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Abstract 
Modelling and simulation represent tremendous possibilities if extensively taken 
up by engineers as a working method (IMTI 2003). However, if detailed writing 
of equations and programming is required in addition to inverse engineering 
efforts for finding the necessary design data, it will only remain attractive to 
mathematicians, physicists and computer programmers. When considering the 
use of modelling and simulation tools in an engineering design project, there is 
no time to write equations, to consult suppliers' experts, or to manually transfer 
data from one repository to another.   

Available commercial modelling and simulation software for process and 
automation interoperability studies, the advances in process and automation 
design methodologies, evolving specification and communication standards, as 
well as applicable computer software architectures, have recently been dealt with 
in VTT Publications (Pasanen 2001; Karhela 2002). Internet based service 
repositories have developed rapidly, making it possible for equipment 
manufacturers to supply "extended products", including design data needed by 
engineers engaged in process and automation integration. A request has been 
recognized to make the modelling and simulation software suited for relevant 
structured design information as it is provided for in product and design 
databases. Initiatives involving automated model generation have been 
encouraged (IMTI 2002). 

The companion model approach for specification and solution of process 
simulation models, as presented herein, is developed from the above premises. 
The focus is on how to tackle real world processes, which from modelling point 
of view are dynamic, very stiff, very nonlinear and only piecewise continuous, 
without extensive manual interventions of human experts. An additional 
challenge, to solve the arising equations fast and reliably, is dealt with, as well.   
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Glossary 
 
 
Absolute Stable  
An absolute stable numerical integration method does not impose any stability 
restrictions on the applied step-length (Lambert 1991).  
 
Companion Model  
A companion model is a dual representation of an equation that equivalently 
describes for instance a specific physical dependency. See Subsection 3.4.1 
regarding companion models.  

Full-Scope Replica Training Simulator 
A training simulator that replicates the real control room and includes all the 
models needed to reproduce the functionality of the real plant that can be 
operated or observed from the control room. 

Integration Error  
An integration error occurs whence applying numerical integration on a digital 
computer. At large step-lengths it is dominated by truncation errors, whereas 
round-off errors dominate at small step-lengths. 

Ill-Conditioned Problem 
A problem is considered ill-conditioned if very small relative perturbations in 
the parameters make relatively large variations in the solution.   

Iteration Error 
An iteration error occurs when the numerical iteration is stopped before the 
converged solution is achieved.  

Monotonic Function 
A continuously increasing or decreasing function that can be solved by Newton's 
iteration from an arbitrary starting point is considered as monotonic. See 
Subsection 4.6.3.  
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Node Matrix Equation 
A node matrix equation is set up to calculate the node variables in a physical 
network. See Subsection 4.6.1. If applied to an electrical network the node 
voltages are calculated based on relevant branch admittances and source 
currents. 

Precisely Absolute Stable 
A precisely absolute stable numerical integration method has a stability region 
comprising exactly the left half plane (Lambert 1991).  

Round-Off Error 
A round-off error arises in an algebraic operation when the accuracy of the result 
is deteriorated because of limited number of available digits for calculation and 
storage (Wilkinson 1994). 

Sparse Matrix  
A matrix including so many zero elements that it pays off to use sparse matrix 
technique when solving the related linear equation system is regarded as sparse. 
See Subsection 4.6.2.  

Stiff System 
A dynamic system involving so much differing time constants that implicit 
methods are preferred for the solution of the relevant differential equation 
system is considered as stiff.  In a stiff system the ratio of the largest and 
smallest absolute value of its eigenvalues is large (Lambert 1991).   

Strongly Absolute Stable 
A strongly absolute stable numerical integration method has a stability region 
that includes the whole left plane and in addition extends to parts of the right 
plane (Lambert 1991). 

Truncation Error 
A truncation error arises when a series approximation is truncated leaving the 
remaining terms unconsidered. Higher order numerical integration methods 
typically cause smaller truncation errors. 



 

13 

1. Introduction 

1.1 Digital Information Society Challenges 

Traditional document management easily results in piles of papers. Documents 
are nowadays very easily produced, which, however, does not help up the 
situation. Finding the required data and updating the documentation has become 
the real problem. In practice, separate piles have been gathered for the actors 
involved in distinct plant life-cycle phases such as design, construction, 
operation and maintenance, or in the use and disposal of ready-made products. 
Severe gaps in the information flow have been identified. Now there is a 
growing demand for computerized information management that would cover 
the whole value chain including various stakeholders, such as: project 
consultants, raw material and equipment suppliers, product manufacturers, 
maintenance service providers, wholesalers, distributors and customers. 
Recycling leads to closed loops within the chains. High quality and security 
records require traceability of the raw materials as well as transportation and 
manufacturing sequences applied to the products. Such information needs to be 
available to all the stakeholders, especially to the customers. 

The modern Information and Communication Technology (ICT) already enables 
life-cycle lasting information management of products or production processes. 
There are computerised tools and data repositories with regard to drawings, 
component data, functional descriptions, operational procedures, measurement 
recordings, maintenance procedures, commercial and other knowledge e.g. 
related to markets, product quality, legal and environmental issues. In 
automotive industry, the required formal specifications of interfaces between the 
different tools and actors have readily been developed, enabling efficient co-
operation of subcontractors in supply chains, as well as easy application of 
various design and service software tools. Evolving standard interfaces make it 
possible to build up Enterprise Resource Planning (ERP) systems, 
Manufacturing Execution Systems (MES) and Distributed Control Systems 
(DCS) piece by piece and to find the best suiting service tools from a large 
variety of software vendors. In the process industry, the standardisation process 
at large has just begun.  
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Computerised simulation models constitute to the various kind of formal 
documentation available. Different models are needed for different purposes, 
such as 3-D analysis, process integration analysis, control system design 
evaluation, optimisation of operational procedures, operator support systems, 
operator training simulators, pro-active maintenance, production management, 
logistics, and control of business processes. A wide take-up and implementation 
of formal model interfaces and data specifications as well as development of 
standard simulation platforms, will enable re-use of once finalised and verified 
computerised models for different purposes, at different life-cycle stages and by 
different actors.  

An important requirement has been that all necessary data for the simulation 
model specifications shall be possible to obtain from product databases and 
computerised design drawings. Therefore, it is utterly important to certify that 
product databases really include such information as needed. The process 
equipment manufacturers are obviously the best experts to provide the relevant 
information on their own products. The computerised process and automation 
design drawings shall depict the integration of the specified components and 
formally replicate in required detail the relevant process structure, the 
positioning of the components and their connections.  

1.2 Knowledge Management and Process Models 

A restructuring is going on in the organisation of business operations in process 
industry. Networking trends have led to outsourcing of less strategic operations, 
justified by the possibility to concentrate on key business sectors. This 
development is underpinning the manufacturing industry actors to take up the 
challenge in service sector, extending their responsibility to the whole life-cycle 
of their products, including the construction, commissioning, operation, and 
maintenance. 

The critical mass of multidisciplinary process knowledge usually available at a 
production site has until now been based on highly skilled personnel with a long 
record of gained experience, sometimes already commencing from the 
construction of the plant. Ageing and increased mobility of employees, calls for 
new recruitments, enhanced training or other solutions. Networking and 
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outsourcing are topical issues. A trend towards highly specialised knowledge 
centres is foreseen. Remote support and service functions are established. 
Restructuring the business operations puts high demands on knowledge 
management. There are several open issues to solve, where modelling and 
simulation could play a significant role in making the tacit knowledge of 
experienced personnel more explicit:  

• How to make the knowledge of design engineers easily available and 
understandable for operational and maintenance personnel?  

• How to store and transfer the knowledge of experienced operators to 
novices?  

• How to manage changes in industrial processes as well as in business 
processes?  

There is no simple answer to these questions. Significant developments have 
been made with regard to Product Data Management (PDM) and Product 
Lifecycle Management (PLM) systems. Certainly, rigorous model specification 
repositories could complement the list of available support facilities. The 
successive take up of e-business has been one driving force to make services and 
required data literally ubiquitous according to the needs of global networked 
business. The e-business is a forerunner with regard to the digitalisation of other 
operations. 

It has been stated that a picture could contain more information than a thousand 
of words, and that a computerised simulation model could contain more 
knowledge than a thousand of pictures. There would be several expectations 
from an intelligent model, if just available: 

• The process designer would like to have a model to evaluate new 
features,  

• The automation engineer would like to test new control functionality,  

• The production engineer would like to optimise the use of the 
production units,  



 

16 

• The operator would like to check out operational procedures in advance, 
and  

• The trouble-shooter would like to have a what-if tool for diagnostics.  

Is it possible to develop, update and re-use models suitable for all these 
purposes? Could the requirements for such models be specified?  

Relevant models of industrial processes need to be dynamic and have a large 
enough operational range to reliably replicate the real plant in all operational 
situations of interest. The acceptance criteria of full-scope training simulators for 
power plants require that an experienced operator shall not notice any such 
performance deviation that could violate the purpose of the training. It shall be 
possible to use the model not only for studies of normal operational procedures, 
but also for emergency situations. 

However, the model shall not be too complicated. It shall be easy to assign 
parameters to the model. Relevant data possibly available from design databases 
shall be easy to import. The models shall be easy to combine. Integrated models 
of large industrial plants shall run in real-time, or even much faster for 
prediction and optimisation purposes. It shall be possible to attach such models 
to on-line process measurements, real control systems, optimising tools, user 
interfaces and documentation software. It shall be possible to model a plant 
correctly enough, even before any measurements are available from the plant. It 
shall be easy to fine-tune the model when measurements are available. 

1.3 Disparate Tools and Requirements 

There is a large variety of simulation tools available on the market. This implies 
that it shall be possible to choose the best suitable tool for a specific purpose. 
However, sometimes the effort in learning to use a new tool, just for one case, 
might be larger than the benefit. On the other hand, choosing the wrong tool has 
resulted in very discouraging experiences and reluctance for simulation in 
general. Choosing simulation software for dynamic process simulation purposes 
only relying on commercial brochures is not an easy task. It is not even easy to 
recognize what type of simulation model is needed for a specific purpose. 
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• General Purpose Simulation Language models have been very useful at 
university level for teaching purposes. The student can efficiently learn 
how to specify the equations for small-scale models. However, it is by 
far too laborious and error prone to specify equation by equation a 
complete production process. 

• Extended Steady-State Simulation models have been used for tank level 
dynamic studies. In general, they do not fulfil the needs for dependable 
control system functionality testing at a sufficient large operational and 
dynamic range.  

• Transfer Function models implemented with control system function 
blocks were previously used for control system design evaluation. 
However, they only supported studies of small transients close to a 
selected steady state. Shut down and start up studies were completely 
out of scope. 

• Accident Analysis Code models have required highly skilled physicist 
for their input specification. For instance, the user has been fully 
responsible for the successful spatial discretisation of the process flow 
sheet to suitable control volumes. Analysis programs have usually not 
been optimized for real-time large-scale applications. 

• Full-Scope Training Simulator models have not been flexible enough for 
such easy implementation of changes in the process scheme as needed in 
an interactive design and engineering. 

• Engineering Simulator Software models should have the accuracy of 
accident analyser codes, the scalability of full-scope training simulators 
and the flexibility required for interfacing to semantic design databases. 

An early requirement for the developments described in this thesis was to 
facilitate for efficient dynamic simulation of the entire power plant process in 
real-time in a full-scope training simulator. Later on evolving requirements 
focused on the capability needed for testing of the functionality of modern 
control systems. Human interface system response times of 250 ms are specified 
as a preference for control systems in nuclear power plants (NRC 1996). A 
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functioning control system test bench model shall calculate all necessary process 
measurements with the frequencies needed by the control system. Operation in 
real-time with a time-step of 50 ms or even shorter for distinct parts of the 
process model shall be possible. It is evident that appropriate software has to be 
particularly developed for such a purpose. 

The software shall be equipped with model libraries of relevant process 
components. It shall comply with the requirement of easy and fast graphically 
supported model configuration. It shall have access to manufacturer specific 
parameter repositories required by the generic component models. As an 
upcoming requirement, it shall provide the possibility to automatically generate 
the model framework and parameters starting from CAD and PDM information 
available for the plant. This kind of integration of tools will be possible subject 
to an extensive take up of specification standards in process industry, as well as 
by simulation software suppliers. The adequate simulation engine needs to be 
suited for automated dynamic model specification using presently available 
design data-bases as well as future semantic knowledge repositories. Such a 
unified simulation engine has not been available on the market. 

1.4 Software for Power Plant Training Simulators 

The decisive requirements imposed from the early beginning on developments 
of the versatile companion model approach described in this thesis was that the 
simulation algorithms and platform shall be fast, scalable, and fail-safe enough 
especially for use in full-scope replica training simulators of nuclear and fossil-
fuelled power plants. A review of software tools for development of real-time 
power plant simulators is thus of interest. In the following, only such suppliers 
are listed that recently have supplied modelling and simulation software for full-
scope replica nuclear or fossil fuelled power plant simulators. 

• Corys T.E.S.S. has developed Alises, the fully integrated modelling and 
simulation environment in cooperation with Tractebel Energy 
Engineering, Belgium. It is designed to produce high-fidelity dynamic 
simulation models with less effort, lower development times and lower 
costs. Unmatched flexibility in model building, combining different 
types of powerful solvers of differential equations governing the thermal 
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hydraulic and electrical processes are combined with sequential solvers 
of algebraic equations governing the behaviour of control logics and 
regulations. Corys has more than 20 years of experience in the field 
(Corys 2005). 

• GSE Systems Inc. has developed the high fidelity simulation platform 
SimSuite Power. It includes all the tools necessary for effective and 
complete power plant modelling to enable the development of training 
simulators for both nuclear balance of plant and fossil power plants. The 
products are based on more that 30 years of accumulated knowledge in 
the field of power plant simulation, originating from Singer-Link, 
General Physics International, S3 Technologies, and EuroSim AB. GSE 
Systems Inc., together with its RNI Technologies and GSE Power 
Systems divisions, provide a wide range of solutions to the world's 
nuclear simulation market (GSE 2005).  

• The SimSci-Esscor solution of Invensys Systems Inc. includes the 
DYNSIM-Power dynamic simulation system for power industries 
applications. It is based on 35 years of experience. An intuitive graphical 
interface enables to keep the simulator models current with the plant 
(Invensys 2005). Invensys and Hyperion Systems Engineering Ltd 
announced in January 2005 an exclusive operator training simulator 
partnership agreement (Hyperion 2005). 

• L-3 Communications Mapps Inc. was set up in February 2005 including 
power plant simulation business segments from CAE Inc. With over 
three decades of experience in power plant simulation developments 
Mapps Inc. has pioneered many of the principal advances in simulator 
design and functionality introducing real-time graphical component-
based simulation in 1991 and making power plant simulation available 
over the Internet in 2001. The rapid model development environment 
ROSE includes single phase and two-phase thermal-hydraulics solvers 
(Mapps 2005). 

• Microfusion Engineering Laboratories. Inc. has developed since 1995 
an advanced, first principles, precision simulation engine called THINK, 
Thermal Hydraulic Integrated NetworK. It solves the time and spatially 
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dependent equations for the conservation of mass, momentum and 
energy using an implicit integration method to allow for real or faster 
than real-time simulation. It decomposes mixture flow into the basic 
component liquid and vapour flow rates and allows noncondensibles and 
solids to be present with the stream (Microfusion 2005). 

• nHance Technologies Inc. was formerly the Simulation Services unit of 
Framatome Technologies Inc. before Framatome ANP, Advanced 
Nuclear Power, divested the unit in March 2001. nHance Technologies 
Inc. has developed the MMS-RTC, Real-Time Capable Modular 
Modelling System, including nuclear power plant component libraries 
and graphical user interface. Framatome ANP Inc. is a wholly owned 
subsidiary of Framatome ANP SAS, France, created in anticipation of 
the joint venture of the nuclear businesses between Framatome SA and 
Siemens AG (nHance 2005). The original MMS, developed by EPRI, 
the Electrical Power Research Institute, Palo Alto, California, USA, was 
based on the ACSL simulation language (Mitchell 1991). 

• High-fidelity training simulators from Rheinmetall Defence Electronics 
GmbH provide a full reproduction of the control room equipment. All 
functions and processes of the real plant can be simulated by extensive 
mathematical models computed in real-time whilst running on modern 
multiprocessor computers.  Rheinmetall was taking control of STN 
ATLAS Elektronik GmbH's simulation technology units in August 
2003. The accumulated record of deliveries includes pressurized and 
boiling water reactors as well as graphite moderated reactors 
(Rheinmetall 2005). 

• SimPort of Science Applications International Corporation (SAIC) is an 
object oriented real-time simulation environment for nuclear and fossil 
power plants. This leading edge simulation technology incorporates 
RELAP5 R/T developed by Data Systems & Solutions together with 
Idaho National Engineering Laboratories (INEL 2005). Data Systems & 
Solutions is a Rolls-Royce and SAIC owned company (SAIC 2005). 

• Tecnatom s.a. develops simulators including thermal hydraulic and 
neutronic codes with best estimate quality adapted to real-time. 
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Tecnatom uses TRAC-RT a Real-Time implementation of the Transient 
Reactor Analysis Code developed at Los Alamos National Laboratory 
(LANL 2005). The man-machine interface used is based on its own 
developments, as well (Tecnatom 2005). 

• Thales Training and Simulation is part of the worldwide Thales Group. 
Thales uses its generic models to cover the fluid networks (steam, water, 
oil, gas, etc�), the instrumentation and control circuits, and the 
electrical networks. These generic models use CAD-based code 
generators. The associated CMS, Configuration Management System, is 
particularly suited to the production and maintenance of large amounts 
of application software. Thales has more than 25 years of experience in 
the design and manufacturing of power plant simulators originating from 
LMT and Thomson in France, Rediffusion and Link Miles in UK, 
Wormald Technology in Australia, and Burtec in USA (Thales 2005). 

• Trax LLC has since 1987 provided both full-scope and partial scope 
operator training simulators for various fossil power plant designs and 
process industry worldwide based on the ProTRAX simulation system. 
The ProTRAX graphic-based model building system performs all 
required code manipulation to generate an executable FORTRAN 
program (Trax 2005). 

• Technical Research Centre of Finland (VTT) has in co-operation with 
Fortum Nuclear Services Ltd developed APROS, the Advanced Process 
Simulator software. It enables real-time simulation of both 
homogeneous and non-equilibrium thermal-hydraulic flows. It is applied 
by VTT's customers both for detailed engineering analysis work and for 
construction of complete full-scope replica training simulators. It 
includes both dedicated (ACL) and standardised (OPC) real-time 
communication interfaces and it has successfully been used for pre-
testing of real control system configurations (VTT 2005). 

• The full-scope nuclear power plant simulator from Westinghouse 
provides a plant control room replica for the training of nuclear power 
plant operators. The simulator emulates plant-specific thermal-
hydraulic,  electrical, and instrumentation and control systems. The 
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thermal-hydraulic models of SIMARC, SIMulator Advanced Real-time 
Code, simulate the primary and secondary thermal-hydraulic behaviour 
of the plant's nuclear steam supply system. The models are based on 
design-grade nuclear plant analysis codes (Westinghouse 2005). 

• Yokogawa simulators serve a diverse range of customers worldwide in 
the field of fossil fired, gas turbine, and co-generation power plants by 
its TICSS, TechComm Integrated Configuration and Simulation System. 
TechComm Simulation in Australia become a subsidiary of Yokogava in 
October 1998 (Yokogava 2005). 

It shall be noted that the trade marks and business names encountered herein 
belong to their relevant owners. Many of the products have a long history of 
developments. Some of the real-time simulation software tools are clearly based 
on previously developed platforms or analysis codes. Sometimes the 
accumulation of experience can be traced from the curriculum of developers 
involved. How the codes have been enhanced for the real-time simulation 
purpose has usually not been presented in public. The software tools involved 
are usually supplied in connection to training simulator deliveries. 

1.5 Purpose and Methodology 

The purpose of this thesis is to introduce for the scientific community an 
algorithmic framework that enables fast running accurate simulation of large-
scale heterogeneous industrial processes, and to present a novel data architecture 
for its implementation intended to provide for straightforward connection to 
evolving semantic design data-bases. 

The algorithms presented herein have already twice been implemented in 
commercial software platforms. The functionality of the algorithmic approach 
has been conclusively demonstrated by an extensive amount of recorded 
experiences from implementations and applications as described in Chapter 2. 
The different appearances of the previously undisclosed Versatile Companion 
Model as linear graph, linear equation, linear dynamic equation and nonlinear 
dynamic equation are presented Chapter 3. The strongly related mathematical 
solution system architecture is outlined in Chapter 4. The fundamental 
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algorithmic principles have not previously been presented in public. Neither 
have the data architectures of the existing implementations. 

The detailed specification of completely new layered data architecture, matching 
both the algorithmic and semantic requirements encountered has been concluded 
in two separate appendices focusing on the Specification Data View and the 
Solution Data View. The new data architecture has to be considered as a 
synthesis of previous implementation experiences. It is included to form a basis 
for future implementation work. Recommendations for efficient implementation 
are given both with regard to the real-time data organisation in computer 
memory and the accomplishment of the various algorithms. 

1.6 Presentation of Algorithms and Data Structures 

The presentation of algorithms and data structures in this publication shall give a 
general understanding for a reader, neither being a specialist in computer 
programming nor in software specification standards. Thus, no preference is 
given to any programming environment, modelling tool, or to any commercial 
database. 

To achieve a very compact and illustrative appearance, the author has introduced 
structured tables for presentation of the algorithmic architectures as well as for 
the relevant data structures. When applicable, the variables and parameters 
appearing in the equations or tables are described in the concerned chapters. 

Whilst entering into the different technical domains, the author doesn't intend to 
cover any complete set of physical mechanisms. The selection presented shall 
however demonstrate a sufficient range of possibilities to provide a concrete 
basis for further implementations. 

1.7 Lumped-Parameter Dynamic Systems 

Basic concepts regarding modelling and dynamic simulation of lumped-
parameter continuous-time systems are introduced. We shall first consider linear 
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time-invariant first-order systems that can be modelled by a state equation 
written in a differential vector-matrix form 

x'(t) = Ax(t) + Bu(t) 

together with an output equation written in a algebraic vector-matrix form 

y(t) = Cx(t). 

All variables related to the state vector x, the derivative of the state vector with 
respect to time x', the input vector to the system u as well as the output vector 
from the system y are considered at the same time instance t. All elements of the 
state matrix A, the input matrix B and the output matrix C are constant. A is an 
n × n matrix, B is an n × p and C is an n × q matrix, where n is the number of 
state variables, p the number of input variables and q the number of output 
variables. The traditional system equations comprise of the related state and 
output equations. 

We shall now consider how to calculate the direct solution of the state variables 
at a new time instance when we know the initial state values at the time t. The 
state vector xe and output vector xe can be exactly solved at a new time instance 
e by the relevant difference equations in vector-matrix form 

xe = Ψ(∆e)xt + Γ (∆e) zt  

ye = Cxe. 

where ∆e is the applied time-step, Ψ(∆e) the state difference matrix, Γ(∆e) the 
input difference matrix and zt the input vector at the old time instance t.  The 
state difference matrix can be written as the exponent of matrix A for the applied 
time-step ∆e 

Ψ(∆e) = exp [A(∆e)]. 

When calculating the input difference matrix the exponent of A is integrated 
from 0 to ∆e 
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Γ(∆e) = { ∫ exp [A(τ)]  dτ  } B. 

The calculation of the state transfer matrix (Porter & Crossley 1972) for a time 
interval τ 

exp[A(τ)] = U{exp [ Λ(τ) ] } U-1 

implies calculation of the eigenvalues λi, which are solved from determinant 

|A-λI| = 0, 

the relevant eigenvectors ui from the equations 

Aui =  λi ui 

the modal matrix from the eigenvectors 

U = [u1,...un], 

and, subject that the eigenvalues are distinct, the eigenvalue matrix 

Λ = diag[λ1, ... λn], 

and its exponent 

exp [ Λ(τ) ]= diag[exp(λiτ), ... exp(λnτ)]. 

The difference equations are feasible to use with relatively small linear time-
invariant systems which can be studied with constant time-step whereas the state 
and input difference matrices only need to be calculated once. In our case, we 
need to solve large sparce nonlinear systems. In addition, we need to change the 
time-step lengths in order to manage with the discontinuities. 

The original state equations are well suited for processes with an inherent 
structure that can be depicted by input/output block diagrams, like control 
systems, and where the derivatives of the state variables are easily attained in an 
explicit form. In Section 4.3 numerical integration methods are described that 
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can be used to solve state equations having the derivative of the state vector x'(t) 
readily available. 

For integrated processes that inherently have a networked structure including 
network branches with transition flow variables like current vij and network 
nodes with local property variables like voltage ui, there are many possibilities to 
write the relevant integrated equations. The first issue is to define intermediate 
nodes in long branches if necessary in order to reach necessary accuracy with 
lumped parameters or to avoid higher than first order equations describing the 
branches. Just writing the equations according to Kirchoff's law encounters for 
instance the following type of equations: The algebraic sum of branch currents 
to each node is equal to zero, and the algebraic sum of voltage drops around 
each loop is equal to zero. 

Caution should be taken that each loop has an own branch not included in other 
loops; otherwise, the system will be over determined. Further, no loop can 
include only capacitors. For a resistive network the branch, currents and the 
node voltages can be solved from the arising matrix equation subject that the 
voltage of one reference node is known. It is an algebraic equation system. Each 
inductor or capacitor included in the network provides for one additional 
dynamic state variable, the change rate of current and the accumulated charge 
respectively. Now a differential algebraic equation system is obtained. It is 
pointed out that organising this equation system into state equation form is a 
large effort and it usually results in loss of the sparsity (Brenan et al. 1989). 

Specific loop matrix equations have also been applied where the loop currents 
are the basic variables to be solved and the node voltages and currents are the 
secondary variables (Juslin 1973). The method had some benefit before the 
introduction of sparse matrix methods because the basic number of loops and 
accordingly the number of state variables is usually smaller than the number of 
nodes. 

Applying the companion model approach and assigning the node voltage vector 
u as basic variables to be solved and the branch current vector v to secondary 
variables as set forth in Subsection 4.6.1 we get the node matrix equation of the 
form Au = b to first solve the node voltages whereupon the branch currents can 
be solved from each branch equation. 
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1.8 Unified Modelling and Simulation System 

In this section basic features of the integrated solver and data architecture of a 
Unified Modelling and Simulation System are introduced. Distinctive features 
and improvements with regard to the foreseen functionality are concluded as 
follows: 

• A Modelling Engine supports concurrent engineering in a virtual work 
group environment and connects to individual modelling interfaces, to 
main project repositories for relevant process and automation design 
information, to supplier repositories for process component data, and to 
joint integrated model specifications. 

• The Hierarchical Model Specification Formalism introduced makes use 
of design requirements and relevant information regarding process 
dimensions, connections, physical mechanisms and empiric correlations. 

• The formal specification facilitates automated generation of the required 
parameters of the related Mechanistic Transition Equations, Linear 
Transition Equations, and Versatile Companion Models in accordance 
with linearisation and discretisation methods employed. 

• A set of Elementary Physical Mechanisms covering several different 
physical domains is made available for the detailed model specification. 
Each mechanism has a pre-defined set of specification attributes 
regarding both parameters and connections. 

• Nonlinear correlations are pre-analysed and, if required, divided into 
distinct Monotonic Regions to allow for efficient and stable iterative 
correction of the nonlinearities. 

