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Abstract

Ever since Peter Shor's ground-breaking discovery in 1994 of an algorithm capable
of factoring large integers on a quantum-mechanical computer exponentially faster
than using any known classical method, research on quantum computing has
boomed. Quantum information — a unique mixture of computer science, physics and
mathematics — has developed into a new branch of information theory. On the
experimental side, physicists from many different disciplines including atomic,
solid-state and low-temperature physics, as well as optics, are striving today
towards a practical quantum computer. All the candidate quantum bit (qubit)
technologies have one thing in common: They rely on the controlled time-evolution
of a closed quantum system, a seemingly paradoxical task.

In this Thesis the temporal control of quantum systems is studied. The topics
included can be divided into two according to the type of temporal evolution;
geometrical or dynamical. Geometrical realization-independent methods for
quantum computing are studied first. Then the study is extended into dynamical
quantum computing and the so-called Josephson charge-qubit register is considered
as a test bench. Finally, a spin-off application of the geometrical evolution of a
Josephson junction system is studied, i.e. Cooper pair pumping. A novel Cooper pair
pump, the Cooper pair "sluice", is introduced.

The work on quantum computing reported in this Thesis is theoretical while the
Cooper pair "sluice" is studied both theoretically and experimentally. Numerical
simulations, both sequential and parallel, are used extensively throughout the
Thesis. The experiments were carried out under cryogenic mK conditions and the
sample fabrication was done using e-beam nanolithography.

Because the execution time of a quantum algorithm is always limited by the
inevitable process of decoherence, it is important to utilize any measure available
for accelerating quantum computations. It is found that practical quantum
algorithms could greatly benefit from classical computer-aided optimization.
Moreover, it is found that even a modest demonstrator of a full quantum algorithm
using Josephson charge qubits is just barely realizable within present-day
coherence times. However, the experimental part of this Thesis shows clear
evidence of the functioning of the "sluice". While the worldwide effort of improving
the coherence properties of qubits is underway, the "sluice" could well find practical
use, e.g., in metrology in the foreseeable future.
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1 Introduction

The temporal control of pure quantum systems has two competing requirements. On one
hand, it is desired that the system under scrutiny is well isolated from its environment
such that the dynamics may be assumed to be unitary. On the other hand, however,
any temporal control implies a time dependence in the Hamiltonian which can only be
an effective approximation and a result of an interaction with the environment such
that the system cannot stay pure indefinitely. Despite this, ever since the emergence of
Shor’s algorithm [1] for factoring large composite integers on a quantum computer [2-5]
the control of the temporal evolution of quantum systems has been a topic of intensive
investigations in physics. The “killer application” of Shor’s algorithm would be the
breaking of the RSA cryptosystem. This could have a remarkable societal impact, and
not necessarily a negative one. To complement the possible emergence of a quantum
computer, quantum cryptography [6] is quite advanced already today. Nevertheless, in
order to perform calculations on a quantum computer, the quantum programmer needs
to have full control over the time-evolution of the system. Moreover, the system needs to
stay pure in the quantum-mechanical sense. It is possible to have quantum control that
does not maintain the purity, and the difference between the control of an impure state
and that of a pure state should be distinguished. Roughly speaking, in the control of
pure states not only the probabilities of different states but also the quantum-mechanical
phases are of interest. This Thesis discusses the control of pure or almost pure quantum
systems.

Quantum control has been studied in the past particularly in the context of nuclear
magnetic resonance (NMR) [7] and, e.g., within molecular dynamics [8]. Quite com-
plicated quantum-computing experiments have also been carried out in NMR with the
most spectacular achievement of a seven-qubit algorithm for factoring the number fif-
teen [9]. The topic of controlling the macroscopic quantum state of a system such as the
nanoelectronic superconducting Cooper pair box [10] is less thoroughly explored. Never-
theless, many steps have been taken in recent years towards an experimental realization
of a Josephson junction based quantum computer. In the experiments by Nakamura et
al. [11-13], the coherent oscillations of a Cooper pair box were first observed. The coher-
ent operation of a coupled Cooper pair box system has also been demonstrated [14,15].
The dual realization, i.e. the superconducting qubit taking advantage of the flux degree
of freedom [16,17] has been experimentally verified as well [18,19]. The macroscopic
coherent behavior of a current-biased large Josephson junction, or the phase qubit, was
recently realized [20,21] with as high as us coherence times reported in Ref. [20]. Coher-
ence times on the same order were measured in the so-called quantronium circuit [22]
in Saclay. A generalization of the current-biased Josephson junction, the current-biased
SQUID, has also been demonstrated to exhibit coherent behavior [23]. Exotic scenarios,
such as the tetrahedral qubit [24], have been suggested as well. For a review of various
superconducting qubits up to year 2001 see in particular Ref. [25].

The control of adiabatic Cooper pair pumps (CPPs) [26-28] is an instance of the geo-
metrical control of a superconducting system similar to superconducting qubits. While in



superconducting qubits the control is typically achieved via ordinary dynamical temporal
evolution, the CPPs are controlled adiabatically and cyclically such that no transitions
between states occur. In quantum computing unitary transformations are pursued while
in Cooper pair pumping the time-integral of the current is of interest. It is however
possible, at least in principle, to achieve also general unitary transformations via adia-
batic evolutions as holonomies. This branch of quantum information is called holonomic
quantum computing (HQC) [29]. This Thesis contains examples of both adiabatic and
dynamical quantum computing as well as Cooper pair pumping.

The Overview is organized as follows. Section 2 briefly discusses the unitary evolu-
tion of quantum systems in general and the concept of geometrical evolution in partic-
ular. Section 3 discusses the optimization of quantum algorithms developed in detail in
Publications I-V. Finding unitary operations within a realization-independent model of
holonomic quantum computing (Publications I and II) is studied first. Then the con-
struction of dynamical quantum gates (Publications III-V) for a model identical to a
Cooper pair box array is explored. The highlight of the Section is a theoretical study
of carrying out the simplest nontrivial application of Shor’s factorization algorithm on
Josephson charge qubits. The topic of Section 4 is the adiabatic Cooper pair pump
and especially the so-called Cooper pair “sluice” of Publications VI and VII. This topic
is an illustration of the multitude of present-day applications achievable with almost
identical techniques and structures as those intended to be used in quantum computing.
As explained below this device aimed at a metrological application has many common
features with superconducting qubits and it is further closely related to the concept of
Berry’s phase. Cooper pair pumping has been studied extensively in the past but has
never proven even nearly as accurate as, e.g., single-electron pumping [30]. The sluice is
hoped to bridge this gap. Finally, Section 5 is dedicated to a discussion of the results in
this Thesis.
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2 Controlled Evolution of Quantum Systems

The topics discussed in this Thesis rely on the cyclic control of quantum systems achieved
via manipulating their Hamiltonians in time. That is, in all the applications considered
the parameters of a Hamiltonian go around loops in the parameter space in order to
achieve some desired effect. These controlled cyclic temporal evolutions may roughly
be divided into two main categories: Evolution may be either dynamical or geometri-
cal in nature. Geometrical evolution may arise if the time dependence is slow enough
compared to the relevant energy level separations, i.e., all the controllable parameters
of the Hamiltonian are tuned adiabatically. As the term geometrical implies, only the
geometry of the loop matters and not the speed at which it is traversed. Geometri-
cal, or adiabatic, evolutions may further be divided into Abelian and non-Abelian ones.
Abelian evolutions are commuting, i.e. the order in which the loops are arranged does
not matter, while non-Abelian evolutions do not commute. Abelian evolutions give rise
to Berry’s phase [31] while non-Abelian evolutions may not be characterized by a simple
phase but rather unitary matrices are needed as pointed out by Wilczek and Zee [32].
They are called holonomies.

Decoherence mechanisms and open quantum systems (see, e.g., Ref. [33,34]) are not
considered in detail in this Thesis. Many studies on the decoherence mechanisms in
superconducting circuits exist in the literature, see e.g. Refs. [25,35-39] and references
therein. In Subsection 2.1 below we give a brief introduction to the concepts of quantum
mechanics that are important for the present work including general dynamical evolu-
tion. We then proceed to discuss geometrical evolution in Subsection 2.2. For a critical
discussion of the fundamentals of quantum mechanics, see e.g. Ref. [40]. Publications
I, II, VI and VII are related to adiabatic evolution while Publications ITI-V discuss
dynamical evolutions.

2.1 Quantum mechanics and dynamical temporal evolution

The state of a pure quantum system is described by a state vector |¢) in a complete
inner-product space called the Hilbert space. A physical state vector |1)) can always be
normalized to unity (¢[¢)) = 1. It may occur, however, that the state is not pure but
rather mixed in which case the system is described with a state operator, or a density
matrix (operator) p with Trp = 1. The system is pure if and only if Trp? = 1 in
which case one may use the state vector to describe the system. Given a state vector,
the corresponding density operator may be formed via p = [¢)(¢)|. The state vector
and the state operator are not themselves directly observable quantities in quantum
mechanics. Namely, every observable has an associated self-adjoint operator O = OF. In
the spirit of the statistical interpretation of quantum mechanics, the expectation value
for the k'™ moment of an observable is given by either (O*) = Tr (p(’)k) or alternatively
by (OF) = (¥|OF[p) in the special case of a pure system. The measurement of the
observable always yields an eigenvalue of the operator O@. Even if the state [¢) is not
an eigenstate of O, then owing to the self-adjointness of O we may utilize the complete
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eigenbasis to expand the state. That is, we may write

|¢> = an|wa>> (1)
where O|Y,) = waltha), Do, lcal? = 1, (Y|a) = dap and w, € R. An ideal projective
measurement will result in w, with the probability |c4|?>. Immediately following the
measurement, the system will reside in the state |1,).

For every quantum system, there exists a Hamiltonian operator ‘H which describes the
energy of the system. This dictates the exact form of the temporal evolution. Namely,
the dynamics of an isolated quantum system is governed by the Schrodinger equation

. d
i (1)) = M), )
The corresponding equation for the density operator is

ihp(t) = [H, p]. (3)

For a time-independent Hamiltonian Eq. (2) may be simply solved using operator expo-
nentiation, i.e. |[¢(t1)) = exp(—iH(t1 — to)/h)|¢(to)). If the Hamiltonian has a general
time dependence H = Hq() the situation is considerably more complicated since the
Hamiltonian may have a non-vanishing commutator with itself at different instants of
time. In this work the Hamiltonian is taken to depend on a set of tunable parameters.
These parameters are described by a vector-valued function of time q(t). This vector
naturally contains all the parameters that we have control over. We can, even then, still
formally solve for the time evolution using the time-ordering operator 7, which results
in

o) =Texo (=i [ a1 (00 (4)

In spite of the integral, the above expression does not involve integration in the ordinary
sense but it is rather a product integral. The effect of 7 is to arrange a sequence of
operators, each of which is associated with an instant in time, such that the operators
associated with earlier times are always to the right from those associated with later
instants. Regardless of the exact details, however, the dynamics of an isolated quantum
system is always unitary. We may write |¢(t1)) = U(ty1,to)|t(tp)) where in the general
case the unitary operator U(t1, 1) is given by

t1
U(tl,to) = Texp (-’l/ Hq(t)dt/h) . (5)
to

Due to unitarity, the quantum-temporal evolution of a closed system is always reversible:
Ul(ti,to)™t = U(t1,tp)". The norm is also preserved, i.e.

(W(t)|Y(t1)) = (W (ta)|U(t1, t0) U (t1, to) [1h(ta)) = (1(to)[1h(to)) = 1, (6)

which is consistent with the probability interpretation of quantum mechanics. The
unitary temporal evolution of a mixed state may be expressed also very concisely as

p(tr) = U(t1, to)p(to)U (L1, to)'.

12



Equation (5) is quite general and comprises all forms of unitary evolution, i.e. both
adiabatic and non-adiabatic behaviors. It serves as the natural starting point for numer-
ical calculations. Depending on the application, one either aims at realizing a certain
unitary evolution (quantum computing) or a certain consequence of evolutions (e.g.,
quantum pumping). The unitarity of the temporal evolution only breaks down when
the system in consideration is no longer isolated. The quantum measurement mentioned
briefly above is clearly non-unitary and, as a matter of fact, it is just through interactions
that the actual measurements take place. This brings us to the problem of combining
quantum systems. Two quantum systems with separate Hilbert spaces may be combined
by considering their tensor product. That is, for any |i1) (p1) and |1)9) (p2) the com-
bined state is 1) ® |12) (p1 ® p2). In the case of finite-dimensional spaces the tensor
product is just the Kronecker product for matrices. The total Hamiltonian is, on the
other hand Hiy,y = Hi1 ® I + 1 ® Hy. However, it may be that the two systems are
non-isolated such that the total Hamiltonian may not be written as a sum of two terms
each of which acts non-trivially only on the subspace of one of the systems but rather
Hiot = H1 ® I + I ® Ho 4+ Hine. It may also be the case that two initially separate pure
systems cannot be described by [11) ® [19). Then the total system is called entangled.
To obtain the state operator for a certain subsystem of a possibly entangled total system
one simply traces over the degrees of freedom of the uninteresting part of the Hilbert
space. That is, if we have two systems 1 and 2, then p; = Tryp is the state operator of
subsystem 1. This partial trace combined with unitary global evolution may result in
non-unitary temporal evolution.

2.2 Geometrical temporal evolution

In the special case when the temporal evolution of a quantum system may be considered
to be adiabatic, Eq. (5) may be further refined. Adiabaticity in quantum mechanics
means that if the quantum system in question, described by some Hamiltonian Hg),
is initially in the k" eigenstate of energy, then we may also assume that it stays in the
corresponding k' eigenstate. This is the case when the dynamics is slow compared to
the energy-level separations. Clearly no level crossings can be allowed such that the
ordering of the states is possible and the separations remain nonzero. In this Thesis
we consider only adiabatic systems in the ground state. Thus, for our purposes, the
adiabaticity criterion means that all the related frequencies are much lower than the
resonant frequency between the ground state and the first exited state. This resonant
frequency may of course also depend on time, and thus the condition must hold at all
times.

This basic assumption has quite nontrivial consequences [31,32,41]. For our purposes
it is sufficient to concentrate on what happens to the ground state. Let us assume that
the ground state has g degenerate eigenstates denoted by |0c; q) (o = 1,...,¢) and that
no level crossings occur at least between the ground state and the higher excited states.
The eigenvalue of the ground state is 4, such that

Hql0; ) = £4|0c; q) (7)
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and
(0a; q053; q) = agp. (8)

Moreover, the eigenvectors of the ground-state subspace are also orthogonal to the higher
excited states. Let us assume that the state of the system is initially any one of orthonor-
mal ground states |«; q(to)) and that the system evolves adiabatically over time ¢ € [tg, t1]
and also that the parameters go around a loop such that q(t¢o) = q(t1). Then we may
write the state of the system |1, (t)) at time ¢ as

g
[a(t)) = Upalt, t0)[06; q(t)) (9)
=1
with some complex coefficients Upg, (t,t) that must satisfy Uga(to,to) = 0ga. Plugging
this into the Schrédinger equation, multiplying from the left by (03; q(¢)| and using the
orthonormality of the states yields

dUpsa(t, t J d .
WaallsTo) _ S 08: a(t) L 106: Q1) Va1 10) — e Usalt.t0) /B (10)
=1
This has the solution
. rt t
Ult,ty) = e io Fan /T oy <—/ A(T)dT) , (11)
to
where A(t) is a matrix whose entries Ag,(t) are given by
d
Apa(t) = (08; a(t)]—[0a: q(t)). (12)
Neglecting the dynamical phase Ogyn = — fti £q(rydT /R for now and introducing the

allows us to rewrite Eq. (11) at the instant ¢t = ¢; as

U(ti,tg) = U, =Pexp (—j{Aidqi) : (14)
gl

where v is the loop around which we traverse. The quantity A;dq’ is sometimes called
the Wilczek-Zee connection one-form. Einstein’s summation convention over all the
components of the control parameter vector, i.e. the index i, is assumed. The path-
ordering operator P is used above. Its operation is similar to that of 7.

Now if instead of the state |a;q(ty)) we were initially to start from an arbitrary
superposition > 7 _, ¢,|a; q(to)) then at time ¢; the state of the system would be

[0(t)) = Y caltra(t)) (15)

14



or

[U(t1)) = Z Usa(t1,to)calBsalt)) = Z (U3)gacal B; q0)- (16)
a,B=1 a,B=1

We see form this that U, is indeed the unitary matrix that describes how the quantum
state evolves during each loop based at q(to) = qo. This is called a non-Abelian holonomy
[32,41] in the degenerate case (Publications I and IT) and Berry’s phase [31] (Publications
VI and VII) in the nondegenerate case, i.e. U, = e®env if g = 1. In the nondegenerate
case we may denote the ground state simply as |0; q) and since the path ordering is then
meaningless, Berry’s phase is simply

ey = 1 f 050l 05a)da’ = i f 0500 Val0sa(0) - da (17
v Qi v
Thus, the cyclic quantum evolution of the ground state in the adiabatic limit has two con-
tributions; the more-or-less trivial dynamical factor e Jig 2awdt/h that can be neglected
in e.g. quantum computing applications and the geometrical contribution U,,. To obtain
some desired holonomic evolution one needs to describe a loop 7 in the parameter space
spanned by all the controllable parameters. Whereas in general the speed at which a
loop is traversed plays a role, in the adiabatic evolution only the geometry of the path
(not its parameterization) matters. It may appear at first sight that for a nondegenerate
system in its ground state, Berry’s phase would be meaningless since it only describes a
global phase. This is not the case as will be seen in Section 4 where we discuss Cooper
pair pumps. For universal quantum computation based solely on ground-state adiabatic
control, however, a degenerate system is required.
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3 Optimization of Quantum Algorithms

Quantum computing is potentially a very spectacular application of the temporal control
of quantum systems. Basically any collection of two-state (or more) quantum systems
that can be controlled, and moreover, the couplings of which we have control over, or
can take into account somehow, is a potential quantum computer. Provided that the
quantum system is sufficiently well isolated from its environment, we may assume the
dynamics to be unitary as in the previous Section. However, the parameters of the
Hamiltonian need to be tunable and thus the isolation must not be perfect. In this
Section we shall first introduce the concept of quantum computing. Many excellent
overviews of this subject may be found in the literature, see e.g. Refs. [2-5]. It will turn
out that a quantum algorithm is nothing but a unitary operator. It is programmed by
finding a proper control pulse q(¢) and executed by applying the pulse on the quantum
system. In Subsection 3.2 we consider a realization—independent approach for finding
physical implementations of holonomic quantum computations. Subsection 3.3 describes
a similar approach for finding optimized logical dynamical quantum gates on Josephson
charge qubits. All the methods presented rely on intensive numerical optimization. The
key point of this Section is that instead of using sequences of elementary operations, we
pursue a method of finding direct implementations of single and multiple qubit operations
in a single pulse sequence. We demonstrate that it is in practice much more advantageous
to implement a quantum algorithm via first finding, using ordinary computers, a direct
implementation for as large a multiqubit operation as possible and then implementing
this optimized operation on a quantum computer rather than using some limited set of
elementary operations.

3.1 Quantum computing

Quantum computers can solve certain problems that are classically considered to require
exponential resources (time and space) in polynomial time and space. The idea of quan-
tum computing is to take advantage of the global properties of a very high-dimensional
multi-partite Hilbert space. A quantum computer is a quantum system typically con-
sisting of multiple two-state subsystems called quantum bits, or qubits. A prototype
for a qubit is the spin degree of freedom of a spin-1/2 particle. Information is encoded
in the states of the qubits such that one state of the qubit corresponds to the “0” of a
classical digital bit while the other corresponds to “1”. Let us denote the basis states
of the collection of N qubits by |0;) and |1;) with j € {1,..., N}. One often uses the

vector notation
1 0
10;) = <0) and [1;) = <1) (18)

for these states. If the states of the individual qubits are |¢;) with ¢); = 0,1 then the
state of the composite system may be expressed using the tensor product as

|‘I’>:®|¢i>:|1/)N>®---®|¢1>:|¢N---¢1>a (19)
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where the last form is an often used abbreviation. In the absence of superpositions
the quantum information contained in this quantum register is interpreted just like the
information in a classical bit register; the data is just a binary number. The strength
of a quantum computer, however, emerges from the fact that the quantum register may
evolve into a superposition of all the possible 2V states. That is, if |¥,) is some N-qubit
state corresponding to a binary number, then the state of the quantum computer can be

0) =) calVa), (20)

with (U|W) = 1. The prototype of an entangled superposition is the so-called Bell state

for two qubits
1

V2

The interpretation of the data contained in this register is entirely non-classical; with

W) (10) @ [0) + 1) @ [1)). (21)

probability one half the bits are either both zeros or ones. Moreover, the measurement of
one of the qubits immediately tells us the result that the measurement of the second qubit
would give. This has some very counterintuitive implications and the interpretation of
this kind of state even confused Einstein [42]. Entangled states, such as the Bell state
above, can be used for so-called (deterministic) quantum teleportation that has been
recently realized using ion traps [43,44].

The quantum algorithm is nothing but a 2¥-dimensional unitary operator of Eq. (5)
which dictates the temporal evolution of the quantum register, i.e.

(W (t1)) = Ulta, to)|[W(to))- (22)

The evolution of the quantum computer is governed by the Hamiltonian Hq) whose
time-dependence the experimenter must have control over. The control is mediated by
the parameters q(¢) and different formal expressions for the algorithm U can be derived
as discussed in the previous Section. Clearly the number of degrees of freedom for the
algorithm is immense; it takes 22 — 1 real numbers to describe the most general kind
of an algorithm while for applications N > 100. Luckily, practical algorithms exist
too. Typically, we would desire the operator U to perform, for instance, the quantum
part of Shor’s algorithm [1] or the Grover search [45] both of which can be carried
out by applying a polynomial number of so-called elementary operations [46]. Shor’s
algorithm can factor large integers in polynomial time, which is otherwise believed to be
exponentially hard, while Grover’s search can be used to carry out a database search of
an unsorted database in time proportional to the square root of the entries in it. The best
known decompositions of arbitrary multiqubit gates have been reported in Refs. [47,48]
but, nevertheless, the number of required gates scales exponentially with the number of
qubits.

The unique property of quantum mechanics that makes quantum computing attrac-
tive is that unitary operator “processes” all orthogonal basis states independently. In
other words, the quantum algorithm may process 2% different inputs at once if the regis-
ter is initialized for instance in an equal superposition. This is sometimes called quantum
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parallelism. The task carried out e.g. in Shor’s algorithm is the evaluation of a certain
modular function, see e.g. Refs. [1,2] or Paper V. With N ~ 103 the number of states
is already immense and beyond the capacity of all classical computers. However, after
the unitary temporal evolution one has to measure the state of the system. Each qubit
is found in either the state |0) or |1). If the state of the register prior to measurement is
|W), then the probability of obtaining the result [¥) = ®§V:1 [Wb;) (; = 0 or b = 1) is
given by

P(W) = (W) 9) = [(9])] (23)

This is the tricky part. No matter how many orthogonal basis states have non-vanishing
amplitudes in the superposition, upon measurement only one of them survives. Moreover,
the result is stochastic. The quantum measurement makes it impossible to obtain more
than one output. The trick that can be used then is to further process the information
in the quantum register before measurement and to look for “global” properties in it. In
Shor’s algorithm one is interested in the period of the modular function and luckily the
quantum equivalent of the fast Fourier transform may be carried out efficiently. This
causes the quantum register to form strong interference patterns and upon measurement
it is possible, stochastically, to deduce the period. Thus the true strength of quantum
computing is only unleashed in a certain class of applications in which some well-defined
global property is known.

We list the requirements for practical quantum computing following DiVincenzo [49].
One needs to have:

e a scalable physical system with well characterized qubits

the ability to initialize the state of the qubits to a simple fiducial state

long relevant decoherence times, much longer than the gate operation time

a universal set of quantum gates

a qubit-specific measurement capability.

All of these points are necessary and it seems that all the existing suggestions for physical
realizations of quantum computing possess strengths in some of these areas but not in
each one of them. In this work we are primarily interested in how to carry out the
unitary transformations, i.e. the quantum gates.

As mentioned above, typically the unitary operator U is decomposed into a sequence
of so-called elementary gates [46] that act non-trivially only on one or two qubits. These
are analogous with the basic logical operations of an ordinary computer. The physical
implementation for these is often found by hand and the Hamiltonian is sometimes even
considered piecewise constant in time. This leads to abrupt switchings in the parameter
sequences which are hard if not impossible to implement. Finite rise and fall times of
real pulses lead to errors [50]. Furthermore, in general only a limited number of logically
different gates are assumed to be available. Thus the logical gate sequences may get
prohibitively long. In the next two subsections methods for finding arbitrary single and
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multiple qubit gates avoiding abrupt switchings are considered. The motivation for this is
that the more complicated gates we may perform in a single step, the more of the valuable
execution time we save. This is extremely important due to the presence of decoherence
which inevitably limits the total execution time of the algorithm. In Subsection 3.2,
methods for finding the adiabatic loop v in the control-parameter space for any one-qubit
and two-qubit operation for a certain toy model is presented, while in Subsection 3.3
control sequences realizing up to three-qubit operations for Josephson charge qubits are
found. The developments presented here have recently obtained experimental verification
when Nakahara et al. demonstrated [51] the acceleration of the two-qubit Grover search
at best by four times by first optimizing the algorithm and then by carrying it out
experimentally in an NMR setup.

3.2 Adiabatic non-Abelian quantum gates

Holonomic quantum computing (HQC) [29,52-55] is a subfield of quantum information
processing in which the quantum register is assumed to be fully degenerate and the
quantum control is implemented using Eq. (14). The reason for studying holonomic
quantum computing is that it is hoped to be robust against decoherence due to the
degeneracy of the spectrum. A clear benefit is also the fact that the exact timing of the
pulses is not crucial since the evolution is purely geometrical as long as the adiabaticity
is maintained. Additional features include the absence of unwanted phases on idle qubits
that inevitably accumulate in any scenario in which the logical states are energetically
different.

Thus in HQC each unitary gate is associated with a loop in the parameter space,
and a sequence of loops forms the full quantum algorithm. Holonomic or adiabatic
non-Abelian gates in a three-state model are studied in papers I and II. The results
obtained are quite general and are not limited to any particular physical system. For
various suggestions for the realization of non-Abelian holonomies with Josephson junc-
tion structures, see Refs. [56-58]. Also optical [59] and semiconductor [60] HQC has
been suggested. Berry’s Abelian geometrical phase has been envisaged to be used for
universal quantum computation in superconducting systems by Falci et al. [61], but there
the system under study is not in the ground state such that differences in Berry phases
are of interest and, furthermore, sudden changes in the parameters are also used. In
HQC purely ground state systems and strictly adiabatic control is used.

The problem considered is the following: Given a unitary quantum gate U, what is
the parameter loop ~ that produces U through Eq. (14), i.e. under which conditions U, =
P exp (— fﬂ{ Aidqi) equals U? 1t is straightforward to solve the direct problem but the
solution of the inverse problem turns out to involve heavy computations. However, this
is clearly the relevant question from the point of view of holonomic quantum computing
since 7 is just the experimental control sequence. A possible way of finding a path ~
that realizes U is to use numerical optimization. Namely, let us define

F) =10 =0, (24)

19



where || - || is some specified norm. In this Thesis we use the Frobenius norm | - ||
defined as ||A||r = /Tr(AtA). Then finding the minimum of f(v), which clearly is
equal to zero if a solution to the original problem exists, is equivalent to finding a path ~
that implements U. In practice, the multidimensional path is conveniently discretized for
instance into polygonal loops, i.e., into loops that have a finite number of vertices between
which one interpolates linearly. Then we are effectively searching for the minimum in a
subspace of all (continuous) loops and the coordinates of the vertices serve as natural
optimization variables. Various numerical algorithms for the minimization are possible,
but the so-called polytope search [62] was found to be particularly successful for the
problem. Exact methods have been studied also for the solution of a similar problem [63].

