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Niskanen, Antti O. Control of Quantum Evolution and Josephson Junction Circuits. Espoo 2004. VTT
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Abstract 
Ever since Peter Shor's ground-breaking discovery in 1994 of an algorithm capable 
of factoring large integers on a quantum-mechanical computer exponentially faster 
than using any known classical method, research on quantum computing has 
boomed. Quantum information – a unique mixture of computer science, physics and 
mathematics – has developed into a new branch of information theory. On the 
experimental side, physicists from many different disciplines including atomic, 
solid-state and low-temperature physics, as well as optics, are striving today 
towards a practical quantum computer. All the candidate quantum bit (qubit) 
technologies have one thing in common: They rely on the controlled time-evolution 
of a closed quantum system, a seemingly paradoxical task. 

In this Thesis the temporal control of quantum systems is studied. The topics 
included can be divided into two according to the type of temporal evolution; 
geometrical or dynamical. Geometrical realization-independent methods for 
quantum computing are studied first. Then the study is extended into dynamical 
quantum computing and the so-called Josephson charge-qubit register is considered 
as a test bench. Finally, a spin-off application of the geometrical evolution of a 
Josephson junction system is studied, i.e. Cooper pair pumping. A novel Cooper pair 
pump, the Cooper pair "sluice", is introduced. 

The work on quantum computing reported in this Thesis is theoretical while the 
Cooper pair "sluice" is studied both theoretically and experimentally. Numerical 
simulations, both sequential and parallel, are used extensively throughout the 
Thesis. The experiments were carried out under cryogenic mK conditions and the 
sample fabrication was done using e-beam nanolithography. 

Because the execution time of a quantum algorithm is always limited by the 
inevitable process of decoherence, it is important to utilize any measure available 
for accelerating quantum computations. It is found that practical quantum 
algorithms could greatly benefit from classical computer-aided optimization. 
Moreover, it is found that even a modest demonstrator of a full quantum algorithm 
using Josephson charge qubits is just barely realizable within present-day 
coherence times. However, the experimental part of this Thesis shows clear 
evidence of the functioning of the "sluice". While the worldwide effort of improving 
the coherence properties of qubits is underway, the "sluice" could well find practical 
use, e.g., in metrology in the foreseeable future. 
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by Dr. Panu Helistö at Microsensing of VTT Information Technology. Almost from

the beginning of 2003 I have also had the opportunity to broaden my perspective on

physics by working partially in acad. prof. Jukka Pekola’s group in the Low Temperature

Laboratory at HUT. This arrangement has proven more than great. I am extremely

grateful to acad. prof. Pekola for his dedicated guidance. I would also like to thank my

group members at VTT and in particular prof. Heikki Seppä for guidance and stimulating
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pair pumping with combined flux and voltage control, submitted, 4 pages (2004);

cond-mat/0410758.

Throughout the overview the above articles are referred to by their Roman numerals.

5



Author’s Contribution

The research reported in this Thesis has been carried out in the Materials Physics Labo-

ratory at Helsinki University of Technology in 2002 (Publications I–III) and in 2003–2004

(Publications VI and VII) jointly at Microsensing of VTT Information Technology and

the Low Temperature Laboratory at Helsinki University of Technology. During 2003–

2004 the author has also continued, out of academic interest, part-time the research

initiated at the Materials Physics Laboratory in 2002 (Publications IV and V).

The author has had a central role in all aspects of the work reported in this The-

sis. The author has written the manuscripts for Publications I–III, VI and VII and

actively participated in writing Publications IV and V. The computer programs used in

Publications I, II and VI were developed by the author. The author was a co-developer

of the parallel programs and methods used in Publications III–V, which are based on

the author’s original sequential algorithms used in Publications I and II. Publication VI,

the theory of the Cooper pair “sluice”, is based on the author’s original idea. Publica-

tion VII is a report of the experimental verification of this idea. The author fabricated

the samples used in the experiment, actively participated in the low-temperature mea-

surements and analyzed the data of Publication VII.

In addition, the author has presented the results of the work at major international

conferences including the Erato Workshop on Quantum Information Science (EQIS)

in Tokyo (Japan) 2002, the 6th European Conference on Applied Superconductivity

(EUCAS) in Sorrento (Italy) 2003 and the 39th Rencontres de Moriond on Quantum

Information and Decoherence in Nanosystems in La Thuile (Italy) 2004. Some results of

the Thesis were also presented in the Applied Superconductivity Conference (ASC) in

Jacksonville (Florida, USA) 2004.

6



Contents

Abstract 3

Preface 4

List of Publications 5

Author’s Contribution 6

1 Introduction 9

2 Controlled Evolution of Quantum Systems 11
2.1 Quantum mechanics and dynamical temporal evolution . . . . . . . . . . 11

2.2 Geometrical temporal evolution . . . . . . . . . . . . . . . . . . . . . . . 13

3 Optimization of Quantum Algorithms 16
3.1 Quantum computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Adiabatic non-Abelian quantum gates . . . . . . . . . . . . . . . . . . . 19

3.3 Non-adiabatic Josephson charge-qubit gates . . . . . . . . . . . . . . . . 22

4 Cooper Pair Pumping 29
4.1 Adiabatic Cooper pair pumping and Berry’s phase . . . . . . . . . . . . . 29

4.2 Cooper pair “sluice” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Experiments on the “sluice” . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Conclusions 39

References 41

Appendices: Publications I–VII

7



8



1 Introduction

The temporal control of pure quantum systems has two competing requirements. On one

hand, it is desired that the system under scrutiny is well isolated from its environment

such that the dynamics may be assumed to be unitary. On the other hand, however,

any temporal control implies a time dependence in the Hamiltonian which can only be

an effective approximation and a result of an interaction with the environment such

that the system cannot stay pure indefinitely. Despite this, ever since the emergence of

Shor’s algorithm [1] for factoring large composite integers on a quantum computer [2–5]

the control of the temporal evolution of quantum systems has been a topic of intensive

investigations in physics. The “killer application” of Shor’s algorithm would be the

breaking of the RSA cryptosystem. This could have a remarkable societal impact, and

not necessarily a negative one. To complement the possible emergence of a quantum

computer, quantum cryptography [6] is quite advanced already today. Nevertheless, in

order to perform calculations on a quantum computer, the quantum programmer needs

to have full control over the time-evolution of the system. Moreover, the system needs to

stay pure in the quantum-mechanical sense. It is possible to have quantum control that

does not maintain the purity, and the difference between the control of an impure state

and that of a pure state should be distinguished. Roughly speaking, in the control of

pure states not only the probabilities of different states but also the quantum-mechanical

phases are of interest. This Thesis discusses the control of pure or almost pure quantum

systems.

Quantum control has been studied in the past particularly in the context of nuclear

magnetic resonance (NMR) [7] and, e.g., within molecular dynamics [8]. Quite com-

plicated quantum-computing experiments have also been carried out in NMR with the

most spectacular achievement of a seven-qubit algorithm for factoring the number fif-

teen [9]. The topic of controlling the macroscopic quantum state of a system such as the

nanoelectronic superconducting Cooper pair box [10] is less thoroughly explored. Never-

theless, many steps have been taken in recent years towards an experimental realization

of a Josephson junction based quantum computer. In the experiments by Nakamura et

al. [11–13], the coherent oscillations of a Cooper pair box were first observed. The coher-

ent operation of a coupled Cooper pair box system has also been demonstrated [14, 15].

The dual realization, i.e. the superconducting qubit taking advantage of the flux degree

of freedom [16, 17] has been experimentally verified as well [18, 19]. The macroscopic

coherent behavior of a current-biased large Josephson junction, or the phase qubit, was

recently realized [20,21] with as high as µs coherence times reported in Ref. [20]. Coher-

ence times on the same order were measured in the so-called quantronium circuit [22]

in Saclay. A generalization of the current-biased Josephson junction, the current-biased

SQUID, has also been demonstrated to exhibit coherent behavior [23]. Exotic scenarios,

such as the tetrahedral qubit [24], have been suggested as well. For a review of various

superconducting qubits up to year 2001 see in particular Ref. [25].

The control of adiabatic Cooper pair pumps (CPPs) [26–28] is an instance of the geo-

metrical control of a superconducting system similar to superconducting qubits. While in
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superconducting qubits the control is typically achieved via ordinary dynamical temporal

evolution, the CPPs are controlled adiabatically and cyclically such that no transitions

between states occur. In quantum computing unitary transformations are pursued while

in Cooper pair pumping the time-integral of the current is of interest. It is however

possible, at least in principle, to achieve also general unitary transformations via adia-

batic evolutions as holonomies. This branch of quantum information is called holonomic

quantum computing (HQC) [29]. This Thesis contains examples of both adiabatic and

dynamical quantum computing as well as Cooper pair pumping.

The Overview is organized as follows. Section 2 briefly discusses the unitary evolu-

tion of quantum systems in general and the concept of geometrical evolution in partic-

ular. Section 3 discusses the optimization of quantum algorithms developed in detail in

Publications I–V. Finding unitary operations within a realization-independent model of

holonomic quantum computing (Publications I and II) is studied first. Then the con-

struction of dynamical quantum gates (Publications III–V) for a model identical to a

Cooper pair box array is explored. The highlight of the Section is a theoretical study

of carrying out the simplest nontrivial application of Shor’s factorization algorithm on

Josephson charge qubits. The topic of Section 4 is the adiabatic Cooper pair pump

and especially the so-called Cooper pair “sluice” of Publications VI and VII. This topic

is an illustration of the multitude of present-day applications achievable with almost

identical techniques and structures as those intended to be used in quantum computing.

As explained below this device aimed at a metrological application has many common

features with superconducting qubits and it is further closely related to the concept of

Berry’s phase. Cooper pair pumping has been studied extensively in the past but has

never proven even nearly as accurate as, e.g., single-electron pumping [30]. The sluice is

hoped to bridge this gap. Finally, Section 5 is dedicated to a discussion of the results in

this Thesis.
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2 Controlled Evolution of Quantum Systems

The topics discussed in this Thesis rely on the cyclic control of quantum systems achieved

via manipulating their Hamiltonians in time. That is, in all the applications considered

the parameters of a Hamiltonian go around loops in the parameter space in order to

achieve some desired effect. These controlled cyclic temporal evolutions may roughly

be divided into two main categories: Evolution may be either dynamical or geometri-

cal in nature. Geometrical evolution may arise if the time dependence is slow enough

compared to the relevant energy level separations, i.e., all the controllable parameters

of the Hamiltonian are tuned adiabatically. As the term geometrical implies, only the

geometry of the loop matters and not the speed at which it is traversed. Geometri-

cal, or adiabatic, evolutions may further be divided into Abelian and non-Abelian ones.

Abelian evolutions are commuting, i.e. the order in which the loops are arranged does

not matter, while non-Abelian evolutions do not commute. Abelian evolutions give rise

to Berry’s phase [31] while non-Abelian evolutions may not be characterized by a simple

phase but rather unitary matrices are needed as pointed out by Wilczek and Zee [32].

They are called holonomies.

Decoherence mechanisms and open quantum systems (see, e.g., Ref. [33,34]) are not

considered in detail in this Thesis. Many studies on the decoherence mechanisms in

superconducting circuits exist in the literature, see e.g. Refs. [25, 35–39] and references

therein. In Subsection 2.1 below we give a brief introduction to the concepts of quantum

mechanics that are important for the present work including general dynamical evolu-

tion. We then proceed to discuss geometrical evolution in Subsection 2.2. For a critical

discussion of the fundamentals of quantum mechanics, see e.g. Ref. [40]. Publications

I, II, VI and VII are related to adiabatic evolution while Publications III–V discuss

dynamical evolutions.

2.1 Quantum mechanics and dynamical temporal evolution

The state of a pure quantum system is described by a state vector |ψ〉 in a complete

inner-product space called the Hilbert space. A physical state vector |ψ〉 can always be

normalized to unity 〈ψ|ψ〉 = 1. It may occur, however, that the state is not pure but

rather mixed in which case the system is described with a state operator, or a density

matrix (operator) ρ with Tr ρ = 1. The system is pure if and only if Tr ρ2 = 1 in

which case one may use the state vector to describe the system. Given a state vector,

the corresponding density operator may be formed via ρ = |ψ〉〈ψ|. The state vector

and the state operator are not themselves directly observable quantities in quantum

mechanics. Namely, every observable has an associated self-adjoint operator O = O†. In

the spirit of the statistical interpretation of quantum mechanics, the expectation value

for the kth moment of an observable is given by either 〈Ok〉 = Tr
(
ρOk

)
or alternatively

by 〈Ok〉 = 〈ψ|Ok|ψ〉 in the special case of a pure system. The measurement of the

observable always yields an eigenvalue of the operator O. Even if the state |ψ〉 is not

an eigenstate of O, then owing to the self-adjointness of O we may utilize the complete
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eigenbasis to expand the state. That is, we may write

|ψ〉 =
∑

α

cα|ψα〉, (1)

where O|ψα〉 = ωα|ψα〉,
∑

α |cα|2 = 1, 〈ψβ|ψα〉 = δαβ and ωα ∈ R. An ideal projective

measurement will result in ωα with the probability |cα|2. Immediately following the

measurement, the system will reside in the state |ψα〉.
For every quantum system, there exists a Hamiltonian operator H which describes the

energy of the system. This dictates the exact form of the temporal evolution. Namely,

the dynamics of an isolated quantum system is governed by the Schrödinger equation

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉. (2)

The corresponding equation for the density operator is

i~ρ̇(t) = [H, ρ]. (3)

For a time-independent Hamiltonian Eq. (2) may be simply solved using operator expo-

nentiation, i.e. |ψ(t1)〉 = exp(−iH(t1 − t0)/~)|ψ(t0)〉. If the Hamiltonian has a general

time dependence H ≡ Hq(t) the situation is considerably more complicated since the

Hamiltonian may have a non-vanishing commutator with itself at different instants of

time. In this work the Hamiltonian is taken to depend on a set of tunable parameters.

These parameters are described by a vector-valued function of time q(t). This vector

naturally contains all the parameters that we have control over. We can, even then, still

formally solve for the time evolution using the time-ordering operator T , which results

in

|ψ(t1)〉 = T exp

(

−i
∫ t1

t0

Hq(t)dt/~

)

|ψ(t0)〉. (4)

In spite of the integral, the above expression does not involve integration in the ordinary

sense but it is rather a product integral. The effect of T is to arrange a sequence of

operators, each of which is associated with an instant in time, such that the operators

associated with earlier times are always to the right from those associated with later

instants. Regardless of the exact details, however, the dynamics of an isolated quantum

system is always unitary. We may write |ψ(t1)〉 = U(t1, t0)|ψ(t0)〉 where in the general

case the unitary operator U(t1, t0) is given by

U(t1, t0) = T exp

(

−i
∫ t1

t0

Hq(t)dt/~

)

. (5)

Due to unitarity, the quantum-temporal evolution of a closed system is always reversible:

U(t1, t0)
−1 = U(t1, t0)

†. The norm is also preserved, i.e.

〈ψ(t1)|ψ(t1)〉 = 〈ψ(t0)|U(t1, t0)
†U(t1, t0)|ψ(t0)〉 = 〈ψ(t0)|ψ(t0)〉 = 1, (6)

which is consistent with the probability interpretation of quantum mechanics. The

unitary temporal evolution of a mixed state may be expressed also very concisely as

ρ(t1) = U(t1, t0)ρ(t0)U(t1, t0)
†.
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Equation (5) is quite general and comprises all forms of unitary evolution, i.e. both

adiabatic and non-adiabatic behaviors. It serves as the natural starting point for numer-

ical calculations. Depending on the application, one either aims at realizing a certain

unitary evolution (quantum computing) or a certain consequence of evolutions (e.g.,

quantum pumping). The unitarity of the temporal evolution only breaks down when

the system in consideration is no longer isolated. The quantum measurement mentioned

briefly above is clearly non-unitary and, as a matter of fact, it is just through interactions

that the actual measurements take place. This brings us to the problem of combining

quantum systems. Two quantum systems with separate Hilbert spaces may be combined

by considering their tensor product. That is, for any |ψ1〉 (ρ1) and |ψ2〉 (ρ2) the com-

bined state is |ψ1〉 ⊗ |ψ2〉 (ρ1 ⊗ ρ2). In the case of finite-dimensional spaces the tensor

product is just the Kronecker product for matrices. The total Hamiltonian is, on the

other hand Htot = H1 ⊗ I + I ⊗ H2. However, it may be that the two systems are

non-isolated such that the total Hamiltonian may not be written as a sum of two terms

each of which acts non-trivially only on the subspace of one of the systems but rather

Htot = H1 ⊗ I + I ⊗H2 + Hint. It may also be the case that two initially separate pure

systems cannot be described by |ψ1〉 ⊗ |ψ2〉. Then the total system is called entangled.

To obtain the state operator for a certain subsystem of a possibly entangled total system

one simply traces over the degrees of freedom of the uninteresting part of the Hilbert

space. That is, if we have two systems 1 and 2, then ρ1 = Tr2ρ is the state operator of

subsystem 1. This partial trace combined with unitary global evolution may result in

non-unitary temporal evolution.

2.2 Geometrical temporal evolution

In the special case when the temporal evolution of a quantum system may be considered

to be adiabatic, Eq. (5) may be further refined. Adiabaticity in quantum mechanics

means that if the quantum system in question, described by some Hamiltonian Hq(t),

is initially in the kth eigenstate of energy, then we may also assume that it stays in the

corresponding kth eigenstate. This is the case when the dynamics is slow compared to

the energy-level separations. Clearly no level crossings can be allowed such that the

ordering of the states is possible and the separations remain nonzero. In this Thesis

we consider only adiabatic systems in the ground state. Thus, for our purposes, the

adiabaticity criterion means that all the related frequencies are much lower than the

resonant frequency between the ground state and the first exited state. This resonant

frequency may of course also depend on time, and thus the condition must hold at all

times.

This basic assumption has quite nontrivial consequences [31,32,41]. For our purposes

it is sufficient to concentrate on what happens to the ground state. Let us assume that

the ground state has g degenerate eigenstates denoted by |0α;q〉 (α = 1, ..., g) and that

no level crossings occur at least between the ground state and the higher excited states.

The eigenvalue of the ground state is εq, such that

Hq|0α;q〉 = εq|0α;q〉 (7)
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and

〈0α;q|0β;q〉 = δαβ. (8)

Moreover, the eigenvectors of the ground-state subspace are also orthogonal to the higher

excited states. Let us assume that the state of the system is initially any one of orthonor-

mal ground states |α;q(t0)〉 and that the system evolves adiabatically over time t ∈ [t0, t1]

and also that the parameters go around a loop such that q(t0) = q(t1). Then we may

write the state of the system |ψα(t)〉 at time t as

|ψα(t)〉 =

g∑

θ=1

Uθα(t, t0)|0θ;q(t)〉 (9)

with some complex coefficients Uβα(t, t0) that must satisfy Uβα(t0, t0) = δβα. Plugging

this into the Schrödinger equation, multiplying from the left by 〈0β;q(t)| and using the

orthonormality of the states yields

dUβα(t, t0)

dt
= −

g
∑

θ=1

〈0β;q(t)| d
dt
|0θ;q(t)〉Uθα(t, t0) − iεq(t)Uβα(t, t0)/~. (10)

This has the solution

U(t, t0) = e
−i
∫

t

t0
εq(τ)dτ/~T exp

(

−
∫ t

t0

A(τ)dτ

)

, (11)

where A(t) is a matrix whose entries Aβα(t) are given by

Aβα(t) = 〈0β;q(t)| d
dt
|0α;q(t)〉. (12)

Neglecting the dynamical phase θdyn = −
∫ t

t0
εq(τ)dτ/~ for now and introducing the

connection matrices Ai whose elements are

Ai;βα = 〈0β;q| ∂
∂qi

|0α;q〉 (13)

allows us to rewrite Eq. (11) at the instant t = t1 as

U(t1, t0) ≡ Uγ = P exp

(

−
∮

γ

Aidq
i

)

, (14)

where γ is the loop around which we traverse. The quantity Aidq
i is sometimes called

the Wilczek-Zee connection one-form. Einstein’s summation convention over all the

components of the control parameter vector, i.e. the index i, is assumed. The path-

ordering operator P is used above. Its operation is similar to that of T .

Now if instead of the state |α;q(t0)〉 we were initially to start from an arbitrary

superposition
∑g

α=1 cα|α;q(t0)〉 then at time t1 the state of the system would be

|ψ(t1)〉 =

g
∑

α=1

cα|ψα(t1)〉 (15)
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or

|ψ(t1)〉 =

g
∑

α,β=1

Uβα(t1, t0)cα|β;q(t1)〉 =

g
∑

α,β=1

(Uγ)βαcα|β;q0〉. (16)

We see form this that Uγ is indeed the unitary matrix that describes how the quantum

state evolves during each loop based at q(t0) = q0. This is called a non-Abelian holonomy

[32,41] in the degenerate case (Publications I and II) and Berry’s phase [31] (Publications

VI and VII) in the nondegenerate case, i.e. Uγ = eiθBerry if g = 1. In the nondegenerate

case we may denote the ground state simply as |0;q〉 and since the path ordering is then

meaningless, Berry’s phase is simply

θBerry = i

∮

γ

〈0;q| ∂
∂qi

|0;q〉dqi = i

∮

γ

〈0;q(t)|∇q|0;q(t)〉 · dq. (17)

Thus, the cyclic quantum evolution of the ground state in the adiabatic limit has two con-

tributions; the more-or-less trivial dynamical factor e−i
∫ t1
t0

εq(t)dt/~ that can be neglected

in e.g. quantum computing applications and the geometrical contribution Uγ . To obtain

some desired holonomic evolution one needs to describe a loop γ in the parameter space

spanned by all the controllable parameters. Whereas in general the speed at which a

loop is traversed plays a role, in the adiabatic evolution only the geometry of the path

(not its parameterization) matters. It may appear at first sight that for a nondegenerate

system in its ground state, Berry’s phase would be meaningless since it only describes a

global phase. This is not the case as will be seen in Section 4 where we discuss Cooper

pair pumps. For universal quantum computation based solely on ground-state adiabatic

control, however, a degenerate system is required.
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3 Optimization of Quantum Algorithms

Quantum computing is potentially a very spectacular application of the temporal control

of quantum systems. Basically any collection of two-state (or more) quantum systems

that can be controlled, and moreover, the couplings of which we have control over, or

can take into account somehow, is a potential quantum computer. Provided that the

quantum system is sufficiently well isolated from its environment, we may assume the

dynamics to be unitary as in the previous Section. However, the parameters of the

Hamiltonian need to be tunable and thus the isolation must not be perfect. In this

Section we shall first introduce the concept of quantum computing. Many excellent

overviews of this subject may be found in the literature, see e.g. Refs. [2–5]. It will turn

out that a quantum algorithm is nothing but a unitary operator. It is programmed by

finding a proper control pulse q(t) and executed by applying the pulse on the quantum

system. In Subsection 3.2 we consider a realization–independent approach for finding

physical implementations of holonomic quantum computations. Subsection 3.3 describes

a similar approach for finding optimized logical dynamical quantum gates on Josephson

charge qubits. All the methods presented rely on intensive numerical optimization. The

key point of this Section is that instead of using sequences of elementary operations, we

pursue a method of finding direct implementations of single and multiple qubit operations

in a single pulse sequence. We demonstrate that it is in practice much more advantageous

to implement a quantum algorithm via first finding, using ordinary computers, a direct

implementation for as large a multiqubit operation as possible and then implementing

this optimized operation on a quantum computer rather than using some limited set of

elementary operations.

3.1 Quantum computing

Quantum computers can solve certain problems that are classically considered to require

exponential resources (time and space) in polynomial time and space. The idea of quan-

tum computing is to take advantage of the global properties of a very high-dimensional

multi-partite Hilbert space. A quantum computer is a quantum system typically con-

sisting of multiple two-state subsystems called quantum bits, or qubits. A prototype

for a qubit is the spin degree of freedom of a spin-1/2 particle. Information is encoded

in the states of the qubits such that one state of the qubit corresponds to the “0” of a

classical digital bit while the other corresponds to “1”. Let us denote the basis states

of the collection of N qubits by |0j〉 and |1j〉 with j ∈ {1, . . . , N}. One often uses the

vector notation

|0j〉 =

(
1

0

)

and |1j〉 =

(
0

1

)

(18)

for these states. If the states of the individual qubits are |ψj〉 with ψj = 0, 1 then the

state of the composite system may be expressed using the tensor product as

|Ψ〉 =

N⊗

j=1

|ψi〉 = |ψN〉 ⊗ . . .⊗ |ψ1〉 = |ψN . . . ψ1〉 , (19)
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where the last form is an often used abbreviation. In the absence of superpositions

the quantum information contained in this quantum register is interpreted just like the

information in a classical bit register; the data is just a binary number. The strength

of a quantum computer, however, emerges from the fact that the quantum register may

evolve into a superposition of all the possible 2N states. That is, if |Ψα〉 is some N -qubit

state corresponding to a binary number, then the state of the quantum computer can be

|Ψ〉 =

2N

∑

α=1

cα|Ψα〉 , (20)

with 〈Ψ|Ψ〉 = 1. The prototype of an entangled superposition is the so-called Bell state

for two qubits

|Ψ〉 =
1√
2

(|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉) . (21)

The interpretation of the data contained in this register is entirely non-classical; with

probability one half the bits are either both zeros or ones. Moreover, the measurement of

one of the qubits immediately tells us the result that the measurement of the second qubit

would give. This has some very counterintuitive implications and the interpretation of

this kind of state even confused Einstein [42]. Entangled states, such as the Bell state

above, can be used for so-called (deterministic) quantum teleportation that has been

recently realized using ion traps [43, 44].