• A methodology is developed to manage the Crossing of Break Points 
such as monotonic region borders or temporally induced discontinuities. 
The time-step is adjusted to hit first approaching break point. The 
numerical integration scheme is adapted to the situation. 
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• The hierarchical model specification is subsequently flattened down to a 
Linear System Graph. The resulting heterogeneous graph is reorganised 
into a hierarchical set of Homogeneous Zones applying tearing and 
combining procedures based on Model Coefficient Analysis. Most suited 
time-steps are applied to the numerical integration in relevant 
homogeneous zones. 

• The structure of the matrix equations arising from each identified 
Implicit Island is pre-optimised (see Section 4.6) with regard to positive 
definiteness, diagonal dominance, sparsity and symmetry. Time 
consuming checks and pivoting procedures are accordingly not needed 
during the calculation. 

• Prediction of State Variables enables calculation of nonlinear parameter 
estimates before entering into a new time-step. Excessive iterations are 
accordingly avoided. 

• The Vectorised Solver Architecture ensures that state variables are 
assigned to positions according to their sequence of use. This enables 
pipelined processing and also high hit rate of cache memory. 

• The completely Table Driven Simulation Engine ensures that neither 
compiling nor linking procedures are needed upon changes in model 
parameters or configuration. However, for embedded time-critical 
applications a further optimised Run-Time Model can be generated. 

All these issues are dealt with in more or less detail in following chapters. Both 
top down and bottom up approaches are applied to enlighten the description of 
the architecture. The historical perspective provides for substantiation. 
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1.9 Contents of the Main Chapters 

Guidance to the reader is found necessary. The study is concluded in following 
main chapters: 

Introduction. The role of rigorous dynamic simulation models as 
knowledge repositories is emphasised.  The requirements on modelling tools 
for dynamic simulation of full-scope industrial processes in real-time are 
dealt with. Relevant existing simulation suppliers and tools are listed. The 
limitations of available tools are discussed. Suggested enhancements are 
presented. Combination of diverse modelling paradigms, such as 
mechanistic and empiric modelling, has to be employed to obtain successful 
results. 

Implementations and Applications. The first implementation aimed at 
improving the performance of the full-scope training simulator at the Loviisa 
nuclear power plant. The idea to develop an engineering simulator was 
emerging in mid eighties (Kurki & Jokela 1984) to aid the control system 
concept evaluation of conventional power plants. The recognised need to 
develop modular nuclear plant analyser software, as well, resulted in 
establishing the Advanced Process Simulator (APROS) software 
development project in the framework of a research program on Numerical 
Simulation of Processes at VTT (Mattila 1987). Subsequent initiatives to 
further develop the simulation platform and its libraries to support modelling 
of a larger variety of industrial processes are presented, as well. 

Model Specification Architecture. Nodes and branches in a structured 
graph has been considered suitable for the specification of interconnections 
and dependencies of an industrial process plant. The alternative causality 
modes of the Versatile Companion Model are explained. Its graph and 
equivalent static, dynamic and nonlinear representations are described. 
Higher-level models are defined by combining the lover-level models. The 
whole plant is specified in a hierarchic manner, suitable for a Vertical 
Interfaces with CAD-type graphics tools and semantic design databases. 
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Solution System Architecture. The solver architecture is outlined. Its 
Horizontal Interface focuses on on-line communication with external 
models, other software tools, and automation systems. Numerical integration 
methods and error accumulation mechanisms are dealt with. Emphasis is 
paid to efficient solution of nonlinear systems and sparse matrix equations. 

Guidelines for Software Implementation. The chapter deals with topics 
necessary to consider when implementing the architecture to source code, 
thus maintaining efficient use of computer cache memory, advanced 
fetching of data, as well as running parallel threads and processes. Of 
concern are the specification and computation data structures as well as the 
on-line connection support. Recommendations on items identified that 
require further elaboration are presented, both related to detailed scientific 
issues and to general standardisation efforts. 

Summary and Discussion. The benefit of the unified architecture is dealt 
with. One of the goals, to allow also a non-specialist to specify models 
seems to be much closer. Tolerating rough spatial discretisation of the 
process, simplifies the use of available design data as input. The proposed 
automated flattening down of the hierarchical model specification, and the 
evaluation, tearing up and optimised recombination of the graph elements 
speeds up the calculation and provides for increased robustness. The 
functionality of basic algorithmic principles has been demonstrated by the 
implementations made. The new unified architecture is considered to have 
all possibilities to form a basis for open source modelling and simulation 
software platforms for future virtual factory initiatives. 

The author has found it necessary to refer to 154 separate publications: Reports 
on previous or parallel original research made by others, experiences from 
present implementations of the companion model approach, information on 
application model developments, and results from relevant simulation studies. It 
shall be noted that the author has contributed to 49 of the application oriented 
publications, either as the main writer or in close cooperation with experts in the 
field. 
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The specification and solution architecture related chapters are complemented 
with two appendices focusing on the relevant computer memory data 
organisation: 

Specification Data View. The data organisation and representation in the 
Modelling Engine is discussed. It needs to support a hierarchic architecture 
enabling the specification of relevant graph elements, thus supporting easy 
configuration of the on-line solution database structure. 

Solution Data View. The emphasis is to construct a most compact and 
efficient run time Simulation Engine, easy to embed in control systems and 
training simulators. The data organisation needs to support vectorised 
calculation of the coefficient equations, as well as scalar processing of code 
arising from solution of sparse matrices. 
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2. Implementations and Applications 

2.1 Fast Solution of Linear Equation Systems 

An important driving force for the development of real-time simulation tools for 
large scale processes was the emerging trend in beginning of the eighties to 
require full-scope replica simulators, including a copy of the real control room, 
for the training of nuclear power plant operators. At that time, research efforts 
were for instance assigned to the development fast solution methods applicable 
to large sets of linear equations. Encouraging experiences of computer solution 
of large sparse positive definite systems were published (George & Liu 1981). 

Influenced by these experiences the author developed the sparse matrix solver 
implementation described in Subsections 4.6.2. The construction of a sparse 
matrix into a linked list storage from relevant tabulated versatile companion 
model parameters as well as the employed pre-optimisation of the solution order, 
enabled a fast factorisation and solution without any need for pivoting. 

An execution time comparison of linear equation system solvers was made by 
the author (Juslin 1983a), including direct and iterative solvers as well as sparse 
and full matrix solvers. The solution speed improvements achieved by the author 
and his colleagues were reported in the IMACS Transactions on Scientific 
Computation (Juslin et al. 1985). Further experiences on real-time solution of 
sparse matrices were published in the Research Notes 615 of VTT (Juslin & 
Silvennoinen 1986). 

2.2 Initial Thermal Hydraulic Implementations 

The solution of pipe network dynamics consumed a considerable amount of the 
available computation power in the early industrial plant analyser codes. The 
calculation of a short transient could take several days on a mainframe computer. 
The iterative thermal hydraulic solvers then available had developed from 
steady-state codes and were very time consuming. 
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In the late seventies the staggered grid method was given publicity (Patankar 
1980). It was applied for spatial discretisation of the pipe networks to be 
analysed. The author found that this method as described in detail in Subsection 
3.6.2 well resembled linear graphs for the pipe network description. The author 
had previously used traditional companion models for simulation of electrical 
networks. However, to allow for the required changes in causality, e.g. related to 
reversed flow during the simulation, the author needed to develop the specific 
versatile companion model as described in Subsection 3.4.2. 

A comparison of solution methods for pipe network analysis was contributed 
(Juslin & Siikonen 1983). The full-scope replica training simulator for the 
Loviisa nuclear power plant in Finland was under construction and the available 
thermal hydraulic solvers needed improvements. The implementation of the 
companion model and the related sparse matrix solver was made by the author in 
cooperation with personnel from Nokia Electronics Oy, the simulator supplier. 
This was possibly the earliest large scale commercial implementation of the 
versatile companion model for solution of thermal hydraulic networks. For 
competitive reasons, the fundamentals of the implemented methods were, 
however, then not published. 

Other simulator installations were made during the following years making use 
of this solver implementation such as the full-scope training simulator of the 
Pacs nuclear power plant in Hungary and the NORS research simulator at 
HAMMLAB, the OECD supported man machine research laboratory at Institutt 
for Energiteknikk (IFE) in Halden, Norway. The first solver implementation was 
initially installed on PDP-11/70 computers and later on transported to VAX 
computers of Digital Equipment Corporation (DEC). 

2.3 Parallel Implementation Efforts 

One of the earliest applications of traditional companion models to digital 
computer simulation of power electronic circuits was contributed by the author 
(Juslin 1983b). An application of companion models to the dynamic simulation 
of load flow in electrical power networks was completed by the author (Juslin 
1984b). Here the traditional companion model and the sparse matrix solver were 
implemented applying complex number arithmetics. The author has with interest 
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noted recent application of traditional companion models in the field of power 
electronics (Solodovnik et al. 2003). 

Experiences on applications for radiator network calculation were at an early 
stage discussed by the author with co-workers (Laitinen et al. 1986). A first use 
case on fast dynamic simulation of district heating networks was concluded 
(Juslin et al. 1987a). 

2.4 Fast Material Properties Calculation 

Real-time simulation of extensive thermal hydraulic networks called for the 
development of exceptionally fast calculation methods of material properties. 
Experiences on fast material property calculation of water and steam were 
reported in the Research Notes 807 of VTT (Lilja & Juslin 1987). The properties 
and relevant derivatives were tabulated using an unequal division storage 
scheme to save computer memory, which was very expensive at that time. More 
frequent tabulation was used in regions with larger changes in the property 
values to ensure the necessary correctness. The tabulation of pre-calculated 
derivatives enabled fast calculation of continuous derivatives in addition to the 
relevant property values between the tabulated points. Despite of the unequal 
division of tabulated values the correct indices for the calculation were found by 
indirect addressing. No search was needed. The complete range of the VDI 
steam tables was covered. The above developments also contributed to speed up 
the calculation of the Loviisa full-scope nuclear power plant training simulator. 
Material property functions are dealt with in Subsection 3.7.3. 

The necessity to have access to material properties of multi-component mixtures 
was recognized. Experiences with iterative flash calculation methods were made 
in an EUREKA project called CHEDYN in co-operation with Belsim s.a. and 
University of Liege (Juslin et al. 1990, Juslin et al. 1991). This approach was 
functional but very slow as experienced from a multicolumn distillation plant 
application of dynamic simulation (Bärman et al. 1993). An approach to fast 
calculation of thermal-hydraulic properties by neural networks was reported 
(Lilja & Hämäläinen 1999). A software tool is currently under development at 
VTT, expected to automatically teach a neural network with data originating 
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from measurements or an iterative solver. This opens new horizons for rapid 
dynamic analysis of chemical process industry plants. 

2.5 The APROS Platform Development 

It is not only sufficient to have fast calculation. In addition, the modelling shall 
be efficient and not require programming skills. The author has been 
instrumental in the specification work and directing the development of the 
Advanced Process Simulator (APROS) software. The basic APROS software 
platform was developed within the framework of the VTT research programme 
on Numerical Simulation of Processes 1986�1988 (Mattila 1987) as a joint effort 
of VTT and Fortum. The applied solution of one-dimensional flow and heat 
transfer processes was reported (Hänninen 1988). The APROS software 
environment for process simulation and model development was documented 
(Silvennoinen et al. 1989). The multidimensional flow calculation developed 
was dealt with (Niemi et al. 1989) as well as efficiency of parallel and vector 
implementations (Niemi & Tommiska 1990). The application of the APROS 
Specification Language (ASL) for specification of industrial processes (Juslin 
1990), and the use of GRINAP, the UNIX based Graphics Interface for APROS 
(Juslin et al. 1993) were reported. A Windows based Graphics Design interface 
GRADES developed by Process Vision Oy has been taken into use, as well. 

The experienced transportability of the APROS simulation engine programmed 
in FORTRAN is remarkable. It has been running on VAX mainframe computers, 
CRAY supercomputers, ALLIANT mini-supercomputers, many UNIX workstations, 
and now on ordinary personal computers with Windows XP operating system. A 
full-scope nuclear power plant simulator including control system models is now 
run on a laptop computer in real-time. The hardware cost is not an issue for 
taking up simulation as a working method. 

2.6 International Dissemination 

The advent of the APROS software platform has been presented for an extensive 
international forum, with a special emphasis on its functionality for analysis 
purposes and its nuclear applications: IAEA Specialists' meeting on training 
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simulators for nuclear power plants  (Juslin et al. 1987b), European Congress on 
Simulation (Juslin 1987), International Nuclear Simulation Symposium  
(Hänninen et al. 1987a), American Nuclear Society's winter meeting (Hänninen 
et al. 1987b), Nuclear Europe 1987:11/12 (Mattila & Winter 1987), Numerical 
Heat Transfer 12(1987)1 (Siikonen 1987), European Simulation Multi-
conference (Silvennoinen et al. 1988), EPRI Conference on power plant 
simulation and modelling (Porkholm et al. 1988), IMACS World Congress on 
scientific computation (Juslin et al. 1988), ENS/ANS conference on thermal 
reactor safety (Tiihonen et al. 1988), Topical meeting on advances in nuclear 
engineering computation and advanced radiation shielding (Puska et al. 1989), 
Scandinavian Simulation Society annual conference (Puska & Juslin 1989), and 
Beijing international simulation conference (Juslin et al. 1989). 

Performance improvements made and customer experiences in different 
application domains were published as well during the following years. 
However, the in-depth utilisation of the versatile companion model and related 
sparse matrix concept to thermal-hydraulic circuits was intentionally not brought 
to public. Nevertheless, some endeavours to build platforms for the same 
purpose could be noted. 

2.7 Combustion Power Plant Applications 

The first applications on simulation of conventional coal-fired power plants and 
their control systems making use of APROS software were reported (Hänninen 
et al. 1988; Juslin & Kurki 1989; Kurki et al. 1989). An engineering simulator 
for a peat-fired power plant was developed (Leppäkoski et al. 1990). A 
qualitative 3-D estimator of burning process was discussed (Juslin & Lilja 
1991). A generic training simulator for a Combined Cycle Gas Turbine plant 
was presented (Ollikainen et al. 2002). 

APROS Combustion is now a very mature product, presently in use by many 
power plant manufacturers and utility companies. The multifunctional features 
have also been exploited extensively by control system suppliers and added 
value developers. The use in process design evaluation, automation system 
optimisation, and development of training simulators for their customers have 
been described (Herzog et al. 1994; Douzdouzani et al. 2003). Modern control 
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solutions and relevant training simulators for gas & steam turbines, combined 
cycles, desalinations and thermal power plants have been developed (ABB 
2005a). 

2.8 Nuclear Power Plant Applications 

The extensive use of dynamic simulation in nuclear power plant design was 
strongly emphasised (Laukia et al. 1990). Experiences on the development and 
first test applications of the plant analyser for the Loviisa NPP were given large 
publicity (Puska & Porkholm 1991; Kantee et al. 1991; Tiihonen et al. 1991; 
Porkholm et al. 1991). The one- and three-dimensional PWR nuclear core 
models were presented (Puska 1991). The Kola nuclear power plant analyzer 
design project was reported (Porkholm et al. 1994).  Among other interesting 
transient studies, an application of APROS to analysis of a small break loss of 
coolant accident was published (Al-Falahi et al. 1995). A detailed report on 
nuclear core modelling in multifunctional simulators was published (Puska 
1999). A 3-D core model for a BWR plant analyser was presented (Puska & 
Norrman 1999). The construction a full-scope replica nuclear power plant 
training-simulator situated in Chasma, Pakistan was reported (Shah 2002).  

A full-scope model of the Forsmark 3 BWR nuclear power plant was developed 
(Karlsson et al. 2001). This HAMBO model is now in use by the OECD Halden 
Reactor Project for development of new control room concepts. The extent of 
the HAMBO simulator supplied with a three dimensional real-time nuclear 
reactor model is presented in Table 2.1. 

Table 2.1. Extent of the HAMBO simulator. 
 

Modelled Items Number 
Thermal hydraulic control volumes 2623 
Heat structure elements 6058 
Turbine sections, valves, pumps, and fans 1850 
Electrical system bus bars 410 
Control system signals 65170 
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Topical applications of APROS Nuclear focus on independent process design 
analysis as well as pre-testing of digital control system configurations. Both 
control system and process upgrades in existing plants and pre-analysis of new 
plants are considered. 

2.9 Pulp and Paper Mill Applications 

The development of unit operations models for pulp and paper production plants 
was proceeding systematically. The first relevant application was a recovery 
boiler plant model (Juslin & Tuuri 1992). Next application was a multi-effect 
black liquor evaporation plant model (Juslin & Niemenmaa 1994). A 
displacement pulping process model was introduced (Juslin & Pollari 1994). 
Experiences on detailed dynamic simulation of paper machines were published 
(Tuuri et al. 1995b). The modelling of a rotary limekiln was reported (Karhela et 
al. 1998b). Modelling and simulation of a bleach plant was concluded 
(Lappalainen et al. 1999; Tervola et al. 1999). Model based enhancements of the 
grade change at a board mill were discussed (Lappalainen et al. 2001). A 
dynamic model of a disk filter was given publicity (Savolainen et al. 2001). A 
model for oxygen delignification of craft pulp was presented (Pigg et al. 2002).  

Further developments of pulp boiler models have been made in recent projects. 
Still, some unit operations of the caustisizing plant are in the queue for 
development into the APROS Paper unit operation library. 

2.10 Control System Evaluation and Testing 

Gained experience on exercises related to simulator based early verification of 
plant and automation concepts have been brought to public (Leppäkoski et al. 
1991; Tuuri et al. 1995a; Leppäkoski 1995; Soutolahti et al. 1995; Bärman et al. 
1995). The introduction of standard interfaces had a large impact on the 
developments. The first connection of APROS simulation engine to a real DCS 
system using OPC standards was reported (Karhela et al. 1999). Simulation 
aided process automation testing principles were dealt with (Rinta-Valkama et 
al. 2000). The integration of process and automation design was discussed 
(Paljakka et al. 2000). A performance evaluation of the implemented OPC-based 
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I/O of APROS was concluded (Peltoniemi et al. 2001). How a customised 
dynamic simulator optimally could support process and control engineering at 
mill site was reported (Tuuri et al. 2001). A self-access studying environment for 
control engineering education was presented (Lilja et al. 2003). A training 
simulator for turbine and unit controls has been taken into use (ABB 2005b). 

The real take up of advance evaluation and testing of control systems is, 
however, subject to the availability of the required functionalities in the virtual 
control system installations. Virtual control system installations shall accept 
exactly the same configuration files as the real control system installation, they 
shall interface automatically with the simulation platform, accept start and stop 
commands, provide for change of time scale, and successfully read and write 
complete snap shots including state variables and historical data. Repeated 
scenarios initiated from a specific snap shot shall be identical and not e.g. 
depend on computer system load.  

2.11 Internet and Component Based Applications  

Applications of web browser and software component technologies to operator 
user interfaces in process simulation have been reported (Karhela et al. 1998a, 
Karhela et al. 1999). Specific component frameworks for modelling and 
simulation have been taken into use (Laakso et al. 1999). An Internet-based 
equipment data and model gallery has been developed, giving easy access to real 
component parameters when building up the process flow sheet (Karhela et al. 
2001; Nappa et al. 2002). The Gallery query language specification has been 
published (Kondelin & Karhela 2003). 

The development seems to go towards virtual working groups and web-based 
services of modelling and simulation centres, supporting stake holders engaged 
in research, design, maintenance, operation, trouble shooting, self-learning or 
training. International efforts directed to development of the semantic web are 
supposed to make world wide knowledge bases available in future, including 
design knowledge and applicable regulations. 
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2.12 The Software Development Process 

Several full-scope training simulators representing the first generation of the 
versatile companion model implementations are still in daily use. APROS, 
representing the second generation of implementations, is now established as a 
commercial software applied to many industrial sectors. It is a valuable 
computer-aided engineering tool for several hundred active users, worldwide. It 
is multifunctional in the sense that it supports basic process analysis and 
development, automation system concept development, testing of real control 
system functionality, as well as the development and running of full-scope 
training simulators. It is suited for detailed analysis of selected separate parts of 
a process as well as for studies of large integrated processes. It can run slower 
than real-time for studies of fast transients, exactly in real-time in training 
sessions, or faster than real-time for predictive operational studies. A 
comprehensive assessment of the APROS simulation software development 
process has been made (Silvennoinen 1996), concentrating on research and 
development cooperation and technology transfer as strategic instruments. The 
basic software platform produced as an outcome of the initial investment in the 
three-year APROS development project, has been an enabling key element in 
numerous subsequent application directed research, development, and 
consultation initiatives, indeed providing for added value development, testing, 
verification and validation of the software platform and its solver services. 

In the beginning, the APROS platform was considered as strategic engineering 
software, not to be made available at all for competitors. It was soon accepted 
that a large user group facilitates the required financial resources to maintain the 
high quality of the software and to support its transportation to new operation 
system versions and hardware platforms. A key issue has been that the 
application model repository files, as an outcome of detailed specification work, 
shall be easy to re-use when releasing new versions of the software. The model 
specifications can be considered as important carriers of formal design 
information over the full life-cycle of the target plants. An additional continuous 
challenge is to keep up with arising new requirements of the software as 
generated by the user group members. When systematically moving into new 
application areas, relevant knowledge needs to be gathered, by customers, 
suppliers and developers in co-operation. In such situations, basic research and 
development undertakings have arisen, which are very multidisciplinary and 
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well suited for a research organisation like VTT. New model libraries have then 
been developed, either for the sole use of the customer, or to be included in the 
maintenance program and commercially available for all users. Such 
developments as well as customers' own application developments have been 
reported in hundreds of international publications. 

The new data architecture specification presented in this thesis is a synthesis of 
ideas arisen from the broad range of application experiences referred to above. 
The author has developed separate prototypes to initially test some features with 
regard to the new data architecture. These software prototypes have been made 
using Object Pascal source code in the Borland's Delphi programming 
environment (Warner & Goldsman 1996). The prototypes include a graphics 
interface program for model specifications, and the connection to a simulation 
engine program. In order to enable the programs to easily communicate with 
XML scripts (Goldfarb & Prescod 2000) the author made a dedicated XML 
parser implementation. 

In accordance with these tests and all previous experience, the fast and reliable 
calculation of large integrated industrial processes turns out to require efficient 
real-time data-base organisation in addition to efficient mathematical algorithms 
including capable nonlinearity and discontinuity handling, robust discretisation 
with respect to space and time, vectorisable calculation of the matrix elements, 
rapid sparse matrix solvers, and fast and reliable material property look-up. The 
enabling key technology related to the Versatile Companion Model is described 
in the next chapter. 
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3. Model Specification Architecture 

3.1 Layered Model Specification 

The layered architecture proposed is supposed to enable efficient model 
specification and easily conducted dynamic simulation of large integrated 
industrial processes. Different user categories and tasks have been considered: 
Engineering users, designers of generic components, programmers of external 
functions, as well as maintainers of component galleries, model repositories and 
experiment recordings. Applicable scopes regarding the development of 
algorithms and software have also been touched upon. The different actors need 
access to different features. The user's and developer's views in the following 
subsections should be considered as requirements for the functionality. 

3.1.1 Engineering User's View 

The Engineering User has access to the Modelling Interface, the Simulation 
Interface, the Component Galleries, the Model Repositories and the Experiment 
Recordings. The engineering user builds up the Graphical Flow Sheet using the 
modelling interface. He places out node symbols and connects them with branch 
symbols. Each symbol has Terminals (connection points). A branch symbol has 
two terminals, one at each end. A node symbol has at least one terminal. The 
symbols are usually designed to graphically resemble real system Components. 
The node symbols are expandable to indicate the size of the real components and 
the branch symbols are stretchable to allow for making the connections. Looking 
at how the component models are constructed, we can distinguish between 
Assembled Components and Generic Components: 

• Assembled Component. A flow sheet depicting an integrated sub-
process specified by the engineering user as indicated above, can be 
assigned an own graphical symbol supplied with distinct published 
terminals. Model repositories containing previously assembled 
components provide for easy re-use. Modified components may be 
stored as new instances. 
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• Generic Component. Automated generation of the descriptive internal 
flow sheet is applied for commonly used process components. Such a 
generic component has an own graphical symbol, a specific parameter 
list and a related script for the generation. Access to supplier specific 
component parameters over the Internet or from local design databases 
is essential for effective use. 

The flow sheet created by the generic component script can be accessed by the 
graphical modelling interface tool. It should, however, be noted that if the 
structure of the flow sheet or the lower level parameters are modified manually, 
then the generic component becomes an assembled component. The assembled 
component can not be re-generated based on the generic component parameters. 

3.1.2 Generic Component Designer's View 

The Generic Component Designer specifies the items of the required parameter 
list and the relevant script for automated generation of the internal flow sheet. 
He also designs a suitable symbol including required terminals. The flow sheet 
of a generic component can include simple components as well as other generic 
components. The building blocks available for the use of the generic component 
designer are as follows: 

• Simple Terminal. A simple terminal can only connect to other 
terminals of a type resembling the local state variable in consideration, 
such as pressure, specific enthalpy, mass fraction, or voltage. 

• Compound Terminal. A compound terminal is made up of a suitable 
set of simple terminals or other compound terminals. A compound 
terminal for connection of pipes in a steam network usually comprises 
the simple terminals for pressure and specific enthalpy. The generic 
component designer can specify suitable compound terminals. 

• Simple Branch. A simple branch provides for flow or hold up of mass, 
energy, electric charge or any other single transition entity. All physical 
mechanisms are included in the branches. The simple branch is the 
graphics view of the companion model to be described later on in very 
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detail. A simple branch has two published simple terminals, one at each 
end. 

• Compound Branch. A compound branch is a generic or assembled 
component that can include several simple branches or other compound 
branches in parallel. A compound branch may also include compound 
branches and nodes in series. At application level it is, however, shown 
as a single branch component. A compound branch has two published 
compound terminals, one at each end. 

• Simple Node. A simple node represents a single property variable to be 
taken into account such as pressure, enthalpy, concentration, or voltage. 
A simple node does not itself include any physical mechanisms. It only 
connects simple branches. A simple node has at least one published 
simple terminal. 

• Compound Node. A compound node is a generic or assembled 
component that represents a collection of local simple or compound 
nodes. A compound node can also include simple local branches 
depicting e.g. reactions between substances involved. A compound node 
has at least one published simple or compound terminal. 

3.1.3 Simple Branch Configurator's View 

The Simple Branch is the core component in the sense that it is the target for the 
specification of all real world local interactions that should be considered. The 
Simple Branch Configurator selects the Separate Mechanisms that are supposed 
to have impact on e.g. the flow or hold-up in a specific simple branch. He can 
also choose required Material Properties and Customl Functions. 

• Separate Mechanisms. Application domain specific libraries of readily 
implemented algorithms for calculation of distinct elementary physical 
mechanisms need to be available. An interface is needed for externally 
programmed separate mechanisms. 



 

45 

• Material Properties. Lookup of basic material properties by using pre-
calculated and tabulated parameter sets or by access to specific external 
material property calculation software. 

• Custom Functions. Custom functions are typically input/output models, 
such as automation system function blocks. They can include internal 
state variables. The supplier of these external function blocks is 
responsible for their performance. 

