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Abstract

A machine tool utilisation rate can be improved by an advanced condition
monitoring system using modern sensor and signal processing techniques. A
drilling test and analysis program for indirect tool wear measurement forms the
basis of this thesis. For monitoring the drill wear a number of monitoring
methods such as vibration, acoustic emission, sound, spindle power and axial
force were tested. The signals were analysed in the time domain using statistical
methods such as root mean square (rms) value and maximum. The signals were
further analysed using Fast Fourier Transform (FFT) to determine their
frequency contents. The effectiveness of the best sensors and analysis methods
for predicting the remaining lifetime of a tool in use has been defined. The
results show that vibration, sound and acoustic emission measurements are more
reliable for tool wear monitoring than the most commonly used measurements of
power consumption, current and force. The relationships between analysed
signals and tool wear form a basis for the diagnosis system. Higher order
polynomial regression functions with a limited number of terms have been
developed and used to mimic drill wear development and monitoring parameters
that follow this trend. Regression analysis solves the problem of how to save
measuring data for a number of tools so as to follow the trend of the measuring
signal; it also makes it possible to give a prognosis of the remaining lifetime of
the drill. A simplified dynamic model has been developed to gain a better
understanding of why certain monitoring methods work better than others. The
simulation model also serves the testing of the developed automatic diagnostic
method, which is based on the use of simplified fuzzy logic. The simplified
fuzzy approach makes it possible to combine a number of measuring parameters
and thus improves the reliability of diagnosis. In order to facilitate the handling
of varying drilling conditions and work piece materials, the use of neural
networks has been introduced in the developed approach. The scientific
contribution of the thesis can be summarised as the development of an
automatically adaptive diagnostic tool for drill wear detection. The new



approach is based on the use of simplified fuzzy logic and higher order
polynomial regression analysis, and it relies on monitoring methods that have
been tested in this thesis. The diagnosis program does not require a lot of
memory or processing power and consequently is capable of handling a great
number of tools in a machining centre.
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regression coefficient

regression coefficient
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constant

exponent in regression analysis

Young’s modulus

exponent in regression analysis, feed

natural frequency of the drill
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shape function that takes into account the unstable features of
drilling a hole

drilling process force

angular geometrical error due to tolerance in manufacturing
force that takes into account the harmonic components of the
drilling speed

random force (noise)
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horizontal drill force
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Brinell hardness
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t time

t, total lifetime of the drill

tg time it takes to drill one hole

® angular speed of rotation

X coordinate axis

y monitored parameter
Acronyms

AD analogue to digital conversion
AE acoustic emission

ARMA autoregressive moving average
ART adaptive resonance theory

FEM finite element method

FFT fast Fourier transform

FLVQ fuzzy learning vector quantization
HMM hidden Markov model

HOS higher order spectrum

HSS high speed steel

LVQ learning vector quantization
MARSE measured area under the rectified signal envelope
PC personal computer

PSD power spectral density

RAMV ratio of the absolute mean value
RCE restricted Coulomb energy

rms root mean square



List of publications

This dissertation consists of a summary and eight appended publications I-VIII.

Publication I

Publication 11

Publication III

Publication IV

Publication V

Jantunen, E. 2002. A Summary of Methods Applied to Tool
Condition Monitoring in Drilling. International Journal of
Machine Tools and Manufacture, Vol. 42, pp. 997-1010. ISSN
0890-6955

Jantunen, E. & Jokinen, H. 1996. Automated On-Line
Diagnosis of Cutting Tool Condition. International Journal of
Flexible Automation and Integrated Manufacturing, 4 (3 & 4),
pp. 273-287. ISSN 1064-6345

Jantunen, E. 2001. The Applicability of Various Indirect
Monitoring Methods to Tool Condition Monitoring in Drilling.
International Journal of Comadem, Vol. 7, No. 3, July 2004,
pp- 24-31. ISSN 1363-7681 (also published in COMADEM 01.
September 4—6, Manchester, UK, ISBN 0 08 0440363)

Jantunen, E. 2004. Dynamic Effects Influencing Drill Wear
Monitoring. Proceedings of the MFPT 58" Meeting, Ed. H.C. Pusey,
S.C. Pusey & W.R. Hobbs, April 25-30, Virginia Beach,
USA. Pp. 51-60.

Jantunen, E., Jokinen, H. & Milne, R. 1996. Flexible Expert
System for Automated On-Line Diagnosis of Tool Condition.
Proceedings of a Joint Conference, Technology Showcase,
Integrated Monitoring, Diagnostics & Failure Prevention,
MFPT 50™ Meeting, Joint Oil Analysis Program Technical
Support Center, University of Wales, Ed. H.C. Pusey & S.C.
Pusey, Mobile, Alabama, USA, April 22-26. Pp. 259-268.

10



Publication VI

Publication VII

Publication VIII

Jantunen, E. 2003. Prognosis of Wear Progress Based on
Regression Analysis of Condition Monitoring Parameters.
Finnish Journal of Tribology, Vol. 22/2003, 4, pp. 3—15. ISSN
0780-2285 (also published in COMADEM 03 August 27-29,
Vixjo, Sweden. ISBN 91-7636-376-7)

Jantunen, E. 2006. Diagnosis of Tool Wear Based on
Regression Analysis and Fuzzy Logic. IMA Journal of
Management Mathematics, Vol. 17, No 1, January, pp. 47—60.
ISSN 1471-6798

Jantunen, E. 2000 Flexible Hierarchical Neuro-Fuzzy System for
Prognosis. Proceedings of COMADEM 2000, 13" International
Congress on Condition Monitoring and Diagnostic Engineering
Management. Ed. H.C. Pusey & Raj B.K.N. Rao, December 3-8,
Houston, USA. Pp. 699-708. ISBN 0-9635450-2-7

11



Author’s contribution

The author was responsible for the monitoring methods, signal analysis and
simulation program approach in publication II. In publication V the author was
responsible for the fault tree and symptom tree database definition and the
definition of data acquisition, signal analysis, regression analysis and simulation
module.

12



1. Introduction
1.1 Background and motivation

Tool wear and failure monitoring has aroused interest among many researchers
and research organisations. The background and motivation for this interest is
that tool condition monitoring is considered important for the following reasons:

- Cost effective unmanned production is only possible in practise if there
is a reliable method available for tool wear monitoring and breakage
detection. For example, based on a recent study it has been claimed that
in machining centres tool maintenance and tool monitoring cause most
of the stoppages during unmanned operation [Kuhmonen 1997].

- Tool wear influences the quality of the surface finish and the dimensions
of the parts manufactured. The quality of the surface finish and the
dimensions are linked to the above mentioned unmanned operation, i.e.
if this is not monitored or the quantity of tool wear is not monitored, the
unmanned machining might lead to poor quality.

- The economical tool life cannot be fully benefited from without efficient
methods for tool wear monitoring because of the variation in tool life. This
factor is not economically as important as the above two during drilling as
far as the cost of tools is considered, but nevertheless economically
meaningful when the costs of production are studied in detail.

- Where sudden tool failures are to be avoided, tool changes need to be
made based on conservative estimates of tool life. This does not take
into account sudden failures and at the same time leads to an
unnecessarily high number of tool changes, because the full tool life is
not benefited from and valuable production time is therefore lost.

1.2 Research question
In order to overcome the challenges described in the previous chapter, condition

monitoring and diagnosis of tool wear is needed. This then leads to the research
question: How can the wear of the cutting tools of a machine tool be monitored
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and diagnosed in a practical and reliable manner? Tool wear monitoring is
difficult because so many factors affect the signals collected, i.e. tool type,
cutting depth, cutting speed, feed rate and work piece material. Also in a cutting
process many factors can cause distortion in the measured signals, e.g. cutting
fluid, changes in the environment, chip formation which is a very dynamic
process, and the material and geometry which are not necessarily homogeneous.
In addition to the technical boundary conditions described above, the developed
solution has to be easy and fast to configure for different environments, since
otherwise it would not be used. The solution also needs to rely only on a limited
number of transducers of an acceptable price level, so that the solution can be
economically extremely well justified. If it is not clear that it will save money,
industry will not make the investment. Also, in the end a diagnostic system has
to be so easy to use that no special skills are required for taking it into use and
interpreting the results.

1.3 Objectives of the research

The main goal of this thesis is to develop tools for practical monitoring and
diagnosis of drill wear. For this purpose a number of sub-goals have to be
fulfilled. It is necessary to discover which indirect monitoring methods are best
for drill wear. It is also necessary to identify which signal analysis techniques
work best for this purpose. For practical reasons the diagnosis has to be made
automatic, which leads to the use of artificial intelligence and search for a
suitable approach. In addition the diagnosis has to be reliable, i.e. the use of a
number of signals is tested in order to be able to handle noise in the
measurement signals. For practical reasons the automatic diagnosis approach has
to be easy to configure in various environments. Due to the large number of
tools in an industrial environment, there is a need to develop an approach for
handling the great amount of data collected. A method for handling the varying
process conditions also needs to be developed. Finally the goal is to be able to
predict or make a prognosis of the remaining life time of the drill in order to
enable uninterrupted unmanned use of machining tools.

14



1.4 Contents of the thesis

The thesis is divided into seven further chapters as follows:

Chapter 2 reviews the current state-of-the-art study of drill wear monitoring and
diagnosis. Commonly used indirect monitoring methods are described. The most
common signal analysis techniques are presented. Following these the diagnosis
methods commonly used for drill wear monitoring are discussed.

Chapter 3 describes the test and measuring arrangement together with the test
program.

Chapter 4 summarises the results of laboratory tests done with various
measuring methods and signal analysis techniques. This chapter also attempts to
explain why some measuring signals are better than others and, similarly, why
some analysis techniques work better than others.

Chapter 5 presents an extremely simplified dynamic model of the drill and the
drilling forces and especially how wear influences these forces. The model is
used for artificially producing vibration data. The model provides further
understanding about the reasons why certain measuring signals together with
certain analysis techniques work better than other methods.

Chapter 6 discusses two possible approaches to automating the diagnosis of drill
wear by flexible expert systems. Methods of automatic adjustment of the
diagnosis of the tool condition are given special emphasis, as well as how the
reliability of the diagnosis can be improved by combining a number of analysed
parameters. Also are covered the practical aspects of data management in an
industrial environment.

Chapter 7 discusses the findings of the thesis in different areas, i.e. the
measuring methods, signal analysis techniques and the diagnosis based on
artificial intelligence techniques.

Chapter 8 concludes this thesis and provides some suggestions for future research.
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1.5 Scope of the research

The thesis covers all commonly used indirect monitoring methods such as
drilling force and vibration, and tries to provide an understanding of which of
these methods work best in drill wear monitoring. The direct tool wear
monitoring methods that measure tool wear as such are not studied here. The
reason is that although many attempts have been made to develop such
monitoring methods, they still seem to be too complicated and costly for
practical purposes. Similarly the work covers commonly used signal analysis
techniques in condition monitoring, and tries to establish their suitability for drill
wear monitoring. Neither new measuring nor signal analysis techniques are
developed. However, problems related to the noise of measuring signals and the
influence of cutting parameters are given a lot of consideration. Also a lot of
emphasis is given to the consideration of how the drill wear monitoring and
diagnosis can be made easy or automatic in practice even though there are so
many factors that influence the monitoring, i.e. cutting process parameters such
as drill size, drilling speed and feed and also the influence of the work piece
material. For this purpose regression analysis techniques are studied together
with fuzzy logic and the hierarchical structure of the diagnostic program.

Although tool wear monitoring in principle has similar challenges for a number
of tool types and it could be argued that the same approach could be used, this
work concentrates only on drilling, which is the most widely used machining
method and which has some specific features that tend to make it more difficult
to monitor. These challenges are e.g. the discontinuous nature of the drilling
process, the great variation in tool size, the difficulties in positioning the
measuring sensors and the complexities of modelling the drilling process.

The actual drilling process and drill wear as a physical phenomenon are not
covered in this work, i.e. only the indirect monitoring signals are studied.
Similarly the developed simulation model does not try to model the drilling
forces in such a way that these could be used for the machining process. Instead,
it merely tries to mimic the features of the measuring signals based on some
characteristics of the drilling process.

The aim of the developed approach is not to differentiate between types of drill
wear such as chisel, corner, crater, flank and land wear. The purpose is simply to
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detect whether the drill starts to get so worn that is should be changed. In
addition tool breakage, which is the typical failure mode of smaller size drills, is
not covered.

1.6 Scientific contribution of the thesis

The scientific contribution of the thesis can be summarised as the development
of an automatically adaptive diagnostic tool for drill wear detection. The new
approach is based on the use of simplified fuzzy logic and higher order
polynomial regression analysis, and it relies on monitoring methods that have
been tested in this thesis. The diagnosis program does not require a lot of
memory or processing power and is thus capable of handling a great number of
tools in a machining centre. The work consists of:

- Extensive testing of monitoring methods and signal analysis techniques.
Evaluation of the best combination of monitoring methods and signal
analysis techniques for drill wear monitoring.

- A simplified simulation model has been developed which can be used to
produce data with features similar to real data, thus the model helps to
understand why certain analysis techniques work and others do not.
Especially the importance of natural vibration modes of drills and the
influence of drill size on these becomes apparent with the model. This
model can be used in the definition, training and testing of an automatic
diagnostic tool based on artificial intelligence.

- The development of higher order polynomial regression functions with a
limited number of terms which can be used for filtering the monitoring
signals, i.e. they remove individual peaks from the measuring signals.
The regression functions also reduce the amount of data that needs to be
saved, i.e. only the summary terms of the regression functions need to
be saved in order to be able to follow the trend of the monitoring
signals.

- The introduction of a term into the regression functions, which controls
the amount of emphasis that older data is given, compared to the current
data. This feature makes the regression function fast enough to react to
the rapidly developing increase of monitoring signals at the end of the
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drill life. It also enables to some extent the feature that monitoring
signals can adapt to changes in cutting parameters or to a change of
work piece material.

The regression functions can be used to give a prognosis of the
remaining lifetime of the drill at the end of the drill life. In theory, this
kind of prognosis could in fact be done fairly early assuming constant
cutting conditions and homogeneity of the work piece material.
However, in practice the warning of the end of the drill’s lifetime is
given in terms of a few percent of the total lifetime prior to the final end.

The development of an automatic diagnosis method based on the use of
multiple signals and a simplified fuzzy logic approach.

The use of hierarchy in the diagnostic approach in order to make it
possible to combine signals and parameters from a number of sources,
such as the tool wear monitoring parameters and cutting process
parameters.

18



2. Drill wear monitoring

Successful tool wear monitoring requires that a number of technical tasks are
understood and handled. The wear process must be understood in order to be
able to use proper monitoring signals and signal analysis techniques. Diagnostic
methods that can analyse the state of the tool automatically must also be
understood. Because of the complexity of the problem many different types of
approaches have been developed and tested. There exist a few good summaries
and reviews of what has been published in the technical literature in this field,
such as those by e.g. Rehorn et al. [2004] and Byrne et al. [1995]. Dimla et al.
[1997] give a review of neural network solutions and include information about
the sensor signals used. In an older review, Cook [1980a] lists both direct and
indirect methods that have been used for tool wear monitoring and provides
literature references. Also the somewhat older review by Tlusty & Andrews
[1983] focuses on sensors used in unmanned machining. Li & Mathew [1990]
give a good summary of wear and failure monitoring techniques that have been
used in turning, which is the most widely studied machining process as regards
tool condition monitoring [Jantunen 2001]; it is probably the easiest to monitor
because the work piece rotates rather than the tool. There is also a database [Teti
1995] of references related to tool condition monitoring, which inspired the
compilation of the database reported by Jantunen [2001]. Publication I gives a
more thorough summary and publication III discusses the benefits of various
measuring signals and signal analysis techniques. Drill wear is also covered in
publication VII.

2.1 Drill wear

Tool wear, and especially drill wear, is a rather complicated phenomenon.
Drilling operations differ significantly from turning and face milling for several
reasons [Rehorn et al. 2004]. The major difference is the fact that drilling is a
complex three-dimensional material removal operation, unlike the relatively
simple cases of orthogonal and oblique cutting. Drills have vastly different
geometries compared with turning and face milling tools. They are usually much
longer than a turning cutter and have far less cross-sectional area than a face
milling cutter. Drilling operations are different in that they require the full
immersion of the tool, rather than operating on the periphery or surface as is the
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case in face milling and end milling. Altogether seven different types of drill
wear can be recognised [Kanai & Kanda 1978]: outer corner wear, flank wear
(actually two types), margin wear, crater wear, chisel edge wear and chipping at
the lip. Because of adhering material many of these wear types are in practice
difficult to measure; therefore the outer corner wear has been used as a measure
of drill wear since it can be easily and reliably measured [Kanai & Kanda 1978].
It is not within the scope of this work to try to measure directly or to increase the
understanding of what happens when a drill gets worn. Instead, it is recognised
that in principle drill wear is an accelerating process that takes place at the outer
margin of the flutes of the drill due to intimate contact and elevated temperatures
at the tool work piece contact [Thangaraj & Wright 1988]. Thangaraj & Wright
[1988] explain that there is a period of initial wear, then a period of moderate
wear and in the third phase a period of excessive wear. Due to production
variations, a new drill is typically slightly asymmetric. Accordingly, the two
corners of the drill point wear gradually while the maximum wear alternates
from one cutting edge to the other. This alternating process continues until both
lips have zero clearance at the margin. The drill then adheres to the work piece
and breaks if the cutting process is not stopped in time. In addition, chip flow
creates significant friction between the cutter and the work piece inside the drill
hole. These frictional forces can significantly change the dynamics of the system
and they can cause the cutter to break [Rehorn et al. 2004]. Drills, like other
cutters, can fail due to either breakage or excessive wear. Based on tests it has
been determined that drills of a diameter less than 3 mm tend to fail by fracture,
while larger tools will fail through excessive wear [Thangaraj & Wright 1988].
In tests reported in the literature there is often great variation in the wear
development of the tested drills, as in the tests with 160 drills reported by Kanai
& Kanda [1978].

Drill wear is a highly complex phenomenon, and in the published literature no
model exists that could describe it well enough to form a basis for drill wear
monitoring. There are studies that describe the principles of tool wear in
machining, such as those reported by Zhang et al. [2001] or Bhattacharyya &
Ham [1969] who develop an approach to model flank wear. This model
discusses the influence of various wear modes (adhesion, abrasion) and the
influence of temperature but it does not look at the dynamics. It should be noted
that this type of study usually concentrates on turning, which is a much more
stable process than drilling. Material has been published on how to evaluate the
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lifetime of a tool, for example by Cook [1980b]. There are models that can be
used to calculate the drilling forces, e.g. in the work by Williams [1974] or
Watson [1985a, 1985b, 1985c, 1985d] for the estimation of static force
components. In the references the geometry of the drill is taken into account
sector by sector and a computer program to calculate the feed and the torque is
presented. Liu [1987] presents a model to calculate the thrust and torque of
multifacet drills as a function of drill geometry based on the summation of terms
calculated for a number of segments. Chandrasekharan [1996] takes into account
the drill geometry and his model is capable of predicting the drilling forces in
the different phases of drilling a hole (tool entry, cutting lips only, entire drill).
Also the rotational effects can be modelled. Following the principles shown by
Chandrasekharan [1996], Yang et al. [2002] introduce dynamics into their
model. Many of the references studied in this thesis show how important the
dynamics are in drilling and how the dynamic response increases as a
consequence of drill wear. Rotberg et al. [1990] show the most important
vibration modes. They suggest that the spikes in vibration monitoring of drills
are generated when the drill tends to stick in the work piece for a very short
instant (stick slip) and as a consequence the drill tends to unwind. In this
phenomenon both torsional and compressive stresses are included. As the twist
increases, the drill releases and continues cutting and hence the impulsive nature
of vibration is introduced. It is suggested that this phenomenon becomes
increasingly severe as wear develops.

2.2 Monitoring methods

A great variety of monitoring methods have been used and tested for tool wear
monitoring. In principle there are two possible approaches, i.e. direct and
indirect methods. Direct methods measure tool wear directly, which means that
these methods actually measure tool wear as such. Unfortunately these direct
methods that can be based on visual inspection or computer vision etc. have not
become economically or technically advanced enough for use in industry,
therefore they are not studied here. Instead of wear, indirect monitoring methods
measure something else which must be a function of wear. Publication I gives a
summary of indirect monitoring methods that have been applied to tool
condition monitoring in drilling. The following chapters give a brief description
of the most widely used monitoring methods and try to explain why these
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methods can be expected to work. A brief description is given of the most
commonly used measuring methods, signal analysis techniques and fault
diagnosis approaches.

2.2.1 Torque, drift force and feed force

Measuring of cutting forces is very popular in all types of cutting processes. In
the summary given in publication I the measurement of feed force is the most
popular method used in drill wear monitoring tests. The second most popular
method is to monitor torque. It is logical to monitor the cutting forces since they
increase as a function of wear as reported e.g. by Lin & Ting [1995], Pan et al.
[1993] and Subramanian & Cook [1977]. In theory, drift force would not work
in the case of twist drills with two cutting lips, since these two cancel the
influence of each other and the forces are in equilibrium and thus no indication
of drill wear should be seen. However, due to production tolerances the cutting
lips are not exactly identical and a drill is slightly asymmetrical. Therefore, it
only wears at one lip until the height of both lips is equal [Barker et al. 1993,
Braun et al. 1982, El-Wardany et al. 1996]. The second lip, which is now
sharper, starts to cut and this process of alternating the cutting lip continues until
neither lip has any more clearance at the margin. Although the measurement of
cutting forces has been a very popular and successful monitoring method in
laboratory tests, there is a drawback related to their use in normal production.
The measurement of cutting forces is not easily arranged between the tool, tool
holder and spindle. A force or torque transducer is relatively big and possibly
makes the change of tools more complicated.

Aatola et al. [1994] gain the best indication of drill wear with feed force and
torque measurements, but at the same time they suggest that the big and heavy
force and torque transducer used in the tests might have had an adverse influence
on the measured vibration. Another option is to make the measurement of
drilling forces from the other direction, i.e. below the table where the work piece
is positioned. Unfortunately this kind of measurement chain is somewhat longer
so that the forces are measured further away from the drill.

Von NedeB & Himburg [1986] show the dynamic effects including the influence
of the machine tool and the machining process on drilling and their influence on
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the feed force and torque. They point out that the drill wear causes a much
higher increase of the dynamic components compared to the increase of the
static forces. Konig & Christoffel [1980] have reached a very similar conclusion,
i.e. the dynamic components of thrust force and especially torque are considered
good indicators of drill wear. In the same reference torque is also considered
good in indicating the risk of tool fracture, whereas thrust force is considered to
indicate the actual tool breakage better when it has already happened. Also
Christoffel & Jung [1981] explain how drill wear can be monitored indirectly
with the dynamic components of thrust force and torque. They also explain the
self-exciting nature of the dynamics. Brinksmeier [1990] points out the
importance of being able to measure the dynamic changes of torque signal in
order to monitor drill wear and fracture. For measuring the higher frequency
content in a torque signal, a new sensor based on eddy current technology is
introduced. However, the tested version of the new sensor is relatively big and
not suitable for monitoring drills with a smaller diameter. Brinksmeier [1990]
predicts that the size of the sensor can be reduced, enabling a wider size range of
drills to be monitored.

Li et al. [1992] verify that the dynamic components of feed force and torque give
a clearer indication of tool wear than an increase in the average level. In this
case an attempt is also made to define the rules of how different wear modes
(chisel, flank and corner) can be distinguished from each other together with the
capability of detecting tool breakage. The dynamic influence in thrust force and
torque is also emphasised by Konig & Christoffel [1982]. With a drill diameter
of 8 mm they demonstrate how big the change is in the spectrum of thrust force
at a frequency of 1050 Hz. It is also pointed out how great the difference is in
the roundness and shape of the drilled hole of a sharp drill and a worn drill, the
difference being linked to the radial vibration of the drill.

McPhee et al. [1995] emphasise to the frequency content of the drilling power
measured using a dynamometer. The drills in question are coated. It is noted and
measured in the study that the dynamometer has a remarkable influence on the
vibration response of a drill. In that study the most interesting frequencies with a
6 mm diameter drill are around 800 Hz which is related to the dynamics of the
dynamometer, and around 2250 Hz which is considered to be linked to the drill.
It is concluded that frequency analysis may assist in distinguishing between
jamming and failure.
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Lenz et al. [1978] have studied the influence of wear on drift forces. In their
study, however, the feed force and torque do not give a similar indication. The
results seem to support the idea that during drilling, the cutting moves from one
lip to another as discussed previously.

2.2.2 Vibration and sound

Vibration is the most widely used measuring method in condition monitoring of
rotating machinery. However, it has not been as popular in drill wear
monitoring, possibly due to the amount of noise in a typical cutting process.
Vibration measurement is easily arranged, since an accelerometer can easily be
installed close to the spindle bearing and no modifications of the machine tools
or the work piece fixture are needed [El-Wardany et al. 1996]. There is no effect
on stiffness and damping properties of the drilling system and the sensor can
also be mounted on the table close to the cutting action [Abu-Mahfouz 2005].
Abu-Mahfouz [2005] points out that accelerometers, when properly shielded,
have good resistance against coolants, chips, electromagnetic and thermal
influences. It is logical to expect vibration measurements to react to tool wear,
because if in a dynamic system such as the machine tool the cutting forces
increase, the dynamic response will also increase. As explained in the previous
chapter, the drift forces can be used for monitoring drill wear, and these forces
are also the cause of increasing vibration as a function of wear. Unfortunately
there are a number of drawbacks related to vibration monitoring. Besides the
influence of tool wear, the vibration signal is influenced by the work piece
material, cutting conditions and machine tool structure.