The functional evaluations for a given polygonal path may easily be carried out by
the discretization of the path and considering the connection coefficients A; piecewise
constant such that evaluation of U, reduce to multiplication of matrix exponentials.
That is, for a discretization 74, ..., y, of the loop v we may write

., ~ exp(— ZA Vn)O73) -+ exp(— ZA M)87), (25)

where A;(;) stands for the " connection component evaluated at the discretization
point 7, and 57,2 is the finite difference of the j* parameter component of the k'
interval. The number of connection components and thus the bounds on the summation
index ¢ depend on the number of controllable parameters. From this discretization it is
clear why expressions of the kind appearing in Eqs. (14) and (5) are sometimes called
product integrals; letting n — oo and 5% — 0 renders the approximation in Eq. (25)
exact. The matrix exponentials may be either calculated using the Taylor expansion or
the Cayley form, see Paper V. More details of the numerics can be found in publications
I and II. In general, a realization for an arbitrary N-qubit gate is expected to exist if
the number of degrees of freedom in the optimization exceeds the dimensionality of the
Lie algebra u(2") which is 22V,

Single-qubit gates

To get some concreteness to the problem we consider as an example a case where the indi-
vidual qubits are encoded in the twofold degenerate ground state of a three-dimensional
Hilbert space. We assume that the Hamiltonian is diagonal at the reference point qq
where the holonomy loops are based and the ground state energy is set to zero. Then
the Hamiltonian at this point may be written simply as

HOIO = (26)

o O™
o O O
o O O

with € > 0. We then consider the adiabatic isospectral temporal dependence of the
Hamiltonian to be of the form Hgq = WyHq,W{, where Wy is a unitary transformation
that satisfies Wy, = I3, where I3 is the 3 x 3 identity matrix. All the temporal dependence
of the Hamiltonian is encoded in W and this dependence is assumed to be adiabatic.
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Figure 1. Loop in the parameter space that yields the gate U =
e’ exp (i%az) exp (i%ay) exp(io,). From Paper I.

A convenient method to parameterize the unitary transformation Wy is to use the so-
called Givens decomposition. It turns out that arbitrary rotations Wy are isomorphic to
the complex projective space [64] CP2. This manifold may be parameterized using the
four coordinates denoted 6#; and ¢; with ¢ = 1,2 in Papers I and II. The corresponding
Wilczek-Zee matrices Ay, and A, can be found analytically and this allows one to write
any holonomy on a single qubit as

2
U, = Pexp <— > (Agdb; + A@d@)) : (27)
7 i=1

The numerical calculations were carried using Fortran 90 and the IMSL library. Figure 1
illustrates an example loop in the four-dimensional (01,6, @1, ¢o)-space for realizing a
particular unitary operation, namely U = e’ exp (i%az) exp (i%ay) exp(io,). Here o, and
o, are Pauli matrices and qo = (0,0, 0,0)Z. Papers I and II report realizations for various
other gates. The conclusion regarding single-qubit gates in the present setting is that
they can all be found with a sufficient amount of flexibility in the paths.

Two-qubit gates

Two-qubit gates may also be found for HQC. To this end a way of coupling the qubits
is desired. We define the two-qubit reference Hamiltonian to be

Hé;)qubit = HQO QL+ I;® HQO' (28>

The most general kind of isospectral rotations for this 9-dimensional Hamiltonian is very
complicated but we shall consider the product of a purely two-qubit rotation and that
of a tensor product of single-qubit rotations, i.e.

Wy = W3t (Wg @ Wy), (29)
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where W (W¢) is the single-qubit rotation of the Hamiltonian of the qubit a (b) identical
to that used in purely single-qubit operations. We take W29t to bhe of the form
WZawit — €A - Thyg the rotations of the two-qubit Hamiltonian are parameterized
using the nine parameters (6¢,¢¢, &) with ¢ = 1,2 and ¢ = a,b. Arbitrary two-qubit
quantum gates may be found within this model, and various examples may be found in
papers I and II.

The problem of coupling multiple qubits is difficult in general, but in the case of HQC
it is particularly hard due to the stringent requirement of degeneracy. The coupling

presented here is merely an example, albeit a convenient one.

Length optimization

The motivation for studying holonomic quantum gates numerically is not just the need
to find implementations of arbitrary gates. Namely, it is possible also to optimize with
respect to a more general type of an error functional. Paper II discusses the optimization
of HQC with respect to the length of the path numerically. Recently, however, also the
exact solution of the so-called isoholonomic problem has been provided for an arbitrary
k-dimensional unitary gate within a Hilbert space with a dimension larger than 2k [65].

3.3 Non-adiabatic Josephson charge-qubit gates

The developments presented above in the context of holonomic quantum computation
may easily be generalized also to “ordinary” dynamical quantum computing. The opti-
mization of multiqubit gates for the so-called Josephson charge-qubit model is the topic
of publications III, IV and V. The only practical difference in the numerical optimiza-
tion scheme of the present problem and HQC is the evaluation of the unitary operator.
Whereas Eq. (14) was used above, here we utilize Eq. (5). The evaluation of the unitary
operator was carried out using parallel programming [66]. The motivation is the same
though: It is desired that a more complicated gate could be realized in a single shot
without evoking elementary gates. Josephson charge qubits are discussed in detail for
instance in Refs. [25,67] and Publication V. For an introduction to Cooper pair tunneling
and superconducting circuits see e.g. Refs. [68-70].

Physical model

Consider the Josephson junction circuit shown in Fig. 2. In Fig. 2(a) an individual
Cooper pair box is shown. It consists of a small metallic superconducting island (typi-
cally aluminum cooled to some 20-50 mK) having sub-micron dimensions coupled to a
superconducting lead through a SQUID loop. The SQUID loop consists of Josephson
junctions that are, e.g., formed by an oxide layer between superconducting metallic films.
Cooper pairs may not be found inside the layer but they can have a finite possibility
for tunneling through, provided that the oxide is sufficiently thin and the area of the
junction sufficiently large. The state of a Josephson junction may be described by the
superconducting phase difference ¢ over it which is just the time-integral of voltage times
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(b)

HH

Figure 2. (a) Single Cooper pair box coupled to the environment through
a SQUID. (b) Array of Josephson charge qubits coupled inductively.

2e/h. The potential energy stored in the junction is — Ej cos ¢, where Ej is the so-called
Josephson energy. Classically, the current flowing through a “large” Josephson junction
is I.sin ¢ where [. is called the critical current and ¢ obeys b = 2eV/h, where V is
the voltage. The critical current is related to the Josephson energy via I. = (2e/h)Ej.
SQUIDs are used as tunable Josephson junctions. In the case of identical junctions the
Josephson energy term is —Ej cos(m®/®g) cos(¢), where Fj/2 is the Josephson energy
of an individual junction, ®q = h/2e is the flux quantum and ® is the externally applied
flux through the SQUID loop. The normal-state tunneling resistance R yields the value
of Fy through the Ambegaokar-Baratoff formula [71] Ey = hApcs/8¢? Ry, where Apcs is
the superconducting gap at zero temperature. A Josephson junction has also a parallel-
plate capacitance (C/2 in this case) associated with it, which is typically on the order
of fF. The superconducting island is further coupled to a gate voltage V; through a gate
capacitance Cy. These capacitances give rise to a typical charging energy for Cooper
pairs Ec = 2¢%/Cy, where Cx = Cj + Cy is the total capacitance of the island. This
charging energy is assumed to be so large that the addition of a single Cooper pair to
the island requires more energy than the thermal motion of the environment, roughly
speaking, may provide. For charge qubits, we also require that Fy < F¢.

An individual qubit may be manipulated both through the magnetic flux ® and
the gate voltage V,. The logical states of the qubit correspond to zero and one extra
Cooper pair residing on the island, denoted by |0) and |1) respectively. Since changing
the polarization of the island does not induce any tunneling amplitude but, in contrast,
changes the relative energy of different charge configurations, the diagonal part of the
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two-by-two Hamiltonian for the qubit is controlled through V,. However, since the
superconducting phase on the island is conjugate to the number of Cooper pairs on the
island, it follows that cos(¢) gives rise to tunneling and thus the magnetic flux controls
the off-diagonal part of the Hamiltonian. Furthermore, Fig. 2(b) illustrates a potential
coupling scheme for the charge qubits in which the boxes are fabricated in parallel with
an inductance L, possibly realized in practice using a large Josephson junction. The
inductor along with the total capacitance of the array of qubits serves as an LC-oscillator
whose presence effectively couples the qubits assuming that the frequency of oscillation
is much higher than the relevant frequencies of the individual qubits. We may write the
Hamiltonian for M qubits (see Paper V and Ref. [25]) as

Mo B . B MoMo
Hap = [—730; - 70} ~DY Y BiBlo,@aj, (30)

= i=1 j=i+1
where B! = Ec(1 —2n}), Bl = Ej(®;) and D = L(7Cq,/Cy®)*>. We have further
denoted Cy, = C3C,/(Cy + Cy). The index i refers to the i qubit. Above Ej(®;) =
Ejcos(m®;/®Py) is the effective Josephson energy and n; = C'ngi is the gate charge. It
is worthwhile to note that this Hamiltonian is only valid near ny = 0.5, i.e. one of the
degeneracy points and if Fj < F¢. A particularly convenient property of Eq. (30) is
that the entire Hamiltonian may be set equal to zero, thereby stopping all temporal
evolution. Note that if any two qubits have a non-vanishing tunneling amplitude, they
will be automatically coupled. It is easy to construct any single-qubit gate within this
model on qubit j by setting B! = B’ = 0 for ¢ # j and by manipulating B? and B,
see Paper V. Using arbitrary one-qubit operations along with almost any nontrivial two-
qubit gate [46] one may construct any multiqubit operation. This would not, however,
by any means lead to an optimal implementation.

Optimization

In Publication III, the general problem of finding multiqubit gates for the present Hamil-
tonian is considered. The concept is further developed in Publication IV where particular
attention is paid to accelerating algorithms using three-qubit gates. Paper V considers,
as an example, the execution of Shor’s algorithm on Josephson charge qubits using the
optimization method. Just like within HQC, it is possible to associate a loop in the
parameter space with every unitary operation. The parameter vector for a k-qubit op-
eration now assumes the form

alt) = [BL(t)... BHt) Bl ... B0 (31)

We may take the origin, where Hy, = 0, as the starting point for all quantum-control
operations. Then, exactly like in the case of HQC, we may assume that the operations
are polygons in the parameter space. Only now the natural parameterization for loops
is given by time, and also the speed at which the loops are traversed of course matters.
However, we may fix the duration of each edge of the polygon and thus a polygon for &
qubits and with [ + 1 vertices has 21 x k degrees of freedom. It is reasonable to require
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Figure 3. Illustration of the strength of the method in the case of the
Fredkin gate. In (a) and (c), the quantum-circuit notation (see text) for
the single-shot and decomposed Fredkin gate is shown. Subfigures (b) and
(d) show the corresponding parameter pulses. The solid line represents
Bt while the dashed line represents BL. The resulting direct three-qubit

implementation is in this case almost three times faster.

o

that 2[k > 22% — 1 in order to achieve! the whole SU(2¥). The gates are again found by
minimizing f() but now the evaluation of U, is carried out by discretizing the loop
into a finite set of points 71,...,7, (typically n = 102-10*) in the 2k-dimensional space
and since the total time is fixed, we also can fix the time difference At between the points

and write

U, ~ exp(—iHap (1) AL) . . . exp(—iHqp (71) At). (32)

It is easy to see from the above expression that one can readily divide the evaluation of
the unitary operation into smaller sections of the full loop v and delegate each subtask
to a separate processor. Thus the evaluation of U, is almost trivially parallelized, which
allows for very efficient optimization. In the case of three-qubit gates, 13 processors were
used such that one processor was the master taking care of the optimization routine and
the multiplication of the intermediate results was handled by the slaves consisting of the
12 other processors. The length of each linear edge is fixed to one unit and also D =1
as well as h = 1. The three-qubit gates require 12 edges and the two-qubit gates call for
5 edges. The results are applicable independent of the sample parameters since rescaling
D is possible by simultaneously scaling energy and time.

Figure 3 (Fig. 2 of Paper IV) contains an illustration of the strength of the present

1We cannot achieve U (2¥) with the present Hamiltonian since it has been chosen to be traceless, but
the global phase is meaningless.
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scenario; instead of using the two-qubit gate decomposition of Fig. 3(c) and Fig. 3(d),
in which the realization of individual gates has already been optimized, one may search
for a minimum of f(v) directly for the whole so-called three-qubit Toffoli gate (see e.g.
Ref. [2]). In Fig. 3 as well as in Publications III-V the so-called quantum-circuit notation
is used. In this notation, time runs from the left to the right and the horizontal lines
represent the history of actions on a particular qubit. In Fig. 3, the qubits are labeled
1, 2 and 3 from top to bottom. A black circle is used to indicate a controlled operation.
In Fig. 3(a), for instance, the notation means that a SWAP (denoted by two crosses)
is performed between the quantum states of qubits 2 and 3 if the state of the qubit
1 is |1). Otherwise nothing is done. This is in fact the definition of the Toffoli gate.
In Fig. 3(c), on the other hand, a sequence of seven operations performing the Toffoli
gate in seven substeps is illustrated. The first (leftmost) operation is a controlled-NOT
(CNOT) which flips the qubit 2 iff the qubit 3 is |1). The controlled-V operation means
that the operation V = /g, is carried out iff the control qubit is |1). Furthermore,
the star in Fig. 3(c) stands for a Hermitean conjugate. A matrix representation can of
course be used for any gates provided that an ordering of the subsystems, i.e. the vector
presentation, has been fixed, but the quantum circuit notation is in many ways much
more informative. For more on this notation see e.g. Ref. [2].

It should be clear from Fig. 3 why the direct implementation is superior. Instead of
allowing one qubit to be idle (parameters Bt and B! set to zero) we can operate on all
the three qubits simultaneously. The resulting single-shot pulse sequence is almost three
times faster than the decomposed version. More examples of optimized gates may be
found in Publications ITI-V.

Alternative: Optimal control theory

It is also possible to apply tools from optimal control theory (OCT) in the design of
control pulses for Josephson qubits. Figure 4 illustrates a control pulse for the three-
qubit Fourier transform that was calculated using an algorithm complementary to ours
described recently in Refs. [72,73] along with a pulse obtained using our method. This
method is somewhat different from the method presented in this Thesis and relies on
the use of variational calculus. Both methods, OCT and the polytope search, scale
exponentially with the number of qubits. Both methods can be parallelized too. The
OCT algorithm, however, yields a smooth control pulse, but it would also be possible to
use smooth pulses with our method as well. Then the node degrees of freedom would be
replaced, for instance, by the coefficients of some basis functions. In both OCT and our
approach it is possible to take into account the limitations of a particular experimental
situation and design the control pulses accordingly. Thus, the piecewise linear pulses
presented in this Thesis should be considered merely as examples. Nevertheless, the
philosophy of our method and the OCT in the context of quantum computing is the
same; in both cases the use of elementary gates can be avoided and the execution time
and errors decreased. Comparing the relative superiority of our method and OCT would
call for a separate study and the results would probably depend strongly on the exact
form of the Hamiltonian.
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Figure 4. (left) An optimal control theory realization of the quantum
Fourier transform for three qubits. The dashed line indicates BE and the
solid line represents Bl. (right) Piecewise linear realization of the QFT
from Paper III.

Example: Factoring 21

Publication V discusses the feasibility of factoring the number 21 using the numerical
optimization method developed here using inductively coupled Josephson qubits. The
number 21 is arguably the smallest nontrivial number? to be factored using Shor’s al-
gorithm. Figure 5 of this Paper illustrates the full quantum circuit for the quantum
part of the algorithm. As many as 5900 two-qubit gates and 2300 three-qubit gates are
involved in the implementation. If only (arbitrary) two-qubit qubit gates were available,
then some 16 400 of them would be required. The number of elementary gates would be
necessarily orders of magnitude higher, depending on the exact set available. However,
in any realistic scenario the use of a limited set of elementary gates is not viable; every
measure of cutting down the execution time of the quantum part of the algorithm needs
to be taken. Thus even very heavy classical preoptimization is justifiable. Nevertheless,
for a superconducting Al sample the runtime of the algorithm would at best be 10~°
s. This coincides with the best experimental estimates for the coherence time of a su-
perconducting system [22], though for only a single qubit at a special point. The use
of arbitrary two-qubit gates instead of three-qubit gates would increase the runtime by
some 40%. The number of required qubits would be 22 with two independent controls
per qubit. Clearly this kind of an experiment with the requirement that the tempera-

2The first obvious choice would be 15 but in this case the classical preprocessing happens to reveal
the answer, see Publication V. Of course 21 = 3 x 7, but this is not a triviality of the same kind.
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ture of the environment be around tens of mK is not easy and would probably require
dedicated low-temperature control circuitry, such as rapid single flux quantum (RSFQ)
logic [74,75]. Otherwise at least 44 RF-lines and very complicated pulse generators would
be mandatory. Despite the difficulties, factoring 21 on superconducting qubits should
be possible with very careful design.

Using a scaling argument we may also comment on the factoring of numbers large
enough to break the RSA cryptosystem in the absence of any active coherence preser-
vation method, such as error correction [2,76]. For instance, breaking the 512-bit RSA
would require thousands of qubits and since the runtime scales at best as n3 log n, where
n is the number of bits it takes to represent the number to be factored, we can argue
based on the estimates given above that tens of seconds of decoherence time is necessary.
The number of independent high-frequency controls would be thousands. Clearly a scal-
able implementation of a superconducting quantum computer is extremely challenging
and far in the future. However, many applications rely on very similar ideas and these
are quite reachable even today. One such application is considered in the next Section.
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4 Cooper Pair Pumping

In this Section we consider an application of Berry’s [31] Abelian geometrical phase
to Cooper pair pumping using mesoscopic Josephson junctions. Particular attention is
paid to the so-called Cooper pair “sluice” introduced in Paper VI. The idea of operation
and the techniques used are very similar to the control of Josephson charge qubits.
Actually, a Cooper pair “sluice” in a proper environment could serve as a qubit, since the
Hamiltonian presented below offers more than enough possibilities for control. Mastering
the flux and voltage control of only a few superconducting qubits, which is being pursued
by many groups worldwide, does not necessarily have immediate practical impact in
the field of quantum computing. However, spin-offs such the “sluice” may find uses,
e.g., in metrology. Some differences between Cooper pair pumping and superconducting
qubits exist, though. For instance, superpositions of energetically different states are not
pursued and the basic control pulse (pumping cycle) is applied repetitively in contrast
to single-shot quantum gates.

As to charge pumps in general, a seven-junction single-electron pump [30] with cur-
rents on the order of pA has been demonstrated to be usable as a capacitance stan-
dard [77], but the realization of the so-called quantum metrological triangle [78] would
require currents on the order of nA. This is beyond single-electron pumps, but Cooper
pair pumps could potentially yield currents accurately in the nA range. The use of Sur-
face Acoustic Waves (SAW) to pump electrons is being studied actively as an alternative
to ordinary electron pumps, see e.g. Ref. [79]. The engineering of the electromagnetic
environment of both electron pumps [80] as well as Cooper pair devices [81] using on-chip
resistors has been considered in order to achieve a frequency-locked current source. No
metrological Cooper pair pump has been realized yet.

The considered form of the temporal control is not found numerically but rather
using analytic physical arguments. In Subsection 4.1, the relationship between Cooper
pair pumping and Berry’s phase is discussed. Subsection 4.2 discusses the theory of the
“sluice”. Subsection 4.3, based on the experiments of Publication VII, is the highlight
of the present Section.

4.1 Adiabatic Cooper pair pumping and Berry’s phase

An adiabatic Cooper pair pump is a chain of Josephson junctions with at least two
tunable parameters. For instance the first measured pump of Geerligs et al. [26] had
three Josephson junctions in a chain and two voltage gates coupled to the islands in
between. A similar structure was also recently measured by Toppari et al. [82]. However,
longer chains, including the seven-junction Cooper pair pump of Aumentado et al. [83],
have been studied as well. The requirement that at least two parameters are needed is
due to the fact that the pumping effect is attributable to a loop in the parameter space.
We will make the connection between the pumped charge and Berry’s phase clear in
simple terms. For a more formal derivation see Ref. [84].

The Cooper pair pump shown in Fig. 5 serves as a generic model that encompasses
both the traditional gate-controlled pumps and the flux-assisted pump studied here. For
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Figure 5. Generic model of a Cooper pair pump.

now, the device is assumed to be phase biased such that the superconducting phase
difference over the device is ¢. The average current operator for a chain of Josephson

junctions is given by
7 2 Moy

ko Oy
Assuming, for simplicity, that Cj ; = Cj for all j and that C, ;/Cy < 1 allows us to write

(33)

the Hamiltonian for an N-junction pump in the absence of quasiparticles as

N—1
Hopump = %(ﬁ —n,)"C ' (A —n,) - Z Ej . cos(¢r—1 — ¢ + ¢/N)
k=2
— Ejqcos(p/N — ¢1) — Ejy ycos(¢/N + dn-_1). (34)

Here Fjj is the Josephson energy of the k™ junction and ¢y is the superconducting
phase on the k" island whereas C is the three-band capacitance matrix of the junction
chain given by

Co1+2C)  —Cy

—C C,+2C; -C
C= o (35)
—Cy Cgn-_1+2C;

Allowing the Josephson energies to be different for each junction, even though the ca-
pacitances are equal, anticipates the developments of the next Subsection. The number
operators of Cooper pairs ny, of each of the islands and the gate charges ng; = Cy Ve
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are contained in n and ng, that is
1 Ng1
n=| : and n, = : : (36)
nn Ng N
Now let us assume that the parameters of the system denoted collectively by q(t) are
tuned adiabatically around a cycle v in the parameter space over the time ¢ € [0, tyce

and that the ground state is non-degenerate. What the parameters are is not important
for the derivation. Clearly, the total charge that passes through the device is

Qur = / T e, (37)

where |1(t)) is the state vector of the pump at the time ¢. Using Eq. (9) of Section 2
with g = 1 as well as Eq. (11) allows us to write the state of the pump at time ¢ as

(1)) = @05 q(t) (38)

due to the adiabaticity assumption. Here |0; q) is the ground-state vector which depends
on the control-parameter vector q. The phase 6(¢) has two contributions, namely the
dynamical phase

1 t
Bisn(®) == [ 0:(7) Plpmgl0: ) (39)
and the geometrical phase
[t d ‘ q(t)
Buoon(0) = [ (Osar) T0a(r)dr =i [ (alValoia) -da (1)
0 dr a(0)
At time tcycle it holds in particular that
9Berry = 6geom<tcycle) = Zf<07 q‘vq‘ou q> ' dq (41)
v

since at this instant the cycle is full. Now, it is possible to rewrite the integrand in

Eq. (37) as

(WO0) = (015 T 00) = 5 WO |5 | ) (22

Owing to the Schrédinger equation, we may further write

(wOIw0) = 2eig (W10} ) (43)
On the other hand
i —i0(t) ~ 9 zG(t
(B0 1000 = sl "0 s (0)
=2 vsa(0l0sa(0) + 00l 10:a(0)
=120 4 0 a0 10: a0 (44)
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The pumped charge is thus (use q(0) = q(tcyce) and 6(0) = 0)

tcycle 60( ) tcycle d a
Que=2e [ 5 (G2 ) [ rigoawig e

~~

=0

0
= _26% (‘9dyn(tcycle) + eBerry) . (45>

The total charge transferred is —2e times the derivative of the phase accumulated over
one cycle with respect to the global superconducting phase difference. The first part, or
the dynamical contribution is

) 2e [l

Qs = _26% (edyn(tcycle)) =z 3.

h 8g0 <07 q(t)|Hpump|Oa q(t)>dt

- / 0, a)1Z10; a()) de (46)

which is just the “classical” Josephson supercurrent. In pumping applications one tries
to suppress the supercurrent altogether. The second contribution is the more nontrivial
pumped charge

0
Qy = 265 (Bou) = =205~ § i0: a0 Vel5 (1) - (47)

and as may be seen, this is in close connection with Berry’s phase. Thus pumping
Cooper pairs may, very naturally, be seen as an observable manifestation of Berry’s
phase. It is remarkable that Berry’s phase of a nondegenerate ground state has observable
consequences while for instance in quantum computing either degeneracy (holonomy) or
superpositions of energetically different states are required for observable consequences.
In quantum computing the loop v applies a logical operation whereas here it pumps
charge.

It is possible to derive from Eq. (47) a more elaborate expression for the pumped
charge appearing often in literature. We may write

Qp = 27 Im [i%wm;qwqm;m ~dq (48)
1v7

— €q,0 — Eqm

where |m; q) is the m™ energy eigenstate and e, is its energy. This is the form found

first in Ref. [27] and the equivalence between Eq. (48) and Eq. (47) is demonstrated in
Ref. [84].

4.2 Cooper pair “sluice”

The expressions derived above for the pumped charge are quite general and the exact
nature of the tunable parameters has not yet been specified. Traditionally, charge pump-
ing through a chain of Josephson junctions is achieved via cyclically manipulating gate
voltages in such a manner that the state of the system propagates adiabatically through
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Figure 6. (a) Schematic of the Cooper pair “sluice”. (b) Pulse sequence

for pumping a single Cooper pair through the sluice. The exact form of

the pulses is not crucial as long as synchronization is maintained.

a series of near-eigenstates of charge. For instance, in the three-junction Cooper pair
pump [26,27,82] one may denote by (Q,Q2) the eigenstate of charge with () resid-
ing on island 1 and @), residing on island 2. Then the gate voltages are manipulated
adiabatically such that the cycle (Q1,Q2) : (0,0) — (0,2¢) — (2¢,0) — (0,0) is al-
most achieved. However, due to the non-vanishing Josephson coupling, the eigenstate
of energy is not an eigenstate of charge. It is impossible to decrease the Josephson en-
ergies of the junctions indefinitely without sacrificing the adiabaticity since the smallest
excitation energy is proportional to Fj. Stated otherwise, there is a tradeoff between
accuracy and adiabaticity. From the point of view of adiabaticity it would be beneficial
to increase Fj indefinitely, but in the adiabatic limit there is an error in the pumped
charge proportional to Ej such that it would be desirable to make E; small. These two
seemingly contradicting requirements are the reason for considering tunable Josephson
junctions, i.e. SQUIDs.

The Cooper pair sluice is a single-island Cooper pair pump. It was introduced and
analyzed theoretically in Publication VI. A single island and a single gate voltage are
sufficient due to the fact that also the couplings are controlled. A schematic of the device
is shown in Fig. 6(a). The Hamiltonian of a homogeneous Cooper pair sluice is explicitly

o,
Htuice =Ec(n — ng)2 — Ej (ﬂa) cos(¢ + ¢/2)
0

- 8} (gt ) cosle/2 - ). (49)

Here ¢ is the phase on the island and n is the number operator for Cooper pairs.

They obey the commutation relation [n,¢] = i. The charging energy is given by

33



Ec = 2¢%/(2C5 + Cy) and the gate charge is n, = C;V,/2e. Furthermore, E} and EY are
the effective Josephson energies of the left and right SQUIDs, respectively, which we as-
sume may in principle be set to zero. The flux through the left (right) junction is denoted
by ®; (®,). The parameter vector q for the present device is given by q = (ng, EY, E})T.
The pumping of charge is achieved via manipulating the parameters q adiabatically such
that at certain instants the ground state is ideally also exactly an eigenstate of charge.
This may be achieved by setting the Josephson couplings to zero. A typical pumping
cycle is shown in Fig. 6(b).

For instance, we may assume that initially the ground state is an eigenstate with zero
Cooper pairs which we attain e.g. with £} = 0, E% = 0 and n, = 0. Then keeping E% = 0
and tuning n, from zero to one and simultaneously opening the left SQUID (first vertical
dashed line in Fig. 6(b)) and closing it again (second dashed line) adiabatically increases
the number of Cooper pairs on the island by one. Namely, the ground state is after the
manipulation still an eigenstate of charge but with one more pair and we have assumed
that the system stays at its ground state. The extra Cooper pair must have tunneled
through the left SQUID since the right one was closed altogether. Ramping n, from one
again back to zero while simultaneously opening (third dashed line) and closing the right
SQUID clearly takes us to where we began: The island again has zero Cooper pairs. This
time the charge must have flown through the left SQUID. In conclusion, this cycle leads
to a pumping of exactly one Cooper pair through the device. Repeating the cycle at
the frequency f leads to a DC current I = 2ef. Note that the above logic immediately
generalizes to the pumping of m Cooper pairs by working between n, = 0 and ny = m
yielding I = 2emf. The crucial assumption is that the temporal evolution is adiabatic.
It is worth pointing out explicitly that the above cycle maintains the non-degeneracy of
the ground state such that the system indeed is protected against excitations to higher
levels.

The imperfections of the sluice have been analyzed in Publication VI. To this end,
the sluice was simulated using numerical integration of the Schrodinger equation. This
was carried out using the loop shown in Fig. 6(b) as a basis for the time dependence
of the Hamiltonian Hguice. Then, just like in the case of quantum algorithms, the time
axis was split to a discrete set of points (10 or more) that were a distance At apart
and the Hamiltonian was considered piecewise constant in time. The Hilbert space was
truncated to some 10-30 charge states depending on the value of m considered. The
state vectors were propagated using

|Wh(t + At)) ~ exp(—iHuice (t + AL/2)AL/R)[Y(1)). (50)

The quantity of interest, Qp in Eq. (37) was evaluated simply using the trapezoidal rule.
Note that the current operator also has a time dependence. The discretization was made
fine enough such that increasing the number of points did not change the result.

