
V
TT PU

BLICA
TIO

N
S 579	

Blackboard-based softw
are fram

ew
ork and tool for m

obile device context aw
areness	

Panu K
orpipää

	 Tätä julkaisua myy	 Denna publikation säljs av	 This publication is available from

	 VTT TIETOPALVELU	 VTT INFORMATIONSTJÄNST	 VTT INFORMATION SERVICE	
	 PL 2000	 PB 2000	 P.O.Box 2000	
	 02044 VTT	 02044 VTT	 FI–02044 VTT, Finland	
	 Puh. 020 722 4404	 Tel. 020 722 4404	 Phone internat. +358 20 722 4404	
	 Faksi 020 722 4374	 Fax 020 722 4374	 Fax +358 20 722 4374

ISBN 951–38–6669–6 (soft back ed.)	 ISBN 951–38–6670–X (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0621 (soft back ed.)	 ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2005	 	 VTT PUBLICATIONS 579

Panu Korpipää

Blackboard-based software
framework and tool for mobile
device context awareness

Mobile context awareness research aims at providing the mobile device user
with a way of usage that suits the situation. New input sources, such as
embedded sensors producing interaction-related information, are becoming
available for mobile devices. These input sources enable novel ways of
interacting with the devices, and even open possibilities to create entirely
new types of applications. To facilitate the full potential of utilising such
new input sources, a software framework is required with a uniform means
of acquiring and processing interaction-related information, and providing
it for the applications. The main result of this dissertation was a software
framework and tool for facilitating the rapid development of mobile device
context-aware applications. The framework provides a publish and sub-
scribe mechanism, database, and a customisable application controller. For
developers the framework provides an application programming interface.
The customization tool enables end-user development of interaction-related
features in mobile devices. The results have commercial value; they are
utilised by the telecommunication industry for application domains such
as enhanced usability and personalization, novel sensor-based interaction
modalities, mobile workforce, context-based security for enterprises, and
context-based multimedia management.

ActivatorContext
Manager

Script
Engine

Context
sources

Context
sources

Application /
Action Customizer

Context
sources

Context
sources

Context
Source

Context
sources

Context
sources

Context
Abstractor

Context
sources

Context
sources

Change
Detector

Application layer

Server layer

Producer layer

Application Controller

Hot spot

Frozen spot

VTT PUBLICATIONS 579

Blackboard-based software
framework and tool for mobile device

context awareness

Panu Korpipää
VTT Electronics

Academic dissertation for the degree of Doctor of Science in Technology,

to be presented with the assent of the Faculty of Technology, University of Oulu,
for public discussion in Auditorium IT115, Linnanmaa,

on November 25th, 2005, at 12 noon.

ISBN 951�38�6669�6 (soft back ed.)
ISSN 1235�0621 (soft back ed.)

ISBN 951�38�6670�X (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1455�0849 (URL: http://www.vtt.fi/inf/pdf/)

Copyright © VTT Technical Research Centre of Finland 2005

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O.Box 2000, FI�02044 VTT, Finland
phone internat. +358 20 722 111, fax + 358 20 722 4374

VTT Elektroniikka, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde 020 722 111, faksi 020 722 2320

VTT Elektronik, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel 020 722 111, fax 020 722 2320

VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FI�90571 OULU, Finland
phone internat. +358 20 722 111, fax +358 20 722 2320

Supervised by
Professor Tapio Seppänen, University of Oulu

Reviewed by
Professor Martti Mäntylä, University of Helsinki
Professor Tommi Mikkonen, University of Tampere

Opponents
Professor Martti Mäntylä, University of Helsinki
Professor Albrecht Schmidt, University of Münich

Technical editing Leena Ukskoski

Otamedia Oy, Espoo 2005

http://www.vtt.fi/inf/pdf/
http://www.vtt.fi/inf/pdf/

3

Korpipää, Panu. Blackboard-based software framework and tool for mobile device context
awareness. Espoo 2005. VTT Publications 579. 225 p.

Keywords mobile computing, context-aware computing, mobile interaction, mobile context
awareness, application control, blackboard-based architecture, software framework,
context management, information model, application programming interface, sensor-
based interaction, customization, end-user development, personalization

Abstract
The usage needs of a mobile device vary according to context. Mobile context
awareness research aims at providing the device user with a way of usage that
suits the situation. Interaction based on context requires acquiring, abstracting
and delivering information from multiple sources, such as sensors, to the
application or application control. A generic software framework and tool for
facilitating the rapid development of mobile device context-aware applications
were developed in this work. The blackboard-based framework supports all tasks
that are required for context-based application control, where contexts can be
any events that are relevant to user interaction with the application, including
explicit inputs. The core component of the framework, Context Manager,
provides a publish and subscribe mechanism and a database for the applications
and application control. The framework provides an application programming
interface (API) for developers. As a higher abstraction-level programming
interface, a customization tool enables easy end-user development of context-
aware features into existing applications without changing them.

An extensible ontology is used as a uniform context representation within the
framework. The purpose of the ontology, together with the API, is to enable easy
access, use and reuse of human-understandable context information. Context
information sources, such as sensors, often produce a continuous stream of low
abstraction-level data. The framework supports the transformation of a
continuous data stream into abstracted context events, described in the ontology.
Context information is delivered to applications or application control as
abstracted events. The main result of the dissertation is a software framework,
ontology and tool, which facilitate the customization of sensor-based human-
computer interaction in mobile devices. The practical applicability, scope, and
computational efficiency of the implemented framework and customization tool
are evaluated with performance measurements and multiple applications
implemented in a mobile phone with real sensor sources.

4

Preface
This is an academic dissertation for the degree Doctor of Science in Technology
from the University of Oulu, Faculty of Technology. The dissertation supervisor
was Professor Tapio Seppänen from the University of Oulu. The appointed
reviewers of the dissertation were Professor Tommi Mikkonen from the
Technical University of Tampere and Martti Mäntylä from the University of
Helsinki, Helsinki Institute of Information Technology. The received
professional scientific feedback is gratefully acknowledged.

The work for the dissertation was carried out at VTT Electronics, Oulu, Finland
during the years 2000–2005. The work was funded for the most part by Nokia
through VTT project funding.

Science is teamwork. In the team of contributors for this dissertation, the first
man to acknowledge, especially regarding scientific visibility, is Dr. Jani
Mäntyjärvi. He frequently suggested publishing and forums for the scientific
contributions, and co-authored multiple articles related to this dissertation. I
wish to thank Juha Kela for significant participation in the architecture design
and development process and for co-authoring articles; co-authors Heikki
Keränen, Esko-Juhani Malm, Tapani Rantakokko and Vesa Kyllönen all had a
professional iron grip on implementing and developing the designs; Professor
Heikki Ailisto for commenting on the first version of the dissertation; and other
colleagues at VTT and University of Oulu for their support. Thanks to the
supervisor of the dissertation work, Professor Tapio Seppänen, are in order for
insightful guidance and constructive scientific criticism in formulating the
dissertation, and for co-authoring an article.

I am much obliged to Dr. Pertti Huuskonen, Urpo Tuomela, Ilkka Känsälä and
Jonna Häkkilä for advocating the Nokia funding for the work over many years,
outlining the leading directions and co-authoring articles – and many other
colleagues from Nokia for their support. Thanks to Heikki Huomo from Nokia
NVO for long-term backing of context-awareness research and valuable co-
operation in the process of deploying the results into the industry. Furthermore, I
would like to acknowledge the contributions of Johannes Peltola, Miika
Koskinen, Satu-Marja Mäkelä, Sami Ronkainen, Johan Himberg, Heikki

5

Mannila, and Ilkka Salminen as co-authors of the articles related to this
dissertation.

The scholarships granted by the HPY foundation and the Seppo Säynäjäkangas
science foundation are gratefully acknowledged.

To end the preface, I would like to quote a thought from a great scientist:

�If we knew what it was we were doing, it would not be called research, would
it?�

 � Albert Einstein, 1879�1955

Oulu, October 2005 Panu Korpipää

6

Contents

Abstract ... 3

Preface .. 4

List of symbols.. 11

1. Introduction... 15
1.1 Background and motivation .. 15
1.2 Research problems and hypothesis.. 16
1.3 Scope of the research... 20
1.4 Research methods.. 22
1.5 Author's involvement and contribution to the results 23
1.6 Outline of the dissertation ... 27

2. Review of technologies for mobile context awareness................................. 28
2.1 Context and context awareness.. 28

2.1.1 Definitions... 28
2.1.2 Critique.. 30
2.1.3 Discussion on critique and definitions 32
2.1.4 Related dissertations.. 33

2.2 Context frameworks .. 34
2.2.1 Definitions... 34
2.2.2 Widget-based architecture model and Context Toolkit........... 35
2.2.3 Client-server architecture model ... 37
2.2.4 Blackboard-based architecture model 38
2.2.5 Architectures related to context management 41
2.2.6 Customization ... 46
2.2.7 Conclusions ... 49

2.3 Context representation and ontologies .. 50
2.3.1 Definitions... 50
2.3.2 The Semantic Web .. 52
2.3.3 Information models related to context-aware computing........ 58
2.3.4 Common sense context dimensions .. 62
2.3.5 Conclusions ... 63

2.4 Context abstracting and recognition .. 64

7

2.4.1 Definitions... 65
2.4.2 Related sensor-based context abstracting studies.................... 67
2.4.3 Methods for context-based inference 71
2.4.4 Conclusions ... 75

2.5 Summary ... 76

3. Context framework requirements analysis.. 79
3.1 Characteristics of mobile computing... 79
3.2 Arguments for device centralized context management...................... 80
3.3 Arguments for selecting the blackboard model 81
3.4 Conceptual entities of the framework.. 82
3.5 Overview of the requirements ... 83
3.6 The requirements ... 85

3.6.1 Concurrent context management in a mobile device 85
3.6.2 Requirements for the application programming interface....... 86
3.6.3 Flexibility in handling new contexts 87
3.6.4 Context abstracting and recognition.. 88
3.6.5 Event-based communication of context to application 89
3.6.6 Context database ... 90
3.6.7 Context caching... 91
3.6.8 Time resolution of context .. 92
3.6.9 Change detection... 93
3.6.10 Context confidence.. 94
3.6.11 Context representation .. 95
3.6.12 Application control.. 95
3.6.13 Customization ... 96

3.7 Summary ... 97

4. Context framework design.. 98
4.1 Overview of the design.. 98
4.2 Frozen spots and hot spots... 99
4.3 Context Manager ... 100
4.4 Context Source .. 101
4.5 Context Abstractor... 104
4.6 Change Detector .. 106
4.7 Application Controller... 107

4.7.1 Script engine.. 108

8

4.7.2 Activator.. 108
4.8 Customizer... 109
4.9 Summary ... 109

5. Context representation and ontology .. 111
5.1 Requirements for the ontology .. 112
5.2 Structure of the ontology ... 113
5.3 Ontology vocabulary model .. 115
5.4 Naming conventions.. 116
5.5 Example vocabularies.. 117
5.6 Context instances... 121
5.7 Interpretation of symbolic values in vocabularies 122
5.8 Syntax.. 123
5.9 Discussion ... 126
5.10 Summary ... 127

6. Context abstracting and recognition ... 128
6.1 Requirements for context abstracting methods.................................. 128
6.2 Inference for context abstracting within the framework.................... 129
6.3 Multidimensional contexts .. 131
6.4 Context recognition case study.. 132

6.4.1 Feature extraction.. 132
6.4.2 Classification... 134
6.4.3 Results of the case study ... 136
6.4.4 Discussion ... 141

6.5 Summary ... 142

7. Context Manager API ... 144
7.1 Adding context .. 144
7.2 Requests and responses ... 145
7.3 Subscriptions and indications .. 147
7.4 Summary ... 150

8. End-user development of context-aware applications 152
8.1 Customizer... 152
8.2 Utilising context framework.. 153
8.3 Utilising context ontology ... 156
8.4 Customized example applications ... 159

9

8.5 Discussion ... 161
8.6 Summary ... 162

9. Evaluation ... 164
9.1 Context framework.. 165

9.1.1 Applications .. 165
9.1.2 Requirements realization... 168
9.1.3 Discussion ... 176

9.2 Context representation and ontology... 178
9.2.1 Applications .. 179
9.2.2 Requirements realization... 182
9.2.3 Discussion ... 184

9.3 Context abstracting and recognition .. 186
9.3.1 Applications .. 186
9.3.2 Requirements realisation ... 188
9.3.3 Discussion ... 189

9.4 Context framework performance... 190
9.4.1 Computational complexity estimation 190
9.4.2 Performance evaluation in target hardware through usage ... 191
9.4.3 Performance evaluation in target hardware quantitatively.... 192

9.5 Summary ... 193

10. Discussion... 195
10.1 Verification of the research problems and hypothesis....................... 195
10.2 Comparison with related work .. 197

10.2.1 Summary of contributions... 197
10.2.2 Context framework.. 200
10.2.3 Context representation and ontology..................................... 201
10.2.4 Context abstracting and recognition...................................... 202
10.2.5 Customization and personalisation.. 203

10.3 Significance of the results ... 204
10.4 Future work ... 206

11. Summary... 210

References... 212

10

11

List of symbols
2D 2-Dimensional, an entity having two dimensions

3D 3-Dimensional, an entity having three dimensions

AI Artificial Intelligence, a research direction aiming at human-like
intelligence in machines

API Application Programming Interface, a set of functions provided
by a software component

CBR Case-Based Reasoning, a classification method

CC/PP Composite Capabilities/Preference Profiles, an RDF-based data
model for static device properties

CD Compact Disc, a data storage

CEP Context Exchange Protocol, a specification for exchanging
context information

CORBA Common Object Request Broker Architecture, a model for
distributed communication of data

CYC Common sense knowledge model, a model for representing
common sense knowledge

CycL CYC Language, a formal language for describing common sense

DAML+OIL DARPA Agent Markup Language + Ontology Inference Layer,
a Semantic Web-based information representation language

ER Entity-Relationship, a model for representing entities and their
relationships

12

EUD End user development, software development performed by the
end user

GHz Gigaherz, a measure of frequency

GUI Graphical User Interface, graphical interface for human-
computer interaction

HCI Human-Computer Interaction, a process of interaction between a
human and a computer

HMM Hidden Markov Model, a probabilistic model for representing a
sequence of events

HTML HyperText Markup Language, a language for representing
hypertext

HTTP Hypertext Transfer Protocol, a data transfer protocol

Hz Herz, a measure of frequency

ICA Independent Component Analysis, a method for finding
independent patterns in data

IDL Interface Description Language, a language for describing data
structures

IP Internet Protocol, a data transfer protocol

KB Knowledge Base, a collection of logic sentences

KNN K Nearest Neighbours, a classification method

LDA Linear Discriminant Analysis, a classification method

MPEG-7 Moving Picture Expert Group standard 7, a standard for
describing audio and media content

13

ORB Object Request Broker, a software component in CORBA

OWL Web Ontology Language, a Semantic Web-based information
representation language

OWL DL Web Ontology Language Description Logics version, a
Semantic Web-based information representation language, a
version of OWL

PC Personal Computer, a universal machine for performing
operations with any series of bits

PCA Principal Component Analysis, a method for representing the
information content of multidimensional data with lower
dimensional projections

PDA Personal Digital Assistant, a small portable personal computer

PSM Problem Solving Method, a method that performs inference
based on data described with ontologies

RDF Resource Description Framework, a Semantic Web-based
information representation framework

RDF-S Resource Description Framework Schema, a Semantic Web-
based information representation framework for RDF meta-data

RFID Radio Frequency Identification, an electronic circuit for storing
information that can be read from close range

SMS Short Message Service, a protocol for communicating short text
messages with mobile phones

SNR Signal-to-Noise Ratio, the ratio between signal and noise

SQL Structured Query Language, a standard language for querying a
relational database

14

UAProf User Agent Profile, a model for defining static device properties

UDDI Universal Description, Discovery and Integration, a model for
Web service discovery

UI User Interface, an interface for human-computer interaction

UML Unified Modeling Language, an abstract visual language for
modelling entities, relations and processes

UPnP Universal Plug and Play, a model for exchanging data between
devices

URI Universal Resource Identifier, a Semantic Web-based identifier
for any web resource

URL Universal Resource Locator, identifier of an entity in WWW

W3C World Wide Web Consortium, a consortium developing the
Semantic Web

WLAN Wireless Local Area Network, a wireless short-range IP-based
network

WWW World Wide Web, a network of computers that communicate
based on IP and HTTP

XML Extensible Markup Language, a language for information
representation

15

1. Introduction

1.1 Background and motivation

The common factor in mobile, nomadic, pervasive, ubiquitous and wearable
computing is that the user is mobile. The usage needs of a mobile device vary in
different places and situations. Mobile context awareness research aims at
providing the device user with a way of usage that suits the situation, to increase
the usability of the device.

The concept of context itself is older than mobile computing. This is reflected,
perhaps unintentionally, by the fact that the popular definition of context and
context awareness (Dey & Abowd 2000) actually implies that computer
applications have always been context aware. However, mobility brings a new
dimension to context. The information about the mobile device and user activity,
environment, other devices, location, and time can be utilised in different
situations to enhance the interaction between the user and the device. This is the
base assumption of context awareness research.

New input sources, such as embedded sensors producing interaction-related
information, are becoming available for mobile devices. These sources enable novel
ways of interacting with the device, and even open possibilities to create entirely new
types of mobile applications. To facilitate the full potential of utilising such new input
sources, a software framework is required with a uniform means of acquiring and
processing useful context-related information, and providing it for mobile device
applications. A crucial task is the ability to produce reliable information in the
presence of uncertain and rapidly changing data from multiple sources. The capability
of systematically managing a wide variety of interaction inputs � i.e., contexts � is
needed to facilitate quick development of context-aware features in mobile devices.

The users decide the usefulness of the context-aware features. Therefore, the
development of context-aware applications needs to be tightly connected to the
end-user demands. Traditionally, context-aware features have been hard-coded
into applications, which makes development slow and inflexible to varying user
requirements. Adding context-aware features into existing applications has
required changing the existing application code. The preferences of how a

16

mobile device is used for interacting with its applications vary among users, and
the preferences of one user may change over time. At the design time it is thus
difficult to define the behaviour of the device so that it meets the varying user
demands in varying situations. The end-user should have the possibility of
customizing the way of interacting with mobile device applications.

1.2 Research problems and hypothesis

There are many research problems still to solve in mobile context awareness.
The range of context types applied in mobile computing is limited. Dey (2000)
suggests that the main reason why applications have not covered more context
types and context-aware features is because context is difficult to use. The
author proceeds to state that the reasons why context is difficult to use include
that context must be abstracted to make sense to the application, context may be
acquired from multiple distributed and heterogeneous sources, context is
dynamic; and that context is acquired from non-traditional devices, with which
there is limited experience. Furthermore, Schmidt (2002) identifies a number of
challenges in context-aware computing, of which the following issues are
particularly relevant to this dissertation:

• It is still unclear how context relates to real world situations, how it can be
represented in a universal way, and how it can be used to enhance applications.

• What is context useful for, and what kind of applications it can be used to
enhance? The relationship between context and other inputs into the system
has to be addressed.

• How to acquire context is still a central question in context-aware systems.

• Connecting context acquisition to context use is essential, and, for the
utilisation of context by various components, agreement must be found on a
representation of context useful to a multitude of components.

• Support is needed for building context-aware applications. Providing
support for context acquisition, context provision and context use is
necessary to make the development of context-aware applications simpler.

17

These questions are still relevant regarding mobile context awareness.
Furthermore, Schmidt (2002) hypothesises that: �For all situations that belong to
the same context, the sensory input of the characterising features is similar.� The
hypothesis is in the source of a fundamental problem, as addressed by the author.
In the real world it is very likely that different contexts produce similar
characterising features, since all the aspects of the real world context cannot be
sensed. For evaluating the true detectability of the real world context, extensive
tests with a lot of repetitions from different situations are required, and even then
the results may not be completely reliable. This is one of the reasons for the fact
that only relatively straightforward and unambiguous context inputs have been
used for context-aware applications to date. Moreover, it brings forward the
necessity of user participation in defining the context-based features that are
relevant for them.

The questions asked by the authors are still relevant in part: context is difficult to
apply, and the kind of applications it is useful for is not clear. This is especially
true with mobile phones, where applied context awareness has still largely
remained as a future promise. Where mobile phones are concerned, a key issue
is that context awareness should be constantly available to the mobile
applications for enhancing user interaction, independent of external
infrastructure and different networks. To have any chance of user acceptance,
the mobile phone context-based user interaction must never be interrupted by a
lack of infrastructure or possible delays in network communication. The aim is
to enhance the interaction, not impair it. Therefore, a fundamental requirement
in sensor-based context awareness for mobile phones is that context must be
managed by the terminal itself. From a mobile terminal-centric viewpoint a
relevant question to ask is:

How far can context sensitivity be pushed by focusing on technologies that can
work on the mobile device itself, largely without the help of external
infrastructure?

This setup immediately leads to finding an answer to:

What is needed to properly facilitate and support standalone infrastructure-
independent context sensitivity in mobile phones?

18

This is a central question to this dissertation. To approach this question from all
relevant aspects with detail sufficient to proceed, the research area is probed by
posing additional and more detailed questions and conducting a preliminary
analysis. The specificity of the following questions reflects the starting point to
the research in this dissertation with respect to the related work, which is to be
reviewed in section 2.

• How to represent context using a common structure, which is the same for
all context-utilising applications, instead of laboriously defining a new
representation for every new application? The content of context
information varies according to the application domain, but the
representation structure should remain unchanged. What kind of
representation structure is needed when it should be simple enough to enable
easy application development but expressive enough to be suitable for
utilisation by as many types of applications as possible?

• What kind of application programming interface should be provided when,
for simplicity and configurability, context needs to be used through the same
functions for all context-utilising applications, independent of what contexts
are involved?

• What kind of context representation is suitable when contexts must be
flexibly available for the applications as data objects, instead of having to
make new application code that connects to a new context source for a new
context?

• What kind of framework structure and process is required when context
should be received by the applications as events that occur when relevant
changes in the situation of the user occur? A continuous, low abstraction-
level data stream up to the application is not efficient and lacks
interpretation.

• What kind of representation and application programming interface are
needed when application developers should be provided with an application
programming interface and ontology that lets them use abstracted context
data elements defined and provided by other developers?

19

• How to detect context reliably in real world situations? More experiments
are clearly needed, but is even that enough? Extensive data sets and
quantitative measures are required for the evaluation. To what extent is
applying multi-sensor context recognition in mobile devices feasible, or is it
feasible at all?

• How to design context-aware applications that meet the needs of users when
the preferences of application users are personal, and those preferences may
change over time? End-user support for customizing context-aware features
is needed, but how to practically facilitate a wide involvement of end users
in defining context-aware functionality?

• How to connect the right contexts to the right actions, and what kind of tools
are needed for this? Mapping of contexts to their usage is difficult, and the
usefulness of the new features is unclear at the design time. Only the end-
users can decide which features are useful.

• How can it be verified that context framework, representation, abstracting
and recognition, customization, and applications work properly in a mobile
device? For gaining real world usage experience, context-aware applications
should be developed for those target devices that are truly mobile; carried
with, and used by the user in changing situations, such as mobile phones,
instead of making experiments with networked PCs.

The research problems for this work are integrated from the above-mentioned
issues. Hence, to be able to gain an insight into the utility and implications of
mobile terminal-centric context awareness, the following specific research
problems need to be addressed first in order to find out how to best enable
standalone context sensitivity in mobile terminals.

1. What is required to flexibly and efficiently handle all relevant aspects of
sensor-based mobile terminal-centric management of context-related
information?

2. How to represent context information so that it can be systematically
processed, stored and used by the applications, and understood by the
application developers, while maintaining representation extensibility?

20

3. How can context be recognised and abstracted online into a common
representation from many different sources, especially device sensors,
producing possibly incomplete and imprecise information?

4. What kind of application programming interface is required for the
simplified development of context-aware applications, and further, what
kind of tool is required for end-user development in mobile handheld
devices?

Context-aware computing is a multidisciplinary field of research. The progress
requires broad-viewed development of multiple topics. The summarised research
hypothesis is the following.

By solving the research problems 1�4, it will be possible to create a functional
software framework and tool that will enable end-users to quickly customize
versatile context-aware applications in a mobile device.

1.3 Scope of the research

The research problems for this dissertation have been specified. This section
further focuses the research area by restricting the scope.

This dissertation contributes solutions for advancing the development and application
of context awareness in mobile devices, and, especially, handheld mobile devices.
Handheld mobile device, such as a mobile phone, refers to a small lightweight
multifunction device that is often carried with the user and contains at least one or
more processors, operating system, several applications, a number of input devices,
and a number of output devices including a display. In this dissertation, laptop PCs are
not considered mobile devices, they are portable devices.

The primary sources of context are embedded in the device. Environment
infrastructure and distributed computing-related issues are only discussed as
extensions. The chosen device-centric approach also refers to performing most
of the processing in the device, as opposed to performing the processing in the
environment infrastructure. Hence the pervasive computing branch called �smart
spaces� is not within the focus of this dissertation, although it is discussed in the

21

literature review. The principal difference in the approach of this dissertation is
that the mobile device is required to sense the environment and react
accordingly, instead of having the environment detect the situation and react to
the device. Moreover, the smart space approach requires the environment to
contain a heavy computational infrastructure. In the device-centric approach
computation is performed in the mobile device, and no external infrastructure is
necessary for the complete operation of a context-aware application.

The primary source of context information is sensors. The framework and the
context representation are designed to utilise other sources as well, but the focus is
on sensors attached to the device, other device internal sources, or local wireless
sensors. Concerning representation, the structure for representing context
information should be common across domains, and the domain dictates the
vocabulary of the context types. The emphasis in this dissertation is on the domain
of sensor-based contexts. The framework and representation support managing
location information, but otherwise location context is not discussed in detail. The
focus is on dynamic context types which may have very rapidly changing values,
and the applications may have tight response requirements. Static contexts, such as
device properties, are supported but not discussed in detail.

The context-aware computing view is adopted for context definition. Context, as
defined by the linguistic or common sense reasoning communities, is beyond the
scope of this research. Concerning context representation syntax, the dissertation
will review several alternatives of Semantic Web-related markup languages, but
a detailed comparison is beyond the scope of this research. The dissertation does
not focus on the markup languages.

Sharing of context information through the network is beyond the scope of this
research. A couple of networked PC-based context frameworks will be
reviewed, but the viewpoint is mobile device-centric.The question of evaluating
the usefulness and usability of the context-aware features that are created in the
applications by utilising the framework is beyond the scope of this research and
requires further work. However, the early literature, e.g. Pascoe et al. (1999),
already states that context-aware features have been experienced as useful.

The security issues regarding context-aware computing are beyond the scope of
this research and require further work.

22

1.4 Research methods

The overall research strategy is the following. Identify what is required for
answering the research problems and fulfilling the hypothesis, based on the
literature review and use cases from the application viewpoint. Based on the
identified requirements, develop the context framework. Finally, evaluate the
framework by analysing the realisation of the requirements, which answer the
research problems, in the implemented framework and in the applications that
apply the framework.

Based on the research problems, the discussion is divided into three main sub-topics.
Each sub-topic is studied starting from a literature review, identifying the
requirements, and proceeding towards design, implementation and evaluation. The
fourth sub-topic, which partly combines the other topics, according to the fourth
research problem, is discussed together with the first sub-topic in the review and
design part of the dissertation, and separately in the application and evaluation part.

Blackboard-based context framework and API

Literature review: Compare different software framework models, and form a
basis for specifying the requirements for context framework.

Development: Analyse and specify the framework requirements based on use
cases, and design and implement the framework according to the requirements.

Evaluation: Evaluate the framework and selected applications that apply the
framework against the requirements.

Context representation and ontology

Literature review: Compare information representation methods in the literature
and analyse their suitability for context information representation, form a basis
for specifying requirements for the representation.

Development: Specify the requirements for context ontology, and design and
implement the ontology for mobile device context awareness.

23

Evaluation: Evaluate the ontology and selected applications that apply the
ontology against the requirements.

Context abstracting and recognition

Literature review: Compare the widely applied machine learning and inference
methods, and analyse their suitability for context recognition in a mobile device.

Development: Choose suitable method(s) for context recognition and evaluate
them with a case study. Implement context abstractors and recognisers in the
context framework.

Evaluation: Present quantitative measures for context recognition accuracy in the
case study. Evaluate the implemented framework elements and applications that
operate based on the elements against the requirements.

1.5 Author's involvement and contribution to the results

This dissertation binds together the results of work in multiple projects during
the years 2000�2005. The contribution of the dissertation is the result of
teamwork. The contributing projects were the following: Episode3, Episode4,
Proteus, Narsil, Anduril, Glamdring, Ambience, Nomadic Media, and Silmaril.
Ambience and Nomadic Media were ITEA projects, and others were contract
research funded by Nokia. The contribution of each project to this dissertation is
briefly summarised.

Before the start of the mentioned project continuum, the author participated in a
project in which a fault diagnosis system was created for a hot strip mill of a
steel plant during the years 1996�1998. The author was responsible for
designing and implementing an architecture and methods for recognising
abnormal situations in the process, where measurements were acquired from
numerous very different sources. Two publications resulted from that work
(Kurki et al. 1998, Korpipää 2001). The approved architectural practices applied
to the hot strip mill diagnosis system were later utilised in the design of the
context architecture. Initiated by Dr. Pertti Huuskonen, Urpo Tuomela and Dr.
Esa Tuulari, the first task of the author in the Episode3 project was to design and

24

implement a context recognition architecture, which was ready at the end of
January 2000. The design had the principal concept of a central context
information server, which received data from heterogeneous sources but in a
uniform representation. The author inherited the concept from the hot strip mill
diagnosis system architecture.

Following the architecture design, the author implemented the first context
recognition system for PC environment. The system, which used multiple sensor
sources embedded in a sensor box (Tuulari 2000) that could be attached to a
mobile phone, processed measurements with multiple concurrent abstractors �
many of them initially designed by Dr. Jani Mäntyjärvi � and was ready and
functional in the first quarter of the year 2000. The context recognition
architecture already utilised a uniform structure for representing the abstracted
data from multiple heterogeneous sources. This work, although not published at
the time, was the basis for the development of the context framework in this
dissertation, and the basis for producing abstracted data for multiple studies of
explorative data analysis, e.g. (Mäntyjärvi et al. 2001, Himberg et al. 2001).
During the following project, Episode4, the author further studied the uniform
representation for context information. The representation was later further
developed and first published by Korpipää and Mäntyjärvi (2003) in June. The
following project, Proteus, executed in the year 2001, focused on context
recognition, and the results were published by Korpipää et al. (2003a). In Narsil,
during the first quarter of the year 2002, the author designed the context
architecture for mobile handheld devices together with Juha Kela. The concept
of a central context information server from the earlier design was utilised and
further developed into the blackboard-based Context Manager. The Anduril
project, later in 2002, continued the design and implementation of the
framework, and the results were published by Korpipää et al. (2003b). The
Glamdring project, during the latter half of 2003 and the beginning of 2004,
concentrated on developing gesture recognition for mobile devices. The results
were published by Mäntyjärvi et al. (2004) and Kela et al. (2005). In Nomadic
Media, the context vocabulary model was applied to multiple domains. Finally,
the Silmaril project in the year 2004 concentrated on developing and applying an
end-user tool for the development of context-aware applications. The results
were published by Korpipää et al. (2004a, 2005a, 2005b).

25

As mentioned, parts of this dissertation have been published in international
scientific conferences and journals. Each publication is referenced in the
corresponding chapter in which the issue is discussed. Some publications are
referenced in more than one chapter. Hence the author�s involvement in the most
relevant published results is summarised here, in the order of appearance of the
publications.

In Mäntyjärvi et al. (2001) and Himberg et al. (2001) the author was responsible
for defining the representation of context features (context atoms) and for
producing the features for the experiments, together with co-author Dr. Jani
Mäntyjärvi. Other aspects of these two articles are not discussed in this
dissertation.

In Korpipää and Mäntyjärvi (2003) the author defined the context ontology
structure, i.e., the common properties of context information, context object. The
author designed a sensor-based context ontology vocabulary together with co-
author Dr. Jani Mäntyjärvi.

In Korpipää et al. (2003a) the author had the main responsibility in designing the
recognition experiments and the representation and visualization of the features
and classification results. The author had the main responsibility in analysing the
results. Co-author Miika Koskinen implemented the Bayesian networks, the
visualization, and executed the classification, and classification accuracy
calculations. Co-authors Johannes Peltola and Satu-Marja Mäkelä produced the
audio-related features. Co-author Professor Tapio Seppänen was responsible for
selecting the Bayesian classifier framework and participated in designing the
experiments.

In Korpipää et al. (2003b) the author designed the blackboard-based context
framework and API together with co-author Juha Kela. The author designed how
context ontology, and different levels of abstraction, are utilised within the
framework. Co-author Dr. Jani Mäntyjärvi was responsible for the context-based
fuzzy application control experiment. Co-authors Heikki Keränen and Esko-
Juhani Malm participated in the development process and implemented the
context framework and API.

26

In Korpipää et al. (2004a), the author invented how context ontology is utilised
for automatically generating the user interface views in the customization tool.
The author designed the model for specifying new context vocabularies. The
author participated in the design of the user interface of the customization tool
for small-screen mobile devices together with the co-authors Jonna Häkkilä,
Juha Kela, Sami Ronkainen and Ilkka Känsälä. Co-author Jonna Häkkilä had the
main responsibility in user interaction design and usability testing. Ilkka
Salminen and Harri Lakkala contributed with the idea of describing context-
action rules formally by using CEP scripts (Lakkala 2003a). Harri Lakkala and
Ilkka Salminen provided the CEP syntax, designed as compatible with the
context framework and the context ontology structure published by Korpipää
and Mäntyjärvi (2003) and Korpipää et al. (2003b).

In Korpipää et al. (2005a) the author designed how context ontology and context
framework, together with the customization tool, can be used for end-user
development of context-aware applications, and designed the framework
extension for application control. Co-authors Esko-Juhani Malm, Tapani
Rantakokko and Vesa Kyllönen participated in the design process and
implemented the system. Co-author Ilkka Salminen and Harri Lakkala provided
the Rule Script Engine, which is used as a rule-based inference engine in
application control, and the CEP format for describing rules. Co-author Ilkka
Känsälä participated in the development and innovation process.

In Korpipää et al. (2005b) the author designed how the blackboard-based
framework is extended to enable human-computer interaction customization,
with enhancements for facilitating explicit novel input modalities such as
gestures and physical selection. The author had the main responsibility for
designing the integration of the framework elements, including various context
sources, such as an HMM-based gesture recogniser. Co-author Jonna Häkkilä
had the main responsibility for usability evaluation with the implemented system
and an important role in the user interface design process. Co-authors Esko-
Juhani Malm, Tapani Rantakokko and Vesa Kyllönen were responsible for the
implementation. Co-authors Juha Kela, Ilkka Känsälä, and Dr. Jani Mäntyjärvi
participated in the development and innovation process. Ilkka Salminen and
Harri Lakkala provided the Rule Script Engine, the CEP format, and part of the
context sources.

27

1.6 Outline of the dissertation

This dissertation has been written as a monograph. Even though there are
multiple closely related scientific publications that contain most of the
contributions in the dissertation and part of the text, the dissertation adds
extensive requirements analyses and evaluation, updates the results, and binds
the material into a consequential ensemble. As such, it is much clearer to
understand than a bundle of articles would be.

The dissertation consists of studying three main entities � context framework,
representation and ontology, and abstracting and recognition � according to the
three first research problems. The fourth topic discusses the application
programming interface and customization tool, which combine and utilise the
results of the other sub-topics.

Correspondingly, the literature review is divided into three parts, after a short
general introduction into the concept of context awareness. After the review,
each sub-topic is studied separately by first deriving the requirements, which
answer the research problems. Requirement analyses are followed by the
designs, and, in the case of context recognition, an experiment. The application
programming interface forms a separate chapter since it contains elements from
each of the previous designs. Similarly, the customization tool, which binds
together all the sub-topics and answers the fourth problem, is discussed in a
separate chapter after the API.

The three sub-topics are evaluated separately. The implementation of each sub-
topic is evaluated against the requirements. Moreover, a set of example
applications is presented for each sub-topic. Since the applications use the
features defined in the requirements, which have been set to answer the research
problems, the results will be validated. The evaluation is followed by discussion,
where the research problems and hypothesis are answered directly, the
contributions and comparison with the related work are summarised, and the
significance of the results is discussed. Finally, pointers for future work are
given.

28

2. Review of technologies for mobile
context awareness

The literature review gives an overview of context and context awareness-
related work and examines the three related main sub-topics in more detail.
Since each of the sub-topics has extensive background literature as a separate
research direction, it is necessary to briefly introduce them and ground the
terminology with definitions. Moreover, each sub-topic has a set of relevant
enabling technologies to introduce and review.

2.1 Context and context awareness

2.1.1 Definitions

What are context and context awareness? The literature gives a multitude of
answers to the question. Common definitions of context are close to synonyms,
such as situation, state, setting, surroundings, etc., concerning user, application
or environment (Hull et al. 1997; Pascoe 1998; Rodden et al. 1998). Context
awareness is usually defined as the ability of an application to dynamically
change or adapt its behavior according to the context (Brown et al. 1997; Schilit
et al. 1994; Ward et al. 1997). The most general definitions by Dey and Abowd
(2000) are the most widely adopted, perhaps because a general definition covers
more research of the multidisciplinary science. The definition of context by Dey
and Abowd (2000) is the following.

Context is any information that can be used to characterize the situation of
entities (i.e., whether a person, place, or object) that are considered relevant to
the interaction between user and an application, including the user and the
application themselves.

Furthermore, the authors suggest that context typically belongs to four categories:
location, time, activity and identity. Every event has a place and time, which are
fairly straightforward to sense and describe, and thus they are the most commonly
used in context-aware applications to date. Representing and managing identity
information is similarly straightforward and has been used to some extent in

29

applications. However, when identity information is shared, privacy issues are of
concern. Activity is a far more complex context category. It can be divided into
the user, the device, and the environment activity. Sensing and recognising all but
the simplest user activities requires a multitude of sensors, sophisticated
recognition methods, background knowledge modelling, etc.

Context awareness is defined by Dey and Abowd (2000) as follows:

A system is context aware if it uses context to provide relevant information
and/or services to the user, where relevancy depends on the user's task.

Context can be used in applications in many ways. Schilit et al. (1994) propose
the following categories for exploiting context: proximate selection, automatic
contextual reconfiguration, contextual information and commands, and context-
triggered actions. Dey et al. (2001) generalise the categories into the following
three uses of context:

1. presentation of information and services to a user

2. automatic execution of a service

3. tagging of context to information for later use.

Context awareness research has inherited grandiloquent ambitions similar to
artificial intelligence research (Russel & Norvig 1995). Schmidt (2000) has the
following vision of future context-aware devices:

We will be able to create (mobile) devices that can see, hear and feel. Based on
their perception, these devices will be able to act and react according to the
situational context in which they are used.

Furthermore, Schmidt (2000) introduces the notion of implicit interaction. The
availability of sensing technology is seen as a factor enabling a shift in HCI from
explicit interaction, such as direct control by the user, to a more implicit
interaction based on situational context. Hence context-aware computing is often
understood as the use of implicit information for performing actions. However,
according to the definition of context by Dey and Abowd (2000), explicit
interaction events can also be regarded as context information.

30

Analysis of context information reveals common characteristics. Context
information can be divided into two categories based on temporal characteristics.
Static context information does not change over time, and includes settings such
as the user device properties. Dynamic context refers to the information, which
does change over time, with varying frequencies, depending on the information
source.

Context information is often imperfect. Context information may be incorrect if
it fails to reflect the true state of the world, inconsistent if it contains
contradictory information, or incomplete if some aspects of the context are not
known (Henricksen et al. 2002). Context information can be partially true � i.e.,
fuzzy (Zadeh 1965, 1996). It can also be true with a certain probability, based on
earlier evidence. These characteristics reflect the uncertainty of context
information, which must be considered when choosing the methods for
representing and processing context information.

Even though many definitions have evolved, there still seems to be no consensus
on what context should include. If the most generic definition is used (Dey and
Abowd 2000), the concept of context becomes very general, and includes,
among many other things, the explicit input given by the user to control an
application, which is very relevant to, and part of, the situation of the user. The
concept of context information as implicit information about the usage situation
is more specific, but excludes important aspects. Should it then be concluded
that all computer applications that are used by a human are context aware?
Winograd (2001) points out that context-aware computing might be better
described as the design of computing mechanisms that can use characterisations
of some specified aspects of the user�s setting as a context for interaction. In the
case of mobile computing, this setting can change rapidly.

2.1.2 Critique

Context awareness research has received constructive critique. Greenberg (2001)
emphasises the difficulties originating from the dynamic nature of context. The
author questions the feasibility of context-aware computing in the following
three major problem areas.

31

1. Determining an appropriate set of canonical contextual states may be
difficult or impossible. It is not always possible to enumerate a priori a
limited set of contexts that match the real world context. Moreover, if such a
set is found, and is valid today, it may be inappropriate at any other time
because of �internal and external changes in the social and physical
circumstances�.

2. Determining what information is necessary to infer a contextual state may
be difficult. Many things contribute to context, and the relevance of these
parts of context depends on the situation (context). User internal context
information, such as interests, history, mood, objectives, is very difficult to
capture. The system can only provide an approximation of the real context.

3. Determining an appropriate action from a given context may be difficult.
Even if two contextual states appear to be same, one desired action may
differ from the other. This can be due to the different history of events
leading to the current, or the undetectable, internal states.