Abu-Mahfouz [2003] has used vibration measurement to detect drill wear and also
to differentiate between different types of wear, i.e. chisel, crater, flank, edge and
outer corner wear. Narayanan et al. [1994] concentrate the diagnosis of drill bit
wear on higher frequencies around 10 kHz. From their results it seems clear that
the best indication of drill bit wear is seen at these frequencies. However, the
geometrical details of the tool and tool holder are not reported and there is no
explanation of the reasons why these frequencies are the best for drill bit wear
monitoring. Also Barker et al. [1993] used vibration acceleration for monitoring
the wear of drill bits, which were for drilling holes into electronic circuits.
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Similarly to vibration, also sound can be used for drill wear monitoring.
Mechanical vibration of the machine tool, tool holder and tool is partly
transferred to airborne vibration, i.e. sound. Consequently the same information
observed from vibration signals can be obtained from sound measurements
recorded with a microphone. Sound measurements, although very easy to
perform, have not been widely used, probably because they are affected by noise
to an even greater extent than vibration measurements. In the tests covering a
number of monitoring methods reported in publication II, vibration monitoring
was the most effective method.

2.2.3 Acoustic emission and ultrasonic vibration

In addition to mechanical vibration up to 20 kHz, a higher frequency range has
been used for monitoring drill wear. Vibration measurements in the frequency
range 20-80 kHz are in the literature called ultrasonic vibration [Hayashi et al.
1988]. The use of ultrasonic vibration has been justified by pointing out that at
lower frequencies structural vibrations are dominant, and that higher frequencies
suffer from the joints commonly found in machine tools; thus ultrasonic
vibrations are especially suitable for e.g. drill breakage detection. There are a
few other studies, such as those by Kutzner & Schehl [1988], Konig et al. [1992]
and Schehl [1991], which describe the results with ultrasonic vibration
measurements, but the technique has not been widely used. It should also be
noted that in these studies the emphasis is on such a low frequency range (most
of the information was obtained at frequencies below 60 kHz) that although
Konig et al. [1992] and Schehl [1991] describe it as acoustic emission, some
others would call it ultrasonic vibration.

It is interesting to note that results reported with drills with very small diameters
from 1 to 3 mm are good with this technique. Konig et al. [1992] point out that
with such small drills the spindle current does not work, cutting forces do not
give as good an indication as acoustic emission, and especially with the smallest
drill diameters it is not possible to predict the upcoming tool breakage; acoustic
emission does, however, give some indication even with such small drills. In
another study [Konig et al. 1989] the same research team recommends the use of
the frequency range 5—40 kHz.
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Konig et al. [1992] discuss the advantages of using acoustic emission in
monitoring drill wear, especially that of small drills. However, their signal
analysis technique of a band passing the signal in the frequency range 1-5 kHz
actually means that this kind of measurement is normally defined as mechanical
vibration, although the used sensor is capable of measuring higher frequencies
up to those defined as acoustic emission. Waschkies et al. [1994] suggest the use
of an average value of acoustic emission measured in a wide frequency range of
0.1-1 MHz for drill wear monitoring.

2.2.4 Spindle motor and feed drive current

Spindle motor current is in principle related to measuring torque, although the
measuring chain is longer. Similarly, measuring the feed drive current can be
considered identical to measuring thrust force, although again through a longer
measuring chain. Since they are so easy to measure, both the spindle motor
current and feed drive current have been used relatively widely in test, e.g. by
Adamczyk [1998], Li [1999], Ramamurthi & Hough [1993] and Routio &
Saynétjoki [1995]. Li [1999] reports good results with spindle current and feed
force current monitoring of breakage of small drills. The tested drills have a
diameter of 1-4.5 mm, i.e. they are so small that the breakage is the typical
failure mode [Thangaraj & Wright 1988].

Ramamurthi & Hough [1993] use the spindle motor current and feed motor
current for tool wear detection with good results. In this case these signals are used
together with thrust force measurement, which is used to predict tool failure. One
of the purposes of their study was actually to test whether the current sensor would
be sufficient for drill wear monitoring, since it is cheaper and easier to use than
other measuring methods. From this it is concluded that if wear is not diagnosed
then tool failure is predicted or vice versa, i.e. in this case the combination of two
measuring techniques improves the reliability of the diagnosis.

Kim et al. [2002] predict the flank wear of a twist drill based on measured
spindle motor power. The developed theory starts from the model reported by
Williams [1974]. The cutting torque is divided into three components, i.e. lip,
chisel and margin components. Of these only the lip component depends on the
flank wear of the drill. This dependency is shown to be remarkable. In the tests
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the accuracy of predicting the drill wear for a drill with a 4 mm diameter was
0.02 mm for flank wear, whereas the flank wear criterion requiring drill
replacement was 0.18 mm. Because of the structure of the model, also the effect
of the feed rate change can be handled.

Adamczyk [1998] emphasises to the disengagement phase of the drilling
process. In this phase both the feed drive current and spindle current were highly
correlated with the flank, corner and margin wear of a drill with a 10 mm
diameter. In fact the correlation was higher with current measurements than with
acceleration measurements. The results reported by Routio & Saynétjoki [1995]
on the use of spindle power for drill wear monitoring are not encouraging.

2.3 Signal analysis techniques

Various signal analysis techniques have been used in the context of drill wear
monitoring. It is very important what kind of signal analysis technique is used.
In principle the signal analysis tries to identify the meaningful part of the signal
that is giving an indication of wear, and to remove the noise, i.e. parts of the
signal that do not contain or show a wear-related trend. The used signal analysis
method should be quick to perform, because during drilling the wear progresses
very rapidly towards the end of the tool life, as explained in Chapter 2.1 of this
thesis. In a case where drill wear is monitored in a machine tool where a great
number of tools might be used, the amount of data that needs to be saved in
relation to signal analysis is of some importance. Thus if a lot of information
needs to be saved in order to follow the trend in parameters calculated with the
signal analysis as a function of wear, the hardware must have sufficient data
storage capability. The following chapters give a short introduction to the most
important signal analysis methods and how they have been used in the reported
literature. Publication I gives a more thorough presentation of the current use of
various signal analysis methods in drill wear monitoring.

2.3.1 Time domain signal

The time domain signal is the first thing that is seen when a measurement is
performed. Typically today the measurement is performed using a computer
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with an AD card or with some measuring equipment that performs the AD
conversion. Already at this stage the frequency at which data is gathered
influences the result, i.e. if data is gathered at a lower frequency than what the
transducers can measure, this actually means that information at high
frequencies is not properly treated. It is not practical to save the raw time data
for long periods of time and for a number of tools. Typically some statistical
parameters are calculated from the time domain raw data, and these parameters are
then saved and used for diagnosis of tool wear. When calculating the statistical
parameters the choice of sample length influences the results. The root mean
square (rms), arithmetic mean, standard deviation and kurtosis are examples of
time domain statistical parameters. Formulae for calculating these parameters are
found in a number of books, e.g. that by Press et al. [2002] which also gives the
computer code in C++ to calculate the most typically used parameters.

Noori-Khajavi [1992], Noori-Khajavi & Komanduri [1993] and Noori-Khajavi
& Komanduri [1995a] used mean value and variance with force and torque
transducers. In these tests no correlation with drill wear was found in the time
domain. Lin & Ting [1995] have used average values of thrust force and torque.
The test material was used for developing a model to calculate the force and
torque as a function of drill feed, diameter and wear. The authors conclude that
the models can be used for wear estimation. Liu & Anantharaman [1994] used
average, peak, rms values and the area of thrust and torque with success.
Radhakrishnan & Wu [1981] used mean, peak and standard deviation values of
thrust force and torque signals. In these tests the standard deviation, which in
practice is the same as the rms value, proved to be the best indicator of wear.

Thangaraj & Wright [1988] calculated the mean, standard deviation and
maximum values of thrust force sampled at a low frequency of 40 Hz for each
hole. With this kind of approach the maximum value gives the best indication of
wear. The results with mean, minimum and maximum values of cutting forces
reported by Valikhani & Chandrashekhar [1987] are not promising. The
statistical parameters were measured for each hole. It is noted that the fluctuation
of forces increases with drill wear, which could give grounds for drill wear
monitoring. Tansel et al. [1992] report good results in monitoring the breakage
of micro-size drills using average and standard deviation values of thrust force.
In this case the statistical parameters were studied in four different segments of
drilling a hole. Ramamurthi & Hough [1993] used a number of statistical
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parameters in connection with spindle and feed motor current together with
thrust force. The statistical parameters are the rms value (spindle motor current),
mean value (thrust force) and rms value of the high pass filtered signal (feed
force current) together with a parameter that indicates the increase in each of
these as a function of drilling time/wear.

Schehl [1991] used band pass filtered rms values of acoustic emission with
success. Konig et al. [1992] suggest the use of band pass filtering of acoustic
emission together with the use of a rectifier. The technique has the advantage
that in this way acoustic emission signal can be gathered at a relatively low
frequency, which makes the measuring and analysis equipment much cheaper.
Routio & Siynétjoki [1995] have used maximal stable values of feed force,
torque, spindle and feed drive current. In these tests the indication of wear and
tool failure was observed very late because the analysed signals were almost
constant until they rose very dramatically in the last hole. El-Wardany et al.
[1996] use the kurtosis value, which is an indicator of peakedness of the signal,
together with a new parameter called ratio of the absolute mean value, for
analysing vibration for drill wear and failure monitoring successfully. Kutzner &
Schehl [1988] suggest the use of a band passed high frequency vibration signal
for monitoring small diameter drills. The basic idea is that the rotational natural
frequency should lie in this frequency range.

2.3.2 Fast Fourier transform

Fast Fourier transform (FFT) is a means to determine the frequency content of a
measured signal. The principles of FFT can be found e.g. in a book written by
Randall [1977]. Basically, the idea of looking at the frequency content of a
measured signal is based on the concept that at some frequencies wear
influences the signal more than at some others; thus FFT serves as a means to
eliminate meaningless information and emphasise more meaningful information
instead. Braun et al. [1982] discuss the effectiveness of using FFT in the
development of a trend index for sound signal monitoring together with the use
of an enveloping technique. EI-Wardany et al. [1996] use FFT to calculate the
power spectrum and also cepstrum. The power spectrum is used for monitoring
the drill wear of large drills with a drill diameter of 6 mm. The cepstrum with
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statistical parameters explained in the previous chapter, are used for detecting
the tool breakage of smaller size drills with a drill diameter of 3 mm.

Valikhani & Chandrashekhar [1987] have, alongside the statistical functions
explained earlier, also used the power spectrum successfully to monitor tool
wear based on the drift force. However, they indicate that the amount of test
material is limited and suggest further testing. Govekar & Grabec [1994] used a
relatively small number of points, 256 in the time domain instead of the typical
2048, for FFT when measuring torque and feed force. The reason for this choice
is apparently the use of neural networks (self organising map) as the following
diagnostic tool in the approach.

Noori-Khajavi [1992], Noori-Khajavi & Komanduri [1993] and Noori-Khajavi
& Komanduri [1995a] report that use of the power spectral density (PSD)
function gave better results in drill wear monitoring than the statistical
parameters described in the previous chapter. The PSD function was calculated
for thrust force, torque and strain measurement in two horizontal directions. In
this case relatively low frequencies from 50 Hz to 300 Hz gave the best results.
No individual frequencies were considered; instead the change of area under the
PSD plots was used. Barker et al. [1993] tested higher order spectral (HOS)
functions calculated for vibration for drill wear detection, and compared these
with the normal power spectrum approach. With the tested material the HOS
approach gave a higher detection rate of drill wear, although at the same time the
false alarm rate also increased.

2.3.3 Other analysis techniques

Envelope detection is one method of signal analysis that has become popular
especially in rolling bearing fault detection. Envelope detection is a means of
looking at the signal energy contents in a certain frequency range. Typically this
range is rather high, i.e. of the order of 10 kHz, and the idea is that by using
band pass filtering it is possible to concentrate on the information in this range.
Braun et al. [1982]] and Braun & Lentz [1986] suggest the use of envelope
detection or a somewhat further developed signal analysis technique which can
pick up the information at higher frequencies for drill wear monitoring using
sound signal measurements. Hayashi et al. [1988] used envelope detection of
high frequency vibration (20 kHz — 80 kHz) together with a statistical parameter
called the clipped running mean, i.e. a running mean from which some higher
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peaks that pass a certain threshold value have been clipped away. Together with
this parameter, the number of occurrences of values that are higher or lower than
certain limits that have been calculated in relation to the clipped running mean
are followed. These then give an indication of tool breakage.

Drilling a hole is not a stable process in that the measured signals vary from the
beginning to the end of drilling a hole. Quadro & Branco [1997] recognise five
stages and two of these are considered best for monitoring drill wear using
acoustic emission. In this study acoustic emission is studied using the measured
area under the rectified signal envelope (MARSE). One approach that can be
used in signal analysis is autoregressive modelling. Radhakrishnan & Wu [1981]
use the autoregressive moving average (ARMA) model for modelling the thrust
force and surface waviness. The approach is suggested for use in on-line
monitoring of drill wear.

Wavelet transform is another method that can be used to extract meaningful
information from the measured time signal. The principles of wavelet analysis
can be found e.g. in a book written by Newland [1993]. When compared to FFT,
which only gives information in the frequency domain, or the time domain
parameters, which only contain information in the time domain, a wavelet can be
considered to include both of them, i.e. information in the time-frequency
domain. Li [1999] used wavelet transform for drill breakage detection based on
AC servo motor current measurements of all four axis motors. The drill size in
the tests was small, from 1 mm to 4.5 mm in diameter. However, the diagnosis
was passive, i.e. there was no warning prior to actual breakage. Tansel et al.
[1993] used wavelets to diagnose a severely damaged micro drill from a new
one. The monitored signal was thrust force. Again there is no indication whether
a warning was obtained prior to the drill being severely damaged. Hiebert &
Chinnam [2000] used wavelets to analyse the thrust force and the torque. Some
of the wavelet parameters were used as input into a neural network, which aimed
to diagnose the degradation of drill bits. The reliability of the method is
discussed and it is noted that since many degradation signals increase in slope as
they approach failure, the accuracy of failure predictions should increase when
approaching the critical limit.

Abu-Mahfouz [2003] combines and also compares, in the case of a vibration
acceleration signal, the effectiveness of statistical time domain parameters such
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as mean, variance, skewness and kurtosis, together with parameters calculated
using discrete harmonic wavelet transform and the eight highest peaks calculated
with the Burg power spectral density function. In the approach, different types of
wear can be detected and in that study the parameters calculated with the
wavelet transform proved to be superior compared to the other methods.

2.4 Fault diagnosis systems

Today machining processes are usually automatic and unmanned. However,
various types of problems or faults in the process necessitate manual
intervention. Tool wear and breakage is one of the factors that prohibit fully
automatic production in three shifts. If tool wear and breakage monitoring is
used, in practice it needs to be automatic, i.e. the system used for tool
monitoring needs to be able to diagnose the condition of the tool automatically,
which means that some sort of artificial intelligence is involved.

Tonshoff et al. [1988] define the components that are needed in a tool wear
monitoring system: sensor, signal conditioning, model and strategy. The three
first components are covered in the previous chapters. Strategy means that
different actions are taken based on the monitored signals. A monitoring system
only gives an indication or alarm if the signals reach a certain level. A diagnostic
system tries to find a functional or causal relation between the failures in
machining and their origin. Adaptive control systems automatically adapt
machining conditions according to a given strategy. Tonshoff et al. [1988] also
point out the advantages and challenges of multi-sensor systems, and how they
bring more information. At the same time the importance of building multi-
model systems is explained. It is claimed that the use of more sensors and
models results in a more reliable and more flexible supervising process and
increases the feasibility of better control.

Ertunc et al. [2001] employed Hidden Markov Models (HMM), which have
successfully been used in speech recognition, for drill wear detection based on
thrust force and torque. In the approach three different stages of the tool were
recognised, i.e. sharp, workable and dull. It is suggested that different models
should be defined for different cutting conditions since these influence the
results. In addition to the HMM approach, Ertunc & Oysu [2004] tested a so-
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called phase plane method. They report that one of the benefits of this approach
is its simplicity, since the thrust force is plotted as a function of the torque, and if
the tool is in a normal condition the plotted results stay within a predefined
rectangle. The authors state that even though the method is very simple, it does
give satisfactory criteria for monitoring tool wear.

Liu et al. [2000] report the results of using a polynomial network for predicting
corner wear in drilling operations. The input parameters are cutting speed, feed
rate, drill diameter, torque and thrust force. The development of a polynomial
network is rather straightforward, but it means that the network is first trained
with suitable data. Liu et al. [2000] had 27 training cases and eight test cases. It
is concluded that the use of thrust force gives a more reliable indication than the
use of torque. The difference between the predicted corner wear and measured
corner wear was less than 10% with the test data.

2.4.1 Predefined limits / rule based systems

The simplest way to automate the diagnosis of tool condition is to use predefined
limits for the measured signals and parameters calculated from those signals.
This means that if a parameter value exceeds the limit given to it, the tool is
considered worn. The approach can be made more reliable by combining the
information from various sensors and/or calculating a number of parameters of
these signals. This information can be combined with the information from the
cutting process parameters, e.g. using the so-called rule based approach in
building rules, i.e. the knowledge base, so that a number of conditions need to be
fulfilled simultaneously. One example could be that if the drill diameter is more
than 4 mm and less than 5 mm and the drilling speed is ... and ... etc then ....
Erdélyi & Santha [1986] describe the principles of this kind of approach in
general for a production cell. Publication V addresses the principles of this type
of approach in greater detail for tool wear monitoring.

The use of sophisticated analysis methods can be seen as one attempt to make
the use of predefined limits more reliable and possibly more general. If the
parameter that is used to detect tool wear is insensitive to other factors, such as
the cutting speed, it is easier to build rules that define the condition of the tool.
This highlights one drawback of the rule based approach. If many different types
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of tools are used in the machine tool, it might be very laborious to build a rule
based expert system that can detect tool wear and warn of the upcoming
breakage. However, the rules might also be very simple for each machining
state/tool and one way to define the limits is simply to define them manually for
each tool type.

Another possibility to make the definition of limits more general is to use
trending, which means that the parameter values are saved when the tool is in
good condition and the limits are defined at the beginning for the relation of the
current measurement to the measured value. For example, Thangaraj & Wright
[1988] use the gradient of the thrust force and state that the proposed control
system does not require considerable tuning for operation under a wide range of
cutting conditions. Another example is given by El-Wardany et al. [1996], who
perform the more sophisticated analysis only when a certain parameter reaches a
predefined value compared to the initial value. Also Lechler [1988] discusses the
definition of limit values and how they can be used for tool wear and fracture
monitoring with various force and strain based sensors. They point out how
important it is for the personnel to have sufficient training.

Adamczyk [1998] suggests a relatively simple combination of rules based on
standard deviation values of the feed drive and spindle current for the stable and
transient phase of drilling. Basically, if a simple condition is fulfilled in both
conditions the drill is considered worn. Adamczyk [1998] shows a simple
procedure for combining information from three different sensors (two current
and one accelerometer). Takata et al. [1986] present some results with the
pattern recognition technique, which is based on speech recognition. The signal
measured and analysed with a sound sensor forms a 16 x 16 time/frequency
pattern which can be used for defining the cutting state and detecting a broken
tool. Tonshoff et al. [1988] describe the principles of building a rule based
approach that relies on the information from three different types of sensor:
force, temperature and vibration.

Li et al. [1992] use a simple rule set based on the relationship between the
current value and the average value of feed force, torque and their dynamic
components. One of the advantages of the approach is that there is no need for
training or definition of the limits; instead they are calculated for each of the
monitored tools. The rule set can also distinguish between various types of drill

34



wear. However, the approach has been developed based on only four tested drills,
which unfortunately raises the question of how general the results actually are.

2.4.2 Fuzzy logic

The rules in rule based systems are usually crisp but they can also be fuzzy, i.e.
not exact. The principles of fuzzy logic can be found e.g. in a book by Rao &
Rao [1993]. Li & Wu [1988] categorise drill wear into four fuzzy classes: initial,
small, normal and severe. In this approach fuzzy limits are defined based on an
algorithm used for clustering thrust force and torque data. When the data is
analysed, the result is not crisp but shows membership to each of the four
classes. The approach works, although only two test cases are shown. In the
approach, only the parameters (rms value) related to thrust and torque are used
and a so-called c-mean algorithm is used for defining the relationship between
the tool conditions and the measured parameters. Du et al. [1995] describe the c-
mean algorithm in a more general form together with other possible approaches
to linking together the measured parameter values and state of the tool. Xiaoli &
Zhejun [1998] used this kind of approach for monitoring tool wear during
boring. The monitored seven parameters in this case were from wideband AE
measurements which had been treated using wavelet transform. The seven
parameters were actually a set chosen from 16 frequency bands. The authors
conclude that the proposed approach can give a high success rate over a wide
range of cutting conditions.

Du et al. [1995] justify the use of fuzzy classification by claiming that for dealing
with uncertainties inherent in the metal cutting processes, fuzzy systems offer the
advantage of providing systematic means for describing the relationship between
tool condition and various process signatures. Fuzzy logic can also be used in
connection with neural networks for pre-processing input data into the network
and/or post-processing the output of the network [Rao & Rao 1993].

Li & Tso [1999] develop regression models for spindle motor current and feed
motor current as a function of cutting variables, i.e. cutting speed, feed rate and
drill diameter, for various flank wear states. Using fuzzy classification it is then
possible with the test data to predict the membership in three different wear
states. The number of definition cases for development of the regression
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functions is 12. In this set eight cutting speeds are used together with five feed
rates and three drill diameters. The number of test cases is also 12. The result is
considered good since the grade of membership function associated with the
relevant flank wear states is always close to unity. However, although the results
in the paper are considered good, the relatively small number of test cases
compared to the number of input parameters raises some questions about the
generalised nature of the methodology.

Li et al. [2000] used fuzzy logic together with neural networks. In this case drill
wear is monitored using vibration acceleration. The rms value in five separate
frequency bands between 0 and 2500 Hz are used as input features. Drill wear is
categorised in five different classes: initial wear, normal wear, acceptable wear,
severe wear and failure. It is concluded that a fuzzy relationship between the tool
condition and monitoring may be identified by using a fuzzy neural network.
However, the recognition rate for initial wear is reported to be 52% and for severe
wear 68%. Drill failure and air cutting have been recognised at a rate of 100%.

2.4.3 Neural networks

Neural networks have become very popular in industry because of their
classification and optimisation capabilities [Dimla et al. 1997]. Neural networks
can be seen as an attempt to automate the process of building a diagnostic
system. In principle neural networks can be trained to model non-linear
dependencies of manufacturing process parameters and parameters which
indicate tool wear and failure. The principles of neural networks can be found
e.g. in a book by Rao & Rao [1993]. Dimla et al. [1997] critically examine 37
approaches that have been tried with different types of neural networks in order
to diagnose tool wear and breakage in various types of machining processes. The
success rate is tabulated based on references. Some of the main conclusions by
Dimla et al. [1997] are: The most widely tested neural network approach is a so-
called multilayer perception (MLP) network. MLP networks are particularly
suitable for high-speed real time applications. In many cases more than one
feature has been extracted from one sensor and this is criticised as not really
being a multi-sensor approach. Although most of the references claim to be on-
line solutions they actually seem to be off-line networks, which have not been
tested in a real production environment. In most cases the data has been sampled
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using only one set of cutting conditions. A tool condition monitoring system
needs to be able to handle various cutting conditions.

Liu & Ko [1990] built a simple network comprising two input features and one
output. Drill wear was classified into five categories. The inputs were peak to peak
acceleration and the percentage increase of the thrust force. They concluded that
an on-line recognition level of over 85% can be reached. The limited number of
tests did not include variation of cutting process parameters. The same data was
used to develop a two-category linear classifier for drill wear detection in studies
by Liu [1987] and Liu & Wu [1990]. In this case a success rate greater than 90% is
reported for drill wear monitoring in one drilling process condition.

Liu & Anantharaman [1994] tested the influence of the number of hidden layers.
In the cases tested the number of input features was nine based on thrust force,
torque and one process parameter. It is concluded that artificial neural networks
can distinguish between a worn and a usable drill with 100% reliability and also
accurately distinguish the average flank wear even under different drilling
conditions. However, the authors have not included documented material of the
variation of cutting conditions. They compare different versions of the number
of neurons in the hidden layer and also a modified version with adaptive
activation-function slopes. This modified neural network is reported to converge
to a solution much faster than a conventional feedforward network.

Liu et al. [1998] introduced the influence of drill size, feed rate and spindle
speed together with the same thrust force and torque parameters used earlier in
the neural network solution. They report that the network can reach up to 100%
reliability for on-line detection of drill wear states and that it is feasible to
recognise the drill wear states on-line even if the drill size, feed rate and spindle
speed have changed. However, it should be noted that there was no variation of
the work piece material and that the total number of tests was seven, in which
five different drill sizes, six feed rates and five spindle speeds were used, which
would suggest that the number of test cases was rather small compared to the
number of influencing parameters.

Noori-Khajavi [1992], Noori-Khajavi & Komanduri [1993] and Noori-Khajavi
& Komanduri [1995b] use neural networks for sensor signal integration. This is
done based on torque, feed and drift force signals. Noori-Khajavi [1992] shows
that it is not advantageous to integrate information from these because they are
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equally good and contain the same information of drill wear. Govekar & Grabec
[1994] use a self-organising neural network. Torque and feed force spectra are
further treated so that the low frequency information below 200 Hz is left out
and the information at higher frequencies is combined into 30 representative
bands. They conclude that the approach is promising. The effect of cutting
process parameters is not covered.

Tansel et al. [1992] tested a different kind of neural network called a restricted
coulomb energy (RCE) network for drill wear diagnosis in micro drilling. The
theory of RCE network is explained in their report. The drilling of each hole is
divided into four segments and the average and standard deviation of feed force
is used as the input features, i.e. altogether eight inputs. The RCE network
recognized tool failure with an accuracy of over 90%. The processing
parameters were not varied, although it is pointed out that the feed force varied a
lot from test to test. The same test data as in the previous reference has been
tested in connection with another type of neural network based on adaptive
resonance theory (ART) [Tansel et al. 1993]. In this case the input features were
calculated using wavelet transform of the feed force. The approach was tested
with two network structures, one with 22 input features and the other with six.
The approach with a higher number of input features gave a better indication,
only one error in 61 cases, but was slower. Again there was no variation of
process parameters.