The quantum algorithm is nothing but a 2N -dimensional unitary operator of Eq. (5)

which dictates the temporal evolution of the quantum register, i.e.

|Ψ(t1)〉 = U(t1, t0)|Ψ(t0)〉. (22)

The evolution of the quantum computer is governed by the Hamiltonian Hq(t) whose

time-dependence the experimenter must have control over. The control is mediated by

the parameters q(t) and different formal expressions for the algorithm U can be derived

as discussed in the previous Section. Clearly the number of degrees of freedom for the

algorithm is immense; it takes 22N − 1 real numbers to describe the most general kind

of an algorithm while for applications N � 100. Luckily, practical algorithms exist

too. Typically, we would desire the operator U to perform, for instance, the quantum

part of Shor’s algorithm [1] or the Grover search [45] both of which can be carried

out by applying a polynomial number of so-called elementary operations [46]. Shor’s

algorithm can factor large integers in polynomial time, which is otherwise believed to be

exponentially hard, while Grover’s search can be used to carry out a database search of

an unsorted database in time proportional to the square root of the entries in it. The best

known decompositions of arbitrary multiqubit gates have been reported in Refs. [47,48]

but, nevertheless, the number of required gates scales exponentially with the number of

qubits.

The unique property of quantum mechanics that makes quantum computing attrac-

tive is that unitary operator “processes” all orthogonal basis states independently. In

other words, the quantum algorithm may process 2N different inputs at once if the regis-

ter is initialized for instance in an equal superposition. This is sometimes called quantum
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parallelism. The task carried out e.g. in Shor’s algorithm is the evaluation of a certain

modular function, see e.g. Refs. [1, 2] or Paper V. With N ∼ 103 the number of states

is already immense and beyond the capacity of all classical computers. However, after

the unitary temporal evolution one has to measure the state of the system. Each qubit

is found in either the state |0〉 or |1〉. If the state of the register prior to measurement is

|Ψ〉, then the probability of obtaining the result |Ψ̃〉 =
⊗N

j=1 |ψ̃j〉 (ψ̃j = 0 or ψ̃j = 1) is

given by

P (Ψ) = 〈Ψ|Ψ̃〉〈Ψ̃|Ψ〉 = |〈Ψ|Ψ̃〉|2. (23)

This is the tricky part. No matter how many orthogonal basis states have non-vanishing

amplitudes in the superposition, upon measurement only one of them survives. Moreover,

the result is stochastic. The quantum measurement makes it impossible to obtain more

than one output. The trick that can be used then is to further process the information

in the quantum register before measurement and to look for “global” properties in it. In

Shor’s algorithm one is interested in the period of the modular function and luckily the

quantum equivalent of the fast Fourier transform may be carried out efficiently. This

causes the quantum register to form strong interference patterns and upon measurement

it is possible, stochastically, to deduce the period. Thus the true strength of quantum

computing is only unleashed in a certain class of applications in which some well-defined

global property is known.

We list the requirements for practical quantum computing following DiVincenzo [49].

One needs to have:

• a scalable physical system with well characterized qubits

• the ability to initialize the state of the qubits to a simple fiducial state

• long relevant decoherence times, much longer than the gate operation time

• a universal set of quantum gates

• a qubit-specific measurement capability.

All of these points are necessary and it seems that all the existing suggestions for physical

realizations of quantum computing possess strengths in some of these areas but not in

each one of them. In this work we are primarily interested in how to carry out the

unitary transformations, i.e. the quantum gates.

As mentioned above, typically the unitary operator U is decomposed into a sequence

of so-called elementary gates [46] that act non-trivially only on one or two qubits. These

are analogous with the basic logical operations of an ordinary computer. The physical

implementation for these is often found by hand and the Hamiltonian is sometimes even

considered piecewise constant in time. This leads to abrupt switchings in the parameter

sequences which are hard if not impossible to implement. Finite rise and fall times of

real pulses lead to errors [50]. Furthermore, in general only a limited number of logically

different gates are assumed to be available. Thus the logical gate sequences may get

prohibitively long. In the next two subsections methods for finding arbitrary single and
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multiple qubit gates avoiding abrupt switchings are considered. The motivation for this is

that the more complicated gates we may perform in a single step, the more of the valuable

execution time we save. This is extremely important due to the presence of decoherence

which inevitably limits the total execution time of the algorithm. In Subsection 3.2,

methods for finding the adiabatic loop γ in the control-parameter space for any one-qubit

and two-qubit operation for a certain toy model is presented, while in Subsection 3.3

control sequences realizing up to three-qubit operations for Josephson charge qubits are

found. The developments presented here have recently obtained experimental verification

when Nakahara et al. demonstrated [51] the acceleration of the two-qubit Grover search

at best by four times by first optimizing the algorithm and then by carrying it out

experimentally in an NMR setup.

3.2 Adiabatic non-Abelian quantum gates

Holonomic quantum computing (HQC) [29, 52–55] is a subfield of quantum information

processing in which the quantum register is assumed to be fully degenerate and the

quantum control is implemented using Eq. (14). The reason for studying holonomic

quantum computing is that it is hoped to be robust against decoherence due to the

degeneracy of the spectrum. A clear benefit is also the fact that the exact timing of the

pulses is not crucial since the evolution is purely geometrical as long as the adiabaticity

is maintained. Additional features include the absence of unwanted phases on idle qubits

that inevitably accumulate in any scenario in which the logical states are energetically

different.

Thus in HQC each unitary gate is associated with a loop in the parameter space,

and a sequence of loops forms the full quantum algorithm. Holonomic or adiabatic

non-Abelian gates in a three-state model are studied in papers I and II. The results

obtained are quite general and are not limited to any particular physical system. For

various suggestions for the realization of non-Abelian holonomies with Josephson junc-

tion structures, see Refs. [56–58]. Also optical [59] and semiconductor [60] HQC has

been suggested. Berry’s Abelian geometrical phase has been envisaged to be used for

universal quantum computation in superconducting systems by Falci et al. [61], but there

the system under study is not in the ground state such that differences in Berry phases

are of interest and, furthermore, sudden changes in the parameters are also used. In

HQC purely ground state systems and strictly adiabatic control is used.

The problem considered is the following: Given a unitary quantum gate Û , what is

the parameter loop γ that produces Û through Eq. (14), i.e. under which conditions Uγ =

P exp
(

−
∮

γ
Aidq

i
)

equals Û? It is straightforward to solve the direct problem but the

solution of the inverse problem turns out to involve heavy computations. However, this

is clearly the relevant question from the point of view of holonomic quantum computing

since γ is just the experimental control sequence. A possible way of finding a path γ

that realizes Û is to use numerical optimization. Namely, let us define

f(γ) = ‖Û − Uγ‖, (24)
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where ‖ · ‖ is some specified norm. In this Thesis we use the Frobenius norm ‖ · ‖F

defined as ‖A‖F =
√

Tr (A†A). Then finding the minimum of f(γ), which clearly is

equal to zero if a solution to the original problem exists, is equivalent to finding a path γ

that implements Û . In practice, the multidimensional path is conveniently discretized for

instance into polygonal loops, i.e., into loops that have a finite number of vertices between

which one interpolates linearly. Then we are effectively searching for the minimum in a

subspace of all (continuous) loops and the coordinates of the vertices serve as natural

optimization variables. Various numerical algorithms for the minimization are possible,

but the so-called polytope search [62] was found to be particularly successful for the

problem. Exact methods have been studied also for the solution of a similar problem [63].

The functional evaluations for a given polygonal path may easily be carried out by

the discretization of the path and considering the connection coefficients Ai piecewise

constant such that evaluation of Uγ reduce to multiplication of matrix exponentials.

That is, for a discretization γ1, . . . , γn of the loop γ we may write

Uγ ≈ exp(−
∑

i

Ai(γn)δγi
n) · · · exp(−

∑

i

Ai(γ1)δγ
i
1), (25)

where Ai(γk) stands for the ith connection component evaluated at the discretization

point γk and δγj
k is the finite difference of the jth parameter component of the kth

interval. The number of connection components and thus the bounds on the summation

index i depend on the number of controllable parameters. From this discretization it is

clear why expressions of the kind appearing in Eqs. (14) and (5) are sometimes called

product integrals; letting n → ∞ and δγj
k → 0 renders the approximation in Eq. (25)

exact. The matrix exponentials may be either calculated using the Taylor expansion or

the Cayley form, see Paper V. More details of the numerics can be found in publications

I and II. In general, a realization for an arbitrary N -qubit gate is expected to exist if

the number of degrees of freedom in the optimization exceeds the dimensionality of the

Lie algebra u(2N) which is 22N .

Single-qubit gates

To get some concreteness to the problem we consider as an example a case where the indi-

vidual qubits are encoded in the twofold degenerate ground state of a three-dimensional

Hilbert space. We assume that the Hamiltonian is diagonal at the reference point q0

where the holonomy loops are based and the ground state energy is set to zero. Then

the Hamiltonian at this point may be written simply as

Hq0 =





ε 0 0

0 0 0

0 0 0



 , (26)

with ε > 0. We then consider the adiabatic isospectral temporal dependence of the

Hamiltonian to be of the form Hq = WqHq0W
†
q
, where Wq is a unitary transformation

that satisfies Wq0 = I3, where I3 is the 3×3 identity matrix. All the temporal dependence

of the Hamiltonian is encoded in Wq and this dependence is assumed to be adiabatic.
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Figure 1. Loop in the parameter space that yields the gate U =

ei exp
(
iπ
7 σz

)
exp

(
i1
3σy

)
exp(iσz). From Paper I.

A convenient method to parameterize the unitary transformation Wq is to use the so-

called Givens decomposition. It turns out that arbitrary rotations Wq are isomorphic to

the complex projective space [64] CP 2. This manifold may be parameterized using the

four coordinates denoted θi and φi with i = 1, 2 in Papers I and II. The corresponding

Wilczek-Zee matrices Aθi
and Aφi

can be found analytically and this allows one to write

any holonomy on a single qubit as

Uγ = P exp

(

−
∮

γ

2∑

i=1

(Aθi
dθi + Aφi

dφi)

)

. (27)

The numerical calculations were carried using Fortran 90 and the IMSL library. Figure 1

illustrates an example loop in the four-dimensional (θ1, θ2, φ1, φ2)-space for realizing a

particular unitary operation, namely U = ei exp
(
iπ
7
σz

)
exp

(
i1
3
σy

)
exp(iσz). Here σz and

σx are Pauli matrices and q0 = (0, 0, 0, 0)T . Papers I and II report realizations for various

other gates. The conclusion regarding single-qubit gates in the present setting is that

they can all be found with a sufficient amount of flexibility in the paths.

Two-qubit gates

Two-qubit gates may also be found for HQC. To this end a way of coupling the qubits

is desired. We define the two-qubit reference Hamiltonian to be

H2-qubit
q0

= Hq0 ⊗ I3 + I3 ⊗Hq0 . (28)

The most general kind of isospectral rotations for this 9-dimensional Hamiltonian is very

complicated but we shall consider the product of a purely two-qubit rotation and that

of a tensor product of single-qubit rotations, i.e.

Wq = W 2-qubit
q

(W a
q
⊗W b

q
), (29)
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where W a
q

(W b
q
) is the single-qubit rotation of the Hamiltonian of the qubit a (b) identical

to that used in purely single-qubit operations. We take W 2-qubit to be of the form

W 2-qubit = eiξ|11〉〈11|. Thus the rotations of the two-qubit Hamiltonian are parameterized

using the nine parameters (θc
i , φ

c
i , ξ) with i = 1, 2 and c = a, b. Arbitrary two-qubit

quantum gates may be found within this model, and various examples may be found in

papers I and II.

The problem of coupling multiple qubits is difficult in general, but in the case of HQC

it is particularly hard due to the stringent requirement of degeneracy. The coupling

presented here is merely an example, albeit a convenient one.

Length optimization

The motivation for studying holonomic quantum gates numerically is not just the need

to find implementations of arbitrary gates. Namely, it is possible also to optimize with

respect to a more general type of an error functional. Paper II discusses the optimization

of HQC with respect to the length of the path numerically. Recently, however, also the

exact solution of the so-called isoholonomic problem has been provided for an arbitrary

k-dimensional unitary gate within a Hilbert space with a dimension larger than 2k [65].

3.3 Non-adiabatic Josephson charge-qubit gates

The developments presented above in the context of holonomic quantum computation

may easily be generalized also to “ordinary” dynamical quantum computing. The opti-

mization of multiqubit gates for the so-called Josephson charge-qubit model is the topic

of publications III, IV and V. The only practical difference in the numerical optimiza-

tion scheme of the present problem and HQC is the evaluation of the unitary operator.

Whereas Eq. (14) was used above, here we utilize Eq. (5). The evaluation of the unitary

operator was carried out using parallel programming [66]. The motivation is the same

though: It is desired that a more complicated gate could be realized in a single shot

without evoking elementary gates. Josephson charge qubits are discussed in detail for

instance in Refs. [25,67] and Publication V. For an introduction to Cooper pair tunneling

and superconducting circuits see e.g. Refs. [68–70].

Physical model

Consider the Josephson junction circuit shown in Fig. 2. In Fig. 2(a) an individual

Cooper pair box is shown. It consists of a small metallic superconducting island (typi-

cally aluminum cooled to some 20–50 mK) having sub-micron dimensions coupled to a

superconducting lead through a SQUID loop. The SQUID loop consists of Josephson

junctions that are, e.g., formed by an oxide layer between superconducting metallic films.

Cooper pairs may not be found inside the layer but they can have a finite possibility

for tunneling through, provided that the oxide is sufficiently thin and the area of the

junction sufficiently large. The state of a Josephson junction may be described by the

superconducting phase difference φ over it which is just the time-integral of voltage times

22






Figure 2. (a) Single Cooper pair box coupled to the environment through

a SQUID. (b) Array of Josephson charge qubits coupled inductively.

2e/~. The potential energy stored in the junction is −EJ cosφ, where EJ is the so-called

Josephson energy. Classically, the current flowing through a “large” Josephson junction

is Ic sinφ where Ic is called the critical current and φ obeys φ̇ = 2eV/~, where V is

the voltage. The critical current is related to the Josephson energy via Ic = (2e/~)EJ.

SQUIDs are used as tunable Josephson junctions. In the case of identical junctions the

Josephson energy term is −EJ cos(πΦ/Φ0) cos(φ), where EJ/2 is the Josephson energy

of an individual junction, Φ0 = h/2e is the flux quantum and Φ is the externally applied

flux through the SQUID loop. The normal-state tunneling resistance RT yields the value

of EJ through the Ambegaokar-Baratoff formula [71] EJ = h∆BCS/8e
2RT, where ∆BCS is

the superconducting gap at zero temperature. A Josephson junction has also a parallel-

plate capacitance (CJ/2 in this case) associated with it, which is typically on the order

of fF. The superconducting island is further coupled to a gate voltage Vg through a gate

capacitance Cg. These capacitances give rise to a typical charging energy for Cooper

pairs EC = 2e2/CΣ, where CΣ = CJ + Cg is the total capacitance of the island. This

charging energy is assumed to be so large that the addition of a single Cooper pair to

the island requires more energy than the thermal motion of the environment, roughly

speaking, may provide. For charge qubits, we also require that EJ < EC.

An individual qubit may be manipulated both through the magnetic flux Φ and

the gate voltage Vg. The logical states of the qubit correspond to zero and one extra

Cooper pair residing on the island, denoted by |0〉 and |1〉 respectively. Since changing

the polarization of the island does not induce any tunneling amplitude but, in contrast,

changes the relative energy of different charge configurations, the diagonal part of the
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two-by-two Hamiltonian for the qubit is controlled through Vg. However, since the

superconducting phase on the island is conjugate to the number of Cooper pairs on the

island, it follows that cos(φ) gives rise to tunneling and thus the magnetic flux controls

the off-diagonal part of the Hamiltonian. Furthermore, Fig. 2(b) illustrates a potential

coupling scheme for the charge qubits in which the boxes are fabricated in parallel with

an inductance L, possibly realized in practice using a large Josephson junction. The

inductor along with the total capacitance of the array of qubits serves as an LC-oscillator

whose presence effectively couples the qubits assuming that the frequency of oscillation

is much higher than the relevant frequencies of the individual qubits. We may write the

Hamiltonian for M qubits (see Paper V and Ref. [25]) as

Hqb =
M∑

i=1

[

−B
i
z

2
σi

z −
Bi

x

2
σi

x

]

−D
M∑

i=1

M∑

j=i+1

Bi
xB

j
xσ

i
y ⊗ σj

y , (30)

where Bi
z = EC(1 − 2ni

g), B
i
x = EJ(Φi) and D = L(πCqb/CJΦ0)

2. We have further

denoted Cqb = CJCg/(CJ + Cg). The index i refers to the ith qubit. Above EJ(Φi) =

EJ cos(πΦi/Φ0) is the effective Josephson energy and ni
g = CgV

i
g is the gate charge. It

is worthwhile to note that this Hamiltonian is only valid near ng = 0.5, i.e. one of the

degeneracy points and if EJ � EC. A particularly convenient property of Eq. (30) is

that the entire Hamiltonian may be set equal to zero, thereby stopping all temporal

evolution. Note that if any two qubits have a non-vanishing tunneling amplitude, they

will be automatically coupled. It is easy to construct any single-qubit gate within this

model on qubit j by setting Bi
x = Bi

z = 0 for i 6= j and by manipulating Bj
x and Bj

z,

see Paper V. Using arbitrary one-qubit operations along with almost any nontrivial two-

qubit gate [46] one may construct any multiqubit operation. This would not, however,

by any means lead to an optimal implementation.

Optimization

In Publication III, the general problem of finding multiqubit gates for the present Hamil-

tonian is considered. The concept is further developed in Publication IV where particular

attention is paid to accelerating algorithms using three-qubit gates. Paper V considers,

as an example, the execution of Shor’s algorithm on Josephson charge qubits using the

optimization method. Just like within HQC, it is possible to associate a loop in the

parameter space with every unitary operation. The parameter vector for a k-qubit op-

eration now assumes the form

q(t) =
[
B1

z (t) . . . Bk
z (t) B1

x(t) . . . Bk
x(t)

]T
. (31)

We may take the origin, where Hqb = 0, as the starting point for all quantum-control

operations. Then, exactly like in the case of HQC, we may assume that the operations

are polygons in the parameter space. Only now the natural parameterization for loops

is given by time, and also the speed at which the loops are traversed of course matters.

However, we may fix the duration of each edge of the polygon and thus a polygon for k

qubits and with l + 1 vertices has 2l × k degrees of freedom. It is reasonable to require
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Figure 3. Illustration of the strength of the method in the case of the

Fredkin gate. In (a) and (c), the quantum-circuit notation (see text) for

the single-shot and decomposed Fredkin gate is shown. Subfigures (b) and

(d) show the corresponding parameter pulses. The solid line represents

Bi
z while the dashed line represents B i

x. The resulting direct three-qubit

implementation is in this case almost three times faster.

that 2lk ≥ 22k − 1 in order to achieve1 the whole SU(2k). The gates are again found by

minimizing f(γ) but now the evaluation of Uγ is carried out by discretizing the loop γ

into a finite set of points γ1, . . . , γn (typically n = 102–104) in the 2k-dimensional space

and since the total time is fixed, we also can fix the time difference ∆t between the points

and write

Uγ ≈ exp(−iHqb(γn)∆t) . . . exp(−iHqb(γ1)∆t). (32)

It is easy to see from the above expression that one can readily divide the evaluation of

the unitary operation into smaller sections of the full loop γ and delegate each subtask

to a separate processor. Thus the evaluation of Uγ is almost trivially parallelized, which

allows for very efficient optimization. In the case of three-qubit gates, 13 processors were

used such that one processor was the master taking care of the optimization routine and

the multiplication of the intermediate results was handled by the slaves consisting of the

12 other processors. The length of each linear edge is fixed to one unit and also D = 1

as well as ~ = 1. The three-qubit gates require 12 edges and the two-qubit gates call for

5 edges. The results are applicable independent of the sample parameters since rescaling

D is possible by simultaneously scaling energy and time.

Figure 3 (Fig. 2 of Paper IV) contains an illustration of the strength of the present

1We cannot achieve U(2k) with the present Hamiltonian since it has been chosen to be traceless, but

the global phase is meaningless.
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scenario; instead of using the two-qubit gate decomposition of Fig. 3(c) and Fig. 3(d),

in which the realization of individual gates has already been optimized, one may search

for a minimum of f(γ) directly for the whole so-called three-qubit Toffoli gate (see e.g.

Ref. [2]). In Fig. 3 as well as in Publications III–V the so-called quantum-circuit notation

is used. In this notation, time runs from the left to the right and the horizontal lines

represent the history of actions on a particular qubit. In Fig. 3, the qubits are labeled

1, 2 and 3 from top to bottom. A black circle is used to indicate a controlled operation.

In Fig. 3(a), for instance, the notation means that a SWAP (denoted by two crosses)

is performed between the quantum states of qubits 2 and 3 if the state of the qubit

1 is |1〉. Otherwise nothing is done. This is in fact the definition of the Toffoli gate.

In Fig. 3(c), on the other hand, a sequence of seven operations performing the Toffoli

gate in seven substeps is illustrated. The first (leftmost) operation is a controlled-NOT

(CNOT) which flips the qubit 2 iff the qubit 3 is |1〉. The controlled-V operation means

that the operation V =
√
σx is carried out iff the control qubit is |1〉. Furthermore,

the star in Fig. 3(c) stands for a Hermitean conjugate. A matrix representation can of

course be used for any gates provided that an ordering of the subsystems, i.e. the vector

presentation, has been fixed, but the quantum circuit notation is in many ways much

more informative. For more on this notation see e.g. Ref. [2].

It should be clear from Fig. 3 why the direct implementation is superior. Instead of

allowing one qubit to be idle (parameters Bi
x and Bi

z set to zero) we can operate on all

the three qubits simultaneously. The resulting single-shot pulse sequence is almost three

times faster than the decomposed version. More examples of optimized gates may be

found in Publications III–V.

Alternative: Optimal control theory

It is also possible to apply tools from optimal control theory (OCT) in the design of

control pulses for Josephson qubits. Figure 4 illustrates a control pulse for the three-

qubit Fourier transform that was calculated using an algorithm complementary to ours

described recently in Refs. [72, 73] along with a pulse obtained using our method. This

method is somewhat different from the method presented in this Thesis and relies on

the use of variational calculus. Both methods, OCT and the polytope search, scale

exponentially with the number of qubits. Both methods can be parallelized too. The

OCT algorithm, however, yields a smooth control pulse, but it would also be possible to

use smooth pulses with our method as well. Then the node degrees of freedom would be

replaced, for instance, by the coefficients of some basis functions. In both OCT and our

approach it is possible to take into account the limitations of a particular experimental

situation and design the control pulses accordingly. Thus, the piecewise linear pulses

presented in this Thesis should be considered merely as examples. Nevertheless, the

philosophy of our method and the OCT in the context of quantum computing is the

same; in both cases the use of elementary gates can be avoided and the execution time

and errors decreased. Comparing the relative superiority of our method and OCT would

call for a separate study and the results would probably depend strongly on the exact

form of the Hamiltonian.
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Figure 4. (left) An optimal control theory realization of the quantum

Fourier transform for three qubits. The dashed line indicates B i
x and the

solid line represents Bi
z. (right) Piecewise linear realization of the QFT

from Paper III.

Example: Factoring 21

Publication V discusses the feasibility of factoring the number 21 using the numerical

optimization method developed here using inductively coupled Josephson qubits. The

number 21 is arguably the smallest nontrivial number2 to be factored using Shor’s al-

gorithm. Figure 5 of this Paper illustrates the full quantum circuit for the quantum

part of the algorithm. As many as 5900 two-qubit gates and 2300 three-qubit gates are

involved in the implementation. If only (arbitrary) two-qubit qubit gates were available,

then some 16 400 of them would be required. The number of elementary gates would be

necessarily orders of magnitude higher, depending on the exact set available. However,

in any realistic scenario the use of a limited set of elementary gates is not viable; every

measure of cutting down the execution time of the quantum part of the algorithm needs

to be taken. Thus even very heavy classical preoptimization is justifiable. Nevertheless,

for a superconducting Al sample the runtime of the algorithm would at best be 10−6

s. This coincides with the best experimental estimates for the coherence time of a su-

perconducting system [22], though for only a single qubit at a special point. The use

of arbitrary two-qubit gates instead of three-qubit gates would increase the runtime by

some 40%. The number of required qubits would be 22 with two independent controls

per qubit. Clearly this kind of an experiment with the requirement that the tempera-

2The first obvious choice would be 15 but in this case the classical preprocessing happens to reveal

the answer, see Publication V. Of course 21 = 3 × 7, but this is not a triviality of the same kind.
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ture of the environment be around tens of mK is not easy and would probably require

dedicated low-temperature control circuitry, such as rapid single flux quantum (RSFQ)

logic [74,75]. Otherwise at least 44 RF-lines and very complicated pulse generators would

be mandatory. Despite the difficulties, factoring 21 on superconducting qubits should

be possible with very careful design.

Using a scaling argument we may also comment on the factoring of numbers large

enough to break the RSA cryptosystem in the absence of any active coherence preser-

vation method, such as error correction [2, 76]. For instance, breaking the 512-bit RSA

would require thousands of qubits and since the runtime scales at best as n3 log n, where

n is the number of bits it takes to represent the number to be factored, we can argue

based on the estimates given above that tens of seconds of decoherence time is necessary.

The number of independent high-frequency controls would be thousands. Clearly a scal-

able implementation of a superconducting quantum computer is extremely challenging

and far in the future. However, many applications rely on very similar ideas and these

are quite reachable even today. One such application is considered in the next Section.

