which then can be called within a test case. An example of test case definition, which
takes advantage of an altstep and a function, is shown in Figure 7 below.

 30

// functions and altsteps used within the test cases

function InitTestCase() runs on MyTester {

 map(mtc:port1, system:SUT_Interface);

 activate(DefaultAltSet());

}

altstep DefaultAltSet() runs on MyTester {

 [] any port.getreply {

 // . . .

 }

 [] any port.catch {

 // . . .

 }

}

// test case implementation

testcase tc_01() runs on MyTester system MyTestSystemInterface {

 InitTestCase();

 // call the function under test

 port1.call(MySignature:myData, nowait);

 alt {

 // check the expected result

 [] port1.getreply(MySignature:{-, 1.0} value true) {

 if(/*...*/) { . . . }

 }

 }

 // . . .

 setverdict(pass);

 unmap(mtc:port1, system:SUT_Interface);

 stop;

}

Figure 7. An example of function, altstep and test case definitions.

All the definitions described so far are defined in the module definitions part. Finally, the
execution, i.e. main program, is implemented in the module control part, in which among
others the test cases are executed. An example of the control part:

 31

 control {

 var verdicttype myVerdict := none;

 if (aVerdict == none) {

 aVerdict := execute(tc_01());

 }

 if(myVerdict == pass) {

 // . . .

 }

 }

After the entire test script has been completed, the tests are executed as follows: The exe-
cution starts from the module control part, in which test cases are executed in a certain
order, one after the other. Functions and alt statements specified in the test cases are per-
formed in the same way as in any other procedural programming language. This causes
the function of the SUT to be called through the corresponding communication port. Dur-
ing this call TTCN-3 data types (i.e. parameters) are transferred into the SUT's data types.
This conversion is performed by the CD (Coder/Decoder) that is one entity of a standard-
ized TCI (i.e. TTCN-3 Control Interface) as described earlier in section 3.1.1. The return
values are correspondingly decoded from the target language back into TTCN-3. The im-
plementation of the encoder and decoder as well as signature calls and external functions
must be done using a target language, for example C++ or Java. Finally, as a result of test
a case execution, a test verdict (i.e. pass, fail, inconc, none, error) is returned.

3.3. Using TTCN-3 in Testing C++ Software Modules

At this moment, C++ is a very popular language for software development, which cer-
tainly will attract additionally interests to use TTCN-3 in testing C++ software. TTCN-3
is designed for dynamic testing, so it can be used for various different types of testing at
different levels. Hence, TTCN-3 can be also used to test software modules. [10]

The role of TTCN-3 in testing software modules is to define test procedures and specifi-
cation of test suites. That is, test software written with TTCN-3 is attached to tested soft-
ware through the interface of the system under test (SUT). However, TTCN-3 is designed
for the test case implementation at an abstract level and the test system details are hidden.
Thus, TTCN-3 test system needs the adaptation to the SUT in order to fully implement
tests. [3]

 32

Practical experience has proven that using TTCN-3 for testing C++ software is laborious.
This is caused by several issues: on the one hand, test data is difficult to define within the
TTCN-3 modules, and on the other hand, in order to implement an executable system the
run time behavior presents additional requirements. However, these issues are not insu-
perable, but currently excessive effort is needed in order to implement test cases.

3.3.1. Type Mappings

A typical test system architecture for software testing contains the entities that are used to
call the functions of the SUT with certain parameters, i.e. test driver, and to simulate the
software components that are not yet implemented, i.e. test stubs [6]. In order to call or
simulate these functions or components within a TTCN-3 module, the interfaces of the
SUT must be implemented at the TTCN-3 language level. In the case of C++, the inter-
faces are defined in the header files, which contain data type definitions, data declarations
and data definitions, and also function declarations. Thus, these elements should be
mapped from C++ to TTCN-3. Figure 8 shows an example of how the mapping may
look. The details presented in this figure will be explained later in chapters 4 and 5.

Even if TTCN-3 is an effective and flexible language and its syntax is similar to C++,
there are significant differences between these languages. These differences are mainly
due to the lacking of an object model in TTCN-3, but also other features, such as point-
ers, are outside the scope of TTCN-3. During the mapping process depicted in Figure 8,
the differences between these languages become significant.

Currently there are no specific rules how C++ types and their properties can be imple-
mented by TTCN-3. This thesis concentrates on this issue by providing data type map-
pings from C++ to TTCN-3. Chapter 4 provides mappings for C++ fundamental types
and Chapter 5 for C++ compound types. Mapping of member functions are not included
in this work, since this provides mapping only for the C++ data types, not entire C++ lan-
guage mapping. However, a case study in Chapter 6 provides a mapping for the entire
interface of a C++ module including member functions.

 33

Figure 8. An example of mapping entire C++ software interface to TTCN-3.

3.3.2. Runtime Behavior

In order to implement an executable test system, a TTCN-3 abstract test suite (ATS) must
be compiled or interpreted to a target language, and also runtime behavior must be im-
plemented [21]. Thus, in our case, we want to translate TTCN-3 code into C++ and im-
plement the runtime behavior with C++ as well. Roughly speaking, runtime behavior
consists of the following operations:

− encode parameters (in/inout directions) from TTCN-3 into the target language,

− decode parameters (out/inout directions) and return values from the target language
into TTCN-3,

− implement the procedure-based communication (i.e. call, getcall, reply, getreply),

− implement message-based communication (i.e. send and receive operations),

 34

− handle exception, and

− implement the external functions.

For the moment, these operations must be implemented by hand, which considerably in-
creases the effort for implementing an executable test system. This means in practice that
lots of code lines are needed even for a simple test case. Especially encoding and decod-
ing require quite much work, and if these codecs could be generated automatically, test-
ing would be considerably facilitated.

3.4. TTCN-3 Related to Other Languages

In addition to using TTCN-3's own notation, ASN.1 (Abstract Syntax Notation One) is
the only language that is supported by the standard to be used with TTCN-3. However,
research has been extensively made for the extensions of the OMG IDL [22] [23] [24]
and XML [25]. Hence, according to these studies, ETSI has lately published a technical
specification of IDL to TTCN-3 mapping [26] and they have XML to TTCN-3 mapping
under work.

Because TTCN-3 was designed to be used in a broad spectrum of testing types, these
kinds of mapping are extremely useful. Roughly speaking, ASN.1 data definitions are
used for protocol stacks, IDL definitions for CORBA based systems and XML definitions
for Web services. The following sub-chapters give a quick view of the relation of TTCN-
3 to these three languages.

3.4.1. ASN.1

ASN.1 is standardized data representation format produced by the International Standards
Organization (ISO). It is used for the definition of simple data types, and also a notation
for referencing these types and for specifying the values of these types. Its main purpose
is to achieve interoperability between platforms. [27]

TTCN-3 standard supports using ASN.1 together with TTCN-3. Therefore it is possible
to reference to ASN.1 definitions from within a TTCN-3 module. Also specifying the
encoding rules for imported ASN.1 definitions is allowed. Simply speaking, TTCN-3 al-
lows importing and using the ASN.1 objects within a TTCN-3 module. [2]

 35

However, some difficulties exist when ASN.1 is used with TTCN-3. The ASN.1 objects,
which are imported into a TTCN-3 module, are called foreign objects and they can be
used only if they have a TTCN-3 view. This means that part of the information of an ob-
ject which is needed when the object is used in TTCN-3. This TTCN-3 view can be full,
zero or something between them. Because ASN.1 has richer types and it provides a wider
range of type construction mechanisms, the use of ASN.1 definitions within a TTCN-3
module is more complex than just importing them. More speculation about these prob-
lems is provided in [2].

3.4.2. IDL

The IDL (Interface Definition Language) is mostly used to describe the object interfaces
for CORBA (Common Object Request Broker Architecture) based systems. It supports
the most basic data types like C++ or other high level languages. CORBA is a middle-
ware for Internet based distributed systems, which uses an object-oriented concept. It is
standardized by the Object Management Group (OMG).

A mapping of OMG IDL to TTCN-3 has been studied in several papers [22] [23] [24].
Based on these studies, ETSI has produced a technical specification that provides the
mapping of CORBA IDL specifications into TTCN-3 [26]. These mapping rules are also
intended for other interface specification languages, not only for CORBA IDL. The pur-
pose of IDL mapping is to provide a definition for the use the TTCN-3 core language
with IDL [26]. This can be also observed from Figure 6. Chapters 4 and 5 in this thesis,
which provide data type mapping from C++ to TTCN-3, take an advantage of IDL to
TTCN-3 mapping documents [22] [23] [24] [26]. However, C++ and IDL differ consid-
erably from each other, and thus IDL mapping documents cannot be fully utilized, even
though they can be used as a guideline during the C++ to TTCN-3 mapping process.

3.4.3. XML

The Extensible Markup Language (XML), which is derived from the Standard General-
ized Markup Language (SGML), is a simple and flexible text format and it is in-
dependent of platform, software and hardware [28]. XML is currently widely used,
among others, on the Web for exchanging a wide variety of data. The purpose of XML is
for marking up data in the documents. That is, special portions of text are wrapped in the
tags that makes it easier to manipulate a document. XML has been used for example, for

 36

making the configuration files for software, or for telecommunication applications for
transferring control or application data. The main advantage of XML is its flexibility in
representing structural information.

For instance, in [25] TTCN-3 is used for providing a test framework for Web services
which are developed in the form of XML schemas. The key element of this test frame-
work is to translate XML data to TTCN-3. That is, when test data structures are being
generated, the mapping of XML to TTCN-3 is required. Some kind of a mapping is pro-
vided in [25], and according to "The TTCN-3 User Conference" that will be held in May
2004 [29], the mapping of XML to TTCN-3 is being currently worked with.

 37

4. Mapping of C++ Fundamental Types to TTCN-3
This and the following sections present the work performed in this thesis. The following
two chapters (Chapters 4 and 5) contain data type mappings from C++ to TTCN-3 and
then Chapter 6 provides a case study, in which these mappings are utilized. As described
earlier in sections 3.2 and 3.3, the first step in test implementation with TTCN-3 is to de-
fine the data types that are used, for example, while constructing the test data used in the
test cases. Since here TTCN-3 is going to be used in testing C++ software, the interfaces
of tested module must be implemented at the TTCN-3 language level. Therefore, the C++
to TTCN-3 type mappings provided here are required.

C++ types are divided into two groups in the C++ standard [30]: fundamental types and
compound types. Compound types are constructed from the fundamental types. Thus, the
same approach for dividing data type mapping in two parts has been also used in this
work: this chapter describes the mapping of fundamental types and mapping of com-
pound types is described in Chapter 5.

Fundamental types in C++ consist of integral types, floating point types and the void type.
Integral types contain character types (plain, signed and unsigned), integer types (signed
and unsigned), wide character (i.e. wchar_t) and boolean type (i.e. bool). Floating point
types include float, double and long double. The void type has an empty set of values; i.e.
it is �an incomplete type that cannot be completed� [30].

In contrast, there can be infinite number of types in TTCN-3. This is, because it is possi-
ble to limitlessly define new types by using the type command. However, TTCN-3 sup-
ports only a few basic types, which are mostly same as those in C++, but there are also
some TTCN-3 specific ones [16]. There are quite big differences between the basic types
of these languages and this is especially emphasized when they are used in practice.

Some aspects of C++ types are implementation-defined [31]. For example the size of int
depends on the system that is being used. That is why, in order to provide comprehensive
type mapping, the hardware characteristic of the used system must be known. In this
work, Visual C++ Version 6.0 was used and, for example, sizes of variables are based on
the characteristics of this system.

The representation of integral types in C++ is based on a pure binary numeration system,
for example two�s complement, one�s complement, or signed magnitude representation

 38

[30]. On the contrary, TTCN-3 uses a different numeration system in which types must be
compatible. That is, at assignments, instantiations and comparisons the values must have
the same root type and they must not violate subtyping [10]. For example, C++ accepts a
negative value to be placed in an unsigned integer, but since the MSB (Most Significant
Bit) is set, this value is interpreted as large positive number. In addition, C++ provides
standard conversions (e.g. int to double), but they are not provided by TTCN-3. This kind
of problem can be however solved only by making the value conversions by hand.

4.1. Boolean Type

A boolean type is almost the same in both C++ and TTCN-3. However, in C++ true is
handled as an integer number 1 and false as a zero, whereas TTCN-3 accepts only values
true and false. C++ accepts both true and false and also any integer value, in which all
values except 0 are truncated to 1 (corresponding true) [31] [16]. Table 1 shows a type
mapping for the boolean type and some examples of boolean expressions. Thus, when an
interface of a C++ component contains a boolean type, the corresponding representation
in TTCN-3 can be seen from Table 1. In order to enhance readability and to provide clear
distinction, all mapped types get the prefix Cpp (i.e. abbreviation of C++).

Table 1. Mapping of boolean type from C++ to TTCN-3.

C++ TTCN-3
bool type boolean CppBool;

bool is_true = true;

bool is_true = 10;

bool is_false = 0;

var CppBool is_true := true;

var CppBool is_true := true;

var CppBool is_false := false;

4.2. Characters

TTCN-3 characters are based on ISO/IEC 646 [32], which uses a 7-bit coded character
set, whereas C++ uses in most cases 8-bit characters, which is typically a variant of ISO-
646 [31]. An example of 8-bit character set is standard ECMA-128 [33], which contains
among others the Scandinavian characters �ä� and �ö�. However, the set of characters in

 39

C++ is only partially standardized, which might cause problems if the same application is
used in different environments.

C++ characters consist of three different types: char, signed char and unsigned char.
Plain and signed char can hold values from �128 to 127, whereas unsigned char can hold
values between 0 and 255. TTCN-3 accepts only characters corresponding to the values 0
to 127. In conclusion, if the basic ASCII character set is used, char in TTCN-3 is the
same as char in C++. [31] [16]

In addition, C++ includes a type wchar_t, which is a distinct implementation-defined type
and is large enough to hold the largest extended character set specified among the sup-
ported locales. The nearest corresponding type in TTCN-3 is universal char, which is a
32-bit value based on ISO/IEC 10646, which altogether contains 232 characters including
all kinds of character sets, such as kanji, katakana, hiragana, romaji, etc. universal char
can also be used when normal chars outside the ASCII range are used. A mapping of
character is provided in the Table 2 below. [31] [16]

Table 2. Mapping of characters from C++ to TTCN-3.

C++ TTCN-3
char

signed char

unsigned char

wchar_t

type char CppChar;

type char CppSignedChar;

type char CppUnsignedChar;

type universal char CppWchar_t;

C++ accepts also integer values to be put into char, which is commonly used for example
in a function call. This is not allowed in TTCN-3. However, TTCN-3 standard [10] pro-
vides predefined functions, such as int2char, int2unichar, char2int and unichar2int,
which can be used if an integer value is used in the place of character or vice versa. These
functions make the conversions based on ISO/IEC 646. There are also some special char-
acters, such as horizontal tab (�\t�) and new line (�\n�) which cannot be directly mapped to
TTCN-3, but by using the conversion functions they can also be specified.

However, the earlier provided mapping is not perfect. The problems arise, for example,
when a negative value is placed into a char or values outside the ASCII range are used.

 40

This is solved by providing distinct mapping, in which integers are used instead of char.
This alternative way to map C++ char type is provided in Table 3. Since characters in
C++ are actually integer types [30], the mapping in Table 3 works in every situation.
However, this mapping is not very descriptive and thus the mapping in Table 2 is recom-
mended for use, when possible.

Table 3. Alternative mapping for characters from C++ to TTCN-3.

C++ TTCN-3
char

signed char

unsigned char

whcar_t

type integer CppChar(0..255);

type CppChar CppSignedChar;

type integer CppUnsignedChar(-128..127);

type integer CppWchar_t(0..65535);

4.3. Integers

There are four distinct integer types, which are signed char, short int, (plain) int and long
int, in ascending order by their size, respectively. In addition, there exists a corresponding
unsigned integer type for each signed type, and unsigned types occupy the same amount
of storage as the corresponding signed types. [30].

The sizes of integer types are implementation-defined, but all of them are a multiple of
the size of char which is normally 8 bits [31]. In contrast, TTCN-3 accepts all possible
integer values, basically from negative infinity to positive infinity. Thus, when mapping
C++ integers to TTCN-3, their sizes must be restricted according to the properties of the
system used. Mapping of integers is shown in Table 4 below.

 41

Table 4. Mapping of integer types from C++ to TTCN-3.