Tsao [2002] tested two types of neural network solution for flank wear
prediction of a coated drill based on maximum values of thrust force and torque.
The two neural network methods were radial basis function network (RBFN)
and a modified RBFN called adaptive RBFN (ARBFN). With a training set of
18 cases and a set of nine test cases good results were obtained. In the prediction
the maximum drill wear error was only 0.4% which is a remarkable result. It
should be noted that together with the variation of spindle speed and feed rate,
also the drill coating deposition was varied. One thing that is clearly noticeable
in the measured data is that the results are very consistent, i.e. the relation
between the maximum thrust force and torque with the drill wear is very similar
in all three cases for all the varied input parameter combinations, which would
indicate that possibly very simple methods could give good results with the
measured data.
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Fu & Ling [2002] have developed a very basic neural network for the detection
of breakage of micro drills. The solution is based on torque signal together with
such parameters as the drill diameter, feed and spindle speed. The maximum and
average values of torque were used. The approach works with very small drills
but is passive in the sense that detection is made only after drill breakage has
occurred, which is much easier than making a prognosis of breakage beforehand.
There are benefits related to this late detection, although not as remarkable as in
the case of prognosis.

Brophy et al. [2002] report the results of a project in which the network
developed was based on input from a spindle power signal. In this case a
network was developed to detect abnormalities in drilling. The spindle power
was treated in the first stage with principal component analysis (PCA) to get the
input features for the neural network. After a training phase of 3 weeks the
neural network was tested in real production for 3 months. The authors report
that the network draws similar conclusions to those of an experienced operator.

Abu-Mahfouz [2003] used a multiple layer neural network to detect drill wear
and to differentiate between different types of wear such as chisel, crater, flank,
edge and outer corner wear based on a vibration acceleration signal. From
acceleration signal statistical time domain parameters together with wavelet
based parameters and parameters of Burg power spectral density function were
calculated. In the study, different types of architectures of the neural network
were tested and also the process parameters, i.e. speed and feed, were varied.
The reported results are promising. The percentage of correct predictions was
around 80 to 90 when differentiating between the various artificially introduced
wear types, and 100 when detecting drill wear. Based on the same measured
signal and analysed parameters as described above Abu-Mahfouz [2005] reports
the results of two other neural network approaches, namely learning vector
quantization (LVQ) and fuzzy learning vector quantification (FLVQ), in
detecting drill flank wear. Again the reported results are good with success rates
of 86% with LQV and 88.8% with FLVQ. Also in this case the process
parameters are varied. The test material was based on drilling tests in dry
conditions covering the total tool life [Abu-Mahfouz 2005].
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3. Machining tests

The complete test and measuring set-up and the test program are described in
detail in publication II. In this chapter the main characteristics of the set-up and
the drilling program are described briefly.

3.1 Test set-up
A horizontal-type machining centre was used in the drilling tests for tool
condition monitoring. The main specification of the machining centre is shown

in Table 1.

Table 1. Specification of the machining centre in the tests.

Machine tool Niigata EN40B Spindle nose NT No. 40 for BT
Control unit Fanuc 11 MA Number of 30 tools
tools

Controlled axis | 4 axis (X, Y, Z, and B) | Spindle speed 15-6000 l/min

Table size 400 x 400 mm Main motor 11/7.5 kW
power

3.2 Test program
The twist drill sizes investigated in the tests were: diameter 3.3 mm, 5.0 mm, 6.8 mm,
8.5 mm and 10.2 mm. The drill material was HSS and the work piece material

was Fe52. The total number of tested drills was 26. A description of the drilling
parameters and monitoring methods is given in publication II.

3.3 Measuring arrangement

In the drilling tests the tested measuring methods included vibration, sound, acoustic
emission (200 kHz and 800 kHz centre frequencies and also 100-1000 kHz
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frequency range), spindle power and current, z-servo current, force measured
from guideways, feed force and torque with a dynamometer and 3-axis table
dynamometer. In the tests the measuring signals were recorded with a 14
channel instrument tape recorder and analysed afterwards in the laboratory. The
measuring configuration was varied during the measurements due to the
limitations of the tape recorder, i.e. the number of channels used (12) was not
sufficient for recording all the possible signals simultaneously. A more thorough
description with a graphical presentation of the measuring arrangement is given
in publication II.
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4. Signal analysis

A detailed description of the signal analysis methods and results is given in
publication II. Some results are also shown in publications III, VI and VIIL. Due
to the great amount of test data, an automatic analysis program for PC was used.
The data recorded with an instrument data recorder was analysed overnight with
a PC equipped with an AD card. A mathematical programming toolbox MatLab
was used for the signal analysis. The signal analysis was done both in the time
domain (statistical parameters) and in the frequency domain (FFT analyses).
Prior to the signal analysis the data was cleaned of irrelevant signals, i.e. data
recorded during rapid movements of the tool prior to actual drilling. Regression
analysis was used to rank the different methods used in the tests.

4.1 Statistical analyses

For all of the recorded measuring signals (12 sensors), except for the tachometer
pulse used for recording the running speed of the tool, altogether eight statistical
parameters in the time domain were calculated. These were: arithmetic mean,
root mean square (rms), mean deviation, standard deviation, skewness, kurtosis,
maximum and minimum. All of these time domain parameters are easy and fast
to calculate [e.g. Press et al. 2002]. Usually they contain the whole frequency
content of the measured signals and are therefore rather sensitive to noise, i.e.
there is a lot of variation in the measured values. In the case of vibration signals,
low-pass filtering was also tested to improve them. In drill wear monitoring the
best results with statistical parameters were obtained with the root mean square
and mean deviation of low-pass filtered horizontal vibration (cf. publication II).
Figure 1 shows an example of the analysed root mean square value of a low-pass
filtered horizontal vibration signal in drill wear monitoring.

4.2 FFT analyses

Fast Fourier transform (FFT) was used in the case of dynamic monitoring
signals (vibration, force/torque, spindle motor power and sound) that were
expected to contain frequency dependant information. A sample and hold card
was used together with the normal AD card in order to analyse data
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simultaneously from four channels. A MatLab mathematical package was used
for programming the tested functions. FFT based functions including
autocorrelation, spectrum, 1/3 octave spectrum, 1/1 octave spectrum, cepstrum
and liftered spectrum were tested for one signal at a time. For simultaneous
analysis of more than one signal at a time, the tested functions were frequency
response, coherence, coherent output power, cross-correlation, signal to noise
ratio, Scot and multi-signal frequency response and partial coherence. In the
signal analysis a Hanning window [Randall 1977] was used, as well as time and
spectrum domain averaging. In order to save space, normally only the 20 highest
amplitudes of each function were saved together with the corresponding
frequency. As seen from the tabulated lists in publication II, it makes little
difference whether the analysis is based on one or more signals. Due to the large
number of analysis functions and analysed parameters, a procedure based on
regression analysis was developed for further analysis of FFT based functions in
order to define which of the measuring signals and analysis functions could be
expected to work best for diagnosing drill wear. Of all the functions analysed
with FFT the best results in drill wear monitoring were obtained with a
horizontal vibration spectrum.

6
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Figure 1. Normalised rms value of vibration (perpendicular to drill axis) for a
10.2 mm twist drill.

43



4.3 Regression analyses

In order to define which analysis functions work best for drill wear monitoring,
regression analysis was used for parameters calculated using both statistical and
FFT based signal analysis methods. The four regression analysis functions (1%,
2" and 3" order polynomials and a logarithmic function based on the idea
developed and reported by Jantunen & Poikonen [1993]) used to rank the signal
analysis results are described in publication II. The idea behind the ranking of
monitoring parameters was that the coefficient of determination calculated in the
regression analysis could be used to define the ranking order of the measuring
signals, analysis functions and parameters. Of all the measured signals the best
results were gained with horizontal vibration. However, it can be said that the
difference is not big and other measuring signals such as sound, force and
acoustic emission also worked well. A more detailed discussion of the
applicability of various monitoring methods is given in publication III. In
publication II the conclusion is that for practical purposes it could be beneficial
to use more than one measuring method in order to get rid of false alarms.

The development of a higher order polynomial regression function with a limited
number of terms is described in detail in publications VI and VII. The principle
of why a regression analysis technique can be expected to help in monitoring
and diagnosis of drill wear is explained in detail in publication VI. Basically the
idea is simply to mimic the development of the wear curve, which in the case of
tools typically develops exponentially towards the end of the tool life. A higher
order polynomial regression function with a limited number of terms is defined
in its general form by the following equation:

yt)=a-t°+b-t/ +c-t*+d (1)

where y(t) is the monitored parameter as a function of time. The parameter can
be either a statistical time domain parameter such as root mean square (rms)
value or an amplitude value at a specific frequency if FFT has been used. In the
equation a, b and ¢ are regression coefficients and t is time. The exponents e, f
and g define the degree of the function and there is also a constant d in the
function. With a proper choice of exponents e, f and g Equation 1 can also be
used to define the 1%, 2™ and 3™ order polynomials (with the 3™ order d also
becomes a regression coefficient). As shown in publication VI Equation 1 also
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mimics quite closely the behaviour of the logarithmic regression function, with
the difference that with Equation 1 the total lifetime of the drill does not need to
be known. The principles of the solution for regression coefficients can be found
e.g. in the book by Milton & Arnold [1995].

For emphasising the most recent data, a factor to be used when calculating the
summary terms in regression analysis is introduced:

P = q(ﬂ_[) (2)

where n is the current total number of samples, i is the index in the calculation of
the summary terms, and q is a constant that defines how much weight the earlier
terms are given when all the terms in the calculation of the summary terms are
multiplied by p. The most important reason for the introduction of factor q is that
regression analysis functions tend to become very stable, i.e. they do not react to
current data very rapidly if they have been used for some time with similar data.
This lack of response is contradictory to what was presented in chapter 2
concerning the rapid development of wear towards the end of the tool life, hence
the introduction of factor q is needed.

Figure 2 shows the same data as in Figure 1, analysed using a higher order
polynomial regression function with the following parameter values: e =9, f =6,
g=3,d=1and q=0.99.
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Figure 2. Normalised rms value of vibration (perpendicular to drill axis) for a
10.2 mm twist drill analysed using a higher order polynomial regression function.
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5. Simulation model

The development of artificial drilling forces that are influenced by drill wear and
a simplified dynamic model that can be used for producing vibration simulation
data are described in detail in publication IV. The purpose of developing this
simple model was to get a better understanding of the dynamics that influence
the drilling process, especially what could happen when a drill is worn. The
simulated signals can be used in the testing and training of automatic diagnosis
tools. The drilling force model is not supposed to predict the absolute level of
drilling forces correctly, consequently it is not of use in the adjustment of
machining processes.

5.1 Drilling force model

The artificial drilling force model was developed for calculation of the
horizontal drilling force, i.e. the force perpendicular to the axis of the drill. This
is also known as the drift force. In principle it should be zero when there are two
cutting lips in a drill, since these cancel the influence of each other. However,
for a number of reasons the force is not zero in practise, as discussed in chapter 2
of this thesis. As explained in chapter 2, Yang et al. [2002] have treated the
dynamics and especially the horizontal vibration of a drill due to the imbalance
of forces in their model, which gave the idea for the development of the
following simplified model, which is described in more detail in publication IV.

The developed model tries to introduce excitation forces perpendicular to the
drill axis at frequencies which might be seen in reality, and also a term is
introduced which is a function of drill wear. The simplified horizontal force is
calculated according to the following formula:

E ()= Fpp O+ Fppy (O + F, (0 + F,y (0 + F () 3)

The first two terms in the formula, Fy,nm and Fppm, try to take into account the

possible geometrical differences between the two cutting lips and are defined as
follows:

Fpm (0) = £y, (8)- {cl —Cy- Ln(l B ILH ’ 005{2 T bt Py, Py Sin(ij:| 4)

c c3
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Frpmz ®= de ®- |:c1 —-c, .Ln[l —%H . COS{Z Tew-t+T- |:1 + @4 'Sin(wlﬂ} ©)
c C4

where ¢l ... ¢4 are constants, t. is the total lifetime of the drill, © is the angular
speed of rotation, ¢, is the angular geometrical error due to the tolerance in
manufacturing the drills, ¢4 is the difference in wear of the two cutting lips of
the drill and Fg;, is a drilling process force that scales the size of the forces and is
defined as follows:

F,(0)=cs-Hy- f-F, (1) (6)

where cs is a constant, Hg is the Brinell hardness of the work piece material and
f is the feed per revolution. The influence of the work piece hardness and the
feed follows the statistical model presented by Subramanian & Cook [1977].
However, two terms that take into account the influence of the geometry and
wear have been left out since the model described here does not try to predict the
cutting forces. It should be noted that the statistical model [Subramanian & Cook
1977] deals with torque and thrust force and the model in this study deals with
the horizontal drilling force, which can be estimated to be a function of the thrust
and torque [e.g. Yang et al. 2002].

Here the term Fg, takes into account the unstable nature of the drilling process,
i.e. in the beginning the forces increase when a hole is started, reaching a stable
level when the cutting lips of the drill have fully reached the work piece
material. Fy, is defined as follows:

t—i-t
Fdh(t): £

. t
if ity <t<i-t,+-%+ (7)
d bl

b,

F,@®=1 if i~td+;ismi-td+td ®)
1

where t is time, 1 is a counter for the hole number, t4is the time it takes to drill

one hole and b, is a coefficient that defines the relation between the increasing
part and the stable part of the thrust force.
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The term F,n is supposed to describe a number of harmonic components that
are multiples of the drilling speed and that can originate from such sources as the
bearings and the electric motors of the machine tool in question:

B () = i{FdP(f)'{%—%-Ln[l—%ﬂ-cos(n&w-art)} 9)

c

where ¢6 and c7 are constants, n defines the order of the harmonic component,
Fqp(t), ® and t. as defined above.

In order to make the simulation produce signals that also contain random noise,
the term F,,4 is introduced:

Frg(0) = rnd(cy) == (10)

where cg is a constant and md denotes the MathCad program function [Mathsoft
2002] that produces an equally distributed random number between 0 and cg.

One phenomenon that can quite clearly be seen and understood is the influence
of vibration on the drilling forces, i.e. since the drill is vibrating perpendicular to
its axis the drilling forces are also a function of this. The phenomenon can be
seen, for example, in the paper by Yang et al. [2002]. The influence of vibration
at the natural frequency of the drill is taken into account by the term F,.

F ()= cos(2~7z-f0 ~t)-de(t)~{c9 —Cp ~Ln(1—%ﬂ (11)

c

where ¢y and ¢, are constants, t. is the total tool lifetime, Fg, is the drilling force
as defined above, and f, is the first natural frequency of the drill and tool holder
calculated using the following formula [Thomson 1972]:

L (12)

27 \m

where m is the mass of the drill and tool holder, and k is the stiffness of the
structure. Assuming the drill is a straight round bar that is fixed at one end, the
formulae for calculating the natural bending and torsional frequencies can be

48



found e.g. in the book by Young [1989]. For bending, the formula for natural
frequency can be written in the following way:

E e s (13)

where K, is a coefficient that depends on the vibration mode, E is Young’s
modulus, I is the moment of inertia, p is the density of the material, S is the
cross-sectional area and 1 is the length of the drill. Making assumptions about the
effective diameter and length of a drill, the influence of the drill diameter on the
natural frequency can be calculated according to Equation 13. Figure 3 shows
the approximate frequency of the first and second bending modes together with
the first rotational natural frequency of a drill as a function of drill diameter. As
Figure 3 shows, there is a strong dependency of the drill diameter, i.e. the
smaller the drill diameter is the higher is the natural frequency. The calculation
formula for the natural frequency of the torsional vibration mode is also found in
the book by Young [1989]. It should be noted that the torsional natural
frequencies are quite a lot higher (more than 10 times) than those of the lowest
bending modes.
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Figure 3. Approximate frequency of the first (lowest line) and second
(intermediate line) natural bending vibration modes together with the first (highest
line) rotational natural frequency of a drill as a function of drill diameter.
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All of the terms described above, except for the random force, are described to
some degree as functions of a term, which could be called the wear influence
shown in the following formula:

h =Ln(1—tij (14)

c

where t is the time and t. is the total lifetime of the drill. All the terms except for
the random term in equation 3 are scaled by a term that takes into account the
Brinell hardness of the work piece and the feed of the drill. The influence of
drilling separate holes is also included in these terms, i.e. when a new hole is
started the forces start from zero again except for the random term.

It is quite apparent in the above development of the simplified simulation model
that the model is not a physical one that could correctly predict the horizontal
forces in a drilling process. There are many constants in the formulae which
were chosen by trial and error when judging the predictions. However, the
model can easily be used for producing test data for the development of a
diagnostic approach for the automatic diagnosis of drill wear. Based on literature
references the model includes terms that could be expected to influence the
drilling process but their size as such and relation to each other has no
justification through testing.

5.2 Dynamic model

The simplified dynamic model has been developed following the principles
presented by Yang et al. [2002]. In the model it is assumed that the tool and tool
holder can be modelled as a beam that is rigidly supported at one end and that
the excitation force influences at the other end. In their approach Yang et al.
[2002] performed the study with two degrees of freedom, i.e. with two
differential equations which gave the basis for the iterative calculation of the
excitation force. In the present study a model with only one degree of freedom is
used and the excitation force is assumed to take into account the influence of the
rotating route that the drill travels in the hole during the drilling process. The
following basic differential equation describes the dynamic model [Thomson
1972 and Yang et al. 2002]:

50



m-x"+c-x'"+k-x=F.(t) (15)

where m is the mass of the vibrating tool and tool holder, c is the damping, k is
the stiffness, and F,(t) is the dynamic horizontal drilling force as defined in the
previous chapter.

Figure 4 shows an example of the calculated vibration acceleration response,
together with the excitation force for holes two, three and four. Figure 5 shows
the corresponding acceleration response together with the excitation force for the
last three holes when the drill was defined as having broken right after the 60™
hole. In the examples the following values of input parameters have been used: c
=1.21 Ns/m, ¢; =20,¢,=400,¢c3=2,c4=1.7,¢c5=1,¢cs=0.04, c; =0.08, cg =
0.5, c9=0.02, ¢;0=0.04, b; =4, £= 0.2 mm/rev, f, = 84.539 Hz, k = 395 N/mm,
m = 1.4 kg, t.=240.001 s, ts =4 s, ¢pge = 0.00013 rad, g4 = 0.00027 rad and ® =
10 rad/s. The mass, damping and stiffness in this example are the same as in the
example given by Yang et al. [2002]. The calculated standard deviation of the
vibration acceleration during the simulated drilling of the last hole is about seven
times that during the drilling of the first holes.
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Figure 4. Excitation force (lower curve) and vibration response (upper curve)
for holes two, three and four.
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Figure 5. Excitation force (lower curve) and vibration response (upper curve)
for the last three holes.
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6. Diagnosis of tool wear

In order to enable the unmanned use of machine tools and flexible
manufacturing systems, the diagnosis of tool wear needs to be made automatic.
In practice this means that some kind of artificial intelligence is needed. Also
important is easy configuration for a range of machine tools. The principles of
an expert system based approach are described in detail in publication V. The
advantages of regression analysis are discussed in publication VI. In publication
VII, regression analysis techniques are combined with fuzzy logic. The
possibilities of a hierarchical neuro-fuzzy approach that combines information
from various sources are described in publication VIII.

6.1 Expert system

Assuming that the diagnosis of drill wear can be based on diagnostic rules such
as: “If the amplitude of some parameter increases beyond a predefined limit the
drill is worn,” it is possible to build rule based expert systems that can be used
for the diagnosis of drill wear. The main practical problem with this kind of an
approach is the time it takes to describe all the rules. For example, if there is
variation in the measuring signals and parameters used for diagnosing wear, a lot
of work is needed to redefine the expert system for the specific case it will be
used in, or if a generic system is developed it will be very complicated. In the
developed approach the basic idea is to use a fault tree database interface
program for defining the faults to be monitored, such as drill wear, and describe
the corresponding condition monitoring methods (symptoms) using a symptom
tree database interface program. After defining the fault and corresponding
symptoms that can be used to diagnose the fault, the user starts a rule synthesiser
program. The rule synthesiser translates the contents of the fault and the
symptom databases into an expert system rule code for the computer performing
the monitoring task. In this automatic code writing process, the rule synthesiser
takes one page at a time from the symptom tree and from it writes a module onto
the expert system code. The procedure is shown in Figure 6.
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Figure 6. Principles of the new approach to expert system rule generation.

6.1.1 Fault tree

In the fault tree user interface window and the corresponding table of the
database, the machine tool is defined by a chain of subcomponents. The
approach is general, i.e. it can handle various types of faults and also various
types of rotating machinery. In the case of drill wear, the subcomponent chain is
defined as follows: component = machine tool, subcomponent = spindle,
subsubcomponent = tool holder, subsubsubcomponent = drill. For this chain 18
different types of fault can be defined, e.g. such as worn out. Since the fault tree
is part of a database, all the typical features of a relational database program
such as find, copy etc. are available.

6.1.2 Symptom tree

In the following step of building an expert system for each of the faults, a
symptom tree database definition is performed. The definition of symptoms that
define a fault include the following: status of the machine tool (power on,
hydraulics on etc.), machining information (spindle rotating, machining etc.) and
condition monitoring information (signal, sensor, time criticality, analysis
method, averaging, alarm limit etc.). The definitions include all the necessary
information for defining the data collection through an AD card and also all the
necessary information for performing signal analysis using a collection of
mathematical subroutines. When FFT is used to calculate e.g. the power
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spectrum or other analysis functions, only the so-called cursor values, i.e. the 20
highest peaks of the analysed functions, are saved to keep the size of the
database reasonable. Again all the features of a typical relational database are
available. Since the above definitions are done for each tool type included in the
wear monitoring program, the editing functions are important to make the
amount of work manageable.

6.1.3 Rule synthesiser

The idea of the rule synthesiser is to automate the laborious writing of expert
rules for different types of machine tools using a variety of tools. In principle, all
the necessary information is saved in the fault and symptom tree database tables.
The rule synthesiser takes the information from the symptom tree database table
and automatically generates the computer program code containing the needed
expert system rules. The rule synthesiser works by processing each rule
specification in the symptom tree database, then breaking each rule into several
function calls. The rule synthesiser also builds the links between these function
calls in a logical order so that the data can go through the steps of data
acquisition, signal processing, feature extraction and testing against the specified
limits. In addition, the rule synthesiser automatically combines rules into groups
corresponding to each fault defined in the fault tree, e.g. all the rules needed to
detect a worn-out drill of a specific size e.g. 10.2 mm.

6.1.4 Fault manager

The purpose of the fault manager module is to combine the information based on
various sensors and analysis functions into the final conclusion. Typically in a
cutting process there are a number of changes taking place in the measured
signals. These can be due to changes in the cutting parameters or variation in the
work piece material etc. In order to handle this it is suggested that a number of
measuring signals and analysis functions are used. The rule synthesiser can build
the rules for each of these features used in the expert tool. Development of the
analysed features with time is saved using regression analysis techniques, thus
only the summary terms of the regression functions need to be saved. The fault
manager then follows these features and their reliability based on the coefficient
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of determination of the regression analysis functions, and calculates the sum of
the coefficients of determination of those analysis functions that have triggered
the predefined threshold limit. The final conclusion of whether a tool is worn is
then based on comparison of the sum of coefficients of determination.

6.2 Fuzzy classifier

Fuzzy classification is one possible way to automate the diagnosis of tool wear
as described in chapter 2 of this thesis. The development of the approach of
using simplified fuzzy classification following the principles shown by Rao &
Rao [1993] in the diagnosis of drill wear is explained in publication VII. The
idea is that in the beginning, when a tool is in good condition, some of the early
data is used for defining the fuzzy classification limits for the analysed
parameters of the monitored signals. In the developed approach the number of
classes has been limited to eight, class two meaning that the tool is in good
condition and class eight that it is completely worn. Class one has been reserved
for lower values of the monitored parameter, which possibly mean that the
cutting conditions are different from those when the limits were defined.

The classes are defined using the mean and standard deviation of the measured
signal. These statistical parameters are typically used when so-called health
indexes are calculated [Williams et al. 1994] or alarm limits are defined in
condition monitoring standards such as the PSK 5705 Standard [2004]. In the
developed approach the classes are defined using the following definitions: The
mean value of each class (class index i = 1..8) is defined according to the
following formula:

ClassMean, =(i—2)-j-oc+ u (16)
where j is a coefficient defining the size of the classes, k is a coefficient that
defines the shape of the classes, and p is the mean value and o the standard

deviation of the first measured parameters. The upper and lower limits of the
classes are defined as follows:

LowLow, = ClassMean, — j-(1+k)-o/2 (17)
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LowHigh, = ClassMean, — j-(1—k)-oc /2 (18)
HighLow, = ClassMean, + j-(1-k)-o /2 (19)
HighHigh, = ClassMean, + j-(1+k)-c/2 (20)

Figure 7 shows an example of fuzzy classification of the rms value of vibration.
In this example the basic signal is the same as that used in the analysis of data in
Figure 1 and Figure 2. In the example, the 20 first values analysed have been
used for defining the mean and standard deviation in the above equations. The
values used are j =1 and k = 0.5.

The results of fuzzy classification can be used as input for a neural network as
shown in the following chapter. The use of fuzzy logic in pre-processing the
input data for a neural network follows the principles presented by Rao & Rao
[1993].

)

T T
20 40 60 80 100 120 140 160 180

Sample number

Fuzzy class for rms-value of vibration

Figure 7. A result of fuzzy classification of the rms value of vibration.

6.3 Hierarchy

Publication VIII describes the principles of building a flexible hierarchical
neuro-fuzzy system for prognosis. The basic idea is simply to use a hierarchy,
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i.e. to build a bigger and a more complicated model using sub-models, as seen in
Figure 8. In the most simplified level a higher level conclusion is drawn based
on a number of monitoring parameters analysed. In this approach the maximum
number of parameters in a sub-model is limited to eight, i.e. the conclusion at the
lowest level is based on eight parameters. The choice of eight as the maximum is
based on numerical and logical reasons. It is relatively easy to handle models of
this size and eight is a multiple of two, which can be handled with three bits. At
sub-model level the idea is to define the condition of the monitored tool or, more
generally, the condition of a machinery part.

‘ High (factory) level diagnosis (1 ... 8 inputs)

(based on 1 ... 8 inputs) (based on 1 ... 8 inputs)

|
|
E E E E E Sub-model
(tool wear) diagnosis
NN

\ \
Sub-model Sub-model
(machine tool) diagnosis (machine tool) diagnosis

(based on 1 ... 8 inputs)

Figure 8. Structure of the hierarchical neuro-fuzzy system.