28



4 Cooper Pair Pumping

In this Section we consider an application of Berry’s [31] Abelian geometrical phase

to Cooper pair pumping using mesoscopic Josephson junctions. Particular attention is

paid to the so-called Cooper pair “sluice” introduced in Paper VI. The idea of operation

and the techniques used are very similar to the control of Josephson charge qubits.

Actually, a Cooper pair “sluice” in a proper environment could serve as a qubit, since the

Hamiltonian presented below offers more than enough possibilities for control. Mastering

the flux and voltage control of only a few superconducting qubits, which is being pursued

by many groups worldwide, does not necessarily have immediate practical impact in

the field of quantum computing. However, spin-offs such the “sluice” may find uses,

e.g., in metrology. Some differences between Cooper pair pumping and superconducting

qubits exist, though. For instance, superpositions of energetically different states are not

pursued and the basic control pulse (pumping cycle) is applied repetitively in contrast

to single-shot quantum gates.

As to charge pumps in general, a seven-junction single-electron pump [30] with cur-

rents on the order of pA has been demonstrated to be usable as a capacitance stan-

dard [77], but the realization of the so-called quantum metrological triangle [78] would

require currents on the order of nA. This is beyond single-electron pumps, but Cooper

pair pumps could potentially yield currents accurately in the nA range. The use of Sur-

face Acoustic Waves (SAW) to pump electrons is being studied actively as an alternative

to ordinary electron pumps, see e.g. Ref. [79]. The engineering of the electromagnetic

environment of both electron pumps [80] as well as Cooper pair devices [81] using on-chip

resistors has been considered in order to achieve a frequency-locked current source. No

metrological Cooper pair pump has been realized yet.

The considered form of the temporal control is not found numerically but rather

using analytic physical arguments. In Subsection 4.1, the relationship between Cooper

pair pumping and Berry’s phase is discussed. Subsection 4.2 discusses the theory of the

“sluice”. Subsection 4.3, based on the experiments of Publication VII, is the highlight

of the present Section.

4.1 Adiabatic Cooper pair pumping and Berry’s phase

An adiabatic Cooper pair pump is a chain of Josephson junctions with at least two

tunable parameters. For instance the first measured pump of Geerligs et al. [26] had

three Josephson junctions in a chain and two voltage gates coupled to the islands in

between. A similar structure was also recently measured by Toppari et al. [82]. However,

longer chains, including the seven-junction Cooper pair pump of Aumentado et al. [83],

have been studied as well. The requirement that at least two parameters are needed is

due to the fact that the pumping effect is attributable to a loop in the parameter space.

We will make the connection between the pumped charge and Berry’s phase clear in

simple terms. For a more formal derivation see Ref. [84].

The Cooper pair pump shown in Fig. 5 serves as a generic model that encompasses

both the traditional gate-controlled pumps and the flux-assisted pump studied here. For
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Figure 5. Generic model of a Cooper pair pump.

now, the device is assumed to be phase biased such that the superconducting phase

difference over the device is ϕ. The average current operator for a chain of Josephson

junctions is given by

I =
2e

~

∂Hpump

∂ϕ
. (33)

Assuming, for simplicity, that CJ,j = CJ for all j and that Cg,j/CJ � 1 allows us to write

the Hamiltonian for an N -junction pump in the absence of quasiparticles as

Hpump =
1

2
(n̂ − ng)

T
C

−1(n̂ − ng) −
N−1∑

k=2

EJ,k cos(φk−1 − φk + ϕ/N)

− EJ,1 cos(ϕ/N − φ1) − EJ,N cos(ϕ/N + φN−1). (34)

Here EJ,k is the Josephson energy of the kth junction and φk is the superconducting

phase on the kth island whereas C is the three-band capacitance matrix of the junction

chain given by

C =








Cg,1 + 2CJ −CJ

−CJ Cg + 2CJ −CJ

. . .
. . .

−CJ Cg,N−1 + 2CJ







. (35)

Allowing the Josephson energies to be different for each junction, even though the ca-

pacitances are equal, anticipates the developments of the next Subsection. The number

operators of Cooper pairs n̂k of each of the islands and the gate charges ng,k = Cg,kVg,k
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are contained in n̂ and ng, that is

n̂ =






n̂1

...

n̂N




 and ng =






ng,1

...

ng,N




 . (36)

Now let us assume that the parameters of the system denoted collectively by q(t) are

tuned adiabatically around a cycle γ in the parameter space over the time t ∈ [0, tcycle]

and that the ground state is non-degenerate. What the parameters are is not important

for the derivation. Clearly, the total charge that passes through the device is

Qtot =

∫ tcycle

0

〈ψ(t)|I|ψ(t)〉dt, (37)

where |ψ(t)〉 is the state vector of the pump at the time t. Using Eq. (9) of Section 2

with g = 1 as well as Eq. (11) allows us to write the state of the pump at time t as

|ψ(t)〉 = eiθ(t)|0;q(t)〉 (38)

due to the adiabaticity assumption. Here |0;q〉 is the ground-state vector which depends

on the control-parameter vector q. The phase θ(t) has two contributions, namely the

dynamical phase

θdyn(t) = −1

~

∫ t

0

〈0;q(τ)|Hpump|0;q(τ)〉dτ (39)

and the geometrical phase

θgeom(t) = i

∫ t

0

〈0;q(τ)| d
dτ

|0;q(τ)〉dτ = i

∫
q(t)

q(0)

〈0;q|∇q|0;q〉 · dq. (40)

At time tcycle it holds in particular that

θBerry ≡ θgeom(tcycle) = i

∮

γ

〈0;q|∇q|0;q〉 · dq (41)

since at this instant the cycle is full. Now, it is possible to rewrite the integrand in

Eq. (37) as

〈ψ(t)|I|ψ(t)〉 = 〈ψ(t)|2e
~

∂Hpump

∂ϕ
|ψ(t)〉 =

2e

~
〈ψ(t)|

[
∂

∂ϕ
,Hpump

]

|ψ(t)〉. (42)

Owing to the Schrödinger equation, we may further write

〈ψ(t)|I|ψ(t)〉 = 2ei
d

dt

(

〈ψ(t)| ∂
∂ϕ

|ψ(t)〉
)

. (43)

On the other hand

〈ψ(t)| ∂
∂ϕ

|ψ(t)〉 = 〈0;q(t)|e−iθ(t) ∂

∂ϕ
eiθ(t)|0;q(t)〉

= i
∂θ(t)

∂ϕ
〈0;q(t)|0;q(t)〉+ 〈0;q(t)| ∂

∂ϕ
|0;q(t)〉

= i
∂θ(t)

∂ϕ
+ 〈0;q(t)| ∂

∂ϕ
|0;q(t)〉. (44)
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The pumped charge is thus (use q(0) = q(tcycle) and θ(0) = 0)

Qtot = −2e

∫ tcycle

0

d

dt

(
∂θ(t)

∂ϕ

)

dt+

∫ tcycle

0

2ei
d

dt
〈0;q(t)| ∂

∂ϕ
|0;q(t)〉dt

︸ ︷︷ ︸

=0

= −2e
∂

∂ϕ
(θdyn(tcycle) + θBerry) . (45)

The total charge transferred is −2e times the derivative of the phase accumulated over

one cycle with respect to the global superconducting phase difference. The first part, or

the dynamical contribution is

Qs = −2e
∂

∂ϕ
(θdyn(tcycle)) =

2e

~

∂

∂ϕ

∫ tcycle

0

〈0;q(t)|Hpump|0;q(t)〉dt

=

∫ tcycle

0

〈0;q(t)|I|0;q(t)〉dt (46)

which is just the “classical” Josephson supercurrent. In pumping applications one tries

to suppress the supercurrent altogether. The second contribution is the more nontrivial

pumped charge

Qp = −2e
∂

∂ϕ
(θBerry) = −2e

∂

∂ϕ

∮

γ

i〈0;q(t)|∇q|0;q(t)〉 · dq (47)

and as may be seen, this is in close connection with Berry’s phase. Thus pumping

Cooper pairs may, very naturally, be seen as an observable manifestation of Berry’s

phase. It is remarkable that Berry’s phase of a nondegenerate ground state has observable

consequences while for instance in quantum computing either degeneracy (holonomy) or

superpositions of energetically different states are required for observable consequences.

In quantum computing the loop γ applies a logical operation whereas here it pumps

charge.

It is possible to derive from Eq. (47) a more elaborate expression for the pumped

charge appearing often in literature. We may write

Qp = 2~ Im

[
∞∑

m=1

∮

γ

〈0;q|I|m;q〉
εq,0 − εq,m

〈m;q|∇q|0;q〉 · dq
]

, (48)

where |m;q〉 is the mth energy eigenstate and εq,m is its energy. This is the form found

first in Ref. [27] and the equivalence between Eq. (48) and Eq. (47) is demonstrated in

Ref. [84].

4.2 Cooper pair “sluice”

The expressions derived above for the pumped charge are quite general and the exact

nature of the tunable parameters has not yet been specified. Traditionally, charge pump-

ing through a chain of Josephson junctions is achieved via cyclically manipulating gate

voltages in such a manner that the state of the system propagates adiabatically through
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Figure 6. (a) Schematic of the Cooper pair “sluice”. (b) Pulse sequence

for pumping a single Cooper pair through the sluice. The exact form of

the pulses is not crucial as long as synchronization is maintained.

a series of near-eigenstates of charge. For instance, in the three-junction Cooper pair

pump [26, 27, 82] one may denote by (Q1, Q2) the eigenstate of charge with Q1 resid-

ing on island 1 and Q2 residing on island 2. Then the gate voltages are manipulated

adiabatically such that the cycle (Q1, Q2) : (0, 0) → (0, 2e) → (2e, 0) → (0, 0) is al-

most achieved. However, due to the non-vanishing Josephson coupling, the eigenstate

of energy is not an eigenstate of charge. It is impossible to decrease the Josephson en-

ergies of the junctions indefinitely without sacrificing the adiabaticity since the smallest

excitation energy is proportional to EJ. Stated otherwise, there is a tradeoff between

accuracy and adiabaticity. From the point of view of adiabaticity it would be beneficial

to increase EJ indefinitely, but in the adiabatic limit there is an error in the pumped

charge proportional to EJ such that it would be desirable to make EJ small. These two

seemingly contradicting requirements are the reason for considering tunable Josephson

junctions, i.e. SQUIDs.

The Cooper pair sluice is a single-island Cooper pair pump. It was introduced and

analyzed theoretically in Publication VI. A single island and a single gate voltage are

sufficient due to the fact that also the couplings are controlled. A schematic of the device

is shown in Fig. 6(a). The Hamiltonian of a homogeneous Cooper pair sluice is explicitly

Hsluice =EC(n̂− ng)
2 − Er

J

(

π
Φr

Φ0

)

cos(φ+ ϕ/2)

− E l
J

(

π
Φl

Φ0

)

cos(ϕ/2 − φ). (49)

Here φ is the phase on the island and n̂ is the number operator for Cooper pairs.

They obey the commutation relation [n̂, φ] = i. The charging energy is given by
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EC = 2e2/(2CJ +Cg) and the gate charge is ng = CgVg/2e. Furthermore, E l
J and Er

J are

the effective Josephson energies of the left and right SQUIDs, respectively, which we as-

sume may in principle be set to zero. The flux through the left (right) junction is denoted

by Φl (Φr). The parameter vector q for the present device is given by q = (ng, E
r
J, E

l
J)

T.

The pumping of charge is achieved via manipulating the parameters q adiabatically such

that at certain instants the ground state is ideally also exactly an eigenstate of charge.

This may be achieved by setting the Josephson couplings to zero. A typical pumping

cycle is shown in Fig. 6(b).

For instance, we may assume that initially the ground state is an eigenstate with zero

Cooper pairs which we attain e.g. with E l
J = 0, Er

J = 0 and ng = 0. Then keeping Er
J = 0

and tuning ng from zero to one and simultaneously opening the left SQUID (first vertical

dashed line in Fig. 6(b)) and closing it again (second dashed line) adiabatically increases

the number of Cooper pairs on the island by one. Namely, the ground state is after the

manipulation still an eigenstate of charge but with one more pair and we have assumed

that the system stays at its ground state. The extra Cooper pair must have tunneled

through the left SQUID since the right one was closed altogether. Ramping ng from one

again back to zero while simultaneously opening (third dashed line) and closing the right

SQUID clearly takes us to where we began: The island again has zero Cooper pairs. This

time the charge must have flown through the left SQUID. In conclusion, this cycle leads

to a pumping of exactly one Cooper pair through the device. Repeating the cycle at

the frequency f leads to a DC current I = 2ef . Note that the above logic immediately

generalizes to the pumping of m Cooper pairs by working between ng = 0 and ng = m

yielding I = 2emf . The crucial assumption is that the temporal evolution is adiabatic.

It is worth pointing out explicitly that the above cycle maintains the non-degeneracy of

the ground state such that the system indeed is protected against excitations to higher

levels.

The imperfections of the sluice have been analyzed in Publication VI. To this end,

the sluice was simulated using numerical integration of the Schrödinger equation. This

was carried out using the loop shown in Fig. 6(b) as a basis for the time dependence

of the Hamiltonian Hsluice. Then, just like in the case of quantum algorithms, the time

axis was split to a discrete set of points (106 or more) that were a distance ∆t apart

and the Hamiltonian was considered piecewise constant in time. The Hilbert space was

truncated to some 10–30 charge states depending on the value of m considered. The

state vectors were propagated using

|ψ(t+ ∆t)〉 ≈ exp(−iHsluice(t+ ∆t/2)∆t/~)|ψ(t)〉. (50)

The quantity of interest, QP in Eq. (37) was evaluated simply using the trapezoidal rule.

Note that the current operator also has a time dependence. The discretization was made

fine enough such that increasing the number of points did not change the result.

It was found that the pumping of individual Cooper pairs with an accuracy of 10−7

should be possible at currents of some 10 pA. However, increasing m to m = 10, would

allow pumping of 0.1 nA with the same accuracy. These estimates only take into ac-

count the finite operating frequency. The optimal value of m is not known. It was
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also found that with sufficient phase averaging errors should not increase. Namely, the

leakage supercurrent is proportional to sinϕ while the error in the pumped charge QP

is proportional to cosϕ. The average of both of these under a perfect voltage bias V is

clearly zero since then ϕ = 2eV t/~.

4.3 Experiments on the “sluice”

Paper VII describes the experiments demonstrating the pumping of Cooper pairs uti-

lizing the idea described above. Figure 7 shows scanning electron micrographs (SEM) of

the measured sample as well as a schematic of the measurement setup. The sample was

fabricated using standard e-beam lithography and two-angle shadow evaporation. The

steps of the fabrication process included spinning a two-layer PMMA/MAA (polymethyl

methacrylate/methacrylic acid) and PMMA resist on top of a silicon wafer, drawing

the pattern of the device using an electron beam, developing the resist in two different

solvents (first in a mixture of 25% MIBK (methyl isobutyl ketone) and 75% IPA (iso-

propanol) and then in pure IPA) to get an “undercut” and finally evaporating aluminum

from two different angles in vacuum with an oxidization step between the layers. The

Josephson junctions are thus realized as an Al-AlOx-Al sandwich. The thicknesses of

the Al layers were 30 nm and 50 nm while the thickness of the oxide is a few nm. The

extra aluminum was removed in the lift-off done by dipping the chip in acetone. The

two different layers can be seen as “shadows” in Fig. 7(b). The sample was then at-

tached to the sample holder of a He3- He4 dilution cryostat with a base temperature

of 20 mK and electrically connected using Al wire bonds. The two ends of the device

were bonded to DC lines in a four-point configuration as shown in Fig. 7(c) while the

two input coils and the gate were connected to RF lines with bandwidth up to tens of

GHz. The measurement electronics along with the arbitrary waveform generators used

for realizing the flux and voltage control were connected to a PC. Matlab scripts and

Matlab’s Data Acquisition Toolbox were used to carry out the measurement.

The sample parameters were Cg ≈ 0.2 fF, EC/kB ≈ 1 K and EJ/kB ≈ 0.5 K. The

estimate of the gate capacitance is based on gate periodicity measurements, that of the

charging energy on the measurement of the normal-state conductance at 4.2 K [85] while

the estimate of EJ is based on the normal-state resistance and the Ambegaokar-Baratoff

formula [71], i.e., EJ = h∆BCS/8e
2RT. For the arrangement of the flux pulsing it is

important to know the mutual inductances between the input coils and the SQUIDs.

The SQUIDs were intentionally designed to have large extensions to get better coupling.

The mutual inductances were measured by sweeping the DC current in the two input

coils at constant bias voltage and by measuring the current. This allows one to design

the flux pulses with proper compensations for the cross-talk, see Publication VII. The

relative phases were optimized by sweeping them and maximizing the current. Since we

were using commercial waveform generators, we were forced to use frequencies on the

order of a few MHz. Luckily, though, we could compensate for the low frequency by

increasing the number of pumped charges m, i.e. the gate amplitude.

The measurement of the full current-voltage characteristics was carried out with the
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Figure 7. (a) Scanning electron micrograph of the Cooper pair “sluice”.

The input coils are seen topmost and lowest in the picture while the gate

extends to the right. The current flows between the two electrodes on the

left. (b) Close-up of the island. The Josephson junctions are the four

lighter-shade spots formed in the overlap of the two shadows. (c) Mea-

surement setup.

pumping signal being applied underneath. It was found that despite the manipulation of

the Josephson energies, leakage current unfortunately also existed. However, since it was

possible to change the direction of the current by shifting the phase of the gate through

180 degrees, it is possible to extract the pumped current from this measurement. Namely,

subtracting the IVs with the pumping applied forward and backward from each other

should leave us with twice the pumped current. Figure 8 shows full IVs at 3 MHz for

different gate amplitudes with pumping in both directions along with the aforementioned

differences ∆I vs. voltage. It is seen that the difference in the current nicely obeys the

expected pumping behavior. In order to serve as a practical current pump the leakage

should be taken care of, e.g., by improved voltage biasing and/or improving the closing

of the SQUIDs.

The most convincing evidence of the pumping along with the fact that the above

phase shift procedure works, is found by gradually increasing the gate amplitude and then

measuring the current at a constant voltage bias. The results are shown in Fig. 9. The

quantity that we studied was ∆I in this measurement too. The amplitude was increased

such that the low level of the gate V lo
g was fixed and the high level V hi

g was swept. This
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Figure 8. (a) IVs for pumping forward (solid) and backward (dashed).

Here m ranges between 4 and 34. (b) Differences ∆I in the IVs (see text).

Horizontal dotted lines indicate the expected levels of current. Here Vmeas

is the measured value of voltage.

should result in 2e-periodic staircase in the pumped current with the step heights3 equal

to 4ef . However, due to quasiparticle poisoning faster than the measurement time scale

but slower than the pumping, the measured behavior was e-periodic with 2ef steps.

This is interpreted to be because we actually measure the average of two 2e-periodic

staircases shifted by e with respect to each other. Figure 9(b) also shows the high gate

amplitude behavior of ∆I and it is seen that up to amplitudes of 10e the agreement with

the expected behavior is good. Fig. 9(c) illustrates the least-squares fitted slopes to the

linear regime of Figs. 9(a–b). The agreement with theory is seen to be good with a few

percent error.

To conclude, we have demonstrated in practice the original idea of Publication VI for

pumping Cooper pairs with tunable Josephson junctions, i.e. SQUIDs. The experimen-

tal evidence is convincing enough to show that the idea for pumping works, although

several non-idealities still exist. Possible solutions for cutting down the leakage include

fabricating an on-chip capacitor much larger than the junction capacitance parallel with

the pump, considering a more complicated design for the SQUIDs (see Fig. 1(b) of Pub-

lication VI) and maybe even using a longer array. Lengthening the array would, though,

inevitably complicate the control. The capacitance, however, would better conserve the

energy of the pump since then the so-called P(E)-curve would be peaked close to the zero

of energy, see e.g. Ref. [70]. The quasiparticle poisoning is not necessarily a problem even

from the application point of view, if the quasiparticle current is small enough. Namely,

our measurements indicate that the net quasiparticle flow is negligible but, instead, the

quasiparticles jump randomly on and off the island with no preferred direction. That

is, the flow of current is mostly due to Cooper pairs. The quasiparticles in the present

measurement are thus probably of the non-equilibrium type reported in Ref. [86]. There

the reported time scale of quasiparticle poisoning for a superconducting SET was 10 µs.

In Ref. [87] the relevant time-scale was 10−2 s but in a somewhat different setup. These

figures support our time scale argument, since the integration time for our measurement

3Recall that ∆I should be twice the pumped current.
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Figure 9. (a) Difference ∆I in the current for forward and backward

pumping at 2.5 MHz against the high level of the gate signal V hi
g with the

low level at zero. The dashed lines are drawn at 2ef intervals. (b) Large

gate amplitude behavior of ∆I at a few frequencies. The dashed lines

show the expected gate dependence, i.e. their slope is 2ef . The curves are

offset for clarity. (c) Fitted slopes to the data of the previous plots up to

VgCg/e = 10 are shown by circles. The solid line indicates the expected

behavior. The voltage bias point was around 10 µV in all the above plots.

was on the order of 0.1 s and the pumping time smaller than 1 µs. We could not, how-

ever, experimentally determine the characteristic time for quasiparticles in the present

setup.
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5 Conclusions

In this Overview we have discussed different aspects of the controlled evolution of

quantum systems, both geometrical and dynamical. Particular attention was paid to

nanoscale Josephson junction circuits. The two applications that were considered in

detail included quantum computing and quantum charge pumping. Let us briefly sum-

marize the conclusion of the Publications included in this Thesis:

In Publications I–II, a realization independent numerical method of finding arbitrary

holonomic quantum gates was studied. It was shown that holonomy loops realizing

any one and two-qubit unitary operation for the studied three-state model can be found

easily. Moreover, it was shown that the length of the loop could be reduced by numerical

optimization.

In Publications III–V, the optimization method was generalized to dynamical quan-

tum computing. The physical system studied was the inductively coupled Josephson

charge qubit array, although the method could easily be generalized to other systems.

The algorithm was parallelized and shown to be capable of finding single-shot realiza-

tions for up to three-qubit gates. Publication III introduced the method while Publica-

tion IV concentrated on accelerating quantum algorithms using three-qubit gates. The

more extended Publication V discussed the requirements of performing Shor’s algorithm

on the inductively coupled charge-qubit array. It was found that factoring 21, arguably

the simplest “non-trivial” composite integer, would require 22 qubits and microsecond

coherence times which is on the same order as the best reported coherence times in

superconducting circuits. However, it was found, that breaking for instance the 512-bit

RSA would require thousands of qubits working co-operatively and tens of seconds in

terms of coherence time. All the estimates were based on the assumption that arbitrary

three-qubit gates are available in single-shot form. The use of elementary gates would

prolong the runtime severely. The conclusion regarding Publications I-V is that even

though no change in the complexity of the algorithm is obtained via numerical opti-

mization, the stringent limits set by short decoherence times makes it well worthwhile

to try and reduce the runtime even by a numerical factor. Optimization may well result

in cutting down the runtime by orders of magnitude opposed to elementary-gate logic

inspired by classical computers.

In Publication VI, an application of Berry’s geometrical phase in a superconducting

circuit was discussed. There a novel Cooper pair pump, the “sluice”, consisting of

just one superconducting island connected to leads via SQUID loops and utilizing both

flux and voltage control was introduced. It was shown that the device can potentially

reach metrological accuracy. In Publication VII, the experimental results of the device

were reported. It was found that the pumped current increases in clear steps with the

increasing gate amplitude and changes direction under a 180-degree phase shift of the

gate, even though quasiparticle poisoning and leakage were present. Many suggestions

for improving the device were given. The “sluice” was found to be a promising candidate

for a practical current pump. The clear benefit of the “sluice” is that it is simple with

just three control parameters and it would allow for higher operating frequencies. One
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may further argue that solving the practical challenges in its control is much easier than

building even a simple working quantum computer. It could, therefore, find use as a

great test bench for the control techniques of superconducting qubits.
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Realization of arbitrary gates in holonomic quantum computation
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Among the many proposals for the realization of a quantum computer, holonomic quantum computation is
distinguished from the rest as it is geometrical in nature and thus expected to be robust against decoherence.
Here we analyze the realization of various quantum gates by solving the inverse problem: Given a unitary
matrix, we develop a formalism by which we find loops in the parameter space generating this matrix as a
holonomy. We demonstrate that such a one-qubit gate as the Hadamard gate and such two-qubit gates as the
controlled-NOT gate and theSWAP gate, and the discrete Fourier transformation can be obtained with a single
loop.
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I. INTRODUCTION

Quantum computing is an emerging scientific disciplin
in which the merging and mutual cross fertilization of two
the most important developments in physical science
information technology of the past century—quantum m
chanics and computing—has resulted in an extraordina
rapid rate of progress of interdisciplinary nature. Interest
problems to address in this context include fundame
questions as to what are the ultimate physical limits of co
putation and communication. For introductions to quant
computing and quantum information processing see, e
Refs.@1–3#.

Holonomic quantum computation~HQC! was first sug-
gested by Zanardi and Rasetti in Ref.@4#. The concept has
been further developed in Refs.@5–9#. The suggestion is
very intriguing itself; quantum-logical operations a
achieved by driving a degenerate system around adiab
loops in the parameter manifold. The resulting gates ar
generalization of the celebrated Berry phase@10# to encom-
pass a degenerate system. These are, in fact, non-Ab
holonomies. Due to the geometric nature of these ga
quantum information processing is expected to be fault
erant. For instance, the issue of timing and the lack of sp
taneous decay are definite strengths of HQC. Here we s
the construction of holonomic quantum logic gates num
cally via solving a certain inverse problem. Namely, we fi
the loop ĝ corresponding to the desired unitary operatorÛ
by solving a high-dimensional optimization task.

