
V
TT PU

BLICA
TIO

N
S 557

Reuse of TTCN
-3 Code

Pekka M
äki-A

siala

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000

02044 VTT 02044 VTT FIN–02044 VTT, Finland
Puh. 020 722 4404 Tel. 020 722 4404 Phone internat. +358 20 722 4404
Faksi 020 722 4374 Fax 020 722 4374 Fax +358 20 722 4374

ISBN 951–38–6431–6 (soft back ed.) ISBN 951–38–6432–4 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2005ESPOO 2005ESPOO 2005ESPOO 2005ESPOO 2005 VTT PUBLICATIONS 557

Pekka Mäki-Asiala

Reuse of TTCN-3 Code

This work studies the reuse of tests that are created with a new test
specification and implementation language TTCN-3 (Testing and Test
Control Notation). In order to apply reuse into a testing context, a set of
guidelines for reusable TTCN-3 code is presented. These guidelines are
based on the techniques familiar from software reuse, TTCN-3 test system
and language characteristics, and on some of the specifics of software
testing. Applicability of the guidelines, and the level and profits of TTCN-
3 test reuse are determined in a case study. The case study plainly
demonstrates that the majority of the guidelines were successfully applied
and that they had a positive impact on measured levels and profits of reuse.
The overall results, experiences and impressions of TTCN-3 test reuse during
this work were very encouraging and will hopefully lead to future projects
in areas of test reuse.

VTT PUBLICATIONS 557

Reuse of TTCN-3 Code
Pekka Mäki-Asiala

VTT Electronics

ISBN 951�38�6431�6 (soft back ed.)
ISSN 1235�0621 (soft back ed.)

ISBN 951�38�6432�4 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1455�0849 (URL: http://www.vtt.fi/inf/pdf/)

Copyright © VTT Technical Research Centre of Finland 2005

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O.Box 2000, FIN�02044 VTT, Finland
phone internat. +358 20 722 111, fax + 358 20 722 4374

VTT Elektroniikka, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde 020 722 111, faksi 020 722 2320

VTT Elektronik, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel 020 722 111, fax 020 722 2320

VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN�90571 OULU, Finland
phone internat. +358 20 722 111, fax +358 20 722 2320

Technical editing Leena Ukskoski

Valopaino Oy, Helsinki 2005

3

Mäki-Asiala, Pekka. Reuse of TTCN-3 Code [TTCN-3-koodin uudelleenkäyttö]. Espoo 2005.
VTT Publications 557. 112 p.

Keywords software testing, software reuse, test reuse

Abstract
Today, the growing size and complexity of software along with decreasing
development times causes tremendous challenges to software testing. This has
driven the whole software industry to seek new ways to test more efficiently and
effectively.

Software reuse has been practiced for decades and successful industrial studies
have demonstrated such profits as increased productivity and quality as well as
decreased development times and costs. This raises the question of whether
software reuse could be applied to a testing context as well.

This work studies the reuse of tests that are created with a new test specification
and implementation language TTCN-3 (Testing and Test Control Notation). In
order to apply reuse into a testing context, a set of guidelines for reusable
TTCN-3 code is presented. These guidelines are based on the techniques
familiar from software reuse, TTCN-3 test system and language characteristics,
and on some of the specifics of software testing. Applicability of the guidelines,
and the level and profits of TTCN-3 test reuse are determined in a case study.
The case study plainly demonstrates that the majority of the guidelines were
successfully applied and that they had a positive impact on measured levels and
profits of reuse. The overall results, experiences and impressions of TTCN-3 test
reuse during this work were very encouraging and will hopefully lead to future
projects in areas of test reuse.

4

Mäki-Asiala, Pekka. Reuse of TTCN-3 Code [TTCN-3-koodin uudelleenkäyttö]. Espoo 2005.
VTT Publications 557. 112 s.

Keywords software testing, software reuse, test reuse

Tiivistelmä
Ohjelmistojen koon ja kompleksisuuden kasvaminen ja samanaikainen kehitys-
ajan lyhentyminen aiheuttavat ohjelmistotestaukselle suuria haasteita. Tämä
suuntaus on pakottanut ohjelmistoteollisuuden etsimään uusia keinoja testauksen
tehostamiseksi.

Ohjelmistojen uudelleenkäyttöä on harjoitettu vuosikymmenien ajan. Uudelleen-
käytön menestyksekkään soveltamisen on huomattu tarjoavan merkittäviä etuja,
kuten tuottavuuden ja laadun parantumista, kehityskulujen vähenemistä ja
kehitysajan lyhentymistä. Tämä herättää kysymyksen uudelleenkäytön sovelta-
misesta myös ohjelmistotestauksessa.

Tässä työssä tutkittiin TTCN-3-kielellä luotujen testien uudelleenkäyttöä. Tätä
varten luotiin erityiset testien uudelleenkäyttöä edistävät ohjeet, jotka
pohjautuvat tunnettuihin ohjelmistojen uudelleenkäyttötekniikoihin, TTCN-3-
testijärjestelmän ja -kielen ominaisuuksiin ja ohjelmistotestauksen erityis-
piirteisiin. Ohjeiden soveltuvuutta ja testien uudelleenkäyttöä arvioitiin tapaus-
tutkimuksessa, joka osoitti ohjeiden hyödyllisyyden saavutetuissa tuloksissa.
Yleisvaikutelma tuloksista ja kokemuksista oli rohkaiseva, mikä toivottavasti
heijastuu tulevaisuuteen testien uudelleenkäyttöä tutkivina jatkohankkeina.

5

Foreword
The research work for this thesis has been carried out at the Technical Research
Centre of Finland in the Software Platforms group of the Embedded Software
research field during the spring and fall of 2004. The work was done as a part of
the TT-Medal project (Tests & Testing Methodologies with Advanced
Languages).

I would like to thank all the people that have contributed to this work and
supported me during this process. First of all, I would like to thank Mr. Markus
Sihvonen for having so much faith in my capabilities so much that I was hired as
a research scientist trainee and had the opportunity to work with this subject.
Secondly, my deepest gratitude goes to Mr. Matti Kärki whose significant
guidance during the whole process and countless comments and suggestions,
especially concerning chapters 6 and 7, were a tremendous help. Thirdly, I
would like to express my gratitude to Mrs. Annukka Mäntyniemi for her
expertise in software reuse and to Mr. Pekka Pulkkinen for sharing his
knowledge of TTCN-3, as well as for commenting on the guidelines.

Finally, my supervisor at the university, Professor Tapio Seppänen and the
work�s 2nd reviewer, Professor Jukka Riekki, receive my appreciation for the
effort that they have used to review and comment on this work.

Outside the work environment, I would like to thank all my friends and relatives
and especially my family for giving me something other than work or studies to
be occupied with during the past few years.

Oulu, October 25, 2004

Pekka Mäki-Asiala

6

Contents

Abstract ... 3

Tiivistelmä .. 4

Foreword... 5

Acronyms and Abbreviations ... 8

1. Introduction... 13

2. Software Testing... 16
2.1 Testing Process.. 16
2.2 Static and Dynamic Testing... 18
2.3 Designing and Identifying Tests.. 19
2.4 Testing Levels ... 20
2.5 Types of Testing .. 22
2.6 Test Suite and Test Case Structures .. 24

3. Software Reuse ... 26
3.1 Motivation ... 26
3.2 Challenge... 27
3.3 The Two Sides of Reuse.. 28
3.4 Reuse Approaches ... 29
3.5 Reuse Techniques.. 32
3.6 Reuse Metrics .. 33

4. Introduction to TTCN-3.. 37
4.1 Core Language and Presentation Formats ... 38
4.2 Test System and Execution Interfaces... 42

5. Test Reuse... 46
5.1 Three Viewpoints of Test Reuse ... 47

5.1.1 Vertical Reuse ... 47
5.1.2 Horizontal Reuse... 49
5.1.3 Historical Reuse .. 50

5.2 Past Studies.. 52

7

6. Guidelines for Reuseable TTCN-3 Code.. 54
6.1 Background.. 54
6.2 Overview and Motivation.. 56
6.3 Guidelines.. 58

6.3.1 Guideline 1. Reusing Testers in a Distributed Test System.... 58
6.3.2 Guideline 2. Reusing Testers in a Centralized Test System.... 65
6.3.3 Guideline 3. Use Preambles, Bodies and Postambles 70
6.3.4 Guideline 4. Implement Test Cases Using High Level

Functions... 72
6.3.5 Guideline 5. Parameterize Test Behavior................................ 74
6.3.6 Guideline 6. Use Selection Structures to Alternate Test

Behavior and Execution .. 76
6.3.7 Guideline 7. Use Common Types and Template Modification77
6.3.8 Guideline 8. Use Wildcards .. 81
6.3.9 Guideline 9. Modularize Tests According to Components 83
6.3.10 Guideline 10. Modularize Tests According to Features.......... 84

7. Case Study: Vertical Reuse in Protocol Testing ... 86
7.1 Introduction ... 86
7.2 Planning and Preparation... 88
7.3 Design and Specification ... 90
7.4 Implementation.. 93
7.5 Analysis of Results .. 97

7.5.1 Cost of Development For Reuse ... 98
7.5.2 Cost of Development With Reuse... 99
7.5.3 Level of Reuse... 99
7.5.4 Use of Guidelines.. 101

8. Discussion... 104

9. Summary... 106

References... 107

8

Acronyms and Abbreviations
AA ATM Adaptation, conversion of data to and from the ATM cell.

AAL ATM Adaptation Layer a collection of standardized protocols that
allow multiple applications to have data converted to and from the
ATM cell.

ASN.1 Abstract Syntax Notation One, a language used by the OSI protocols
for describing data types independent of particular computer structures
and representation techniques.

ATM Asynchronous Transfer Mode, a dedicated connection switching
technology in which the information is organized into cells.

ATS Abstract Test Suite, an abstract collection of test cases.

BIT Built-in Test, a test that is built in the system itself.

CBSE Component-based Software Engineering, a sub-discipline of software
engineering that emphasizes design and construction of software
systems by using components.

CD Coding and Decoding, an entity in a TTCN-3 test system. Encodes the
TTCN-3 values into bitstrings suitable to be sent to the System Under
Tests and decodes the received values into TTCN-3 values.

CP-AAL Common Part AAL Protocol, provides unassured information transfer
and a mechanism for detecting corruption of SSCOP PDUs.

CPCS Common Part Convergence Sublayer, a portion of the convergence
sublayer that is independent of the type of traffic being converted.

CUT Component Under Test, a particular component of a software system
that is tested.

9

ETS Executable Test Suite, an executable realization of the Abstract Test
Suite (ATS).

ETSI European Telecommunications Standards Institute

FIFO First In, First Out, a queue handling method that operates on a first-
come, first-served basis.

GFT Graphical presentation Format of TTCN-3, a graphical presentation
format that provides a visualization of TTCN-3 behavior definitions.

HCI Human-Computer Interaction, the way people interact with computer
systems.

ITU-T International Telecommunication Union-Telecommunication Standardisation
Sector

IUT Implementation Under Test, a particular portion of a software system
that is under test.

IDL Interface Definition Language, a language for defining interfaces
enabling communication between modules implemented in different
languages.

KLOC Thousands (Kilo) of Lines Of Code, measures the size of computer
programs in thousands of lines of code.

LOC Lines Of Code, measures the size of computer programs in lines of
code.

MTC Main Test Component

OSI Open Systems Interconnection, a standard for representing network
protocols.

10

PA Platform Adaptor, an entity in a TTCN-3 test system. Adapts the
TTCN-3 Executable (TE) to a particular execution platform and
provides the TTCN-3 test system with a single notion of time.

PDU Protocol Data Unit, a basic transferable data unit of a protocol.

RCR Relative Cost Of Reuse

RCWR Relative Cost of Writing Reusable Software

ROI Return On Investment, amount of value received relative to the amount
of investment.

SA System Adapter, an entity in a TTCN-3 test system. Adapts the TTCN-
3 communication operations with the SUT based on an abstract test
system interface.

SAAL Signalling ATM Adaptation Layer, a service that resides above the
ATM layer and ensures that signalling messages reach the receiver.
SAAL has two main sublayers: the Common Part Convergence
Sublayer (CPCS) and the Service Specific Convergence Sublayer
(SSCS).

SAP Service Access Point, a connection point between a protocol in one
OSI layer and a protocol in the layer above.

SIP Session Initiation Protocol, a signalling protocol that uses text based
messages and supports multimedia communication.

SSCF Service Specific Coordination Function, maps the service of SSCOP to
the needs of the AAL user.

SSCOP Service Specific Connection Oriented Protocol, provides a generic
reliable data transfer service for different AAL interfaces defined by
the SSCF.

11

SSCS Service Specific Convergence Sublayer, a portion of the convergence
sublayer that is dependent upon the type of traffic being converted.

SUT System Under Test

TC Test Control, a part of the Test Management (TM) entity. Responsible
for the proper invocation of the TTCN-3 modules.

TCI TTCN-3 Control Interface, comprised of the three interfaces that
define the interaction of the TTCN-3 Executable (TE) with the Test
Management (TM), the coding and decoding (CD), and the test
component handling (CH) in a test system.

TE TTCN-3 Executable, the part of a test system that deals with
interpretation or execution of a TTCN-3 ETS.

TFT Tabular presentation Format for TTCN-3, a graphical format that is
similar in appearance and functionality to earlier versions of TTCN.

TM Test Management, an entity in a TTCN-3 test system. Provides a user
interface as well as the administration of the TTCN-3 test system.

TP Test Purpose, a prose description of a well-defined objective of testing,
focusing on a single conformance requirement or a set of related
conformance requirements.

TRI TTCN-3 Runtime Interface, a standardized interface that provides an
adaptation for timing and communication of a test system to a
particular processing platform and the system under test, respectively.

TTCN Tree and Tabular Combined Notation

TTCN-2 Tree and Tabular Combined Notation, version 2

TTCN-3 Testing and Test Control Notation, version 3

12

13

1. Introduction
The motivation for the work presented in this thesis roots itself in the challenges
that are faced in software development organizations all over. The growing size
and complexity of software along with the trend of decreased time-to-market has
driven the whole software industry to seek new means of quality assurance and
testing.

The amount of effort consumed by software testing varies from 30 to 50 percent
in a typical software development project [1]. Adding the amount of effort
consumed by testing in the maintenance phase increases the overall cost of
testing so that it is likely to become the most expensive part of the software�s
lifespan. However, even though testing is expensive, the cost of software errors
may in some cases be even higher or financially unbearable.

According to a recent study [2], software errors cost the U.S economy an
estimated $59.5 billion annually, which is about 0.6 percent of the gross
domestic product or one-third of the total sales of software ($180 billion) in
2000. Obviously, no matter what the scale, the cost of software errors is high.
However, according to the same study, more than one-third of these costs, an
estimated $22.2 billion, could be avoided by an improved testing infrastructure
that is able to find an increased percentage (but not 100 percent) of errors [2].

It is fair to say that the problems with software errors are well-known on this
side of the Atlantic as well, and their origins are not in the only in the U.S. One
of the indications that software errors are a worldwide concern is that the global
market for automated software quality tools reached $931 million in 1999.
Compared to 1998, the increase was 23.6% and the same increase is expected
annually, meaning that this year (2004) the market is about $2.6 billion. [3]

Obviously, software testing is the best way to fight software errors. But it is not
the only way. One of the advantages of software reuse is that it can decrease the
amount of errors and improve the quality of a software product. This is caused
by the fact that reusable components, i.e. the building blocks of software
products, are examined by more people than they would be if they were
developed for one product only. Software reuse also promises better productivity
and shorter development times, which brings us back to the original problem �

14

the pressures for software testing. This raises the question of whether software
reuse techniques could be applied to a testing context as well.

This work studies the reuse of tests that are created with a new test specification
and implementation language TTCN-3 (Testing and Test Control Notation,
version 3). TTCN-3 is a fairly new test specification and implementation
language for all types of black box testing. [4] With TTCN-3, specific test
software, also known as testware, can be developed to test software components
and products.

The research work for this thesis has been carried out at the Technical Research
Centre of Finland (VTT) as a part of the TT-Medal project (Tests & Testing
Methodologies with Advanced Languages). The project aims at developing
methodologies, tools and industrial experience to enable European industry to
test more efficiently and more effectively [5]. The role of VTT is to develop the
test infrastructure and to study test reuse. Reuse is studied on three levels: the
TTCN-3 language level, the test process level and the test system level. The
author�s role in the project has so far focused mainly on studying reuse on the
TTCN-3 language level.

The scope of this thesis is limited to studying reuse of testware created with
TTCN-3 and not to determine, e.g. how the testing process or the test
organization infrastructure changes as the principles known from software reuse
are applied to the testing context. Since TTCN-3 is a relatively new language
and test reuse, at least compared to software

reuse, is a fairly uncharted field of study, some groundwork needs to be done
instead of just rushing into creating reusable testware.

The first objective of this work is to create general guidelines for reusable
TTCN-3 code. These guidelines will hopefully help in creating generic and
adaptable solutions when implementing TTCN-3 test scripts. The guidelines are
based on the reuse techniques known from software reuse, the TTCN-3 test
system and language features and on a few specifics of software testing.

The second objective of this work is to apply these guidelines in a case study.
The case study will determine the applicability of the guidelines and provide

15

feedback that will lead to changes and updates. The reuse level of testware is
measured based on some of the reuse metrics known from software reuse that
can be applied to the test reuse context, within the scope of the case study.

The third objective is to gain valuable experience of TTCN-3 test reuse in order
to promote the use of TTCN-3 and test reuse in the field of science and the
software industry.

The rest of this thesis is organized as follows. The second chapter gives a brief
overview of software testing in general, providing the primary information on
testing process, levels and types. The basic issues related to software reuse such
as reuse approaches, techniques and metrics are presented in chapter 3. TTCN-3
core language and the test system is laid out in chapter 4. Chapter 5 presents test
reuse based on the work done in the TT-Medal project by the author and others,
and some of the past studies on test reuse.

The actual work done for this thesis, by the author himself begins in chapter 6,
which presents guidelines for reusable TTCN-3 code. The guidelines are applied
and evaluated, and the level of reuse is measured in a case study in chapter 7.
Chapter 8 discusses how the objectives laid out for the work were reached and
contemplates the future work. Chapter 9 summarizes the work.

16

2. Software Testing
A literature search provides multiple definitions for software testing. Perhaps the
most commonly known is the definition by Myers: �Testing is the process of
executing a program with the intent of finding errors� [6 p. 5]. Clearly, Myers�
definition approaches testing from a traditional point of view, where errors are
found by executing programs. Hetzel�s definition takes a wider scope as he
notes: �Testing is any activity aimed at evaluating an attribute or capability of a
program or system and determining that it meets its required results.� [7 p. 6]
Hetzel�s definition covers the two widely recognized reasons for software
testing: problem discovery and quality assessment.

2.1 Testing Process

The testing process is the glue that binds people, methods, tools and
measurements together in order to achieve the common goal of testing a
software product. The quality of the software product is a result of the used
software development process. In the same way, the quality of testing is mostly
determined by the testing process used. [8] In fact, the testing process not only
affects the quality of testing, but the quality of the software product as well.
Even though a group of people may be able to produce a high quality software
product without a well-defined testing process, they will not be able to prove it if
the testing process is immature and incapable of presenting any indications of
this quality. Furthermore, not only will a mature testing process reveal problems
in the software product, but in the development process as well [8]. Hence, the
software development process and testing process should have a close and
productive relationship.

The V-Model presented in Figure 1 is based on the traditional software
development model called the Waterfall model and the vision that software
development and testing process should be closely bound together. The
presented model is based on similar models presented in [9 p. 9; 10 p. 7; 11 p.
15; 12 p. 159; 13 p. 52; 14 p. 18]. In this model, the development of tests is a
concurrent process with the software development process.

17

Requirements
engineering

System
design

Architectural
design

Component
design

Integration
test

planning

System
test

planning

Component
test

planning

Test
planning

Component
testing

Integration
testing

System
testing

Acceptance
testing

Implementation

Preparation & planning Execution & evaluation
TESTING

Figure 1. V-model for software development and testing.

Testing-wise Figure 1 is divided into three parts: preparation and planning;
implementation; and execution and evaluation. The left-hand side of preparation
and planning has a testing activity corresponding to every stage of the software
development process. For instance, necessary system tests are identified and
designed in parallel with system design, and a test plan for system testing is
created. In the implementation phase, the tests are implemented according to
their designs. The right-hand side of execution and evaluation exploits the
previously created test plans when the corresponding test execution activity is
topical.

Another view of the software testing process is that of Test Management
Approach (TMap). This view divides the overall testing process into five
consecutive steps, instead of the vertical levels presented in the V-model. [11].
The TMap process is illustrated in Figure 2.