3.1.4 Repository Maintainer's View 

The process component manufacturers and process integration designers can 
maintain themselves libraries of relevant component specifications and process 
design concepts.  However, they can also outsource these tasks to a specific 
Modelling and Simulation Service Centre. The models can be operated over the 
Internet for experimentation or training purposes. 

• Component Galleries. Process component manufacturers have the best 
knowledge to supply model parameter specifications of their 
components to be available for engineering users over Intranet, Extranet 
or Internet. 

• Model Repositories. Integrated plant models can be specified by 
authorised engineering users into distinct model repositories with 
dedicated access rights for relevant development teams, project 
participants, or user groups. 

• Experiment Recordings. Corresponding recordings of simulation 
experiments as well as measurements from real plants can be stored into 
experiment repositories, thus being available for model validation or 
process diagnosing purposes. 
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3.1.5 Software Developer's View 

The End User has the possibility to develop own source code for new Separate 
Mechanisms, Material Properties, and Custom Functions. The Dynamically 
Linked Library (DLL) standard interface provides for easy implementation of 
such external functions without the need for compiling and linking of the 
modelling and simulation engines. The expert of physical mechanisms has 
access to the distinct specification layers of the versatile companion model. The 
expert of material properties can include customised material properties 
calculation functions or empiric correlations subject that they are made up of 
concatenating Monotonic Regions. The programmer of the external functions 
can decide if the functions need to be included in the iterative nonlinearity 
correction procedure. The external functions can be algebraic or dynamic, as 
well as linear or nonlinear. 

The Platform Developer is responsible for the easy transporting of the modelling 
and simulation platforms and the relevant graphics software to new operation 
system and computer hardware environments, whence decided necessary. User's 
guides and installation instructions need continuous maintenance, as well. The 
quality assurance requires traceability of changes in the source code, and 
application of required verification and validation procedures. The accumulated 
amount of application developments made shall easily survive any updating of 
the platform. The platform developer coordinates the software development 
work. 

The Modelling Engine Developer is responsible for the development of the 
hierarchical model specification formalism, the access to evolving semantic 
databases, the automated flattening down of the Hierarchical Model 
Specifications to a Linear System Graph Specification and the preparation of the 
data structure for the models to be run on one or several simulation engines in 
parallel. Concepts such as Local Regions, Homogeneous Zones, Function 
Blocks, and Implicit Islands are identified. They are basic concepts related to the 
real-time database organisation optimised for the use of the table driven solvers 
of the simulation engine. 

• Local Regions. Suitable parts of a larger model graph are separated into 
local regions and if required run in parallel on multiple simulation 
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engines. Each simulation engine provides for solving the included 
homogeneous zones, in conformance with the arising requirements. 

• Homogeneous Zones. Specific zones of the graph with very weak or 
very strong internal dependencies are separated to own zones and 
calculated in parallel with the remaining normal zone. Different time-
steps can be applied to each homogeneous zone. 

• Function Blocks. Function blocks have specific input, output and 
possible internal state variables. Explicit, semi-implicit and implicit 
function blocks are identified within each homogeneous zone. Typical 
explicit or semi-implicit function blocks are those that originate from 
sequential control system operations or from calculation of companion 
model parameters. External functions are attached as DLLs and also 
treated as function blocks. 

• Implicit Islands. An Implicit island is a specific kind of function block. 
An implicit island is made up from implicitly connected companion 
models. The relevant matrix equation is solved by sparse matrix 
methods. 

The Simulation Engine Developer is responsible for the efficient implementation 
of the relevant data structures and solvers. He also needs to consider the real-
time communication issues and the interface to the simulation graphics. He is 
also responsible for generation of run-time models. 

Separate developers can be assigned for the Modelling Graphics, the Simulation 
Graphics, the Component Gallery, the Model Repositories and the Experiment 
Recordings. There shall be provision for both browser based graphics clients and 
the use of independent proprietary graphical tools. The graphical interfaces shall 
be very thin and just include information needed for opened windows. For 
security reasons also decoding, encoding and authentication procedures shall be 
provided for. 

The concepts needed to handle the nonlinear differential and algebraic equations 
of a supposedly Piecewise Monotonic World are described in detail in the 
following chapters. Starting from linear structured graphs made up from simple 
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nodes and branches, specifications are made layer by layer to complete with a 
hierarchical plant wide model description. The real world equations are 
formulated to comply with the notation of Mechanistic Transition Equations, 
they are linearised to Linear Transition Equations in order to enable implicit 
solution and finally temporally discretised to comply with the Versatile 
Companion Models related to the simple branches of the system graph. 

3.2 Structured Graphs 

In systems modelling, research has been focused on three graph-based 
paradigms: block diagrams, bond graphs, and linear graphs (Sinha et al. 2001). 
Control systems comprise control elements supplied with input and output signal 
connections and are intrinsically built up as block diagrams. Accordingly, it is 
straightforward to model them as well as other typical function blocks with 
block diagram graphs. Bond graphs require that the causality is specified at the 
time of model creation, whereas linear graphs easily can cope with causality 
changes such as the change of fluid flow directions. Another reason to choose 
linear graphs is that they reflect the process system topology directly unlike the 
bond graph or block diagram models. The relationship between physical systems 
and linear graphs was already recognized about 50 years ago (Trent 1955; 
Branin 1966). The author's choice for the developments was to apply linear 
graphs and block diagrams combined. 

A Graph is made up Nodes (vertices) and Branches (edges). In a Connected 
Graph each branch is connected at both its ends to nodes and there is at least one 
path from a node to any other node in the graph. The most simple connected 
graph is accordingly made up of two nodes connected by a branch. A Directed 
Graph, is a connected graph where each branch has a specified direction of 
dependency. A Linear Graph is a directed graph where there is a linear equation 
for each branch expressing the relation between the involved graph variables. 

A Simple Branch has only one Transition Variable for instance representing 
mass flow or current. A Simple Branch has a specified positive flow direction. 
The simple branch has one Simple Branch Terminal at each of its ends. A Simple 
Node has only one Local Variable, for instance representing pressure or voltage. 
A simple node has any number of Simple Node Terminls. A simple branch 
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terminal and a simple node terminal can only be connected if they represent the 
same Domain, which relates to the type of local variable in consideration. The 
terminals of a simple branch can be of different domain. The Degree of a simple 
node is the number of simple branches connected to that node. A Simple Branch 
can be depicted by relevant Branch Elements in parallel between the branch 
terminals representing the contribution of the distinct terms of the linear 
equation making up the transition variable. 

Graphs are applicable at very detailed level for description of real world 
performance, but also at large. A Grouped Graph contains simple branches and 
nodes or other grouped graphs. A grouped graph can consist of separate 
connected graphs. For higher abstraction level use, the internals of a grouped 
graph are hidden and the grouped graph can be depicted by a suitable Symbol. 
The grouped graph can only be connected via published terminals. A grouped 
graph describes one or several unit operations or even a whole production unit. 
Grouping of graphs to form higher level graphs enables temporary hiding of too 
detailed information. It therefore essentially simplifies the use of the graphs. The 
Compound Nodes and Compound Branches as specified in Subsection 3.1.2 are 
grouped graphs. 

All grouped graphs in this architecture are eventually structured out the needs of 
the process design of process components, unit operations, subprocesses or even 
a complete plant. Because they all have been built up by grouping of lower level 
graphs it is possible to flatten down the whole model to a consistent set of simple 
branches and nodes of a System Graph to form a basis for the mathematical 
solution of their integrated functioning. 

The availability of this kind of layered graphical description is expected to lower 
the threshold to take up and use modelling and simulation for studies of dynamic 
performance of large integrated systems. Depending on the expectations of a 
specific simulation study there might be a need of different levels of detail and 
viewpoints of the models. Sometimes it is sufficient only to know the production 
time and capacity of a chemical plant. In some cases, however, even the detailed 
chemical kinetics in each reactor needs to be considered. 

In the following, the study is concentrated to process industry applications. The 
level of detail of the models is restricted to make real-time studies of large 
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integrated processes possible and feasible. The lowest level of graphs or 
dependencies considered, hence relates to the dependencies set up by the first 
physical and chemical principles. These are complemented when necessary by 
material properties and component specific empiric correlations. 

3.3 Mechanistic Transition Equation  

The different actors and views as discussed above in Section 3.1, impose diverse 
requirements on the architecture of the modelling and simulation platform. The 
specification of the geometric structure of the plant and its components, the 
physical, chemical and empiric behaviours involved require all to be carefully 
considered when designing the model specification database, the real-time 
calculation database, and the mathematical solver. 

The time constants encountered in an industrial process can differ with several 
orders of magnitude. Therefore, the scope of study needs to be considered 
carefully. In some context a specific phenomenon is so fast that it is convenient 
to simulate it as instantaneous algebraic equations, subject that the fast dynamics 
does not impact on the result. In some other context, a specific phenomenon is 
so slow that it can be considered as a constant boundary condition during the 
term of study. In any case, provision should be made to cope with Stiff Systems. 

The interdependencies of some variables can be so strong that the only way to 
solve the integral problem is to first combine them for a joint solution, and 
thereafter calculate the details. Some interdependencies can be so loose, that 
they can be totally omitted. As we shall later on find out, the coefficients of the 
versatile companion model contain information for evaluation of such inter-
dependencies. This information will, however, be destroyed upon formation of 
the matrix equation elements required for the integrated solution. Some 
interdependencies are almost linear, others are nonlinear but still monotonic, and 
some involve even discontinuous transitions between separate continuous 
regions. The modelling and simulation platform needs according to these 
prerequisites a solver prepared for all the situations arising when describing the 
real word. 
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Many of the effective phenomena are related to the well-known conservation 
equations for mass, energy and momentum in combination with empiric 
correlations for thermal dynamic, transportation and other properties. Sometimes 
important product quality properties depend on the complete processing history. 
Sometimes only vague or statistical relationships can be given. Provision shall 
be made for handling of relevant multi-paradigm or hybrid models. 

A real process is usually by its construction divided into suitable control 
volumes, for each of which homogeneous distribution of relevant properties can 
be anticipated. If considered necessary for the studies, large tanks or long pipes 
can be divided into smaller volumes, by the user or automatically by the 
simulation software. In such a way the model is discretised with respect to space 
into control volumes. 

Each component of a dynamic system model can be considered as representing a 
relationship between two Local property variables xi and xj and the relevant 
Transition flow variable vij  (MacFarlane 1964). Accordingly, the dependency 
between the terminal pressures of a pipe section in consideration and the 
relevant transition flow could be given as an implicit function, 

gij (xi, xj, vij,  dvij/dt, ∫vijdt, t) = 0. 

This Mechanistic Transition Equation (MTE) depicts one or several separate 
physical mechanisms having impact on the transition flow vij between the local 
property variables xi and xj. The MTE is either Linear or Nonlinear. The MTE is 
either Static or Dynamic. The MTE can include terms dependent on time t, on 
acceleration dvij/dt and on accumulation ∫vijdt effects. The MTE is assumed to be 
Piecewise Monotonic. The MTE can as well include parameters that explicitly 
depend on other external variables.  

If there is no accumulation of the transition variables in an infinitesimal terminal 
point we can assume that the sum of incoming and outgoing flows is zero. For 
all the flows vij connected to terminal j we can thus write Σi vij = 0. Note that 
there are usually only a few flows connected to a single terminal. All the 
equations gij = 0 and Σi vij = 0 required to describe the model of concern 
together form a system of differential and algebraic equations. Note as well that 
some of the equations can be nonlinear. If Nx is the number of dependent local 
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variables xi and Nv the number of dependent transition variables vij then the 
number of variables to be solved is N=Nx+Nv.  In addition, the equations can 
include external variables xi or vij acting as boundary conditions to the system. 
We describe this system of N equations in N unknowns as GN = 0, where GN : 
RN →  RN. The assumption is that all such interdependencies of a system, at 
least for a very short time instance, can be considered as linear an depicted by a 
System Graph consisting of simple branches and nodes. 

Several simulation and modelling paradigms and languages have been 
developed. They can be classified according to the following criteria (Fishwick 
1998): graph-based versus language-based paradigms, procedural versus 
declarative models, multi-domain versus single-domain models, continuous 
versus discrete models, and functional versus object-oriented paradigms. Graphs 
have been used to represent interconnected systems in many modelling domains. 
We shall now focus on the linear graph concept extended to represent the 
versatile companion model and the relevant equivalent models. 

3.4 Versatile Companion Model (VCM) 

3.4.1 Origin of the Companion Model 

The fundamentals of Linear Circuit Theory originate from Georg Simon Ohm�s 
(1789�1853) law published 1827, Gustav Robert Kirchoff�s (1824�1887) laws 
known from 1840s, the principle of superposition proclaimed 1853 by Herrman 
von Helmholtz (1821�1894), and James Clerk Maxwell�s (1831�1897) ideas 
composed 1864 in his publication "A dynamic theory of electromagnetic field". 
From this starting point, any linear circuit can be solved: Given a specification 
of all sources and impedances in the circuit, a set of linear equations can be 
found and solved to yield any voltage and current in the circuit. 

One of the most surprising concepts to arise from linear circuit theory is the 
Equivalent Circuit: no matter how complex the circuit, from the viewpoint of 
any pair of terminals, the circuit behaves as if it consisted only of a source and 
an impedance. Two equivalent circuit structures predominate: the voltage-source 
equivalent circuit and the current-source equivalent circuit. A review of the 
origin of the equivalent circuit concept has recently been made (Johnson 2003a 
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& 2003b). The concept of voltage-source equivalent was published by Hermann 
von Helmholtz in 1853. Thirty years later in 1883, Léon Charles Thévenin 
(1857�1926) published the same result apparently unaware of Helmholtz�s 
work. The generality of the equivalent source network was not appreciated until 
forty-three years later. Then, in 1926, Edward Lawry Norton (1898�1983) wrote 
an internal Bell Laboratory technical report that described the usefulness in some 
applications of using the current-source form of the equivalent circuit. In that 
same year, Hans Ferdinand Mayer (1895�1980) published the same result and 
detailed it fully. 

The current-source equivalent circuit was considered as a dual model or 
Companion Model to the voltage-source equivalent circuit. The current-source 
companion model can be attained from the voltage-source representation of a 
network branch according to Ohm's law, ubr = zbr ibr + ebr,  by solving for the 
branch current ibr and replacing the branch voltage ub by relevant node voltages 
ubr = ui - uj, the branch impedance zbr by the relevant branch admittance ybr = 
zbr

-1 and the voltage-source ebr by the relevant current-source jbr = ebr zbr
-1 to get 

ibr = (ui - uj) ybr + jbr . Whence the current-source companion models for all 
interconnected branches in a circuit under study are specified, and at least one 
branch is connected to an external reference node, all the internal voltages and the 
relevant branch currents can be solved from the arising linear equation system as is 
described in detail in Subsection 4.6.1. The introduction of the current-source 
companion model made performance calculations of linear electrical circuits very 
straightforward, in fact, already by using pencil and paper. 

3.4.2 Versatile Companion Model Equation and Branch 

The main emphasis in this section is to introduce a generalisation of the 
companion model concept for a broader use than just linear electrical circuits. 
The intention has been to formulate a powerful but yet simple representation 
allowing for easy specification and solution of large and complicated dynamic 
systems including components of various domains. An important requirement 
has been to also encompass such nonsymmetric and nonlinear dependencies that 
are typical for thermal dynamic and chemical processes. It is supposed that the 
dependency, at least for a short time instance, between two local variables and a 
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relevant transition variable can be described by the Versatile Companion Model 
(VCM) equation, 

xigf  - xjgb +  si j - vij = 0 

The VCM equation describes the linear declarative dependency between the 
Transition Variable vij from node i to node j, the Local Variables xi and xj, the 
Forward and Backward Coefficients gf and gb, and the Source Term sij.  The 
coefficients and the source term together form the three VCM Parameters. The 
related VCM Branch shown in Figure 3.1 is according to previous specifications 
a Simple Branch as it connects two local variables by a single transition variable. 
It has, however, an internal structure comprising at most three parallel Branch 
Elements: Forward Element xigf , Backward Element xjgb, and Source Element 
sij. They are connected by joint terminals to the two adjacent nodes xi and xj, 
The VCM parameters are usually not constant. They typically change for each 
time-step or iteration. 

Figure 3.1. The versatile companion model branch. 

3.4.3 VCM Provides Alternative Causality Modes 

Structured graphs define easier the causality of real processes than modelling 
languages or equation based approaches (Paredis et al. 2001). In a conventional 
companion model the coefficients gf = gb and the related branch is considered as 
A-Causal. VCM branches arising from linear electrical circuits with independent 
voltage sources are a-causal. Relevant heat diffusion branches are also a-causal. 
Additional causality modes are specified for the versatile companion model. If 
both coefficients gf and gb exist but gf ≠ gb then the branch is Bicausal. 
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Chemical reaction rates are typically bicausal. If only the other of the 
coefficients exists, the branch is Unicausal. Thermal convection equations are 
typically unicausal. Upon reversed convection flow a Forward-Cause branch 
changes to a Backward-Cause branch. If both coefficients are zero and only the 
source term is left, the branch causality is considered as Forced. A piston pump 
generates a forced flow of non-compressible media within a certain range of 
operation. If also the source term is zero then the branch Disconnected. If the 
coefficients in an a-causal branch are relatively very large then the branch and its 
adjacent nodes are combined to form a Lumped node. The novelty with the 
versatile companion model is that it has alternative causality modes and that 
causality changes during the simulation can be inherently considered. 

3.4.4 VCM Connects to Suitable Variable Instances 

An other unique feature of the versatile companion model is that it also has 
access to alternative instances of the local and transition variables. They 
inherently provide for on-line flexibility to choose from explicit, implicit and 
semi-implicit solution methods. The following instances of the Local Variable 
are available: xiê, xie, xik, xit, xiu and xiv. The first letter of the sub-index stands 
for the node index. The following letter of the sub-index denotes the relevant 
local variable instance in the numerical solution scheme. It is marked by ê for a 
new value to be predicted, by e to be implicitly calculated, by k for the old 
iteration step value in the correction of nonlinearities, by t for the last situation 
accepted as a correct solution, by u for the previous time-step value, and by v for 
the two time-steps old value. 

The following instances of the Transition Variables are available: vijê, vije, vijk, 
vijt, viju and vijv. The positive direction of a branch is shown by its sub-indexes. 
It starts from the instance of the node value as denoted by the first sub-index and 
stops at the instance of the node value as denoted by the second sub-index. The 
following letters refer to the branch instance in the numerical solution scheme, in 
the same way as for the node variables. A branch accumulates mass, energy, 
momentum, electrical charge, or quality properties. 
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3.4.5 VCM Supports Procedural and Declarative Modelling 

It shall be noted that the node and branch structure of the versatile companion 
model supports both declarative and procedural modelling. Any local or 
transition variable can be implicitly or explicitly solved, or considered as a 
boundary condition. A pipe element in a flow network requires declarative 
specification to allow the flow to turn into any direction. The pipe junctions are 
thus only connection points not anticipating any flow direction. On the other 
hand, control system components involving dedicated inputs and outputs are 
intrinsically procedural. In a Procedural Modelling scheme explicit input 
variables x and output variables y are specified and the relevant equations or 
functions y = f(x) are usually written in a certain sequence (Muetzelfield 2004). 
A Declarative Modelling scheme, however, promotes the use of implicit 
dependencies such as f(x,y) = 0 which allows for specification of the 
dependencies in any order. 

3.4.6 VCM Suits Application to Multiple Domains 

Typical local and transition variables applied in the formulation of the transition 
equations and relevant versatile companion models representing different 
physical Domains are described in Table 3.1. 

Table 3.1. Domain specific local and transition variables. 
 

Domains Transition vij Local xi Local xj 
1 Electrical circuits electrical current voltage voltage 
2 Hydraulic circuits mass flow pressure pressure 
3 Convection  energy  flow specific enthalpy specific enthalpy 
4 Heat structures energy flow temperature temperature 
5 Fluid to wall energy flow specific enthalpy temperature 
6 Concentration substance flow  mass fraction mass fraction 
7 Chemical reaction production rate  mass fraction mass fraction 
8 Rotating mass shaft power rotation speed rotation speed 
9 Electrical power complex current complex voltage complex voltage 

10 Control systems not applicable control signal control signal 
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Electrical networks are listed as distinct domains for time domain studies of 
direct current circuits and for load flow calculations of alternating current power 
networks. In hydraulic circuit calculation separate domains are identified for 
mass flow, energy convection, heat diffusion in structures, and heat transfer 
from fluid to structures. The transportation of different substances as well as 
reactions between substances need also to be separately considered. The rotating 
masses convey power from the hydraulic domain to the electrical power domain. 
The control systems models have, however, been retained as function blocks to 
conform with the functionality of real control systems. 

In following sections it is shown how equations arising from very different 
physical domains can be manipulated in such a way that they fit into the linear 
directed graph presentation of the versatile companion model. The usual steps to 
be taken are: Spatial discretisation, linearisation of nonlinear terms, temporal 
discretisation, and finally the algebraic manipulation needed to describe the 
transition variable as a linear function of the local variables. A graph made up 
from versatile companion models depicts a linear equation system that easily 
allows for an integrated solution. In the following section the Linear Dynamic 
Equivalent of the versatile companion model is described. 

3.5 Linear Dynamic Equivalent of VCM 

The linear dynamic equivalent model is specified to extend the versatile 
companion model concept with such static and dynamic equations that for 
instance describe linear electrical circuits including elements like linear 
inductors, capacitors, resistors and voltage sources. According the to 
accumulated experience from previously made implementations, a small basic 
set of only five differential and algebraic equations is not only sufficient for the 
description of above mentioned linear electrical circuit elements but also 
adequate to describe relevant instant dependencies in other domains such as 
thermal hydraulic circuits subject to application of suitable linearisation 
procedures as described in Section 3.6. We shall restrict the study to first order 
differential equations. It shall be noted that higher order differential equations 
easily can be replaced by a set of lower order equations if suitable new variables 
are specified. 
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3.5.1 Linear Transition Equations 

The required basic set of relevant Linear Transition Equations (LTE) involving 
two local variables xi and xj connected by a transition variable vij, has been 
collected into Table 3.2. The coefficients included in the relevant algebraic and 
first order differential terms of the equations are called the LTE Parameters: Rf, 
Rb, L, C, E and I. 

Table 3.2. Linear transition equations. 
 

LTE Linear transition equations connecting vij, xi and xj 
1 Rf 

-1
 xi  - Rb

-1
 xj  + I - vij = 0  Bicausal static dependency  

2 xi - xj   - R vij  + E  = 0  A-causal static dependency 

3 xi - xj  - C -1∫ vij dt + E = 0  
4 xi - xj   - L  dvij /dt  + E  = 0  
5 xi - xj  - R vij - L dvij /dt + E = 0  

A-causal dynamic dependencies  
 
 

 
Detailed example derivations of such LTE models for each physical domain of 
interest will follow in the later part of this chapter. In order to build the solution 
structure layer by layer, we shall, however, first consider how to get versatile 
companion models from this basic set of LTE models. 

3.5.2 Versatile Companion Models from LTE Models 

In a professional simulation tool for industrial processes used by design 
engineers, not mathematicians, the general approach is that the numerical 
integration method is automatically chosen as stable as possible. Linear multi-
step methods, both explicit and implicit, are based on polynomial 
approximations in the time domain supposing that the differential equations are 
linear including coefficients that are constant with respect to time. The 
differential equations describing thermal-hydraulic networks are very nonlinear 
and stiff. According to the conclusions made in Section 4.3 the choice of one-
step implicit methods is quite obvious. In addition, one-step methods enable easy 
adaptation of the time-step to cope with largely varying change-rate and 
spuriously arriving discontinuities. The coefficients of implicit integration 
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methods of an order not exceeding 2 can be chosen in such a way that the 
integration method becomes Absolute Stable, i.e. the stability region of the 
method is at least the whole left-half plane (Broenink 2004). In accordance with 
the detailed analysis in Section 4.3 three alternative temporal discretisation 
methods are applied: Backward Euler rule, Trapezoid rule, and Gear's Second 
Order rule. They are all absolute stable. Backward Euler rule is always used to 
start up the calculation after the crossing of monotonic region borders or when 
passing time dependent discontinuities. Upon time-step extensions following a 
transient or whilst time-step reductions are needed e.g. for finding discontinuity 
points, the Trapezoid rule is applied. Backward Euler and the Trapezoid rule are 
truly one-step methods, not requiring calculation of intermediate points, and they 
are according to author's experience very well suited the companion models. For 
situations when operating with constant time-steps after that large transients 
have been passed the Gear's second order method is introduced. It has not been 
needed in previous implementations. Its drawback is that it requires equidistant 
time-steps. It is included to show that the companion model approach also suits 
multi-step methods. 

We shall now show how the linear transition equations easily can be discretised 
with respect to time just by substitution of their relevant Derivative Terms 
dvije/dt and Accumulation Terms ∫evij dt by applying each of the rules described 
in detail in Subsection 4.3.1: 

• Backward Euler rule. The backward Euler rule is solved to give an 
estimate for the derivative term at time e as well as to estimate the 
accumulation term during the time-step ∆e as follows: 

dvije/dt  ≈ ∆e
-1(vije - vijt), and 

 ∫evijdt  ≈ ∆e vije  

• Trapezoid rule. If the temporal derivative of the transition variable at 
time t we is denoted v'ijt  we can write applying the Trapezoid rule: 

dvije/dt  ≈  2 ∆e
-1(vije -  vijt)  - v'ijt, and 

∫evijdt  ≈  1/2 ∆e (vije + vijt). 
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• Gear's second order rule. Applying the Gear's second order rule 
described in Subsection 4.3.1 we need to have access to the transition 
variable viju and the accumulation variable qt= qu +∫tvijdt : 

dvije/dt  ≈  ∆e
-1 ( 3/2  vije  -  2vijt  +  1/2  viju ), and 

∫evijdt  ≈  2/3 ∆e vije  +  1/3 qt   -  1/3 qu. 

Table 3.3 shows the expressions for calculation of branch coefficients gf and gb 
and source values sij of the relevant VCM equation from the linear transition 
equation parameters (see Table 3.2) complemented with old state variables when 
applying the three different rules. 

Table 3.3. Companion model parameters from linear transition equation 
parameters and old state values. 

 
LTE   gf   gb sij 

Backward Euler rule  
1 Rkf

-1 Rkb
-1  Ik 

2 Rk
-1 g Ek 

3 ∆e
-1 Ck  g Ek  

4 ∆e Lk
-1 g Ek  +  vijt 

5 (Rk + ∆e
-1

 Lk ) -1 g  (Ek    + ∆e
-1Lk  vijt  ) 

Trapezoid rule 
1 Rkf

-1 Rkb
-1  Ik 

2 Rk
-1 g Ek 

3 2 ∆e
-1Ck     g Ek   -  vijt 

4 1/2 ∆e Lk
-1  g Ek  + vijt  + 1/2 ∆e v'ijt 

5  ( Rk + 2 ∆e
-1 Lk ) -1 g( Ek  + 2∆e

-1Lk vijt  + Lk v'ijt  ) 
Gear�s 2nd order rule 

1 Rkf
-1 Rkb

-1  Ik 
2 Rk

-1 g Ek 
3 3/2 ∆e

-1 Ck      g Ek  -  1/2 ∆e
-1 qt   +  1/2  ∆e

-1qu  
4 2/3  ∆e Lk

-1    g Ek  +  4/3 vijt   -  1/3  viju 
5 (Rk +  3/2  ∆e

-1Lk ) -1 g (Ek - 2∆e
-1Lk vijt  + 1/2  ∆e

-1Lk viju ) 
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In order to follow up the derivation of the expressions in Table 3.3 just consider 
for example the linear transition equation number 3 in Table 3.2 depicting 
accumulation in a branch, 

xi - xj  - Ck
-1∫ vij dt + Ek = 0. 