The paper is organized as follows: In Sec. II, we pres
the physical and mathematical background underlying
approach. Sections III, IV, and V comprise the main part
the present paper. Loop parametrizations for one- and t
qubit gates are presented in Sec. III. The numerical metho
introduced in Sec. IV. Then the optimal realization of a u
tary gate as a holonomy associated with a loop in the par
eter space is investigated numerically in Sec. V. Section
discusses the results.

*Also at Department of Physics, Kinki University, Higashi-Osa
577-8502, Japan.
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II. HAMILTONIAN AND HOLONOMY

Here we first review the concept of non-Abelian h
lonomy to establish notation conventions. Let us conside
family of Hamiltonians$Hl%. The pointl, continuously pa-
rametrizing the Hamiltonian, is an element of a manifoldM
called the control manifold and the local coordinate ofl is
denoted byl i(1< i<m5dimM). It is assumed that there
exists only a finite number of eigenvalues«k(l)(1<k<R)
for an arbitrarylPM and that no level crossings occu
Suppose thenth eigenvalue«n(l) is gn-fold degenerate for
anylPM and(n51

R gn5N. The degenerate subspace atl is
denoted byHn(l). Accordingly, the Hamiltonian is ex-
pressed as aN3N matrix. The orthonormal basis vectors o
Hn(l) are denoted by$una;l&%

Hluna;l&5«n~l!una;l&, ^na;lumb;l&5dmndab .

Note that there areU(gn) degrees of freedom in the choic
of the basis vectors$una;l&%.

Let us now assume that the parameterl is changed adia-
batically. We will be concerned with a particular subspa
say the ground stateH1(l), and we will drop the indexn to
simplify the notation. Suppose the initial state att50 is an
eigenstateuca(0)&5ua;l(0)& with the energy«50 possi-
bly through shifting the zero point of the energy. In fact, w
are not interested in the dynamical phase at all and he
assume that the eigenvalue in this subspace vanishes fo
lPM. The Schro¨dinger equation is

i
d

dt
uca~ t !&5Hl(t)uca~ t !&, ~1!

whose solution may be assumed to take the form

uca~ t !&5 (
b51

g

ub;l~ t !&Uba~ t !. ~2!

The unitarity of the matrixUba(t) follows from the normal-
ization of uca(t)&. By substituting Eq.~2! into Eq. ~1!, one
finds thatUba satisfies
©2003 The American Physical Society19-1
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U̇ba~ t !52(
g

K b;l~ t !U d

dt Ug;l~ t !L Uga . ~3!

The formal solution may be expressed as

U~ t !5T expS 2E
0

t

A~t!dt D
5I 2E

0

t

A~t!dt1E
0

t

dtE
0

t

dt8A~t!A~t8!1•••,

~4!

whereT is the time-ordering operator and

Aba~ t !5 K b;l~ t !U d

dt Ua;l~ t !L .

Let us introduce the Lie-algebra-valued connection

Ai ,ba5K b;l~ t !U ]

]l i Ua;l~ t !L ~5!

through whichU(t) is expressed as

U~ t !5P expS 2E
l(0)

l(t)

A idl i D , ~6!

whereP is the path-ordering operator. Note thatAi is anti-
Hermitian,A i

†52Ai .
Suppose the pathl(t) is a loop g(t) in M such that

g(0)5g(T)5l0. Then it is found that after traversingg,
one ends up with the state

uca~T!&5 (
b51

g

ucb~0!&Uba~T!, ~7!

where the definitionucb(0)&5ub;l0& has been used. Th
unitary matrix

Ug[U~T!5P expS 2 R
g
A idg i D ~8!

is called the holonomy associated with the loopg(t). Note
thatUg is independent of the parametrization of the path,
only depends upon its geometric image inM @11,12#.

The space of all the loops based atl0 is denoted by

Ll0
~M!5$g:@0,T#→Mug~0!5g~T!5l0%. ~9!

The set of the holonomy

Hol~A!5$UgugPLl0
~M!% ~10!
01231

I/2
t

has a group structure@13# and is called the holonomy group
It is clear that Hol(A),U(g). The connectionA is called
irreducible when Hol(A)5U(g).

III. THREE-STATE MODEL AND QUANTUM-GATE
CONSTRUCTION

A. One-qubit gates

To make things tractable, we employ a simple mod
Hamiltonian called the three-state model as the basic bu
ing block for our strategy. This is a three-dimensional~3D!
Hamiltonian with the matrix form

Hl0
5eu2&^2u5S e 0 0

0 0 0

0 0 0
D . ~11!

The first column~row! of the matrix refers to the auxiliary
state u2& with the energye.0, while the second and th
third columns~rows! refer to the vectorsu0& andu1&, respec-
tively, with vanishing energy. The qubit consists of the la
two vectors.

The control manifold of the Hamiltonian~11! is the com-
plex projective spaceCP2. This is seen most directly as fol
lows: The most general form of the isospectral deformat
of the Hamiltonian is of the formHg[WgHl0

Wg
† , where

WgPU(3). Note, however, that not all the elements of U(3
are independent. It is clear thatHg is independent of the
overall phase ofWg , which reduces the number of degre
of freedom from U(3) to U(3)/U(1)5SU(3). Moreover,
any element of SU(3) may be decomposed into a produc
three SU(2) matrices as follows:

~12!

which is know as the Givens decomposition. Herea j
5eif j sinuj and b j5eic j cosuj . It is clear thatHg is inde-
pendent ofU3 since@Hl0

,U3#50. This further reduces the

physical degrees of freedom to SU(3)/SU(2)>S5. The
productU1U2 contains six parameters, whileS5 is five di-
mensional; there must be one redundant parameter inU1U2.
This parameter is easily found out by writing the produ
explicitly. The result depends only on the combinationf2
2c2 and not on individual parameters. Accordingly, we m
redefinef2 as f22c2 to eliminatec2. Furthermore, after
this redefinition we find that the Hamiltonian depends on
9-2
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on f12c1 andf22c1 and hencec1 may also be subsume
by redefiningf1 and f2, which reduces the independe
degrees of freedom down toCP2>S5/S1.

Let @z1,z2,z3# be the homogeneous coordinate ofCP2 and
(1,j1 ,j2) be the corresponding inhomogeneous coordin
where j15z2/z1,j25z3/z1 in the coordinate neighborhoo
with z1Þ0. If we write jk5r ke

iwk, the above correspon
dence, i.e. the embedding ofCP2 into U(3), is explicitly
given byuk5tan21r k andfk5wk .
is
p

ry

d
vin
iz
na

s
p
b

o

01231

I/3
e,

The connection coefficients are easily calculated in
present model and are given by

Au1
5S 0 2sinu2e2 i (f22f1)

sinu2ei (f22f1) 0 D , ~13!

Au2
5S 0 0

0 0D , ~14!
Af1
5S 2 i sin2 u1 2

i

2
sin 2u1 sinu2ei (f12f2)

2
i

2
sin 2u1 sinu2ei (f22f1) i sin2 u2 sin2u1

D , ~15!
os-

rm
ef-
bit
ion

rio.
ade
Af2
5S 0 0

0 2 i sin2 u2
D , ~16!

where the first column~row! refers tou0&, while the second
one refers tou1&. Using these connection coefficients, it
possible to evaluate the holonomy associated with a loog
as

Ug5P expS 2 R
g
~Au1

du11Au2
du2

1Af1
df11Af2

df2! D . ~17!

Now our task is to find a loop that yields a given unita
matrix as its holonomy.

B. Two-qubit gates

Let us consider a two-qubit reference Hamiltonian

Hl0

2-qubit5Hl0

a
^ I 31I 3^ Hl0

b , ~18!

whereHl
a,b are three-state Hamiltonians andI 3 is the 333

unit matrix. Generalization to an arbitraryN-qubit system is
obvious. The Hamiltonian scales as 3N, instead of the 2N in
the present model. It is also possible to consider a mo
with g-degenerate eigenstates with one auxiliary state ha
finite energy. This model, however, has a difficulty in real
ing an entangled state, without which the full computatio
power of a quantum computer is impossible.

We want to maintain the multipartite structure of the sy
tem in constructing the holonomy. For this purpose, we se
rate the unitary transformation into a product of single-qu
transformations (Wg

a
^ Wg

b) and a purely two-qubit rotation
Wg

2-qubit which cannot be reduced into a tensor product
el
g

-
l

-
a-
it

f

single-qubit transformations. Therefore, we write the is
pectral deformation for a given loopg as

Hg
2-qubit5Wg

2-qubit~Wg
a

^ Wg
b!Hl0

2-qubit~Wg
a

^ Wg
b!†Wg

2-qubit†.

~19!

The advantage of expressing the unitary matrix in this fo
is easily verified when we write down the connection co
ficients for the one-qubit coordinates. Namely, the two-qu
transformation does not affect the one-qubit transformat
at all;

Ai ,ab5K a;lUWg
† ]

]g i
WgUb;lL

5K a;lU~Wg
a

^ Wg
b!†

]

]g i
~Wg

a
^ Wg

b!Ub;lL ,

whereg i denotes a one-qubit coordinate.
There is a large number of possible choices forWg

2-qubit,
depending on the physical realization of the present scena
To keep our analysis as concrete as possible, we have m
the simplest choice

Wg
2-qubit5Wj[ei ju11&^11u ~20!

for our two-qubit unitary rotation. Let
9-3
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Hg85Hg
a

^ I 31I 3^ Hg
b

51
h11

a 1h11
b h12

b h13
b h12

a 0 0 h13
a 0 0

h21
b h11

a 1h22
b h23

b 0 h12
a 0 0 h13

a 0

h31
b h32

b h11
a 1h33

b 0 0 h12
a 0 0 h13

b

h21
a 0 0 h22

a 1h11
b h12

b h13
b h23

a 0 0

0 h21
a 0 h21

b h22
a 1h22

b h23
b 0 h23

a 0

0 0 h21
a h31

b h32
b h22

a 1h33
b 0 0 h23

a

h31
a 0 0 h32

a 0 0 h33
a 1h11

b h12
b h13

b

0 h31
a 0 0 h32

a 0 h21
b h33

a 1h22
b h23

b

0 0 h31
a 0 0 h32

a h31
b h32

b h33
a 1h33

b

2
be a two-qubit Hamiltonian beforeWj is applied. Then after the application ofWj to Hg8 , we have the full Hamiltonian

Hg
2-qubit5WjHg8Wj

†51
h11

a 1h11
b h12

b h13
b h12

a 0 0 h13
a 0 0

h21
b h11

a 1h22
b h23

b 0 h12
a 0 0 h13

a 0

h31
b h32

b h11
a 1h33

b 0 0 h12
a 0 0 h13

b e2 i j

h21
a 0 0 h22

a 1h11
b h12

b h13
b h23

a 0 0

0 h21
a 0 h21

b h22
a 1h22

b h23
b 0 h23

a 0

0 0 h21
a h31

b h32
b h22

a 1h33
b 0 0 h23

a e2 i j

h31
a 0 0 h32

a 0 0 h33
a 1h11

b h12
b h13

b e2 i j

0 h31
a 0 0 h32

a 0 h21
b h33

a 1h22
b h23

b e2 i j

0 0 h31
a ei j 0 0 h32

a ei j h31
b ei j h32

b ei j h33
a 1h33

b

2 .

~21!
t
e
lle

tio
w
n
pa
o
ta

lic-
As for the connection, we find

Aj5S 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 i cos2 u2
a cos2 u2

b

D , ~22!

where the columns and rows are ordered with respect to
basis$u00&,u01&,u10&,u11&%. It should be apparent from th
above analysis that we can construct an arbitrary contro
phase-shift gate with the help of a loop in the (ua

2 ,j) or
(ub

2 ,j) space. Accordingly, this gives the controlled-NOT

gate with one-qubit operations, as shown below.

C. Some examples

Before we proceed to present the numerical prescrip
to construct arbitrary one- and two-qubit gates in the follo
ing section, it is instructive to first work out some importa
examples whose loop can be constructed analytically. In
ticular, we will show that all the gates required for the pro
of universality may be obtained within the present three-s
model.
01231

I/4
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The first example is thep/8 gate,

Up/85S 1 0

0 eip/8D . ~23!

By inspecting the connection coefficients in Eqs.~13!–~16!,
we easily find that the loop presented by the sequence

~u2 ,f2!:~0,0!→~p/2,0!→~p/2,p/8!→~0,p/8!→~0,0!
~24!

yields the desired gate. Note that the loop is in the (u2 ,f2)
plane and all the other parameters are fixed at zero. Exp
itly, we verify that

Up/85expS p

8
Af2

U
u250

D expS p

2
Au2

U
f25p/8

D
3expS 2

p

8
Af2

U
u25p/2

D expS 2
p

2
Au2

U
f250

D
5expS 2

p

8
Af2

U
u25p/2

D . ~25!
9-4
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FIG. 1. Objective function landscape in 2D
Parameter 1 interpolates between the two kno
minima as described in the text, whereas para
eter 2 represents a randomly chosen perpend
lar direction.
he

ed

ct a
The next example is the Hadamard gate

H5
1

A2
S 1 1

1 21D . ~26!

Instead of constructingH directly, we will rather use the
decomposition

H5e2 ip/2 expS i
p

2
szDexpS i

p

4
syD .

It is easy to verify that the holonomy associated with t
loop

~u2 ,u1!:~0,0!→~p/2,0!→~p/2,b!→~0,b!→~0,0!
~27!

is exp(ibsy), while that associated with the loop
01231

I/5
~u1 ,u2 ,f1!:~0,0,0!→~p/2,0,0!→~p/2,p/2,0!

→~p/2,p/2,a!→~p/2,0,a!

→~0,0,a!→~0,0,0! ~28!

is exp(iasz). Here again, the rest of the parameters are fix
at zero. Finally, we construct the phase-shift gateeid, which
is produced by a sequence of two loops. First, we constru
gate similar to thed-shift gate using~cf. thep/8-shift gate!

~u1 ,f1!:~0,0!→~p/2,0!→~p/2,d!→~0,d!→~0,0!.
~29!

This loop followed by the similar loop in the (u2 ,f2) space
yields theeid gate as

~u1 ,f1 ,u2 ,f2!:~0,0,0,0!→~0,0,p/2,0!→~0,0,p/2,d!

→~0,0,0,d!→~0,0,0,0!

→~p/2,0,0,0!→~p/2,d,0,0!

→~0,d,0,0!→~0,0,0,0!. ~30!
rd

FIG. 2. Loop in parameter

space that gives the Hadama
gate~in dimensionless units!.
9-5
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Finally, the controlled-phase gate U(Q)5
exp(iQu11&^11u) can be written as

~u2
a ,j!:~0,0!→~p/2,0!→~p/2,Q!→~0,Q!→~0,0!.

~31!

IV. NUMERICAL METHOD

Now we adopt a systematic approach to actually const
the arbitrary quantum gates. The arbitrary one- and two-q
gates are constructed in a three-state model, that is, in a
the simplest possible realization for HQC, while still mai
taining the tensor-product structure necessary for expone
speed up. It has not been shown previously how to const
the CNOT, let alone the two-qubit Fourier transform in
single loop. Hence, we resort to numerical methods. Sinc
is extremely difficult to see which single loop results in
given unitary operator, our approach will be that of var
tional calculus.

We convert the inverse problem, i.e., which loop cor
sponds to a given unitary operator, to an optimization pr
lem. The problem of finding the unitary operator for a giv
loop is straightforward. Keeping the basepoint of the h
lonomy loop fixed, we let the midpoints vary. Owing to th
2p periodicity, the loops can end either in the origin or
any point that is modulo (2p).

The space of all possible loops is denoted byV. We shall
restrict the variational task to the space of polygonal pa
Vk , wherek is the number of vertices in the path excludin
the basepoint. Naturally, we haveVk,V such that we are no
guaranteed to find the best possible solution among all
loops, but provided that we use a good optimization meth

TABLE I. Loop of Fig. 2 numerically in dimensionless units.

Node u1 u2 f1 f2

Begin 0 0 0 0
1 25.28 2.04 0.18 20.40
2 20.44 1.49 20.08 3.70
3 20.70 20.27 20.11 2.59
End 0 0 0 0
01231

I/6
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we may expect to find the best solution in the limited spa
Vk . Since the dimension of the variational space increa
with k, one is forced to use as low ak as possible. For
instance, for one-qubit gates, the dimension is 4k. In the case
of two-qubit gates, the dimension is 9k. Low k appears to be
desirable for experimental reasons as well.

Formally, the optimization problem is to find ag̃, such
that

f ~g!5iÛ2UgiF ~32!

is minimized over allgPVk . We naturally hope the mini-
mum value to be zero. Herei•iF is the so-called Frobeniu
trace norm defined byiAiF5ATr(A†A). We could employ
the well-known conjugate-gradient method to solve the t
at hand, but this method, or any other derivative-ba
method, is not expected to perform well in the present pr
lem due to the complicated structure of the objective fu
tion. Hence we will use the robust polytope algorithm@14#.

We have plotted a sample 2D section of the optimizat
space in Fig. 1. The axes represent two orthogonal direct
in the optimization space of a certain two-qubit gate. Thx
axis was obtained by interpolating between two kno
minima, whereas they axis was chosen randomly. One ca
readily verify from the figure that the optimization task
indeed extremely hard.

The calculation of the holonomy requires evaluating t
ordered product in Eq.~8!. The method used in the numeric
algorithm is to simply write the ordered product in a finit
difference approximation by considering the connect
components as being constant over a small difference in
parametersdg i , i.e.,

TABLE II. Loop of Fig. 3 numerically in dimensionless units.

Node u1 u2 f1 f2

Begin 0 0 0 0
1 22.03 1.31 0.80 21.16
2 1.21 1.18 22.35 0.57
3 2.54 0.66 20.49 0.96
End 0 0 0 0
FIG. 3. Loop in parameter space that yields the gateU5eiexp@i(p/7)sz#exp@i(1/3)sy#expisz ~dimensionless units!.
9-6
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FIG. 4. Loop in parameter
space that gives the controlled
NOT gate. HeregCNOTPV3 and the
error is below 10213 ~dimension-
less units!.
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Ug'exp~2Ai~gn!dgn
i !•••exp~2Ai~g1!dg1

i !. ~33!

Throughout the study we used 200 discretization points
edge, i.e.,n52003(k11).

V. RESULTS

First, we attempted to find a loop that yields the Ha
amard gate. Using a random initial configuration, we o
01231

I/7
er

-
-

tained the results that are plotted in Fig. 2. The error funct
f (g) had a value smaller than 1028 at the numerical opti-
mum. The plot represents all the possible projections on
perpendicular axes~the horizontal axis is alwaysu1) in the
four-dimensional space. Note that this optimization was c
ried out in V3, meaning that there are three vertices oth
than the reference point. The results do not take advantag
the 2p periodicity. We have also included the data points
Table I. It is impressive that such a simple control loop yie
the gate. Furthermore, this is just one implementation of
Hadamard gate. It is possible to find many different on
9-7
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FIG. 5. Loop in parameter
space which realizes theSWAP

gate. Here the error is below
10213. In this case, the variationa
space is V5 ~in dimensionless
units!.
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Another example of one-qubit gates is given in Fig. 3 a
in Table II. The gate that we tried to implement was no
chosen arbitrarily to be U
5ei exp@i(p/7)sz#exp@i(1/3)sy#expisz. Again, the error
was well below 1028 at the optimum. We argue that ou
method is capable of finding any one-qubit gate. These
sults are not very enlightening as such, but should never
less clearly prove the strength of the technique.

We also found several implementations for two-qu
gates. Figure 4 presents the loopgCNOTPV3 that produces
01231

I/8
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e-
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t

the CNOT. We observe, however, that again the minimizati
resulted in an accurate solution. The minimization landsc
is just as rough in the case of two qubits. Now, of course,
dimension ofV3 is 24.

We also found an implementation of theSWAP gate given
in Fig. 5.

Finally, it is interesting to observe that even the two-qu
quantum Fourier transform can be performed easily. The
sulting loop is presented in Fig. 6. It is remarkable that su
a simple single loop yields a two-qubit quantum Four
transform. We used only three vertices, but were still able
9-8
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FIG. 6. LoopgFourier. The er-
ror is below 10213 ~dimensionless
units!.
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find an acceptable solution. We argue that the error can
made arbitrarily small for any two-qubit gate.

VI. DISCUSSION

The realization of arbitrary one- and two-qubit gates
the context of holonomic quantum computation has b
demonstrated. By restricting the loops in the control ma
fold within a polygon withk vertices, it becomes possible t
cast the realization problem to a finite-dimensional var
tional problem. We have shown explicitly that some use
01231
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two-qubit gates are realized by a single loop.
A possible improvement of the present scenario would

to minimize the length of the path realizing a given ga
This can be carried out by introducing an appropriate pen
or barrier function and the Fubini-Study metric in the cont
manifold CP2. This optimization program is under progre
and will be reported elsewhere.
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Optimal Multiqubit Operations for Josephson Charge Qubits
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We introduce a method for finding the required control parameters for a quantum computer that
yields the desired quantum algorithm without invoking elementary gates. We concentrate on the
Josephson charge-qubit model, but the scenario is readily extended to other physical realizations.
Our strategy is to numerically find any desired double- or triple-qubit gate. The motivation is the need to
significantly accelerate quantum algorithms in order to fight decoherence.
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Quantum computing algorithms are realized through
unitary operators that result from the temporal evolution
of the quantum system under consideration. Typically,
these are achieved with a sequence of universal gates
[1] which act analogously to the elementary gates of
digital computers. Quantum computers hold the promise
of exponential speedup with respect to classical com-
puters owing to the massive parallelism arising from
the superposition of quantum bits, qubits; for introduc-
tions to quantum computing and quantum information
processing, see Ref. [2]. Several physical implementations
of quantum computing have been suggested; in particular,
quantum computing with Cooper pairs [3].

Superconducting circuits [4] feature controlled fabri-
cation and scalability [5]; their drawback is that the leads
inevitably couple the qubit to the environment, thereby
introducing decoherence [6]. In a superconductor, the
number of the Cooper pairs and the phase of the wave
function constitute conjugate variables. The majority of
investigations has focused either on the charge regime
where the number of Cooper pairs is well defined [7], or
on the flux regime where the phase is well defined [8].
Qubits utilizing current-driven large Josephson junctions
have been tested experimentally [9]. Decisive experimen-
tal progress [10] demonstrated that it is possible to realize
104 elementary quantum gates with Josephson-junction
qubits. Here we consider Josephson charge qubits.

In this Letter we propose a method to construct arbi-
trary two- or three-qubit quantum gates by solving the
optimization problem of control parameters for a
Josephson charge-qubit register. We show that it is pos-
sible to numerically find the required control-parameter
sequences even for nontrivial three-qubit gates without
employing elementary gates. Recently, it has been sug-
gested [11] how to solve a similar problem in the context
of holonomic quantum computation [12], where time
does not appear as an explicit parameter. Here, the time
evolution arises through the Schrödinger equation.

The motivation underlying the investigation of this
approach is the need to overcome effects of decoherence.
The implementation of a quantum algorithm which is

composed of elementary gates is rarely optimal in exe-
cution time since the majority of qubits is most of the time
inactive; see Fig. 1. The decomposition into elementary
gates works extremely well with classical digital com-
puters. However, in the context of quantum computing the
number of consecutive operations is strictly limited by
the short time window set by interactions with the envi-
ronment. It is therefore of prime importance to concen-
trate on the implementations of quantum algorithms [13–
15]. We consider the construction of quantum algorithms
out of larger building blocks. Whereas careful design and
manufacturing can significantly increase the decoherence
time, our scenario can serve to reduce the number of the
operations needed.

The Josephson charge qubit utilizes the number de-
gree of freedom of a nanoscale Josephson-junction circuit.
The states of the qubit correspond to either zero or one
extra Cooper pair residing on the superconducting island,
usually denoted by j0i and j1i, respectively. The Cooper
pairs can tunnel coherently to a superconducting elec-
trode. The charging energy of the qubit can be tuned with
the help of an external gate voltage, whereas tunneling
between the states is controlled with the help of an
external magnetic flux.

The explicit single-qubit Hamiltonian for the qubit i is

Hi
single � � 1

2
Bi
z�z � 1

2
Bi
x�x; (1)

where the standard notation for Pauli matrices has been
utilized. Here Bi

z is a tunable parameter which depends

H S T

H S

H

idle

idle

idle

U

operation time operation time

idle

idle

FIG. 1. Instead of implementing the three-qubit quantum
Fourier transform with the help of elementary gates, we de-
termine a gate that performs the entire three-qubit operation
with a single control loop. Note that idle time is avoided.
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on the gate voltage, while Bi
x can be controlled with

the help of a flux through the SQUID. Note that setting
Bi
z � Bi

x � 0 results in degeneracy. At the degeneracy
point, there will be no change in the physical state of
the system. In the case of single-qubit gates, it is easy to
see from this model that any rotation in SU(2) can be
performed on the qubits. Note that U(2) is not available
since the Hamiltonian is traceless. In general, we cannot
achieve U�2N� for N qubits since the Hamiltonian of the
entire quantum register turns out to be traceless.
However, the global phase factor is not physical since it
corresponds to a redefinition of the zero level of energy.