18

Prep
ara

tio
n

Com
ple

tio
n

Spe
cif

ica
tio

n

Exe
cu

tio
n

Planning and Control

Figure 2. TMap process model.

The TMap process model is generic and applicable to all types of testing. The
planning and control starts during the specification of the functional
requirements and spans the whole testing process. The planning and control
phase provides several documents and plans that define the test organization,
testing strategy and effort, risk taxation, etc. These documents are needed for test
management and quality reporting. The preparation phase begins as soon as the
necessary test plans and system specifications have been drawn up and agreed.
Preparation includes training the staff and a study of the specifications. During
the specification phase, the test infrastructure is set up and the test cases are
specified. The execution phase begins after the completion of test preparation
and planning and when the first components to be tested are available and
mature enough to be tested. During the completion phase, the testing process and
the quality of the IUT are evaluated and the final report prepared and presented.
[11] The connection between the V-model and TMap is that the steps of the
TMap model can be applied on every level of the V-model.

2.2 Static and Dynamic Testing

There are two ways to test a software implementation: static testing (also known
as verification testing) and dynamic testing (also known as validation testing)
[8, 11, 15].

Static testing refers to testing something that is not executed [15]. This includes
inspections, walkthroughs and technical reviews of work products such as
requirements, designs and source code [8]. Generally, static testing can begin
very early in the development process and reveal bugs at an early stage. Thus, it
usually has a tremendous impact when improving the quality of the product and

19

cutting down on the development costs [11]. However, static testing cannot
reveal all the bugs, especially those that are visible only in the running system.

Dynamic testing refers to testing conducted by executing the implementation
[15]. Referring to the testing definition of Myers [6 p. 5], dynamic testing cannot
begin before there is something to be executed. In this thesis dynamic testing is
simply called testing.

2.3 Designing and Identifying Tests

There are two basic approaches to identifying and designing test cases:
functional and structural testing. Both of these approaches have several test case
identification methods, also known as testing methods. [12]

Functional testing, also known as black box, data-driven, input/output-driven,
behavioral, responsibility-based or specification-oriented testing, pays no attention
to the internal structure or behavior of the implementation [6, 12, 15, 16, 17].

Functional testing is based on the perception that every program can be modeled
as a function that performs a specified action when triggered by a specific input.
Test cases in functional testing are identified and designed based on the
specifications of the software, thus providing two major advantages: concurrent
design of software and testware, and implementation independence. When test
design begins very early in the development process, the maturity of testware
and the test system is more likely to be adequate when the actual test execution
takes place. In addition, it is common for the software implementation to change
repeatedly during the development process, thus it is better to base test cases on
more static specifications than on constantly changing implementations.
However, functional testing has its downsides as well. The identified test cases
may stress some parts of the program aggressively and redundantly, while
paying insufficient attention to the other parts. [12] This is because test cases are
based on what the implementation is supposed and not supposed to do, but not
on how it is actually done.

20

Structural testing, also known as implementation-based, glass box, clear box,
white box or logic-driven testing, uses the actual implementation (i.e. source
code) to identify test cases [6, 12, 15, 16, 17].

Structural testing is based on understanding the internal structure and behavior
of the implementation. Test cases are identified and designed by examining the
code. [15] On the one hand, this approach can reveal errors even if they are
associated with behavior that is not specified, since it focuses on the
implementation and not on the specification. On the other hand, structural testing
is unable to reveal that some specified behavior is missing. This is because test
cases are specified by what is implemented and not by what should be
implemented. [12]

The question of which one of the two presented approaches is better cannot be
answered explicitly. Both approaches have had their profound spokesmen over the
years, but the common conception today is that neither one is sufficient used on its
own, since they complement each others� limitations in finding bugs [12, 17].

2.4 Testing Levels

Software testing is usually done at several levels as depicted on the right-hand
side of Figure 1. Test levelling is intended to ensure that the implementation
works according to corresponding designs. For example, component tests are
needed to validate that the component implementations work according to
component design. [11] The most common levels during the development
process are: component testing (also known as unit testing or module testing),
integration testing and system testing [16, 15]. In addition, acceptance testing is
included in Figure 1, however, it is considered to be post-development testing
[16]. Testing levels can be divided into two categories: low-level and high-level
testing [8, 11].

Low-level testing means testing of individual components or component
combinations, in other words component and integration testing. Low-level
testing requires a detailed knowledge of the internal structure and behavior of
the implementation and is therefore usually performed by the software
development team mostly using structural testing methods. [8, 11]

21

Component testing is the process of testing the individual components or groups
of related components of a software system [8]. Components are usually
relatively small compared to the size of the complete software system. This
eases the task of pinpointing errors, since the errors are known to exist in the
specific component under test (CUT) [6]. However, the downside is that
component tests may require some parts of the actual system to be simulated
using drivers and stubs (also known as upper and lower tester) [8]. A driver is a
small program used to invoke and test a CUT, providing inputs and control of
test execution [18]. A stub is a small program used to simulate the parts of the
system that the CUT uses [16]. Drivers and stubs are replaced with real
implementations in the integration testing.

Integration testing is the process of testing in which software components are
combined and tested to evaluate the interaction between them [8]. There are two
approaches to performing integration testing of components: incremental and
non-incremental. Non-incremental, also known as �big bang�, integration is the
simplest of the known approaches. [8] Components are combined all at the same
time in an attempt to prove basic system stability. The two weaknesses of this
approach are the difficulty of locating the errors and usually insufficient coverage
of testing. [16] In incremental testing, components are combined one or a few at a
time until all of the components have been integrated. There are several integration
strategies (also known as patterns), but all of them are variations of either the top-
down or bottom-up approach. [8] In the top-down approach, components are
integrated starting from the components on the highest level of the control
hierarchy. In bottom-up, components are integrated starting from the components
with the least dependencies with other components. [16] Regardless of the chosen
approach, the two primary goals of integration testing are to find errors between
component interfaces [8] and to ensure sufficient interoperability of components
before moving on to system testing [16].

High-level testing means testing of complete software systems. It requires a
certain level of objectivity and should therefore be conducted by an independent
test team (system testing) or by the customer (acceptance testing), mostly using
functional testing methods. [8, 11]

System testing is the process of testing a whole integrated application in order to
evaluate the systems correspondence to its specified requirements [18]. System

22

tests are usually based on requirements specifications and system designs. This
makes system testing a demanding task, since the requirements are usually
generic, providing freedom of implementation, and yet they should be explicit
enough to be testable. In addition, requirements may not only be functional, but
also cover demands for security performance, usability, etc. [8] Types of testing
are addressed briefly in section 2.5.

Acceptance testing is the process of comparing the end product to the needs of
end users (i.e. client). It is usually conducted by the end user(s) after successful
completion of system testing. [8] Acceptance testing is conducted against the
requirements specification [11] and/or specific acceptance criteria determined by
the client [8].

2.5 Types of Testing

According to Binder: �System test cases must be derived from an
implementation-independent specification of capabilities.� [16 p. 718].
Implementation-independent source material means almost all the material
produced in the software development project, like for example, requirements,
designs, models, use cases and GUI-prototypes. However, system tests should
test all the capabilities of the system, not only those that are implementation-
independent but implementation-specific as well. [16]

Implementation-specific capabilities, for example performance and usability, are
not always specified beforehand, mostly due to the amount of extra effort it
would take, and the lack of vision to see them as real requirements. In addition,
they are sometimes considered to be �standard accessories� by clients and end
users who presume that the software automatically has high security and good
usability combined with great performance. Therefore, in order to meet the
unspecified demands of clients, a number of testing types (also known as
strategies) have evolved. The purpose of these testing types is to exercise the
implementation-specific capabilities of the software system before releasing it to
acceptance testing [16]. Different testing types are presented in Table 1.

23

Table 1. Types of testing.

Type of testing Definition

Concurrency To determine the effects of multiple calls to application data and
functions, in an operating system with shared resources and
support for concurrent execution [16].

Configuration To determine the legal hardware and/or software environment
combinations that cause the SUT to fail [16].

Compatibility To determine whether the compatibility objectives of the software
system have been met [8].

Load/stress To determine the peak load conditions that cause the software
system to fail [8]. A sub-category of performance testing [16].

Localization To determine the software systems ability to be configured for use
with locale parameters, e.g. different languages [16].

Performance To determine whether the software system complies with its
performance requirements [18].

Recovery/
restart

To determine whether the software system recovers after a failure
as specified in the requirements [8].

Reliability/
availability

To determine whether the system complies with its reliability and
availability requirements [8].

Resource usage To determine if the software system exceeds the level of resources
(memory, CPU time, etc.) appointed to it in the requirement
specification [8].

Security To determine whether the software system�s security requirements
have been met [8]. To evaluate the software system�s capability to
shield itself against security breaches [16].

Serviceability To determine the software system�s ability to accept updates and
repairs [16].

Usability To determine the level and quality of the HCI design [16].

User
documentation

To determine the completeness and correctness of user
documentation and automated assistants [16].

Volume To determine whether the software system can process specified
amounts of data or requests [8]. A sub-category of performance
testing [16].

24

In addition, two types of testing have been subjected to closer examination
because of their significance to the case study and test reuse.

Conformance testing is the process of testing the extent to which an
implementation is a conforming one. A conforming implementation satisfies both
static and dynamic conformance requirements. [19] Static requirements define the
minimum capabilities to facilitate interoperability whereas dynamic are all those
requirements that specify the observable behavior in instances of communication.
The goal of conformance testing is to increase the probability that different
conformance implementations actually interoperate in heterogeneous systems. [20]

Regression testing is selective retesting of a component or system in order to
verify that changes in the implementation under test (IUT) have not caused any
unintended errors and that the IUT still conforms to its specified requirements
[18]. Regression testing and the reuse of tests have some commonalities. In both
of them the idea is to create tests once and execute them multiple times. As
rational regression testing demands test automation and careful consideration of
what to automate, reuse similarly demands careful analysis of reuse potential.
Furthermore, rerunning tests (in regression testing) is not the same as reusing
tests. Whereas rerunning does not take any position on the change of context or
IUT, reusing does. High maintenance effort every time the IUT changes is one
of the major problems of traditional regression testing tools. As Fewster and
Graham [10 p. 11] state: �Test maintenance effort has been the death of many
test automation initiatives.� Reusing the tests with minimal maintenance cost is
one of the expected advantages of test reuse.

2.6 Test Suite and Test Case Structures

This section describes test suite structure on a logical level, being basically a
related collection of test cases. A test suite structure is illustrated in Figure 3. The
decisive level is the test case level. Each test case has a specific test purpose and
they should be grouped accordingly into nested test groups to provide logical
ordering of the test cases. A test group may have a common objective that is a
specific goal of all the test cases (i.e. test purposes) within that group. Test cases
themselves can be modularized into nested test steps that can be grouped together

25

into test step libraries. Test steps can be further refined into test events that are the
smallest units within a test suite (e.g. send or receive a PDU). [19]

Test Group Test Group

Test Case Test Case

Test Step

Test Step

Test Step

Test Event Test Event Test Event

Test Group

Test Step

Test Case

Test Suite

Test Group Test Group

Test Step

Figure 3. Test suite structure.

Figure 4 describes a test case using a slightly different approach where test case
parts and test states are coupled. The test case can be divided into three parts;
preamble, postamble and test body. The test states are stable state, test state and
end state. The test case starts and ends in states that are stable, but not
necessarily identical. With the preamble, the IUT is driven from a stable state to
the test state from which the test body is executed. If the test body does not end
in a unique end state, it has to be ascertained using a verification step, after
which a postamble is used to drive the IUT into a stable testing state. However,
if the end state is unique, the IUT is driven into a stable state without the
verification step. [21]

Preamble
Test
Body

Postamble

Stable State Test State End State
(Test Body)

End State
(Verification)Verification

Figure 4. Test case scheme.

26

3. Software Reuse
Software reuse has been practiced for decades, evolving from ad-hoc code reuse
into today�s component-based software engineering and product-line
engineering approaches [22]. During this time, reuse has found many spokesmen
who have actively highlighted the profits of reuse and the ways to achieve them.
However, their views have not gone unchallenged, as the results of applying
reuse to industrial practice have not always matched expectations.

Software reuse does not only involve the reuse of source code but the reuse of
designs, specifications, documentation, etc. [23]. In this thesis, however, the
focus is on code reuse.

3.1 Motivation

Today software organizations seek new ways to obtain or retain a competitive
edge when compared to rivals. When practiced systematically, software reuse can
provide several virtues. Practicing systematic reuse has been found to [24, 25, 26]:

- increase software productivity,
- increase software product interoperability,
- increase software product portability,
- increase market agility,
- improve predictability of the process,
- reduce software development costs,
- reduce software maintenance costs,
- reduce software defect density,
- shorten software development time,
- produce higher quality software products, and
- provide competitive advantage.

Even though practical experience has proved that software reuse can at its best
provide such encouraging results, introducing reuse to the software process has
not always been successful.

27

3.2 Challenge

Some studies indicate that the problem with reuse is caused by poor
management, while some consider that reuse is a challenging technical problem.
Glass states that reuse has failed on the large scale because there simply is not
that much that we can reuse. [27] Glass makes a good argument. However, it has
never been the goal of reuse spokesmen to suggest that everything is reusable or
even that most of the software should be. It takes planning and consideration to
find out just what is worth reusing [24, 28]. In another article, Glass explains
what causes the low levels of reuse: �It�s the variability in the problems we
solve, and in the solutions we create.� Meaning that the probability of facing the
exact same problem that someone else has faced before is small, if not zero. In
addition, even though the problem might be the same, finding a solution that is
nearly suitable is usually just not good enough [29]. However, as Glass and
others have found out, reuse has succeeded, especially in software organizations
with a narrow field of application (i.e. application domain). As an example,
Glass points out the Software Engineering Laboratory at Nasa, which generally
reaches reuse levels above 70 percent when creating new software systems [27].

Morisio et al. analyzed success and failure factors in software reuse based on the
experiences of 24 software projects conducted in separate European companies
between the years 1994 and 1997. They found out that despite the potential
success for reuse, around one-third of the projects failed. This was the result of
three main factors: not introducing reuse-specific processes, not modifying non-
reuse processes, and not considering human factors. [30] Some examples of risks
and disadvantages compromising the success of reuse are as follows:

- Time and effort required for development of reusable components.
Developing reusable components requires more effort than required to
develop a specific solution for one time use only [24]. Many organizations
are not willing to make the upfront investment in reuse and wait for the
cumulative profits over time. Not even though reuse is considered a long-
term investment. [25]

- Unclear and ambiguous requirements. Reusable components are to be used
in various applications, some of them being unknown. Therefore,
requirements for reusable components are hard to predict [31].

28

- Conflict between usability and reusability. Reusability usually means that
components are general, adaptable and therefore easier to reuse. However,
general components demand more of resources, and adaptability means that
they are more complicated to use. [31] Szyperski summarizes the conflict
by stating: �Maximizing reuse minimizes use.� [32 p. 37]. Meaning that the
more reusable the component is made, the less usable it is and vice versa.

- Component maintenance costs. Component maintenance costs can be high
since the component must respond to various requirements of different
applications and environments [31]. For example, when a new application
version is introduced it may contain a new component version as well.
However, this does not mean that the old version of the component should
not be supported anymore, because some of the reusers may still need it.

- Reliability and sensitivity to change. Components may cause unexpected
side effects in the final product, e.g. because of concealed characteristics
not visible to application developers. Changes in the component or in the
application may lead to system failures. [31]

- Resistance to change. Reuse demands a new set of methods to be promoted and
applied to different stages of the software development processes. This means
changes in the ways that people work. Changes, even though commonly
proven and recognized to be useful, usually generate resistance. [25]

3.3 The Two Sides of Reuse

Reuse is generally divided into two main sides or activities: development for
reuse and development with reuse [28, 26], also referred to as asset development
and product development [33] or even producer reuse and consumer reuse [25].
The latter terms are more descriptive, as they clearly define the general
objectives of the two sides of software reuse. First, the reusable assets are
produced and second products are built by reusing these assets. However, even
though reusable tests can be called assets, combinations of reusable tests are
never called products. Therefore, in this thesis the selection is made in favor of
the terms development for and with reuse.

Development for reuse is a planned activity in a software process aimed at
producing reusable components. Developing new reusable components needs

29

careful planning and consideration for reuse to be profitable. [28] To begin with,
the reusable component has to have more than one reuser (i.e. reuse target). As a
rule of thumb, Jacobson et al. [24] state that a reusable component has to be
reused three to five times to recover the initial costs of creating it. The costs of
creating and maintaining a reusable component are 1.5 to 3.0 times as much
when compared to a component that is created for one use only [24].

If the development of a reusable component is justified, i.e. the cost issues are
covered, three basic tasks have to be performed. First, the variability of
requirements between the candidate reusers is analyzed. Second, an evaluation
of the pros and cons of incorporating these requirements is made. Third, an
optimum reusable component is designed and implemented with an appropriate
level of generality to serve the purposes of as many reusers as possible. [28] The
created component is then ready to be reused in development with reuse.

Development with reuse is a planned activity aimed at producing new software
products with the help of reusable components [28]. At this stage the profits from
for reuse development start to payoff. �It costs only one quarter as much to utilize
a reusable component as it does to develop a new one from scratch.� [24 p. 23].
Development with reuse includes at least three basic activities. First, suitable
components are searched for and a set of components selected for further study.
Second, candidate components are evaluated in order to find the most suitable
one. Third, the selected component is adapted, if necessary, to fit the new
requirements. [28] Naturally, not everything can be composed of reusable
components, but product or context-specific parts also have to be created at this
stage.

3.4 Reuse Approaches

Karlsson [28] classifies reuse approaches using three criteria: the scope of reuse,
the target reuser and the granularity of reusable components. The classification
is depicted in Figure 5 [28 p. 13].

30

ge
ne

ra
l

do
m

ai
n

pr
od

uc
t-l

in
e

internal

external

fine-grained
coarse-grained

scope

target

granularity

Figure 5. Classification for reuse approaches.

The scope axis in Figure 5 has three categories: general, domain and product-line.
General reuse is domain-independent reuse. Meaning that components under this
category are not tied to any specific application domain (e.g. telecommunication
or information management). Examples of such general-purpose components are
mathematical functions and database management systems. [28]

Domain reuse is domain-dependent reuse. In this category, the components are reused
within a specific application domain. An example of such a component could be a
protocol implementation used in several protocol stacks in the same domain. [28]

Product-line reuse is dependent on a specific application family [28]. Product
line defines a generic domain architecture for an application family, from which
different application systems are derived [26]. Reusable components are
developed to either specialize or generalize this architecture. Because, the
product-line reuse is strongly related to a specific application family, it is usually
applied in-house only. [28]

The target axis in Figure 5 has two values: internal and external, meaning the
internal and external markets of the company [28]. Regardless of the market
approach, producing reusable components requires extra effort compared to
specific solutions, thus resulting in higher financial costs as well. Therefore,
reuse is viable only if the investment used in creating components is returned in
some form after they have been deployed. [32]

31

The internal approach (also known as the in-house approach) means that the
company is producing reusable components for its internal use only [28].
Examples of such activity could be found in the case of a large application
family providing the same basic features in a range of customer products. Return
on investment (ROI) is usually indirect, e.g. shorter time to market and higher
quality of software products [32].

The external approach means that reusable components are produced for
external use (i.e for another company). Attempts to develop reusable
components in external markets have not been very successful, because for two
prime reasons. First, if the components are general enough, they are likely to be
very small and usually available for free from non-profit-making organizations,
universities or even from programming language libraries. Second, if the
components are very specific, the market base for them can not be very wide and
it requires an enormous amount of interaction with the client to understand the
functional and non-functional requirements for the component. [28]
Nevertheless, if the ROI received from components is insufficient, components
can also be coupled with services. For example, component pricing is moderate
but their efficient use requires expertise, which is offered as a service. [32]

The granularity axis in Figure 5 has two classes: fine-grained and coarse-
grained. Fine-grained components are usually generic and domain-independent,
e.g. libraries of mathematical functions and object classes. Coarse-grained
components are usually more specific and domain-dependent, for example,
application subsystems and user-interface packages. [28]

The trade-off between fine-grained and coarse-grained components is not
straightforward. Small components tend to have high reusability, i.e. they can be
reused often and with minimum effort. However, the benefits achieved when
reusing a small component is usually not very high and the real profits come
from widespread reuse. [23] Large components, on the other hand, have lower
reusability, i.e. they are reused rarely and they usually require more rework in
order to meet the requirements of the new context [28]. Nevertheless, successful
reuse of coarse-grained components can pay for itself even if the components are
reused only once or twice [23].