C++ TTCN-3
short

signed short

short int

unsigned short

int

unsigned int

long

unsigned long

// etc...

type integer CppShort(-32768..32767);

type CppShort CppSignedShort;

type CppShort CppShortInt;

type integer CppUnsignedShort(0..65535);

type integer CppInt(-2147483648..2147483647);

type integer CppUnsignedInt(0..4294967295);

type integer CppLong(-2147483648..2147483647);

type integer CppUnsignedLong(0..4294967295);

// etc...

In addition, values for C++ integers can be assigned in one of the integer literal form:
decimal, octal, hexadecimal. TTCN-3 provides conversion functions to make transforma-
tions between integer literals. Table 5 below gives some examples of using literals.

Table 5. Examples of using integer literals in TTCN-3.

C++ TTCN-3
int i = 1;

i = 0xFF;

i = 077;

var CppInt i := 1;

i := hex2int(�FF�H);

i := oct2int(�77�O);

However, conversion functions return a positive integer, which means that they cannot be
used for negative numbers. Similarly, C++ unsigned int accepts negative values, but
CppUnsignedInt (declared in Table 4) does not. In these kinds of situations, conversion
must be done by hand.

For example, for a C++ variable

 unsigned int UINT = -1;

 42

the corresponding TTCN-3 representation would be

 var CppUnsignedInt UINT := hex2int(‘FFFFFFFF’H);

Similary, for a C++ variable

 int minusOne = 0xFFFFFFFF;

the corresponding TTCN-3 representation is

 var CppInt minusOne := -1;

4.4. Floating Point Types

There are three different floating point types in C++, which are float, double and long
double. These types differ from each other by size, which determines the precision of a
value. That is, the set of values of float is a subset of values of double, which is again a
subset of the values of long double. Moreover, the value representation is implementa-
tion-defined. That is, for example double and long double could be exactly the same in
some systems. [30]

In TTCN-3, a key word float describes floating point numbers, which can be expressed in
two different ways. First is the normal dot notation and second is by using two numbers,
mantissa and exponent, which are separated by E [16]. The precision is not restricted in
TTCN-3, that is why all C++ types (float, double, long double) can be mapped to TTCN-
3 in the same way. However, the ranges should be declared according to the properties of
the used system. Table 6 provides a mapping for floating point types from C++ to TTCN-3.

Table 6. Mapping of floating point types from C++ toTTCN-3.

C++ TTCN-3
float type float CppFloat (-3.402823466E38 .. 3.402823466E38);

double type float CppDouble (-1.7976931348623158E308 ..
1.7976931348623158E308);

long double type float CppLongDouble (-1.7976931348623158E308 ..
1.7976931348623158E308);

 43

5. Mapping of C++ Compound Types to TTCN-3
As mentioned earlier, types are divided into two groups in C++: fundamental types and
compound types. Compound types are typically constructed from fundamental types as
follows [30]:

− array, i.e. an indexed sequence of value elements of a given type,

− function, which may have parameters and a return value of given types,

− pointer to any fundamental or compound type,

− reference to any fundamental or compound type,

− class (or struct), i.e. a data structure that can contain member data, member func-
tions, member constants, and member types,

− union, i.e. a class in which all members are allocated at the same offset within an
object,

− enumeration, i.e. a set of named constant values, or

− pointer to non-static class member.

The mapping of compound types in this chapter is divided into the following parts: user-
defined types (i.e. class, struct, union, and enum), pointers, references, arrays, type defi-
nition, and template. Even though in [30] functions are included in compound types, the
mapping of a function is excluded from data type mapping in this work, because func-
tions are not actual data types. User-defined types can be mapped from C++ to TTCN-3
fairly straightforwardly but, for example, mapping of pointers due to their ambiguity has
proven to be very complicated.

5.1. User-defined Types

5.1.1. Class and Structure

C++ structural types class and struct are almost similar, the only difference is that all
members in a struct are public by default, whereas in class they are private. Since this
difference does not affect the mapping, this chapter deals only with the mapping of class
and the structure can be mapped in exactly the same way.

 44

Class is the most common user defined type in C++. The purpose of classes is to provide
a tool which can be used to create new types that can be used in the same way as the fun-
damental types. However, classes are created for a special purpose and they may contain
more data [31]. There are several benefits in using classes, for example, inheritance.
However, these benefits are based on the object-oriented features, which are not sup-
ported in TTCN-3.

In addition, class provides access specifiers, which are public, protected and private.
These specifiers are used to restrict the access of data members of a class. In short, pri-
vate members can be used by member functions or friends of a class; protected members
can be used as private members and also by member functions and friend derived from
this class; public members can be used by any function. In class, all members are private
by default. [31]

TTCN-3 does not support this kind of specifiers. Therefore, there is no way to restrict the ac-
cess of data elements in TTCN-3. However, it is important to see that when we are imple-
menting the test cases, we are not interested in who is able to access data within test cases. On
the contrary, sometimes we might be interested in how to manipulate protected data.

All in all, in this case we are mapping C++ data types and they should be thought of, as
just data structures. These kinds of basic classes can be mapped to TTCN-3, by using
TTCN-3 structured type record. The meaning of basic class in this case is that the mem-
ber functions are not dealt with. Table 7 below shows a simple example of how C++ class
can be mapped to TTCN-3.

Table 7. Mapping of basic C++ class to TTCN-3 1.

C++ TTCN-3
class Person {

private:

 char* name;

 char* addr;

 int age;

};

type record Person {

 CppString name,

 CppString addr,

 CppInt age

}

1 Mapping of type char* will be considered more in chapter 5.2, which deals with the pointers.

 45

However, C++ classes may inherit data from the other classes, and this complicates the
mapping. Table 8 below shows one solution of how inheritance can be mapped from C++
to TTCN-3. In this example MyClass2 is said to be derived from its base class MyClass1,
or in other words MyClass2 is subclass and MyClass1 is its superclass.

Table 8. Mapping of inheritance from C++ to TTCN-3.

C++ TTCN-3
class MyClass1 {

public:

 int number;

 char character;

};

class MyClass2 : public MyClass1 {

 char* string;

};

module MyClass1 {

 type record MyClass1Type {

 CppInt number,

 CppChar character

 }

}

module MyClass2 {

 import from MyClass1 all;

 type record MyClass2Type {

 MyClass1Type super,

 CppString string

 }

}

Multiple inheritance can be mapped in the same way as single inheritance, i.e. super
classes are declared as fields in the subclass type. However, if there is a class that inherits
two classes that are both derived from the same super class, are things more complicated,
see Figure 9 below.

 46

Figure 9. Class diagram for the multiple inheritance.

In this figure SuperClass1 and SuperClass2 use virtual inheritance, that is, an object of
SubClass contains exactly one instance of SuperSuperClass. This kind of situation is im-
possible to depict in TTCN-3, because if we declare both SuperClass1 and SuperClass2
(which both contain the field SuperSuperClass) in a module of SubClass, we end up with
two instances of SuperSuperClass. This is a very unusual situation but if it happens, the
programmer must use the same data values for both instances that are derived from Su-
perSuperClass.

In addition, in C++, data can be defined as constant, static, or static constant within a
class. Constant members should be mapped as normal member data, i.e. within a record.
The programmer must however notice that constant members must be used as constants.
Static data should be accessed and modified by using TTCN-3 external functions. Con-
stant static members can simply be mapped to external constants. Examples of mapping
static and constant member data are shown in Table 9 below.

 47

Table 9. Mapping of constant and static member data from C++ to TTCN-3.

C++ TTCN-3
class MyClass {

 const int constInt;

 static int staticInt;

 static const int constStaticInt;

};

module MyClass {

 type record MyClassType {

 CppInt constInt

 }

 external function Set_staticInt (

 in CppInt staticInt);

 external function Get_staticInt()

 return CppInt;

 external constant CppInt constStaticInt;

}

5.1.2. Union

A union is similar to class, but it can hold only a value of one member at a time. There-
fore, the memory space allocated for a union is only as much as the size of its largest
member. Union is almost the same both in C++ and TTCN-3. The only difference is that
C++ provides anonymous unions, which is a union without a name. This kind of union is
not a type itself, but normally it is declared within a class. It is also noticeable that either
language does not keep track of which member's value is held by a union, but this is left
up to the programmer. Table 10 gives examples of union mappings. [31][10]

 48

Table 10. Mapping of union from C++ to TTCN-3.

C++ TTCN-3
union U {

 int i;

 char c;

};

type union U {

 CppInt i,

 CppChar c

}

class Person {

public:

 char* name;

 int age;

 union {

 char* addr;

 int phone;

 };

};

type union Anonymous {

 CppString addr,

 CppInt phone

}

type record Person {

 CppString name,

 CppInt age,

 Anonymous contact

}

5.1.3. Enumerated Types

Enumeration, specified by the keyword enum in C++, is a type that can hold a distinct
named set of values specified by the user [31]. Thus, every item in this set has a unique
name and corresponding integer value. These values are started increasing from zero by
default, but they can also be initialized with other values. The elements in an enum can be
thought as constants, which can be used later in a program to distinguish them from each
other.

TTCN-3 supports enumerated types as well, but they differ from C++ enum considerably.
For example, C++ accepts enum value to be used as an integer value, thus an enum vari-
able can used in a place of an integer to be passed as an argument in a function call. In
contrast, TTCN-3 enumerators can be used only by their identifiers. In addition, C++
enumerators also accept negative values, which are prevented in TTCN-3 and might
cause problems in some situations. Moreover, in C++ it is possible to define an enumera-
tion without a name, in which case members of enumeration are named integer constants.

 49

From all appearances, C++ enum should be mapped to constant integers in TTCN-3. By
doing so, all of the difference stated above could be avoided. Table 11 below shows the
mapping of enumeration.

Table 11. Mapping of enumeration from C++ and TTCN-3.

C++ TTCN-3
enum Days {

 Monday = 1,

 Tuesday = 3,

 Wednesday

};

const CppInt Monday := 1;

const CppInt Tuesday := 3;

const CppInt Wednesday := 4;

enum Days { Sunday = -5 }; const CppInt Sunday := -5;

enum { Mo, Tu, We }; const CppInt Mo := 0, Tu := 1, We := 2;

5.2. Pointers

5.2.1. Review of C++ Pointers

The meaning of a pointer is to point to an address, in which some data is stored. In other
words, a pointer specifies the address of a variable. When a variable is being created, the
system allocates memory space from a concrete location of a memory using some alloca-
tion strategy. The programmer cannot determine where in the memory a variable is being
placed, but this is done by a compiler and the operating system. However, the program-
mer might be interested in knowing the address of this location.

Pointer is defined by using asterisk character (*) in C++. This is called a unary * operator
and it performs indirection, i.e. the expression of a pointer to a variable [30]. This * op-
erator can be read as �value pointed to by� or �pointer to�. For example, if there is a type
T, T* can hold the address of an object, which has the type of T. [31]

Pointers are very useful and it is one of the great advantages in C++. The most common
use of pointers is to pass them to a function as an argument or to reference to the complex
data types such as class. The other very essential purpose of pointers is achieved when

 50

dynamic data is being used. That is, one can allocate dynamic arrays by using pointers,
for example.

Pointer can point to any types. It is however important to specify a correct type for a
pointer, because the amount of storage that is to be reserved for the value pointed to by a
pointer is based on its type. In addition arithmetic operations are performed according to
the type of pointer. There is also a special type pointer, void pointer, which can point to
any type. Void pointer is a kind of exception, and for example arithmetic operations are
not allowed with them. Figure 10 below shows different types of pointers. [30]

struct T {

 /* ... */

};

T* p_to_T; // pointer to type T

char c;

char* p_to_c = &c; // pointer to char

double d;

double* p_to_d = &d; // pointer to d

double** pp_to_d = &p_to_d; // pointer to pointer to d

int* p_arr[5]; // array of 5 pointers to int: p[0]...p[4]

int (*p_to_arr)[5] // pointer to array of 5 int

void* vp; // pointer to any type

Figure 10. Different types of pointers.

As described earlier, pointer can also point to a function. Therefore, functions can be used
in two ways; call them or take its address. Pointer to function may be useful, since one
can pass a function as an argument to another function. Pointer to function is declared in
the same way as a normal function, except that the name must be in parentheses and be-
fore the name is an asterisk (*). An example of how pointer to function can be used is
depicted in Figure 11.

 51

// This function takes a pointer to function as an argument

void MyFunction (void (*pToFunc) (char*)) {

 /*...*/

 pToFunc ("Hello World!");

 /*...*/

}

void AnotherFunction (char* string) {

 /*...*/

 cout << string << endl;

 /*...*/

}

void (*myPtr) (char*); // pointer to function

int main () {

myPtr = AnotherFunction; // myPtr points to AnotherFunction

myPtr (�Hello World!�); // call MyFunction through myPtr

MyFunction (myPtr); // call MyFunction and pass myPtr as a parameter

}

Figure 11. Pointer to function example.

Pointers and arrays are pretty much the same in C++. The name of an array is actually the
same as the pointer to its first element [31]. Therefore, in order to implement a dynamic
array, one can simply define a pointer of a certain type and use it as an array. Similarly,
dynamic two-dimensional array would be a double pointer (i.e. pointer to pointer). In fact,
a two-dimensional array is not exactly the same as a double pointer, because of the differ-
ent memory allocation strategy. However, consecutive pointers can be used as multidi-
mensional arrays, even though it is not recommended because such structures are vulner-
able to errors.

In addition, in previous versions of C and C++, a string literal was defined as char*, and
it is still allowed to be used [31]. That is, char* can be used as a string, for example
within print commands (e.g. printf or cout).

5.2.2. Pointer to Basic Types

As mentioned earlier, pointers cannot be created within a TTCN-3 module. That is why
some kind of model of pointers should be put into practice. However, bringing the func-

 52

tionality of pointers to TTCN-3 has proven pretty challenging, because of the wide range
of facilities of C++ pointers.

The pointer problem have been solved in this work by creating four external functions for
each C++ type, which can be used to manipulate pointers in TTCN-3. First an external
function can be used to create a pointer, second to get a value of the pointer, third to set a
new value, and fourth is for deleting the pointer. Since every single C++ type needs at
least four unique functions, there will be quite many functions altogether. However, these
functions can be implemented in the separate library module, which can be imported to
the other modules. As an example, external function declarations that are needed for the
mapping of pointer to integer are shown in Figure 12 below.

type integer CppPtr; // type definition for the pointer

type record of CppInt CppIntList; // type definition for the array of C++ integers

external function New_CppInt (in CppIntList aList) return CppPtr;

external function Del_CppInt (in CppPtr ptr);

external function Get_CppInt (in CppPtr ptr, in integer index) return CppInt;

external function Set_CppInt (in CppPtr ptr, in integer index, in CppInt aValue);

Figure 12. External functions for the mapping of pointer to integer.

First of all, when we want to create a new pointer, we have to allocate memory for the
value of the pointer. This is done by calling the appropriate external function, for example
New_CppInt(), which takes one variable as a parameter and returns the pointer (i.e. ad-
dress) of this value. As it was described earlier in section 5.2.1, pointers can be used in
two different ways: as a pointer to a certain value or as a dynamic array. That is why, in
order to achieve the efficient use of pointers, parameters (e.g. CppIntList) have the type
record of (i.e. list of values), and so this system can be used either way. In the case it is
used as an array, the argument is a list of values to be stored in the array and the return
value is a pointer to its first element, just as in C++. On the contrary, when pointers are
used in a normal way, i.e. pointer to a certain value, the argument list contains only one
value.

Because the pointers are hidden from the programmer in TTCN-3, values of the pointers
must be hidden behind the TRI/TCI interfaces. Consequently, when the function
New_CppInt() is executed, the memory space for the values in CppIntList is allocated,
and the pointer (i.e. return value) is the address of this memory location.

 53

Once the memory space for the value pointed to by a pointer has been reserved, the gar-
bage collection must be also taken care of. That is why appropriate delete functions for
each type have been implemented (e.g. Del_CppInt() in Figure 12). Thus, every time
when a pointer is created by using one of the creation functions (e.g. New_CppInt()), they
must be destroyed before the end of test cases by using the appropriate delete function.

The third type of external function (e.g. Get_CppInt() in Figure 12) is used to fetch a
value that is pointed to by a pointer. Hence, the pointer is passed as an argument to the
function and the return value is the value of a certain type, which the pointer points to.
These external functions take also another argument, which in the case of a dynamic array
describes the index of the desired value. In a normal case, the second argument must be zero.

In addition, there must be also some functions that can be used to set a new value to a
dynamic array or to change the value pointed to by the pointer (e.g. Set_CppInt() in
Figure 12). It is also important to see that in the case of a dynamic array, by using these
functions, only one value can be assigned at a time.