Qubits can be coupled by connecting them in parallel
to an inductor; see Fig. 2. This scenario has the benefit of
allowing for a longer decoherence time and that of being
tunable. The resulting coupling term in the Hamiltonian
between the qubits i and j is then of the form [4]

Hcoupling � �CBi
xB

j
x�y � �y; (2)

where C is a positive parameter depending on the capaci-
tances of the qubits and also on the inductance. It follows
from Eqs. (1) and (2) that one can apply nontrivial two-
qubit operations by simultaneously turning on the
SQUIDs of the two qubits, although the �x term will be
turned on as well. All the other qubits must have their
SQUIDs turned off. On the other hand, one-qubit �x
operations require that all but one SQUID is turned on.
By turning off a SQUID we mean applying a half flux
quantum through it. Note that in the present context it is
actually impossible to perform independent operations on
any two subsets of the quantum register due to the in-
ductive coupling. Since one must also take into account
the decoherence mechanism, it is not practical to let most
qubits reside at their degeneracy point. The question
arises whether it would rather prove more efficient to
try and find some scheme of finding larger quantum
operations, instead of using elementary gates.

To tackle the challenge posed above, we concentrate on
finding quantum gates numerically. The structure of the
Josephson-qubit Hamiltonian is such that it is not imme-
diately transparent how one would actually construct
even the basic controlled-NOT gate. We accomplish this
by considering loops ��t� in the control-parameter space
spanned by fBj

x�t�g and fBj
z�t�g. Therefore, the function

��t� is of the vector form

��t� � �B1
z�t� � � �BN

z �t� B1
x�t� � � �BN

x �t��T; (3)

where we have assumed a register of N qubits. The tem-
poral evolution induces the unitary operator

U � T exp

 
�i

Z
��t�

H���t��dt
!
; (4)

where T stands for the time-ordering operator and we
choose �h � 1. The integration is performed along the
path formed by ��t� where the loop starts at the origin,
i.e., at the degeneracy point. We will restrict the path to a
special class of loops, which form polygons in the pa-
rameter space. Thus the parameters vary in time at a
piecewise constant speed, and none of the parameters is
turned on or off instantaneously. We further set the time
spent in traversing each edge of the polygon equal to
unity. This limitation could be relaxed, in which case
the length of each edge in time would be an additional
free parameter. We also set C � 1 in Eq. (2). This can be
achieved by properly fabricating the inductor, but we have
every reason to believe that the algorithm will work for
other choices of C as well. Hence, in order to evaluate
Eq. (4) one needs only to specify the coordinates of the
vertices of the polygon, which we denote collectively as
X�. Numerically, it is easy to evaluate the unitary opera-
tor in a stable manner by further dividing the loop ��t�
into tiny intervals that take the time �t to traverse. If �i
denotes all the values of the parameters in the midpoint of
the ith interval, and m is the number of such intervals,
then we find to a good approximation

UX�
	 exp�� iH��m��t� � � � exp�� iH��1��t�: (5)

We now proceed to transform the problem of finding the
desired unitary operator into an optimization task.
Namely, any ÛU can be found as the solution of the problem
of minimizing the error functional

f�X�� � kÛU�UX�
kF (6)

over all possible values of X�. Here k � kF is the Frobenius
trace norm defined as kAkF �

������������������
Tr�AyA�

p
. The number

of adjustable vertices of the polygon � is kept fixed
from the beginning. One needs to have enough vertices
to parametrize the unitary group SU�2N�. The dimension
of this group is 22N � 1 and there are 2N parameters for
each vertex. Thus, we must have 2N� 
 22N � 1. We use
� � 12 for the three-qubit gates and � � 4 for the two-
qubit gates. Within this formulation the method of finding
the desired gates is similar to the recently introduced
method of finding holonomic quantum gates [11]. Thus
we again expect the minimization landscape to be rough
and we apply the robust polytope algorithm [16] for the
minimization.

We concentrate on finding two- and three-qubit gates,
since one-qubit gates can be trivially constructed with the

Φ1

V1

EJ ,CJ

L

Cg

Φ2

V2

EJ ,CJ

Cg

Φ3

V3

EJ ,CJ

Cg

FIG. 2. Schematic illustration of three Josephson charge qu-
bits with inductive coupling. The adjustable parameters include
the gate voltages Vi and the enclosed fluxes �i.
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help of Euler angles. A larger quantum gate could be per-
formed by factoring it into two- and three-qubit opera-
tions, and the implementation for these could be found
numerically. It seems that quantum operations for four,
five, or more qubits could be found with the same method,
assuming that sufficient computing resources are avail-
able. However, even in the case of three-qubit gates the
optimization task becomes challenging and we need to
use parallel programming. In the parallel three-qubit
program, since the function evaluations of f�X�� require
a major part of the computation, we distribute the work-
load such that each processor calculates the contribution
of a single edge of the polygon. In addition, one processor
handles the minimization routine.

Let us turn to the results. First, we attempt to construct
a gate equivalent to the controlled-NOT, namely,

U � exp

�
i
�
4

�2664
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3
775: (7)

The phase factor is needed in order for the gate to belong
to SU(4). It is already hard to see from the form of the
Hamiltonian how this gate would be carried out in the
present setting. Figure 3 illustrates an implementation of
this gate that has been obtained by minimizing the error
function in Eq. (6); the error is negligible. This example
clearly illustrates the potential of our method.

As a second example, we construct the two-qubit
quantum Fourier transform (QFT). The QFT (see, e.g.,
Ref. [2]) is given in the case of two qubits by

F2 � 1

2

2
664
1 1 1 1
1 i �1 �i
1 �1 1 �1
1 �i �1 i

3
775: (8)

Furthermore, we need to multiply this by exp�i �8� in order
to find a gate that belongs to SU(4). Figure 4 shows the
resulting loop that has been found with the help of the
algorithm. In general, the optimization task for two-qubit
gates can be performed quite easily with the help of
personal computers. However, finding three-qubit gates
is already quite time consuming. It proves worth the extra
effort to do this, though.

The three-qubit quantum Fourier transform is [2]

F3 � 1���
8

p

2
666666666664

1 1 1 1 1 1 1 1
1 ! !2 !3 !4 !5 !6 !7

1 !2 !4 !6 1 !2 !4 !6

1 !3 !6 ! !4 !7 !2 !5

1 !4 1 !4 1 !4 1 !4

1 !5 !2 !7 !4 !1 !6 !3

1 !6 !4 !2 1 !6 !4 !2

1 !7 !6 !5 !4 !3 !2 !

3
777777777775
;

(9)

where ! � exp�i �4�. Since det�F3� � i we must set ÛU �
exp��i �

16�F3 such that ÛU 2 SU�8�. As an evidence of the
success of the three-qubit algorithm, we have in Fig. 5
plotted the implementation of the three-qubit Fourier
transform. We conclude from these three examples that
it is possible to find far more powerful optimal imple-
mentations of multiqubit quantum gates with the help of
the minimization scheme [17].

To further assess the strength of the technique, we
compare the number of steps that are required to carry
out the three-qubit Fourier transform using only two-
qubit gates with the number of steps required when using
the full three-qubit implementation of Fig. 5. The two-
qubit implementation [18] requires effectively four gates;
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FIG. 3. Control-parameter sequences as functions of time that
yield the gate in Eq. (7) which is equivalent to the controlled-
NOT. The relative error is on the order of 10�11 and 100
discretization points per edge were used.
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FIG. 4. Control-parameter sequences as functions of time
that yield the two-qubit Fourier transform in Eq. (8). The
relative error is on the order of 10�11 and 100 discretization
points per edge were used.
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see Fig. 1. Since these gates would have to be performed
sequentially, we would need five polygon edges per
two-qubit operation. This results in 20 edges for the whole
operation. Using elementary gates would require far more
edges. Our optimized three-qubit Fourier transform,
though, only requires 13 edges. Since each edge contrib-
utes the same amount to the operation time, we conclude
that our implementation is improved. What is more, not
all multiqubit gates can be decomposed as conveniently
as the Fourier transform. For them the gain is higher.
Thus, increasing the amount of classical computing re-
sources should yield even better results.

In conclusion, we have described how to efficiently
construct two- and three-qubit quantum gates for the
Josephson charge qubit using numerical optimization.
An immediate strength of the present scenario is that
one avoids unnecessary idle time during the logical
quantum operations. Since the loops are traversed at a
piecewise constant speed, and no fields are instan-
taneously switched, this method of constructing quan-
tum gates should be viable from the experimental point
of view as well. The effect of finite fall and rise times
of pulses on the quality of quantum gates has been
studied recently [19]. Since we do not use pulses but
instead interpolate along linear paths in the parame-
ter space, such errors can be avoided. It seems reason-
able to construct large-scale quantum algorithms in
multiqubit blocks. This can be accomplished by opti-
mizing the gate realization with the help of classical
computers.

The authors thank M. Nakahara for useful discussions
and CSC (Finland) for computing resources. This work is
supported by the Helsinki University of Technology and
Academy of Finland.

Note added.—After submitting our manuscript, work
on a parallel switching method was kindly brought to our
attention by Burkard et al. [20].

*Currently at VTT Information Technology,
Microsensing, POB 1207, 02044 VTT, Finland.
Electronic address: antti.niskanen@vtt.fi

†Electronic address: juhav@focus.hut.fi
[1] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo,

N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Wein-
furter, Phys. Rev. A 52, 3457 (1995).

[2] J. Gruska, Quantum Computing (McGraw-Hill, New
York, 1999); M. A. Nielsen and I. L. Chuang, Quantum
Computation and Quantum Information (Cambridge
University Press, Cambridge, 2000); A. Galindo and
M. A. Martin-Delgado, Rev. Mod. Phys. 74, 347 (2002).

[3] A. Shnirman, G. Schön, and Z. Hermon, Phys. Rev. Lett.
79, 2371 (1997); D.V. Averin, Solid State Commun. 105,
659 (1998).

[4] Yu. Makhlin, G. Schön, and A. Shnirman, Rev. Mod.
Phys. 73, 357 (2001).

[5] J. Q. You, J. S. Tsai, and F. Nori, Phys. Rev. Lett. 89,
197902 (2002).

[6] W. H. Zurek, Rev. Mod. Phys. (to be published).
[7] Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Nature

(London) 398, 786 (1999); Phys. Rev. Lett. 87, 246601
(2001).

[8] T. P. Orlando, J. E. Mooij, L. Tian, C. H. van der Wal,
L. Levitov, S. Lloyd, and J. J. Mazo, Phys. Rev. B 60,
15 398 (1999).

[9] J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina,
Phys. Rev. Lett. 89, 117901 (2002); Y. Yu, S. Han, X. Chu,
S. Chu, and Z. Wang, Science 296, 889 (2002).

[10] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier,
C. Urbina, D. Esteve, and M. H. Devoret, Science 296,
886 (2002).

[11] A. O. Niskanen, M. Nakahara, and M. M. Salomaa,
Quantum Information and Computation 2, 560 (2002);
Phys. Rev. A 67, 012319 (2003).

[12] P. Zanardi and M. Rasetti, Phys. Lett. A 264, 94 (1999).
[13] J. Siewert and R. Fazio, Phys. Rev. Lett. 87, 257905

(2001).
[14] J. P. Palao and R. Kosloff, Phys. Rev. Lett. 89, 188301

(2002).
[15] X. Wang, A. Sørensen, and K. Mølmer, Phys. Rev. Lett.

86, 3907 (2001).
[16] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright,

SIAM J. Optim. 9, 112 (1998).
[17] We have carried out sensitivity analyses on the CNOT and

two-qubit QFT gate realizations; the error was found to
scale linearly with the rms of the Gaussian noise added at
each vertex: error 	 6� hnoiseirms.

[18] We assume that one-qubit operations are embedded into
two-qubit gates.

[19] S. Oh, Phys. Rev. B 65, 144526 (2002).
[20] G. Burkard, D. Loss, D. P. DiVincenzo, and J. A. Smolin,

Phys. Rev. B 60, 11404 (1999).

0 5 10
-2

0

2

4
Bz

1

Bx
1

0 5 10
 -2

0

2

4

 F
ie

ld
 s

tr
en

gt
h

Bz
2

Bx
2

0 5 10
 -2

0

2

4

t

Bz
3

Bx
3

t

t

FIG. 5. Control-parameter sequences as functions of time
that yield the three-qubit quantum Fourier transform (modulo
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Quantum-circuit optimization is essential for any practical realization of quantum com-

putation, in order to beat decoherence. We present a scheme for implementing the final
stage in the compilation of quantum circuits, i.e. for finding the actual physical realiza-
tions of the individual modules in the quantum-gate library. We find that numerical opti-
mization can be efficiently utilized in order to generate the appropriate control-parameter
sequences which produce the desired three-qubit modules within the Josephson charge-
qubit model. Our work suggests ways in which one can in fact considerably reduce the
number of gates required to implement a given quantum circuit, hence diminishing idle
time and significantly accelerating the execution of quantum algorithms.

Keywords: decoherence; Josephson charge qubit; multiqubit quantum gates; numerical
optimization.

1. Introduction

The most celebrated and potentially useful quantum algorithms, which include
Shor’s factorization algorithm1 and Grover’s search,2 manifest the potential of a
quantum computer compared to its classical counterparts.

Widely different physical systems have been proposed to be utilized as a quan-
tum computer.3,4 The main drawback shared by most of the physical realizations is
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2 J. J. Vartiainen et al.

the short decoherence time. Decoherence5 destroys the pure quantum state which is
needed for the computation and, therefore, strongly limits the available execution
time for quantum algorithms. This, combined with the current restricted technical
possibilities to construct and control nanoscale structures, delays the utilization of
quantum computation for reasonably extensive6 algorithms.

The execution time of a quantum algorithm can be reduced by optimization.
The methods similar to those common in classical computation7 can be utilized in
quantum compiling, constructing a quantum circuit8 for the algorithm. Moreover,
the physical implementation of each gate can and must be optimized in order to
achieve gate sequences long enough, for example, to implement Shor’s algorithm
within typical decoherence times.9

Any quantum gate can be implemented by finding an elementary gate
sequence10,11 which, in principle, exactly mimics the gate operation. In the most
general case on the order of 4n elementary gates are needed to implement an arbi-
trary n-qubit.12 Fortunately, remarkably shorter polynomial gate sequences are
known to implement many commonly used gates, such as the n-qubit quantum
Fourier transform (QFT). In addition to the exact methods, quantum gates can be
implemented using techniques which are approximative by nature.9,13–15

In this paper we consider the physical implementation of nontrivial three-gate
operations. As an example of the power of the technique, we show how to find
realizations for the Fredkin, Toffoli, and QFT gates through numerical optimization.
These gates have been suggested to be utilized as basic building blocks for quantum
circuits and would thus act as basic extensions of the standard universal set of
elementary gates. However, the method presented can be employed to find the
realization of any three-qubit gate. Having more computer resources available would
allow one to construct gates acting on more than three qubits.

The numerical method allows us a straightforward and efficient way for finding
the physical implementation of any quantum gate. Thus, the method may prove to
be practical or even necessary for an efficient experimental realization of a quantum
computer.

We concentrate on a hypothetical Josephson charge qubit register,16 since the
experimental investigations of superconducting qubits is active; see, for instance,
Refs. 17–19. The scheme utilizes the number degree of freedom of the Cooper pairs in
a superconducting Josephson-junction circuit. It is potentially scalable and it offers,
in principle, full control over the quantum register. Moreover, the method employed
here is easily extended to any physical realization providing time-dependent control
over the physical parameters.

2. Physical Model

The physical implementation of a practical quantum algorithm requires that it is
decomposed into modules whose physical realizations are explicitly known. In the
quantum computer, the gate operations are realized through unitary operations
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Acceleration of Quantum Algorithms Using Three-Qubit Gates 3

U that result from the temporal evolution of the physical state of the quantum
register. The unitary evolution is governed by the Hamiltonian matrix H(γ), which
describes the energy of the system for a given setting of physical parameters γ. In
general, the parameters are time-dependent, γ = γ(t). The induced unitary operator
is obtained from the formal solution of the Schrödinger equation

U = T exp

(
−i

∫
γ(t)

H(γ(t))dt

)
, (1)

where T stands for the time-ordering operator and we have chosen � = 1.
We consider the Josephson charge qubit register as a realization of a quantum

computer, see Fig. 1. The register is a homogenous array of mesoscopic supercon-
ducting islands and the states of the qubit correspond to either zero or one extra
Cooper pair residing on the island. Each of the islands is capacitively coupled to
an adjustable gate voltage, V i

g (t). In addition, they are coupled to a superconduct-
ing lead through mesoscopic SQUIDs. We consider an ideal situation, where each
Josephson junction in the SQUID devices has the same Josephson energy EJ and
capacitance CJ. The magnetic flux Φi(t) through the ith SQUID loop is a con-
trol parameter which may be produced by adjustable current Ii. The qubit array
is coupled in parallel with an inductor, L, which allows the interaction between
the qubits.

In this scheme the Hamiltonian for the qubit register is9,16

H =
n∑
i

{
−1

2
Bi

zσ
i
z − 1

2
Bi

xσi
x

}
−

n,n∑
i�=j

CBi
xBj

xσi
y ⊗ σj

y, (2)

where the standard notation for Pauli matrices has been utilized and σi
x stands

for I ⊗ · · · ⊗ σx ⊗ I · · · ⊗ I. Above, Bi
x can be controlled with the help of a flux

Φi(t) through the ith SQUID, Bi
z is a tunable parameter which depends on the gate

voltage Vg(t) and C is a constant parameter describing the strength of the coupling.
We set C equal to unity by rescaling the Hamiltonian and time. The approach taken
is to deal with the parameters Bi

z and Bi
x as dimensionless control parameters.

Fig. 1. Schematic of an array of Josephson charge qubits coupled in parallel with an inductor.
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4 J. J. Vartiainen et al.

In the above Hamiltonian, each control parameter can be set to zero, to the
degeneracy point, thereby eliminating all temporal evolution. The implementation
of one-qubit operations is straightforward through the Baker–Campbell–Hausdorff
formula, since the turning on of the parameters Bi

z and Bi
x one by one does not

interfere with the states of the other qubits. Implementation of two-qubit operations
is more complex since simultaneous application of nonzero parameter values for
many qubits causes undesired interqubit couplings. However, by properly tuning
the parameters it is possible to compensate the interference and to perform any
temporal evolution in this model setup. This is partly why numerical methods are
necessary for finding the required control-parameter sequences.

Finally, we point out that using the above Hamiltonian we are able to per-
form gates U ∈ SU(2k) since the Hamiltonian is traceless. However, for every gate
U ∈ U(2k) we can find a matrix U ′ = eiφU which has a unit determinant. The
global phase factor eiφ corresponds to redefining the zero level of energy.

3. Numerical Methods

We want to determine the physical realization for the quantum gates. Our aim is
to numerically solve the inverse problem of finding the parameter sequences γ(t)
which would yield the desired gate operation when substituted into Eq. (1). The
numerical optimization provides us with the realizations for not only any one- and
two-qubit, but also for any three-qubit gates. Using the three-qubit implementation
we circumvent the idle time in qubit control which provides us faster execution
times, see Fig. 2.

In the Josephson charge qubit model the Hamiltonian for the n-qubit register,
Eq. (2), depends on the external parameters

γ(t) = [B1
z (t) · · · Bn

z (t); B1
xz(t) · · · Bn

x (t)].

To discretize the integration path γ(t) for numerical optimization we consider a
parametrization in which the values of the control-parameter fields, {Bi

z(t)} and
{Bi

z(t)}, are piecewise linear functions of time. Consequently, the path γ(t) can be
fully described by a set of parameter values at ν control points, where the slopes of
the fields changes. We denote the set of these values collectively as Xγ . To obtain
a general k-qubit gate Uk ∈ SU(2k) one needs to have enough control parameters
to parameterize the unitary group SU(2k), which has a total of 22k − 1 generators.
Since there are 2k free parameters for each control point in γ we must have

2kν ≥ 22k − 1. (3)

We use ν = 12 for the three-qubit gates and ν = 4 for the two-qubit gates. We force
the parameter path to be a loop, which starts from and ends at the degeneracy point,
where all parameter values vanish. Then we can assemble the modules in arbitrary
order without introducing mismatch in the control parameters. We further set the
time spent in traversing each interval of the control points to equal unity. Eventually,
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Fig. 2. Implementation of the Fredkin gate on the Josephson charge qubit model. (a) The quan-
tum circuit symbol of the Fredkin gate, and (b) its physical implementation by controlling all three
qubits simultaneously. (c) The two-qubit gate decomposition of the Fredkin gate. Here V =

√
σx

and V ∗ stands for its Hermitian conjugate. (d) The physical implementation of the gate sequence;
note that during each gate operation, one of the qubits is in the idle state. The vertical axis in
figures (b) and (d) stands for the control parameter field amplitudes; the solid line describes the
parameter Bi

z and the dotted line the parameter Bi
x, see text.

the execution time of Uk is proportional to ν + 1, which gives us a measure to
compare different implementations. Figure 2 illustrates our approach and shows
the benefits of the three-qubit implementation of the Fredkin gate compared to
corresponding implementation through two-qubit gate decomposition. Note that
the two-qubit gate implementation could be further optimized.20

We evaluate the unitary operator in Eq. (1) in a numerically robust manner by
dividing the loop γ(t) into tiny intervals that take time ∆t to traverse. If γi denotes
all the values of the parameters in the midpoint of the ith interval, and m is the
number of such intervals, we then find to a good approximation

UXγ ≈ exp(−iH(γm)∆t) · · · exp(−iH(γ1)∆t). (4)

The evaluation of the UXγ consists of independent matrix multiplications which
can be evaluated simultaneously. This allows straightforward parallelization of the
computation. To calculate the matrix exponentials efficiently we use the truncated
Taylor-series expansion

eA ≈
m∑

k=0

Ak

k!
, (5)
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where m is an integer in the range 3–6. Since the eigenvalues of the anti-Hermitian
matrix A = −iHδt are significantly less than unity, the expansion converges rapidly.
The applicability of the approximation can be confirmed by comparing the results
with the exact results obtained using spectral decomposition.

Using the above numerical methods we transform the inverse problem of finding
the desired unitary operator into an optimization task. Namely, any Û can be found
as the solution of the problem of minimizing the error function

f(Xγ) = ‖Û − UXγ ‖F (6)

over all possible values of Xγ . Here ‖ · ‖F is the Frobenius trace norm defined
as ‖A‖F =

√
Tr(A†A). The minimization landscape is rough, see Fig. 3. Thus

we apply the robust polytope search algorithm21 for the minimization. We have
assumed that a suitable limit of sufficient accuracy for the gate operations is given
by the requirement of the applicability6 of quantum error correction

‖UXγ − Û‖ < 10−4, (7)

Fig. 3. Typical planar cut of the error function space. The plane through the minimum point
Xmin has been chosen arbitrarily in the parameter space. The irregular shape of the landscape
easily reveals the complexity of finding the global minimum and the reason why the gradient-based
methods fail.
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where Û and UXγ are the target and the numerically optimized gate operations,
respectively.

4. Quantum Gate Optimization Results

We have applied the minimization procedure to various three-qubit gates and found
that the error functional of Eq. (6) can be minimized to values below 10−4 by
running the polytope search repetitively. Table 1 represents the optimized control
parameters which serve to yield the Fredkin gate when applied to the Josephson
charge qubit Hamiltonian. Numerical results for the Toffoli and three-qubit QFT
gates are represented in Tables 2 and 3, respectively. Finding the control parameter
using the polytope search requires an order of 106 error-function evaluations, which

Table 1. Field amplitudes at the control points for the Fredkin gate.

Time B1
z B2

z B3
z B1

x B2
x B3

x

1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 0.71637 −1.44846 1.54511 0.55428 0.67228 −0.58105
3 2.23337 0.18377 1.73522 1.29275 −0.69463 0.01513
4 1.17895 −1.31725 −2.22145 −1.11461 0.27210 −0.18665
5 −0.92555 1.97326 −1.15875 1.49438 2.69507 1.57872
6 −0.54804 0.66834 0.48872 −0.38981 −1.88659 −0.60226
7 1.18034 −2.13101 −0.81205 −0.27817 2.13894 0.92208
8 −0.59994 2.80989 0.82839 −0.24260 −1.09419 2.09561
9 2.78429 0.35914 1.98896 −0.11839 0.90439 0.83671

10 0.79364 2.40575 −1.78131 0.67600 3.31481 0.17828
11 −0.41098 −0.69585 0.15594 −0.21996 0.70917 0.15377
12 0.12630 3.39809 2.14043 1.65229 0.37794 −0.64223
13 0.84941 −1.17701 1.28801 −1.84075 1.16739 0.33965
14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 2. Field amplitudes at the control points for the Toffoli gate.

Time B1
z B2

z B3
z B1

x B2
x B3

x

1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 0.00286 −0.06484 0.96050 0.72386 0.33310 −0.22026
3 2.85647 −0.08874 2.94358 1.60795 −0.18192 0.03931
4 0.67879 −1.70364 −2.54280 −1.65771 −0.04722 −0.25411
5 −0.17379 0.87916 0.19581 1.55484 2.98447 1.22991

6 0.01847 2.68973 −0.18098 0.02898 −0.54301 −0.15977
7 0.21569 −3.27483 −0.33407 −0.31173 2.26503 0.32031
8 −0.57439 4.25644 1.25986 0.12262 0.06238 1.87619
9 3.40836 −0.48759 0.44296 −0.20867 0.04664 1.00381

10 −0.60520 1.59369 0.87620 0.95412 2.75968 0.37209
11 −0.10762 0.16258 −0.24672 −0.11839 1.38245 0.01990
12 0.20275 1.97553 1.12769 1.07003 0.46081 −0.35437
13 0.99088 −0.23145 0.68050 −2.12999 0.74237 0.01537
14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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Table 3. Field amplitudes for the three-qubit QFT gate.