32

3.5 Reuse Techniques

In order to promote reuse of components, several techniques have been
identified to help in creating reusable solutions. To meet the common and
differing requirements between reusers, the level of generality and adaptability
of components requires planning [28]. General components may meet the needs of
reusers without any changes, but at the expense of efficiency and excess
functionality. Adaptable components may provide more specific and thus more
powerful solutions, but they always require some changes before they can be reused.

Karlsson presents five general techniques that can be used to make general
reusable components. The techniques are not orthogonal, therefore, the same
generality can be represented by using more than one technique. The five
techniques are as follows: [28]

- Widening: means identifying a set of requirements that are not
contradictory and making a general component that satisfies all of them.

- Narrowing: means identifying functionality common to several reusers that
can be represented by an abstract component.

- Isolation: means isolating different requirements to a small part of the
system, while the rest of the system is constructed relatively independent of
whatever specialization is chosen.

- Configurability: means making a set of smaller components that can be
configured or composed in different ways to satisfy different requirements.

- Generators: means making a �new� application-domain-specific language
with which one can describe an application and satisfy different
requirements. Application description can then be used to automatically
generate executable code.

Jacobson et al. present seven techniques that can be used to create adaptable
components. Component adaptations are realized at places where variations are
possible. These places are called variation points. Jacobson et al. define
following variability mechanisms and when they should be especially used: [24]

33

- Inheritance: is used when specializing abstract types or classes, or adding
some operations while keeping others.

- Extensions: is used if parts of a component need to be extended with
additional behavior by attaching several variants at each variation point at
the same time.

- Uses: is used when creating a specialized use case from an abstract one.

- Configuration: is used when choosing alternative functionality and
implementations.

- Parameterization: is used when there are several small variation points for
each variable feature.

- Template instantation: is used in case of type adaptations or selecting
alternate pieces of code.

- Generation: is used when doing large-scale creation of one or more types
or classes from a problem-specific language.

All in all, the difference between the techniques presented by Karlsson [28] and
Jacobson et al. [24], is a slender one. Karlsson describes reusability as useful
generality [28 p. 257], whereas Jacobson et al. present variability techniques as
ways to generalize and specialize abstract components [24 p. 100]. Karlsson
states that it is better to make a general component that can be adapted to reuser
needs than to make a generic one without the possibility of adaptations.
However, the cost of possible adaptations has to be balanced against the cost of
creating a generic component. [28] Hence, components should be generic
enough to be reusable, but also offer variability to support adaptability to
different contexts.

3.6 Reuse Metrics

Software metrics are used to assist management by quantifying the software
development and maintenance process. The use of metrics will improve the
software process in terms of cost estimation, planning, productivity, quality,
customer confidence and overall controllability of the process. [34] In an
organization practicing reuse, the traditional metrics may not always provide

34

correct results. For instance, measuring the productivity of a reuse organization
by using the produced lines of code as a metric may indicate that productivity is
very low, when in fact it can be very high. This is because the organization may
not produce new lines of code but instead reuse the old ones. [28].

Poulin and Caruso state that reuse metrics have three roles: quantifying reuse,
encouraging reuse and standardizing reuse methods. Quantifying reuse is very
close to the traditional role of software metrics and when it is applied in a
meaningful and standardized way, it encourages practice of reuse in the software
organization. [35]

Poulin and Caruso present seven reuse metrics that are based on observable data
elements in the source files of a product. However, only two of them have any
relevance in terms of the derived metrics usable in the case study. The two
metrics are [35 p. 156]:

- Shipped Source Instructions (SSI). The number of non-comment source
code instructions, not including the Reused Source Instructions (RSI), in the
source files. SSI are the newly implemented lines of code and the call to a
reusable part counts as one SSI.

- Reused Source Instructions (RSI). The number of lines that are not
developed or maintained but included in the source files.

The presented metrics are combined to form three derived reuse metrics
applicable in test reuse: Reuse Percent, Additional Development Cost and
Development Cost Avoidance. Reuse Percent indicates the portion of a product,
product release or organizations effort that can be attributed to reuse. Additional
Development Cost is used to measure the extra costs of developing for reuse,
whereas Development Cost Avoidance is used to measure the savings of
developing with reuse. [35] The three metrics are as follows [35 p. 158�160]:

- Reuse Percent of a product is:

%100
SSIRSI

RSIPercent Reuse ×
+

= (1)

35

- Additional Development Cost (extra cost of for reuse) is:

)(RSI)1RCWR(Cost t Developmen Additional Cost Code New××−= (2)

Development Cost Avoidance (avoiding costs by reusing) is:

)(RSI)RCR1(AvoidanceCost t Developmen Cost Code New××−= . (3)

RCWR in equation (2) stands for Relative Cost of Writing Reusable Software
(RCWR). RCWR is the cost of writing reusable software compared to the cost of
writing software that is not to be reused. If writing software for one time use
only takes one unit of effort, then the portion of that effort that it takes to write
reusable software is called RCWR. [35] The cost of making software reusable is
caused by making components generic and adaptable, extra documentation,
maintenance and support, etc. [28].

RCR in equation (3) stands for Relative Cost of Reusing Software and it
describes the effort of reusing a component compared to the effort of creating a
similar component from scratch. If developing a new component from scratch
takes one unit of effort, then the portion of that effort that it takes to simply reuse
a similar component is called RCR. The cost of reusing software (i.e.
development with reuse) is caused by such activities as: finding, understanding,
selecting, evaluating, etc. reusable components. [35]

RCR and RCWR values are usually based on long-term knowledge,
measurements and observations of the development process and the changes that
introducing reuse to the process has resulted in. Usually the values are rough
estimates, especially when the software development organization has not had a
defined process model before introducing reuse. Jacobson et al. estimate the
value of RCR to be around 0.25 and the value of RCWR ranging from 1.5 up to
3.0, in general [24]. Favaro reports that RCR varies between 0.1 and 0.4 and
RCWR from 1.0 to 2.2 depending on the complexity of the component [36].
According to Lim�s study at Hewlett Packard, RCR is 0.19 and RCWR 1.11, on
average [37]. Bardo et al. studied reuse in a very homogeneous development
environment where the RCR was as little as 0.05 and RCWR was also very low,
ranging from 1.15 to 1.25 [38]. Poulin and Caruso recommend using an RCR
value of 0.2 and an RCWR value of 1.5 [35].

36

In the case study the New Code Cost, found in equations (2) and (3), is treated as
an unknown constant. This is because it was not applicable in the scope of this
study to try to determine the cost for 1 LOC, or the cost of 1 KLOC for that
matter, created without reuse. Therefore, in the following equations New Code
Cost is marked with the abbreviation NCC and the amount of source code lines
with the abbreviation LOC.

Based on equation (3), another equation for describing the development cost of
with reuse (instead of development cost avoidance) can be derived:

- Development cost (cost of with reuse) is:

NCC××= RSIRCRCost t Developmen . (4)

Since the New Code Cost is treated as an unknown constant in the case study,
three comparable equations can be derived for total development costs without
reuse, for reuse and with reuse based on equations (1), (3) and (4).

- Development cost without reuse (WR) is:

NCCLOC ×= WR (5)

- Total development cost for reuse is:

WR
SSIRSI

RSI1)-(RCWRWR reuse cost Total ×
+

×+=for (6)

- Total development cost with reuse is:

WR
SSIRSI

RSIRCRWR
SSIRSI

RSI1 reuse cost Total ×
+

×+×⎟
⎠
⎞

⎜
⎝
⎛

+
−=with . (7)

The total development cost for reuse is comprised of the cost of the whole
software product as if it would have been produced without reuse and the extra
cost for those parts that are made reusable. The total development cost with reuse
includes the cost of specific and reusable parts. When the total development cost
for or with reuse is compared to (i.e. divided by WR) development cost without
reuse, the unknown constant for New Code Cost is tailed off.

37

4. Introduction to TTCN-3
TTCN-3 is a test specification and implementation language developed at the
European Telecommunications Standards Institute (ETSI). TTCN-3 supports all
types of black box testing of local or distributed, and reactive systems. [4, 39]
TTCN-3 was developed on the basis of two versions of Tree and Tabular
Combined Notation (TTCN and TTCN-2) that were confined only to protocol
and conformance testing. TTCN-3 offers the well-proven basic functionalities of
TTCN and TTCN-2, which have been included directly or enhanced in TTCN-3.
However, from a syntactical point of view TTCN-3 differs a great deal from its
predecessors. TTCN-3 is based on a textual core language providing interfaces
to different data description languages, making it language independent. [39]

TTCN-3 was developed to answer the need for a unified test notation in the area
of telecommunication industry and science [4, 40]. As it has turned out, the use
of TTCN-3 has spread to other areas of industry and science (e.g. automotive
and software engineering), because of its applicability to all types of black box
testing. [39]. Typical areas of application for TTCN-3 are protocol testing,
module testing, and testing of CORBA based platforms etc. [4].

TTCN-3 is an abstract test specification language, meaning that the tests are
implementation independent and can therefore be reused for different
implementations. The abstract level of specification also makes it possible to
create standardized test suites to increase the probability that the
implementations of different vendors actually interoperate. In addition, TTCN-3
is not restricted to functional testing alone but is applicable to other types of
testing as well, e.g. performance, scalability, load and interoperability. [41]

Exploitation of TTCN-3 at Ericsson has shown that TTCN-3 is a reliable and
efficient even in the most challenging test scenarios. The results also indicate
that TTCN-3 provides a high degree of automation that has a positive impact on
regression testing. [39]

38

4.1 Core Language and Presentation Formats

From a syntactical point of view, TTCN-3 has changed drastically in comparison
to TTCN and TTCN-2, providing a flexible, powerful and unified solution to test
all types of reactive systems [4, 39]. The syntax of the TTCN-3 core language
has a look and feel similar to other programming languages (e.g. C, Java) and
should therefore be easy to learn and understand for someone with programming
experience [39, 42].

The top-level entity of TTCN-3 is a module that contains a definition part and an
optional control part. Modules can import definitions from other modules and
they can be parameterized. [41] In [43 p. 21] the language elements of TTCN-3
are divided into several categories as illustrated in the Figure 6.

The data types can be either predefined types determined in the TTCN-3
standard [4] (e.g. integer and char) or user-defined types (e.g. record and set).
Test data consists of constants, variables and template declarations. [43]
Templates provide the possibility to specify, organize and structure test data.
Templates can either be used to define specific values to be transmitted or
describe conditions to be matched by the received values, using matching
mechanisms. [39]

39

TTCN-3 Module
Module Definitions

Module Control

Data types

Test Data

Test System
Architecture

Test Behaviour

Components

Ports

Predefined types

User-defined types

Functions

Altsteps

Test cases

Constants

Variables

Templates

Messages

Signatures

Local Declarations

Test Case Executions

Figure 6. TTCN-3 language elements.

Messages and signatures are used for communication over the communication
ports by means of message exchange and procedure calls [4]. Hence, the ports
are message-based, procedure-based or mixed (i.e. message- and procedure-
based) and they are directional. Each port may have an in, out or inout list; for

40

in, out and both directions, respectively. The test component in TTCN-3 is an
instance of corresponding component type definition. The type definition declares
constants, variables, timers and ports owned by an instance of that type. [39]

Altsteps are function-like descriptions that are used for structuring component
behavior. Altstep has special semantics used to define an ordered set of
alternatives. In TTCN-3, functions can be used to structure computation or to
calculate a single value, similar to other programming languages. [39] Test cases
are a special kind of function that are executed in the module control part in
order to check whether the SUT passes the test or not. [4]

The control part of the TTCN-3 module describes the execution order of the test
cases. Hence, it can be seen as the main program of the TTCN-3 module. [39]
The control part can also contain local declarations e.g. variables [4].

The code example in Figure 7 illustrates the language elements in the TTCN-3
core language. In this example, the reserved words for the TTCN-3 language are
printed in bold-face.

Figure 8 illustrates how TTCN-3 is built based on textual core language
providing interfaces to various data description languages and the option to
select from different presentation formats [4]. The tabular presentation format of
TTCN-3 is designed for users who are familiar with the predecessors of TTCN-
3, TTCN and TTCN-2. The graphical format is based on MSCs and it eases the
understanding and representation of test execution and analysis of the test
results. [39]

41

module MyModule { /******** DEFINITION PART ********/
 type integer MyInteger; // predefined type
 type record MyRecord { // user defined type
 MyInteger myInt,
 char myChar
 }
 signature MyRemoteProcedure();
 const charstring MYCONST := �My string�; // constant declaration
 var bitstring := �0001�B; // variable declaration
 template MyRecord MyTemplate := { // template based on record type
 myInt := 2,
 myChar := "a"
 }
 type port MyMessagePort message {
 inout MyRecord // message port with inout direction
 }
 type port MyProcedurePort procedure {
 out MyRemoteProcedure // procedure port with out direction
 }
 type component MyTester { // Test component definition
 port MyMessagePort PCO1;
 port MyProcedurePort PCO2;
 timer T1; // Timer declaration
 }
 type component TSI { // Test System Interface definition
 port MyMessagePort PCO1;
 port MyProcedurePort PCO2;
 }
 altstep default_altstep() runs on MyTester {
 [] any port.receive { // first alternative
 setverdict(fail);
 }
 [] T1.timeout { // second alternative
 setverdict(inconc);
 }
 }
 function myFunction() runs on MyTester {
 PCO1.send(MyTemplate);
 T1.start; // start timer and activate altstep
 var default my_altstep := activate(default_altstep());
 alt {
 [] PCO1.receive(MyTemplate) {
 setverdict(pass);
 }
 }
 deactivate(my_altstep); // deactivate altstep
 }
 testcase MyTestCase() runs on MyTester system TSI {
 map(mtc:PCO1, system:PCO1); // mapping the mtc (MyTester) to
 map(mtc:PCO1, system:PCO1); // system (TSI - Test System Interface)
 myFunction(); // function call
 : // test case actions
 unmap(mtc:PCO1, system:PCO1); // unmapping connections
 unmap(mtc:PCO1, system:PCO1);
 }
/******** DEFINITION PART ********/

control { /******** CONTROL PART ********/
 var boolean MyVariable;
 execute (MyTestCase());
}
/******** CONTROL PART ********/
}

Figure 7. Example of the core language syntax.

42

TTCN-3
Core

Notation
ASN.1

(Abstract Syntax
Notation One)

IDL
(Interface Defini-
tion Language)

Other Data
Descriptions

Tabular
Presentation
Format (TFT)

Graphical
Presentation
Format (GFT)

Other
Presentation

Formats

Textual Format

TTCN-3
User

Figure 8. Core language and various presentation formats.

4.2 Test System and Execution Interfaces

The TTCN-3 test system is depicted in Figure 9 [43]. A test system is a set of
test components, ports, specific interfaces and the SUT. Every test system has
one Main Test Component (MTC), which is created automatically at the
beginning of a test case execution and optional Parallel Test Components (PTC),
which can be created, started and stopped dynamically (i.e. during test
execution). MTC termination ends the test case execution. Test components can
be interconnected using connected communication ports and connected to the
SUT using mapped ports. The communication port�s in-direction is modeled as
an infinite FIFO queue, where the incoming information is stored until it is
processed by the test component that owns the port. In case of overflow, the test
case results in error. The out-direction is unbuffered. [39]

TTCN-3 test system has two interfaces: the abstract and the real test system
interface. The abstract test system interface can be seen as a collection of ports
defining the abstract interface to the SUT. Port mapping between a test
component and the abstract test system interface is in fact a mere name
translation determining the means of referring to communication streams.

43

Components, ports and the abstract test system interface are application
independent, whereas the real test system interface is application specific,
implementing the real interface to the SUT. [39]

Test system

MTC

Abstract Test System Interface

Real Test System Interface

System Under Test

PTC

PTC

IN

FIFO queue (port)

port Mapped ports

Connected ports

OUT IN OUT

OUT

OUT

OUT

OUT

OUTOUT OUT

IN

IN

IN

IN

IN IN IN

Figure 9. Conceptual view of the test system.

TTCN-3 offers two execution interfaces: TTCN-3 Runtime Interface (TRI) and
TTCN-3 Control Interface (TCI), illustrated in Figure 10. They specify a
standardized adaptation of the test system for management, communication,
component handling, external data representation (with encoding and decoding)
and logging for local and distributed test setups. These interfaces make TTCN-3
executable independent of the SUT, processing platform, implementation
language, etc. [39] Figure 10 depicts an overall view of a TTCN-3 test system
architecture. The test system can be seen as a group of interacting entities, where
each entity has a specific well-defined functionality in the test system. [44]

44

The TTCN-3 Executable (TE), also referred to as Executable Test Suite (ETS),
and depicted in green in Figure 10, is responsible for the interpretation and
execution of TTCN-3 modules [45]. Within TE various structural elements can
be separated: control, behavior, components, types and data, ports and timers
[41]. These structural elements represent functionalities that are defined within
the TTCN-3 module (e.g. control represents the control part within the TTCN-3
module) or by the TTCN-3 core language standard [45]. However, this
refinement of TE is merely a conceptual aid used to define the TTCN-3 test
system interfaces. The TTCN-3 module is implemented on an abstract level in
TE and it is the task of other entities (TM, CH, CD, SA and PA) to make these
abstract concepts concrete. Figure 10 clearly presents how the TTCN-3
Executable (TE) is surrounded by the TRI and TCI interfaces that enable the
adaptation of TE to different contexts. [39, 45]

Test Management and Control (TMC), depicted in red in Figure 10, includes
functionality related to management of test execution, handling of components
(CH) and encoding and decoding (CD) of values. Test Management (TM) is
responsible for the overall management of the test system. [45] Two
functionalities can be separated within the TM, those related to the test execution
control (TC) and those related to test event logging (TL). TC is responsible for
the proper invocation of the TTCN-3 modules and after the initialization of the
test system, test execution starts within the TC. The TL entity maintains a test
log as it is explicitly notified by the TE to log test events. [44]

45

Test System User

SUT: System Under Test

TM: Test Management

PA: Platform AdaptorSA: System Adaptor

CH:
Component

Handling

TE: TTCN-3 Executable

CD:
Codec

Control

Components

Ports

Types & Data

Behavior

Timers

TCI

TRI

TC: Test Control TL: Test Logging

Figure 10. Overall test system architecture.

The TE can be executed in a centralized, i.e., on a single test device or
distributed manner, i.e., on a multiple test devices [39]. In the case of a
distributed test system (TE is distributed between several test devices)
Component Handling (CH) implements and synchronizes communication
between distributed test system entities. Encoding and decoding of TTCN-3
values is the responsibility of the Coding and Decoding (CD) entity. TE selects
the appropriate codec and sends the TTCN-3 values to the CD to be coded. In
the same manner TE selects the appropriate decoder in order to decode the valid
TTCN-3 values from the received data. [45]

The System Adaptor (SA), depicted in blue in Figure 10, is responsible for the
adaptation of message and procedure-based communication with the TTCN-3 test
system and SUT. The Platform Adaptor (PA), also depicted in blue in Figure 10,
implements TTCN-3 external functions and realizes timers that are instantiated
in the TE. [39, 44]

46

5. Test Reuse
Demands for software testing are ever-increasing as the size and complexity of
software systems are growing every day and the markets demand new products
and higher quality in shorter time frames. Improving the efficiency and
effectiveness of testing through test reuse could provide remarkable savings.
[22] Section 3.1 introduced some of the potential of software reuse, such as
reductions in development and maintenance costs and improvements in quality
and productivity. It is fair to say that these promises can be related to test reuse
as well. Perhaps the expectations for test reuse can be even higher than those for
software reuse. In addition to reusing tests in testing different products or
product releases, tests can also be reused between different testing levels (e.g.
component and integration) and types (e.g. functional and load). [22]

Just as with software reuse, testware reuse can be divided into for and with reuse
sides. Reusable tests are developed for reuse with an appropriate level of
generality and adaptability. In development with reuse, the tests are reused with
necessary adaptations and complemented with context- or product-specific tests.
It is important to note that, as with software, not all testware is meant to be
developed for reuse, and usually it is impossible to cover every part of the test
suite by just reusing tests. Furthermore, the reuse of testware is bound to the
reuse of software in many cases. [46]

Testware differs from other software merely due to its specific purpose of
finding errors from the IUT or validating that the IUT functions as it was
supposed to [47]. Therefore, one can conclude that the same set of techniques
used to create reusable software, presented in section 3.5, could be used in
developing testware for reuse. However, unlike the with reuse side of software
development, which is mainly interested in building something new, the with
reuse side of test reuse is interested in �tearing down�. This means that,
regardless of the reusability, the purpose of testware is to find errors or to give
some level of assurance that the software meets its specification. [46]

When considering the reuse possibilities of testware, one must always take into
account the reusability of the software as well. This means that, if the software
itself shows very few possibilities for reuse, it narrows down the possibilities of
reuse for testware as well. However, some exceptions exist, e.g. combining an

47

abstract test specification language such as TTCN-3 and standardized test
suites allows us to create reusable testware without any ties to software
implementations. [46]

5.1 Three Viewpoints of Test Reuse

Reuse of tests offers a wide range of reuse possibilities and viewpoints. Tests
may be reused during the development process (vertical viewpoint) of the
software product, between similar products (horizontal viewpoint) in a product
family or application domain and between different product versions (historical
viewpoint). [46]

During the development process, the same tests may be reused between different
testing levels and types. E.g. component tests are reused in integration testing
and functional tests are reused in testing performance and scalability. A product
family may have similar products composed of the same components and
features e.g. mobile phones from the same vendor. Therefore, the same tests
could be reused to test these shared components and features, and new tests
would only be needed to verify the product specific parts. [46] It is common for
software products to evolve. New versions usually introduce new features, but
retain most of the old ones. The old features could be tested reusing the tests
developed for these features, whereas the new features require new tests.
However, as Smith [Smith] has discovered, even the new features may have
some relations to old features or some times use the same functions as the old
features do. Hence, depending on the granularity of the reusable tests some parts
may be reused. Reusability is therefore an obvious approach in the development
of test software. [46]

5.1.1 Vertical Reuse

Vertical reuse in this thesis concentrates on the reuse possibilities between
different testing levels. Schieferdecker and Vassiliou-Gioles [40] have briefly
contemplated the idea of using the same tests between different types of testing,
e.g. parts of tests developed for functional testing could be reused for
performance or scalability testing.