The claims of Greenberg (2001) are strengthened by Bellotti and Edwards
(2001), who state that: �There are human aspects of context that cannot be
sensed or even inferred, so context-aware systems cannot be designed simply to
act on our behalf.� As ways of avoiding the inappropriate design of context-
aware applications, Greenberg (2001) discusses three ideas. Context-of-use
should be studied carefully, and risky automatic actions should only be taken
when there is strong evidence of correctness. The systems should be flexible;
e.g., the user should be able to adjust the collected information as well as the
inferred actions. Feedback from the inferred contexts is considered important, so
that the users can view contexts and system behaviour, and make adjustments
when necessary.

Erickson (2002) notes that the goal of context-aware computing is desirable:
developing devices that are able to sense the situation and adapt their actions
appropriately. However, the author points out a foundational problem: the
context awareness exhibited by people is radically different from that of
computational systems. People notice and understand a vast number of different
kinds of cues, and interpret them according to their experience, while devices are
only able to measure and recognise a very small set of simple cues, and act

32

according to the predefined rules. The author proceeds that the primary motive
of context awareness is to allow the systems to take action autonomously,
leaving people out of the control loop, which requires considerable intelligence
and common sense. Common sense is difficult to implement. Erickson (2002)
suggests that humans should be kept in the control loop by, e.g., presenting them
with measured context cues, letting them recognise context instead of devices,
and letting them make decisions about actions. In fact, Schmidt et al. (2000) give
an example of such a system, where the caller is informed about the situation of
the person he is calling, and further actions can be made by the caller based on
that information. Erickson (2002) concludes that the concepts of context and
awareness are too powerful notions for describing such systems, and that
"context-aware computing would do better to emulate the approach taken in
scientific visualization, rather than in trying to re-enact AI's attempts at natural
language understanding and problem solving."

2.1.3 Discussion on critique and definitions

Despite the critique, no new definitions for context and context awareness are
given in this dissertation. The definitions of Dey and Abowd (2000) are adopted
here, but with two adjustments. First, context should be human-understandable
for easy use. For example, a plain voltage measured from a temperature sensor is
not context in this dissertation, it becomes such when it has been given an
abstraction, which is understandable to a human, such as temperature in Celsius
degrees. Second, context should primarily relate to the mobility, and hence
describe dynamic situations of the user and the device. Mobility is the main
characteristic in the context awareness research.

Context is not regarded in this dissertation strictly as implicit information for
application control. Explicit control information produced by the user is also
context information, but in general it should only be considered a small part of
the overall context. The goal should be to interpret context abstractions that
more accurately reflect the situation of the user. A wide scope in context-aware
application development requires acquiring, recognising and representing as
many potentially useful constituents of the context as possible.

33

Correspondingly, a software framework is needed that offers the possibility to
acquire, manage and deliver as events to applications any information derived
from sensors attached to the device, including sensor input from, e.g., hand
movements, used for a direct device control by the user. Hence a context
framework should be viewed as a platform for managing and abstracting any
sensor-based or other interaction-related information in order to enable event-
based actions and efficient application control.

As was noted in the critique, it is evident that context-aware computing involves
certain goals that are not feasible. For instance, fully automatic actions based on
context, implemented as non-customizable at design time, are rarely useful, and
wrong automatic actions can be very frustrating, as was pointed out by Erickson
(2002). It is also clear that all aspects of context cannot be sensed, but that does
not exclude the possibility of being able to sense some useful aspects of context.
Furthermore, it is not necessary to aim at fully automated actions as the only
goal of context awareness. Customization partially overcomes the third problem
stated by Greenberg (2001): the problem of determining an appropriate action
based on context. If the event-action behaviour is defined by the end-user instead
of the application developer, a greater degree of personalisation and flexibility
can be achieved. Moreover, the first problem by Greenberg (2001) is partly
solved by letting the user change the event-action configurations if it is required
when the social and physical circumstances change over time.

2.1.4 Related dissertations

In previous years context awareness research has been quite intensive. Five
earlier Ph.D dissertations are considered related to this dissertation. Before a
detailed review, to give a quick overview summary in advance, the earlier
dissertations are listed here in order of appearance:

1. �A System Architecture for Context-Aware Mobile Computing� (Schilit 1995)

2. �Providing Architectural Support for Building Context-Aware Applications�
(Dey 2000)

3. �Supporting The Development of Mobile Context-Aware Systems� (Mitchell 2002)

4. �Ubiquitous Computing � Computing in Context� (Schmidt 2002)

34

5. �Sensor-Based Context Recognition for Mobile Applications� (Mäntyjärvi 2003).

In this dissertation the related work has been categorised into three domains
according to the emphasis. These categories are context frameworks, context
representation and ontology, and context abstracting and recognition. The rest of
this chapter follows the categorisation. Concerning the related dissertations, the
first three are categorised as context architecture-oriented works, while
Mäntyjärvi (2003) has a data mining view. Schmidt (2002) discusses aspects
from all the categories, but has an emphasis on prototyping context-related
applications. The relevant differences between this dissertation and the others
are revisited later in the literature review in chapters corresponding to the topic.

2.2 Context frameworks

2.2.1 Definitions

The IEEE Standard Glossary of Software Engineering Terms (IEEE Std 610.12-
1990, 1990) defines architecture and architectural design as follows:

Architecture. The organisational structure of a system or component.

Architectural design. (1) The process of defining a collection of hardware and
software components and their interfaces to establish the framework for the
development of a computer system. (2) The result of the process in (1).

A more detailed definition for architecture is given in the IEEE Recommended
Practice for Architectural Description of Software-Intensive Systems (IEEE Std
1471-2000, 2000).

Architecture: The fundamental organization of a system embodied in its
components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution.

Software framework is more than an architecture, it is a reusable architecture.
Wikipedia (2005) abstracts the essence of a software framework.

35

A software framework is a reusable design for a software system (or subsystem).

These definitions apply in this dissertation. To summarise, the term software
framework is used to refer to an implemented architecture, which provides a
reusable support structure for application development. Support structure refers
to an organization of software elements, such as code libraries and API, which
can be reused when new applications of the certain type are built. In this case,
the software framework aims at providing an organization of reusable elements
for building context-aware applications, which is why it is called a context
framework.

2.2.2 Widget-based architecture model and Context Toolkit

The most referenced work in context architectures is presented in the Ph.D
dissertation of Dey (2000), where the author gives a detailed description of the
Context Toolkit architecture. Three main problem areas are identified in
developing context-aware applications. First, the notion of context is not well
defined. Second, there are no systematic common models and methodology for
developing context-aware applications. Third, no tools exist for supporting
application development (Dey et al. 2001). The authors notice that most context-
based applications are location-based services, and, apart from them, there has
been relatively little progress over the past few years. Lack of understanding of
what constitutes a context, and how context should be represented are seen as
problems that restrain advancement. Empirical investigations on the effect of
context awareness on interaction and social issues suffer from the lack of
versatile applications. Providing the means for more systematic application
development is seen as the next step in facing these challenges. Hence the author
proposes a conceptual framework and a toolkit, called Context Toolkit, for
supporting prototyping context-aware applications.

The basis for Context Toolkit is adopted from the GUI (Graphical User
Interface) paradigm, and GUI toolkits were used as an underlying model. The
guiding principle in the design was to separate the acquisition of context from
the use of it. Other primary requirements were to support interpretation of
context, distributed communication, constant availability of context, context
storage, and resource discovery. The requirements, defined for a networked PC-

36

based system, are necessary, but incomplete. More detailed requirements need to
be specified to address the restrictions and additional characteristics of mobile
computing. Context Toolkit consists of five components that provide
applications with the functionality for handling context. These are Widget,
Aggregator, Interpreter, Widget service, and Discoverer (Figure 1).

Widget ServiceDiscoverer

Aggregator Interpreter

Application

Widget

Sensor

Figure 1. Context Toolkit architecture. The arrows represent typical interaction
between components.

Widgets are attached to sensors and provide context for applications, thus
separating context acquisition from its use. Aggregator collects several pieces of
context into the same place, so that the application will not have to fetch them
from several components. Interpreter takes context(s) as input and transforms
them into another context. Widget service provides services the application may
execute, taking context as input. Widgets, Aggregators and Interpreters register
themselves with Discoverer. When an application is started, it contacts
Discoverer to locate components that are relevant for it (Dey et al. 2001).
Different elements are required in the context framework for mobile computing.

37

2.2.3 Client-server architecture model

The architecture of Dey et al. (2001) represents one of many ways to approach
the context architecture problem. A number of models have been proposed for
coordinating multiple inter-operating components. Winograd (2001) divides
these models into three groups: widget model, client-server model, and
blackboard model. Widget model is adopted from the architecture of GUIs. On a
GUI, for example, a scroll bar is a widget, a high-level abstraction that can be
used by the application, hiding the details of controlling hardware peripherals. A
more flexible model is a client-server architecture, where high-level components
are separate communicating entities. There is no central manager to keep track
of services locally, and each component contains code to manage its
connections, adding to the complexity of the component. The cost of finding
independent services and communicating with them is higher than in a centrally
managed process, but, in turn, components are more independent. An application
that needs a certain service can either use a direct address (configured) or run a
discovery process with the description of the service.

Hong and Landay (2001) give an example of a (networked) client-server-based
context architecture model. The authors describe a service infrastructure for
context awareness and the key technical challenges that must be addressed
before such an infrastructure can be built. Three benefits of the service
infrastructure approach are identified. First, the platform independency of the
infrastructure allows a wide variety of devices and applications to access the
services. Second, sensors and services that provide context are decoupled from
one another, allowing both to be upgraded dynamically while the system is still
running. Third, devices can be simpler since they can use infrastructure
resources. However, in their discussion the authors completely ignore the
existence of applications that require context information, possibly rapidly
changing, directly from the sensors embedded in a mobile device. A complete
architecture is required to have the ability to handle context from sources in the
device and from sources in the infrastructure. As challenges, Hong and Landay
(2001) see defining context representation and proper network protocols,
creating basic services such as automatic path creation and proximity-based
discovery, finding a balance between device and infrastructure responsibilities,
security and privacy, and scaling up the infrastructure.

38

It should be noted that it is common for features from multiple architecture
models to be combined. For example, the system may have a central blackboard
(server) in the network, and clients that communicate with the server. On the
other hand, the mobile device may have an internal client-server architecture.
Clients (applications) can use services offered by, e.g., a device platform system
server, which can be blackboard based.

2.2.4 Blackboard-based architecture model

The blackboard architecture model (Engelmore & Morgan 1988) is a heritage
from AI research. The blackboard model is the third model discussed by
Winograd (2001), and suggested as an alternative context management
architecture. In contrast to the client-server model, service discovery is not
necessary in the blackboard model. The viewpoint is data-centric rather than
process-centric as in the other two models. Instead of sending requests to
distributed components and receiving responses from them, a process sends
messages to a common message board, the blackboard, and can subscribe to
receive new messages matching a specified pattern. All communications go
through the blackboard and are managed by a blackboard manager, and thus the
communicating components can be less complex than in client-server
architecture (Winograd 2001).

Winograd (2001) sets criteria for comparing the suitability of the three different
models (widget, client-server, blackboard) for context management. The
underlying architectural model affects each of the following criteria.

• Efficiency: The time efficiency is the most important efficiency criteria for
interaction applications utilising context information.

• Configurability: Configurability is difficult to measure, but often critical in
complex systems. It should, e.g., be possible to plug-in and modify
components to the system without rebooting.

• Robustness: Robustness measures the ability of the system to handle and recover
from error situations. A robust system must continue to function if components
malfunction, are disconnected, send inappropriate data, or are restarted.

39

• Simplicity: Since humans build the systems, the key criterion is simplicity.
For example, in the World Wide Web, the HTML and HTTP protocols are
less powerful than their predecessors, but their simplicity enabled a large
base of programmers to utilise them.

Winograd (2001) proceeds that a tightly coupled widget model, where a
component and the application that uses it are compiled together, is most
efficient but requires complex configuration and is not robust to failures. The
blackboard model is less efficient in communication, since every communication
requires two hops and uses a general message structure that is not optimised for
any particular data or protocol. However, the blackboard model requires little
configuring for the components, is more robust to failures, and offers simplicity
provided by a uniform communications path. The client-server model has its
strengths in simplicity and robustness, but requires heavier configuring � i.e.,
protocols for finding ports or resources and establishing connections.

Furthermore, Winograd (2001) discusses a blackboard-based architecture called
Interactive Workspaces (Fox et al. 2000), and compares it with the Context
Toolkit architecture with examples, one shown in Figure 2. The blackboard has
two levels of data, Event Heap for short-term events and Context Memory for
storing XML encoded data, which is relevant in the longer term and across
applications. In Figure 2 a variety of components by Dey et al. (2001)
(Interpreter, Discoverer, Aggregator, etc.) have been replaced by the shared
blackboard (Event Heap, Context Memory). In the active badge example
application events are generated upon a badge entering or leaving the space.
Events are sent to Event Heap by a process associated with each location sensor.
The active badge application is subscribed to these events. The application does
not need to deal with a collection of widgets or aggregators. The resulting
system is simplified compared with the widget-based approach, with no need to
set up connections to multiple components.

40

Active Badge
Sensor

Location
Observer

Active Badge
Sensor

Location
Observer

Blackboard

Event Heap

Active Badge
Application

Context
Memory

Active Badge
Sensor

Location
Observer

Figure 2. An example of an application that uses two-level blackboard
architecture.

The main metrics for choosing the blackboard architecture were robustness,
configurability and simplicity. Winograd (2001) proceeds that efficient
communication is important, but given the increasing processor speeds, an
architecture that avoids the complexity of configuring point-to-point
communication paths can serve all but a few specialized uses that require tight
action-perception coupling. Simplicity is achieved by avoiding having protocols
for finding ports or resources and establishing connections. Robustness is two-
sided. On the one hand, the functioning of the system depends on the functioning
of the blackboard component, which must be built as reliably as any operating
system component. On the other hand, the failure of components that produce
information or use the blackboard has no critical effect on the overall
functioning of the system (Winograd 2001).

Additionally, the centralized nature of the blackboard provides significant
advantages in, e.g., context history management. For example, if many
distributed widgets were responsible for producing an information entity, they
would all have to be separately queried if the client required the past instance of
that information entity, which would require all the widgets be available, finding
them, establishing connections and collecting responses from many sources.
Hence Winograd (2001) argues that the blackboard architecture is the most
suitable model for context management, but does not proceed to develop and
evaluate a context framework. Moreover, the author does not address context
recognition, common structure for context abstractions, context management
API, application control, and customization.

41

2.2.5 Architectures related to context management

Schilit (1995) presents a system architecture for context-aware mobile computing in
his Ph.D dissertation. This early work at Xerox PARC has been influential for the
further development of architectures for context awareness. The architecture was
utilised for implementing applications based mainly on the use of location context,
such as locating the nearest printer, and displaying a message on a display, which is
close to the user. The architecture had three main components: device agents, user
agents and active maps. Device agents maintained the status and capabilities of the
devices, user agents maintained the user preferences, and active maps maintained
the location information of devices and users. Context information was tightly
coupled into the architecture components � i.e., adding new types of context
information would have required implementing new device and user agents.
Mechanisms for querying and notification of context information were supported.
However, issues such as context recognition, storage, a uniform structure for context
abstractions, context management API, application control, and customization were
not addressed. Schilit�s work focused on demonstrating that it is possible to build
context-aware applications, whereas this dissertation focuses on providing and
evaluating a general framework for developing mobile context-aware applications.

Context-service-based architecture is described in the Ph.D dissertation named
�Supporting the Development of Mobile Context-Aware Systems� (Mitchell 2002).
The dissertation describes a context-aware tourist guide system named GUIDE,
which can be viewed as a central Web server accessible by clients via a network.
Additionally, the system contains geographically local caches, cell servers, which
are used instead of the central server where possible. The system uses broadcasting,
so that users entering a cell automatically receive (to their device) the most
frequently accessed pages for that cell, to reduce response times. The scalability and
applicability of this approach is not analysed in detail, although it is mentioned that a
high uniformity of page requests is required for this approach to be useful.

Furthermore, based on the critique on GUIDE and the literature, the author
derives a set of requirements and design for a more generic service-based
architecture model, where context services provide an interface for accessing
context information over the network and enable sharing the context among the
applications. Services define an interface, which potentially provides the
possibility of reuse. Figure 3 presents an overview of the architecture.

42

Mobile unitMobile unit

Context Server
(wireless access

point)

Context Server
(wireless access

point)

Context Server
(wireless access

point)

Central context
repository

Mobile unit

Figure 3. Context-service architecture overview.

Context service providers reside in the user device or in the network server,
depending on the case. The repository acts as a context data persistent storage.
The architecture includes a concept of discovery of context services, and a
concept of context abstractions (under the context service provider entity). The
context service provider acts as an application agent, managing context for the
application device and the discovery of new context services. Context services
are networked abstractions that provide context information from physical or
virtual entities, for use through the service provider.

Mitchell (2002) has a networked PC-oriented approach, as opposed to the
mobile device-centric in this dissertation. Methods for abstracting context from
multiple (sensor) sources are not addressed. The focus on context usage is on
location, and other sensor-based context types receive no detailed attention. The
general representation defined for context is rough, consisting of a hash table of
name-value pairs, and the representation and the use of context have no clearly
defined connection (e.g. as in ontology and API). The author�s main focus is on
networked context services and service discovery. Customization and context-
based application control are not addressed.

The literature presents multiple other frameworks with a networked PC
approach. Context-Aware Sub-Structure (CASS) middleware is a server-based
framework for networked computers containing context-aware applications
(Fahy and Clarke 2004). Sensor nodes are computers with sensors, connected to
a server through the network. The CASS approach hence resembles the Multi-

43

User Publishing Environment (MUPE) (Suomela et al. 2003). MUPE is an open-
source software framework for building multi-user context-aware applications.
Context information can be shared through a network between devices by using
Context Exchange Protocol (CEP) (Lakkala 2003a). MUPE has a networked
blackboard-based context engine with a few features reminiscent of the features
published by Korpipää et al. (2003b), such as support for context requests. There
are many differences however. The MUPE context engine is designed to handle
context information from networked sources, where context information is
bound into entities, e.g. users. The response time requirements are much lower
than in terminal context management. Contexts are produced in compound
structures having multiple context types, whereas in terminal context management
they are handled as single instances with one context type in each. The frequency
for most sensor-based context types can be very high, and for others, such as
location, it can be very low. Producing and handling context instances in large
compound structures in a mobile device would thus create unnecessary data
traffic. Database functionality is not provided in the MUPE context engine, but the
latest context is stored for each entity. Context recognition, customization and
context-based application control are not addressed.

Yau and Karim (2001) have built context-sensitive middleware on CORBA
(Component Object Request Broker Architecture). They emphasise real-time
establishing and terminating of ad hoc communication between distributed and
mobile objects. Communication between objects is managed based on simple
contextual data from network, device, and user interaction. Context information
of objects can be defined using a logic-style rule language. Matching context, for
example the range between devices, activates a method that establishes or
terminates communication and starts data transfer between objects. CORBA
defines an interface definition language (IDL) and application programming
interfaces (API) that enable client/server object interaction within object request
brokers (ORB). The focus of the study is in ad hoc networking and
communication between a mobile device and the environment, with the aim that
the environment, with its services, is context aware, whereas this dissertation
aims at enabling context-aware mobile devices. CORBA is designed for
distributed client/server communication, whereas in this dissertation the client
and server are both local to a mobile terminal.

44

Mandato et al. (2002) describe a concept of a context-aware Internet portal,
which attempts to combine Internet portal technology with personal mobility,
terminal adaptation and context awareness concepts. Their central idea is to
provide users with access to a variety of services, which are automatically
adapted to the user's context. User preferences are considered part of the context.
Physical variables, user activity, quality of service, and user status (such as
mood) are envisioned as other sources of context. However, no accurate means
for acquiring that kind of context is suggested. As a solution to the problem of
nearby service discovery, they propose a local service portal, which would be
connected to an Internet portal. Internet service discovery mechanisms, such as
Jini, could then be applied. This solution would require, in addition to the
existence of local portals, that location information be transferred as a part of the
Internet protocol. The concept-level system is network infrastructure-oriented as
opposed to mobile device-oriented.

Gaia is an infrastructure for context awareness based on first-order logic
(Ranganathan & Campbell, 2003). It is distributed by a client server architecture,
which has similarities to the Context Toolkit architecture. Context providers
(Widgets) collect various types of contexts and can be queried by context
consumers (Applications). A context synthesiser (Aggregator) contains logic
rules that form new contexts from existing ones. A context provider lookup
service (Discoverer) is used by the consumer for finding the context provider
able to produce contexts of an appropriate type. In the blackboard model, such a
lookup service is not necessary. Context history is stored in a database, except
for context synthesisers. The blackboard model, having a central data storage,
makes managing a context database more straightforward. Communication
between distributed entities is done using CORBA. Components of the system
can be distributed and discovered using the CORBA naming service and
CORBA trading service. The authors do not report on processing actual sensor
measurement data with the infrastructure. The choice of logic as the only
modelling and inference language has the advantages of expressiveness and
formality, but disadvantages of inference inflexibility and uncertainty handling.
Furthermore, a method based on logic is provided for specifying rules for
application control based on contexts. The system has a smart-space
infrastructure-oriented approach as opposed to mobile device-centric.

45

Chen et al. (2003) discuss architecture for supporting context-aware systems.
The authors propose a Context Broker Architecture (CoBrA), which uses
Semantic Web languages and tools for managing and sharing context
information. The architecture has a core server entity called Context Broker,
which has the following responsibilities: provide a centralised model of context,
acquire contextual information, reason about contextual information that cannot
be directly acquired from the sensors, detect and resolve inconsistent knowledge
that is stored in the shared model of context, and protect user privacy. The
design of CoBrA is aimed to support context-aware systems in smart spaces, and
each smart space is assumed to have a designated central context broker. By the
choice of design, CoBrA is infrastructure-centric, whereas the framework
proposed in this dissertation is mobile device-centric, where no additional
equipment for a mobile device itself is required for system operation.

Wang et al. (2004) present an infrastructure for managing context information
related to a smart space, e.g., a room, where the processing is performed by
computers distributed in the environment. Each smart space requires its own
infrastructure, which can be connected to each other. Context objects are
produced by context wrappers, which use Universal Plug and Play (UPnP 2005)
to publish context changes as events to which clients can subscribe, and an API
is provided for context information access. Korpipää et al. (2003b) describe a
context change subscription mechanism for the blackboard-based context
framework of a mobile device, and a simplified API for accessing context
information. Wang et al. (2004) apply Semantic Web�based tools for context
reasoning, the Jena2 generic rule engine (Carroll et al. 2003), and, for querying,
RDF data query language (Miller et al. 2002) from a context knowledge base in
a PC. The authors have evaluated the system performance with a 2.4 GHz
Pentium 4 workstation with 1.0 Gbyte of RAM and report that with the
prototype Java-based application, the reasoning delays (about one second)
sometimes matter to users. It can hence be extrapolated that the mentioned
Semantic Web-based methods are not yet feasible for mobile computing � i.e.,
for use in a mobile terminal software framework. The authors identify as future
work providing the ability to manage context information uncertainty with
reasoning methods such as probabilistic logic, Bayesian networks, and fuzzy
logic, since sensor-based contexts are not always precise. Sensor-based context
recognition and customization are not addressed.

46

Genie of the Net (Riekki et al. 2003) is an agent-based architecture that is used
as a component of an intelligent environment. An intelligent environment is
defined as an environment that serves the user by providing, or automatically
using, services that are useful in the situation at hand. The environment contains
sensors, actuators, user interfaces, devices for information storage and
computation, and other information services. The authors identify as an
important problem a service overload, a situation where the number of services
hinders their feasible utilisation. Genie is proposed as a component of an
intelligent environment, which manages the services on behalf of the user by
requesting services from the environment. As environment-oriented, the focus of
the architecture differs substantially from the mobile device-centric approach in
this dissertation. The prototype context recognition subsystem in Genie is based
on a CORBA notification service. The system contains Producers, Filters, and
Consumers. Producers send sensor data into a system channel, and Filters read
the data from the channel, process it and send the results back into the channel.
Context management, recognition, API, and context information representation
are not discussed by Riekki et al. (2003). The authors identify the need for a
common representation and exchange format for context information, which are
seen as targets for future work.

Moreover, blackboard is a widely used model in middleware for communicating
data between sensors and applications in ubiquitous computing. Some
approaches use the notion of Agent. Agent is one name for an abstraction used to
represent objects such as, for example, sensors and services. Adaptive Agent
Architecture (Kumar et al. 2000) and Hive (Minar et al. 2000) are agent
architectures that use a central blackboard to deliver data from agents
representing sensors to agents representing applications. Both have a smart
space-oriented approach.

2.2.6 Customization

Context frameworks can offer programming abstractions for the programmer of
context-aware applications. The programming interface can be further abstracted,
so that it becomes possible for users to define context-aware features. This kind of
software development is referred to as end user development (EUD).

47

According to Fischer et al. (2004), EUD aims at a low cost of learning in
software development while maintaining as wide scope as possible. To reach the
low cost of learning, the aim is to decrease the conceptual distance between
actions in the real world and programming. Figure 4 illustrates the relationship
between the existing means of software development and EUD. The figure has
been modified from an illustration given by Fischer et al. (2004). Hence
customization can be viewed as a form of end user development.

Cost of learning

Scope

Low

High

High

Low
C++

 Java

Script languages

Hardware design

Office applications

Customization

 Adaptation

EUD
ideal

Domain-specific
languages

Macros

Context
Studio

Some PC EUD envs

Figure 4. End user development aims at a wide scope and low cost of learning.

The idea of specifying context-based actions has been initially discussed from the
user viewpoint in the literature. A concept of personalising context-aware mobile
device applications was first introduced by Mäntyjärvi et al. (2003). According to
the original concept, a set of context types and values were presented to the user,
who marked a context value for all available context types as a description of a
certain situation as a trigger for a certain action. The concept was tested with a
plain UI (not designed for small-screen devices) in a PC environment, and no
software framework was used to enable the actual execution of the defined
context-action rules. Defining a context as a union of all context types led to
complex rules, and the users had difficulties in specifying a set of correct rule
triggers. In this dissertation, the concept is modified, further developed, applied
with the enabling software framework, and the new concept is evaluated.

48

Other related work of customizing context-aware behaviour mainly discusses
prototypes developed for networked PC environments. Ranganathan and
Campbell (2003) acknowledge the need for a graphical user interface for
defining context-aware features that would enable the user to specify context-
action rules instead of writing first order logic. Sohn and Dey (2003) discuss an
informal pen-based prototype tool that, in a PC environment, lets users configure
input devices that collect context information and output devices that support
response. Inputs and outputs can be combined into rules and tested with the tool.
The goal of enabling both designers and end-users to create and modify context-
aware applications is identified as a topic for further research.

Dey et al. (2004) experimented with an approach of programming-by-
demonstration for prototyping context-aware applications. The authors have
developed a tool for a PC environment that allows the user to train and label
models of context, which can be mapped to actions. Context models are
represented as examples. Modelling based on examples is feasible when it is
performed for a single chosen type of context. In the case of multiple input
sources, the programming by demonstration approach may lead into
functionality that the user did not intend to have, if the user cannot control
exactly which inputs define the situation.

Truong et al. (2004) present an approach for end-user programming of
applications involving automated capture and playback of home activities. The
authors describe a system for end-user programming for smart environments
based on a magnetic poetry metaphor. The user interface for the system,
developed for large-screen PC environments, contains a predefined domain-
specific set of words, which the user can arrange to define system behaviour.
Each user-defined application must include a setting for time, duration,
frequency, location, and people to be functional in the system. This may result in
complex definitions. Moreover, since the set of parameters used by the system is
different from the available words, the descriptions the users make do not always
correspond to the behaviour the user intended to have. The available context
information in the system is time and people at a certain location. The authors
report that the current version of the system allows the description of a single
application.

49

2.2.7 Conclusions

The state of the art in context frameworks and customization was reviewed. The
related work primarily discusses prototypes and experiments performed with
PCs or laptop PCs connected in distributed environments. The viewpoint of the
related work is mostly environment-centric, i.e. the frameworks are designed so
that context information is processed in the environment infrastructure instead of
the terminal. This is the fundamental difference to the focus of this dissertation.
Therefore, the related work provides no solution to several issues central to this
dissertation concerning a software framework designed for processing sensor-
based data in a mobile device itself. Such mobile device-centric issues are, e.g.,
the lack of framework support for fast-changing event-based abstracted contexts,
context abstracting and recognition process, an application programming
interface for using rapidly changing sensor data, blackboard-based management
of context information, and application control and interaction customization in
a mobile device. Concerning customization and personalisation, the related work
does not provide an easy-to-use tool for, nor enable, end-user development of
context-aware applications in a mobile device, human-computer interaction
customization in a mobile device, and customizing multimodal interaction of
sensor-based input modalities in a mobile device. Moreover, the related work
does not provide implementation and evaluation of the mentioned issues with a
set of real applications implemented in a real handheld mobile device, such as a
mobile phone. These are among the novel issues to be addressed in this
dissertation.

Despite the mentioned different focus the related work discusses many relevant
requirements for context frameworks and context processing in general, and
introduces the concept of personalising context-based applications. The related
work also provides an insightful comparison of architectures with a suggestion
for a superior architecture model for context management, the blackboard
model.

50

2.3 Context representation and ontologies

2.3.1 Definitions

In order to provide context information through a context framework for the
applications, a uniform way of representing and sharing context needs to be
designed. Ontologies have been widely studied in knowledge engineering,
artificial intelligence, and computer science literature. Depending on the science,
ontologies have been very differently defined and applied. Gomez-Perez et al.
(2003) gives a throrough discussion of the categorisation and main types of
ontologies.

Motivation for using ontologies at design time is given by Guarino (1998): �It
enables the developer to practice a �higher� level of reuse than is usually the case
in software engineering (i.e. knowledge reuse instead of software reuse).
Moreover, it enables the developer to reuse and share application domain
knowledge using a common vocabulary across heterogeneous software
platforms.�

Ontologies have been defined from different viewpoints. Ontology has been
described as defining basic terms and relations comprising a vocabulary, but also
rules for combining the terms and relations. Moreover, ontology has been defined
as a logical construct, and as a set of terms for describing a domain that can be
used as a skeletal foundation for a knowledge base (Gomez-Perez et al. 2003).

In this dissertation, the ontology is not built by using logic, nor does it contain
rules, nor is it used as a part of a knowledge base in the traditional sense. Rules
or inference mechanisms are considered as separate entities that use the ontology
but are not defined in it. A general widely cited definition for an ontology is
given by Gruber (1993).

An ontology is an explicit specification of a conceptualization.

The definition is further elaborated by Studer et al. (1998).

An ontology is a formal, explicit specification of a shared conceptualization.
Conceptualization refers to an abstract model of some phenomenon in the world

51

by having identified the relevant concepts of that phenomenon. Explicit means
that the type of concepts used, and the constraints on their use are explicitly
defined. Formal refers to the fact that the ontology should be machine-readable.
Shared reflects the notion that an ontology captures consensual knowledge, that
is, it is not private of some individual, but accepted by a group.

Moreover, Gomez-Perez et al. (2003) discuss the division of ontologies into
lightweight and heavyweight, based on the degree of �depth� and restrictions
(axioms, constraints) on domain semantics. The ontology in this dissertation is
considered a lightweight ontology, including concepts, concept taxonomies, and
properties (structure) that describe concepts, but no explicit constraints.
According to Gomez-Perez et al. (2003), ontologies can be characterised
according to the level of formality to highly informal (natural language), semi-
informal, semi-formal, and rigorously formal. According to the definition of
Studer et al. (1998), highly informal ontology is not ontology since it is not
machine-readable. The ontology in this dissertation can be considered semi-
informal since it is expressed in a �restricted and structured form of natural
language� (Gomez-Perez et al. 2003). Furthermore, if a formal language is
chosen for the ontology, it becomes formal to a degree.

In general, declarative knowledge is modelled by ontologies while problem-
solving methods (PSM) (Gomez-Perez et al. 2003) specify generic reasoning
mechanisms. Generic reasoning mechanisms are not addressed in this
dissertation. The aim is to build extensible models of reusable knowledge that
can be used by any reasoning mechanism. Any reasoning or recognition entity
should provide the information it contributes according to the structure defined
by the ontology, but the reasoning mechanisms themselves are not restricted. In
this dissertation the representation research problem is focused on finding a
sufficiently expressive level of description that is specific enough for some
subset of applications to enable inferring appropriate action, but, at the same
time, simple and clear enough for adequate genericity and understandability.

Context ontology refers to ontology for describing context information. The
ontology in this dissertation has two parts: structure and vocabulary. The
structure defines the common properties that are used to describe concepts
across domains. Vocabularies define concepts and concept taxonomies.
Vocabularies are domain-specific. When context-aware applications are built

52

with the same ontology, the underlying structure is shared across different
applications. Vocabularies can be extended, or new vocabularies can be created,
covering new domains.

2.3.2 The Semantic Web

The Semantic Web (Berners-Lee et al. 2001) is a Web that utilises methods and
languages for representing the structure and semantics of information in order to
enable more efficient and reliable processing of content with machines.
Semantic Web is under development, and related technologies are being
developed by the World Wide Web Consortium (W3C). A central concept of the
Semantic Web is that distributed computers have access to structured collections
of information and sets of inference rules that they can use to conduct reasoning.
This concept is familiar from the AI research. The W3C Semantic Web (2001)
definition is the following.

The Semantic Web is the representation of data on the World Wide Web. It is a
collaborative effort led by W3C with participation from a large number of
researchers and industrial partners. It is based on the Resource Description
Framework (RDF), which integrates a variety of applications using XML for
syntax and URIs for naming.

A central component of the Semantic Web is ontologies, collections of
information. An ontology for the Web is a document or a file that formally defines
relations among terms. A typical ontology for the Web contains a taxonomy and a
set of inference rules. The taxonomy defines classes of objects and relations
among them, and properties of classes. Inference rules can be used for deducing
actions based on objects and their properties (Berners-Lee et al. 2001).

The relevance of the Semantic Web to context ontologies in mobile computing is
that, primarily, it potentially offers formal description formats for describing and
sharing context ontologies. Secondarily, it offers potential methods for reasoning
based on context information. In the Semantic Web, ontologies represent static
domain knowledge and PSMs are used in Semantic Web Services that deal with
that domain knowledge.

53

In this dissertation the discussion on reasoning is focused on context recognition.
Application control reasoning mechanisms are not discussed in detail. Pattern
recognition methods are applied for recognising context from multiple sensor
sources. The focus of the discussion concerning the Semantic Web in this
dissertation is on the methods for representation, not reasoning.

The rest of this chapter briefly reviews the central languages and methods
related to the Semantic Web effort that are the potential for utilising in
describing, sharing, and reusing context information between mobile devices and
developers.

HTML

The current Web is mostly encoded in HTML (HyperText Markup Language)
(Raggett et al. 1999), which is mainly designed for describing how content is
displayed for human viewing in browsers. HTML is not suitable as a context
information representation language.

XML

HTML has been followed by an increase in the use of XML (Extensible Markup
Language) (Bray et al. 2000) as an alternative and additional encoding. XML,
and the many extensions and enhancements that have come with it, offers a
structured way of describing metadata related to any content. XML lets the
content creators define their own tags, which can be used to annotate the content.
Tags can be utilised by programs for multiple purposes, but each program
developer has to know what each XML document developer has used the tags
for. However, XML is a universal multipurpose representation syntax that can be
utilised for describing sensor-based context information as well as web content.

XML Schema

W3C (XML Schema repository 2001) offers the following definition for XML
Schema: "XML Schemas express shared vocabularies and allow machines to
carry out rules made by people. They provide means for defining the structure,
content and semantics of XML documents". The purpose of a schema is to
define a class of XML documents, and an XML document that uses the

54

definitions in the schema is called an instance document. A schema can be
viewed as a collection, or a vocabulary, of type definitions and element
declarations, whose names belong to a particular namespace. Namespaces are
used to distinguish the definitions from different vocabularies. Hence two
definitions having the same name but different structures can be distinguished
with namespaces (Fallside 2001). XML Schema offers an extensive set of
predefined data types and facilitates detailed description of complex structures.
XML Schema is a potential language for representing the structure and
properties of sensor-based context information. XML can be used to represent
the instances corresponding to the schema.

RDF

RDF (Resource Description Framework) (Manola et al. 2004) enables encoding
information about a structure in the form of a triplet, where each triple is similar
to the subject, verb and object of a simple sentence. The triples can be used to
describe concepts of related things. These triples can be written using, for
example, XML tags. Each triple is identified by a Universal Resource Identifier
(URI), a type of URL (Universal Resource Locator). A different URI is used for
each specific concept. URIs ensure that the defined concepts are not just words
in a document but are tied into a unique definition that is available for everyone
in the Web (Berners-Lee et al. 2001, Ahmed et al. 2001).

RDF is particularly designed for representing metadata about Web resources,
such as the title, author and modification date of a Web page, etc. However, by
generalizing the concept of �Web resource�, RDF can also be used to represent
information about things described on the Web, even when they cannot be
directly retrieved on the Web. RDF provides a common framework for
expressing information, so it can be exchanged between applications without
loss of meaning. The ability to exchange information between applications
facilitates the utilisation of the information by applications other than those for
which it was originally created (Manola et al. 2004). Therefore, RDF is also a
potential basic description framework for formally representing and sharing the
sensor-based context information of a mobile device. RDF can be seen as a basic
assembly language on top of which other information modelling methods can be
overlaid.

55

RDF Schema (RDF-S)

RDF provides a way of expressing statements about resources, using named
properties and values. RDF Schema (Brickley et al. 2004) provides the ability to
define the vocabularies used in the statements. In other words, RDF Schema
enables defining the application-specific classes and properties for resources
described in RDF. XML Schema datatype definitions can be used as part of the
RDF Schema descriptions. The RDF Schema-type system is similar to the type
systems in object-oriented languages, such as Java. However, there are also
significant differences. One major difference is that instead of describing a class
as having a collection of properties that have values of a certain types, RDF
Schema property descriptions are independent of class definitions and have a
global scope. RDF uses domain for specifying the class of a property, and range
for specifying the type of values for the property. RDF Schema property
definition, without a domain class specified, can be used as a property
description for any class. For example, an RDF schema could describe a
property of weight, without a domain, and it could be used to describe instances
of any class that might be considered to have a weight. RDF Schema provides
basic capabilities for describing RDF vocabularies. Additional capabilities are
possible and are defined in the RDF-based ontology languages such as
DAML+OIL (DARPA Agent Markup Language+Ontology Inference Layer) and
OWL (Web Ontology Language), which are both based on RDF and RDF
Schema. The aim of these languages is to provide additional machine
processable semantics for resources, i.e. enable more detailed representations of
resources (Manola et al. 2004). RDF and RDF Schema form a potential basis for
describing and sharing mobile context information. The ontology languages
offer capabilities for creating more detailed representations.

DAML+OIL

DAML+OIL (DARPA Agent Markup Language+Ontology Inference Layer)
(Connolly et al. 2001) is a semantic markup language for Web resources. It is
based on RDF and RDF Schema, and provides a more expressive set of
modelling primitives, similar to frame-based languages (Minsky 1988) in AI.
DAML+OIL has been followed by a further developed Web Ontology
Language, OWL (Ouellet & Ogbuji 2002).

56

OWL

OWL (Web Ontology Language) (Bechhofer et al. 2003) is a semantic markup
language for publishing and sharing ontologies on the World Wide Web.
Ontology is defined here as "a formal explicit description of concepts in a
domain of discourse (or classes), properties of each class describing various
features and attributes of the class, and restrictions and properties" (Smith et al.
2003). OWL ontologies are usually stored on Web servers as documents, which
can be referenced by other ontologies and downloaded by applications for use.
OWL is developed as a vocabulary extension of RDF and is derived from the
DAML+OIL (Bechhofer et al. 2003). OWL facilitates greater machine
interpretability of content than that supported by XML, RDF and RDF Schema
by providing additional vocabulary and formal semantics. OWL has three
sublanguages, in the order of expressivity: OWL Lite, OWL DL, and OWL Full,
of which OWL Full is the most expressive (McGuinness & Harmelen 2003).

The advantages and differences of OWL compared with XML and XML
Schema, according to Smith et al. (2003), are the following.

! �An ontology differs from an XML Schema in that it is a knowledge
representation, not a message format. Most industry-based Web standards
consist of a combination of message formats and protocol specifications.
These formats have been given an operational semantics, such as �Upon
receipt of this PurchaseOrder message, transfer Amount of dollars from
AccountFrom to AccountTo and ship Product.� But the specification is not
designed to support reasoning outside the transaction context. For example,
we will not in general have a mechanism to conclude that because the
Product is a type of Chardonnay it must also be a white wine.�

! One advantage of OWL ontologies will be the availability of tools that can
reason about them. Tools will provide generic support that is not specific to
the particular subject domain, which would be the case if one were to build a
system to reason about a specific industry-standard XML Schema. Building
a sound and useful reasoning system is not a simple effort. Constructing an
ontology is much more tractable. Third party tools based on the formal
properties of OWL can be made that may be useful in processing the
ontologies.

57

OWL is one of the potential formal languages for describing mobile context
ontologies. However, as the authors acknowledge, building a generic reasoning
system is not a simple effort, and as the more expressive languages such as OWL
Full are concerned, it is unlikely that any reasoning software will be able to
support every feature of OWL Full (Smith et al. 2003). Domain knowledge is
usually only valid in a certain domain. If describing certain domain knowledge
requires an expressive representation, and no generic tools can be built for
reasoning based on such representation, the advantages of OWL over XML
Schema and XML are limited. Moreover, the study by Wang et al. (2004) implied
that the applied reasoning system operating on OWL was computationally heavy.