Table 2 shows the principal idea of the hierarchical approach. In case of drill
wear monitoring, typically two measuring signals such as vibration and acoustic
emission could be used. If four statistical parameters are calculated from these
two signals, this actually fills the lowest level sub-model and should be the basis
for defining that the drill is worn. At any level of the hierarchical approach the
decision making process is similar, since at the maximum there are always eight
inputs and only one output representing the conclusion. In the case of drill wear
monitoring, it is important also to be able to define when drilling is taking place
so that the signal analysis is only carried out when it is relevant to do so. In the
case of flexible manufacturing systems, the hierarchical model could be used in
such a way that various tool types could have various sub-models and also the
condition of the machine tool could be followed using some sub-models
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dedicated to various types of relevant wear models, such as spindle bearings and

tool changers etc. However, this is beyond the scope of this thesis.

Table 2. Principles of the hierarchical approach.

Model level Fault Parameters | Technique for | Technique for
to handle classification conclusion
Low level E.g. drill Parameters Fuzzy logic Simple logic:
(linked to wear analysed based on values | highest wins,
wear of (bearing from of mean and if two signals
component fault etc.) monitoring | standard indicate, etc.,
which can be signals deviation, Could be
monitored) allows manual neural net if
interpretation statistical data
for training
Machine Machine Conclusion | Values from Usually
level(s), needs from lower | lower level logical,
possible to maintenance, | level corresponds to
handle tool change rule based
various etc. approach
process states,
different tool
types etc.
High level Production | Conclusion | Values from Usually logical
(factory level) | can be from lower | lower level
followed level
(are there

any faults)
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7. Discussion
7.1 Measured signals and signal analysis

In the reported tests and in the available literature, which is covered in chapter 2
of this thesis, there is a lot of variation in how well different measuring signals
and analysis techniques have worked. This is due to the wide variety of factors
influencing the results. The size of drills and the work material together with the
drilling process parameters influence the measured signals. For example, it is
easy to understand that the smaller the drill, the smaller the forces and the higher
the frequencies are at which one could expect the greatest variation to take place.
This tendency can be well understood in the light of dynamic simulation. The
natural frequencies of a drill and the drill holder increase with a decrease in the
diameter of the drill. This then actually means that a combination of measuring
and signal analysis techniques that works well with a certain size of drills does
not work as well with others.

Feed force and torque have been used a lot in laboratory tests with drills and
some good results have been reported. However, it is difficult to measure forces
at very high frequencies and this is one reason why good results with small drills
have been reported with measuring techniques such as high frequency
(ultrasonic) vibration measurements capable of sensing these higher frequencies.
Also when smaller drills are used this influences the analysis techniques that
should be used. These should be simple and quick enough to react to the quick
changes and they should not be too demanding on the analysis equipment. As a
consequence, measuring motor currents works better with large drill diameters
because the drilling forces are higher; their portion of the total signal is then
higher and also the measuring chain might be able to react quickly enough, but
when the drill sizes are smaller the opposite is true.

The results reported in publications II and III apply to drills of moderate size, i.e.
about 5 mm and more in diameter for the reasons stated above. The measuring
equipment and signal analysis techniques that have been used with dynamic
signals such as force, vibration and sound cover the frequencies of interest, i.e.
rotational frequency and the lowest natural frequencies of the tested drills.
However, already the somewhat more complex analysis based on FFT was
occasionally rather slow with the equipment being used to analyse the test
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signals. It could be claimed that although the amplitudes at certain frequencies
gave a better indication of drill wear, there is a risk that since the drills in these
tests (as in many tests reported in the literature) wear very quickly at the end of
their life, this phenomenon could be missed between analysis rounds.

In the literature even more complicated approaches than FFT, such as
autoregressive modelling [Radhakrishnan & Wu 1981], are suggested for
diagnosing drill wear. It would seem that this kind of method is not very generic,
i.e. the models work for one specific drill size and work piece material, but they
would need to be trained for new combinations and this would be very time
consuming and laborious, even though it would apparently work in a fixed case.

Publication II lists the best measuring and analysis functions for drill wear
monitoring. Vibration, acoustic emission, sound and some of the force
measuring techniques were the best methods. Publication III shows good
examples of vibration, acoustic emission and sound measurements analysed in
the time domain. All of these measuring techniques can be considered
acceptable for on-line use in a real production environment, in the sense that the
necessary sensors can be mounted relatively easily to a typical machine tool and
they do not influence the production. In publication II, statistical time domain
parameters such as root mean square, mean deviation and maximum were listed
as the best in drilling tests. However, as explained above, especially the drill size
has a great influence on what would be the optimum measuring arrangement and
signal analysis technique, thus the results shown in this thesis should not be
over-generalized. To overcome the challenges brought about by drill size, it is
suggested that the smaller the drills are, the higher the frequencies should be that
are included in the measuring and analysis chain. Also, since the proportion of
signals from the drill decreases with decreasing drill size, it raises the question
of how close to the drill the sensors should be able to measure. In other words,
the closer to the drill the sensors can measure, the higher the proportion of the
drill signal is of all the signals that the sensor can measure. In order to overcome
this problem of low signal levels with smaller drills more sophisticated signals
analysis might be needed than is the case with medium and bigger size drills
which introduce higher signal levels from drilling.

The higher order statistical parameters such as kurtosis and skewness were
especially sensitive to variation in the tests, therefore they were not as good as
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the above-mentioned parameters. It is logical that the minimum value is not a
very good parameter for drill wear monitoring, because the lowest values in the
measuring signals resulted from some disturbance in the measuring procedure.

7.2 Simulation model

In theory, assuming the static drilling forces can be calculated as explained in
chapter 2, and knowing how the cutting forces introduce wear into the drill, and
also knowing how the drill dynamics influence the cutting forces and vice versa,
it would be possible to build a dynamic drill wear model. This kind of model
would also need to have probabilistic features in order to introduce differences
between the cutting lips, which is one of the important factors that influence the
vibration response of a worn drill. As stated earlier, this type of model does not
seem to exist today and the simulation studies presented in publication IV are
very far removed from this kind of approach.

The approach suggested in publication IV and covered briefly in chapter 5 of
this thesis simply tries to show and test the possible influence of various
artificial dynamic loads, which would increase with a similar trend to that seen
in laboratory tests, and then to hide this trend behind noise and see how the used
analysis functions work in this type of scenario. The model presented by Yang et
al. [2002] is much cleverer in the way it calculates real forces and torque, taking
into account the dynamic influence caused by the fact that drills do not drill
straight but vibrate and consequently move from one edge to the other.
However, the model only vibrates if it is given an initial push from equilibrium,
and the only dynamic influence taken into account is then vibration due to the
natural vibration modes of the drill and the unstable forces introduced by this
vibration. In publication IV a number of dynamic excitation forces are
introduced into the model; these are not derived from laboratory tests or theory,
but are the results of a trial and error approach in the sense that with a suitable
combination of parameters and logically chosen excitation forces, the final result
resembles that seen in the tests when vibration is considered. It is also important
to remember that the influence of wear has been introduced into the excitation
forces as a function of the term defined by Equation 14, and consequently this
term defines the influence of wear throughout the simulation model. The
simulation is also very limited in the sense that it could be expected that
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different types of wear, e.g. chisel, corner, flank and margin wear, introduce
different kinds of vibration spectra [El-Wardany et al. 1996], but this is not
covered at all in the model.

It should also be remembered that when the simulation model described in
chapter 5 and publication IV is limited to the first radial vibration mode, Rotberg
et al. [1990] point out on the basis of measurements that the most important
vibration mode in drill wear monitoring is the torsional vibration mode coupled
with the axial vibration mode. The natural frequencies of these vibration modes
are higher than for the radial modes. Also when studying the drilling process it is
somewhat unclear how much support the drilled hole actually gives in a radial
direction when there is no support in the torsional direction. However, in
principle the situation seems to be similar for all of the vibration modes. Wear
introduces higher dynamic loads and consequently the vibration increases at the
first natural modes (the second mode in a radial direction might be more easily
excited than the first, due to the supporting effect of the hole) in all possible
directions. This means that the behaviour could be expected to be similar in all
directions, and in fact in reality all of these vibration modes are combined.
Although the calculation procedure is similar, it becomes more demanding the
higher the natural frequencies are, and in this sense the modelling in the radial
direction is easiest to perform. Again the findings presented by Rotberg et al.
[1990] point out how far from reality the simulation described in chapter 5 really
is, although it is claimed that the principles and the trends could be similar in
reality as are the indications in measured parameters.

It should be noted that the simplified simulation shown in publication IV with
MathCad [Mathsoft 2002] takes about an order of magnitude longer than the
wear process of a typical twist drill because of the high frequency range. It could
be deduced that the introduction of a real drill geometry by performing the
calculation over a number of sections would multiply the calculation effort by
hundreds if not thousands.

With this kind of simplified model, with a one-degree-of-freedom model the
vibration at the natural frequency is very dominant. However, this tendency of
some frequencies to dominate the spectrum is similar to what was measured in
the reported tests, and in some cases this phenomenon is used in signal analysis
using band pass filtering [e.g. Kutzner & Schehl 1988]. It could also be claimed
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that the simulation model supports the idea that the measuring technique and
analysis function used should be able to handle the frequency range where the
torsional and radial natural frequencies of a drill installed in a drill holder lie.
This simulation model supports what was said in the previous chapter about the
influence of drill size. With small drill diameters the frequency range goes
beyond the capabilities of normal vibration measuring equipment, i.e. the
frequencies for a drill with a 1 mm diameter might be of the order of 25 kHz
[Kutzner & Schehl 1988]. The simulation model also supports what has been
claimed about the best statistical indicators of tool wear, but this proof should be
treated as uncertain because the input, i.e. forces introduced into the model,
certainly have an affect what the produced signal looks like.

7.3 Regression analysis

As pointed out in chapter 2 there are a number of problems related to automatic
diagnosis of tool wear in practice. The measured signals are noisy because of the
nature of the cutting process and there may be sharp peaks in the signal, which
may not indicate anything. The absolute values of the analysis parameters are
usually not meaningful because there is so much variation due to the variation in
tool size, the cutting parameters, work piece material etc. Instead it is important
to notice the trend in the parameters analysed. However, this could mean that a
lot of information would need to be saved. The use of the higher order
polynomial regression function with a limited number of terms as described in
chapter 4 and in more detail in publications VI and VII provides a solution to the
problems described above: The higher order polynomial regression function
smoothens sudden individual peaks and picks up the trend in the analysed
parameter. Since the regression function mimics the shape of wear development,
the function can also be used to give a prognosis of the upcoming tool failure.
When regression functions are used, the trend in a signal is saved. One of the
benefits of regression functions is that in order to save the information they
contain, only a very limited number (nine) of summary terms need to be saved.

There are also possible drawbacks related to regression functions. One is that
they may be slow to react to changes if a stable situation has continued for a
long time. In the proposed approach, the idea behind introducing a weighting
term is to solve this problem and keep regression functions quick enough to
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respond. Another factor that influences this is the order of the function, and for
this reason the use of relatively high order functions is suggested. A drawback of
higher order polynomial functions is that they may behave in very strange ways,
i.e. they tend to become unstable with noisy data. The use of a limited number of
terms helps in this respect because with this limitation the functions actually
behave like a third order function, with the difference that now the changes can
take place more rapidly.

It could be argued that higher order polynomial regression functions tend to
increase the relative error. However, this is not really linked to the higher order
polynomial functions but rather to the nature of the problem. Wear tends to
develop very quickly towards the end of the tool life so there is no way of
avoiding this, i.e. any prediction technique/function would suffer from the same
problem of the relative error increasing. The use of the weighting function, i.e.
that the current data is emphasized at the cost of older data, provides some help
in this respect and makes the prognosis more reliable than if all the data had
equal weight. Introduction of the weighting function can in some cases also
make it possible for the approach to adapt to small changes caused by a change
of cutting parameters. However, this is something that should be tested more
thoroughly. The polynomial regression function does filter out some of the
unwanted variation of the measured parameters, i.e. short peaks due to noise in
the signals, and in this way makes the analysis more robust which is important in
a machining environment. Naturally, if smoothing of the time-series data had
been the sole target of the data manipulation, a much more simplified function
would have been available, such as that described by Williams et al. [1994].
Their study gives examples of the use of moving average or exponential
smoothing in condition monitoring. The biggest difference between the approach
suggested in this thesis and those very simple methods is that the simple
methods do not give a prognosis of the forthcoming trend of the monitored
parameter. Due to this restriction, simple smoothing techniques do not react as
quickly to changes of the monitored parameter.

The results of publications VI and VII suggest that relatively high values of the
parameters of the regression function such as e =9, f = 6 and g =3 give good
results. Typically q can have a value of e.g. 0.99 if the process is stable with
frequent measurements. The lower the value is, the more the last measurements
are emphasized. In fact, using lower exponent values such as e = 3, f = 2 and
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g =1 together with a lower value of q = 0.9 would give a result quite close to that
obtained with the higher exponent values mentioned earlier. However, if there is
enough data the higher values result in a regression function that more closely
resembles the wear function described in publications VI and VII.

Certainly, instead of the higher order polynomial regression function quite a
number of other functions could also be tested. One of the simplest possible
solutions would be the exponential function. In simple format this kind of
function also includes three unknowns, i.e. the exponent, a parameter used to
multiply the exponent term, and a coefficient. Based on the definition an
exponent function could be rather sensitive and possibly not as well suited to
prognosticating as the polynomial regression function. However, it has not been
within the scope of this thesis to widely compare different possible regression
functions. It is accepted at this stage that the polynomial function is suitable for
the defined task and it is left to further studies to suggest and compare other
possible functions.

7.4 Expert system

There are a number of advantages in building an expert system as suggested in
chapter 6.1 of this thesis. It is not necessary to write a lot of expert system code
manually that could handle a huge number of tools. It is easy to make changes or
add information thanks to the practical user interface. Unfortunately there are
also disadvantages in this approach. The amount of work is still relatively high
and demanding, i.e. the user must know what to do and how to define limits for
the various signals, and this need for professional manpower makes the whole
approach unpractical for everyday use. In addition the size of the final program
will be extensive, but this is not possibly so meaningful today because of the
improvement of processing power.

7.5 Fuzzy classification
The simplified fuzzy classification has been introduced into the approach in

order to make diagnosis of tool wear automatic. The same approach can be
applied using both fuzzy limits and crisp limits. In both cases the conclusion can
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be shown in eight classes and it can be argued whether the simplified use of
fuzzy limits actually brings any benefits. One argument is that in reality the
limits are fuzzy, and thus the use of fuzzy limits is closer to reality. Another
argument is that the use of fuzzy limits could make the following step more
robust if neural nets were used. The reason for this is that the use of fuzzy limits
brings some variation to the inputs of the neural net.

The diagnosis examples shown in Publication VII are based on the use of two
measuring signals, i.e. vibration and acoustic emission, and the final conclusion
of drill wear is in most cases based on the simple rule that at least two
parameters must give an indication of drill wear. In publication VII different
parameter values and principles in making the final conclusion are tested. The
conclusion is that relying on more than one statistical parameter makes the
diagnosis more stable, and that conservative values (small values of j) should be
preferred when the fuzzy limits are defined. The use of small values of j actually
means that the upcoming tool failure is seen too early rather than too late. It
should be noted that there is a remarkable difference in using fuzzy classification
in such a simplified manner as was done in publication VII, compared to that
shown e.g. in the paper by Du et al. [1995]. The more sophisticated (normal)
way of using fuzzy limits could reveal a much improved connection between the
various parameters and improve the reliability of the conclusion. However, the
problem is that this relationship would have to be trained prior to the use of the
approach, which again is a very severe limitation if an automatic approach is the
final goal.

7.6 Automatic diagnosis

Many of the approaches that have been developed for tool wear diagnosis and
are reported in the literature rely on training and a definition phase in order to
work properly. This is also true for the rule based approach described in chapter
6.1 of this thesis. In normal production, the need for training and the definition
phase might be very problematic if a great number of tools are used in different
machining conditions with varying work piece materials. The following
development phase based on the use of regression analysis techniques and fuzzy
logic does not suffer from this as much. A number of parameters have to be
defined, but when this has been done for the production environment these could
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be kept the same for a number of tools, and the definition of limits for
diagnosing tool wear should take place automatically. There are also limitations
to the suggested approach. The first measurements are used for defining the
limits, and if the tool fails during that period the diagnosis system does not
provide any help. This restriction does not apply in cases where the tool type and
cutting parameters are kept constant, i.e. there is historical information of similar
cases and thus the same limits can be used that were defined earlier and have
proved to work.

Naturally, significant questions related to the suggested approach remain open.
Although the approach works with laboratory data from medium and large size
drills, does it really work in real life in normal production where the
environment is much more demanding? There are external disturbances
influencing the signals and there is variation in the work piece materials etc. Is
the approach really so easy to define that it attracts users? Will there be too
many mistakes in the diagnosis, so that users do not rely on the system? The
only way to get answers to the above is to test the system in real production.
This has not been done to date, but hopefully the opportunity will come to test
and gain experience of the capabilities of the suggested approach in real
production.
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8. Conclusion

There exists a great potential to improve the machine tool utilisation rate with an
advanced condition monitoring system using modern sensor and signal
processing techniques. A comprehensive cutting test procedure was carried out
with drills. Based on the tests, different measuring methods and analysis
techniques together with their benefits and disadvantages have been discussed.
Especially vibration measurements and methods that are closely related to it, i.e.
sound and acoustic emission, seem to be potential and practical methods that
could be recommended for everyday use in production. The importance of
natural vibration modes of the drill and tool holder is apparent in the light of
tests and the simplified simulation carried out. The use of higher order
polynomial regression analysis functions with a limited number of terms is
suggested for filtering the measured data and saving it in a compact form, which
is especially beneficial when the number of monitored tools is high. An
automatic diagnosis approach has been developed based on simplified fuzzy
logic. The approach can be linked to a wider context, e.g. monitoring a complete
machine tool through the proposed hierarchical structure. However, even though
the results with laboratory data are promising, there are no test results from a
real production environment. It should also be noted that the current results
apply to medium and large size drills, and unfortunately the diagnosis of wear
and breakage of small size drills is more demanding. The proposed approach is
unable to detect what kind of wear is taking place, i.e. it does not differentiate
chisel, corner, crater, flank or land wear from each other.

Based on the research reported in this thesis and the above conclusions, some
suggestions can be made for further work:

- First of all, wider testing of the developed approach both in the
laboratory and in the industry is suggested. In these tests the benefits of
the higher order regression analysis function could be tested more
thoroughly, including mathematical optimisation of the order of the
function and the emphasis of current data, i.e. the variation of parameter q.
These tests could also include testing of the whole automatic diagnosis
approach in the prediction of the remaining lifetime of the tool.
Furthermore, the tests might also help to widen the scope of the
approach so that it could also be used for monitoring small size drills.
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One further step in gaining a better understanding of drill wear monitoring
could be the development of a real physical wear model for drill wear.
This could include the statistical treatment of material variation both in
the drill and in the work piece, leading to a natural variation of the wear of
the cutting lips. The model could also aim to differentiate between various
wear types. This kind of model would probably have to be built using the
finite element method (FEM) for modelling. However, it should be noted
that even the very simplified model presented in this thesis could be used
more widely in the development of automatic tool wear monitoring,
diagnosis and prognosis.

Assuming that all the above-mentioned testing gave positive results, one
further task that would then have to be carried out is the development of
an automatic tool monitoring information database for practical and
easy handling of the numerous tools in a real production environment.

Further work could also be done in testing the same approach in diagnosing
and predicting the condition of machinery components suffering from a
similar type of exponentially increasing wear, such as rolling bearings.
Although the first version of the hardware capable of performing all the
tasks presented in this thesis has been built, a further version could be
developed that would include a better capability of signal amplification and
filtering and improved automatic adjustment of parameters.
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Abstract

This paper presents a summary of the monitoring methods, signal analysis and diagnostic techniques for tool wear and failure
monitoring in drilling that have been tested and reported in the literature. The paper covers only indirect monitoring methods such
as force, vibration and current measurements, i.e. direct monitoring methods based on dimensional measurement etc. are not included.
Signal analysis techniques cover all the methods that have been used with indirect measurements including e.g. statistical parameters
and Fast Fourier and Wavelet Transform. Only a limited number of automatic diagnostic tools have been developed for diagnosis
of the condition of the tool in drilling. All of these rather diverse approaches that have been available are covered in this study.
In the reported material there are both success stories and also those that have not been so successful. Only in a few of the papers
have attempts been made to compare the chosen approach with other methods. Many of the papers only present one approach and
unfortunately quite often the test material of the study is limited especially in what comes to the cutting process parameter variation,
i.e. variation of cutting speed, feed rate, drill diameter and material and also workpiece material. © 2002 Published by Elsevier
Science Ltd.

Keywords: Tool wear; Drilling; Monitoring methods; Signal analysis; Diagnostic tools

estimates of tool life which does not take into account
sudden failures and at the same time leads to an
unnecessarily high number of changes because the
full lifetime of tools is not taken into account and
consequently valuable production time is lost.

® As a consequence of the above, automated production
control is not really possible without a means for tool
wear monitoring.

1. Introduction

Tool wear and failure monitoring has raised quite a
lot of interest among researchers and has consequently
been studied in a number of research projects by a num-
ber of research organisations. The reason for the interest
is that tool condition monitoring is considered important
for the following reasons:

® Unmanned production is possible only if there is a The economical values involved in modern manufac-

method available for tool wear monitoring and tool
breakage detection.

® Tool wear influences the quality of the surface finish
and the dimensions of the parts that are manufactured.

® The economical tool life cannot be benefited from
without a means for tool wear monitoring because of
variations in tool life.

® Today tool changes are made based on conservative

* Fax: +358-9-460627.
E-mail address: erkki.jantunen@vtt.fi (E. Jantunen).

0890-6955/02/$ - see front matter © 2002 Published by Elsevier Science Ltd.
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turing are very high because of the high investments in
the manufacturing equipment and naturally it would be
in the interest of the industry to benefit from the equip-
ment in an optimal way including automated production
with high availability.

In principle, the tool wear monitoring methods can
be classified in two categories, i.e. direct and indirect
methods. With direct methods it is possible to determine
tool wear directly, which means that these methods
really measure tool wear as such. In spite of the many
attempts direct methods such as visual inspection or
computer vision etc. have not yet proven to be very
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attractive economically nor technically. In this paper
only indirect measuring methods such as torque or
vibration are covered. In fact the paper tries to cover all
the indirect methods in drilling that have been found in
the literature search that has been carried out.

There are differences in how well certain monitoring
methods work depending on the purpose they are used
for in tool condition monitoring. Some of the methods
are more effective for detection of a sudden failure and
some are more suited for tool wear monitoring. In this
respect there is even more distinction in the suitability
of the different signal analysis methods. It could even
be claimed that the most effective and reliable methods
for tool wear monitoring are so slow in practise that they
are not suitable for the detection of sudden failures.
Again the paper tries to cover both aspects when individ-
ual analysis techniques are discussed.

Drill wear is a progressive process which takes place
at the outer margin of the flutes of the drill due to the
intimate contact and elevated temperatures at the tool
workpiece contact [1]. However, under constant cutting
conditions drill failure is a stochastic process. The
reasons for varying drill life are the inhomogeneities in
the workpiece and drill materials, the irregularities in the
cutting fiuid motion and the unavoidable asymmetry
introduced during the grinding of the cutting edges.

Similarly, as in the case of measuring methods, quite
a number of signal analysis techniques have been tested
for tool wear monitoring. In machining there are many
disturbances and even the process as such can be run
using different process parameters and hence signal
analysis is really needed in order to be able to separate
the wanted information from the rest of the “noise”.

During the recent years quite a lot of effort has been
spent on developing methods for automatic diagnosis of
tool wear because automation of diagnosis is also needed
in order to facilitate automatic production systems.
Especially different types of neural networks have
gained a lot of interest. The attempts to make the diag-
nosis automatic are also covered in this paper.

2. Measuring methods

A summary of the monitoring methods that various
researchers have studied is shown in Table 1. In addition
to the methods that have been tested and described in
each reference, the possible coverage of the effect of
cutting speed and feed rate is shown in Table 1, i.e. the
table shows whether the researchers have tried to cover
the effect of cutting conditions to the measured signals
and calculated parameters. One reason for measuring
cutting speed and feed rate is the use of these as para-
meters in adaptive control systems, e.g. [2].

Torque, drift and feed force together with strain
measurement are all measures of cutting forces and are
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treated together in the subsequent study. In Table 1 the
reported strain measurements are tabulated in the appli-
cable force category because strain as such is linked to
the force: force transducers actually measure strain
which then is transposed to force. Spindle motor and
feed drive current are closely related to the forces, i.e.
they too measure the same cutting forces and phenom-
ena, although through a longer measuring chain where
also other factors influence the signals. Again spindle
motor and feed drive current are treated together in the
subsequent studies.

Vibration, sound, ultrasonic vibration and acoustic
emission are actually all vibration measurements,
although the frequency range in each of these differs
and, in addition to that, sound is airborne vibration when
all the others are mechanical vibrations of the structure.
The frequency range in vibration measurements is typi-
cally from about ! Hz to about 10 kHz (or 20 or 16 kHz
is used as a limit [3]); in sound measurements the range
is from 20 Hz to 20 kHz, which is the range a young
person can hear; in ultrasonic vibration the frequency
range is from 20 kHz to about 80 kHz [4]; and acoustic
emission starts where ultrasonic vibration ends up and
ranges to about 1 MHz. Again all the vibration related
techniques are treated together. In some cases the meas-
ured vibration frequencies do not fall into the limits
defined above and if this is the case then both categories
are marked with “x”. This is the case e.g. for vibration
and ultrasonic vibration which have both been marked
when the band-passed frequency is from 0.5 to 40 kHz,
as it is in [5].