48

In the past, software test engineers developed component tests for an application
using an ad hoc approach. In this approach, the primary concern was to develop
simple upper testers and lower testers that would help with testing the software
component against the given requirements. Tests created in this way were, and
still are, difficult to reuse on other testing levels. However, the point of view was
not to reuse them at all [48].

Vertical reuse demands that we identify the similarities between different testing
levels and identify those tests that have the potential to be reused and the
potential to reveal errors on different levels. Vertical reuse is illustrated in Figure
11. For example, tests developed for component testing may be reused in
integration and system testing. This pattern can be applied in reverse order as
well: tests designed for system testing can be utilized in the lower level tests.

Vertical reuse has three evident virtues: narrow domain, low variability of
problems and static interfaces. From a vertical viewpoint, the software product
itself is the domain and the reuse possibilities are found by analyzing the
similarities between testing levels. Narrow domain has been one of the key
success factors in fortuitous industrial cases [27]. Variability of problems and
solutions pose no issue, since the problems are the functions, features and
characteristics we test and the solutions are their respective tests. During the
testing process, the interfaces of the components are likely to remain unchanged,
thus adaptations required to test scripts are likely to remain very moderate.

49

Requirements
engineering

System
design

Architectural
design

Component
design

Integration
test

planning

System
test

planning

Component
test

planning

Test
planning

Component
testing

Integration
testing

System
testing

Acceptance
testing

Preparation &
 planning

Execution &
evaluation

TESTING

Implementation
Vertical reuse

Ve
rti

ca
l r

eu
se

Figure 11. V-model. In vertical reuse test designs and implementations are
reused in different levels of the testing process.

5.1.2 Horizontal Reuse

The horizontal viewpoint means reusing tests between various products.
Horizontal reuse generally requires that products are mostly composed of
reusable software components and therefore likely belong to a certain product
family. This means that some parts of the product specifications are identical and
form a solid basis for development of reusable tests. [46] These tests are
developed to accompany the reusable software components, thus maximizing the
profits of reuse [23]. In addition, this ensures that testing keeps up with the pace
of shorter development times that the software reuse itself promises [22].

It is also possible to identify similar features of different products even though
the products may not be composed of reusable components or are not part of the
same product family. In this case, more effort is needed to identify the similar
and differing elements of the products to be tested, since it is not done during the
development process. Therefore, this option is not a feasible one. [46]

50

Furthermore, one example of the horizontal viewpoint is to implement the
software components according to some commonly approved (used to solve
common use case problems) or standardized specifications, which are typical in
the telecommunication domain. Even though the standard specifications are the
same, the implementations may vary. Reusing tests that are developed on the
basis of these standard specifications helps to construct conforming and
interoperable implementations. [23]

Horizontal reuse is probably most profitable if the tests can be developed to
accompany reusable components or on the basis of standardized specifications
as illustrated in Figure 12 [46].

Domain (E.g.
telecommunication)

Product family

ITU-T
...

Reusable
components

Product
A

Reusable tests

Product
B

Product
C

Implementation
B

Standardized
specifications

Implementation
A

Figure 12. Applicable approaches for horizontal reuse where tests are reused
between products and implementations.

5.1.3 Historical Reuse

The historical viewpoint addresses test reuse between product generations.
Figure 13 illustrates software and test reuse from the historical viewpoint. As is
clearly noticeable from the figure, historical and horizontal viewpoint are very
much alike. �Different products� in horizontal reuse are �product versions� in

51

historical reuse. Test suites in Figure 13 contain reusable tests and product-
specific tests (i.e. they are not made for reuse). A typical practical case is when a
new version(s) of a product should fulfil the same basic requirements that the
earlier products satisfied. New tests may only be needed for verifying the new
features or components of the new product version. [46]

It is a well known fact that reuse is always a long-term investment. Therefore,
historical reuse is a natural approach to reuse tests. As illustrated in Figure 13,
reusable parts increase their share of the overall portion in products and in test
suites over time, thus increasing the profits of reuse as well. [46]

Product version 1.X

Features in first
version
Reusable
components for next
version
Non-reusable parts

Product version 2.X

Features in second
version
Reusable
components for next
version

Non-reusable parts

IMPLEMENTATION

VERIFICATION & VALIDATION

Product version N

Features in version N

Reusable
components for next
version

Non-reusable parts

Test suite for Product
version 1.X

Tests for features in
the first version
Reusable tests for
the next version
Product-specific tests

Test suite for Product
version 2.X

Tests for features in
the second version
Reusable tests for
the next version

Product-specific tests

Test suite for Product
version N

Tests for features in
version N
Reusable tests for
the next version

Product-specific tests

Figure 13. In historical reuse tests are reused between product implementations.

52

5.2 Past Studies

Reuse of tests, although clearly a promising area of study, has not been subject
to a wide scope of research [46]. This section presents some of the past studies
on test reuse and compares them to the work presented in this thesis.

ETSI has published a technical report [49] that provides guidance in creating
reusable Abstract Test Suites (ATSs). The focus of this report is clearly on
conformance testing, and it is aimed at standardization bodies and organizations
involved with conformance testing. Rules and their associated examples are
implemented using TTCN. Compared to the issues covered in this thesis, the
scope is narrower, however, the ideas and groundwork are more specific and laid
out in greater detail. Being a technical report, it does not present any case studies
where the rules and examples are applied in practice and thus, no real
implications of their applicability are provided.

Korhonen et al. [13] explore the possibility of speeding up the testing process for
configured software products by using a feature-based testing approach. In this
approach, existing tests and product feature descriptions are used to select,
modify and configure tests. However, their approach focuses on systems that
apply features for defining their properties or are at least composed of reusable
software components. In comparison to this thesis the scope of test reuse is
narrower, however, their study also presents tools and describes how test reuse
effects the testing process and test infrastructure. A case study is also
demonstrated, but the results and profits of test reuse are only vaguely presented.

Smith [50] presents an approach to code reuse where complete tests are
assembled using reusable high-level operations. The idea is to select a product
feature to be tested and then divide this feature into a sequence of test
operations. Obviously this enhances the code reuse in testing a product that has a
great deal of �common� functions (e.g. word processing; open file, save file)
used to implement various use cases by means of function combinations (e.g.
open file, write a text block, edit and save file). [50] Smith states: �Code reuse in
automated software testing is highly effective when the scope is limited to the
product under test.� [50 p. 2]. In addition, this enables reuse of the same test
operations when testing a new product version with similar features
implemented using the same �common� functions. Similar to Korhonen et al. the

53

focus is on software systems that are constructed based on features implemented
by using reusable functions. Smith presents examples that support the use of his
approach and rather impressive results of extensive research. However, in
Smith�s approach, tests are not really developed for reuse but, as he states: �Each
time we had a new functional area of the product to test, we tried to wedge it
into an existing driver or we wrote a new test driver, usually replicating code
from existing drivers�. There are two drawbacks to this approach. Wedging does
not sound like a planned activity that would lead to good results in the long run
and more importantly, replicating code leads to the maintenance of two similar
components, which is not desirable either.

Hörnstein and Edler [51] approach test reuse in CBSE by using built-in tests
(BIT). They base their views on mechanical and electronic engineering, where
BITs are used commonly. Hörnstein and Edler state that because components are
often used as black boxes and they usually work as state machines, their
testability is low. To improve the verification and validation process components
should be supplied with BITs, testers to exercise the BITs and evaluate the
information, and handlers to manage errors. Clearly this approach tightly binds
tests to the component, thus limiting the scope of reuse. In addition, using BITs
makes the code more complex.

When compared to the earlier studies mentioned above, this thesis exploits
techniques known from software reuse more extensively. In addition, guidelines
with illustrative examples are created to improve TTCN-3 test reuse and a case
study is provided, in which the use of guidelines is studied, and the level and
profits of test reuse are determined.

54

6. Guidelines for Reuseable TTCN-3 Code
This and the following chapters present the work performed in this thesis. This
chapter presents guidelines for reusable TTCN-3 code. The guidelines are
created primarily for this thesis. However, most of them have also been
published in [46] which is a project deliverable meant only for the project
partners of TT-Medal. Nevertheless, after this restricted publication in July
2004, all the guidelines have been under constant rework by the author. The goal
has been to cover more aspects of test reuse and to increase the practicality and
understandability of the guidelines. The biggest impact on this evolutionary
work was caused by a case study presented in chapter 7.

6.1 Background

This section explains the underlying factors that were the inspiration for the
guidelines and summarizes these factors and guidelines in a table format. The
underlying factors were: the reuse techniques presented in section 3.5; the test
suite and test case structures explained in section 2.6; the TTCN-3 test system
characteristics illustrated in section 4.2 and the language features of TTCN-3.
Table 2 summarizes the factors and guidelines.

The software reuse techniques presented in section 3.5 had the biggest impact
when trying to come up with practical guidelines for the TTCN-3 language. As it
turned out, the techniques for creating generality were nearly as inspiring as
those for creating adaptability. This was somewhat surprising, as during the
literature review the concept of generality in test reuse was not as promising as
that of adaptability. Perhaps this was influenced by the traditional belief of
seeing testware as being created for some specific implementation, where there
is no room for generalization. Nevertheless, it should be noted that the presented
techniques for generality and adaptability are not that different. Hence, they
have, in some cases, been an inspiration for the same guideline.

The test suite and test case structures presented in section 2.6 inspired the creation of
guidelines for modularity within modules, between modules and within test cases.

55

Table 2. Summary of the factors and guidelines.

Guideline
Factor

1 2 3 4 5 6 7 8 9 10

Reuse Technique
Generality

Widening X
Narrowing X

Isolation
Configurability X X X X

Generators
Adaptability

Inheritance X
Extensions X

Uses X
Configuration X X X

Parameterization X X
Template instantation X

Generation
Test suite or test case
structure X X X

TTCN-3 test system
characteristic X X

Language feature X

The TTCN-3 test system characteristics presented in section 4.2 provided some
inspiration, especially when it was considered essential that the tests should
follow the implementations. Although this has a somewhat debilitating effect on
generality, it is applicable, especially from the vertical viewpoint.

TTCN-3 language features could be seen as a driving force behind any of the
guidelines. However, they are marked as a factor in Table 2 only if the guideline
could not have been implemented in any other language and the other factors
played a lesser role.

56

6.2 Overview and Motivation

This section provides an overview of the guidelines and the motivation for why
they should be used. The relations between factors and guidelines presented in
Table 2 in the previous section is also briefly discussed.

Guidelines 1 and 2 were based on the idea of configurability in a conceptual
TTCN-3 test system. Use of functions and test components provides a
mechanism to encapsulate test behavior. The reusable part in these guidelines is
the combination of the test component and the function running on it. Functions
and components can be combined quite freely, which facilitates reuse.

Guidelines 1 and 2 present four approaches for test system configuration in
component and integration testing. Both of these guidelines utilize the concepts
of upper tester (UT) and lower tester (LT). In protocol testing, UT(s) provides
control and observation of the upper service boundary of the IUT, and LT(s)
provides indirect control and observation of the lower service boundary [19]. In
software component testing, UT(s) simulates the calling component (and
possibly the called component as well), and LT(s) the called component of the
IUT. Every time a component is integrated into a new context, one of its
interfaces may constitute an interface of a new component while the other is not
visible anymore. Therefore, the testers (i.e the combination of a test component
and a function running on it) linked to the visible interface can be reused.

Figure 9 (p. 43) presents the conceptual view of the test system. This conceptual
view is the basis for the test system configuration in figures (Figure 14, Figure
16, Figure 18, Figure 20, Figure 22, Figure 24) presented in guidelines 1 and 2.
MTC and PTC(s) are depicted as boxes and ports as ovals. MTC is named
�MTC� and PTC(s) have �UT�, �LT� or both written in. They represent the
control and observation purpose of the function running on the respective PTC.
SUT is surrounded by a white box representing the Abstract Test System
Interface and a grey box representing the Real Test System Interface.

Guideline 3 had its foundation in the test case schema presented in Figure 4 (p. 25).
But configurability and configuration (nearly the same idea) also had an impact.
The test case parts in Figure 4 should be encapsulated in functions or function
groups so that they can be easily reused and configured in different ways to

57

increase coverage of testing. Guideline 3 presents an approach more applicable
to the vertical viewpoint, whereas guideline 4 focuses on horizontal and
historical viewpoints.

Guideline 4 was based on the idea of use cases. If use cases provide a basis to
identify and structure commonly used functionality within one or several
implementations, they could also provide a way to identify reuse and variation
possibilities for testware. Reusable high-level functions based on use cases could
be used to quickly create new test cases. High-level functions can also act as a
variation point hiding the variations between the test suites for different
products.

Guideline 5 naturally had its origins in parameterization. Parameterization is
probably the most effective and simplest of the presented reuse techniques.
When applied to test-ware it can provide multiple possibilities for reuse and
improve the coverage of testing.

Guideline 6 was based on the idea that some parts of a test case could be
implemented in a way that would fulfill all the needs of the reusers. This means
that a test case is a reusable general component that provides the possibility to
select the appropriate parts. Selection was realized by means of selection
structures and parameterization.

Guideline 7 is a combination of several different ideas. First of all, using a
common type definition or template modification could be seen as techniques of
narrowing or inheritance. Second, combining structured types is a type of
configurability. Third, template instantiation means use of templates. This
guideline encourages the use, reuse and combination of common type definitions
and modification of templates. This eases the maintenance of tests and provides
later design decisions.

Guideline 8 was purely based on the use of wildcards, which is a TTCN-3 specific
language feature. Wildcards prevent overspecialization of any parameterizable
language elements, thus their use has the potential to promote reusability.
Basically, wildcards could be related to widening technique, but it is more
dependent on the language feature than it is on any other factors. This guideline
was the least satisfactory in the group of finalized guidelines. Perhaps this resulted

58

from the fact that it was so effortless to come up with, (the language provides it),
and its use is fairly limited (in received operations only, e.g. receive and getcall).

Guidelines 9 and 10 illustrate how to modularize testware within and between
TTCN-3 modules. Good modular structures facilitate reuse and maintenance of
testware. The guidelines were inspired by the test suite structuring presented in
section 2.6.

All in all, the guidelines and the presented examples are the result of several
iterations. During the process, some candidate guidelines have been disqualified
because they were too awkward to be applied in practice or too obvious to be
called guidelines. Nevertheless, the ten remaining ones represent a selection of
guidelines covering a broad basis of factors that have an impact on test reuse.

6.3 Guidelines

The guidelines are numbered, however, they are in no specific order of
importance. Use of every guideline is illustrated with one or more illustrative
examples, where the reserved words of the TTCN-3 language are printed in
bold-face. These examples, however, are not complete but only fragments of
real implementations as it would consume a considerable amount of space to
represent all of them in full-scale. Nevertheless, they present everything that is
essential to understanding the use and meaning of the respective guidelines.
Applicability of guidelines to different test reuse viewpoints, presented in
sections 5.1.1, 5.1.2 and 5.1.3, is contemplated briefly.

6.3.1 Guideline 1. Reusing Testers in a Distributed Test System

Separate PTCs for Upper and Lower Tester

In Figure 14 the functionality of the UT and LT is implemented in functions that
run concurrently on separate PTCs. These PTCs are mapped to the test system
interface and connected to the MTC that controls the execution of functions
through the connected ports (i.e. controls the test behavior). This approach is
useful when the test components are distributed in every testing level, or when

59

the functionalities of the UT and LT are loosely tied together or their
implementations are large and complex. One example of this is when testers
simulate large independent subsystems interworking with the SUT.

In integration testing, the selection of reused testers should naturally be based on
the visibility of the interfaces of the integrated SUTs. For instance, if SUT 1 is
on top of SUT 2 (e.g. SUT 1 is a higher level component, higher layer in layered
architecture, etc.), then the testers to be reused are UT1 and LT2. This is further
explained later on in this guideline.

MTC

UT 1

LT 1

SUT 1 MTC

UT 2

LT 2

SUT 2

UTP UTP

UTPUTP

LTP LTP

LTP LTP

SUTU

SUTU

SUTU

SUTU

SUTL

SUTL

SUTL

SUTL

Figure 14. Test system configuration where UT and LT are running on separate
mapped PTCs.

The code example in Figure 15 illustrates one way in which the functionality of
the upper and lower tester could be implemented using functions that run on
PTCs and are controlled by the MTC. After initiation (i.e. procedure call), the
functions run concurrently on their respective PTC.

60

module MySUT1_tests {
 signature comp1(); // test step
 : // other test steps
 type component MainTC {
 port MyProcedurePort UTP; // procedure port
 port MyProcedurePort LTP; // procedure port
 var Upper_Tester UT1; // component variable
 var Lower_Tester LT1; // component variable
 }
 type component Upper_Tester {
 port MyProcedurePort UTP; // procedure port
 port MyMessagePort SUTU; // message port
 }
 : // other component definitions i.e Lower_Tester and TSI
 function UT1_Behavior() runs on Upper_Tester {
 alt {
 [] UTP.getcall(comp1:{}) {
 // Here is the UT functionality related to call comp1
 repeat; // re-evaluate alt statement
 }
 [] UTP.getcall(comp2:{}) { // another call, etc.
 :
 }
 }
 function LT1_Behavior() runs on Lower_Tester {
 alt {
 [] LTP.getcall(comp1:{}) {
 // Here is the LT functionality related to call comp1
 repeat; // re-evaluate alt statement
 }
 : // other calls, etc.
 }
 }
 :
 function ConfigureStart(MainTC a_mtc, TSI a_system) runs on MainTC {
 var Upper_Tester upper := Upper_Tester.create;
 var Lower_Tester lower := Lower_Tester.create;
 connect(upper:UTP, a_mtc:UTP); // connect upper tester and MTC
 connect(lower:LTP, a_mtc:LTP); // connect lower tester and MTC
 map(upper:SUTU, a_system:SUTU); // map upper tester to TSI
 map(lower:SUTL, a_system:SUTL); // map lower tester to TSI
 UT1 := upper; // save the reference in component variable
 LT1 := lower; // save the reference in component variable
 UT1.start(UT1_Behavior()); // start upper tester
 LT1.start(LT1_Behavior()); // start lower tester
 }
 testcase tc_001() runs on MainTC system TSI {
 ConfigureStart(mtc, system);
 UTP.call(comp1:{}, nowait); // UT1 functionality related to comp1
 LTP.call(comp1:{}, nowait); // LT1 functionality related to comp1
 all component.done; // PTCs have ended their execution
 UnConfigure(mtc, system);
 }
 : // other test cases
}

Figure 15. UT and LT implemented as functions running on separate PTCs.

61

Common PTC for Upper and Lower Tester

In Figure 16, the functionality of the UT and LT is implemented in the same
function that runs on a single PTC. The PTC is mapped to the test system
interface and connected to the MTC that controls the execution of the function
through the connected port (i.e. controls test execution). This approach is useful
when the test system is distributed in component or in other testing levels or
when the functionalities of the UT and LT are simple or closely tied together.
One example of this is when simple inputs to the SUT create simple outputs (e.g.
SUT is used for transforming values) and PTCs are not needed to simulate
complex subsystems. In Figure 16, the observation of the upper and lower service
boundary is realized using a single function running on PTC that observes the
upper and lower service boundary of the SUT through the mapped ports.

UT 1+LT 1 SUT 1MTC UT 2+LT 2 SUT 2MTC

TP TP TP TP UPCO
UPCO

LPCO
LPCO

UPCO

LPCO

UPCO

LPCO

Figure 16. Test system configuration where UT and LT are running on the same
mapped PTC.