Mapping of pointer to any fundamental type can be done in exactly the same way as it is
done for the integer. However, C++ type char* is a special case; it can be thought as a
pointer to char or as a string. If we want to use char* as a string, the mechanism provided
earlier does not work well, since every letter should be separated by a comma. That is
why unique external functions for mapping of strings from C++ to TTCN-3 have been
implemented. Declarations of these external functions are described in Figure 13 below.
In these functions char* is thought to be a string, and thus it is mapped to the charstring
type.

 54

type integer CppPtr; // type definition for the pointer

type charstring CppString; // type definition for the C++ value char*

external function New_CppString (in CppString string) return CppPtr;

external function Get_CppString (in CppPtr ptr) return CppString;

external function Set_CppString (in CppPtr ptr, in integer index, in CppString
aValue);

Figure 13. External functions for the mapping of C++ type char* to TTCN-3.

Now we have aids which can be used to map C++ pointers to TTCN-3. Thus, when a user
writes TTCN-3 test software, type mappings from C++ to TTCN-3 can be done according
to these rules. Table 12 below provides a few examples of how mapping of pointer can be
performed, and also clarifies how earlier described external functions are intended to be
used.

Table 12. Examples of mapping of pointers from C++ to TTCN-3.

C++ TTCN-3
double d = 1.2345;

double* ptr_to_d = &d;

double d2 = *ptr_to_d;

d = 5.4321;

var CppDouble d := 1.2345;

var CppPtr ptr_to_d := New_CppDouble ({d});

var CppDouble d2 := Get_CppDouble (ptr_to_d, 0);

d := 5.4321;

Set_CppDouble (ptr_to_d, 0, d);

//...

Del_CppDouble(ptr_to_d);

int array[] = {1, 2, 3, 4, 5};

int* dyn_array = array;

int second = dyn_array[1];

dyn_array[1] = 0;

var CppIntList array := {1, 2, 3, 4, 5};

var CppPtr dyn_array := New_CppInt (array);

var CppInt second := Get_CppInt(dyn_array, 1);

Set_CppInt (dyn_array, 1, 0);

//...

Del_CppInt(dyn_array);

char* string;

string = "Hello World!";

var CppPtr string;

string := New_CppString ("Hello World!");

// ...

Del_CppString(string);

 55

The first example in Table 12 illustrates the normal usage of a pointer. It is important to
see that in the function New_CppDouble(), argument d must be put in curly brackets, be-
cause the type of this argument is record of. In this case, there is only one item in that set.
In the function Get_CppDouble(), the index value is zero, which means that very first
element is being fetched.

The second example illustrates how the pointer can be used as a dynamic array. In this
example, variable CppIntList has the type record of and that is why variable array in the
function New_CppInt() is not put in curly brackets. Furthermore, the second element from
the array is fetched in this example, and after that it is changed to zero. The third example
simply shows how C++ type char* can be mapped to TTCN-3, when it is used as a string.

As one can see, it is complicated to bring all the functionality of C++ pointers to TTCN-3
and that is why this mapping needs lots of effort.

5.2.3. Pointer to Class

Basically, pointer to class (or struct or union) can be implemented in the same way as a
pointer to basic type that was described in the previous sub-chapter. However, every time
pointer to class is created, unique external functions must be implemented. These external
functions cannot be imported from the library module, since they are user-defined. An-
other difference is that the pointer to class type is not treated as a dynamic array. Instead,
a pointer to a class always points to a single value, not array of objects. As an example,
there is a simple class mapped from C++ to TTCN-3 in Table 13 below.

Table 13. An example of mapping C++ struct to TTCN-3.

C++ TTCN-3
struct MyClass {

 int i;

 char* str;

};

type record MyClass {

 CppInt i,

 CppString str,

}

In order to create a pointer to MyClass, we need to implement the appropriate external
functions, which are declared in Figure 14 below.

 56

// to create a pointer to MyClass

external function New_MyClass (in MyClass class) return CppPtr;

// to get the values of MyClass by using its pointer

external function Get_MyClass (in CppPtr ptr) return MyClass;

// to set the new values for MyClass

external function Set_MyClass (in CppPtr ptr, in MyClass newValue);

// to release the memory of MyClass

external function Del_MyClass (in CppPtr ptr);

Figure 14. Needed external function declarations for a pointer to MyClass.

5.2.4. Pointer to Pointer

Pointer to pointer can be simply mapped by creating a pointer to some variable and then
create a new pointer to the earlier created pointer. However we need to implement addi-
tional external functions, which can be used to create pointer to pointer. Declarations of
these external functions are shown in Figure 15.

// type definition for an array of pointers

type record of CppPtr CppPtrList;

external function New_CppPtr (in CppPtrList aList) return CppPtr;

external function Get_CppPtr (in CppPtr ptr, in CppInt index) return CppPtr;

external function Del_CppPtr (in CppPtr ptr);

Figure 15. External function declarations for the pointer to pointer.

By using this mechanism one can create a limitless consecutive pointer (e.g. pointer to
pointer to � pointer to int). An example of mapping of a double pointer is shown in Ta-
ble 14.

 57

Table 14. Mapping of pointer to pointer.

C++ TTCN-3
int i1 = 99;

int* firstPtr = &i1;

int** doublePtr = &firstPtr;

int i2 = **doublePtr;

var CppInt i1 := 99;

var CppPtr firstPtr := New_CppInt({i1});

var CppPtr doublePtr := New_CppPtr({firstPtr});

var CppPtr temp := Get_CppPtr(doublePtr, 0);

var CppInt i2 := Get_CppPtr(temp, 0);

// ...

Del_CppPtr(firstPtr);

Del_CppInt(doublePtr);

5.2.5. Pointer to Other Types

Pointer to function or pointer to non-static member is a special case of pointers, which are
used very rarely. That is why they can be thought to be case-specific, and therefore every
time when, for example, pointer to function is created, unique external functions must be
implemented. Similarly pointer to non-static member would need unique external func-
tions for each event. Table 15 below gives a simple example of how pointer to function
can be mapped.

Table 15. An example of mapping of pointer to function from C++ to TTCN-3.

C++ TTCN-3
// Hello-function declaration

void Hello (char* str);

// pointer to Hello-function

void (*pToFunc) (char*);

pToFunc = Hello;

// external function declaration

external function Get_PtrToHello() return CppPtr;

// This returns pointer to Hello-function

var CppPtr pToFunc := Get_PtrToHello();

In fact, when pointer to function is being created, we do not need to allocate memory
space for the function, because this is already done by the C++ compiler at compile time.
In other words, New() and Delete() external functions are not needed.

 58

5.3. References

In [31] a reference is declared as �an alternative name for an object�. The main purposes
of C++ references are to specify arguments or return values for functions in general, and
to use them with the overloaded operators in particular.

Reference is declared by using the ampersand (&) in C++ and it can be read as �reference
to� or �address of�. It is important to note that reference is not a variable. Thus for exam-
ple you can not change it to refer to another variable after initialization. [31]

In fact, reference is based on the same concept as pointer, i.e. both are referring to an ob-
ject by its address. In the case of testing, references are only needed in the situations in
which function arguments or return values are being specified. Thus, mapping of C++
references can be done in the same way as the mapping of C++ pointers described in
Chapter 5.2.

5.4. Arrays

An array is a collection of the value elements of a certain type. Values in the array are not
named but they are accessed by their position. Arrays can be constructed from almost
every kind of type in C++, basically from any fundamental or compound type except void
[30]. For a type T, the array is declared as T[n] that is the type �array of n elements of
type T�. 'n' declares the number of elements in the array, which is also called the array
bound. This is a constant expression, which is indexed from 0 to n-1. [31]

Chapter 5.2 deals with the pointers and there is also described how pointers are used as
dynamic arrays. Consequently, when arrays are being mapped from C++ to TTCN-3, they
should always be mapped to dynamic arrays, even though TTCN-3 core language [10]
provides a mechanism to declare array in the same way as is done in C++. This is because
in C++ any type of array is actually a pointer to its first element. Thus, the arrays can be
mapped using external functions declared for the pointers in chapter 5.2. Table 16 below
shows some examples of how arrays can be mapped from C++ to TTCN-3.

 59

Table 16. Examples of mapping of arrays from C++ to TTCN-3.

C++ TTCN-3
int intArr[] = {1,2,3,4,5};

int last = intArr[4];

var CppPtr intArr := New_CppInt({1,2,3,4,5});

var CppInt last := Get_CppInt(intArr, 4);

double doubleArr[3] = {1.1,

1.2, 1.3};

var CppPtr doubleArr := New_CppDouble({1.1,
1.2, 1.3});

char charArr[5] = {'H','i','!'}; var CppPtr charArr :=
New_CppChar({"H","i","!"," "," "});

// Example of two-dimensional array

int twoDimArr[3][5] = {{1,2,3,4,5},
{6,7,8,9,10}, {11,12,13,14,15}};

int x = 1, y = 2;

int middle = twoDimArr[x][y];

// two-dimensional array with TTCN-3

var CppIntList x1 := {1,2,3,4,5}

var CppIntList x2 := {6,7,8,9,10}

var CppIntList x3 := {11,12,13,14,15}

var CppPtr firstPtr := New_CppInt(x1);

var CppPtr secondPtr := New_CppInt(x2);

var CppPtr thirdPtr := New_CppInt(x3);

var CppPtr twoDimArray :=
New_CppPtr({firstPtr, secondPtr, thirdPtr});

var CppPtr x := Get_CppPtr(twoDimArray, 1);

var CppPtr y := 2;

var CppInt middle := Get_CppInt(x, y);

Del_CppPtr(twoDimArray);

Del_CppInt(firstPtr);

Del_CppInt(secondPtr);

Del_CppInt(thirdPtr);

The first three examples in Table 16 are rather simple. The only matter worth nothing is
that if the programmer initializes only part of the array elements, the rest are initialized
automatically by space characters (or by zeros).

Mapping of a two-dimensional array (fourth example in Table 16) is much more compli-
cated. In C++ a two-dimensional array can be thought of as an array of arrays. For exam-
ple, the expression matrix[i][j] is interpreted as *(*(matrix + i) + j) in C++ [31]. An ex-
ample in Table 16 is implemented according to this rule, that is, twoDimArray is a pointer
to the first element of an array that contains pointers to the other arrays (cf. pointer to
pointer in 5.2.4).

 60

5.5. Type Definition

Type definition, which is defined by a keyword typedef in C++, declares a new name for
the given type. TTCN-3 provides exactly the same mechanism to declare new types, but
its corresponding keyword is type. Table 17 below gives some examples of using type
definitions in both languages.

Table 17. Mapping of typedef.

C++ TTCN-3
typedef int int32;

typedef short int16;

typedef unsigned char uchar;

type CppInt int32;

type CppShort int16;

type CppUnsignedChar uchar;

5.6. Templates

The template mechanism in C++ provides direct support for generic programming, that is,
types can be used as parameters. For example, in the definition of class or function a type
can be given as a parameter, in which case the exact types are defined at compile time.

TTCN-3 does not accept types as parameters and thus, type mapping must be done in an-
other way. Consequently, the mapping of a template can be done by implementing sev-
eral TTCN-3 types for each C++ template, i.e. every type combination for which a tem-
plate is tested needs a unique TTCN-3 type. For example, in Table 18 a template called
String that contains two data type fields is implemented. Corresponding TTCN-3 repre-
sentation requires several separated records. In this case String template is used only for
the types int and char, which can be observed from the definitions for the functions
SortInt() and SortChar() in Table 18. Hence, two distinct records are needed. In fact,
normally we probably do not know which type definitions are going to be used, but a
good way is to implement distinct records for each combinations tested.

 61

Table 18. Template data type mapping from C++ to TTCN-3.

C++ TTCN-3
template <class C> class String {

private:

 C* mString;

 C aValue;

public:

 String();

 virtual ~String();

};

type record String_IntType {

 CppPtr mString,

 CppInt aValue

}

type record String_CharType {

 CppPtr mString,

 CppChar aValue

}

// etc...

void SortInt (String<int> intArr,

int len);

void SortChar (String<char> string,

int len);

signature SortInt (in String_IntType intArr,

in CppInt len);

signature SortChar (in String_CharType
string, in CppInt len);

5.7. Conclusion

Mapping of C++ data types to TTCN-3 was divided into two groups; mapping of C++
fundamental types was described in Chapter 4 and mapping of C++ compound types was
provided here in Chapter 5.

Mapping of fundamental types could be solved pretty straightforwardly, even though
there are some differences between C++ fundamental type and the corresponding TTCN-
3 types. Due to the following distinctions some problem were faced:

− Some aspects of C++ types are implementation-defined.

− C++ is based on a pure binary numeration system (e.g. two's complement),
whereas TTCN-3 uses another numeration system.

− C++ allows different literal forms (e.g. hex, oct) for integers, whereas TTCN-3
treats literals as distinct types.

− TTCN-3 uses a 7 bit coded character set, and C++ usually uses 8-bit characters.

 62

− Characters in C++ are based on the binary numeration system, whereas characters
are just letters in TTCN-3.

Mapping of compound types due to the object-oriented features of C++ and ambiguity of
C++ pointers was much more complicated. Basic classes (and structures) could be
mapped easily, but some difficulties were faced because of the special properties of C++
classes, such as access specifiers, inheritance, multiple inheritance, virtual inheritance, as
well as static, const and const static member data.

Pointers in C++ are very special and ambiguous. Thus, bringing out the feature of point-
ers in all of their variety was, to say the least, challenging. The mapping of pointers was
carried out by means of TTCN-3 external functions and a very useful outcome was
achieved.

All in all, rather uniform data type mapping rules were found.

 63

6. Case Study: Using TTCN-3 to Test a
C++ Module

This chapter presents the implementation of a TTCN-3 based test system for a C++ class.
The goal of these tests is to verify the data type mappings provided earlier in chapters 4
and 5 and also evaluate the usability of TTCN-3 for module testing. Thus, tests are not
used for verifying the correctness of the C++ software, but the test cases are chosen in a
way that they would be utilizing type mappings for all they are worth. Therefore, this case
study will be demonstrating the usability of data type mappings in a real world-like situa-
tion. In addition to test cases, also implementations for TRI (TTCN-3 Runtime Interface)
and TCI (TTCN-3 Control Interface) are produced in this exercise.

6.1. Testing Environment

The following tools have been taken advantage of in this exercise:

− Telelogic Tau 2.2,

− Visual C++ 6.0, and

− NuMega BoundsChecker 6.50.

Telelogic Tau 2.2 [34] is a tool family, which can be used to develop real-time and other
advanced software systems. It includes two tools: Telelogic Tau that is a model driven
tool based on UML 2.0 (Unified Modeling Language) and Telelogic Tau/Tester that is for
designing, creating, and executing TTCN-3 test suites. In this exercise only the latter has
been used. Visual C++ is used to build the entire test system, link all parts together, com-
pile and run entire test software. NuMega BoundsChecker is used to guarantee that mem-
ory leaks do not occur.

TTCN-3 execution interfaces TRI (TTCN-3 Runtime Interface) and TCI (TTCN-3 Con-
trol Interface), described in [14] and [15] respectively, are the main parts of TTCN-3
based test system (see Chapter 3.1.3). These interfaces define a standardized adaptation
for the test system communication. However, the test system that is used in this exercise
is not equivalent to a standardized TTCN-3 test system, because Telelogic Tau/Tester
does not exactly fulfill the requirements of a standardized TCI interface. However,
Telelogic�s implementation for the CD (Coding and Decoding handling) interface pro-

 64

vides similar functionality to standardized TCI, but other interfaces (i.e. TM � Test exe-
cution Management and CH � Component Handling) are not provided. Hence, this sys-
tem corresponds well to standardized adaptation. In Figure 16 below is a simple block
diagram, which describes the test system used in this exercise.

To begin with, TTCN-3 code (MyCode.ttcn in Figure 16) is written using some text edi-
tor. This TTCN-3 script includes among others the interface of the tested C++ module at
the TTCN-3 language level, which is produced by following the type mapping rules cre-
ated in chapters 4 and 5. Entire TTCN-3 code is compiled using Telelogic Tau/Tester 2.2,
which produces the TTCN-3 executable (TE). The TE basically implements the concrete
TTCN-3 test suite, which together with the other entities (i.e system adapter (SA), plat-
form adapter (PA), encoder and decoder) produces a concrete test system. The PA is re-
sponsible for the realization of external function and timers and the SA is responsible for
the communication with the SUT (System Under Test). SA and PA are defined by the
TRI (TTCN-3 Runtime Interface) [14], which is drawn in blue in Figure 16. The role of
the encoder is to convert TTCN-3 data (e.g. parameters passed by call or external func-
tions) to a C++ form. The decoder realizes the opposite operation, which is decoding C++
data (e.g. return values) back to TTCN-3. In other words, the encode() and decode() func-
tions implement the conversions of the data types used (i.e. test data) between TTCN-3
and C++ by utilizing type mappings. Encoder and decoder belong to the TCI (TTCN-3
Control Interface) [15] which is the red part in Figure 16.