It was found that the pumping of individual Cooper pairs with an accuracy of 10~7
should be possible at currents of some 10 pA. However, increasing m to m = 10, would
allow pumping of 0.1 nA with the same accuracy. These estimates only take into ac-
count the finite operating frequency. The optimal value of m is not known. It was
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also found that with sufficient phase averaging errors should not increase. Namely, the
leakage supercurrent is proportional to sin ¢ while the error in the pumped charge Qp
is proportional to cos ¢. The average of both of these under a perfect voltage bias V' is
clearly zero since then ¢ = 2eVt/h.

4.3 Experiments on the “sluice”

Paper VII describes the experiments demonstrating the pumping of Cooper pairs uti-
lizing the idea described above. Figure 7 shows scanning electron micrographs (SEM) of
the measured sample as well as a schematic of the measurement setup. The sample was
fabricated using standard e-beam lithography and two-angle shadow evaporation. The
steps of the fabrication process included spinning a two-layer PMMA /MAA (polymethyl
methacrylate/methacrylic acid) and PMMA resist on top of a silicon wafer, drawing
the pattern of the device using an electron beam, developing the resist in two different
solvents (first in a mixture of 25% MIBK (methyl isobutyl ketone) and 75% IPA (iso-
propanol) and then in pure IPA) to get an “undercut” and finally evaporating aluminum
from two different angles in vacuum with an oxidization step between the layers. The
Josephson junctions are thus realized as an Al-AlO,-Al sandwich. The thicknesses of
the Al layers were 30 nm and 50 nm while the thickness of the oxide is a few nm. The
extra aluminum was removed in the lift-off done by dipping the chip in acetone. The
two different layers can be seen as “shadows” in Fig. 7(b). The sample was then at-
tached to the sample holder of a He3- He?* dilution cryostat with a base temperature
of 20 mK and electrically connected using Al wire bonds. The two ends of the device
were bonded to DC lines in a four-point configuration as shown in Fig. 7(c) while the
two input coils and the gate were connected to RF lines with bandwidth up to tens of
GHz. The measurement electronics along with the arbitrary waveform generators used
for realizing the flux and voltage control were connected to a PC. Matlab scripts and
Matlab’s Data Acquisition Toolbox were used to carry out the measurement.

The sample parameters were Cy ~ 0.2 fF, Ec/kg ~ 1 K and E;/kg ~ 0.5 K. The
estimate of the gate capacitance is based on gate periodicity measurements, that of the
charging energy on the measurement of the normal-state conductance at 4.2 K [85] while
the estimate of Ej is based on the normal-state resistance and the Ambegaokar-Baratoff
formula [71], i.e., Ey = hApcs/8¢*Ry. For the arrangement of the flux pulsing it is
important to know the mutual inductances between the input coils and the SQUIDs.
The SQUIDs were intentionally designed to have large extensions to get better coupling.
The mutual inductances were measured by sweeping the DC current in the two input
coils at constant bias voltage and by measuring the current. This allows one to design
the flux pulses with proper compensations for the cross-talk, see Publication VII. The
relative phases were optimized by sweeping them and maximizing the current. Since we
were using commercial waveform generators, we were forced to use frequencies on the
order of a few MHz. Luckily, though, we could compensate for the low frequency by
increasing the number of pumped charges m, i.e. the gate amplitude.

The measurement of the full current-voltage characteristics was carried out with the
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Figure 7. (a) Scanning electron micrograph of the Cooper pair “sluice”.

The input coils are seen topmost and lowest in the picture while the gate
extends to the right. The current flows between the two electrodes on the
left. (b) Close-up of the island. The Josephson junctions are the four
lighter-shade spots formed in the overlap of the two shadows. (c¢) Mea-
surement setup.

pumping signal being applied underneath. It was found that despite the manipulation of
the Josephson energies, leakage current unfortunately also existed. However, since it was
possible to change the direction of the current by shifting the phase of the gate through
180 degrees, it is possible to extract the pumped current from this measurement. Namely,
subtracting the IVs with the pumping applied forward and backward from each other
should leave us with twice the pumped current. Figure 8 shows full IVs at 3 MHz for
different gate amplitudes with pumping in both directions along with the aforementioned
differences AI vs. voltage. It is seen that the difference in the current nicely obeys the
expected pumping behavior. In order to serve as a practical current pump the leakage
should be taken care of, e.g., by improved voltage biasing and/or improving the closing
of the SQUIDs.

The most convincing evidence of the pumping along with the fact that the above
phase shift procedure works, is found by gradually increasing the gate amplitude and then
measuring the current at a constant voltage bias. The results are shown in Fig. 9. The
quantity that we studied was A[ in this measurement too. The amplitude was increased
such that the low level of the gate Vglo was fixed and the high level Vghi was swept. This
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Figure 8. (a) IVs for pumping forward (solid) and backward (dashed).
Here m ranges between 4 and 34. (b) Differences AI in the IVs (see text).
Horizontal dotted lines indicate the expected levels of current. Here Vieas
is the measured value of voltage.

should result in 2e-periodic staircase in the pumped current with the step heights® equal
to 4ef. However, due to quasiparticle poisoning faster than the measurement time scale
but slower than the pumping, the measured behavior was e-periodic with 2ef steps.
This is interpreted to be because we actually measure the average of two 2e-periodic
staircases shifted by e with respect to each other. Figure 9(b) also shows the high gate
amplitude behavior of Al and it is seen that up to amplitudes of 10e the agreement with
the expected behavior is good. Fig. 9(c) illustrates the least-squares fitted slopes to the
linear regime of Figs. 9(a-b). The agreement with theory is seen to be good with a few
percent error.

To conclude, we have demonstrated in practice the original idea of Publication VI for
pumping Cooper pairs with tunable Josephson junctions, i.e. SQUIDs. The experimen-
tal evidence is convincing enough to show that the idea for pumping works, although
several non-idealities still exist. Possible solutions for cutting down the leakage include
fabricating an on-chip capacitor much larger than the junction capacitance parallel with
the pump, considering a more complicated design for the SQUIDs (see Fig. 1(b) of Pub-
lication VI) and maybe even using a longer array. Lengthening the array would, though,
inevitably complicate the control. The capacitance, however, would better conserve the
energy of the pump since then the so-called P(E)-curve would be peaked close to the zero
of energy, see e.g. Ref. [70]. The quasiparticle poisoning is not necessarily a problem even
from the application point of view, if the quasiparticle current is small enough. Namely,
our measurements indicate that the net quasiparticle flow is negligible but, instead, the
quasiparticles jump randomly on and off the island with no preferred direction. That
is, the flow of current is mostly due to Cooper pairs. The quasiparticles in the present
measurement are thus probably of the non-equilibrium type reported in Ref. [86]. There
the reported time scale of quasiparticle poisoning for a superconducting SET was 10 us.
In Ref. [87] the relevant time-scale was 1072 s but in a somewhat different setup. These
figures support our time scale argument, since the integration time for our measurement

3Recall that AT should be twice the pumped current.
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Figure 9. (a) Difference Al in the current for forward and backward
pumping at 2.5 MHz against the high level of the gate signal Vghi with the
low level at zero. The dashed lines are drawn at 2ef intervals. (b) Large
gate amplitude behavior of AI at a few frequencies. The dashed lines
show the expected gate dependence, i.e. their slope is 2ef. The curves are
offset for clarity. (c) Fitted slopes to the data of the previous plots up to
VeCq/e = 10 are shown by circles. The solid line indicates the expected
behavior. The voltage bias point was around 10 uV in all the above plots.

was on the order of 0.1 s and the pumping time smaller than 1 ps. We could not, how-

ever, experimentally determine the characteristic time for quasiparticles in the present
setup.

38



5 Conclusions

In this Overview we have discussed different aspects of the controlled evolution of
quantum systems, both geometrical and dynamical. Particular attention was paid to
nanoscale Josephson junction circuits. The two applications that were considered in
detail included quantum computing and quantum charge pumping. Let us briefly sum-
marize the conclusion of the Publications included in this Thesis:

In Publications I-1I, a realization independent numerical method of finding arbitrary
holonomic quantum gates was studied. It was shown that holonomy loops realizing
any one and two-qubit unitary operation for the studied three-state model can be found
easily. Moreover, it was shown that the length of the loop could be reduced by numerical
optimization.

In Publications III-V, the optimization method was generalized to dynamical quan-
tum computing. The physical system studied was the inductively coupled Josephson
charge qubit array, although the method could easily be generalized to other systems.
The algorithm was parallelized and shown to be capable of finding single-shot realiza-
tions for up to three-qubit gates. Publication III introduced the method while Publica-
tion IV concentrated on accelerating quantum algorithms using three-qubit gates. The
more extended Publication V discussed the requirements of performing Shor’s algorithm
on the inductively coupled charge-qubit array. It was found that factoring 21, arguably
the simplest “non-trivial” composite integer, would require 22 qubits and microsecond
coherence times which is on the same order as the best reported coherence times in
superconducting circuits. However, it was found, that breaking for instance the 512-bit
RSA would require thousands of qubits working co-operatively and tens of seconds in
terms of coherence time. All the estimates were based on the assumption that arbitrary
three-qubit gates are available in single-shot form. The use of elementary gates would
prolong the runtime severely. The conclusion regarding Publications I-V is that even
though no change in the complexity of the algorithm is obtained via numerical opti-
mization, the stringent limits set by short decoherence times makes it well worthwhile
to try and reduce the runtime even by a numerical factor. Optimization may well result
in cutting down the runtime by orders of magnitude opposed to elementary-gate logic
inspired by classical computers.

In Publication VI, an application of Berry’s geometrical phase in a superconducting
circuit was discussed. There a novel Cooper pair pump, the “sluice”, consisting of
just one superconducting island connected to leads via SQUID loops and utilizing both
flux and voltage control was introduced. It was shown that the device can potentially
reach metrological accuracy. In Publication VII, the experimental results of the device
were reported. It was found that the pumped current increases in clear steps with the
increasing gate amplitude and changes direction under a 180-degree phase shift of the
gate, even though quasiparticle poisoning and leakage were present. Many suggestions
for improving the device were given. The “sluice” was found to be a promising candidate
for a practical current pump. The clear benefit of the “sluice” is that it is simple with
just three control parameters and it would allow for higher operating frequencies. One
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may further argue that solving the practical challenges in its control is much easier than
building even a simple working quantum computer. It could, therefore, find use as a
great test bench for the control techniques of superconducting qubits.
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Realization of arbitrary gates in holonomic quantum computation
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Among the many proposals for the realization of a quantum computer, holonomic quantum computation is
distinguished from the rest as it is geometrical in nature and thus expected to be robust against decoherence.
Here we analyze the realization of various quantum gates by solving the inverse problem: Given a unitary
matrix, we develop a formalism by which we find loops in the parameter space generating this matrix as a
holonomy. We demonstrate that such a one-qubit gate as the Hadamard gate and such two-qubit gates as the
controlledNoT gate and theswap gate, and the discrete Fourier transformation can be obtained with a single
loop.
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I. INTRODUCTION II. HAMILTONIAN AND HOLONOMY

Here we first review the concept of non-Abelian ho-
‘lonomy to establish notation conventions. Let us consider a
{jzmily of Hamiltonians{H,}. The point\, continuously pa-

Quantum computing is an emerging scientific discipline
in which the merging and mutual cross fertilization of two of

the most important developments in physical science anghetrizing the Hamiltonian, is an element of a manifait
information technology of the past century—quantum me-jieq the control manifold and the local coordinatenofs
chanics and computing—has resulted in an extraordinarilyjenoted byAi(1<i<m=dim M). It is assumed that there
rapid rate of progress of interdisciplinary nature. Interestingsyists only a finite number of eigenvalueg(\)(1<k<R)
problems to address in this context include fundamentajor an arbitraryh e M and that no level crossings occur.
questions as to what are the ultimate physical limits of comsyppose thath eigenvalues,(\) is g,-fold degenerate for
putation and communication. For introductions to quantumgpy )\ e A and=R_,g,=N. The degenerate subspace as
computing and quantum information processing see, €.gdenoted by7H,(\). Accordingly, the Hamiltonian is ex-
Refs.[1-3]. pressed as B X N matrix. The orthonormal basis vectors of
Holonomic quantum computatioHQC) was first sug- () are denoted by|na;\)}
gested by Zanardi and Rasetti in Rpt]. The concept has
been further developed in Reff5—9]. The suggestion is
very intriguing itself, quantum-logical operations are
achieved by driving a degenerate system around adiabat
loops in the parameter manifold. The resulting gates are 3f the basis vector§na;\)}
generalization of the celebrated Berry ph_@:ﬁ@] to encom-  Let us now assume 'Lhat .the parametds changed adia-
pass a Qegenerate system. Thesg are, in fact, nOn'AbeI"’[’)?:lticalIy. We will be concerned with a particular subspace,
holonomies. Due to the geometric nature of these gate

: i S %ay the ground stat&,(\), and we will drop the index to
guantum information processing is expected to be fault to"simplify the notation. Suppose the initial statetat0 is an

erant. For instance, the issue of timing and the lack of Sponéigenstatdlp (0))=|a:1(0)) with the energys =0 possi-

taneous decqy are definite s'trengths of HQ_C. Here we stu'déqy through shifting the zero point of the energy. In fact, we
the construction of holonomic quantum logic gates numeri-

. ) o ' ‘are not interested in the dynamical phase at all and hence
cally via solving a certain inverse problem. Namely, we findaggme that the eigenvalue in this subspace vanishes for any
the loop y corresponding to the desired unitary operdtor )\ e M. The Schrdinger equation is
by solving a high-dimensional optimization task.

The paper is organized as follows: In Sec. Il, we present
the physical and mathematical background underlying our ig|z,// (1)) =Hy ol ta(t)) 1)
approach. Sections lll, 1V, and V comprise the main part of dt' ¢ MOTF a2/
the present paper. Loop parametrizations for one- and two-
qubit gates are presented in Sec. Ill. The numerical method iwhose solution may be assumed to take the form
introduced in Sec. IV. Then the optimal realization of a uni-
tary gate as a holonomy associated with a loop in the param- g
eter space is investigated numerically in Sec. V. Section VI |, (1) = E |BANE)U go(b). )
discusses the results. 6=1

Hylna;Ny=g,(N)|na;\), (na;N|mB;\)= OmnOap -

Note that there aré(g,) degrees of freedom in the choice

The unitarity of the matrid ,(t) follows from the normal-
*Also at Department of Physics, Kinki University, Higashi-Osaka ization of |#,(t)). By substituting Eq(2) into Eq. (1), one
577-8502, Japan. finds thatU g, satisfies
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_ d has a group structufd 3] and is called the holonomy group.
Uga()=—2 <,3;?\(t) gt V;K(t)>Uya- (3) Itis clear that Hol(d) CU(g). The connectionA is called
7 irreducible when Hol@)=U(g).

The formal solution may be expressed as

IIl. THREE-STATE MODEL AND QUANTUM-GATE
CONSTRUCTION
A. One-qubit gates

t
U(t)=Texp<—f A(T)d’i')
0
_ t t T, , To make things tractable, we employ a simple model
== J;Aﬁ)dﬁL J'OdTJO dr A(DA(T) + -, Hamiltonian called the three-state model as the basic build-
ing block for our strategy. This is a three-dimensiof&D)
(4) Hamiltonian with the matrix form

where7 is the time-ordering operator and

11)

o o O
o o O

€
H)\OZ €l2)(2[=| O
0

d
Aﬁa<t>=<ﬁ;x<t>’a a;x<t>>.

Let us introduce the Lie-algebra-valued connection
The first column(row) of the matrix refers to the auxiliary
state|2) with the energye>0, while the second and the
third columns(rows) refer to the vectorf0) and|1), respec-
tively, with vanishing energy. The qubit consists of the last
two vectors.
through whichU(t) is expressed as The control manifold of the Hamiltoniafl1) is the com-
plex projective spac€P2. This is seen most directly as fol-
A lows: The most general form of the isospectral deformation
U(t)=7>ex;{ - Aid)\i), (6)  of the Hamiltonian is of the fornH yEWyHAOWT where
A (0)

d

AN

Ai,ga=<ﬁ;>\(t) a;h(t)> 5

‘y!
W, e U(3). Note, however, that not all the elements of U(3)
. . . . are independent. It is clear thét, is independent of the
where_? 'S thTe_path-ordenng operator. Note thdf is anti- o) phase ofV,, which reduces the number of degrees
Hermitian, A = —A; . . i of freedom from U(3) to Y3)/U(1)=SU(3). Moreover,
Suppose the pat(t) is a loop y(t) in M such that 5 element of SU(3) may be decomposed into a product of

y(0)= y(T)=)\9. Then it is found that after traversing, three SU(2) matrices as follows:
one ends up with the state

g _ _ -
[0a(T))= 2 [5(0)U (), ) Buoa OB O @)l 90
B=1 W,y= -, ﬁl 0 0 1 0 0 B3 &y |,
where the definition|#5(0))=|8;\o) has been used. The 0 0 1/ \—a, 0 B/ \0 —a3 fs
unitary matrix U, U, U,
UYEU(T)=PeXp<— agAidyi) ®) (12
Y

thatU , is independent of the parametrization of the path, but- gi ¢; sjp 6, and ,Bj:ei Yi cosd,. It is clear thatH, is inde-

only depends upon its geometric image/Mt [11,12. pendent ofUs since[H, ,U;]=0. This further reduces the

The space of all the loops based\gtis denoted by physical degrees of freedom to €)/SU(2)=S°. The
productU,U, contains six parameters, whi is five di-
L)\O(M):{’)/:[O,T]—)./\/” v(0)=y(T)=NAg}. (99  mensional; there must be one redundant parametdr .
This parameter is easily found out by writing the product
The set of the holonomy explicitly. The result depends only on the combinatigp
— i, and not on individual parameters. Accordingly, we may
redefine¢, as ¢,— ¢, to eliminate,. Furthermore, after

Hol(A)={U,|ve L)‘O(M)} (10 this redefinition we find that the Hamiltonian depends only

12



on ¢, — i, and ¢, — ¢, and hencel; may also be subsumed The connection coefficients are easily calculated in the
by redefining ¢, and ¢,, which reduces the independent present model and are given by
degrees of freedom down ttP?=S>/St.

Let[z,2?,z%] be the homogeneous coordinate(& and 0 —sing,e (92741
(1,£1,¢&,) be the corresponding inhomogeneous coordinate, le(sina el (42— 61) 0
where & =2%/7',£2=2%z" in the coordinate neighborhood 2
with z'#0. If we write &,=r,e'%, the above correspon-

) , (13

dence, i.e. the embedding 6P? into U(3), is explicitly A, = 00 (14)
given by 6,=tan r, and ¢.= ¢y . 2= \o 0
i .
—isir 6, ~ 5sin 26, sin 6 €' (41~ ¢2)
A= : (15)
— 5Sin 26, sin 0,e' (b2~ b)) i sir? 6, sirf6,
|
0 0 single-qubit transformations. Therefore, we write the isos-
A¢2:(O _isite ) (16)  pectral deformation for a given loop as
2

where the first columiirow) refers to|0), while the second

one refers tg1). Using these connection coefficients, it is 2-qubit_ y p;2-qubit \p 73 < \ A /b 1y 2-qUbit y A ja b Ty x j2-qubitt
possible to evaluate the holonomy associated with a lpop Hy 7= Wy YW“/®WY)|_|M) YW7®W7) Wy ('19)
as

Uy=7>exp( _ fﬁ (A, dby+ A, db, The aQVantgge of expressing_ the unitary matrix in _this form
y 1 2 is easily verified when we write down the connection coef-
ficients for the one-qubit coordinates. Namely, the two-qubit

(17) transformation does not affect the one-qubit transformation

at all;
/5’;>\>

d
(W";®w3)Ta—yi(w3®vv3)

+ Ay by + Ay dgby)

Now our task is to find a loop that yields a given unitary
matrix as its holonomy.

J
[ . T
B. Two-qubit gates Ai,aﬁ_< a;\ Wya_yiwy

Let us consider a two-qubit reference Hamiltonian

. =< a\
HYIP=HS @l5+130HY | (189

o).
whereH®" are three-state Hamiltonians ahglis the 3x 3 i . .
unit matrix. Generalization to an arbitral+qubit system is where y Qenotes a one-qubit coord!nate. . -qubit
obvious. The Hamiltonian scales a¥,3nstead of the  in There is a large number of possible choices\dy ", _
the present model. It is also possible to consider a moddiepending on the p_hy3|cal realization of th_e present scenario.
with g-degenerate eigenstates with one auxiliary state havin%0 keep our analysis as concrete as possible, we have made
finite energy. This model, however, has a difficulty in realiz- the simplest choice
ing an entangled state, without which the full computational
power of a quantum computer is impossible.

We want to maintain the multipartite structure of the sys- A .

tem in constructing the holonomy. For this purpose, we sepa- W2 i = gl 1101 (20)
rate the unitary transformation into a product of single-qubit
transformations \(\/3®Wk;) and a purely two-qubit rotation
Wi'q”b't which cannot be reduced into a tensor product offor our two-qubit unitary rotation. Let
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r_ga b
H,=H3®I5+150H"

hi+hd  h, 1 0 0 1a 0 0
h%, 31+h3, 0 2 0 0 1a 0
h%; h%  hii+h3 0 0 2 0 0 h%,
21 0 S-+h%  h, h%, % 0 0
= 0 21 h%, Sth3,  h 0 % 0
0 0 h%, h%, 5o+ h3a 0 0 %
N 0 5 0 0 Ssthi  hd, h%,
0 a1 0 % 0 h%, th3,  h
0 0 3 0 0 % h%; h%  h§s+h3

be a two-qubit Hamiltonian beford/, is applied. Then after the application bf, to H’y, we have the full Hamiltonian

3+hd, h%, h2s 12 0 0 13 0 0
h5, 31+h3, h5s 0 P 0 0 1s 0
h3, h%  hii+h3 0 0 P 0 0 hse™'¢
21 0 0 5o+ hi; h%, h%s 2 0 0
H2 W= W H! W= 0 5 0 h2, Sothz,  hi 0 % 0
0 0 21 h$, h%  h3+h3 0 0 2 't
a 0 0 %2 0 0 h3s+hy h%, hse™'¢
0 3 0 0 % 0 h5, h§s+h3, hde ¢
0 0 et 0 0 2e'¢  hhet  hiet  hi+hi,
(21)
|
As for the connection, we find The first example is ther/8 gate,
0 0 O 0 U 1 0 -
0 0O 0 =\ g i8] (23
A= : (22 _ . . - .
0 00 0 By inspecting the connection coefficients in E¢s3)—(16),
0 0 0 icod6cod 0123 we easily find that the loop presented by the sequence

where the columns and rows are ordered with respect to the (02,¢2):(0,00—(7/2,0)— (7/2,m/8)— (0,7/8)—(0,0)
basis{|00),|01),|10),|11)}. It should be apparent from the (24)
above analysis that we can construct an arbitrary controlleg}iemS the desired gate. Note that the loop is in the, ()

phase-shift gate with the help of a loop in thé5(¢) of  plane and all the other parameters are fixed at zero. Explic-
(ag,g) space. Accordingly, this gives the controllsdT itly, we verify that
ar
ex EAQZ
6,0 -

gate with one-qubit operations, as shown below.
x TA TA
exp — = exp — =
¢ 0
8 z Oy=/2 2 2

iy

=exp — = .
¢

8 z 02:77'/2

v
C. Some examples U= exp( §"4¢2

Before we proceed to present the numerical prescription
to construct arbitrary one- and two-qubit gates in the follow-
ing section, it is instructive to first work out some important
examples whose loop can be constructed analytically. In par-
ticular, we will show that all the gates required for the proof
of universality may be obtained within the present three-state
model.

¢20>

(29

1/4



500

U0

%%@Q
\ 0N FIG. 1. Objective function landscape in 2D.

R Parameter 1 interpolates between the two known

450

400

350

(5]
(=]
o

° N minima as described in the text, whereas param-
(] eter 2 represents a randomly chosen perpendicu-

R\ 2 e
N\ X lar direction.
N

Parameter 2
BN

150

10

=

q
@ [
50—% Y C?O@] N Q \Q
ST R N\
100 200 300 400 500 600 700 800 900 1000
Parameter 1
The next example is the Hadamard gate (61,05,¢1):(0,0,0—(7/2,0,0 —(7/2,7/2,0)
—(m2,72,0)— (7/2,0x)
1(1 1 - -
He — _ (26) (0,0@)—(0,0,0 (28
i1 -1

is exp{ao,). Here again, the rest of the parameters are fixed
at zero. Finally, we construct the phase-shift geife which
is produced by a sequence of two loops. First, we construct a
gate similar to thes-shift gate usingcf. the 7/8-shift gate

Instead of constructingd directly, we will rather use the
decomposition

2 4

i | K (01,¢1):(0,0—(7/2,0)—(7/2,6)—(0,6)—(0,0).
H=e'"“exp i o,|expgi oyl (29
This loop followed by the similar loop in thef, ¢,) space

It is easy to verify that the holonomy associated with theyields thee'® gate as

loop
(01,9751,02,d)z):(O,O,O,Q—>(0,0,77/2,0)—)(0,0,77/2,5)
(02!01)(010)4)(77/2!0)4’(W/Z!B)H(O!B)H(OIO) ( 7) 4’(0,0,05)4’(0,0,010
2
—(/2,0,0,0—(7/2,5,0,0)
is exp{Bay), while that associated with the loop —(0,6,0,00—(0,0,0,0. (30
25 0.2 4
5 0.15 35
3
0.1
1.5 2.5
0.05 >
& 1 5 N FIG. 2. Loop in parameter
° 18 space that gives the Hadamard
08 005 ! gate(in dimensionless unijs
0.5
0 0.1 0
-0.5 -0.15 -0.5
-6 -4 -2 [¢] -6 -4 -2 o] -6 -4 -2 Q
61 61 61
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TABLE I. Loop of Fig. 2 numerically in dimensionless units. TABLE Il. Loop of Fig. 3 numerically in dimensionless units.

Node 01 0, b1 &> Node 01 0> é1 o
Begin 0 0 0 0 Begin 0 0 0 0
1 —5.28 2.04 0.18 —0.40 1 —2.03 1.31 0.80 —1.16
2 —0.44 1.49 —0.08 3.70 2 1.21 1.18 —2.35 0.57
3 —0.70 —0.27 -0.11 2.59 3 2.54 0.66 —0.49 0.96
End 0 0 0 0 End 0 0 0 0
Finally, the controlled-phase gate U(®)= we may expect to find the best solution in the limited space
exp(®]11)(11]) can be written as V. Since the dimension of the variational space increases

with k, one is forced to use as low laas possible. For
instance, for one-qubit gates, the dimensionks kh the case
of two-qubit gates, the dimension i&9Low k appears to be
desirable for experimental reasons as well.

Formally, the optimization problem is to find g such
IV. NUMERICAL METHOD that

(63,6):(0,00— (7/2,0)— (7/2,0)—(0,0)—(0,0).
@31

Now we adopt a systematic approach to actually construct
the arbitrary quantum gates. The arbitrary one- and two-qubit f(y)=]0- Ul (32
gates are constructed in a three-state model, that is, in a way
the simplest possible realization for HQC, while still main- is minimized over allye V. We naturally hope the mini-
taining the tensor-product structure necessary for exponentiahum value to be zero. Hele||r is the so-called Frobenius
speed up. It has not been shown previously how to construgtace norm defined bjA||z= yTr(ATA). We could employ
the cNoT, let alone the two-qubit Fourier transform in a the well-known conjugate-gradient method to solve the task
single loop. Hence, we resort to numerical methods. Since #t hand, but this method, or any other derivative-based
is extremely difficult to see which single loop results in amethod, is not expected to perform well in the present prob-
given unitary operator, our approach will be that of varia-lem due to the complicated structure of the objective func-
tional calculus. tion. Hence we will use the robust polytope algorithiba].

We convert the inverse problem, i.e., which loop corre- We have plotted a sample 2D section of the optimization
sponds to a given unitary operator, to an optimization probspace in Fig. 1. The axes represent two orthogonal directions
lem. The problem of finding the unitary operator for a givenin the optimization space of a certain two-qubit gate. Xhe
loop is straightforward. Keeping the basepoint of the ho-axis was obtained by interpolating between two known
lonomy loop fixed, we let the midpoints vary. Owing to the minima, whereas thg axis was chosen randomly. One can
2 periodicity, the loops can end either in the origin or atreadily verify from the figure that the optimization task is
any point that is modulo (2). indeed extremely hard.