Reusing the testers in integration testing requires that the unnecessary or
excessive functionalities are blocked or removed. For instance, in component
testing the test system (i.e. the tester) may have simulated a component that is
replaced with real implementation in integration testing. Therefore, the
simulated part that is no longer needed has to be blocked or removed. For
example, if SUT 1 is on top of SUT 2 in the integrated system, then the
functionality of LT 1 and UT 2 are redundant or undesired. Blocking or
removing the functionality must be planned in component testing in order to
make the transition onto other testing levels as easy as possible.

The code example in Figure 17 illustrates one way in which the functionality of the
upper and lower tester could be implemented using a function that runs on a PTC
and is controlled by the MTC. The if statements in UT1_LT1_Behavior() are used to
initiate or block necessary or unnecessary actions on different testing levels.

62

module MySUT1_tests {
 :
 type component MainTC {
 port MyProcedurePort TP; // procedure port
 }
 type component UT1_LT1_Tester {
 port MyProcedurePort TP; // procedure port
 port MyMessagePort UPCO; // message port
 port MyMessagePort LPCO; // message port
 }
 type component TSI {
 port MyMessagePort UPCO; // message port
 port MyMessagePort LPCO; // message port
 }
 : // functions etc.
 function UT1_LT1_Behavior() runs on UT1_LT1_Tester {
 alt {
 [] TP.getcall(comp1:{blocking}) {
 if (blocking == false) {
 LPCO.send(data_req_msg); // only e.g. in component testing
 }
 // Here is the UT1_LT1 tester functionality related to comp1
 repeat; // re-evaluate alt statement
 }
 [] TP.getcall(comp2:{blocking}) {
 if (blocking == false) {
 :
 }
 : // another call, etc.
 }
 }
 function ConfigureStart(MainTC a_mtc, TSI a_system) runs on MainTC {
 var UT1_LT1_Tester upper_lower := UT1_LT1_Tester.create;
 connect(upper_lower:TP, a_mtc:TP); // connect PTC and MTC
 map(upper_lower:UPCO, a_system:UPCO); // map upper PCO to TSI
 map(upper_lower:LPCO, a_system:LPCO); // map lower PCO to TSI
 UT1_LT1 := upper_lower; // save the reference
 UT1_LT1.start(UT1_LT1_Behavior()); // start PTC
 }
 :
 testcase tc_001() runs on MainTC system TSI {
 ConfigureStart(mtc, system);
 TP.call(comp1:{false}, nowait); // functionality related to comp1
 TP.call(comp2:{false}, nowait); // functionality related to comp2
 : // other calls, etc.
 UT1_LT1.done; // PTC has ended its execution
 UnConfigure(mtc, system);
 }
 :
}

Figure 17. UT and LT implemented as a function running on the same PTC.

63

Integrated System

The test system configuration presented in Figure 18 illustrates how the upper
tester of SUT 1 and the lower tester of SUT 2 used in component testing
(illustrated in Figure 14 and Figure 16) are reused in testing the integrated
component.

As mentioned earlier this type of configuration is useful when the test system is
distributed (i.e test components are distributed). Another advantage is that MTC
can buffer instructions to the ports of the testers, so that test execution moves
forward without unnecessary delays.

MTC

UT 1

LT 2

UTP

UTP

SUTU
SUTU

LTP

LTP

SUTL

SUTL

SUT 1

SUT 2

Figure 18. Test system configuration where UT 1 and LT 2 are reused in
integration testing.

The code example in Figure 19 illustrates how the code presented in Figure 15 is
reused. In this example, everything from modules MySUT1_tests and
MySUT2_tests is imported and the test system is configured as illustrated in
Figure 18. New test cases are created by reusing the functions UT1_Behavior()
and LT2_Behavior().

64

module MySUT3_tests {
 import from MySUT1_tests all; // importing everything
 import from MySUT2_tests all; // importing everything
 :
 function ConfigureStart(MainTC a_mtc, TSI a_system) runs on MainTC {
 : // create, connect and map testers and save references
 UT1.start(UT1_Behavior()); // start UT 1 functionality
 LT1.start(LT2_Behavior()); // start LT 2 functionality
 }

 testcase Int_tc_001() runs on MainTC system TSI{

 ConfigureStart(mtc, system);

 UTP.call(comp1:{}, nowait); // functionality related to comp1
 LTP.call(comp1:{}, nowait); // functionality related to comp1
 all component.done; // PTCs have ended their execution
 UnConfigure(mtc, system);
 }
 testcase Int_tc_002() runs on MainTC system TSI{
 ConfigureStart(mtc, system);
 UTP.call(comp2:{}, nowait); // functionality related to comp2
 LTP.call(comp2:{}, nowait); // functionality related to comp2
 all component.done; // PTCs have ended their execution
 UnConfigure(mtc, system);
 }
 :
}

Figure 19. Reusing the UT and LT behavior.

Reusing the code presented in Figure 17 is very similar. In contrast to the
previous example, the undesired actions of the functions (UT1_LT1_Behavior()
and UT2_LT2_Behavior()) have to be blocked by using the signature parameters.
This guideline is especially useful when two components are integrated one on
top of the other (e.g. layered architecture, protocols, etc.) as illustrated in Figure
18. This guideline is applicable to all viewpoints, but its utilization should
especially be considered from the vertical viewpoint. Horizontal and historical
reuse should be taken into account if the components under test are reusable and
their interfaces are not likely to change between products of the same family or
product generations.

65

6.3.2 Guideline 2. Reusing Testers in a Centralized Test System

Guideline 1 is most applicable when the test components are distributed or when
the MTC needs to communicate with the PTC(s) during test case execution (i.e.
synchronize and control test execution). However, when test system distribution
or communication during test execution is not necessary, Guideline 1 has its
downsides. Connecting the MTC and PTCs through ports requires extra effort
and controlling the test execution through ports may be difficult to understand.
In this guideline, PTCs are not connected to the MTC. Instead, after they are
created and started, they execute their appointed actions independently.

Separate PTCs for Upper and Lower Tester

In Figure 20, the functionality of the UT and LT is implemented in functions that
run simultaneously on separate PTCs that are mapped to the test system
interface. This approach is useful when the test components are not distributed
and when the functionalities of the UT and LT are loosely tied together or their
implementations are large and complex. This approach is very much the same as
the one first presented in Guideline 1, with the exception that the MTC does not
control the test execution through communication ports.

LT 1
running on PTC

UT 1
running on PTC

SUT 1

SUTL
SUTL

SUTU
SUTU

MTC

LT 2
running on PTC

UT 2
running on PTC

SUT 2

SUTL
SUTL

SUTU
SUTU

MTC

Figure 20. Test system configuration where UT and LT are running on separate
PTCs.

66

The code example in Figure 21 illustrates how the functionality of the upper and
lower tester could be implemented using functions that run on PTCs.

module MySUT1_tests {
 :
 template t_msg msg;
 :
 function data_req_ut(template t_msg a_msg) runs on Upper_Tester {
 // data_req_ut functionality related to Upper_Tester
 }
 function data_req_lt(template t_msg a_msg) runs on Lower_Tester {
 // data_req_lt functionality related to Lower_Tester
 }
 function data_ind_ut(template t_msg a_msg) runs on Upper_Tester {
 // data_ind_ut functionality related to Upper_Tester
 }
 function data_ind_lt(template t_msg a_msg) runs on Lower_Tester {
 // data_ind_lt functionality related to Lower_Tester
 }
 function data_rsp_ut(template t_msg a_msg) runs on Upper_Tester {
 // data_rsp_ut functionality related to Upper_Tester
 }
 : // other functions
 testcase tc_001() runs on MainTC system TSI {
 :
 UT1.start(data_req_ut(msg)); // start first UT function
 LT1.start(data_req_lt(msg)); // start first LT function
 LT1.done;
 LT1.start(data_ind_lt(msg)); // start second LT function
 :
 }
 testcase tc_002() runs on MainTC system TSI {
 :
 LT1.start(data_ind_lt(msg)); // start first LT function
 UT1.start(data_ind_ut(msg)); // start first UT function
 UT1.done;
 UT1.start(data_rsp_ut(msg)); // start second UT function
 :
 }
 :
}

Figure 21. Binding several functions to PTCs.

In the code example in Figure 21, the specific function is bound to the specific
component with the keyword start (in the test cases tc_001() and tc_002()).
Several functions can be bound to the same component in the test case, but only
after the one previously bound has ended its execution. This is checked using the
keyword done.

67

Upper and Lower Tester on MTC

In Figure 22, the functionality of the UT and LT is implemented in the same
function that runs on the MTC. The MTC is mapped to the test system interface.
This approach is useful when the test system is not distributed on component or
on later testing levels or when the functionalities of the UT and LT are simple or
closely tied together. Observing the upper and lower service boundary of the
SUT is realized using a single function running on MTC as illustrated in the
Figure 22. Once again, using a single function requires that when the function is
reused in integration testing, some of its actions may have to be blocked.

SUT 2

U
T

2+
 L

T
2

 ru
nn

in
g

on
 M

TC

SUT 1

U
T

1+
 L

T
1

 ru
nn

in
g

on
 M

TC

SUTU
SUTU

SUTU
SUTU

SUTL
SUTL

SUTL
SUTL

Figure 22. Test system configuration where UT and LT are running on the MTC.

The code example in Figure 23 illustrates how the functionality of the upper and
lower tester could be implemented using functions that run on the MTC. In the
test cases, the specific functions are called one after the other to test the
functions of the SUT.

68

module MySUT1_tests {
 :
 function data_req(template t_msg a_msg) runs on MainTC {
 // data_req functionality related to UT1 and LT1
 }
 function data_ind(template t_msg a_msg) runs on MainTC {
 // data_ind functionality related to UT1 and LT1
 }
 function data_rsp(template t_msg a_msg) runs on MainTC {
 // data_rsp functionality related to UT1 and LT1
 }
 :
 testcase tc_001() runs on MainTC system TSI {
 :
 map(mtc:SUTU, system:SUTU); // map MTC to TSI
 map(mtc:SUTL, system:SUTL); // map MTC to TSI
 data_req(msg); // first UT1 + LT1 function
 data_ind(msg); // second UT1 + LT1 function
 :
 }
 testcase tc_002() runs on MainTC system TSI {
 :
 map(mtc:SUTU, system:SUTU); // map MTC to TSI
 map(mtc:SUTL, system:SUTL); // map MTC to TSI
 data_ind(msg); // second UT1 + LT1 function
 data_rsp(msg); // third UT1 + LT1 function
 :
 }
 :
}

Figure 23. Running several functions on the MTC.

Integrated System

The test system configuration presented in Figure 24 illustrates how the reusable
parts used in component testing (illustrated in Figure 20 and Figure 22) could be
reused in testing the integrated system. As mentioned earlier, this type of
configuration is useful when the test system is not distributed.

69

UT 1
running on PTC

LT 2
running on PTC

SUT 1

SUT 2
MTC

SUTL

SUTL

SUTU

SUTU

Figure 24. Test system configuration where UT 1 and LT 2 are reused in
integration testing.

The code example in Figure 25 illustrates how the code presented in Figure 21 is
reused. In this example everything from modules MySUT1_tests and
MySUT2_tests is imported and the test system is configured as illustrated in
Figure 24. A new test case is created by reusing the functions and binding them
to specific PTCs.

module MySUT3_tests {
 import from MySUT1_tests all; // importing everything
 import from MySUT2_tests all; // importing everything
 :
 function Configure(TSI tsi_system) runs on MainTC {
 : // create and map testers and save references
 }
 :
 testcase tc_001() runs on MainTC system TSI {
 CreateAndConfigure(system);
 UT1.start(data_req_ut(msg)); // start first UT1 function
 LT2.start(data_req_lt(msg)); // start first LT2 function
 LT2.done;
 LT2.start(data_ind_lt(msg)); // start second LT2 function
 :
 }
 :
}

Figure 25. Reusing the UT1 and LT1 behavior.

70

Reusing the code presented in Figure 23 is very similar. However, blocking of
undesired actions, as previously discussed, has to be handled. Compared to the
approaches presented in Guideline 1, this guideline does not support distribution
of test components. However, the amount of communication ports decreases,
thus decreasing the complexity of the test system and execution, which in turn
increases understandability. Nevertheless, this guideline, just as Guideline 1, is
also applicable to all viewpoints, and its utilization should especially be
considered when testing layered architectures or protocols. Horizontal and
historical reuse should be taken into account if the components under test are
reusable and their interfaces are not likely to change between products of the
same family or product generations.

6.3.3 Guideline 3. Use Preambles, Bodies and Postambles

In component testing, a group of test cases may drive the IUT to the same
specific test state in order to test it by using different test bodies. In integration
testing, the successful execution of the test body demands that the integrated
components are in specific states. These observations obviously favor the use of
generic shared preamble that could be used in all the test cases of component
and integration testing related to a specific state.

Using the same test body in different testing states is an obvious approach to
reusing tests, since it is the body that verifies the test purpose and the verdict of
the test. Regardless of the testing level, the IUT should conform to the
requirements specification, which in black box testing is the basis of the test
cases and their respective purposes. The use of a shared test body is also
reasonable when the IUT is driven to different test states (even on the same
testing level) and its behavior is observed when executing the same body. An
example of this is use of the same input sequences in different states. However,
in some cases, e.g. when testing safety critical or very expensive systems, it is
preferable to verify that the state of the IUT is �correct� (i.e. valid or invalid)
before execution of the test body in order to avoid any costly mistakes.

After the test body is executed a postamble drives the IUT to the desired stable
state. This state could be the one where the execution of preamble began or some
other that is more convenient for the next test case. Nevertheless, postamble, like

71

preamble, is usually a very static set of test steps, so its reuse potential is high
between testing levels.In addition to the mentioned pros of reusing preambles,
bodies and postambles, testers have the freedom to combine them in a variety of
ways, thus making it possible to create various state combinations or achieve
better coverage of testing. The code example in Figure 26 illustrates the reuse of
a preamble and a postamble.

module Component_tests_CUT1 {
 :
 testcase tc_state2_001() runs on Connector system CTS {
 map(mtc:PCO1, system:PCO1);
 CUT1_to_state2(); // preamble
 SendMSG(); // body
 TearDown(); // postamble
 }
 testcase tc_state2_002() runs on Connector system CTS {
 map(mtc:PCO1, system:PCO1);
 CUT1_to_state2(); // same preamble
 SendData(); // body
 TearDown(); // same postamble
 }
 : // other test cases etc.
}
module IntegrationTests {
 import from Component_tests_CUT1 { function CUT1_to_state2 }
 import from Component_tests_CUT1 { function TearDown }
 :
 testcase interOp_001() runs on Connector system CTS {
 :
 CUT1_to_state2(); // preamble of CUT1 reused
 : // possible preamble of CUT2
 SendSignal(); // body
 :
 TearDown(); // postamble reused
 : // possible postamble of CUT2
 }
 :
}

Figure 26. Reusing preamble and postamble.

In the code example in Figure 26, the preamble, body and postamble are
implemented as functions. The same preamble and postamble are used in test
cases tc_state2_001() and tc_state2_002(). However, this is not reuse, but more
like following good coding conventions. Instead, using the same preamble and
postamble in integration test case interOp_001() is reuse, because it takes place
between testing levels, not between test cases on the same level.

72

This guideline is especially applicable to the vertical viewpoint. Dividing the test
case into preamble, body and postamble may not be the best choice for a test
case structure if the horizontal or historical viewpoint is the main focus of reuse.

6.3.4 Guideline 4. Implement Test Cases Using
High Level Functions

All the previous guidelines have utilized functions in some form. This guideline
encourages use of functions in the manner that Smith [50] has found to be
useful. In Smith�s study, tests are assembled using high-level operations that can
be combined in a variety of ways to implement tests quickly and efficiently [50].
However, operations are not always static between products of the same family
or between product generations. In order to cope with this issue, we need a
certain level of generality and variability.

In order to improve the horizontal or historical reuse of test cases, test cases should
be compiled by using functions with descriptive and generic names. The goal is to
make test cases reusable by hiding the possible variations in implementations and
interfaces inside different function implementations. For instance, a web mail
service provider may offer its services for use with a personal computer or with a
mobile phone. In this case, there are common and specific parts for different
terminals. The specific parts are the actual variation points of the test case.

Table 3 gives a short example of a use case in a fictitious web mail service. This
use case creates a base for the high-level test case and different function
implementations presented in the code example in Figure 27.

Table 3. Use case description.

Use Case Description � Log in and read mail using secure connection
Introduction User logs in to read his/her e-mail

Flow of
events

1. User connects to server
2. Verify the username
3. Verify the password
4. Fetch the users mail
5. �

73

module CommonModule_Webmail_TestCases {
 :
 function VerifyUserName() runs on MyTester {
 : // VerifyUserName is the same for both implementations
 }
 function VerifyPassword() runs on MyTester {
 : // VerifyPassword is the same for both implementations
 }
 testcase login_and_read_mail() runs on MyTester {
 :
 CreateConnection(); // Variation point
 VerifyUserName(); // Common part
 VerifyPassword(); // Common part
 FetchMail(); // Variation point
 :
 }
 :
}
module SpecificModule_PC {
 :
 function CreateConnection() runs on MyTester {
 : // CreateConnection for pc connection (modem, ISDN, ADSL, etc.)
 }
 function FetchMail() runs on MyTester {
 : // FetchMail for pc connection (e.g. fetch all at once)
 }
 :
}
module SpecificModule_MobilePhone {
 :
 function CreateConnection() runs on MyTester {
 : // CreateConnection for mobile phone connection (GRPS, HSCSD)
 }
 function FetchMail() runs on MyTester {
 : // FetchMail for mobile phone connection (e.g. fetch and show
 : // the first mail and the rest as a background process)
 }
 :
}
module TCs_For_PC {
 import from CommonModule_Webmail_TCs all; // import common part
 import from SpecificModule_PC all; // selecting pc connection
 :
control {
 execute(login_and_read_mail()); // executing the test case
 :
}
}

Figure 27. Test case implemented using functions with descriptive names.

74

The code example in Figure 27 presents a test case (login_and_read_mail()) that
is constructed by using functions which correspond to those points presented in
the use case description of Table 3. The first and the last functions depend on the
selected connection, whereas the two in the middle are common to both
connections. The generic naming of the functions and test components
(MyTester) makes it possible to execute test cases without any changes, after the
necessary function implementations have been imported.

This guideline is applicable to all viewpoints, but especially to the horizontal and
historical viewpoint where implementations (i.e. interfaces) are likely to change.
Perhaps the most value can be obtained when testing products of the same
product family, since there is a large set of specified features or functionalities
that can be either common or product-specific.

6.3.5 Guideline 5. Parameterize Test Behavior

So far all the guidelines have dealt very little with variations. One of the most
powerful variation mechanisms in creating small variations is parameterization.
In fact, sometimes it is possible to cover a large set of test purposes by using
only small variations, e.g. using boundary and near boundary values as
parameter values.

TTCN-3 offers dynamic value parameterization of function, signature, altstep,
template and testcase [4]. Using parameterization appropriately makes it possible to
create more adaptable functions, signatures etc., thus enhancing reusability. The
code example in Figure 28 illustrates how test behavior (i.e functions
CreateConnection() and SendData()) is parameterized with test data that is imported
from a specific module. Test behavior can also be parameterized using constants,
variables or templates that are either global or tied to a specific test component.

Parameterization itself does not necessarily mean reuse. One has to apply
parameterization in a way that promotes reuse. For instance, in vertical reuse,
component tests could test the component extensively using boundary and near
boundary values as parameters, whereas in integration testing, parameters could be
altered to suit the needs of interoperability tests. In horizontal and historical reuse,
different products or product releases may support different data values or data

75

ranges that could be handled using parameterization. It should also be noted that it
is preferable, in most cases, to separate test data into its own module, as illustrated
in the code example in Figure 28, and avoid hard-coded values when appropriate.

module Component_Testing_Data { // Test data for component testing
 var integer state1 := 10;
 var integer state2 := 11;
 :
 var bitstring data1 := �01101�B;
 var bitstring data2 := �01110�B;
 :
}
module Integration_Testing_Data { // Test data for integration testing
 var integer state1 := 1;
 :
}
module CUT1_Testcases {
 import from Component_Testing_Data all;
 :
 function CreateConnection(integer parameter) runs on Connector {
 // function behavior according to parameter value
 }
 function SendData(bitstring parameter) runs on Connector {
 // function behavior according to parameter value
 }
 :
 testcase tc_001(integer a_state, bitstring a_data) runs on Connector
 system CTS {
 :
 CreateConnection(a_state); // preamble is parameterized
 SendData(a_data); // body is parameterized
 SetPassAndUnmap(); // postamble is not parameterized
 }
 :
control { // In the control part, the real values for parameters are given
 execute(tc_001(state1, data1));
 execute(tc_001(state2, data1));
 execute(tc_001(state1, data2));
 execute(tc_001(state2, data2));
 :
}
}

Figure 28. Test behavior parameterized.