 65

Figure 16. Block diagram of the used test system.

Yellow arrows in Figure 16 show the data flow, i.e. the route in which parameters and
return values flow. Black arrows are those TRI/TCI functions which are used in this exer-
cise. The function triCall() is used to perform a signature call, which corresponds to some
function of the system under test. Every call is followed by either triEnqueueReply() or triEn-
queueException(), which contains information such as return value, parameters (in-direction)
or data of exception. The triExternalFunction() executes an external function (e.g.
New_CppPtr()) which simply returns information if the execution was a success or not.

The purpose of encode() and decode() functions is to convert parameters and return val-
ues passed by calls and external functions from C++ to TTCN-3 and vice versa. For in-
stance, when a signature call occurs, the system checks its parameters and converts all
out-direction parameters into C++ by calling the encode() function several times, once for
each parameter. encode() takes the required information (i.e. TTCN-3 type and its value)
as parameters, converts TTCN-3 value to the C++ form and stores it into a parameter list.

 66

When all parameters have been converted into C++ and stored in the parameter list, the
function triCall() is called by passing the parameter list and other required information
(e.g. port id, component id, SUT address, etc.) as parameters. Now a function of SUT can
be called with the desired parameters. At the end of the triCall() the function triEn-
queueReply() (or triEnqueueException()) is performed, and return data is stored in a pa-
rameter list for the decoder. Finally decode() is performed as many times as needed in
order to convert return values in the in-direction parameters back to the TTCN-3 form.

All of the functions described earlier are standardized TRI/TCI functions. TRI and TCI
contain also several other functions, but they are not used in this exercise.

The system under test in this exercise is a C++ software module. Thus, the interface of
this module, which is described in a header file (i.e. afx.h) is to be mapped to TTCN-3
language. TTCN-3 executable (TE) in Figure 16 is produced from an abstract test suite
(ATS) just as was described in section 3.1.1. The ATS describes the tests at an abstract
level, i.e. test cases described by TTCN-3. Thus, by using the data type mapping provided
in chapters 4 and 5, C++ data types described in the header file of the SUT are mapped to
TTCN-3. Then these mapped data types can be used, for example, when test data is being
produced in the test cases.

The TTCN-3 test script including test cases (i.e. MyCode.ttcn), is compiled with the Telelog
Tau/Tester, which produces C code. Implementations of adapters (e.g. signature calls, exter-
nal functions) and coders (i.e. encode and decode functions) are written by C++. Finally all
parts of C/C++ codes are linked together and compiled by Visual C++ 6.0. So we get execu-
table test software, which after execution produces the test results, such as final verdicts.

6.2. Tested Module

The software module to be tested in this case study is the CFile class. This is the base
class for Microsoft Foundation file classes in the MFC library [35], which provides bi-
nary disk input/output services. In addition manipulation of text files and memory files is
supported through its derived classes. CFile and its derived classes are normally used for
general-purpose disk I/O operations.

Table 19 below gives a brief description of the member functions and their parameters,
which will be tested later in this exercise [35].

 67

Table 19. Description of some member functions and parameters of CFile class.

Member Functions Description
CFile();
CFile(LPCTSTR lpczFileName,
 UINT nOpenFlags);
~CFile();

Constructor and destructor of CFile class.

lpczFileName: a string. Path to the desired file.
nOpenFlags: unsigned int. Sharing and access mode, which specifies
the action to take when opening the file.

virtual BOOL Open (
 LPCTSTR lpszFileName,
 UINT nOpenFlags,
 CfileException* pError
);

Opens a file with an error-testing option.

lpczFileName: string. Path to the desired file.
nOpenFlags: unsigned int. Sharing and access mode, which specifies
the action to take when opening the file.
pError: pointer to a CFileException object that describes the error
occurred, if any.
return value: int. A Boolean value that describes whether or not an
error has occurred.

virtual void Write (
 const void* lpBuf,
 UINT nCount
);

Writes data from a buffer to the file associated with the CFile object.

lpBuf: pointer to the buffer, which contains the data to be written to
the file.
nCount: unsigned int. The number of bytes to be transferred.

virtual UINT Read (
 void* lpBuf,
 UINT nCount
);

Reads data into a buffer from the file associated with the CFile ob-
ject.

lpBuf: pointer to the buffer, into which data is read from the file.
nCount: unsigned int. Maximum number of bytes to be read.
return value: unsigned int. The number of bytes transferred.

virtual LONG Seek (
 LONG lOff,
 UINT nFrom
);

Repositions the pointer in a previously opened file.

lOff: long. Number of bytes to be moved the pointer
nFrom: unsigned int. Pointer movement mode, which describes the
spot, which pointer is started to move from.
return value: long. The new byte offset from the beginning of the
file.

 68

Table 19. Continues...

virtual CFile* Duplicate(); Constructs a duplicate CFile object for a given file.
return value: pointer to a duplicate CFile object.

static BOOL GetStatus (
 LPCTSTR lpszFileName,
 CFileStatus& rStatus
);

Retrieves the status of the desired file.

lpczFileName: string. Path to the desired file.
rStatus: reference to a CFileStatus structure that will receive the
status information.
return value: int. A Boolean value that describes whether or not the
status information is successfully obtained.

6.3. TTCN-3 Test Software

The TTCN-3 test script for this exercise consists of four different files, and each file con-
tains one module. The first module, called Cpp, consists of the type definitions for the
C++ fundamental types, and the external function declarations that are needed in order to
use pointers within the TTCN-3 modules. The second module, named the T3_CFile, con-
tains all type definitions of CFile class that are needed for this exercise. The rest of the
necessary type definitions are collected in the third module, called MSDN_Typedefs.
These three modules are produced according to the mapping rules provided in Chapters 4
and 5, and they compose a static part of the TTCN-3 test data. The fourth module called
CFile_test holds all implementations for the test cases and realization of the control part;
thus it composes a dynamic part of test data. All of static test data (i.e. modules Cpp,
T3_CFile and MSDN_Typedefs) are imported into the dynamic part (i.e. CFile_test mod-
ule), thus they can be utilized when the test cases are being implemented. After the execu-
tion of the tests, NuMega BoundsChecker 6.50 is used for ensuring that there are no
memory leaks the in program.

The following sub-chapters provide a more specific description of each module. The en-
tire TTCN-3 source code is attached in Appendices 1 through 4.

 69

6.3.1. Mappings for C++ Fundamental Types and Pointers

The module that contains the type definitions for the C++ fundamental types and external
function declarations for the mapping of C++ pointer is named Cpp. This module can be
thought of as a library file, because it should be unchanging, even though the current ver-
sion is not complete. However it is sufficient for this exercise and all necessary types and
pointer features can be accomplished by importing this module to the other modules. The
entire TTCN-3 script of this module is in Appendix 1.

The first part of this module contains data type definitions (lines 15 through 28). The
naming practice is simply implemented by using the prefix Cpp and appropriate type
name and putting them together; for example unsigned long is declared as CppUnsigned-
Long. In addition, integer and floating point types contain the range of acceptable num-
bers. These data type definitions are implemented according to the mapping rules de-
scribed in Chapter 4.

Another section in this module (lines 36 through 74) holds declarations for the external
functions, which are used to bring up the feature of pointers. In C++ the asterisk character
(*) signifies the pointer, but it is not allowed by TTCN-3, and therefore it is replaced by
the abbreviation CppPtr. Hence, each pointer, regardless of the type of it, is defined as
CppPtr that can be thought as void*. However, each type needs the unique external func-
tions for creating and deleting the pointer, and setting and getting its value. This module
provides external function declarations for:

− pointer to char (lines 46�50),

− pointer to string (i.e. char*, lines 53�59),

− pointer to int (lines 62�66),

− pointer to double (lines 69�74), and

− pointer to another pointer (i.e. double pointer, lines 40�43).

Thus, the current version of this module is not perfect for the library, since the pointer
feature for rarer types are excluded from it. All of the pointer mappings are implemented
according to the rules that were found out section 5.2.2.

 70

6.3.2. Mapping for the CFile Class

The mapping for CFile class is implemented in a module called T3_CFile, which stands
for �TTCN-3 representation for the CFile class�. In this exercise, CFile class is the sys-
tem under test, and thus, the purpose of the T3_CFile module is to represent the interface
of CFile class at the TTCN-3 language level. The TTCN-3 source code of the T3_CFile is
in Appendix 2.

Generally, the mapping of the entire C++ class must also deal with the architectural as-
pect, that is, in addition to the member data, for example member functions should also
be implemented somehow. In fact, this issue has been, among others, one of the research
topics in this project, but has not been included in this thesis. This CFile mapping is im-
plemented according to the rules that have been defined in this research. A complete C++
to TTCN-3 language mapping is presented in the project document [36], but it is not a
public document. However these results will be published in the form of conference pa-
pers in the near future.

At the beginning of this module, two import statements are declared, meaning that all the
type definitions in the modules Cpp and MSDN_Typedefs are available also in this mod-
ule. This is followed by the type definitions for the test component and communication
port. The test component is named CFileTSI, meaning "Test System Interface of CFile
class". This exercise uses procedure-based communication, in which communication be-
tween the test system and system under test are performed by means of procedure signa-
tures. That is in our case, each member function of CFile class is mapped to a procedure
signature. Thus, the definition of CFilePort (in lines 17 through 29 in Appendix 2) de-
clares all procedure signatures. The actual definitions for signatures are at the end of this
module (lines 92 through 111). Every non-static member functions, except constructors,
take an extra argument, which is a pointer to an object of CFile class (corresponding to
this pointer in C++). Since the constructor creates an object, it returns this pointer, i.e. the
pointer to the object itself. In contrast, the destructor takes an argument that is the pointer
to the object to be deleted. It is also noticeable that overloaded C++ member functions are
mapped to several distinct procedure signatures.

Lines 35, 36 and 37 define three external functions, which are used for manipulating
pointers to the CFile class. After that, the mapping of CFile data types is carried out
(lines 46 through 50); CFile class contains only three data type fields, which are defined
as optional. This is because while a pointer to a CFile class is being declared, the values

 71

of CFile members can be omitted and thus C++ default values are being used. In conse-
quence, in the next declaration, that is the "empty" signature template, the value omit is
given to all CFile members (lines 52�57). The rest part of mapping (lines 59�90) is for
the four enum structures that the CFile class contains. These are the flag values that are
used, for example, while opening or creating a file. Flag values are mapped to constant
integers as it was described in Chapter 5.1.3.

All in all, the T3_CFile module contains all necessary type mappings for the CFile class.
However some of the member function declarations are excluded from this mapping, be-
cause they are not used in this exercise.

6.3.3. Other Data Types

The CFile class contains many more yet undefined types that the earlier described mod-
ules (Cpp and T3_CFile) include. Therefore, the remaining necessary type definitions
have been collected into one module. These types are mostly special for the MSDN (The
Microsoft Developer Network) library, and thus this module is named MSDN_Typedefs.
This module can be found from Appendix 3.

The module starts with an import statement that imports all definitions from the Cpp
module. This is followed by the MSDN specific type definitions, such as LPTSTR (i.e.
Long Pointer To STRing, lines 13 through 30). Besides the CFile class the following
classes were also needed in this case study: CFileException, CException, CString,
CFileStatus and CTime. These classes, or actually pointers or references to these classes,
are passed as arguments by CFile member functions. Thus, corresponding TTCN-3 repre-
sentations for these classes are also needed and they are placed into this module (lines 34
through 136). Basically, according to [36], each class should be mapped to a module.
However, in this case only data types are being mapped, and thus, all of these data types
are mapped in the same module. However, mappings of these classes are implemented
according to the mapping rules that were presented in Chapter 5. At the end of this mod-
ule two external functions called FileExists() and CompareFileToBuffer() are declared.
These are used in the test cases to check out the test results.

 72

6.3.4. Test Cases

The main module that contains all test cases is called CFile_test. This module includes
nine test cases altogether, which are intended to verify the correctness of the functions
described in Table 19. In addition, this module contains the control part in which test
cases are executed sequentially. The specification for the CFile class is provided in [35],
on which these test cases are based. Appendix 4 contains TTCN-3 source code for the
CFile_test module.

So far the definitions for the data types, procedure signatures and also ports and compo-
nents are implemented. Thus, according to section 3.2 in this work, test data definitions
and execution of test cases are still required in order to fully implement tests. Test data is
produced in parallel with test case implementations, because test data contains among
others pointers and references, and thus, templates cannot be taken advantage of. The
tests in this module are implemented by calling a function to be tested with certain pa-
rameters, and then a set of checks are performed. If the expected results were achieved, a
test case passes, otherwise it fails. Some test cases also include preconditions, i.e. for ex-
ample to call an earlier tested, so called, trusted function.

At the beginning of the module there are defined common functions and alt statements
(i.e. alternative statement, described in section 3.1.2), which are used in test cases. The
first test case simply verifies that the constructor and destructor of CFile class work fault-
lessly. Since the constructor and destructor are needed also in other test cases, these are
implemented in the functions of their own (lines 55�69 and 71�78, respectively). The
constructor does not take parameters, but according to the architectural mapping provided
in [36], it returns a pointer to the created object. Correspondingly, the destructor takes
this pointer as an argument, and destroys the object pointed to by this pointer.

The second test case (lines 104�130) verifies the correctness of the CFile constructor as
well, but this case is little bit more complex; in this case, the constructor is called with
two parameters. The first parameter is a pointer to a string (i.e. char*) and the second is
an unsigned integer that specifies the open flags (i.e. the action to take when opening the
file). By calling the constructor with these two parameters, the file with the given path is
opened and a CFile object is created. Thus, at the end of the test case it is made sure that
the file exists by calling the external function FileExists().

 73

The next two test cases verify that the opening of a file works correctly. The open func-
tion takes three arguments, and again, according to architectural mapping [36], one extra
argument is taken, which is this pointer (i.e. pointer to the CFile object). Three other ar-
guments are: pointer to a file name, unsigned integer (i.e. open flags), and pointer to an
existing CFileException object. Thus, before we call the open function, we must create
two pointers, i.e. pointer to string (line 146) and pointer to an object of CFileException
class (lines 155 and 156). Pointers are implemented according to the rules presented in
section 5.2. So, when the required arguments are created, the open function is called with
these arguments (line 162). The open function returns a boolean value, which can be used
to verify whether the open was successful on not. At the end of the test case, an external
function FileExists() is executed to make sure that the file was created successfully.

In the other test case implemented for verifying the file opening (lines 195�243), it is
tried to open a file with such arguments that the open is unsuccessful. There is used a file
name that does not exist, and this file is tried to open in the read mode. Then, of course,
we can see that open was unsuccessful and, according to the specification, an exception
information is entered into the exception which was passed as an argument. Now, in a
case that open works as it is supposed to do, we can observe that the exception was
caused because the file was not found.

The next test case (lines 247�302) verifies that a text can be written into a file. The write
function takes two arguments besides this pointer; these are pointer to the buffer from
which data is read and unsigned integer that specifies the maximum number of bytes to
be transferred. At the beginning of the test case, as a precondition, an empty file is opened
with the options that it is created and is suitable for writing. Since the file opening was
tested before, open can be thought as a precondition. Then 50 characters are written into a
file. Finally an external function CompareFileToBuffer() is used to make sure that the
writing works correctly.

The following test case verifies the correctness of the file reading (lines 306�384). The
read function takes the same arguments as the write function, and it returns an unsigned
integer, which specifies the number of bytes transferred. A precondition of this test case
is that an empty file is opened (by creating a new file) and something is written into it.
Then the file is closed and reopened in a read mode. After that the actual test step is im-
plemented; 100 characters are read from the file into a buffer (if the file contains less that
100 characters, all characters are read). Since we have earlier in preconditions written
characters into the file, we know that the file contains only 71 characters and we also

 74

know what they are. Thus, we can compare these texts, and if the result is correct, the test
case passes.

The next test case verifies the seek function (lines 388�454), which permits random ac-
cess to the content of a previously opened file by moving the file pointer. This function
takes two parameters: long integer, which specifies the number of bytes to be moved the
pointer value, and an unsigned integer that described the movement mode. In addition,
the function returns the new byte offset from the beginning of the file (long int). As a pre-
condition, an empty file is opened and some text is written into it. Then the seek function
is called and, since we know the content of the file and the position to which the pointer
is supposed to point, we can read characters from the file and assure that the right text
was read.