CC/PP

A CC/PP (Composite Capabilities/Preference Profiles) profile is a description of
device capabilities and user preferences, also referred to as device�s delivery
context, that can be used to guide the adaptation of content presented in that
device. In CC/PP, RDF is used to create profiles that describe user agent
capabilities and preferences. Here, profile refers to the document(s) exchanged
between devices that describe the capabilities of a device. A CC/PP profile
contains a number of attribute names and associated values that are used by a
server to determine the most suitable form for a resource to deliver to a client.
CC/PP vocabularies consist of a set of attribute names, permissible values and
associated meanings. If different applications that have different vocabularies
need to work together, a common vocabulary or a conversion method between
vocabularies is required. The CC/PP profile is structured as a two-level
hierarchy, so that each profile contains one or more components and each
component contains one or more attributes. Components could be, for example,
hardware platform, software platform and an application, such as a browser.
Attributes could be, for example, display height and width, operating system
vendor, version, etc. (Klyne et al. 2003).

In addition to static device capabilities, the early application focus of CC/PP, it
can also convey information about user preferences that should allow Web
servers to improve the accessibility of Web sites (Klyne et al. 2003). In this
dissertation, CC/PP is categorised as means of exchanging static context
information, e.g. device settings. Static context information is not within the
scope of this dissertation.

58

2.3.3 Information models related to context-aware computing

Fairly few studies concern models and ontologies for representing sensor-based
context information from the mobile device viewpoint. Schmidt et al. (1999a)
introduce a three-dimensional context space, with the dimensions Environment,
Self and Activity. Environment is further divided into Physical and Social; Self
is divided into Device state, Physiological and Cognitive; and Activity to
Behavior and Task. A context is defined as a description of the current situation
on an abstract level. Context is derived from cues, which are derived from sensor
measurements. Context is described by a set of two-dimensional vectors, which
consist of symbolic values for context and number values for indicating the
certainty of the context. Hence the authors introduce two basic properties of
context representation structure. In this dissertation, the representation is further
developed and formalised to provide a more expressive set of properties as the
base representation structure for context.

Schmidt et al. (1999b) propose a model of context in which each context is
identified by a name, and for each context there are a set of features whose
values describe context. Furthermore, the authors propose a hierarchically
organised feature space, where at the top level two categories are identified:
context related to human factors in the widest sense, and context related to the
physical environment. Both of the categories are further divided into three
categories: User, Social environment, Task; and Conditions, Infrastructure,
Location. These six categories each contain a set of relevant features that are
further divided into categories, so that the final category tree has a depth of four.
The values of these features describe context. History of contexts is proposed as
another context. In this dissertation the structure and model for context
expressions is further developed and formalised; extensibility, vocabulary
model, and naming conventions are discussed from a mobile computing
viewpoint. Moreover, the representation is bound to the real use of context data
through a software framework.

Furthermore, Schmidt (2002) presents a model in which contexts are bound to
physical entities, such as Athlete, Hand, Coffee cup, and the entities have a type,
such as Person, Body part, Artefact, Table 1. Such a model is natural for
describing context related to different kinds of artefacts and physical objects.
When the focus of modelling is centered on a mobile device and its user, a

59

different model is appropriate. Moreover, for systematic use of context
information within a software framework, vocabulary model and naming policy
need to be addressed.

Table 1. Context categorization for physical objects.

Type of entity Entity Examples of typical contexts
Person Athlete Running, Walking, Sitting, Cycling
Body part Hand Moving, Moving fast, Still
Artefact Coffee cup Empty, Hot, Cold

Dey and Abowd (2000) model context with a categorization into four classes:
location, time, activity and identity. Context vocabularies consist of lists of
widgets, sources of context. The authors do not provide a uniform structure for
presenting context as data objects, or a vocabulary model. Crowley et al. (2002)
discuss a computing process-based approach of representing conceptual
components. They bind context entities to processes, and by that choice their
system is similar to the widget-based approach but differs in focusing on the
transformation of information from measurements to contexts, or from contexts
to other higher abstraction-level contexts.

Winograd (2001) emphasises the importance of creating ontologies for
distributed environments that provide the application writer with a representation
of the aspects of context that are relevant to program execution. Furthermore, the
goal is seen as finding the right level of description, which abstracts away from
implementation details but is still specific enough to enable inferring appropriate
actions based on context. The author points out that the most difficult part of the
design will be the conceptual structure, not the encoding, which is fairly
straightforward once what to encode is understood. The author proceeds: �The
hard part will be coming up with conceptual structures that are broad enough to
handle all of the different kinds of context, sophisticated enough to make the
needed distinctions, and simple enough to provide a practical base for
programming." This statement forms one of the major design principles and
requirements for the ontology developed in this dissertation.

60

In more recent related work on context ontologies, other than location, Semantic
Web technologies are applied to the knowledge management of smart spaces
(Wang et al. 2004). The authors present an infrastructure and ontology for
describing context information related to a smart space, e.g. a room, in which the
context is managed by computers distributed in the environment. The authors use
OWL for describing a context ontology that consists of an upper-level context
ontology and extended context ontologies. The upper-level ontology provides a set
of basic concepts across different environments. The upper level ontology contains
three classes of real-world objects (user, location, and computing entity, which has
a subclass device) and one class of conceptual objects (activity) for characterising
smart spaces. Korpipää and Mäntyjärvi (2003) propose a set of common basic
properties for all context objects, with support for handling context information
uncertainty. Wang et al. (2004) describe the class-specific properties required for
describing each of the mentioned context subclasses.

Conceptual modelling approaches have also been used to represent context. For
example, UML and ER modelling is applied by Henricksen et al. (2002) to
model contexts and some of their features, such as temporal characteristics. The
authors find that UML and ER are neither natural nor appropriate for describing
context; instead, they propose using special constructs designed for the
characteristics of context information.

Ranganathan and Campbell (2003) introduce a context model based on first
order logic. The model describes the properties and structure of context
information and the kinds of operations that can be performed on context.
Contexts are represented as first order predicates, and ontology is used for
specifying the structures of different kinds of predicates, as well as checking that
the provided context expressions are valid. Furthermore, rules can be specified
for inferring new contexts from existing ones, and inferring application functions
based on context. Categorisation is not discussed in detail; the authors report on
having used context providers such as location, weather, stock price, calendar,
and authentication. The choice of first order logic as the modelling language
brings certain advantages and disadvantages. The language is formal and
expressive, but lacks properties such as uncertainty handling in inference, which
is essential, particularly with sensor information. Furthermore, choosing only
one method for modelling and inferencing is restrictive, since different methods
are suitable for different tasks.

61

Context ontology described in RDF is discussed by Toivonen et al. (2003). The
ontology is frame-based, consisting of classes and properties characterizing them.
The ontology contains concepts for describing time, location, social aspects and
device characteristics. The authors acknowledge that social contexts are very hard
to acquire automatically, and the users may manually input that information. Static
device characteristics are categorized as part of context information, but are not
included in the ontology. Instead, UAProf specification (OMA 2003), which is
based on CC/PP, is utilised for describing static device properties. A context aware
portal is described, which uses context information for certain adaptive functions,
such as message delivery based on time or location. The combining operators
(and, or, not) used for adaptation purposes, and reasoning mechanisms, are not
included as a part of the ontology to sustain modularity, a similar solution as in
this dissertation. The authors state that the context ontology has not yet been
utilised in practice but has been developed at the conceptual level. Upgrading the
ontology from RDF to OWL is seen as further work.

Kofod-Petersen and Aamodt (2003) propose an open context model with a
taxonomic structure of context types. The context model can be updated
dynamically, and the model is linked to a domain model that enables semantic
interpretation of situations. The model describes context as a hierarchy, where
the uppermost node is the User Context. User Context has the subcategories
Task, Social, Personal, Spatio-Temporal and Environmental. Personal Context is
further divided into Physiological and Mental Contexts. The context model
imposes a structure that all suppliers of context use. A specific domain model, in
which the context model is integrated, is used to describe domain concepts that
can be used for generalising situation cases. Furthermore, the authors present an
architecture that facilitates the use of Case-based reasoning (CBR) (Aamodt &
Plaza 1994) for identifying and acting upon situations that consist of instances of
context information defined by the context model. Even though many categories
are defined in the model, acquiring the actual context data is not discussed in the
paper. For example, they do not mention how user Mental Context can be
acquired. Furthermore, the number of potential situation cases in real-world
scenarios is very high, which may cause problems with case management.

Extending UDDI (Universal Description, Discovery and Integration) with
context-aware features is studied by Pokraev et al. (2003). The basic idea is to
enhance Web services with semantic profiles that contain contextual information

62

in order to be able to match the requested Web services to the context of the
requesting party, which can be a mobile device. In other words, the aim is to be
able to provide the user with services relevant to his context. The need for a
common context model by means of ontologies for this purpose is
acknowledged. The authors suggest an upper context ontology that facilitates
context matching. In a high-level view, the ontology contains categories for
Location, Time, Activity, Physical, Social, Network capabilities and Device
capabilities. Existing external domain-specific ontologies are incorporated, e.g.
CC/PP is utilised for Device capabilities. The category of Physical relates to
sensor-based contexts, such as Temperature and Humidity. The authors
recognise the highly dynamic nature of context in context-aware mobile
applications, and the need to be able to match a relevant service based on more
complex and less deterministic queries than in traditional Web service systems.
A common structure of the context and vocabulary models is not discussed, nor
is handling the information uncertainty.

Mitchell (2002) models context in the GUIDE system as an object, which includes a
hash table of name-value pairs, timestamp, and an expiration time. Context domain
semantics is discussed for modelling location, but not for other context types.

Vildjiounaite et al. (2003) study the context awareness of everyday objects
augmented with sensing, communication and computation capabilities. The authors
utilise the context structure by Korpipää and Mäntyjärvi (2003), and additionally
model the properties of each object to which the context information is associated.
The object types have domain-specific properties, e.g. the object type food has fat
percentage, expiration date, etc. The viewpoint is smart space/object oriented.

Many models have been proposed for representing location information. Location
ontologies are not the focus of this dissertation, and hence the discussion of the
literature on the topic is omitted. However, the structure of the ontology described
in this dissertation is designed to support location information.

2.3.4 Common sense context dimensions

The ideal context ontology for mobile computing would be a complete description
of common sense, should it be possible to create, manage and infer such an

63

ontology. The literature discusses attempts at formalising the general semantics of
context, most importantly CYC (Lenat 1995, 1998). However, even though
formalising all common sense formally would be a breakthrough for creating
applications and devices with the ability of rational behaviour in the huge variety
of real-life contexts, the challenges in achieving that goal remain very difficult.

Common sense research has produced a categorisation for context. Twelve
dimensions, or context types, have been identified. Four of them concern time
and place (Absolute Time, Type of Time, Absolute Place, Type of Place); others
are more abstract, such as culture. Location and time are frequently used in
mobile context awareness, but other dimensions are less exploited, largely due to
the difficulty in detecting them automatically.

Moreover, common sense research has contributed a descriptive language for
knowledge representation. CYC language (CycL) is a first order logic-based
symbolic descriptive language developed to encode all common sense into a
single knowledge base. The main differences compared with logic are the
context mechanism and expanded, more expressive syntax. In short, the context
mechanism is designed to divide the otherwise hugely inconsistent single KB
into many small consistent KBs, or contexts, and inference is performed in a
certain context or near it, enhancing efficiency.

As a context representation, CycL has the same weaknesses as logic, and it has
more complex syntax. CycL is not as widely adopted. Concerning uncertainty,
there are certain improvements compared with logic, such as Bayesian structures
and persistence functions. CycL is a long-term effort aiming at formalising
common sense, the lack of which is one of the main obstacles in creating human-
like intelligence in devices (Lenat 1995, 1998, 1999a, 1999b; Lenat et al. 1995;
Minsky 1988, 2000).

2.3.5 Conclusions

The state of the art in context representation and ontologies was reviewed. The
related work contains semi-informal and formal approaches to modelling
domains of context information. The most common domains for context
modelling were smart environments and smart objects. Both of these domains

64

concentrate on modelling the environment, some specific environment, or
specific objects in it. The viewpoint chosen in this dissertation requires
modelling the environment as far as can be sensed by the terminal itself.
Terminal-oriented approaches describe static contexts such as device properties
and context taxonomies for categorising the different context types that are
considered relevant. This related work has contributed to this dissertation with
the working model of how to categorise context values, and partly with basic
properties of context information.

The existing formal approaches utilise Semantic Web-based methods or logic for
context representation and inference. As discussed earlier in the review of context
frameworks, the results on experiments with Semantic Web-based inference and
querying methods such as the Jena2 generic Rule engine and RDF data query
language, suggest that these inference methods are currently computationally too
expensive to apply in mobile phones. However, from the viewpoint of this
dissertation, Semantic Web-based languages offer a potentially useful formal syntax
for specifying the constraints and other attributes of context vocabularies.

Due to the difference in the addressed principles, the related work lacks several
specific topics of interest to this dissertation, such as the structure and common
properties for domain independent representation of context information as data
objects, a generic vocabulary model for describing context instances and
vocabularies, and how to utilise context ontology in customizing context-aware
mobile applications. Moreover, the related work does not provide
implementation and evaluation of the mentioned issues with a set of real
applications implemented into a real handheld mobile device.

2.4 Context abstracting and recognition

Two main types of inference can be done based on context information, context
abstracting and recognition, and application control. Application control refers to
performing application actions based on context information. The emphasis
concerning inference in this dissertation is on context recognition.

65

2.4.1 Definitions

Context recognition is analogous to pattern recognition. Pattern recognition is
defined by Theodoridis and Koutroumbas (1999) as follows:

Pattern recognition is the scientific discipline whose goal is the classification of
objects into a number of categories or classes. Depending on the application, these
objects can be images or signal waveforms or any type of measurements that need to
be classified. We will refer to these objects using the generic term patterns.

Accordingly, in pattern recognition terms, context can be seen as a pattern. Duda
et al. (2001) present the process of a typical pattern recognition system (Figure 5).

post-processing

feature
extraction

sensing

classification

segmentation

input

decision

Figure 5. Typical flow of information in a pattern recognition system.

66

In Figure 5, the sensing phase converts physical inputs into signal data (e.g.,
sensor measurements). The segmentation phase isolates objects from the signal
data (e.g., time intervals from continuous context data). The feature extraction
phase calculates object properties (e.g., symbolic context features or atoms) that
are useful for classification. The classification phase uses features to assign the
object to a category (context). Post-processing concerns decision (action)
making (e.g., application control).

In this dissertation context abstracting refers to the pattern recognition process
up to and including either the feature extraction or classification phase. Context
recognition refers to the pattern recognition process up to and including the
classification phase. Hence context recognition is also context abstracting.

The aim in the context abstracting process is to represent sensor data with
instances of context ontology, and provide them as events for an application
through the framework. As in pattern recognition, the task of context recognition
is to classify a set of objects (measurements or other signals) into a set of classes
(context descriptions, as defined in the ontology). Usually, the functions that are
used for classification are learned from the data resulting from the usage of a
device or an application. Hence context recognition can also be seen as a
machine learning problem (Mitchell 1997). A related research direction is data
mining and knowledge discovery (Fayyad et al. 1996), which addresses the
problem of finding from data the relevant explaining functions, which are not
necessarily known in advance. This dissertation does not address context data
mining. In machine learning terms, data mining focuses on unsupervised
learning, whereas the case study in this dissertation is a case of supervised
learning. In supervised learning a teacher provides a category label for each
pattern in a training set, and the goal is to be able to classify each pattern into the
given correct category. Since the correct categories are known, quantitative
evaluation is possible. In unsupervised learning, or clustering, there is no explicit
teacher, and the system forms clusters of the input patterns according to the
parameters given to the clustering algorithm.

67

2.4.2 Related sensor-based context abstracting studies

This section addresses studies that aim at abstracting or recognising contexts like
the user activity and state of the environment. One approach to context
recognition is to add a set of sensors into a mobile device the user is carrying, or
into several parts of the body. The other approach is to have the sensors in the
environment. This dissertation focuses on the former approach, and on mobile
context recognition in particular.

Schmidt et al. (1999a) experiment with recognising environment and usage
contexts based on sensors embedded in a mobile device. The authors introduce a
layered architecture for context recognition from sensors. In the architecture, the
bottom layer consists of the sensors. The cues provide an abstraction of the
sensors. Cues are similar to features in pattern recognition terms (context atoms).
Context is recognised from the cues by using simple recognition rules in online
recognition. Kohonen maps (Kohonen 2001) were experimented with in
exploratory offline clustering of cues, where clusters were found to represent
certain contexts. Context classification was not performed and the analysis was
qualitative.

Schmidt (2002) discusses sensor-based context acquisition and use of context
information in several applications related to aware artefacts and sensing
environments. Concerning context information processing, the layered
architecture (Schmidt et al. 1999a) is presented as a conceptual model for sensor
data processing (Figure 6). Concerning information processing, Schmidt (2002)
focuses on the sensing and feature extraction phases of pattern recognition
process (Figure 5). The recognition experiments and results are not discussed in
detail; the main focus is on prototyping multiple context-aware applications and
discussing experiences from the prototypes.

68

Sensor

Cue Cue Cue

Sensor

Cue Cue Cue

Optional cue distributing
platform / network

Context

Optional context distributing
platform / network

Applications and scripting

Figure 6. Layered perception architecture for processing sensor information.

Clarkson and Pentland (1998) apply Hidden Markov Models (HMM) to
differentiate noise from speech by and around a wearable computer user.
Clarkson et al. (2000) describe experiments in recognizing the user situation
using a wearable camera and a microphone. HMMs are used to detect coarse
locations (such as at work or in a subway) and coarse events (such as
conversation or traffic). Camera-based systems are beyond the scope of this
dissertation.

Laerhoven and Cakmakci (2000) report on using a layered structure consisting
of feature extraction (cues), Kohonen maps, K Nearest Neighbor classification
(KNN), and first order Markov chains to detect user activities such as walking,
standing and bicycling (Figure 7). The sensor set includes a two-axis
accelerometer, passive infrared, carbon monoxide, microphones, pressure,
temperature, touch, and light sensors. Recognising multiple simultaneous
contexts is not discussed. The results only show true positives as percentages.

69

Classification
(SOM, KNN)

Sensors

Supervision
(Markov chain)

Cues (feature
extraction)

Figure 7. The layered context abstracting system of Laerhoven and Cakmacki.

Laerhoven and Aidoo (2001) further discuss the layered approach. Their goal is
to make the system learn the context descriptions from its user while the user is
performing the actions, with as little user interaction as possible. As a form of
supervised learning, the concept requires the user to label the clusters that are
formed during the action on the Kohonen map for later use. Moreover, since
there are many inputs for the learning, the user may end up training those inputs
to the cluster, which are not relevant for the actual context being trained.

Castro and Muntz (2000) experiment with an indoor location system, where the
signal-to-noise ratio (SNR) information of WLAN base stations is used to locate
a person. They use a hierarchical Bayesian network model that consists of a
query variable (location) as a root node, SNRs from multiple base stations as
leaf nodes, and an intermediate layer of nodes. Each SNR has a certain
probability distribution for classifying locations correctly. Entropy is used to
determine from the distribution the uncertainty of each base station SNR as a
classifier input, and those that have the highest entropy are chosen. The aim is to

70

minimise the number of sensors while maintaining a good accuracy. The
approach is smart space oriented.

Peltonen et al. (2002) classify from the audio data 17 everyday environment
situations, such as streets and restaurants, achieving an accuracy of 63.4% of
true positives with an average of 30-second analysis duration. They choose and
compare the two best performing feature sets out of the 11 possibles as an input
for 1-nearest neighbor and Gaussian mixture model classifiers. The study
focuses on audio. Multi-sensor multi-action context recognition is not discussed.

Mäntyjärvi (2003) focuses on applying statistical and machine learning methods
for explorative data analysis of context data. In other words, the main
contribution of the author is context data mining for discovering data patterns
that correspond to real world situations for the purpose of searching for a
suitable representation for context. Furthermore, as the partial contributions of
the dissertation, Mäntyjärvi et al. (2001) and Himberg et al. (2001) perform data
mining to discover mobile device user context from multidimensional sensor
data (3 axis acceleration, light, temperature, humidity, skin conductivity).
Minimum variance segmentation, k-means clustering, PCA and ICA are used as
ways of analyzing the data, which reveal patterns referring to coarse usage
situations. These studies first applied the early version of the context
representation later published by Korpipää and Mäntyjärvi (2003). Moreover,
the natural next step to the explorative data analysis approach, where the results
are analysed qualitatively, is the traditional supervised learning label-train-
classify approach used in this dissertation to quantitatively evaluate how well
certain contexts can be recognised from a sensor data set.

Bao and Intille (2004) use five 2D accelerometer dataloggers attached at five
locations in the human body (dominant arm wrist, dominant leg ankle, thigh,
arm and hip) for recognising 20 different indoor activities (pre-segmented, one
activity at a time) annotated by the 20 test subjects themselves. Mean energy,
frequency domain entropy and correlation of acceleration data (between 2 axes
of each board, and between all pairwise combinations of axes on different
boards) are used as features. Four classifiers were tested, and the decision tree
classifier C4.5 performed best, having 84% average accuracy. The application
area of the study is wearable computing, whereas this dissertation has a mobile
device-centric view. Moreover, Korpipää et al. (2003a) present multi-sensor

71

recognition from a continuous (not pre-segmented) data stream, where multiple
contexts appear at the same time instant.

Lukowicz et al. (2004) study recognizing wood shop activity by using
microphones (2) and accelerometers (3) worn on the body. Nine different
activities, such as sawing, drilling, etc., are recognised one at a time from
continuous data, by first segmenting it with sound intensity analysis and then
partitioning with linear discriminant analysis (LDA) classification with majority
decision for several second windows, before the final classification of the
identified segments. The identified partitions are not perfectly aligned to the true
activities. LDA and hidden Markov Models (HMM) are used for the
classification, where the final accuracy is calculated as the result of both
classifiers having the same output for the segment. One classification result is
given for each identified segment, and in one dataset there were 25�30 coarse
partitions of different lengths. An average of 84% accuracy was reached.
Korpipää et al. (2003a) classify multiple simultaneous contexts with one-second
resolution � i.e., the classification result is given for each second in the
continuous data, instead of partitioning the continuous data into segments of
different lengths before the classification. In mobile device context-aware
applications, such as performing an action in the device user interface based on
context, it is necessary that the classification resolution is not too coarse.

Furthermore, recognising human emotions with sensors has been studied by
Picard (1998). The human affective state is potentially a very relevant part of the
overall context of a mobile device user. The problems in practical measurement
and detection of emotion are, however, very challenging. Emotions are often
subjective, overlapping, ambiguous and difficult to define. Measuring them
often requires sensors with skin contact in various parts of the body. However, in
laboratory conditions some success has been reported in detecting basic
emotions, such as anger, sadness, joy and fear.

2.4.3 Methods for context-based inference

The aim of this section is to outline some major distinctions of a set of
commonly used machine learning and inference methods by reviewing the
representation and inference properties of each method. The relevant properties

72

include efficiency, uncertainty handling, capability of handling multidimensional
input data, flexibility of updating a model, and scalability. The review is used to
introduce and compare a few methods with potential for application to context-
aware mobile computing. However, since the scope of this topic is extensive and
the number of potential methods is large, the review has been compacted and
serves mainly as introductory material without deeper analysis.

As an example, a comparison of methods in AI is given by Minsky (2000)
(Table 2). Part of the methods selected for introduction can be positioned in the
Table 2; however, the argumentation for this positioning is left outside this
dissertation. In Table 2, the horizontal axis represents numbers of causes, which
increase in table cells from left to right, and the vertical axis represents scale of
effect, which increases from up to down.

Table 2. Minsky (2000) compares AI methods in a causal-diversity matrix.

Easy Linear, Statistical Connectionist,
Neural network,
Fuzzy logic

Ordinary
qualitative
reasoning

Classical AI Analogy-based
reasoning

Symbolic logic
reasoning

Case-based
reasoning

Intractable

Number of causes

Scale of
effect

In addition to the representation and inference properties, the third important
characterising factor is learning. The methods under discussion have very
different needs for training data, and the complexity of the corresponding
learning algorithms vary radically. However, the supervised approach for
learning adopted in this dissertation assumes that the model describing the
transformation of data from measurements to contexts is trained offline, while
the actual inference needs to be performed online. Hence the learning efficiency
is not emphasised.

73

Bayesian networks

Bayesian modelling is named after the amateur mathematician Thomas Bayes
(1702�1761). Bayesian network is a symbolic knowledge representation method,
where nodes of the network describe events and transitions between events are
conditional probabilities. The inference in Bayesian networks is based on
probabilistic reasoning � more precisely, on the Bayes theorem. In a network
where many nodes are dependent on the others, the inference becomes
computationally heavy, even with relatively small amount of nodes. Updating
the model (adding a node for example) requires updating all the dependent
conditional probabilities. Bayesian modelling supports representing uncertainty,
and including background knowledge in the model is intuitive. (Russel & Norvig
1995; Myllymäki & Tirri 1998; Mitchell 1997; Pearl 1988; Duda et al. 2001)

Naïve Bayes

The Naïve Bayes model is also based on the Bayes theorem, but in addition the
model assumes that all the events in the model are independent of each other,
leading to a tree structure instead of a network. Therefore, the inference in the
Naïve Bayes model is very fast and straightforward, which enables the ability to
handle more inputs than the Bayes model. Training a Naïve Bayes classifier has
a computational complexity O(en), where e is the number of training examples
and n is the number of features for each example. The Naïve Bayes inference has
the computational complexity O(cn), where c is the amount of different classes.
The strengths other than efficiency are the same as with Bayes networks, but
updating the model is easier since, unlike the Bayes model, there are no
dependent conditional probabilities in the network that have to be updated once
a new node is added. In spite of the basic assumption of node independence, the
method has been successfully applied, and for problems such as text
classification it is among the most efficient methods known. (Myllymäki & Tirri
1998; Mitchell 1997, Pearl 1988, Duda et al. 2001)

Case-based reasoning

In case-based reasoning (CBR), knowledge is contained as examples, which can,
for instance, be presented as symbolic expressions. In the simplest form of
instance-based reasoning the examples are points in the n-dimensional Euclidean

74

space, and classification of a query instance, i.e. inference, is conducted by
calculating the Euclidean distances between the query instance and case
examples. The class of the query instance is then the class of K Nearest
Neighbours of the query instance (KNN). In CBR, however, the case
descriptions can be more complex and inference may rely on search or
knowledge-based reasoning. A model in CBR is flexible to update; adding a new
case means adding an example. The amount of possible outputs can be large,
since an example basically corresponds to an output. The efficiency depends on
the chosen representation and inference framework. With complex case
representation, finding a proper distance metric can be difficult. (Mitchell 1997,
Aamodt & Plaza 1994)

Logic

In logic, information is encoded as symbolic rules and propositions. First order
logic can describe objects, relations, functions and properties. Inference in logic
is conducted according to certain inference rules, which take the sentences in the
knowledge base as an input and produce new sentences as an output, which are
added into the knowledge base. Logic syntax expresses meaning explicitly for
humans, background knowledge can be described straightforwardly, and the
knowledge model can be modified and expanded flexibly by adding new rules
into the knowledge base. (Russel & Norvig 1995; Hirsh & Hearst 2000;
Cresswell 1973)

Fuzzy logic and fuzzy sets

In fuzzy logic the knowledge is encoded into symbolic rules, but the variables
involved are multiple valued instead of Boolean as in Logic, and the values are
described by fuzzy sets. Instead of crisp true-false values, fuzzy variables can be true
with a certain degree as defined in a fuzzy set. In other words, fuzzy sets and fuzzy
logic support the handling of partial truth. (Zadeh 1965, 1996; Cox et al. 1998)

Neural networks

In neural networks, the knowledge is encoded into the weights between the
nodes of the network, where each node may have many inputs. The structure of
the network has no direct conceptual meaning for a human � i.e., a neural

75

network has a non-symbolic knowledge representation. In inference, each node
sums its real-valued inputs and, using a triggering function, produces one real-
valued output, which may become a weighted input for many other nodes.
Neural network inference is very simple, and very fast. Other positive features of
neural networks include genericity in modelling functions, uncertainty handling,
and a capability of massive parallelism � that is, the capability of simultaneously
handling a mass of inputs effectively. The main weaknesses are that the network is
a black box, hiding the explanation to a decision, and the background knowledge
inclusion is difficult. (Russell & Norvig 1995; Mitchell 1997; Pyle 1999)

Hidden Markov Models

Hidden Markov models (HMM) represent the information as a stochastic state
machine, where the nodes correspond to the states of the system and the
transitions between the states indicate the probabilities of a state change.
Inference in HMMs corresponds to calculating the probability of an observed
sequence of states for each state model, and choosing the one with the best
likelihood. The inference, when the Forward algorithm is applied, has a
computational complexity of O(c2T), where c is the number of states and T is the
number of observations. The strengths of HMM include uncertainty handling,
the capability of modelling sequences of events, and flexibility. With the
probabilistic framework, HMMs can handle noise in sensor data and imperfect
training data. A HMM modelling a pattern, such as a context, is not dependent
on other HMMs. This enables flexibility, and the HMMs in a set, each
representing a class, can be deleted, added and modified without affecting the
other HMMs. In case of multidimensional input data, the dimensionality has to
be reduced to one before applying HMMs. HMMs have been successfully
applied in speech, character, and gesture recognition. (Rabiner & Juang 1993,
Duda et al. 2001)

2.4.4 Conclusions

The state of the art in context abstracting and recognition was reviewed. The
related work can be roughly categorized into early experiments that
exploratively examine the behaviour of the data, in other words data mining, and
the more recent pattern recognition-oriented experiments, where the data is

76

classified into a set of previously defined classes. Data mining-oriented studies
produce qualitative evaluation results, while the pattern recognition-oriented
studies are able to address the recognition accuracy quantitatively. This
dissertation contributes to the latter category. The application domains of the
related work can roughly be categorized into recognition in a specific
environment, most commonly home, and to studies concerning the mobile user.
The related work addressing the focus domain of this dissertation is mostly data
mining-oriented and contributes qualitative results. This related work of
explorative data analysis has contributed as a natural predecessor to the studies
of supervised learning and quantitative evaluation. The related work mainly
reports offline experiments as opposed to taking a step towards a functioning
online system in a mobile device.

Due to these issues, the related work lacks several topics of interest to this
dissertation, such as the recognition of multiple simultaneous contexts from
multiple sensor sources, transformation of continuous sensor data flow into
context change events within a context framework, evaluation of the feasibility
of continuous multi-action context recognition quantitatively, and applying
classification from sensor data involving uncertainty, within a context
framework, for real mobile device applications. Moreover, the related work does
not provide implementation and evaluation of context abstracting and
classification within a context framework with a set of real applications
implemented in a real handheld mobile device.

2.5 Summary

The literature review of technologies for mobile context awareness examined the
state of the art in context frameworks, context representation and ontologies,
context abstracting and recognition, and customization. In general, the existing
literature does not give a unified and solid view of the reviewed topics from the
mobile device-centric viewpoint.

Concerning context frameworks, the related work primarily discusses prototypes
and experiments performed with PCs or laptop PCs connected in distributed
environments. The viewpoint of the related work is mostly environment-centric,
i.e. the frameworks are designed so that context information is processed in the

77

environment instead of the terminal. The related work lacks several topics
concerning a software framework designed for processing sensor-based data in a
mobile device itself. However, despite the different focus the related work
discusses many relevant requirements for context architectures, and provides a
useful comparison of architecture models, suggesting the blackboard model as a
superior model for context awareness.

Concerning context representation and ontologies, the related work contains
semi-informal and formal approaches to modelling domains of context
information. The most common domains for context modelling were smart
environments and smart objects. Both of these domains concentrate on
modelling the environment, some specific environment, or specific objects in it.
Terminal-oriented approaches describe static contexts such as device properties
and context taxonomies for categorising the different context types that are
considered relevant. This related work has contributed to this dissertation with
the basic idea of categorising context types. Due to the difference in the
addressed principles, the related work lacks several specific topics of interest to
this dissertation, especially concerning the context data structure that must be
common across different application domains.

Concerning context abstracting and recognition, the related work can be roughly
categorized into data mining and pattern recognition-oriented experiments. The
application domains of the related work can roughly be categorized into
recognition in a specific environment, most commonly home, and to studies
concerning a mobile user. The related work addressing the mobile user
application domain is mostly data mining-oriented. This related work of
explorative data analysis has contributed as a natural predecessor to the studies
of supervised learning and quantitative evaluation.

Another clear deficiency in the related work is the lack of implementation and
evaluation of the issues pointed out in the review with a set of real applications
in a handheld mobile device such as a mobile phone. Such an implementation
and evaluation is significant since it is the only way to confirm that the proposed
solutions really work and actually can be applied in a handheld mobile device.
Such confirmation cannot be reached with prototypes and simulations in a PC
environment, where the constraints and requirements are completely different.

78

Software architecture models, knowledge representation models, and machine
learning methods were analysed for potential utilisation in mobile context-aware
computing. The existing art and the development targets identified in the
literature review form the basis for analysing the requirements for the
development of context framework, representation and ontology, and abstracting
and recognition, with the aim of solving the underlying research problems
defined in the introduction.

79

3. Context framework requirements
analysis

This chapter analyses the requirements for a software framework for enabling
mobile device context awareness. Requirements for context representation and
context abstracting and recognition methods will be separately addressed in
sections 5.1 and 6.1 respectively.

3.1 Characteristics of mobile computing

The related work was found deficient in several aspects of developing context
awareness for mobile devices, where the computing is performed in the mobile
device itself instead of the environment infrastructure. The challenges differ
significantly from stationary PC computing and infrastructure-centric
computing. Mobile device-centric context-aware computing has more
restrictions and additional characteristics and requirements. The restrictions of
mobile computing, relevant for developing mobile device context-aware
applications, compared with stationary and infrastructure-centric computing
include the following issues:

• Less computing power

• Less memory capacity

• Restricted network access capability: lower bandwidth, higher price of data
transfer, varying availability of network, and varying network transfer rates

• Smaller screen size

• Restricted input capabilities

• Limited battery capacity.

The additional characteristics and requirements of mobile computing, relevant
for developing mobile device context-aware applications, compared with
stationary and infrastructure centric computing include the following issues:

• Unrestricted mobility; beyond the location(s) having a local computing
infrastructure

80

• Unlimited number of different usage situations due to the unrestricted mobility

• Fast changing usage situations, requiring fast response of the system to the user

• The mobile device is required to keep track of the context, instead of the
environment keeping track of the device, due to the unrestricted mobility,
fast changing usage situations and the network access capability restrictions

• The mobile device has to function as a standalone device anywhere � i.e., retain
as much functionality as possible even when not connected to the network.

3.2 Arguments for device centralized context
management

There are practical arguments for mobile device-centralised context
management. As discussed previously, distributed computing with mobile
devices has several deficiencies, such as low bandwidth and the cost of data
transfer. Rapidly changing usage situations, measured with device sensors,
require a quick response from the system, the faster the response the better user
experience. When context data is measured by the terminal, and the data is used
for the purposes of immediate interaction, it is not feasible to continuously send
high sampling rate data to a distributed server over the air for analysis and then
back to the terminal for making the interaction action. Including a distributed
server in this kind of tight interaction control loop having strict response time
requirements is not sensible or feasible; it would be unnecessary, slow,
frustrating to users, battery consuming, and expensive, to mention a few
arguments. As a simple example, the device could have accelerometers, which
are used to measure whether the device is still or not, and the result is used to
switch on the screen backlight. Therefore, sensor-based context management
must be performed in the mobile terminal.

Practical experience from the process industry has shown that when there are
multiple heterogeneous information producers that abstract data from a process,
they should provide the produced information in a uniform structure to a central
node to facilitate uniform processing of the abstracted information at the
consumer side (Kurki et al. 1998, Korpipää 2001). In the mobile device industry,
the process is the usage of a mobile device.

81

3.3 Arguments for selecting the blackboard model

As the blackboard model is central to this dissertation, some further discussion
on the arguments for selection is in order. The literature review Winograd (2001)
already gave well-established arguments for the blackboard model over the two
compared models � i.e., the widget model and the client-server model �
emphasising simplicity and configurability. Figure 8 illustrates the difference of
the client-server and widget models, Figure 8 a, compared with the blackboard
model, Figure 8 b.

Consumer

Producer

Blackboard

Consumer

Producer Producer Producer

Consumer Consumer

a) b)

Figure 8. A conceptual comparison of the blackboard model with the client-
server and widget models.

In the widget model and the client server model the information producer and
consumer have direct communication, where either the consumer has to address
each producer separately directly or vice-versa. In the blackboard model the
information producers do not have to know about the consumers, and the
consumers do not have to know about the producers. Data has a uniform
structure for all the components. The blackboard model hence offers flexibility
by providing any consumer information from any producer without separate
search and connection establishment.

82

Having a uniform structure for all data, and a common centralised memory
space, the blackboard model offers simplicity and configurability advantages for
utilising inference engines that operate on the events from the data objects added
into the memory space. The inference engine can operate as both consumer and
producer. The consumers see the inference engine operation as transparent,
whereas in the widget and client-server solutions the consumer would have to
find each inference engine and separately connect to it.

Based on the practical requirements, experience and the literature, the
blackboard architecture is considered to be the most suitable context
management model, and is thus used in this dissertation. A blackboard-based
context framework suitable for mobile device context management will be built.

3.4 Conceptual entities of the framework

In the requirements analysis, to further discuss the feasibility of a blackboard-
based architecture model, Context Toolkit (Dey 2000), as a widely cited context
architecture representing the widget model, is used for comparison. Another
framework for comparison is the Web services architecture for distributed
context management, representing the client-server architecture model (Mitchell
2002). Both frameworks have been published in academic dissertations, and
include a requirements analysis.

The requirement specification was initiated by analysing use cases (UML 2005) for
the application�s use of context information. To maintain a proper focus, the use
cases were defined to model how an application should use context information in a
mobile terminal in general. In other words, the main actor was the application, not
the user. Deriving the requirements was hence quite straightforward, and the use
cases are not presented here in order to avoid too much repetition since the
requirements contain much of the same information. Based on the use cases and the
literature, conceptual entities of the framework were identified. These main entities
are briefly introduced prior to the requirements.

• Context Manager is the central entity that contains the blackboard, and
communicates context information with other entities.

83

• Client is used to refer to any entity that uses Context Manager. Applications,
Context Sources, and Context Abstractors are all clients.

• Applications are entities that utilise context, but they may also produce contexts.

• Context Sources are entities that receive context information from the local
and global infrastructure (abstract it) and write it into the blackboard.

• Context Abstractors transfrom and abstract raw data or contexts into other
contexts.

• Change Detector determines when a context has changed.

• Application Controller controls applications based on context information.

• Context feature, context object, context instance and context atom refer to a
single basic unit of context, independent of the abstraction level.

3.5 Overview of the requirements

This chapter gives an overview of the most relevant context architecture
requirements in the literature, and in this dissertation. Dey (2000) defines a set of
requirements for an architecture supporting the development of context-aware
applications. The authors aim to provide a conceptual framework that supports
all the tasks that are common across applications, leaving only application-
specific tasks for the designer. The set of requirements by Dey (2000) is
presented in Table 3.

Table 3. Context architecture requirements by Dey (2000).

 Requirement
1. Context specification
2. Separation of concerns
3. Context interpretation
4. Transparent, distributed communications
5. Constant availability of context acquisition
6. Context storage and history
7. Resource discovery

84

Mitchell (2002) presents a set of requirements that aim at providing a Web
services architecture for context management (Table 4). The approach is
environment infrastructure-oriented, and, as such not, within the scope of this
dissertation. However, the requirements contain common characteristics. The
following set of requirements is identified.

Table 4. Context architecture requirements by Mitchell (2002).

 Requirement
1. Supporting user and device mobility
2. Support persistence of application and user state
3. Support flexible interaction models
4. Security and privacy of user data
5. Extensibility
6. Modelling the environment
7. Management of shared and distributed data
8. Configuration and interoperability
9. Context capture
10. Context interpretation
11. Infrastructure transparency
12. Context presentation, adaptation and persistence
13. Ability to support awareness
14. Ability to support context sharing
15. Specification and representation of context

In this dissertation the requirement set is extended and deepened. Even though
the requirements are partially overlapping with the related work (Dey 2000,
Mitchell 2002), the focus is on mobile device-centric context awareness
requirements. An overview of the requirements in this chapter is presented in
Table 5.

85

Table 5. Requirements for mobile device context framework.

 Requirement
1. Concurrent context management in mobile device
2. Requirements for the application programming interface
3. Flexibility in handling new contexts
4. Context abstracting and recognition (detailed requirements in section 6.1)
5. Event-based communication of context to application
6. Context database
7. Context caching
8. Time resolution of context
9. Change detection
10. Context confidence
11. Context representation (detailed requirements in section 5.1)
12. Application control
13. Customization

Each of these requirements is discussed separately in the following chapter from
the mobile device-centric viewpoint. The requirements analysis aims at
providing a basis for the design of the context framework for a mobile device.
Some parts of the requirements analysis reach a level of detail level where the
design solution is apparent or already partly determined. This is done on purpose
and is a useful and widely applied engineering practice in order to enable a
straightforward design phase.

3.6 The requirements

3.6.1 Concurrent context management in a mobile device

The main function of the context management system is to facilitate the use of
context for applications that are located in the mobile handheld device. The
context framework must be able to handle information acquired from the
device�s internal and external sources. External context information may come
from both the local and global (Internet) infrastructure. The device�s internal

86

context includes information received from the sources that are in the device,
such as sensors. Handling multiple sources concurrently is required. Concerning
internal sensor sources, it is most efficient to process the information in the
device itself. Hence Context Manager, and the blackboard, must reside in the
handheld device carried by the user.