The space of all possible loops is denotedibywe shall The calculation of the holonomy requires evaluating the
restrict the variational task to the space of polygonal pathsrdered product in Eq8). The method used in the numerical
Vi, Wherek is the number of vertices in the path excluding algorithm is to simply write the ordered product in a finite-
the basepoint. Naturally, we ha¥gC )V such that we are not difference approximation by considering the connection
guaranteed to find the best possible solution among all theomponents as being constant over a small difference in the
loops, but provided that we use a good optimization methodparametersSy;, i.e.,

1.4 1 1

1.2 0.5
0.5
1 ]
0.8 -0.5 0
[ — [
< N
0.6 - 05
0.4 -1.5
—1
0.2 -2
0 -2.5 -1.5
4 2 0 > 4 24 2 0 2 4 ” 2 0 2 4
61 6 61

FIG. 3. Loop in parameter space that yields the g:,.ahteeiexp{i(77/7)(rz]eX|qi(1/3)(ry]expi(rZ (dimensionless uni}s

/6



1.4

1.2

] ]
= N 0.8] 1
- wr
0.6 1
0.4 R
0.2 1
Q

2 - 0 1 2 3 4
9(1 x107
1
0.8 ‘
0.7 1
0.6 1
0.5 1
[MaYa\| O
04 1 -
0.3 1
0.2 1
0.1 1
% 4 0 9 2 3 4
ea x 107"
3.5
3 ]
25 1
TN 2 1
- S
15 1
1 ]
0.5 1
% = 0 1 2 3 4
9(1 x 1072
1
15
1 _
0.5 1
SN S
o) -
0 l
0.5 1
-
) = 0 1 2 3 4
ea x 107"
1

1t

-2

-3

=)

1

-1

12 FIG. 4. Loop in parameter
space that gives the controlled-
NOT gate. Hereycnore Vs and the

error is below 10*2 (dimension-
less units.

-1

-1

U, ~exp(—Ai(y,) 87h) - - -exp(— Ai(y1) 871). (39

tained the results that are plotted in Fig. 2. The error function
f(y) had a value smaller than 18 at the numerical opti-
mum. The plot represents all the possible projections on two

Throughout the study we used 200 discretization points peperpendicular axeghe horizontal axis is alway8,) in the

edge, i.e.n=200x (k+1).

V. RESULTS

four-dimensional space. Note that this optimization was car-
ried out in V3, meaning that there are three vertices other
than the reference point. The results do not take advantage of
the 27 periodicity. We have also included the data points in
Table I. It is impressive that such a simple control loop yields

First, we attempted to find a loop that yields the Had-the gate. Furthermore, this is just one implementation of the
amard gate. Using a random initial configuration, we ob-Hadamard gate. It is possible to find many different ones.
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Another example of one-qubit gates is given in Fig. 3 and' CNOT- We observe, however, that again the minimization
resulted in an accurate solution. The minimization landscape

in Table II. The ga_te that we tried to implement was nOWisjust as rough in the case of two qubits. Now, of course, the
chosen arbitrarily to be U

T . . . : dimension ofV; is 24.
=€ exli(a/7)o,]exti(L/3)oy expio,. Again, the error We also found an implementation of tsevaP gate given

was well below 108 at the optimum. We argue that our in Fig. 5.

method is capable of finding any one-qubit gate. These re- fina)ly, it is interesting to observe that even the two-qubit
sults are not very enlightening as such, but should neverthgyuantum Fourier transform can be performed easily. The re-
less clearly prove the strength of the technique. sulting loop is presented in Fig. 6. It is remarkable that such
We also found several implementations for two-qubita simple single loop yields a two-qubit quantum Fourier
gates. Figure 4 presents the logpyore V5 that produces transform. We used only three vertices, but were still able to
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find an acceptable solution. We argue that the error can bevo-qubit gates are realized by a single loop.

made arbitrarily small for any two-qubit gate. A possible improvement of the present scenario would be
to minimize the length of the path realizing a given gate.
V1. DISCUSSION This can be carried out by introducing an appropriate penalty

or barrier function and the Fubini-Study metric in the control
The realization of arbitrary one- and two-qubit gates inmanifold CP2. This optimization program is under progress
the context of holonomic quantum computation has bee@nd will be reported elsewhere.
demonstrated. By restricting the loops in the control mani-
fold within a polygon withk vertices, it becomes possible to ACKNOWLEDGMENTS
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We study the construction of holonomy loops numerically in a realization-independent
model of holonomic quantum computation. The aim is twofold. First, we present our
technique of finding the suitable loop in the control manifold for any one-qubit and
two-qubit unitary gates. Second, we develop the formalism further and add a penalty
term for the length of the loop, thereby aiming to minimize the execution time for the
quantum computation. Our method provides a general means by which holonomy loops
can be realized in an experimental setup. Since holonomic quantum computation is
adiabatic, optimizing with respect to the length of the loop may prove crucial.

Keywords: quantum geometric and topological computations, numerical optimization
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1. Introduction

We study the implementation of a quantum computer numerically using so-called non-Abelian
holonomies. Holonomic quantum computation (HQC) was suggested by Zanardi and Rasetti
in Ref. [1] and further developed, e.g., in Refs. [2, 3, 4, 5, 6, 7, 8]. In order to build a work-
ing quantum computer of N qubits, one has to be able to produce any unitary operations
in U(2V), i.e. time-evolutions, on the qubits. In holonomic quantum computation, these
operations are achieved by selecting a degenerate qubit system and allowing for an adiabatic
time-development that does not change the degeneracy structure. Even though the Hamil-
tonian in this subspace is completely trivial, it turns out that a non-Abelian and irreducible
gauge potential appears, using which any unitary evolution can be carried out. As the word
holonomy itself suggests, we drive the system around loops in the control-parameter space (or

*Also at the Materials Physics Laboratory, Helsinki University of Technology, P. O. Box 2200 (Technical
Physics), FIN-02015 HUT, Finland.
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manifold) and after each loop there is a nontrivial change in the state of the system. This is
a generalization of the famous Berry phase [9] to a degenerate system.

This paper is organized as follows. In Section 2 we first review the concept of non-Abelian
holonomy. Then in Section 3 we introduce our realization-independent model. Namely, we
consider the general setting for non-Abelian holonomy and unitary gate construction in a
three-state system. This part applies to a much wider class of research topics in modern
physics than just quantum computation. Many physical systems may be suitable for the actual
implementation of this model. Section 4 is the main part of the work. There we first consider
the generic algorithm for numerically finding implementations of holonomic quantum gates.
We have previously studied the computational construction of holonomic quantum gates in
Ref. [10]. There we limited our attention, however, to the solution of the inversion problem
itself; we showed that one can numerically find a holonomy loop corresponding to a desired
gate. Here we further extend the concept to actually optimizing with respect to the length
of the path. We find some new and more efficient implementations of holonomic quantum
gates. Because holonomic quantum computation is adiabatic and hence time-consuming, it
is important to optimize the construction of quantum gates. We argue that our optimization
method could also be extended to dynamical quantum computation. Section 5 is devoted to
discussion.

2. Non-Abelian Holonomy

We briefly outline the concept of non-Abelian holonomy associated with adiabatic change
of control parameters. This is necessary not only to establish notation conventions but also
to rectify certain confusion appearing in the literature on the definition of the holonomy
operator. The concept was first introduced by Wilczek and Zee in Ref. [11]. Other excellent
references are Zee [12] and Mostafazadeh [13].

Let us consider a family of Hamiltonians {H)} parameterized by A € M, where M is a
manifold called the control manifold. The local coordinate of ) is denoted by \* 1<i<m=
dim M). We assume that there are only a finite number of eigenvalues e4()) (1 < k£ < R) for an
arbitrary point A of M and that no level crossings take place through all of M. The eigenvalue
er(A) is assumed to be gg-fold degenerate independently of A. This degenerate subspace will
be denoted by H(A). Then the Hamiltonian is expressed as an N x N hermitian matrix,
where N = ZkRzl gk-

Let us denote the orthonormal basis vectors of () as {|ka; A\)};

Hy|ko; A) = ex(N)|ka; A), (Ja; AkB; A) = 0jkdap- (1)

Note that there are U(gy) degrees of freedom in choosing the set of basis vectors {|ka; A)}.

Suppose the control parameter A is varied continuously over M. It is assumed that the
variation is so slow that the adiabaticity condition is fulfilled, i.e., transitions between the
different energy levels are negligible. We will be concerned with a particular subspace, the
ground state H1, for example. We will drop the index k = 1 hereafter to simplify the notation.
Let us take a basis vector |a; A(0)) at ¢ = 0 and study how the state develops as a function
of time. We may assume that e(A) = 0 for any A € M, possibly after first readjusting the
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zero-point of the energy. Now our task is to solve the Schrédinger equation

2 1)) = iy al®) 2

with the initial condition |1 (0)) = |a; A(0)). It follows from the adiabaticity condition that
the solution of the above equation may always be expanded in the form

[Ya(®) =D 18; A(£)) Upal(t)- 3)

B=1

The unitarity of the matrix Ug, follows from the condition (g(t)|¥a(t)) = dga. By substi-
tuting Eq. (3) into Eq. (2), we find that

g

o == 3 (70| | 170 Vs (@

v=1

The formal solution of the above equation is readily obtained as
t
U(t) = Texp (—/ A('r)d'r)
0
t t T
= I- / A(r)dr + / dT/ dr' A(T)A(T") + ... (5)
0 0 0
where 7 is the time-ordering operator and

A3a(®) = (B3| 20 ). (6)

Let us define the Lie-algebra-valued connection one-form

0
Ape = <ﬂ; A() \5

o )\(t)> dXi (7

by which U(t) may be expressed as

At)
U(t) = Pexp (— /)‘(0) .A) , (8)

where P is the path-ordering operator. Note that A is anti-Hermitian; Af = —A.
Suppose that the path A(¢) is a loop v(¢) (0 < ¢ <T) in M, such that v(0) = v(T) = Xo.
Then it is found after traversing the loop 7y that the resulting state is

[$a(T)) =D 18 X0)Upa(T). (9)
B=1
The unitary matrix
U, =U(T) =Pexp (— f( A) (10)
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is called the holonomy associated with the loop . It is clear that U, is independent of the
parameterization for the loop but only depends on the geometric image of the loop in M.
Suppose the initial state is a superposition

g
Z (in)|o; Ao)-

Then the linearity of the Schrodinger equation leads to the final state

[$(T)) = cp(out)|5; Ao)

Me | Mm

183 20)Upa (T)ca(in) (11)

Il
i

B

which implies that cg(out) = 3 Uga(T)cq(in). Thus, we confirm that U is indeed the matrix
representation of the time-evolution operator with the standard ordering of indices. In this
context, it is crucial that the summation in Eq. (3) goes over the first index 3.

The space of all the loops based at \g is denoted as

Lo (M) = {7 : 0, T] = M|y(0) = 7(T) = Ao} (12)
The set of the holonomy
Hol(A; Xo) = {Uy| v € Lo (M)} (13)

has a group structure and is called the holonomy group. The product is just an ordinary matrix
product. It is easily seen that Hol(\A; \g) is isomorphic to Hol(A4; A1) for any Ao, \; € M if
M is arcwise-connected. It is clear that Hol(A) C U(g) since U(g) is the maximal possible
group in C9, which preserves the norm of a vector. The connection A is called irreducible if
Hol(A) = U(g). We assume that our control manifold is always arcwise-connected and we
omit the explicit quotation of the base point from now on.

3. Three-State Model and Quantum-Gate Construction

3.1. One-qubit gates

To realize the idea outlined in the previous section, we employ a simple model Hamil-
tonian called the three-state model as the basic building block for our strategy. This is a
3-dimensional Hamiltonian defined by

Hy, = €2)(2 =

oo

0 0
0 0 (14)
0 0

at the base point A\g € M. The first column (row) of the matrix refers to the auxiliary state
|2) with an energy € > 0 while the second and the third columns (rows) refer to the vectors |0)
and |1), respectively, having vanishing energy. The computational subspace (qubit) consists of
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the last two vectors. In spite of the fact that the qubit operation takes place in this subspace,
the auxiliary state |2) is necessary since the Hamiltonian trivially vanishes otherwise.

The control manifold M of the Hamiltonian (14) is the complex projective space CP? =
U(3)/(U(2) x U(1)). This is seen most directly as follows: The most general form of the
isospectral deformation of the Hamiltonian is of the form H, = W, H,, WJ;, where W, € U(3).
Note, however, that not all the elements of U(3) are independent. It is clear that H, is
independent of the overall phase of W.,, which reduces the degrees of freedom from U(3) to
U(3)/U(1) = SU(3). Moreover, any element of SU(3) may be decomposed into a product of
three SU(2) matrices as follows

Bl Qi 0 ﬂ_z 0 Q2 1 9 0
W’y = —Q ﬂl 0 0 1 0 0 ﬂg a3 B (15)
0 0 1 —az 0 B 0 —as fs

where the a; and the 3; satify the relation |a;|> + |3;|*> = 1. This decompostion is know
as the Givens decomposition. We put a; = e'%i sin 0; and B; = e'¥i cos 0;. It is clear that
H, is independent of Us since UsH), Ug = H),. This further reduces the physical degrees
of freedom to SU(3)/SU(2) = §5. This is not the end of the story, however, since CP? is
real four-dimensional and we have to get rid of a phase from S5. Accordingly, we have to
“gauge away” two redundant parameters in the product U; U, which contains altogether six
parameters. These redundancies are easily identified by writing the product out explicitly.
The result depends only on the combination ¢ — 12 and not on individual parameters.
Accordingly, we may redefine ¢5 as ¢2 —1)3 to eliminate 2. Furthermore, after this redefinition
we find that the Hamiltonian depends only on ¢; —; and ¢2 — 1; and hence 1; may also be
subsumed by redefining ¢; and ¢2, which reduces the independent degrees of freedom down
to CP% =~ §5/8*.

Let [2%, 22, 23] be the homogeneous coordinate of CP? and (1,£;,&;) be the corresponding
inhomogeneous coordinate, where £; = 22/2',£2 = 23/2! in the coordinate neighborhood
with z! # 0. If we write £, = r1e?* the above correspondence, i.e. the embedding of CP?2
into U(3), is explicitly given by ) = tan=! 74 and ¢ = pi.

The connection coefficients are easily calculated in the present model and are given by

g, — <Sin0262¢2_¢1) —sinOQeOi(d’zrbl)) , (16)

Ag, = (8 8) , (17)

A= (Lianmomensiensr iaboase ) 09
Ags = (8 —isi0n2 02) ’ (19)
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where the first column (row) refers to |0) while the second one refers to |1). Using these
connection coefficients, it is possible to evaluate the holonomy associated with a loop v as

Uy = Pexp <— f{(Aold@l + Ag,dbz + Ag,d¢1 + A¢2d¢2)) : (20)
el
Now our task is to find a loop that yields a given unitary matrix as its holonomy.

3.2. Two-qubit gates
Let us next consider a two-qubit reference Hamiltonian
Hf:lubit =H} ® I3+ I3 ® HY,, (21)

where Hf\”b are three-state Hamiltonians and I3 is the 3 x 3 unit matrix. Generalization to
an arbitrary N-qubit system is obvious. The Hamiltonian scales as 3V, instead of the 2V in
the present model.

‘We want to preserve the multipartite structure of the system in constructing the holonomy.
For this purpose, we separate the unitary transformation into a tensor product of single-qubit
transformations (W2®W?) and a purely two-qubit rotation W22 which cannot be reduced
into a tensor product of single-qubit transformations. Therefore, we write the isospectral
deformation for a given loop v as

Hg-qubit — Wg-quit(W,;,l ® Wéz)Hi;qubit (W,;I ® W,?)TW,g-qubitT- (22)

The advantage of expressing the unitary matrix in this form is easily verified when we write
down the connection coefficients for the one-qubit coordinates. Namely, the two-qubit trans-
formation does not affect the one-qubit transformation at all;

B; A>

a 8 a
= <a;/\ ‘(W7 ®Wf)137(Wv ® W)

0
Aiag = <a; A ‘WJG—'WWV

B; A> ;
where 7% denotes a one-qubit coordinate.
There is a large number of possible choices for Wg'q“bi", depending on the physical real-
ization of the present scenario. To keep our analysis as concrete as possible, we have made
the simplest choice

Wf—qublt — WE = ez§|11)(11| (23)
for our two-qubit unitary rotation. Let
H, = Hy®oL+L®H,

h?1+htl,1 hl{2 hg3 h%2 0 0 hgllB 0 0
hgl hgl+hg2 h1273 0 h%Z 0 0 h(f3 0
hgl hg2 hg1+hg3 0 0 h;2 0 0 h?S
hgl 0 0 h"212+h’l;1 th h?3 hg3 0 0
= 0 h31 0 RS, h3a+h3, R, 0 h3s 0
0 0 hgl hgl th hgz'i'h:l;a 0 0 hg3
h;l 0 0 h;Z 0 0 hg3+h’l{1 hiZ hl{S
0 hgl 0 0 th 0 h’gl hg3+hg2 th

0 0 hgy 0 0 h3s h3: h3s  hiz+h3s
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be a two-qubit Hamiltonian before W is applied. Then after the application of W to Hﬁ, we
obtain for the full Hamiltonian

2-qubit __ 7 1
H’y = W§H7W§
h(ﬁthlfl h%s . h%s hi, 0 0 his 0 0
ha1  hiithzy  has 0 his 0 0 his 0
hgl hgz hil1+hgs 0 0 his 0 0 hl{se_lg
h3y 0 0 h3y+hly kY, his h3s 0 0
= 0 h3y 0 h3y  h3y+hi, hga 0 h3s 0
0 0 h3y hg1 hgz hgz+hgs 0 0 hgseils
h3 0 0 h3s 0 0 hgs+hi; ki, hgse_lze
0 hgy 0 Y h3, Y h’gl hg3+h32 h33571€
0 0 hg et 0 0 hgye®®  R3e*®  R3se* hgz+hl,
(24)
As for the connection, we find
0 0O 0
L_|0o0o0 0 o5
¢t~ 1000 0 (25)
0 0 0 icos26gcos?6}

where the rows and columns are ordered with respect to the basis {|00), |01),]10), |11)}. It
should be apparent from the above analysis that we can construct an arbitrary controlled
phase-shift gate with the help of a loop in the (62, £)- or (67, £)-space. Accordingly, this yields
the CNOT gate with one-qubit operations, as shown below.

3.3. Some Examples

Prior to proceeding to present in the next section the numerical prescription to construct
arbitrary one- and two-qubit gates, it is instructive to first work out some important examples
whose loop can be constructed analytically. In particular, we will show that all the gates
required for the proof of universality may be obtained within the present three-state model.

The first example is the 7 /8-gate,

1 0
U7r/8 = < 0 ei7r/8 ) . (26)
By inspecting the connection coefficients in Egs. (16-19), we easily find that the loop
(62,¢2) : (0,0) = (w/2,0) = (7w/2,7/8) — (0,7/8) — (0,0). (27)

yields the desired gate. Note that the loop is in the (s, #2)-plane and that all the other
parameters are fixed at zero. Explicitly, we verify that

o = o et (5 Ao )
X exp (—% Ag, |92=7r/2) exp (—g Ao, |¢2:0)

= exp (—% .A¢2|92=7r/2) . (28)
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The next example is the Hadamard gate

H:%(i _11) (29)

Instead of constructing H directly, we will rather choose to use the decomposition

—in T s
H=e"/?exp (15%) exp (zzoy) .
It is easy to verify that the holonomy associated with the loop
(62,01) : (0,0) = (w/2,0) = (/2,8) — (0,8) — (0,0) (30)
is exp(¢oy), while that associated with the loop

(61,02,61) : (0,0,0) = (7/2,0,0) = (7/2,7/2,0) = (7/2,7/2, )
— (7/2,0,a) — (0,0,a) — (0,0,0) (31)
is exp(iao,). Here again, the rest of the parameters are fixed at zero. Finally, we construct

the phase-shift gate e?®, which is produced by a sequence of two loops. First we construct a
gate similar to the J-shift gate using (cf., the 7 /8-shift gate)

(01,61) : (0,0) — (7/2,0) — (w/2,8) — (0,6) — (0,0). (32)
This loop followed by the similar loop in the (62, ¢)-space yields the e?-gate as

(01,451,92,(1)2) : (0, 0,0,0) — (0,0,71’/2,0) — (0,0,71'/2,(5) — (0,0, 0, (5)
- (ana 0, 0) - (71'/2107 0, 0) - (71'/2, 4,0, 0) - (0’5a 0, 0) - (ana 0, 0) (33)

Finally, the controlled-phase gate U(©) = exp(i©|11)(11]) can be implemented with the
loop

(05,¢) : (0,0) = (7/2,0) = (7/2,0) — (0,0) — (0,0). (34)
4. Numerical Results

4.1. Loop-Finding Algorithm

In this Section we numerically study the construction of holonomic quantum gates for the
three-state model. The three-state model is in a way the simplest possible model for holonomic
quantum computing while still maintaining the tensor-product structure which is necessary
for exponential speed-up. We have previously shown [10] how to solve the inverse problem of
finding loops corresponding to desired quantum-logic gates. We have presented several exam-
ple solutions for various one- and two-qubit gates. We demonstrated, e.g., how to construct
the Hadamard gate, the CNOT, the SWAP, and the two-qubit Fourier transform in a single
loop. We concluded that our three-state model is capable of universal quantum computing.
Here we will extend the scenario by adding a penalty term for the length of the path. We
will also introduce and test a method for optimizing with respect to the length directly but
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with a penalty term arising due to excess deviation from the desired gate. In this manner one
may efficiently combine loops. Even though these measures will not result in a change in the
quantum-computational complexity, it may be possible to significantly reduce the multipliers
in front of the highest-order terms in the expression for the CPU execution time. In other
words, the big-O notation is the same, but nevertheless, much of the computation time may
be saved.

First we review our basic algorithm and show some new example gates. Namely, each loop
< in the parameter space corresponds to a gate U,. We wish to solve the inverse problem; We
look for a 4 that corresponds to U. We further restrict ourselves to the space of all polygonal
loops. If V is the space of all possible loops with the given base point, then Vi will be the
space of all those polygonal loops that have k vertices in addition to the base point. Here of
course Vi C V. This problem can be formulated as an optimization problem. One needs to
find 4 such that

F) =T -U,llr (35)

is minimized over all v € V;, We aim at the minimum value to be zero. Here | - ||[r denotes
the Frobenius norm defined as ||A||r = 1/Tr (AtA).

For one-qubit gates, the dimension is 4k whereas in the case of two-qubit gates the di-
mension is 9k. We used the polytope algorithm [15] to solve this problem. The reason for
employing this method is the extremely complicated structure of the objective function. In
Fig. 1 we have plotted a 2D section of the function values. This figure was obtained by using
the line joining two known minima of a certain one-qubit gate along with a randomly chosen
perpendicular direction. Thus derivative-based methods are not expected to perform well.

The calculation of the holonomy requires evaluating the ordered product in Eq. (10). The
method used in the numerical algorithm is to simply write the ordered product in a finite-
difference approximation by considering the connection components as being constant over a
small difference in the parameters §+;.

For instance, we attempted to find a loop corresponding to the Hadamard gate. We have
previously given a different implementation of this gate [10]. The resulting loop is illustrated
in Fig. 2. Note that this optimization was carried out in V3 meaning that there are three
vertices other than the reference point. We have taken the origin to be this reference point.
The length of this example loop is 12.01 in the Euclidean approximation. To give an example
of a two-qubit gate, we have included in Fig. 3 a loop that yields the well-known two-qubit
quantum version of the Fourier transform. This loop is again different from the example
solutions of Ref. [10]. Thus one is convinced that the solution is by no means unique. For
instance, the solution depends strongly on the initial configuration of the polytope algorithm.
Hence, there is ample motivation to search for shorter loops.

To show more clearly the power of our technique, we have plotted in Fig. 4 the error as a
function of function evaluations for three independent runs. The attempted logical operation
was the Hadamard gate. We see that the convergence seems to be exponential. Moreover,
a few hundred evaluations of f(7y) is enough to achieve an error as low as 1078. We argue
that one can achieve arbitrarily small errors by running the algorithm long enough. Numerical
rounding errors will, though, complicate things slightly. It is important from the experimental
point of view just to achieve low enough errors.
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Fig. 2. Loop in the parameter space that implements the Hadamard gate with L(yg) = 12.01.
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L(YFourier) = 63.35. The error was below 10713,
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Fig. 4. Error as a function of iterations for the Hadamard gate.

4.2, Length-Penalty Optimization

We now proceed to develop the formalism for reducing the length of the loops. We tried
adding a penalty term to the objective function see, e.g., Ref. [14]. This function is defined
as

0, if L(7) < Liax
P() = " (36)
vL(y)?, otherwise

where L(7) is the length of the path 7; here p and v are adjustable parameters. Note that
the length need not be Euclidean. Our numerical experiments below will, though, use the
Euclidean approximation. To be strict, however, we would have to relate the four parameters
of our Givens decomposition to the base manifold CP? of the bundle U(3) in the case of
one-qubit gates. Then we would employ the CP? metric to evaluate the length of the loop in
the optimization algorithm. Hence the lengths of the loops here should be interpreted with
caution. Moreover, since HQC is purely geometrical, the operation should be independent
of how fast the loop is traversed. Note, however, that a shorter loop may be traversed more
quickly without spoiling the adiabaticity requirement.

It should be clear from the structure of Eq. (36) that the penalty functions are designed to
have built-in constraints. In the allowed region, i.e., where the length does not exceed L.y,
the problem is unchanged. There will be a rapidly growing penalty term elsewhere. From the
point of view of the optimization algorithm, short loops are preferred.

Figure 5 illustrates another example solution to the problem of finding a two-qubit Fourier
gate but this time with the restriction Ly,,x = 40. We have chosen a penalty function with the
parameters p = 2 and v = 1000. The solution tends to be on the surface L(y) = Lyax, at least
for short Ly .. This may be interpreted to originate from the scarcity of the minima for short
loops. Tests show that adjusting the maximum length upwards does not result in a solution
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very near to the boundary but rather a solution is found in the middle of the volume. One is
inclined to deduce from all this that the number of solutions to the minimization problem is
huge. This particular loop is shorter than our earlier construction, but not much. However,
our first example in Fig. 3 had a loop length of 63.35, such that a remarkable improvement
has been achieved.

1

15|
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0| 0
-0.5|
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Fig. 5. Length-optimized loop for the quantum Fourier transform in V1g. Here L(vYrourier) ~ 39.96
and the error is below 10713 with 200 discretization points per edge.

A more impressive reduction of length may be seen in Fig. 6. We have previously shown
[10] an implementation of the SWAP gate that had a length of 107.85. The gate given below
has a length of just 29.99. We managed to cut off a major redundant portion of the path.
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Fig. 6. Length-optimized loop for SWAP in V10. Here L(yswap) =~ 29.99 and the error is below
10~13 with 200 discretization points per edge. The loop presented in Ref. [10] had a length of
107.85.
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4.3. Error-Penalty Optimization

We can take the concept of length-penalty optimization one step further. Once we know some
loop that produces the desired gate, we may switch the roles of the length of the loop and
that of the error. Namely, we assign a penalty function that penalizes for excess error while
the main contribution comes from the length. In this manner we can try to make increasingly
improved loops that yield the very same quantum gate. That is, we minimize the function

F(v) = L(v) + P2(7) (37)

where the penalty term is this time given by

_J0, if f() < €max
Pa() = {uf(fy)p, otherwise. (38)

Here f() is the error just as previously. This elaboration of the penalty-function technique
proves quite powerful.

A good example of the technique is given by the CNOT gate which we may easily perform
analytically. We take an implementation of the CNOT

(62,65,6%,€) =(0,0,0,0) — (0,7/2,0,0) — (0,7/2,7/4,0) -
(0,0,7/4,0)  — (0,0,0,0) — (/2,0,0,0) -
(7/2,0,0,7)  — (0,0,0,7) — (0,0,0,0) -
(0,7/2,0,0) — (0,7/2,—m/4,0) — (0,0, —7/4,0) —
(0,0,0,0).

as the initial guess of the optimization task where the vertices are joined linearly. This loop
is naturally in V;; but we also add an extra vertex in the middle of each edge such that
the loop is more flexible and therefore belongs to V3. The resulting loop after error-penalty
minimization is shown in Fig. 7. This figure, as well as all the figures in this section, was
obtained by first using poor accuracy and then by minimizing further with improving accuracy
starting from the initial guess thus obtained. The starting length was 18.8496 and as can be
seen from the length of this loop 14.03, the solution has improved considerably. This is just
one example of the power of our technique. Due to the success of the method we are yet more
convinced that the acceptable solutions are extremely dense in parameter space.