The following test case assures the correctness of the duplicate function (lines 458�509),
which is intended to construct a duplicate CFile object for a given file. This function does
not take arguments (except this pointer), but it returns a pointer to a duplicate CFile object.
Again, in preconditions, an empty file is opened by creating it. Then the duplicate function
is called, and then the initial CFile object is destroyed. Then the duplicate object is used to
open and close a file, just to ensure that the duplicate object exists and works correctly.

The last test case verifies a static member function GetStatus() (lines 513�569), which
retrieves the status of the desired file. Since this function is declared static, there is ex-
actly one copy of a static member, and thus, this pointer is not passed for this function.
The GetStatus() function takes two arguments: pointer to the path of the desired file (i.e.
char*), and a reference to a CFileStatus structure that will receive the status information.
The return value of this function is a boolean value that describes whether or not the
status information is successfully obtained. As the preconditions, an empty file is created
and an "empty" object of CFileStatus is created (i.e. C++ default values are used). Then
the GetStatus() function is called with the appropriate parameters. If the return value is
nonzero (i.e. status information is successfully received), the received status information
can be verify. That is, the file size should be zero and the path to the file appropriate, and
if they match, the verdict can be assigned as pass.

Finally, at the end of the CFile_Test module, there is a control part, in which test cases
are executed one after the other. The execution continues on the condition that the verdict
of previous test case is pass, but if some test case does not pass, execution is halted im-
mediately

 75

6.4. Runtime Implementation

This case study has been implemented in a workspace which includes all parts that are
needed for the entire test software. This workspace consists of two projects; the main pro-
ject that is called CFileTester and a library project called t3cpp. These projects include
both C-files generated from the TTCN-3 code by Telelogic Tau/Tester 2.2 and TRI/TCI
specific implementation files (i.e. implementation of adapters, codecs, external functions,
signature calls, etc.). Figure 17 shows a snapshot of Microsoft Visual C++ development
environment. The window of the left side of this figure shows a file view, in which all
.c, .cpp and .h files that are needed in this program are listed.

The project t3cpp is linked to a library (t3cpp.lib), since it contains among others all co-
decs and external function implementations for the C++ type mappings. Thus, by using
these functions, conversions for the data types between TTCN-3 and C++ can be accom-
plished. In addition, this library contains declarations for TRI and TCI interfaces and
some other files that contain useful functions that are purposed to facilitate programming.
The CFileTester project contains all those implementations that are specific for the test-
ing of the CFile class.

Every .c file in Figure 17 is generated from TTCN-3 code and for each source file there is
a corresponding header file (.h). TTCN-3 compiler produces unique files for each module
(i.e. CFile_Test, T3_CFile, MSDN_Typedefs and Cpp) that are described earlier in Chap-
ter in 6.3. In addition, each of these modules, except CFile_Test, has an adapter file (e.g.
T3_CFile_Adapter.cpp) and corresponding header file (e.g. T3_CFile_Adapter.h), which
include TRI/TCI specific operations. That is, adapter files contain encode and decode
functions for converting the data types from TTCN-3 to C++ and vice versa, as well as
implementation of signature calls and external functions that are defined within the mod-
ule in question. Module CFile_Test does not have an adapter file, because this module
does not contain any signature or external function declarations, and thus adapters need
not be implemented.

 76

Figure 17. A snapshot of the CFile tester.

6.5. Test Runs and Results

When all of the earlier described operations have been implemented, compiled and
linked, we finally get an executable file (CFileTester.exe). When executing tests
Telelogic Tau/Tester provides a verbosity level of the built-in textual event log [34]. That
is a value, which determines how much log information is shown. The value range is
from 0 to 3 with the following meaning: 0 is off, 1 is minimal, 2 is normal and 3 is ex-
tended. Figure 18 shows a snapshot of the test run with the minimal log level, that is, only
the results for all nine test cases are shown.

 77

As it can be seen from Figure 18, all test cases pass. It means that the CFile class seems
to be working as it is supposed to do. However, this test is far from full extensive testing,
since in this exercise only a small portion of the CFile class was tested.

All in all, even though various different C++ data types were used in this exercise, all
required data types were able to be described by TTCN-3, and thus, test date could be
produced without bigger problems. All kinds of type mappings that were provided in
chapters 4 and 5 were verified and they worked rather well. Thus the primary goal was
achieved.

Figure 18. Test run with the minimal log level.

 78

7. Discussion

7.1. General Evaluation

The primary purpose of this thesis was to produce data type mapping from C++ to
TTCN-3 and gain experience of the usability of TTCN-3 in software module testing by
testing C++ software. The first step in order to utilize TTCN-3 in testing C++ software
modules is to implement the interface of the tested module at the TTCN-3 language level.
That is why C++ data types need to be mapped to TTCN-3. Chapters 4 and 5 in this thesis
provides type mapping rules from C++ to TTCN-3 and Chapter 6 presents a case study in
which type mapping rules are utilized using TTCN-3 to test C++ software.

7.1.1. Evaluation of Type Mappings

Because of the different behavior of TTCN-3 and C++, data types also differ between
these languages. The basic types are somewhat similar, but structured and built-in types
differ considerably. Thus, during the work with the data type mappings, several problems
were faced.

In Chapter 4 C++ fundamental types were mapped to TTCN-3. Most problems with these
types were caused by the fact that C++ uses pure binary number representation for integer
types (i.e. usually two's complement), whereas TTCN-3 uses a different numeration sys-
tem. Thus, TTCN-3 requires type compatibility, whereas in C++ a variable is just a bit
stream and its type determines what it represents. This brings about for example the fol-
lowing problems:

− C++ accepts an integer value to be put into a char,

− C++ integers can be assigned in the one of the literal form (e.g. decimal, octal,
hexadecimal), but in TTCN-3 these are distinct types, and

− C++ accepts negative values to be placed in an unsigned integer.

The first problem could be solved either by using TTCN-3 predefined conversion func-
tions (e.g. int2char()) or by using an alternative mapping, in which C++ characters are
mapped to integers in TTCN-3. The solution for two other problems will be presented in
section 7.2.

 79

Another problem with the fundamental types was that C++ uses (in most cases) 8-bit
characters, whereas in TTCN-3 characters are based on a 7-bit coded character set. This
problem can be solved by making the decision that only ASCII 2 characters will be used.
Another way is to map characters outside the ASCII range to wide characters, which is
not very practical. The third way to solve this problem is to use distinct mapping, in
which, as stated above, characters are mapped to integers.

On top of it all, C++ types are implementation-defined and that is why the sizes of vari-
ables (i.e. value ranges) depend on the hardware characteristics. Hence, two different de-
velopment environments may have different type mappings.

During the mapping of C++ compound types into TTCN-3 in Chapter 5 some difficulties
were also confronted. These troubles were caused due to the ambiguity of C++ pointers
and lacking of an object model in TTCN-3. The pointers were mapped by means of ex-
ternal functions, and this mapping has been proved to be very efficient. C++ provides a
wide range of pointers, i.e. pointer to basic types, pointer to class, pointer to function,
pointer to member data, etc. By using the mapping developed in this thesis all kinds of
pointers can be mapped to TTCN-3. This is a good achievement. Also, when the solution
for the pointers was achieved, several other problems could be solved, such as mapping
of references and arrays.

Object-oriented features bring up several benefits in C++, such as inheritance, access
specifiers, member functions, etc, which complicates the mapping. This thesis does not
provide solutions for all of these issues, because mapping is provided only for the data
types and, for example, member functions are not handled as data types. However, these
issues can be solved as well [36], and they were dealt with in the case study in Chapter 6.

All of the C++ data types that have been dealt with in chapters 4 and 5 are based on the
C++ standard [30]. Thus, data type mapping provided in this thesis is comprehensive, i.e.
all C++ data types are included in it. However due to the variety of differences between
C++ and TTCN-3, these type mapping rules may be partly a little bit cumbersome, even
though they work faultlessly.

2 ASCII (American Standard Code for Information Interchange) is 7-bit standardized character set.

 80

7.1.2. Evaluation of the Case Study

The purpose of the case study in Chapter 6 was to evaluate the data type mappings pro-
vided in this thesis in a real world like situation. The tested class (CFile class) is a rela-
tively large software module that includes lots of functionality and that is why very ex-
tensive testing with small effort is somewhat impossible to achieve. However, the CFile
class suits well as an example for this purpose, because it is not the simplest application
and, due to its wideness, various kinds of test data need to be defined. Therefore, testing
of the CFile class was intended to best reveal the weaknesses with the data type map-
pings.

The specifications for the CFile class can be found from the Microsoft Foundation Class
library [35]. Designing of the test cases, which is the first step in the testing process, was
started by looking through the specification and, at the same time, paying attention to the
required inputs and outputs of member functions. Then a reasonable set of test cases was
designed by focusing on the following aspects: test cases should be consecutive by sup-
porting each other, i.e. tested function can be used as a trusted object in another test case,
and the other hand, data type mappings should be utilized for all they are worth.

The case study is based on a pure functional black-box testing, without however slavishly
following any special testing technique but, rather, using many of them. Probably the
most common testing technique, special value testing, plays a major role in this work, but
parts of the boundary value analysis and robustness testing have been utilized as well. To
be more specific, a normal trend when declaring test data was to use the values that would
correspond to a real world situation as well as possible. That is, as special value testing,
general text files (fileName.txt) were used with different combinations of read, write and
create, and some sensible text was written into the files. In addition, exception handling
was tested, which is the part of robustness testing methodology. From some point of
view, also boundary value analysis testing was utilized since, among others, the empty
files were used, and data was read up to the end of the file.

All in all, the main goal of the testing CFile class was not to find bugs or defects, but the
primary goal was to verify data type mappings. Due to the different motivation of testing
compared to a usual testing event, it was not reasonable to follow any special testing
methodology and that is why some kind of combination was used.

 81

7.2. Problems and Solutions

During the construction of test cases, some unexpected problems were faced, of which
some could easily be solved, but some of them needed more contemplation. The most
troublesome problem was caused by the fact that when the software produced by a third
party is being tested, one is not able to access private or protected member data. In order
to solve this problem, there are two possibilities: to use friend functions to access pro-
tected data, or to make changes in the header file of the tested module. The latter one was
used in this work. A considerate way to accomplish this is to take advantage of preproc-
essor options with #ifdef and #endif to conditionally compile the source code. For exam-
ple, if a header file contains the following type definition:

 private:

 int privateMemberData;

In order to access privateMemberData, the code should be modified as follows:

 #ifdef T3_TEST

 public:

 #else

 protected:

 #endif

 int privateMemberData;

Now, when a preprocessor is provided with the definition T3_TEST, within the files in
question one can access the privateMemberData, but access is prevented elsewhere.

Another problem was faced with while creating a pointer to an object of some class (for
example CFileException). When we use the appropriate external functions to create a
pointer to a class object, we need to give some initial values to it, even though we rather
would like to use C++ default values. So, in order to solve this issue, there has been im-
plemented an empty message template, in which all fields are omitted (by using the omit
key word). This makes it possible to build encoding in a way that C++ default values are
used. In order to be able to use omit values, member data fields within a record must be
defined as optional.

 82

Moreover, in C++ one can also assign negative values to unsigned integer variables.
However, since unsigned values are mapped to TTCN-3 with the range, negative values
are not accepted to them. This kind of problem can be solved by making the conversion
manually. For example if there is the following data definition:

 unsigned int UINT = -1;

According to two's complement representation, -1 corresponds to a binary value, in which
all bits are 1s. Thus, the corresponding definition in TTCN-3 could be for example:

 var CppUnsignedInt UINT := hex2int('FFFFFFFF'H);

Finally, TTCN-3 does not provide bit mask operations for integer variables; these opera-
tions are allowed only for binary, octal and hexadecimal variables. However, in C++, bit
mask operations are commonly used, for example, when assigning the flag values (i.e.
flags = modeCreate | modeWrite). In order to do the same operation in TTCN-3, we have
two alternatives: to do some mental calculation, or to convert each flag value to bitstring
(by using predefined function int2bit) and then performing a bit mask operation (e.g.
or4b) with bitstring values and then converting the result back to an integer (by using
bit2int).

7.3. Usability and Advantage of Type Mappings

It can be clearly seen that, during the testing of the CFile class the type mappings have
been richly taken advantage of. A considerably part of the TTCN-3 test script was data
type conversions, which may seem a waste of resources. One can probably think that do
we really need that much code for testing such a simple program? However, these test
cases have purposely been developed in a way that various different C++ types need to be
converted to TTCN-3, and thus type mappings have been utilized. It is true, that a lot of
effort is needed for type conversions, but once type conversions have been done, test data
can be easily constructed and thus implementing of test cases is much easier and faster.

 83

7.4. Conclusion

The C++ to TTCN-3 language mapping is essential and also a necessary part is order to
efficiently utilize TTCN-3 in testing C++ software. Data type mapping is probably the
most vital part of the entire language mapping. Many people would certainly be interested
in knowing how C++ can be mapped to TTCN-3. That is why the result of this thesis will
also be published in the form of conference papers. Currently, based on the achievement
of this thesis work, two papers have been submitted to scientific conferences [3][4]. Also
discussion with ETSI (European Telecommunications Standards Institute) has been en-
gaged in prior to giving a contribution to the technical specification for the C++ to
TTCN-3 mapping, which will be part of the TTCN-3 standard.

A clear strength of the case study was that the main goal which was to utilize data type
mappings was mainly achieved. Even though C++ supports a wide spectrum of data types
and some data types are very ambiguous, the testing process was run through without major
problems. A particularly positive point was that mapping of pointers worked very well, even
though the preconception was that pointers were going to be one of the biggest problems.

One observed weakness was that implementing the run time behavior proved to be quite
laborious. Particularly encoding and decoding required a fairly large number of code
lines, and memory management also brought additional difficulties. Consequently, it is
reasonable to consider whether it is worth using TTCN-3 in testing C++ software or not.
In conclusion it can be said that more work around TTCN-3 is still needed and, for exam-
ple, some kind of tools or generators to facilitate the implementation of an executable test
system will be required. However, in the long run, TTCN-3 may become a respectable
alternative in large scale testing of C++ software.

Future work will be to widen C++ data type mapping to contain the entire C++ to TTCN-3
language mapping, including such issues as lexical conventions, names and scoping, pre-
processing, and as mentioned earlier, mapping of member functions. These issues are un-
der work at the moment. After the complete language mapping has been implemented, the
next stage could be to provide a tool that would automatically generate mappings as well
as codecs and adapters. When exact mapping rules are available, these can be constructed
pretty straightforwardly, which is good work for the machine. If this kind of generator
can be implemented, the test personnel need implement only the test cases and others will
be generated automatically. This is a mature challenge but this is a good objective to-
wards which this work can continue.

 84

8. Summary
The primary purpose of this thesis was to develop methods for the standardized test speci-
fication language called TTCN-3 (Testing and Test Control Notation) in a way that
TTCN-3 would be better utilized for testing software implemented with C++. The first
step prior to achieving efficient use of TTCN-3, the interface of the tested C++ software
module should be represented at the TTCN-3 language level. That is, C++ data types
must be mapped to TTCN-3 in order to construct test data for the test cases. Thus, the
research problem for this thesis was to find means how C++ data types can be represented
at the TTCN-3 language level. These mapping rules were aimed to be put into practice by
testing real C++ software with TTCN-3.

First, the motivation about the usefulness of C++ data type mappings was given and po-
tential problems and challenges were presented. Then basic principles of the software
testing process were discussed and general software testing techniques were also pre-
sented. Based on the standards and earlier research activity, descriptions of the TTCN-3
test system and standardized execution interfaces, as well as presentation formats were
provided. Also earlier research experience about the TTCN-3 with other languages
(ASN.1, IDL and XML) was presented and the speculation on use of TTCN-3 for C++
software testing was brought out.

The actual work, which was C++ data type mappings to TTCN-3, was divided into two
groups; mapping of C++ fundamental types was achieved without a huge struggle but
mapping of C++ compound types needed more study and thinking. However, after hard
trying through trial and error somewhat uniform data type mapping rules were achieved.
Probably the most challenging part of the mapping was to bring in the feature of pointers
in all of their variety. After sufficient solution of the mapping of pointers, also mapping
of arrays and references could easily be provided. User-defined types, such as classes and
unions, due to their object oriented features, caused some inconvenience, but finally a
satisfactory solution was achieved. Since all of the C++ data types could be mapped to
TTCN-3, the primary goal was obtained well.