The coefficients originating from previous iteration step value are denoted with 
sub-index k. We apply for instance the Trapezoid rule and substitute the relevant 
integral expression ∫evijdt ≈ 1/2 ∆e( vije + vijt ) in the linear transition equation and 
we get xie - xje  - 1/2 Ck -1 ∆e ( vije + vijt )  + Ek = 0. If we solve this equation 
with respect to the estimated flow vije we can write,  

vije = xie2∆e
-1Ck - xje2∆e

-1Ck - vijt +2∆e
-1CkE. 

If we compare this equation with the VCM equation written  vije = xiegf  - xjegb + 

sij at the time instance e we will find that the coefficients g = gf  =  gb = 2 ∆e
-1Ck 

 

and the source term sij =  g Ek  - vijt  as set forth in Table 3.3. 

When evaluating different temporal discretisation methods it shall be kept in 
mind that they need to be efficient enough to suit real time simulation of full 
scope industrial plants. The same goal shall also be considered when evaluating 
solution methods for nonlinear equation systems. In the following section the 
Nonlinear Mechanistic Equivalent of the versatile companion model is 
described. 

3.6 Nonlinear Mechanistic Equivalent of VCM 

A typical mechanistic branch is specified by a single equation, linear or 
nonlinear, algebraic or differential. It combines simple local and transition 
variables. The parameters of this equation are called mechanistic parameters. 
The nonlinear terms of the equation are linearised to enable implicit solution 
which in turn requires iterative nonlinearity error correction each time-step. The 
linearised equation is identified with a suitable LTE model. The relevant 
expressions for calculation of the parameters of the LTE model are presented. 
The described procedure is repeated to an extent required to demonstrate the 
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applicability to separate physical mechanisms, domain by domain in the 
following subsections, starting with the electrical circuits domain. 

3.6.1 Electrical Circuits 

In electric circuitry simulation, branch currents represent the transition variables 
and node voltages the local variables. The parameters R, Rf, Rb, L, C, I and E 
of Table 3.2 describe initially constant resistances, inductances, capacitances, 
source currents and voltages. In the occasion of nonlinearities these constants are 
substituted with relevant instantly linearised values Rk, Rkf, Rkb, Lk, Ck, Ik and 
Ek in a Newton type of iterative nonlinearity correction, as discussed in 
Subsection 4.6.3. 

Semiconductors can appear highly nonlinear or even discontinuous in their 
behaviour, just depending on the time resolution in consideration (Juslin 1973). 
Semiconductor layers in some cases encompass a nonlinear capacitive behaviour 
C(u) depending on the voltage over the capacitor u = xi - xj. Let us just consider 
the linearisation of this challenging nonlinearity in detail as an illustrative 
example of nonlinear electrical circuits. 

• Sample Nonlinear Capacitor Branch. Consider a capacitor connected 
between two electrical network nodes. The node voltages are denoted as 
xi and xj and the relevant branch current vij. In accordance with the MTE 
notation  gij ( xi , xj , dvij/dt, vij ,∫vij dt, t ) = 0  we can write the 
nonlinear dependency between the node and branch variables at the time 
instance e as 

xie - xje  - ∫∆e[C(xi, xj)]-1vij dt + Et = 0, 

where Et is the initial voltage over the capacitor at time t and ∆e the 
applied time-step. The nonlinear capacitance C(xi, xj) is specified as a 
function of the related local variables. 

• Linearisation of the Transition Equation. The principles of 
linearisation and stability of iterative correction of nonlinear 
dependencies are dealt with in detail in Subsection 4.6.3. The charge qe 
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= ∫∆evij dt + qt in the capacitor is linearly integrated over the time-step 
∆e. Let us for simplicity consider the voltage over the capacitor as u = 
xi - xj. Then the derivative of the charge with respect to voltage at a 
specific operation point u can be written q'(u) =dq(u)/du. Taylor's first 
order expansion of the charge with respect to the voltage gives qe  ≈  qk 
+ q'(uk) (ue - uk) where ue is the estimated new voltage difference and uk 
the previous value in a Newton-Raphson's type of iterative correction of 
the nonlinearity errors. We substitute the integrated qe with its 
expansion with respect to voltage and get qk + q'(uk) (ue - uk) = ∫∆evij dt 
+ qt . If we denote Ck = q'(xik, xjk)   and  Ek = Ck

-1 (qt - qk) + xik - xjk  we 
can write the linearised transition equation dependency as 

xie - xje  - Ck
-1∫ ∆e vij dt + Ek = 0 

thus well suited for implicit integration from time instance t  to  e =  t + ∆e 

. It is supposed that both the function q(u) and its derivative q'(u) are 
available. The above formulation complies with the linear transition 
equation number 3 in Table 3.2. We have above derived the expressions 
for the required linear parameters Ck and Ek. 

• Temporal Discretisation. In Subsection 3.5.2 the application of 
numerical integration in order to cope with stiff systems and to manage 
discontinuities is dealt with in detail. By application of the backward 
Euler rule, the Trapezoid rule or the second order Gear's rule as 
presented in Table 3.3, the relevant versatile companion model 
parameters gf, gb and sij are obtained. 

• Integrated Solution. The procedures for computing the required 
parameters aij and bi of the relevant node matrix equation A xe= b to 
describe an interconnected network made up of all transition equations 
in concern are set forth in Subsection 4.6.1. 

• Computational Sequence. The iterative nonlinearity error correction 
and the proceeding from time-step to time-step entails that some 
variables need to be computed more frequently than others. Specific 
calculated variables are stored to be reused in next iteration or time-step 
to considerably speed up the calculation. We can for instance look at the 
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role of the different variables, the initiation of a new time-step, the 
iteration procedure and the acceptance of the new time-step for this 
example branch. The connection to other branches is only considered in 
the implicit solution of the voltages. Whilst entering into a new time-
step of the length ∆e we calculate the explicit derivatives of the state 
variables at time t, and the predictions of the state variables at time e in 
order to initiate the reference values for iterative nonlinearity correction: 
xik ← xiê ,    xjk ← xjê   and  vijk ← xjê .  At each iteration step there are 
several variables to be calculated  in sequence: 

    1.   Voltage uk and linear transition equation parameters Ck  and Ek  ,  
    2.   Companion model parameters gf ,  gb  and sij  , 
    3.   Node matrix equation parameters aij   and  bi , 
    4.   Node voltages  xie and xje  from A xe= b , 
    5.   Secondary variables ue and  vije from node voltages,  
    6.   Linearised charge qe used in the calculation, and 
    7.   Correct charge qe from the nonlinear correlation qe  = q(ue)  

• Computation Control. If the difference qe - qe is not accepted and the 
maximum step number is not yet exceeded the reference values are 
substituted with the calculated estimates  xik  ←  xie ,  xjk  ← xje  and vijk ← vije, 
and the iteration is continued. The iteration is re-started with an updated 
time-step length for the purpose of exact hitting a state dependent break-
point or if the maximum number of iterations is exceeded. If the 
iteration is accepted then the relevant time dependent variables are 
updated  xit  ←  xie ,   xjt  ←  xje,   viju ← vijt ,  vijt ← vije,  qu ← qt ,   qt ← qe   
and   tt ← tt +∆e  and  the simulation enters into next time-step. 

Three example electrical circuit branches, each with a few mechanisms in series 
are shown in Figure 3.2. Relevant linear transition equations and the procedures 
to calculate the versatile companion model parameters are indicated as well. The 
backward Euler rule has been used for the temporal discretisation. One of the 
intentions with the figure is to give the reader a general view of the applied 
modelling principle. Similar linearisation studies as above could be focused on 
other nonlinear electrical circuit devises, such as resistors and inductors. The 
methodology is, as we shall find out, to a large extent domain independent. We 
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shall follow up the study in other technical domains that also involve nonlinear 
physical mechanisms. 

Figure 3.2. Versatile companion model branch parameters gf, gb and sij are 
presented for each example electrical circuit branch. The equivalent linear 
transition equations are specified by seriesconnected mechanistic elements such 
as resistors Rk, capacitors Ck, inductors Lk and voltage sources Ek. 

 

Our example in the Electrical Circuit domain is easily modified to depict the 
nonlinear compressibility behaviour in the domain of Hydraulic Circuits. If we 
replace the relevant node voltages xi and xj  with pressures pi and pj, the current vij 

with mass flow mij the charge q with the mass Vρ(p) and the nonlinear 
capacitance C(u) with Vdρ(p)/dp, then the equation describes the Compression 
Head mechanism, where V denotes the size of the control volume,  ρ(p)  the 
nonlinear density as a function of pressure and dρ(p)/dp the density derivative 
with respect to pressure at constant enthalpy conditions. The relevant 
mechanistic transition equation is presented at line 10 in Table 3.4a and the 
linear parameters at line 10 in Table 3.4b. As follows we shall consider a sample 
set of hydraulic mechanisms and their equivalent representation as LTE models. 
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3.6.2 Hydraulic Circuits 

The interactions of the implicit mechanisms need to be taken into account to get 
a physically meaningful result at the end of each iteration at each time-step. The 
explicit coefficients need only to be calculated once at each time-step. The 
separate mechanisms include both variables that are not implicitly solved and in 
addition nonlinear relations to the state variables. We need to linearise the 
nonlinear relationships and choose from available explicit and semi-implicit 
values for calculation of the linear parameters. In Table 3.4a a typical set of 
separate hydraulic mechanisms has been listed. For convenience the pressure 
difference  pi - pj is denoted by ∆p and the mass flow dM/dt by m. 

Table 3.4a. Mechanistic transition equations (MTE) in the hydraulic domain. 
  

MTE Separate mechanisms Mechanistic parameters 
1 Injection flow  m=kI ρ ω kI Volume injection / revolution 
2 Laminar loss  ∆p=kL m kL Laminar flow loss coefficient  
3 Turbulent loss  ∆p= kT m2/ρ kT Turbulent flow loss coefficient 
4 Additional 

loss  
∆p=fA(m,ρ) fA Additional loss from pipe 

structures 
5 Centrifugal 

head   
∆p=kC  ρb ω2 kC Effective radius  

6 Elevation 
head  

∆p= go ρb zb zb 
ρb 

Elevation and mean density 
between branch connections 

7 Connection 
head  

∆p= go(ρio zio  

   - ρjo zjo) 
zio 
ρio

Height and mean density from 
top of control volume to outlet  

8 Static flux 
head  

∆p=kS m2 
* 

((ρiAi
2)-1-(ρjAj

2)-1) 
kS Static flux head coefficient  

9 Momentum  ∆p=kD dm/dt kD Dynamic coefficient  L/A  
10 Compression 

head 
m=dρ/dpVc dp/dt Vc  Control volume compressibility 

branch  
11 Turbine loss pi

2-pj
2=m2Ti kE kE Elliptic loss coefficient 
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Some mechanisms are nonlinear with respect to the state variables. For instance, 
the forced injection mass flow achieved with a piston pump, depends strongly on 
the density of the media of the relevant branch.  The density has not been chosen 
as a fully implicitly solved state variable. Accordingly, we have to choose from 
the old iteration step or the old time-step value. Using the last iteration step 
value in setting up the dynamic parameters as shown in Table 3.4b ensures that, 
upon convergence, we can not take more mass from the input side node than 
what there exists, which is the case if we apply the old time-step value.  

Table 3.4b. LTE parameters for hydraulic systems. 
 

Node variables xi, xj  pi, pj = pressures  [Pa]     
Branch variable  vij mij = mass flow [kg/s]   
MTE Rk Lk Ck Ek Ik 

1 0 0 0 0 kI ρikωt 
2 kL 0 0 0 0 
3 2kT|mk|/ρok 0 0 -R mk /2 0 
4 0 0 0 fc(m t,ρt) 0 
5 0 0 0 kC ωt

2 ρok 0 
6 0 0 0 ρb go zij 0 
7 0 0 0 ρizgozio - ρjzgozjo 0 
8 2kS|mk|((ρik Ai

2)-1 - 
(ρjkAj

2)-1)
0 0 -R mk /2 0 

9 0 kD 0 0 0 
10 0 0 V(dρ/dp)k  Ck

-1V(ρt - ρk) + pk 0 
11 2kE|mk|TitkE /(pik+pjk) 0 0 -R mk /2 0 

 

Spatial discretisation in the hydraulic domain is exemplified by a long pipe that 
is structurally specified by flow area and length. The pipe is spatially discretised 
applying the Staggered Grid approach (Patankar 1980) into overlapping Control 
Volumes for calculation of mass Accumulation and Momentum as shown in 
Figure 3.3. The relevant physical mechanisms are allocated to simple branches 
in the associated Hydraulic Graph. The internal pressures p and mass flows m 
are the dependent variables. The external reference pressure is denoted as pr. 
The required number of control volumes depends on the scope of study. 
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Figure 3.3. Staggered grid approach for one-dimensional spatial discretisation 
of compressible flow in a pipe. Overlapping control volumes for momentum and 
accumulation are modelled with relevant branches in the hydraulic graph. 

3.6.3  Thermal Fluid Dynamics 

Sample equations describing thermal fluid mechanisms arising from convection, 
accumulation, diffusion and radiation are shown in Table 3.5a. 

Table 3.5a. Mechanisms in the thermal fluid domain. 
 

MTE Separate mechanisms Mechanistic parameters 
1 Energy source   w = P P Heating power 
2 Convection  w=mij kiohhi kioh Enthalpy outlet ratio(mij>0) 

3 Convection  w=mji kjohhj kjoh Enthalpy outlet ratio(mij<0) 

4 Accumulation  Σwi= ρi Vc  dhi/dt Vc Control volume 

5 Diffusion  w= kd (Ti-Tj) kd Diffusion coefficient 

6 Radiation   w=kr (Ti
4-Tj

4) kr Radiation coefficient 

 

The convection depends on the connection point enthalpy and the outlet ratio. 
The ratio is zero if the flow is not outflow from the node. Therefore, two 
separate mechanisms are available enabling a possible change of flow direction. 
The relevant discretised and linearised equations to calculate the dynamic branch 
parameters are shown in Table 3.5b. 
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Table 3.5b. Linear parameters from thermal fluid equations. 
 

Node variables xi, xj hi, hj = specific enthalpies [kJ kg-1]        
Branch variable vij wij = energy  flow [kJ/s]   
MTE 1/Rf 1/Rb L C E I 

1 0 0 0 0 0 wi 

2 kiomij 0 0 0 0 0 
3 0 kjomji 0 0 0 0 
4 0 0 0 ρik Vi   0 0 
5 0 0 0 0 0 kd (Tik-Tjk)  
6 0 0 0 0 0 kr (Tik

4-Tjk
4) 

 
 

Spatial discretisation in the thermal domain is exemplified by an energy storage 
tank for water of two different temperatures. It is structurally specified by its 
dimensions including the elevation of its inlet and outlet pipe connections as 
shown in Figure 3.4. The branches for energy diffusion w12 = k12(T1-T2) and 
accumulation wr = d(ρVh)/dt  are connected by the specific enthalpy nodes h1 
and h2 as depicted in the Thermal Graph. The level of the surface between the 
two fluids changes in accordance with relevant hydraulic solution. The mass 
flows depicted are originating from the preceding solution of relevant hydraulic 
graph. 

Figure 3.4. The mechanistic specification of thermal diffusion between two fluids 
of different density in a storage tank is depicted by the associated thermal graph. 
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3.6.4 Heat Structures 

Heat structure mechanisms are shown in Table 3.6a. Conduction and 
accumulation mechanisms are considered for one-dimensional solid structures. 
Radiation is considered between adjacent solid surfaces. The conduction and 
radiation coefficients depend on the material properties in consideration as well 
as the physical shape (Hänninen 1988). Relevant equations to calculate the linear 
transition equation parameters are shown in Table 3.6b. The radiation is strongly 
nonlinear with temperature. 

Table 3.6a. Mechanisms in the heat structure domain. 
 

MTE Separate mechanisms Mechanistic parameters 
1 Energy source   w =Ph Ph Heating power 
2 Conduction w=kc(Ti-Tj) kc Conduction coefficient 

3 Accumulation  w=ρiVicsdTi/dt cs Specific heat capacity 
4 Radiation   w=kr (Ti

4-Tj
4) kr Radiation coefficient 

 

Table 3.6b. Linear parameters for heat structures. 
 

Node variables xi, xj Ti ,Tj = temperatures [0K]        
Branch variable vij wij = energy  flow [kJ/s]   
MTE R C I 

1 0 0 Ph 

2 L /A  kc 0 0 
3 0 ρik Vi  cs 0 
4 0 0 kr (Tik

4-Tjk
4) 

 
 

3.6.5 Fluid to Wall Heat Transfer 

Fluid to wall heat transfer mechanisms are shown in Table 3.7a. The heat 
conduction correlation depends significantly on the surface velocity of the fluid 
as well as on its surface density. These factors depend much on the detailed 
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structure of the surface of the heat exchanger elements. The radiation coefficient 
depends on the density and thickness of the fluid. Relevant equations to solve for 
the dynamic parameters are shown in Table 3.7b. 

Table 3.7a. Mechanisms in the fluid to wall heat transfer domain. 
 

MTE Separate mechanisms Mechanistic parameters 
1 Conduction w=kT  (TF-TW) kT Conduction correlation 
2 Radiation   w=kr  (TF

4-FW
4) kR Radiation coefficient 

 

Table 3.7b. Linear parameters for fluid to wall heat transfer. 
 

Node variable xi hi = specific enthalpy [kJ kg-1]  of  fluid 
Node variable xj Tj = temperature [0K] of  wall 
Branch variable vij wij = energy  flow [kJ/s]   
MTE 1/Rf 1/Rb I 

1 kt mik Cpik kt mik kt m ik (Tik - Cpik hik) 
2 0 0 kr (Tik

4-Tjk
4) 

 

Figure 3.5. Spatial discretisation of a counter current heat exchanger to a 
thermal graph comprising primary and secondary side flow branches, fluid to 
wall heat transfer branches and heat transfer branches in the metal wall. 
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The spatial discretisation of combined convection and diffusion effects in  a 
process component is exemplified by the Counter Current Heat Exchanger as 
shown in Figure 3.5. It is originally specified by relevant dimensions, nominal 
flows m, pressures p and enthalpy h values. Primary side is filled with 
pressurised water. Note that secondary water temperature is constant in the two-
phase region. The Thermal Graph includes simple branches for heat convection 
(thick), heat transfer (dotted) and heat diffusion in the structures (thin). Each 
node shown in the graph is in fact a compound node which includes a hidden 
internal branch for the accumulation of energy. 

3.6.6 Concentrations 

The concentration of a substance in a control volume can be specified as 
volumetric concentration, molar fraction or mass fraction. In this context, we 
have chosen mass fractions making it easy to apply the conservation rules of 
mass. Concentration mechanisms are shown in Table 3.8a. The transportation of 
a substance depends on the outlet concentration, which can differ from the 
homogeneous concentration of the whole control volume, e.g. because of phase 
separation. Relevant equations to solve for the dynamic parameters are shown in 
Table 3.8b. 

Table 3.8a. Mechanisms in the fluid concentration domain. 
 

MTE Separate mechanisms Mechanistic parameters 
1 Substance source mqi mqi Injected substance 

2 Transportation mqi=mijkioccqi kioc Concentration outlet ratio 

3 Transportation mqj=mjikjoccqj kjoc Concentration outlet ratio 

4 Concentration Σ mqi=  
    ρi Vi  dcqi /dt 

ρi Density of control volume 

5 Diffusion mqi = kq (ci-cj) kq Diffusion coefficient 
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Table 3.8b. Linear parameters from fluid concentration equations. 
 

Node variables xi, xj cqi, cqj = mass fractions of substance q 
Branch variable vij mij = mass flow of mixture [kg/s]   
MTE 1/Rf 1/Rb C I 

1 0 0 0 mqi 

2 kqiomij 0 0 0 
3 0 kqjomji 0 0 
4 0 0 ρi Vi   0 
5 0 0 0 kq (cqik-cqjk)  

 
 

3.6.7 Chemical Reactions 

Dynamic chemical reaction mechanisms concerning substance q in reaction 
volume i are shown in table 3.9a. Very often, the chemical reaction control 
volume is limited to the volume of a specific phase. Slow diffusion within and 
especially between the separate phases is often the main limitation factor of 
chemical reaction speed. Relevant equations to solve for the dynamic parameters 
are shown in Table 3.9b. Note the reaction rate coefficients Rf  and Rb usually 
are different in the forward and backward directions. 
 
 

Table 3.9a. Mechanisms in the chemical reaction dynamics domain. 
 

MTE Rate mechanisms [kg/s] for substance q  Mechanistic parameters 
Vi Reaction volume i 

ρi Density in i 
1 Accumulation 

rate of q in 
volume i  

mqi= Vi ρi  dcq /dt 

cqi Massfraction of q in i 
2 Consumption  mfqi=-rqf i(V,ρ,T,p,c1i ..cni) r fqi Rate by reaction f in i 

3 Production  mbqi=rqbi(V,ρ,T,p,c1i ..cni) rbqi Rate by reaction b in i 

4 Flow  mij > 0 mqi,qj   = mijcqi mij Flow between i and j 

5 Flow  mij < 0 mqj,qi   = mjicqj cqj Massfraction of q in j 
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Table 3.9b. Linear parameters from chemical reaction equations. 
 

Node variables xi, xj cp, cq = mass fractions of substances p and q 
Branch variable vij mpq = mass transfer from substance p to q  [kg/s]   
MTE Rf Rb C J 

1 0 0 ρi Vi   0 
2 drq f  / dcp 0 0 - rqf (V,ρ,T,p,c1i..cni) 

3 0 drqb / dcq 0   rqb(V,ρ,T,p,c1i..cni) 
4 0 0 0 - mijcqi 

5 0 0 0   mjicqj 

 

 

3.6.8 Rotating Masses 

The dynamics of a process plant depends to a significant extent also on the 
mechanism of the rotating machines involved, such as pumps, turbines, motors, 
and generators. Table 3.10a describes some elementary mechanisms, such as 
electrical power source, rotation energy, shaft torsion, bearing friction and gas 
friction. The local variable is the rotation speed ωi and the transition variable the 
shaft momentum Mij. The relevant discretised equations for calculation of the 
dynamic parameters from the mechanisms are shown in Table 3.10b. 

Table 3.10a. Mechanisms in the rotating mass domain. 
  

MTE Separate mechanisms Mechanistic parameters 
1 Power source  Mij = Pe /ωi Pe Motor power 

2 Rotation energy  Σj Mij=kJ dωi /dt kJ Inertia coefficient 

3 Shaft torsion  ωi - ωj= kT  dMij /dt kT  Torsion coefficient 

4 Bearing friction   Mij = kB ωi kB Bearing friction coefficient 

5 Gas friction Mij= kG ωi
2 kG Gas friction coefficient 
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Table 3.10b. Linear parameters from rotating mass equations. 
 

Node variable xi ωi  = Rotation speed [s-1] 
Branch variable vij Mij = Shaft  momentum  [Ws] 
MTE R L C E J 

1 0 0 0 0 Pe/ω 

2 0 0 kJ 0 0 
3 0 kT 0 0 0 
4 kB 0 0 0 0 
5 2kG|ωi k| 0 0 - kG ωi k /2 0 

 

3.6.9 Power Distribution Networks 

Electrical power distribution network mechanisms are shown in Table 3.11a. The 
local state variable is the complex main voltage of the node and the transition state 
variable is the complex line current. The phasor currents and voltages are depicted 
in an imaginary frame supposed to rotate with the alternating current frequency of 
the interconnected network island in consideration. 

Table 3.11a. Mechanisms in the electrical power network domain. 
  

MTE Separate  mechanisms  Mechanistic parameters 
jXd Transient reactance 1 Synchronous 

generator  
Ui  - Uj  = - Ee + jXd Iij 

Ee Voltage behind Xd 
2 Resistive load   Ui - Uj =  Rij Iij Ri Load resistance 
3 Reactive load   Ui - Uj =  jXij Iij Ri Load resistance 
4 Voltage loss  Ui - Uj = Yij

-1 Iij Yij Branch admittance 
Em Reverse voltage  5 Squirrel cage 

motor 
Ui  -Uj  = - Em + Zm Iij  

Zm Motor impedance 
Z10 Primary side impedance 
Z20 Secondary  impedance 
Z12 Mutual impedance 

6 Transformer 
primary and 
secondary sides 

U1-U0=Z10 I10 + Z12 I20 
U2-U0=Z21 I10 + Z20 I20 

Z21 Mutual impedance 
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If the fast transients of the distribution network itself are neglected, the dynamics 
of the load flow and voltages is determined by the mechanical time constants of 
the rotating machines and the relevant equipment for voltage and frequency 
control. The versatile companion model coefficients can be calculated as shown 
in Table 3.11b. 

Table 3.11b. Companion model parameters for electrical power networks. 
 

Node state variables xi ,  xj , x1 , x2  Ui  = Node complex voltage [V] 

Branch state variables vij,  v12, v10, v20  Iij = Branch complex current  [A] 
MTE gij,   g12, g10, g20, sij 

1 jXdt
-1 Eek  jXdt

-1 
2 Rij

-1 0 
3 jXij

-1 0 
4 Yij 0 
5 Zmt

-1 Emk Zmt
-1 

6 
 

g12=  Z12 ( Z10 Z20 - Z2
12)-1 

g10= Z20 ( Z10 Z20 - Z2
12) -1 - g12

g20= Z10 ( Z10 Z20 - Z2
12) -1 - g12 

0 

 

It is interesting to note that the two transformer equations, including mutual 
impedance, result in three separate companion model branches. The same 
principle can be applied for friction between the phases in separated phase flow 
calculations. 

3.7 Function Blocks for Procedural Modelling 

Connected function blocks, such as used in control systems, are often presented 
by block diagrams. A simple transfer function block has one input, one output, 
and possible parameters and internal state variables. Compound transfer function 
blocks may have several inputs and outputs. The block diagram can include 
simple operations on the signals like addition and multiplication. The signals 
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may be either analog or binary. Binary events are introduced from operations 
like limit checks and maximum signal selection on analog signals. 

 

3.7.1 Control System Operations 

Main emphasis is to use the digital control system software just as it is in a 
simulator, making it possible to test the control system's real functionality with 
the model. In many cases, however, it is necessary to test the control system 
functionality even before any control system vendor has been chosen, whereas 
the simulation platform itself shall provide suitable control system modules for 
this purpose. In addition, many process plants still have hydraulic, pneumatic, 
and hardwired electrical semiconductor or even relay based control systems in 
use, which in any case need to be simulated. A sample set of analogue control 
system operations has been described in Table 3.12. The letter s denotes the 
Laplace operator. 

Table 3.12. Functions in the control system domain. 
 

Nr Separate operations Parameters 
1 Set value   uout= kset kset set value 
2 Amplifier  uout= kP uin kP Amplification coefficient 
3 Adder  uout = uin1 + uin2   
4 Multiplier   uout = uin1 uin2   
5 Derivator   uout= sTD  uin TD Derivative time constant 
6 Integrator   uout= (sTI )-1 uin TI Integration time constant 
7 Measurement uout= ks uin + ko ks Scaling constant 
8 Control output uout= ks uin + ko ko Offset constant 
9 Filter uout= (1 + sTF )-1 uin TF Filter time constant 

 

The analogue control system operations include scaling, limitations and 
amplifications and are as such not suitable for any conservation clauses. They 
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are with preference described as function blocks. This applies to binary control 
system operations, as well. 