Concurrent processing of acquiring, abstracting, storing and delivering context
from multiple sources is required. The context management system must be able
to handle multiple contexts that appear at the same time. Concurrent use of
multiple contexts by multiple applications is required.

The first requirement of Mitchell (2002) emphasises that the application must
withstand periods of disconnection from networked context source. When the
blackboard manager is in the device, disconnection does not prevent the
functioning of context exploiting the application. Disconnection is seen by the
application as having no changes in context from networked sources.

3.6.2 Requirements for the application programming interface

Context Manager is required to provide a set of services that can be used by any
client through an API. Any client is allowed to add context into the blackboard,
and any client is allowed to use it. The clients must be able to subscribe to be
informed about changes in context. In other words, a �publish and subscribe�
mechanism is required. When a context event occurs, and there is a change in
context, the client is informed, but otherwise no data is sent to the client. This is
a major advantage over using a direct flow of raw data from the source (e.g.,
sensor) in the application. The application can process other tasks while no
important changes occur in context. Message traffic up to the application
decreases radically. In other words, the context framework should follow the
Hollywood Principle: �Don�t call us, we�ll call you� (Larman 2002).

There are three types of basic subscriptions an application may require to use:
Context change, Context start and Context end. Context change informs the
client every time the context value of the subscribed context types change. In the
Context start subscription, the client is informed of the start of a specific context
value. For example, an application may be interested in the context value of

87

being in a movie theatre, a location-type context. The application wishes to turn
the device sound off when the user arrives in the movie theatre, and back on
when the user leaves the theatre. If the application could only subscribe to be
informed of changes in location-type contexts, it would receive a message every
time a location context changes, thus generating needless message traffic. By
subscribing to the start and end of a certain specified location context value, the
application only gets exactly those messages it is interested in. Similarly, in
Context end subscription, the client is informed of the end of a specific context.
The client must be able to unsubscribe all the subscriptions it owns.

Another required way of using context information is directly requesting it from
the Context Manager, which should be similar to making queries from a
database. There are three basic types of queries that the client may require to
use: Context set request, Latest contexts request, and Time interval request.
Context is returned based on context type, source, or both. Context set request
returns contexts of a given set of context types or sources. Latest contexts
request returns a given amount of latest contexts, and for Time interval request
contexts of a given time interval are returned.

3.6.3 Flexibility in handling new contexts

Adding new contexts and new elements that produce or process context should
not require making changes to the Context Manager. Hence the Context Sources
and Context Abstractors should be plug-ins. New contexts must be handled as data
objects instead of widgets, as proposed by Winograd (2001). The context
framework must be able to handle new context types and values without changes
to the framework entities. For example, information from passive sources, such as
tags that only broadcast, can be straightforwardly utilised in a blackboard-based
architecture. Context information from such sources can be utilised without
implementing a new widget for each tag, as required by the widget model.

Hence context should not always be bound to the source of the context, as the
widget model proposes. It is possible that the source of a certain context will
change while the user is on the move. The application does not necessarily need
to know about the change of the source. The blackboard model is a feasible
solution for providing this kind of transparency; the application always gets the

88

context from the same blackboard, regardless of the source, and the sources have
one place where context is written.

3.6.4 Context abstracting and recognition

The information acquired from sources such as sensors may require abstracting
to be usable for applications. Abstracted contexts can be application-specific or
applicable to many applications. In case the abstracted context can be utilised by
many applications, Context Abstractor or Context Source should add the
abstracted contexts to the blackboard for use by other applications.

As was defined earlier and illustrated in Figure 5, context abstracting refers to
the pattern recognition process up to and including either feature extraction or
the classification phase. Context recognition refers to the pattern recognition
process up to and including the classification phase. Context Recogniser here
refers to an entity that performs context recognition. Context Abstractor refers to
an entity that performs context abstracting.

Earlier, Dey (2000) and Mitchell (2002) specified one requirement related to
context recognition � context interpretation � and both architectures support
interpretation at the concept level. However, a detailed analysis of the process
and suitable methods for abstracting data, particularly from multiple sensors in a
mobile handheld device, is required to facilitate systematic use and reuse of the
device�s local sensor resources.

It should be possible to add, modify and remove Context Abstractors (and Context
Sources) from the framework without disturbing the system. In other words, it
should be possible to plug in producers of context. The loose coupling of
framework elements will ease the configurability of the system (Winograd 2001).

It should be possible to recognize context from multiple sources and time sequences.
The framework should support sensor fusion. Recognition of higher level context
from existing ones may be performed from the two basic cases of input:

1. Context recognition from a set of contexts, where the set can be the size of
one or larger.

89

2. Context recognition from context history. Recognition may be based on
either a specified number of latest contexts or a time interval.

The result of a previous recognition can be used as a further input for another
recogniser. From the client viewpoint, the use of abstracted higher level contexts
should be transparent. Client may subscribe to a higher level context as to any
context. Every time a context in the recognizer subscribed input set changes,
recognition is performed and new context is added to the blackboard, and client
is informed of the possible change.

The abstraction level of the data received by the context manager may vary.
Three cases can be identified:

1. Context Manager receives from the source event-based abstracted contexts
that do not require further abstracting to be used by the application.

2. Context Manager receives from the source event-based abstracted
information that requires further abstracting. In this case context recognisers
can be used.

3. Context Manager receives raw measurement data that is updated
continuously and possibly with a high frequency.

In the third case the frequency of the incoming data is decisive on how to handle
the data. If the frequency is low, the source may add the data directly to the
blackboard, and the abstractors receive the data by subscribing to it and perform
further abstracting. If the frequency of continuous input is high, the source itself
should abstract the incoming data before adding it to the blackboard. If possible,
the source should also perform change detection, so that the incoming high-
frequency data would be converted to event-based data.

3.6.5 Event-based communication of context to application

The primary advantages of the blackboard model are simplicity, sharing, light
configuring and robustness. The blackboard-based context framework should
primarily be used for delivering data for applications as events. In an ideal

90

situation the advantage gained from this approach is efficiency the data is provided
for the application in a directly usable abstracted form and only when it is needed.
Another advantage is that those computing elements that refine the data are
separate from the application, which ideally only needs to use data instead of first
processing it into a usable form. If the incoming data from the sources is
continuous, the framework should abstract it so that the data provided for the
application with the subscription-indication mechanism would be event-based.

In continuous communication the model is not the most efficient one due to the
central node, the blackboard, which does not exist in a point-to-point
communication. Continuous communication is feasible with low frequencies.
High frequencies of continuous communication, required by the application
without abstracting, should be handled with a direct connection from the sensor
to the application. The aim is to deliver events to the application, even though
the source would measure or receive a continuous stream of data. There are two
basic ways of dealing with continuous incoming data within the framework:

1. Context Sources that receive information from external sources simply
forward it to the blackboard. Context abstracting and change detection will
be performed after Context Manager. This approach is feasible if the
frequency of incoming data is low. The implementation of Context Sources
can be very simple in this case.

2. Context Source itself performs abstracting and change detection before
adding context to the blackboard. This approach is preferred if the frequency
of incoming data is high.

3.6.6 Context database

Context storage, or a database, is required to store context history. Time
sequences of context can be directly utilised by clients to recognise the current
context, establish trends, or predict a future context. Dey (2000) also sets the
requirement of context storage, but the choice of model generates several
difficulties, which were discussed in Chapter 2.2.4. This dissertation contributes
a more detailed analysis and design of the required capabilities for a mobile
device local context database.

91

In order to maintain the availability of device applications to context history in
the event of a reboot, a permanent storage for context information is needed. The
most feasible solution for the storage is a terminal database, since modern
mobile devices contain sufficient capacity for permanent storage. If the database
should exist in the network, disconnections would cause several problems with
the unavailability of accessing and storing context, the delays in storing
terminal-originated contexts would be longer, and bandwidth would be
needlessly consumed in cases when only terminal contexts are used.

The memory size of the context table residing in the device should be
configurable; the history length for each context type stored in the database
should be configurable, to allow longer histories for more important contexts
and short history for more temporary contexts; and the amount of context types
in the database should be configurable.

Not all context data needs to be stored in a permanent database, even though it
should be possible for applications such as location tracking. Sensor-based
applications, such as those applying movement sensors, utilise short-term active-
type of data, which does not require permanent storage. Furthermore, the
performance requirements for managing sensor data are demanding, and if a
relational database is used, inserts and compacts are not very efficient
operations. Hence the use of the permanent storage database provided by the
Context Manager should be optional. This option should improve the
performance, especially with high sampling rate input data, such as
accelerometer data. For short life span data, the Context Manager should contain
a fast cache memory, which has the history length of one for every context type.

3.6.7 Context caching

Clients are not allowed to delete contexts from the context table. The most
important reasons for this policy are the following:

• Other clients may possibly need the context that would be deleted, or the
history of the context.

92

• Since context can be any information from any source, the owner of the
context is not always known. The owner is thus not even a specified
property of context, and deleting cannot be based on ownership.

Instead of individual clients performing deleting, it is handled centrally. The
approach is similar to memory cache solutions. When the context table is full of
context types (the cache is full), a number of types (including history) will be
deleted when new ones appear. There should also be a memory limit for the
history length for each context type. The following options can be used as
criteria for deleting contexts:

• When the limit for the number of different context types in the context table
is exceeded, the least frequently used context types are deleted.

• When the limit for context types is exceeded, those contexts that have not
been used in a certain time frame are deleted.

• When the limit for context types is exceeded, those contexts that have no
subscribers are deleted. If all have subscribers, use other criteria.

If the criteria for deleting a context and its history are not matched, context never
expires globally. It is a task of the client to determine when a context has expired
from its own application-specific viewpoint. Even though a client decides that a
certain context is not valid for it anymore, it cannot delete it from the context
table. The same context may still be valid for other clients. Context histories are
not deleted by clients either.

Symbolic context names may require renaming. Renaming is not performed
centrally. It is seen as a type of context abstracting, where input context is given
a new name and put back to the blackboard. For Context Manager, renamed
context is a new context.

3.6.8 Time resolution of context

Since every (context) message between the source and the client goes through
the blackboard, it takes at minimum two hops to deliver the message. In
addition, subscriptions require checking for every received message. Therefore,
communication in the blackboard model is less efficient than in point-to-point

93

communication, and high message frequency may cause difficulties in the case
of continuous communication.

Depending on the size of the blackboard and available resources, the maximum
communication frequency for continuous communication through the
blackboard should be limited. Applications that require high frequency of
continuous communication should not use the blackboard. Moreover, for sources
that produce continuous data, the history limit should generally be configured
very short to avoid quickly consuming a lot of memory.

3.6.9 Change detection

At each moment in time the context blackboard contains a set of context types
that have at least one value in the context history. When a new context value is
received, a matching operation must be performed to see if it has changed from
the previous one. If there has been a change, the subscribers to that context are
informed of the change.

The method for detecting a change between two contexts depends on the
representation of the context. In the most simple case, the context is represented
by a string of characters, for example, and change is detected using a simple
string match operation. This should be the default case for any context,
performed by the Context Manager. However, if the context is represented so
that simple change detection is not possible, a separate Change Detector is
required. The type of change detection method depends on the chosen context
representation and the use of the context.

Change detection takes as input the current and the previous context(s), and
indicates change or no change information. Even though separate change detection
causes extra message traffic, it is necessary to have support for it, since it is not
possible to hardcode into Context Manager all the change detection methods that
may be required depending on the representation and use of context.

Context change detection should be optional. The input data for user interaction
can be implicit or explicit, which has a difference from the context management
viewpoint. For implicit inputs, the application is usually concerned about

94

receiving events when a change occurs in the contextual state. For example, only
changes in the user location are relevant and the application does not need to be
repeatedly informed of the same location. Implicit inputs therefore require
change detection. Explicit inputs must not have change detection. For example,
the user may perform the same gesture one after the other, and the Context
Manager is required to pass both events to the Application Controller.

3.6.10 Context confidence

Context information received by the Context Manager can be imperfect. Context
information is said to be incorrect if it fails to reflect the true state of the world,
inconsistent if it contains contradictory information, or incomplete if some
aspects of the context are not known (Henricksen et al. 2002).

Moreover, the context information can be partially true when the boundary
between two symbolic context values is not crisp. It can be true with a certain
probability, based on evidence learned earlier. These characteristics reflect the
uncertainty of the context information, which must be considered when defining
the context representation and methods for processing it.

The data object representing context is required to have a confidence attribute.
Hence instances of context information contain a property that describes the
confidence of the instance. The confidence property can be used to express
probability, fuzzy membership, or any other measure of uncertainty, depending
on the case. The use of such confidence should be optional, since it may not
always be available. The default value for confidence should be true (one).

Confidence for a context changes over time. Confidence always refers to the
situation at the moment the context was stored, and as such is not always valid.
Similarly, the context value itself may not be valid either, if, for example, the
source that produced the context is not available for updating the value. Stored
context is always a snapshot of the situation at the moment it was acquired, and
the use of it must be decided by the application.

95

3.6.11 Context representation

Mitchell (2002) has two requirements for context representation: R6 modelling the
environment, and R15 specification and representation of context, which the
author evaluates as partly satisfied. R6 addresses modelling location, and R15
discusses simple operators for making decisions based on single contexts. Among
other issues, the author suggests further work in context representation being to
identify useful context types and data formats applicable to a wide range of
context-aware applications, and to specify the granularity and the scope of events.

Adding new contexts and new elements that produce or process context should
not require making changes to the Context Manager. The same applies to the
syntax of the context. No changes to the Context Manager should be required,
regardless of the syntax of the incoming context. However, common context
properties should be defined to enable the use of contexts through an API.
Context representation should facilitate the use of the context with the API. In
addition to defining the common structure of the context, the representation
should specify how to create vocabularies that describe useful context types with
a sufficient level of detail for use.

Context provider developers, abstractor developers, and application developers
must agree on a common representation for context when developing context-
aware applications. The context framework must not strictly restrict the
representation, but it must provide a template and instructions for producing
contexts that allow the simplified use of, e.g., sensor-based data with the given
API. More detailed requirements and discussion for context representation are
given later.

3.6.12 Application control

The context framework is required to provide an API for programming context-
aware applications. This requires creating new application code, or modifying
existing applications, for defining the functions that will be performed based on
the context information.

96

Changing existing applications to include actions based on the context is
laborious and may not even be feasible. Context-based application control needs
to be separated from the applications themselves. Existing applications can
provide the context framework with those functions that can be used for
controlling them. The context framework is required to have an entity that can
be used for connecting context events to the control functions provided by the
applications. In other words, an entity that enables the control of applications
based on context events without modifying the applications is required.

3.6.13 Customization

The Application Controller entity connects context events, the inputs, to
application control functions, the outputs. For reaching the maximal flexibility
of the system, these input-output mappings must not be hard coded into the
framework entities. A representation is required, which facilitates describing the
connection between inputs and outputs without programming executable code.
During the framework operation it should be possible to delete, change and
modify the mapping between inputs and outputs.

Furthermore, the preferences of how a mobile device, e.g. a smart phone, is used
for interacting with its applications and external appliances vary among users.
The preferences of one user may change over time. At the design time it is thus
difficult to configure the behaviour of the device so that it meets the varying user
demands in varying situations and configurations, which can change over time.
Therefore, for the maximal simplicity, flexibility, and potentially wide spread of
developing context aware applications, the end-user should have the ability to
customize the way of interacting with applications and external appliances.

When a device with a small screen is used for customizing multiple control
tasks, and for the control tasks themselves, usability is of primary importance.
There are several usability requirements for the Customizer tool: it should be
easy to learn, effective, efficient, satisfying, and the user should feel in control of
the system. These requirements are partly adopted from an ergonomic
requirements standard�s usability guidelines (ISO 9241-11:1998, 1998).
However, extensive discussion of usability is not within the scope of this
dissertation.

97

3.7 Summary

The literature review highlighted limitations in the existing context frameworks.
Based on the literature and the use case analysis for the use of context
information in mobile handheld devices, a set of requirements was identified. In
particular, the viewpoint of mobile device sensor-based data processing revealed
several new or updated requirements for the context framework. Hence the main
contribution of this chapter is the introduction of new and updated requirements,
which were defined considering the additional restrictions and additional
characteristics of mobile devices.

The new and updated requirements are the following. The context framework
should provide an application programming interface to the context data, where
contexts are treated as data objects. The interface must remain unchanged,
regardless of how and where the context is derived. Contexts should primarily be
delivered for the applications as events, including sensor-based continuous data
sources. The framework should support plugging in components during the
system operation. The framework should support the abstracting of the context,
and it must be possible to plug in abstractors. The framework should contain a
central database residing in the device for easy access to the context history. The
database should work as a configurable context memory. The framework should
provide support for dealing with uncertain context information, and it should
provide support for determining when the context has changed in order to
deliver the context to applications as events. The context representation should
provide a template for the context without too strict constraints, since there are
many different types of context information. The representation should,
however, be simple enough to allow easy usage of the context through a
programming interface. The framework should separate context-based
application control from the applications themselves. For maximal flexibility in
developing context-aware applications, the end-user should be provided with a
tool to define context-action mappings.

98

4. Context framework design

This chapter is partly based on the articles by Korpipää et al. (2003b, 2005b).
The results of Korpipää et al. (2003b) are further developed and additional
details are presented. The design is updated according to Korpipää et al. (2005b)
and additional details are presented.

In the previous chapter, the requirements for the context framework were analysed.
This chapter presents the architectural design of the framework. The main elements of
the architecture are introduced and the flow of data between the elements is explained.
Different choices for the implementation of Context Sources, Context Abstractors and
Change Detectors, based on the type of incoming data, are discussed.

4.1 Overview of the design

The main entities of the framework are Context Manager, Application, Context
Source, Context Abstractor, Change Detector, Application Controller and
Customizer. Application Controller consists of a Script Engine (Lakkala 2003b)
and an Activator. An overview of the architecture is given in Figure 9; the solid
lines denote bi-directional communication, and the arrows one-directional. The
dotted lines from Context Abstractor and Change Detector denote that these
entities can also be implemented as scripts to be executed by the Script Engine.

Context Manager is the application-independent blackboard-based central node
of the framework. Context Manager resides in the mobile terminal, and provides
the same interface for all entities, including applications. The Context Manager
stores context data, receives requests and subscriptions, and accordingly delivers
responses and indications for the clients and Application Controller. In other
words, Context Manager provides a publish and subscribe mechanism and a
database. Applications can use Context Manager, or, alternatively, can be
controlled by the Application Controller. Application Controller can be
customized with the Customizer. Each of the other entities can be implemented
as either remote or local. In this dissertation entities are implemented as mobile
device local. The sources are either in the terminal device, or local sources
otherwise connected to the terminal.

99

Figure 9. The overview of the context framework.

4.2 Frozen spots and hot spots

An important characteristic of a software framework is that it is reusable over
different application domains. Reusability aspect of software frameworks has
been addressed by Pree (1994), who introduces a notion that a software
framework consists of frozen spots and hot spots. Frozen spots define the overall
architecture of a software system, which remains unchanged (frozen) in any
instantiation in different application domains. Hot spots represent those parts of
the framework that can be specific to individual software systems.

Context
Manager

Script
Engine

Application /
Action

Customizer

Context
Source

Context
Abstractor

Change
Detector

Application layer

Server layer

Producer layer

Activator

Application Controller

100

According to the notion of Pree (1994), the context framework contains both
frozen spots and hot spots. In Figure 9, the server layer components, marked
with dark grey, are all frozen spots. In other words, they are application-
independent elements that remain unchanged when the framework is reused
across different application domains. The frozen spots are reusable without
modification in any instantiation of the framework. The Activator server is also a
frozen spot, but it uses a collection of function interfaces for calling code that
can be application-specific. Application-specific function interfaces, which are
hot spots, should ideally be plug-ins to the Activator. A Customizer is also a
frozen spot, since it adapts to different domains through a text-based
configuration, an ontology vocabulary, requiring no changes to the code when
reused. However, Customizer is a frozen spot that can be replaced or modified,
since it is an application level component.

Producer layer components are basically all hot spots i.e. new or modified
components may be needed when new domains are addressed. For example, new
Context Sources may need to be developed when new device sensors become
available. Context Abstractors and Change Detectors are hot spots, although
they are abstractions that are not mandatory in a working instantiation of the
framework; their tasks can be executed alternatively by other framework
elements. All hot spots in the framework can be plugged in without modifying
the frozen spots.

4.3 Context Manager

Context Manager is the blackboard-based central node of the context framework
in the handheld mobile terminal. This central node stores context information
received from any source, and serves it to the clients. Multiple clients can
produce and use the context information concurrently. The clients can directly
query data by context type or source, and they can subscribe to various context
change notification services. With the subscription-notification mechanism,
applications can use abstracted event-based context information without needing
to concentrate on the details of how to acquire and abstract the data.
Furthermore, the Application Controller can use the subscription-indication
mechanism in application control. The Context Manager provides a common

101

application programming interface, which can be used by all clients, including
the Application Controller. API will be described later in more detail.

The Context Manager blackboard serves as a common data space for
communicating information between clients. In addition, it serves as a context
database, which can be used for storing a given number of context values for
each context type. These values can be queried similarly to a relational database,
except that the database client interface is simplified by hiding SQL query
details. For each context type, an amount of context values to be stored is
specified. When the maximum amount is reached, a number of the oldest values
are deleted from the database. Context type concepts can be regarded as virtual
tables in the database. Context type property and querying will be discussed in
more detail later.

4.4 Context Source

The purpose of the Context Source entity is to connect to a data source and
deliver contexts to the Context Manager. The source of the context data can be
terminal internal or external. Context information from any source can be added
to the blackboard, as long as the information is correctly formatted for storing
and using through the Context Manager API. This section describes the design
issues for the most important types of sources for processing sensor data. The
examples on data flow and processing concern sensor data.

As was mentioned in the requirements, the abstraction level of the delivered data
should be high enough and the frequency low enough for good performance in a
blackboard system. In the case of raw high-frequency (sensor) data, abstracting
and change detection should always be performed before delivery. Otherwise,
abstracting or recognition should be performed in the Context Source in the
following cases:

• Raw data is not needed by any client

• Abstracting makes contexts easier or more efficient to use.

Figure 10 shows the abstracting process in the Context Source. The process is
similar to the pattern recognition process (Duda et al. 2001). The measurement

102

(sensing) phase reads the sensors and outputs raw data. The preprocessing phase
builds measurement data arrays that each contain a certain number of samples,
and calculates general features for each time interval. The phase corresponds to
the segmentation phase in the pattern recognition process, where the features for
each time interval are considered a segmented object. The feature extraction phase
calculates the actual abstracted features, which can be either numerical or symbolic.
If symbolic features are required, feature extraction includes quantization and
labeling the values with names corresponding to a real-world context. These names
are defined in an ontology. The named features are also called context atoms, which
can be used by applications directly or may require further refining by the context
recognition. Context recognition may follow if required.

PreprocessingSensor
measurement

Feature
extraction

Context Source

Context
recognition

Figure 10. Phases of abstracting raw sensor data into human-interpretable
context information.

Feature extraction or context recognition is not always needed prior to adding
data to the blackboard. Numerical data values can be added after the
preprocessing phase, if the application so requires data, and if the frequency of
communication is not so high that it considerably reduces the system
performance.

There are three most common types of Context Sources categorised according to
the where the information is coming from, and whether the type of incoming
information may change or not (Table 6).

103

Table 6. Three types of Context Sources and their properties.

Context Source
origin

Type(s) of context
produced by the source

Examples

1. Device internal Fixed Device sensor, device
profile, device settings

2. External Varying Bluetooth, cellular network,
RFID, other devices

3. External Fixed Bluetooth beacon
(e.g., weather station)

In the case of external information, the source here refers to the terminal-side source
implementation, which receives the information and adds it into the Context
Manager blackboard. The source types have the following characteristic properties:

1. Device internal fixed information source. This type of source handles the
information coming from the source that is embedded in the device, and
always produces the same type(s) of context. Thus the source itself can
contain context type-specific code for processing the data. This type of
resource server is similar to the Context Toolkit widget. The difference is
that the application is not required to find and contact the source itself but
can access any context information from the Context Manager by context
type through a common interface.

For example, the device sensor source handles the information coming from
the sensor that is fixed in the device. The data from the sensor is always of
the same type, and the source can be implemented as specific to the type of
sensor. One source can be used to process and add into the blackboard many
different sensor signals.

2. Device external varying information source. Since the type of context information
that is received from outside of the device can vary, this type of source must not
contain any domain- or application-specific code for processing the incoming
data. Instead, the task of this type of source is to route the incoming context
information into the blackboard, or perform formatting of the context. The sources
of this type can receive information either from local providers, such as a sensor,
or remote providers, such as a networked server.

104

3. Device external fixed information source. In this source type the type of
context information received from an external source is always constant, and
the source can be domain-specific.

4.5 Context Abstractor

As was defined earlier and illustrated in Figure 5, context abstracting refers to
the pattern recognition process up to and including either feature extraction or
the classification phase. Context recognition refers to the pattern recognition
process up to and including the classification phase. Hence context recognition
is also context abstracting. The result of feature extraction can be a symbolic
feature, context atom. The Context Abstractor entity here refers to both of these
processes, which aim at producing human-understandable easily usable
descriptions of raw data. Context abstracting and recognition can be
implemented as part of Context Source, as a separate entity, Context Abstractor,
or as a script that is executed by the Script Engine.

Context Abstractors can subscribe to any context type that is required for
processing a higher level context, which is added back to the blackboard. Each
time there is a change in the subscribed context type(s), the abstractor receives
an indication and performs the abstracting or recognition. Plug-in Context
Abstractors can be added to and removed from the system online. The
application can operate by using the higher level contexts without needing to
know about the underlying processing. Context Abstractors use as input either a
set at a certain time instant or a time series of context atoms, and return single
higher level contexts to the Context Manager.

The process of raising the abstraction level of the data may include transforming
the features of recognition results into symbolic expressions that are human-
understandable. Context Source, and when necessary, Context Abstractor can be
used to perform the transformation of raw measurement data into a
representation defined in the context ontology. When the context types have a
definite set of human-understandable values, actions based on these values are
easier to customize.

105

Different architectural options for implementing Context Abstractors need to be
considered for the most performance-efficient solution. Based on the abstraction
level of the incoming data, the type of communication and the frequency of
incoming data, the abstracting should be performed separately or in Context
Source. Table 7 presents a categorisation of the most relevant combinations of
the mentioned properties with example sources, and proposes a feasible
abstracting implementation.

Table 7. Context Abstractor implementation should be chosen according to the
type of incoming data.

Category
number

Data
abstrac-
tion level

Data
communi-
cation type

Data
frequency

Source
examples

Abstracting
element

1. Raw Continuous Low Temperature,
humidity

Abstractor
or Source

2. Raw Continuous Moderate Acceleration,
light

Context
Source

3. Raw Continuous High Skin
conductivity,
acceleration

Context
Source

4. Symbolic Continuous Low Network Abstractor
or Source

5. Symbolic
(or raw)

Event Low,
Moderate

User profile,
UI events
Bluetooth
ID, RFID
Tag

Abstractor
or Source

The example categories are discussed separately:

1. Raw continuous sensor data sampled at low frequency can be directly added
into the blackboard by the source, and the abstractor can subscribe to the
data from the blackboard, receiving indications upon changes in the data.
Both implementations are feasible.

106

2. When raw continuous data is sampled at a moderate or fast frequency, the
abstractor should receive the data directly from the source, so that the
Context Manager would not be overwhelmed with too much incoming data
from many sources.

3. The same as category two.

4. Continuous low sampling frequency data can be added directly into the
blackboard by the source. The abstractor can use the subscription
mechanism. Both implementations are feasible.

5. Symbolic (or raw) event-based data should usually be added to the
blackboard. Even if the frequency of events is occasionally moderate, the
average performance should be sufficient. The abstractor can use the
subscription mechanism. Both implementations are feasible.

The abstractors can subscribe to contexts recognised by other abstractors,
forming a context abstraction hierarchy. The abstractors add the results to the
blackboard and the application can use it through the Context Manager API,
regardless of the way it was delivered.

4.6 Change Detector

Events in the real world measured by sensors reflecting context changes should
be transformed from the measured signal to events that can be utilised by
applications. The event-based interface to context information relieves the
application from receiving data continuously, and hence from processing data
continuously. The aim is to provide the application with only the relevant
changes in the context, according to the changes in the real world situation,
events that correspond to the usage needs of the application. The Change
Detector entity is used for that purpose in the framework; there are five different
options for implementing a Change Detector in the framework:

1. Perform change detection in the Context Source before adding data into the
Context Manager blackboard. Context is added by the source only when
change occurs. This is the preferred option if the frequency of the incoming
data is high.

107

2. Perform change detection in the Context Abstractor. The abstractor may
store, e.g., the previous context it has processed and check if there are
changes. Context is only added to the blackboard by the abstractor if change
has occurred.

3. Use Context Manager default change detection. The default function is to
perform a string match for the incoming context values. If the incoming
context value is not the same as the previous value of the same type, the
context blackboard is updated.

4. Use a separate Change Detector, which makes a subscription to the Context
Manager for a context type and monitors the values, indicating the specified
changes. Changes can be indicated directly to an application or the Change
Detector can add a new context to the blackboard, which is used by the
application.

5. Implement Change Detector as a script that is executed by the Script Engine.

4.7 Application Controller

Context-aware features can be implemented with the context framework in two
ways. Applications may use the Context Manager API directly for receiving
context information, based on which actions are made. The other way is to use
the Application Controller entity. The Application Controller handles activating
application actions or system events based on the context events on behalf of the
application. The Application Controller can subscribe to the Context Manager
for receiving indications about changes in the subscribed context types. The
Application Controller can thus operate as event-based � i.e., it performs control
actions when it receives change indications about the subscribed context types.

The Application Controller encapsulates a selected application inference
approach, or combines multiple approaches. The control inference can be, for
example, rule-based, fuzzy or probabilistic. The context framework does not
restrict the inference approach, nor does the context representation. A rule-based
application control inference approach was selected in this dissertation. The rule-
based inference approach does not directly facilitate handling uncertainty. The

108

uncertainty in sensor signals is eliminated by the producer layer components, i.e.
Context Sources or Context Abstarctors. Hence the Application Controller can
produce discrete event-based application control commands.

4.7.1 Script engine

The Application Controller contains a script-based inference engine that can
execute arithmetic and logical operations, which are described as text-based
XML scripts in Context Exchange Protocol (CEP) syntax (Lakkala 2003a). The
Script Engine element in the context framework was adopted in this dissertation.
The Script Engine was developed and implemented by Ilkka Salminen and Harri
Lakkala (Lakkala 2003b); the purpose of the Script Engine within the context
framework has also been documented by Korpipää et al. (2005b).

The Script Engine enables describing context-based application actions as rule
scripts. The Script Engine can subscribe to context types that appear in the
script, evaluate the script when changes in the subscribed context types are
indicated by Context Manager, and indicate the evaluation result forward to the
Activator. Hence the Application Controller can operate as, for instance, a
discrete rule-based controller.

Script Engine can further be applied to perform straightforward abstracting and
change detection tasks as well, by indicating the evaluation results back to the
Context Manager blackboard. This can also be done without implementing
executable code.

4.7.2 Activator

For triggered rules, the Activator launches the designated application functions
or system events. Each action expression consists of a human understandable
part and machine executable function parameters. The function parameters are
carried in the indication message of the CEP script action part. Each action
expression is configured in the ontology action vocabulary read by the
Customizer. Hence the human understandable part is visible to the user and the
user can perform customization based on these action expressions.

109

The Activator contains function interfaces for executing the application actions
and system events that are available for controlling. As was mentioned, each
application action instance is configured as an expression where the human
understandable part corresponds to parameters for the application functions. The
inference engine indicates the machine executable part of the action expression
forward to the Activator upon a triggered rule.

4.8 Customizer

Every development process has two basic phases: design time and use time
(Fischer et al. 2004). At the design time, the needs and objectives of the user of
context-aware application can only be anticipated. The users may find hard-
coded features unsuitable at use time, requiring modification. Moreover, the user
needs may change over time.

The idea of a Customizer is that instead of implementing the context-aware
application features at design time, a set of contexts and actions are provided for
the user. The task of the user is to decide whether and how to use them. The
Customizer is a tool that lets the user define context-action behavior into
existing mobile device applications at use time.

In other words, the Customizer is a tool for configuring the Application
Controller. It can be used to connect context events to application actions � i.e.,
inputs to outputs. The customised context-action features can be described as
rule scripts that can be read by the inference engine. The tool can generate such
scripts based on the graphical descriptions given by the user with the tool. The
Application Controller receives context events from the Context Manager, and
activates application actions as specified with the Customizer. The Customizer is
targeted at end-user usage.

4.9 Summary

An architectural design for the context framework for mobile device sensor-
based context-aware applications was given in this chapter with implementation
recommendations. The design realises the requirements. Hence the framework is

110

designed with regard to the additional restrictions and characteristics of mobile
devices. The related context frameworks have been designed for distributed PC
environments, which have different requirements. Moreover, the blackboard-
based architecture model was chosen in the requirement analysis, based on the
practical requirements, the literature, and experience, as a most suitable model
for mobile context management, compared with the widget and client-server
models. The given design, first published in 2003, is the first blackboard-based
software framework for managing context-related information in mobile phones.

More specifically, the design differs from the related work in facilitating the
following aspects. The related work does not provide a software framework for
developing mobile device sensor-based context-aware applications, mobile
device framework support for providing fast event-based abstracted contexts
defined in ontology, framework support for context abstracting and context
recognition process in a mobile device, blackboard-based management of
context information in a mobile device, a relational context database for mobile
device context management, and framework support for application control and
interaction customization in mobile devices.

111

5. Context representation and ontology

"Plurality should not be assumed without necessity."
 - William of Ockham, ca. 1285�1349

This chapter is partly based on the articles by Korpipää and Mäntyjärvi (2003)
and Korpipää et al. (2003b, 2004a). The results of Korpipää and Mäntyjärvi
(2003) and Korpipää et al. (2003b) are further developed and additional details
are presented. The results of Korpipää et al. (2004a) are partly reused and
additional details are presented.

In the previous chapter the design of the framework, based on the requirements
and aiming at implementation, was presented. The purpose of each framework
element in processing data was explained. This chapter explains how to
represent abstracted data within the framework.

In software engineering, data structures define data representation. Data
structure definitions in program code are rigorously formal, and their main
purpose is to be efficient for machine processing, while readability for humans is
of less concern. When data representation is required to be easily human-
understandable, semantics are of importance. Such understandability is required
in customization for instance.

In this dissertation context ontology serves the purpose of representing context
information so that it is easily human-readable in addition to the machine
processability. The ontology consists of two parts: structure and vocabularies.
Structure defines the common properties of context that are used across different
domains and applications. Vocabularies are application- or domain-dependent
expandable context conceptualisations, which aim at understandability and
simplicity for the end-user and the application programmer. New vocabularies
are developed for new domains according to a vocabulary model. The term
�context representation� here refers to the entity of representing context within
the framework, which includes ontology, syntax and implementation.

112

5.1 Requirements for the ontology

The framework requirements were defined in the requirements analysis chapter.
Additional requirements concerning the representation and ontology are
presented in this chapter, where the issue is discussed in detail.

Sensors can be used to acquire information from the environment and the usage
situation. Traditionally, sensor information is mostly utilised as raw numerical
data in mobile computing. The information value and the usefulness of raw
measurement data is low for the end-user or application developer. Raw sensor
data can be abstracted for understandability, and abstractions reduce the amount
of data traffic from the sensor to the application.

The processing of context information from several low-cost sensors integrated
in mobile terminals is carried out using signal processing methods to extract
suitable features. The suitability of the extracted features should reflect the
concepts of the real world, and they should be useful for applications. Hence the
purpose of the context ontology is to define how (sensor-based) context
information should be represented with regard to its real-world use.

The following requirements were the main guiding principles in designing the
ontology. The goals are listed in the order of emphasis that was put on them in
design:

1. Simplicity. Choose the simplest necessary representation. The ontology
structure and vocabulary model should be simple enough to be easily
utilised by application developers. Vocabularies should be easily
understandable to the end-user. Expressive and detailed ontology is not
useful if it is too complex compared with the necessary level of detail
required by most applications.

2. Practical access. The ontology should enable simple, practical and efficient
queries and subscriptions to context information through the Context
Manager API.

3. Flexibility, expandability. The context ontology should be expandable to
cover new domains, and the existing vocabularies should be modifiable.

113

4. Domain. The ontology should support easy utilisation of abstracted mobile
device sensor-based context information.

5. Facilitate inference. The representation should enable efficient inference by
the Context Abstractors as well as the Application Controller. It should not
restrict the inference to any single method, since the efficiency of a method
is dependent on the type of task.

6. Genericity. The ontology should support different types of context
information.

7. Efficiency. The representation should be memory-efficient.

8. Expressiveness. The possible amount of detail in describing any single
context and the versatility of the expressions should be high.

5.2 Structure of the ontology

The ontology structure is defined as a set of properties. Each context (object) is
described using six properties, shown in the list below. Each context instance is
required to contain at least Context type, Context value and Source in order to
facilitate the practical management, storing and usage of context information
through the Context Manager.

• Context type is the category of the context, which operates as a variable
name. All subscriptions and queries must have context type as the primary
parameter. Context type is an identifier of context instance, together with
source.

• Context value is the semantic or absolute value for a context type, which
operates as variable value, used together with context type. Context value
may alternatively or additionally contain an absolute numerical value or
feature.

• Source is used to describe the semantic source of context. It can be used by a
client interested only in contexts from a specific source. Source can describe
the entity that the context instance represents.

114

• Confidence is an optional property of context for describing the uncertainty
of the context instance. Confidence can describe, e.g., a probability or a
fuzzy membership.

• Timestamp denotes the latest time the context occurred.

• Attributes can be used to specify the context expression freely, and contain a
pointer to any additional properties of details that are not included in the
other properties.

The obligatory properties of context can be used as a tuple (ContextType,
ContextValue) or as a triple (ContextType, ContextValue, Source). API
functions are based on using these properties as identifiers. The assumption is
that most context information can be represented with a tuple � i.e., a name-
value pair � or a triple.

Attributes can be used to specify the context instance freely, when the other
properties are not specific enough. Attributes can be represented as name-value
pairs. For example, attributes can contain the unit for context value in the case of
an absolute context value, or the type of confidence. It is possible to implement
the access of attributes as separate from primary properties, so that the
application does not receive an unnecessarily large amount of detail when
accessing the primary context information.

Relations between contexts are modelled in abstractors, which receive context
values from the blackboard and monitor relations between the specified contexts
or within one context type. If the specified relation or pattern is detected, new
higher level context is added into the blackboard. Even though this higher level
context may be a result of multiple context objects, it can be added into the
blackboard as a new single context object. For example, for a rule �when A
happens before B, then C�, an abstractor is implemented, which subscribes to
listen to A and B and corresponding timestamps, and when the rule is fired, C is
added into the Context Manager blackboard. There is no need to dictate in the
ontology how the relations must be represented. Hence the rationale for
describing complex relations is to allow any kind of description, and any kind of
inference operating on that description, as long as the resulting context is
represented with the properties of the context ontology structure.

115

5.3 Ontology vocabulary model

Ontology vocabularies are designed according to the domain or application
needs. Vocabulary design is a process of defining domain- or application-
specific values for the Context type and Context value -properties that are
understandable by humans. Those values should categorise and describe the
possible real-world situations so that the information is useful for applications,
and understandable to humans, according to the requirements.

Context types are defined to name and categorise context values. Context type
resembles a variable name, and context values resemble the set of values for the
variable. Figure 11 illustrates one context type and a set of three context values
for the type. Context type can have one or more concepts. Each context type can
have one or more context values. Context instance at a certain time can have one
of the values for each context type. Different context types can have one or more
common concepts. Hence it is possible and useful to form a tree hierarchy of
context type concepts, where the leaf nodes represent the context values. The
hierarchy can be utilised in querying and subscribing to branches of the context
tree, rather than only one path.

Concept2Concept1

Value1

HasA Value2

Value3

HasValue

Context type

Context values

Figure 11. A model for creating a vocabulary consisting of context types and
context values.

Context type concepts should be categorised from generic toward specific, so that
the more generic concepts are to the left towards the root and the more specific
concepts are to the right toward the leaves. In this manner, context types can have
more common generic concepts but are separated by the more specific concepts.

116

For simplicity and ease of use, very long context types should be avoided. At
maximum, context types should have three or four concepts. For example, if
context type concepts are modelled as folders in a user interface, navigating deep
folder hierarchies is slow. On the other hand, context types should be specific
enough to allow having a small set of values. Too large a set of values is difficult
to handle, at least in a user interface, if the user has to choose from a set of
values. Each context value should have a potential relevance to some
application.

In customization, actions to be performed based on contexts can also be
represented by using the context vocabulary model. Actions are defined with
two properties, action type and action value, which describe actions similarly as
context type and context value describe contexts.

5.4 Naming conventions

Appropriate naming is essential, particularly in describing the obligatory
properties, context type, context value and source, which are required for each
context object added to the context manager blackboard. These properties are
also used for accessing context information from the Context Manager.

There are two main aspects to be considered in naming context types. First,
appropriate naming should reflect the meaning of the context to the user, which
is either the application developer or customization tool user. Naming should
reveal the use of the context. Second, a correct naming convention ensures that
the user of the context information can fully utilise the features provided by the
Context Manager. When the context types are built as paths consisting of
elements from generic to specific concept, the context information can be
accessed with partial context types that represent a larger context information
subset (Korpipää & Mäntyjärvi 2003). This naming convention has also been
utilised in CEP, where the reference to a subset of context type hierarchy is
called a wildcard (Lakkala 2003a). Moreover, CEP recommends that vendor-
specific context types are named starting with a prefix that names the vendor,
e.g., �x-vendor_name:�, followed by the normal context type definition.