As a case study, the entire TTCN-3 based test system including type mappings, adapters
and codecs was constructed. The purpose of this testing was to verify data type mappings
in a real world-like situation and gain experience of the usability of TTCN-3 in testing
C++ software. Within the nine test cases, all test data were created according to data type
mapping rules that were provided earlier in this thesis, and so fairly extensive sampling

 85

was accomplished. However, some problems appeared during the case study, but all
problems could be solved one way or another. In addition, use of TTCN-3 in testing C++
software proved to be rather laborious, but workable, and after some development it is
believed to be a respectable alternative for testing C++ software.

 86

References

[1] McGregor J.D. & Sykes D.A. (2001) A Practical Guide to Testing Object-Oriented
Software. Upper Saddle River, NJ, USA: Addison Wesley. 393 p. ISBN 0-201-32564-0.

[2] Grabowski J., Hogrefe D., Réthy G., Schieferdecker I., Wiles A. & Willcock C.
(2003) An introduction to the testing and test control notation (TTCN-3). In: Com-
puter Networks: The International Journal of Computer and Telecommunications
Networking, June, New York, NY, USA, Vol. 42, issue 3, pp. 375�403.

[3] Kärki M. & Pulkkinen P. (2004) Representing C++ Pointers in a Test Implementa-
tion Language. Submitted to: The 19th IEEE International Conference on Auto-
mated Software Engineering (ASE 2004), September 20�25, Linz, Austria.

[4] Kärki M., Pulkkinen P. & Sihvonen M. (2004) C++ to TTCN-3 Mapping Chal-
lenges. Submitted to: Fourth International Conference of Quality Software, Sep-
tember 8�10, Braunschweig, Germany.

[5] Jorgensen P.C. (1995) Software Testing: A Craftsman's Approach. Boca Raton,
FL, USA: CRC Press. 254 p. ISBN 0-8493-7345-X.

[6] Binder R.V. (1999) Testing Object-Oriented Systems: Models Patterns, and Tools.
Reading, MA, USA: Addison Wesley. 1191 p. ISBN 0-201-80938-9.

[7] Fewster M. & Graham D. (1999) Software Test Automation, Effective use of test
execution tools. London, UK: ACM Press. 574 p. ISBN 0-201-33140-3.

[8] Beizer B. (1990) Software Testing Techniques. New York, NY, USA: Van
Nostrand Reinhold. 550 p. ISBN 0-442-20672-0.

[9] Patton R. (2001) Software Testing. Indianapolis, IN, USA: Sams Publishing. 389 p.
ISBN 0-672-31983-7.

[10] ETSI ES 201 873-1 (2003) Methods for Testing and Specification (MTS); The
Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language.
Sophia Antipolis Cedex, France: European Telecommunications Standard Institute.
178 p.

 87

[11] ETSI ES 201 873-2 (2003) Methods for Testing and Specification (MTS); The
Testing and Test Control Notation version 3; Part 2: TTCN-3 Tabular presentation
Format (TFT). Sophia Antipolis Cedex, France: European Telecommunications
Standard Institute. 33 p.

[12] ETSI ES 201 873-3 (2003) Methods for Testing and Specification (MTS); The
Testing and Test Control Notation version 3; Part 3: TTCN-3 Graphical presenta-
tion Format (GFT). Sophia Antipolis Cedex, France: European Telecommunica-
tions Standard Institute. 160 p.

[13] ETSI ES 201 873-4 (2003) Methods for Testing and Specification (MTS); The
Testing and Test Control Notation version 3; Part 4: TTCN-3 Operational Seman-
tics. Sophia Antipolis Cedex, France: European Telecommunications Standard In-
stitute. 138 p.

[14] ETSI ES 201 873-5 (2003) Methods for Testing and Specification (MTS); The
Testing and Test Control Notation Version 3; Part 5: TTCN-3 Runtime Interface
(TRI). Sophia Antipolis Cedex, France: European Telecommunications Standard
Institute. 54 p.

[15] ETSI ES 201 873-6 (2003) Methods for Testing and Specification (MTS); The
Testing and Test Control Notation Version 3 (TTCN-3); Part 6: TTCN-3 Control
Interfaces. Sophia Antipolis Cedex, France: European Telecommunications Stan-
dard Institute. 75 p.

[16] ITU-T Z.140 (2003) The testing and test control notation version 3: TTCN-3 core
language. Geneva, Switzerland: International Telecommunication Union (ITU).
178 p.

[17] ITU-T Z.141 (2003) Testing and test control notation version 3 (TTCN-3): Tabular
presentation format. Geneva, Switzerland: International Telecommunication Union
(ITU). 30 p.

[18] ITU-T Z.142 (2003) Testing and test control notation version 3: Graphical Presen-
tation Format for TTCN-3 (GFT). Geneva, Switzerland: International Telecommu-
nication Union (ITU). 152 p.

 88

[19] Schulz S. & Vassiliou-Gioles T. (2002) Implementation of TTCN-3 Test System
using the TRI. In: IFIP 14th International Conference on Testing of Communicating
Systems � TestCom 2002, March 19�22, Berlin, Germany. Pp. 425�442.

[20] Schieferdecker I. & Vassiliou-Gioles T. (2003) Realizing distributed TTCN�3 test
systems with TCI. In: 15th IFIP International Conference, TestCom 2003, May 26�28,
Sophia Antipolis, France. Pp. 95�109.

[21] Willcock C. (2001) The TTCN-3 Runtime Interface (TRI), Concepts and Interface
Definition of the TRI. In: European Telecommunications Standards Institute,
Methods for Testing and Specification (MTS) #32, March 14�15, Sophia-
Antipolis, France.

[22] Ebner M., Yin A. & Li M. (2002) Definition and Utilisation of OMG IDL to
TTCN-3 Mappings. In: IFIP 14th International Conference on Testing Communicat-
ing Systems � TestCom 2002, March 19�22, 2002. Berlin, Germany. Pp. 443�459.

[23] Ebner M. (2001) A Mapping of OMG IDL to TTCN-3. SIIM Technical Report
SIIM-TR-A-01-11. Institute for Telematics, Medical University of Lübeck,
Schriftenreihe der Institute für Informatik / Mathematik, Lübeck, Germany. 39 p.

[24] Ebner M. (2002) Mapping CORBA IDL to TTCN-3 based on IDL to TTCN-2 map-
pings. In: Proceedings of the 11th GI/ITG Technical Meeting on Formal Description
Techniques for Distributed Systems, June 21�22, Bruchsal, Germany.

[25] Schieferdecker I. & Stepien B. (2003) Automated Testing of XML/SOAP based Web
Services. In: 13. Fachkonferenz der Gesellschaft für Informatik (GI) Fachgruppe "Kom-
munikation in verteilten Systemen" (KiVS), February 26�28, Leipzing, Germany.

[26] ETSI TS 102 219 (2003) Methods for Testing and Specification (MTS); The IDL
to TTCN-3 Mapping. Sophia Antipolis Cedex, France: European Telecommunica-
tions Standard Institute. 27 p.

[27] ITU-T X.680 (2002) Information technology � Abstract Syntax Notation One
(ASN.1): Specification of basic notation. Geneva, Switzerland: International Tele-
communication Union (ITU). 133 p.

[28] World Wide Web Consortium (23.3.2004). Extensible Markup Language, URL:
http://www.w3.org/XML/

 89

[29] The TTCN-3 User Conference, May 3�5 2004, Sophia-Antipolis, France. URL:
http://www.ttcn-3.org

[30] ISO/IEC 14882 (1998) Programming languages � C++. New York: American Na-
tional Standards Institute (ANSI). 776 p.

[31] Stroustrup B. (2000) The C++ Programming Language, Special Edition. Florham
Park, NJ, USA: Addison-Wesley. 1019 p. ISBN 0-201-70073-5.

[32] ISO/IEC 646 (1991) Information technology - ISO 7-bit coded character set for
information interchange. Geneva, Switzerland: International Organization for
Standardization (ISO). 15 p.

[33] Standard ECMA-128 (1999) 8-Bit Single-Byte Coded Graphic Character Sets:
Latin Alphabet No. 5: Geneva, Switzerland: ECMA Standardizing Information and
Communication Systems. 17 p.

[34] Telelogic Tau 2.2 User Guide (2003) Telelogic AB, Malmö, Sweden. 1366 p.

[35] Microsoft Visual C++ (23.3.2004) Microsoft Foundation Class Library.
URL:http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vcmfc98/html/mfchm.asp

[36] Kärki M., Pulkkinen P. & Hämäläinen J. (2004) TTCN-3 Test Architecture for
Functional Testing of SW Modules (draft). VTT Technical Report in a project:
Test & Testing Methodologies with Advanced Languages (TT-Medal-VTT), Oulu,
Finland. 43 p.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

/***/
/* */
/* Cpp */
/* */
/* This module contains all type definitions for the mapping of C++ basic */
/* types to TTCN-3. */
/* */
/***/

module Cpp {

///
// C++ data type definitions
//

type boolean CppBool;
type integer CppShort(-32768..32767);
type integer CppUnsignedShort(0..65535);
type integer CppInt(-2147483648..2147483647);
type integer CppUnsignedInt(0..4294967295);
type integer CppLong(-2147483648..2147483647);
type integer CppUnsignedLong(0..4294967295);
type float CppFloat (-3.402823466E38 .. 3.402823466E38);
type float CppDouble (-1.7976931348623158E308 .. 1.7976931348623158E308);
type float CppLongDouble (-1.7976931348623158E308 .. 1.7976931348623158E308);
type char CppChar;
type char CppUnsignedChar;
type char CppSignedChar;
type universal char CppWchar_t;

//
///

///
// C++ Pointer mappings
//

// type definition for the pointer
type integer CppPtr;

// external functions for double pointer
type record of CppPtr CppPtrList;
external function New_CppPtr(in CppPtrList aList) return CppPtr;
external function Get_CppPtr(in CppPtr ptr, in CppInt index) return CppPtr;
external function Del_CppPtr(in CppPtr ptr);

// external functions for char
type record of CppChar CppCharList;
external function New_CppChar(in CppCharList aList) return CppPtr;
external function Get_CppChar(in CppPtr ptr, in integer index) return CppChar;
external function Set_CppChar(in CppPtr ptr, in integer index, in CppChar aValue);
external function Del_CppChar(in CppPtr ptr);

// external functions for char*.
type charstring CppString;
external function New_CppString(in CppString string) return CppPtr;
external function New_CppString_with_size(in CppString string, in integer size)

return CppPtr;
external function Get_CppString(in CppPtr ptr) return CppString;
external function Set_CppString(in CppPtr ptr, in integer index, in CppChar aValue);
external function Del_CppString(in CppPtr ptr);

// external functions for CppInt
type record of CppInt CppIntList;
external function New_CppInt(in CppIntList aList) return CppPtr;
external function Get_CppInt(in CppPtr ptr, in integer index) return CppInt;
external function Set_CppInt(in CppPtr ptr, in integer index, in CppInt aValue);
external function Del_CppInt(in CppPtr ptr);

// external functions for CppDouble
type record of CppDouble CppDoubleList;
external function New_CppDouble(in CppDoubleList aList) return CppPtr;
external function Get_CppDouble(in CppPtr ptr, in integer index) return CppDouble;
external function Set_CppDouble (

in CppPtr ptr, in integer index, in CppDouble aValue);
external function Del_CppDouble(in CppPtr ptr);

//
///
} // end of module Cpp

 APPENDIX 1 TTCN-3 Test Script: Mapping of C++ Basic Data Types and Pointers

1/1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

/***/
/* */
/* T3_CFile */
/* */
/* This module contains all type mappings for the CFile class. */
/* */
/***/

module T3_CFile {
import from Cpp all;
import from MSDN_Typedefs all;

type component CFileTSI {
port CFilePort aCFilePort

}

type port CFilePort procedure {
out CFile_no_parameters,
CFile_one_parameter,
CFile_two_parameters,
Open,
GetStatus,
Duplicate,
Seek,
Read,
Write,
Close,
D_CFile

}

///
// External function definitions
//

external function New_CFile(in CFileType aCFile) return CppPtr;
external function Get_CFile(in CppPtr this) return CFileType;
external function Del_CFile(in CppPtr this);

//
///

///
// CFile mapping (class CFile: public CObject)
//

type record CFileType {
UINT m_hFile optional,
BOOL m_bCloseOnDelete optional,
CStringType m_strFileName optional

}

template CFileType Empty_CFile :=
{

m_hFile := omit,
m_bCloseOnDelete := omit,
m_strFileName := omit

}

// Flag values...

// OpenFlag values
const CppInt modeRead := hex2int('0000'H);
const CppInt modeWrite := hex2int('0001'H);
const CppInt modeReadWrite := hex2int('0002'H);
const CppInt shareCompat := hex2int('0000'H);
const CppInt shareExclusive := hex2int('0010'H);
const CppInt shareDenyWrite := hex2int('0020'H);
const CppInt shareDenyRead := hex2int('0030'H);
const CppInt shareDenyNone := hex2int('0040'H);
const CppInt modeNoInherit := hex2int('0080'H);
const CppInt modeCreate := hex2int('1000'H);
const CppInt modeNoTruncate := hex2int('2000'H);
const CppInt typeText := hex2int('4000'H); // typeText and typeBinary are
const CppInt typeBinary := hex2int('8000'H); // used in derived classes only

// Attribute values
const CppInt normal := hex2int('0000'H);
const CppInt readOnly := hex2int('0001'H);

 APPENDIX 2 TTCN-3 Test Script: Mapping of the Interface of CFile Class

2/1

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

const CppInt hidden := hex2int('0002'H);
const CppInt system_ := hex2int('0004'H); // system is a reserved word in TTCN-3
const CppInt volume := hex2int('0008'H);
const CppInt directory := hex2int('0010'H);
const CppInt archive := hex2int('0020'H);

// SeekPosition values
const CppInt begin := hex2int('0000'H);
const CppInt current := hex2int('0001'H);
const CppInt end := hex2int('0002'H);

const UINT hFileNull := hex2int('FFFFFFFF'H); // correspongd to -1 for signed int

// Constructors
signature CFile_no_parameters() return CppPtr;
signature CFile_one_parameter(in CppInt hFile) return CppPtr;
signature CFile_two_parameters(in LPCTSTR lpczFileName, in UINT nOpenFlags)

return CppPtr;

// Operations
signature Open(in CppPtr this, in LPCTSTR lpszFileName, in UINT nOpenFlags,

in CppPtr pError) return BOOL;
signature GetStatus(in LPCTSTR lpszFileName, in CppPtr rStatus) return BOOL;

// Overridables
signature Duplicate(in CppPtr this) return CppPtr;
signature Seek(in CppPtr this, in LONG lOff, in UINT nFrom) return LONG;
signature Read(in CppPtr this, in CppPtr lpBuf, in UINT nCount) return UINT;
signature Write(in CppPtr this, in CppPtr lpBuf, in UINT nCount);
signature Close(in CppPtr this);

// Implementation
signature D_CFile(in CppPtr this); // Destructor

//
///

} // end of module T3_CFile

 APPENDIX 2 TTCN-3 Test Script: Mapping of the Interface of CFile Class

2/2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

/***/
/* */
/* MSDN_Typedefs */
/* */
/* This module contains type definitions and external functions that are */
/* needed for the testing of CFile class */
/* */
/***/

module MSDN_Typedefs {
import from Cpp all;

///
// MSDN Type definitions
//

// A 32-bit pointer to a constant character string.
type CppPtr LPCTSTR;
// A 16-bit unsigned integer on Windows versions 3.0 and 3.1
// and a 32-bit unsigned integer on Win32.
type CppUnsignedInt UINT;
// A Boolean value.
type CppInt BOOL;
// A 32-bit signed integer.
type CppInt LONG;
// A 32-bit pointer to a character string.
type CppPtr LPTSTR;
// An 8-bit value
type CppUnsignedChar BYTE;

//
///

///
// CFileException mapping (class CFileException : public CException)
//

// external function definitions
external function New_CFileException(in CFileExceptionType aVar) return CppPtr;
external function Get_CFileException(in CppPtr ptr) return CFileExceptionType;
external function Del_CFileException(in CppPtr ptr);

type record CFileExceptionType {
CExceptionType aCException optional,
CppInt m_cause optional, // portable code corresponding to the exception
LONG m_lOsError optional, // the related operating-system error number.
CStringType m_strFileName optional // the name of the file for this exception.