3.7.2 Delay Operator 

Real processes include many instances of transportation time delay. A delay 
module can also be included in the control system functionality. Usually the 
delay time shall be considered as variable rather than constant. For instance, the 
delay in a pipe depends on the flow velocity. In fact, the direction of the flow 
could change, as well. Usually the pressures and relevant flows are calculated 
implicitly. The connection of properties, e.g. concentrations, to delay is by 
definition explicit. Instead of just connecting the node mass fractions xi, xj with 
one implicit concentration branch, they are connected by two separate branches 
to the explicit nodes xit, xjt of the delay operator. The delay is usually attained by 
a "circular" table in computer memory whereas the input and output address 
vectors are moving, depending on time-step ∆t, volumetric flow rate mijρi

-1, or 
conveyor speed ωCrC. Interpolation is used for smooth connections to the 
tabulated values. The total delay depends on set delay time tD, pipe volume Vij 
or conveyor length Lij. Table 3.13 shows the application to control signals, flow 
branches and mechanical conveyers. 

Table 3.13. Delay operator mechanisms. 
 

Domain I/O variables  Accum. Increment Parameters 
Control Signal u  Time tD ∆t  ∆t =Time-step 
Convection Specific enthalpy hi

and mass flow mij 
Volume 

Vij 
∆Vij = 
 mij ρi

-1∆t 
ρi   =Input density 

Concen-
tration 

Concentration cqi 
and mass flow mij 

Volume 
Vij 

∆Vij = 
 mij ρi

-1∆t 
ρi   =Input density 

ωC =Motor speed Conveyor Concentration cqi 
and mass flow mij 

Length
Lij 

∆Lij = 
 ωC rC ∆t rC   =Eff. radius 
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3.7.3 Material Property Functions 

Typical material properties needed in dynamic simulation are shown in Table 
3.14. It is supposed that the thermal hydraulic equilibrium in a control volume is 
completely specified by the pressure, the mass fractions and the specific 
enthalpy of the mixture. The other properties of a homogeneously mixed control 
volume, such as gas, liquid and solid fractions, as well as phase specific mass 
fractions, enthalpies, densities, specific heat coefficients, and viscosities, can be 
looked up or calculated. In real-time simulation applications, non-iterative 
methods for fast look up of the material properties are preferred (Nelles 2001). 
First, they provide a repeatable value for each call with same input parameters as 
they are not contaminated with iteration noise, secondly, they are several orders 
of magnitude faster.  

Table 3.14. Material properties at thermal dynamic equilibriumin control volume. 
 

Node variables as input 
p Pressure at top of volume 
h Specific enthalpy of mixture 
cq Substance mass fractions in mixture  q=1..Nq 

Material properties as output Mixture Gas Liquid Solid 
Temperature  T    
Density dependency of pressure (dρ /dp)h    
Density dependency of enthalpy (dρ /dh)p    
Specific enthalpy  hg hl hs 
Phase mass fractions  αg αl αs 
Substance mass fractions   q=1..Nq  cq,g cq,l cq,s 
Density ρ ρg ρl ρs 
Speed of sound u ug ul us 
Viscosity η ηg ηl ηs 
Specific isobaric heat capacity cp cp,g cp,l cp,s 
 

If the temperatures of the phases are equal to the temperature of a homogeneous 
mixture then a thermal dynamic equilibrium situation has been reached. It shall 
be noted that the time constants for diffusion between phases usually are very 
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nonsymmetric, that is, boiling is faster than condensation, and solidifying faster 
than liquefying. 

From the viewpoint of practical design work, it is beneficial that the supporting 
software recognizes the separate isolated fluid departments of a process model, 
based on the connections in the flow sheet. Possible changes in the number of 
substances considered in a specific department then only need to be made to 
relevant instance of department specifications. 

3.7.4 Separation and Mixing Operations 

Separation in process industry is achieved applying suitable physical 
mechanisms. Phase separation is usually achieved easily because of different 
densities of the phases. If the density difference is small then centrifugal 
separators can be used. In distillation columns, the difference in concentration 
distribution of liquid and gas phases at the same temperature is used to separate 
different substances from a mixture. 

Mechanical filters are frequently used to separate solid phase objects from liquid 
phase. Osmotic liquid filters can be used to separate dissolved large molecules 
from smaller. Drying by heating or vacuum is also one kind of separation. An 
interesting detail is that phase separation rate and mixing rate usually are very 
different. Dissolving a gas into liquid takes very long time if only the diffusion 
mechanism transition the liquid surface in the tank is used. It sometimes also 
takes very long time to reach thermal dynamic equilibrium. By efficient mixing, 
the effective surface area can be extended considerably and the process speeded 
up. On the other hand, separation of gas from liquid phase for instance by 
decreasing the pressure is very fast, boiling appears everywhere in the liquid.  
The same kind of speed difference applies for dissolving rate of solid phase into 
fluid compared to extraction rate from fluid. 

In addition, the persistence of separation invoked by temperature and density 
differences within the same phase needs to be considered. In general, the 
diffusion is very slow if no convection, either natural or forced is present. In 
practise, we only have strong mixing conditions in such parts of the process that 
involve turbulent flow. Most pipes and tanks perform like a combination of 
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mixers, splitters and delay lines. Accordingly, the position of an input or output 
flow connection in a simple tank has much impact on the resulting performance. 

The amount of different substances to be transported from a specific connection 
point outlet to a branch depends on the flow rate of mixture in the branch, the 
elevation of the connection point in the tank, the node densities and phase 
distribution at the connection point, characterised by a set of parameters as set 
forth in Table 3.15. 

Table 3.15. Separation and mixing mechanisms regarding a homogeneous 
branch outlet from a phase separating tank. 

 
Outlet area fractions aog + aol + aos = 1  
Outlet density  ρo = aog ρg + aol ρl  + aos ρs  
Outlet enthalpy  ho = (aoghgρg+aolhlρl +aos hs ρs )/ ρo  
Outlet mass fraction of 
substance q 

coq = (aogcgqρg+aolclq ρl  + aos csq ρs )/ ρo  

Enthalpy outlet ratio koc = ho / h  
Concentration outlet ratio koc = co / c  
Branch density ρb  = (  ρio +  ρjo )/ 2 

 

If the outlet area fractions comply with the relevant volumetric phase fractions, 
then the outlet properties will have the properties of the homogeneous tank 
mixture in the outlet node. Likewise, the enthalpy and concentration outlet ratios 
will be equal to one. A good approximation for the branch density is the mean 
value of the densities of adjacent nodes in a smoothly changing situation. Long 
pipes connecting nodes with very different densities require the mass content to 
be integrated supposing that the volume flow in different parts of the pipe is 
equal. Just substituting branch density with outlet density may give an incorrect 
result and result in oscillations upon change of flow direction. 

The concentration outlet ratios are used as splitting ratios between any 
substances, even originating from the same phase. Typical applications are 
centrifugal separators or filters. Sometimes it is preferable to use a source 
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branch, for either forced injection or removal of a certain substance. In a local 
compound node with no volume or splitting specified, there will be no hold-up 
and accordingly immediate ideal mixing of the input stream takes place. If there 
is a volume specified there will be hold-up and ideal mixing of the content, 
taking into account all input and output streams. 

3.7.5 Mechanistic Parameters from Input Specifications 

The coefficients and parameters needed by the mechanistic equations for on-line 
calculation are not very easily found by a occasional user. Instead, a set of 
preparatory equations needs to be specified in advance to allow the user to enter 
easily available data such as dimensions and nominal values of operation. These 
equations need to be calculated only upon change of input. Some examples on 
such parameters are given in Tables 3.16a and 3.16b. 

Table 3.16a. Pre-calculated mechanistic parameters from input specifications.  
 

Rotary pump 
∆pS Shut-off head  
ρN Nominal fluid density 

Centrifugal 
head /Effective 
radius kC 

kC= ∆pS / (ρN ωN
2 ) 

ωN Nominal speed 
∆pN Nominal head Turbulent loss 

/ Loss 
coefficient kT 

kT =ρN /(∆pS -∆pN )/mN 
mN Nominal mass flow 

Compression in tank 
dvt Tank diameter Compression 

head/ Control 
volume VC 

VC = πdvt
2zvt /4 

zvt Tank height 

Pipe transition element 
dhp Pipe inner diameter Dynamic head 

/ Head 
coefficient kLA 

kLA = 4Lhp /(π dhp
2 ) 

Lhp Pipe length 

mN Nominal mass flow 
∆pN Nominal pressure loss 

Turbulent loss 
/ Loss 
coefficient kT 

= ∆pN ρN / mN
2 

ρN Nominal fluid density 
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Table 3.16b. Pre-calculated mechanistic parameters from input specifications. 
 

Turbine 
Tin Nom. inlet temperature 
mN Nominal mass flow 
pin Nom. inlet pressure 

Turbine loss 
 / Elliptic loss 
coefficient kE 

kE=( pin
2-pout

2
) /( mN

2Tin) 

pout Nom. outlet pressure 
Transformer 

Z0 No-load impedance 
Zk Short circuit impedance 

Transformer 
model 
admittances 

Y12=µ0 (Zo
2-Z0Zk)0.5/(Z0Zk)

Y10 =1/Zk  - Y12 
Y20 =µ0

2/ Zk  - Y12 µ0 No-load voltage ratio 
 

3.7.6 Secondary Variables from Solved States 

Upon solution of the state variables, secondary variables of interest are 
calculated for the component branches. They can be calculated when the 
estimates of relevant state variables are known.  If included in the iteration 
scheme, they need to be calculated upon each iteration step. Otherwise it is 
sufficient if they are calculated each time-step. Typical secondary variables are 
described in Table 3.17. 

Table 3.17. Secondary variables from solved state values. 

Rotary pump 
kC Effective radius  
ωt Speed  

Shaft power Prp = kC ωk
2 mt 

mt Mass flow  
Separated phase tank 

αl Volumetric gas fraction  Liquid level zl = (1- αl) zvt 
zvt Vertical tank height 
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3.8 Structured Components of Real World Processes 

Grouped graphs are specified as to comply with structured components of real 
world processes. Higher level components are built up by underlying 
components in a hierarchical manner. Figure 3.6 illustrates how compound 
branches and nodes are made up from simple branches and nodes.  It shows a 
continuously stirred tank reactor attached to two pipes. Each relevant Compound 
Branch includes simple branches of different domains in parallel: Hydraulic, 
thermal, and concentration branches. A compound branch can include other 
compound branches in series, as well. The Compound Node includes several 
simple nodes and simple local branches, describing local phenomena such as 
compressibility, heat capacity, reactions, or hold up of substances. 

Figure 3.6. A compound node connects two compound branches. Each 
compound branch includes simple branches depicting flow of mass, energy and 
three separate substances. The simple nodes related to pressure p, specific 
enthalpy h, and the mass fractions c1, c2 and c3 are also connected to vertical 
branches depicting accumulation of mass, energy and substances. In addition 
there are local branches describing chemical reactions between the substances. 

A compound node can include other compound node types, as well. Typical 
combinations of substances can for instances be specified into pre-defined 
compound node types. A compound branch can also be made up of other 
compound branches. A district-heating pipe assembly has usually two spatially 
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discretised pipes in parallel, the outgoing water and the return water pipes with a 
common insulation structure. 

A Generic Component can comprise branches and nodes as well as function 
blocks. The required input parameters of the underlying mechanistic equations 
are listed for the user to fill in. Provision is made to use a dedicated script to 
calculate the all required parameters from a smaller set of user given attribute 
values. For instance, a model for studies of the compressible flow in a long pipe 
has to be discretised spatially to a required number of limited control volumes 
depicting transition branches as well as local compressibility branches in 
accordance with the staggered grid approach. The local volume is typically made 
up from half of the volume of each adjacent pipe element. The input parameters 
include the dimensions of the pipe and the requested number of control volumes 
for spatial discretisation. The generation script specifies the underlying structure 
based on the given parameters. If the underlying structure of a generic 
component is changed manually, the component will evolve into a assembled 
component, a kind of prototype which is not possible to generate again by the 
original script. Pre-designed generic components are stored as types in generic 
component script repositories. Parameter lists of real components corresponding 
to pre-designed generic component types can be stored as instances in generic 
component parameter repositories. 

Assembled Components are usually specified graphically by drawing the process 
diagram and filling in the query forms for each separately included component. 
Accordingly, by combination of components it is possible to build up models of 
more and more complicated unit operations. For example a heat exchanger 
usually includes component models for hydraulic flow, thermal flow, heat 
conduction in the pipe walls as well as for the heat transfer between pipe surface 
and fluid. The local volumes also include material properties look-up for boiling 
and condensing phenomena. 

The internal structure of connected Function Blocks of a complicated controller 
is specified graphically to a structured component, and provided with its own 
symbol. Parameters of specific interest of the underlying components are 
collected to an assembled parameter list of the higher-level symbol. 
Accordingly, a assembled component can be obtained, by drawing its structure 
using specification graphics, by modifying a generic component, or by 
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combining selected parts of other assembled or generic components. Assembled 
components are stored in assembled component repositories. The structured 
component model is an important hierarchical building block for construction of 
large integrated process models. The structured component has two views, its 
Flow Sheet view reveals its internal structure for modifications, its Symbol view 
is practical to use when designing higher-level flow sheets. 

3.9 Plant Model Repositories and Related Services 

Complete plant model specifications need to be stored for the whole life-cycle of 
the plant. The model specification shall survive, all the time, even if the 
computer hardware and operating system is updated or the simulation server 
software is improved with new versions. Flow sheets of industrial processes, 
such as process and instrumentation diagrams, include much accumulated design 
knowledge expressed in a very compact way. Modern information technology, 
and the possibility to make the above flow sheets alive, enables suppliers or 
operators of industrial plants to establish efficient remote diagnostics and service 
centres. The measurements from real plants are easily available over Internet. 
Measurement recordings cam be compared to simulation results. 

In connection to a remote simulation service centre, virtual expert teams can be 
formed if required. The trainees and teachers can form virtual simulator training 
classes. The remote experts and the trouble-shooters on the plant can form 
virtual support teams. It can be transparent for the users, on which computer and 
where the simulation server resides. It is important that the virtual team 
responsible for updating the models get access to all planned modifications and 
relevant work orders of the real plant. Of course, the added value is that the 
changes can be tested in advance on the simulator, before implementation at the 
plant. The operators can be trained on the new features in advance, as well. 

3.10 Unified Specification Framework 

In this chapter the author has described his novel developments of a Unified 
Specification Framework to link hierarchical process structure and physical 
mechanisms with relevant mathematical equations in a very intuitive and 
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transparent way, well suited for the engineering way of thinking. It supports a 
declarative approach to model specification instead of sequential programming 
procedures. A hierarchy of graphs is an attractive starting point for developing 
graphical user interfaces, both for specification of models and for monitoring of 
simulation results. It also presents means for the required information hiding 
necessary for the managing of large model entities and to protect possible 
proprietary data. The Specification Data View presented in Appendix A is very 
complementary to this chapter describing the data structures required for 
implementation. For the purpose of structured specification of the process plant 
model data, evolving semantic web technologies should be taken into account as 
indicated in Chapter 5. Let us, however, first have a look at the solution system 
architecture. 
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4.  Solution System Architecture 
 

The hierarchical specification architecture of a modelled heterogeneous process 
is flattened down to a System Graph of simple nodes and branches. Further, the 
system graph is partitioned into separate Homogeneous Zones based on Strong, 
Normal and Weak connections identified by comparing the versatile companion 
model parameter values. Strongly connected nodes are temporarily joined and 
weak branch connections are temporarily omitted for the solution in the in the 
normal zone. Suitable integration schemes and time-steps are applied for the 
separate homogeneous zones. This partitioning increases the sparsity, which 
considerably speeds up the implicit solvers, besides that, it prevents serious 
round-off errors. An added value is that the partitioning also provides for 
application of coarse grain parallelism, involving parallel threads or even 
distributed processing. The total system graph is then divided into Local Regions 
to be processed by separate simulation engines. 

Solution with different time-steps for separate homogeneous zones has been 
applied e.g. for pressure and energy solution already in the early Loviisa training 
simulator.  There is normally at least two orders of magnitude difference 
between the speed of pressure transients and heat transients. In the early 
implementation the time-steps used for the energy solution were only slightly 
longer than those for the pressure solution. Hence the calculated energy solution 
values could as such successfully be used as boundary conditions for the more 
frequently updated pressure solution without any attempts to extrapolate the 
boundary conditions. See Subsection 4.6.4 for state prediction issues. The 
concept of local regions was also implemented whence the computation of 
separate loosely connected parts of the real plant was manually allocated to 
separate computers. 

4.1 Stiff and Steady Equations 

Some dynamic equations of the process are sometimes so stiff or steady that they 
need special treatment because of restricted computer real value representation.  
Attempts to solve the various dependencies in one single set of equations easily 
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result in a matrix singularity, literally frozen variables or eliminated feedback.  
The problem has in previous implementations been overcome by manual 
partitioning of the system, applying scaling of the variables and different time-
step lengths for related parts of the model. Very stiff dependencies have 
manually been replaced by algebraic dependencies that, however, introduces all 
the uncertainty problems related to solution of nonlinear algebraic equations 
whereas the history is eliminated. Unable to benefit from the history, we may 
occasionally end up in erroneous solutions. A serious study of the system would 
require the calculation of all its system eigenvalues, which would be very time 
consuming and only valid for small perturbations around a selected steady state 
of a nonlinear dynamic process. In the new implementation it is proposed to 
automatically take into consideration that the linear transition equation view of 
the versatile companion model gives access to the inductive or capacitive time 
constants of relevant branch. They are not system time constants but represent a 
good starting point for the proposed automated estimation of suitable initial 
time-steps for the separate homogeneous zones. 

Other criteria may have impact on the time-step, such as the Courant Number 
Restriction (Courant et al. 1967) initially considered for pipe branches. The 
Courant number is specified as NC = u ∆t / ∆L, where u is the flow velocity. 
Maintaining a suitable Courant number less than one requires that the distance 
travelled by advection during one time-step ∆t is not larger than one spatial ∆L. 
In explicit systems maintaining the Courant number less than one is required for 
numerical stability, in implicit systems it is not required but recommended 
especially during transients to maintain the accuracy. Very large differences in 
the Courant number in adjacent branches indicates that the spatial discretisation 
is not very optimal. It is proposed to automatically normalise spatial 
discretisation based on initially given flow specifications at model construction 
time based on Courant number evaluation. At run-time it is proposed to 
automatically watch the Courant number and adjust the time-step accordingly. 

4.2 Homogeneous Zones 

All structures are flattened down to a linear System Graph. The versatile 
companion model parameters resulting from the temporal discretisation of the 
linear transition equations with chosen initial time-step length, provide for 
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further analysis. A Normal Monitoring Time-step is chosen just depending on 
the transients in consideration of the simulation study.  A Fast Time-step is 
chosen at least one order of magnitude shorter and a Slow Time-step is chosen at 
least one order of magnitude longer. Interconnected branches fitting between the 
fast and slow monitoring time-steps are considered as belonging to a Normal 
Homogeneous Zone. Slower branches are assigned to the Weak Zones and faster 
branches to the Strong Zones. An interconnected part of a stronger zone is 
temporarily represented by a Lumped Node for calculation in an adjacent weaker 
zone. Results from weaker zones are used as Interpolated Boundary Conditions 
when calculating more frequently a stronger zone. The calculation sequence is 
discussed in detail in Section 4.7. 

Consider an example model comprising a very short pipe connection between 
two nodes, which further are connected at each side by ordinary long pipes. An 
attempt to implicitly solve the pressures of both nodes may cause severe 
numerical problems. The nodes are replaced with a stand-in node for the solution 
in the normal zone. The relevant strong zone comprises accordingly the two 
eliminated nodes and the short connecting branch. First, the pressures and flows 
of the normal zone are solved. Thereupon, the flow in short branch is solved 
considering the pre-calculated flows of the long branches as source values. The 
pressure difference in the short branch can be accurately calculated, as well. 
Table 4.1 gives a typical overview of pipe network elements classified into 
different homogeneous zones. 

Table 4.1. Classification of pipe network elements into different zones. 
 

Weak Normal Strong 
 Closed valves Pumps  Short pipe joints 
 Small leakages Long pipes  Tank internal flows 
 Heat losses to environment Heating of pipe walls   Heat exchanger plates 

 

When simulating large thermal hydraulic processes in real-time, then the 
monitoring time-step of the normal region might be 500 ms,  the monitoring 
time-step for the strong fast  region might be one order of magnitude shorter, 
such as 50 ms, and the time-step for the weak slow region one order of 
magnitude longer, such as 5 s. Figure 4.1 indicates such updating frequencies for  
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the said zones. If for instance the focus of the study is on some fast switching 
transient, then the normal region will be assigned a very short time-step used for 
monitoring the transient, and the time-steps for weak and strong zones are 
shifted accordingly. 

4.3  Numerical Integration 

When modelling an industrial process for the target purposes of optimizing the 
operational procedures, testing of new automation concepts, or training of 
experienced operators, it is crucial that the models perform correctly in all 
upcoming situations. For instance, opening and closing of a control-valve has a 
strong impact on associated time constants of the system. Accordingly, the 
resulting numerical problem can be stiff or not, just depending on the operational 
situation.  Stiff problems are, however, very difficult for solvers not specifically 
designed for them. Several numerical integration methods have been developed 
especially for stiff applications. 

As we shall later on find out, preference is made to use Absolute Stable methods 
that do not impose any stability restrictions on the step-length. The Precisely 
Absolute Stable methods have a stability region comprising exactly the left half 
plane. They are considered as the most secure methods for stiff systems 
(Lambert 1991). Their tendency to oscillate in some situations can easily be 
treated without degradation of the accuracy. Smoothing of such initial 
oscillations have been applied with good success (Lindberg 1971). Using the 

Figure 4.1. Weak, normal and strong zones of a system graph of an industrial 
process are calculated with different time-steps. The time-step bandwidths often 
originate from the requirements of an interconnected digital control system. 
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notations introduced in Section 3.5 the calculated value vt at time-step t can be 
corrected subject to constant time-step as follows: 

vt   ←  1/4 ( ve + 2vt + vu ). 

The Strongly Absolute Stable methods have a stability region that includes the 
whole left plane and in addition extends to parts of the right plane. Their solution 
can, however, be successively damped too much and produce misleading results 
in some rare cases when the system has eigenvalues with positive real parts. 

Higher order methods seem advantageous because of their smaller truncation 
errors that enable relatively longer step-lengths. The higher order is achieved by 
increasing the number of steps considered in linear multistep methods, or 
increasing the number of stages within a Runge-Kutta step. There are however 
some drawbacks form choosing higher order methods than necessary: 

• After each discontinuity a multistep integration method needs to be 
subsequently started up with a sequence of relevant lower step-number 
calculations, staring with a one-step method. Further, the sufficient 
number of old time-step values need to be recorded, which causes 
overhead, as well. 

• A higher order Runge-Kutta method needs several intermediate stage 
calculations of the variables during the time-step, whereas the order is 
built up subsequently. Additional errors will be accumulated if a 
nonlinear system is supposed to be linear for all the intermediate 
calculation stages, which may degrade the benefit from the higher order. 

• The equation systems arising from the nonlinear target processes in 
consideration, such as pipe networks, are usually intrinsically implicit 
and sparse. Symbolic manipulation of the mathematical expressions for 
formulation of explicit derivatives could be very difficult if not even 
impossible. Probably the required manipulation would result in loss of 
the sparsity (Brenan et al. 1989). Accordingly, the required derivatives 
in higher order methods need usually to be calculated numerically 
applying several steps or stages as indicated above. 
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• In real-time simulation of industrial processes the request for relatively 
short maximum time-steps originates from the communication 
frequencies of relevant digital control systems. Accordingly, we can not 
make use of the potential benefit of longer time-steps enabled by higher 
order integration even if the fast transients have passed. 

• The very frequent changes of time-step length required to cope with 
both nonlinearities and approaching discontinuities makes truly one-step 
methods to look very advantageous. The nonlinearities appearing can be 
very severe: The ratio of the density of steam and water in two-phase 
flow conditions can be in the order of one to hundred thousand. 

• The simulation engine shall calculate in real-time such a detailed 
simulation model of an integrated plant that possibly includes more than 
ten thousand state variables. The variables to be presented shall be 
updated at least each hundred millisecond to be available for the control 
room equipment in a nuclear power plant training simulator. Such 
requirements do not allow for more sophisticated mathematical methods 
than what necessarily is needed. 

• The integration must be fail-safe in all situations. A full-scope training 
simulator needs to run reliably from day to day, from year to year. There 
is no possibility to manually change the integration method according to 
possible new demands arising for each transient under study. The 
eigenvalues can instantly change over a very large range e.g. as a result 
from a guillotine break of a large pipe. 

To be completely sure that the numerical integration not is the root of instability, 
we require that the integration method used is Absolute Stable. Accordingly, we 
have chosen to initiate the integration after each discontinuity with a Strongly 
Absolute Stable method and thereupon continue with a Precisely Absolute 
Stable method. The following types of numerical integration methods have been 
studied from this point of view: The linear multistep methods, The Runge-Kutta 
methods and the predictor-corrector methods. The most suitable ones have been 
applied in Subsection 3.5.2. 
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4.3.1 Linear Multistep Methods 

It has been shown (Dahlquist 1963) that an explicit Linear Multistep Method 
(LMM) cannot be absolute stable. The order of an absolute stable LMM cannot 
exceed two. The second-order absolute stable LMM with smallest truncation 
error is the one-step implicit Adams-Moulton method (Lambert 1991). This 
method is also known as the Trapezoid Rule. It is precisely absolute stable. 
Using the same notations as in Section 3.5 we can write 

ve = vt + ½∆e(v'e + v't). 

The one-step Backward Differentiation Formulae (BDF) is a first order method 
having a larger truncation error than the Trapezoid rule. It is also known as 
Gear's first order method or the Backward Euler Rule. It is strongly absolute 
stable. 

ve = vt + ∆e v'e. 

To exemplify a two-step Backward Differentiation Formulae, the Second Order 
Gear's Rule has been implemented. It is strongly absolutely stable, as well. For 
equidistant time-steps we can write 

ve = 4/3 vt - 1/3 vu + 2/3 ∆e v'e. 

It is possible to apply the second order Gear's rule for moderately non-equal 
time-steps, whereas the applicable coefficients have to be re-calculated each 
time the time-step length changes. The second order Gear's rule also needs to be 
initiated with a the one-step method after each discontinuity. For higher order 
Gear's methods the unstable region is gradually entering the left plane. 

4.3.2 Runge-Kutta Methods 

Comparing the truncation errors of implicit Runge-Kutta methods complying 
with the requirement of no intermediate calculation stages, the second order 
Lobatto IIIA method appears as most suitable. In fact, it is the same as the 
Trapezoid Rule. Another possible choice is the one-stage Radau IIA method, 
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which is also called implicit Euler's method or the Backward Euler Rule. Higher 
order Runge-Kutta methods will not be considered. 