117

The set of context values can be either numerical or symbolic. If context values
are described as numerical, for application use, they should be understandable by
humans. If raw numerical measurement values are used, naming a context value
set is not required. Context type can be used normally. Numerical values can be
divided into named intervals � e.g., a temperature value can be �over 20�. If
context values are defined for the purpose of customization, they should be
understandable by humans, and symbolic, and the number of values in the set
should be low enough to allow choosing a value from the set to function as a
condition in a rule.

The context source property does not need to be described in the vocabularies,
but it is required if there are many context providers for the same context type
and the client is interested in contexts originating from a specific source. A
naming policy for the source is necessary to avoid naming conflicts between
different context information providers. The categories of sources are terminal
internal and external. Terminal internal sources can be named starting with the
prefix �Phone�, followed by a description of the source, such as sensor name. If
the terminal source consists of multiple elements, it should be named similarly to
the context type, where the name forms a path, e.g., �Phone:AccelerationX�.
Terminal external sources can be named as, e.g., the URI or IP address of the
source.

5.5 Example vocabularies

Ontology vocabularies were designed for mobile device contexts and application
actions for use in customization. The vocabularies were designed as shared
conceptualisations. A sensor-based context vocabulary was presented by
Korpipää and Mäntyjärvi (2003), and an audio-based context vocabulary was
given by Korpipää et al (2003a). Parts of a vocabulary for customizing context-
aware applications were given by Korpipää et al. (2004a, 2005a, 2005b).
Furthermore, in the Nomadic Media project vocabularies were designed for
describing the context information of several domains. A few parts of the
vocabularies are presented as examples in this chapter.

In a sensor-based context vocabulary (Korpipää & Mäntyjärvi 2003), the
Environment category vocabulary consists of contexts that represent the state of

118

the environment. Sensors measuring the environment include temperature,
humidity, sound, and light, embedded into a sensor box for a mobile device
(Tuulari 2000). Figure 12 illustrates a part of the example environment context
vocabulary in a tree form.

Light

Environment

50Hz

60Hz

NotAvailable

Source
Frequency

Humidity

Intensity

Type
Artificial

Natural

Dark

Normal

Bright

Dry

Normal

Humid

Figure 12. Part of the example environment context vocabulary.

The leaf nodes (grey boxes) represent context values, and the path to the context
value (white boxes) represents the context type. The vocabulary can be expanded
if new contexts become available. Table 8 presents the same environment
vocabulary part in a list form, with other context types included as well.

119

Table 8. Environment context vocabulary as a list.

Context type Context values
Environment:Light:Intensity Dark, Normal, Bright
Environment:Light:SourceFrequency 50Hz, 60Hz, NotAvailable
Environment:Light:Type Artificial, Natural
Environment:Humidity Dry, Normal, Humid
Environment:AirPressure Low, Normal, High
Environment:Temperature Below -20, -20 to 0, 0 to 20, over 20
Environment:Sound:Intensity Silent, Normal, Loud
Environment:Sound:Type Car, Elevator, Speech, RockMusic,

ClassicalMusic, TapWater, OtherSound

Vocabularies can represent contexts at many levels of abstraction. The
application that uses the context does not need to know about the underlying
abstracting processes needed to produce the context values. For example,
Environment:Sound:Type contexts require sound classification from multiple
lower level features (Korpipää et al. 2003a), whereas Environment:Humidity
context values are the result of a feature extractor utilising fuzzy quantization,
which produces symbolic features, context atoms (Mäntyjärvi et al. 2001). The
reliability of the context values depends on the reliability of the measurement
and abstracting process.

There are two categories of context types based on their values. The first
category has a value that can be produced from measurements in all situations.
Such context types are, for example, temperature, light and sound intensity. All
possible measurements at any moment can be represented as one of the values
defined for the type, unless the sensor output is erroneous. In the other category,
NotAvailable -context is required to define the state when context value cannot
be produced from measurements, and the current value is not the previously
detected one. For example, when the light type is natural, either of the defined
SourceFrequency values is valid, so the value for that context type is
NotAvailable. NotAvailable is similar to the OtherSound value for sound type,
which can be interpreted as having none of the recognisable values available,
since they could not be recognised by the abstractor.

120

The device category vocabulary describes concepts that relate to the device
itself. This category is large, since it includes such device activity context types
as Movement, Orientation, Keypad, CallStatus, ForegroundApplication,
BatteryStrength, NetworkStrength, Charger, NetworkName, etc. The example in
Table 9 presents some of the acceleration sensor-based abstractions of the device
category vocabulary in a list form.

Table 9. Device context vocabulary.

Context type Context values
Device:Orientation UpsideUp, UpsideDown, DisplayUp,

DisplayDown, DisplayRight, DisplayLeft
Device:Movement:Swing Push, Pull, SwingUp, SwingDown,

SwingLeft, SwingRight
Device:Movement:Activity Still, Activity
Device:Movement:
AccelerationPeak

Low, Moderate, High

Abstracting contexts from sensor data that describe the user activity is very
challenging since the user activity can be only indirectly inferred based on the
device sensors. Moreover, the activities that produce features referring to, and
recognised as, user activities can ambiguously be produced by other real-world
situations. For example, measurements can indicate the typical acceleration
frequency of walking or running, but it cannot be proved that the feature is the
result of the user walking.

In the Nomadic Media project context vocabularies were specified for the
domains of airport, home and hospital, according to the vocabulary model. Table
10 presents an example of the airport domain location vocabulary.

121

Table 10. Airport domain location vocabulary.

Context type Context values
Location:Facility Airport
Location:Airport:Name Helsinki�Vantaa
Location:Airport:Code HEL
Location:Airport:Area Arrivals, BaggageClaim,

Departures, Parking
Location:Airport:Terminal Domestic, International
Location:Airport:HotSpot:Name Registration, Arrival, Check-In,

FreeTime, Departure
Location:Airport:HotSpot:NearbyDevices BT IDs in range (array)

5.6 Context instances

The ontology structure defines the primary properties of the context information,
and the vocabularies categorise and name the domain-specific types and values
of the context. In other words, the vocabulary defines the set of contexts that
may occur in certain domain. When the context management system is online,
multiple context instances can, and usually will, exist at a certain time instant.
Each instance is represented by the context type, context value, source,
confidence and other properties defined in the structure. Depending on the
implementation, the context instance can be represented � for example, as a
context object. The Context Source and/or abstractor transforms the incoming
data into a context instance by assigning values to the properties, after which the
instance can be added into the Context Manager blackboard. Table 11 lists a few
examples of possible context instances according to the ontology. Timestamp,
source, and attributes properties are omitted.

122

Table 11. Examples of context instances from the ontology.

Example number Context type Context value Confidence
1. Environment:Light:Type Artificial 1
2. Environment:Temperature Over 20 1
3. Environment:Humidity Dry .7
4. Device:Placement AtHand 1
5. Gesture Throw 1
6. Environment:Sound:Type RockMusic .8
7. Location:Facility Airport 1

Independent of the source, underlying processing and abstraction level, all
context instances are represented with the same structure, and can be used by the
application through a common interface. Moreover, raw data values can be
represented as instances on the blackboard as well, if required by the application.
The optional confidence value represents fuzzy membership of the context in
example three, and probability in example six. Other values are crisp and hence
use the default confidence one. If necessary, the interpretation of the confidence
can be identified in the attributes property.

5.7 Interpretation of symbolic values in vocabularies

Context values defined in the vocabularies can be divided into two categories:
subjective and objective. Symbolic context values abstracted from measurements
such as light, temperature and humidity can have different interpretations in
different situations or by people from different cultures. Hence subjective
contexts, such as bright light, suffer from a degree of ambiguity, which reduces
their applicability. Generic use of subjective contexts is difficult. Vocabularies
with subjective symbolic values should be designed according to the domain or
application needs. Absolute values can be used in addition to or instead of the
symbolic value when necessary. In customization, subjective values should be
either omitted or their meaning should be presented explicitly, since otherwise
the users are puzzled about their meaning (Korpipää et al. 2004a).

123

For example, if values for temperature context are defined as a fuzzy set of Cold,
Normal, Hot, the values are strongly situation- and observer-dependent. Another
way to express temperature would be having the temperature in Celsius degrees
as a context value. The context change could be indicated when the integer
changes. The solution is feasible in this case: first, the context is directly
meaningful to humans; and, second, the value is an unambiguous and objective
fact. The absolute and semantic contexts could be separated by naming them in
the context type � e.g., Environment:Temperature:Semantic.

However, absolute values are not necessarily as feasible to use for all context
types. For instance, a light-intensity context could be measured in lux. If the
same change detection principle of monitoring absolute integer values is used,
the light context would be more change-sensitive. Ideally, the message traffic
from changes should not be more frequent than that required by the application.
One solution for reducing the change sensitivity is to define larger steps for the
intensity value � for example, ten lux � and a change indication would occur
upon a step change. More difficult to handle as raw values are features that are
not directly interpretable by humans. For example, Device:Movement:Activity
context values are abstracted from a feature indicating the maximum standard
deviation for a certain time interval from each acceleration channel. Using such
a feature as a numerical value would require further explanation for both an
application developer and a personalisation tool user. Abstracting before use is
highly recommendable for such features. Furthermore, having a large number of
values for context should be avoided if the goal is to enable user personalisation
of context-aware behaviour.

Objective contexts are situation- and observer-independent. Examples of such
contexts are numerical temperature, light type, and device orientation. These
contexts can be considered generic, and generally should not be interpretable
differently in different situations or by different people.

5.8 Syntax

Using context in mobile devices requires representing the context in a machine-
readable form, syntax. The suitability of the choice of syntax is task-dependent.
For example, if the aim were to create a logic inference engine that operates

124

based on the syntax, it would be reasonable to use e.g. OWL, assuming that
performance issues were not an obstacle. If human readability and wide adoption
were the primary criteria, XML-based syntax would be well founded. If memory
and time efficiency of processing context information were the most important
criteria, an efficient syntax, such as object-oriented language structure, would be
the optimal machine-readable syntax.

Since the focus in this dissertation is on terminal context management, the
optimal syntax choice is an object-oriented language data structure. Context
instances can be represented as context objects that encode the context properties
defined in the ontology structure. If the external context sources provide context
instances in a different syntax, messages have to be transformed before adding
them to the terminal Context Manager blackboard. XML-based CEP (Lakkala
2003a) is directly compatible with the context framework described in this
dissertation, and can be applied as the formal syntax when context data is sent
from external sources to the terminal or from the terminal to external entities.

The context object is used to encapsulate a context instance within the terminal
context framework. For the purpose of use in customization and sharing, the
Context Exchange Protocol syntax (CEP) is utilised (Lakkala 2003a). CEP is
compatible with the ontology structure defined in this dissertation and published
by Korpipää and Mäntyjärvi (2003). CEP is an XML-based format that uses the
XML Schema for specifying the meta-structure of the format. XML was chosen
in CEP due to its extendability, easy debugging, and message legality checking,
and XML was chosen over RDF based on its better understandability by human
readers (Lakkala 2003a). A simplified example of a single-value context
instance described in CEP compatible with the ontology is as follows:

<atom name="Location:Airport"
source=""
userId=""
timestamp="">
<string name="Terminal">Domestic</string>
</atom>

Name corresponds to the context type, Location:Airport:Terminal, and the
context type has a context value, Domestic. Other attributes are omitted.
Furthermore, CEP can be applied to describe context-action rules, to be applied

125

for application control. An example of a CEP rule script (for which a graphical
representation is later shown in Figure 18) compatible with the ontology is as
follows:

<script xmlns="http://www.nokia.com/ns/cep/script/1.0/"
xmlns:cep="http://www.nokia.com/ns/cep/1.0/">
<if>
<and>
<equal>
<atomRef name="Device:Charger" />
<cep:string>Charging</cep:string>
</equal>
<equal>
<atomRef name="Location" />
<cep:string>Home</cep:string>
</equal>
</and>
<actions>
<notify message="Application function parameters" />
<cep:atom name="ExternalDevice:ImageAlbum">
<cep:string>SaveNewImages</cep:string>
</cep:atom>
</actions>
</if>

</script>

Each CEP rule, applied for application control, has one or more condition and
one or more actions. The action part contains the human understandable action
expression to be applied in customization, and machine executable application
function parameters. In the previous example the machine executable application
function parameters carried by the �notify message� are omitted for clarity. The
notify message has a separate syntax.

In other words, context rules and context instances can be formally represented
and shared by applying CEP. The syntax for formal representation of the
vocabulary itself is not required in the application areas discussed in this
dissertation. The vocabularies, i.e. the list of available context types and their
values, are represented in a semi-informal way for the best human readability,
and for rapid utilisation by the application developers and customization tool
users. Alternatively, context and action vocabularies can be described as a
collection of CEP instances.

126

5.9 Discussion

Requirement one suggests that the encoding of the ontology vocabulary should
be towards lightweight and semi-informal. This choice does not make the
vocabulary maximally expressive, as is aimed at by requirement eight. A balance
has to be found between the usability of the representation and the
expressiveness. The representation should not be overly specific for the task it is
designed for. For instance, a formal ontology could represent that the
Environment: Light: SourceFrequency only makes sense if Environment: Light:
Type is Artificial. In the current design this knowledge does not need to be
separately modelled since the Environment: Light: SourceFrequency has the
value NotAvailable, which straightforwardly expresses the same information for
the application.

Nevertheless, the choice of a semi-informal vocabulary syntax does not exclude
the possibility of incorporating a more formal ontology vocabulary
representation, based on, e.g., the requirements four, three and eight. It is to be
noted that all requirements cannot be fulfilled maximally by one design choice.

A more formal representation of the vocabulary could facilitate expressing the
constraints of the domain. For instance, the ontology vocabulary could state the
limits of allowed context values, which could then be checked by the Context
Manager. In a terminal-centric system the main use for such a feature would be
system self diagnostics, i.e. an incorrect input value could be detected and
indicated or rejected. The formal representation of the vocabulary semantics
becomes more relevant for context instances received from outside the terminal.

Concerning the validity of context values as a function of time, a formal
vocabulary representation could better express the validity time limits or the
allowed history length for each context type. The validity time window or
history length for persistent values can be application-dependent. In sensor-
based terminal-centric context management applied for enhancing interaction,
most context values are likely to be useful as non-persistent at the time instant of
an event occurrence. However, to conclude, incorporating a more formal and
expressive vocabulary syntax is further work.

127

5.10 Summary

Semantic descriptions can be used for representing abstractions of sensor-based
context data. An ontology was introduced for representing context information.
The ontology consists of two parts: structure and vocabulary. Structure defines
the common properties of context that are used across different domains and
applications. Vocabularies are application- or domain-dependent expandable
context conceptualisations, which aim at understandability and simplicity for the
application programmer and user. A generic vocabulary model was presented for
creating new vocabularies for new domains. Examples of context vocabularies
for multiple different domains were represented.

The main contributions of this chapter are a requirements analysis for context
representation and an ontology for a mobile device, structure and common
properties for domain-independent representation of context information as data
objects, and a generic vocabulary model for describing context instances and
vocabularies.

128

6. Context abstracting and recognition

This chapter is partly based on articles by Korpipää et al. (2003a, 2003b). The
discussion on context abstracting and recognition by Korpipää et al. (2003b) is
extended at length. The case study part is, for the major part, the same as that
discussed by Korpipää et al. (2003a).

Representation and ontology for describing abstracted context data was given in
the previous chapter. This chapter will explain how context abstractions can be
formed from a continuous raw data stream. The abstracted data is then
represented as described by the ontology.

The framework supports inference based on context information. As was
discussed earlier, inference here refers to context recognition or application
control, and the former is discussed in more detail in this chapter. In the
framework, context abstracting and recognition takes place in the plug-in
Context Abstractors or Context Sources.

6.1 Requirements for context abstracting methods

The requirements for Context Abstractor entities from the architecture viewpoint
were analysed earlier. The additional requirements discussed here concern the
capabilities of context abstracting methods for utilisation in mobile context-
aware computing. Context abstracting methods are used for the phases of feature
extraction and classification, referring to the process of pattern recognition
(Duda et al. 2001).

1. Efficiency. Efficiency is a primary requirement for recognition methods in
mobile computing. The processing, battery and memory capacities in mobile
devices are limited. The abstracting methods should have as low time and
memory complexity as possible. The amount of processor time and memory
accesses is proportional to the battery energy consumption.

2. Handle multidimensional input data. Many sources of context are potentially
available for a mobile device. The classification methods should be able to

129

efficiently handle multiple input features for inferring higher abstraction
level contexts. Moreover, the situations of mobile device usage are dynamic
and can change rapidly, requiring fast response times as well.

3. Handle uncertainty. The input data used for context abstracting is not always
perfect. Context sources may produce incomplete, incorrect or inconsistent
information. The abstraction methods should be robust to uncertainty.

4. Updating flexibility. Other criteria include the flexibility of updating the
(learned) models. If the system is designed to learn online, flexibility
becomes an important criterion, as well as the learning efficiency and the
amount of training data needed to create the model. Furthermore, model
extensibility and modifiability is required when new contexts become
available.

5. Scalability. When the system is extended to contain large models or a large
number of them, it should sustain its performance.

The process of context (pattern) recognition consists of phases that process data
at different levels of abstraction. Different context abstracting methods have
strengths at different phases of the pattern recognition process. Hence it is
justifiable to combine these strengths by applying different methods for the
feature extraction and classification phases of the recognition process.

6.2 Inference for context abstracting within the
framework

The context framework and the ontology have not been designed for any specific
inference method. The framework allows the use of any inference method. The
Context Manager hides the details of the context abstracting from the client. A
collection of agents takes information from the common data space, processes it,
and returns more abstract information to the blackboard. The approach is
commonly known from blackboard systems (Engelmore & Morgan 1988). There
is no need to restrict how the agents represent and process the information as
long as it is returned as defined in the ontology structure. Figure 13 offers a
simplified view of the inference approach.

130

Inference
engine

Blackboard
manager

Inference
engine

Inference
engine

Contexts

Context
Figure 13. Inference engine(s) receive contexts from the blackboard and return
abstracted contexts back to the blackboard in a form defined in the ontology.

Abstracting context from multiple sources may require methods that can manage
incomplete information. Context uncertainty is represented with the confidence
attribute, which can be utilised in several inference methods, such as
probabilistic networks and fuzzy logic.

Contexts of different levels of abstraction can be added to the blackboard by the
inference engines. High-level context refers to a context inferred from an assembly of
lower level contexts. Both abstractions can be described with the same ontology
structure. Higher level contexts can be derived from either a set of context values of
different types at a certain time instant or from a context history. Context history is a
series of successive instances of contexts, which are stored in the blackboard manager
database. The ontology does not need to model time sequences. Time-dependent
relations can be modelled in the inference engines, which receive a sequence of
contexts from the blackboard and return contexts as defined in the ontology.

The Client does not need to know the abstractor input context types when it is
using an abstracted high-level context. The Context Abstractor subscribes to the
input context types, and gets indications from the Context Manager upon value
change for the subscribed types, and adds the new abstracted context into the
blackboard. Hence the abstractors only process data when there have been
changes in the inputs, instead of continuous processing. The Client only needs to
subscribe to the abstracted context type to be informed about the changes in it.

It is possible to implement domain-specific inference engines of any kind, which
are �hard-coded� for certain abstracting tasks. Another solution is an inference
engine that can operate on context data with a set of previously defined operators,
such as condition, logical, and comparison operations (Lakkala 2003b). By
combining these operators, straightforward abstracting and change detection tasks
can be performed. Moreover, inference tasks can be described as XML scripts,
without implementing executable code.

131

It is notable that the semi-informal lightweight ontology described in this
dissertation is directly compatible with and does facilitate straightforward
context abstracting and change detection tasks based on the CEP XML scripts
and the inference engine (Lakkala 2003b). Context Abstractors in the framework
can be implemented without programming executable code, as scripts that can
be plugged in. The Script Engine is adopted in this dissertation and it is not the
contribution of the author; hence a more detailed discussion can be found
elsewhere (Lakkala 2003a, 2003b, Korpipää et al. 2005b).

6.3 Multidimensional contexts

At each moment of time a set of context instances describes the overall situation.
The set of instances can be represented as a context vector, where each vector
element is a context instance. The context vector can represent a higher
abstraction level context. Similarly, a time sequence of context instances can
represent a higher level context.

Hence vector representation is one of the possible representations that can be
used by the Context Abstractors for inferring abstractions from vectors of
context instances. However, all contexts on the blackboard are treated as
atomary. When an application subscribes to a context that is abstracted from
multiple sub-contexts, the Context Abstractor can be used to recognise the
desired context from the sub-contexts. The input for the abstractor is a vector
consisting of context atoms, and an output is an atomary higher level context.

High-level context described as a vector needs to be labeled if human
understandability of the context is required. In unsupervised learning of contexts
from multidimensional data, generating proper labels understandable by humans
is a challenge. Another challenge is learning context-action patterns. For
example, the learning system could discover a cluster corresponding to a context
(Himberg et al. 2001; Flanagan et al. 2002), and the user regularly performs a
certain action in that context cluster. Based on this knowledge, the system could
automatically generate a rule that connects the context to the action. However,
practical challenges remain, such as how to automatically discover those
context-action patterns from the data that are relevant for the user.

132

6.4 Context recognition case study

The process of context abstracting and the implementation choices of the process
phases within the framework have been explained. The representation for the
abstracted contexts was given. An example of the process of context recognition
from multi-sensor data is given in this section. A study of recognising sensor-
based contexts from continuous data measured from a real-world scenario is
presented. The chosen abstracting methods are assessed against the requirements.
This section is partly based on the article by Korpipää et al. (2003a).

The purpose of the context recognition case study is to initially examine the
potential feasibility of multi-sensor context recognition. The study takes the form
of an offline pattern recognition experiment, where the data is collected with a
measurement system in which the positioning of the sensor box corresponds to
positioning a mobile phone in the front pocket of a jacket or shirt. In case context
recognition of this type is found feasible and applicable, the future prospect is to
have the sensors integrated in a mobile phone, where the recognition is processed
by the context framework, i.e. Context Sources and Context Abstractors.

6.4.1 Feature extraction

In the pattern recognition process the phases of sensing and segmentation take
place before the feature extraction. In the study, data was collected from nine
channels � three for acceleration, two for light, and one for humidity,
temperature, touch and audio. Segmentation was substituted by dividing the data
into one-second intervals, which were each analysed separately. In terms of
pattern recognition, each one-second snapshot from all the channels represents
an object or pattern, the target of classification.

Feature extraction is the next phase in the recognition process. The task of
feature extracting is to raise the abstraction level of the data and express the
information contained by the data more compactly. Many alternative methods
exist for extracting features. In the study, symbolic features � context atoms �
were extracted. In terms of AI, the processing step of generating context atoms is a
signal-to-symbol conversion (Engelmore & Morgan 1988). Numerical context
feature representation is additional to or an alternative expression of symbolic

133

values (Korpipää et al. 2004b). The decision on which kind of features are
extracted depends on their use. If the extracted features are designed to be directly
used in personalisation, they should be understandable by humans and symbolic.

The features to be extracted were chosen according to how well they describe
aspects of the real-world situation of the mobile device user (Mäntyjärvi et al.
2001, Himberg et al. 2001). The use of symbolic features was justified on the
following basis:

• Symbolic human-understandable values facilitate the user�s task of
customizing context-based actions.

• Application control methods, such as fuzzy control, require the semantic
expression of features (Mäntyjärvi & Seppänen 2002).

• Context atoms can be used directly by application developers or users
without further processing.

The following two methods were used for producing context atoms:

1. Set crisp limits for the chosen feature. The result is a Boolean expression of
each context atom value. For example, in the case of light intensity (ontology
context type Environment:Light:Intensity), the context values are Dark,
Normal and Bright. If one of these is true, the others are false. The line
intersections represent the crisp limits (Figure 14).

2. Apply a fuzzy set for the chosen feature. The result is a fuzzy set in which the
instance has values according to a membership function. The intensity of light can
be, e.g., Normal with a membership of 0.3 and Bright with 0.7 (Figure 14).

Fuzzy
membership

1

Light
intensity

D
ark

N
orm

al

B
right

0

0.5

Figure 14. Quantization example.

134

The primary motivation for having used fuzzy sets is that many events in the
world are fuzzy. Fuzzy quantization can be viewed as a granulation of
information, which makes it possible to exploit the tolerance for imprecision by
focusing on the information that is decision-relevant (Zadeh 1996). In the
example, the boundary between normal and bright light is fuzzy, and a two-
valued expression would be coarse. With a fuzzy set the value can be something
in between the two symbolic values.

The next step is to classify the objects into a set of predefined categories. Each
object is a vector representing one second of data, containing all the features
(context atoms) calculated from the measurements for each channel. Each
element of the vector represents one feature.

6.4.2 Classification

Extracted features can be directly utilised by the applications. They can also be
used for further abstracting � e.g., for classification. Within the framework, the
classification phase would be performed by the Context Abstractor or Context
Source, as was discussed earlier.

The Naïve Bayes classifier (Pearl 1988) was chosen for the study. Analysed
against the requirements, it has the following good qualities:

• It is computationally very efficient and thus suitable for online processing in
a mobile device. Training and inference both have a linear complexity in the
size of input data.

• Low computational complexity of inference allows the use of a large input
space without significant performance degradation.

• It is robust in the presence of incomplete information.

• It can use context data described by the ontology as an input, a vector of
context atom confidence values. Fuzzy membership values can be applied as
virtual evidence.

135

• It requires no background information modelling, except for choosing the
relevant inputs for each network. For instance, based on background
knowledge, it is not rational to try to infer the type of ambient music from
the context atoms describing the stability of the device, even though it might
happen to be a discriminating factor based on the data set.

• Multiple simultaneous contexts of different types can be modelled with
multiple parallel networks.

• It is possible to modify the models by updating the conditional probabilities
of the network. Since the computational complexity of learning is low, it can
be performed online.

• New context types can be modelled with additional networks.

Two separate networks were used in the case study, one for the context type
Environment:Audio:Type, and one for Location:IndoorsOutdoors. The
environment audio type had the context values RockMusic, ClassicalMusic,
Speech, Car, Elevator, TapWater and OtherSound; IndoorOutdoor location had
the context values Inside and Outside.

The recognition of the higher level context Indoors from a set of context atoms
is illustrated in Figure 15. The Indoor/Outdoor Bayesian network is used for
classifying the context atom confidence value vector describing a one-second
situation instance. Each context atom (input) is associated with a conditional
probability, which indicates the probability of the input given the output.
Conditional probabilities have been learned from the training data. During the
classification, the Bayes theorem (Pearl 1988) is applied for calculating the
output class, given the current values of the inputs and the conditional
probabilities. The audio classification utilises the same principle.

136

Environment

Location

Humidity
Dry

Normal

Humid

Indoors

Outdoors

Bayesian
classification

Light

Dark

Normal

Bright

Artificial

Natural

50Hz

60Hz

Intensity

Type

SourceFrequency

NotAvailable

Environment

0.1

0.9

0

1

0

1

0

0

0

0

1

1

0

Figure 15. The white rectangular boxes represent the context types for the
context values that are represented by the light grey boxes. The dark grey boxes
contain the corresponding confidence instance values for the current situation.
The Naïve Bayesian network can be used to classify the confidence instance
values into one of the previously defined output classes.

6.4.3 Results of the case study

In the case study (Korpipää et al. 2003a), two naïve Bayesian networks were applied
to classify the contexts of a mobile device user in their daily activities. The research
problem was to recognise nine contexts (Speech, RockMusic, ClassicalMusic, Car,
Elevator, TapWater, OtherSound, Indoors, Outdoors) measured from a continuous

137

real-life scenario. Four contexts (Activity, Still, Walking, Running) were abstracted
in the feature extraction phase, without classification. Hence the total number of
abstracted contexts was 13. Multiple contexts could exist simultaneously in the
scenario. The measurement system hardware consisted of a small sensor box
(Tuulari 2000) attached to the shoulder strap of a backpack containing a laptop. The
user carried the backpack when collecting the scenario data.

Figure 16 presents the classification results for one scenario of nine, showing the
recognised context values as a function of time.

Figure 16. Recognised context values as a function of time in a scenario. The X-
axis is time, the Y-axis context, and the grey scale intensity is the probability of
context at a time instant.

138

Table 12 presents the results averaged over all nine classified contexts, and over
nine scenarios. The controlled condition data (first row) were measured
separately from the scenario data in as ideal conditions as possible. Since the
data for each context were measured separately, these data are free of the
disturbances that were present while measuring the actual continuous scenario
data (the results on rows 2 and 3). Hence the controlled conditions experiment
predictably yielded almost 100% accuracy in true positives and true negatives.
This can be viewed as maximal accuracy in an optimal setup. A four percent
error in true positives suggests that the data contain some similarities that cannot
be discriminated with the features. In the real-world situation, even if training
and test data are the same, the recognition accuracy falls below 90% (row 2).
The main reasons for the decrease are, first, coarseness of annotation, as it is not
possible to label the correct answers precisely, and, second, the undefined action
that takes place each time a class segment changes. Extra events often occur
randomly when they should not, since the real-world situation cannot be
controlled. About eight percent of the error in true positives is explained by
these factors. The results in the second row of Table 12 are calculated by using
each individual data set as training data while the same data set is used as the
test data. Hence the second row results can be viewed as a reference accuracy of
the classifier in the specified setup with the real-world scenario data. The actual
classification results shown in the third row of Table 12 must be viewed in
comparison with the results in the second row. The actual performance (row 3)
was measured using cross-validation by leaving out in turn one of the nine data
sets of the training data set being used as a test data set. Comparison of rows two
and three clearly shows that the Naïve Bayesian network models the data
satisfactorily in this setup, and the amount of training data has been sufficient.

Table 12. Three stages of classification accuracy results for the nine contexts
classified using two Naïve Bayesian networks. The actual real-world scenario
results (row 3) can be compared with the maximum scenario results (row 2).

 True positive % True negative %
1. Controlled conditions, test data

same as training data

96

100
2. Scenario data, test data same as

the training data

88

95
3. Scenario data, leave-one-out cross-

validation

87

95

139

The recognition (and abstracting) results for each of the 13 individual contexts,
averaged over nine scenarios, are shown in Table 13. The last row shows the
system average, which accordingly includes both the Bayes-classified contexts
and the feature-extracted contexts. Some important non-audio contexts, such as
Inside and Outside, are recognized well in the scenario. The recognition of
Walking is based on detecting the frequency and intensity of vertical movement,
and the placement in a trouser pocket or on a belt, not to mention feet, would
have been better than a shoulder strap. Another factor that reduces Walking
detection accuracy is the coarseness of manual segmentation. For instance, the
scenario segments 9 and 11, where the task to walk to the CD player, change the
disc and walk back to the sofa is labeled merely as Walking, which is not true
while you change the disc.

The data was collected by five persons. The results are thus more generalisable
than if the training data and test data had both been given by the same person.
User-dependent training would probably enhance the results for contexts that
vary a great deal among different users, such as Speech. This was not tested
though. In this experiment the recognition of Speech can be considered speaker-
independent, and thus the accuracy of 91% is good. Concerning the acceleration-
based contexts Walking and Running, some testees produced worse results due
to their style of movement containing negligible vertical accelerations of the
upper body. Context Activity is designed to indicate any movement of the
device. Hence, while the user state is Walking or Running, there is also Activity.
Still is the opposite of Activity, and should be on when there is no movement of
any kind. Some people are more active than others, so that while for some of the
testees the context Still is in the correct segments, other testees are active during
the whole scenario. In this sense, the recognition of contexts Still and Activity is
correct with respect to the situation, but, as some people tend to move while
sitting on the sofa and listening to music, although annotated Still, the actual
numbers are much worse. This is partly a problem of scenario design, which
should have contained a segment where the device is put on the table, for
instance, so that the annotation could be set to Still and the real situation would
certainly have been the same.

140

Table 13. Recognition results for each of the 13 contexts averaged over 9
scenarios. The last row shows the system average over all the 13 contexts, of
which 9 are classified and 4 are direct.

 True positive % True negative %
Classical music 80 99
Rock music 68 98
Other Sound 91 94
Speech 91 97
Tap water 91 100
Elevator 92 97
Car 100 100
Running 62 95
Walking 72 83
Activity 100 40
Still 88 92
Outside 69 100
Inside 100 69

System average 85 90

In the contexts that relied on audio features, the best results were achieved in
recognizing Car, Tap water and Elevator. For those contexts there were mainly
one or two features that separated them quite clearly from the other contexts. In
addition, those audio signals were continuous in time, unlike, for example, a
speech signal. The recognition of Classical music, Rock and Speech signals
suffers from the strong variation between consecutive analysis windows, as well
as from the variation between the training and testing data. One of the problems
in the audio feature design was deciding the length of the time window. The
features were used as an input for the Bayesian classifier using a one-second
interval; thus if the features were calculated using a longer window, delays were
evident in the recognition, thereby reducing the accuracy. The duration of the
contexts in the scenario data was short, from only a few seconds up to 30
seconds. Even for humans, the average recognition time for some everyday
auditory scenes is 20 seconds (Peltonen et al. 2001).

141

The measurement setup was natural. Sources of confusion include birds singing
outside, clinking of keys, the sound of the assistant�s footsteps, sounds made by
taking the CD out of its case, command replies of the measurement system, etc.
The context transitions are not as clear and immediate as they are annotated. For
example, after driving a car one does not directly start running; one turns off the
car engine, undoes the seatbelt, opens the door, gets out, closes the car door, and
then starts jogging. Labeling merely incorporates driving the car and running.
Therefore, some of the seemingly odd mistakes in the recognition are actually
correct if one looks at the raw data, but they still have to be treated as errors in
accuracy calculation. These artefacts cause more relative error in a short
scenario than in the longer ones.

6.4.4 Discussion

The goal of the case study was to expand the collection of generally
recognizable constituents of context, where personal mobile device usage is
concerned. Even though the scenario setup was limited, some conclusions can be
made about the genericity of recognition. It is quite obvious that most of the
contexts recognized in the scenario are likely to be valid only locally, since most
features potentially refer to many possible real-world situations. Progress
towards solving ambiguities requires more and more finely grained information
at the lower levels of the context hierarchy. Background knowledge was only
used in the network structure setup for dividing the classifier into two networks
with selected inputs, based on the underlying sensor types, and for the
quantization limits. More specific background knowledge modelling can be used
to solve ambiguities within a restricted scenario. However, over-specific
background knowledge modelling causes the loss of generality of the
classification system as more and more contexts become context-dependent
instead of being generic descriptors of the environment, such as MPEG-7-related
features are for the audio data. In addition to ambiguity, the traditional machine
learning problem of generalizing beyond training data (Mitchell 1997) may
emerge, although the scenario in this study was limited enough to control that
aspect. Failure in generalization may cause difficulties in contexts that are
complex at the feature level or contain a lot of variation, such as Speech, which
tends to be user-specific.

142

Bayesian networks are suitable for classifying incomplete information and
learning conditional probabilities is straightforward, requiring relatively little
training data. Naïve Bayes networks are computationally very efficient, and thus
feasible for real-time recognition. In this experiment the Naïve Bayesian
classifier almost reaches the reference accuracy, which indicates that there were
enough training data to explain the variability introduced in the data on purpose.
Even though the Naïve Bayes independence assumption is violated, the classifier
still performed well. Concerning time, the classification is performed
independent of previous contexts; each second is treated individually. It is
evident that the order of events in time provides additional context information,
which was not exploited in this experiment. However, although the order of
events may help gain better results within a restricted scenario, it is not likely
that those results can be generalised well beyond the training examples, knowing
that the order of events in the real world varies significantly.

Although the case study is long-term context-awareness research, some of the
contexts are recognized reliably enough to suggest even near-term applicability.
An example of such a context is Car, which was recognized with an accuracy of
100% both in true positives and negatives. However, even simple applications
require prior study of how, for example, different clothing affects the
recognition, since in most practical situations the mobile device is placed under
clothing. Moreover, in mobile devices the battery power consumption from the
continuous audio-based monitoring of the environment poses a big problem for
practical utilisation.

6.5 Summary

The context framework supports abstracting context information from a
continous sensor data flow into abstracted event-based communication. For
utilisation in applications, the abstracted context information is represented in a
uniform manner, as defined in the ontology.

The requirements for context recognition methods suitable for use in mobile
devices were specified. For the case study, the selected classification method
was analysed against the requirements. The case study evaluated recognition of
multiple simultaneous contexts from multiple sensor sources. The feasibility of

143

continuous (not pre-segmented) recognition of contexts from real-world sensor
data was evaluated quantitatively and compared with a reference classification
measured in controlled conditions.

The main contributions of this chapter are a requirements analysis for context
recognition methods for use in mobile devices, a conceptual model for the
transformation of continuous sensor data flow into abstracted context change
events within a blackboard-based mobile device context framework, an
experiment and results for the recognition of multiple simultaneous contexts
from multiple sensor sources in a mobile device user case study, and a
quantitative evaluation of the feasibility of continuous multi-action context
recognition.

144

7. Context Manager API

Previous chapters have introduced the context framework elements, and the
ontology for representing the abstracted information that is used through the
framework. For an application, or the Application Controller, that uses the
Context Manager, the activity in the other framework elements is transparent.
The Context Manager provides a single point interface to context information for
clients. To summarise, the Context Manager provides a �publish and subscribe�
mechanism and a database. This chapter introduces with examples the
application programming interface (API) provided by the Context Manager. The
API was partly published by Korpipää et al. (2003b).

7.1 Adding context

Any client may add contexts to the Context Manager blackboard. Each
individual add-message is allowed to contain one context. An alternative would
be to collect a set of contexts before sending them. The latter option would be
more efficient if the collected contexts could be sent at suitable time intervals,
but it would complicate the handling of error situations and would be unsuitable
if different time resolutions were required for different context types.

Context objects are used for encapsulating the context instance. In the case of
device internal context add, the client (Context Source, abstractor or application)
must fill the context object, which contains the properties defined in the
ontology structure. Properties context type, context value and source are
obligatory, the others are optional. After setting the property values the client
can send the AddContext message, which contains the context object. The
AddContext function has parameters determining whether the context instance is
stored into the permanent database or not, and whether change detection is
performed. Table 14 presents two example contexts to add to the blackboard.
The contexts are instances from the ontology vocabulary. The Context Manager
returns a value according to the success of the operation. Only context type and
context value properties and method name are presented for clarity.

145

Table 14. Context add examples.

Purpose Method name Context type Context value
Add context AddContext Environment:Light:Intensity Bright
Add context AddContext Device:Movement:Activity Activity

7.2 Requests and responses

The client may request context information directly from the Context Manager,
which contains a relational context database. The application developer only
needs to know the type of context from the ontology, and the method name to
make a request (Table 15). Even if the context is abstracted from multiple inputs,
the application developer can request it by the context type defined in the
ontology vocabulary. The client may also request context information by the
sub-branch of the context ontology vocabulary hierarchy tree (example number
2 in Table 15), and in this case the response will contain all the context objects
that were found for all the context types of the sub-branch. Requesting by sub-
branch makes it easier for the client to get information from multiple
subcategories without separately requesting individual context types. Tables 15
and 16 contain a few examples of requests and corresponding responses.

Additionally, queries can be made with the context source as a key. The requests
may contain context type and source or either of them. The examples represent
only contexts from device internal sources, and thus the source property is
omitted. Only context type and context value properties and method name are
presented for clarity.

146

Table 15. Examples of client requests to Context Manager.

Example
number

Purpose of the function Request name Context type

1. Request context with a
full context type from
vocabulary

RequestContext Environment:
Light:Intensity

2. Request contexts with a
partial context type (sub-
branch) from the
vocabulary

RequestContext Environment:
Light

3. Request a set of contexts
(set consists of one or
more context types)

RequestContextSet {Environment:
Humidity,
Device:
Orientation}

4. Request contexts of a
specified time interval for
a context type

RequestContextsOf
TimeInterval

Environment:
Temperature

5. Request a number of
latest contexts for a
context type

RequestLatestN
Contexts

Device:
Movement:
Activity

Table 16. Example responses from the Context Manager for the requests in the
Table 15.

Example
number

Context type Context value

1. Environment:Light:Intensity Bright
2. {Environment:Light:Intensity,

Environment:Light:Type,
Environment:Light:SourceFrequency}

{Bright, Natural,
NotAvailable}

3. {Environment:Humidity,
Device:Orientation}

{Dry,
UpsideUp}

4. Environment: Temperature {Normal, Cold}
5. Device:Movement:Activity {Still, Activity,

Still}

147

In example three, requesting a set of contexts corresponds to performing
RequestContext for all the context types in the set. The context set request exists
to enable getting all the required contexts by using one command instead of
many. In example four, contexts that occurred for a certain type within the
specified time interval are returned for the request. In example five, a specified
number of latest contexts, starting backwards from current, are returned for the
request. Set and time interval requests can only be performed with a full context
type; sub-branches can only be used with the RequestContext method.

7.3 Subscriptions and indications

The subscription-indication mechanism delivers the required context information
to the clients in an event-based manner. The clients subscribe to context change
notifications � the clients essentially tell the Context Manager, �when something
about this happens, let me know.�

Subscribing to the full context type (path) specified in the vocabulary enables
notification about a single context value upon change. Subscribing to a partial
context type (sub-branch) enables notification about all context values that are
under the specified branch, whenever any of the context values change. Tables
17 and 18 show examples of subscriptions for the contexts specified in the
ontology vocabulary examples, and the corresponding indications.

Subscriptions can also be made with the context source as a key. The
subscriptions may contain context type and source or either of them. The use of
source is not included in the following examples.

148

Table 17. Examples of context subscriptions.