}

const CppInt none_ := 0;
const CppInt generic := 1;
const CppInt fileNotFound := 2;
const CppInt badPath := 3;
const CppInt tooManyOpenFiles := 4;
const CppInt accessDenied := 5;
const CppInt invalidFile := 6;
const CppInt removeCurrentDir := 7;
const CppInt directoryFull := 8;
const CppInt badSeek := 9;
const CppInt hardIO := 10;
const CppInt sharingViolation := 11;
const CppInt lockViolation := 12;
const CppInt diskFull := 13;
const CppInt endOfFile := 14;

template CFileExceptionType Empty_CFileException := {
aCException := omit,
m_cause := omit,
m_lOsError := omit,
m_strFileName := omit

}
//
///

///
// CException mapping (class CException : public CObject)
// Note: COject does not have any data fields
//

type record CExceptionType {

 APPENDIX 3 TTCN-3 Test Script: Mapping of Other Necessary Types

3/1

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

BOOL m_bAutoDelete,
BOOL m_bReadyForDelete

}
//
///

///
// CString mapping
//

type record CStringType {
LPTSTR m_pchData // pointer to ref counted string data

}
//
///

///
// File status
//

// external function definitions
external function New_CFileStatus (in CFileStatusType aVar) return CppPtr;
external function Get_CFileStatus (in CppPtr ptr) return CFileStatusType;
external function Del_CFileStatus (in CppPtr ptr);

type record CFileStatusType {
CTimeType m_ctime optional, // creation date/time of file
CTimeType m_mtime optional, // last modification date/time of file
CTimeType m_atime optional, // last access date/time of file
LONG m_size optional, // logical size of file in bytes
BYTE m_attribute optional, // logical OR of CFile::Attribute enum values
BYTE m_padding optional, // pad the structure to a WORD
CppPtr m_szFullName optional // absolute path name

}

template CFileStatusType Empty_CFileStatus := {
m_ctime := omit,
m_mtime := omit,
m_atime := omit,
m_size := omit,
m_attribute := omit,
m_padding := omit,
m_szFullName := omit

}
//
///

///
// Mapping of the class CTime
//

type record CTimeType {
time_t m_time

}

type CppLong time_t; // time value
//
///

///
// External functions needed for the CFile mapping
//

// for chekcing if given file exists
external function FileExists(in CppPtr fileName) return boolean;

// Compares the contents of a given file and buffer
external function CompareFileToBuffer(in CppPtr fileName, in CppPtr lpBuf)

return boolean;
//
///

} // end of module MSDN_Typedefs

 APPENDIX 3 TTCN-3 Test Script: Mapping of Other Necessary Types

3/2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

/***/
/* */
/* CFile_test */
/* */
/* This module includes alltogetger 9 test cases, which are verifying the */
/* operaiton of CFile class. */
/* */
/***/

module CFile_test {
import from Cpp all;
import from T3_CFile all;
import from MSDN_Typedefs all;

type component Tester {
port CFilePort aCFilePort

}

///
// Common functions, altstep used in test cases
//

function InitTestCase() runs on Tester {
map(mtc:aCFilePort, system:aCFilePort);
activate(DefaultAltSet());

}

function TestCaseFail() runs on Tester {
setverdict(fail);
unmap(mtc:aCFilePort, system:aCFilePort);

}

function StopIfFail() runs on Tester {
if(getverdict == fail) {

deactivate; // just in case
stop;

}
}

function TestCasePass() runs on Tester {
setverdict(pass);
unmap(mtc:aCFilePort, system:aCFilePort);
deactivate; // just in case
stop;

}

altstep DefaultAltSet() runs on Tester {
[] any port.getreply {

TestCaseFail();
}
[] any port.catch {

TestCaseFail();
}

}

// Constructor w/o parameters
function Constructor() runs on Tester return CppPtr {

var CppPtr ptr;
aCFilePort.call(CFile_no_parameters:{}, nowait);
alt {

[] aCFilePort.getreply(CFile_no_parameters:{} value ?) -> value ptr {
var CFileType myCFile := Get_CFile(ptr);
if (myCFile.m_hFile != hFileNull) {

TestCaseFail();
}

}
}
StopIfFail();
return ptr;

}

// Destructor
function Destructor(CppPtr ptr) runs on Tester {

aCFilePort.call(D_CFile:{ptr}, nowait);
alt {

[] aCFilePort.getreply(D_CFile:{-}) {}
}
StopIfFail();

}

 APPENDIX 4 TTCN-3 Test Script: Implementation of the Test Cases

4/1

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

//
///

/***/
/* */
/* TESTCASES */
/* */
/***/

///
// This test case verifies correctness of the CFile constructor and destructor
//

testcase Constructor_Test_01() runs on Tester system CFileTSI {
InitTestCase();
var CppPtr ptr := Constructor(); // call constructor
Destructor(ptr); // call destructor
TestCasePass();

}
//
///

///
// This test case verifies correctness of the CFile constructor with parameters.
// The constructor with two arguments creates a CFile object and opens the
// corresponding operating-system file with the given path.
//

testcase Constructor_Test_02() runs on Tester system CFileTSI {
InitTestCase();
var CppPtr lpszFileName := New_CppString("foo3.txt");
var UINT nOpenFlags := modeCreate;
var CppPtr ptrCFile;
aCFilePort.call(CFile_two_parameters:{lpszFileName, nOpenFlags}, nowait);
alt {

[] aCFilePort.getreply(CFile_two_parameters:{-,-} value ?)
-> value ptrCFile {

// to make sure that the file exists
if (FileExists(lpszFileName) == false) {

TestCaseFail();
}

}
}
StopIfFail();
Del_CppString(lpszFileName);
Destructor(ptrCFile); // call destructor
TestCasePass();

}
//
///

///
// File is opened for reading and writing. Function returns nonzero if the
// open was successful; otherwise 0. The pError parameter is meaningful
// only if 0 is returned.¨
//

testcase Open_Test_01() runs on Tester system CFileTSI {
InitTestCase();

// Parameter 1: this pointer (=pointer to CFile class)
var CppPtr thisPtr := Constructor(); // call constructor

// Parameter 2: pointer to filename
var CppPtr lpszFileName := New_CppString("foo.txt");

// Parameter 3: OpenFlags (nOpenFlags = CFile::modeCreate | CFile::modeWrite)
var bitstring bin_modeCreate := int2bit(modeCreate, 32);
var bitstring bin_modeReadWrite := int2bit(modeReadWrite, 32);
var bitstring bin_nOpenFlags := bin_modeCreate or4b bin_modeReadWrite;
var UINT nOpenFlags := bit2int(bin_nOpenFlags);

// Parameter 4: pointer to CFileException
var CFileExceptionType myException := valueof(Empty_CFileException);
var CppPtr pError := New_CFileException(myException);

 APPENDIX 4 TTCN-3 Test Script: Implementation of the Test Cases

4/2

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

// return value
var BOOL retValue;

// call open
aCFilePort.call(Open:{thisPtr, lpszFileName, nOpenFlags, pError}, nowait);
alt {

[] aCFilePort.getreply(Open:{-,-,-,-} value ?) -> value retValue { }
}
if (retValue == 0) { // Function returns nonzero if the open was successful

TestCaseFail();
}
else {

// close earlier opened file
aCFilePort.call(Close:{thisPtr}, nowait);
alt {

[] aCFilePort.getreply(Close:{-}) { }
}

}
StopIfFail();

// to make sure that the file exists
if (FileExists(lpszFileName) == false) {

TestCaseFail();
}
StopIfFail();

// garbage collection...
Del_CppString(lpszFileName);
Del_CFileException(pError);
Destructor(thisPtr);
TestCasePass();

}
//
///

///
// File is tried to open but open is unsuccesful. The file does not exsist
// and fileNotFound -exception is received.
//

testcase Open_Test_02() runs on Tester system CFileTSI {
InitTestCase();
var CppPtr thisPtr := Constructor();
var CppPtr lpszFileName := New_CppString("foo2.txt");

// to make sure that the file does not exist
if (FileExists(lpszFileName) == false)
{

var UINT nOpenFlags := modeReadWrite;
var CFileExceptionType myException := valueof(Empty_CFileException);
var CppPtr pError := New_CFileException(myException);
var BOOL retValue;
// call open
aCFilePort.call(Open:{thisPtr, lpszFileName, nOpenFlags, pError}, nowait);
alt {

[] aCFilePort.getreply(Open:{-,-,-,-} value ?) -> value retValue {
// Function returns nonzero if the open was successful
if (retValue != 0) {

// Close the file
aCFilePort.call(Close:{thisPtr}, nowait);
alt {

[] aCFilePort.getreply(Close:{-}) { }
}
TestCaseFail();

}
StopIfFail();

}
}
myException := Get_CFileException(pError);
if (myException.m_cause != fileNotFound) {

TestCaseFail();
}
StopIfFail();
Del_CFileException(pError);

}
else {

 APPENDIX 4 TTCN-3 Test Script: Implementation of the Test Cases

4/3

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

TestCaseFail();
}
StopIfFail();
Del_CppString(lpszFileName);
Destructor(thisPtr);
TestCasePass();

}
//
///

///
// Test case for the CFile.Write()
//

testcase Write_Test_01() runs on Tester system CFileTSI {
InitTestCase();

// Precondition: Open an empty file that is suitable for writing
var CppPtr this := Constructor();
var CppPtr fileName := New_CppString("writeTest.txt");
// modeCreate directs the constructor to create a new file. If the file exists
// already, it is truncated to 0 length.
var bitstring bin_modeCreate := int2bit(modeCreate, 32);
// modeWrite Opens the file for writing.
var bitstring bin_modeWrite := int2bit(modeWrite, 32);
var bitstring bin_openFlags := bin_modeCreate or4b bin_modeWrite;
// OpenFlags (nOpenFlags = CFile::modeCreate | CFile::modeWrite)
var UINT openFlags := bit2int(bin_openFlags);
var CFileExceptionType myException := valueof(Empty_CFileException);
var CppPtr pError := New_CFileException(myException);
var BOOL retValue;
aCFilePort.call(Open:{this, fileName, openFlags, pError}, nowait);
alt {

[] aCFilePort.getreply(Open:{-,-,-,-} value ?) -> value retValue { }
}
if (retValue == 0) { // Function returns nonzero if the open was successful

TestCaseFail();
}
StopIfFail();

// Call write...
var CppPtr lpBuf := // 50 characters

New_CppString("This text will be placed into a file writeTest.txt");
aCFilePort.call(Write:{this, lpBuf, 50}, nowait);
alt {

[] aCFilePort.getreply(Write:{-,-,-}) { }
}

// Close the file
aCFilePort.call(Close:{this}, nowait);
alt {

[] aCFilePort.getreply(Close:{-}) { }
}

// Check if the text is in the file
if (CompareFileToBuffer(fileName, lpBuf) == false) {

TestCaseFail();
}
StopIfFail();
Del_CppString(lpBuf);
Del_CFileException(pError);
Del_CppString(fileName);
Destructor(this); // call destructor
TestCasePass();

}
//
///

///
// Test case for the CFile.Read()
// At first a file is opened and some text is written into it and then the
// file is closed and reopened in a read-mode. After that 'Read' member
// funciton is tested by reading all characters from the file into a buffer.
//

testcase Read_Test_01() runs on Tester system CFileTSI {

 APPENDIX 4 TTCN-3 Test Script: Implementation of the Test Cases

4/4

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

InitTestCase();

// Precondition: Open an empty file and write some text into it
var CppPtr this := Constructor();
var CppPtr fileName := New_CppString("readTest.txt");
// modeCreate directs the constructor to create a new file.
// If the file exists already, it is truncated to 0 length.
var bitstring bin_modeCreate := int2bit(modeCreate, 32);
// modeReadWrite Opens the file for reading and writing.
var bitstring bin_modeReadWrite := int2bit(modeReadWrite, 32);
var bitstring bin_openFlags := bin_modeCreate or4b bin_modeReadWrite;
// OpenFlags (nOpenFlags = CFile::modeCreate | CFile::modeWrite)
var UINT openFlags := bit2int(bin_openFlags);
var CFileExceptionType myException := valueof(Empty_CFileException);
var CppPtr pError := New_CFileException(myException);
var BOOL retValue;

aCFilePort.call(Open:{this, fileName, openFlags, pError}, nowait);
alt {

[] aCFilePort.getreply(Open:{-,-,-,-} value ?) -> value retValue { }
}
var CppPtr lpBuf := New_CppString("This is a text that we want to read

later on from the file readTest.txt"); // 71 characters
// contents of lpBuf is written to the file
aCFilePort.call(Write:{this, lpBuf, 71}, nowait);
alt {

[] aCFilePort.getreply(Write:{-,-,-}) { }
}

// Close the file
aCFilePort.call(Close:{this}, nowait); // Close the file
alt {

[] aCFilePort.getreply(Close:{-}) { }
}

// and open it again...
openFlags := modeRead;
aCFilePort.call(Open:{this, fileName, openFlags, pError}, nowait);
alt {

[] aCFilePort.getreply(Open:{-,-,-,-} value ?) -> value retValue { }
}

// Test step for reading...
var CppPtr readString := New_CppString("This is just something crap...we don't

need this, but the lenght of this buffer must be at least 71 characters");
// The file contains only 71 characters and nCount is 100.
// Thus characters are read up to the end of file
aCFilePort.call(Read:{this, readString, 100}, nowait);
alt {

[] aCFilePort.getreply(Read:{-,-,-} value 71) {}
}
var CppString aText := Get_CppString(readString);
if (aText != "This is a text that we want to read later on from

the file readTest.txts buffer must be at least 71 characters") {
TestCaseFail();

}
StopIfFail();
Del_CppString(readString);

// Close the file and carbage collections
aCFilePort.call(Close:{this}, nowait); // Close the file
alt {

[] aCFilePort.getreply(Close:{-}) { }
}
Del_CppString(lpBuf);
Del_CFileException(pError);
Del_CppString(fileName);
Destructor(this); // call destructor
TestCasePass();

}
//
///

///
// The purpose of this test case is to verify the operation of CFile member
// function 'Seek'.

 APPENDIX 4 TTCN-3 Test Script: Implementation of the Test Cases

4/5

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

//
testcase Seek_Test_01() runs on Tester system CFileTSI {

InitTestCase();
var CppPtr this := Constructor();
var CppPtr lpszFileName := New_CppString("seekTest.txt");
var bitstring bin_modeCreate := int2bit(modeCreate, 32);
var bitstring bin_modeReadWrite := int2bit(modeReadWrite, 32);
var bitstring bin_openFlags := bin_modeCreate or4b bin_modeReadWrite;
var UINT nOpenFlags := bit2int(bin_openFlags);
// OpenFlags (nOpenFlags = CFile::modeCreate | CFile::modeWrite)
var CFileExceptionType myException := valueof(Empty_CFileException);
var CppPtr pError := New_CFileException(myException);
var BOOL retValue;

// call open
aCFilePort.call(Open:{this, lpszFileName, nOpenFlags, pError}, nowait);
alt {

[] aCFilePort.getreply(Open:{-,-,-,-} value ?) -> value retValue { }
}

// write test text into a file
var CppPtr lpBuf :=

New_CppString("The beginning...middle part...the end"); // 37 characters
aCFilePort.call(Write:{this, lpBuf, 37}, nowait);
alt {

[] aCFilePort.getreply(Write:{-,-,-}) { }
}
Del_CppString(lpBuf);

// Seek "middle part..." (14 chars)
// Seeks 21 bytes from the end of the file, returns the new
// byte offset from the beginning of the file (= 16)
aCFilePort.call(Seek:{this, -21, end}, nowait);
alt {

[] aCFilePort.getreply(Seek:{-,-,-} value 16) { }
}

// a char buffer, which has size of 14 bytes
var CppPtr aBuf := New_CppString("14 characters.");
// read 14 characters and check if the text is read
// from the right spot of the file
aCFilePort.call(Read:{this, aBuf, 14}, nowait);
alt {

[] aCFilePort.getreply(Read:{-,-,-} value 14) {}
}
var CppString aText := Get_CppString(aBuf);
if (aText != "middle part...") {

TestCaseFail();
}
StopIfFail();
Del_CppString(aBuf);

// Close the file
aCFilePort.call(Close:{this}, nowait);
alt {

[] aCFilePort.getreply(Close:{-}) { }
}
Del_CFileException(pError);
Del_CppString(lpszFileName);
Destructor(this);
TestCasePass();

}
//
///

///
// This test case is verifying the Duplicate -member function, which
// constructs a duplicate CFile object for a given file and returns
// a pointer to a duplicate CFile object.
//

testcase Duplicate_Test_01() runs on Tester system CFileTSI {
InitTestCase();
var CppPtr this := Constructor();

// create an empty file...
var CppPtr fileName := New_CppString("DuplicateTest.txt");