4.3.3 Predictor-Corrector Methods 

Taylor's series expansion for state prediction is dealt with in Subsection 4.6.4. A 
typical predictor-corrector pair is formed by the explicit two-step Adams 
Bashforth method 

ve = vt + ½∆e(3v't - vu) 

used as predictor and the implicit one-step Trapezoid rule used as corrector. It 
shall be noted that the two-step method needs to be started with the one-step 
Adams Bashforth method, also known as the Forward Euler Rule 

ve = vt + ∆ev't . 

The importance of the predictor becomes very evident when considering stiff 
nonlinear problems in which the usual fixed point iteration needs to be replaced 
with Newton iteration to ensure convergence for reasonable step-lengths. A good 
prediction can provide for a close-enough starting point for the Newton iteration 
to ensure fast convergence. The nonlinearity based errors in the coefficients of 
the equations as well as the numerical integration related errors are corrected 
simultaneously during each iteration made. The overall stability is governed by 
the implicit corrector method if the iteration is continued to convergence, that is 
until the iteration error is of the order of the round-off error. Combined with this 
kind of extrapolation the effective order of the Trapezoid rule can be raised to 4 
(Lambert 1991). 

4.3.4 The Theta Method 

The Theta Method, depending on the value of its factor θ, combines the features 
of both Backward Euler for θ = 0, Trapezoid rule for θ = ½, and Forward Euler 
for θ = 1. 
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ve = vt + ∆e ((1-θ)v'e + θ v't ). 

It is accordingly Strongly Absolute Stable for θ < ½, Precise Absolute Stable for 
θ = ½, and less than full Absolute Stable otherwise. It has order one in general 
but order two only for θ = ½. An interesting feature of the Theta Method is that 
it yields the exact solution for a suitably chosen value of θ (Lambert 1991). 
Applying a technique called Exponential Fitting to a test function v' = λ v  the 
exact solution can be given by 

θ = - Λ-1- eΛ(1- eΛ)-1, 

where  Λ = λ ∆e.  It shall be noted that the Absolute Stability is preserved for all 
values of Λ < 0. In a more complicated physical system, λ stands for the real 
part of the eigenvalue related to relevant state variable v. Direct calculation of 
eigenvalues is only feasible for constant coefficient linear systems of restricted 
size. Sometimes it can, however, be beneficial to estimate the worst cases that 
are smallest and largest possible absolute values of the real part of the 
eigenvalue. The choice can also depend on the intention of the user, whether he 
wants to see the accurate representation of fast transients or if he only is 
interested in the slower dynamics. Sometimes, vibrations with the speed of voice 
of the media in consideration are of interest, sometimes only much slower 
transients fit into the scope of the study. 

4.4 Initial and steady states 

Consistency control of initial state variables need to be made before starting the 
simulation after a modification of model structure or upon passing a 
discontinuity. This is especially important for a Differential-Algebraic Equation 
(DAE) system F(t,y,y') = 0 that comprises both ordinary differential equations 
and algebraic equations. The Index Number of a DAE system indicates the 
minimum number of subsequent differentiations of relevant parts of the system 
needed to get an implicit Ordinary Differential Equation (ODE) system (Brenan 
et al. 1989). 

If considered necessary, the system is initiated with relatively small time-steps 
applied in order to reach a Dynamic Initial State. For an Index One system one 
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Backward Euler step is sufficient to correct mismatches in initial values. 
Respectively in a Index Two system two Backward Euler steps are needed. The 
Linear Transition Equations as set forth in Subsection 3.5.1 are at most index 
two systems. Each Backward Euler step needs to be iterated to convergence if 
the system is nonlinear. The dynamic initial state is of basic interest in dynamic 
simulation because many real processes never reach a static steady state. 

A Static Steady State is considered as equilibrium of a process resulting from a 
certain set of boundary conditions. An important issue to remember is, however, 
that in many occasions the resulting state depends on the operational path 
transition which the static steady state has been reached. In a static nonlinear 
equation system, there can in fact be a several more or less correct steady state 
solutions. 

In order to stabilize the iterative solution and keep the states close to a given 
initial guess, artificial dynamics is sometimes applied in steady-state solvers. A 
well-structured dynamic solver has, on the other hand, the possibility to 
temporarily streamline all the time constants involved, to fasten up the reaching 
of a static steady state. 

4.5 Positive Definite or Diagonally Dominant 

It is advisable not to solve the whole model as a single large implicit island. 
Partitioning and grouping methods are applied to cope with numerical problems 
resulting from too big differences in adjacent branch values. Tearing up of loops 
helps to preserve the sparsity of implicit islands. Partitioning into separate 
homogeneous zones gives the possibility to use different time-step propagation 
for the separate parts of the model. All these precautions aim at getting well-
behaving matrix equations to solve, with all the non-zero element values within 
the same order of magnitude, possessing diagonal elements strong enough to 
avoid the need for pivoting. 

The resulting matrix should preferably be positive definite or diagonally strong 
enough to avoid numerical instability.  Fortunately, there is a very simple rule 
that easily can be implemented. Each connected graph is analysed before the 
construction of relevant matrix to ensure that at least one branch is connected to 
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an external node. This is achieved in a pipe network with non-compressible fluid 
if at least one branch is connected to an external node. Also in an isolated pipe 
network the requirement is fulfilled if the compressibility of the fluid is taken 
into account by at least one compressibility branch connected to external zero 
pressure. 

In a dynamic situations the connection between two nodes could be instantly 
zero, for instance if parallel inductive and capacitive branches compensate each 
other at a specific frequency. To overcome these kind of situations, the diagonal 
elements are checked during the factorisation procedure. If the diagonal element 
for some reason becomes zero for one iteration step, the relevant node variable is 
not solved but replaced with previous iteration step value. Zero divide does not 
occur and at next iteration step the diagonal element usually already keeps a 
non-zero value. A good hint is not to idealize the real world too much: There are 
usually resistances and energy losses in all branches, including electrical 
capacitors, inductors and voltage sources. 

  

Table 4.2. Solving implicit islands. 
 

Update explicit state dependent parameters 
Make estimates for new time-step, node and branch variables 

Calculate linear transition equation elements from nonlinear equations 
Calculate companion model coefficients 
Determine solution order if requested 
Build sparse matrix 
Factorise matrix 
Solve node and branch variables 
Look up material properties 
Solve secondary variables 

→ 
 
 
 
 
 
 
 
 Iterate nonlinearity errors 
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4.6 Implicit Islands 

Each terminal of a versatile companion model branch can be connected, either 
(fully) implicitly, semi-implicitly (last iteration value) or explicitly (last time-
step value), to the adjacent nodes. An Implicit Island is formed by a set of 
implicitly interconnected nodes and branches. At the boundary of the island 
there are usually branches belonging to the island but connected semi-implicitly 
or explicitly to nodes of other islands. The sequence for solving implicit islands 
is shown in Table 4.2. 

Same node can be included only in one island as an Internal Node but it can be 
included as an External Node in several islands. Similarly, a branch can be 
included only in one island as an Internal Branch but as an External Branch, it 
can be included in several islands. The smallest possible implicit island is made 
up of a single internal node connected by a single internal branch to an external 
node. Note again that at least one internal branch needs to be connected to an 
external node in each implicit island in order to have a reference for the solution. 

4.6.1 Matrix Equations from VCM Parameters 

The measured positive flow direction in a pipe can be specified as is convenient 
for the user. Internal branches connecting internal nodes may have any specified 
positive direction, however, an internal branch vji connecting an implicit island 
to an external node is temporarily during the course of solution directed 
outwards. 

The general conservation law depicts that the sum of the inward vji and outward 
vij streams of a non-accumulating simple node i shall be zero as follows: 

Σj,in vji  - Σj,out  vij  =  0. 

Repeating the relevant expressions for all internal nodes i of the implicit island 
and substituting the stream values vij with the relevant companion model terms 
xigf  - xjgb + sij gives the necessary set of equations to specify a linear system for 
solving all its internal node values. The equations are organised into a linear 
Node Matrix Equation, 
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A x = b , 

where A is as called the Node Matrix,  b the Source Vector, and x the Solution 
Vector. 

The causality and the direction of the versatile companion model branch as well 
as the connection type of each of its terminals are considered. An external 
branch is always considered as forced. All other causalities considered are 
related to internal branches. The composition of the node matrix and the source 
vector from companion model parameters is described in detail in Table 4.3. The 
data architecture for storage of the branch parameters are set forth in Table A.10 
in Appendix A. The data architecture for storage of the sparse matrix equation 
elements is described in Table B.6. in Appendix B. 

Table 4.3. Matrix equation elements from VCM parameters. 
 

Branch directed 
from node i to j 

Branch related increments to the node 
matrix equation   Ax = b elements. 

Causality of relevant 
companion model 
branch i j aii ajj aij aji bi bj 

internal internal 0 0 0 0 -sij sij Forced branch 

vij = sij  internal external 0 0 0 0 -sij 0 
internal internal gf 0 0 -gf 0 0 Unicausal branch  

vij = gf xi    internal external gf 0 0 0 0 0 
internal internal 0 gb -gb 0 0 0 Unicausal branch  

vij =  -  gb xj  internal external 0 0 0 0 gb xj  0 
internal internal gf gb -gb -gf -sij  sij  Bicausal branch 

vij = gf xi-gb xj + sij internal external gf 0 0 0 gb xj - sij 0 
internal internal g  g  -g  -g  -sij  sij  A-causal branch 

vij = g(xi - xj ) + sij internal external g  0 0 0 g xj - sij 0 
 

4.6.2 Sparse Matrix Operations 

A matrix including so many zero elements that it pays off to use sparse matrix 
technique when solving the related linear equation system is regarded as sparse. 
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The construction and solution of small sized matrix equations can well be done 
using standard full matrix techniques, including factorisation and pivoting. 
However, for large matrices sparse matrix methods need to be employed. 
Pivoting should be avoided. It is important to remember that a system matrix 
formed as above including all possible connections implicitly is usually not very 
sparse. Grouping of the equations combined with tearing of looser dependencies 
should be used. Whence there anywhere is a need to iterate for correction of 
non-linearity, the errors from non-implicit connections will also be eliminated.  

The other reason for sparse techniques, besides the speed, is the reduced need for 
memory to store the matrix during the calculation. A linked list scheme is 
flexible enough to allow for fill in during the factorisation. Some precautions 
need to be taken regarding the factorisation order. In the worst case, we may end 
up with filling the whole matrix during the factorisation.  

4.6.2.1 Optimised Solution Order 

Optimisation of the solution order is apparently needed to avoid unnecessary fill 
in of non-zero elements in the usually very sparse matrices resulting from the 
partitioning measures. The implicitly connected graph contains the information 
needed for the optimisation of the solution order of the matrix equation 
variables. A simple algorithm that keeps track on the number of branches 
connected to each node during the initial construction of the matrix is usually 
good enough. The algorithm can be described as a simulated elimination of 
nodes and adjacent branches from the graph, starting with the nodes having the 
smallest number of connections, and continuously keeping book on the 
remaining connections. If, however, such an elimination of a node removes a 
connection between two adjacent nodes, and they do not previously have a 
directly interconnecting branch, then a relevant fill in branch is created. 

4.6.2.2 Matrix Factorisation 

The bi-factorisation (Zollenkopf 1971) has been considered efficient for the very 
sparse network matrices originating from thermal hydraulic circuits and 
electrical networks. Usually only two or three pipes are connected to same pipe 
joint. An important benefit is that the scheme is easy to use for complex value 
matrices of power networks, as well. There is no need to calculate time 
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consuming square roots during the factorisation. In addition, the scheme can be 
applied for fully symmetric matrices requiring computation and storage positions 
just for half of the number of the off-diagonal elements. The bi-factorisation 
needs only to be done if there has been a change of the matrix element values or 
connections. The factorisation scheme used for the sparse matrices constructed is 
presented in Table 4.4a. The factorisation is performed within the data structures 
set forth in Table B.6. A notable benefit of the method is that the factorised 
matrix is re-using the storage positions of the original matrix. Possible new 
matrix elements required during the factorisation are easily added to the end of 
the linked list. 

Table 4.4a. Sparse matrix factorisation. 
 

Start with diagonal element a(k,k) from top left 
Invert the diagonal element  
Check all column elements a(i,k) down and all row elements a(k,j) to the right 
from the diagonal element: If both elements exist then  
     if a(i,j) exists then update  a(i,j)  ←   a(i,j) - a(k,j)*a(i,k)* a(k,k) 
     otherwise create a new element a(i,j)  ←  - a(k,j)*a(i,k)* a(k,k) 
Check all column elements a(i,k) down from the diagonal element: If a(i,k) 
exists then update  a(i,k)  ←  - a(i,k)*a(k,k) 
Check all row elements a(k,j) to the right from the diagonal element: If a(k,j) 
exists then update  a(k,j)  ←  - a(k,j)*a(k,k) 

→ 

Repeat for all diagonal elements k 
 

4.6.2.3 Matrix Solution 

Upon the factorisation, the solution of the node variables is simply done by 
multiplication of the source vector with the left and right hand factor matrices. 
The source vector is successively developing to the solution vector, as shown in 
Table 4.4b. The new node variable values in b(k) need to be copied to their 
positions in the state variable xe repository as described in Table A.16 before the 
relevant branch variables vij are updated. The sparse matrix factorisation scheme 
is very fast for typical industrial network applications. 
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Typical computation times per node are shown in Figure 4.2 as a function of 
total number of nodes for comparison of the efficiency with regard to other 
methods to solve a set of linear equations (Juslin 1983a). 

Figure 4.2. Computation times per node as a function of the number of nodes 
are compared when solving a linear equation system Ax=b by computing the 
inverse of the matrix, applying full matrix factorisation and sparse matrix 
factorisation. 

Table 4.4b. Solving node and branch variables. 
 

Start with diagonal  a(k,k) elements from top left 
Update source vector value for all existing column elements a(i,k)  below the 
diagonal  b(i ) ←  b(i ) + a(i,k) *b(k)  
Update source vector value for the diagonal b(k ) ←  a(k,k)*b(k) 

→ 

Repeat for all diagonal elements k 
Start with diagonal  a(k,k) elements from bottom right 

Update source vector value for all existing row elements a(k,j) to the left from the 
diagonal  b(k) ←  b(k) + a(k,j) *b(j) to obtain the solution 
Copy  the b(k)  values to their positions in the state value  x repository 

→ 

Repeat for all diagonal elements  k 
Solve the relevant branch variables related to the component  vij = gf xi - gb xj +  sij 
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The sparse matrix equation solver has too much overhead to be economical for 
small matrices. The sparse matrix approach becomes faster than full matrix 
equation solvers for dimensions larger than about ten. In a certain region of 
network dimensions the solution time for sparse matrices seems to be almost 
linear with respect to the dimension. For larger matrices the data organisation 
and the size of available fast cache memory has an important role. Finally, the 
solution time increases dramatically when semiconductor memory size is 
exceeded and swapping to disk memory locations is required. This limit is, 
however, reached much earlier when operating with full matrices. 

4.6.3 Nonlinear Equations 

 The nonlinearity error control and compensation needs to be applied separately 
for each domain taking into account the type of nonlinearity and the operative 
range of the variables. For example, in a thermal hydraulic network, the 
accumulated control volume density resulting from branch flows is compared 
with the density calculated from the nonlinear material properties. In some cases, 
the compensation of the resulting error can be delayed to the initiation of the 
following time-step. However, if an implicit solution of strongly connected state 
variables such as pressures is requested, then an iterative correction method 
needs to be applied until the remaining errors are fully acceptable before 
proceeding to the next time-step. 

4.6.3.1 Newton's Method 

The quadratic convergence feature of the Newton's method makes it very 
attractive for fast calculating codes. However, there are strict requirements on 
the type of nonlinearity and on the starting point that needs to be "close enough" 
to the expected solution, otherwise the method can converge to a wrong solution, 
slow down to negligible corrections or diverge. 

Taylor series are applied to the linearisation of the nonlinear terms in the 
equations of concern. Let us consider the nonlinear terms  f(x) or f(v)  and their 
derivatives fx(x) or  fv(v) related respectively to a local variable xi or a transition 
variable vij in some of the nonlinear Mechanistic Transition Equations included 
in the modelled system. Both state variables are denoted as x just for the 
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purpose of this linearisation study. We restrict the study to a given interval for 
the variable in consideration denoted as 

Ω = (xa, xb). 

We can write the first order Taylor expansion of the nonlinear term f(xe) based 
on the state value xk calculated at previous iteration step, 

f(xe) ≈  f(xk) + (xe-xk) fx (xk). 

A set of Linear Transition Equations is formed when all nonlinear terms of the 
original equations are substituted with expansions as above. The linear transition 
equations are discretised with respect to time to form Versatile Companion 
Models according Subsection 3.5.2. The transition variables vij are eliminated 
from the equation system as set forth in Subsection 4.6.1 and we can write for 
the remaining local state variables 

A(xk)  xe  =  b(xk). 

When both the linear system matrix A(xk) and the source vector b(xk) elements 
have been updated with previous iteration step xk values we can solve the new 
state vector estimate xe. Thereupon we can solve all relevant transition variables 
vije. Note that in this formulation the derivative terms of the linear transition 
equations are not collected to a separate Jacobean matrix. They are conveniently 
included in the linear system matrix, still preserving its sparsity. The reason for 
keeping the different nonlinearities as well as their derivatives distinct and not 
lumped together, is to make it possible to consider their physical background and 
relevant validity range during the simulation.  A simple nonlinear turbulent flow 
resistance mechanism is studied in Figure 4.3, where pressure drop over a 
control valve with mass flow m is ∆p. Correct choice of the primary variable, 
either m or ∆p,  provides for global convergence of the Newton type correction 
of nonlinearity errors. 
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4.6.3.2 Monotonic Regions 

The derivative fx (xk ) with respect to the state variable in consideration is either 
analytically solved from the function f(x) or calculated numerically from the 
following central difference expression, where ∆x denotes a small deviation 
applied to the state value. 

 fx(xk) ≈ ( f(xk + ∆x) - f(xk - ∆x) )/ (2∆x) 

The function f(x) needs to fulfil a set of requirements. The standard assumptions 
(Kelley 2003) for convergence are as follows: 

     1.   Equation f(x) = 0 has a solution x = x* within  Ω 

     2.   The derivative is non-singular || fx(x)-1|| ≤ α  within  Ω 

     3.   The derivative is Lipschitz continuous within  Ω 

Figure 4.3. To the left the mass flow is iterated as a function of pressure and 
seems to diverge. To the right the pressure is iterated as a function of mass 
flow and is rapidly converging. 
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The Lipschitz continuity means that the difference fx(xi)-fx(xj) is roughly 
proportional to the difference xi - xj for any values of xi and xj within Ω 
(Gockenbach 2003). We can write the Lipschitz condition as follows, 

|| fx(xi) - fx(xj)||  ≤  L || xi - xj || 

where L is the Lipschitz constant. The Newton's method is proved to converge 
quadratically (Sebah & Gourdon 2001) if also the following Kantorovitch 
conditions apply 

    4.    || fx(x)-1f(x)||  ≤  β  within  Ω, 

    5.    ||fxx(x)|| ≤  γ  within  Ω, and 

    6.    α β γ  <  1/2  within  Ω. 

A function that confirms with the above conditions is characterized in this thesis 
as Monotonic Function. In practice it means that it is either strictly 
monotonically increasing or strictly monotonically decreasing but never constant 
within the interval of consideration.  If the nonlinearities of  f(x) are more 
complicated than above then separate Monotonic Regions ΩK each confirming 
with these requirements need to be identified and the crossing of the region 
borders to be considered as crossing of discontinuities. To enable spurious 
iteration beyond the borders of the each region, the regional functions are 
monotonically extended making use of the gradients at the border. If the solution 
converges outside of the said monotonic region, the iteration needs to be 
restarted taking into use the relevant adjacent monotonic region. This approach 
provides for global convergence. 

In order to study monotonic regions of nonlinear dependencies, also dedicated 
steam table look-up functions (Wagner & Krause, 1998) were programmed in 
Object Pascal by the author. The concept of monotonic regions is illustrated in 
Figure 4.4 by two surfaces extracted from the steam tables. The left surface 
shows the correct water region provided with an extended monotonic surface 
replacing the two phase and steam regions. The right surface shows the correct 
steam and two-phase regions provided with an extended monotonic surface 
replacing the waterside. The intersection line between the two surfaces if placed 
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in the same coordinate system depicts the saturation line from waterside until the 
critical point and continues with the critical enthalpy line for higher pressures in 
the supercritical region. 

 

4.6.4 State Prediction 

In order to provide a better starting point for the iterative refinement of the non-
linearities encountered for the state variables than just the previous time-step 
values, a prediction procedure is applied. Taylor's expansion is used in an 
explicit manner with respect to time, whereas xt denotes the known state value 
calculated at t time instance, x't its first derivative with respect to time, x"t its 
second derivative, ∆e the anticipated new time-step length and xê  the predicted 
new state value.  

xê  =  xt + ∆e x't + ∆e
 2 x''t / 2! + O(∆e

3) 

Figure 4.4. Logarithmic density surfaces for water and two-phase region as a 
function of pressure and specific enthalpy. The water region is monotonically 
extended as "overheated" and the two-phase region as "supercooled". 
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The second order approximation is normally used. Note that the error term 
O(∆e

3) vanishes if the behaviour of the state variable during the time interval 
can be exactly described by a second order polynomial as a function of time. The 
first order approximation is used when a time-step change is required e.g. to 
exactly catch a discontinuity and the zero order approximation is used 
immediately after the crossing of a discontinuity or when starting the up the 
simulation. 

Backward numerical differentiation is used to approximate the required first 
order derivative x't  with respect to time based on the previous time-step length 
∆u and the relevant value of the state variable xu. 

x't ≈ ( xt  - xu ) / ∆u 

Backward numerical differentiation is also used to approximate the required 
second order derivative x''t with respect to time, based on the old derivative 
value x'u  stored from previous time-step as well as the present value x't. 

x''t ≈ ( x't  - x'u ) / ∆u 

Having access to predicted state variables makes it possible to pre-calculate 
selected material properties and estimate the distances to approaching 
discontinuities, as well. 

Prediction is also proposed to be used to the calculation of boundary conditions 
in the interconnect of separate homogeneous zones with different time-steps, as 
well as for connection of separate local regions. In the case of communication 
between separate asynchronously running simulation engines a consistent set of 
data for the publishing of a boundary condition comprises the state value itself, 
its first and second order derivatives and the time-stamp. 

4.6.5 Time-Step Control 

There are several intrinsic constraints on the time-steps used. User sometimes 
wants to define general minimum and maximum time-steps allowed, subject to 
the nature of the study. The time-step specified for communication outside the 
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model or recording purposes also needs to be considered. Too long time-steps 
can result in an unwanted increase of the number of iterations required for 
compensation of the nonlinearities. In addition, too short time-steps increases 
computation time and may lead to numerical problems. The simulation error 
control can automatically decrease or increase the time-step length within set 
applied limitations. Sometimes the request for shorter time-step comes from the 
discontinuity control. 

Typical discontinuity events in process simulation are originating from change 
of flow direction in a check valve or the total filling up of a tank. Other 
discontinuities can arise from the operation of the simulated control system. It is 
very important to precisely identify the discontinuity points making it possible to 
perform a simulation calculation just at each break point. The prediction of the 
involved variables can be used for estimation of the crossing times in advance.  
If the estimate after calculation of the simulation step is found not to be close 
enough to the break point, the procedure is repeated. 

Let us consider a linear extrapolation example with regard to pipe networks. The 
exact time for closure of a check valve is estimated by successive adaptation of 
the time-step as shown in Figure 4.5. The decreasing mass flow m as a function 
of time t transition the check valve is indicated by the dotted line. 

Figure 4.5. In order to avoid mass errors during the simulation of the operation 
of a check valve, a simulation step needs to be calculated exactly at the time for 
change of flow direction in the valve resulting in the closure of the valve.  
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4.7 Running the Simulation 

Usually a division of the total model into three distinct temporal zones is 
sufficient. It is convenient if the time-steps of the different zones are multiples of 
each other's. Of course, initiation of large transients or crossing discontinuities 
require intermediate calculation steps, as well. 

An interesting issue is how to combine the different temporal zones. Linear 
interpolation from the old instance values to estimated next time-step values of 
slower zones could provide boundary conditions for the faster zones that are 
more accurate than just constant values. However, for this approach to work 
properly and always proceed forward corresponding to real-time, the instances 
for reaching discontinuities need to be predicted very carefully. Table 4.5 shows 
the running sequence of a local simulation engine. 

Table 4.5. Running a local simulation engine including homogeneous zones. 
 

Request input variables from other zones, simulation engines or control systems 
Calculate sequence of function blocks and implicit islands → 
Iterate if required for correction of nonlinearities 

→ 

Iterate if required for passing of discontinuity 
Release output variables to other zones 

→ 

Calculate each temporal zone at requested time instances 
 

The different input-output modules within a temporal zone, such as external 
function blocks and separate implicit islands, need to be calculated in a 
sequence, starting from input values at the boundary of the temporal zone. If the 
sorting algorithm encounters an algebraic loop, iteration of the sequence is 
needed. In addition, nonlinear algebraic dependencies can require iteration, as 
well. In an environment with several simulation engines or connections to virtual 
control systems, a synchronization of the different communicating actors is 
needed, if the experiments are supposed to be repeatable and not depending of 
occasional load changes of different parts of the computer system. 
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4.8 Tracking and Prediction 

Advanced operator support facilities can include a Predictive Simulator enabling 
the operator to try out what-if scenarios, before applying the actions in 
consideration to the real plant. The predictive simulator needs to be initiated 
with the exact situation at the real plant, including possible malfunctions. 
Whereas the predictive simulator has much more internal state variables than 
what is available from any measurements, it is convenient make use of a 
Tracking Simulator that only needs a few measurements as boundary variables 
to be able to run in parallel with the real process imitating the real process 
behaviour. A snapshot of all internal state variables of the tracking simulator is 
copied to the predictive simulator before running each scenario. The predictive 
simulator needs to run several hundred times faster than real-time to provide fast 
enough responses for the operator. 

The tracking simulator needs to be identical with the predictive simulator, 
replicating both process and automation systems. Diagnostics tools can be 
attached to the tracking simulator to identify possible malfunctions of the 
process, and apply them on request to the model as well. Adaptive tools can be 
used to adjust the models according to foreseen slow changes in some distinct 
process component parameters. Table 4.6 shows the running sequence of a 
predictive simulator. 

Table 4.6. Predictive what-if or optimising simulator. 
 

Run tracking simulator continuously in parallel with real process 
Copy snapshot of tracking simulator to predicting simulator on request 
Make possible control operations to predictive simulator 
Run estimate curves much faster than real-time 

→ 

Test manually or apply automatic optimisation scheme for operational procedures 
 

Optimisation tools can run the predictive simulator for automated evaluation of 
best operational strategy of the plant, and advise the plant operators accordingly. 
The optimal strategy can even be employed without any intervention of the 
operators in model-based control applications. 
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4.9 Error Sources 

Validation of the performance of a simulation model is made by comparing 
simulated results with real measurements. Modern digital control systems 
provide facilities for easy recording of transients in a real plant. We need, 
however, to look critically at the measured values. The inaccuracy of the 
measurements, the time constants of the transducers and the sampling errors may 
cause surprises. Specific Data Reconciliation methods have been developed 
(Amand et al. 2000) to identify Measurement Errors in order to validate 
measurement data. When comparing a simulation experiment with recorded 
measurements from a real plant we need to take into account that the model 
might look better than it really is. If, for instance, the model includes a control 
system actively correcting the controlled variables, the remaining errors in the 
process models can influence on possibly not measured variables such as valve 
positions, and remain hidden. There are many sources for errors in the 
simulation model: The specification of the spatial discretisation, the physical 
mechanisms considered, the selection of relevant mathematical formulas, the 
numerical solution methods applied, and the implementation of the 
computational model. 