The use of the Euclidean metric is particularly well motivated in the context of error-
penalty optimization. Of course, the underlying physical setting might suggest using a special-
ized metric that would relate some experimental “cost” to certain areas of the base manifold.
For example, it is not clear which shape of the manifold one should choose, analogously to
the situation between ellipsoids and spheres. In the present scenario we have two objectives:
a low error and a short path. If there emerges a redundant contribution adding to the length
from some part of the manifold where the parameterization is not one-to-one, this excess
length can be removed without affecting the solution. Since we are also aiming at reducing
the Euclidean length, any redundant contributions tend to disappear in practice due to the
minimization algorithm. An analogy is provided by the unit ball S2%; if one were to do a
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27 turn on one of the poles, there would be an Euclidean contribution that would have no
meaning. This excess length would disappear in the minimization process, though.

5. Discussion

We have numerically studied the construction of holonomic quantum gates. Our method is
capable of finding the loop in the parameter space corresponding to any one- or two-qubit
gate in a three-state model. It seems reasonable that the method would also work in other
models. The optimization task is too difficult for derivative-based methods as can be seen in
the pictures we have presented. The polytope algorithm has, however, proved useful in this
task. Moreover, our previous calculations prove the three-state model that we have presented
capable of universal HQC. We discussed example solutions for the Hadamard gate and the
two-qubit Fourier transform without length considerations. It is easy to construct a set of
universal gates for the model analytically. Numerical results are, though, far superior since
they realize a given unitary matrix with a shorter single loop.

In the present paper we have developed a method for minimizing with respect to the length
of the loop, thus making the implementation of these holonomies as quick as possible. We have
first investigated adding a penalty term for excess length and then experimented swapping
the roles of the length and the error. Provided that one already knows some implementation
of a desired gate, this latter technique can be used to combine loops in an efficient manner.
The results that we have obtained appear promising. The main result is that the optimization
problem can be solved even though the landscape is quite rough. For one- and two-qubit gates
a regular PC suffices.

It must be emphasized that it certainly is desirable for the loop to have the shortest possible
length to achieve fast operation speed without sacrificing the adiabaticity. As a preliminary to
our optimization scheme, we neglected the underlying metric of CP? ~ U(3)/U(2) x U(1) and
pretended as if we were working in a manifold with an Euclidean metric. We demonstrated
that our scheme works reliably. We are currently engaged in a more ambitious program with
the CP? metric properly taken into account. We believe that our optimization method could
also be extended to more conventional quantum-computing schemes. Then, however, time
would appear explicitly in the minimization.

A few remarks are in order about our method. The fact that the optimization landscape
is rough does not imply that HQC would be sensitive to errors. Namely, physical errors do
not just move one vertex but rather there are deviations all along the path. To which degree
this causes errors would constitute a separate study. Furthermore, increasing the number of
vertices does not result in an improved accuracy: For one-qubit gates it is enough to have
22 — 4 independent parameters and for two-qubit gates 42 = 16 parameters. This is because
U(2"N) is parameterized by 22V real parameters. Recall that the number of optimization
variables is either 4k or 9k. With k£ = 1 one cannot, however, obtain a non-trivial holonomy.
More vertices might mean less length, though.

The speed-up must be considered in terms of the adiabatic time. Short loops can always
be traversed slowly but they may also be traversed more quickly. It is important to reduce
the operation time to fight the effect of decoherence. Thus the optimization of quantum gates
is a very well motivated task.

We wish to point out that all the rotations in CP? are available with a construction using
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superconducting nanostructures [17].

Acknowledgments

AON would like to thank the Research Foundation of Helsinki University of Technology
and the Graduate School in Technical Physics for financial support; MN thanks the Helsinki
University of Technology for a Visiting Professorship and he is also grateful for partial support
of Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology,
Japan (Project Nos. 14540346 and 13135215); MMS acknowledges the Academy of Finland
for a Research Grant in Theoretical Materials Physics.

Note added in proof It was brought to our attention that the minimization of the loop
length for a given holonomy has become known as the ”isoholonomic problem”, named in
analogy with the ”isoperimetric problem” in which the area surrounded by a loop with fixed
length is maximized. See, e.g., R. Montgomery, ”Isoholonomic problems and some applica-
tions”, Commun. Math. Phys. 128, 565-592 (1990). In Montgomery’s paper, this mini-
mization problem is written in the form of a differential equation. In our approach, however,
this does not work since there occur too many local minima. Therefore, we consider our
minimization algorithm a far more practical scheme.
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APPENDIX III

Optimal Multiqubit Operations for Josephson Charge Qubits
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We introduce a method for finding the required control parameters for a quantum computer that
yields the desired quantum algorithm without invoking elementary gates. We concentrate on the
Josephson charge-qubit model, but the scenario is readily extended to other physical realizations.
Our strategy is to numerically find any desired double- or triple-qubit gate. The motivation is the need to
significantly accelerate quantum algorithms in order to fight decoherence.

DOI: 10.1103/PhysRevLett.90.197901

Quantum computing algorithms are realized through
unitary operators that result from the temporal evolution
of the quantum system under consideration. Typically,
these are achieved with a sequence of universal gates
[1] which act analogously to the elementary gates of
digital computers. Quantum computers hold the promise
of exponential speedup with respect to classical com-
puters owing to the massive parallelism arising from
the superposition of quantum bits, qubits; for introduc-
tions to quantum computing and quantum information
processing, see Ref. [2]. Several physical implementations
of quantum computing have been suggested; in particular,
quantum computing with Cooper pairs [3].

Superconducting circuits [4] feature controlled fabri-
cation and scalability [5]; their drawback is that the leads
inevitably couple the qubit to the environment, thereby
introducing decoherence [6]. In a superconductor, the
number of the Cooper pairs and the phase of the wave
function constitute conjugate variables. The majority of
investigations has focused either on the charge regime
where the number of Cooper pairs is well defined [7], or
on the flux regime where the phase is well defined [8].
Qubits utilizing current-driven large Josephson junctions
have been tested experimentally [9]. Decisive experimen-
tal progress [10] demonstrated that it is possible to realize
10* elementary quantum gates with Josephson-junction
qubits. Here we consider Josephson charge qubits.

In this Letter we propose a method to construct arbi-
trary two- or three-qubit quantum gates by solving the
optimization problem of control parameters for a
Josephson charge-qubit register. We show that it is pos-
sible to numerically find the required control-parameter
sequences even for nontrivial three-qubit gates without
employing elementary gates. Recently, it has been sug-
gested [11] how to solve a similar problem in the context
of holonomic quantum computation [12], where time
does not appear as an explicit parameter. Here, the time
evolution arises through the Schrodinger equation.

The motivation underlying the investigation of this
approach is the need to overcome effects of decoherence.
The implementation of a quantum algorithm which is

97901-1 0031-9007/03/90(19)/197901(4)$20.00

PACS numbers: 03.67.Pp, 03.67.Lx, 03.75.Lm, 74.50.4r

composed of elementary gates is rarely optimal in exe-
cution time since the majority of qubits is most of the time
inactive; see Fig. 1. The decomposition into elementary
gates works extremely well with classical digital com-
puters. However, in the context of quantum computing the
number of consecutive operations is strictly limited by
the short time window set by interactions with the envi-
ronment. It is therefore of prime importance to concen-
trate on the implementations of quantum algorithms [13—
15]. We consider the construction of quantum algorithms
out of larger building blocks. Whereas careful design and
manufacturing can significantly increase the decoherence
time, our scenario can serve to reduce the number of the
operations needed.

The Josephson charge qubit utilizes the number de-
gree of freedom of a nanoscale Josephson-junction circuit.
The states of the qubit correspond to either zero or one
extra Cooper pair residing on the superconducting island,
usually denoted by |0) and |1), respectively. The Cooper
pairs can tunnel coherently to a superconducting elec-
trode. The charging energy of the qubit can be tuned with
the help of an external gate voltage, whereas tunneling
between the states is controlled with the help of an
external magnetic flux.

The explicit single-qubit Hamiltonian for the qubit i is

: 1. 1 .
H;ing]e = _EBEO-Z - EB;CO-X’ (D

where the standard notation for Pauli matrices has been
utilized. Here B; is a tunable parameter which depends

T idle o % -

idle {EH—?H idle 4 u b
idle idle MH1
Rl

—_—

operation time

.
operation time

FIG. 1. Instead of implementing the three-qubit quantum
Fourier transform with the help of elementary gates, we de-
termine a gate that performs the entire three-qubit operation
with a single control loop. Note that idle time is avoided.

© 2003 The American Physical Society 197901-1
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on the gate voltage, while B. can be controlled with
the help of a flux through the SQUID. Note that setting
Bi = Bi = 0 results in degeneracy. At the degeneracy
point, there will be no change in the physical state of
the system. In the case of single-qubit gates, it is easy to
see from this model that any rotation in SU(2) can be
performed on the qubits. Note that U(2) is not available
since the Hamiltonian is traceless. In general, we cannot
achieve U(2") for N qubits since the Hamiltonian of the
entire quantum register turns out to be traceless.
However, the global phase factor is not physical since it
corresponds to a redefinition of the zero level of energy.

Qubits can be coupled by connecting them in parallel
to an inductor; see Fig. 2. This scenario has the benefit of
allowing for a longer decoherence time and that of being
tunable. The resulting coupling term in the Hamiltonian
between the qubits i and j is then of the form [4]

Hcoupling = _CB;BiO'y ® 0, 2)
where C is a positive parameter depending on the capaci-
tances of the qubits and also on the inductance. It follows
from Egs. (1) and (2) that one can apply nontrivial two-
qubit operations by simultaneously turning on the
SQUIDs of the two qubits, although the o, term will be
turned on as well. All the other qubits must have their
SQUIDs turned off. On the other hand, one-qubit o,
operations require that all but one SQUID is turned on.
By turning off a SQUID we mean applying a half flux
quantum through it. Note that in the present context it is
actually impossible to perform independent operations on
any two subsets of the quantum register due to the in-
ductive coupling. Since one must also take into account
the decoherence mechanism, it is not practical to let most
qubits reside at their degeneracy point. The question
arises whether it would rather prove more efficient to
try and find some scheme of finding larger quantum
operations, instead of using elementary gates.

To tackle the challenge posed above, we concentrate on
finding quantum gates numerically. The structure of the
Josephson-qubit Hamiltonian is such that it is not imme-
diately transparent how one would actually construct
even the basic controlled-NOT gate. We accomplish this
by considering loops () in the control-parameter space
spanned by {Bi(r)} and {B(r)}. Therefore, the function

|
3 2 0
E.G E.GC
1, Ly Lo
T " T T %

FIG. 2. Schematic illustration of three Josephson charge qu-
bits with inductive coupling. The adjustable parameters include
the gate voltages V; and the enclosed fluxes ®;.

197901-2

v(t) is of the vector form
y(1) = [BL(1)- - BY(1) BY(1) -~

where we have assumed a register of N qubits. The tem-
poral evolution induces the unitary operator

-BY(n]", 3

U=1T exp<—i H(y(t))dt), 4)

y(1)

where 7 stands for the time-ordering operator and we
choose # = 1. The integration is performed along the
path formed by y(r) where the loop starts at the origin,
i.e., at the degeneracy point. We will restrict the path to a
special class of loops, which form polygons in the pa-
rameter space. Thus the parameters vary in time at a
piecewise constant speed, and none of the parameters is
turned on or off instantaneously. We further set the time
spent in traversing each edge of the polygon equal to
unity. This limitation could be relaxed, in which case
the length of each edge in time would be an additional
free parameter. We also set C = 1 in Eq. (2). This can be
achieved by properly fabricating the inductor, but we have
every reason to believe that the algorithm will work for
other choices of C as well. Hence, in order to evaluate
Eq. (4) one needs only to specify the coordinates of the
vertices of the polygon, which we denote collectively as
X,,. Numerically, it is easy to evaluate the unitary opera-
tor in a stable manner by further dividing the loop y(¢)
into tiny intervals that take the time At to traverse. If y;
denotes all the values of the parameters in the midpoint of
the ith interval, and m is the number of such intervals,
then we find to a good approximation

iH(y,)A7) - iH(y)An.  (5)

We now proceed to transform the problem of finding the
desired unitary operator into an optimization task.
Namely, any U can be found as the solution of the problem
of minimizing the error functional

f(X'y) = ||U - ny”F (6)

over all possible values of X,,. Here || - || is the Frobenius

trace norm defined as ||Al|r = +/Tr(ATA). The number
of adjustable vertices of the polygon » is kept fixed
from the beginning. One needs to have enough vertices
to parametrize the unitary group SU(2"). The dimension
of this group is 22V — 1 and there are 2N parameters for
each vertex. Thus, we must have 2Nv = 22V — 1. We use
v = 12 for the three-qubit gates and v = 4 for the two-
qubit gates. Within this formulation the method of finding
the desired gates is similar to the recently introduced
method of finding holonomic quantum gates [11]. Thus
we again expect the minimization landscape to be rough
and we apply the robust polytope algorithm [16] for the
minimization.

We concentrate on finding two- and three-qubit gates,
since one-qubit gates can be trivially constructed with the

Ux, =~ exp( — “exp( —
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help of Euler angles. A larger quantum gate could be per-
formed by factoring it into two- and three-qubit opera-
tions, and the implementation for these could be found
numerically. It seems that quantum operations for four,
five, or more qubits could be found with the same method,
assuming that sufficient computing resources are avail-
able. However, even in the case of three-qubit gates the
optimization task becomes challenging and we need to
use parallel programming. In the parallel three-qubit
program, since the function evaluations of f (Xy) require
a major part of the computation, we distribute the work-
load such that each processor calculates the contribution
of a single edge of the polygon. In addition, one processor
handles the minimization routine.

Let us turn to the results. First, we attempt to construct
a gate equivalent to the controlled-NOT, namely,

0 0O

1

. .m\| O

U= exp<12> 0 7
0

- o O

1 0
0 1
0 0
The phase factor is needed in order for the gate to belong
to SU(4). It is already hard to see from the form of the
Hamiltonian how this gate would be carried out in the
present setting. Figure 3 illustrates an implementation of
this gate that has been obtained by minimizing the error
function in Eq. (6); the error is negligible. This example
clearly illustrates the potential of our method.

As a second example, we construct the two-qubit
quantum Fourier transform (QFT). The QFT (see, e.g.,
Ref. [2]) is given in the case of two qubits by

1

1|1

201 =1 1 =1 | ®)
L .

Field strength

4 2
:g) —e—BZ
S 1 -e- 82
= X
%

k)
Q0
w

FIG. 3. Control-parameter sequences as functions of time that
yield the gate in Eq. (7) which is equivalent to the controlled-
NOT. The relative error is on the order of 107" and 100
discretization points per edge were used.

197901-3

Furthermore, we need to multiply this by exp(i §) in order
to find a gate that belongs to SU(4). Figure 4 shows the
resulting loop that has been found with the help of the
algorithm. In general, the optimization task for two-qubit
gates can be performed quite easily with the help of
personal computers. However, finding three-qubit gates
is already quite time consuming. It proves worth the extra
effort to do this, though.
The three-qubit quantum Fourier transform is [2]

1 1 1 1 1 1 1 1 7
1 v o o 0w o w o
1 w2 o 0 1 o? o' o°
F. = 1|1 & o o o o o o
3 _ﬁ 1 o* 1 w* 1 o 1 o)
1 o o o 0 o 0w ®
1 0 0w w 1 0 o
1 o 0 o o o 0¥ o]

®

where @ = exp(i§). Since det(F3) = i we must set U=
exp(—i{g)F3 such that U € SU(8). As an evidence of the
success of the three-qubit algorithm, we have in Fig. 5
plotted the implementation of the three-qubit Fourier
transform. We conclude from these three examples that
it is possible to find far more powerful optimal imple-
mentations of multiqubit quantum gates with the help of
the minimization scheme [17].

To further assess the strength of the technique, we
compare the number of steps that are required to carry
out the three-qubit Fourier transform using only two-
qubit gates with the number of steps required when using
the full three-qubit implementation of Fig. 5. The two-
qubit implementation [18] requires effectively four gates;

o]

N

Field strength
o

A

oo

—— B

X DN N

N

Field strength
o

,
N

0 1 2 3 4 5

FIG. 4. Control-parameter sequences as functions of time
that yield the two-qubit Fourier transform in Eq. (8). The
relative error is on the order of 107!" and 100 discretization
points per edge were used.
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o N b
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N

FIG. 5. Control-parameter sequences as functions of time
that yield the three-qubit quantum Fourier transform (modulo
a global phase). The relative error is on the order of 107> and
100 discretization points were used.

see Fig. 1. Since these gates would have to be performed
sequentially, we would need five polygon edges per
two-qubit operation. This results in 20 edges for the whole
operation. Using elementary gates would require far more
edges. Our optimized three-qubit Fourier transform,
though, only requires 13 edges. Since each edge contrib-
utes the same amount to the operation time, we conclude
that our implementation is improved. What is more, not
all multiqubit gates can be decomposed as conveniently
as the Fourier transform. For them the gain is higher.
Thus, increasing the amount of classical computing re-
sources should yield even better results.

In conclusion, we have described how to efficiently
construct two- and three-qubit quantum gates for the
Josephson charge qubit using numerical optimization.
An immediate strength of the present scenario is that
one avoids unnecessary idle time during the logical
quantum operations. Since the loops are traversed at a
piecewise constant speed, and no fields are instan-
taneously switched, this method of constructing quan-
tum gates should be viable from the experimental point
of view as well. The effect of finite fall and rise times
of pulses on the quality of quantum gates has been
studied recently [19]. Since we do not use pulses but
instead interpolate along linear paths in the parame-
ter space, such errors can be avoided. It seems reason-
able to construct large-scale quantum algorithms in
multiqubit blocks. This can be accomplished by opti-
mizing the gate realization with the help of classical
computers.

The authors thank M. Nakahara for useful discussions
and CSC (Finland) for computing resources. This work is
supported by the Helsinki University of Technology and
Academy of Finland.

Note added.— After submitting our manuscript, work
on a parallel switching method was kindly brought to our
attention by Burkard er al [20].
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Quantum-circuit optimization is essential for any practical realization of quantum com-
putation, in order to beat decoherence. We present a scheme for implementing the final
stage in the compilation of quantum circuits, i.e. for finding the actual physical realiza-
tions of the individual modules in the quantum-gate library. We find that numerical opti-
mization can be efficiently utilized in order to generate the appropriate control-parameter
sequences which produce the desired three-qubit modules within the Josephson charge-
qubit model. Our work suggests ways in which one can in fact considerably reduce the
number of gates required to implement a given quantum circuit, hence diminishing idle
time and significantly accelerating the execution of quantum algorithms.

Keywords: decoherence; Josephson charge qubit; multiqubit quantum gates; numerical
optimization.

1. Introduction

The most celebrated and potentially useful quantum algorithms, which include
Shor’s factorization algorithm' and Grover’s search,? manifest the potential of a
quantum computer compared to its classical counterparts.

Widely different physical systems have been proposed to be utilized as a quan-
tum computer.?*4 The main drawback shared by most of the physical realizations is

*Corresponding author.

© World Scientific Publishing Company
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the short decoherence time. Decoherence® destroys the pure quantum state which is
needed for the computation and, therefore, strongly limits the available execution
time for quantum algorithms. This, combined with the current restricted technical
possibilities to construct and control nanoscale structures, delays the utilization of
quantum computation for reasonably extensiveS algorithms.

The execution time of a quantum algorithm can be reduced by optimization.
The methods similar to those common in classical computation’ can be utilized in
quantum compiling, constructing a quantum circuit® for the algorithm. Moreover,
the physical implementation of each gate can and must be optimized in order to
achieve gate sequences long enough, for example, to implement Shor’s algorithm
within typical decoherence times.’

Any quantum gate can be implemented by finding an elementary gate
sequence'®!! which, in principle, exactly mimics the gate operation. In the most
general case on the order of 4™ elementary gates are needed to implement an arbi-
trary n-qubit.'?> Fortunately, remarkably shorter polynomial gate sequences are
known to implement many commonly used gates, such as the n-qubit quantum
Fourier transform (QFT). In addition to the exact methods, quantum gates can be
implemented using techniques which are approximative by nature.? 3715

In this paper we consider the physical implementation of nontrivial three-gate
operations. As an example of the power of the technique, we show how to find
realizations for the Fredkin, Toffoli, and QFT gates through numerical optimization.
These gates have been suggested to be utilized as basic building blocks for quantum
circuits and would thus act as basic extensions of the standard universal set of
elementary gates. However, the method presented can be employed to find the
realization of any three-qubit gate. Having more computer resources available would
allow one to construct gates acting on more than three qubits.

The numerical method allows us a straightforward and efficient way for finding
the physical implementation of any quantum gate. Thus, the method may prove to
be practical or even necessary for an efficient experimental realization of a quantum
computer.

We concentrate on a hypothetical Josephson charge qubit register,'® since the
experimental investigations of superconducting qubits is active; see, for instance,
Refs. 17-19. The scheme utilizes the number degree of freedom of the Cooper pairs in
a superconducting Josephson-junction circuit. It is potentially scalable and it offers,
in principle, full control over the quantum register. Moreover, the method employed
here is easily extended to any physical realization providing time-dependent control
over the physical parameters.

2. Physical Model

The physical implementation of a practical quantum algorithm requires that it is
decomposed into modules whose physical realizations are explicitly known. In the
quantum computer, the gate operations are realized through unitary operations
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U that result from the temporal evolution of the physical state of the quantum
register. The unitary evolution is governed by the Hamiltonian matrix H(v), which
describes the energy of the system for a given setting of physical parameters . In
general, the parameters are time-dependent, v = v(¢). The induced unitary operator
is obtained from the formal solution of the Schrodinger equation

~(t)

U="Texp (—i H(y(t))dt) , (1)

where 7 stands for the time-ordering operator and we have chosen i = 1.

We consider the Josephson charge qubit register as a realization of a quantum
computer, see Fig. 1. The register is a homogenous array of mesoscopic supercon-
ducting islands and the states of the qubit correspond to either zero or one extra
Cooper pair residing on the island. Each of the islands is capacitively coupled to
an adjustable gate voltage, Vgi (t). In addition, they are coupled to a superconduct-
ing lead through mesoscopic SQUIDs. We consider an ideal situation, where each
Josephson junction in the SQUID devices has the same Josephson energy Ej and
capacitance Cj. The magnetic flux ®;(¢) through the ith SQUID loop is a con-
trol parameter which may be produced by adjustable current I;. The qubit array
is coupled in parallel with an inductor, L, which allows the interaction between
the qubits.

In this scheme the Hamiltonian for the qubit register is? 6
- | VSR Ry ™ i i e
H=Y" —5Blol = SBoy o — > CB.Bjo,®0), (2)
i i#]

where the standard notation for Pauli matrices has been utilized and o’ stands
for I® - ®0,®1---® 1. Above, B. can be controlled with the help of a flux
®;(t) through the ith SQUID, B! is a tunable parameter which depends on the gate
voltage Vi (t) and C' is a constant parameter describing the strength of the coupling.
We set C' equal to unity by rescaling the Hamiltonian and time. The approach taken
is to deal with the parameters B and B! as dimensionless control parameters.

Fig. 1. Schematic of an array of Josephson charge qubits coupled in parallel with an inductor.
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In the above Hamiltonian, each control parameter can be set to zero, to the
degeneracy point, thereby eliminating all temporal evolution. The implementation
of one-qubit operations is straightforward through the Baker—-Campbell-Hausdorff
formula, since the turning on of the parameters B: and B: one by one does not
interfere with the states of the other qubits. Implementation of two-qubit operations
is more complex since simultaneous application of nonzero parameter values for
many qubits causes undesired interqubit couplings. However, by properly tuning
the parameters it is possible to compensate the interference and to perform any
temporal evolution in this model setup. This is partly why numerical methods are
necessary for finding the required control-parameter sequences.

Finally, we point out that using the above Hamiltonian we are able to per-
form gates U € SU(2*) since the Hamiltonian is traceless. However, for every gate
U € U(2¥) we can find a matrix U’ = €U which has a unit determinant. The
global phase factor e’ corresponds to redefining the zero level of energy.

3. Numerical Methods

We want to determine the physical realization for the quantum gates. Our aim is
to numerically solve the inverse problem of finding the parameter sequences ~(¢)
which would yield the desired gate operation when substituted into Eq. (1). The
numerical optimization provides us with the realizations for not only any one- and
two-qubit, but also for any three-qubit gates. Using the three-qubit implementation
we circumvent the idle time in qubit control which provides us faster execution
times, see Fig. 2.

In the Josephson charge qubit model the Hamiltonian for the n-qubit register,
Eq. (2), depends on the external parameters

v(t) = [BL(t)--- BE(t); Byz(t)--- Bi(t)].

x

To discretize the integration path +(¢) for numerical optimization we consider a
parametrization in which the values of the control-parameter fields, {B(¢)} and
{B.(t)}, are piecewise linear functions of time. Consequently, the path ~(¢) can be
fully described by a set of parameter values at v control points, where the slopes of
the fields changes. We denote the set of these values collectively as X,. To obtain
a general k-qubit gate Uy € SU(2F) one needs to have enough control parameters
to parameterize the unitary group SU(2*), which has a total of 22* — 1 generators.
Since there are 2k free parameters for each control point in v we must have

2kv > 2%k 1. (3)

We use v = 12 for the three-qubit gates and v = 4 for the two-qubit gates. We force
the parameter path to be a loop, which starts from and ends at the degeneracy point,
where all parameter values vanish. Then we can assemble the modules in arbitrary
order without introducing mismatch in the control parameters. We further set the
time spent in traversing each interval of the control points to equal unity. Eventually,
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Implementation of the Fredkin gate on the Josephson charge qubit model. (a) The quan-

tum circuit symbol of the Fredkin gate, and (b) its physical implementation by controlling all three
qubits simultaneously. (c) The two-qubit gate decomposition of the Fredkin gate. Here V = /o,
and V* stands for its Hermitian conjugate. (d) The physical implementation of the gate sequence;
note that during each gate operation, one of the qubits is in the idle state. The vertical axis in
figures (b) and (d) stands for the control parameter field amplitudes; the solid line describes the

parameter B and the dotted line the parameter B

%, see text.

the execution time of Uy is proportional to v + 1, which gives us a measure to
compare different implementations. Figure 2 illustrates our approach and shows
the benefits of the three-qubit implementation of the Fredkin gate compared to
corresponding implementation through two-qubit gate decomposition. Note that
the two-qubit gate implementation could be further optimized.2°

We evaluate the unitary operator in Eq. (1) in a numerically robust manner by
dividing the loop ~(t) into tiny intervals that take time At to traverse. If 4; denotes
all the values of the parameters in the midpoint of the ith interval, and m is the
number of such intervals, we then find to a good approximation

Ux, ~ exp(—iH (ym)At) - - exp(~iH (1) At). (4)

The evaluation of the Ux. consists of independent matrix multiplications which
can be evaluated simultaneously. This allows straightforward parallelization of the
computation. To calculate the matrix exponentials efficiently we use the truncated
Taylor-series expansion

m Ak
6A ~ Z H, (5)
k=0

Iv/s



where m is an integer in the range 3-6. Since the eigenvalues of the anti-Hermitian
matrix A = —iHJt are significantly less than unity, the expansion converges rapidly.
The applicability of the approximation can be confirmed by comparing the results
with the exact results obtained using spectral decomposition.

Using the above numerical methods we transform the inverse problem of finding
the desired unitary operator into an optimization task. Namely, any U can be found
as the solution of the problem of minimizing the error function

FXy) =110 = Ux, |Ir (6)

over all possible values of X,. Here || - ||r is the Frobenius trace norm defined
as ||A]lr = +/Tr(ATA). The minimization landscape is rough, see Fig. 3. Thus
we apply the robust polytope search algorithm?! for the minimization. We have
assumed that a suitable limit of sufficient accuracy for the gate operations is given
by the requirement of the applicability® of quantum error correction

|Ux, — Ul <1074, (7)

Fig. 3. Typical planar cut of the error function space. The plane through the minimum point
Xmin has been chosen arbitrarily in the parameter space. The irregular shape of the landscape
easily reveals the complexity of finding the global minimum and the reason why the gradient-based
methods fail.
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where U and U x, are the target and the numerically optimized gate operations,
respectively.