Example
number

Purpose Subscription
name

Context type Context
value

1. Subscribe to context
with a full context
type from vocabulary

ContextChang
eSubscription

Device:
Placement

-

2. Subscribe to contexts
with a partial context
type from the
vocabulary

ContextChang
eSubscription

Environment:
Sound

-

3. Subscribe to a
numerical context
value

ContextChang
eSubscription

Environment:
Temperature:
Absolute

-

4. Subscribe to context
start

ContextStart
Subscription

Location:
Facility

Movie
Theatre

5. Subscribe to context
end

ContextEnd
Subscription

Location:
Facility

Movie
Theatre

6. Subscribe to a set of
contexts (set consists
of one or more
context types)

ContextSet
Subscription

{Environment:
Sound:
Intensity,
Environment:
Temperature,
Device:
Movement:
Activity}

-

149

Table 18. Example indications upon context change for the subscriptions in the
Table 17.

Example
number

Purpose Context type Context
value

1. Indication about a
change in context

Device:Placement AtHand

2. Indication about a
change in contexts
under the subscribed
branch

{Environment:Sound:Type,
Environment:Sound:
Intensity}

{Car,
Loud}

3. Indication about change
in the numerical value
of context

Environment:Temperature:
Absolute

20

4. Indication about the
start of a context value

Location:Facility Movie
Theatre

5. Indication about the end
of a context value

Location:Facility Movie
Theatre

6. Indication about a
change in any of the
contexts in the
subscribed set

{Environment:Sound:
Intensity, Environment:
Temperature, Device:
Movement:Activity}

{Loud,
Warm,
Still}

The first example notifies the client when the device placement changes. With a
subscription to a partial context type, example 2, the client will be notified when
any context value of the context types under the branch change. This will
simplify the subscription to a category of contexts, which contains many context
types. For example, the client could subscribe to device-category contexts with
one subscription, instead of separately listing all the device-related context
types. Subscribing to a numerical context value should only be used for context
types that have been properly treated for change by the Context Source, since
indication is given every time the value of the context changes. Subscribing to
the start and end of a certain context value is especially useful for context types
that have a large set of symbolic values, such as location. For instance, an
application might only need the context value MovieTheatre to change the

150

device profile to silent upon arrival and back to previous after leaving.
Subscribing to the context value start and end relieves the application from
receiving unnecessary indications about all changes in the context type. The
application will only get the relevant messages.

The context set subscription is designed for subscribing to any set of context
types, which are not necessarily under the same branch in the ontology. The
client is informed whenever any of the contexts in the set change. Subscribing to
a set corresponds to making several single context subscriptions.

Context abstracting is transparent to the client in the subscription mechanism.
The client can subscribe to a higher level context as to any context. The
abstractor has subscribed to a set of context types, and whenever any of them
change the abstractor executes. If the resulting higher level context has changed
from the previous one, the Context Manager indicates this to the subscribed
client. Hence the framework and the API offer a solution to acquiring context
information from multiple source sensory data, abstracting and recognising
contexts from uncertain and imprecise data, and representing the abstracted data
with an ontology up to the transparent use of the abstracted context data through
the compact API.

7.4 Summary

An overview of the application programming interface provided by the
blackboard-based Context Manager was given in this chapter. The API describes
how context information can be utilised by, e.g., context-aware applications or
an Application Controller through the framework. The number of different API
functions is nine, independent of the number and type of Context Sources and
other �hot spot� elements of the framework. For comparison, in the widget model
the client directly interacts with multiple and distributed components, each of
which has different functions, and may have different addresses, which the client
has to know. In the Context Toolkit the result is a complex API with a total of
over 50 different messages (Dey 2000), which are dependent on the number and
type of widgets. The blackboard-based model offers the advantage of hiding all
the other framework components except the blackboard manager from the client.
The client will access all context data from any source from the same central

151

node, which simplifies the application programming interface. The client can
access the context data simply with context type, and with or without specifying
the source of context.

Hence the main contribution of this chapter is a compact API, which is uniform
for all context producers and consumers, for providing and using rapidly
changing sensor data as abstracted context objects in a mobile device. Published
partly by Korpipää et al. (2003b), it is the first blackboard-based API for
handling context-related information in mobile devices.

152

8. End-user development of context-aware
applications

This chapter is partly based on the articles by Korpipää et al. (2004a, 2005a,
2005b). The chapter, for the minor part, reuses the results by Korpipää et al.
(2004a, 2005b), and, for the major part, by Korpipää et al. (2005a). A few
additional details are included.

The hypothesis, that the context framework enables quick development of
context aware applications, was set in the introduction. The Context Manager
API itself offers a compact uniform programming abstraction that simplifies the
development of context aware applications compared with the related work.
However, there are no well-established practices for evaluating the usability of a
software programming interface. A step further is taken by providing another
programming abstraction, which can be evaluated with standard usability
evaluation practices. The purpose of the programming abstraction is to enable
the end-user development, or customization, of context-aware applications in a
mobile device. This chapter explains how the implemented context framework
and ontology are utilised for enabling the use of context-aware features in a
mobile device, defined with an implemented customization tool.

8.1 Customizer

Customization is a form of end-user development (Fischer et al. 2004). The
concept of context-aware application personalisation, and a tool named Context
Studio, was originally introduced by Mäntyjärvi et al. (2003). Korpipää et al.
(2004a) developed the concept into a customization tool for small-screen mobile
devices, and introduced a method for automatically generating graphical UI
views based on context ontology. Furthermore, the concept was modified by
Korpipää et al. (2004a); the user separately chooses one or more individual
conditions � i.e., context type � value pairs for an action instead of choosing one
context value for all the available context types to describe the situation for each
action. This results in much simpler and more controllable rules that are faster to
define. Korpipää et al. (2005a, 2005b) enabled utilising the context framework

153

for the actual use of the features defined with the tool, and included explicit
control commands as inputs. The tool is still named Context Studio.

The idea of customization is that instead of implementing context-aware features
at design time, a set of available contexts and actions are provided for the user,
who decides whether and how to use them. The user performs customization by
specifying rules with a graphical user interface. Rules connect contexts to
actions, and after the rules are activated in a mobile device the context events
correspondingly trigger actions. The rule condition part element is called a
(context) trigger, which can be any event or state that can be used for activating
an action. The trigger can be either an implicit input or a direct control command
given by the user with any available modality. The available triggers, which
consist of context type � context value pairs, are defined in a context ontology
vocabulary according to the vocabulary model. An action is any application,
function or event that can be activated when a set of triggers are fulfilled. An
action can also belong to an external device, which thus enables the user to
customize how to control external devices with a mobile device. A rule is an
expression connecting a set of triggers to an action. The formal Context
Exchange Protocol (CEP) syntax was utilised for representing rules generated
from the graphical descriptions with the tool.

8.2 Utilising context framework

From the context management viewpoint, the Customizer is a graphical editor
for generating and reading context-action rules. Figure 17 shows an overview of
an instantiation of the context framework, implemented on the Symbian platform
(Digia 2003).

After the user has created the desired context-action behaviour with the
Customizer, the context framework handles the background monitoring of
contexts and the triggering of actions according to the rules. The Application
Controller facilitates the application control inference on behalf of the user or
application. The framework separates context management from application
code, and no changes need to be made to existing applications when they are
augmented with context-aware features.

154

Figure 17. An overview of the implemented context framework with a rule-based
Application Controller.

The implemented Application Controller consists of two parts: Rule Script Engine
(Lakkala 2003b) and Activator. Hence, as an instance of the Application
Controller entity, a rule-based application control inference approach was chosen.
Other control inference approaches could be used as well. A rule-based inference
does not incorporate mechanisms for handling uncertainty. Uncertainty is
eliminated by the producer layer components (Figure 17). Sensor signal
uncertainty is thus not transmitted up to the Application Controller and to the user.

Context
Manager

Rule Script
Engine

Application /
Action

Customizer
Context
Studio

Context
Source

Application layer

Server layer

Producer layer

Activator

Application Controller

155

The rules created by the user and converted by Customizer to CEP scripts are
evaluated by Rule Script Engine, which uses the Context Manager. The rules
that the user has created as active are subscribed by the Activator component to
the Rule Script Engine. The Context Manager receives all the context
information from Context Sources, and indicates changes in those contexts that
are used in the active rule scripts to the Rule Script Engine. The Rule Script
Engine evaluates the rules for the changed contexts, and if the conditions are
fulfilled, indicates triggered rules to the Activator. For triggered rules, the
Activator launches the designated application functions or system events.

In the context framework instantiation of Figure 17, change detection is
performed by the Context Manager. A separate Change Detector was not
required for the applications involved. Context abstracting tasks are handled by
the Context Sources, and thus separate Context Abstractors were not necessary
for the tasks addressed.

Several Context Sources were implemented for providing inputs for the
interaction customization. The implemented Context Sources include
accelerometer-based freely trainable gestures and other movement abstractions
such as activity level and orientation, physical selection with RFID tags, cellular
network-based location, time, Bluetooth devices, and several events from the
device platform, such as keyboard, display, battery strength, network strength,
charger, profiles, foreground application and keypad lock. Several application
actions were implemented for the availability of customizing the interaction. The
application actions and system events include call, messaging, camera, profiles,
browser, display, keypad, joystick functions, etc., and the external device actions
include a set of observation camera functions and image transfer.

The context framework enables the use of multiple modalities for controlling
mobile devices, as defined by the user with the Customizer. In addition to
implicit inputs for context-aware applications, the framework enables utilising
explicit control commands, such as gestures and physical selection. Table 19
presents examples of implicit and explicit control tasks. All input events are
managed as context instances within the framework.

156

Table 19. Examples of direct and indirect control tasks managed by the context
framework.

User
interaction

Application
category

Application Context Source

Explicit Movement-based
action

Gesture control Accelerometer

Explicit Selection-based
action

Tangible interface call RFID tags

Explicit Selection-based
action

Observation camera
control

RFID tags

Implicit Proximity-based
action

Social context-based
profile change

Bluetooth
devices

Implicit Movement-based
action

Activity-based display
light switcher

Accelerometer

8.3 Utilising context ontology

The context ontology is the uniform human-understandable and machine-
readable representation within the framework. The representation enables the
end-user to connect contexts to actions with the Customizer. Different types of
incoming sensor signals and events (the inputs) are abstracted by the Context
Sources into the uniform representation. Actions in the action vocabulary
describe the various application functions, terminal events (the outputs) and
external device actions.

The vocabularies describe any implicit or explicit input events. Furthermore, the
vocabularies can be dynamic � i.e., they can be changed at runtime, and even
personalised by the end-user. For example, the user can train and name the
gestures s/he wants to use. The current implementation reads the vocabularies
when the tool is started. By modifying their content, the Customizer itself can be
customized. The runtime updating of the Customizer UI is further work.

The Trigger, Action, and Rule views in the user interface are generated based on
the ontology vocabularies and rule models. The context type hierarchy is

157

transformed into a folder-file representation in the UI. The context and action
type concepts are represented as folders, according to the vocabulary hierarchy.
The context and action values correspond to files in the UI representation. The
vocabulary model facilitates straightforward updating and modification of the
contexts and actions into the UI. When new context and action types appear,
they can be presented as new paths in the UI, and new context and action values
are presented as new files in the folders. Selecting the rule elements resembles
navigating a directory tree hierarchy. The screenshots in Figure 18 show the UI
navigation, starting from left to right, during rule creation in the implemented
Series 60 (Series 60 2005, Digia 2003) style Customizer.

a)

158

b)

c)

Figure 18. An example of Customizer ontology-based UI navigation during rule creation.

159

In Figure 18a the user selects a context trigger for the rule by navigating through
the Context type Device:Charger and selects the Context value Charging.
Similarly the user selects the second trigger, Context type Location and Context
value Home. In Figure 18b the user selects an action for the rule by navigating
through Action type ExternalDevice:ImageAlbum and selects Action value
SaveNewImages. The first screenshot in Figure 18c shows the complete rule
after the user has selected the elements; the second trigger can be viewed by
scrolling down. The rule name is generated accordingly. After the user selects
the option Done, the rule CEP script is generated and the rule is activated and
functional in the context framework. The second screenshot in Figure 18c shows
the main rule view with the list of active rules. When the rule conditions are met,
the context framework automatically performs the action.

8.4 Customized example applications

Customizable multimodal interaction facilitates personalized and potentially
more efficient interaction with the device. The new modalities can be used as,
e.g., shortcuts or �soft keys�, which will reduce the click distance and user effort
in interaction. The click distance is the number of user operations required for
performing a certain task. To call a person, for instance, the usual average click
distance is five or more (if a specific button shortcut is not used), depending on
the phone model, keypad lock state and position of the name in the phonebook.
When the user makes the call by touching an RFID tag, the click distance is one.
As an example usage scenario, elderly people could more easily contact their
relatives with a customized phone by touching a picture containing a tag with the
device. The phone could have been customized by a relative, for instance. With
the tag read/write accessory, RFID tags can be written to contain any context,
which can be connected with Context Studio to any available action. In the
future, the RFID tag accessory will be embedded in the phone.

Gestures can also be used to reduce click distance. Gestures here refer to hand
movements made by the user with a phone containing acceleration sensors.
Using HMMs to model the acceleration-based gestures allows the user to train
and use gestures of any form, and gestures can be exchanged among users or
provided by a third party. Discrete gesture commands can be used as shortcuts
for opening applications, such as messaging, camera, calendar, and opening

160

bookmarks in a browser, sending messages, etc. Profiles and keypad lock can
also easily be controlled with gestures.

A simple example of a customized implicit control task is a rule that reads as: if
device orientation is display up, and device is active, turn display light on.
Activity and orientation can be detected from the accelerometers in the smart
phone. Another example is a rule stating that when the location is home and the
device charger is charging, save new images into the image album through a
Bluetooth connection. Coarse location can be detected from the cellular network
IDs, and the charger Context Source indicates the changes in the charger status
to the Context Manager.

The main application focus in the dissertation was the customization of the
emerging interaction modalities for controlling the applications in the smart
phone. Concerning external devices, a demonstrated example is controlling an
observation camera that has an SMS (Short Message Service) message
command interface. Normally, in order to have the camera take an image and
return it to the phone, the user would have to write an SMS message containing
a command and send it to the camera. For the same task, the user can, for
example, customize an RFID tag-based action ExternalDevice\Observation
Camera TakePicture. When the user then touches the corresponding RFID tag
with the tag reader, the Activator sends a corresponding SMS message command
to the camera. This enables more efficient user interaction for controlling the
observation camera.

In a more general external device control setting, the Universal Plug and Play
(UPnP 2005) framework can be used for controlling devices such as home
appliances with a smart phone. Home devices are connected as UPnP devices to
a UPnP control point, which performs a service search for appropriate home
appliance functions. The smart phone acts as a control point, which receives
available actions from the home appliances and executes commands to the
appliances through the UPnP protocol. The control points have an IP connection
to the UPnP server through a Bluetooth connection. When used with the context
framework, the Activator would connect to the phone's UPnP control point
interface for performing the actions triggered by the context events. As an
example application, the user could turn on a TV set by making a gesture with
the phone. This was not demonstrated in this dissertation.

161

8.5 Discussion

The framework was tested with over twenty different rules. Multiple rules can be
functional simultaneously, and no delays were noticeable in the framework
operation. When multiple actions are defined for the same trigger, the rules are
executed in the order of creation. If two rules are conflicting � e.g., the same
trigger in two separate rules causes the keypad to lock and unlock � they are
nevertheless executed in the order of creation. Automated conflict prevention
would reduce the flexibility of the system and increase the complexity, since it
would require defining all the conflicting actions for each action. One option
would be to let the user select from the actions that are defined for the same
trigger in the interaction situation. This is not feasible when the actions are
required to be automatic after defining the rules, and system interruptions would
disturb the interaction. Moreover, the user may want to define multiple actions
for the same trigger. Yet another solution is to let the user prioritize the rules.
However, it would still be the responsibility of the user to define feasible rules.
Possible deadlock situations can be avoided by not allowing actions to function
as triggers.

An important challenge in end-user development systems is providing the user
with an experience of control. In other words, the system functionality should
exactly match the functionality that the user wanted to describe. Some
approaches have been proposed. Dey et al. (2004) proposed modelling contexts
based on examples, which is feasible when the example contains a single,
chosen type of context. When one example contains multiple types of contexts,
the programming-by-demonstration approach may lead to functionality that the
user did not intend to have, if the user cannot control exactly which contexts are
relevant for the intended action. Truong et al. (2004) proposed providing a set of
words that the user can arrange for a description, which the system then
translates into functionality. The descriptions the users create by freely
combining words can be ambiguous and do not always result in the intended
functionality.

In the rule-based approach presented in this study, the user defines each
condition and action in the rule individually and explicitly with the type-value
pairs. The approach yields satisfactory usability and user control, backed up by
the usability evaluation results (Korpipää et al. 2005a, Häkkilä et al. 2005).

162

According to the user tests, the idea of defining device functionality with rules
was very well understood, and all users were able to create the correct scenario
functionality. Succeeding in this is very much due to an earlier observation that
users prefer very simple rules in customization (Korpipää et al. 2004b). The rule
structure was thus designed to be reduced, incorporating only the logical
operator AND. The logical operator OR is available by creating parallel rules.

The general goal of end-user development was to achieve a low cost of learning
while having a wide scope of customizable functionality. The usability
evaluation results confirm the low cost of learning to use the tool (Korpipää et
al. 2005a). Concerning scope, the rule-based customization approach applies
best to actions that operate on single discrete commands. Continuous control
tasks, such as increasing volume, or keyboard-intensive tasks, such as text input,
are not as well suited to customization with the chosen approach. Sequences of
tasks can be realised by making multiple rules for the same trigger. The rule
expressiveness in customization has a trade-off with tool usability.

The customization tool can be used for personalising the mobile device
functionality, interaction and multimodal interaction. The CEP script created
with the tool can be considered a user profile that defines the user preferences of
the device functionality based on any input event.

8.6 Summary

An end-user tool was presented for customizing human-computer interaction
with a mobile device. The interaction is customized by defining context-action
rules with a graphical user interface. The context can be any event or state that
can be used to activate an action, including explicit control commands given by
the user, in addition to inputs for implicit interaction. Actions refer to a set of
available phone functions, and its applications and appliances in the near or
remote environment. The tool facilitates customizing multimodal interaction.
Customizable interaction modalities include explicit movement sensor-based
freely trainable gestures and physical selection with near-field radio frequency
tags, in addition to the implicit inputs from sensors, phone platform and
Bluetooth devices. The blackboard-based context framework enables the
application control based on the features defined with the tool. The user interface

163

views of the tool are generated based on context ontology vocabularies. The
vocabularies are transformed into a directory model representation in the UI,
which is hence scalable, extensible and easily modifiable.

The related work does not provide a solution, end-user tool and context
framework for enhancing existing mobile device applications with context-
aware features by using a small-screen mobile device alone. The related work
does not provide a solution for customizing the multimodal interaction of novel
modalities in a mobile device. Moreover, the approach in this dissertation has a
mobile device-centric viewpoint, instead of infrastructure-centric. The software
framework, the customization tool and the sensors are located in a smart phone,
which tracks the environment, instead of vice-versa. The advantage of this
approach is that the mobile device can be customized and used anywhere and
independently of any infrastructure. Concerning the input modalities, the related
work does not present real-time pattern recognition of freely user trainable
acceleration-based gestures in a mobile device and near-field RFID tag
read/write accessory where both modalities are customizable to activate any
available mobile device functions.

164

9. Evaluation

In the first chapter, research methods were introduced for each of the three main
sub-topics of the dissertation: blackboard-based context framework and API,
context representation and ontology, and context abstracting and recognition.
For each sub-topic, a literature review was conducted to assess the state of the
art, requirements were specified, and corresponding development in the form of
design, implementation or experiment was presented.

This chapter focuses on evaluating the design and the implementation of each sub-
topic. Context framework computational performance is evaluated quantitatively.
The evaluation of context framework API and ontology is mainly qualitative. To
date, no detailed reference measurements have been made for other context
frameworks and ontologies, which makes quantitative comparison impossible
without first evaluating the related frameworks. No corresponding context
frameworks yet exist for mobile terminals. The context recognition case study
results were evaluated quantitatively. Additionally, this chapter evaluates the
implemented applications that use abstracting of sensor data within the framework.

A number of implemented applications were selected for the evaluation. Most of
the selected applications were evaluated in a real Series 60 mobile phone. The
target platform for each application is marked in the tables 20, 22, and 23. All
the applications for which the target platform is marked as �Series 60, context
framework�, were evaluated in a Series 60 mobile phone having a functional
context framework and real Context Sources.

The evaluation criteria are specified for each sub-topic in the corresponding sub-
chapter. The aim is to evaluate the implementations of the designs against the
requirements. The requirements were set to address the deficiencies found in the
related work in the literature review, and to create the desired system by solving
the research problems. Hence the fulfilled requirements in the implemented
framework and the implemented real context-aware applications utilising the
framework can be used to verify the success of the results. This chapter is partly
based on the articles by Korpipää et al. (2003b, 2004a, 2005a, 2005b) � i.e.,
concerning the design and implementation applied in the evaluation. The
evaluation itself has not been published prior to this dissertation.

165

9.1 Context framework

Research methods for the blackboard-based context framework and API include
a literature review, development and evaluation. The literature review compared
different architecture models and formed a basis for specifying the requirements
for the context framework and API. In the development phase, the framework
requirements were analysed and the framework was designed and implemented
according to the requirements.

The implemented context framework is evaluated in this chapter. A set of
Context Sources was implemented to provide real sensor-based and other
context data for a set of implemented applications through the Context Manager.
Some of the applications was controlled with the Application Controller. The
framework is evaluated against two criteria:

1. Which of the requirements are fulfilled by the designed and implemented
context framework?

2. To what extent do the selected example applications (a sub-set of the
implemented applications) utilise the features specified in the requirements?

These two criteria were selected because the aim is to evaluate the
implementations of the designs against the requirements. The fulfilled
requirements in the implemented framework and the implemented real context-
aware applications utilising the framework verify the success of the results.

9.1.1 Applications

Several applications were implemented utilising the context framework. Eight
example applications (Table 20) were selected for the evaluation. The
applications were selected based on the following criteria. The criteria were
selected to verify the applicability of the framework for different types of
applications and different types of input sources � i.e., to verify the scope of the
framework applicability. Moreover, to reflect the potential real-world usability
of the framework the applications were chosen considering their assumed
usefulness, instead of just proving the concept.

166

1. For verifying the potential scope of the framework applicability: Can the
framework support different types of applications?

2. For examining the potential scope of input data types that can be utilised
within the framework: Can the framework support applications with
different types of Context Sources?

3. For showing the real-world usability of the framework: Can the framework
support potentially useful applications?

Table 20. A summary of selected example applications implemented utilising the
context framework.

Application
name

Application
type

Context
source(s)

Number
of context
types

Target
platform

1. Context
Studio

Customizer Sensors, terminal
events

~25 Series 60,
context
framework

2. Proof-of-
concept

Context
monitor

Simulated
sensors (recorded
data)

~10 Series 60,
context
framework

3. Proximity Proximity-
based action

Device proximity 1 Series 60,
context
framework

4. WIRSU Weather
monitor

Wireless sensors 3 Series 60,
context
framework

5. Movement Movement-
based action

Accelerometers 2 Series 60,
context
framework

6. RFID tag Tag-based
action

RFID tag 1 Series 60,
context
framework

7. Gesture
control

Gesture
recognition-
based action

Accelerometers 1 Series 60,
context
framework

8. Observation
camera
control

Tag-based
external
device action

RFID tag 1 Series 60,
context
framework

167

Each of the example applications is briefly introduced next.

1. Customizer (Context Studio) was introduced previously. The Customizer,
together with the extended context framework, enables the end-user
development of context-aware applications (Korpipää et al. 2004a, 2005a,
2005b). Any number of Context Sources producing any type of context
described in the ontology can be customized with a graphical user interface
to a set of available application functions. The context framework handles
all context management tasks separately from the applications, facilitating
the customization of existing applications without programming.

2. A Proof-of-concept application was built to evaluate the use of the Context
Manager API functions. The Context Source produced contexts of multiple
types, which were added to the Context Manager blackboard. A context
monitoring application could access the data from the Context Manager. The
application could perform all functions specified in the Context Manager
API, including subscriptions and queries. The context data for the
application consisted of data recorded from a real-world scenario (Korpipää
et al. 2003a). The data was abstracted offline. The Context Source produced
the contexts simulating the real-world scenario.

3. The Proximity application shows that with the framework, a handheld
mobile device�s proximity (Bluetooth) to another device can be used to
activate a function in an application. The Context Source provides device
proximity contexts, which are added to the Context Manager blackboard.
Based on a certain received context value, the framework executes an
application control function.

4. WIRSU is a wireless weather station (Huttunen et al. 2003). A Context
Source reads the sensors in the weather station over a wireless connection
(Bluetooth) and adds the context data to the Context Manager blackboard.
The application utilises the context framework for monitoring the changes in
the weather.

5. Movement contexts are produced by a Context Source, which abstracts
measurement data from accelerometers embedded in a mobile device. The
abstracted context events are added into the Context Manager blackboard.

168

Two movement context types are combined in a rule for triggering a device
system event. When the rule condition is met, the framework executes the
device system control function.

6. An RFID tag Context Source adds the received RFID context to the Context
Manager blackboard. Based on a certain received context value, the
framework executes an application control function.

7. The user explicitly performs a gesture, which is recognised from the
acceleration signals by a Context Abstractor implemented as a Context
Source, which adds the recognition result as a context object to the Context
Manager blackboard. The context framework performs an application
control function based on the context event.

8. An RFID tag Context Source adds the received RFID context(s) to the
Context Manager blackboard. Based on a certain received context value, the
framework executes an external device (observation camera) control function.

The example applications 5�8 were developed by using the Customizer.

9.1.2 Requirements realization

According to the evaluation criteria, each requirement in the requirements
analysis chapter is revisited to evaluate the realization with the designed
framework and implemented application examples. The application examples
that fulfill the requirement are referred to with the application number.

1. Concurrent context management in mobile device

The framework facilitates the use of the context for the applications that are
located in the mobile handheld device (applications 1�8). The context
framework is able to handle the information acquired from the device internal
sources (applications 1, 2, 5, 7) and external sources (applications 3, 4, 6, 8). The
external context information may come from the local infrastructure
(applications 3, 4, 6, 8) or the global (IP networked) infrastructure. IP-based
sources were not included in the example applications. The management of the

169

sensor information is supported (applications 1, 2, 4, 5, 7). Handling multiple
device internal sources concurrently is supported (applications 1, 2, 4, 5).
Concerning internal sensor sources, the processing of the information is done in
the device itself (applications 1, 2, 4, 5, 7). The Context Manager and the
blackboard reside in the handheld device carried by the user (applications 1�8).

Concurrent processing of acquiring, abstracting, storing and delivering context
from multiple sources is supported (applications 2�8). The context management
system is able to handle multiple contexts that appear at the same time
(applications 1, 2, 4, 5). Concurrent use of multiple contexts by multiple
applications is supported. Managing multiple applications was tested with four
applications that each simultaneously utilise the same context. The example
applications were tested individually. The Context Manager has a queue for
incoming contexts.

Since the blackboard manager is in the device, disconnection does not prevent
the functioning of context-exploiting applications (applications 1�8).
Disconnection is seen by the application as having no changes in the context
from external sources.

2. Requirements for the application programming interface

The Context Manager provides a set of services that can be used by any client
through an API (applications 2�8). Client is here referred to as a device local client.

Any client is allowed to add context to the blackboard, and any client is allowed
to use it (applications 2�8). The clients are allowed to subscribe to be informed
about changes in the context (applications 2�8). When a context event occurs,
and there is a change in the context, the client is either informed or controlled,
but otherwise no data is sent to the client (applications 2�8).

Three types of basic subscriptions are supported: Context change, Context start
and Context end. Context change informs the client every time the context value
of the subscribed context type changes (applications 2�8) (the client can be
Application Controller). Context start and Context end inform the client about
the start and end of a context value for a context type (application 2). The client
can unsubscribe all the subscriptions that it owns (applications 2�8).

170

Another way of using the context information is directly requesting it from the
Context Manager, similar to making queries from a database. Three basic types
of queries are supported: Context set request, Latest contexts request, and Time
interval request (application 2). The context (object) is returned based on context
type, source, or both (application 2). Context set request returns the contexts of a
given set of context types or sources (application 2). Latest contexts request
returns a given number of latest contexts, and contexts of a given time interval
are returned in time interval request (application 2).

3. Flexibility in handling new contexts

Adding new contexts and new elements that produce, process or use context do
not require making changes to the Context Manager, nor to any other frozen spot
element in the framework (applications 1�8). The framework elements, other
than the central Context Manager, are plug-ins to the Context Manager. The
example application elements that use the Context Manager connect to it at
device boot (applications 1�8). New contexts are handled as data objects
(applications 1�8). The context framework is able to handle new context types
and values without changes to the framework entities (assuming that the Context
Source(s) have the capability of receiving new contexts). This is not shown by
the example applications. The application always gets the context from the same
blackboard, regardless of the source, and the sources have one place where
context data is written (applications 2�8).

4. Context abstracting and recognition

It is possible to add, modify and remove Context Abstractors, Context Sources,
and Change Detectors from the framework online � i.e., it is possible to plug in
the components. In the example applications the Context Sources connect to the
Context Manager at device boot (applications 5, 7). The framework supports
abstracting and recognizing context from multiple sources and time sequences
(applications 5, 7). The framework supports sensor fusion. Recognition of higher
level contexts from existing ones can be performed from a set of contexts, and
from a context history (not shown by the example applications).

The result of a previous recognition can be used as a further input for another
recogniser. From the client viewpoint, the use of abstracted contexts is

171

transparent (applications 1, 2, 4, 5, 7). The client may subscribe to a higher level
context as to any context.

Every time a context in the recogniser input set changes, recognition is
performed and new higher level context is added to the blackboard, if it has
changed. The client is informed about the possible change normally. The
example applications do not demonstrate these two features.

The abstraction level of the data received by the Context Manager may vary.
Three cases can be identified:

• Context Manager receives from the source event-based abstracted contexts
that do not require further abstracting to be used by the application
(applications 2, 5, 7).

• Context Manager receives from the source event-based abstracted information
that requires further abstracting. In this case Context Recognisers can be used.
This is not demonstrated by the example applications.

• Context Manager receives raw measurement data (application 4) that is
updated continuously and possibly with a high frequency.

In the third case, if the frequency is low, the source may add the data directly to
the blackboard, and the abstractors receive the data by subscribing to it and
perform further abstracting (application 4). If the frequency of continuous input
is high, the source itself abstracts the incoming data before adding it to the
blackboard (applications 5, 7). The source also performs change detection, so
that the incoming high-frequency data is converted to event-based data
(applications 5, 7).

The example applications demonstrate context abstracting (applications 4, 5, 7)
and HMM-based classification (application 7).

5. Event-based communication of context to application

The blackboard-based context framework is primarily used for delivering data to
applications as events (applications 2�8). If the incoming data from the sources
is continuous, the framework abstracts it so that data provided to the application
or application control with the subscription-indication mechanism is event-based

172

(applications 5, 7). There are two basic ways of dealing with continuous
incoming data within the framework:

• Context sources that receive information from external sources simply
forward it to the blackboard. Possible context abstracting and change
detection will be performed after the Context Manager. This approach is
feasible if the frequency of incoming data is low (application 4).

• The Context Source itself performs abstracting and change detection before
adding the context to the blackboard. This approach is preferred if the
frequency of incoming data is high (applications 5, 7).

6. Context database

The Context Manager contains a relational database to store the context instances
into a permanent memory (applications 2, 4). In order to maintain the availability
of the context history for the device applications in the event of reboot, a
permanent storage is provided for the context information (applications 2, 4). The
history length for each context type stored in the database is configurable.
(applications 2, 4). The number of context types in the database is configurable.

The use of the permanent storage database provided by the Context Manager is
optional (applications 2�8). This option improves the performance, especially
with high rates of context additions (application 5). For short life span data, the
Context Manager contains a fast cache memory, which has the history length of
one for every context type (applications 2�8).

7. Context caching

Clients are not allowed to delete contexts from the context table. Deleting
context values is handled by the Context Manager, so that the specified context
history length is maintained for each context type (applications 2, 4).

In the evaluated implementation, the context types were not deleted centrally by
the Context Manager due to the low number of different context types in the
experiments. Applying memory caching techniques for managing the number of
context types in the database is further work. Renaming, if required, is supported
by the abstractors. Renaming is not shown by the example applications.

173

8. Time resolution of context

The maximum communication frequency for continuous communication through
the blackboard is reduced by performing change detection in Context Sources
(application 5). Moreover, for sources that produce context data at a quick pace,
the permanent context history is configured short or omitted (application 5). The
example applications have Context Sources that produce different kinds of
context data to the Context Manager, categorized in Table 21. Categorisation
follows that specified in Table 7.

Table 21. Categorization of context data added by Context Sources to the
blackboard, with the example applications.

Category
number

Data abstraction
level

Data
communication
type

Data
frequency

Example
applications

1. Raw Continuous Low 4
2. Raw Continuous Moderate -
3. Raw Continuous High -
4. Symbolic Continuous Low,

Moderate
2

5. Symbolic (or raw) Event Low,
Moderate

3, 5, 6, 7, 8

Application 2 was used to add an average of ten symbolic contexts per second
continuously to the blackboard, with inserts into the relational context database.
The Context Manager had a history length between 10 and 100 for all of the
context types. Context Source did not perform change detection; this was
performed by the Context Manager.

Applications 3, 5, 6, 7 and 8 had Context Sources that produced symbolic event-
based data. For tag and proximity applications (applications 3, 6, 8), the
frequency of produced context events is typically low. Application 4 produced
continuous raw data, and had a configurable context add frequency, which was
typically set low.

174

In application 5, context abstracting and change detection were performed by the
source, and the contexts were not stored in the permanent database. In Application 5,
the category of data incoming to the Context Source was 3 (raw, continuous, high),
but to the Context Manager it was 5 (symbolic, event, moderate). The frequency of
incoming continuous data was transformed from 32Hz of raw data to an event-based
symbolic data flow of 2Hz maximum frequency. As was discussed in Chapter 4.4,
the Context Source should perform the abstracting and change detection in order to
reduce the traffic to the Context Manager with context data categories 2 and 3. In
application 5, the maximum frequency of adding contexts in the Context Manager
blackboard was 2Hz for each context type. This was implemented so that after
adding a context instantly upon change, the Context Source imposed a half-second
delay before the next context could be added. The number of simultaneously
produced context type values was five, and hence the maximum number of event-
based contexts added per second was ten. No perceivable delays were noticed in the
system response to the user interface during user interaction. The maximum limits
for context types and frequency were not reached or explored.

In application 8, the input data was not continuous since only the gesture data,
marked by the user with a button, was captured by the Context Source. The input
data abstraction level was raw, and the frequency high. Context Source
performed the gesture recognition. The recognised context was not stored in the
permanent database. No perceivable delays were noticed in the system response
to the user interface during user interaction.

9. Change detection

The Context Manager performs basic string match change detection for each
new context it receives, compared with the previous one stored in the cache
memory. If there had been a change, subscribers to that context are informed
about the change, and a new context instance is added into the database
(applications 2, 4). Using a separate Change Detector is not shown by the
example applications.

The context change detection is optional and chosen by the Context Source
(applications 1�8). Applications with implicit interaction use change detection either
in the Context Manager (applications 2, 4) or in the Context Source (3, 5).
Applications with explicit interaction do not use change detection (applications 6�8).

175

10. Context confidence

The data object representing context, handled by the Context Manager, has a
confidence attribute. Hence instances of context information contain a property that
can describe the confidence of the instance. In the example applications, confidence
property is used to describe fuzzy membership (applications 2, 5). However,
confidence is not utilised for any task in the example applications, mainly since the
chosen inference framework was rule-based for the selected applications. The use of
context confidence is optional � i.e., the attribute is not required to be set by the
Context Sources that add context objects to the blackboard.

11. Context representation

Adding new contexts and new elements that produce, process or use context does
not require making changes to the Context Manager, nor to any other frozen spot
element in the framework (applications 1�8). Similarly, no changes are required in
the frozen spot elements based on the syntax of the incoming context. Common
context properties and naming conventions were defined to enable the use of
contexts through a common API (applications 1�8). The context representation
facilitates the use of context data with the Context Manager API functions
(applications 1�8). The context representation defines the structure of the context,
and enables the creation of vocabularies that describe useful context types with a
sufficient level of detail for use (applications 1�8).

The context framework does not strictly restrict the context representation, but it
does provide a template and instructions for producing contexts that facilitate the
simplified use of, e.g., sensor-based data with the given API (applications 1�8).

12. Application control

Context-based application control was separated from the applications
themselves (applications 5�8). Existing applications can be called from the
Activator to control them (applications 5�8). The context framework has an
Application Controller entity, which can be used for connecting context events
to the available functions of the applications (applications 1, 5, 6, 7, 8). The
Application Controller enables controlling applications based on context events,
without modifying the applications (applications 1, 5, 6, 7, 8).

176

13. Customization

Context-action (input-output) mappings are not hard-coded into the framework
entities (applications 5�8). Applications 2�4 include control functions. The
connection between inputs and outputs can be defined without programming
executable code (applications 5�8). During the framework operation it is
possible to delete, change and modify the mapping between inputs and outputs
(applications 5�8).

The end-user has the possibility of customizing the way of interacting with
applications and external appliances (applications 1, 5, 6, 7, 8).

There were several usability requirements for the customization tool: it was
required to be easy to learn, effective, efficient, and satisfying, and the user
should feel in control of the system (application 1). The usability was evaluated
with a user test of ten users. The test was carried out with a Series 60
smartphone, with real context sources and a fully functional context framework.
Before evaluating the implementation, the user interface of the tool had been
tested with two iterations of paper prototypes during the development process,
and improved accordingly (Korpipää et al. 2004). The iterative user testing
during development is considered valuable as it reduced the need for corrections
after the implementation. The test results indicated that the usability
requirements were well satisfied (Korpipää et al. 2005a, Häkkilä et al. 2005). A
detailed analysis of usability is beyond the scope of this dissertation.

9.1.3 Discussion

Nearly all requirements were fulfilled by the framework and widely used in the
example applications. However, context history was only used in the proof-of-
concept application 2. The permanent storage of context was not required in
other example applications. The type of example applications, and the type of
contexts they utilise, requires only short-term memory. Only one context needs
to be stored for detecting change when a new context value appears. Based on
the examples, a conclusion can be made that context information utilised in
mobile handheld devices is active, short-term information, which rarely requires
permanent storing. However, it can also be speculated that, for instance,

177

location-tracking applications would benefit from context history, permanent
storage and the API functions for accessing it.

Context abstraction and recognition functionality was implemented in the
Context Sources in the example applications � i.e., Context Abstractors were
implemented as part of Context Sources. The gesture recognition was performed
by a separate process, to which a Context Source was subscribed. Implementing
an abstractor in a Context Source is the most efficient solution. Based on the
example applications, it seems that Context Abstractors as separate entities are
not needed. However, there were no cases in the example applications where a
higher level context was required to be classified from other contexts. The
separate abstractor entity is necessary in these kinds of cases. The same applies
to Change Detector entity; the example applications did not use a separate
Change Detector. Change detection was performed by Context Source or
Context Manager, which is performance-wise the most efficient solution.

Concerning sensor-based data management within the framework, compared
with using a direct flow of raw data from the source to the application, the
message traffic up to the application decreases significantly. The application can
process other tasks while no important changes occur in the context. With the
Application Controller, all context management tasks are performed by the
framework, up to activating an application or platform event based on context.

The framework provides an application programming interface for simplified
development of context-aware applications. Evaluating the usability of a
programming interface is beyond the scope of this dissertation. However, a
comparison of the number, complexity and uniformness of API functions with
the widget-based approach shows a clear advantage of the blackboard-based
API. The hypothesis of simplified development was verified by providing an
end-user development tool that uses the API.

The scope of possible context-aware features to develop utilising the framework
and the Customizer depends on the number and quality of available contexts
produced by the Context Sources and Abstractors, and the number and scale of
available applications and actions. The scope is increased by allowing any event
or state that is relevant to the user interaction with the device or an application to
be used as a context trigger. This includes implicit and explicit events, such as

178

direct control commands. Several types of applications with several types of
Context Sources were built utilising the framework and Customizer. Several
dozen context values and application actions were available for customization,
including a few external device actions.

Different types of applications were selected for verifying the potential scope of
the framework applicability, and different types of Context Sources for
examining the potential scope of input data types that can be utilised within the
framework. Based on the sample set of applications, the framework can be
concluded to have a wide scope and the ability to cover different types of input
data. The discussed sample set is sufficient grounds for a generalisation: the
framework offers a generic platform for abstracting and managing different
types of sensor-based information and a wide range of other input abstractions,
and for enabling customizable context event-based application control.

9.2 Context representation and ontology

Research methods for context representation and ontology include a literature
review, development and evaluation. The literature review compared
information representation methods from the literature and analysed their
suitability for context information representation. In the development phase,
based on the literature review, the requirements and design principles were
specified for an ontology, and an ontology was designed for mobile device
sensor-based context-awareness according to the requirements.

The designed ontology is evaluated in this section. The evaluation is based on
the applications that have been developed utilising the ontology. As stated
before, the representation refers to the entire representation of the context,
including the ontology, the selected syntax and the context-action rules. The
ontology refers to the context data structure and properties, the vocabulary
model and the domain vocabularies. The context representation and ontology are
evaluated against two criteria:

1. Which of the requirements are fulfilled by the designed and implemented
representation and ontology?

179

2. To what extent do the selected example applications (a subset of the
implemented applications) utilise the features specified in the requirements?