The Spatial Discretisation Errors originating from the division of a process 
plant model into distinct Control Volumes can be much more prominent than the 
numerical integration errors. It seems unreasonable to discretise with respect to 
time with much less than one second as a time slot but at the same time apply a 
spatial discretisation granularity of tens of cubic metres or tonnes. Another 
severe misconception is to consider all tanks as ideal mixers. Rapid mixing is 
only achieved by the introduction of mixing energy. In most tanks and pipes the 
plug flow conditions are prevailing. Only fast turbulent flow in narrowly 
dimensioned pipes results in some mixing. The ratio of mixing and plug flow 
depends thus not only on the geometry but also on the flow velocity. 

The Mechanistic Presumption Errors relate to a wrong view on which physical 
phenomena to consider with respect to the scope of study. For instance, should 
separate phase flow conditions, momentum flux related pressure drop, or density 
imposed separation be considered in the specific case? 
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The Material Property Errors are introduced from approximate material 
property functions. Relatively correct information is available for pure 
substances. To consider several substances in separated phase conditions, Flash 
Calculations need to be made for evaluation of the mass fraction distribution in 
each phase in each control volume. The applicable Equations of State can 
usually only be tuned for correct calculation close to one operational point. 

The Parameter Errors are probably the most common errors. They usually arise 
from wrong understanding of the meaning or the unit of measure of model 
parameter attributes in concern or just from typing errors. The remedy is to have 
computerised access to semantic process design databases and component 
information galleries. Including a sensibleness check for the parameter values is 
helpful, as well. 

The Empiric Correlation Errors relate to such dependencies that only can be 
correctly determined by measurement from the real target process or from pilot 
equipments. Typical empiric correlations are related to friction, turbulence, 
mixing, reaction rates and heat transfer. 

The Round-Off Error depends on the number of available digits for calculation 
and storage as well as on the degree of ill-conditioning of the system. A problem 
is considered Ill-Conditioned if very small relative perturbations in the 
parameters make relatively large errors in the solution. The applied sequence of 
calculation of separate parts of an expression can also have significant impact on 
the resulting error (Wilkinson 1994). Round-off errors are usually not tracked in 
real-time simulation and are sometimes very unpredictable. One possibility for 
checking the impact is to recompile the complete model with a different floating 
point number representation and compare the results. 

An Index Reduction Error can arise when reducing the index of a DAE system 
(Brenan et al. 1989), because the algebraic constraints, such as conservation of 
mass or energy, not are fulfilled by the resulting ODE. In the versatile 
companion model approach index reduction is fortunately not needed. 

A Local Truncation Error originates from the truncation of the number of terms 
considered in a series approximation being the basis for the development of e.g. 
a numerical integration method. The Principal Local Truncation Error eplt of any 
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numerical integration method can be estimated subject to constant time-step 
applying the Richardson's method  eplt = (ve - ve )/(2n - 1) where n is the order 
of the method (Lambert 1991). Applying the Trapezoid rule, the state variable 
calculated at each time-step is calculated from ve = vt + ½∆e(v'e + v't). The 
result can be compared with a supposedly less accurate value ve= vu + ∆e(v'e + 
v'u) achieved by using the double time-step length for the calculation. It shall be 
noted that when this check is made the computation effort is doubled. Another 
possibility is to repeat the simulation study with a forced shorter time-step and 
compare the results. 

If the system has nonlinear coefficients, iteration is required for their correction 
at the end of each time-step. For stability reasons, the iteration needs to be 
stopped in such a way that the Nonlinearity Correction Error remains at least 
one order of magnitude larger than underlying round-off or relevant other error. 
Nested iterations are also very time consuming. For this reason, nested iterations 
shall be avoided as far as possible. Concurrent iterations are hence preferable, 
but much more demanding from stability point of view. See Subsection 4.6.3. 

Crossing a discontinuity appearing either in a variable itself or its derivative may 
cause a significant Discontinuity Passing Error. To minimize the error the 
numerical integration time-step needs to be modified to exactly hit the 
discontinuity point. A linear iteration method to estimate the discontinuity time 
instance has been successfully applied by the author (Juslin 1973). In order to 
reduce the number of the required iterations also polynomial approximation 
methods can be used (Elmegaard & Houbak 2001). See Subsection 4.6.4. 

There is usually an optimum for the applicable time-step with regard to the total 
accumulated Global Error. For longer time-steps the truncation error increases 
and for shorter time-steps the round-off error becomes dominant. Applying even 
longer time-steps usually results in more iterations for correction of 
nonlinearities and may finally cause instability. Decreasing the time-step even 
more can totally stop the integration of slow variables and feedback loops can be 
eliminated causing instability. It is interesting to note that the optimal time-step 
for accuracy often also provides for the fastest calculation. 
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Implementation Errors arise from insufficient specification, documentation and 
bad project management resulting in misconceptions of and between computer 
software programmers, or just in unresolved simple printing errors. 

4.10 Verification and Validation 

Good software development practices do not ensure correct operation of 
simulation engine software. It could encounter half a million lines of code 
written by tens of programmers and scientists. An extensive verification and 
validation procedure needs to be employed before any release of a new software 
version. The procedure includes both separate tests and integral tests. The 
software shall allow for easy testing of each mechanism and correlation 
separately, for testing of assembled process component models, as well as for 
the testing of large integrated process models. The verification and validation 
work processes are specified as follows (Carson 2002): 

• Verification occurs when the model developer exercises an apparently 
correct model for the specific purpose of finding and fixing modelling 
errors.  

 
• Validation occurs when the model developer and people knowledgeable 

of the real system or new/modified design jointly work to review and 
evaluate how a model works. 

 
There exist several internationally recognised test facilities, such as PACTEL at 
Lappeenranta University of Technology (Tuunanen et al. 1998). They are 
usually built for physical performance related research issues. Series of carefully 
recorded experiments have been made at these facilities. When a sufficient  
number of test facilities are modelled with modular simulation software and it 
calculates the performance of selected experiments correctly enough, then it is 
assumed that the modular software will calculate correctly also in other 
configurations. The procedure shall be repeated each time the source code is 
changed before the release of a new version (Ylijoki & Norrman 2004). 

Edwards' pipe test (Edwards & O'Brien 1970) is chosen in this context to 
exemplify the use of separate effect tests. The purpose is to examine the sudden 
depressurisation of a horizontal pipe discharged from one end. It is initially 
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containing water at a pressure of 6.895 Mpa and a temperature of 242 °C. Its 
length is 4096 mm and diameter 73 mm. The discharge flow area is 15% smaller 
than the area of the actual pipe. Both measured values and simulated results are 
shown in Figure 4.6.  

Figure 4.6. Measured values and simulated results show the pressure at the 
closed end of the Ewards pipe during a discharge flow experiment. 

It should be noted that it is not enough that the simulation code itself is verified 
and validated. The application models are presently manually specified by 
drawing process and automation diagrams and filling in required parameters of 
the components included. Manual specification errors are easily introduced. 
Accordingly, also the application models need to be validated to ensure correct 
results. 

4.11 Use Case of an Integrated Model 

The use of sufficiently verified and validated simulator code is successfully 
demonstrated by the construction and employment of an integrated model of the 
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Loviisa nuclear power plant. In 1995 Fortum Oy decided to commence a 
modernization and power uprating project in which major parts of the thermal 
hydraulic analyses of the revised Final Safety Analysis Report (FSAR) were 
calculated using the APROS simulation software. A completely new simulation 
model of Loviisa NPP was build to ensure that all the input data was correct and 
that the data sources were properly documented. The model included the whole 
primary circuit with safety systems, steam generators, steam lines and safety-
critical automation systems. The model was extensively validated against 
measurement data from plant commissioning tests etc. About 30 different 
initiating events and scenarios were calculated and their sensitivity to various 
parameters investigated (Kantee et al. 1998). 

 
Figure 4.7. Hot rod cladding temperature during a simulated large break loss 
off cooling accident supposed to take place at full power production at a 
pressurised water moderated nuclear power plant in the beginning of fuelling 
cycle. 

The analysis simulations using the uprated power level included large break and 
small break loss of coolant accidents, Anticipated Transients Without Scram 
(ATWS), primary to secondary leakages, several different pump trips, line 
breaks, blackouts and valve malfunctions etc. Figure 4.7 depicts the cladding 
temperature of the hottest fuel rod in the reactor core during a Large Break Loss 
of Coolant Accident (LBLOCA). 
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APROS proved to be such an excellent tool for safety analysis that Fortum 
Nuclear Services Ltd. currently is doing practically all the safety analyses with 
APROS. The earlier major tool RELAP5 code has a role in assessing the 
APROS analysis results. The power uprating project was successfully concluded 
in 1999. The Loviisa plant is now operating at uprated power level producing on 
average 50 MWe extra power per unit. Depending on the price of electricity this 
translates into additional revenue of 10�15 M�/year and unit (Sim-Serv 2005). 

4.12 Solution Data View 

The Solution Data View is presented in detail in Appendix B. It is very 
complementary to the solution framework presentation in this chapter. It 
manifests the author's proposal on the data structures for implementation. The 
data structure and the service-oriented operations between the data sets are 
concluded in Figure 4.7. 

 

Figure 4.7. The layered data structure enables to easily distinguish distinct data 
sets and relevant operations between the data sets. The Mechanistic Transition 
Equation (MTE) parameters stand as a basis for further calculation of dynamic 
coefficients for Linear Transition Equations (LTE), Versatile Companion Models 
(VCM) and matrix equation elements. 
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In this chapter the author has described his original developments of a Unified 
Solution Framework making use of the specification framework presented in 
previous chapter. The author presents his approach to flatten down the whole 
model specification to a linear system graph and subsequent re-organisation of 
the graph to suite a hierarchical table driven solution scheme. In this context the 
author also publishes for the first time his earlier developments with regard to 
the implementation of sparse matrix solution of the equations arising from the 
versatile companion model. 

The author has on purpose made use of implementation-neutral structured tables 
for the specification. A large variety of data organisation and software 
implementation technologies have been applied since the dawn of computerized 
dynamic simulation. Today, semantic data-bases and service-oriented software 
architectures are developing rapidly. 
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5. Guidelines for Software Implementation 

5.1 Service-Oriented Architectures 

Traditionally simulation software implementations included all functionalities in 
one integrated software program. This approach is still in use, and it is very 
efficient in embedded monolithic applications. The increased use of 
Dynamically Linked Libraries (DLL) in present implementations promotes easy 
customisation and replacement of even smaller separate parts of a specific 
program. The distribution of more comprehensive tasks to several separate 
programs has been made applying proprietary client/server architecture 
implementations, like in APROS. The unified solution framework is presented 
by the author presuming that the software is divided into suitable distributed 
large grain tasks in a Service-Oriented Architecture (SOA) as follows: The 
simulation engine, the modelling engine, the component gallery, the model 
repository, the experiment repository, the design graphics and the monitoring 
graphics. Standardised interfaces between the separate modules as well as to 
external software are requested. In addition, the author presumes that the fine 
grain tasks e.g. between the data structures inside the simulation engine are 
implemented using SOA principles, as well. Considerable benefits are expected 
considering the maintainability and re-use of the separate components. For 
instance, the user interface can be updated separately without the need to change 
any other modules. The end user may connect his corporate standard user 
interface to the system, as well, subject that it is SOA compatible. 

Next generation of software application architectures must address the reality 
that design, production, maintenance as well as business processes already 
operate cross the application boundaries. Applications must be enabled to 
operate across the artificial boundaries of disparate applications that need to 
work together to support other applications. Furthermore, there is a huge amount 
of diverse application software already installed and in operation. A successful 
architecture will need to support both integration and extension of old 
applications to give companies the full potential of their current software 
investments. With all of these capabilities, the new architecture will initially be 
used to pull together diverse applications to create an effective combined 
application. Eventually, the next generation of software applications will also 



 

122 

embrace these architectural capabilities in the applications themselves. The 
operational processes in industry are increasingly supported by the underlying IT 
infrastructure and relevant applications. Two application paradigm shifts have 
arisen since the eighties: First the evolution from mainframe to client/server 
architectures and now the further development to Web-based application 
architectures. All leading vendors such as IBM, Microsoft, SAP, BEA, Sun, HP 
and Oracle believe it is important to quickly complete the transition from large, 
monolithic client/server architectures to versatile service-oriented architecture. 
Web services are going to be the critical ICT infrastructures for the next 20 years 
(Wiehler 2004). 

5.2 Vertical and Horizontal Connections 

Modern ICT already enables the establishment of virtual working groups 
integrating experts all over the world. In the same way, it shall be possible for 
the users of advanced simulation tools to ubiquitously operate the graphics 
interfaces for model development and monitoring of simulation results, without 
knowing exactly where in the network the component galleries, model 
repositories, modelling engines or the simulation engines actually reside. It shall 
be possible for several users to concurrently develop separate parts of a larger 
model. The system shall facilitate both for separate test of partial models and 
integrated tests of a large model. Model component galleries and repositories of 
integrated models shall be available for the developers, over either Intranet, 
Extranet or Internet as indicated in Figure 5.1. 

Standards for Vertical Specification combined with standards for Horizontal 
Communication are enabling the establishment of Virtual Engineering Service 
Centres. The intention is that the graphics software shall be very thin and only 
contain the information seen on the active screens. It seems that an XML type of 
formality is persistent enough for long-term future re-use regarding the 
interactive vertical model specification from the graphics to the modelling 
engine and further to the simulation engine. The OPC standard, on the other 
hand, facilitates for easy configurable horizontal communication for presentation 
of simulation results on-line, for communication between simulation engines, or 
for connections to real or virtual control systems. 
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Figure 5.1. A distributed simulation environment providing for remote services. 

5.3 Connecting to CAD Systems 

An interesting question relates to whether it is possible to transport process 
specifications from intelligent PI diagrams or 3-D CAD systems to the 
modelling engine. A suitable set of suitable generic component models accepting 
the geometric information needs to be readily available. A small number of 
simple geometric elements like pipes, pumps and valves form the main part of 
the 3-D specification work. To build up different kinds of tanks, a set of 
cylindrical, spherical and conical building blocks, both horizontal and vertical, 
are needed. The important issue is that the intelligent CAD drawing knows 
which elements are connected, like two pipe ends, and not just happen to be 
situated close together. From the modelling engine point of view it is required 
that this kind of connection information can be used to e.g. assemble tank 
elements to a complete tank model, enabling inlets and outlets at required 
positions. 

In the longer run, web-based graphics tools need to be considered for CAD like 
model specification and simulation control. The Scalable Vector Graphics 
(SVG) standard, issued for two-dimensional applications, has reached a large 
take up from web software developers (SVG 2003).  The X3D extensible 3D 
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graphics proposal, still under development is expected to provide for 
standardised three-dimensional web applications in near future (X3D 2003). 

5.4 Semantics and Ontology for Process Information 

The specification data of a large simulation application is can persistently be 
stored in a single XML file containing only ASCII characters. For efficient 
elaboration of the data, it is suggested to be inserted into a core resident 
hierarchical database structure. The test implementation of the simulation engine 
includes a dedicated XML parser interfacing to this kind of database. In order to 
enlighten the issue a short XML specification script is presented in Figure 5.2, 
showing how to modify a single parameter value of a compound node 
specification in the model repository. 

 
<DataRepository  Operation="Modify">  
      <drName>My_Project</drName> 
      <ComponentModel> 
            <cmName>My_evaporation_plant</cmName> 
            <CompoundNode> 
                   <cnName>Supply_tank_1</cnName> 
                   <ParameterRecord> 
                         <prName>Total_volume</prName> 
                         <prUnit>m3</prUnit> 
                        <prValue>6.7D01</prValue>   
                  </ParameterRecord> 
            </CompoundNode> 
      </ComponentModel>   
</DataRepository>      
 

 
Figure 5.2. XML script for updating the supply tank volume. 

 
A data structure for different subject and domain specific objects with related 
attributes and functionality has bee laid out, a kind of ontology. Ontology 
defines the terms used to describe and represent an area of knowledge. Ontology 
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includes computer-usable definitions of basic concepts in the domain and the 
relationships among them. These definitions enable to encode knowledge within 
a domain and knowledge that spans domains and make that knowledge reusable. 
World Wide Web Consortium (W3C) has issued the Resource Description 
Framework (RDF) and the Web Ontology Language (OWL) recommendations. 
They are semantic web standards that provide a framework for asset 
management, enterprise integration and the sharing and reuse of data on the web 
(W3C 2004). The standard formats for data sharing span application, enterprise, 
and community boundaries � all of these different types of "user" can share the 
same information, even if they don't share the same software. Now the semantic 
web emerges as commercial-grade infrastructure for sharing data and is 
supposed to strongly compete with established knowledge and databases. 

In order to facilitate easy interfacing of present or future engineering tools it is 
important that a comprehensive set of open source accessing software tools are 
made available. 

Research and development efforts are presently focused on semantic process 
design repositories. The concern is that also the needs from the point of dynamic 
modelling and simulation are taken into account when implementing domain and 
component specific information. This is needed to enable modelling and 
simulation to become an integrated part in both the design and operation of 
industrial processes. 

In the Scandinavian countries there are strong enterprises engaged in the design 
and use of industrial processes especially in the fields of energy, pulp and paper, 
and minerals. Suppliers of automation systems, consulting services and 
engineering software from Scandinavia operate worldwide, as well. Concerned 
Scandinavian actors should join and assign necessary efforts to the specification 
and standardisation efforts urgently needed in respective domain. A sincere take 
up of ICT technologies in the design and business processes might be the key to 
success. 
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5.5 Fast Running Code 

5.5.1 Speeding-Up by Parallel Processing 

Optimisation of calculation speed is an important issue in real-time simulation of 
extensive process models. Efficient computer database organisation was already 
in the 1970's an important issue for international research (Martin 1977). In 
order to speed up the calculation in the first full-scope training simulators, the 
complete real-time database needed to reside in the computer's semiconductor 
memory, which in the 1980's still was a very limited resource. The use of 
memory needed then to be utterly optimised. Fortunately, computer memory is 
nowadays very affordable and it can be used to an extent that is optimal to 
increase the speed. Fast serial connection of computers, enables efficient Coarse 
Grain Parallelism by simulation of suitable large subprocesses with only few 
weak interconnections on separate computers. Several processors with joint 
memory on the same computer provide for Medium Grain Parallelism 
processing independent subroutines or threads in parallel. Fine Grain 
Parallelism can be achieved by pipelined vector processing of do-loops 
empowered by parallel fetching of required data from memory in advance to on-
chip registers, which in fact also speeds up scalar processing. To simplify the 
task of an optimising compiler, alternative processing routes is resulting from if-
checks must be avoided as far as possible. Pre-fetching of all possibly needed 
data is not economical. As fetching times are long compared to processing 
frequency, data organisation in memory is still crucial. If concurrently needed 
data resides in adjacent memory locations, it is also possible to take advantage of 
cache-memory services for speeding up memory access. A relevant interesting 
issue is: Should the sparse matrices be stored in vectors or records (Houbak 
1981). Considering the efficient computer memory management of adjacent 
variables, the record option is preferable for data accessed by code that is 
difficult to vectorise such as sparse matrix factorisation. 

5.5.2 Vectorised Code Enhances Memory Management 

To benefit from computers that support vectorisation, the variables are as far as 
possible allocated to arrays in a consequent order to allow for simple addressing. 
The do-loops shall not include any if-checks or other alternative paths. The 



 

127 

Pascal code shown in Figure 5.3 operates with only two vectors, vector R 
including all floating point values, and vector p including all required integer 
addresses to fetch distributed content of the R vector. The starting address for 
the consequent values in the value vector to be calculated is denoted by r1 and 
the length of the vector to be updated by len. The parameters p1, p2 and p3 stand 
for the starting addresses in the pointer vector for access to the distributed 
parameter values. 

 
         for i:= 0 to len-1  
                   do R[i+r1]:= R[i+r1] + R[p[i+p1]]*R[p[i+p2]] + R[p [i+p3]]; 
  

 
Figure 5.3. Sample do-loop with typical indirect addressing. 

 

In practice, if the do-loop length is known at compile time and it is pretty short, 
some optimising compilers just write the equations with pre-calculated 
addresses. 

5.5.3 Pre-Calculated Addresses Enable Optimisation  

The accelerated speed of modern processors has resulted in a situation whereas 
the present core memory look-up times could be compared with disk memory 
look-up times in the old times. For improved efficiency fast intermediate cache 
memories are used. Modern compilers are provided with parallel look-ahead 
optimising capability to arrange for search of required data from core memory in 
ahead. They are however unable to cope with code including frequent if-checks 
and accordingly many possible future paths. It is often also impossible for the 
compiler to know at compile time the lengths of possible vectors. Indirect 
addresses require multiple fetches at run-time. If an intelligent code generator is 
used that instead of performing the calculations writes the resulting code with 
direct indexing to a file, fast running code can be achieved, which is very easily 
optimised for modern processors. Figure 5.4 shows an example of such 
generated code. It can be used in a run-time simulation engine with a fixed 
model specification included. Whence computer memory even nowadays is 
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much more affordable than speed, this is an attractive alternative for use of 
models in embedded system, for control or prediction. 

 
                 R[1037]:= R[1037] + R[2238]*R[42164] + R[7544]; 
                 R[1038]:= R[1038] + R[8349]*R[38145] + R[8867]; 
                 R[1039]:= R[1039] + R[5795]*R[67696] + R[1578]; 
 

 
Figure 5.4. Accelerated code with pre-calculated addresses. 

 

Gained experience regarding solution of sparse matrices with pre-calculated 
addresses indicates a reduction of execution time with 60% or more. The 
efficient use of cache memories play an important role in such tests. A basic 
requirement is that the whole program code as well as the data areas shall reside 
in semiconductor memory during the test. The pre-calculation of addresses 
results in increased program size, which needs to be considered. For reasonably 
small integrated networks, in the range of 100 nodes, the increase was about 
200%. Memory size is presently, however, not limiting factor. Compilers for 
future processors with architectures increasingly supporting on-chip parallelism 
are supposed to efficiently optimise this kind of code. 

5.5.4 Easily Transportable Software 

In the previous presentation, no indications have been made regarding preferred 
choice of databases, compilers or operation systems. The graphics interface 
seems though for the moment best fitted for object-oriented implementation.  
The hierarchical structure of the specification data implies that it fits in an 
object-oriented repository as well as in a relational database. It could, however, 
be questioned if well structured data needs to be put into proprietary databases. 
The capacity and speed of modern mass storage devices allow for storage of 
huge amounts of data in easily accessible XML based text files. Reference is 
made to the world wide web. 
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The simulation engine requires a computer programming language that has 
access to efficient mathematical routine libraries, and is implemented with very 
carefully optimised compilers. For the simulation engine it is beneficial, if the 
compiler can produce optimised code for the specific hardware available from 
time to time. The instant simulation database needs to be in core and provide for 
an indexed access to all variables. High performance is achieved if mathematical 
algorithms, data organisation, software compiler, operation system, and 
computer hardware are interacting seamlessly. Easy transportability to new 
hardware and operation system platforms is a crucial requirement. 

5.5.5 Programming Methodologies 

In order to stimulate the planning of next implementation of the VCM approach 
a short review is made regarding different previously applied methods to carry 
out the required functionality of a simulation system for dynamic process 
models. 

• General Purpose Programming Languages, either functional or object 
oriented, are still used for direct programming of simulation models. 
The programs usually comprise a main program and a set of subroutines. 
Intrinsic arithmetic subroutines that are supplied with the compiler are 
frequently used. Sometimes external mathematical libraries are called. 
The edited source code needs to be compiled and linked before 
executing the program. This applies for each change made in the model 
code. 

• Continuous System Simulation Languages (CSSL) were introduced with 
specific notations for derivation and integration that are required for 
solving of dynamic model equations (Augustin et al. 1967). Typical 
CSSL based functional simulation language codes are first pre-compiled 
to some general purpose programming language before subsequent 
compiling and linking. This tends to make the model development 
process slow. 

• Artificial Intelligence Software based simulation tools were the targets 
for research efforts in the 1980's. The Interval Simulation and Reasoning 
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(ISIR) software represents a hybrid-modelling environment for 
combined differential equation and discrete model based reasoning 
(Välisuo 1994). The model specification was written in a Prolog-like 
language. 

• Interpretation Based Simulation software platforms that not require 
compilation of the model specification have been made available. The 
Direct Executing Simulation in Real-time (DESIRE) language code is 
interpreted during the execution (Korn & Korn 2003). 

• Object Oriented Simulation Language developments were initiated in 
accordance with the general trends in software development, by the 
Modelica design group (Elmqvist et al. 1997). The development started 
from the robotics background. Presently component libraries are under 
development both for electrical and hydraulic networks. 

• Table Driven Simulation platforms have been developed such as the 
Dynamic Network Analysis (DNA) simulator (Lorenzen 1995). It makes 
use of the Nordsiek formulation for temporal discretisation and the 
Newton method with a numerically calculated Jacobean for solution of 
the resulting nonlinear equation system. 

According to the proposed architecture in this thesis, the application developer 
does not need to invoke compiling and linking. The modelling engine reads the 
process structure based specifications from a batch file repository or accepts 
detailed on-line modifications from a design graphics user interface. The 
modelling engine supplies the simulation engine with relevant input values and 
indexes to enable service-oriented solver functionality. An extensive set of 
elementary physical mechanisms is pre-programmed in the simulation engine. 
Only one instance of each type of equation is needed. During the simulation, the 
relevant transition equations and mathematical solvers are applied as services to 
the data structures. Thus, the process structure based application model 
specification does not need to include any equations. 
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6. Discussion and Conclusions 

6.1 Items Identified for Further Development 

A walk through from structure related process specification techniques to 
efficient numerical solution methods has been made. It is emphasized that 
several issues still need deepened consideration before commencing final 
implementation work. The next step would be to select a software platform and 
develop suitable prototypes for dedicated studies and further refinement. In the 
following, the author has selected some specific issues for discussion. 

• Knowledge base for design synthesis. Whence elaborating the versatile 
companion model related framework for the streamlined specification 
and solution of process simulation models as presented in this 
publication, there have been numerous, sometimes conflicting, 
challenges to comply with. An implementation programmer getting 
familiar with the architecture requires openness and transparency, 
enabling him make optimal use of the resembling features of his 
software development environment. On the other hand, the engagement 
of an application user that only occasionally uses the tool requires that 
all features and options that not are necessary for his application work to 
be hidden. Automated model generation from semantic process design 
databases is even more challenging. Traditionally, a successful spatial 
discretisation of an industrial plant process, including specification of 
suitable control volumes, manual tearing up of very weak connections, 
and combination of strongly connected variables, has required very 
comprehensive practical experience, in addition to very dedicated 
physics, mathematics and even programming knowledge. The direct 
integration with design databases requires that implicit knowledge of the 
experienced application user needs to be made explicit and included in 
the knowledge base of the system. The unified system is designed to 
enable automatic support of relevant engineering rules at appropriate 
stages of input data preparation. However, the establishment and use of 
the required knowledge base is an important issue for further research 
and development. 
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• Combination of homogeneous zones. The information contained in the 
coefficients of the companion models are used for optimisation of the 
solution by automated tearing and combination before construction of 
the separated matrix equations to be solved. Further, the solution order 
in each arising sparse matrix equation is optimised in advance before 
construction of the matrix to avoid the need for fill in of new elements 
and pivoting during the factorisation. This is a very important advantage 
compared to traditional methods. A theory on how to efficiently 
combine partitioned zones running with independent time-step control is 
definitely an interesting issue for further research. 