This guideline is applicable to all viewpoints. Parameterization offers such a
powerful and simple mechanism for reuse that it should be practiced regardless
of viewpoint. Separating test data and avoiding hard-coded values should also be
applied in all viewpoints.

76

6.3.6 Guideline 6. Use Selection Structures to Alternate Test
Behavior and Execution

This guideline has a strong relation to the previous one. To increase the
reusability of test cases, if-else structures should be used to offer optional test
behavior as illustrated in the code example in Figure 29. In the example, the
parameter a_type is used to select between two alternate behaviors. The purpose
of the test case (tc_001()) is to drive the implementation into the same specific
state and to perform different types of testing depending on the value a_type.

module CUT1_Tests {
 // enumerated type for testing types
 type enumerated t_type {FUNCTIONAL, LOAD, ...};
 :
 testcase tc_001(template testing_type a_type, integer NumberOfPTCs)
 runs on MainTC system CTS {
 : // same preamble for all testing types
 if (a_type == FUNCTIONAL) { // functional testing
 var CUT_Tester tester := CUT_Tester.create;
 map(tester:SUTU, system:SUTU); // map tester to TSI
 map(tester:SUTL, system:SUTL); // map tester to TSI
 connect(mtc:TP, tester:TP); // connect tester to MTC
 tester.start(Test_Behavior()); // bind test behavior to PTC
 TP.call(inst_01:{}, nowait); // MTC gives instructions
 : // and controls PTC
 tester.done;
 :
 }
 else if (a_type == LOAD) { // load testing
 var integer i;
 var CUT_Tester c_tester[NumberOfPTCs]; // creating tester array
 for (i := 0; i<NumberOfPTCs; i := i + 1) {
 tester[i] := Upper_Tester.create; // create instance
 map(tester[i]:SUTU, system:SUTU); // map instance to TSI
 map(tester[i]:SUTL, system:SUTL); // map instance to TSI
 connect(mtc:TP, tester[i]:TP); // connect instance to MTC
 tester[i].start(Test_Behavior()); // bind test behavior to
 : // instances
 }
 for (i := 0; i<NumberOfPTCs; i := i + 1) {
 TP.call(inst_01:{}, nowait) to tester[i]; // instructions
 : // to instances
 }
 all component.done; // all instances have ended
 }
 : // possibly other testing types
 }
 :
}

Figure 29. Creating alternate test behavior by using if-else structures.

77

The previous example illustrated how the definitions part of a TTCN-3 module,
a test case in particular, could be structured to offer alternate test behavior.
However, the control part of a module can also be structured using if-else
statements to create alternate test execution structures. The code example in
Figure 30 illustrates a selection structure implemented using a module parameter
and if-else structures. In this example, the module parameter feature_group is
used to select the group of test cases to be executed.

Combining parameterization and selection structures as illustrated in the
examples provides multiple reuse possibilities. The drawback is that these
structures increase the size and complexity of the code thus making it harder to
maintain. Nevertheless, using selection structures appropriately is
recommendable in all the viewpoints.

module CUT1_Features {
 // module parameter with a default value
 modulepar {integer feature_group}
 :
control {
 : // using module parameters to alternate control structures
 if (feature_group == 1) {
 execute(cut1_tc_group1_001());
 execute(cut1_tc_group1_002());
 :
 }
 else if (feature_group == 2) {
 execute(tc_group2_001());
 execute(tc_group2_002());
 :
 }
 : // other groups
}
}

Figure 30. Creating alternate test execution by using if-else structures.

6.3.7 Guideline 7. Use Common Types and Template Modification

In some cases it is possible and preferable to use shared TTCN-3 type or data
definitions for all communication (i.e. the same structured types for different
templates or template modification). An example of this is when all the
messages used in the system are identical or similar in structure, as illustrated in

78

Figure 31 [52]. Small variations can be carried out using e.g. template
parameterization and/or modification and optional fields. Modification should be
favored over parameterization, because it provides a later design decision which
is commonly considered to be a major enabler for reuse. In parame-terization the
parameter is bound to a specific field whereas any field can be replaced when
using modification.

BYE

UDP Datagram
Source IP: 100.101.102.103

Source port: 42172
Destination IP: 200.201.202.203

Destination port: 5060

UDP Datagram
Source IP: 200.201.202.203

Source port: 60134
Destination IP: 100.101.102.103

Destination port: 5060

200 OK

100.101.102.103 200.201.202.203

Figure 31. Ending an SIP session.

Common Type Definitions

Figure 31 presents a simple example of ending a SIP session [52 p. 31]. A quick
assessment of the figure reveals that the message structures of the BYE and 200
OK are identical. Hence, the same structured type could be used when creating
templates for these two messages as illustrated in the code example in Figure 32.

The code example in Figure 32 presents a truncated type definition for a SIP
message (SIPMessageType) that can be used in different template definitions.

79

Using a common type definition for all the message templates (i.e. different SIP
messages) is not reuse, but can be compared to a function call. However, the
type definition and the templates can be reused when testing different SIP
applications, e.g. user agents or servers. In addition, this approach decreases the
maintenance effort, as is typical of test reuse.

module SIP_Messages {
 :
 type record SIPMessageType {
 : // headers via, call-id, cseq, content-length, optional headers etc.
 charstring source,
 charstring sourceport,
 charstring destination,
 charstring destination_port
 }
 template SIPMessageType BYEMessage := {
 :
 source := "100.101.102.103",
 sourceport := "42172",
 destination := "200.201.202.203",
 destination_port := "5060"
 }
 template SIPMessageType OK_200_Message := {
 :
 source := "200.201.202.203",
 sourceport := "60134",
 destination := "100.101.102.103",
 destination_port:= "5060"
 }
 :
}
module SIP_UserAgent_TCs {
 import from SIP_Messages all; // reuse SIP message types & templates
 :
}
module SIP_Server_TCs {
 import from SIP_Messages all; // reuse SIP message types & templates
 :
}

Figure 32. Reusing a structured type and templates.

In some cases, combining structured types may present a reuse possibility as, for
example, in a protocol stack where messages are �extended� on each layer by
adding simple or complex headers. The code example in Figure 33 illustrates the
matter. In the example, the type definition of the top layer message
(TOPLayerMessage) is used as a part of the middle layer message
(MIDDLELayerMessage), which in turn is used as a part of the bottom layer

80

message (BOTTOMLayerMessage). Hence, if there are any changes in the
message structures in the top or middle layer, they will only affect the code in
the top or middle layer modules. Thus, the changes can be made in a concen-
trated manner, which decreases the maintenance effort.

module TOPLayer {
 type record TOPLayerMessage { // top layer message definition
 charstring field1,
 integer field2
 }
 :
}
module MIDDLELayer {
 import from TOPLayer all;
 type record MIDDLELayerMessage { // middle layer message definition
 TOPLayerMessage field1, // reuse top layer msg
 hexstring field2,
 bitstring field3
 }
 :
}
module BOTTOMLayer {
 import from TOPLayer all;
 import from MIDDLELayer all;
 type record BOTTOMLayerMessage { // bottom layer message definition
 MIDDLELayerMessage field1, // reuse top and middle layer msg
 octetstring field2,
 float field3
 }
 template BOTTOMLayer BOTTOMLayer_Message := {
 field1 := {{"TOPLayer header", 1}, 'AC01B'H, '0011'B},
 field2 := 'AE24'O,
 field3 := 1452.4
 }
 :
}

Figure 33. Combining structured types.

Template Modification

The code example in Figure 34 illustrates template modification that is used to
provide a simple form of inheritance. In the example, any template field and its
corresponding value or matching symbol that is defined in the modified template
replaces the one specified in the parent template. Template modification should
be used, especially if templates are large but very similar.

81

module IntegrationTests {
 template SIPMessageType BYEMessage := {
 :
 protocol:= "UDP Datagram",
 source:= "100.101.102.103",
 sourceport:= "42172",
 destination:= "200.201.202.203",
 destination_port:= "5060"
 }
 // fields protocol and destination_port are unchanged
 template SIPMessageType OK_200_Message modifies BYEMessage := {
 :
 source:= "200.201.202.203", // modified
 sourceport:= "60134", // modified
 destination:= "100.101.102.103" // modified
 }
}

Figure 34. Template modification.

Reusing and combining structured types and using template modification is
applicable to all viewpoints. Perhaps the greatest savings are found in areas of
communication and protocol testing where messages are similar or at least the
basic structure is the same.

6.3.8 Guideline 8. Use Wildcards

The use of wildcards (? and *) prevents overspecialization of any
parameterizable language element, making them more generic and thus more
reusable. Wildcards can be used instead of values or inside values, in received
operations only (i.e. receive, getcall, getreply and catch operations) [4].

Early in test development, it is not always necessary to know or predict which
concrete values are correct for received messages, e.g. the functionality of the
IUT is not exactly known, so its produced outputs are vague. Sometimes it is
only necessary to confirm that the IUT is stabile and a message or a call comes
across. For example, in integration testing it is necessary to guarantee basic
interoperation (e.g. a message or call comes across) whereas system testing takes
interoperation to more specific level (e.g. a message or call comes across with
the right values). The code example in Figure 35 illustrates the use of wildcards.
In this example, the template CCMessageSend has a specific values set, whereas

82

the template CCMessageReceive uses wildcards, making it possible to use the
same template for multiple receive operations.

module IntegrationTests {
 :
 type record CCMessageType {
 charstring field1,
 boolean field2 optional,
 integer(3) field3
 }
 template CCMessageType CCMessageSend(boolean value2) := {
 field1 := �Begin�,
 field2 := value2, // specific value from parameter
 field3 := {128, 4, 8}
 }
 template CCMessageType CCMessageReceive := {
 field1 := �*�, // any charstring
 field2 := *, // true or false
 field3 := {128, ?, 8} // any integer as second value
 }
 :
 PCO1.send(CCMessageSend(true)); // every value is determined
 PCO1.receive(CCMessageReceive); // some values are be undetermined
 :
 PCO1.send(CCMessageSend(false));
 PCO1.receive(CCMessageReceive); // same template for receive operations
 :
}
module SystemTests {
 import from IntegrationTests { type CCMessageType }
 :
 template CCMessageType CCMessageReceive := {
 field1 := �Begin�,
 field2 := true,
 field3 := {128, 4, 8}
 }
 :

 PCO1.receive(CCMessageBegin:{�Begin�, true, MyIntegers(3)});
 PCO1.receive(CCMessageReceive);
 :

}

Figure 35. Use of wildcards and reuse of structured type.

This guideline is applicable to all viewpoints and perhaps (as with Guideline 7)
the best profits could be found in areas of communication and protocol testing.

83

6.3.9 Guideline 9. Modularize Tests According to Components

Test suite structuring means modularization of all the elements found in the test
suite. Good modular structures support reusability and maintainability of tests
[49]. Therefore, as far as vertical reuse is concerned, it should be considered
whether dividing test cases into TTCN-3 modules according to the component
that they test should be applied. However, depending on the size, variability and
complexity of the CUT, the size of the module may grow to an undesiredable
level. In this case, additional criteria for test case division should be considered.
Preambles, bodies and postambles should be placed in their own module
according to CUT as well. Thus, they are separated from any specific testing
level and can be imported and reused in another testing level or type of testing.
Furthermore, it can be stated that everything in the definitions part of the TTCN-
3 module that can be used in testing another component or that can be reused on
another testing level should be placed in specific modules or at least grouped
within one module.

Within the TTCN-3 module, grouping the definitions enables their reuse for
similar tests. Test cases can also be grouped based on the testing type or level
where they are thought to be of the most use and then imported later on.
However, importing definition groups separately may be considered laborious
and the real selection of test cases happens in the control part, which cannot be
imported. Therefore, we can conclude that in most cases, grouping enhances
readability more than reusability. The code example in Figure 36 illustrates how
the definitions part could be divided into various groups.

module CUT1_Testcases {
 group Configurations {/*...*/} // components, ports
 group Declarations {/*...*/} // timers, signatures, templates,�
 group Behavior {
 testcase CUT_DRC_001() /*...*/
 testcase CUT_DRC_002() /*...*/
 :
 group LoadTests { // LoadTesting
 testcase CUT1_DRC_INT_001() /*...*/
 testcase CUT1_DRC_INT_002() /*...*/
 } // LoadTests
 } // Behavior
}

Figure 36. Dividing the definitions part into different modules and grouping of
test cases.

84

When proceeding to integration testing, we can either import the grouped
definitions of one module or import everything from the necessary modules. The
latter option is an easier and less error-prone approach. The code example in
Figure 37 illustrates the use of import clause and the �selection� of test cases in
the control part.

module IntegrationTests {
 // importing only the specific groups of CUT1_Testcases
 import from CUT1_Testcases { group Configurations }
 import from CUT1_Testcases { group Declarations }
 import from CUT1_Testcases { group Behavior }
 : // importing everything from specific modules
 import from CUT2_Testcases all;
 import from CUT2_Configurations all;
 : // The �selection� of test cases is in the control part
control {
 execute(CUT1_DRC_INT_001());
 execute(CUT2_DRC_INT_001());
 :
}
}

Figure 37. Importing (reusing) specific parts or all parts.

As is clearly observable from the presented examples and the previous
paragraphs, this guideline is best suited for the vertical viewpoint.

6.3.10 Guideline 10. Modularize Tests According to Features

This guideline can be seen as an alternative to the previous guideline. As far as
horizontal or historical reuse is concerned, it should be considered whether
placing all the test cases in a module according to the feature they test should be
applied. However, this can possibly divide the test cases of one CUT into more
than one module and may also explode the amount of modules. This guideline
may be most applicable when feature-based software development and testing is
applied as studied by Korhonen et al.

As with the previous guideline, everything in the definitions part that can be
used in testing another feature or that can be reused in testing another product or
product release should be placed in specific modules or at least grouped within
one module. Collecting the test cases according to the feature they test, does not

85

provide a clear image of what they actually test. Meaning that it may be difficult
to perceive the IUT for a certain test case just by looking at that test case.
Therefore, grouping could be applied if the feature embodies test cases for
various components. This is illustrated in the code example in Figure 38.

module FeatureONEInProductA { // feature
 :
 group CUT1_TCs{ // test cases for CUT1
 testcase CUT1connect01...
 testcase CUT1connect02...
 :
 }
 group CUT2_TCs{ // test cases for CUT2
 testcase CUT2connect01...
 testcase CUT2connect02...
 :
 }
:
}
module CControlForProductB {
 import from FeatureONEInProductA { group CUT1_TCs }
 import from FeatureONEInProductA { group CUT2_TCs }
 import from FeatureFOURInProductB all;
 :
control {
 execute(CUT1connect01...);
 :
 execute(CUT2connect01...);
 :
}
}

Figure 38. Reusing some of the tests found in products A and B.

As noted in the previous paragraphs and is apparent from the presented example,
this guideline is best applied to horizontal and historical viewpoints and
grouping merely enhances the possibility to apply it to vertical reuse as well.

86

7. Case Study: Vertical Reuse in Protocol
Testing

This chapter presents a case study where the guidelines presented in chapter 6
are used in implementing a selection of reusable TTCN-3 tests for two protocols.
The selection of tests is made on the basis of reuse potential, which is discussed
later on. The purpose of the tests created for reuse is to validate conformity of
the two protocols against respective protocol standards. Test reusability is
studied when integration tests are created with reuse, based on the reusable
material.

In this study, the tests are not executed on a real test system that would provide
information about the maturity of the protocol implementations and validity of
the tests. Clearly, test execution would provide valuable information, however, it
has little significance when evaluating the applicability of the presented
guidelines and the level of reuse. This case study was performed in cooperation
with the VTT Technical Research Centre of Finland and NetHawk.

7.1 Introduction

The two protocols chosen for this case study are the Service Specific Connection
Oriented Protocol (SSCOP) [53] and the Service Specific Coordination Function
for support of signalling at the User Network Interface (SSCF-UNI), depicted in
Figure 39 [54]. SSCOP and SSCF are successive layers in the signalling ATM
Adaptation Layer (SAAL) that is used for reliable signalling between ATM
endpoints. In fact, SAAL is a combination of two sublayers: a common part and
a service specific part. The SSCOP and SSCF-UNI are located in the service
specific part also known as the Service Specific Convergence Sublayer (SSCS).
[53]

87

SSCF-UNI

SSCOP

Common Part
AAL Protocol

(CP-AAL)

Service Specific
Convergence Sublayer

(SSCS)
AAL Functions

Common Part
AAL Functions

SAAL-SAP
SAAL primitives

ATM SAP
ATM primitives

AA-Signals

Peer-to-peer
PDUs

Peer-to-peer
PDUs

Figure 39. AAL protocol stack.

SAAL at the UNI provides the following services [54]:

- Unacknowledged transfer of data on point-to-point and point-to-multipoint
ATM connections

- Assured transfer of data on point-to-point ATM connections

- Transparency of transferred data (i.e. no restrictions to content, format or
coding)

- Means to establish and release SAAL connections for assured data transfer.

The Service Specific Connection Oriented Protocol (SSCOP) is a peer-to-peer
protocol providing generic reliable data transfer service for different AAL
interfaces. The protocol has ten possible states, and it communicates with SSCF-

88

UNI, system management layer and a peer entity using AA signals and PDUs.
SSCOP performs the following functions [53 p. 4]:

- Sequence integrity of the transmitted user data

- Assured and unassured transfer of user data

- Error detection and recovery from errors in the operation of the protocol

- Reporting errors to layer management

- Error correction using selective retransmission

- Flow control (i.e. rate of transmission)

- Connection control (i.e. connection establishment, release and
resynchronization)

- Connection maintenance in case of a prolonged absence of data transfer

- Local data retrieval by the SSCOP user

- Status information exchange between peer entities.

The Service Specific Coordination Function for support of signalling at the User
Network Interface (SSCF-UNI) maps the services provided by the SSCOP to the
needs of the SAAL user. It communicates with SSCOP, the system management
layer and the SCCOP user using AA signals and AAL primitives. [54]

7.2 Planning and Preparation

Due to the time limitations and protocol relations, it was decided that the vertical
reuse approach (i.e. reuse between testing levels) would be most suitable for the
case study. The two sides of reuse were identified. Development for reuse
consists of designing and implementing reusable tests for SSCOP and SSCF-
UNI. Development with reuse means reusing the tests in designing and
implementing integration tests.

Development for reuse began by getting familiar with the recommendations of
the two protocols provided by ITU-T. Based on the recommendations, test
purposes for the two protocols were identified and documented. Development

89

with reuse began by examining the reuse potential of the documented test
purposes, so that only those test purposes with real reuse potential would end up
being implemented. The reuse potential of component tests was identified based
on the compound state transition table (known from this point onward as the
transition table) presented in the recommendation of the SSCF-UNI. The
transition table defines the possible state combinations of SSCF-UNI and
SSCOP [54 p. 11].

It was decided that only the possible state combinations and use of valid
messages as events would provide sufficient scope to study reuse of tests.
However, one �impossible� state combination was added later on, merely out of
curiosity, as it had virtually no effect on the results of this study. Figure 40
illustrates the process of creating the test purposes for component (i.e. for reuse)
and integration (i.e. with reuse) testing. The numbers inside the brackets indicate
the number of documented test purposes.

TPs
for

integrated
SSCOP

and
SSCF-UNI

(29)

SSCF-UNI
ITU-T

Q.2130

SSCOP
ITU-T

Q.2110

TPs
for

SSCOP
(635)

State transition
table

TPs
for

SSCF-UNI
(52)

Figure 40. Creation of test purposes.

Limiting the scope to only possible states and valid messages meant that less
than half of the test purposes for SSCF-UNI and only a fraction of the test
purposes for SSCOP were to be implemented as test cases. However, the effort

90

used in creating the test purposes that were not implemented was not wasted, for it
was used in evaluating the reuse potential of tests outside the scope of this thesis.

7.3 Design and Specification

After the test purposes were documented and the reuse potential was identified,
the selected test purposes were to be refined into reusable component tests. As
mentioned in the preceding section the transition table was used in identifying
the necessary test purposes for integration testing. In addition, it was also used in
selecting the component test purposes, those with real reuse potential in the
given scope, to be implemented.

Table 4 presents a fraction of the transition table. The compound states are
ordered pairs P/Q where P is the state of SSCF-UNI and Q is the state of
SSCOP. Some of the events identified as illegal and associated with a compound
state could be the result of collisions at the boundary between SSCOP and
SSCF-UNI. [54 p. 11] Illegal events were not in the scope of this study.