Time B1
z B2

z B3
z B1

x B2
x B3

x

1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

2 0.49824 0.41039 1.75837 0.42339 0.67345 1.83257
3 −0.18007 0.55372 −1.79297 0.64987 0.53048 −0.39300
4 0.73625 0.60488 −0.94171 0.61458 0.09641 −0.39863
5 2.21744 1.28419 2.82723 0.47046 1.04206 1.59345
6 0.47037 −0.48092 −0.53215 0.04297 0.21802 1.24063
7 0.69085 0.72558 1.00427 0.22332 1.25082 −0.25144
8 2.61154 0.87134 0.74335 0.31834 −0.00374 1.64643
9 0.24827 0.82952 1.04102 2.31043 1.00804 0.98377

10 −0.90785 −1.32491 1.10923 0.69935 −0.15359 −0.34420
11 0.59315 1.36082 −0.19764 1.83023 0.58541 0.85453
12 0.76819 0.31529 0.24531 −0.40221 1.13052 0.68184
13 −0.85651 0.02093 0.85491 1.33447 0.56580 0.06332
14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 4. Comparison of the execution times for various quantum gates.

Gate Fredkin Toffoli QFT U ∈ SU(23) U ∈ SU(23)
Decomposed 3-qubit Gates

Number of two-qubit gates 5 3 3 206 —
Execution time 25 15 15 1030 13

takes tens of hours of CPU time, but can be done in a reasonable time by using
parallel computing.

We found that the error functional grows linearly in the vicinity of the minimum
point Xγ , which implies that the parameter sequence found may be robust. The
robustness was further analyzed by adding Gaussian noise to the control parameters
of the path γ(t). Such a sensitivity analysis confirmed that the error scales linearly
with the root-mean-square amplitude of the surplus Gaussian noise.

In our scheme, any three-qubit gate requires an integration path γ(t) with 12
control points, which takes 13 units of time to execute. Similarly, a two-qubit gate
takes 5 units of time to execute. Table 4 summarizes our results by comparing
the number of steps that are required to carry out a single three-qubit gate or
using a sequence of two-qubit gates. The results are calculated for the Fredkin and
Toffoli gates following the decomposition given in Refs. 20 and 10. For a QFT gate
the quantum circuit is explicitly shown, for example, in Ref. 22. Any three-qubit
gate can be realized by using 68 controlled2 U and controlled2 NOT gates. This
number can be reduced to 50 using palindromic optimization.23 The decomposition
of the controlled2 U gate is discussed in Ref. 10. Note that the results in Table 4
are calculated assuming that the physical realization for any two qubit modules is
available through some scheme similar to the one which is employed in this paper
and one-qubit gates are merged into two-qubit modules. The implementation of
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a general three-qubit module using a limited set of gates, for example, one-qubit
rotations Ry and Rz and the CNOT gate has recently been discussed in Ref. 12.

5. Discussion

We have shown how to obtain approximative control-parameter sequences for a
Josephson charge-qubit register with the help of a numerical optimization scheme.
The scheme utilizes well known theoretical methods and the results are obtained
through heavy computation. Our method can prove useful for experimental real-
ization of working quantum computers. The possibility to implement nontrivial
multiqubit gates in an efficient way may well turn out to be a crucial improvement
in making quantum computing realizable. For example, Josephson-junction qubits
suffer from a short decoherence time, in spite of their potential scalability, and
therefore the runtime of the algorithm must be minimized using all the possible
ingenuity imaginable.

Here we have utilized piecewise linear parameter paths. This makes the scheme
experimentally more viable than the pulse-gate solutions, since the parameters are
adjusted such that no fields are switched instantaneously. However, the numeri-
cal method proposed for solving the time evolution operator is not unique. Some
implicit methods for the integration in time may turn out to yield the results more
accurately in the same computational time. Furthermore, for practical applications
it may turn out to be useful to try and describe the parameter paths using a collec-
tion of smooth functions and to find whether they would produce the required gates.

To summarize the results of our numerical optimization, we emphasize that more
efficient implementations for quantum algorithms can be found using numerically
optimized three-qubit gates. In the construction of large-scale quantum algorithms
even larger multiqubit modules may prove powerful. The general idea is to use
classical computation to minimize quantum computation time, aiming below the
decoherence limit.
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We investigate the physical implementation of Shor’s factorization algorithm on a Josephson charge qubit
register. While we pursue a universal method to factor a composite integer of any size, the scheme is demon-
strated for the number 21. We consider both the physical and algorithmic requirements for an optimal imple-
mentation when only a small number of qubits are available. These aspects of quantum computation are usually
the topics of separate research communities; we present a unifying discussion of both of these fundamental
features bridging Shor’s algorithm to its physical realization using Josephson junction qubits. In order to meet
the stringent requirements set by a short decoherence time, we accelerate the algorithm by decomposing the
quantum circuit into tailored two- and three-qubit gates and we find their physical realizations through nu-
merical optimization.

DOI: 10.1103/PhysRevA.70.012319 PACS number(s): 03.67.Lx, 03.75.Lm

I. INTRODUCTION

Quantum computers have potentially superior computing
power over their classical counterparts[1,2]. The novel com-
puting principles which are based on the quantum-
mechanical superposition of states and their entanglement
manifest themselves, for example, in Shor’s integer-
factorization algorithm[3] and in Grover’s database search
[4]. In this paper we focus on Shor’s algorithm which is
important owing to its potential applications in(de)cryptog-
raphy. Many widely applied methods of public-key cryptog-
raphy are currently based on the RSA algorithm[5] which
relies on the computational difficulty of factoring large inte-
gers.

Recently, remarkable progress toward the experimental
realization of a quantum computer has been accomplished,
for instance, using nuclear spins[6,7], trapped ions[8,9],
cavity quantum electrodynamics[10], electrons in quantum
dots [11], and superconducting circuits[12–17]. However,
the construction of a large multiqubit register remains ex-
tremely challenging. The very many degrees of freedom of
the environment tend to become entangled with those of the
qubit register which results in undesirable decoherence[18].
This imposes a limit on the coherent execution time available
for the quantum computation. The shortness of the decoher-
ence time may present fundamental difficulties in scaling the
quantum register up to large sizes, which is the basic require-
ment for the realization of nontrivial quantum algorithms
[19].

In this paper, we consider an inductively coupled charge-
qubit model[20]. Josephson-junction circuits provide two-
state pseudospin systems whose different spin components
correspond to distinct macroscopic variables: either the
charges on the superconducting islands or the phase differ-
ences over the Josephson junctions. Thus, depending on the

parameter values for the setup, one has flux[12,13], or
charge qubits[14–17,21]. Thus far the largest quantum reg-
ister, comprising seven qubits, has been demonstrated for
nuclear magnetic resonance(NMR) in a liquid solution[7].
However, the NMR technique is not believed to be scalable
to much larger registers. In contrast, superconducting
Josephson-junction circuits are supposed to provide scalable
registers and hence to be better applicable for large quantum
algorithms[22]. Furthermore, they allow integration of the
control and measurement electronics. On the other hand, the
coupling to the environment, e.g., through the electrical
leads,[23] causes short decoherence times.

In addition to the quantum register, one needs a quantum
gate “library,” i.e., a collection of control parameter se-
quences which implements the gate operations on the quan-
tum register. The quantum gate library must consist of at
least a set of universal elementary gates[24], which are typi-
cally chosen to be the one-qubit unitary rotations and the
CNOT gate. Some complicated gates may also be included in
the library.

The quantum circuit made of these gates resembles the
operational principle of a conventional digital computer. To
minimize the number of gates, the structure of the quantum
circuit can be optimized using methods similar to those in
digital computing[25]. Minimizing the number of gates is
important not only for fighting decoherence but also for de-
creasing accumulative errors of classical origin. If some tai-
lored two-, three- or arbitraryk-qubit gates are included in
the gate library, the quantum circuits may be made much
more compact. The implementation of gates acting on more
than two qubits calls for numerical optimization[26]. For
further discussion on the implementation of non-standard
gates as the building blocks for quantum circuits, see Refs.
[27–30].

We propose an implementation of Shor’s algorithm for
factoring moderately large integers—we deal with both algo-
rithmic and hardware issues in this paper. These are two key
aspects of quantum computation which, however, have tradi-
tionally been topics of disjoint research communities. Hence*Electronic address: juhav@focus.hut.fi
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we aim to provide a unifying discussion where an expert on
quantum algorithms can gain insight into the realizations us-
ing Josephson junctions and experimentalists working with
Josephson devices can choose to read about the quantum
algorithmic aspects. The background material on the con-
struction of a quantum circuit needed for the evaluation of
the modular exponential function[31,32] is presented in Ap-
pendix A and a derivation of the effective Hamiltonian for a
collection of inductively coupled Josephson qubits is given
in Appendix B.

This paper is organized as follows: The construction of a
quantum gate array for Shor’s algorithm is discussed in Sec.
II. In Sec. III, we consider the Josephson charge-qubit regis-
ter. Section IV presents the numerical methods we have em-
ployed to find the physical implementations of the gates.
Section V discusses in detail how one would realize Shor’s
algorithm using Josephson charge qubits to factor the num-
ber 21. Section VI is devoted to discussion.

II. SHOR’S FACTORIZATION ALGORITHM

With the help of a quantum computer, one could factor
large composite numbers in polynomial time using Shor’s
algorithm [3,33–35]. In contrast, no classical polynomial
time factorization algorithm is known to date, although the
potential existence of such an algorithm has not been ruled
out, either.

A. Quantum circuit

The strategy for the factoring of a numberN=pq, both p
and q being primes, using a quantum computer relies on
finding the periodr of the modular exponential function
fsxd=axsmod Nd, where 0,a,N is a random number
coprime toN. For an evenr and if ar/2Þ−1smod Nd at least
one prime factor ofN is given by gcdsar/2±1,Nd. It can be
shown [3] that this happens with a probability higher than
one half. Otherwise, a quantum algorithm must be executed
for different values fora until a properr is found.

The evaluation offsxd can be implemented using several
different techniques. To obtain the implementation which in-
volves the minimal number of qubits, one assumes that the
numbersa andN are hardwired in the quantum circuit. How-
ever, if a large number of qubits is available, the design can
be easily modified to take as an input the numerical values of
the numbersa andN residing in separate quantum registers.
The hardwired approach combined with as much classical
computing as possible is considerably more efficient from
the experimental point of view.

Figure 1 represents the quantum circuit1 needed for find-
ing the periodr. Shor’s algorithm has five stages:(1) Initial-
ization of the quantum registers. The numberN takes n
= dlog2sN+1de bits to store into memory, wheredve stands for
the nearest integer equal to or greater than the real numberv.
To extract the period offsxd, we need at least two registers:
2n qubits for the registeruxl2n to store numbersx and n

qubits for the registeruyln to store the values offsxd. The
registeruxl2n is initialized asu0l2n, whereasuyln= u1ln. (2) The
elegance of a quantum computer arises from the possibility
to utilize arbitrary superpositions. The superposition state of
all integers 0øxø22n−1 in the registeruxl2n is generated by
applying the Hadamard gateH on each qubit separately.(3)
The execution of the algorithm, the unitary operatorUf, en-
tangles each input valuex with the corresponding value of
fsxd:

Ufo
x

uxlu1l = o
x

uxluaxsmod Ndl. s1d

(4) The quantum Fourier transformationsQFTd is applied to
the registeruxl2n, which squeezes the probability amplitudes
into peaks due to the periodicityfsxd= fsx+rd. (5) A mea-
surement of the registeruxl2n finally yields an indication of
the periodr. A repetitive execution of the algorithm reveals
the probability distribution which is peaked at the value
22n/ r and its integer multiples of output values in the register
uxl2n.

Besides the quantum algorithm which is used to findr, a
considerable amount of classical precomputing and postpro-
cessing is required as well. However, all this computing can
be performed in polynomial time.

B. Implementing the modular exponential function

We are looking for a general scalable algorithm to imple-
ment the required modular exponential function. The imple-
mentation of this part of the algorithm sets limits for the
spatial and temporal requirements of computational re-
sources, hence it requires a detailed analysis. The remarkable
experimental results[7] to factor the number 15 involve an
elegant quantum circuit of seven qubits and only a few
simple quantum gates. The implementation definitely ex-
ploits the special properties of the number 15, and the fact
that the outcome of the functionaxsmod Nd can be calculated
classically in advance for all input valuesx whenN is small.
For arbitraryN, reversible arithmetic algorithms must be em-
ployed[36,37]. The classical arithmetic algorithms[38], can
be implemented reversibly by replacing the irreversible logic
gates by their reversible counterparts. The longhand multi-
plication algorithm, which we use below, should be optimal
up to very large numbers, see Sec. VI, requiring onlyOsnd
qubits andOsn3d steps.

The implementation of the modular exponential function
using a longhand multiplication algorithm and a QFT-based
adder[31] requires only a small scratch space, for a total of
4n+2 qubits. The details of the implementation are given in
Appendix A. The conventional approach to longhand multi-

1In the quantum circuit diagrams, we have indicated the size of a
registeruxlm with the subscriptm.

FIG. 1. Quantum circuit for Shor’s algorithm.
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plication without a QFT-based adder would require on the
order of 5n qubits. The price of the reduced space is the
increase in the execution time, which now isOsn4d, but
which can be reduced down toO(n3 log2sn/ed), allowing for
a certain error levele. According to Ref.[31] one would
achieve an algorithm requiring only 2n+3 qubits with inter-
mediate measurements. However, we do not utilize this
implementation since the measurements are likely to intro-
duce decoherence.

III. JOSEPHSON CHARGE-QUBIT REGISTER

The physical model studied in this paper is the so-called
inductively coupled Cooper pair box array. This model, as
well as other related realizations of quantum computing, has
been analyzed in Ref.[20]. The derivation of the Hamil-
tonian is outlined in Appendix B for completeness. Our ap-
proach to quantum gate construction is slightly different
from those found in the literature and it is therefore worth-
while to consider the physical model in some detail.

A schematic picture of a homogeneous array of qubits is
shown in Fig. 2. Each qubiti comprises a superconducting
island coupled capacitively to a gate voltage and a supercon-
ducting quantum interference devicesSQUIDd loop through
which Cooper pairs may tunnel. The gate voltage may be
used to tune the effective gate chargeng

i of the island
whereas the external magnetic flux through the SQUID can
be used to control the effective Josephson energy. Each qubit
is characterized by a charging energyEC and a tunable Jo-
sephson energyEJsFid, whereFi is the flux threading the
SQUID. The Hamiltonian for theith qubit can be written as

Hsingle
i = − 1

2Bz
i sz

i − 1
2Bx

i sx
i s2d

and the coupling between theith and j th qubits as

Hcoupling
i,j = − CBx

i Bx
j sy

i
^ sy

j . s3d

The qubit stateu0l (“spin up”) corresponds to zero extra
Cooper pairs residing on the island and the stateu1l (“spin
down”) corresponds to one extra pair on the island. Above
Bx

i =EJsFid, Bz
i =ECs1−2ng

i d, and C=p2L /F0
2sCqb/CJ

2d de-
notes the strength of the coupling between the qubits,
whereasCqb is the total capacitance of a qubit in the circuit,
CJ is the capacitance of the SQUID,L is the inductance
which may in practice be caused by a large Josephson junc-
tion operating in the linear regime and finallyF0=h/2e is
the flux quantum. The approach taken is to deal with the
parametersBz

i and Bx
i as dimensionless control parameters.

We assume that they can be set equal to zero which is in
principle possible if the SQUID junctions are identical. We
setC=1 and choose natural units such that"=1.

The Hamiltonian in Eqs.(2) and(3) is a convenient model
for studying the construction of quantum algorithms for a
number of reasons. First of all, the total Hamiltonian can be
set to zero thereby eliminating all temporal evolution. Sec-
ond, setting the effective Josephson coupling to zero elimi-
nates the coupling between any two qubits. This is achieved
by applying half a flux quantum through the SQUID loops. If
the Josephson energy of any two qubits is nonzero, there will
automatically emerge a coupling between them. This is
partly why numerical methods are necessary for finding the
control-parameter sequences. By properly tuning the gate
voltages and fluxes it is possible to compensate undesired
couplings and to perform any temporal evolution in this
model setup.

We note that the generatorsisx and isz are sufficient to
construct all the SUs2d matrices through the Baker-
Campbell-Hausdorff formula and thus single-qubit gates
need not be constructed numerically. It is even possible to do
this in a piecewise linear manner avoiding abrupt switching
since the only relevant parameter is the time integral of either
Bz

i or Bx
i if only one of them is nonzero at a time. That is, any

UPSUs2d acting on theith qubit can be written as

U = expSisz
iE

t2

t3

Bz
i stddt/2DexpSisx

iE
t1

t2

Bx
i stddt/2D

3expSisz
iE

t0

t1

Bz
i stddt/2D , s4d

where we assume that fromt0 to t1 only Bz
i is nonzero, from

t1 to t2 only Bx
i is nonzero and fromt2 to t3 only Bz

i is again
nonzero. For instance, the gateiH PSUs2d, equivalent to the
Hadamard gateHPUs2d up to a global phase, can be real-
ized as in Fig. 3 by properly choosing the time-integrals in
Eq. (4). We cannot achieve Us2nd for n qubits since the
Hamiltonian for the entire quantum register turns out to be
traceless, thus producing only SUs2nd matrices. However, the
global phase factor is not physical.

The above Hamiltonian is an idealization and does not
take any decoherence mechanisms into account. To justify

FIG. 2. (a) Schematic of a Josephson charge qubit with the
relevant parameters.(b) An array of Josephson charge qubits
coupled in parallel with an inductor.
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this omission, we have to ensure that a charge-qubit register
is decoherence-free for time scales long enough to execute a
practical quantum algorithm. In addition, we have neglected
the inhomogenity of the SQUIDs. It may be extremely chal-
lenging to fabricate sufficiently uniform junctions. A three-
junction design might alleviate this problem. Whereas for the
control of M two-junction SQUIDs one needs at leastM
independent sources of flux, the three-junction design would
call for 2M independent sources. The extra sources may be
used to compensate the structural nonuniformities. The noise
in the control parameters has also been neglected but it will
turn out that the error will grow linearly with the rms dis-
placement of uncorrelated Gaussian noise. Correlated noise
may only be tolerated if it is very weak. We have also ne-
glected the issue of quantum measurement altogether in the
above.

A crucial assumption is thatkBT ln Nqp!EJ!EC!DBCS,
whereNqp is the number of quasiparticle modes. Typical op-
eration frequencies would be in the GHz range and the op-
eration temperature could be tens of mK. For our two-state
Hamiltonian to apply, we should actually insist that, instead
of EJ!EC, the requirementEJsFid!EC holds. It may appear
at first thatBx

i cannot take on values exceedingBz
i . However,

this does not hold since the gate charge also plays a role;
values ofBz

i can be very small ifng
i is tuned close to one half.

Since we employ natural units we may freely rescale the
Hamiltonian while rescaling time. This justifies our choice
C=1 above. Furthermore, it is always possible to confine the
parameter values within an experimentally accessible range.
For more discussion, see Ref.[20].

IV. IMPLEMENTING A QUANTUM-GATE LIBRARY

The evaluation of the time-development operatorU is
straightforward once the externally controlled physical pa-
rameters for the quantum register are given. Here we use
numerical optimization to solve the inverse problem; namely,
we find the proper sequence for the control variables which
produce the given quantum gate.

A. Unitary time evolution

The temporal evolution of the Josephson charge-qubit
register is described by a unitary operator

Ugstd = T expS− iE
gstd

H„gstd…dtD , s5d

whereT stands for the time-ordering operator andH(gstd) is
the Hamiltonian for the qubit register. The integration is per-

formed along the pathgstd which describes the time evolu-
tion of the control parameters in the space spanned byhBx

j stdj
and hBz

jstdj.
Instead of considering pathsgstd with infinitely many de-

grees of freedom, we focus on paths parametrized by a finite
set of parametersXg. This is accomplished by restricting the
pathgstd to polygons in the parameter space. Since the pulse
sequence starts and ends at the origin, it becomes possible to
consistently arrange gates as a sequence. For ann-qubit reg-
ister, the control-parameter pathgstd is of the vector form

gstd = fBz
1std, . . . ,Bz

nstd;Bx
1std, . . . ,Bx

nstdgT, s6d

whereBz
i std andBz

i std are piecewise linear functions of time
for the chosen parametrization. Hence, in order to evaluate
Eq. (5), one only needs to specify the 2n coordinates for the
n vertices of the polygon, which we denote collectively as
Xg. We let the parameter loop start at the origin, i.e., at the
degeneracy point where no time development takes place.
We further set the time spent in traversing each edge of the
polygon to be unity.

In our scheme, the execution time for each quantum gate
depends linearly on the numbern of the vertices in the pa-
rameter path. This yields a nontrivial relation between the
execution time of the algorithm and the size of the gates.
First note that eachk-qubit gate represents a matrix in
SUs2kd. To implement the gate, one needs to have enough
vertices to parametrize the unitary group SUs2kd, which has
22k−1 generators. In our model, we have 2k parameters for
each vertex, which implies 2knù22k−1. We have usedn
=4 for the two-, andn=11 for the three-qubit gates.

To evaluate the unitary operatorUgstd we must find a nu-
merical method which is efficient, yet numerically stable. We
divide the pathgstd into tiny intervals that take a timeDt to
traverse. Ifgi collectively denotes the values of all the pa-
rameters in the midpoint of theith interval, andm is the
number of such intervals, we then find to a good approxima-
tion

UXg
< expf− iHsgmdDtg . . . expf− iHsg1dDtg. s7d

We employ the truncated Taylor series expansion

e−iHDt < o
k=0

l s− iHDtdk

k!
s8d

to evaluate each factor in Eq.(7). We could have used the
Cayley form

e−iHDt < s1 − iHDt/2ds1 + iHDt/2d−1, s9d

or an adaptive Runge-Kutta method to integrate the
Schrödinger equation as well. It turns out that the Taylor
expansion withl =3 is fast and yields enough precision for
our purposes. The precision of the approximation is verified
by comparing the results with those obtained with an exact
spectral decomposition ofH.

B. Minimization of the error function

Given an arbitrary unitary matrixÛ, our aim is to find a
parameter sequenceXg for the Josephson charge-qubit regis-

FIG. 3. Pulse sequence implementing an equivalent of the Had-
amard gate. Solid line indicatesBx

i while the dashed line showsBz
i .
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ter that yields a unitary matrixUXg
=Û. We convert the in-

verse problem into an optimization task; namely, that of find-
ing the zeroes of the error function

psXgd = iÛ − UXg
iF. s10d

Minimizing psXgd over all the possible values ofXg will

produce an approximationUXg
for the desired gateÛ. Above

i·Fi denotes the Frobenius trace norm, defined asiAiF
=ÎTrsA†Ad, which is numerically efficient to compute. Since
all the matrix norms are mathematically equivalent, a small
value ofiAiF implies a small value in all other norms as well,
see, e.g., Ref.[39].

For this minimization problem, the error-function land-
scape is rough consisting of many local minima. Conse-
quently, any gradient-based minimization algorithm will en-
counter serious problems. Thus, we have found the minimum
point Xmin for all the gates presented in Sec. V using repeated
application of a robust polytope algorithm[30,40,41]. In the
first search, the initial condition was chosen randomly. At the
next stage, the outcome of the previous search was utilized.
In order to accelerate the evaluation ofUgstd we varied the
time stepsDt; at an early stage of the optimization a coarse
step was employed while the final results were produced us-
ing very fine steps. Typical convergence of the search algo-
rithm is illustrated in Fig. 4.

The required accuracy for the gate operations is in the
range 10−4–10−5 for psXgd for two reasons:(i) in quantum
circuits with a small number of gates, the total error remains
small, and(ii ) for large circuits, quantum-error correction
can in principle be utilized to reduce the accumulated errors
[19]. Our minimization routine takes on the order of 106

function evaluations to reach the required accuracy.

V. EXAMPLE

To demonstrate the level of complexity for the quantum
circuit and the demands on the execution time, we explicitly
present the quantum circuit and some physical implementa-
tion for the gates needed for Shor’s algorithm to factor the
numberN=21. We choosea=11 and hardwire this into the
quantum circuit.

A. Quantum circuit

Figure 5 illustrates the structure of the quantum part of the
factorization algorithm for the number 21. Since it takes 5
bits to store the number 21, a 5-qubit registeruyl5 and a
10-qubit registeruxl10 are required.

For scratch space we need a six-qubit registeruzl6 and one
ancilla qubit ual. Each thirteen-qubit controlled-MMUL

(modular multiplier) gate in the algorithm can be further de-
composed as indicated in Fig. 5. The controlled-MADD

(modular adder) gates can also be decomposed. The ten-
qubit QFT breaks down to 42 two-qubit gates and one three-
qubit QFT. Similarly, the six-qubit QFT can be equivalently
implemented as a sequence of 18 two-qubit gates and one
three-qubit QFT. In this manner we can implement the entire
algorithm using only one-, two- and three-qubit gates. The

control parameter sequence realizing each of them can then
be found using the scheme outlined in Sec. IV. Two ex-
amples of the pulse sequences are also shown in Fig. 5(bot-
tom insets).

B. Physical implementation

The experimental feasibility of the algorithm depends on
how complicated it is compared to the present state of tech-
nology. Following the above construction of the quantum
circuit, the full Shor algorithm to factor 21 requires about
2300 three-qubit gates and some 5900 two-qubit gates, in
total. Also a few one-qubit gates are needed but alternatively
they can all be merged into the multi-qubit gates. If only
two-qubit gates are available, about 16 400 of them are re-
quired. If only a minimal set of elementary gates, say the
CNOT gate and one-qubit rotations are available, the total
number of gates is remarkably higher. In our scheme the
execution time of the algorithm is proportional to the total
length of the piecewise linear parameter path which governs
the physical implementation of the gate operations. Each of
the three-qubit gates requires at least a 12-edged polygonal
pathgstd whereas two-qubit gates can be implemented with 5
edges. Consequently, on the order of 57100 edges are re-
quired for the whole algorithm if arbitrary three-qubit gates
are available, whereas,82 000 edges would be required for
an implementation with only two-qubit gates.