2.1. Torque, drift force and feed force

It is very logical to monitor forces in a cutting process
in order to follow the development of cutting tool wear.
It is generally known that cutting forces increase as tool
wear increases [6]. This is due to the increase of friction
between tool and workpiece. In drilling it is possible to
monitor torque, drift forces (lateral forces affecting the
workpiece) and the feed (thrust, z-axis) force. All of
these have been monitored in Ref. {7]. The idea behind
monitoring torque and feed force is very clear, i.e. it is
expected that these forces change as the tool gradually
wears. The thrust force has been used as the only meas-
ured signal in {1,8-10]. The simultaneous monitoring of
thrust force and torque is rather common (see e.g.
[2,6,11-19]) and special electronics have been
developed for this purpose [11].

Drill wear as such differs to some extent from the
wear of other cutting tools. Due to production tolerances
a drill is slightly asymmetric, therefore it only wears at
one lip until the height of both lips is equal [7,20]. The
second lip, which is now sharper, starts cutting. This
alternating process continues until neither lip has no
more clearance at the margin. In the end the drill sticks
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Table 1
Summary of monitoring methods that have been studied for tool condition monitoring in drilling
Reference Torque Drift Feed Vibration ~ Sound Ultrasonic ~ Acoustic Spindle  Cutting Feed Feed
number force force vibration  emission motor speed drive rate

current current

[1] X X X
[2] X X X X
[3] X X X X X X X
[4] X X X
[5] X X X X X
[6] X X X X
[71 X X X X X X
[8.9] X
[10] X
[11] X X
[12] X X
[13,36-38] X X X X X X X X X X
[14] X X
[15] X X
[16] X X X
[17] X X X X
[18] X X X X X X
[19] X X X X
[20] X X X
[21] X X X X X
[22-24] X X X
[25] X X X X X
[26] X X X
[27] X
[28] X X
[29] X X X X
[30,31] X X
[32] X
[33] X X X
[34] X X X X

into the workpiece and breaks if the cutting process is
not stopped. Assuming this kind of wear progress gives
reason to monitor the drift forces. In a series of tests
[21] no consistent change of feed force or torque was
observed but a certain change in the drift forces was
recorded. This is again explained to be because first the
cutting edge on one side and then on the other side
wears.

The measurement of thrust force and torque have been
linked to the waviness of the hole surface and especially
the effect of tool wear to the waviness has been studied
in [17]. In the analysis more emphasis has been given
to thrust force than to the torque, i.e. thrust has been
considered a more reliable indicator of tool wear.

Torque, feed force and strain of the table in two direc-
tions have been measured in [22-24]. The strain
measurements actually in their function correspond to
the measurement of drift forces, i.e. they serve the same
purpose. Strain has also been measured in [25], but in
this case located in the spindle and corresponding to the
measurement of thrust force. Torque, drift and feed force
have been also measured in [3] and compared with the
measurement of ultrasonic vibration. Also in [26] torque,

3

drift and feed force have been measured simultaneously
when comparing two different types of coatings
(titanium nitride and zirconium nitride).

A new method for measuring torque is suggested in
[27]. The technique is based on the measurement of eddy
current. The sensor can be positioned some 0.2-0.5 mm
from the drill shank. This technique is affected by the
distance between the sensor and the drill shank and also
the material of the drill has an effect on the measured
torque. The method is suitable for both static and
dynamic torque measurements and consequently suited
for both wear and failure monitoring. The method has
been patented in Germany.

Based on the tests with copper alloy and a model
described in [19], formulas that define the thrust force
and torque as a function of feed per revolution, drill
diameter and flank wear have been developed and their
applicability has also been tested [6]. It should be noted
that the tests indicated that the increase in cutting speed
over the range studied had no significant effect on work
material strength, and hence it has no significant effect
on cutting forces [6]. In fact the correlation of the
regression formulas with the test data without the
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rotational speed of the spindle is very good (for feed
force R?=0.94 and for torque R?=0.97). It is concluded
that tool wear can be properly estimated knowing the
thrust force and other cutting parameters, especially for
larger tool wear.

Based on tests with different workpiece material hard-
ness, formulas for torque and thrust force have been
developed as a function of Brinell hardness of work
material, diameter of the drill, feed per revolution, aver-
age flank wear and radius at the cutting edge [19]. It is
concluded that the variation in drill life is significantly
influenced by the workpiece hardness. It is speculated
that it could be so that the presence of a few random
workpieces with a high hardness may influence the drill
life much more than a large number of workpieces with
a low hardness. Hence, in an industrial operation, drills
may fail very early or after a long time, depending on
the occurrence of a few workpieces with a high hardness.
This could explain the large variation in drill life
observed in industrial conditions. The workpiece hard-
ness also influences the amplitudes of thrust forces and
torque occurring in a drilling operation. If the variation
in thrust force, on account of changes in flank wear, is
to be significant, the variation in workpiece hardness has
to be held within 5% of the mean hardness value in order
to be able to base the diagnosis of flank wear on the
amplitude of thrust force or torque. This is very difficult
to achieve in industrial castings. Hence, torque or thrust
measurements for monitoring drill wear should be
attempted only after a very close tolerance has been
obtained in the workpiece hardness.

2.2. Vibration and sound

Vibration is widely used for condition monitoring of
rotating machinery. However, vibration has not been
used to the same extent in tool condition monitoring,
probably because as a method it is rather sensitive to
noise which is present in cutting processes. The advan-
tages of vibration measurement include ease of
implementation and the fact that no modifications to the
machine tool or the workpiece fixture are required [20].
However, the disadvantages reported in the literature
include dependency of the vibration signals on work-
piece material, cutting conditions and machine structure.

The work of [20] deals with the development of
vibration-based monitoring methods for detecting break-
age of small size drills (3 mm diameter) and wear of
larger size drills (6 mm diameter). Vibration is measured
both in the transverse and axial direction. The vibration
signals are considered to contain reliable features for
monitoring drill wear and breakage for the following
reasons: the vibrating drill length in the transverse and
axial modes does not change during drilling, thus main-
taining a rather constant mode frequency; the natural fre-
quencies of the transverse and axial modes of the work-
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piece—drill system are basically insensitive to drill cross-
sectional size, thus simplifying monitoring for a wide
range of drill sizes; vibrations in the directions Y and Z
are influenced by the torque and thrust force which are
the major excitation sources in drilling.

In the tests reported in [28] three accelerometers were
used each measuring in the direction of one of the three
axes. In [29] both vibration and the use of sound
measurements are discussed. The sound measurement
and analysis is discussed in more detail in [7].

Vibration measurement together with thrust force has
been used in the tests reported in [30,31]. The purpose
of the tests has been to obtain signal for the development
of a diagnosis tool capable of recognizing tool wear. In
the tests tool wear has been recorded with a vision sys-
tem.

In theory, sound measurements could be expected to
give the same information as can be detected using
vibration measurements because in the structural bound-
ary the mechanical vibration of the structure or
tool/workpiece contact is partly transferred to airborne
vibration, i.e. sound. However, quite a number of factors
influence how the mechanical vibration is transferred
and how it takes place at the different frequencies. Also
there is a great difference when the influence of disturb-
ances from outside sources are compared in vibration
and sound measurements. The sound measurements are
more vulnerable than vibration but at the same time it
should be remembered that the operators sometimes or
perhaps actually rather often rely on what they hear
when they define whether the tool is worn or not. In [13]
both vibration and sound measurements together with a
number of other methods have been tested and compared
in drilling, with the result that vibration was the most
effective method of all of the tested methods.

A higher frequency range from 0.5 to 40 kHz for
vibration measurements has been tested with very thin
drills. The reason for looking at this kind of frequency
range is that the rotational natural frequencies fall into
that range since for a drill of 1 mm diameter the natural
frequency could be about 25 kHz and for a drill of 3
mm diameter it could be about 7 kHz [5]. In the reported
examples the band-pass filtered vibration signal has
given more clear indication of both tool wear and failure
than the feed force signal [5].

2.3. Acoustic emission and ultrasonic vibration

The use of ultrasonic vibrations (UEs) in the fre-
quency range from 20 to 80 kHz for tool breakage detec-
tion in various metal cutting processes including drilling
has been tested [4]. The practicality of using ultrasonic
vibrations is explained when compared to other vibration
techniques. Acoustic emission (AE) is seen to suffer
from severe attenuation and multi-path distortion caused
by bolted joints commonly found in machine tool struc-
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tures and restricting the mounting location of the AE
transducer to somewhere very near the tool or work-
piece. The lower frequency signal used for UE analysis
does not suffer such severe attenuation and distortion,
and so the transducer can be placed fairly far from the
chip forming zone. In the low vibration frequency range,
i.e. below 20 kHz, structural modes are prominent. A
common strategy is to compare the amplitudes of several
frequency bands in this range. Particular variation in the
relative strengths of vibration in these bands indicate
process abnormalities such as tool breakage or tool wear.
This method shares the advantage of remote transducer
placement with the UE method but unfortunately is
much more sensitive to machine and tooling variations.
Since structural modes change in complex ways with
machine movement, loading, temperature, and tooling,
this approach generally must be tuned empirically each
time that the process is changed. In contrast, in the fre-
quency range used for UE analysis the structural modes
are so closely spaced that they form a so-called pseudo-
continuum. There are no individual resonances to shift
out of the analysis band with machine movement, load-
ing, and so on.

The applicability of ultrasonic vibration measurement
for the tool wear and failure detection has also been stud-
ied in [3]. In the reference the frequency range in ques-
tion, i.e. from 10 to 70 kHz, is defined as acoustic emis-
sion and the used sensor with non-linear frequency
response is considered as an AE-sensor. However, fol-
lowing Ref. [4], the frequency range in question is in this
context defined as the ultrasonic range. In [3] ultrasonic
vibration is compared with torque, feed and drift force
measurement and proven to be a more effective means
for tool wear and failure detection in drilling. The same
sensor has also been used for measurements in the fre-
quency range from 1 to 5 kHz which normally is con-
sidered mechanical vibration.

Acoustic emission is a phenomenon which occurs
when, for different reasons, a small surface displacement
of a material surface is produced [32]. This occurs due
to stress waves generated when there is a rapid release
of energy in a material, or on its surface.

Acoustic emission with centre frequencies of 200 and
800 kHz and also in a broader band from 100 to 1000
kHz has been tested in [13]. In the tests the 200 kHz
sensor was used for tool wear and the 800 kHz sensor
for tool breakage detection. The broad band sensor was
used for finding the best frequency range for further
investigation. Also in [32] acoustic emission was
recorded in a broad band from 100 to 1000 kHz in order
to monitor tool wear.

2.4. Spindle motor and feed drive current

Spindle motor current is in principle a measure of the
same feature as torque, i.e. they both enlighten how
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much power is used in the cutting process and they both
also advise about the dynamics of cutting. It is fair to
claim that torque is a more sensitive way to measure
than is the spindle motor current since the torque sensor
is located close to the cutting tool and e.g. the dynamics
of the electric motor do not influence it to the same
extent that they influence the current measurement.
However, measuring torque is more complicated than
measuring the current of the spindle motor and therefore
the measurement of the current has also been widely
tested and used [13,19,33,34].

Similarly, as spindle current corresponds to torque,
feed drive current corresponds to the measurement of the
thrust force. Again there is some similar difference in
the sensitivity of the methods as described above. The
feed drive current as an indicator of tool wear and failure
has been studied in [13,33,34].

Both feed drive and spindle current have also been
measured in [25]. In these tests it has been possible to
compare the measurement of feed current to the
measurement of thrust force based on the use of strain
gases. It is stated that typically, the strain gage is a better
sensor than the feed motor current sensor for wear diag-
nosis. Nevertheless, the current sensor was used to inves-
tigate whether the cost effective and easily
implementable current sensors alone would suffice.

The reported results in [18] for feed drive current and
spindle power together with feed force and torque are
quite similar. The measurement results show that all the
quantities measured remain at an almost constant level
during the entire tool life-time until the hole in which
the drill totally fails. It is impossible to successfully
apply these measurements as tool-monitoring methods,
stopping the machining after the increase in one or sev-
eral signals above a particular limit value before actual
tool failure. However, the measurements can be used for
tool-breakage detection where the machining operation
is interrupted after tool breakage. With this system, one
workpiece may be rejected because of the tool failure,
but further damage is avoided.

3. Signal analysis

The kind of signal analysis methods used is of some
importance. Sometimes it looks as if some researchers
think that if the measured signal is acceptable then it
would be possible with a clever diagnostic tool to solve
everything. Unfortunately this is not the case. The diag-
nosis always needs to be based on reliable and meaning-
ful information and this is where signal analysis can help
by providing effective features as a basis for diagnosis.
The role of signal analysis could be described as a tool
which tries to pick up the meaningful information out
of the mass of information. In many cases the dilemma
is that the more sophisticated methods need a lot of raw
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signals and it takes time to collect this raw material and
it also takes time to perform the calculations. Conse-
quently, many of the most sophisticated methods are not
suitable, e.g. for tool breakage monitoring. In addition,
the results with a sophisticated analysis function are
influenced by the -cutting process, i.e. workpiece
material, type of tool, feed rate and cutting speed which
makes the diagnosis more demanding. On the other
hand, very simplistic methods are fast to use and often
not that sensitive to changes in cutting conditions.
Unfortunately, at the same time they are not so sensitive
to tool wear either. A summary of signal analysis
methods that have been tested, used and reported in the
literature for drill wear and failure monitoring is given
in Table 2.

3.1. Time domain signal

The time domain signal is not very informative as
such, or at least it is very time consuming to look at the
raw signal in graphical format (e.g. with an oscilloscope
[14]). Evaluation of the changes by measuring only the
amplitude of the signal is very complicated and therefore
an RMS-voltmeter is used [21]. Usually a number of
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statistical parameters such as root mean square (RMS),
arithmetic mean, standard deviation and kurtosis are cal-
culated and these are then used for comparison and diag-
nosis.

With almost all of the measuring signals the most
common parameter to look at is the RMS value, which
also is actually the value that is normally seen if the
signal is drawn with a plotter or looked at with a voltage
meter. The RMS value contains all the energy in the
signal and therefore also all the noise and all the
elements that depend on the cutting process. Therefore,
it is not the most effective parameter but has retained its
place because it is so easy to produce and understand.
Besides, it does actually work when compared to other
statistical parameters. In a series of tests in [13] the RMS
value was compared to seven other statistical parameters,
i.e. arithmetic mean, mean and standard deviation, skew-
ness, kurtosis, maximum and minimum. The comparison
showed that the RMS value is usually not the best but
it is often one of the four best functioning parameters.

In the tests reported in [22-24], mean value together
with the variance of the sensor signals (torque, feed and
drift force) have been calculated for all of the holes. No
significant changes were found in the mean and the vari-

A summary of signal analysis methods that have been used for tool condition monitoring in drilling

Reference number Time domain Statistical Auto Fast Fourier =~ Cepstrum Higher-order Wavelet
signal parameters regressive transform analysis spectrum transform

moving spectrum
average

m x x

3] X X X

[4] X X

[5] X X

[6] X X

[7,27,29] X X X

[8] X

[9] X X

[10] X X X

[11] X X

[12] X

[13,36-38] X X X X

[14] X X

[15] X X

[16,30,31] X X

[17] X X X

[18] X X

[19] X X

[20] X X X X

[21] X X

[22-24,39] X X X

[25] X X

[26] X X X

[28] X X

[32] X x

[33] X X

[34] X
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ance of sensor signals. Therefore, it has been concluded
that the force sensor signals in the time domain do not
show any correlation with drill wear.

Based on the comparison of static and dynamic
components of the feed force and torque, the analysis of
the process-dynamics in drilling is considered essentially
a more delicate instrument to the investigation of the
wear condition than the interpretation of the increase in
static feed force and torque [10].

Due to the great variation in measured signals, i.e.
dynamic behaviour, average values for longer test period
are often used in statistical studies. For example, in [6]
average values of thrust force and torque are used when
developing tool wear models.

Average, peak, RMS values and the area of thrust and
torque have been used as input features in the diagnostic
system described in [16]. These features have been
chosen because of their previous successful application
for on-line monitoring and diagnosis. Furthermore, these
features were justified from the researchers’ experi-
mental observations.

Mean, peak and standard deviation have been used in
the analysis of thrust force and torque signals in [17].
Of the tested statistical parameters, standard deviation
proved to be the best indicator of tool wear and it was
the indicator that is more closely related to the change
in the standard deviation of the hole surface in com-
posite material.

Mean, standard deviation and maximum values of the
thrust force have been studied in [1]. From a series of
drilling experiments conducted in the laboratory, the
gradient of the thrust force has been identified to be a
suitable process parameter for prediction of drill failure.
A Finite Impulse Response filter using a Hamming win-
dow has been designed and used to determine the gradi-
ent of the thrust force data. Experimental evidence
emphasizes the correlation between thrust force and
outer corner wear; it is suggested that the sharp spikes
in the thrust force that are observed under failure con-
ditions are caused by a macroscopic stick—slip phenom-
enon. It has been shown that the proposed approach does
not require considerable tuning for operation under a
wide range of cutting conditions. This would make it
ideally suited for an industrial environment.

Mean value of cutting forces (torque, drift and thrust
force) has been studied in [26]. Also the maximum and
minimum deviations about the mean value have been
studied. In the tests two different types of drill coatings
were used. The mean values were much smaller with
one of the coatings (zirconium nitride) than the other
(titanium nitride). The recorded mean values and devi-
ation from these values have not given a logical indi-
cation of tool wear or alarm for tool breakage.

Smoothed average and standard deviation values of
thrust force have been calculated in [9] for the detection
of poor operation conditions (just before breakage,
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breakage, and drilling with broken tool) in micro-drill-
ing. The processing of the data is done in four segments
during each drilling cycle. These studies indicated that
the average force and standard deviation value must be
presented together when used as input to a neural net-
work. Also, the study indicated that the main cause for
failure was not related to tool wear. Most of the time,
the very thin shaft of the drill could not carry the loads
and it broke. In the test cases, total drill life varied
between 0.1 and 10 mm. There was no considerable dif-
ference between the force characteristics after the first
and the 25th hole, except when the tool was broken or
damaged.

A mix of statistical parameters is used in [25]. For
spindle motor current the use of RMS has been justified
in the following way. The low frequency energy of the
spindle motor current is directly proportional to the cut-
ting torque exerted by the tool on the workpiece. As the
tool wears, the torque requirement increases and corre-
spondingly the spindle motor current also increases. The
RMS value of the spindle motor current thus becomes
a valuable feature for wear prediction. In addition to the
RMS value, the change in RMS value with respect to
the first hole is also another good feature, since it indi-
cates the temporal trend of the cutting torque. Also in
the case of feed, motor current RMS value with a corre-
sponding parameter indicating the change are used. For
thrust force (strain gage) measurement the mean value
again together with the corresponding indicator for the
trend are used.

In [3] the emphasis is on the way the wear influences
ultrasonic vibration in different frequency ranges, i.e.
10-20, 20-30, 3040, 40-50, 50-60 and 60-70 kHz. The
RMS value of the band passed signal has been used.
There is variation in how well tool wear is observed in
the different frequency ranges, although all the time the
percentage increase in RMS value of some of the fre-
quency ranges of ultrasonic vibration are always higher
than is the case with the measured forces. An acoustic
emission sensor in the frequency range from 1 to 5 kHz
(normally considered vibration) has proven to be
especially suitable for tool wear monitoring. Apparently
there have been structural vibration modes that have
their frequency in this frequency range and thus increase
the signal level. Tool failure has also been clearly
detected with the same sensor, though the indication is
clearer at higher frequencies, e.g. from 20 to 40 kHz.

Maximum stable values are used for feed force,
torque, spindle and feed drive current [18]. In the case
of the spindle power and current of the Z-axis motor, the
values represent the difference in the measured quantity
between cutting and idle running at the corresponding
rotational frequencies.

Kurtosis value is defined as the fourth central moment
of a Gaussian distribution and is a measure of peak-
edness of the signal. Therefore, in [20], a lot of emphasis
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is given for this value to be used as a possible indicator
for tool failure. In [20] a new parameter called ratio of
the absolute mean value (RAMYV) is also introduced,
since kurtosis was not reliable alone due to its tendency
to decrease when the number of peaks in the signal
becomes high. RAMV represents the ratio of absolute
mean value at the current revolution of the spindle to
the absolute mean value in the beginning of the drilling
process, i.e. RAMV is a normalized mean value calcu-
lated with a time constant of one revolution. The RAMV
value has been used with good success for triggering of
the calculation of kurtosis value together with cepstrum
analysis. In the tests [20] kurtosis value was found to be
insensitive to cutting conditions or changes in the work-
piece hardness.

One way to further process the time domain signal is
to use envelope detection. As such envelope detection
can be used as a practical alternative for analysing signal
containing information at high frequencies and thus
making the analysis process easier [7,29]. The possible
use of moments of the probability distribution of inten-
sities and time of occurrences is also discussed and a
trend index (TI) based on these is described in [7,29].
The published TI curve [7] seems to indicate tool wear
but does not as such give a clear indication of when the
tool should be changed.

When the envelope of a signal is calculated the pro-
cess at first also involves band-pass filtering of the sig-
nal. Low-pass, high-pass and band-pass filtering can all
be regarded as time domain parameters and are often
used, as for example band-pass filtering of the vibration
signal from 0.5 to 40 kHz in [5] in the case of thin drills
in order to concentrate the analysis in the frequency
range where the rotational natural frequency of the drill
is expected to lie. The same approach has been used for
both tool wear and failure detection.

Envelope detection together with the use of the flex-
ible tool breakage algorithm is described in [4]. A funda-
mental quantity used in the signal analysis is the running
mean. To establish an average signal that is not influ-
enced by large pulses, a clipped running mean is com-
puted each time through an algorithm loop. The running
mean is a non-linearly weighted arithmetic average of
the most recent samples. The clipping performs the non-
linear weighting by limiting the contribution of samples
larger than a certain ratio times the current mean. A sus-
picion test compares the most recent sample to an upper
and a lower level, each of which is a multiple of the
current running mean. Together with some other similar
tests based on statistical parameters calculated from the
time domain signal, the test forms an algorithm that is
capable of detecting tool breakage.

It should be noted that tool wear monitoring in drilling
is a very periodic process, i.e. drilling one hole does not
usually last very long. In addition it is possible to recog-
nize certain stages in drilling when monitoring is practi-
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cal [32]. Usually in the process the drill first touches the
work material and thereafter progressively drills it, with
a given penetration rate. After the final depth is reached,
the descending mechanism of the drilling machine is
stopped and the drill keeps rotating but without drilling
any further. A moment later the drill is retrieved from the
hole which is then completed. Naturally, the measuring
signals vary as a function of the drilling stage. In [32]
the transient drilling stage (when the drill starts to pen-
etrate into the workpiece) and the stage when the drill
is stopping were found to be the best moments to moni-
tor tool wear using the envelope value of acoustic emis-
sion.

3.2. Autoregressive moving average

Stationary stochastic process data in the form of a sin-
gle, time dependent series can be mathematically mod-
elled as an Autoregressive-Moving Average or ARMA
model [17]. The modelling strategy involves fitting mod-
els in increasing order n starting from 1. The adequacy
of the model may be tested using the conventional F-test.
In condition monitoring the autoregressive parameters or
their relations have often been used for diagnosis of
faults or failures. In [17] the autoregressive model is
based on the use of thrust force and torque signal and
it has been used to define frequencies of modes that have
then been used as the frequencies for which spectral den-
sity has been calculated. This technique has been called
the Dynamic Data System (DDS) technique. With that
it has been possible to get information of the contri-
bution of each of the frequencies to the overall variance
of the data. It is concluded that the dispersion analysis
using the DDS technique shows a very strong correlation
between the changes in the standard deviation of the
lamination frequency (of composite material) component
in the thrust and surface signals. This gives a direct indi-
cation of the change in the surface waviness and can be
used to monitor the drill condition on-line for appropri-
ate replacement of the drill.

3.3. Fast Fourier transform

The widely used Fast Fourier transform (FFT) pro-
vides a means to find out the frequency content of a
measured signal. Assuming the wear influences the fre-
quency contents of the measured signal, FFT then gives
an inside view of this process. Many studies about the
effectiveness of FFT have been reported [7]. Although
the calculation of the power spectrum is a more sophisti-
cated way of signal analysis than the calculation of many
of the statistical parameters in the time domain and thus
is a more powerful tool to get rid of noise and disturb-
ances [13], it does suffer from limitations such as [20]:
(a) materials such as cast iron are not homogeneous and
will affect the amplitude of the vibration measured,
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which may cause false alarms; (b) tool damage in drill-
ing produces a high level of transient vibrations (spikes)
which are largely attenuated by the averaging procedure
typically used in spectrum calculations and this makes
it difficult to extract a discriminating feature to dis-
tinguish the change in the tool conditions; (c¢) non-uni-
form hardness of the workpiece material, built up edges,
and micro-cracks can also cause false alarms by increas-
ing the vibration amplitude. In order to decrease the
adverse risks explained earlier, the trapezoid method has
been used to calculate the area of the power spectrum
between two frequencies in order to monitor tool wear
with vibration [20].

The power spectral density function of torque, drift
and feed force have been calculated in [26] for two dif-
ferent types of drill coatings tested (zirconium nitride
and titanium nitride). It is concluded that the power con-
tent of the axial force and torque is significant over the
entire frequency range, whereas the power content of the
drift force is band limited. The power spectrum of the
drift force changes from a band limited process to a wide
band process when the drill is worn. The power content
of the high frequencies of the cutting forces (especially
the drift force component) increase as the tool
approaches failure. This can be used as an index to detect
the failure of the cutting tool.

Sometimes the number of points in the time domain
is kept very small compared to typical values like 2048.
If a small number of points is used, calculation of the
power spectrum is much faster and also the frequency
resolution is lower which is an advantage in the sense
that even though the frequency of amplitudes in the
spectrum might wander a little, they stay at the same
frequency in the power spectrum. Another advantage is
that the number of possible features that are used as
input for a diagnosis system is in this way limited. In
[12] only 256 points in the time domain have been used,
which corresponds to a spectrum of 128 points in this
case.