Table 4. Fraction of the compound state transition table.

Compound
state

Event

1/1 2/2 4/10 3/4 2/5

AAL-
ESTABLISH
request
{Parameter
Data}
(Note 6)

AA-ESTABLISH
request
{BR := Yes SSCOP-
UU := Parameter
Data} (Note 6)
State 2/2

Illegal AA-RESYNC
request
{SSCOP-UU :=
Parameter Data}
(Note 6)
State 2/5

AA-ESTABLISH
request
{BR := Yes,
SSCOP-UU :=
Parameter Data}
(Note 6)
State 2/2

Illegal

Figure 41 illustrates the meaning of the events listed in the transition table. If the
event is AAL primitive it means that the SSCF-UNI receives it from the upper
layer, maps it into an AA signal and sends it to the SSCOP that then sends an
appropriate PDU. If the event is an AA signal it means that the SSCOP has

91

received a PDU from its peer and sent an appropriate AA signal to SSCF-UNI,
which maps it into AAL primitive.

SSCF-UNI
(state 1)

SSCOP
(state 1)

AAL primitive

PDU

AA signal

Event

AAL-
ESTABLISH
request
{Parameter
Data}
(Note 6)

Compound
State

1/1

AAL-
ESTABLISH
request
{Parameter
Data}
(Note 6)

AA-ESTABLISH
request
{BR := Yes,
SSCOP-UU :=
Parameter Data}
(Note 6)
State 2/2

AA-
RELEASE
indication
(SSCOP-
UU,
Source)

AAL-RELEASE
Indication
{Parameter
Data :=
SSCOP-UU}
(Note 6)
State 1/1

Illegal SSCF-UNI
(state 2)

SSCOP
(state 2)

AAL primitive

PDU

AA signal

AAL primitives

AA signals

Illegal

Illegal Illegal

Compound
state

Event

1/1 2/2 4/10 3/4 2/5

AA-RESYNC
request
{SSCOP-UU :=
Parameter Data}
(Note 6)
State 2/5

AA-ESTABLISH
request
{BR := Yes, SSCOP-
UU := Parameter
Data}
(Note 6) State 2/2

AAL-RELEASE
indication {Parameter
Data := SSCOP-UU}
(Note 6)State 1/1

AAL-RELEASE
indication
{Parameter Data :=
SSCOP-UU}
(Note 6)State 1/1

AAL-
ESTABLISH
request
{Parameter
Data}
(Note 6)

AA-ESTABLISH
request
{BR := Yes,
SSCOP-UU :=
Parameter Data}
(Note 6)
State 2/2

AA-RELEASE
indication
(SSCOP-UU,
Source)

AAL-RELEASE
Indication
{Parameter Data :=
SSCOP-UU}
(Note 6)
State 1/1

Figure 41. Events for the protocols based on the transition table.

In component testing, the test system is naturally responsible for sending all the
primitives, signals and PDUs. In integration testing, however, the signals
between SSCF-UNI and SSCOP are sent by either one of the protocols
depending on the triggering event. This has to be taken into consideration when
designing component tests, so that reusing testware in integration testing is as
effortless as possible.

92

Figure 42 depicts how the component test cases were designed. The signals in
the figure are sent by the test system in component testing. The yellow circles in
the figure represent a mechanism that was used to block the test system from
sending AA signals in integration testing. Blocking the test system from sending
a signal corresponds to the blocking briefly discussed in guidelines 1 and 2.

testcase
tc_pc_state_1_val_1()

SSCF-UNI

AAL primitive

AA signal

testcase
tc_pc_state_1_val_1()

PDUSSCOP

AA signal
testcase
tc_pc_state_2_val_7()

PDUSSCOP

testcase
tc_pc_state_2_val_4()

AAL primitive

layer3_pco.send(AAL-
ESTABLISH.request)

sscop_pco.receive(AA-
ESTABLISH.request)

sscf_pco.send(AA-
ESTABLISH.request)

peer_pco.receive(
BGN PDU)

PDU

sscf_pco.receive(AA-
RELEASE.indication)

peer_pco.send(
BGREJ PDU) PDU

SSCF-UNI

layer3_pco.receive(AAL-
RELEASE.indication)

sscop_pco.send(AA-
RELEASE.indication)

AA signal

AA signal

Figure 42. Test case designs for component tests (i.e. for reuse).

Figure 43 depicts how the integration test cases were designed. Signals marked
with yellow circles are now sent by the protocols, not by the test system.
However, the blocked signals are still received by the test system. This is
discussed more thoroughly in the next section that describes test implementation.

testcase
tc_pc_state_1_1_val_1()

SSCF-UNI

AAL primitive

AA signal

SSCOP PDUSSCOP

testcase
tc_pc_state_2_2_val_4()

AAL primitive

layer3_pco.send(AAL-
ESTABLISH.request)

sscop_pco.receive(AA-
ESTABLISH.request)

peer_pco.receive(
BGN PDU)PDU

sscf_pco.receive(AA-
RELEASE.indication)

PDU

SSCF-UNI

layer3_pco.receive(AAL
-RELEASE.indication)

AA signal

peer_pco.send(
BGREJ PDU)

Figure 43. Test case designs for integration tests (i.e. with reuse).

93

7.4 Implementation

During the implementation phase, it was necessary to cut a few corners. The
actual implementations of the two protocols were still under development at the
time of this case study. This meant that only the TE of the whole TTCN-3 test
system (Figure 10) was implemented. Nevertheless, this had only a minor effect
in the scope of this study.

Lack of implementation-specific information about the used messages,
(primitives, signals and PDUs) resulted in incomplete type definitions that
lowered the level of reuse. However, as the tests were not to be executed due to
unavailable protocol implementations and incomplete test systems, the control
parts of TTCN-3 modules were not implemented, thus increasing the level of
reuse (control parts could not have been reused). All in all, it can be stated that
despite these limitations, a more than adequate framework for the study of test
reuse and use of guidelines was available.

The test systems in the following figures (Figure 44 and Figure 45) depict
systems with all the necessary parts for test execution (depicted in Figure 10),
although their implementation was left for future work at this stage.

It was decided that there was no need for test system distribution in this study.
Therefore, test systems for component and integration testing were constructed
according to guideline 2. In component testing, the functionalities of the upper
and lower tester were very simple and realized using a single function running
on the MTC as illustrated in Figure 44. In the figure, the squares of red, blue and
white are the ports for various protocol instances.

94

SSCOP

UT 1
+

LT 1
on

MTC

SSCF-UNIMAA-Signals

UT 2
+

LT 2
on

MTC

MAA-Signals

layer3_pco

sscop_pco peer_pco

man_sscf_uni_pco

man_sscop_pco

sscf_uni_pco

Figure 44. Test systems for component testing of SSCF-UNI and SSCOP.

In integration testing, the upper and lower testers were divided into PTCs as
illustrated in Figure 45. The ports for AA signals (sscop_pco and sscf_uni_pco)
are used for checking that the protocol responsible for sending an AA signal to
the other protocol actually sends it. Hence, these ports provide intermediate
results helpful in interpreting failed or erroneous test cases.

SSCF-UNI

SSCOP

middle out

middle out
MTC

layer3_pco

sscop_pco

sscf_uni_pco

peer_pcoman_sscop_pco

man_sscf_uni_pco

LT 2 running
on PTC

UT 1 running
on PTC

Figure 45. Test system for integration testing.

95

module sscf_uni_lib {
 :
 type component sscf_uni_tester {
 port layer3_sscf_uni_pco layer3_pco[MAX_INSTANCES];
 port sscf_uni_sscop_pco sscop_pco[MAX_INSTANCES];
 port sscs_management_sscf_uni_pco man_sscf_uni_pco[MAX_INSTANCES];
 var t_role role := INITIATOR; // component variable
 timer T1 := 20.0;
 }
 function set_sscf_uni_role(in t_role a_role) runs on sscf_uni_tester {
 role := a_role;
 }
 :
 function request_initialization_indication_sscop(integer a_connection_id,
 template t_sscop_uu a_sscop_uu) runs on sscf_uni_tester {
 :
 if(role == INITIATOR) {
 sscop_pco[a_connection_id].send(aa_est_ind);
 }
 :
 [] layer3_pco[a_connection_id].receive(aal_est_ind) {
 :
 }
 :
 } // end of function request_initialization_indication_sscop
 :
}
module sscf_uni_testcases {
 import from sscf_uni_lib all;
 :
 testcase tc_pc_state_1_val_5() runs on sscf_uni_tester system sscf_uni_tsi {
 : // mappings, variables, etc.
 request_initialization_indication_sscop(connection, sscop_uu);
 : // unmapping
 }
 :
}
module sscf_uni_sscop_integration_testcases {
 import from sscf_uni_lib all;
 :
 testcase tc_pc_state_1_1_val_3() runs on sscf_uni_sscop_tester
 system sscf_uni_sscop_tsi {
 : // mappings, variables, etc.
 c_upper.start(set_sscf_uni_role(RECEIVER)); // set block
 c_upper.done;
 :
 c_upper.start(request_initialization_indication_sscop(connection,
 sscop_uu)); // reusing the body
 : // unmapping
 }
 :
}

Figure 46. Reusing the body.

96

Using a single function (as noted in guideline 2 and in section 7.3) meant that a
specific blocking mechanism had to be used to alternate test behavior so that
tests could be reused in integration testing. Test behavior was alternated by
changing the value of a test component variable and by using a selection
structure as discussed in guidelines 5 and 6, respectively. Test behavior was
encapsulated in a reusable test body according to guideline 3. Preambles were also
used as recommended in guideline 3, however, their potential for reuse was
considerably lower than those of test bodies, and in most cases the effort of
reusing them was higher than creating a specific solution for integration testing.
The code fractions of the actual implementation in Figure 46 illuminate the matter.

In the code fraction in Figure 46, a test component type named sscf_uni_tester is
defined in the module sscf_uni_lib. The type definition is used for the MTC in
component testing and the PTC (UT 1) in integration testing. The function
set_sscf_uni_role() is used to change the value of the component variable in
order to alternate test behavior defined in the function
request_initialization_indication_sscop(). In test case tc_pc_state_1_val_5(), the
function is used with the default value of the test component variable (INITIATOR),
whereas in test case tc_pc_state_1_1_val_3(), the default value of the variable is
changed so that the test system is blocked from sending the AA signal.

Common type definitions were used as a base for template instantiations for
various primitives, signals and PDUs as recommended in guideline 7. Use of
common type definitions is illustrated n the code fraction in Figure 47.

Guideline 9 was used to modularize tests. Test cases for SSCF-UNI and SSCOP
and integrated protocols were placed in their respective modules. Preambles and
test bodies for the protocols were placed in two modules. Type definitions for
signals and primitives were placed in their respective modules and common type
definitions for the two protocols in one module.

97

module sscf_uni_sscop { // definitions for the interface in between
 :
 type enumerated t_sscf_uni_sscop_signal_type {
 AA_EST_REQ, AA_EST_IND, ... , MAA_UNITDATA_REQ, MAA_UNITDATA_IND
 };
 :
 // AA-ESTABLISH type (request, response, indication, confirmation)
 type record t_aa_est {
 t_sscf_uni_sscop_signal_type aa_signal,
 t_sscop_uu sscop_uu,
 t_br br optional
 }
 :
}
module sscf_uni_lib {
 import from sscf_uni_sscop all;
 :
 function request_initialization_indication_sscop(integer a_connection_id,
 template t_sscop_uu a_sscop_uu) runs on sscf_uni_tester {
 // templates for AA-ESTABLISH.indication and AA-ESTABLISH.response
 var t_aa_est aa_est_ind := {AA_EST_IND, valueof(a_sscop_uu), omit};
 var t_aa_est aa_est_rsp := {AA_EST_RSP, SSCOP_NULL, YES};
 :
 }
 :
}

Figure 47. Use of common type definition for AA signals.

7.5 Analysis of Results

As discussed in section 7.4, a couple of factors set limitations to the test
implementation. However, from the beginning it was clear that the grounds for
good results in reuse levels were evident. As stated in section 5.1.1, vertical
reuse has three virtues: narrow domain, low variability of problems and static
interfaces. In this case, narrow domain was comprised of component and
integration tests for the two protocols. The problems were the conformance
requirements stated for the two protocols in their respective recommendations,
and there was no variability in them. This means that the protocols should
conform against given recommendations regardless of the context that they are
used in. Finally, even though protocol implementations were unavailable, it was
assumed with great confidence that their interfaces would be static.

98

7.5.1 Cost of Development For Reuse

The Relative Cost of Writing Reusable Software (RCWR) presented in section
3.6 describes the extra effort that is needed to make reusable software compared
to software that is meant for one time use only. In this case study, the extra effort
was caused by

- analysis of reuse potential, and

- designing and implementing the blocking mechanism discussed in sections
7.3 and 7.4.

Usually the extra effort includes such activities as

- analysis of potential reusers,

- extra documentation for reusers,

- reuser support in case of problems, and

- maintenance of the reusable components.

Therefore, based on the two lists, it is clear that the value of RCWR should be
considerably lower than those usually presented in industrial cases. Furthermore,
it should be noted that those industrial values for RCWR presented in section 3.6
are all based on reuse of software, not testware. What really made it difficult to
estimate the actual value of RCWR was the lack of experience in creating
corresponding tests without reuse. Nevertheless, the value of RCWR was
estimated to be as low as 1.1, which is significantly low when compared to the
RCWR value 1.5 recommended by Poulin and Caruso [35]. The low value of
RCWR was influenced by the following factors:

- the creator and reuser were the same person,

- well bounded and limited scope of reuse, and

- simple solutions for reuse, based on previously created guidelines.

99

7.5.2 Cost of Development With Reuse

The Relative Cost of Reusing Software (RCR) presented in section 3.6 describes
the effort of reusing software compared to effort of creating it from start to
finish. The effort of reusing in this case study was caused by

- importing the necessary definitions, and

- reusing preambles and bodies by means of function calls and the use of the
implemented blocking mechanism.

Usually the effort of reusing is caused by such activities as

- identifying the parts that can be created with reuse,

- searching for candidate components,

- evaluating candidate components, and

- investigating and adapting the best component.

RCR value was estimated to be as low as 0.05. Similarly to the estimated value
of RCWR, the estimated value for the RCR is considerably smaller than those
presented in industrial cases or recommended by Poulin and Caruso (0.2) [35].
However, such a low value is justified based on the same factors that influenced
the low value of RCWR.

In addition, as Bardo et al. have noted, in a very homogenous environment the values
of RCR and RCWR can be very low compared to general industrial values [38].

7.5.3 Level of Reuse

Reuse percent was studied in component and in integration testing. In component
testing, the reuse percent indicates the level of reusable testware created for reuse,
whereas in integration testing the reuse percent indicates the level of reusable
testware created with reuse. Obviously the number of lines created for reuse in
component testing is the same as the number of lines reused in integration testing.
The values for reuse metrics presented in section 3.6 are as follows:

100

- RSI = 845

- SSI (component testing) = 653

- SSI (integration testing) = 528.

This results in a total value of 2026 lines of source code (i.e. source
instructions). Reuse percents for component and integration testware based on
the equation (1) in section 3.6 are

%56 testware)(componentPercent Reuse ≈

%62e)on testwar(integratiPercent Reuse ≈ .

These results indicate that 56 percent of the implemented testware in component
testing was created for reuse and 62 percent in integration testing with reuse.
However, if all the test purposes with valid messages for SSCF-UNI and SSCOP
had been implemented, the level of reuse in component testware would have
been significantly lower.

If the 2026 lines of code would have been produced without reuse (WR), then
according to the equation (6) in section 3.6, the total cost without reuse is

NCC×= 2026WR .

The total development costs of for reuse, based on the equation (7) in section 3.6
and RCWR values of 1.5 (recommended by Poulin and Caruso [35]) and 1.1
(estimated value), are:

NCCfor ×≈= 25981.5) (RCWR reuse cost otalT

NCCfor ×≈= 21411.1) RCWR(reuse cost otalT .

The total development costs of with reuse, based on the equation (8) in section
3.6 and RCR values of 0.2 (recommended by Poulin and Caruso [35]) and 0.05
(estimated value), are:

NCCwith ×≈= 10290.2) (RCR reuse cost otalT

101

NCCwith ×≈= 842.1)0 (RCR reuse cost otalT .

By comparing the Total cost for reuse and WR, we can determine the ratio
describing how much more it costs to create reusable code compared to code
created for one time use only:

28.1
0262

25981.5) (RCWR ≈
×
×

→=
NCC
NCC

06.1
0262

21411.1) (RCWR ≈
×
×

→=
NCC
NCC

.

By comparing the Total cost with reuse and WR we can determine the ratio
describing how much less it costs to create reusable code compared to code
created for one time use only:

51.0
0262

10290.2) (RCR ≈
×
×

→=
NCC
NCC

42.0
0262

8420.05) (RCR ≈
×
×

→=
NCC

NCC
.

All in all, the results of this case study are very encouraging. In particular, the
low values of RCR and RCWR (even though they are estimated values) indicate
that test reuse has lots of potential. However, even when considerably higher
values of RCR and RCWR were used, the calculated total costs were still highly
comparable and incentive. From a subjective point of view, test reuse seems to
provide high productivity gains with very little extra effort.

7.5.4 Use of Guidelines

When evaluating the use of guidelines it should be noted that the guidelines were
not created specifically for the case study, but to support the creation of reusable
TTCN-3 tests in general. This means that the guidelines were not designed
specifically for conformance testing, but for all types of testing in general.

102

However, during the case study, refinements to the guidelines were made based
on the experiences of applying them into practice. The fact that some guidelines
were not used in the case study does not mean that they are unhelpful or
ineffective to use, but that they simply were not as applicable in this case study
as those that were used. In addition, few of the guidelines were exclusionary,
meaning that if a selection was made to apply one of the guidelines then some
other was excluded.

As noted in section 7.5.1, one of the reasons for a low RCWR value in the case
study was the use of predefined guidelines. Design and specification of reusable
TTCN-3 code was considerably easier since the reusability issues had been
contemplated beforehand. If the order had been reversed so that the case study
had been completed before creating any guidelines for reusable TTCN-3 code,
the amount and coverage of the guidelines would have been significantly
smaller.

Nevertheless, the case study had its own impact on guidelines as well, especially
on guidelines 1 and 2 dealing with the test system architecture. The impact of
architecture on code reusability had previously been issued in only one guideline
(guideline 1). During the case study, new aspects of the architectures relevance
to reusability were discovered that led to the splitting of guideline 1 into two
guidelines (guidelines 1 and 2). During the implementation phase, a few tips and
tricks were discovered that led to updating and refining some of the guidelines.
Table 5 summarizes the use of guidelines and their refinements.

Table 5. Use of guidelines in the case study.

Guideline Used
(Yes / No)

Excludes
(Guideline)

Refinements based on case study
(M=Major, m=minor, n=none)

1 No 2 M
2 Yes 1 M
3 Yes - n
4 No - n
5 Yes - m
6 Yes - n
7 Yes - n
8 No - n
9 Yes 10 m

10 No 9 n

103

When the results of the case study were presented at a meeting among project
partners, they raised the question of creating more specific guidelines for
protocol and conformance testing. In addition, there was a keen interest in
applying test reuse in domain than the one presented in this work. This will
hopefully lead to future work in the field of TTCN-3 test reuse.

104

8. Discussion
This chapter discusses how the objectives set for this work were reached, the
importance of the work and the prospects for future work.

The first objective was to develop guidelines for reusable TTCN-3 code
supported by literature studies of software reuse and testing, and studies of test
reuse done in the past and especially in the TT-Medal project. This objective
was successfully reached and ten guidelines for reusable TTCN-3 code were
introduced in chapter 6. These guidelines are based on the techniques known
from software reuse, TTCN-3 test system characteristics, test suite and test case
structures and the language features of TTCN-3.

The second objective was to apply predefined guidelines in a case study where
reusable testware was created with the help of the guidelines. This objective was
reached as well, as six out of ten guidelines were used in the case study. However,
two guidelines out of the six that were applied excluded the use of two others.
Hence, it can be stated that six out of eight were actually applied. Application of
the guidelines in practice also provided valuable feedback that, in some cases,
resulted in updates and refinements to the guidelines. The use of guidelines also
had a positive impact on the measured levels and profits of test reuse.

The third objective was to gain experience of TTCN-3 test reuse. This objective
was also achieved during the case study, and the experiences were very
encouraging, whether measured using mathematical equations or based on
personal experience.

The importance of the work to the software industry and science community are
arguable. Today, the pressures on software testing are increasing constantly and
new ways to test more efficiently and effectively are required, not only by the
industrial partners of the TT-Medal project, but all over. Therefore, the results of
this thesis will be published as presentations in the meetings among the TT-
Medal partners and in the form of conference papers in scientific forums. In
addition, it is my firm belief that the concepts of test reuse could be applied in
other test scripting languages as well, as already seen in some of the past studies,
thus widening the scope of interest for this work. This thesis will also be
published in the form of a VTT Publication.