These two criteria were selected because the aim is to evaluate the
implementations of the designs against the requirements. The requirements were
set to address the deficiencies found in the related work in the literature review,
and to create the desired result by solving the research problems. Hence the
fulfilled requirements in the implemented representation and ontology utilised
within the framework, and the implemented real context-aware applications
utilising the representation and ontology within the framework, verify the
success of the results.

9.2.1 Applications

Several applications were implemented utilising the ontology. Eight example
applications (Table 22) were selected for the evaluation, based on the following
criteria. The criteria were selected to verify the applicability of the ontology
structure and vocabulary model for different types of applications and for
expressing abstractions derived from different types of input sources � i.e., to
verify the scope of the ontology structure and vocabulary model applicability.
Moreover, to reflect the potential real-world usability of the ontology, the
applications were chosen considering their assumed usefulness, instead of just
proving the concept.

1. For verifying the potential scope of the ontology structure and vocabulary
model applicability: Can the ontology support different types of
applications, including applications outside the context framework?

2. For examining the capability of expressing different types of abstractions
with the ontology: Can the ontology structure and vocabulary model support
applications with different types of input context data?

3. For showing the real-world usability of the framework: Can the ontology
support potentially useful applications?

180

Table 22. A summary of selected application examples implemented utilising the
context ontology model.

Application
name

Application
type

Context
source(s)

Number
of context
types

Target
platform

1. Context
Studio

Mobile device
personalisation

Sensors, terminal
events

~25 Series 60,
context
framework

2. Proof-of-
concept

Context monitor Simulated
sensors (real
data)

~10 Series 60,
context
framework

3. Context
sharing

Mobile context
sharing

Sensors ~5 Pocket PC

4. Airport
service

Location-based
service

Location,
proximity

~20 PC, Series
60 device

5. Bus
schedule

Presentation
adaptation

Simulated
sensors (real
data)

~5 Series 60
emulator

6. Movement Movement-based
action

Accelerometers 2 Series 60,
context
framework

7. RFID tag Tag-based action RFID tag 1 Series 60,
context
framework

8. Gesture
control

Gesture
recognition-
based action

Accelerometers 1 Series 60,
context
framework

1. Context Studio was previously introduced. Context Studio utilises the
ontology for automatically creating user interface views from the vocabularies
defined according to the vocabulary model. The context triggers and
application actions are both represented based on the ontology vocabulary
model. Moreover, the vocabulary model is used for defining context-action
rules, which are presented in the UI and encoded formally with CEP, so that
the framework can automatically execute user-defined context-action rules.

181

2. The proof-of-concept application was previously introduced. The application
utilises the ontology for describing contexts that were recorded with a set of
sensors from a real-world scenario and abstracted offline. The sensors
included a 3D accelerometer, 2 light sensors, humidity, temperature and touch.

3. Keränen et al. (2003) experimented with a context-sharing application implemented
on a PDA. The context ontology was utilised for sharing and expressing sensor-
based context information related to another person(s). Moreover, the context values
were presented using a graphical visualisation. This application was not built using
the context framework presented in this dissertation.

4. Airport service is an application where the user is provided with a service in
his/her mobile device based on the location of the user. The context ontology
vocabulary was used to model the domain contexts, such as the location,
identity, user and flight status information. The context vocabulary defined
all the available contexts, and CEP was used for encoding and transferring
the context instances. The application utilises the blackboard-based
networked PC MUPE context engine (Suomela et al. 2003).

5. Mäntyjärvi and Seppänen (2002) presented an application that utilised the
context ontology for describing contexts related to user activity and
environment. The contexts were used for fuzzy adaptation of information
presentation regarding bus schedules. The application was studied in an
emulator and used recorded real-world data abstracted offline. This application
was not built using the context framework presented in this dissertation.

6. The movement-based action application was introduced previously. The
movement contexts are presented utilising the ontology, and combined into a
context-action rule based on the graphical description created by the user
with Context Studio. The action description also utilises the context
vocabulary model. The framework uses the rule for automatically triggering
a device system event when the rule condition is true.

7. The tag-based action application was introduced previously. The tag contexts
are presented utilising the ontology. A context-action rule is generated based on
the graphical description created by the user. The framework uses the rule for
automatically triggering an application function when the rule condition is true.

182

8. The gesture control application was introduced previously. The gestures are
presented utilising the ontology. Based on the graphical description created by
the user, a context-action rule is generated. The framework uses the rule for
automatically triggering an application function when the rule condition is true.

9.2.2 Requirements realization

The feasibility of the representation and ontology is assessed by analysing the
designed ontology against the requirements, and the example applications that
have been implemented utilising the ontology. According to the evaluation
criteria, each numbered requirement is revisited to evaluate the realization with
the designed ontology and implemented application examples. The application
examples that fulfill the requirement are referred to with the application number.

1. Simplicity

The ontology structure and vocabulary model are simple enough to be easily
utilised by application developers (applications 1�5). The vocabularies are easily
understandable by the user (applications 1, 6, 7, 8). The end-user�s ability to
easily understand an ontology vocabulary, in the form of a Customizer UI, was
evaluated in two user studies with 7 (Korpipää et al. 2004a) and 10 users
(application 1) (Korpipää et al. 2005a, Häkkilä et al. 2005). The latter user study
was conducted with a real prototype framework, Customizer and Context
Sources in a Series 60 phone. In both studies the users were presented with five
scenarios that implicitly referred to making rules with the briefly introduced
tool. Although some of the users needed advice during the first scenario in both
studies, and initially performed a search to find the correct rule elements from a
directory structure having over a hundred context and action values, all users
were able to complete all scenarios and defined the correct and intended
functionality with the tool.

2. Practical access

The ontology structure and vocabulary model enable practical and efficient
queries and subscriptions to context information through the Context Manager
API (applications 2, 6, 7, 8). Queries can be made by using Context type or

183

Source, or both properties as a search key (application 2). The Context type sub-
concepts enable queries of a sub-tree of the context hierarchy formed by the
Context type concepts (application 2). All context objects matching the partial
tree are returned. Subscriptions by Context type enable the client to receive
indications of changes in context values for the corresponding type (applications
2, 6), and to receive indications without change detection for explicit inputs
(applications 7, 8).

3. Flexibility, expandability

The context ontology is expandable to new domains, which is achieved by
defining vocabularies that describe the contexts of a domain, following a
vocabulary model (applications 1�8). The example applications show that
multiple domains of use are covered. Moreover, in the Nomadic Media project
context vocabularies were defined for airport, hospital and home domain
scenarios, according to the vocabulary model. The vocabulary model also
facilitates describing application actions (applications 1, 6, 7, 8). The existing
vocabularies are modifiable (applications 1�8). The vocabularies are even
definable by the end-user, who can set new Context values (applications 1, 8).
The vocabularies are completely independent from the context framework, but
all context information described as defined according to the ontology structure
can be used within the framework.

4. Domain

The ontology supports easy utilisation of the abstracted context information of
multiple domains, including sensor-based information (applications 1, 2, 3, 5, 6, 8).

5. Facilitate inference

The representation enables efficient inference by the Context Abstractors and
Application Controller. The efficiency of a method is dependent on the type of
the task. The developed representation does not restrict the inference to any
single method. In Context Sources and abstractors any method is allowed for
producing symbolic contexts (applications 6, 8). The Application Controller
utilises a rule-based inference (6�8), but other inference frameworks are possible
for application control.

184

6. Genericity

The ontology supports different types of context information (applications 1�8).
The representation structure applies across domains, and domain-specific
concepts are defined in the extensible vocabularies (applications 1�8).

7. Efficiency

The representation is memory-efficient. Within the framework implemented in
the target mobile device platform, a context instance encoded as a context
object, according to the ontology, consumes at maximum 249 bytes with
Unicode strings, and less when compacted in the relational database
(applications 1, 2, 6, 7).

8. Expressiveness

The possible amount of detail in describing any single vocabulary context
instance is not high, and the number of fixed context properties is low. The
semi-informal representation of vocabularies does not include defining complex
constraints. Complex context instances can be decomposed (application 4). The
trade-off of satisfying the previous seven requirements is in the lower detail
level of a single context expression. However, the Attributes property is
designed to add details if necessary. The Attributes property was not needed to
convey any information in the example applications.

9.2.3 Discussion

The requirements for the representation and ontology were fulfilled by the
implemented ontology structure, vocabulary model, and and domain
vocabularies that were defined for the different types of applications in the
example application set. The example applications show that the ontology
structure and vocabulary model are applicable in multiple application domains.
The ontology vocabulary is machine-readable and the common data structure
facilitates the processing and use of context within the framework, and
automatically generating user interface views based on it. The structure of the

185

ontology is easily understandable by humans. The vocabularies can form a
shared conceptualisation of a domain.

Of the eight requirements, expressiveness was a trade-off to the other seven
requirements. However, in light of the example applications, a more expressive
ontology structure was not even required. Complex context information
structures can be decomposed to the atomary expressions that can be represented
with the ontology structure. All the necessary contexts in the domains of the
example applications could be represented with the name-value tuples formed by
context type and context value. From the properties defined in the ontology
structure, the Attributes-property was not needed in any of the example
applications.

In addition to the example applications, sensor-based vocabularies of the context
ontology have been utilised in multiple research studies. The ontology has been
used as an underlying representation for an explorative analysis of the structure
and dynamics of higher level contexts derived from sets of lower level contexts
by segmenting time series of atoms, and for unsupervised clustering from both
sets and time series of atoms, in an attempt to raise the abstraction level of the
context data (Himberg et al. 2001; Mäntyjärvi et al. 2001, Flanagan et al. 2002).
Mäntyjärvi et al. (2002) use the representation as a basis for experiments in
utilising information from multiple mobile devices in recognizing the context of
a group of mobile terminals and their users collaboratively.

Different types of applications, including applications outside the context
framework, were selected for verifying the potential scope of the ontology
applicability. Applications with different types of input context data were
selected for examining the capability of expressing different types of
abstractions with the ontology structure and vocabulary model. Based on the
sample set of applications, the ontology structure and vocabulary model can be
concluded to have a wide scope and the ability to express a wide variety of
different types of abstractions. The ontology vocabulary model facilitates
describing application actions in addition to contexts. The Customizer, the
ontology and the context framework together facilitate easy end-user
development of context-aware features into existing mobile device applications
without modifying the application code.

186

9.3 Context abstracting and recognition

Research methods for context abstracting and recognition include a literature
review, development, experiment and evaluation. The literature review
introduced a few widely applied machine learning and inference methods
potential for context abstracting and recognition in a mobile device. The
development included implementing Context Abstractors and recognisers in the
context framework. The experiment included choosing suitable method(s) for
context recognition, and evaluating them with a case study based on a scenario
in a home environment. For evaluating the context abstracting and recognition
experiment, quantitative measures were presented for context recognition
accuracy in the case study.

This chapter evaluates the feasibility of context abstracting and recognition
within the context framework functioning online in a mobile phone. The
implemented framework elements and applications that operate utilising the
elements are evaluated against the requirements set for the abstracting and
recognition methods.

9.3.1 Applications

Applications for the evaluation of context abstracting and recognition (Table 23)
were selected based on the following criteria. The criteria were selected to verify the
applicability of the framework for online context abstracting and recognition, and
for analysing what could be recognised from the environment with a set of sensors.

1. To verify the applicability of abstracting and recognition methods within the
implemented context framework (applications 2, 3): Does the framework support
sensor-based context abstracting and recognition for real-world applications?

2. What can be recognised from the environment with a set of sensors, bearing
in mind the restrictions of a mobile device (application 1)?

3. For showing the real-world usability of the framework: Can the framework
support potentially useful applications that utilise context abstracting or
recognition?

187

Table 23. A summary of selected application examples implemented utilising
sensor-based context abstraction and recognition.

Application
name

Application
type

Context
source(s)

Number of
context
types

Target
platform

1. Context
classifier

Context
monitor

Sensors and
audio (offline)

~10 PC, offline

2. Gesture
control

Gesture
recognition-
based action

Accelerometers 1 Series 60,
context
framework

3. Movement Movement-
based action

Accelerometers 2 Series 60,
context
framework

1. Context classifier is the application presented in the context recognition case
study. The offline application reads recorded sensor data and visualises the
classified contexts as a function of time. Naïve Bayesian networks are used
as the context recognition method.

2. Gesture control is an explicit interaction modality utilising the context
framework. The acceleration sensor signal is processed up to the
classification phase of the pattern recognition process. Hidden Markov
Models (HMM) are used as the model for gesture training and recognition
(Mäntylä 2001, Mäntyjärvi et al. 2004, Kela et al. 2005). Gesture
recognition accuracy with the applied method has been evaluated
quantitatively by, e.g., Mäntyjärvi et al. (2004). Gesture recognition and
control as an explicit modality are not within the focus of this dissertation.
Gesture recognition is used in this dissertation to evaluate the feasibility of
HMM-based classification within the context framework, and can be utilised
as additional interaction information for context-aware applications and
multimodal interaction. Gesture control was evaluated in the target
hardware, a Series 60 mobile phone having accelerometers and the context
framework.

188

3. The Movement-based action application represents the context abstracting
category, where the signals are processed up to the feature extraction phase
in the pattern recognition process. This application category was introduced
in the framework evaluation section.

9.3.2 Requirements realisation

The applications in Table 23 use methods for feature extraction, and applications
1 and 2 use classification methods. The requirement realisation discussion is
focused on the applied machine learning (classification) methods, i.e., Naïve
Bayesian networks and HMMs. Both methods were discussed in the literature
review, and the conclusions in this section are based on references in the
literature, in addition to the experiments that were conducted.

1. Efficiency

The Naïve Bayes network (application 1) inference is computationally very
efficient. As a context recognition method, it is very well suited to continuous
real-time recognition in low computing power mobile devices, although
application 1 was tested offline in a PC. The HMM (application 2) inference is
also quite efficient. It is suitable for mobile device event-based recognition when
either an application or the user explicitly starts the recognition, as is the case in
application 2. In application 2, the HMM-based classification for gesture control
was applied in a Series 60 phone with the context framework, and there were no
perceivable delays in the user interaction with phone applications.

2. Handle multidimensional input data

The Naïve Bayes network can handle multidimensional input data (application
1), whereas HMM is designed for modelling one-dimensional sequences. In the
case of multidimensional input data, such as accelerometer data, a
dimensionality reduction is required for the three-channel data before applying
HMM (application 2).

189

3. Handle uncertainty

Bayesian networks and HMMs are both suitable for classifying incomplete and
noisy data (applications 1, 2).

4. Updating flexibility

Learning conditional probabilities in the Naïve Bayes network is fast and
requires little training data. New training data can be utilised incrementally. New
contexts to classify can be modelled as new networks, independent of the others.
HMM requires also relatively little training data in the example application.
Training is more computationally expensive, and causes a small delay in the
example cases in a Series 60 phone. HMMs can also be incrementally trained,
and new contexts (gestures) are added as new HMMs. The learning phase is not
currently performed within the context framework in both applications. New
gestures can be trained separately in the mobile device.

5. Scalability

The computational complexity of the Naïve Bayes network is small in inference
and learning. Hence large models are still efficient. Furthermore, when the
inputs are divided for different networks based on background knowledge, many
networks can function in parallel (application 1). In application 2, each HMM
corresponds to one gesture, and each HMM is independent from the others,
which enables straightforward adding, removing and updating of models. Since
the inference is moderately efficient, handling a large number of HMMs is
computationally feasible in a mobile phone.

9.3.3 Discussion

Application 1 was selected for analysing what can be recognised from the
environment, bearing in mind the restrictions of a mobile device. With Naïve
Bayes networks, multiple contexts can be recognised from multi-sensor data
with a one-second resolution in a restricted scenario. Analysed against the
requirements, the Naïve Bayes is suitable for classification use in mobile

190

devices; it is efficient, can handle multidimensional input data and uncertainty, is
flexible to update, and scalable.

Empirical tests show that HMMs can be applied for real-time online
classification in a mobile phone within the context framework for recognising
discrete accelerometer based gesture commands. Recognition delays are
unnoticeable. Explicit gesture commands can be described and used as any
context events within the framework. HMMs are computationally moderately
efficient, can handle uncertainty � i.e., noise in the acceleration data and
incomplete training data � are flexible to update, and scalable as independent
models.

Applications two and three were selected based on assumed application
usefulness and for verifying the applicability of the selected abstracting and
recognition methods within the implemented context framework. Based on the
sample set of applications, it is verified that applying feature extraction and
classification with the selected methods is feasible within the context framework
in a Series 60 mobile phone. Furthermore, continuous concurrent online
abstracting of multiple context types is feasible within the framework, as is the
use of the abstracted contexts as events for application control.

9.4 Context framework performance

9.4.1 Computational complexity estimation

The computational complexity of the context framework without the effect of
specific signal processing algorithms (some of which were separately addressed)
in Context Sources or Context Abstractors can be roughly estimated. Without
the effect of specific algorithms, the computational complexity of Context
Source, Context Abstractor, and Change Detector can be regarded as constant.
The variables that potentially most affect the framework performance are the
number of contexts C, number of applications A, number of rules R, and number
of operations in a rule P.

The context framework is designed so that each server computing element
(Context Manager, Rule Script Engine, and Activator) has a queue for incoming

191

data traffic. Hence the computational complexity for C and A is constant. The
Rule Script Engine is designed so that each context in a rule has a subscription to
the Context Manager. For each incoming context, if the rule does not have the
incoming context type in it, the rule is not processed. The computational
complexity for the triggered rules (that do have the incoming context type in
them) R' is linear O(R'). Each triggered rule R' has a number of operators P,
which have a linear computational complexity O(P). Typically both R' and P are
low. The computational complexity of the context framework can thus be
approximated as O(R'P).

9.4.2 Performance evaluation in target hardware through usage

Tables 20, 22, and 23 show the applications that were used in the evaluation.
The applications whose target platform was specified in the tables as Series 60,
context framework, were tested in 1�5 different Series 60 phone models having
ARM9 104MHz and 123MHz (ARM 2005) processors. Computing performance
refers here to the speed of executing a task in the target hardware.

The computing performance of the context framework applied with real
applications was tested empirically. The performance of the implemented
framework with the real context sources � for fast changing context data that
was not stored in the permanent database � was unexceptional in the target
hardware. The assessment is based on observing the operation in multiple test
use cases. In the test use cases the conditions for a certain action were
intentionally fulfilled, and the user monitored whether there is a delay prior to
the known action execution. The delay from the framework operation was
unnoticeable to the user in the observed non-persistent context data use cases,
which include the applications that were discussed in the evaluation. For those
test applications that stored context data in the permanent database continuously
and with a high frequency, the delay was observable. However, as discussed
earlier, there was no need for permanent context storage with the evaluated
applications.

The framework operation in customization usage was tested with over twenty
test cases (active context-action rules), which were defined using the
customization tool. Delays from the framework operation were not noticeable.

192

The ability of the context framework to handle multiple concurrent applications
was tested by performing different numbers of simultaneous different
application activations based on context, a maximum of four. The test was
conducted by defining four rules, where four different application actions were
defined for the same context event. The context framework managed the
application control in sequence, in the order of subscription � in this case in the
order of the creation of the context-action rules � without noticeable delay. It
must be noted that in all test cases the acceleration channels were continuously
sampled with a moderately high frequency, and a multitude of Context Sources
continuously performed data abstracting for different context types and produced
context events to the Context Manager blackboard without a noticeable effect on
the framework performance.

Hence the empirical tests indicate that the context framework performance is
unexceptionable in the target hardware � i.e., real mobile phones.

9.4.3 Performance evaluation in target hardware quantitatively

The context framework computing performance was measured numerically in
the target hardware, in a Series 60 Symbian phone having an ARM9 206MHz
processor. The test setup included a context data simulator that provided
recorded and abstracted real context data, and seven context-action rule scripts.
Context add parameters were set as 'persistent false' and 'change detection false'.
The software configuration consisted of Context Manager, Rule Script Engine,
Activator, Context Studio, and one Context Source. The memory size of the
packet was about 80 kilobytes. Runtime memory consumption was not measured
but is insignificant when contexts are not stored into the database.

The processing time used by Context Manager process was first measured with
contexts that did not trigger rules. About 250 context atoms were each added to
the Context Manager and processed ten thousand times. The average processing
time for processing one context atom once was 25 microseconds.

The processing time of Rule Script Engine was measured for triggered rules.
There were six contexts in the dataset that triggered a rule; each of them was run

193

ten thousand times within the Rule Script Engine. The average processing time
for evaluating one rule operation once was 12 microseconds.

The processing time of the chain Context Manager � Rule Script Engine �
Activator � Application (system function call) was measured for five triggered
contexts each a hundred times. The average processing time of the whole server
chain was 374 microseconds, including the Application call. The extra time
compared with the processing time in each individual component was mainly
due to the communication overhead, i.e. context switching between the
processes, which is a fairly expensive operation in the operating system (Tasker
et al. 2000). Another source of overhead is data transfer between processes,
although this is not as significant since the data amount to transfer is not large.
Although the performance is already unexceptionable, it can be further
optimised by rearranging the computational elements into the same process
having multiple threads.

As a summary it can be stated that the context framework performance is beyond
reproach and more than sufficient for a context-aware application in a mobile
phone. Moreover, since the worst-case computational complexity is linear, the
context framework is also performance-wise scalable.

9.5 Summary

The implemented context framework, ontology, abstracting and recognition, and
customization were evaluated in handheld mobile devices having a Symbian
operating system. Several applications of different types were used to evaluate
the applicability of the framework. The implementation of the framework was
evaluated against the requirements, which were set for answering the research
problems. The fulfilled requirements verified the implementation. The use of the
features specified in the requirements in different types of applications verified
the applicability and scope of the framework.

The contribution of this chapter is the evaluation, based on which the following
claims are made. Based on the sample set of applications, the framework is
claimed to offer a generic platform for abstracting and managing a wide range of
different types of abstractions including sensor-based information, and for

194

enabling context event-based application control for different types of
applications. Based on the sample set of applications, the ontology structure and
vocabulary model are claimed to have a wide scope and the capability of
expressing a wide variety of different types of abstractions. The ontology
vocabulary model facilitates describing application actions in addition to
contexts. Based on the sample set of applications, it is verified that classification
with the selected method, continuous concurrent online abstracting of multiple
context types, and the use of the abstracted contexts as events for application
control are feasible within the framework in a mobile phone. The context
framework is computationally efficient and performance-wise scalable. The
Customizer, the ontology, and the context framework together facilitate simple
and easy end-user development of context-aware features into existing mobile
device applications without programming.

195

10. Discussion

10.1 Verification of the research problems and
hypothesis

The research problems and hypothesis are revisited to verify how they have been
answered in the dissertation. The research problems are answered first.

1. The problem: What is required to flexibly and efficiently handle all
relevant aspects of sensor-based mobile terminal-centric management of
context-related information?

The answer: The blackboard-based software framework, capable of
acquiring, storing, and abstracting human-interpretable context information
from multiple sources, including sensors, was designed, implemented and
evaluated. The framework can deliver context information to mobile device
applications in an event-based manner with a publish and subscribe
mechanism. The framework can separate context management, including
application control, from application code. New Context Sources, Abstractors,
Change Detectors and Applications can be plugged in, and Abstractors and
Change Detectors can also be created as scripts. The framework was evaluated
with multiple applications of different types, performance estimation and
measurements, use cases of different types implemented in the target
hardware, and a user test was performed with the target hardware.

2. The problem: How to represent context information so that it can be
systematically processed, stored, used by the applications, and understood
by application developers, while maintaining representation extensibility?

The answer: A human-understandable and machine-processable extensible
context ontology was developed and evaluated. The ontology structure was
the same across different application domains. Domain vocabularies were
defined according to the vocabulary model. The use of the ontology within
the framework was evaluated with real applications in the target hardware.
The human understandability was evaluated with two user studies, which
involved 17 people from outside the mobile phone industry.

196

3. The problem: How can context be recognised and abstracted online into a
common representation from many different sources, especially device
sensors, producing possibly incomplete and imprecise information?

The answer: Context abstraction and recognition from multi-sensor data is
feasible with the probabilistic machine learning methods that were selected
and evaluated in the dissertation. The accuracy of recognising multiple
simultaneous activities from multi-sensor data was evaluated quantitatively
in the case study. The use of a HMM-based classifier implemented as a
Context Source within the context framework in the target hardware was
evaluated with gesture recognition from a three-channel acceleration signal.

4. The problem: What kind of application programming interface is required
for the simplified development of context-aware applications, and, further,
what kind of tool would be required for end-user development in mobile
handheld devices?

The answer: The dissertation presents a compact application programming
interface based on the blackboard model, where context abstractions
described in the ontology are accessed uniformly from one node independent
of the source of context. Furthermore, the simplified development of
context-aware applications was evaluated with an end-user tool that uses the
framework. The tool enables users to easily customize new context-aware
features into existing applications. The tool is easy to learn and simple to
use, which was evaluated with a user test with the implemented framework,
the tool, real Context Sources and abstractors in the target hardware.

The main hypothesis of the dissertation was set as follows.

By solving research problems 1�4 it will be possible to create a functional
software framework and tool that enable end-users to quickly customize
versatile context-aware applications in a mobile device.

The hypothesis is verified in summary as follows. The created software
framework was used in handheld mobile devices. The use was evaluated with
the target hardware with several implemented applications, performance tests,
and user tests. The framework contains reusable elements of context-aware

197

applications. Multiple context-based application features were developed with
the implemented framework without programming changes to the framework
code. The framework transparently handles the production, abstraction and
delivery of the context information. Transparency means that the application
developer does not need to know the underlying operation for producing the
context information. Acquiring, abstracting, recognition and delivery of the
context was implemented and evaluated with several applications. The framework
can perform application control on behalf of the application or the user. Existing
applications were enhanced with context-aware features without programming
executable code. The framework provides an application programming interface,
which was used for multiple applications. An extensible context ontology was
created and used within the framework for representing the abstracted context
information. The context framework and a customization tool facilitate easy-to-
learn end-user development, which was evaluated with user studies.

Hence it is claimed that research problems 1�4 were solved and a functional
software framework and tool that enable the quick development of versatile
context-aware applications in a mobile device were created.

10.2 Comparison with related work

10.2.1 Summary of contributions

In comparison with the related work, this dissertation has multiple scientific
contributions. Table 24 summarises the contributions, followed by a summary
comparison with the most significant related work in each sub-topic of the
research and the contributions. For the most part, the summarised contributions
relate to the scientific publications first-authored by the author of this
dissertation, the related patents and the pending patents.

198

Table 24. Summary of contributions. As an estimated rate, + refers to a
contribution, and ++ refers to a major contribution. The rating ++ is based on
the significance of the contribution in an article published in an international
scientific journal or magazine.

Contribution Rate
Context framework

1. Extensive requirements analysis for a mobile device context
framework

+

2. Software framework for developing mobile device sensor-based
context-aware applications

++

3. Mobile device framework support for providing fast event-based
abstracted contexts defined in the ontology

+

4. Framework support for context abstracting and context recognition
process in a mobile device

+

5. A compact API, which is uniform for all context producers and
consumers, for providing and using rapidly changing sensor data
as abstracted context objects in a mobile device

++

6. Blackboard-based management of context information in a mobile
device with a publish and subscribe mechanism

++

7. Relational context database for mobile device context awareness +
8. Software framework support for application control and

interaction customization in a mobile device
++

9. Implementation and evaluation of a blackboard-based context
framework with a set of applications in a mobile device

+

Context representation and ontology
10. Requirements analysis for context representation and ontology for

a mobile device
+

11. Structure and properties for domain-independent representation of
context information as data objects

+

12. Generic vocabulary model for describing context instances and
vocabularies

+

13. Method of utilising context ontology in customizing context-aware
applications

++

14. Method of ontology-based UI generation for mobile device
customization

++

199

Table 24 continues.

15. Implementation and evaluation of context representation and
ontology within the context framework with a set of applications
in a mobile device

+

Context abstracting and recognition
16. Requirements analysis for context recognition methods for use in

mobile devices
+

17. Recognition of multiple simultaneous contexts from multiple
sensor sources

+

18. Model for the transformation of continuous sensor data flow into
context change events within a context framework

+

19. Evaluation of the feasibility of continuous multi-action context
recognition quantitatively

++

20. Applying HMM-based classification from sensor data involving
uncertainty within a context framework for real mobile device
applications

+

21. Implementation and evaluation of context abstracting and
classification within the context framework with a set of
applications in a mobile device

+

Customization and personalisation
22. Solution for enabling end-user development of context-aware

applications in mobile handheld devices
++

23. Solution for enabling user interaction customization in handheld
mobile devices

++

24. Solution for enabling customizing multimodal interaction of novel
modalities in handheld mobile devices

+

25. Implementation and evaluation of a rule-based customization
approach and tool within the context framework with a set of
applications in a mobile device

++

200

10.2.2 Context framework

In comparison with the most relevant related context frameworks, this
dissertation particularly focuses on sensor-based information processing in
handheld mobile devices. The approach to context awareness is mobile device-
centric as opposed to an environment-centric �smart space� approach. As far as
is known, no other significant blackboard-based context framework for mobile
terminals existed in the literature review. The related environment-centric
context frameworks have been prototyped with PCs and laptops (Dey 2000,
Mitchell 2002, Ranganathan & Campbell 2003, Wang et al. 2004). Experiments
and simulations of context awareness in a networked PC environment do not
reflect the constraints and requirements from the mobile handheld device usage
viewpoint. Such requirements were thoroughly analysed in this dissertation. The
related frameworks do not provide a simplified API for using rapidly changing
context information abstracted from sensors and defined in the ontology for a
mobile device.

Winograd (2001) argued that the blackboard model is superior for context
management. The blackboard-based model offers the advantage of hiding from
client all components except the blackboard manager. The client accesses all
context data from any source from the same central node. Korpipää et al.
(2003b) presented a blackboard-based framework for mobile device context
awareness. Wang et al. (2004) utilise a central knowledge base as the context
repository, one for each smart space, and use Semantic Web tools for inference.
The knowledge base is suggestive of being blackboard-based, but the inference
results are not allowed to be stored in the knowledge base. The authors evaluated
the system performance with a 2.4 GHz Pentium 4 workstation and report that
with the prototype Java-based application the reasoning delays sometimes matter
to users. The related context framework literature does not offer a complete
mobile device-centric solution to the process of acquiring and storing rapidly
changing context information from multiple source sensory data, abstracting and
recognising contexts from noisy data, and representing the abstracted data with
an ontology up to the use of the abstracted context data through an API and
customizable application control in applications in a handheld mobile device.

201

10.2.3 Context representation and ontology

In comparison with the related work on context ontologies, this dissertation
focuses on sensor-based context abstractions, the common properties of the
context information, and applying context conceptualisations in mobile device
customization. Early mobile device-centric related work contributes the basic
structure and categorisation of sensor-based context information (Schmidt et al.
1999a) to this dissertation but does not specify an extensive set of the common
properties of context data structure, or a detailed generic model for describing
new context vocabularies.

In more recent work, Wang et al. (2004) apply OWL to define an ontology for
describing context information related to smart spaces. The ontology consists of
an upper-level context ontology and extended context ontologies. The upper
level ontology contains three classes of real-world objects (user, location and
computing entity, which has a sub-class of device) and one class of conceptual
objects (activity) for characterising smart spaces. The ontology defines the class-
specific properties required for describing each of the mentioned context sub-
classes. The authors identify as future work providing the capability to manage
context information uncertainty with reasoning methods such as probabilistic
logic, Bayesian networks and fuzzy logic, since sensor-based contexts are not
always precise. Korpipää and Mäntyjärvi (2003) propose a set of common basic
properties for all context objects, with representation support for handling
context information uncertainty. Moreover, Korpipää et al. (2003a, 2003b)
propose and evaluate methods for context recognition and reasoning for
handling uncertainty, such as Bayesian networks and fuzzy logic. Ranganathan
and Campbell (2003) use first order logic for describing context-aware
behaviour in a PC environment. The related context-aware computing literature
does not offer solutions for utilising an extensible context ontology in end-user
development of context-aware applications, or generating graphical user
interface views based on the ontology, and do not offer a vocabulary model for
specifying context vocabularies.

202

10.2.4 Context abstracting and recognition

The context-aware computing literature does not analyse in detail which context
recognition methods are suitable for use in mobile devices. Schmidt (2002)
discusses sensor-based context acquisition and use of the context information in
several applications related to aware artefacts and sensing environments, and
presents a conceptual model for sensor data processing. Concerning sensor data
processing, Schmidt (2002) discusses the sensing and feature extraction phases
of the pattern recognition process, but does not discuss classification � i.e.,
context recognition as defined in this dissertation.

Mäntyjärvi (2003) focuses on applying statistical and machine learning methods
for an explorative data analysis of the context data. In other words, the author
performs context data mining for discovering the context data patterns that
correspond to real-world situations. The next step after the explorative data
analysis approach, where results are analysed qualitatively, is the traditional
pattern recognition approach taken in this dissertation to enable a quantitative
evaluation of how well certain contexts can be recognised from the sensor data
in a certain scenario. These results can give directions as to which contexts can
be recognised reliably and could be applied in practice in the future.

Two more recent studies with pattern recognition and a quantitative evaluation
approach analyse context recognition from wearable sensors. Bao and Intille
(2004) use five 2D accelerometers attached to five locations on the human body
(dominant arm wrist, dominant leg ankle, thigh, arm and hip) for offline
recognition of 20 pre-segmented indoor activities. The application area of the
study is wearable computing, whereas this dissertation has a mobile device-
centric view. Korpipää et al. (2003a) present multi-sensor recognition from a
continuous unsegmented data stream, where multiple contexts are classified at
the same time instant. Lukowicz et al. (2004) study the recognition of wood shop
activity by using microphones and accelerometers worn on the body. Nine
different activities, such as sawing, drilling, etc., are recognised one at a time
from continuous data by first segmenting the data. One classification result is
given for each identified segment, and in one dataset there were 25�30 coarse
partitions of different lengths. Korpipää et al. (2003a) classify multiple
simultaneous contexts with a one-second resolution � i.e., the classification
result is given for each second in the continuous data. In mobile device context-

203

aware applications, such as performing a user interface action based on
recognised context, too coarse a segmentation may lead to delays that are
annoying to the user.

The related work does not present solutions to classifying multiple simultaneous
contexts from multiple sensor sources, and does not evaluate the feasibility of
continuous multi-sensor multi-action context recognition quantitatively.
Furthermore, this work contributes in presenting and applying a software framework
to the transformation of continuous sensor data flow into context change events in a
mobile device, and applying classification from noisy multidimensional data within
a context framework for real mobile device applications.

10.2.5 Customization and personalisation

As a significant application of context framework, ontology and abstracting, this
dissertation presents a tool for end-user development and interaction
customization in mobile devices. The idea and concept of personalising mobile
device applications was first introduced by Mäntyjärvi et al. (2003). According
to the original concept, the user was to mark all the pre-defined context instances
that describe a certain situation as a trigger for a certain action. In the
customization approach developed into a working tool in this dissertation the
concept is modified so that the user only selects the context value(s) the user
considers relevant for triggering an action. Moreover, the tool user interface is
designed for small-screen devices, the user interface views of the tool are
generated automatically based on the ontology, and the context framework
enables the actual use of the features that were defined with the customizer.

For comparison, Dey et al. (2004) experiment with a programming-by-
demonstration approach for prototyping context-aware applications. The authors
have developed a tool for a PC environment that enables the user to train and
label models of context, which can be connected to actions. Context models are
defined as examples. User-activated creation of context models based on
example is feasible when it is performed for a single type of context that is
known to the user. In the case of multiple input sources, the programming-by-
demonstration approach may lead to behaviour that the user did not intend to
have if the user cannot control exactly which input(s) define the situation.

204

This dissertation presents and evaluates with users a customization tool, the
framework, and the ontology that, together, facilitates end-user-controlled
customization of novel input modalities for human-computer interaction with a
mobile device and external appliances, and facilitate the real use of the
customized features in the mobile device.

10.3 Significance of the results

The results related to this dissertation have been published in international
scientific journals and conferences, and a workshop. A total of 12 closely related
and co-authored articles have been published (Himberg et al. 2001, Häkkilä et al.
2005, Kela et al. 2005, Korpipää et al. 2003a, 2003b, 2004a, 2004b, 2005a,
2005b, Korpipää & Mäntyjärvi 2003, Mäntyjärvi et al. 2001, 2004), of which
four are scientific journal articles, seven are scientific conference articles, and
one workshop article. The author of the dissertation is the first author in seven of
those publications, including three journal articles. In addition, three related and
co-authored patents have been either published or a US patent is pending.

The main result of the work is the first blackboard-based context framework and
customization tool for mobile device context awareness. The framework can be
used for managing any, but especially sensor-based, information as events. The
customization tool can be used for personalising user interaction in handheld
mobile devices, where the interaction can be either explicit or implicit. An
evaluated and viable model and implementation are provided for quick and
simplified development of versatile context-aware applications.

The results do not concern merely context-aware computing, they can be
generalised to and applied in customizing the use of novel input modalities for
interaction with mobile devices, as is discussed in Korpipää et al. (2005b). Any
events, including sensor-based events, can be used as inputs for interaction. The
framework enables quick evaluation of new interaction modalities, and hence the
deployment of new modalities will be much quicker than before. The framework
can be used as a customisable and easily modifiable platform for enabling
multimodal interaction with a mobile device, where implicit context-based
interaction can be seen as one interaction modality that can be combined with
others.

205

The customization tool can be considered a generic profiling tool for specifying
personal mobile device functionality. By applying the results of this dissertation,
the use of mobile devices can be made more personal, potentially more efficient,
and better suited to varying individual user needs, which may change over time.

About thirty different real-world mobile phone application features were created
and tested using the context framework and the customization tool. Some of
those applications and application enhancements were selected for the
evaluation. The scope of the applicability of the framework and the tool is wide.

The context-awareness usability and usefulness viewpoint is not within the focus
of this dissertation. However, two separate user studies, for seven and ten
people, were arranged to evaluate the usability and usefulness of the
customization tool. After applying the tool, the users were asked: �Do you feel
you would benefit from the customization tool?� Fifteen of the seventeen
participants answered affirmatively. Korpipää et al. (2005b) and Häkkilä et al.
(2005) give a more detailed discussion of the tool usability.

The results of this dissertation can be utilised by mobile application developers,
mobile phone end-users, and product developers. Application developers can
directly utilise the results of this dissertation by programming applications with
the API provided by the context framework. End-users can directly apply the
results for freely personalising their smart phones using the customization tool,
if the software is released for public use. Moreover, product developers can
potentially use Context Studio for defining platform- or application-specific user
interaction or context-based features, and package the features as scripts with
context framework into different products, expediting deployment.

The results of this dissertation have significance for industrial utilisation and
commercial value. The results are being further developed for application in
mobile phone- and mobile operator-related industries for application domains
such as enhanced usability and personalization, novel sensor-based interaction
modalities, mobile workforce, context-based security for enterprises, and
context-based multimedia management.

206

10.4 Future work

In this chapter a few topics and challenges are pointed for future research.

1. Multimodal user interfaces

The context framework enables the use of multiple modalities for controlling
mobile devices. In addition to implicit inputs, the framework enables the use of
explicit control commands, such as gestures and RFID tags. The user viewpoint
of utilising these new modalities in mobile device control, and for the control of
external appliances with the mobile device, should be studied further.

2. Usability of context-aware applications

An analysis of the usefulness and usability of context-aware applications is
required to examine the practical implications of context awareness for mobile
computing in general. Studies should especially analyse how context-aware
features are used and affect the normal daily lives of the users.

3. Automated creation of user profiles

It was shown in this dissertation that end-user development of context-aware
application features is possible. The user can customize the context-aware
features manually, after which the device functionality is as the user specified it
in a rule, which is a kind of user profile. If the circumstances change, the user
can re-customize the device functionality as required.

A challenge still remains concerning the automated creation and adaptation of
the user profile based on automated monitoring of the behaviour of the user.
However, fully automated adaptation has many problems, such as how to
automatically choose the relevant inputs for the actions when learning actions
from a set of inputs. The user should give feedback to the system, which creates
another challenge of how this feedback should be given.

207

4. Battery consumption from continuous monitoring of sensors

In practical mobile computing, battery consumption is a critical measure, and no
extra actions should be made without a clear need or advantage gained.
Continuous monitoring of sensors for implicit input consumes battery power,
and the advantages are not always as clear as the cost. In a basic case of context
awareness, the application actions are invoked by the context instances
abstracted from the sensor data. However, continuous monitoring is not always
necessary. The application may initiate the context data acquisition. For
example, in image augmentation context acquisition can be started when the
camera is started and a snapshot of the context space is augmented in the image.
Moreover, the abstracting and change detection processes, producing events
from the continuous stream, should be performed as close to the hardware as
possible, to reach the lowest possible power consumption. Ideally, the sensor
hardware should have a quick wake-up time from standby and contain low
power processing capability to directly output abstracted events, to be added to
the Context Manager blackboard.

5. Utilising contexts recognized from multi-sensor data

There are many limitations for the rapid utilisation of a wide variety of contexts
derived from multi-sensor data. More sensors and a large data collection are
needed to gain enough information to discriminate reliably between contexts in a
general mobile device usage setting. Some contexts are additionally ambiguous
or subjective, and, as such, application-specific. Challenges in reaching
generalisable and reliable multi-sensor context recognition with mobile devices
still remain remarkable and practical applicability is unclear.

6. Documenting and sharing context and action vocabularies

Expanding the set of contexts that can be used by the applications leads to a
wider scope of applications. Sharing and communicating context information by
using ontologies promotes the availability of the context vocabularies. Providing
tools for creating formal vocabularies for sharing, possibly using Semantic Web
technologies, should be studied further, but with consideration of the special
characteristics of mobile computing.