The somewhat limited 256 points in the time domain
have also been used in [22-24]. The area under the
power spectral density function (obtained through the
Welsh method) has been studied with success. Averag-
ing of the spectrums over a hole proved to give noisy
results but this could be improved by averaging the
results over a number of holes. All sensor signals, i.e.
feed and drift force (strain) and torque gave similar
results. Signal-to-noise analysis indicated that the power
at frequencies between 50 and 300 Hz have the highest
value of signal-to-noise ratio and, hence, are the most
reliable frequencies. Comparison of the PSD plots
showed that power at each frequency increases with
increase in drill wear. Normalized PSD plots of all of
the four sensor signals at different states of drill wear
were coincident. This indicates that power at all fre-
quencies increases proportionally with an increase in
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drill wear. Therefore, the change of area under the PSD
plots was considered instead of power at one frequency,
for integration decreases the error.

A number of FFT based functions such as autocorre-
lation, power spectrum (20 highest amplitudes, harmon-
ics, as well as 1/3 and 1/1 octave bands), cepstrum and
liftered spectrum and also two-channel functions such as
cross-correlation, cross-spectrum, frequency response as
well as some multi-signal frequency response function
with more than two channels have been tested for tool
wear monitoring in metal cutting including drilling [13].
The normal power spectrum worked well when the ana-
lysed data were fitted to a third order regression curve.
Some of the two-channel functions (cross-spectrum,
coherence) also proved to work well in drilling.

Cepstrum analysis is used to identify a series of har-
monics or side bands in the power spectrum and to esti-
mate their relative strength [20]. Cepstrum is calculated
from the power spectrum either with inverse FFT
(complex cepstrum) or taking the power spectrum of the
logarithmic power spectrum (power cepstrum) [35]. In
the tests [20] cepstrum analysis was performed only
when a statistical RAMV indicator (explained earlier)
reached a certain threshold value but the cepstrum
showed larger amplitude at the frequency [35] corre-
sponding to the time of one spindle revolution. In the
tests reported in [13], cepstrum analysis also worked
well in drilling and in milling. This is a logical result
because both of these tool types have a number of cut-
ting edges and when a fault starts to increase the differ-
ence between the way the cutting edges work becomes
larger and consequently this is seen at the harmonics of
the rotational speed of the tool which is what cepstrum
then can show.

When compared to the traditional power spectrum,
benefits from the use of the higher-order spectrum
(HOS) features have been reported [28] in tool wear
monitoring. Use of HOS features is reported to enhance
monitoring performance primarily because they provide
information on the strength of the non-linear and per-
iodic component sideband structure in the received sig-
nal.

3.4. Wavelet transform

Wavelet transforms have become well known as use-
ful tools for various signal processing applications [34].
Wavelet transform is described as a good solution in the
time-frequency domain so that it can extract more infor-
mation in the time domain at different frequency bands.
Both continuous and discrete wavelet transforms are
used for tool breakage detection using spindle and feed
current signals. The test signals have been shown both
in the time domain and after wavelet transform in [34],
but no comparison with other methods is given. Hence
it is difficult to compare whether what is seen clearly
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after the wavelet transform could also be seen clearly
with some other analysis method, i.e. the benefits of the
use of wavelet transform are not apparent.

In [8] the use of wavelet transformations together with
neural networks is proposed in order to detect severe
damage to micro-drills just before the breakage occurs.
The use of wavelets is justified on the basis of the many
weaknesses FFT has, the first being fixed resolution. The
resolution of an entire frequency spectrum depends on
sampling frequency and the number of data points. The
second weakness is the representation of the entire spec-
trum, with the addition of harmonic signals, by assuming
that the data window is repeated indefinitely. This
assumption causes leakage problems and the transitions
cannot be identified in the data window. A third weak-
ness is the considerable noise in the transformations
because of the very large degrees of freedom of the sys-
tem. FFT analysis must be repeated several times and
the results must be averaged to obtain smooth output. In
[8], the Daubechies type wavelet system based on an
orthonormal base was used. By using wavelets, the thrust
force signal of the micro-drill has been simplified. The
analysis indicated that the wavelet translation coef-
ficients can represent the characteristics of micro-drilling
signals with reasonable accuracy without high frequency
components. The transition coefficients of all the normal
micro-drills demonstrated similar patterns. The charac-
teristics of the severely damaged micro-drills were found
to be totally different. Based on these results, it is sug-
gested that wavelets might be the perfect tool for many
applications requiring automated monitoring of manu-
facturing operations. However, no comparison to FFT or
statistical parameters has been made.

4. Diagnostic tools

The most simplistic methods of diagnosis in all moni-
toring is to use predefined limits, i.e. if a certain para-
meter in the analysis reaches a certain upper or lower
limit this is an indication of a failure of the tool or worn
tool. These types of fixed limits are often used by a
human operator and they are also used in monitoring
systems and form the basis of rule based expert systems.
Quite similar systems based on fuzzy logic are based on
these types of limits which then are fuzzy, i.e. they are
not exactly defined and the limits in this case usually
overlap. For example, the systems described in [33,36—
38] use crisp limits and the systems described in [15]
use fuzzy limits.

When performing diagnosis it is often more effective
to be able to follow the trend in the monitored signal
and parameter than just to look at the absolute value.
The reason for this is that in many cases there are outside
factors affecting the absolute value. In tool wear moni-
toring the limits for a certain parameter, e.g. vibration
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amplitude, are a function of the tool type, workpiece
material, cutting parameters etc. Therefore, it is more
effective to follow some trend in the signal, e.g. if the
amplitude has increased to double or perhaps is five
times what it was when the tool was sharp it can be
supposed that the tool is worn. In [20] the more sophisti-
cated analysis is only carried out when a situation occurs
that a certain parameter reaches a predefined value com-
pared to the value in the beginning. One possible disad-
vantage of trend analysis is the amount of data that might
need to be saved in case the whole history of the signals
of the tools were to be saved. The amount of data could
be enormous in the case of a machine tool with a tool
magazine of tens of tools. One possible solution in order
to reduce the amount of data to be saved is given in
[36,37]. The suggested solution relies on the use of
regression analysis and the idea is to save only the sum-
mary terms of the regression function.

The use of neural nets can be seen as an attempt to
automate the process of writing the diagnostic rules, i.e.
if a sufficient amount of good data exists it is possible
to train a net that is capable of diagnosing the condition
of the tool. In principle, neural nets can be trained to
model the non-linear dependencies of the measured and
analysed parameters together with process parameters.
If process parameters are left out of the model, either
parameters that are insensitive to cutting conditions must
be used or they need to depend in such a way both on
process parameters and tool wear, and failure that the
model works in a number of cutting conditions. Alterna-
tively, a number of models corresponding to the possible
cutting conditions need to be developed. This is in prin-
ciple the same problem or limitation as described for
the rule based approach. The previous statement can be
rephrased in another way, i.e. if simple models based
on less sophisticated parameters are used the number of
models and corresponding work increases. Unfortu-
nately, the opposite is also true, i.e. if sophisticated mod-
els which rely on sophisticated parameters are used, the
time it takes to train the models increases as does the
calculation time of the parameters. A summary of
approaches adopted for diagnosis of tool condition in
drilling is given in Table 3.

One of the earliest expert system concepts to monitor
both the cutting process and the condition of the cutting
tool is described in [33]. Among other things, the
VILMOS-1 system is expected to monitor tool wear and
tool breakage and also to protect the tools against over-
load.

In [36-38] a rule based expert system is described.
The system consists of a number of modules: data acqui-
sition and analysis, fault tree, symptom tree, rule synthe-
sizer and fault manager. The system can be configured
by the user through a graphical interface. The data are
acquired through an AD-card using a number of measur-
ing sensors such as vibration and acoustic emission etc.
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Table 3
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A summary of approaches adopted for diagnosis of tool condition in drilling

Reference number Rule Fuzzy  Pattern Machining Multi-layer Kohonen self- Restricted Adaptive
based  logic recognition influence perception organising map Coulomb energy resonance theory

diagram model  neural network networks networks

[8] X

9] X

[12] X

[15] X

[16] X

[22,23,39] X X

[25] X

[30] X

[31) X

[33] X

[36-38] X

Signal analysis is based on the use of statistical para-
meters and FFT based functions. All the data are saved
in a database. The actual rules of the system are written
automatically through the use of fault and symptom tree
modules. The idea has been to make the system very
flexible so it could be used for monitoring all kinds of
machining processes with all kinds of tools. The actual
diagnosis of the so-called fault manager relies on a num-
ber of parameters from a number of sensors.

A generalized Machining Influence Diagram (MID) is
formulated for modelling different modes of failure in
drilling [25]. A faster algorithm for this model is
developed to solve the diagnostic problem in real-time
applications. The MID model is utilized for diagnosing
two failure modes: the drill wear, and the drill failure
prediction. Each drilling operation is categorized deter-
ministically using the machining parameters. The esti-
mation of probability that the tool is worn is done by
fusing information about wear from the two sensors:
spindle and feed motor current. No sensor fusion is used
for tool failure prediction since only the strain gage sig-
nal is used. The state of the drill is diagnosed. It consists
of three states, “ok”, “worn” and “about-to-fail”. Three
options are available for control: “continue”, “reduce
feed” and “replace tool”. The cost of machining is a
function of the control options and the state of the drill.
The response time of the on-line system is well within
the desired response time of actual production lines. The
instance of diagnosis is reasonably close to the actual
instance of wear. The accuracy of prediction has also
been significantly promising. In cases where the drill
wear is not diagnosed, the system is reported to at least
predict drill failure, and vice versa. Consequently, by
diagnosing at least one of the two failure modes, the
system is able to prevent any abrupt failure of the drill.

The system described in [15] has two input features
which are the feed force and torque and the wear of the
drill is clustered in four wear states, i.e. initial, small,
normal and severe. The approach is fuzzy, i.e. fuzzy lim-
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its are defined using the fuzzy C-means algorithm. With
the presented two test cases used for the development
of the system the approach works well. However, the
approach does not take into account the effect of the
cutting process into the measured parameters, i.e. the
user would need to define new fuzzy limits for different
types of workpiece materials and drills and also for dif-
ferent cutting parameters.

A two category linear classifier has been used for the
detection of drill wear [31]. Sensor fusion is used for
on-line drill wear detection. The indirect indexes used
are the percentage increase of the peak-to-peak ampli-
tude of vertical acceleration and the percentage increase
of the drilling thrust. A two-category linear classifier is
employed to distinguish the worn-out drills from those
that are still usable. Flank wear area is used to categorize
the drill conditions. The wear states are classified into
two categories, usable and worn-out. Based on the
present data a success rate greater than 90% has been
obtained for on-line detection of the drill wear in one
cutting process situation.

A rather simple neural network has been developed
in [30] with two input features and one output. The num-
ber of neurons in the hidden layer has been varied from
four to nine. Wear has been classified into five categor-
ies, i.e. initial, slight, moderate, severe and worn-out
wear (with the same data as in [31]). It is concluded that
neither the percentage increase of peak-to-peak ampli-
tude of the vertical acceleration or the percentage
increase of the thrust can be used for on-line classi-
fication of drill wear. However, integrating both signals
yields better results. Based on the drilling tests, a success
rate of over 85% can be reached for on-line recognition
of drill wear using artificial neural networks. No vari-
ation of the cutting process parameters has been
included, i.e. the wider applicability of the model has
not been demonstrated.

The effectiveness of artificial neural networks with
different numbers of hidden layer neurons together with
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the use of adaptive activation-function slopes have been
tested in the diagnosis of tool wear in [16]. In all of the
models nine input features (feed force and torque based
on statistical parameters with one cutting process
indicator) and one output have been used. The number
of neurons in the hidden layer has been varied between
14 and 22. Tt is concluded that modified artificial neural
networks with adaptive activation-function slopes con-
verge much faster than the conventional feed forward
neural networks. Artificial neural networks can dis-
tinguish between a worn and a usable drill on-line with
100% reliability and also accurately estimate the average
flank wear even under different drilling conditions. The
increase in number of neurons does not necessarily
improve the accuracy of on-line drill wear measurement.
A neural network with 9x14x1 architecture yielded the
best results for on-line drill wear measurement. Although
the reported results seem good even when changing the
cutting conditions, the limitation in the presented
material is that the variation in cutting conditions has
not been documented and it is possible that there has not
been any variation of feed rate in the tests.

The use of neural networks in the sensor integration
has been studied in [22,23,39] based on torque, feed and
drift force signals. In the thesis [22] it is shown that there
is no point in trying to integrate the information from
these signals because they all have equally good corre-
lation with tool wear and one sensor is adequate for
monitoring and controlling tool wear. It is also stated
that integration of the sensor signals can introduce
redundancy in the sensor integration technique and, in
the presence of noise, result in the deterioration of the
estimation of drill wear. Periodograms of sensor signals
at different states of drill wear are mixed and therefore
it is difficult to apply the clustering technique.

A self-organizing neural network has been used in the
development of a diagnosis system based on the use of
feed force and torque together with FFT based feature
extraction [12]. The approach is regarded as a promising
empirical modeller. The conclusion is made that a cer-
tain number of feature vector components or dimen-
sionality of a dynamic system does exist by which the
drilling process can be properly characterized. Also the
classification error is studied with different numbers of
features. The effect of the cutting parameters is not
covered in this context. ’

The Restricted Coulomb Energy (RCE) network is a
parallel neural network modelled after the human learn-
ing and classification process [9]. The architecture of the
RCE network is a feed-forward arrangement. This allows
the network to classify pattern signals in real time with-
out any special hardware. The network is composed of
three layers of cells: the input layer, the internal (hidden)
layer, and the output layer. The feature vectors of the
pattern to be learned are presented to the input layer.
The nodes of the input layer are connected to every node
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of the internal layer. The nodes in the internal layer are
connected selectively to the output nodes during the
training process. The output nodes correspond to differ-
ent pattern classes. The internal connections occur in
such a way that the correct output cell will be fired when
an appropriate pattern class is given to the system. RCE
networks use two learning mechanisms. When new pat-
terns are presented to the network, the response of the
neural network is tested without any modification of the
weight matrix. If the classification of the network
matches the required output, the weight matrix is not
changed. Otherwise, the second method is used and the
influence of the exiting nodes are modified and/or a new
node will be created. In the case of breakage detection
in micro-drilling, eight input features (four average, four
standard deviation) based on thrust force have been used.
The RCE network correctly recognised normal and tool
failure cases with a higher than 90% accuracy.

Adaptive resonance networks have been tested for the
detection of severe micro-drill damage just before a
complete tip breakage occurs [8]. According to adaptive
resonance theory (ART), adaptive resonance occurs
when the input to a network and the feedback expect-
ancies match. ART2-type neural networks have been
developed to realize a self-organized stable pattern rec-
ognition capability in real time. The ART2-type neural
networks compare a given input with previously encoun-
tered patterns. If the input is similar to any of the pat-
terns, it will be placed in the same category with similar
patterns. On the other hand, if the input is not similar to
any of the previously presented patterns a new category
will be assigned to the given input. The sensitivity of
the neural network is adjusted with the vigilance value.
Two approaches have been tested: in the first, 22 wavelet
coefficients, and in the second, six parameters were cal-
culated from the original 24 coefficients to represent the
information of the wavelet coefficients to the neural net.
The direct encoding method with 22 coefficients was
found to be slower but more reliable. The ART2-type
neural networks required two to three times more com-
putational time to classify the 22 wavelet coefficients
than the six parameters of the secondary encoding
method. However, there was only one classification error
in 61 cases. The ART2 worked much faster with the
parameters of the secondary encoding; but there were at
least three estimation errors in any studied case.

5. Concluding remarks

A summary of the monitoring methods, signal analysis
and diagnostic techniques for tool wear and failure moni-
toring in drilling has been given. In this context only
indirect monitoring methods such as force, vibration and
current measurements have been covered, i.e. direct
monitoring methods based on dimensional measurement
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etc. are not included. In signal analysis statistical para-
meters calculated from the time domain signal are
widely used. Fast Fourier and Wavelet Transform are
more sophisticated means of signal analysis that have
also been used for tool wear and breakage detection by
a number of research groups. Only a limited number of
automatic diagnostic tools have been developed for diag-
nosis of the condition of the tool in drilling. All of these
rather diverse approaches that have been available in the
literature are covered in this study. In the reported
material there are both success stories and attempts that
have not been so successful. Only in a few of the papers
have attempts been made to compare the chosen
approach with other methods, i.e. many of the papers
only present one approach and unfortunately quite often
the test material the study is based on is limited,
especially when it comes to the cutting process para-
meter variation, i.e. variation of cutting speed, feed rate,
drill diameter and material and also workpiece material.
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ABSTRACT

A machine tool utilization rate can be improved by an advanced condition-monitoring system using
modern sensor- and signal-processing techniques. This paper gives a summary of a wide cutting test
and analysis program for indirect tool-wear measurement. The test program covered both shank end
and end mills with twist drills and tread taps. For monitoring tool wear, we tested vibration, acoustic
emission, sound, spindle power, and axial force. The signals were analyzed in time domain using sta-
tistical methods such as root-mean-square value, standard deviation, maximum, and skewness. The
signals were further analyzed using Fast Fourier Transform to find their frequency contents. The ef-
fectiveness of the best sensors and analysis methods has been verified with a program for predicting
the remaining lifetime of a tool in use. The results show that vibration, sound, and acoustic emission
measurements are more reliable for tool-wear monitoring than are the more commonly used power
consumption, current, and force measurements.

KEYWORDS: condition monitoring, expert systems, flexible manufacturing systems, signal analy-
sis, tool wear monitoring.

I. INTRODUCTION

An increasing number of flexible manufacturing systems (FMS) have been installed in Eu-
rope in the past few years. However, the availability of the installed FMS is not as high as
was originally expected, and, in particular, unmanned use in three shifts has not been suc-
cessful.! One of the most important reasons for this is that existing real-time tool-condi-
tion monitoring techniques do not cover the wide range of machining situations with dif-
ferent machining parameters that normally exist in practice.

For untended machining, process and tool-condition monitoring (tool identification,
tool-wear monitoring, and tool-breakage detection) have great potential for increasing
the capacity of the machine-tool systems. Automated on-line diagnosis refers both to ma-
chine-tool monitoring and to workpiece and tool-condition monitoring. Existing real-
time condition- and tool-monitoring techniques for machine tools do not yet provide sat-
isfactory information.

1064-6345/96 $5.00
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Because of the poor correlation between the measured event, such as tool wear, and
the sensor signal, there is no one measuring method that covers the wide range of situa-
tions with different machining parameters. (In addition, machining-process monitoring
systems and maintenance modules have only limited commercial availability.) Signals
must be grouped and synchronized to avoid poor correlation between a single signal
source and the measured event. However, it is obvious that commercially available moni-
toring systems exploit few of the capabilities of modern sensor and analyzing techniques?

The sensor validation in this survey is based on comprehensive laboratory tests. Sev-
eral sensors were installed and tested before final validation. The aim was to monitor the
condition of the tool at critical points in the machining and cutting process. Validation
was performed according to the following criteria: sensitivity of the sensor to the mea-
sured event, correlation between signal and measured event, amount of deviation, and
universality.

As part of the validation in the laboratory, measured signals from various sensors
were analyzed using a number of methods in both time and frequency domains. The ob-
jective was to satisfy the economic and technical requirements of the industry. Suitable
combinations of sensor and analysis methods are listed in Table 1. The information re-
ceived from multiple sensors was analyzed simultaneously; thus, the correlation between
different measuring signals can be used to localize a faulty component or identify wear.
The relationships between the analyzed signals and wear form a basis for diagnostic rules
that can be used in an Al system.

ll. TEST ARRANGEMENT

A horizontal-type machining center was used in the cutting tests. The main specification
of the machining center was as follows:

Machine tool: Niigata EN40B

Control unit: Fanuc 11 MA

Controlled axis: 4 axes (X,Y, Z, and B)

Table size: 400 x 400 mm

Spindle nose: NT No. 40 for BT

Number of tools: 30

Spindle speed: 15-6000 !/min

Main motor power: 11/7.5 kW

Il.1. Cutting Test Program

The tests concentrated on tool wear, tool breakage, and collision monitoring. Cutting tools
of different types and shapes were used to learn machine tool behavior in the cutting pro-
cess. Cutting tests were designed to cause situations in which a measurable event resulted
from tool wear or failure. In this part of the cutting tests, different types of cutting tools were
used to cover a wide range of cutting methods. The tools investigated in the tests were:

e shank end mill, diameter 6 and 10 mm, HSS
o end mill, diameter 50 mm with carbide inserts
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TABLE 1. Description of Tools, Cutting Parameters and Monitoring
Methods Used in the Cutting Tests*

Shank end mill End mill Twist drill Tread tap
Number of tools 18 8 26 27
Tool sizes 6 and 10 mm 50mm  3.3,5.0,6.8,8.5, M4, M6, M8, M12
10.2 mm
Cutting speed, [m/min.] 78.5 and 85 250 22,25,29,30,32, 6,10,12,15,18,20
35, 37, 38, 40
Table feed [mm/min.] 230, 270, 400 1300 140, 250,272,300, 336, 478, 533, 640,
350,375, 448,560, 720, 864, 960
620, 680
Depth of cut/Hole depth  3and 5mm 3mm 27and 30 mm 10 and 20 mm (bot-

(bottom hole) tom hole)
35 mm (through 40 mm (through
hole) hole)

Width of cut 5,8, 9 mm 43 mm - -

S

Acoustic emission 200 kHz &

Acoustic emission 800 kHz

Acoustic emission 100 -
1000 kHz

Horizontal vibration
Vertical vibration
Sound

Sound parabolic
Niigata spindle power
Spindle power

Spindle current (P1, P2 &
P3)

Z-servo current (11, 12 & I3)
Force quideways

Force dynamometer, Fz
Torque dynamometer, Mz
3-axis table dynamometer
Tachometer

X-servo power

X-servo current

X-servo voltage

@ Gray areas indicate combinations of tool-type and monitoring method used
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e twist drill, diameter 3.3, 5.0, 6.8, 8.5, and 10.2 mm, HSS
e thread tap M4, M6, M8, and M12, HSS

Refer to Table 1 for a detailed description of the tools, cutting parameters, and monitor-
ing methods.

I.2. Measuring Arrangement

The tool-wear monitoring methods investigated in the tests were mainly based on acous-
tic emission, vibration (acceleration), spindle and feed-drive power consumption, force,
torque, and sound, using different measuring arrangements. Some of the measuring sig-
nals were kept the same and some were varied during the tests, because the instrument
tape recorder only has 14 channels, of which 12 can normally be used for measuring data.
Refer to Table 1 for information on the use of different measuring signals. Figure 1 illus-
trated the main configuration of the measuring arrangement.

Acoustic emission was measured by using one sensor with center frequency of 200
kHz (frequency range * 20 kHz) for tool-wear monitoring, and another sensor with center
frequency of 800 kHz (frequency range + 50 kHz) for tool-breakage monitoring3 In addi-
tion, a broadband sensor with a frequency range of 100 kHz-1 MHz was used to find the
best frequency range for further investigation. The 200 kHz sensor was used to measure
the root-mean-square (RMS) values of acoustic emission, and the 800 kHz and 100 kHz~1
MHz broadband sensors were used to measure peak values of acoustic emission.

Vibration was measured in the frequency range of 0.2-5000 Hz. Two acceleration
transducers were installed, one vertical and one horizontal, and were kept in the same
measuring positions throughout the tests. Two microphones were installed—one normal
and one with a parabola. The microphone with the parabola had a small direction angle
intended to listen only to noise caused by the machining process.

Niigata’s spindle-power consumption was measured through Niigata’s own measur-
ing system. Spindle-power consumption was also studied using separate measuring

\ Spindle Gearbox
\ Spindle motor
Table (3~ AC)
S @/*
Power-
L] Z-servomotor analyser
(bC) |
Tacho- Analog-
. meter output
Axial force Acceleration Acoustic-
sensor sensor (2) emission
Microphone sensor (3)
FIGURE 1
Measuring arrangement.
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equipment, which measured power, current, and voltage. One channel was used to mea-
sure spindle-current consumption (RMS) and another to measure AC spindle current.
Both X- and Z-servo power consumption were measured with separate measuring equip-
ment. The measured values in these servo motors were power (P1), current (I1, 12), and
voltage. Z-servo power/ current consumption was mainly used to test drills and thread
taps, X-servo power/current consumption to test shank-end mills and end mills.

The force sensor was installed in the guideways and measured the cutting force,
mainly in the Z-axis direction. The 3-D dynamometer was used to measure the x, y, z forc-
es in the tests, the 2-D dynamometer to measure axial force Fz and torque Mz in some of
the drilling and tapping cases. These tests were intended to yield accurate information
about cutting forces during the lifetime of the tool.

ll. SIGNAL PROCESSING

For automatic analysis of the huge amount of data gathered, a user-friendly interface for a
PC was created using the Visual Basic programming environment. The interface controlled
functions of the instrument tape recorder through an IEEE-488 bus. Statistical analysis was
based on data from a data acquisition board (maximum 16 A/D channels). Attached to the
acquisition board, a sample and hold board was used to get synchronized dynamic signals
from 4 channels simultaneously. The tacho pulse was used as a trigger for data collection.

The measured signals were analyzed with a number of methods in time and frequen-
cy domains. The analysis program enabled automatic analysis outside normal working
hours, and the analysis results were stored in databases. A mathematical programming
package, MatLab, was used in signal processing the dynamic signals, gathering only so-
called “cursor values” to minimize the amount of information to be transferred and
stored. These actions were also controlled by the interface.

lI.1. Statistical Analysis

Depending on the measured events, the data to be analyzed were first cleaned of irrelevant
signals that had not been recorded during the actual machining process, such as rapid
movement during drilling. Cleaning was based on a master signal, according to which all
the other signals were either accepted or omitted from the analysis. Data measured and re-
corded simultaneously with 12 sensors were studied by calculating a number of statistical
parameters—arithmetic mean, RMS, mean deviation, standard deviation, skewness, kurto-
sis, maximum, and minimum. The two acceleration signals were analyzed using both low-
pass filtering and no filtering. The results from the statistical and dynamic signal were saved
in a separate database for every tool. Figure 2 shows an example of this statistical analysis.

lIl.2. FFT Analyses

For dynamic signals containing frequency information, Fast Fourier Transformation
(FFT) techniques were employed.# Sample and hold functions of the data acquisition op-
tion board were used to get data simultaneously from 4 channels (vibration, force/torque,
spindle-motor power, and sound), and the data was stored on disk. MatLab was used to
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read the data from the hard disk and to perform the necessary calculations. FFT was per-
formed using both time and frequency domain averaging. About 20 kinds of analysis func-
tions, such as spectrum, cepstrum, frequency response, and coherence, were calculated
by FFT using the hanning window. The 20 highest maximums and/or minimums of each
of these functions were tabulated and stored in a database with the corresponding fre-
quencies and time values. The analyzed functions are shown in Table 2.