105

It is important to note that the concept of test reuse is not as well-known as that
of software reuse. In addition, as a programming language TTCN-3 is still very
young and relatively unknown. Therefore, plenty of work still lies ahead to
promote the application of TTCN-3 in testing software systems. However, the
work will be easier when the use of TTCN-3 can be backed up with successful
studies such as the one conducted in this work.

Some future work on test reuse has already been agreed on. The results of the
case study have been presented to the project partners to promote the possible
future cooperation on test reuse. In fact, some preliminary actions have already
been agreed upon to study test reuse in a domain than the one presented in this
thesis. In addition, there have been preliminary discussions on making
reusability guidelines specifically for protocol and conformance testing. It would
also be interesting to study the reuse of TTCN-3 tests more thoroughly from the
horizontal and historical viewpoints.

106

9. Summary
The purpose of this thesis was to promote the reuse of TTCN-3 test scripts by
creating guidelines for reusable TTCN-3 code that were applied in practice in an
industrial case study.

First, an introduction to the topic and the motivation and scope of the work was
presented. Then, the principles of software testing and software reuse were
presented, after which a short introduction of TTCN-3 was given. Test reuse was
presented based on the work done in the TT-Medal project and earlier research
experience was briefly presented and compared to this work.

After laying out the basis, the actual work was presented. The guidelines, which
were based on software reuse techniques, TTCN-3 test system and language
characteristics, and test suite and test case structures, were presented. The
guidelines were applied in practice in a case study where their applicability was
determined and the level and profits of test reuse were measured. More than half
of the guidelines were applied and they supported the low costs of reuse. All in
all, the reuse levels and the cost estimations obtained in the case study were very
encouraging and they will have a positive impact when future actions are
decided.

107

References
[1] Graham, D., Herzlich, P. & Morelli, C. (1995) CAST report, Computer

Aided Software Testing. 3rd. ed. London, UK: Cambridge Market
Intelligence. 327 p.

[2] NIST National Institute of Standards and Technology (2002). The
Economic Impacts on Inadequate Infrastructure of Software Testing. U.S.
Department of Commerce, Technology and Administration, Planning
Report 02-03, May, 2002. 309 p.

[3] Shea, B. (25.10.2004) Software Testing Gets New Respect.
URL: http://www.informationweek.com/793/testing.htm

[4] ETSI ES 201 873-1 (2003). Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core
Language. Sophia Antipolis Cedex, FR: European Telecommunications
Standards Institute. 178 p.

[5] Tests & Testing Methodologies with Advanced Languages (22.10.2004).
URL: http://www.tt-medal.org/index.htm

[6] Myers, G.J. (1979) The Art of Software Testing. New York, NY, USA:
John Wiley & Sons, Inc. 177 p.

[7] Hetzel, B. (1988) The Complete Guide to Software Testing. Wellesley,
MA, USA: QED Information Sciences. 284 p.

[8] Kit, E. (1995) Software Testing in the Real World: Improving the Process.
Harlow, Essex, UK: Addison�Wesley. 252 p.

[9] Ould, M.A. & Unwin, C. (1988) Testing in software development.
Cambridge, UK: Press Syndicate of the University of Cambridge. 124 p.

[10] Fewster, M. & Graham, D. (1999) Software Test Automation: Effective
use of test execution tools. London, UK: ACM Press. 574 p.

108

[11] Koomen, T. & Pol, M. (1999) Test Process Improvement: A practical
step-by-step guide to structured testing. Harlow, Essex, UK: Addison-
Wesley. 215 p.

[12] Jorgensen, P.C. (1995) Software Testing: A Craftsman�s Approach. Boca
Raton, FL, USA: CRC Press. 254 p.

[13] Korhonen, J., Salmela, M. & Kalaoja, J. (2000) The reuse of tests for
configured software products. Espoo: VTT Publications 406. 98 p. + app. 28 p.
http://www.vtt.fi/inf/pdf/publications/2000/P406.

[14] Latvakoski, J. (1997) Integration test automation of embedded communication
software. Espoo: VTT Publications 318. 124 p.

[15] Patton, R. (2001) Software Testing. Indianapolis, IN, USA: SAMS. 389 p.

[16] Binder, R.V. (1999) Testing Object-Oriented Systems: Models, Patterns
and Tools. Reading, MA, USA: Addison�Wesley. 1191 p.

[17] Beizer, B. (1990) Software Testing Techniques. New York, NY, USA:
Van Nostrand Reinhold. 550 p.

[18] IEEE Std 601.12-1990 (1990). IEEE Standard Glossary of Software
Engineering Terminology. New York, NY, USA: The Institute of
Electrical and Electronics Engineers, Inc. 84 p.

[19] ISO/IEC 9646-1 (1994). Information technology � Open Systems
Interconnection � Conformance testing methodology and framework �
Part 1: General concepts. Genève, CH: IEC. 46 p.

[20] Sarikaya, B. (1993) Principles of Protocol Engineering and Conformance
Testing. New York, NY, USA: Ellis Horwood. 502 p.

[21] Schieferdecker, I. & Grabowski, J. (2000) Conformance Testing with
TTCN. Telektronikk, 96 (4), pp. 85�95. ISSN 0085-7130

109

[22] Mäntyniemi, A. & Mäki-Asiala, P. (2004) Improving Efficiency of Testing
with Test Reuse: Development of Reusable Test Assets. In: Proceedings of
the First International Workshop on Quality Assurance in Reuse Contexts,
August 30th � September 2nd, Boston, MA, USA. Pp. 11�18.

[23] NATO Communications and Information Systems Agency (1991).
Standard for Management of a Reusable Software Component Library.
Brussels, BE: NATO Communications and Information Systems Agency,
Vol. 2. 65 p.

[24] Jacobson, I., Griss, M. & Johnsson, P. (1997) Software Reuse � Architecture,
Process and Organisation for Business Success. New York, NY, USA:
Harlow: Addison�Wesley. 497 p.

[25] McClure, C.L. (1997) Software Reuse Techniques: Adding Reuse to the
System Development Process. Upper Saddle River, NJ, USA: Prentice
Hall, cop. 350 p.

[26] IEEE Std 1517-1999 (1999). IEEE Standard for Information Technology
� Software Life Cycle Processes � Reuse Processes. New York, NY,
USA: The Institute of Electrical and Electronics Engineers, Inc. 43 p.

[27] Glass. R.L. (1998) Reuse: What's Wrong with This Picture? Software,
IEEE, Vol. 15, Iss. 2, March/April, pp. 57�59.

[28] Karlsson, E.-A. (1995) Software Reuse: A Holistic Approach. New York,
NY, USA: John Wiley & Sons, Inc. 510 p.

[29] Glass, R.L. (17.8.2004) What�s Wrong with Software Reuse?
URL: www.stickyminds.com/se/S2731.asp.

[30] Morisio, M., Michel, E. & Tully, C. (2002) Success and Failure Factors in
Software Reuse. IEEE Transactions on Software Engineering, Vol. 28,
Iss. 4, pp. 340�357.

[31] Crnkovic, I. (2001) Component-based Software Engineering � New Challenges
in Software Development. Sofware Focus, Vol. 2, Iss. 4, pp. 127�133.

110

[32] Szyperski, C. (1997) Component Software, Beyond Object Oriented
Programming. Harlow, Essex, UK: Addison�Wesley Longman Limited. 411 p.

[33] D'Souza, D.F. & Wills, A.C. (1998) Objects, Components, and
Frameworks with UML, The Catalysis Approach. Reading, MA, USA:
Addison�Wesley Longman, Inc. 785 p.

[34] Möller, K.H. & Paulish, D.J. (1993) Software metrics: a practitioner's
guide to improved product development. London, UK: Chapman & Hall
Computing. 257 p.

[35] Poulin, J.S. & Caruso, J.M. (1993) A Reuse Metrics and Return on
Investment Model. In: Advances in Software Reuse: Proceedings of the
Second International Workshop on Software Reusability, Lucca, IT, 24�
26 March. Pp. 152�166.

[36] Favaro, J. (1991) What price reusability? A case study. ACM SIGAda Ada
Letters, Vol. 11, Iss. 3, pp. 115�124.

[37] Lim, W.C. (1994) Effects of reuse on quality, productivity, and economics.
IEEE Software, Vol. 11, Iss. 5, pp. 23�30.

[38] Bardo, T., Elliot, D., Krysak, T., Morgan, M., Shuey, R. & Tracz, W.
(6.10.2004) CORE: A Product Line Success Story.
URL: http://www.stsc.hill.af.mil/crosstalk/1996/03/Core.asp.

[39] Grabowski, J., Hogrefe, D., Réthy, G., Schieferdecker, I., Wiles, A. &
Willcock, C. (2003) An Introduction to the Testing and Test Control Notation
(TTCN-3). Computer Networks: The International Journal of Computer and
Telecommunications Networking, Vol. 42, Iss. 3, pp. 375�403.

[40] Schieferdecker, I. & Vassiliou-Gioles, T. (2003) Realizing distributed
TTCN-3 test systems with TCI. In: Proceedings of the 15th IFIP
International Conference on Testing Communicating Systems, TestCom
2003, May 26�28, Cannes, FR. Pp. 95�109.

111

[41] Schieferdecker, I. (2004) TTCN-3 Tutorial. Test & Testing Methodologies
with Advanced Languages Seminar, 26th of March, Oulu, FI.

[42] Dai, Z.R., Grabowski J. & Neukirchen H. (2002) Timed TTCN-3 � A
Real-Time Extension For TTCN-3. In: Proceedings of the IFIP 14th
International Conference on Testing of Communicating Systems,
TestCom 2002, March, 19�22, 2002, Berlin, DE: Kluwer Academic
Publishers. Pp. 407�424.

[43] Pulkkinen, P. (2004) Mapping C++ Data Types into a Test Specification
Language. University of Oulu, Department of Electrical and Information
Engineering, Oulu, FI. Master�s Thesis. 83 p.

[44] ETSI ES 201 873-5. (2003). Methods for Testing and Specification
(MTS); The Testing and Test Control Notation version 3; Part 5: TTCN-3
Runtime Interface (TRI). Sophia Antipolis Cedex, FR: European
Telecommunications Standards Institute. 55 p.

[45] ETSI ES 201 873-6. (2003). Methods for Testing and Specification
(MTS); The Testing and Test Control Notation version 3; Part 6: TTCN-3
Control Interface (TCI). Sophia Antipolis Cedex, FR: European
Telecommunications Standards Institute. 106 p.

[46] Mäki-Asiala, P., Kärki, M., Mäntyniemi, A., Lehtonen, D., Schieferdecker, I.
& Vouffo, A. (2004) Requirements of Reusable TTCN-3 Tests (1.0).
Technical report in project: Test & Testing Methodologies with Advanced
Languages (TT-Medal), Oulu, FI. 74 p.

[47] Ruuska, P. & Kärki, M. (2004) TTCN-3 Language Characteristics in
Producing Reusable Test Software. In: Proceedings of the 8th
International Conference on Software Reuse: Methods, Techniques and
Tools: ICSR 2004, Madrid, ES, July 5�9. Pp. 49�58.

[48] Gao, J.Z. (1999) Testing Component-Based Software, STARWEST�99,
San Jose, CA, USA, June. 19 p.

112

[49] ETSI Technical Report 190 (1995). Methods for Testing and Specification
(MTS); Partial and multi-part Abstract Test Suites (ATS); Rules for the
context-dependent reuse of ATSs. Sophia Antipolis Cedex, FR: European
Telecommunications Standards Institute. 56 p.

[50] Smith, E.G. (2001) Designing Reusable Test Automation �The Sequencer�.
In: Software Testing Analysis & Review STARWEST 2001, October 29th
� November 2nd, San Jose, CA, USA. 12 p.

[51] Hörnstein, J. & Edler, H. (2002) Test Reuse in CBSE Using Built-in
Tests. In: Proceedings of the Workshop on Component-based Software
Engineering, Composing systems from components. Lund, SE. Pp. 11�14.

[52] Johnston, A.B. (2001) SIP: understanding the session initiation protocol.
Boston, MA, USA: Artech House. 201 p.

[53] ITU-T Q.2110 (1994). B-ISDN ATM Adaptation Layer � Service Specific
Connection Oriented Protocol (SSCOP). Geneva, CH: International
Telecommunication Union. 99 p.

[54] ITU-T Q.2130 (1994). B-ISDN SIGNALLING ATM Adaptation Layer �
Service Specific Coordination Function (SSCF) for support of signalling
at the user network interface (SSFC at UNI). Geneva, CH: International
Telecommunication Union. 58 p.

Published by

 Series title, number and
report code of publication

VTT Publications 557
VTT�PUBS�557

Author(s)
Mäki-Asiala, Pekka
Title

Reuse of TTCN-3 code
Abstract
Today, the growing size and complexity of software along with decreasing development
times causes tremendous challenges to software testing. This has driven the whole
software industry to seek new ways to test more efficiently and effectively.

Software reuse has been practiced for decades and successful industrial studies have
demonstrated such profits as increased productivity and quality as well as decreased
development times and costs. This raises the question of whether software reuse could be
applied to a testing context as well.

This work studies the reuse of tests that are created with a new test specification and
implementation language TTCN-3 (Testing and Test Control Notation). In order to apply
reuse into a testing context, a set of guidelines for reusable TTCN-3 code is presented.
These guidelines are based on the techniques familiar from software reuse, TTCN-3 test
system and language characteristics, and on some of the specifics of software testing.
Applicability of the guidelines, and the level and profits of TTCN-3 test reuse are
determined in a case study. The case study plainly demonstrates that the majority of the
guidelines were successfully applied and that they had a positive impact on measured
levels and profits of reuse. The overall results, experiences and impressions of TTCN-3
test reuse during this work were very encouraging and will hopefully lead to future
projects in areas of test reuse.

Keywords
software testing, software reuse, test reuse

Activity unit
VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN�90571 OULU, Finland

ISBN Project number
951�38�6431�6 (soft back ed.)
951�38�6432�4 (URL:http://www.vtt.fi/inf/pdf/)

E3SU00131

Date Language Pages Price
January 2005 English, Finnish abstr. 112 p. C

Name of project Commissioned by

Series title and ISSN Sold by

VTT Publications
1235�0621 (soft back ed.)
1455�0849 (URL: http://www.vtt.fi/inf/pdf/)

VTT Information Service
P.O.Box 2000, FIN�02044 VTT, Finland
Phone internat. +358 20 722 4404
Fax +358 20 722 4374

Julkaisija

 Julkaisun sarja, numero ja
raporttikoodi

VTT Publications 557
VTT�PUBS�557

Tekijä(t)
Mäki-Asiala, Pekka

Nimeke

TTCN-3-koodin uudelleenkäyttö

Tiivistelmä

Ohjelmistojen koon ja kompleksisuuden kasvaminen ja samanaikainen kehitys-ajan
lyhentyminen aiheuttavat ohjelmistotestaukselle suuria haasteita. Tämä suuntaus on
pakottanut ohjelmistoteollisuuden etsimään uusia keinoja testauksen tehostamiseksi.

Ohjelmistojen uudelleenkäyttöä on harjoitettu vuosikymmenien ajan. Uudelleen-
käytön menestyksekkään soveltamisen on huomattu tarjoavan merkittäviä etuja,
kuten tuottavuuden ja laadun parantumista, kehityskulujen vähenemistä ja
kehitysajan lyhentymistä. Tämä herättää kysymyksen uudelleenkäytön sovelta-
misesta myös ohjelmistotestauksessa.

Tässä työssä tutkittiin TTCN-3-kielellä luotujen testien uudelleenkäyttöä. Tätä
varten luotiin erityiset testien uudelleenkäyttöä edistävät ohjeet, jotka pohjautuvat
tunnettuihin ohjelmistojen uudelleenkäyttötekniikoihin, TTCN-3-testijärjestelmän ja
-kielen ominaisuuksiin ja ohjelmistotestauksen erityispiirteisiin. Ohjeiden soveltu-
vuutta ja testien uudelleenkäyttöä arvioitiin tapaustutkimuksessa, joka osoitti ohjeiden
hyödyllisyyden saavutetuissa tuloksissa. Yleisvaikutelma tuloksista ja kokemuksista
oli rohkaiseva, mikä toivottavasti heijastuu tulevaisuuteen testien uudelleenkäyttöä
tutkivina jatkohankkeina.

Avainsanat
software testing, software reuse, test reuse

Toimintayksikkö
VTT Elektroniikka, Kaitoväylä 1, PL 1100, 90571 OULU

ISBN Projektinumero
951�38�6431�6 (nid.)
951�38�6432�4 (URL: http://www.vtt.fi/inf/pdf/)

E3SU00131

Julkaisuaika Kieli Sivuja Hinta
Tammikuu 2005 Englanti, suom. tiiv. 112 s. C

Projektin nimi Toimeksiantaja(t)

Avainnimeke ja ISSN Myynti:

VTT Publications
1235�0621 (nid.)
1455�0849 (URL: http://www.vtt.fi/inf/pdf/)

VTT Tietopalvelu
PL 2000, 02044 VTT
Puh. 020 722 4404
Faksi 020 722 4374

V
TT PU

BLICA
TIO

N
S 557

Reuse of TTCN
-3 Code

Pekka M
äki-A

siala

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000

02044 VTT 02044 VTT FIN–02044 VTT, Finland
Puh. 020 722 4404 Tel. 020 722 4404 Phone internat. +358 20 722 4404
Faksi 020 722 4374 Fax 020 722 4374 Fax +358 20 722 4374

ISBN 951–38–6431–6 (soft back ed.) ISBN 951–38–6432–4 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2005ESPOO 2005ESPOO 2005ESPOO 2005ESPOO 2005 VTT PUBLICATIONS 557

Pekka Mäki-Asiala

Reuse of TTCN-3 Code

This work studies the reuse of tests that are created with a new test
specification and implementation language TTCN-3 (Testing and Test
Control Notation). In order to apply reuse into a testing context, a set of
guidelines for reusable TTCN-3 code is presented. These guidelines are
based on the techniques familiar from software reuse, TTCN-3 test system
and language characteristics, and on some of the specifics of software
testing. Applicability of the guidelines, and the level and profits of TTCN-
3 test reuse are determined in a case study. The case study plainly
demonstrates that the majority of the guidelines were successfully applied
and that they had a positive impact on measured levels and profits of reuse.
The overall results, experiences and impressions of TTCN-3 test reuse during
this work were very encouraging and will hopefully lead to future projects
in areas of test reuse.

	Abstract
	Tiivistelmä
	Foreword
	Contents
	Acronyms and Abbreviations
	1. Introduction
	2. Software Testing
	2.1 Testing Process
	2.2 Static and Dynamic Testing
	2.3 Designing and Identifying Tests
	2.4 Testing Levels
	2.5 Types of Testing
	2.6 Test Suite and Test Case Structures

	3. Software Reuse
	3.1 Motivation
	3.2 Challenge
	3.3 The Two Sides of Reuse
	3.4 Reuse Approaches
	3.5 Reuse Techniques
	3.6 Reuse Metrics

	4. Introduction to TTCN-3
	4.1 Core Language and Presentation Formats
	4.2 Test System and Execution Interfaces

	5. Test Reuse
	5.1 Three Viewpoints of Test Reuse
	5.1.1 Vertical Reuse
	5.1.2 Horizontal Reuse
	5.1.3 Historical Reuse

	5.2 Past Studies

	6. Guidelines for Reuseable TTCN-3 Code
	6.1 Background
	6.2 Overview and Motivation
	6.3 Guidelines
	6.3.1 Guideline 1. Reusing Testers in a Distributed Test System
	6.3.2 Guideline 2. Reusing Testers in a Centralized Test System
	6.3.3 Guideline 3. Use Preambles, Bodies and Postambles
	6.3.4 Guideline 4. Implement Test Cases Using
	6.3.5 Guideline 5. Parameterize Test Behavior
	6.3.6 Guideline 6. Use Selection Structures to Alternate Test
	6.3.7 Guideline 7. Use Common Types and Template Modification
	6.3.8 Guideline 8. Use Wildcards
	6.3.9 Guideline 9. Modularize Tests According to Components
	6.3.10 Guideline 10. Modularize Tests According to Features

	7. Case Study: Vertical Reuse in Protocol
	7.1 Introduction
	7.2 Planning and Preparation
	7.3 Design and Specification
	7.4 Implementation
	7.5 Analysis of Results
	7.5.1 Cost of Development For Reuse
	7.5.2 Cost of Development With Reuse
	7.5.3 Level of Reuse
	7.5.4 Use of Guidelines

	8. Discussion
	9. Summary
	References