• Concatenated monotonic regions. The developed solver system 
facilitates for automated non-linearity error corrections. Whilst 
including physical mechanisms into a new versatile companion model 
branch type, the application programmer has access to a service for 
introduction of new monotonic regions related to relevant nonlinear 
parameters and correlations. It seems that a suitable methodology has 
been found that can handle the traditional ambiguity of nonlinearities. It 
works with such correlations that can be made up of monotonic regions. 
Can all nonlinear piecewise continuous dependencies be described with 
concatenated monotonic regions? Further research is needed. 

• Empiric Data Reconciliation. Access to new methodologies and tools 
for automated reconciliation of measured data e.g., for specification of 
empiric correlations is strongly called for. Combination of data 
reconciliation and principal component analysis, two recognised 
statistical methods used for plant monitoring and fault detection, has 
been proposed for increased efficiency (Amand et al. 2000) in on-line 
applications. It seems that measured values would require additional 
properties attached, such as: unit, time, validity range, sensor accuracy, 
delay function and noise level. With access to such information, the 
quality of further calculated values could be followed up accordingly. 

• Mitigation of Round-Off Errors. In the early days of the computers, 
scaling of variables was successfully applied to secure a reasonable 
accuracy of the calculated results. Now, even if computers operating 
with double precision floating-point arithmetic of 64-bit world length 
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have reached the desktop, the round-off errors are still out of on-line 
control. As a specific remedy, iterative refinement of ill-conditioned 
matrix equation solutions has been applied (Wilkinson 1994). A check 
of all the included equations might be needed. Sometimes the solution 
order has a significant influence on the accumulated error, however, an 
optimising compiler might change the indicated order. 

• Implementation Issues. Requirements arising from the intentions to use 
virtual plant models as knowledge repositories during the whole process 
life cycle have been presented. Interconnections to CAD, CAE, PDM, 
PLM, ERP, MES and DCS systems have been considered as very 
essential for the take-up of simulation. Networking, specialisation and 
outsourcing is providing for new business opportunities. Trusted 
modelling and simulation support centres can offer to develop, store and 
update complete integrated virtual models of their clients' processes. 
Different stakeholders involved with design, construction, operation, 
trouble-shooting, training, maintenance, logistics or trading can make 
use of this kind of support. The unified system framework has been 
designed taking into account the evolving software technologies of web 
services and service-oriented architectures (SOA 2005). 

The challenge has been to write a specification of a unified system at such a 
generic level regarding the algorithms and specifications, that neither a selection 
of operating system, computer architecture, nor programming language has been 
required to do in advance. There is no doubt, that an implementation in a 
specific environment initiates many new interesting questions to be solved. 

6.2 Conclusions on the Functionality 

The motivation for the theoretical developments completed by the author 
originates from a request to solve rapidly and correctly enough such extensive 
models that is needed for the dynamic simulation of complete industrial plants in 
sufficient detail and at least in real-time. The process models in focus include 
both thermal, hydraulic, chemical and nuclear phenomena. In addition, models 
for automation and electrical systems are considered. The necessity to integrate 
multidisciplinary models has influenced the development of the mathematical 
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solvers. The central contribution described in this thesis encompasses the 
versatile companion model with relevant equivalent representations and the 
closely coupled sparse node matrix equation solver. The approach has been 
implemented into several commercial software platforms long before the advent 
of object-oriented, component-based or service-oriented software technologies. 
Numerous successful applications in many different domains have been referred 
to in Chapter 2. 

• Versatile Companion Model. The author has independently extended the 
electrical equivalent circuit principle introduced e.g. by Norton and 
Thevenin to accomplish the versatile companion model that is easily 
applicable for calculation of the dynamics of thermal hydraulic networks. 
The versatile companion model seamlessly supports the construction of 
relevant sparse node matrix equations. The versatile companion model is 
described in Section 3.4 from the structured graph and the static equation 
point of view, in Section 3.5 from the dynamic equation point of view, and 
in Section 3.6 from the nonlinear mechanistic equation point of view. 

• Sparse Node Matrix Equation Solver. The author has independently 
applied the bi-factorisation method introduced by Zollenkopf making use of 
linked list matrix element storage architecture and sparse matrix techniques 
to develop a sparse node matrix equation Solver. Both symmetric and 
nonsymmetric node matrices as arising from thermal hydraulic circuits are 
supported. The sparse node matrix solver is described in Section 4.6 
including the construction, factorisation, solution and the correction of 
nonlinearity errors.    

• Hard Coded First Implementation in Full-Scope Simulators. The author 
developed the versatile companion model and relevant sparse node matrix 
equation solver with the primary aim to speed up the calculation of the 
extensive pipe network models of the full-scope training simulator of the 
Loviisa nuclear power plant. They were found to conform to the 
requirements on limited memory usage, computational efficiency, accuracy 
and robustness to be used in such a simulator (Juslin 1983a). The first 
applications were hard coded into existing software environments and 
replaced accordingly previous code. Any model developments in such an 
environment require sufficient understanding of the implementation to avoid 
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introduction of inconsistencies. Several full-scope training simulators based 
on this first implementation of the solution framework are still in daily use. 

• Table Driven Second Implementation in APROS. Later on, the author 
was responsible for the concerted development of the APROS modelling and 
simulation platform (Juslin et al. 1988). APROS makes use of the second-
generation implementation of the solution framework. The software 
developed is in worldwide use. It is supplied as binary code in accordance 
with valid license agreements. The configuration of the modelled networks 
can be made without any programming or compilation efforts by either 
using a dedicated graphics interface or a native specification script. 

• Verification and Validation. The full-scope training simulator applications 
have all been validated against measurements from the target plants. The 
requirement is that an experienced operator not shall find any differences 
from the performance of the real plant that could impair the training 
purposes. The performance of each new version of the APROS code is 
extensively validated with a sequence of simulated experiments that are 
compared to measurement recordings from test equipments or to 
calculations made by other codes (Ylijoki & Norrman 2004). 

• Proven Modelling and Simulation Technology. The large number 
successful applications of these implementations talk for themselves. 
Evidently the solution architecture works. A large number of publications, 
mostly focusing on applications, have been made during the years by the 
author, by his colleagues, and by the customers. However, the versatile 
companion model approach, the implementation of sparse node matrix 
solvers, as well as the implemented data architectures have not previously 
been published because of competitive reasons. 

• Unified Solution Platform for Semantic Models. Based on all previous 
experiences, the author has now independently concluded the novel 
specification of the third generation implementation architecture as 
presented herein. The openness of the new architecture shall enable the user 
to graphically access even the lowest level of model specification, that is, the 
separate mechanisms of the versatile companion model branch. The goal has 
been to specify a unified data and solution framework that easily can make 
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use of such hierarchical model specifications that automatically can be 
extracted from future semantic plant models. However, the final service-
oriented software implementation work is not within the scope of this thesis. 

The correct performance of the already implemented simulation engines has 
obviously been confirmed. The experience gained has been gathered by the 
author and herewith concluded into a proposal on novel software architecture for 
future needs of ubiquitous computing. The automated simulation model 
construction principles resemble well the evolving semantic specification 
standards for process plants. The unified architecture is considered to have all 
possibilities to form a basis for an open source modelling and simulation 
software platform needed to accomplish future virtual factory initiatives. 
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Appendix A: Specification Data View 

General Real-Time Data Management Issues 

Core resident data is grouped to state variables, parameters, constants, structural 
dependencies, temporary data, and interface specifications. There are different 
requirements imposed on the functionality and structure of the instant in-core 
database. 

The on-line process specification benefits from an object-oriented structure. Is 
shall be possible to consider changes in the process structure even between the 
simulation time-step. There is no time for re-compilation and linking of the 
whole task. On the other hand, the mathematical solvers benefit from a flat 
structure with a continuous data area, which enables the application of long 
simple do-loops without internal if-structures. This is the code, which modern 
compilers and processors can optimize in a very efficient way, applying parallel 
fetching of required variables long in advance both at chip level and at external 
cache memory level. 

Other requirements arise from the needs of training simulators to specificly store 
the state variables to disk memory as state snap-shots at certain intervals during 
the simulation to enable for backtracking and replay functionality. This data is 
copied in binary format. The full snap-shots need only to be made on request 
after changes in the model structure. It includes also the information on model 
parameters, constants and connections. 

To facilitate for interactive model specification and simulation control, an ASCII 
based interface is needed for communication between the simulation engine, 
graphical user interfaces, and model repositories. The user interfaces shall 
provide for both model specification and presentation of simulation results. 
Specified parts of a model instance shall be possible to store and retrieve from 
such a repository. From the real-time requirements point of view, all variables 
are included in separate dynamic arrays, such as: Name list, double precision 
state variables,  sparse matrix elements, delay variables, complex state variables, 
sparse matrix elements, and structured data types for configuration purposes. 
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Plant Specification Data  

There are several application needs for design data repositories. A process 
component manufacturer wants to publish model data specifications of his 
products to be easily taken up by design engineers. The specifications can be 
stored and accessed locally on a file, or it can be published either in intranet, 
extranet or internet. Different subprocess suppliers in a delivery project can 
combine component models to comply with their parts of the deliveries. The 
control system supplier can link the different subprocess model specification 
data into an integrated model specification repository, and use it for evaluation 
the functionality of the integrated control concept, or even test the real digital 
control system configuration with the model. A design data repository can 
accordingly include a complete set of component specifications from a 
component manufacturer, such as a pump manufacturer. It can include all 
relevant subprocess design alternatives, including automation system 
configuration, from e.g. a boiler manufacturer. The attributes of the data 
repository are specified in Table A.1. 

Table A.1. DataRepository attributes. 
 

drName Instance name  drAuth User authorisation list entry 
drUses Used repositories list entry drHist Event history  
drIdoc Instance documentation drCM Component Model list entry 

 

The repository instance name needs to be distinct from other repositories 
referred to. The linkage to external repositories reduces the need to copy their 
specifications as a whole or partly to the repository instance in question. It also 
enables distributed maintenance of the relevant specifications by the most 
knowledgeable parties, as well as it reduces the need to update many instances. 

The repository instance documentation provides a mean for free format 
documentation end messaging, especially useful in a multi-user workgroup 
environment. In virtual environments the user authorisation becomes very 
important, as well as and automated event history on who has done what. The 
component list entry provides a mean to access the content of the repository. 
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Flow-Sheet Based Specification 

Component Model  

Interconnected component models represent the application modelling user's 
view of the process and its physical relationships. The specification of 
parameters and interconnects could be done directly into a data base, but it is 
preferable to make use of intelligent process and automation diagrams with 
explanatory component symbols and related parameter specification forms.  

The component model data structure as specified in Table A.2 allows for many 
Component Types. It can comprise of only one single connection point, or a 
structure of function blocks and branch mechanisms with relevant connection 
points and joints. It could include process components, as well. This feature 
provides for a hierarchical specification of an integrated model. The component 
can be viewed either by its own graphical symbol or if relevant by its internal 
graphical diagram. The symbol can include several graphical elements, such as 
connection points, enunciators and monitors. The elements can also depict 
different structural parts of the real component, and provide easy access to 
specify related attributes.  Each component type can be used as a template to 
develop new Component Instances having the same structure, but possibly 
different specification parameter values. If it has the same parameter values as 
well, except for the name, it is a Component Clone. An existing component type 
can be used as a prototype for developing new component types with modified 
structures. Upon specification of the type, it can be decided which parameter 
values are type specific and which instance specific. 

The parent of a process component is either a higher-level process component or 
the design data repository whereto the component itself and all its descendants 
belongs. A component specification can be used by several experiments. The 
component specification applies for both generic and composed components. 

The user link list includes a reference to all graphical windows where the 
component is concurrently displayed. Only one user at a time, the active user, is 
allowed to modify the component. The modifications are broadcasted to all 
concurrent users. This functionality forms the basis for possible interactive 
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operation of the members of a design team, each one connected to the Internet 
and residing virtually anywhere. 

Table A.2. Component Model attributes. 
 

Structure attributes 
cmType Type  cmSE SymbolElement list entry 
cmFB FunctionBlock list entry cmCM ComponentModel list entry 
cmCN CompoundNode list entry cmCB CompoundBranch list entry 
cmMC ModelConnector list entry cmTdoc Documentation of type 
cmPrnt Parent: Component or 

Repository 
cmSieb Sibling list link 

Structure generation attributes 
cmPR ParameterRecord list entry cmScri Script index 

Component instance attributes 
cmName Instance name cmIdoc Documentation of instance 
cmCon Confidentiality of instance cmUpd Instance updates' history  
cmUse User link list cmAct Active user 
cmIrect Symbol boundary rectangle cmIpos Symbol position in window 

 

The implementation of the graphics interface implementation has to be 
extremely thin, only including information needed for instant graphical 
operations, such as mowing graphical primitives and junctions in the visible 
windows. This facilitates for concurrent browser based read and operate access 
to the same component from several locations in the Internet. 

Symbol Element 

The symbol element specification according to Table A.3 is the primary 
connection to the graphics view of the component as a composite symbol 
published in a graphical window. Each element in the symbol can have a 
specified interactive function. The graphics primitive's entry includes the 
specification of the shape of the symbol element as well as its relative position in 
the symbol. 
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Table A.3. SymbolElement attributes. 
 

seName Instance name seMC ModelConnector list index 
seType Type  seWin Window index 
seGP GraphicsPrimitives list entry seIdoc Documentation of instance 
sePrnt Parent: Component seSieb Sibling entry 

Model Connector 

The model connector specification in Table A.4 is used for establishment of 
junctions between components on the flow sheet, as well as between structural 
objects of the component itself, such as function blocks, process nodes, process 
branches, or even to individual coefficients of the branch mechanisms. The same 
connector can be referred to from several elements, although it is owned by the 
lowest level structural object in consideration. 

Table A.4. ModelConnector attributes. 
 

mcNam Instance name mcMatch Matching connector type 
mcType Type  mcIdoc Documentation of instance 
mcPrnt Parent: CM, PN, PB, FB, or BM mcSieb Sibling entry 
mcCmp Component name mcElem Element name 

Connector Junction 

The connector junction as specified in Table A.5 is only involved in the logical 
attachment of connectors. When making connections, the compatibility of the 
connection points is to be checked. 

Table A.5. ConnectorJunction attributes. 
 

cjX1 Connector index cjX2 Connector index 
cjPrnt Parent: Component cjSieb Sibling list link 
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Mechanistic Functionality Specification 

Function Block 

Function blocks provide for flow sheet type graphical specification of 
connection to imported code that can make use of the general services provided, 
e.g. with respect to updates of state variables upon accepted new time-step. The 
function block attributes are set forth in Table A.6. 

Table A.6. FunctionBlock attributes. 
 

fbType Type  fbSRi Input StateRecord list entry 
fbPR ParameterRecord list entry fbSRo Output StateRecord list entry 
fbSRn Native StateRecord list entry fbTdoc Type documentation 
fbPrnt Parent: Component fbSieb Sibling entry 
fbName Instance DLL name fbIdoc Instance documentation 

Compound Branches and Nodes 

The local volume of a tank can represent just a single node or a required set of 
local nodes and local branches, to include the mechanisms describing the tank in 
consideration. The compound node attributes are presented in Table A.7. 

Table A.7. CompoundNode attributes. 
 

cnType Type  cnMN MechanisticNode list entry 
cnMB MechanisticBranch list entry cnCN CompoundNode list entry 
cnPR ParameterRecord list entry  cnMC ModelConnector list entry 
cnPrnt Parent: Component  cnSieb Sibling entry 
cnName Instance name cnIdoc Instance documentation 

 

The transition capacity of a pipe can represent one or several mechanistic 
branches. The compound branch attributes are presented in Table A.8. 
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Table A.8. CompoundBranch attributes. 
 

cbType Type  cbMB MechanisticBranch list entry 
cbMCfr From ModelConnector index cbMCto To ModelConnector index 
cbPR ParameterRecord list entry cbCB CompoundBranch list entry  
cbPrnt Parent: Component cbSieb Sibling entry 
cbName Instance name cbIdoc Instance documentation 

Mechanistic Branches and Nodes 

Connected mechanistic branches and nodes form together the fundamental 
structure conveniently describing the functionality of typical process 
components.  They are also called simple nodes and branches. The mechanistic 
node attributes are presented in Table A.9. 

Table A.9. MechanisticNode attributes. 
 

mnType Type mnSR StateRecord index 
mnPrnt Parent: CM or CN mnSieb Sibling entry 

 

The mechanistic node comprises one single state variable, such as voltage, 
pressure, specific enthalpy, or concentration. It is assumed that the node itself 
does not accumulate any current, mass, or energy.  For such purposes, specific 
mechanistic local branches are available. The mechanistic branch attributes are 
presented in Table A.10. 

Table A.10. MechanisticBranch attributes. 
 

mbType Type mbSRbr Branch StateRecord index 
mbTfr From node type mbSRfr From node StateRecord index 
mbTto To node type mbSRto To node StateRecord index 
mbPrnt Parent: CM, CN or CB mbSieb Sibling entry 
mbBM BranchMechanism list entry mbSij Source variable entry sij 
mbGf Forward coefficient  entry gf mbGb Backward coefficient entry gb 
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Branch Mechanisms 

The functionality of a specific mechanistic branch is completely defined by the 
actual selection of branch mechanisms operating on the branch in series, such as 
turbulent loss and dynamic head representing separate hydraulic mechanisms 
acting concurrently in a transition branch. Further, it is also possible to define 
the relevant numerical integration scheme for each branch. The branch 
mechanism attributes are presented in Table A.11. 

Table A.11. BranchMechanism attributes. 
 

bmType Type bmTE TransitionEquation list entry 

bmInt Integration method chosen bmMC ModelConnector list entry 
bmPrnt Parent: MB bmSieb Sibling entry 

bmRf Forward coefficient value Rf bmRb Backward value Rb 
bmC Capacitive coefficient  value C bmE Internal state value E 
bmI Source impact value I bmL Inductive coefficient value L 

 

Transition Equation  

Accordingly, new mechanistic branch types can be specified just by selecting 
relevant mechanisms. Each mechanism can include several equation elements, 
each provided with specific input parameters or coefficients. The transition 
equation attributes are presented in Table A.12. 

Table A.12. TransitionEquation attributes. 
 

teType Equation type teTdoc Type documentation 
tePR ParameterRecord list entry teName Instance name 
tePrnt Parent: BM teSie Sibling entry 
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Constant Coefficients 

Each variable that will be constant during the simulation can be calculated at 
initiation time by relevant equations. This provides for specification of easily 
available input parameters, such as nominal values for a component. The 
constant coefficient attributes are shown in Table A.13. 

 

Table A.13. ConstantCoefficients attributes. 
 

ccDyn Equation Type ccTdoc Type documentation 
ccPR ParameterRecord list entry ccSRo Output StateRecord list index 
ccPrnt Parent: Any ccSie Sibling entry 

 

Secondary Coefficients 

Secondary coefficients can be calculated based on state variables, parameters, 
and constants, at the end of each iteration step or time-step. The relevant 
attributes are shown in Table A.14. 

 

Table A.14. SecondaryCoefficients attributes. 
 

scTyp Equation type scSRi Input StateRecord list entry 

scPR ParameterRecord list entry scSRo Output StateRecord list index 

scPrnt Parent: Any scSieb Sibling link 

  

All parameters requested by the arising element and coefficient equations can be 
made available for relevant symbol elements, as well as the initial values for 
relevant local and transition state variables. 
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Parameter Records 

The parameter record specifies user input and output parameters' user supplied 
names, engineering units, instant values as well as given defaults, minimum and 
maximum values. The relevant attributes are shown in Table A.15. References to 
parameter records can be made from many other records. 

Table A.15. ParameterRecord attributes. 
 

prType Type prUnit Engineering unit  
prMax Maximum value prMin Minimum value 
prName Instance name  prValue Value 
prPrnt Parent: Any prSieb Sibling entry 

State Records 

The state record as specified in Table A.16 is used for all state variables. The 
different instances of the state variables are stored in sequence in arrays of 
relevant data type. 

Table A.16. StateRecord attributes. 
 

srType Type srDom Domain name 

srTt Index to values: - at time  t   srTe - at new estimate  t+∆te,  k+1    

srTk - at previous iteration  t+∆te, k  srTu - at previous time-step  t-∆tu   

srTv - at preceding step  t-∆tu-∆tv    srName Instance name 

srPrnt Parent: MN, MB, or FB srSieb Sibling link 
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Appendix B: Solution Data View 

General 

The experiment related solution data is detached from the specification data, 
enabling easy extraction of a compact model entity with specified interface 
parameter list and control commands like start and stop. This structure enables 
two separate binary snap shots for the experiment, one including all experiment 
data and the other only comprising the dynamic variables of the experiment. 

Experiments 

Several experiments can be specified in the design data repository of a large 
process model. The content of a specific experiment is most efficiently specified 
graphically, selecting areas of the flow sheet, or including and excluding 
separately individual components. In a distributed design environment, model 
specifications from several modelling engines can be included in one 
experiment. The total model can on user's request be partitioned and distributed 
to several simulation engines. For each simulation engine a local experiment 
header is specified according to Table B.1. 

Table B.1. ExperimentHeader attributes. 
 

ehName Instance name  ehCL ComponentLink  list entry 
ehCque Control queue ehJL JunctionLink list entry  
ehTstep Time-step ehRate Real-time ratio  
ehTstrt Start time ehTstop Stop time 
ehTime Time instant ehZone Zone list entry 

 

Temporary link list worktables as specified in Table B.2 are needed to flatten 
down the process specification data structures for efficient computation, such as 
lists of included components, junctions, nodes and branches. 
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Table B.2. Sample local experiment link lists. 
 

ComponentLink list 
clCM ComponentModel index clSieb Sibling link 

JunctionLink list 
jlCJ ConnectorJunction index jlSieb Sibling link 

NodeLink list 
nlMN MechanisticNode index nlSieb Sibling link 

BranchLink list 
blMB MechanisticBranch index blSieb Sibling link 

 

From all local experiment data, separate zones are identified and zone specific 
connection lists are generated. A zone can include several implicit equation 
groups to be solved concurrently, or even only explicit equations to be sorted 
with regard to inputs and outputs in a sequential manner. Island connection link 
lists are specified in Table B.3. 

Table B.3. Island connections. 
 

BranchConnection link list 
bcMB MechanisticBranch index bcCfr Connection type from-node 

bcCto Connection type to-node bcSieb Sibling entry 
NodeConnection link list 

ncMN MechanisticNode index  ncCon Number of implicit connections  
ncOrd Solution order within island ncSieb Sibling entry 

Zone Handler 

The temporal zone handler executes all equations of the zone and controls the 
zone specific time advancement. Each zone can have a different simulation time-
step. The zone control is responsible for updating the state variables upon 
acceptance of a new time-step. The zone handler attributes are presented in 
Table B.4. 



 

B3 

Table B.4. ZoneHandler attributes. 
 

zhBC BranchConnections list entry zhNC NodeConnections list entry 
zhT Zone accepted time instance zhK Estimate iteration number 

zhEdt New estimate time-step zhUdt Previous time-step 

zhVdt Preceding time-step zhCcon Input coefficients' entry 

zhCblc Function block computation entry zhCdyn Dynamic parameters' entry 

zhCsta Static parameters' entry zhSmx Sparse matrix storage entry 

zhCout Output coefficients' entry zhName Instant name 

zhPar Parent: Experiment zhSieb Sibling link 

 

Different types of equations in the zone are then solved, providing for updated 
temporary parameters, variables and coefficients. The sorting of all equations of 
same type to be solved in a sequence, enables for pipelining and fine grain 
parallelisation. Several entries to the equation computation handler are included 
to enable the correct sequence of calculation. The record attributes for equation 
calculation in a specified zone are shown in Table B.5. 

Table B.5. EquationComputation attibutes. 
 

ecEqu Equation type   ecInr Number of instances   

ecPnr Number of parameters ecPix Parameter index list entry  
ecPrnt Parent: Island ecSieb Sibling entry 

Sparse Matrix Storage 

From the calculation point of view, it is not required to construct the matrices to 
be solved in advance. The content and structure is specified by the included set 
of forward and backward elements, as well as the source elements of the 
companion model branch k between the nodes i and j. 



 

B4 

The matrix equation arising form the implicitly connected components can 
efficiently be stored applying a linked list scheme as set forth in Table B.6. 
Before construction of the sparse matrix from the companion model coefficients 
the degrees of the internal nodes are recorded. The factorisation order is chosen 
starting from the nodes with smallest number of connections, to get a reasonably 
small fill in of new elements. The factorisation order needs only to be re-
optimised if there has been a major change in the connections. 

 
Table B.6. SparseMatrix attributes. 

 
smA All element values a(i,j), starting with diagonal a(k,k), k = 1..N  
smDwn Link index to next element a(i,k) down from diagonal in column k  
smRow Row i index of above element 
smRgh Link index to next element a(k,j) right  from diagonal in row k 
smCol Column j index of above element 
smB Source vector  value b(k) 
smX Index to relevant state variable x(k) 

 

A separate temporary storage is used for each sparse matrix. It is needed because 
the matrix elements are overwritten during factorisation, and the input vector is 
overwritten during solution phase. The separation, however, also enables the use 
of medium grain task assignment on parallel processors. 

Discontinuity Handler 

The separation of the calculation into zones, reduces the immediate impact of 
crossing of discontinues only to the zone itself. The data structure implies that 
the overlapping monotonic regions of a correlation are continuously calculated 
for relevant input, whereas the output to be used is chosen by the discontinuity 
handler. The discontinuity handler attributes are presented in Table B.7. 
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Table B.7. DiscontinuityHandlar attributes. 

dhType Discontinuous function type  
dhName Instance name 
dhSta Index to state variable for monotonic region 
dhLow Index to lower bound of monotonic region if relevant 
dhUpp Index to upper bound of monotonic region if relevant 
dhPre Link to next lower region if relevant 
dhNext Link to next upper region if relevant 

Nonlinear Correlation Data 

Nonlinear functions representing empiric correlations for material properties 
used in real-time dynamic simulation of integrated industrial processes need to 
be smooth and very rapidly calculated. Traditional methods involving slowly 
converging nested iterations and relevant discontinuously jumping iteration 
noise are not very suitable for dynamic simulation. Computer memory is much 
more affordable than processor speed. Accordingly, several types of tabulated 
approaches have shown to be feasible.  The fastest and simplest method: linear 
interpolation is however suitable only for up to two-dimensional cases.  The 
tabulation frequency can be larger in regions with major changes, which saves 
memory considerably. For a larger number of dimensions nonlinear description 
methods such as neural networks are used to reduce the required amount of 
stored data. On the other hand the calculation is slower, and the preparation of 
the data is much more complicated. Off-line preparation of the material property 
data is very important. It can include following phases: 

1. Gathering of measurement data, or  
2. Calculation of reasonable input values using iterative flash calculation 
3. Elimination of corrupted data.  
4. The identification of monotonic regions  
5. Extension of the regions by the derivatives at the boundaries. 
6. Teaching the neural network 
7. Checking its accuracy. 
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