IV. RESULTS

The results from the statistical and FFT analyses were further analyzed using regression
analysis techniques. Eight regression functions were tested to find the highest correlation
between measured tool wear and analyzed measurement signals. Finally, the measuring
sensors and analysis methods were tabulated and sorted according to the order of sensi-
tivity of the sensor to the measured event, correlation between the signal and measured
event, amount of deviation, and universality.

IV.1. Regression Analysis

The relationship between analyzed signals and tool wear was tested with 8 functions,
which approximate the set of data points gathered from the cursor values of the spectrum
analyses or from the statistical values of the measured signals. The sets of data points were
then approximated as closely as possible with 4 smoothing functions—3 polynomials and
1 logarithmic function based on a simplified mathematical definition of wear®) using the
least square principle.

Y=a+bT e8]

12 i

10 §

i

H

Acceleration 08 %
normalized i

(m/s”2) 06 ——RM.S.

04

02

00
Time (lifetime)

FIGURE 2
Root-mean-square (RMS) value of horizontal vibration acceleration for shank end mill.
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where a, b, ¢, & d = regression coefficients; T= time; Ttotal = total tool lifetime in the test.

In the regression analysis, we also tested the weighting of each residual using a geo-
metric series (1.0, 1.1, 1.21, 1.331 ...), which doubled the number of regression functions.
To measure the goodness of the regression, the coefficient of determination (Ri) was cal-
culated for each regression or curve fitting based on the sum of the squares of deviations
about the regression (SSD) and the total sum of squares (SST) in the following way:

Ri=1-S88D/SST )

TABLE 2. Functions Used in FFT Analyses

Functions used Number of cursor values saved from each signal analyzed
Maximum Minimum Octaves Harmonics
Spectrum 20
Cross-spectrum 20
Frequency response 20
Coherence 20
Coherent output power 20
Autocorrelation 20 20
Cross-correlation 20 20
Signal-to-noise-ratio 20
Cepstrum 20
Liftered spectrum 20
Scot 20
1/3 Octave 36
1/1 Octave 25
Overall 1
Six first harmonics and 8
1/2 and 1/4 harmonics
Total harmonic power 1
Multisignal frequency response 20

1. component

Multisignal frequency response 20
2. component

Multisignal frequency response 20
3. component

Partial coherence 20
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The Ri and its product for each regression were stored in a database for further inves-
tigation. The regression was carried out for subsets of observations along the frequency
axis or along the time axis starting from the origin. The frequency or time window was di-
vided into 500 subsets. The frequency or time subset windows were accepted for regres-
sion analysis if there were more than 20 observations (refer to Table 2) in the window dur-
ing the test of the specific tool. An example of an FFT analysis is shown in Figure 3.

Regression analyses were performed with all the information stored from the statisti-
cal and FFT analyses. For the statistical analyses, the results of the regression analyses
were further analyzed by making so-called “ranking lists,” in which the signals were sorted
by descending coefficient of multiple determination of the third-order regression func-
tion (see Equation 3). The combined ranking list for all the tested tools and tool types is
shown in Table 3, in which the statistical parameters are listed in order of their appearance
in the ranking lists. (Note that those signals that were tested with only one tooltype are
omitted from this list.)

Table 4 shows an example of the goodness of fit of the regression function (third order,
Equation 3) of the FFT functions for different tool types. In this case, averaging was done in
the frequency domain. In Table 4, each function is shown only once (the highest coefficient
of determination), so it is a much shortened version of a complete list in which the total
number of lines is in the order of 2000 for each tool and for the 2 averaging methods.

The degree of fit is much higher for cursor values of the FFT functions than for the
statistical parameters. This result is logical, because the idea of the FFT analysis is to sep-
arate meaningful from meaningless information (noise). This result suggests that it would
be good to use FFT analysis for tool monitoring. However, FFT analysis takes time, more if
averaging is used to reduce the amount of noise, which makes it impossible to use for col-
lision and tool-breakage monitoring but suitable for tool-wear monitoring.

Table 4 shows that the goodness of fit varies depending on the tool type. Drilling and
shank-end milling arc the easiest to monitor. It should be noted that such functions as
cross-spectrum and coherence, which describe how much the signals are related to each
other, show a rather high goodness of fit. One explanation for this is that the worn tool
causes higher signals, and the signal-to-noise relation increases, so this type of function
can be used for tool-wear monitoring. This suggests that it would be good practice to use

St (0B

FIGURE 3
Cross spectrum of horizontal acceleration and spindle-motor current in drilling. (Note that the fre-
quency axis is nonlinear.)
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TABLE 4. Coefficients of Determination of Signals Analyzed with FFT
Averaged in Frequency Domain for Different Tool-Types

Signal(s) and FFT function Drill Thread tap Shankend End mill*
mill*
Spectrum of horizontal vibration (acc.) 0.99 0.85 0.98 0.83
Liftered spectrum of vertical vibration (acc.) 0.99 0.41 0.58 0.81
Spectrum of vertical vibration (acc.) 0.99 0.79 0.92 0.84
Cross-spectrum between horizontal vibration and 0.99 0.92 0.95 0.83
vertical vibration (acc.)
Coherent output power between horizontal vibration 0.98 0.87 0.96 0.88
and vertical vibration (acc.)
Autocorrelation of vertical vibration (acc.) (max.) 0.94 0.73 0.99 0.74
Cross-correlation between horizontal vibration and 0.91 0.67 0.99 0.75
vertical vibration (acc.) (max.)
Coherence between horizontal vibration (acc.) and 0.88 0.53 0.70 0.76
sound (normal microphone)
Spectrum of spindle current I1 (AC) 0.87 0.71 0.84 0.77
Autocorrelation of horizontal vibration (acc.) (max.) 0.85 0.86 0.99 0.88
Signal-to-noise-ratio of horizontal vibration (acc.) and 0.84 0.87 0.94 0.60
sound (normal microphone)
Coherent output power between horizontal vibration 0.83 0.57 0.55 0.59
(acc.) and sound (normal m.)
Spectrum of sound (normal microphone) 0.82 0.55 0.67 0.81
Cepstrum of vertical vibration (acc.) 0.82 0.57 0.53 0.90
1/1 Octave of spindle current I1 (AC) 0.80 0.50 0.43 0.88
1/3 Octave of spindle current I1 (AC) 0.80 0.62 0.77 0.88
Cepstrum of sound (normal microphone) 0.80 0.51 0.54 0.51
Cross-correlation between horizontal vibration and 0.80 0.63 0.98 0.54
vertical vibration (acc.) (min.)
1/3 Octave of sound (normal microphone) 0.79 0.61 0.92 0.86
Cross-spectrum between horizontal vibration (acc.) 0.79 0.73 0.59 0.80
and sound (normal microphone)
Autocorrelation of spindle current I1 (AC) (min.) 0.79 0.24 0.20 0.32
Autocorrelation of spindle current I1 (AC) (max.) 0.79 0.27 0.20 0.32
Overall of spindle current I1 (AC) 0.77 0.09 0.03 0.33
Cepstrum of horizontal vibration (acc.) 0.76 0.52 0.70 0.92
Cross-correlation between horizontal vibration (acc.) 0.75 0.52 0.58 0.32
and sound (normal m.) (min.)
Autocorrelation of sound (normal microphone) (max.) 0.75 0.74 0.19 0.38
Autocorrelation of vertical vibration (acc.) (max.) 0.74 0.78 0.996 0.88
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TABLE 4. (Continued) Coefficients of Determination of Signals Analyzed with
FFT Averaged in Frequency Domain for Different Tool-Types

Signal(s) and FFT function Drill Threadtap Shankend End mill*
mill*

Cross-correlation between horizontal vibration (acc.) 0.74 0.06 0.74 0.35
and sound (normal m.) (max.)
Signal-to-noise-ratio of horizontal vibration (acc.) and 0.73 0.95 0.80 0.45
vertical vibration (acc.)
Liftered spectrum of sound (normal microphone) 0.72 0.27 0.56 0.51
Coherence between horizontal vibration (acc.) and 0.71 0.68 0.61 0.32
vertical vibration (acc.)
1/1 Octave of sound (normal microphone) 0.71 0.47 0.94 0.83
1/1 Octave of vertical vibration (acc.) 0.70 0.84 0.96 0.80
Autocorrelation of sound (normal microphone) (min.) 0.70 0.68 0.71 0.43
Cross-spectrum between horizontal vibration (acc.) 0.67 0.48 0.52 0.45
and spindle current I1 (AC)
Cross-correlation between horizontal vibration and 0.65 0.52 0.63 0.37
spindle current I1 (AC) (min.)
Autocorrelation of horizontal vibration (acc.) (min.) 0.62 0.78 0.89 0.88
Coherence between horizontal vibration (acc.) and 0.61 0.59 0.70 0.79
spindle current I1 (AC)
Liftered spectrum of spindle current I1 (AC) 0.58 0.12 0.27 0.89
1/3 Octave of vertical vibration (acc.) 0.58 0.86 0.96 0.88
Coherent output power between horizontal vibration 0.56 0.73 0.99 0.44
and spindle current I1 (AC)
Cross-correlation between horizontal vibration and 0.55 0.54 0.56 0.28
spindle current I1 (AC) (max.)
1/3 Octave of horizontal vibration (acc.) 0.55 0.94 0.95 0.92
1/1 Octave of horizontal vibration (acc.) 0.55 0.94 0.96 0.91
Signal-to-noise-ratio of horizontal vibration (acc.) and 0.53 0.48 0.62 0.47
spindle current I1 (AC)
Cepstrum of spindle current I1 (AC) 0.52 0.42 0.79 0.88
Overall of sound (normal microphone) 0.49 0.55 0.15 0.32
Liftered spectrum of horizontal vibration (acc.) 0.46 0.33 0.70 0.87
Overall of vertical vibration (acc.) 0.33 0.36 0.97 0.01
Overall of horizontal vibration (acc.) 0.25 0.76 0.82 0.71

at least two monitoring methods, for which it would be possible to adopt the FFT analysis. The
use of at least two signals for tool-wear monitoring coincides with the findings of the statistical
analysis, because there is variation between the tool types.
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FIGURE 4

User-interface window of the simulation program, end milling: upper curve: horizontal vibration,
mean deviation; lower curve: sound, root mean square.

IV.2. Simulation Program

One of the most critical tasks in maintenance (and one of the main goals of the project) is to
detect faults and determine what actions need to be taken and when. This work is focused
on the problems of automatically identifying the condition of the cutting process. The sim-
ulation program module is used to see how an expert system would react in different situa-
tions with different limit values for the chosen regression models. The module simulates the
real machining process by using real data recorded and analyzed earlier. The program fits a
selected regression curve to the existing data, the fitted curves being the same as those used
in the regression analyses. Each time the curve fitting is done, the program checks whether
the tool worn-out limit has been reached, and if so, a warning is displayed as a sign for when
the machining process would have been terminated by the expert system.

In order to run the program, the user must define the following variables in the pro-
gram window: name of the database, data table, and data fields; running speed for the
program (normal = real time, fast = testing); which curve to fit into existing data; type of
tool; worn-out limit and its value; which function to look for; and—for FFT analysis—the
frequency range or time value.

Figure 4 shows an example of the simulation program user-interface window. In the
near future, the simulation program, together with the results from the regression analy-
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ses, will be used to determine the most suitable and efficient analysis functions and the
corresponding test/rule limits in an expert system.

All statistical signals were studied with the simulation program. After each signal was
evaluated visually, the results indicated that when analyzing drills using acoustic emission
and vibration, an expert system should be able to monitor tool wear. To improve accuracy
and to compensate for dependency on tool size, the monitored signals should include at
least one of the following signals: Z-servo current, microphone, or 3-D dynamometer.

It is clearly seen by visual evaluation that some of the calculated statistical parame-
ters are not reliable. A total of 8 parameters were analyzed, and only 4 of them were found
good for monitoring tool wear; disregarded from further examination were standard devi-
ation, skewness, kurtosis, and minimum. The reason for higher-order parameters such as
skewness and kurtosis being unreliable in a wide test series could be that they are too sen-
sitive to noise, which means they work well sometimes and sometimes not at all.

The fully analyzed results indicate that the 8 signals shown in Table 5 with combina-
tions of 4 statistical parameters are the best to monitor tool wear for drills. A significant
dependence on the tool’s size is noticed with the drills. With drills, the coefficients of de-
termination of tested signals were approximately 0.25-0.84 (third-order regression).

For shank-end milling, all the signals were also studied with the simulation program. Af-
ter visual evaluation of each signal, the results indicate that, when analyzing the shank-end
mills using vibration, sound, and 3-D dynamometer, an expert system should be able to accu-
rately monitor tool wear. Visual evaluation clearly shows that the conclusions regarding the
number of useful statistical parameters that were drawn for drills also apply to the shank-end
mills. The fully analyzed results indicate that the 7 signals shown in Table 6 with combinations
of 4 statistical parameters are the best to monitor tool wear for shank-end mills. With shank-
end mills, no relevant dependence on tool size was noticed, and the coefficients of determina-
tion of tested signals were approcximately 0.12-0.87 (third-order regression).

Based on the ranking list, Table 4, and visual evaluation, monitoring of tool wear in
the case of end mills and thread taps is more difficult than in the case of drilling and

TABLE 5. Summary of the Best Signals and Statistical Parameters for
Drilling®

Signal Statistical ~ Suitable especially

parameter for size

1 Vibration horizontal (acceleration. low-pass filtering) 3,2,7 6.8 and 10.2

2 Vibration vertical (acceleration. low-pass filtering) 3,27 6.8 and 10.2

3 Acoustic emission 200 kHz/filter 180 (rms) 1,2,7,3 all tested sizes

4 Vibration horizontal (acceleration) 3,2,7 all tested sizes

5 Vibration vertical (acceleration) 3,2,7 all tested sizes

6 Sound (normal microphone, AC) 3,271 5,6.8 and 10.2

7 3-dimensional dynamometer Z-axis, (N) 3,172 3.3,5and 6.8

8 Z-servo current I3 (rms, A) 1,2,7,3 3.3,5,6.8and 10.2

a Gtatistical parameters: 1. Arithmetic mean 2. Root mean square 3. Mean deviation 7. Maximum.
(Note: low pass filtered acceleration was only tested with 6.8 and 10.2 mm drills and 3-dimensional
dynamometer was not tested with 10. 2 mm drill)
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TABLE 6. Summary of the Best Signals and Stafistical Parameters for
Shank End Milling®

Signal Statistical.  Suitable especially
parameter. for size
1 Sound (normal microphone, AC) 2,3,7 all tested sizes
2 Vibration horizontal (acceleration low-pass filtering) 3, 2,7 all tested sizes
3 Vibration horizontal (acceleration) 2,3,7 all tested sizes
4 3-dimensional dynamometer Y-axis, (N) 7,2,1,3 all tested sizes
5 3-dimensional dynamometer X-axis, (N) 2,7,1,3 all tested sizes
6 Vibration vertical (acceleration low-pass filtering) 3,2,7 all tested sizes
7 Vibration vertical (acceleration) 2,3,7 all tested sizes

a Statistical parameters: 1. Arithmetic mean 2. Root mean square 3. Mean deviation 7. Maximum

shank-end milling. Although the coefficients of determination are reasonable, 0.36-0.74
in end milling and 0.21-0.86 for thread taps, the visual observations with the simulation
program do not suggest that tool-wear monitoring could be done reliably with statistical
parameters. Use of FFT improves reliability, but at this stage it has not been fully tested
with the simulation program to determine whether the functions are reliable in practice.

V. CONCLUSION

There is great potential for improving machine-tool utilization rates with an advanced
condition-monitoring system using modern sensor and signal-processing techniques. A
comprehensive cutting-test procedure has been carried out with different tools and mea-
surement arrangements. The recorded signal information has been processed in several
ways, both in time and frequency domains. The effectiveness of the best sensors and anal-
ysis methods in the prediction of the remaining lifetime of a tool in use has been verified
with a developed program module. The results from the statistical analysis show that vibra-
tion, sound, and acoustic emission measurements are more reliable for tool-wear mea-
surement than the most common methods—power consumption, current, and force
measurements—used in commercially available systems. Even better results are obtained
with FFT methods, especially when at least 2 signals are available for frequency analysis.
The relationships between the analyzed signals and tool wear form a basis for the diagno-
sis rules that are used in a diagnostic expert system.
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_Abstract

1. INTRODUCTION

Many research projects have been carried out in
the field of tool wear and failure monitoring. There are a
number of reasons for this interest among the research so-
ciety and industry. Probably the most important reason is
that manufacturing technology has changed towards pro-
cess industry in the sense that today production equipment
are capable to work in production cells which can be fully
automated. However, in order to automate the producticn a
way of tool condition monitoring is needed because a worn
or broken tool could cause a lot of damage either to the
workpiece or workpieces or, in the worst case, to the ma-
chine tool itself. In case of drilling this is rather apparent
because if the tool is broken there might not be a hole where
the next tool e.g. thread tap is used. A less radical conse-

quence is that with a worn tool the surface finish and di-
mensions are not as good as they should be. If tools are
changed based on the time they have been used the eco-
nomical life time of these tools cannot be benefited from
because there is great variation in tool life. An other factor
related to this conservative way of defining the tool change
is that valuable production time is lost because of unneces-
sary tool changes.

Tool condition monitoring can be based either on
direct or indirect me?ods. The monitoring methods are con-
sidered direct if they actually measure the amount of wear
and correspondingly indirect if the change of the measured
parameter is a consequence of wear i.e. such as the increase
of cutting force or vibration. This paper covers only indi-
rect methods mainly because the direct methods still seem
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to be much more expensive methods to use and in many
cases they also cause restrictions to the manufacturing pro-
cess as such.

2. DRILL WEAR MODEL

Based on a series of drilling tests following rela-
tions based on physical models in drilling cast iron have
been observed [27]:

Torque M) =a Hyd®f+a Hydr+a Hyd>w (1)
Thrust (T) =a, H,df+a,H,dw+a,H dr+a H d ¥))

Where
H, = Brinell hardness of work material
d = diameter of the drill
f = feed per revolution
w = average flank wear
r = radius at the cutting edge

a, ...a, =constants

The terms in Equation 1 are coming from three
contact zones [27] namely: a) The rake face of the tool which
contacts the chip and transmits most of the force necessary
to perform the cutting action. b) The nonzero radius of the
tool cutting edge (the transition surface between the rake
and flank faces) which contacts the work material at the
point where the chip and work separate. This edge radius
causes an indenting force. (The nonzero intercept observed
for zero feed on cutting force versus feed rate plots may be
attributed to this effect.) ¢c) An area on the flank face hav-
ing 0 deg clearance, known as the flank wear land which
rubs against the work surface. The shear stress between the
flank and the workpiece has been determined to be approxi-
mately equal to the work material yield shear stress. The
shear force caused by the flank wear is termed to be the
third force component.

From the above given relationships it is apparent
that there is a strong dependency of workpiece hardness
which actually means that tool life varies remarkably as a
function of this [27]. Consequently, cutting of a few ran-
dom workpieces of large hardness may influence the drill
life much more than a large number of workpieces of low
hardness. Hence, in an industrial operation, drills may fail
very early or after a long time, depending on the occur-
rence of these few workpieces of high hardness. This could
explain the large variation in drill life observed in indus-
trial conditions. The workpiece hardness also influences
the thrust forces and torque occurring in a drilling opera-
tion. If the variation in thrust force, on account of changes

in flank wear, is to be significant, the variation in workpiece
hardness has to be held within 5 percent of the mean hard-
ness value. This is very difficult to achieve in industrial
castings. Hence, torque or thrust measurements for moni-
toring drill wear should be attempted only after a very close
tolerance has been obtained in the workpiece hardness.
Another observation in ref. [27] is the speed in which drill
wear takes place at the end of the drill life.

2.1 Process Parameters

The approach developed in ref. [27] has been fur-
ther studied in ref. [17] putting more emphasis on the cut-
ting parameters when drilling copper alloys. In the test se-
ries thrust force and torque have been recorded at three dif-
ferent flank wear states, three cutting speeds, three feed

" rates and three drill diameters. It has been concluded that

the relationships between the cutting force signals and drill
wear as well as other cutting parameters including spindle
rotational speed, feed rate and drill diameter were estab-
lished. Tool wear can then be estimated using these rela-
tionships. It is also shown that the tool wear can be esti-
mated knowing the thrust force signal, feed per revolution
and drill diameter. Based on the studies conducted, the fol-
lowing conclusions are drawn [17]. 1) The effects of feed
per revolution, depth of cut and tool wear on cutting force
signals are significant, while the effect of cutting speed on
the cutting force signals is relatively insignificant in the
cases studied. 2) Both the thrust and the torque increase as
the flank wear increases. 3) Thrust and torque can be well
represented as functions of tool wear, drill diameter and
feed per revolution. 4) Tool wear can be properly estimated
knowing the thrust force and other cutting parameters, es-
pecially for larger tool wear.

2.2 Drill Geometry

Due to production variations, a drill is typically
slightly asymmetric [6]. Accordingly, the two corners of
the drill point wear gradually while maximum wear alter-
nates from one cutting edge to the other [3,6]. This alter-
nating process continues until both lips have zero clear-
ance at the margin. The drill then adheres to the workpiece -
and breaks if the cutting process is not stopped in time. The
described phenomena is the explanation why drift forces
can also be used as an indicator of tool wear [14] together
with feed force and torque.

3. MONITORING METHODS

Quite a number of indirect monitoring methods
have been tested for drill wear and failure detection. The
moét popular methods reported in literature have been feed
force, torque, drift forces, spindle motor and feed drive
current, vibration, sound, ultrasonic vibration and acoustic
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emission. A summary of how popular each of these meth-
ods have been is shown in Figure 1 based on all references
cited in this paper. Cutting speed and feed rate have also
often been measured although they are not really used for
tool wear monitoring. Since the other measured parameters
are influenced by the cutting speed and feed rate they are
also needed in a monitoring system or in adaptive control
systems e.g. [11].

ACcuste emission

Uitrasonic vibration

Sound

vibragon

Feed giive current

Measuring method

Spindle motor current

Dritt force

Torque (0 1
I I I

Feegtorce |2 ]

0 H 10 15 2 o5

Number of references that report tests with the spacific monitoring method

Figure 1: The popularity of measuring methods in drill condition
monitoring.

In the subsequent paragraphs the monitoring meth-
ods are divided into two groups i.e. those that are related to
measuring forces and those that are related to measuring
vibration. The force measurements cover measurement of
thrust (=feed) force, torque and drift forces together with
measurement of spindle motor current and feed drive cur-
rent. The spindle motor current actually corresponds to the
measurement of torque although through a longer measur-
ing chain and similarly feed drive current corresponds to
the measurement of thrust force. The vibration related meth-
ods consist of mechanical vibration, sound, ultrasonic vi-
bration and acoustic emission. Mechanical vibration is nor-
mally considered to take place from 1 Hz to about 10 kHz
or 20 kHz. Airborne sound is often measured in the fre-
quency range from 20 Hz to 20 kHz. Ultrasonic vibration
starts from where mechanical vibration ends i.e. from about
10 kHz to about 80 kHz which then is the lower limit for
acoustic emission which goes to as high frequencies as 1
MHz.

3.1 Drilling Forces

The equations presented in previous section drill
wear model actually explain why drilling forces i.e. feed
force and torque have so widely been tested for drill wear
monitoring. From the equations it becomes clear that these
forces increase with increasing tool wear. Drift forces also
indicate tool wear because of the asymmetry of drills and
also dynamics of the drilling process. Spindle motor cur-
rent is an indicator of torque and feed drive current an indi-
cator of feed force although through a longer measuring
chain than the forces.

3.1.1 Feed Force

Feed force has been tested or is used as an indica-
tor of tool wear and failure in references [2,3,5,8,10-15,
17-21,23-32] i.e. it is the most popular method for tool wear
and failure monitoring in the cited literature. However, in
many of the references the reported test material is very
limited e.g. [2] and in some of the material the results are
not encouraging i.e. the correlation between thrust force
and wear has been found weak e.g. [3]. At the same time
some other researchers have been successful in incorporat-
ing thrust force and torque into diagnostic approaches e.g.
[15,17] and [18]. In references [19] and [20] the thrust force
has been tested and used together with vibration with good
success. The increase of dynamic variation of thrust force
and torque as a sequence of drill wear has been verified to
correlate with the surface quality of composite material in
ref. [23]. An approach that can detect severe drill damage
just before tool breakage occurs based on thrust force mea-
surement has been proposed in ref. [28] and [29]. An other
kind of approach for the same task i.e. detection of severe
damage before the drill actually breaks, has also been de-
veloped in ref. [30]. In practise the measurement of feed
force is rather a demanding task when it is done close to the
tool i.e. itis difficult to find a way to measure force without
causing some kind of problems. For example it is not very
convenient to use an additional force transducer between
the spindle and tool holder. Another place to position the
force transducer is naturally between the workpiece and
the table or between the table and the guide ways. In the
tests reported in ref. [10] the feed force was ranked the
second best measuring method after horizontal vibration
when measured using a force transducer between the tool
and spindle. The use of force sensor in the quideways was
not as successful because in this kind of installation the
force was actually influenced by the location of the hole in
the workpiece, see Figure 2. However, it should be noted
that at the end of drill life the indication of tool wear can be
seen even with this rather poor signal.
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Figure 2:Normalised RMS-value of feed force measured from the
guideways for a 10.2 mm twist drill.

All the results shown in this paper are based on
measurements made with a horizontal machining centre.
Four different kind of tools (shank end mill, end mill, twist
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drill and tread tap) were tested. The measurement system
included force sensors, torque transducer, various equip-
ment for the definition of voltage, current and electrical
power consumption, accelerometers, acoustic emission sen-
sors and microphones. The test and analysis program has
been reported in more detail in ref. {10].