4. Quantum Gate Optimization Results

We have applied the minimization procedure to various three-qubit gates and found
that the error functional of Eq. (6) can be minimized to values below 10~* by
running the polytope search repetitively. Table 1 represents the optimized control
parameters which serve to yield the Fredkin gate when applied to the Josephson
charge qubit Hamiltonian. Numerical results for the Toffoli and three-qubit QFT
gates are represented in Tables 2 and 3, respectively. Finding the control parameter
using the polytope search requires an order of 10® error-function evaluations, which

Table 1. Field amplitudes at the control points for the Fredkin gate.
Time B! B? B2 Bl B2 B3
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 0.71637  —1.44846 1.54511 0.55428 0.67228  —0.58105
3 2.23337 0.18377 1.73522 1.29275  —0.69463 0.01513
4 1.17895 —1.31725 —2.22145 —1.11461 0.27210  —0.18665
5 —0.92555 1.97326  —1.15875 1.49438 2.69507 1.57872
6 —0.54804 0.66834 0.48872 —0.38981 —1.88659 —0.60226
7 1.18034 —2.13101 —0.81205 —0.27817 2.13894 0.92208
8 —0.59994 2.80989 0.82839  —0.24260 —1.09419 2.09561
9 2.78429 0.35914 1.98896  —0.11839 0.90439 0.83671
10 0.79364 2.40575 —1.78131 0.67600 3.31481 0.17828
11 —0.41098  —0.69585 0.15594  —0.21996 0.70917 0.15377
12 0.12630 3.39809 2.14043 1.65229 0.37794  —0.64223
13 0.84941 —1.17701 1.28801  —1.84075 1.16739 0.33965
14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Table 2. Field amplitudes at the control points for the Toffoli gate.
Time Bl B? B3 Bl B2 B3
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 0.00286  —0.06484 0.96050 0.72386 0.33310 —0.22026
3 2.85647  —0.08874 2.94358 1.60795  —0.18192 0.03931
4 0.67879  —1.70364 —2.54280 —1.65771 —0.04722 —0.25411
5 —0.17379 0.87916 0.19581 1.55484 2.98447 1.22991
6 0.01847 2.68973  —0.18098 0.02898 —0.54301 —0.15977
7 0.21569  —3.27483 —0.33407 —0.31173 2.26503 0.32031
8 —0.57439 4.25644 1.25986 0.12262 0.06238 1.87619
9 3.40836  —0.48759 0.44296  —0.20867 0.04664 1.00381
10 —0.60520 1.59369 0.87620 0.95412 2.75968 0.37209
11 —0.10762 0.16258  —0.24672 —0.11839 1.38245 0.01990
12 0.20275 1.97553 1.12769 1.07003 0.46081  —0.35437
13 0.99088  —0.23145 0.68050  —2.12999 0.74237 0.01537
14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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Table 3. Field amplitudes for the three-qubit QFT gate.

Time B! B2 B3 B! B2 B3
1 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000
2 0.49824  0.41039  1.75837  0.42339  0.67345  1.83257
3 —0.18007  0.55372 —1.79297  0.64987  0.53048 —0.39300
4 0.73625  0.60488 —0.94171  0.61458  0.09641 —0.39863
5 221744 128419  2.82723  0.47046  1.04206  1.59345
6 0.47037  —0.48092 —0.53215  0.04297  0.21802  1.24063
7 0.69085  0.72558  1.00427  0.22332  1.25082 —0.25144
8 2.61154  0.87134  0.74335  0.31834 —0.00374  1.64643
9 0.24827  0.82952  1.04102  2.31043  1.00804  0.98377
10 —0.90785 —1.32491  1.10923  0.69935 —0.15359 —0.34420
11 0.59315  1.36082 —0.19764  1.83023  0.58541  0.85453
12 0.76819  0.31529  0.24531  —0.40221  1.13052  0.68184
13 —0.85651  0.02093  0.85491  1.33447  0.56580  0.06332
14 0.00000  0.00000  0.00000  0.00000  0.00000  0.00000

Table 4. Comparison of the execution times for various quantum gates.

Gate Fredkin Toffoli QFT U € SU(2%) UeSU(2?)
Decomposed  3-qubit Gates

Number of two-qubit gates 5 3 3 206 —

Execution time 25 15 15 1030 13

takes tens of hours of CPU time, but can be done in a reasonable time by using
parallel computing.

We found that the error functional grows linearly in the vicinity of the minimum
point X, which implies that the parameter sequence found may be robust. The
robustness was further analyzed by adding Gaussian noise to the control parameters
of the path ~(t). Such a sensitivity analysis confirmed that the error scales linearly
with the root-mean-square amplitude of the surplus Gaussian noise.

In our scheme, any three-qubit gate requires an integration path ~(t) with 12
control points, which takes 13 units of time to execute. Similarly, a two-qubit gate
takes 5 units of time to execute. Table 4 summarizes our results by comparing
the number of steps that are required to carry out a single three-qubit gate or
using a sequence of two-qubit gates. The results are calculated for the Fredkin and
Toffoli gates following the decomposition given in Refs. 20 and 10. For a QFT gate
the quantum circuit is explicitly shown, for example, in Ref. 22. Any three-qubit
gate can be realized by using 68 controlled? U and controlled? NOT gates. This
number can be reduced to 50 using palindromic optimization.?3 The decomposition
of the controlled? U gate is discussed in Ref. 10. Note that the results in Table 4
are calculated assuming that the physical realization for any two qubit modules is
available through some scheme similar to the one which is employed in this paper
and one-qubit gates are merged into two-qubit modules. The implementation of
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a general three-qubit module using a limited set of gates, for example, one-qubit
rotations 7y, and R, and the CNOT gate has recently been discussed in Ref. 12.

5. Discussion

We have shown how to obtain approximative control-parameter sequences for a
Josephson charge-qubit register with the help of a numerical optimization scheme.
The scheme utilizes well known theoretical methods and the results are obtained
through heavy computation. Our method can prove useful for experimental real-
ization of working quantum computers. The possibility to implement nontrivial
multiqubit gates in an efficient way may well turn out to be a crucial improvement
in making quantum computing realizable. For example, Josephson-junction qubits
suffer from a short decoherence time, in spite of their potential scalability, and
therefore the runtime of the algorithm must be minimized using all the possible
ingenuity imaginable.

Here we have utilized piecewise linear parameter paths. This makes the scheme
experimentally more viable than the pulse-gate solutions, since the parameters are
adjusted such that no fields are switched instantaneously. However, the numeri-
cal method proposed for solving the time evolution operator is not unique. Some
implicit methods for the integration in time may turn out to yield the results more
accurately in the same computational time. Furthermore, for practical applications
it may turn out to be useful to try and describe the parameter paths using a collec-
tion of smooth functions and to find whether they would produce the required gates.

To summarize the results of our numerical optimization, we emphasize that more
efficient implementations for quantum algorithms can be found using numerically
optimized three-qubit gates. In the construction of large-scale quantum algorithms
even larger multiqubit modules may prove powerful. The general idea is to use
classical computation to minimize quantum computation time, aiming below the
decoherence limit.
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We investigate the physical implementation of Shor’s factorization algorithm on a Josephson charge qubit
register. While we pursue a universal method to factor a composite integer of any size, the scheme is demon-
strated for the number 21. We consider both the physical and algorithmic requirements for an optimal imple-
mentation when only a small number of qubits are available. These aspects of quantum computation are usually
the topics of separate research communities; we present a unifying discussion of both of these fundamental
features bridging Shor’s algorithm to its physical realization using Josephson junction qubits. In order to meet
the stringent requirements set by a short decoherence time, we accelerate the algorithm by decomposing the
guantum circuit into tailored two- and three-qubit gates and we find their physical realizations through nu-
merical optimization.

DOI: 10.1103/PhysRevA.70.012319 PACS nuniber03.67.Lx, 03.75.Lm

[. INTRODUCTION parameter values for the setup, one has flt®,13, or
) ] _ charge qubit§14-17,21. Thus far the largest quantum reg-
Quantum computers have potentially superior computingster, comprising seven qubits, has been demonstrated for
power over their classical counterpafis2]. The novel com-  npuclear magnetic resonan@®MR) in a liquid solution[7].
puting principles which are based on the quantum-However, the NMR technique is not believed to be scalable
mechanical superposition of states and their entanglememnd much larger registers. In contrast, superconducting
manifest themselves, for example, in Shor’s integer-Josephson-junction circuits are supposed to provide scalable
factorization algorithn{3] and in Grover’s database search registers and hence to be better applicable for large quantum
[4]. In this paper we focus on Shor’s algorithm which is algorithms[22]. Furthermore, they allow integration of the
important owing to its potential applications {de)cryptog- ~ control and measurement electronics. On the other hand, the
raphy. Many widely applied methods of public-key cryptog- coupling to the environment, e.g., through the electrical
raphy are currently based on the RSA algoritfh which ~ leads,[23] causes short decoherence times.
relies on the computational difficulty of factoring large inte- I addition to the quantum register, one needs a quantum
gers. gate “library,” i.e., a collection of control parameter se-
Recently, remarkable progress toward the experimentdglU€nces which implements the gate operations on the quan-
realization of a quantum computer has been accomplishedM register. The quantum gate library must consist of at
for instance, using nuclear spifi6,7], trapped iong8,9],  \casta setof universal elementary g4, which are typi-
cavity quantum electrodynamida0], electrons in quantum cally chosen to be the one-qubit unitary rotations and the

. PN CNOT gate. Some complicated gates may also be included in
dots [11], and superconducting circui{d2-17. However, the library.

the construction of a large multiqubit register remains ex- The quantum circuit made of these gates resembles the

tremely challenging. The very many degrees of freedom Of, o atignal principle of a conventional digital computer. To
the environment tend to become entangled with those of thinimize the number of gates, the structure of the quantum
qubit register which results in undesirable decohergfi6g circuit can be optimized using methods similar to those in

This imposes a limit on the coherent execution time availabl%"gitm computing[25]. Minimizing the number of gates is

for the_ quantum computation. The shc_)rmes_s Of_ the d_ewherrhportant not only for fighting decoherence but also for de-
ence time may present fundamental difficulties in scaling th

; . L X X (?:reasing accumulative errors of classical origin. If some tai-

guantum register up to large sizes, which is the basic requirgg o4 yo-, three- or arbitrarg-qubit gates are included in

ment for the realization of nontrivial quantum algorithms . gate library, the quantum circuits may be made much

[19]. . . . . more compact. The implementation of gates acting on more
In this paper, we consider an inductively coupled chargey, 1o qubits calls for numerical optimizatiq@s]. For

qubit model[20]. Josephson-junction circuits provide tWo- g, ther discussion on the implementation of non-standard
state pseudospm. systems whose qwferer)t SpIn COMPONeN{3ag as the building blocks for quantum circuits, see Refs.
correspond to distinct macroscopic variables: either th

o . 127-30.
charges on the superconducting islands or the phase diffe We propose an implementation of Shor's algorithm for

ences over the Josephson junctions. Thus, depending on t%toring moderately large integers—we deal with both algo-

rithmic and hardware issues in this paper. These are two key
aspects of quantum computation which, however, have tradi-
*Electronic address: juhav@focus.hut.fi tionally been topics of disjoint research communities. Hence

©2004 The American Physical Society

V/1



we aim to provide a unifying discussion where an expert on —] ] — nie
quantum algorithms can gain insight into the realizations us- ~ #=0%, :|&#™"|:] 1| QFT |:| /7| periodr
ing Josephson junctions and experimentalists working with — — @ —

Josephson devices can choose to read about the quantum | wd M X
algorithmic aspects. The background material on the con- =12 - | - |a"mod N,

struction of a quantum circuit needed for the evaluation of
the modular exponential functidi®1,37 is presented in Ap-
pendix A and a derivation of the effective Hamiltonian for a

collection of inductively coupled Josephson qubits is given .
in Appendix B. qubits for the registety), to store the values of(x). The

This paper is organized as follows: The construction of d€gisterX)z, is initialized asj0),,, whereasy),=|1),. (2) The
quantum gate array for Shor’s algorithm is discussed in Se€légance of a quantum computer arises from the possibility
II. In Sec. Ill, we consider the Josephson charge-qubit registo l_JtlIlze arbitrary superposnmns._The superposition state of
ter. Section IV presents the numerical methods we have enfll integers 6<x<22'-1 in the registefx),, is generated by
ployed to find the physical implementations of the gates@PPlying the Hadamard gaté on each qubit separatei(g)
Section V discusses in detail how one would realize Shor'sl "€ execution of the algorithm, the unitary operaty en-
algorithm using Josephson charge qubits to factor the numtf"”)gIes each input value with the corresponding value of

ber 21. Section VI is devoted to discussion. f():

FIG. 1. Quantum circuit for Shor’s algorithm.

1) = x N)). 1
Il. SHOR'S FACTORIZATION ALGORITHM Ufg pol2) %‘Xﬂa(mo‘j ) (1)

With the help of a quantum computer, one could factor(4) The quantum Fourier transformati¢@FT) is applied to
large composite numbers in polynomial time using Shor'sthe registerfx),,, which squeezes the probability amplitudes
algorithm [3,33-33. In contrast, no classical polynomial into peaks due to the periodicitf(x)=f(x+r). (5) A mea-
time fa_\ctorlz_anon algorithm is knowr_l to date, although theg,,rement of the registéx),, finally yields an indication of
potential existence of such an algorithm has not been ruleghe periodr. A repetitive execution of the algorithm reveals
out, either. the probability distribution which is peaked at the value

22"/r and its integer multiples of output values in the register
A. Quantum circuit X)2n.
Besides the quantum algorithm which is used to find
rfonsiderable amount of classical precomputing and postpro-
cessing is required as well. However, all this computing can
be performed in polynomial time.

The strategy for the factoring of a numberpq, both p
and g being primes, using a quantum computer relies o
finding the periodr of the modular exponential function
f(x)=a*(modN), where 0<a<N is a random number
coprime toN. For an evenr and if a’?# -1(mod N) at least
one prime factor oN is given by gcda”?+1,N). It can be B. Implementing the modular exponential function
shown[3] that this happens with a probability higher than
one half. Otherwise, a quantum algorithm must be executeﬁ1
for different values fora until a properr is found.

The evaluation off(x) can be implemented using several
different techniques. To obtain the implementation which in-

VOMES the mér:\llmal ?]ungjbe_r %f.quglts, one assumes E:at thgxperimental resultf7] to factor the number 15 involve an
nhumbersa andN are hardwired in the quantum circuit. HOW- gjeqant quantum  circuit of seven qubits and only a few

cver, if.a Iargg .number of quitS. is available, th? design ca imple quantum gates. The implementation definitely ex-
be easily modified to take as an input the numerical values loits the special properties of the number 15, and the fact

the numbers andN residing in separate quantum registers.,; \he outcome of the functiaa¥(mod N) can be calculated
The ha_rdwwed apprglach comb_lged t‘)’:"th as ml#?h. Clasfs'cai;assically in advance for all input valugsvhenN is small.
fr?;ng:tg]ﬁmaesnt[;?ssolinfc;fv(i:gvr\;g erably more efficient fromg, arbitraryN, reversible arithmetic algorithms must be em-
= P 1 P s th ) t irbuiceded for find- ployed[36,37. The classical arithmetic algorithnfi88], can
__rigure 1 represen’s € guantum circueede : or 1in be implemented reversibly by replacing the irreversible logic
ing the period. Shor’s algorithm has five staged) Initial- gates by their reversible counterparts. The longhand multi-

ization of the quantum registers. The numbértakesn o ; . .
=[log,(N+1)] bitg t0 store in?o memory, whefe] stands for plication algorithm, which we use below, should be optimal
92 Y, up to very large numbers, see Sec. VI, requiring c@ly)

the nearest integer equal to or greater than the real n_umbe.r qubits ando(n?) steps.
To extract the period of(x), we need at least two registers: he imol . f1h dul il f .
2n qubits for the registeix),, to store numbers and n The implementation of the modular exponential function
q 2n using a longhand multiplication algorithm and a QFT-based
adder[31] requires only a small scratch space, for a total of

Yn the quantum circuit diagrams, we have indicated the size of &n+2 qubits. The details of the implementation are given in
register|x),, with the subscripm. Appendix A. The conventional approach to longhand multi-

We are looking for a general scalable algorithm to imple-
ent the required modular exponential function. The imple-
mentation of this part of the algorithm sets limits for the
spatial and temporal requirements of computational re-
sources, hence it requires a detailed analysis. The remarkable
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i —_lpi d_1ni
single™ 2 207 ZBX(TX (2)

and the coupling between thth andjth qubits as

icfgjupling: - CBi(Bi(G-iy ® 0-{/' )

The qubit statel0) (“spin up”) corresponds to zero extra
Cooper pairs residing on the island and the spatg“spin
down”) corresponds to one extra pair on the island. Above
B,=Ey(®;), B,=Ec(1-2n}), and C=7?L/D§(Cqy/C)) de-
notes the strength of the coupling between the qubits,
whereasCy, is the total capacitance of a qubit in the circuit,
C, is the capacitance of the SQUIL, is the inductance
which may in practice be caused by a large Josephson junc-
tion operating in the linear regime and finaly,=h/2e is
the flux quantum. The approach taken is to deal with the
parameters, and B} as dimensionless control parameters.
We assume that they can be set equal to zero which is in
principle possible if the SQUID junctions are identical. We
setC=1 and choose natural units such that1.
The Hamiltonian in Eq92) and(3) is a convenient model
for studying the construction of quantum algorithms for a
number of reasons. First of all, the total Hamiltonian can be
) o set to zero thereby eliminating all temporal evolution. Sec-
FIG. 2. (8 Schematic of a Josephson charge qubit with thegnq setting the effective Josephson coupling to zero elimi-
relevant parametersb) An array of Josephson charge qubits yaia5 the coupling between any two qubits. This is achieved
coupled in parallel with an inductor. by applying half a flux quantum through the SQUID loops. If
the Josephson energy of any two qubits is nonzero, there will
plication without a QFT-based adder would require on theautomatically emerge a coupling between them. This is
order of 5 qubits. The price of the reduced space is thepartly why numerical methods are necessary for finding the
increase in the execution time, which now @&n*), but  control-parameter sequences. By properly tuning the gate
which can be reduced down @(n® log,(n/€)), allowing for  voltages and fluxes it is possible to compensate undesired
a certain error levek. According to Ref.[31] one would couplings and to perform any temporal evolution in this
achieve an algorithm requiring onlyn2 3 qubits with inter-  model setup.
mediate measurements. However, we do not utilize this We note that the generators, andio, are sufficient to
implementation since the measurements are likely to introeonstruct all the S(2) matrices through the Baker-
duce decoherence. Campbell-Hausdorff formula and thus single-qubit gates
need not be constructed numerically. It is even possible to do
this in a piecewise linear manner avoiding abrupt switching
Ill. JOSEPHSON CHARGE-QUBIT REGISTER since the only relevant parameter is the time integral of either
B, or B} if only one of them is nonzero at a time. That is, any

The physical model studied in this paper is the so-calledJ e SU(2) acting on theith qubit can be written as
inductively coupled Cooper pair box array. This model, as

well as other related realizations of quantum computing, has _ i s i i 2 i
been analyzed in Ref20]. The derivation of the Hamil- U_eXp<'UZ ft Bz(t)dt/2>exp<|(rx ft Bx(t)dt/2>
tonian is outlined in Appendix B for completeness. Our ap- 2 t '

roach to quantum gate construction is slightly different TS R
Iforom those ?ound in tge literature and it is thgref)(;re worth- XexP('Uth Bz(t)dtlz)’
while to consider the physical model in some detail. 0 ,

A schematic picture of a homogeneous array of qubits igvhere we assume that frotgto t; only B, is nonzero, from
shown in Fig. 2. Each qubit comprises a superconducting t; to t, only B, is nonzero and front, to t; only B, is again
island coupled capacitively to a gate voltage and a supercomonzero. For instance, the gakt e SU(2), equivalent to the
ducting quantum interference devi¢8QUID) loop through Hadamard gatél € U(2) up to a global phase, can be real-
which Cooper pairs may tunnel. The gate voltage may bézed as in Fig. 3 by properly choosing the time-integrals in
used to tune the effective gate chargg of the island Eq. (4). We cannot achieve (2") for n qubits since the
whereas the external magnetic flux through the SQUID camamiltonian for the entire quantum register turns out to be
be used to control the effective Josephson energy. Each qultiaiceless, thus producing only 89) matrices. However, the
is characterized by a charging enerffy and a tunable Jo- global phase factor is not physical.
sephson energ¥,(®;), whered; is the flux threading the The above Hamiltonian is an idealization and does not
SQUID. The Hamiltonian for théth qubit can be written as take any decoherence mechanisms into account. To justify

(4)
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formed along the path(t) which describes the time evolu-
tion of the control parameters in the space spanne@{y)}
and{B.(t)}.

Instead of considering pathgt) with infinitely many de-
grees of freedom, we focus on paths parametrized by a finite
set of parameterX,. This is accomplished by restricting the

execution time path y(t) to polygons in the parameter space. Since the pulse
sequence starts and ends at the origin, it becomes possible to

FIG. 3. Pulse sequence implementing an equivalent of the Hadconsistently arrange gates as a sequence. Forcaibit reg-
amard gate. Solid line indicaté while the dashed line show,. ister, the control-parameter paffit) is of the vector form

this omission, we have to ensure that a charge-qubit register At = [B%(t)' By B>1<(t)’ BT 6)

is decoherence-free for time scales long enough to executevﬁ]ereBiz(t) and Biz(t) are piecewise linear functions of time
practical quantum algorithm. In addition, we have neglectedoy the chosen parametrization. Hence, in order to evaluate
the inhomogenity of the SQUIDs. It may be extremely chaI—Eq_ (5), one only needs to specify the 2oordinates for the
lenging to fabricate sufficiently uniform junctions. A three- ,, yertices of the polygon, which we denote collectively as
junction design might alleviate this problem. Whereas forthexy_ We let the parameter loop start at the origin, i.e., at the
control of M two-junction SQUIDs one needs at leddt  gjegeneracy point where no time development takes place.

independen.t sources of flux, the three-junction design woul§he further set the time spent in traversing each edge of the
call for 2M independent sources. The extra sources may bgolygon to be unity.

used to compensate the structural nonuniformities. The noise | our scheme, the execution time for each quantum gate
in the control parameters has also been neglected but it willepends linearly on the numberof the vertices in the pa-
turn out that the error will grow linearly with the rms dis- rameter path. This yields a nontrivial relation between the
placement of uncorrelated Gaussian noise. Correlated noiggecution time of the algorithm and the size of the gates.
may only be tolerated if it is very weak. We have also ne-girst note that eactk-qubit gate represents a matrix in
glected the issue of quantum measurement altogether in th 2 To implement the gate, one needs to have enough
above. o vertices to parametrize the unitary group (8%), which has

A crucial assumption is thaT In Ngp<E;<Ec<Agcs,  p2_1 generators. In our model, we havk garameters for
whereNg, is the number of quasiparticle modes. Typical OP-ecach vertex. which implieskz=2%-1. We have used

eration frequencies would be in the GHz range and the op= 4 for the two-, andv=11 for the three-qubit gates.
eration temperature could be tens of mK. For our two-state To evaluate ,the unitary operatbk,, we must find a nu-

Hamiltonian to apply, we should actually insist that, instead_ . . - .
) merical method which is efficient, yet numerically stable. We
of E;<Eg, the requiremenE,(®;) <E; holds. It may appear .. . L .
. i i divide the pathy(t) into tiny intervals that take a timat to
at first thatB, cannot take on values exceediByg However, :
) X . traverse. Ify, collectively denotes the values of all the pa-
this does not hold since the gate charge also plays a role

values ofB, can be very small ifi. is tuned close to one half rameters in the midpoint of thith interval, andm is the
: z y .9 . number of such intervals, we then find to a good approxima-
Since we employ natural units we may freely rescale the:

- ) S A .~ tion
Hamiltonian while rescaling time. This justifies our choice
C=1 above. Furthermore, it is always possible to confine the Ux =exd-iH(y)At]... exd—iH(y)At]. (7)
parameter values within an experimentally accessible range. 7 ] )
For more discussion, see R¢20]. We employ the truncated Taylor series expansion
| .
IV. IMPLEMENTING A QUANTUM-GATE LIBRARY et S (—iHAD ®)
. . . |
The evaluation of the time-development operatbris k=0 K

straightforward once the exter_nally contrplled physical patg evaluate each factor in EG7). We could have used the
rameters for the quantum register are given. Here we Us€ayley form

numerical optimization to solve the inverse problem; namely, ihat _ _ .,
we find the proper sequence for the control variables which e = (1 -iHAY2)(1 +iHAY2)™, 9

produce the given quantum gate. or an adaptive Runge-Kutta method to integrate the

A. Unitary time evolution Schrédinger equation as well. It turns out that the Taylor
expansion with =3 is fast and yields enough precision for

Bur purposes. The precision of the approximation is verified
by comparing the results with those obtained with an exact

_ spectral decomposition &.
U, =7 ex —|J H((1))dt], (5)
7t B. Minimization of the error function

The temporal evolution of the Josephson charge-qub
register is described by a unitary operator

where7 stands for the time-ordering operator al¢y(t)) is Given an arbitrary unitary matril?J, our aim is to find a
the Hamiltonian for the qubit register. The integration is per-parameter sequencg, for the Josephson charge-qubit regis-
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ter that yields a unitary matrikJXY:LAJ. We convert the in-
verse problem into an optimization task; namely, that of find-
ing the zeroes of the error function

p(X,) =0~ Uy Jl- (10

Minimizing p(X,) over all the possible values of, will

produce an approximatiddy for the desired gate). Above
|-£l_denotes the Frobenius trace norm, defined |k

= Tr(AA), which is numerically efficient to compute. Since
all the matrix norms are mathematically equivalent, a small
value of||Al|r implies a small value in all other norms as well,
see, e.g., Ref39].

For this minimization problem, the error-function land-
scape is rough Consisting of many local minima. Conse- FIG. 4. Convergence of the algorithm for the Fredkin gate. The
quently, any gradient-based minimization algorithm will en-€rror function values are indicated by the sqlid Iine.and the distance
counter serious problems. Thus, we have found the minimurfif the parameter sequence from the numerical optiriip by the
point X.,;, for all the gates presented in Sec. V using repeated°tted line.
application of a robust polytope algorithf80,40,41. In the
first search, the initial condition was chosen randomly. At thecontrol parameter sequence realizing each of them can then
next stage, the outcome of the previous search was utilizede found using the scheme outlined in Sec. IV. Two ex-
In order to accelerate the evaluation @, we varied the amples of the pulse sequences are also shown in Kigots
time stepsAt; at an early stage of the optimization a coarsetom insets.
step was employed while the final results were produced us-

ing very fine steps. Typical convergence of the search algo-
The experimental feasibility of the algorithm depends on

rithm is illustrated in Fig. 4.
The required accuracy for the gate operations is in thc?1 . L
range 10°—10°5 for p(X,) for two reasons(i) in quantum ow compllcatgd it is compared to the present state of tech-
L gology. Following the above construction of the quantum
circuit, the full Shor algorithm to factor 21 requires about
300 three-qubit gates and some 5900 two-qubit gates, in
otal. Also a few one-qubit gates are needed but alternatively
they can all be merged into the multi-qubit gates. If only
two-qubit gates are available, about 16 400 of them are re-
quired. If only a minimal set of elementary gates, say the
CNOT gate and one-qubit rotations are available, the total

J(xy)

0.4 0.6 0.8 1.0x10°

function evaluations

0.2

B. Physical implementation

small, and(ii) for large circuits, quantum-error correction

can in principle be utilized to reduce the accumulated error
[19]. Our minimization routine takes on the order of®10

function evaluations to reach the required accuracy.

V. EXAMPLE

To demonstrate the level of complexity for the quantum

number of gates is remarkably higher. In our scheme the

circuit and the demands on the execution time, we explicitygXecution time of the algorithm is proportional to the total

present the quantum circuit and some physical implement
tion for the gates needed for Shor’s algorithm to factor th
numberN=21. We choos@=11 and hardwire this into the
quantum circuit.

4ength of the piecewise linear parameter path which governs
dhe physical implementation of the gate operations. Each of

the three-qubit gates requires at least a 12-edged polygonal
pathvy(t) whereas two-qubit gates can be implemented with 5

edges. Consequently, on the order of 57100 edges are re-
quired for the whole algorithm if arbitrary three-qubit gates
are available, whereas82 000 edges would be required for
Figure 5 illustrates the structure of the quantum part of thean implementation with only two-qubit gates.
factorization algorithm for the number 21. Since it takes 5 The ability to find the physical implementation of the gate
bits to store the number 21, a 5-qubit regisfgrs and a library for Shor’s algorithm is demonstrated with some fur-
10-qubit registeix),o are required. ther examples. Figure 6 shows how to physically implement
For scratch space we need a six-qubit regighgrand one  the controlled swap gate. We have taken advantage of tai-
ancilla qubit |a). Each thirteen-qubit controlledmuL lored three-qubit implementations: a one-qubit phase-shift
(modular multipliey gate in the algorithm can be further de- gate and a three-qubit controlfecphase-shift gate are
composed as indicated in Fig. 5. The controliesbp merged into one three-qubit gate, see Fig. 7.
(modular adder gates can also be decomposed. The ten- The control parameter sequences presented will yield uni-
qubit QFT breaks down to 42 two-qubit gates and one threetary operations which approximate the desired gate opera-
qubit QFT. Similarly, the six-qubit QFT can be equivalently tions with an accuracy better than~t0n the error-function
implemented as a sequence of 18 two-qubit gates and onalues for the three-qubit gates. For two-qubit gates the error
three-qubit QFT. In this manner we can implement the entirdés negligible. Since the whole factorization circuit consists of
algorithm using only one-, two- and three-qubit gates. Thesome 16 three-qubit gates, we obtain a total error-ef0 ™.