208

In current implementation, the context-action rules and context instances are
formally described with CEP for sharing purposes. The vocabularies that list the
available contexts and actions have semi-informal representation for rapid
utilisation. The use of a formal expressive language for describing large context
and action vocabularies would bring advantages such as describing context value
constraints, enabling centralised context information consistency checking and
systematic conflict handling. The possible drawback is a decreased human
readability of the information, unless proper editors are available for creating the
vocabularies. Furthermore, the ontology vocabulary should serve as a general
documentation of context and action information for application developers and
end users, who both need to know what kind of information they use.

7. New customizable modalities

New customizable modalities, such as gestures, physical selection and implicit
inputs, potentially increase the efficiency of human-computer interaction with
mobile devices. Further work includes quantitatively evaluating the average
improved efficiency of using these new customizable modalities. Furthermore,
the user feedback has suggested that, in addition to trainable gestures,
customizable context sources could be useful.

8. Using mobile device as a control interface for external devices

The interaction convergence to one device continues, and an increasing number
of different external devices will become controllable with a mobile phone in the
near future. Providing a uniform user interface for using external devices with
heterogeneous interfaces is a challenge. The Context Framework and
customization tool could be further developed to flexibly facilitate a wider scope
of customizing user interaction with external devices.

9. Customization tool

Using a customization tool is easy to learn since it has a reduced rule expression.
However, even simple rules do not guarantee complete user control if the user is
totally unfamiliar with what a certain trigger does � for example, a gesture
named Square received from a friend. The customization tool should provide a
wider explanation of the exact meaning of the trigger � for example, as a help

209

function � possibly with a visualization. This explanation should be documented
in the ontology vocabulary, read by the Customizer.

Furthermore, the users might want to define and name their own context triggers
� e.g., locations, social situations based on Bluetooth devices, temperature
abstractions, light levels, etc. Further work includes providing a graphical user
interface for personalizing specific Context Sources, and the ability to update the
vocabularies at runtime. Currently, the user can train and name the gesture-type
triggers, and name RFID tags by physically writing the tags with the RFID tag
read/write accessory.

Moreover, it should be studied whether other kind of user interaction, for example
Wizard-style, in creating and managing rules could be even more user-friendly.

10. Application Controller

For maximal flexibility of application control with the context framework, the
applications to be controlled should have the capability of dynamically registering
their controls to the Application Controller. Some phone applications, such as calling,
profiles, etc., require an application-specific function call interface, rather than a
platform-level interface. It should be possible to plug in these function call interfaces
to the Activator. The plug-in action interfaces should be able to check whether the
corresponding action function exists in a current instantiation.

Dynamical actions registering requires a common action language and
vocabulary that defines both the machine readable function parameters for
calling the application and the human understandable action expression that can
be used for customization. Currently the Customizer reads this action vocabulary
configuration at startup. The generated CEP rule scripts hence contain the
human understandable expression and function parameters. CEP scripts can be
subscribed to the Application Controller, which at inference time uses the
function parameters in the script to execute application fucntions. As a further
work then, ideally, the new application or new external device could
dynamically plug in its available functions to the Application Controller.
Basically the application action plug-in would state �These are my function
calls, and these are the names for them for the user to understand�, facilitating
wide-ranging mobile end user development.

210

11. Summary
The research problems concerned the development of a context framework and
tool for mobile device context awareness. The first problem was stated as what
is required to flexibly and efficiently handle all relevant aspects of sensor-based
mobile terminal-centric management of context-related information. The second
problem concerned how to represent the context information so that it could be
systematically processed, stored, used by the applications, and understood by the
application developers, while maintaining representation extensibility. The third
problem was stated as how can context be recognised and abstracted online into
a common representation from many different sources, especially device
sensors, producing possibly incomplete and imprecise information. The fourth
problem concerned what kind of application programming interface is required
for the simplified development of context-aware applications, and, further, what
kind of tool would be required for end-user development in mobile handheld
devices. Following the problems, the main hypothesis was set as follows:

By solving research problems 1�4 it will be possible to create a functional
software framework and tool that enable end-users to quickly customize
versatile contex-aware applications in a mobile device.

The research problems were answered and the hypothesis was verified as
follows. The created software framework was applied to developing and using
context-aware applications in a mobile phone. The framework contained the
reusable elements of the context-aware applications. With the implemented
framework, multiple context-based features were developed without
programming changes to the framework code. The framework transparently
handled acquiring, storing, abstracting and delivering the context information
with a publish and subscribe mechanism and a database. The framework could
perform application control based on any context events. Existing applications
were enhanced with context-aware features without programming executable
code. The framework provided an application programming interface, which was
used for multiple applications. An extensible context ontology was created and
used within the framework for representing the abstracted context information.
A context framework and a customization tool facilitated end-user development.

211

The implemented context framework, ontology, abstracting and recognition, and
customization tool were tested and evaluated in handheld mobile devices having a
Symbian operating system. The evaluation had the following basis. The requirements
were set for answering the research problems. The implementation of the framework
was evaluated against the requirements. The fulfilled requirements verified the
implementation. The use of the features specified in the requirements in different types
of example applications verified the applicability and scope of the framework. The
framework computing performance was evaluated in target hardware through usage
and numerical measurements. The evaluation verified that the framework offers a
generic scalable high performance platform for abstracting and managing sensor-
based information, and other abstractions, for enabling context event-based application
control. The ontology has the ability to express a wide variety of different types of
abstractions. Context recognition, continuous concurrent online abstracting of multiple
context types, and the use of the abstracted contexts as events for application control
are feasible within the framework. The Customizer, the ontology and the context
framework together facilitate simple and effortless customization of context-aware
features into mobile device applications.

The related results have been published in international scientific journals and
conferences, and a workshop. A total of 12 closely related and co-authored articles
have been published, of which four are scientific journal articles, seven are scientific
conference articles, and one workshop article. The author of the dissertation is the first
author in seven of those publications, including three journal articles. In addition, three
related and co-authored patents have been either published or a US patent is pending.

The customization tool can be considered a generic profiling tool for specifying
personal mobile device functionality. By applying the results of this dissertation,
the use of mobile devices can be made more personal, potentially more efficient,
and better suited to changing user needs. In two user studies, 88 percent of the
17 users announced that they would benefit from the system.

The results of this dissertation have significance for industrial utilisation and
commercial value. The results are being further developed for application in
mobile phone and mobile operator-related industries for application domains
such as enhanced usability and personalization, novel sensor-based interaction
modalities, mobile workforce, context-based security for enterprises, and
context-based multimedia management.

212

References
Aamodt, A. & Plaza, E. 1994. Case-based reasoning: Foundational issues,
methodological variations, and system approaches. AI Communications, Vol. 7,
No. 1, pp. 39�59.

Ahmed, K., Ayers, D., Birbeck, M., Cousins, J., Dodds, D., Lubell, J., Nic, M.,
Rivers-Moore, D., Watt, A., Worden, R. & Wrightson, A. 2001. Professional
XML meta data. Wrox Press. 567 p.

ARM. 2005. ARM products & solutions.
Available: http://www.arm.com/products/CPUs/families/ARM9Family.html.

Bao, L. & Intille, S. 2004. Activity recognition from user-annotated acceleration
data. Proceedings of International Conference on Pervasive Computing, LNCS
3001. Pp. 1�17.

Bechhofer, S., Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D., Patel-
Schneider, P. & Stein, L. 2003. OWL Web Ontology Language reference, W3C
proposed recommendation 15 December 2003.
Available: http://www.w3.org/TR/2003/PR-owl-ref-20031215.

Bellotti, V. & Edwards, K. 2001. Intelligibility and accountability: Human
considerations in context-aware systems. Human-Computer Interaction, Vol. 16,
No. 2, 3 & 4, pp. 193�212.

Berners-Lee, T., Hendler, J. & Lassila, O. 2001. The Semantic Web. Scientific
American, Vol. 284, No. 4, pp. 34�43.

Brickley, D., Guha, R.V. & McBride, B. (eds.). 2004. RDF vocabulary
description language 1.0: RDF schema, W3C recommendation 10 February
2004. Available: http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.

Brown, P., Bovey, J. & Chen, X. 1997. Context-aware applications: from the
laboratory to the marketplace. IEEE Personal Communications, Vol. 4, No. 5,
pp. 58�64.

http://www.arm.com/products/CPUs/families/ARM9Family.html
http://www.w3.org/TR/2003/PR-owl-ref-20031215
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

213

Bray, T., Paoli, J., Sperberg-McQueen, C.M. & Maler, E. (eds.). 2000.
Extensible Markup Language (XML) 1.0 (Second Edition), W3C recommendation
6 October 2000. Available: http://www.w3.org/TR/2000/REC-xml-20001006.

Carroll, J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A. & Wilkinson, K.
2003. Jena: Implementing the Semantic Web recommendations, technical report
HPL-2003-146, Hewlett Packard Laboratories Bristol. Available:
http://www.hpl.hp.com/techreports/2003/HPL-2003-146.pdf.

Castro, P. & Muntz, R. 2000. Managing context data for smart spaces. IEEE
Personal Communications, Vol. 7, No. 5, pp. 44�46.

Chen, H., Finin, T. & Joshi, A. 2003. Semantic web in a pervasive context-aware
architecture. Proceedings of Ubicomp�03 Workshop on Artificial Intelligence in
Mobile Systems. Pp. 33�40.

Clarkson, B. & Pentland, A. 1998. Extracting context from environmental audio.
Proceedings of International Symposium on Wearable Computers. Pp. 154�155.

Clarkson, B., Mase, K. & Pentland, A. 2000. Recognizing user context via
wearable sensors. Proceedings of International Symposium on Wearable
Computers. Pp. 69�76.

Connolly, D., Harmelen, F., Horrocks, I., McGuinness, D., Patel-Schneider, P. &
Stein, L. 2001. DAML+OIL (March 2001) reference description, W3C Note 18
December 2001. Available: http://www.w3.org/TR/2001/NOTE-daml+oil-
reference-20011218.

Cresswell, M. 1973. Logics and languages. Harper & Row Publishers. 273 p.

Crowley, J., Coutaz, J., Rey, G. & Reignier, P. 2002. Perceptual components for
context awareness. Proceedings of International Conference on Ubiquitous
Computing, Springer-Verlag. Pp. 117�134.

Cox, E., Taber, R., O'Hagan, M. & O'Hagen, M. 1998. The fuzzy systems
handbook, second edition. AP Professional. 713 p.

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.hpl.hp.com/techreports/2003/HPL-2003-146.pdf
http://www.w3.org/TR/2001/NOTE-daml+oil-reference-

214

Dey, A. 2000. Providing architectural support for building context-aware
applications. Ph.D. dissertation, Georgia Institute of Technology. 170 p.

Dey, A. & Abowd, G. 2000. Towards a better understanding of context and
context awareness. Proceedings of What, Who Where, When and How of
Context-Awareness Workshop in CHI2000 ACM Conference on human factors
in computer systems.

Dey, A., Abowd, G. & Salber, D. 2001. A conceptual framework and a toolkit
for supporting the rapid prototyping of context-aware applications. Human-
Computer Interaction, Vol. 16, No. 2, 3 & 4, pp. 97�166.

Dey, A., Hamid, R., Beckmann, C., Li, I. & Hsu, D. 2004. a CAPpella: programming
by demonstration of context-aware applications. Proceedings of International
Conference on Computer-Human Interaction, CHI 2004, ACM. Pp. 33�40.

Digia. 2003. Programming for the Series 60 platform and Symbian OS. Wiley.
521 p.

Duda, R., Hart, P. & Stork, D. 2001. Pattern classification, second edition. John
Wiley & Sons. 654 p.

Engelmore, R. & Morgan, T. (eds.). 1988. Blackboard systems. Addison�
Wesley. 602 p.

Erickson, T. 2002. Some problems with the notion of context-aware computing.
Communications of the ACM, Vol. 45, No. 2, pp. 102�104.

Fahy, P. & Clarke, S. 2004. CASS � Middleware for Mobile Context-Aware
Applications. Proceedings of Mobisys 2004 Workshop on Context Awareness.
Boston, Massachusetts, USA.

Fallside, D. (ed.). 2001. XML schema part 0: Primer, W3C recommendation, 2 May
2001. Available: http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/.

Fayyad, U., Piatetsky-Shapiro, G., Smyth, P. & Uthurusamy, R. (Eds.) 1996.
Advances in knowledge discovery and data mining. AAAI Press. 611 p.

http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

215

Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A.G. & Mehandjiev, N. 2004. Meta-
design: A manifesto for end-user development. Communications of the ACM,
Vol. 47, No. 9, pp. 33�37.

Flanagan, J., Mäntyjärvi, J. & Himberg, J. 2002. Unsupervised clustering of
symbol strings and context recognition. Proceedings of the IEEE Conference on
Data Mining. Pp. 171�178.

Fox, A., Johanson, B., Hanrahan, P. & Winograd, T. 2000. Integrating information
appliances into an interactive workspace. IEEE Computer Graphics &
Applications, Vol. 20, No. 3, pp. 54�65.

Gomez-Perez, A., Fernandez-Lopez, M. & Corcho, O. 2003. Ontological
engineering. Springer-Verlag. 403 p.

Greenberg, S. 2001. Context as a dynamic construct. Human-Computer
Interaction, Vol. 16, No. 2, 3 & 4, pp. 257�268.

Gruber, T. 1993. A translation approach to portable ontology specification.
Knowledge Acquisition, Vol. 5, No. 2, pp. 199�220.

Guarino, N. 1998. Formal ontology in information systems. Proceedings of
International Conference on Formal Ontology in Information Systems. IOS
Press, Amsterdam. Pp. 3�15.

Henricksen, K., Indulska, J. & Rakotonirainy, A. 2002. Modeling context
information in pervasive computing systems. Proceedings of International
Conference on Pervasive Computing, LNCS 2414, Springer-Verlag. Pp. 167�180.

Himberg, J., Mäntyjärvi, J. & Korpipää, P. 2001. Using PCA and ICA for
exploratory data analysis in situation awareness. Proceedings of IEEE Conference
on Multisensor Fusion and Integration in Intelligent Systems. Pp. 127�131.

Hirsh, H. & Hearst, M. 2000. AI's greatest trends and controversies. IEEE
Intelligent systems, Vol. 15, No. 1, pp. 8�17.

216

Hong, J. & Landay, J. 2001. An infrastructure approach to context-aware
computing. Human-Computer Interaction, Vol. 16, No. 2, 3 & 4, pp. 287�303.

Hull, R., Neaves, P. & Bedford-Roberts, J. 1997. Towards situated computing.
Proceedings of International Symposium on Wearable Computers. Pp. 146�153.

Huttunen, M., Shelby, Z. & Hyyryläinen, J. 2003. Henkilökohtainen sääasema.
Prosessori, November 2003, pp. 43�45.

Häkkilä, J., Korpipää, P., Ronkainen, S. & Tuomela, U. 2005. Interaction and
end user programming with a context-aware mobile application. Proceedings of
Human-Computer Interaction � Interact 2005, LNCS 3585, Springer-Verlag.
Pp. 927�937.

IEEE Std 610.12-1990. 1990. Standard glossary of software engineering
terminology. IEEE. 84 p.

IEEE Std 1471-2000. 2000. IEEE recommended practice for architectural
description of software-intensive systems. IEEE. 29 p.

ISO 9241-11:1998. 1998. Ergonomic requirements for office work with visual
display terminals (VTDs). Part 11: Guidance on usability. ISO. 22 p.

Kela, J., Korpipää, P., Mäntyjärvi, J., Kallio, S., Savino, G., Jozzo, L. & Di
Marca, S. 2005. Accelerometer-based gesture control for a design environment.
Personal and Ubiquitous Computing Journal special issue on Multimodal
Interaction with Mobile and Wearable Devices, Springer-Verlag. In Press,
published online. Available: http://www.springerlink.com.

Keränen, H., Rantakokko, T. & Mäntyjärvi, J. 2003. Sharing and presenting
multimedia and context information within online communities using mobile
terminals. Proceedings of International Conference on Multimedia and Expo,
Vol. 2. Pp. 641�644.

http://www.springerlink.com

217

Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J., Butler, M. & Tran, L.
(eds.). 2003. Composite Capability/Preference Profiles (CC/PP): Structure and
vocabularies 1.0, W3C proposed recommendation 15 October 2003. Available:
http://www.w3.org/TR/2003/PR-CCPP-struct-vocab-20031015/.

Kofod-Petersen, A. & Aamodt, A. 2003. Case-based situation assessment in a
mobile context-aware system. Proceedings of Ubicomp�03 Workshop on
Artificial Intelligence in Mobile Systems. Pp. 41�48.

Kohonen, T. 2001. Self-organising maps, third extended edition. Springer-
Verlag. 501 p.

Korpipää, P., Häkkilä, J., Malm, E., Rantakokko, T., Kyllönen, V., Kela, J.,
Känsälä, I. & Mäntyjärvi, J. 2005a. Enabling user interaction customization in
smart phones. IEEE Pervasive Computing Magazine. In Press.

Korpipää, P., Malm, E., Salminen, I., Rantakokko, T., Kyllönen, V. & Känsälä, I.
2005b. Context management for end-user development of context-aware
applications. Proceedings of International Conference on Mobile Data
Management MDM'05. Pp. 304�308.

Korpipää, P., Häkkilä, J., Kela, J., Ronkainen, S. & Känsälä, I. 2004a. Utilising
context ontology in mobile device application personalisation. Proceedings of
International Conference on Mobile and Ubiquitous Multimedia, ACM. Pp. 133�140.

Korpipää P., Pärkkä, J. & Cluitmans L. 2004b. Representing features and
contexts in a data library. Proceedings of Pervasive Computing Conference
Workshop: Benchmarks and Database for Context Recognition. Pp. 32�37.

Korpipää, P., Koskinen, M., Peltola, J., Mäkelä, S.-M. & Seppänen, T. 2003a.
Bayesian approach to sensor-based context awareness. Personal and Ubiquitous
Computing Journal, Vol. 7, No. 4, pp. 113�124.

Korpipää, P. & Mäntyjärvi, J. 2003. An ontology for mobile device sensor-based
context awareness. Proceedings of International and Interdisciplinary Conference
on Modeling and Using Context, LNAI no. 2680, Springer-Verlag. Pp. 451�459.

http://www.w3.org/TR/2003/PR-CCPP-struct-vocab-20031015/

218

Korpipää, P., Mäntyjärvi, J., Kela, J., Keränen, H. & Malm, E.-J. 2003b.
Managing context information in mobile devices. IEEE Pervasive Computing
Magazine, July�September special issue: Dealing with Uncertainty, Vol. 2, No. 3,
pp. 42�51.

Korpipää, P. 2001. Visualising constraint-based temporal association rules.
Artificial Intelligence for Engineering Design, Analysis and Manufacturing,
Vol. 15, pp. 401�410.

Kumar, S., Cohen, P. & Levesque, H. 2000. The adaptive agent architecture:
Achieving fault-tolerance using persistent broker teams. Proceedings of
international conference on multi-agent systems. Pp. 159�166.

Kurki, M., Taipale, T. & Korpipää, P. 1998. A large scale fault diagnosis system
for a hot strip mill. Proceedings of IFAC Symposium on Automation in Mining,
Mineral and Metal Processing, IFAC.

Laerhoven, K. & Cakmakci, O. 2000. What shall we teach our pants?
Proceedings of International Symposium on Wearable Computers. Pp. 77�83.

Laerhoven, K. & Aidoo, K. 2001. Teaching context to applications. Personal and
Ubiquitous Computing Journal, Vol. 5, pp. 46�49.

Lakkala, H. 2003a. Context exchange protocol specification. 28 p.
Available: http://www.mupe.net.

Lakkala, H. 2003b. Context script specification. 22 p.
Available: http://www.mupe.net.

Larman, C. 2002. Applying UML and patterns: an introduction to object-
oriented analysis and design and the unified process. Prentice Hall.

Lenat, D. 1995. CYC: A large-scale investment in knowledge infrastructure.
Communications of the ACM, Vol. 38, No. 11, pp. 33�41.

Lenat, D., Miller, G. & Yokoi, T. 1995. CYC, Wordnet, and EDR: Critiques and
responses. Communications of the ACM, Vol. 38, No. 11, pp. 45�48.

http://www.mupe.net
http://www.mupe.net

219

Lenat, D. 1998. The dimensions of context-space. Cycorp report. Available:
http://www.cyc.com. 78 p.

Lenat, D. 1999a. Features of CycL. Cycorp report.
Available: http://www.cyc.com.

Lenat, D. 1999b. The upper Cyc ontology. Cycorp report.
Available: http://www.cyc.com.

Lukowicz, P., Ward, J., Junker, H., Stäger, M., Tröster, G., Atrash, A. & Starner, T.
2004. Recognizing workshop activity using body worn microphones and
accelerometers. Proceedings of International Conference on Pervasive
Computing, LNCS 3001. Pp. 18�32.

Mandato, D., Kovacs, E., Hohl, F. & Amir-Alikhani, H. 2002. CAMP: A
context-aware mobile portal. IEEE Communications magazine, Vol. 40, No. 1,
pp. 90�97.

Manola, F., Miller, E. & McBride, B. (ed.). 2004. RDF primer, W3C
recommendation 10 February 2004.
Available: http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

McGuinness, D. & Harmelen, F. (eds.) 2003. OWL Web Ontology Language
overview, W3C proposed recommendation 15 December 2003. Available:
http://www.w3.org/TR/2003/PR-owl-features-20031215.

Miller, L., Seaborne, A. & Reggiori, A. 2002. Three implementations of
SquishQL, a simple RDF query language. Proceedings of International Semantic
Web Conference, LNCS 2342, Springer-Verlag. Pp. 423�435.

Minar, N., Gray, M., Roup, O., Krikorian, R. & Maes, P. 2000. Hive: Distributed
agents for networking things. IEEE Concurrency, Vol. 8, No. 2, pp. 24�33.

Minsky, M. 1988. The society of mind. Simon & Schuster. 339 p.

Minsky, M. 2000. Commonsense-based interfaces. Communications of the
ACM, Vol. 43, No. 8, pp. 67�73.

http://www.cyc.com
http://www.cyc.com
http://www.cyc.com
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2003/PR-owl-features-20031215

220

Mitchell, T. 1997. Machine learning. McGraw�Hill. 414 p.

Mitchell, K. 2002. Supporting the development of mobile context-aware
Systems. Ph.D dissertation, Lancaster University. 224 p.

Mäntylä, V.-M. 2001. Discrete hidden Markov models with application to
isolated user-dependent hand gesture recognition. Espoo: VTT Publications 449,
104 p. http://www.vtt.fi/inf/pdf/publications/2001/P449.pdf

Mäntyjärvi, J., Kela, J., Korpipää, P. & Kallio, S. 2004. Enabling fast and
effortless customization in accelerometer based gesture interaction. Proceedings
of International Conference on Mobile and Ubiquitous Multimedia (MUM),
ACM. Pp. 25�31.

Mäntyjärvi, J. 2003. Sensor-based context recognition for mobile applications.
Ph.D dissertation. Espoo: VTT Publications 511. 118 p. + app. 60 p.
http://www.vtt.fi/inf/pdf/publications/2003/P511.pdf

Mäntyjärvi, J., Tuomela, U., Häkkilä, J. & Känsälä, I. 2003. Context-Studio �
tool for personalizing context-aware applications in mobile terminals.
Proceedings of Australasian Computer Human Interaction Conference,
University of Queensland, Brisbane Australia. Pp. 64�73.

Mäntyjärvi, J., Huuskonen, P. & Himberg, J. 2002. Collaborative context
determination to support mobile terminal applications. IEEE Wireless
Communications, Vol. 9, No. 5, pp. 39�45.

Mäntyjärvi, J. & Seppänen, T. 2002. Adapting applications in mobile terminals
using fuzzy context information. Proceedings of International Symposium on
Mobile Human Computer Interaction, LNCS 2411, Springer-Verlag. Pp. 95�107.

Mäntyjärvi, J., Himberg, J., Korpipää, P. & Mannila, H. 2001. Extracting the
context of a mobile device user. Proceedings of IFAC/IFIP/IFORS/IEA
Symposium on Analysis, Design, and Evaluation of Human-Machine Systems.
Pp. 445�450.

http://www.vtt.fi/inf/pdf/publications/2001/P449.pdf
http://www.vtt.fi/inf/pdf/publications/2003/P511.pdf

221

Myllymäki, P. & Tirri, H. 1998. Bayes-verkkojen mahdollisuudet. National
Technology Agency, Finland. 110 p.

OMA 2003. User agent profile (UAProf) specification, version 2.0, May 2003.
Available: http://www.openmobilealliance.org/release_program/uap_v20.html.

Ouellet, R. & Ogbuji, U. 2002. Introduction to DAML. XML.com Web
Publication. Available: http://www.xml.com/pub/a/2002/01/30/daml1.html.

Pascoe, J. 1998. Adding generic contextual capabilities to wearable computers.
Proceedings of International Symposium on Wearable Computers. Pp. 92�99.

Pascoe, J., Ryan N. & Morse D. 1999. Issues in developing context-aware
computing. Proceedings of International Symposium on Handheld and
Ubiquitous Computing, LNCS 1707, Springer-Verlag. Pp. 208�221.

Pearl, J. 1988. Probabilistic reasoning in intelligent systems, revised second
printing. Morgan Kaufmann Publishers, San Francisco. 552 p.

Peltonen, V., Tuomi, J., Klapuri, A., Huopaniemi, J. & Sorsa, T. 2002.
Computational auditory scene recognition. Proceedings of International
Conference on Acoustics, Speech and Signal Processing, IEEE. Pp. 1941�1944.

Peltonen, V., Eronen, A., Parviainen, M. & Klapuri, A. 2001. Recognition of
everyday auditory scenes: potentials, latencies and cues. Proceedings of 110th
Audio Engineering Society Convention, Amsterdam, Netherlands.

Picard, R. 1998. Affective computing. The MIT Press. 292 p.

Pokraev, S., Koolwaaij, J. & Wibbels, M. 2003. Extending UDDI with context-
aware features based on semantic service descriptions. Proceedings of
International Conference on Web Services. Pp. 184�190.

Pree, W. 1994. Meta-patterns � a means for capturing the essentials of reusable
object-oriented design. Proceedings of ECOOP, Springer-Verlag, pp. 150�162.

Pyle, D. 1999. Data preparation for data mining. Morgan Kaufmann. 540 p.

http://www.openmobilealliance.org/release_program/uap_v20.html
http://www.xml.com/pub/a/2002/01/30/daml1.html

222

Rabiner, L. & Juang, B.-H. 1993. Fundamentals of speech recognition. Prentice
Hall. 507 p.

Raggett, D., Hors, A. & Jacobs, I. (eds.). 1999. HTML 4.01 specification, W3C
recommendation 24 December 1999.
Available: http://www.w3.org/TR/1999/REC-html401-19991224.

Ranganathan, A. & Campbell, R. 2003. An infrastructure for context-awareness
based on first order logic. Personal and Ubiquitous Computing Journal, Vol. 7.
No. 6, December, pp. 353�364.

Riekki, J., Huhtinen, J., Ala-Siuru, P., Alahuhta, P., Kaartinen, J. & Röning, J.
2003. Genie of the net, an agent platform for managing services on behalf of the
user. Computer Communications, Vol. 26, No. 11, pp. 1188�1198.

Rodden, T., Cheverst, K., Davies, K. & Dix, A. 1998. Exploiting context in HCI
design for mobile systems. Workshop on Human Computer Interaction with
Mobile Devices.

Russell, S. & Norvig, P. 1995. Artificial intelligence: A modern approach.
Prentice Hall. 931 p.

Schilit, B., Adams, N. & Want, R. 1994. Context-aware computing applications.
Proceedings of International Workshop on Mobile Computing Systems and
Applications. IEEE Computer Society. Pp. 85�90.

Schilit, B. 1995. System architecture for context-aware mobile computing. Ph.D.
dissertation, Columbia University, New York. 144 p.

Schmidt, A. 2002. Ubiquitous computing � computing in context. Ph.D
dissertation, Lancaster University. 294 p.

Schmidt, A. 2000. Implicit human computer interaction through context.
Personal Technologies, Vol. 4, No. 2 & 3, pp. 191�199.

Schmidt, A., Takaluoma, A. & Mäntyjärvi, J. 2000. Context-aware telephony
over WAP. Personal Technologies, Vol. 4, No. 4, pp. 225�229.

http://www.w3.org/TR/1999/REC-html401-19991224

223

Schmidt, A., Aidoo, K.A., Takaluoma, A., Tuomela, U., Laerhoven, K. &
Van de Velde, W. 1999a. Advanced interaction in context. Proceedings of
International Symposium on Handheld and Ubiquitous Computing. LNCS 1707,
Springer-Verlag. Pp. 89�101.

Schmidt, A., Beigl, M. & Gellersen, H.-W. 1999b. There is more to context than
location. Computers&Graphics, Vol. 23, No. 6, pp. 893�902.

Series 60. 2005. Series 60 platform. Available: http://www.series60.com/.

Smith, M., Welty, C. & McGuinness, D. (eds.) 2003. OWL Web Ontology
Language guide, W3C proposed recommendation 15 December 2003. Available:
http://www.w3.org/TR/2003/PR-owl-guide-20031215.

Sohn, T. & Dey, A. 2003. iCAP: An informal tool for interactive prototyping of
context-aware applications. Interactive poster in the extended abstracts of ACM
Conference on Human Factors in Computing Systems. Pp. 974�975.

Studer, R., Benjamins, V. & Fensel, D. 1998. Knowledge engineering:
Principles and methods. IEEE Transactions on Data and Knowledge
Engineering, Vol. 25, No. 1 & 2, pp. 161�197.

Suomela, R., Räsänen, E., Koivisto, A., Mattila, J. & Koskinen, T. 2003. Multi-
User Publishing Environment (MUPE) application platform. 17 p. Available:
http://www.mupe.net.

Tasker, M., Allin, J., Dixon, J., Forrest, J., Heath, M., Richardson, T. &
Shackman, M. 2000. Professional Symbian Programming. Wrox Press. 1031 p.

Theodoridis, S. & Koutroumbas, K. 1999. Pattern recognition. Academic Press.
625 p.

Toivonen, S., Kolari, J. & Laakko, T. 2003. Facilitating mobile users with
contextualized content. Proceedings of Ubicomp�03 Workshop on Artificial
Intelligence in Mobile Systems. Pp. 124�134.

http://www.series60.com/
http://www.w3.org/TR/2003/PR-owl-guide-20031215
http://www.mupe.net

224

Truong, K., Huang, E. & Abowd, G. 2004. CAMP: A Magnetic Poetry Interface
for End-User Programming of Capture Applications for the Home. Proceedings
of Ubicomp. Pp. 143�160.

Tuulari, E. 2000. Context aware hand-held devices. Espoo: VTT Publications
412. 82 p. http://www.vtt.fi/inf/pdf/publications/2000/P412.pdf

UML. 2005. UML resource page. Available: http://www.uml.org/.

UPnP 2005. UPnP forum. Available: http://www.upnp.org/.

Vildjiounaite, E., Malm, E.J., Kaartinen, J. & Alahuhta, P. 2003. Context
awareness of everyday objects in a household. Proceedings of European
Symposium on Ambient Intelligence, LNCS 2875, Springer-Verlag. Pp. 177�191.

W3C Semantic Web. 2001. W3C Semantic Web document. Available:
http://www.w3.org/2001/sw/.

Wang, X., Dong, J., Chin, C., Hettiarachchi, S. & Zhang, D. 2004. Semantic
space: An infrastructure for smart spaces. IEEE Pervasive Computing Magazine,
July�September, pp. 32�39.

Ward, A., Jones, A. & Hopper, A. 1997. A new location technique for the active
office. IEEE Personal Communications, Vol. 4, No. 5, pp. 42�47.

Wikipedia. 2005. Wikipedia, the free encyclopedia: Software framework.
Available: http://en.wikipedia.org/wiki/Software_framework.

Winograd, T. 2001. Architectures for context. Human-Computer Interaction,
Vol. 16, No. 2, 3 & 4, pp. 401�419.

XML Schema repository. 2001. W3C XML schema repository. Available:
http://www.w3.org/XML/Schema.

Yau, S. & Karim, F. 2001. Context-sensitive middleware for real-time software in
ubiquitous computing environments. Proceedings of IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing. Pp. 163�170.

http://www.vtt.fi/inf/pdf/publications/2000/P412.pdf
http://www.uml.org/
http://www.upnp.org/
http://www.w3.org/2001/sw/
http://en.wikipedia.org/wiki/Software_framework
http://www.w3.org/XML/Schema

225

Zadeh, L. 1965. Fuzzy sets. Information and control, Vol. 8, pp. 338�353.

Zadeh, L. 1996. Fuzzy logic = computing with words. IEEE Transactions on
Fuzzy Systems, Vol. 4, No. 2, pp. 103�111.

Published by

 Series title, number and
report code of publication

VTT Publications 579
VTT�PUBS�579

Author(s)
Korpipää, Panu
Title

Blackboard-based software framework and tool for
mobile device context awareness

Abstract
The usage needs of a mobile device vary according to context. Mobile context awareness research aims at
providing the device user with a way of usage that suits the situation. Interaction based on context requires
acquiring, abstracting and delivering information from multiple sources, such as sensors, to the application or
application control. A generic software framework and tool for facilitating the rapid development of mobile
device context-aware applications were developed in this work. The blackboard-based framework supports all
tasks that are required for context-based application control, where contexts can be any events that are
relevant to user interaction with the application, including explicit inputs. The core component of the
framework, Context Manager, provides a publish and subscribe mechanism and a database for the
applications and application control. The framework provides an application programming interface (API) for
developers. As a higher abstraction-level programming interface, a customization tool enables easy end-user
development of context-aware features into existing applications without changing them.

An extensible ontology is used as a uniform context representation within the framework. The purpose of the
ontology, together with the API, is to enable easy access, use and reuse of human-understandable context
information. Context information sources, such as sensors, often produce a continuous stream of low
abstraction-level data. The framework supports the transformation of a continuous data stream into abstracted
context events, described in the ontology. Context information is delivered to applications or application
control as abstracted events. The main result of the dissertation is a software framework, ontology and tool,
which facilitate the customization of sensor-based human-computer interaction in mobile devices. The
practical applicability, scope, and computational efficiency of the implemented framework and customization
tool are evaluated with performance measurements and multiple applications implemented in a mobile phone
with real sensor sources.

Keywords
mobile computing, context-aware computing, mobile interaction, mobile context awareness, application control,
blackboard-based architecture, software framework, context management, information model, application
programming interface, sensor-based interaction, customization, end-user development, personalization

Activity unit
VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FI�90571 OULU, Finland

ISBN Project number
951�38�6669�6 (soft back ed.)
951�38�6670�X (URL:http://www.vtt.fi/inf/pdf/)

Date Language Pages Price
October 2005 English 225 p. E

Name of project Commissioned by

Series title and ISSN Sold by

VTT Publications
1235�0621 (soft back ed.)
1455�0849 (URL: http://www.vtt.fi/inf/pdf/)

VTT Information Service
P.O.Box 2000, FI�02044 VTT, Finland
Phone internat. +358 9 456 4404
Fax +358 9 456 4374

http://www.vtt.fi/inf/pdf/
http://www.vtt.fi/inf/pdf/

V
TT PU

BLICA
TIO

N
S 579	

Blackboard-based softw
are fram

ew
ork and tool for m

obile device context aw
areness	

Panu K
orpipää

	 Tätä julkaisua myy	 Denna publikation säljs av	 This publication is available from

	 VTT TIETOPALVELU	 VTT INFORMATIONSTJÄNST	 VTT INFORMATION SERVICE	
	 PL 2000	 PB 2000	 P.O.Box 2000	
	 02044 VTT	 02044 VTT	 FI–02044 VTT, Finland	
	 Puh. 020 722 4404	 Tel. 020 722 4404	 Phone internat. +358 20 722 4404	
	 Faksi 020 722 4374	 Fax 020 722 4374	 Fax +358 20 722 4374

ISBN 951–38–6669–6 (soft back ed.)	 ISBN 951–38–6670–X (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0621 (soft back ed.)	 ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2005	 	 VTT PUBLICATIONS 579

Panu Korpipää

Blackboard-based software
framework and tool for mobile
device context awareness

Mobile context awareness research aims at providing the mobile device user
with a way of usage that suits the situation. New input sources, such as
embedded sensors producing interaction-related information, are becoming
available for mobile devices. These input sources enable novel ways of
interacting with the devices, and even open possibilities to create entirely
new types of applications. To facilitate the full potential of utilising such
new input sources, a software framework is required with a uniform means
of acquiring and processing interaction-related information, and providing
it for the applications. The main result of this dissertation was a software
framework and tool for facilitating the rapid development of mobile device
context-aware applications. The framework provides a publish and sub-
scribe mechanism, database, and a customisable application controller. For
developers the framework provides an application programming interface.
The customization tool enables end-user development of interaction-related
features in mobile devices. The results have commercial value; they are
utilised by the telecommunication industry for application domains such
as enhanced usability and personalization, novel sensor-based interaction
modalities, mobile workforce, context-based security for enterprises, and
context-based multimedia management.

ActivatorContext
Manager

Script
Engine

Context
sources

Context
sources

Application /
Action Customizer

Context
sources

Context
sources

Context
Source

Context
sources

Context
sources

Context
Abstractor

Context
sources

Context
sources

Change
Detector

Application layer

Server layer

Producer layer

Application Controller

Hot spot

Frozen spot

http://www.vtt.fi/inf/pdf/
http://www.vtt.fi/inf/pdf/

	Abstract
	Preface
	Contents
	List of symbols
	1. Introduction
	1.1 Background and motivation
	1.2 Research problems and hypothesis
	1.3 Scope of the research
	1.4 Research methods
	1.5 Author's involvement and contribution to the results
	1.6 Outline of the dissertation

	2. Review of technologies for mobile
	2.1 Context and context awareness
	2.1.1 Definitions
	2.1.2 Critique
	2.1.3 Discussion on critique and definitions
	2.1.4 Related dissertations

	2.2 Context frameworks
	2.2.1 Definitions
	2.2.2 Widget-based architecture model and Context Toolkit
	2.2.3 Client-server architecture model
	2.2.4 Blackboard-based architecture model
	2.2.5 Architectures related to context management
	2.2.6 Customization
	2.2.7 Conclusions
	2.3 Context representation and ontologies
	2.3.1 Definitions
	2.3.2 The Semantic Web
	2.3.3 Information models related to context-aware computing
	2.3.4 Common sense context dimensions
	2.3.5 Conclusions

	2.4 Context abstracting and recognition
	2.4.1 Definitions
	2.4.2 Related sensor-based context abstracting studies
	2.4.3 Methods for context-based inference
	2.4.4 Conclusions

	2.5 Summary

	3. Context framework requirements
	3.1 Characteristics of mobile computing
	3.2 Arguments for device centralized context
	3.3 Arguments for selecting the blackboard model
	3.4 Conceptual entities of the framework
	3.5 Overview of the requirements
	3.6 The requirements
	3.6.1 Concurrent context management in a mobile device
	3.6.2 Requirements for the application programming interface
	3.6.3 Flexibility in handling new contexts
	3.6.4 Context abstracting and recognition
	3.6.5 Event-based communication of context to application
	3.6.6 Context database
	3.6.7 Context caching
	3.6.8 Time resolution of context
	3.6.9 Change detection
	3.6.10 Context confidence
	3.6.11 Context representation
	3.6.12 Application control
	3.6.13 Customization

	3.7 Summary

	4. Context framework design
	4.1 Overview of the design
	4.2 Frozen spots and hot spots
	4.3 Context Manager
	4.4 Context Source
	4.5 Context Abstractor
	4.6 Change Detector
	4.7 Application Controller
	4.7.1 Script engine
	4.7.2 Activator

	4.8 Customizer
	4.9 Summary
	5. Context representation and ontology
	5.1 Requirements for the ontology
	5.2 Structure of the ontology
	5.3 Ontology vocabulary model
	5.4 Naming conventions
	5.5 Example vocabularies
	5.6 Context instances
	5.7 Interpretation of symbolic values in vocabularies
	5.8 Syntax
	5.9 Discussion
	5.10 Summary

	6. Context abstracting and recognition
	6.1 Requirements for context abstracting methods
	6.2 Inference for context abstracting within the
	6.3 Multidimensional contexts
	6.4 Context recognition case study
	6.4.1 Feature extraction
	6.4.2 Classification
	6.4.3 Results of the case study
	6.4.4 Discussion

	6.5 Summary

	7. Context Manager API
	7.1 Adding context
	7.2 Requests and responses
	7.3 Subscriptions and indications
	7.4 Summary

	8. End-user development of context-aware
	8.1 Customizer
	8.2 Utilising context framework
	8.3 Utilising context ontology
	8.4 Customized example applications
	8.5 Discussion
	8.6 Summary

	9. Evaluation
	9.1 Context framework
	9.1.1 Applications
	9.1.2 Requirements realization
	9.1.3 Discussion

	9.2 Context representation and ontology
	9.2.1 Applications
	9.2.2 Requirements realization
	9.2.3 Discussion

	9.3 Context abstracting and recognition
	9.3.1 Applications
	9.3.2 Requirements realisation
	9.3.3 Discussion

	9.4 Context framework performance
	9.4.1 Computational complexity estimation
	9.4.2 Performance evaluation in target hardware through usage
	9.4.3 Performance evaluation in target hardware quantitatively

	9.5 Summary

	10. Discussion
	10.1 Verification of the research problems and
	10.2 Comparison with related work
	10.2.1 Summary of contributions
	10.2.2 Context framework
	10.2.3 Context representation and ontology
	10.2.4 Context abstracting and recognition
	10.2.5 Customization and personalisation

	10.3 Significance of the results
	10.4 Future work
	11. Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