The ability to find the physical implementation of the gate
library for Shor’s algorithm is demonstrated with some fur-
ther examples. Figure 6 shows how to physically implement
the controlled swap gate. We have taken advantage of tai-
lored three-qubit implementations: a one-qubit phase-shift
gate and a three-qubit controlled2 phase-shift gate are
merged into one three-qubit gate, see Fig. 7.

The control parameter sequences presented will yield uni-
tary operations which approximate the desired gate opera-
tions with an accuracy better than 10−4 in the error-function
values for the three-qubit gates. For two-qubit gates the error
is negligible. Since the whole factorization circuit consists of
some 103 three-qubit gates, we obtain a total error of,10−1.

FIG. 4. Convergence of the algorithm for the Fredkin gate. The
error function values are indicated by the solid line and the distance
of the parameter sequence from the numerical optimumXmin by the
dotted line.
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This is sufficient for the deduction of the essential informa-
tion from the output. The robustness of the gates obtained
was studied numerically by adding Gaussian noise to the
vertices of the path. The error function was found to scale
linearly with the rms of the variance of the Gaussian noise:
error <63 knoiselrms, which is probably acceptable.

VI. DISCUSSION

In this paper we have discussed the implementation of
Shor’s factorization algorithm using a Josephson charge-
qubit register. This method is suitable for the first experimen-
tal demonstration of factoring a medium-scale integer
24−220. As an example of this method we have studied the
algorithm for factoring 21. The only integer smaller than 21
for which Shor’s algorithm is applicable is 15, but this is a
special case having only the periods 2 and 4. For the experi-
mental factoring of 15 one should consider more direct meth-
ods[7] to implement the modular exponential function. For a

FIG. 5. Quantum circuit for
Shor’s algorithm factoring the
number 21 with the parameter
value a=11. The full circuit is
shown topmost and the decompo-
sitions of the modular multiplier
and adder blocks are indicated
with dashed lines. The gates in the
circuit have their conventional
meanings, except that we denote a
phase-shift gate by a box with a
single numberf in it meaning
that the phase of the stateu1l is
shifted bye2pif/2n

with respect to
the stateu0l. Two examples of nu-
merically optimized parameter se-
quences are also shown.

FIG. 6. Control parameters for the Fredkin gate. Solid line in-
dicatesBz

i while the dashed line showsBx
i .
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larger integerN other approaches, e.g., the Schönhage-
Strassen[38] multiplication algorithm, will provide a more
efficient quantum circuit. Our approach of numerically deter-
mining the optimized gates can be generalized to other
physical realizations with tunable couplings as well. The
only requirement is that the system allows total control over
the control parameters.

We have found that the number of qubits and quantum
gates that are involved in carrying out the algorithm is rather
large from the point of view of current technology. Thus the
realization of a general factorization algorithm for a large
integerN will be challenging. Consequently, the scaling of
the chosen algorithm, both in time and space, will be of
prime importance.

The method we propose utilizes three-qubit gates, which
compress the required quantum-gate array, resulting in a
shorter execution time and smaller errors. One should also
consider other implementations of the quantum algorithms
that employ gates acting on a larger number of qubits to
further decrease the number of gates and execution time. For
example, four-qubit gates may be achievable, but this in-
volves harder numerical optimization.

Finally, let us consider the experimental feasibility of our
scheme. To factor the number 21, we need on the order of

104 edges along the control-parameter path. Assuming that
the coherence time is on the order of 10−6 s implies that the
upper limit for the duration of each edge is 10−10 s. Since our
dimensionless control parameters in the examples are on the
order of unity, the energy scale in angular frequencies must
be at least on the order of 1010 s−1. Typical charging energies
for, say, thin-film aluminum structures may be on the order
of 10−23 J which corresponds to 1011 s−1. The ultimate limit-
ing energy scale is the BCS gap, which for thin-film alumi-
num corresponds to an angular frequency of about
331011 s−1. Based on these rough estimates, we argue that
factoring the number 21 on Josephson charge qubits is, in
principle, experimentally accessible.

Constructing a quantum algorithm to decrypt RSA-155
coding which involves a 512-bit integerN with the scheme
that we have presented would require on the order of 2000
qubits. Since the execution time scales asn3 log n tens of
seconds of decoherence time is needed. This agrees with the
estimates in Ref.[42] and poses a huge experimental chal-
lenge. This can be compared to the 8000 MIPS(million in-
structions per second) years of classical computing power
which is needed to decrypt the code using the general nu-
meric field sieve technique[1]. Thus Shor’s algorithm does
appear impractical for decrypting RSA-155. However, it pro-
vides the only known potentially feasible method to factor
numbers having 1024 or more bits.

We conclude that it is possible to demonstrate the imple-
mentation of Shor’s algorithm on a Josephson charge-qubit
register. Nevertheless, for successful experimental imple-
mentation of large-scale algorithms significant improvements
in coherence times, fabrication, and ultrafast control of qu-
bits is mandatory.

FIG. 8. Quantum circuit required for performing the evaluation
of the modular exponential function utilizing theCMMULsbd gates.

FIG. 9. Decomposition of theCMMULsa2i
d gate usingC2MADDsbd and controlled swap gates. If the controlling qubituxil is active the

resulting state isy8;y+a2i
smod Nd, otherwisey8=y. Note that the gate utilizes an additional ancilla registeruzln+1 to perform the

calculation.

FIG. 7. Control parameters for a composite gate consisting of a
twice controlled phase shift and a one-qubit rotation, see the text.
Solid line indicatesBz

i while the dashed line showsBx
i .
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Note added.Recently, it was brought to our attention that
a similar circuit implementing Shor’s algorithm has been
constructed for a linear nearest-neighborsLNNd qubit array
[43] independent of any specific physical realization.
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APPENDIX A: CONSTRUCTION OF A QUANTUM
CIRCUIT

Here we represent the construction of a quantum circuit
needed for an evaluation of the modular exponential function
axsmod Nd. We assume the values ofa andN to be constant
integers coprime to each other. This approach takes advan-
tage of the fast powers trick, see Eq.(A1) below, as well as
the construction of a multiplier suggested by Beauregard
[31], which in part employs the adder of Draper[32].

The modular exponential function can be expressed in
terms of modular products:

ax ; p
i=0

2n−1

„a2ixismod Nd…smod Nd, sA1d

where we have used the binary expansionx=20x0+21x1
+2n−1xn−1, xi P h0,1j. Note that the number of factors in Eq.
(A1) grows only linearly for increasingn. The longhand
multiplication is based on the relation

a2i
x ; o

k=0

2n−1

„a2i
2kxksmod Nd…smod Nd, sA2d

which again involves only a linear number of terms.
Equation(A1) yields a decomposition of the modular ex-

ponential function into controlled modular multiplication
gatesfCMMULsa2i

dg, see Fig. 8. According to Eq.(A2), each of

theMMUL sa2i
d gates can be implemented with the sequence of

the modular adders, see Fig. 9. Since this decomposition of
CMMULsa2i

d requires extra space for the intermediate results,
we are forced to introduce a scratch spaceuzln+1 into the
setup. Initially, we setuzln+1= u0ln+1. Moreover, we must reset
the extra scratch space after each multiplication. This is ac-
complished by multiplication with the inverse elementb−1

whereb=a2i
. Let us consider how the gateCMMULsbd works:

uxlu0l → uxlu0 + bxsmod Ndl sproductd

→ bxsmod Nduxl sswapd

→ ubxsmod Ndlux + s− b−1d„bxsmod Nd…l

= bxsmod Ndu0l sresultd.

Euler’s totient theorem guarantees that for everyb which is
coprime toN, a modular inverseb−1PN exists. Furthermore,
the extended Euclidean algorithm provides an efficient way
to find the numerical value forb−1.

Figure 10 presents the decomposition of theC2MADDsbd
gate sbPNd using adders in the Fourier space. The idea is
first to calculatez8=z+b−N. If z8,0 the ancillaa, which is
initially zero, is flipped andN is added toz8 yielding z8=z
+b. The rest of the circuit is needed to reseta to zero.

The circuit simplifies when multipleC2MADDsbd gates are
applied since the final QFT* will cancel against the initial
QFT of two consecutive gates. This is taken into account in
counting the total number of gates and in Fig. 5. An obvious

FIG. 10. Decomposition of theC2MADDsbd gate into elementary gates, QFT gates, and additions in the Fourier basis(C2ADD). The asterisk
stands for a Hermitian conjugate; it corresponds to a gate for subtraction. The gate takes an input valuez,Nø2n and yieldsuz8ln+1= uz
+bsmod Ndln+1 if the control qubitsxi =1 andyj =1. Otherwiseuz8ln+1= uzln+1. The ancilla qubitual is one if z+b.N and zero otherwise.

FIG. 11. Quantum circuit for ann-qubit Fourier transformation.
Here H stands for the Hadamard gate. The controlled phase-shift
gates are labeled with the numbersk which correspond to the phase
shifts ei2pk/2n

. Note the reversed order of the qubits on the right-
hand side.
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drawback of this implementation is the need for a number of
QFT gates. However, we need to introduce only one ancilla
qubit ual.

The decomposition of the gateC2MADDsbd consists of
twice controlled adders,sn+1d-qubit QFTs, one-qubitNOTS,
andCNOTS. The decomposition of a QFT-gate into one- and
two-qubit gates[2] is represented in Fig. 11. Since Fourier
space is utilized, theC2ADDsbd gates can be implemented[32]
using controlled2 phase shifts. The quantum gate sequence
for an adder working in the Fourier space is depicted in Fig.
12. The values of the phase shifts for the gateC2ADDsbd are

given bye2pif j/2
n
, wheref j =2jb.

Finally, we are in the position to perform the unitary
transformation which implements the modular exponential
function using only one-, two- and three-qubit gates. If the
three-qubit gates are not available, further decomposition
into one- and two-qubit gates is needed, see Ref.[24]. For
instance, each three-qubit twice controlledU gate decom-
poses into five two-qubit gates and each Fredkin gate takes
seven two-qubit gates to implement.

APPENDIX B: DERIVATION OF THE HAMILTONIAN

1. The Lagrangian

Consider a homogenous array of mesoscopic supercon-
ducting islands as an idealized model of a quantum register,
see Fig. 2. The basis states of the qubit correspond to either
zero or one extra Cooper pair residing on the superconduct-
ing island, denoted byu0l and u1l, respectively. Each of the
islands, or Cooper-pair boxes, is capacitively coupled to a
gate voltage,Vg

i . In addition, they are coupled to a supercon-
ducting lead through a mesoscopic SQUID with identical
junctions, each having the same Josephson energyEJ/2 and
capacitanceCJ/2. All these qubits are then coupled in paral-
lel with an inductor,L. The lowest relevant energy scale is
set by the thermal energykBT and the highest scale by the
BCS gapDBCS.

We assume that the gate voltageVg
i and the time-

dependent fluxFi through each SQUID can be controlled
externally. The fluxFi may be controlled with an adjustable
currentI i through an external coil, see the dotted line in Fig.
2(a). In this setup, the Cooper pairs can tunnel coherently to
a superconducting electrode. We denote the time-integral of
voltage, or difference in flux units, over the left junction of
the ith SQUID byfi and the flux through the inductor byw.
The phase difference in flux units over the rightmost junction

is fi −Fi. We take the positive direction for flux to be di-
rected outward normal to the page.

We adoptfi andw as the dynamical variables, whereasFi
and Vg

i are external adjustable parameters. With the help of
elementary circuit analysis[44], we obtain the Lagrangian
for the qubit register

L =
1

2o
i=1

M FCJ

2
ḟi

2 +
CJ

2
sḟi − Ḟid2 + Cgsḟi + ẇ − Vg

i d2 − G w2

2L

+
1

2o
i=1

M FEJ cosS2e

"
fiD + EJ cosS2e

"
sfi − FidDG . sB1d

We now perform the following changes of variables

fi → fi +
Fi

2
−

Cg

CJ + Cg
w, sB2d

which yields

L =
1

2o
i=1

M FsCJ + Cgdḟi
2 − 2CgSVg

i −
Ḟi

2
Dḟi

+ EJ cosSp
Fi

F0
DcosS2e

"
fi −

2pCqb

F0CJ
wDG +

1

2
MCqbẇ

2

− o
i=1

M

CqbSVg
i −

Ḟi

2
Dẇ −

w2

2L
+ const. sB3d

Above, F0=h/2e is the flux quantum andCqb=CJCg/ sCJ

+Cgd is the qubit capacitance in theLC circuit. Note that the
effective Josephson energy of each SQUID can now be
tuned. We denote this tunable energy parameter in Eq.(B3)
as

EJsFid = EJ cosSp
Fi

F0
D . sB4d

The canonical momenta are given byQ=]L /]ẇ and qi

=]L /]ḟi. We interpretQ as the charge on the collective
capacitor formed by the whole qubit register, whereasqi is
the charge on theith island. Note that the chargeqi is related
to the numberni of Cooper pairs on the island throughqi
=−2eni.

2. The Hamiltonian

We are now in the position to write down the Hamiltonian
for the quantum register. We will also immediately replace
the canonical variables by operators in order to quantize the
register. Moreover, we will employ the number of excess
Cooper pairsni on the island and the superconducting phase
difference instead of the usual quantum-mechanical conju-
gates. We will also change to the more common phase dif-
ferenceui related tofi throughui =s2e/"dfi. Hence the rel-
evant commutation relations arefui ,nig=−i and fw ,Qg= i".
All the other commutators vanish. Using the Legendre trans-
formation

FIG. 12. Quantum circuit for the twice controlled addition of a
classical numberb into the quantum registeruzln+1 in the Fourier
basis. The twice controlled phase-shift gates serve to yield the phase
shift e2pifk/2

n
provided that the control qubitsuxil anduyjl are active.
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H = Qẇ + o
i=1

M

qiḟi − L sB5d

we obtain

H = o
i=1

M F2e2sni − ng
i d2

CJ + Cg
− EJsFidcosSui −

2pCqb

F0CJ
wDG

+
sQ + Qgd2

2MCqb
+

w2

2L
. sB6d

We have denoted the effective gate charge by

ng
i =

Cg

2e
SVg

i −
Ḟi

2
D sB7d

and

Qg = o
i=1

M

CqpSVg
i −

Ḟi

2
D . sB8d

In addition to the usual voltage contribution, the time depen-
dence of the flux also plays a role. In practice, the rates of
change of the flux are negligible in comparison to the volt-
ages and this term may safely be dropped.

The Hamiltonian in Eq.(B6) describes the register of qu-
bits sni ,fid coupled to a quantum-mechanicalLC resonator,
i.e., a harmonic oscillatorsQ,wd. We will now assume that
the rms fluctuations ofw are small compared to the flux
quantumF0 and also that the harmonic oscillator has a suf-
ficiently high frequency, such that it stays in the ground state.
The first assumption implies that

cosSui −
2pCqb

F0CJ
wD < cosui +

2pCqb

F0CJ
w sin ui . sB9d

The second assumption will cause an effective coupling be-
tween the qubits. Namely, the Hamiltonian may now be re-
written in the more suggestive form

H < o
i=1

M F2e2sni − ng
i d2

CJ + Cg
− EJsFidcosuiG +

sQ + Qgd2

2MCqb

+
sw − ŵ2d

2L
−

ŵ2

2L
, sB10d

where the operatorŵ is given by

ŵ =
2pLCqb

F0CJ
o
i=1

M

EJsFidsin ui . sB11d

We now see from Eq.(B10) that in the high-frequency limit
the harmonic oscillator is effectively decoupled from the qu-
bit register. The effect of the qubit register is thus to redefine
the minimum of the potential energy for the oscillator. This
does not affect the spectrum of the oscillator, since it will
adiabatically follow its ground state in the low-temperature
limit. We may therefore trace over the degrees of freedom of
the harmonic oscillator and the harmonic-oscillator energy
will merely yield a zero-point energy contribution,"vLC/2.
The effective Hamiltonian describing the dynamics of the
coupled qubit register alone is thus

H < o
i=1

M F2e2sni − ng
i d2

CJ + Cg
− EJsFidcosuiG

−
2p2LCqb

2

F0
2CJ

2 So
i=1

M

EJsFidsin uiD2

. sB12d

This result is in agreement with the one presented in Ref.
[20]. We conclude that theLC-oscillator has created a virtual
coupling between the qubits.

For the purposes of quantum computing, it is convenient
to truncate the Hilbert space such that each Cooper-pair box
will have only two basis states. In the limit of a high charg-
ing energyEC=2e2/ sCg+CJd relative to the Josephson en-
ergy EJ, we may argue that in the region 0øng

i ø1 only the
states withni =0,1 can be occupied. We use the vector rep-
resentation for these states, in whichu0li =s1 0di

T and u1li

=s0 1di
T.

The basis states of the Hilbert space are orthogonal
kkue±iuull=dk,l71. Hence, in this two-state approximation,
cosui =

1
2sx

i and sinui =
1
2sy

i , where, e.g.,

Finally, omitting the constant terms, we obtain the Hamil-
tonian in the Pauli-matrix representation

Hqb = o
i=1

M F−
EC

2
s1 − 2ng

i dsz
i −

EJsFid
2

sx
i G

−
p2L

F0
2 SCqb

CJ
D2

o
i=1

M

o
j=i+1

M

EJsFidEJsF jdsy
i

^ sy
j ,

sB13d

which results in Eqs.(2) and (3) of the main text.
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Fast and Accurate Single-Island Charge Pump: Implementation of a Cooper Pair Pump
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We introduce a Cooper pair ‘‘sluice’’ for the implementation of a frequency-locked current source.
The device consists of two mesoscopic SQUIDs and of a single superconducting island with a gate. We
demonstrate theoretically that it is possible to obtain a current as high as 0.1 nA at better than ppm
accuracy via periodically modulating both the gate charge and the effective Josephson coupling. We find
that the device is tolerant against background charge noise and operates well even in a dissipative
environment. The effect of the imperfect suppression of the Josephson coupling and the finite operating
frequency are also investigated.

DOI: 10.1103/PhysRevLett.91.177003 PACS numbers: 74.50.+r, 03.65.Vf, 73.23.–b, 74.78.Na

Single-electron and Cooper pair devices have attracted
considerable attention recently. Applications such as the
single-electron pump [1] and the Cooper pair box for
quantum computing [2] have demonstrated that at suffi-
ciently low temperatures and high charging energies the
quantization of charge leads to some very interesting
effects. Especially, it has been shown that single electrons
can be pumped extremely accurately at frequencies f of a
few MHz with a relative uncertainty of 10�8 in normal
metal devices according to the relation I � ef [3]. This
has resulted in a standard of capacitance. However, the
pump frequencies, and thus current levels, have been too
low for the realization of a practical accurate current
source for nanoelectronic applications or for realizing
the quantum measurement triangle [4]. The attempts to
generalize the single-electron pump to a superconducting
Cooper pair pump [5,6] that, in theory, would allow for
higher-frequency pumping have been unsuccessful so far
due to a variety of reasons. In particular, Landau-Zener
tunneling between energy levels induces pumping errors.
In addition, there is always a considerable amount of
supercurrent leaking through the pump. Also, the inter-
play of the two conjugate variables, the phase and the
number of Cooper pairs, results in a coherent correction
such that the current is no longer given by the relation I �
2ef [7]. Further, the coherent correction is proportional
to cos’, where ’ is the phase difference over the whole
pump, whereas the supercurrent is proportional to sin’
rendering it impossible to choose ’ to eliminate both of
these simultaneously. The effect of nonidealities can be
reduced by adding more junctions, but this will compli-
cate the practical implementation due to the increasing
number of control parameters and cross capacitances.
Furthermore, one has to take into account the effect of
the fluctuating background charges responsible for the
1=f noise and the phase fluctuations caused by the elec-
tromagnetic environment. The latter, however, may help
in achieving hcos’i � hsin’i � 0 if desired.

In this Letter we propose and critically analyze a
simplified scenario for implementing a Cooper pair sluice
that ideally has no dynamical supercurrent leaking
through the junctions and is governed by the relation I �
2ef or more generally I � 2nef, where n is the number of
pairs carried per cycle. First, we present the general idea
of the device. We also study the viability of implementing
the device by considering different sources of error and
show that the sluice is tolerant against several kinds of
nonidealities. We demonstrate that it is possible to con-
struct a frequency-locked current source that has, with
realistic assumptions, a yield of 0.1–0.2 nA with better
than 1 ppm error.

The device consists of just one superconducting island
that works as the sluice chamber and of two mesoscopic
SQUIDs; see Fig. 1. The role of the SQUID loops is to
serve as the sluice doors for the flow of Cooper pairs. The
control parameters which are varied periodically and
adiabatically include the gate voltage Vg and the magnetic
fluxes �a (a � l; r) through the SQUID loops. The idea of
controlling the effective Josephson coupling is used
throughout in the Josephson qubit literature; see, e.g.,
Ref. [2]. Utilizing flux pulses in Cooper pair shuttles [8]
has also been suggested in Ref. [9] but in a nonadiabatic
context. Here we work in the adiabatic limit. Note that the
device is particularly simple; there is only one voltage

A
Vg

Φ Φr
rCg

(a) (b)

FIG. 1. (a) Schematic illustration of the device, the ‘‘sluice.’’
The role of the coils is to apply controlled flux pulses through
the SQUID loops, and they are synchronized with the periodic
gate voltage. (b) An improved three-junction SQUID.
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gate to adjust. The current through the sluice is given by
the time integral of the expectation value of the current
operator of either of the two SQUIDs. The dynamics is
governed by the Schrödinger equation and the Hamil-
tonian of the device is (in the case of identical junctions)

ĤH � 2e2

2CJ � Cg
�n̂n� ng�2 � Er

J

�
�
�r

�0

�
cos��� ’=2�

� El
J

�
�
�l

�0

�
cos�’=2���: (1)

Here CJ=2 is the capacitance of a single junction, Cg is the
capacitance of the gate, ng � CgVg=2e is the gate charge
in 2e units, �0 � h=2e, and ’ is the phase difference
over the sluice. Furthermore, Ea

J�� �a

�0
� � Emax

J cos�� �a

�0
�

(a � l; r) denotes the effective flux-dependent signed
Josephson energy of the left and the right SQUID, re-
spectively. The Josephson energy of a single junction is
thus Emax

J =2. The factor EC � �2e2�=�2CJ � Cg� is the
charging energy. The quantum mechanical conjugate var-
iables are the number of Cooper pairs on the island n̂n and
the superconducting phase �. They obey the canonical
commutation relation �n̂n; �� � i. The case of nonidenti-
cal junctions is modeled below by not allowing the
Josephson energy to vanish during the cycle. We note
that it is possible to use more complicated SQUIDs [see
Fig. 1(b)] for which one of the junctions is replaced by a
SQUID biased with a static field to match the EJ of the
other half when �0=2 threads the primary loop. Self-
inductance may be ignored for two junctions (other
sources of error dominate) but for the three-junction
design the self-inductance sets a limit for suppression at
�LIC=�0 where IC � 2�EJ=�0. An achievable value for
this could be 10�3. The current operator of the, say, right
SQUID is

Ir � 2e
�h
Er
J

�
�
�r

�0

�
sin��� ’=2�: (2)

The total charge flowing through the system over one
cycle has two components in the adiabatic limit [7],
namely, the contribution from the dynamical supercur-
rent

Qs �
Z tcycle

0
h0;q�t�jIrj0;q�t�idt; (3)

and the pumped charge (� is the loop in parameter space)

Qp � 2 �h Im

"X
n�0

I
�

h0;qjIrjn;qi
E0�q� � En�q� hn;qjrqj0;qi 	 dq

#
:

(4)

We have denoted above the control parameters collec-
tively by the vector q which is varied in time. In the
present context q � �ng; Er

J; E
l
J�T . Because of the adiaba-

ticity criterion, the sluice stays at all times in the ground
state with negligible Zener tunneling. The nth eigenstate

at the point q is denoted by jn;qi and the energy eigen-
value by En�q�.

Figure 2 illustrates a model control-parameter se-
quence. Note that the SQUIDs are biased in such a
manner that one door is always closed, such that the
dynamical contribution of Eq. (3) vanishes. Moreover,
the signal is designed such that the system Hamiltonian
(1) is always nondegenerate. This validates the use of
Eq. (4). Varying just the gate voltage would lead to a
degeneracy at ng � 0:5, but because just one of the doors
is open at this point, the problem is resolved. The sluice is
ideally a switchable Cooper pair box. During the first half
of the sequence one of the SQUIDs works as a Josephson
junction while the other is effectively a capacitor. Then
the roles are exchanged. It is easy to see that this sequence
leads to the transport of exactly one Cooper pair through
the sluice per cycle. In the beginning of the sequence the
system is in the eigenstate of charge (zero pairs) due to the
fact that the effective Josephson couplings are set to zero.
In the middle of the sequence when both doors are again
closed, the island is in the eigenstate of charge but now
with one extra Cooper pair. The Cooper pair has tunneled
through the right SQUID since the left one was closed.
Finally, in the end of pulse the system is again at the
eigenstate of charge with zero Cooper pairs and the
charge must have gone through the left SQUID.
Repeating this sequence results in I � 2ef, where f �
1=tcycle. The form of the pulse may also be generalized for
the purpose of allowing n Cooper pairs to flow through
the sluice over tcycle, thus increasing the current to I �
2nef, simply by operating between ng � 0 and ng � n.