A. Quantum circuit
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This is sufficient for the deduction of the essential informa-

tion from the output. The robustness of the gates obtainecd
was studied numerically by adding Gaussian noise to the
vertices of the path. The error function was found to scale
linearly with the rms of the variance of the Gaussian noise:
error =6 X (noise,,s Which is probably acceptable.

qubit 1

W= O =W
L ¢ LI

VI. DISCUSSION

qubit 2
Shlo=nw

In this paper we have discussed the implementation of
Shor’s factorization algorithm using a Josephson charge-

3
qubit register. This method is suitable for the first experimen- -3
tal demonstration of factoring a medium-scale integer £ o4

RS

24-220. As an example of this method we have studied the
algorithm for factoring 21. The only integer smaller than 21
for which Shor’s algorithm is applicable is 15, but this is a
special case having only the periods 2 and 4. For the experi-

mental factoring of 15 one should consider more direct meth- FIG. 6. Control parameters for the Fredkin gate. Solid line in-
ods[7] to implement the modular exponential function. For adicatesB, while the dashed line show&l,.

(AT
T

<
[
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=)
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)

execution time
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of the modular exponential function utilizing themuc (b) gates.

qubit 3

3L
—o— - i[ £25 ),
g0 *
-1
v_g e =
- s 5 4,
3 . ~ ~ 8] .
o ? =D, :| 2 5 S | 4" (mod W)
+— i P L2 :
ER - = - 1 5 |
2
3
3k FIG. 8. Quantum circuit required for performing the evaluation
2k
1
0
-1
2
-3

10* edges along the control-parameter path. Assuming that
the coherence time is on the order of 48 implies that the
s upper limit for the duration of each edge is1®s. Since our
execution time dimensionless control parameters in the examples are on the

FIG. 7. Control parameters for a composite gate consisting of é)rder of unity, the energy scale in angular frequencies must

_l . . .
twice controlled phase shift and a one-qubit rotation, see the tex2€ at Ieast on the order of Tos™™. Typical charging energies
Solid line indicatesB, while the dashed line shov,. for, say, thin-film aluminum structures may be on the order

of 10722 J which corresponds to 3bs™. The ultimate limit-

larger integerN other approaches, e.g., the Schdnhageing energy scale is the BCS gap, which for thin-film alumi-
Strasser[38] multiplication algorithm, will provide a more num corresponds to an angular frequency of about
efficient quantum circuit. Our approach of numerically deter-3x 10** s1. Based on these rough estimates, we argue that
mining the optimized gates can be generalized to othefactoring the number 21 on Josephson charge qubits is, in
physical realizations with tunable couplings as well. Theprinciple, experimentally accessible.
only requirement is that the system allows total control over Constructing a quantum algorithm to decrypt RSA-155
the control parameters. coding which involves a 512-bit integéf with the scheme

We have found that the number of qubits and quantunthat we have presented would require on the order of 2000
gates that are involved in carrying out the algorithm is rathequbits. Since the execution time scalesrddog n tens of
large from the point of view of current technology. Thus theseconds of decoherence time is needed. This agrees with the
realization of a general factorization algorithm for a largeestimates in Ref[42] and poses a huge experimental chal-
integerN will be challenging. Consequently, the scaling of lenge. This can be compared to the 8000 MiR8llion in-
the chosen algorithm, both in time and space, will be ofstructions per secondyears of classical computing power
prime importance. which is needed to decrypt the code using the general nu-

The method we propose utilizes three-qubit gates, whictmeric field sieve techniquEl]. Thus Shor’s algorithm does
compress the required guantum-gate array, resulting in appear impractical for decrypting RSA-155. However, it pro-
shorter execution time and smaller errors. One should alseides the only known potentially feasible method to factor
consider other implementations of the quantum algorithms&iumbers having 1024 or more bits.
that employ gates acting on a larger number of qubits to We conclude that it is possible to demonstrate the imple-
further decrease the number of gates and execution time. Fanentation of Shor’s algorithm on a Josephson charge-qubit
example, four-qubit gates may be achievable, but this infegister. Nevertheless, for successful experimental imple-
volves harder numerical optimization. mentation of large-scale algorithms significant improvements

Finally, let us consider the experimental feasibility of ourin coherence times, fabrication, and ultrafast control of qu-
scheme. To factor the number 21, we need on the order dfits is mandatory.

E * T I l * I T * ;>
v, l : * * [y,
? | =TT | )
Triler GBI 0GR BRERD

<& N R 2 a =
|2=0),., é % é" % \é/ EI’ |==03,,,
L EL MAFL JELEL
— — 128 ——%— — - = —
Multiplication Swapping Scratch space cleaning

FIG. 9. Decomposition of theMMUL(azi) gate usingcmapp(b) and controlled swap gates. If the controlling qupip is active the
resulting state is)/’zy+a2'(mod N), otherwisey’=y. Note that the gate utilizes an additional ancilla regig#®y,,; to perform the
calculation.
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;> >
| Z>n+l E | z,>n+l
la=0), |a=0),

FIG. 10. Decomposition of theewapp(b) gate into elementary gates, QFT gates, and additions in the Fouriendasig. The asterisk
stands for a Hermitian conjugate; it corresponds to a gate for subtraction. The gate takes an inpzWee2" and yields|z')py1=|z
+b(mod N))p.4 if the control qubitsg =1 andy;=1. Otherwisgz')n.1=[2)n+1. The ancilla qubita) is one ifz+b>N and zero otherwise.

Note addedRecently, it was brought to our attention that ot
a similar circuit implementing Shor’s algorithm has been a*= [] (@(modN))(modN), (A1)
constructed for a linear nearest-neighlfoNN) qubit array i=0

[43] independent of any specific physical realization. ) _
where we have used the binary expansion2®x,+2%x,

+2"1x ;. x €{0,1}. Note that the number of factors in Eq.
ACKNOWLEDGMENTS (A1) grows only linearly for increasingh. The longhand

J.J.V. thanks the Foundation of Technolo@yES, Fin- multiplication is based on the relation
land) and the Emil Aaltonen Foundation for financial sup- on-1
port. M.N. thanks the Helsinki University of Technology for J 2ok
financial support; he is grateful for partial support of a Grant- ax= o (@"2'%{(mod N))(modN), (A2)
in-Aid from the MEXT and JSPS, JapafProject Nos.

14540346 and 13135215The research has been supported, hich again involves only a linear number of terms.

in the Materials Physics Laboratory _at HUT by.Academy.of Equation(Al) yields a decomposition of the modular ex-

Elr?)lgincds(tngougglsfos?;rghinGéaun;itLljr;nngcr)anEf;tliol\(ql\lact)e“ali)onential function into controlled modular multiplication

. . | . .

206457. We also thank Robert Joynt, Jani Kivioja, Mikko dateslevmut(a?)], see Fig. 8. According to EgA2), each of

Méttonen, Jukka Pekola, Ville Bergholm, and Olli-Matti themmuL (@%) gates can be implemented with the sequence of

Penttinen for enlightening discussions. We are grateful tdhe modular adders, see Fig. 9. Since this decomposition of

CSC—Scientific Computing Ltd., Finland for parallel com- cmmuL(a?) requires extra space for the intermediate results,

puting resources. we are forced to introduce a scratch spdze,, into the
setup. Initially, we sefz),,1=|0)n+1. MOreover, we must reset
the extra scratch space after each multiplication. This is ac-

APPENDIX A: CONSTRUCTION OF A QUANTUM complished by multiplication with the inverse elemdnt

CIRCUIT whereb=a?. Let us consider how the gatevul (b) works:

Here we represent the construction of a quantum circuit
needed for an evaluation of the modular exponential function [%)|0) — [%)|0 +bx(modN)) (produc)
a*(mod N). We assume the values afandN to be constant . bx(modN)[¥)  (swap
integers coprime to each other. This approach takes advan-
tage of the fast powers trick, see E&1) below, as well as — |bx(mod N))|x + (- b™%) (bx(mod N)))
the construction of a multiplier suggested by Beauregard _

[31], which in part employs the adder of Dragé2]. =bx(modN)[0) ~ (result.

The modular exponential function can be expressed in , . _
terms of modular products: Euler’s totient theorem guarantees that for evienyhich is

coprime toN, a modular inverse™ e N exists. Furthermore,
the extended Euclidean algorithm provides an efficient way
I%,.) * E‘ | ), to find the numerical value fdo™.
£ o), ) Figure 10 presents the decomposition of teapp(b)

= : ' om) gate (b e N) using adders in the Fourier space. The idea is
! " first to calculatez’ =z+b—N. If 2/ <0 the ancillaa, which is

I, @), initially zero, is flipped anoN is added toz’ yielding 2/ =z

+b. The rest of the circuit is needed to reseto zero.

_ The circuit simplifies when multipl€2mapp(b) gates are
fElpplied since the final QFTwill cancel against the initial

QFT of two consecutive gates. This is taken into account in
counting the total number of gates and in Fig. 5. An obvious

>

=~
1

FIG. 11. Quantum circuit for an-qubit Fourier transformation.
gates are labeled with the numbé&re/hich correspond to the phase

shifts €27K2". Note the reversed order of the qubits on the right-
hand side.
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x> x> is ¢;—d;. We take the positive direction for flux to be di-
v ly;> rected outward normal to the page.
o) ) @_ o) ) We adopte; and ¢ as_the dynamical variables_,, wherebhs
"o . '” and V'g are external adjustable parameters. With the help of
), L% [, elementary circuit analysig44], we obtain the Lagrangian
[®G),» —@ [oE),» for the qubit register

FIG. 12. Quantum circuit for the twice controlled addition of a 1 C,- C; . ) ) o?
classical numbeb into the quantum registee),.; in the Fourier L= =P+ (- D>+ Coldhi+ - Vfg)2 - =
basis. The twice controlled phase-shift gates serve to yield the phase 2ial 2 2 2L

shift 2m4¢2" provided that the control qubitg;) and|y;) are active. M
! 1 2e 2e
+52 [Eycod o | +Eycod (=D | |, (BD)

drawback of this implementation is the need for a number of 2i=1

QFT gates. However, we need to introduce only one ancilla\lNe now perform the following changes of variables

qubit |a).
The decomposition of the gatetmabp(b) consists of . C

twice controlled addergn+1)-qubit QFTs, one-qubitioTs, & — b+ ?' - C—J:]C_(P’ (B2)

andcNoTs The decomposition of a QFT-gate into one- and T

two-qubit gateq2] is represented in Fig. 11. Since Fourier \yhich yields

space is utilized, the2app(b) gates can be implement¢8i2]

using controlled phase shifts. The quantum gate sequence 1 M ) P ).

for an adder working in the Fourier space is depicted in Fig. £= => (Cy+ Cg)d)iz— 2C, V'g— —

12. The values of the phase shifts for the gettep(b) are 2i=1 2

g|inr:]§|)|/ez"'¢J’2 , where;=2lb. : 5( 3) 2e 2mCy )} 1 )
y, we are in the position to perform the unitary +E;coq 7 co b @] |+ MCqpe

transformation which implements the modular exponential Po h PGy 2

function using only one-, two- and three-qubit gates. If the M P P

three-qubit gates are not available, further decomposition -> Cqp V'g— EI o- oL + const. (B3)

i=1

into one- and two-qubit gates is needed, see R&f]. For
instance, each three-qubit twice controlledgate decom-
poses into five two-qubit gates and each Fredkin gate tak
seven two-qubit gates to implement.

dAbove, ®y=h/2e is the flux quantum ancC,,=C,Cy/(C,
+C,) is the qubit capacitance in theC circuit. Note that the
effective Josephson energy of each SQUID can now be
tuned. We denote this tunable energy parameter in(E8).
APPENDIX B: DERIVATION OF THE HAMILTONIAN as

1. The Lagrangian

Consider a homogenous array of mesoscopic supercon- 0

ducting islands as an idealized model of a quantum register,
see Fig. 2. The basis states of the qubit correspond to eithdihe canonical momenta are given Iy=dL/d¢ and g
zero or one extra Cooper pair residing on the superconductgL/d¢,. We interpretQ as the charge on the collective
ing island, denoted biﬂ) and|l), respectively. Each of the capacitor formed by the whole qubit register, whergais
islands, or Cooper-pair boxes, is capacitively coupled to ahe charge on thith island. Note that the charggis related
gate voltageV,,. In addition, they are coupled to a supercon-to the numbem, of Cooper pairs on the island through
ducting lead through a mesoscopic SQUID with identical=-2en.
junctions, each having the same Josephson eriej® and
capacitanceC;/ 2. All these qubits are then coupled in paral-
lel with an inductor,L. The lowest relevant energy scale is
set by the thermal energy T and the highest scale by the  We are now in the position to write down the Hamiltonian
BCS gapAgcs for the quantum register. We will also immediately replace
We assume that the gate voltag% and the time- the canonical variables by operators in order to quantize the
dependent flux®; through each SQUID can be controlled register. Moreover, we will employ the number of excess
externally. The flux®; may be controlled with an adjustable Cooper pairgy on the island and the superconducting phase
currentl; through an external coil, see the dotted line in Fig.difference instead of the usual quantum-mechanical conju-
2(a). In this setup, the Cooper pairs can tunnel coherently t@ates. We will also change to the more common phase dif-
a superconducting electrode. We denote the time-integral derenced, related tog; through 6,=(2e/#%)¢;,. Hence the rel-
voltage, or difference in flux units, over the left junction of evant commutation relations afé,n;]=-i and[¢,Q]=if.
theith SQUID by ¢; and the flux through the inductor ky. ~ All the other commutators vanish. Using the Legendre trans-
The phase difference in flux units over the rightmost junctionformation

2. The Hamiltonian
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M
H=Qp+ > G —L (B5)
i=1

we obtain

| 2€mi-ny? (  2nCy )}
H—z{—g—cﬁcg E,(®;)cos| 6 —q-q)OCan

. (B6)
2MCq, 2L
We have denoted the effective gate charge by
el P
t=—l v - — B7
M 2e< 9 2 ) B7)
and
M )
D,
Q=2 CQp(v'g - 3') . (B8)
i=1

PHYSICAL REVIEW A 70, 012319(2004)

M
. 2mLC .
=" E{®))sin 6.
DoCy o

(B11)

We now see from EqB10) that in the high-frequency limit
the harmonic oscillator is effectively decoupled from the qu-
bit register. The effect of the qubit register is thus to redefine
the minimum of the potential energy for the oscillator. This
does not affect the spectrum of the oscillator, since it will
adiabatically follow its ground state in the low-temperature
limit. We may therefore trace over the degrees of freedom of
the harmonic oscillator and the harmonic-oscillator energy
will merely yield a zero-point energy contributiofigw, /2.
The effective Hamiltonian describing the dynamics of the
coupled qubit register alone is thus

M [ 2€2(n, - ni)? }
H 21 {—q—cj vC, E(®;)cos 6,

2LC [ 2

- B 2 E(P)sin g | (B12)
P5C5 \i=1

This result is in agreement with the one presented in Ref.

[20]. We conclude that theC-oscillator has created a virtual

In addition to the usual voltage contribution, the time depencoupling between the qubits.
dence of the flux also plays a role. In practice, the rates of For the purposes of quantum computing, it is convenient
change of the flux are negligible in comparison to the volt-to truncate the Hilbert space such that each Cooper-pair box

ages and this term may safely be dropped.

will have only two basis states. In the limit of a high charg-

The Hamiltonian in Eq(B6) describes the register of qu- ing energyEC=2e2/(Cg+CJ) relative to the Josephson en-

bits (n;, ¢;) coupled to a quantum-mechanidaC resonator,
i.e., a harmonic oscillatofQ, ¢). We will now assume that

ergy E;, we may argue that in the regions(h‘gsl only the
states withn;=0,1 can be occupied. We use the vector rep-

the rms fluctuations ofp are small compared to the flux resentation for these states, in whi@);=(1 0)f and [1);
quantumd, and also that the harmonic oscillator has a suf-=(0 1)i. _
ficiently high frequency, such that it stays in the ground state, The basis states of the Hilbert space are orthogonal

The first assumption implies that

27C 27C
cos( 6, — M(p) ~ cos 6 + T sin 6. (B9)
DoCy DC,

(kle"l)=5=1. Hence, in this two-state approximation,

cos 6=30) and siné;=5a}, where, e.g.,
d=1®.. .00 a,I1...31.
S——— S—_—
i—1 times M—i times

The second assumption will cause an effective coupling beFinally, omitting the constant terms, we obtain the Hamil-
tween the qubits. Namely, the Hamiltonian may now be retonian in the Pauli-matrix representation

written in the more suggestive form

M A2 2
H ~ E [m_a(@i)cos@} +(Q;Qq_

Sl Ci+Gy 2MCyp
_r2 ~2
(¢ so)_g, (B10)
2L 2L

where the operatop is given by

Ey(P) o

E o
C(l—2n'g)a"z— 5 Ox

2

Ji'—(%@)
3\ C;

> EJ((I)i)EJ((Dj)Uiy@ 0‘{,,

i=1 j=i+1
(B13)
which results in Eqs(2) and(3) of the main text.
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APPENDIX VI

Fast and Accurate Single-Island Charge Pump: Implementation of a Cooper Pair Pump

Antti O. Niskanen,l’z’* Jukka P, Pekola,2 and Heikki Sepp’ei1

YWTT Information Technology, Microsensing, POB 1207, 02044 VTT, Finland
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We introduce a Cooper pair “sluice’” for the implementation of a frequency-locked current source.
The device consists of two mesoscopic SQUIDs and of a single superconducting island with a gate. We
demonstrate theoretically that it is possible to obtain a current as high as 0.1 nA at better than ppm
accuracy via periodically modulating both the gate charge and the effective Josephson coupling. We find
that the device is tolerant against background charge noise and operates well even in a dissipative
environment. The effect of the imperfect suppression of the Josephson coupling and the finite operating

frequency are also investigated.
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Single-electron and Cooper pair devices have attracted
considerable attention recently. Applications such as the
single-electron pump [1] and the Cooper pair box for
quantum computing [2] have demonstrated that at suffi-
ciently low temperatures and high charging energies the
quantization of charge leads to some very interesting
effects. Especially, it has been shown that single electrons
can be pumped extremely accurately at frequencies f of a
few MHz with a relative uncertainty of 107 in normal
metal devices according to the relation I = ef [3]. This
has resulted in a standard of capacitance. However, the
pump frequencies, and thus current levels, have been too
low for the realization of a practical accurate current
source for nanoelectronic applications or for realizing
the quantum measurement triangle [4]. The attempts to
generalize the single-electron pump to a superconducting
Cooper pair pump [5,6] that, in theory, would allow for
higher-frequency pumping have been unsuccessful so far
due to a variety of reasons. In particular, Landau-Zener
tunneling between energy levels induces pumping errors.
In addition, there is always a considerable amount of
supercurrent leaking through the pump. Also, the inter-
play of the two conjugate variables, the phase and the
number of Cooper pairs, results in a coherent correction
such that the current is no longer given by the relation / =
2ef [7]. Further, the coherent correction is proportional
to cosg, where ¢ is the phase difference over the whole
pump, whereas the supercurrent is proportional to sing
rendering it impossible to choose ¢ to eliminate both of
these simultaneously. The effect of nonidealities can be
reduced by adding more junctions, but this will compli-
cate the practical implementation due to the increasing
number of control parameters and cross capacitances.
Furthermore, one has to take into account the effect of
the fluctuating background charges responsible for the
1/f noise and the phase fluctuations caused by the elec-
tromagnetic environment. The latter, however, may help
in achieving {(cos¢) = (sing) = 0 if desired.

PACS numbers: 74.50.41, 03.65.Vf, 73.23.—b, 74.78.Na

In this Letter we propose and critically analyze a
simplified scenario for implementing a Cooper pair sluice
that ideally has no dynamical supercurrent leaking
through the junctions and is governed by the relation I =
2ef or more generally I = 2nef, where n is the number of
pairs carried per cycle. First, we present the general idea
of the device. We also study the viability of implementing
the device by considering different sources of error and
show that the sluice is tolerant against several kinds of
nonidealities. We demonstrate that it is possible to con-
struct a frequency-locked current source that has, with
realistic assumptions, a yield of 0.1-0.2 nA with better
than 1 ppm error.

The device consists of just one superconducting island
that works as the sluice chamber and of two mesoscopic
SQUIDs; see Fig. 1. The role of the SQUID loops is to
serve as the sluice doors for the flow of Cooper pairs. The
control parameters which are varied periodically and
adiabatically include the gate voltage V, and the magnetic
fluxes @, (a = 1, r) through the SQUID loops. The idea of
controlling the effective Josephson coupling is used
throughout in the Josephson qubit literature; see, e.g.,
Ref. [2]. Utilizing flux pulses in Cooper pair shuttles [8]
has also been suggested in Ref. [9] but in a nonadiabatic
context. Here we work in the adiabatic limit. Note that the
device is particularly simple; there is only one voltage

FIG. 1. (a) Schematic illustration of the device, the “sluice.”
The role of the coils is to apply controlled flux pulses through
the SQUID loops, and they are synchronized with the periodic
gate voltage. (b) An improved three-junction SQUID.
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gate to adjust. The current through the sluice is given by
the time integral of the expectation value of the current
operator of either of the two SQUIDs. The dynamics is
governed by the Schrédinger equation and the Hamil-
tonian of the device is (in the case of identical junctions)

2¢2

@,
36, e ) = B gt Jeos(s + 012)

@
— E}<wa;>cos(¢/2 — ). 1)

Here C;/2 is the capacitance of a single junction, C, is the
capacitance of the gate, n, = C,V,/2e is the gate charge
in 2e units, @, = h/2e, and ¢ is the phase difference
over the sluice. Furthermore, E‘}(ﬂ'%‘; = Epx COS(’?T%;)
(a=1r) denotes the effective flux-dependent signed
Josephson energy of the left and the right SQUID, re-
spectively. The Josephson energy of a single junction is
thus E®/2. The factor Ec = (2¢%)/(2Cy + C,) is the
charging energy. The quantum mechanical conjugate var-
iables are the number of Cooper pairs on the island 7 and
the superconducting phase ¢. They obey the canonical
commutation relation [A, ¢] = i. The case of nonidenti-
cal junctions is modeled below by not allowing the
Josephson energy to vanish during the cycle. We note
that it is possible to use more complicated SQUIDs [see
Fig. 1(b)] for which one of the junctions is replaced by a
SQUID biased with a static field to match the Ej of the
other half when ®,/2 threads the primary loop. Self-
inductance may be ignored for two junctions (other
sources of error dominate) but for the three-junction
design the self-inductance sets a limit for suppression at
wL1-/®, where I = 27E;/®,. An achievable value for
this could be 1073. The current operator of the, say, right
SQUID is

P
= Fﬁg(w(ﬁ)sm@ + 0/2). @
The total charge flowing through the system over one
cycle has two components in the adiabatic limit [7],
namely, the contribution from the dynamical supercur-
rent

0, - ﬁ<o Q)| 710; q(0)dr, 3)

and the pumped charge (v is the loop in parameter space)

0, = 2 Im[ v (0;q|7"[n; @)

o~ (m:qlVgl0;q) - .
n#0 VEO(q)_En(q)<n’q| ql0: @) dqj|

“4)

We have denoted above the control parameters collec-
tively by the vector q which is varied in time. In the
present context q = (ng, E}, E})T. Because of the adiaba-
ticity criterion, the sluice stays at all times in the ground
state with negligible Zener tunneling. The nth eigenstate

at the point q is denoted by |n; q) and the energy eigen-
value by E,(q).

Figure 2 illustrates a model control-parameter se-
quence. Note that the SQUIDs are biased in such a
manner that one door is always closed, such that the
dynamical contribution of Eq. (3) vanishes. Moreover,
the signal is designed such that the system Hamiltonian
(1) is always nondegenerate. This validates the use of
Eq. (4). Varying just the gate voltage would lead to a
degeneracy at n, = 0.5, but because just one of the doors
is open at this point, the problem is resolved. The sluice is
ideally a switchable Cooper pair box. During the first half
of the sequence one of the SQUIDs works as a Josephson
junction while the other is effectively a capacitor. Then
the roles are exchanged. It is easy to see that this sequence
leads to the transport of exactly one Cooper pair through
the sluice per cycle. In the beginning of the sequence the
system is in the eigenstate of charge (zero pairs) due to the
fact that the effective Josephson couplings are set to zero.
In the middle of the sequence when both doors are again
closed, the island is in the eigenstate of charge but now
with one extra Cooper pair. The Cooper pair has tunneled
through the right SQUID since the left one was closed.
Finally, in the end of pulse the system is again at the
eigenstate of charge with zero Cooper pairs and the
charge must have gone through the left SQUID.
Repeating this sequence results in I = 2ef, where f =
1/ feycle- The form of the pulse may also be generalized for
the purpose of allowing n Cooper pairs to flow through
the sluice over 7.y, thus increasing the current to I =
2nef, simply by operating between n, = 0 and n, = n.

Assuming that the SQUIDs can be closed to a high
degree renders the system almost entirely insensitive to
the actual operating point of voltage. Instead of operating
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FIG. 2. Pulse sequence for pumping a single Cooper pair
through the sluice. The exact form of the pulses is not crucial
as long as the synchronization is maintained. The gate charge
(or voltage) pulse, which is a shifted harmonic one here, may
be generalized to have a larger amplitude and thus a larger
number of pairs could be pumped.
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between n, = 0 and n, = 1 (or n, = 0 and n, = n) we
may just as well operate betweenn, = dandn, = 6 + 1
(orn, = 6 and n, = n + o) as long as 6 # % However,
the adiabaticity criterion becomes harder to fulfill if we
start close to the degeneracy point. Considering that a
typical measured power spectrum of the background 1/ f
charge noise is S(f) = 107%¢%/f [2,10], there will be a
need to reconfigure the sluice only after time scales of
hours. This is a definite strength of the present approach
and it is attributable to the use of the controllable
SQUIDs. It should be emphasized that the exact shape
of the pulses is not crucially important as long as the
maxima and minima are synchronized as in Fig. 2. Even
though we consider imperfections in suppressing Ej be-
low, the effect of flux noise still needs to be studied in an
experiment.

Let us comment on the maximum operating frequency
of the device. Because of imperfections in the flux control
and nonidentical Josephson junctions, there is always
some residual ET*. This implies that one should have
ET® < E¢ to avoid excess leakage and to make the sluice
insensitive to background charge fluctuations. Further-
more, since the minimum gap in the energy spectrum of
the sluice is roughly E7"®* whenever EJ"™* = E holds, one
should have hf < E7™*. It is often asserted that one
should also have E- < Agcg in order to avoid quasipar-
ticle effects. It follows that there would be an inequality
chain hf < Ef™ < Ec < Apcs which seriously limits
the operation frequency of the device. However, it suffices
to have

hf < E}nax =~ EC = ABCS (5)

in the present context. Namely, the criterion Ec << Apcg
is now superfluous because, assuming adiabaticity, the
sluice is never in its excited state. That is, it is sufficient
to have Apcg such that the second band [11] is just slightly
below the lowest quasiparticle state which cannot be
excited due to adiabaticity. In the case of nonadiabatic
evolution E- < Agcg is, of course, necessary whenever
we consider exciting the system, as in the case of the
Josephson charge qubit [2]. We can also set Ef"** = E¢
in Eq. (5) and still get satisfactory performance as we
show below.

We proceed to present numerical results obtained by
integrating the Schrodinger equation corresponding to
the Hamiltonian Eq. (1) over discrete time steps. The
pumped charge was then obtained by numerically inte-
grating the time-dependent expectation value of the cur-
rent operator in Eq. (2). This nonadiabatic method reveals
the effect of the finite operating frequency. We also esti-
mate the effect of several kinds of nonidealities. We
choose for the rest of the paper the typical parameters
Cy=C, C, =0.1C, and E™ = ¢?/C such that E™ =
Ec. Integrating the system at varying frequencies results
in the pumped charge illustrated in Fig. 3. The path of
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FIG. 3. Error (a) in the pumped charge over a single period
and (b) in the current as a function of (a) frequency and
(b) current. Here Cy = C, Cg =0.1C, Ey* = ez/C, and f; =
E™™* /L. The error is € =1— Qp/2ne = AI/I. The line
marked by diamonds represents pumping a single Cooper
pair, the line marked by circles represents pumping five
Cooper pairs, whereas the squared line represents pumping
ten Cooper pairs per cycle. In (b) we assume f;=
300 X 10° s71.

integration is the ideal sequence of Fig. 2. In light of Fig. 3,
it seems that we could quite safely pump single Cooper
pairs at the frequency f = EM//i X 107 and still have
an accuracy of 7 ppm. Fabricating the island and the leads
out of aluminum is the most viable option for the present,
and by standard lithography one obtains C < 10~ fF.
The well known BCS gap would be roughly Agcs/h =
50 GHz. Choosing the charging energy optimally, that is,
Ec = Agcg, results in an operating frequency of some
300 MHz and a current of about 0.1 nA. However, Fig. 3
also illustrates the adiabaticity error for pumping five
Cooper pairs; that is, the gate charge pulse has an ampli-
tude of CgAVg/Ze = 5. When this is converted to current,
we conclude that it may be possible to pump 0.2 nA with
better than 1 ppm error. The result of pumping altogether
ten Cooper pairs per cycle is also shown, and it turns out
that a current of about 0.1 nA at 0.1 ppm error is possible.
Ramps of the Josephson energy cause adiabaticity errors
and, in comparison, varying the gate voltage does not
contribute as much at least when pumping only a few
Cooper pairs. The optimum number of pairs per cycle is
yet an open question which we have not solved due to
numerical difficulties.