 APPENDIX 4 TTCN-3 Test Script: Implementation of the Test Cases

4/6

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

var UINT openFlags := modeCreate;
var CFileExceptionType myException := valueof(Empty_CFileException);
var CppPtr pError := New_CFileException(myException);
aCFilePort.call(Open:{this, fileName, openFlags, pError}, nowait);
alt {

[] aCFilePort.getreply(Open:{-,-,-,-} value ?) { }
}

// call duplicate... creates a new object
var CppPtr copy;
aCFilePort.call(Duplicate:{this}, nowait);
alt {

[] aCFilePort.getreply(Duplicate:{-} value ?) -> value copy { }
}

// close sut and garbage collection
aCFilePort.call(Close:{this}, nowait);
alt {

[] aCFilePort.getreply(Close:{-}) { }
}
Del_CFileException(pError);
Del_CppString(fileName);
Destructor(this);

// just for testing the earlier copied object...
var CFileType copyOfSut := Get_CFile(copy);
var CppPtr fileName2 := New_CppString("DuplicateTest2.txt");
aCFilePort.call(Open:{copy, fileName2, openFlags, pError}, nowait);
alt {

[] aCFilePort.getreply(Open:{-,-,-,-} value ?) { }
}
aCFilePort.call(Close:{copy}, nowait);
alt {

[] aCFilePort.getreply(Close:{-}) { }
}
Del_CppString(fileName2);
Destructor(copy); // Delete 'copy' -object
TestCasePass();

}
//
///

///
// This test case verfies GetStatus member function with two arguments
// This is a static member function, thus 'this' parameter is not passed.
//

testcase GetStatus_Test_01() runs on Tester system CFileTSI {
InitTestCase();

// an emty file 'GetStatusTest.txt' is created...
var CppPtr this := Constructor();
var CppPtr fileName := New_CppString("GetStatusTest.txt");
var UINT openFlags := modeCreate;
var CFileExceptionType myException := valueof(Empty_CFileException);
var CppPtr pError := New_CFileException(myException);

// open sut
aCFilePort.call(Open:{this, fileName, openFlags, pError}, nowait);
alt {

[] aCFilePort.getreply(Open:{-,-,-,-} value ?) { }
}

// close sut
aCFilePort.call(Close:{this}, nowait);
alt {

[] aCFilePort.getreply(Close:{-}) { }
}
Del_CFileException(pError);
Destructor(this);

// create &CFileStatus
var CFileStatusType myStatus := valueof(Empty_CFileStatus);
var CppPtr rStatus := New_CFileStatus(myStatus);
var BOOL retVal;

// call GetStatus

 APPENDIX 4 TTCN-3 Test Script: Implementation of the Test Cases

4/7

547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

aCFilePort.call(GetStatus:{fileName, rStatus}, nowait);
alt {

[] aCFilePort.getreply(GetStatus:{-,-} value ?) -> value retVal { }
}
if (retVal == 0) {

TestCaseFail();
}
StopIfFail();
myStatus := Get_CFileStatus(rStatus);
if (myStatus.m_size != 0) {

TestCaseFail();
}
if (Get_CppString(myStatus.m_szFullName) !=

"D:\Case Study\CFileTest\CFileTester\GetStatusTest.txt") {
TestCaseFail();

}
StopIfFail();
Del_CFileStatus(rStatus);
Del_CppString(fileName);
TestCasePass();

}
//
///

/***/
/* */
/* CONTROL PART */
/* */
/***/

control {
var verdicttype aVerdict := none;
if(aVerdict == none) {

aVerdict := execute(Constructor_Test_01());
}
if(aVerdict == pass) {

aVerdict := execute(Constructor_Test_02());
}
if(aVerdict == pass) {

aVerdict := execute(Open_Test_01());
}
if(aVerdict == pass) {

aVerdict := execute(Open_Test_02());
}
if(aVerdict == pass) {

aVerdict := execute(Write_Test_01());
}
if(aVerdict == pass) {

aVerdict := execute(Read_Test_01());
}
if(aVerdict == pass) {

aVerdict := execute(Seek_Test_01());
}
if(aVerdict == pass) {

aVerdict := execute(Duplicate_Test_01());
}
if(aVerdict == pass) {

aVerdict := execute(GetStatus_Test_01());
}

}
} // module MySUT_header_Test

 APPENDIX 4 TTCN-3 Test Script: Implementation of the Test Cases

4/8

Published by

 Series title, number and
report code of publication

VTT Publications 542
VTT�PUBS�542

Author(s)
Pulkkinen, Pekka
Title

Mapping C++ Data Types into a Test Specification Language
Abstract
Software testing is becoming a more and more important and challenging part of software
development nowadays. Since the complexity and size of software is growing day by day,
software developers must concentrate increasingly on testing, which costs both time and
money. Therefore, different methods and tools have been developed to facilitate and pre-
cipitate software testing and also improve the quality of software.

One emerging new testing technology is TTCN-3 (Testing and Test Control Notation 3),
which is a standardized test specification and implementation language. TTCN-3 provides a
broad spectrum of testing abilities and is among others designed for testing software mod-
ules. It is also intended to be used for several applications with several data description lan-
guages. Even if C++ is one of the most popular programming languages nowadays, TTCN-3
cannot be yet efficiently utilize for testing C++ software. In order to take advantage of
TTCN-3 in testing C++ modules, the interface of the tested component should be defined at
the TTCN-3 language level. Therefore, C++ data types need to be mapped to TTCN-3.

The purpose of this thesis is to provide data type mappings from C++ to TTCN-3, and to
implement a TTCN-3 based test system in order to test a C++ software module. Due to the
differences between C++ and TTCN-3, such as lacking of object model in TTCN-3 and
ambiguity of C++ pointers, several challenges are faced during this work. However, fairly
comprehensive data type mapping is provided, which is finally verified in a real world-like
situation by using TTCN-3 to test a C++ module. This example gives a clear insight of the
usability and advantage of data type mappings and also valuable experience on the suitabil-
ity of TTCN-3 in testing C++ software module is gained.
Keywords
Testing and Test Control Notation 3 (TTCN-3), software testing, software development

Activity unit
VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN�90571 OULU, Finland

ISBN Project number
951�38�6402�2 (soft back ed.)
951�38�6403�0 (URL:http://www.vtt.fi/inf/pdf/)

E3SU00131

Date Language Pages Price
June 2004 English, Finnish abstr. 89 p. + app. 13 p. C

Name of project Commissioned by
TT-Medal-VTT

Series title and ISSN Sold by

VTT Publications
1235�0621 (soft back ed.)
1455�0849 (URL: http://www.vtt.fi/inf/pdf/)

VTT Information Service
P.O.Box 2000, FIN�02044 VTT, Finland
Phone internat. +358 9 456 4404
Fax +358 9 456 4374

Julkaisija

 Julkaisun sarja, numero ja
raporttikoodi

VTT Publications 542
VTT�PUBS�542

Tekijä(t)
Pulkkinen, Pekka

Nimeke

C++-tietotyyppien määrittely testienkuvauskielellä
Tiivistelmä
Ohjelmistotestaus on yhä tärkeämpi ja haastavampi osa ohjelmistonkehitysprosessia. Ohjelmisto-
jen koon ja kompleksisuuden kasvaessa testauksen merkitys korostuu. Tämän vuoksi ohjelmisto-
testauksen helpottamiseksi ja nopeuttamiseksi sekä ohjelmistojen laadun parantamiseksi onkin
kehitelty erityisiä menetelmiä ja työkaluja.

Eräs testaukseen kehitetyistä uusista menetelmistä on TTCN-3 (Testing and Test Control Notation 3),
joka on standardoitu testien kuvaus- ja toteutuskieli. TTCN-3 tarjoaa laajan valikoiman eri tes-
tausmenetelmiä ja sitä voidaan käyttää muun muassa ohjelmistomoduulien testaukseen. TTCN-3
on myös suunniteltu käytettäväksi yhdessä monien kuvauskielten kanssa erityyppisten sovellusten
testaamisessa. Vaikka C++ on nykyään eräs suosituimmista ohjelmointikielistä ei TTCN-3:a voida
vielä tehokkaasti käyttää C++-ohjelmistojen testaamiseen. Käytettäessä TTCN-3:a C++-ohjelmisto-
moduulin testaukseen tulee testattavan komponentin rajapinta määritellä TTCN-3-kielellä. Tämän
vuoksi tarvitaan määrittelysäännöt C++-tietotyyppien muuntamiseksi TTCN-3-kielelle.

Tässä diplomityössä määritellään C++-tietotyypit TTCN-3-kielellä sekä toteutetaan TTCN-3 testi-
järjestelmä C++ moduulin testaamiseksi. TTCN-3- ja C++-kielten välillä on suuria eroavaisuuksia,
kuten olio-ohjelmointimallin puuttuminen TTCN-3:sta sekä C++-osoittimien moniselitteisyys,
minkä vuoksi työn aikana kohdataan useita ongelmia. Tästä huolimatta työssä toteutetaan suhteel-
lisen kattavat tyyppimäärittelyt, joita verifioidaan käyttämällä TTCN-3:a erään C++-moduulin
testaukseen. Tämä esimerkki antaa selkeän kuvan tyyppimäärittelyjen käytettävyydestä ja hyödyl-
lisyydestä. Lisäksi saadaan arvokasta kokemusta TTCN-3:n soveltuvuudesta C++-ohjelmistojen
testauksessa.

Avainsanat
Testing and Test Control Notation 3 (TTCN-3), software testing, software development

Toimintayksikkö
VTT Elektroniikka, Kaitoväylä 1, PL 1100, 90571 OULU

ISBN Projektinumero
951�38�6402�2 (nid.)
951�38�6403�0 (URL: http://www.vtt.fi/inf/pdf/)

E3SU00131

Julkaisuaika Kieli Sivuja Hinta
Kesäkuu 2004 Englanti, suom. tiiv. 89 s. + liitt. 13 s. C

Projektin nimi Toimeksiantaja(t)
TT-Medal-VTT

Avainnimeke ja ISSN Myynti:

VTT Publications
1235�0621 (nid.)
1455�0849 (URL: http://www.vtt.fi/inf/pdf/)

VTT Tietopalvelu
PL 2000, 02044 VTT
Puh. (09) 456 4404
Faksi (09) 456 4374

V
TT PU

BLICA
TIO

N
S 542

M
apping C++ D

ata Types into a Test Specification Language
Pekka Pulkkinen

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000

02044 VTT 02044 VTT FIN–02044 VTT, Finland
Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. +358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax +358 9 456 4374

ISBN 951–38–6402–2 (soft back ed.) ISBN 951–38–6403–0 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2004ESPOO 2004ESPOO 2004ESPOO 2004ESPOO 2004 VTT PUBLICATIONS 542

Pekka Pulkkinen

Mapping C++ Data Types into a Test
Specification Language

VTT PUBLICATIONS

522 Jokinen, Tommi. Novel ways of using Nd:YAG laser for welding thick section austenitic
stainless steel. 2004. 120 p. + app. 12 p.

523 Soininen, Juha-Pekka. Architecture design methods for application domain-specific in-
tegrated computer systems. 2004. 118 p. + app. 51 p.

524 Tolvanen, Merja. Mass balance determination for trace elements at coal-, peat- and bark-
fired power plants. 2004. 139 p. + app. 90 p.

525 Mäntyniemi, Annukka, Pikkarainen, Minna & Taulavuori, Anne. A Framework for Off-
The-Shelf Software Component Development and Maintenance Processes. 2004. 127 p.

526 Jäälinoja, Juho. Requirements implementation in embedded software development.
2004. 82 p. + app. 7 p.

527 Reiman, Teemu & Oedewald, Pia. Kunnossapidon organisaatiokulttuuri. Tapaustutkimus
Olkiluodon ydinvoimalaitoksessa. 2004. 62 s. + liitt. 8 s.

528 Heikkinen, Veli. Tunable laser module for fibre optic communications. 2004. 172 p. +
app. 11 p.

529 Aikio, Janne K. Extremely short external cavity (ESEC) laser devices. Wavelength tuning
and related optical characteristics. 2004. 162 p.

530 FUSION Yearbook. Association Euratom-Tekes. Annual Report 2003. Ed. by Seppo Kart-
tunen & Karin Rantamäki. 2004. 127 p. + app. 10 p.

531 Toivonen, Aki. Stress corrosion crack growth rate measurement in high temperature
water using small precracked bend specimens. 2004. 206 p. + app. 9 p.

532 Moilanen, Pekka. Pneumatic servo-controlled material testing device capable of oper-
ating at high temperature water and irradiation conditions. 2004. 154 p.

534 Kallio, Päivi. Emergence of Wireless Services. Business Actors and their Roles in Net-
worked Component-based Development. 2004. 118 p. + app. 71 p.

535 Komi-Sirviö, Seija. Development and Evaluation of Software Process Improvement
Methods. 2004. 175 p. + app. 78 p.

537 Tillander, Kati. Utilisation of statistics to assess fire risks in buildings. 2004. 224 p. +
app. 37 p.

538 Wallin, Arto. Secure auction for mobile agents. 2004. 102 p.

539 Kolari, Juha, Laakko, Timo, Hiltunen, Tapio, Ikonen, Veikko, Kulju, Minna, Suihkonen,
Raisa, Toivonen, Santtu & Virtanen, Tytti. Context-Aware Services for Mobile Users.
Technology and User Experiences. 2004. 167 p. + app. 3 p.

540 Villberg, Kirsi, Saarela, Kristina, Tirkkonen, Tiina, Pasanen, Anna-Liisa, Kasanen, Jukka-
Pekka, Mussalo-Rauhamaa, Helena, Malmberg, Marjatta & Haahtela, Tari. Sisäilman
laadun hallinta. 2004. 172 s. + liitt. 20 s.

541 Saloheimo, Anu. Yeast Saccharomyces cerevisiae as a tool in cloning and analysis of
fungal genes. Applications for biomass hydrolysis and utilisation. 2004. 84 p. + app.
51 p.

542 Pulkkinen, Pekka. Mapping C++ Data Types into a Test Specification Language. 2004.
89 p. + app. 13 p.

	Abstract
	Tiivistelmä
	Table of Contents
	Foreword
	Acronyms and Abbreviations
	1. Introduction
	2. Software Testing
	2.1. Testing Process
	2.2. Testing Techniques
	2.2.1. Functional Testing
	2.2.2. Structural Testing
	2.2.3. Static Testing

	2.3. Types of Testing

	3. Software Testing with TTCN-3
	3.1. TTCN-3 Overview
	3.1.1. TTCN-3 Test System
	3.1.2. Basic Language Elements
	3.1.3. TTCN-3 Control and Runtime Interfaces
	3.1.4. TTCN-3 Presentation Formats

	3.2. Implementing Tests with TTCN-3
	3.3. Using TTCN-3 in Testing C++ Software Modules
	3.3.1. Type Mappings
	3.3.2. Runtime Behavior

	3.4. TTCN-3 Related to Other Languages
	3.4.1. ASN.1
	3.4.2. IDL
	3.4.3. XML

	4. Mapping of C++ Fundamental Types to TTCN-3
	4.1. Boolean Type
	4.2. Characters
	4.3. Integers
	4.4. Floating Point Types

	5. Mapping of C++ Compound Types to TTCN-3
	5.1. User-defined Types
	5.1.1. Class and Structure
	5.1.2. Union
	5.1.3. Enumerated Types

	5.2. Pointers
	5.2.1. Review of C++ Pointers
	5.2.2. Pointer to Basic Types
	5.2.3. Pointer to Class
	5.2.4. Pointer to Pointer
	5.2.5. Pointer to Other Types

	5.3. References
	5.4. Arrays
	5.5. Type Definition
	5.6. Templates
	5.7. Conclusion

	6. Case Study: Using TTCN-3 to Test a
	6.1. Testing Environment
	6.2. Tested Module
	6.3. TTCN-3 Test Software
	6.3.1. Mappings for C++ Fundamental Types and Pointers
	6.3.2. Mapping for the CFile Class
	6.3.3. Other Data Types
	6.3.4. Test Cases

	6.4. Runtime Implementation
	6.5. Test Runs and Results

	7. Discussion
	7.1. General Evaluation
	7.1.1. Evaluation of Type Mappings
	7.1.2. Evaluation of the Case Study

	7.2. Problems and Solutions
	7.3. Usability and Advantage of Type Mappings
	7.4. Conclusion

	8. Summary
	References
	APPENDIX 1 TTCN-3 Test Script: Mapping of C++ Basic Data Types and Pointers
	APPENDIX 2 TTCN-3 Test Script: Mapping of the Interface of CFile Class
	APPENDIX 3 TTCN-3 Test Script: Mapping of Other Necessary Types
	APPENDIX 4 TTCN-3 Test Script: Implementation of the Test Cases