Assuming that the SQUIDs can be closed to a high
degree renders the system almost entirely insensitive to
the actual operating point of voltage. Instead of operating
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FIG. 2. Pulse sequence for pumping a single Cooper pair
through the sluice. The exact form of the pulses is not crucial
as long as the synchronization is maintained. The gate charge
(or voltage) pulse, which is a shifted harmonic one here, may
be generalized to have a larger amplitude and thus a larger
number of pairs could be pumped.
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between ng � 0 and ng � 1 (or ng � 0 and ng � n) we
may just as well operate between ng � � and ng � �� 1
(or ng � � and ng � n� �) as long as � � 1

2 . However,
the adiabaticity criterion becomes harder to fulfill if we
start close to the degeneracy point. Considering that a
typical measured power spectrum of the background 1=f
charge noise is S�f� � 10�8e2=f [2,10], there will be a
need to reconfigure the sluice only after time scales of
hours. This is a definite strength of the present approach
and it is attributable to the use of the controllable
SQUIDs. It should be emphasized that the exact shape
of the pulses is not crucially important as long as the
maxima and minima are synchronized as in Fig. 2. Even
though we consider imperfections in suppressing EJ be-
low, the effect of flux noise still needs to be studied in an
experiment.

Let us comment on the maximum operating frequency
of the device. Because of imperfections in the flux control
and nonidentical Josephson junctions, there is always
some residual Eres

J . This implies that one should have
Emax
J <EC to avoid excess leakage and to make the sluice

insensitive to background charge fluctuations. Further-
more, since the minimum gap in the energy spectrum of
the sluice is roughly Emax

J whenever Emax
J 
 EC holds, one

should have hf � Emax
J . It is often asserted that one

should also have EC � �BCS in order to avoid quasipar-
ticle effects. It follows that there would be an inequality
chain hf � Emax

J <EC � �BCS which seriously limits
the operation frequency of the device. However, it suffices
to have

hf � Emax
J � EC & �BCS (5)

in the present context. Namely, the criterion EC � �BCS

is now superfluous because, assuming adiabaticity, the
sluice is never in its excited state. That is, it is sufficient
to have �BCS such that the second band [11] is just slightly
below the lowest quasiparticle state which cannot be
excited due to adiabaticity. In the case of nonadiabatic
evolution EC � �BCS is, of course, necessary whenever
we consider exciting the system, as in the case of the
Josephson charge qubit [2]. We can also set Emax

J � EC

in Eq. (5) and still get satisfactory performance as we
show below.

We proceed to present numerical results obtained by
integrating the Schrödinger equation corresponding to
the Hamiltonian Eq. (1) over discrete time steps. The
pumped charge was then obtained by numerically inte-
grating the time-dependent expectation value of the cur-
rent operator in Eq. (2). This nonadiabatic method reveals
the effect of the finite operating frequency. We also esti-
mate the effect of several kinds of nonidealities. We
choose for the rest of the paper the typical parameters
CJ � C, Cg � 0:1C, and Emax

J � e2=C such that Emax
J �

EC. Integrating the system at varying frequencies results
in the pumped charge illustrated in Fig. 3. The path of

integration is the ideal sequence of Fig. 2. In light of Fig. 3,
it seems that we could quite safely pump single Cooper
pairs at the frequency f � Emax

J = �h
 10�3 and still have
an accuracy of 7 ppm. Fabricating the island and the leads
out of aluminum is the most viable option for the present,
and by standard lithography one obtains C< 10�15 fF.
The well known BCS gap would be roughly �BCS=h �
50 GHz. Choosing the charging energy optimally, that is,
EC & �BCS, results in an operating frequency of some
300 MHz and a current of about 0.1 nA. However, Fig. 3
also illustrates the adiabaticity error for pumping five
Cooper pairs; that is, the gate charge pulse has an ampli-
tude of Cg�Vg=2e � 5. When this is converted to current,
we conclude that it may be possible to pump 0.2 nA with
better than 1 ppm error. The result of pumping altogether
ten Cooper pairs per cycle is also shown, and it turns out
that a current of about 0.1 nA at 0.1 ppm error is possible.
Ramps of the Josephson energy cause adiabaticity errors
and, in comparison, varying the gate voltage does not
contribute as much at least when pumping only a few
Cooper pairs. The optimum number of pairs per cycle is
yet an open question which we have not solved due to
numerical difficulties.

The quantitative effect of background charge and the
residual value of EJ, Eres

J , is illustrated in Fig. 4. We
calculated the actual pumped charge, in the case of a
single attempted Cooper pair in Fig. 4(a), over one cycle
as a function of the gate charge deviation � and Eres

J . The
result has been averaged over different evenly spaced
phase bias values, namely, ’ � �=2, �, 3�=2, and 2�
(for justification see below). The frequency was f �
Emax
J = �h
 10�4 which corresponds roughly to 0.1 nA.

The performance of the sluice degrades rapidly with
increasing Eres

J at fixed phase bias values. However, a
physical sample would always be subject to some phase
fluctuations. Keeping the phase constant over one cycle,
as done above, is a realistic assumption if the dephasing
time is long compared to tcycle. We see that the error
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FIG. 3. Error (a) in the pumped charge over a single period
and (b) in the current as a function of (a) frequency and
(b) current. Here CJ � C, Cg � 0:1C, Emax

J � e2=C, and fJ �
Emax
J = �h. The error is " � 1�QP=2ne � �I=I. The line

marked by diamonds represents pumping a single Cooper
pair, the line marked by circles represents pumping five
Cooper pairs, whereas the squared line represents pumping
ten Cooper pairs per cycle. In (b) we assume fJ �
300
 109 s�1.
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averages out to a great accuracy even though the deviation
from the ideal point (i.e., Eres

J =Emax
J � 0 and � � 0) is

quite large. Note that the span of gate charge is some 10%
and the span of the residual Eres

J some 1%. Achieving even
Eres
J =Emax

J � 10�3 should be possible with the design of
Fig. 1(b). A similar calculation for pumping five Cooper
pairs was also performed at a frequency corresponding to
I � 0:2 nA, and the averaged result is shown in Fig. 4(b).
A yield of at least 0.2 nA is possible even in the presence
of nonidealities with a relative error of some 10�6.

It is easy to see why phase averaging suppresses the
errors when Eres

J � 0 as suggested by Fig. 4. Namely,
the supercurrent is proportional to Er

JE
l
J sin’ [12] and

the average of this is clearly zero. It is identically zero
whenever one of the sluice doors is closed. We obtain in a
two-state adiabatic approximation a perturbative formula
in Eres

J (for pumping a single Cooper pair)

QP

2e
� 1�

2
����������������������������
�Emax

J �2 � E2
C

q
Emax
J EC

Eres
J cos’ (6)

such that we may confirm that the error is proportional to
cos’ as in the conventional pump [7].We have utilized the
fact that QP � �2e d

d’ �, where � is the Berry phase
associated with the adiabatic loop [13]. The effect of �
on the performance of the sluice is negligible compared to
the effect of nonzero Eres

J with fixed ’. Phase averaging,
i.e., placing the sluice in a dissipative environment, may
be used to cancel the effect of small nonidealities.
Figure 4 clearly indicates that the sluice is quite insensi-
tive to background charge fluctuations.

We assumed that choosing the phases evenly is a rep-
resentative sample of the whole. Over time scales of
seconds one may consider the phase to be evenly distrib-
uted between 0 and 2� due to dissipation. The even dis-
tribution is asymptotically identical to a wide Gaussian
distribution on the whole real axis. The Gaussian nature
can be justified by assuming a thermal bath of harmonic
oscillators coupled to the phase with a sufficiently
high effective impedance. The variance of the phase
increases with the real part of the impedance seen by
the device due to the fluctuation-dissipation theorem.

Thus hexp��i’�i � exp��ih’i � h�’2i=2� decays expo-
nentially as do the pumping errors. Phase averaging has
been used in the R-pump scenarios [6] by inserting large
series resistors. At high currents this leads inevitably to
overheating. In the present context the phase averaging is
needed only as a second order mechanism since most of
the errors are suppressed by the controlled modulation of
the Josephson coupling. Finally, we comment on the
effect of the ammeter. An ammeter with high R can
cause a significant voltage over the sluice. A good choice
would be a cryogenic current comparator modeled by L
and C in parallel. With, e.g., L � 10 H, C � 1 nF, and
Emax
J � EC we would get V�t� � V0 sin�2�ft� with V0 �

e=C� � 50 pV which is negligible.
To conclude, we have introduced and analyzed an idea

of a Cooper pair sluice with just three control parameters.
Compared to other Cooper pair pumping scenarios, we
have suppressed undesired cotunneling, supercurrent
leakage, and, most importantly, the need to have a long
error-prone array of junctions with numerous gates. The
idea for the control of the sluice is similar to the control
of Josephson junction qubits. The sluice is much simpler,
though, since superpositions and entanglement are not
pursued and relatively slow pulses are sufficient.

We thank F. Hekking and O. Buisson for useful dis-
cussions and the Academy of Finland for financial
support.
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Evidence of Cooper pair pumping with combined flux and voltage control

Antti O. Niskanen,1, 2, ∗ Jani M. Kivioja,2 Heikki Seppä,1 and Jukka P. Pekola2
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We have experimentally demonstrated pumping of Cooper pairs in a single-island mesoscopic
structure. The island was connected to leads through SQUID (Superconducting Quantum Inter-
ference Device) loops. Synchronized flux and voltage signals were applied whereby the Josephson
energies of the SQUIDs and the gate charge were tuned adiabatically. From the current-voltage
characteristics one can see that the pumped current increases in 1e steps which is due to quasipar-
ticle poisoning on the measurement time scale, but we argue that the transport of charge is due to
Cooper pairs.

PACS numbers: 74.50.+r, 74.78.Na, 73.23.-b
Keywords: Josephson effect, charge pumping

A device that yields a DC current in response to an AC
signal at frequency f according to the relation I = Qf
is called a charge pump. In the case of electron pumps
Q = me while for Cooper pair pumps Q = 2me, where
m is an integer denoting the number of charges being
pumped per cycle. Typically pumping electrons in meso-
scopic structures requires an array of at least three tun-
nel junctions with voltage gates coupled to the islands
in between the junctions. A Cooper pair pump is ob-
tained when the tunnel junctions are replaced by Joseph-
son junctions. These devices appear at first sight to be
very similar and actually the very same samples may
serve as both Cooper pair and electron pumps depend-
ing on whether the device is in the superconducting state
or not. However, major differences exist. Besides the
doubled charge in the superconducting state, the nature
of the tunneling processes is very different, too. Elec-
trons can tunnel downhill in energy due to the inherent
dissipation mechanisms in normal metals with the rele-
vant time scale given by the RC time constant, where
R is the tunnel resistance and C the tunnel capacitance.
Cooper pairs, on the other hand, try to conserve their
energy, and in the absence of an electromagnetic envi-
ronment, (i.e. zero impedance) only elastic processes are
possible. Their maximum pumping frequency is propor-
tional to E2

J
/(EC~), where EJ and EC are the Joseph-

son and charging energies, respectively. What is more,
superconducting circuits may behave coherently in the
quantum-mechanical sense. The first attempt to pump
Cooper pairs dates back to over a decade ago1. However,
Cooper pair pumps have not been even nearly as accu-
rate as single-electron pumps. The best example of the
latter ones is the NIST seven-junction pump2. The mo-
tivation behind pumping Cooper pairs is two-fold. First
of all, Cooper pair pumps are hoped to be able to pump
larger currents than their normal state counterparts while
still being accurate. This is roughly because increasing
E2

J
/(EC~) is easier than increasing 1/(RC). Secondly,

the operation of Cooper pair pumps is interesting from
the point of view of secondary “macroscopic” quantum
phenomena and the structures are quite similar to the
superconducting qubits (see, e.g., Refs. 3,4). Pumping of

electrons using surface acoustic waves is another active
field of study, see, e.g., Ref. 5.

In this work we report on the experimental demonstra-
tion of pumping Cooper pairs in a structure nicknamed
the Cooper pair “sluice” introduced and theoretically an-
alyzed recently by us, see Ref. 6. The device is particu-
larly simple; it has just one superconducting island, like
the single Cooper pair transistor, but the bare Josephson
junctions are replaced by SQUID loops. The device may
be alternatively viewed as a tunable Cooper pair box, a
Josephson charge qubit7. Here the control is achieved
via adiabatically manipulating both the fluxes through
the two loops and the gate voltage. Ideally the SQUIDs
act as tunable Josephson junctions whose coupling en-
ergy can be varied between a value close to zero and the
sum of the couplings of the individual junctions. First we
describe the experimental setup and discuss the theoret-
ical idea briefly. Then we present measured data of the
pumping experiment. We demonstrate that the pumped
current obeys nicely the theoretical predictions. We also
comment on possible ways of improving the results should
the device be used in applications and discuss the signif-
icance of the results.

Figure 1 shows an SEM image of the sample used in
the experiments along with a schematic of the measure-
ment setup in Fig 1(c). The device was fabricated out of
aluminum using standard e-beam lithography and two-
angle shadow evaporation. It consists of a superconduct-
ing island that connects to the leads via SQUID loops.
These are relatively large (10 µm by 100 µm) in order
to have good inductive coupling but the island and the
junctions are still small such that the charging energy is
large enough (≈1 K) to suppress thermal effects. The
sample was attached to a dilution cryostat with a base
temperature of 20 mK with the RF-lines connected.

Ideally, the pumping of m Cooper pairs is achieved by
applying the three pulses in Fig 2(b) through the atten-
uated RF-lines. The upmost signal is applied to the gate
while the two lower ones represent the currents flowing in
the input coils. Two different versions of the gate pulse
are shown, one for pumping “forward” and one for pump-
ing “backward”. To understand how the device works,
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FIG. 1: (a) Scanning electron micrograph of the sample. The
two input coils can be seen on top and bottom, respectively.
The gate extends to the far right and the gate capacitance is
Cg = 0.24 fF based on DC measurements. The current flows
between the two leads on the left side. (b) Closeup of the
island. The measured total capacitance of the island is 3.7
fF which corresponds to a charging energy of about 1 K for
Cooper pairs. The maximum EJ per SQUID is estimated to
be around 0.5 K based on the normal state resistance. (c)
Schematic illustration of the measurement setup. We used
commercial room temperature electronics for the current mea-
surement and three synchronized arbitrary waveform gener-
ators for the control pulse. The external coil for tuning the
background of the SQUIDs is at 20 mK. The voltage biasing
happens via voltage division through resistive lines. A surface
mount capacitor of 680 pF and an on-chip capacitor on the
order of 10 pF were also used.

it is instructive to look at the Hamiltonian of the device,
which reads

Ĥ =EC(n̂ − ng)
2 − E1

J
(Φ1) cos(φ + ϕ/2)

− E2

J
(Φ2) cos(ϕ/2 − φ). (1)

Here EC = 2e2/CΣ is the charging energy for Cooper
pairs where CΣ is the total capacitance seen from the is-
land. Furthermore, Ej

J
with j = 1, 2 are the (signed)

Josephson energies of the two SQUIDs which can be
tuned with the external fluxes Φj . For identical junctions

Ej

J
= Emax

J
cos(πΦj/Φ0), where Φ0 ≈ 2×10−15 Wb is the

flux quantum and Emax

J
is proportional to the critical cur-

rent IC of the individual junctions via Emax

J
= (~/e)IC.

Furthermore, ng = CgVg/2e is the gate charge in 2e units,
n̂ is the number operator for Cooper pairs, φ is the phase
on the island and their commutator is [n̂, φ] = i. The en-
vironment couples to the pump through ϕ which is the
phase difference over the pump. If the SQUIDs were
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FIG. 2: (a) Contour plot of the measured DC current at con-
stant voltage against DC currents in the two input coils. The
total variation in the current is around 40 pA at this bias point
(150 µV). The arrow line indicates the path along which the
flux pulsing is performed in the pumping experiment. The
lines of minimum current along which the arrows are aligned
are the lines along which half a flux quantum threads one of
the two SQUIDs. The slight tilting of the lines is a signa-
ture of the inductive cross-coupling. Arranging the pulsing
as shown compensates for the cross coupling. (b) Waveforms
that were used in the experiment. The thin almost sinusoidal
pulse is the gate signal for pumping in, say, “forward” direc-
tion, and the dashed π-shifted signal is for pumping in the
“backward” direction. The low level of the gate pulse is zero.
The thick lines are the current signals corresponding to the
arrowed path in the previous contour plot. (c) Contour plot of
the measured current at a constant voltage of 250 µV against
the relative phase differences between the signals with the
pumping signal being applied at 2 MHz. The blue circle is
the optimal choice for pumping “forward” while the red circle
is the optimal point for pumping “backward”. The ampli-
tude was set large (over 400e) and the variation in current
was 150 pA. This operation point is far from optimal, but we
still obtain a clear modulation for calibration purposes.

to have perfectly identical junctions as well as vanishing
self-inductance and if the flux control were perfect then
the effective Josephson couplings could be set to zero.

Figure 2(a) shows a contour plot based on the measure-
ment of the current through the device at a constant volt-
age against the DC currents in the two input coils. Along
the lines of minimum current the flux through either of
the loops is (k +1/2)Φ0, where k is an integer. The mea-
surement reveals not only the mutual inductances Mij

between coil i and SQUID j, which were M11 = 30 pH,
M12 = 2 pH, M21 = 3 pH and M22 = 50 pH, but also
the proper offsets at any given time, i.e. the background
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fluxes threading the loops. This measurement does not
fully demonstrate to which extent it is possible to sup-
press the Josephson energy.

In the beginning of an ideal pumping cycle the EJ’s
of both loops are set as close to zero as possible and the
position of the gate determines the ground state. We see
that initially the ground state of the island is an eigen-
state of charge. We then adiabatically “open” one of the
SQUIDs, i.e. move to the tip of the, say, horizontal ar-
row in Fig 2(a) which means that the EJ of the SQUID
1 is maximized while for the other it is still zero. We
stay at the tip of the arrow for some time and start to
either decrease or increase the gate charge ng depending
on the direction we have chosen. When the gate reaches
its extremum we “close” the SQUID again. Now if every-
thing has been adiabatic the system is still in its ground
state. The charge is again a good quantum number at
this point but since the position of the gate is different,
the number of charges is different too. The only possi-
bility is that the excess charges have tunneled through
the SQUID whose EJ has been non-vanishing during the
cycle. The EJ of the second SQUID is then opened and
the gate put back to its initial position. Finally the sec-
ond SQUID is also closed. The number of Cooper pairs
pumped is given by the difference between the integers
closest to the high and low level of the gate charge. Fix-
ing the low level and sweeping the high level should result
in a 2e-periodic staircase in the pumped current.

The phase of the gate determines naturally the direc-
tion, i.e. a 180-degree phase shift reverses the pumped
current. Fig 2(c) illustrates the measured behavior of the
current when the relative phases between the pulses are
varied. The phase of coil 1 is fixed at 180 degrees and
the phases of the other two are swept. The two circles
shown are the optimal choices for pumping. Note that
the extrema of current are indeed 180 degrees apart in
the gate as expected and the optimal choices are the ones
illustrated in Fig. 2. For practical reasons we were forced
to use frequencies in the MHz range, but in the present
pumping scheme it is possible to increase the value of
current conveniently by increasing the gate amplitude.
We tried out different shapes of pulses such as a mere
sinusoidal gate signal, but it was found that it is better
to keep the gate constant while the EJ is not maximized
which is in accordance with the adiabaticity requirement.
In practice we have arranged for a 15% dead time between
the flux pulses although no systematic optimization of
the pulses was performed.

Figure 3(a) shows an example of characteristic IV-
curves (i.e., current-voltage curves) with the pumping
signal being applied at f = 3 MHz. The effect of the
change of direction is shown. The curves correspond to
eight different values of gate amplitude. We see immedi-
ately that a leakage current exists on top of the pumped
current that is on the same order or less than the pumped
current. The IV-curves, however, clearly shift and the
curves for pumping in opposite directions are far apart.
The total current flowing through the device is a sum
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FIG. 3: (a) Examples of measured IV-curves with the pump-
ing signal applied at 3 MHz. The gate charge (in 2e units)
varies between 4 and 34. The solid curves correspond to
pumping forward and the dashed curves correspond to pump-
ing backward. Here Vmeas is the measured value of voltage
over the pump. (b) Difference of current, ∆I, in the IV-
curves of (a) for pumping in opposite directions. The dotted
lines indicate the expected values.

of two contributions, one being the leakage supercurrent
that can be associated with the dynamical phase of the
wave function and the other being the less trivial pump-
ing contribution attributable to the geometric phase. If
one assumes that the leakage is the same for the pumping
in both directions at a definite voltage bias point, then
the difference between the IV-curves should be twice the
magnitude of current pumped in this case. Fig. 3(b) re-
veals that at low voltages (tens of µV) and at smaller
amplitudes this pumping contribution is indeed close to
the expected level shown with dotted lines. The leak-
age current which is due to the nonideal environment
and flux control is undesirable from an application point
of view, but the physical phenomenon is clearly visible.
The voltage bias is not sufficiently good to eliminate the
leakage, i.e. the P(E)-curve8 for tunneling events is not
sufficiently peaked at the origin.

These considerations suggest that it is interesting to
study the difference in the currents ∆I with the gate
shifted by 180 degrees. Figure 4(a) shows the measured
behavior of ∆I at 2.5 MHz versus the high level of gate
voltage with the low level set to zero. The current may
be seen to increase in clear steps. The expected height
of a step is twice the pumped current, i.e. 4ef which in
this case is some 1.6 pA. Since we sweep the high level of
the gate signal and not just the amplitude with constant
offset, the steps should occur at 2e intervals in the gate
charge. However, due to random parity changes (quasi-
particle “poisoning”) at time scales that are much shorter
than our measurement time scale (0.1 s) but longer than
the pumping cycle (10−6 s) we observe the time average
of two 2e-periodic staircases that are shifted by e in the
gate charge. For instance in Ref. 9 the tunneling time
for quasiparticles was estimated to be 10 µs in a similar
structure while in Ref. 10 it was some 10−2 s for a cou-
pled system of two superconducting transistors with one
grounded. We were unable to measure the corresponding
time in our setup, but based on this supporting evidence
we argue that the transport of current is due to Cooper
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FIG. 4: (a) Difference ∆I in current of forward and backward
pumping at 2.5 MHz against the high level of the gate signal
V hi

g with the low level at zero. The dashed lines are drawn
at 2ef intervals. (b) Large gate amplitude behavior of ∆I at
a few frequencies. The dashed lines show the expected gate
dependece, i.e. their slope is 2ef . The curves are offset for
clarity. (c) Fitted slopes to the data of the previous plots up
to VgCg/e = 10 are shown by circles. The solid line indicates
the expected behavior. The voltage bias point was around 10
µV in all the above plots.

pairs since the order in which the EJ’s are manipulated
changes the direction of current. The quasiparticles effec-
tively shift the gate charge by e but rarely enough such
that the pumping is undisturbed on the level of preci-
sion of the present measurement. If this interpretation
is made then one sees that the obtained results are in
very good agreement with theory. Figure 4(b) illustrates
the measured large amplitude behavior of the pumped
current at frequencies between 1 MHz and 4 MHz. We
see that the current lacks behind the prediction with in-
creasing frequency and amplitude. At 1 MHz no clear

bending of the curve is seen up to gate amplitude of 40e,
while at 4 MHz the performance starts to degrade after
10e. One can observe by looking at Fig. 3(b) that the
”bending” is more pronounced at larger bias voltage val-
ues (voltage is on the order of 10 µV in Fig. 4) while no
visible bending happens up to amplitudes of 68e when
V ≈ 0. Small amplitude behavior in Fig. 4, however,
is linear aside from the steps with a slope of 2ef . Fig-
ure 4(c) shows the slopes obtained from linear fits to the
data of Fig. 4(a) and the ten first steps of Fig. 4(b). One
sees that the agreement is again good.

The above results prove that the flux and voltage
driven pumping of Cooper pairs is experimentally pos-
sible in a single-island device. However, in order to serve
as a practical device the leakage current needs to be taken
care of as well as the quasiparticle poisoning. The quasi-
particles may possibly be handled by either quasiparti-
cle “traps” or by BCS gap profile engineering9. As to
the reduction of the leakage, several options exist. One
option is the engineering of the electromagnetic environ-
ment such that the voltage biasing is good also at fre-
quencies on the order of the charging energy. This would
result in DC IV-characteristics heavily peaked at zero
voltage with negligible leakage current. Another way to
cut down the leakage is to fabricate a longer chain of
junctions. A multiloop SQUID would possibly improve
the suppression of EJ without increasing the number of
controls. Improved RF-engineering would also be of ben-
efit in arranging the flux pulses. To conclude, the results
are encouraging in spite of several nonidealities observed
and the pumping of Cooper pairs with flux control looks
much more attractive than with a mere multiple gate
voltage control.
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Ever since Peter Shor's ground-breaking discovery in 1994 of an algorithm
capable of factoring large integers on a quantum-mechanical computer
exponentially faster than using any known classical method, research on
quantum computing has boomed. Quantum information – a unique mixture
of computer science, physics and mathematics – has developed into a new
branch of information theory. On the experimental side, physicists from
many different disciplines including atomic, solid-state and low-
temperature physics, as well as optics, are striving today towards a practical
quantum computer. All the candidate quantum bit technologies have one
thing in common: They rely on the controlled time-evolution of a closed
quantum system, a seemingly paradoxical task. This work investigates the
temporal control of various quantum systems. While the bulk of the work
is theoretical, also experimental results are reported. The topics discussed
include both geometrical and dynamical quantum computing as well as
adiabatic charge pumping. Particular attention is paid to Josephson
junction systems.
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