The quantitative effect of background charge and the
residual value of Ej, ET, is illustrated in Fig. 4. We
calculated the actual pumped charge, in the case of a
single attempted Cooper pair in Fig. 4(a), over one cycle
as a function of the gate charge deviation 6 and Ej*. The
result has been averaged over different evenly spaced
phase bias values, namely, ¢ = 7/2, 7, 37/2, and 27
(for justification see below). The frequency was f =
E™ /I X 10~* which corresponds roughly to 0.1 nA.
The performance of the sluice degrades rapidly with
increasing E}* at fixed phase bias values. However, a
physical sample would always be subject to some phase
fluctuations. Keeping the phase constant over one cycle,
as done above, is a realistic assumption if the dephasing
time is long compared to 7.q.. We see that the error
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FIG. 4. (a) Averaged pumping error over the phase bias
values ¢ = 7/2, m, 37/2, and 27 as a function of § and E}*
at f = EPM™/h X 1073(= 300 MHz). (b) The same as (a) but
for pumping five Cooper pairs at f =4EP™/h X 1074 =
120 MHz which corresponds to I = 0.2 nA.

averages out to a great accuracy even though the deviation
from the ideal point (i.e., Ef*/EP™ =0 and 6 = 0) is
quite large. Note that the span of gate charge is some 10%
and the span of the residual E}** some 1%. Achieving even
EFs/EM = 1073 should be possible with the design of
Fig. 1(b). A similar calculation for pumping five Cooper
pairs was also performed at a frequency corresponding to
I = 0.2 nA, and the averaged result is shown in Fig. 4(b).
Avyield of at least 0.2 nA is possible even in the presence
of nonidealities with a relative error of some 107°.

It is easy to see why phase averaging suppresses the
errors when ET* # 0 as suggested by Fig. 4. Namely,
the supercurrent is proportional to E}E}sing [12] and
the average of this is clearly zero. It is identically zero
whenever one of the sluice doors is closed. We obtain in a
two-state adiabatic approximation a perturbative formula
in E7* (for pumping a single Cooper pair)

2 (Emax)2 + E2
L e MY S (©6)

e E}naxEC

such that we may confirm that the error is proportional to
cos¢ as in the conventional pump [7]. We have utilized the
fact that Qp = —Zedi v, where 7y is the Berry phase
associated with the ac‘lpiabatic loop [13]. The effect of &
on the performance of the sluice is negligible compared to
the effect of nonzero E7* with fixed ¢. Phase averaging,
i.e., placing the sluice in a dissipative environment, may
be used to cancel the effect of small nonidealities.
Figure 4 clearly indicates that the sluice is quite insensi-
tive to background charge fluctuations.

We assumed that choosing the phases evenly is a rep-
resentative sample of the whole. Over time scales of
seconds one may consider the phase to be evenly distrib-
uted between 0 and 27 due to dissipation. The even dis-
tribution is asymptotically identical to a wide Gaussian
distribution on the whole real axis. The Gaussian nature
can be justified by assuming a thermal bath of harmonic
oscillators coupled to the phase with a sufficiently
high effective impedance. The variance of the phase
increases with the real part of the impedance seen by
the device due to the fluctuation-dissipation theorem.

Thus {(exp(Fig)) = exp(+i{p) — (A@?)/2) decays expo-
nentially as do the pumping errors. Phase averaging has
been used in the R-pump scenarios [6] by inserting large
series resistors. At high currents this leads inevitably to
overheating. In the present context the phase averaging is
needed only as a second order mechanism since most of
the errors are suppressed by the controlled modulation of
the Josephson coupling. Finally, we comment on the
effect of the ammeter. An ammeter with high R can
cause a significant voltage over the sluice. A good choice
would be a cryogenic current comparator modeled by L
and C in parallel. With, e.g., L =10 H, C = 1 nF, and
EP™ =~ E- we would get V(1) = V,sin(2wft) with V =
e/Cm = 50 pV which is negligible.

To conclude, we have introduced and analyzed an idea
of a Cooper pair sluice with just three control parameters.
Compared to other Cooper pair pumping scenarios, we
have suppressed undesired cotunneling, supercurrent
leakage, and, most importantly, the need to have a long
error-prone array of junctions with numerous gates. The
idea for the control of the sluice is similar to the control
of Josephson junction qubits. The sluice is much simpler,
though, since superpositions and entanglement are not
pursued and relatively slow pulses are sufficient.
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APPENDIX VII

Evidence of Cooper pair pumping with combined flux and voltage control

Antti O. Niskanen,"?>* Jani M. Kivioja,? Heikki Seppi,' and Jukka P. Pekola?
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We have experimentally demonstrated pumping of Cooper pairs in a single-island mesoscopic
structure. The island was connected to leads through SQUID (Superconducting Quantum Inter-
ference Device) loops. Synchronized flux and voltage signals were applied whereby the Josephson
energies of the SQUIDs and the gate charge were tuned adiabatically. From the current-voltage
characteristics one can see that the pumped current increases in le steps which is due to quasipar-
ticle poisoning on the measurement time scale, but we argue that the transport of charge is due to

Cooper pairs.

PACS numbers: 74.50.+r, 74.78.Na, 73.23.-b
Keywords: Josephson effect, charge pumping

A device that yields a DC current in response to an AC
signal at frequency f according to the relation I = Qf
is called a charge pump. In the case of electron pumps
@ = me while for Cooper pair pumps @ = 2me, where
m is an integer denoting the number of charges being
pumped per cycle. Typically pumping electrons in meso-
scopic structures requires an array of at least three tun-
nel junctions with voltage gates coupled to the islands
in between the junctions. A Cooper pair pump is ob-
tained when the tunnel junctions are replaced by Joseph-
son junctions. These devices appear at first sight to be
very similar and actually the very same samples may
serve as both Cooper pair and electron pumps depend-
ing on whether the device is in the superconducting state
or not. However, major differences exist. Besides the
doubled charge in the superconducting state, the nature
of the tunneling processes is very different, too. Elec-
trons can tunnel downhill in energy due to the inherent
dissipation mechanisms in normal metals with the rele-
vant time scale given by the RC time constant, where
R is the tunnel resistance and C the tunnel capacitance.
Cooper pairs, on the other hand, try to conserve their
energy, and in the absence of an electromagnetic envi-
ronment, (i.e. zero impedance) only elastic processes are
possible. Their maximum pumping frequency is propor-
tional to E%/(Ech), where Ej and Ec are the Joseph-
son and charging energies, respectively. What is more,
superconducting circuits may behave coherently in the
quantum-mechanical sense. The first attempt to pump
Cooper pairs dates back to over a decade ago!. However,
Cooper pair pumps have not been even nearly as accu-
rate as single-electron pumps. The best example of the
latter ones is the NIST seven-junction pump?. The mo-
tivation behind pumping Cooper pairs is two-fold. First
of all, Cooper pair pumps are hoped to be able to pump
larger currents than their normal state counterparts while
still being accurate. This is roughly because increasing
E2/(Ech) is easier than increasing 1/(RC). Secondly,
the operation of Cooper pair pumps is interesting from
the point of view of secondary “macroscopic” quantum
phenomena and the structures are quite similar to the
superconducting qubits (see, e.g., Refs. 3,4). Pumping of

electrons using surface acoustic waves is another active
field of study, see, e.g., Ref. 5.

In this work we report on the experimental demonstra-
tion of pumping Cooper pairs in a structure nicknamed
the Cooper pair “sluice” introduced and theoretically an-
alyzed recently by us, see Ref. 6. The device is particu-
larly simple; it has just one superconducting island, like
the single Cooper pair transistor, but the bare Josephson
junctions are replaced by SQUID loops. The device may
be alternatively viewed as a tunable Cooper pair box, a
Josephson charge qubit’. Here the control is achieved
via adiabatically manipulating both the fluxes through
the two loops and the gate voltage. Ideally the SQUIDs
act as tunable Josephson junctions whose coupling en-
ergy can be varied between a value close to zero and the
sum of the couplings of the individual junctions. First we
describe the experimental setup and discuss the theoret-
ical idea briefly. Then we present measured data of the
pumping experiment. We demonstrate that the pumped
current obeys nicely the theoretical predictions. We also
comment on possible ways of improving the results should
the device be used in applications and discuss the signif-
icance of the results.

Figure 1 shows an SEM image of the sample used in
the experiments along with a schematic of the measure-
ment setup in Fig 1(c). The device was fabricated out of
aluminum using standard e-beam lithography and two-
angle shadow evaporation. It consists of a superconduct-
ing island that connects to the leads via SQUID loops.
These are relatively large (10 pm by 100 pm) in order
to have good inductive coupling but the island and the
junctions are still small such that the charging energy is
large enough (=1 K) to suppress thermal effects. The
sample was attached to a dilution cryostat with a base
temperature of 20 mK with the RF-lines connected.

Ideally, the pumping of m Cooper pairs is achieved by
applying the three pulses in Fig 2(b) through the atten-
uated RF-lines. The upmost signal is applied to the gate
while the two lower ones represent the currents flowing in
the input coils. Two different versions of the gate pulse
are shown, one for pumping “forward” and one for pump-
ing “backward”. To understand how the device works,
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FIG. 1: (a) Scanning electron micrograph of the sample. The
two input coils can be seen on top and bottom, respectively.
The gate extends to the far right and the gate capacitance is
Cy = 0.24 fF based on DC measurements. The current flows
between the two leads on the left side. (b) Closeup of the
island. The measured total capacitance of the island is 3.7
fF which corresponds to a charging energy of about 1 K for
Cooper pairs. The maximum FEj per SQUID is estimated to
be around 0.5 K based on the normal state resistance. (c)
Schematic illustration of the measurement setup. We used
commercial room temperature electronics for the current mea-
surement and three synchronized arbitrary waveform gener-
ators for the control pulse. The external coil for tuning the
background of the SQUIDs is at 20 mK. The voltage biasing
happens via voltage division through resistive lines. A surface
mount capacitor of 680 pF and an on-chip capacitor on the
order of 10 pF were also used.

it is instructive to look at the Hamiltonian of the device,
which reads

I =Ec(i — ng)* — E}(®1) cos(6 + /2)
— B3(®,) cos(ip/2 — 6). 1)

Here Ec = 2¢%/Cs is the charging energy for Cooper
pairs where Cf; is the total capacitance seen from the is-
land. Furthermore, EJ with j = 1,2 are the (signed)
Josephson energies of the two SQUIDs which can be
tuned with the external fluxes ®;. For identical junctions
Ej = By cos(n®;/®g), where g ~ 2x 107 Wh is the
flux quantum and E}"®* is proportional to the critical cur-
rent Ic of the individual junctions via EY** = (h/e)lc.
Furthermore, ng = CgV;/2e is the gate charge in 2e units,
7 is the number operator for Cooper pairs, ¢ is the phase
on the island and their commutator is [, ¢] = i. The en-
vironment couples to the pump through ¢ which is the
phase difference over the pump. If the SQUIDs were

Current in coil 2 (RA)
Pulse height (arb. units)

Phase of coil 2 (degrees)

250
Phase of gate signal (degrees)

FIG. 2: (a) Contour plot of the measured DC current at con-
stant voltage against DC currents in the two input coils. The
total variation in the current is around 40 pA at this bias point
(150 V). The arrow line indicates the path along which the
flux pulsing is performed in the pumping experiment. The
lines of minimum current along which the arrows are aligned
are the lines along which half a flux quantum threads one of
the two SQUIDs. The slight tilting of the lines is a signa-
ture of the inductive cross-coupling. Arranging the pulsing
as shown compensates for the cross coupling. (b) Waveforms
that were used in the experiment. The thin almost sinusoidal
pulse is the gate signal for pumping in, say, “forward” direc-
tion, and the dashed m-shifted signal is for pumping in the
“backward” direction. The low level of the gate pulse is zero.
The thick lines are the current signals corresponding to the
arrowed path in the previous contour plot. (¢) Contour plot of
the measured current at a constant voltage of 250 uV against
the relative phase differences between the signals with the
pumping signal being applied at 2 MHz. The blue circle is
the optimal choice for pumping “forward” while the red circle
is the optimal point for pumping “backward”. The ampli-
tude was set large (over 400¢) and the variation in current
was 150 pA. This operation point is far from optimal, but we
still obtain a clear modulation for calibration purposes.

to have perfectly identical junctions as well as vanishing
self-inductance and if the flux control were perfect then
the effective Josephson couplings could be set to zero.

Figure 2(a) shows a contour plot based on the measure-
ment of the current through the device at a constant volt-
age against the DC currents in the two input coils. Along
the lines of minimum current the flux through either of
the loops is (k4 1/2)®¢, where k is an integer. The mea-
surement reveals not only the mutual inductances M;;
between coil ¢ and SQUID j, which were M;; = 30 pH,
Mo = 2 pH, M1 = 3 pH and Mss = 50 pH, but also
the proper offsets at any given time, i.e. the background
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fluxes threading the loops. This measurement does not
fully demonstrate to which extent it is possible to sup-
press the Josephson energy.

In the beginning of an ideal pumping cycle the Ej’s
of both loops are set as close to zero as possible and the
position of the gate determines the ground state. We see
that initially the ground state of the island is an eigen-
state of charge. We then adiabatically “open” one of the
SQUIDs, i.e. move to the tip of the, say, horizontal ar-
row in Fig 2(a) which means that the Ej of the SQUID
1 is maximized while for the other it is still zero. We
stay at the tip of the arrow for some time and start to
either decrease or increase the gate charge ny depending
on the direction we have chosen. When the gate reaches
its extremum we “close” the SQUID again. Now if every-
thing has been adiabatic the system is still in its ground
state. The charge is again a good quantum number at
this point but since the position of the gate is different,
the number of charges is different too. The only possi-
bility is that the excess charges have tunneled through
the SQUID whose Fj has been non-vanishing during the
cycle. The FEj of the second SQUID is then opened and
the gate put back to its initial position. Finally the sec-
ond SQUID is also closed. The number of Cooper pairs
pumped is given by the difference between the integers
closest to the high and low level of the gate charge. Fix-
ing the low level and sweeping the high level should result
in a 2e-periodic staircase in the pumped current.

The phase of the gate determines naturally the direc-
tion, i.e. a 180-degree phase shift reverses the pumped
current. Fig 2(c) illustrates the measured behavior of the
current when the relative phases between the pulses are
varied. The phase of coil 1 is fixed at 180 degrees and
the phases of the other two are swept. The two circles
shown are the optimal choices for pumping. Note that
the extrema of current are indeed 180 degrees apart in
the gate as expected and the optimal choices are the ones
illustrated in Fig. 2. For practical reasons we were forced
to use frequencies in the MHz range, but in the present
pumping scheme it is possible to increase the value of
current conveniently by increasing the gate amplitude.
We tried out different shapes of pulses such as a mere
sinusoidal gate signal, but it was found that it is better
to keep the gate constant while the E; is not maximized
which is in accordance with the adiabaticity requirement.
In practice we have arranged for a 15% dead time between
the flux pulses although no systematic optimization of
the pulses was performed.

Figure 3(a) shows an example of characteristic IV-
curves (i.e., current-voltage curves) with the pumping
signal being applied at f = 3 MHz. The effect of the
change of direction is shown. The curves correspond to
eight different values of gate amplitude. We see immedi-
ately that a leakage current exists on top of the pumped
current that is on the same order or less than the pumped
current. The IV-curves, however, clearly shift and the
curves for pumping in opposite directions are far apart.
The total current flowing through the device is a sum
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FIG. 3: (a) Examples of measured IV-curves with the pump-
ing signal applied at 3 MHz. The gate charge (in 2e units)
varies between 4 and 34. The solid curves correspond to
pumping forward and the dashed curves correspond to pump-
ing backward. Here Vieas is the measured value of voltage
over the pump. (b) Difference of current, AI, in the IV-
curves of (a) for pumping in opposite directions. The dotted
lines indicate the expected values.

of two contributions, one being the leakage supercurrent
that can be associated with the dynamical phase of the
wave function and the other being the less trivial pump-
ing contribution attributable to the geometric phase. If
one assumes that the leakage is the same for the pumping
in both directions at a definite voltage bias point, then
the difference between the IV-curves should be twice the
magnitude of current pumped in this case. Fig. 3(b) re-
veals that at low voltages (tens of pV) and at smaller
amplitudes this pumping contribution is indeed close to
the expected level shown with dotted lines. The leak-
age current which is due to the nonideal environment
and flux control is undesirable from an application point
of view, but the physical phenomenon is clearly visible.
The voltage bias is not sufficiently good to eliminate the
leakage, i.e. the P(E)-curve® for tunneling events is not
sufficiently peaked at the origin.

These considerations suggest that it is interesting to
study the difference in the currents Al with the gate
shifted by 180 degrees. Figure 4(a) shows the measured
behavior of Al at 2.5 MHz versus the high level of gate
voltage with the low level set to zero. The current may
be seen to increase in clear steps. The expected height
of a step is twice the pumped current, i.e. 4ef which in
this case is some 1.6 pA. Since we sweep the high level of
the gate signal and not just the amplitude with constant
offset, the steps should occur at 2e intervals in the gate
charge. However, due to random parity changes (quasi-
particle “poisoning”) at time scales that are much shorter
than our measurement time scale (0.1 s) but longer than
the pumping cycle (1076 s) we observe the time average
of two 2e-periodic staircases that are shifted by e in the
gate charge. For instance in Ref. 9 the tunneling time
for quasiparticles was estimated to be 10 us in a similar
structure while in Ref. 10 it was some 1072 s for a cou-
pled system of two superconducting transistors with one
grounded. We were unable to measure the corresponding
time in our setup, but based on this supporting evidence
we argue that the transport of current is due to Cooper
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FIG. 4: (a) Difference AT in current of forward and backward
pumping at 2.5 MHz against the high level of the gate signal
Vghi with the low level at zero. The dashed lines are drawn
at 2ef intervals. (b) Large gate amplitude behavior of AT at
a few frequencies. The dashed lines show the expected gate
dependece, i.e. their slope is 2ef. The curves are offset for
clarity. (c) Fitted slopes to the data of the previous plots up
to VgCy/e = 10 are shown by circles. The solid line indicates
the expected behavior. The voltage bias point was around 10
1V in all the above plots.

pairs since the order in which the Fj’s are manipulated
changes the direction of current. The quasiparticles effec-
tively shift the gate charge by e but rarely enough such
that the pumping is undisturbed on the level of preci-
sion of the present measurement. If this interpretation
is made then one sees that the obtained results are in
very good agreement with theory. Figure 4(b) illustrates
the measured large amplitude behavior of the pumped
current at frequencies between 1 MHz and 4 MHz. We
see that the current lacks behind the prediction with in-
creasing frequency and amplitude. At 1 MHz no clear

bending of the curve is seen up to gate amplitude of 40e,
while at 4 MHz the performance starts to degrade after
10e. Ome can observe by looking at Fig. 3(b) that the
”bending” is more pronounced at larger bias voltage val-
ues (voltage is on the order of 10 £V in Fig. 4) while no
visible bending happens up to amplitudes of 68e when
V &~ 0. Small amplitude behavior in Fig. 4, however,
is linear aside from the steps with a slope of 2ef. Fig-
ure 4(c) shows the slopes obtained from linear fits to the
data of Fig. 4(a) and the ten first steps of Fig. 4(b). One
sees that the agreement is again good.

The above results prove that the flux and voltage
driven pumping of Cooper pairs is experimentally pos-
sible in a single-island device. However, in order to serve
as a practical device the leakage current needs to be taken
care of as well as the quasiparticle poisoning. The quasi-
particles may possibly be handled by either quasiparti-
cle “traps” or by BCS gap profile engineering”. As to
the reduction of the leakage, several options exist. One
option is the engineering of the electromagnetic environ-
ment such that the voltage biasing is good also at fre-
quencies on the order of the charging energy. This would
result in DC IV-characteristics heavily peaked at zero
voltage with negligible leakage current. Another way to
cut down the leakage is to fabricate a longer chain of
junctions. A multiloop SQUID would possibly improve
the suppression of Ej without increasing the number of
controls. Improved RF-engineering would also be of ben-
efit in arranging the flux pulses. To conclude, the results
are encouraging in spite of several nonidealities observed
and the pumping of Cooper pairs with flux control looks
much more attractive than with a mere multiple gate
voltage control.

We thank H. Sipola and S. Franssila for help with the
measurement set-up and device fabrication, and A. An-
thore, T. Heikkila, P. Helisto and M. Paalanen for useful
discussions. The Academy of Finland and EU IST-FET-
SQUBIT?2 are acknowledged for financial support.

* Electronic address: antti.niskanen@vtt.fi

L L. J. Geerligs, S. M. Verbrugh, P. Hadley, J. E. Mooij,
H. Pothier, P. Lafarge, C. Urbina, D. Esteve, and M. H.
Devoret, Z. Phys. B: Condens. Matter 85, 349 (1991).

2 M. W. Keller, J. M. Martinis, N. M. Zimmerman, and A.
H. Steinbach, Appl. Phys. Lett. 69, 1804 (1996).

3 D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C.
Urbina, D. Esteve, and M. H. Devoret, Science 296, 886
(2002).

4 Y.A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura,
D.V. Averin, and J.S. Tsai, Nature 421, 823 (2003).

5 J. M. Shilton, V. I. Talyanskii, M. Pepper, D. A. Ritchie,
J. E. F. Frost, C. J. B. Ford, C. G. Smith, and G. A. C.

Jones, J. Phys.: Condens. Matter 8, L531 (1996).

5 A. O. Niskanen, J. P. Pekola, and H. Seppé, Phys. Rev.
Lett. 91, 177003 (2003).

" Yu. Makhlin, G. Schén, and A. Shnirman, Rev. Mod. Phys.
73, 357 (2001).

8 G.-L. Ingold and Yu. V. Nazarov, in Single Charge Tun-
neling, edited by H. Grabert and M.H. Devoret (Plenum
Press, New York, 1992), pp. 21-106.

? J. Aumentado, M. W. Keller, J. M. Martinis, and M. H.
Devoret, Phys. Rev. Lett. 92, 066802 (2004).

10°J. Ménnik and J. E. Lukens, Phys. Rev. Lett. 92, 057004
(2004).

VIl/4



Published by Series title, number and
report code of publication

WT VTT Publications 552

VTT-PUBS-552

Author(s)
Niskanen, Antti O.

Title
Control of Quantum Evolution and Josephson Junction
Circuits

Abstract

Ever since Peter Shor's ground-breaking discovery in 1994 of an algorithm capable of factoring large
integers on a quantum-mechanical computer exponentially faster than using any known classical
method, research on quantum computing has boomed. Quantum information — a unique mixture of
computer science, physics and mathematics — has developed into a new branch of information theory.
On the experimental side, physicists from many different disciplines including atomic, solid-state and
low-temperature physics, as well as optics, are striving today towards a practical quantum computer. All
the candidate quantum bit (qubit) technologies have one thing in common: They rely on the controlled
time-evolution of a closed quantum system, a seemingly paradoxical task.

In this Thesis the temporal control of quantum systems is studied. The topics included can be divided
into two according to the type of temporal evolution; geometrical or dynamical. Geometrical realization-
independent methods for quantum computing are studied first. Then the study is extended into
dynamical quantum computing and the so-called Josephson charge-qubit register is considered as a test
bench. Finally, a spin-off application of the geometrical evolution of a Josephson junction system is
studied, i.e. Cooper pair pumping. A novel Cooper pair pump, the Cooper pair "sluice", is introduced.

The work on quantum computing reported in this Thesis is theoretical while the Cooper pair "sluice" is
studied both theoretically and experimentally. Numerical simulations, both sequential and parallel, are
used extensively throughout the Thesis. The experiments were carried out under cryogenic mK
conditions and the sample fabrication was done using e-beam nanolithography.

Because the execution time of a quantum algorithm is always limited by the inevitable process of
decoherence, it is important to utilize any measure available for accelerating quantum computations. It is
found that practical quantum algorithms could greatly benefit from classical computer-aided
optimization. Moreover, it is found that even a modest demonstrator of a full quantum algorithm using
Josephson charge qubits is just barely realizable within present-day coherence times. However, the
experimental part of this Thesis shows clear evidence of the functioning of the "sluice". While the
worldwide effort of improving the coherence properties of qubits is underway, the "sluice" could well
find practical use, e.g., in metrology in the foreseeable future.

Keywords
quantum systems, quantum mechanics, quantum computing, quantum algorithms, Cooper pair pumping

Activity unit
VTT Information Technology, Tietotie 3, P.O.Box 1207, FIN-02044 VTT, Finland

ISBN Project number
951-38-6420-0 (soft back ed.)
951-38-6421-9 (URL:http://www.inf.vtt.fi/pdf/ )

Date Language Pages Price
October 2004 English 46 p. + app. 61 p. C.
Series title and ISSN Sold by
VTT Publications VTT Information Service
1235-0621 (soft back ed.) P.0.Box 2000, FIN-02044 VTT, Finland
1455-0849 (URL: http://www.vtt.fi/inf/pdf/) Phone internat. +358 9 456 4404
Fax +358 9 456 4374




Ever since Peter Shor's ground-breaking discovery in 1994 of an algorithm
capable of factoring large integers on a quantum-mechanical computer
exponentially faster than using any known classical method, research on
quantum computing has boomed. Quantum information — a unique mixture
of computer science, physics and mathematics — has developed into a new
branch of information theory. On the experimental side, physicists from
many different disciplines including atomic, solid-state and low-
temperature physics, as well as optics, are striving today towards a practical
quantum computer. All the candidate quantum bit technologies have one
thing in common: They rely on the controlled time-evolution of a closed
quantum system, a seemingly paradoxical task. This work investigates the
temporal control of various quantum systems. While the bulk of the work
is theoretical, also experimental results are reported. The topics discussed
include both geometrical and dynamical quantum computing as well as
adiabatic charge pumping. Particular attention is paid to Josephson
junction systems.

Taté julkaisua myy Denna publikation saljs av This publication is available from
VTT TIETOPALVELU VTT INFORMATIONSTJANST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.0.Box 2000
02044 VTT 02044 VTT FIN-02044 VTT, Finland
Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. +358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax +358 9 456 4374
ISBN 951-38-6420-0 (soft back ed.) ISBN 951-38-6421-9 (URL: http://www.vtt.fi/inf/pdf/)

ISSN 1235-0621 (soft back ed.) ISSN 1455-0849 (URL: http://www.vtt.fi/inf/pdf/)

-
c
@
C
Q)
>
-
o
Z
w
(1]
[€)]
N

S)IN2JID uonoung uosydasor pue uonnNjoAg wnuend Jo |0JU0D

USUBNSIN 'O MUY



	Abstract
	Preface
	List of Publications
	Author's Contribution
	Contents
	1 Introduction
	2 Controlled Evolution of Quantum Systems
	2.1 Quantum mechanics and dynamical temporal evolution
	2.2 Geometrical temporal evolution

	3 Optimization of Quantum Algorithms
	3.1 Quantum computing
	3.2 Adiabatic non-Abelian quantum gates
	3.3 Non-adiabatic Josephson charge-qubit gates

	4 Cooper Pair Pumping
	4.1 Adiabatic Cooper pair pumping and Berry's phase
	4.2 Cooper pair \sluice"
	4.3 Experiments on the \sluice"

	5 Conclusions
	References
	Appendix I.Realization of arbitrary gates in holonomic quantum computation
	Appendix II. Optimal holonomic quantum gates
	Appendix III. Optimal Multiqubit Operations for Josephson Charge Qubits
	Appendix IV. ACCELERATION OF QUANTUM ALGORITHMS USING
	Appendix V. Implementing Shor’s algorithm on Josephson charge qubits
	Appendix VI. Fast and Accurate Single-Island Charge Pump: Implementation of a Cooper Pair Pump
	Appendix VII. Evidence of Cooper pair pumping with combined ux and voltage control


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