3.1.2 Torque

In most of the references where feed force has been
tested also torque has been tested for the same purpose [3-
5,8,10-12,14,15,17,18,21,23,25-27,31]. The conclusion of
[3] does not give support to using torque as an indicator of
drill wear. As could be expected on the basis of what has
been presented about tool wear in the previous chapter the
general experience with testing torque is more or less the
same as with thrust force. One drawback of measuring cut-
ting forces and torque has been the difficulty and, conse-
quently, the expense of the measuring arrangement for prac-
tical applications. A new cheaper arrangement for measur-
ing torque based on eddy current has been presented in ref.
[4] with good experience.

3.1.3 Drift Forces

Drift force measurement is covered here in the
same context as the other forces though it rather belongs
to the same group as vibration measurements i.e. drift
forces are a result of asymmetry in the drill and drilling
process as explained earlier in this paper. Although the
reported correlation with thrust force and torque with
respect to tool wear was not good the results with drift
force have been considered encouraging [3]. The result
has been considered to give support to the theory of
asymmetric wear of drills described in the drill geom-
etry paragraph of this paper. However there seems to be
a problem related to this type of measurement i.e. it has
been indicated the parameters calculated from drift force
seem to form a sort of an s-type trend index. At first the
index increases when one side of the drill is wearing,
and then it decreases and starts to increase again and so
on. This makes it somewhat difficult to define when the
drill is actually worn. Also the findings reported in ref.
[14] support the theory of asymmetric wear of drills. It
is suggested that tool life criterion could occur when
the RMS of the drifting force achieves a minimum close
to that of the sharp drill. In this paper all the figures that
are shown and most of the findings in referenced papers
are based on statistical parameters calculated from time
domain signal. In most of these papers one or many of
the tested methods have proved to be suitable for drill
wear monitoring. In the studies reported in ref. [21] the
conclusion for torque, feed and drift force measurements
is simply that the signals in time domain do not show

any correlation with drill wear. With more sophisticated
signal analysis based on the use Fast Fourier Transform
(FTT) the influence in the measured signals has been
seen. The conclusion was that torque, feed force and
drift force in x-direction showed good correlation with
drill wear but the correlation of drift force in Y-direc-
tion was not as good. In ref. [31] after using torque, feed
and drift forces in the test it has been suggested that the
power spectrum of drift force could serve as an index to
monitor the onset of tool failure.

3.1.4 Spindle Motor Current

Spindle motor current (or power depending what
sort of measuring arrangement is used) is especially inter-
esting as a measure of drill wear because it is so easy to
monitor. In principle it can be expected that the same
phenomena's as with torque should be possible to see in
this signal. In ref. [16] spindle motor together with feed
drive current has been tested for drill breakage detection.
Also in ref. [24] good experience with diagnosis of drill
wear based on spindle motor and feed drive current com-
bined with diagnosis of failure with feed force is reported
although no examples of actual signals are given in this
reference. The experience reported in ref. [25] was not en-
couraging but the same also applies to feed force and torque
measurements. In ref. [27] the reported spindle motor power
and torque curves as a function of drill wear are very simi-
lar both indicating a very rapid increase in the signals at the
end of drill life. In the tests reported in ref. [10] the analy-
sis of spindle motor current or power was not successful as
can be seen in Figure 3. It should be noted that there has
been remarkable variation in the tests reported in ref. [10]
‘but overall the results with electrical power and current
measurements were below average level of the other sig-
nals. This could possibly be explained by the type of ma-
chine tool i.e. motors and also possibly into some extent to
sensitivity of the measuring equipment used.
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Figure 3:Normalised root mean square value of spindle motor
power for a 10.2 mm twist drill.

3.1.5 Feed Drive Current

The measurement of feed drive current has been
tested in many of the same references as spindle motor
current or power [7,10,16,24,25]. It is somewhat sur-
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prising that not that many researchers have tried to use
feed drive current since it should be able to give similar
information as the feed drive force. Actually one could
expect that the amount of noise in feed drive current
would be less pronounced than is the case with spindle
motor current. Quite similarly as with the spindle motor
current drill breakage has also been detected with feed
drive current in ref. [16]. An example of the root mean
square value of feed drive servo motor current is given
in Figure 4 based on the tests reported in ref. [10]. The
indication of tool wear is not as evident as with some
.other measuring techniques although the level increases
at the end of the tool life. Apparently some disturbance
has taken place in the beginning of the test so that one
measurement value clearly is not as it should be.
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Figure 4: Normalised RMS-value of feed drive servo motor cur-
rent for a 10.2 mm twist drill.

3.2 Vibration

It is very logical to measure vibration as an indica-
tor of tool wear and failure. In principle, when the cutting
forces increase due to wear also vibration and sound emit-
ted by the structure in question increase. The increase of
vibration at higher frequencies can also be expected when
forces increase. Another logical reason for vibration moni-
toring to work is that when the tool becomes worn the cut-
ting process tends to get somewhat more unstable i.e. the
dynamic nature of the process becomes more apparent and
vibration increases. This is also the reason why parameters
that indicate the variation of the measuring signal (higher
order terms like standard deviation and kurtosis) actually
show some difference. It should be noted that vibration re-
lated measuring signals tend to be easier to use in practise
than most of the force related methods since an accelerom-
eter or microphone can be installed a bit further away from
the tool and workpiece but in order to work really well force
and torque should be measured between the motors that
provide the forces and the tool which is somewhat more
complicated or demanding.

- 3.2.1 Mechanical Vibration

Mechanical vibration has been studied by quite a
number of researchers [1,2,6,7,9,10,13,19,20,26]. This is
not surprising because of the previously described reasons

and also the fact that vibration is the most widely used
method in condition monitoring of machinery in general.
The way some of the different types of drill wear i.e. chisel,
outer corner, flank and margin is seen in the spectrum of
vibration signal has been studied in ref. [6] with artificially
produced wear. It has been concluded that monitoring vi-
bration has been proved to be a useful method in predicting
drill wear and failure. It should be noted that in the spec-
trums the most dominating increase of vibration due to wear
has taken place at high frequencies (3 - 6 kHz) close to the
natural modes of the tool and tool holder. The proposed
analysis methods i.e. Kurtosis value together with cepstrum
analysis, power spectrum and a statistical triggering param-
eter (ratio of absolute mean value) would seem to try to
focus on the change of the dynamics of the signal. In tests
reported in ref. [10] vibration (acceleration) was the best
indicator of all of the tested methods including force, mo-
tor current, acoustic emission etc.. An example of vibra-
tion signals is given in Figure 5. Thrust force and vibration
have been tested in references [19] and [20] simultaneously.
It has been concluded that either of these could be used for
on-line classification of drill wear. However, integrating
both signals yields better results.

3.2.2 Sound

The use of sound measurements has only been
tested in a few references [2,3] and [10]. In [3] it has been
considered striking that the curves of two completely dif-
ferent physical values i.e. drift force and sound have been
very similar. However, it could be debated whether the re-
sult could actually be anticipated since airborne sound ac-
tually is a result of the mechanical vibration of the parts of
the machine tool, tool and work piece and the vibration of
these is a function of the dynamic forces present in the drill-
ing process. Actually it could be claimed that all the same
information that is available in mechanical vibration signal
should be available in the sound signal. However the prob-
lem with sound signal is that it is very diffused i.e. it is
reflected from various surfaces in various directions. The
real benefits in using sound measurements for tool wear
and failure detection are in the ease of installation of the
transducer since a microphone can, very easily be installed
rather close to the tool and the price of a microphone com-
pared to an accelerometer is really low. An other factor
which one could think of that would have encouraged the
use of sound measurements in drill wear monitoring is the
fact that the machine tool operators often rely on their hear-
ing when they define whether the tool is worn i.e. the sound
the tool produces changes with tool wear. The results re-
ported in ref. [10] can be considered promising. In Figure
6 a sound signal curve is shown for the same drill for which
also vibration curve has been shown. Although the stan-
dard deviation value of sound signal is not quite as clear an
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indicator as the low pass filtered RMS-value of vibration
signal it tells the same story.

Normalized RMS-value of low pass
filtered vertical
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Figure 5: Normalised RMS-value of low pass filtered vertical vi-
bration for a 10.2 mm twist drill.
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Figure 6: Normalized standard deviation of sound signal for a
i 10.2 mm twist drill.

3.2.3 Ultrasonic Vibration

Some researcher have tested ultrasonic vibration
[9,13,26] for drill wear monitoring and breakage detection.
However, in some cases vibration measurement below 80
kHz has also been called acoustic emission because it does
not seem to be commonly accepted how vibration at these
higher frequencies should be called. In ref. [9] vibration in
frequency range from 20 kHz to 80 kHz is defined as ultra-
sonic vibration and the same definition is used in this pa-
per. The use of ultrasonic vibration as an indicator of tool
wear is explained and compared to other methods in the
following way in ref. [9]. Acoustic emission is considered
to suffer from severe attenuation and multi-path distortion
caused by bolted joints commonly found in machine tool
structures. It has especially been noted that ultrasonic vi-
bration does not suffer as much because it takes place at
lower frequencies and consequently the transducer can be
placed fairly far from the chip forming zone. When com-
pared to lower frequency vibration, ultrasonic vibration is
considered better in the sense that the structural modes of
vibration do not affect it because the structural modes in
this range are so closely spaced that they form a pseudo-
continuum. In ref. [26] ultrasonic vibration has been tested
together with torque, feed and drift force measurements. In
tests ultrasonic vibration has been the most effective method
both for wear and failure monitoring especially when the
signal analysis of ultrasonic vibration is based on band-
pass filtering (10 kHz bands with 10 kHz steps in frequency

range from 10 to 70 kHz.
3.2.4 Acoustic Emission

Acoustic emission takes place when a small sur-
face displacement of material surface is produced [22]. It
is considered that acoustic emission can be used to monitor
crack growth, sudden impacts and rubbing of material
against another which all cause vibration of the structure at
very high frequencies (from 80 kHz to 1 MHz). Monitor-
ing of acoustic emission has been rather popular in turning
but surprisingly it does not seem to be that popular in drill
wear and failure monitoring. One possible explanation to
this is that in turning the AE transducer can be positioned
closer to the tool than is the case in drilling. One of the
benefits of acoustic emission is that since it takes place at
very high frequencies it does not travel very far i.e. noise
from other sources such as electrical motors do not travel
to the tool in turning due to damping. The same feature is
actually very easily a drawback in drilling since in practise
the transducer has to be positioned rather far away from
the tool and there might be a number of joints on the way
where the AE needs to travel from one part to another which
is very disadvantageous to the signal. The above explana-
tion is probably the reason why in the tests reported in ref.
[10] acoustic emission was not found to be one of the best
methods for tool wear monitoring in drilling. The normal-
ized root mean square value of acoustic emission (200 kHz
centre frequency) is shown in Figure 7. In the example some
disturbances are seen in the early part of the signal. Unfor-
tunately it is rather typical that something, which destroys
the measuring signal, happens during the machining pro-
cess. There are a number of possibilities that could be the
cause of this type of jump in the analysed signal e.g. some-
thing has hit the transducer or cable or some outside source
has caused high vibration noise. It is possible to try to avoid
wrong conclusion if a number of signals from various trans-
ducers are used in the diagnosis as the basis for defining
whether the tool is worn or not. In ref. [22] acoustic emis-
sion has been tested with drill with and without TiN (Tita-
nium Nitride) coatings. It has been suggested that AE works
best when certain phases of drilling process are analysed
because there are peaks in the signal in the beginning and
end of the process of drilling a hole.
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Figure 7: Normalized root mean square value of acoustic emis-
sion for a 10.2 twist drill.
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4. CONCLUSION

Condition monitoring of cutting tools is important
for a number of reasons. The unmanned use of flexible
manufacturing systems is not possible without a reliable
system for tool condition monitoring. Tool wear affects the
surface quality of processed workpieces. Tools cannot be
optimally used based on tool change policy which relies on
time and which easily leads to too frequent change of tools
from which it follows that valuable production time is lost
and the tool cost becomes high. Based on the reports of a
number of researchers it can be claimed that there is great
variation in how well different monitoring methods work
in tool condition monitoring. It is well known and accepted
and also mathematical models have been developed which
show that cutting forces increase as a function of tool wear
and consequently thrust force and torque are often moni-
tored in drilling. Feed drive and spindle current actually
also measure the same thing as feed force and torque trans-
ducers although through a longer measuring chain and there-
fore also they can be used for tool wear and failure moni-
toring. Tool wear also changes the dynamics of cutting pro-
cesses and consequently drift forces, vibration and sound
have been used for tool wear monitoring. Cutting dynam-
ics change also at higher frequencies i.e. ultra sonic vibra-
tions and acoustic emission are also used for tool wear and
failure monitoring. Based on the reported test material in
the literature and the tests reported in this paper it would
seem that thrust force, torque, drift forces, mechanical vi-
bration, sound and ultrasonic vibration are all potential
monitoring methods for drill wear monitoring although not
all of the experience gained is as good. The result is not
surprising since all of these methods are linked and those
methods that have not been as successful simply suffer from
a longer measuring chain that dampens the signals and in-
troduces noise.
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Abstract: Tool wear monitoring is economically very important but technically a rather
demanding task. In this paper an attempt is made to get further understanding of the
dynamics that influence the drilling process and especially what happens when a drill is
worn. A very simplified approach is tested in the development of the cutting forces and
modeling the influence of wear in these forces. The developed horizontal forces are used
for excitation of a simplified one degree of freedom model of the drill. The dynamic model
is used for producing vibration velocity signal as a function of drill wear. Using this signal
the most typical and widely used signal analysis techniques are tested. The signal analysis
data produced with the developed simplified model shows similar trends as data measured
in laboratory tests and can be considered useful in the development of an automatic
diagnosis program for drill wear monitoring.

Key Words: Tool wear; Drilling; Monitoring methods; Signal analysis; Dynamic model;
Cutting force

Introduction: Tool wear monitoring is important due to a number of reasons such us:
Unmanned production is only possible when machine tools are equipped with a reliable
tool wear monitoring system. Tool wear influences the quality of surface finish of the
products produced and thus, if unnoticed, can cause high costs. The economical tool life
can not be benefited from without tool wear monitoring. Unfortunately tool wear
monitoring is a very difficult task. There are methods available that monitor the tool
directly i.e. measure the tool wear but these methods are not practical enough to be used
outside laboratories. Indirect monitoring methods such as measurement of cutting forces
or vibration are technically demanding to be used. Reference [1] gives a summary of the
indirect monitoring methods that have been used for drill wear monitoring. Feed force and
torque measurements have been widely used in laboratory tests but it could be claimed
that they are not methods practical enough for everyday use, especially if they are
measured between the tool and the spindle. If measured from the table the measuring
points are located further away from the point where the forces are initiated, and
consequently these measuring points do not give as reliable results. Vibration monitoring
is one of the most widely used methods which according to the literature survey [1] and
reported tests [2] has proved to work well in practice. In this paper a simplified simulation
mode] is developed in order to gain further understanding how horizontal forces and
vibration could be used for drill wear monitoring. It is also hoped that the simplified model
could serve as a testing and training tool when automated diagnostic tools such as fuzzy
logic, neural networks or rule based expert systems are developed.
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Cutting force model: In theory drilling does not induce horizontal forces i.e. forces that
are perpendicular to the drill axis, if the drill has two cutting lips because these two lips
cancel the influence of each other. In practice horizontal forces exist and they can be
measured, and also due to these forces horizontal vibration occurs. There are a number of
reasons for these forces: The drill geometry is not perfect i.e. the cutting lips do not have
exactly similar geometry and consequently forces are induced, the work piece material is
never exactly homogeneous causing some horizontal force components, the drilling
process does not take place exactly perpendicular to the surface of the work piece. When
the drill is worn the two cutting lips do not wear exactly to the same extent causing some
unbalance of forces which can vary from side to side depending on which cutting lip has
worn more [3]. When the drill starts to vibrate because of the reasons described above,
and also due to forces that are induced to the drill from the spindle, the vibration causes
horizontal movement resulting in unbalance in the horizontal forces and further vibration.
The proposed model tries to take into account all the above named factors. However, the
model does not try to predict the exact drill forces nor the unbalance in horizontal
direction, but instead it merely tries to show the influence of various factors so that the
force predicted and the vibration velocity calculated with the model would have the
characteristics of those forces and vibrations measured in laboratory tests.

The first component in the drilling force model is a factor that takes into account the
discontinuous nature of the drilling process i.e. always when a new hole is drilled the
forces start from zero see e.g. reference [4]. This process can be described mathematically
in a simplified form with the following feed force function:

Fdh(t)=(t-i'td)/( ta/by) if I-tg<t<i-ty+tyb (D)
Fdh(t)=1 if I-tg+tyb<t<i-tg+ty (2)

Where t is time, i is a counter for the hole number, t4 is the time it takes to drill one hole
and b, is a coefficient which defines the relation of the increasing part and the stable part
of the thrust force. Figure 1 shows the simulated feed force when tq is 4 seconds and
altogether 15 holes are drilled. It should be noted that all the forces i.e. torque and
horizontal forces can be expected to perform similarly.

The second step in the development of a simulation model is to introduce the actual
drilling force models. Based on a series of drilling tests the following relations in drilling
cast iron have been observed [5]:

torque (M) = a- Hg- d* £+ ay- Hg- d® - r + a3 Hp- d* w (3)
thrust (T) = a; Hg- d - f+ as- Hg- d - w + a¢- Hg- d - r + a;- Hg- d° @)

where Hp is Brinell hardness of work material, d is diameter of the drill, f is feed per
revolution, w is average flank wear, ris radius at the cutting edge and a; ... a; are
constants. The use of the above formulas enables the scaling of force defined in formulas 1
and 2. In the above relationships there is a strong dependency on work piece hardness
which actually means that tool life varies remarkably as a function of this [5].
Consequently, cutting of a few random work pieces of high hardness may influence the
drill life much more than a large number of work pieces of low hardness. Hence, in an
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industrial operation, drills may fail very early or after a long time, depending on the
occurrence of these few work pieces of high hardness. This could explain the large
variation in drill life observed in industrial conditions. Since the purpose in the
development of a simulation model really is to be able to see the influence of wear in the
measured signals, it can be concluded from the above formulas that it is logical to develop
an approach where part of the forces is a function of wear, and part is not, and that both
parts strongly depend on the drill diameter and hardness of the material. Another possible
way to calculate the drilling forces would be the kind of approach developed by
Chandrasekharan [4] and used by Yang et. al. [6] where drilling forces are calculated
based on the geometry of the drill and results from turning tests which define the
necessary parameters for the approach. In this kind of approach the cutting lips are divided
into a number of sections where the forces are calculated and then integrated. However,
since the purpose of this study is not to define the exact forces that could be measured, it
is easier and much faster to use a statistical approach for scaling the forces so that the
effect of work piece material and cutting conditions can be taken into account.

} t t f + —
0 10 20 30 40 50 60

Time [seconds]

(=1
N
1

Normalised drill force Fdh(t)

Figure 1. Simulated feed force in drilling.

In the developed approach it is assumed that there are a number of reasons for horizontal
forces to appear in drilling. In theory these forces do not exist because typically there are
two cutting lips in drills. However, according to the tests and various references [1]
horizontal forces can rather well be used for drill wear monitoring. Possible reasons that
can cause unbalance in these forces are e.g. geometrical differences between the two
cutting lips and differences in the wear of the two cutting lips. In fact, it can be assumed
that if there are differences in the beginning due to geometrical errors, there will be
differences in wear of the two cutting lips since the forces, which are the cause of wear,
are different. Following formulas have been developed in order to take into account the
difference of the forces of the two cutting lips:

Frpmi (0 = de(t)(cl - c2-1n(1 - %)}cos(Zn-mt + fget ¢wd~sin(m-—t—\\ (5)

: )

Frpm2(t) :=Fgp(t)| ¢; —co-Inf 1 - L \\cos 2Tt + m| 14 ¢yq-sin u)~—t \\ (6)

<)) )
where ¢, ... ¢4 are constants, t. is the total lifetime of the drill, ® is the angular speed of
rotation, Qg is the angular geometrical error due to the tolerance in manufacturing the
drills, 0uq is the difference in wear of the two cutting lips of the drill and Fgp drilling
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process force that scales the size of the forces. The random variation of wear from one
cutting lip to another is taken care of by varying the phase between the cutting forces i.e.
the effect of the difference between the two constants c; and c4. The use of a logarithmic
wear function is based on the use of very simplified wear model which tries to describe
progressive wear [7]. In this kind of case wear rate increases as the forces increase and
since the forces are initiated by the wear this is an accelerating process. The drilling
process force Fqy, can e.g. be calculated based on equations 3 and 4 so that it would take
into account the change of drilling parameters i.e. feed and also the hardness of the drilled
material. Since the simulation model that is developed here is used for the purposes of
development of tool wear monitoring and it is not supposed to predict the horizontal
forces physically correctly, the effect of the tool diameter and radius at the cutting edge
can be neglected as these are not variables for a specific drill that is monitored. Based on
the above the following equation is used for drilling process force:

de =Cs-" HB -f. Fdh (7)

where cs is a constant, Hg is the Brinell hardness of the work piece material, fis feed per
revolution and Fgy is calculated according to equations 1 and 2.

In the vibration velocity signal of most rotating machines, vibration amplitudes at the
harmonics of rotating speed can be seen. There are a number of reasons for this i.e. if the
vibration is distorted in the sense that it is not sinusoidal, Fast Fourier Transform (FFT)
produces these harmonics and also there are quite a number of possible excitations at
these frequencies such as bearing frequencies and those excited by the driving engine
which most often is an electrical motor. In the developed approach a number of excitation
forces at the harmonic frequencies of the rotating speed are assumed to exist. These are
defined by the following summary function which defines harmonic components starting
from the 3™ and reaching to the 11™ harmonic force component:

11

Frrpm(D) = Z ‘:de(l)'(% - %-ln(l - —t')}cos (n'z'n'm't):l (8)

te
n=3
where c6 and c7 are constants, n defines the order of the harmonic component, Fqy(t), @
and t. as defined above.

Another typical factor that is always present in vibration measurements is the noise of the
signal i.e. random fluctuation of the measured signal. Also in the case of noise there are a
number of reasons for it, some of which originate from the measured machinery due to
random excitation which could be caused by many sorts of reasons such as movement of
the machinery or some other machine. In the cutting process the cutting fluid is one
source, and also chip flow causes random vibration. The electrical measuring equipment is
also a source of random fluctuation in the measured signal. In order to make the
simulation model to provide more natural signals, a random component is also introduced
to the calculation of the excitation force. The random force is defined by following
formula:

Fang(t) = rnd(cs) — cg/2 9)
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where cg is a constant and rnd denotes the MathCad program function [9] that produces
an equally distributed random number between 0 and cs.

When the drill starts to vibrate during the drilling process one consequence from this is
that the cutting lips do not cut a round hole and as a result of that the horizontal forces are
not in equilibrium [6]. Because the drill together with the tool holder basically vibrates like
a beam that is only supported from one end it can be expected that vibration at the first
natural frequency of that structure is rather pronounced. Following from this it is logical to
introduce a horizontal force into the dynamic model that gives excitation to the model at
the natural frequency:

Fq(t) :=cos (2-n'f0‘t)~de(t)‘ cg—cyoln 1- —t—\\ (10)
))
where ¢9 and c10 are constants, t. total tool life time, drilling force Fq, as defined above
and f, is the first natural frequency of the drill and tool holder calculated with the
following formula [8]:

1 k
o=l (1)
where m is the mass of the drill and tool holder, and k is the stiffness of the structure. It
should be noted that although the above formula is very simple it is not easy to define the
natural frequency exactly without measuring it. In the following analyses the mass m = 1.4
kg and the stiffness k = 395 N/mm have been chosen to be the same as used in reference
[6] for ad = 15.9 mm drill.

It could also be assumed that due the inhomogeneous nature of the work piece horizontal
forces would be seen. These are not modeled separately, instead it is assumed that a static
force acting for some tenths of seconds into one direction would mainly induce vibration
at the natural frequency of the drill and tool holder. This kind of source is taken care of by
equation 10 and also partly by the random excitation defined by equation 9. In fact in
reference [6] inhomogeneous work piece material is considered the main source of initial
excitation and is induced to the model as a randomly acting force. The assumptions as
described above apply also to the effect that is caused by the fact that drilling does not in
practice start exactly perpendicular against the work piece surface i.e. it is assumed that
equations 9 and 10 take care of this effect, too. Naturally it could be even argued that this
geometrical error might in many cases be very small and consequently also the forces
would be very small.

The final step in the development of the excitation force in the simulation model is to add
together all the five components which have been introduced above. This can be done
simply by calculating the sum of all the five components:

Fu(t) = Fpmi (t) + Frpma(t) + Furpm(t) + Frna(t) + Fo(t) 12)

Since the developed model is not physically exact ie. it is assumed that the force
components that have been presented above do exist in reality but it would be very
difficult to calculate the exact size of each force, and instead of exact solution the model
tries to bring out the features that can be seen in drill wear monitoring. Therefore the
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features of the calculated force sum function fully depend on the chosen parameters. It
should be noted that in theory it would also be possible to try to approach the problem in a
more precise way i.e. trying to look for the actual physical solution. In such a case one
possible approach would be similar to-the one that has been developed in reference [6].
The approach chosen by Yang et. al. follows the principles developed by Chandrasekharan
[4]. In the approach the cutting lips of a drill have been studied in a number of sections,
typically 50 sections and for each one of these the different force components. have been
calculated based on tests in oblique cutting. In principle it would be possible to introduce
wear into such a model by looking at each individual section and by saving the history of
the cutting process in each section so that when the forces get higher the probability of
wear would get higher, and using a random function the material loss would be described.
Naturally this kind of a solution would not really have an equivalent case in reality but
statically this kind of a model could be adjusted to correspond to measured values in
laboratory. The other force components that have been introduced above i.e. harmonic
components and a random component could be with some accuracy defined based on
laboratory tests. The influence of vibration could then be defined using a similar approach
as has been used by Yang et. al. [6] where the actual cutting path influences the drilling
forces. The approach suggested in reference [6] could be further developed if instead of
two degrees of freedom a higher number would be used e.g. using finite element method
(FEM). However, the purpose of this study is to show that even with a relatively simple
approach with proper choice of parameters the typical features of vibration velocity signal
can be seen. The sum force function calculated using equation 12 with the following
values of constants cl = 20, ¢2 =400, c3 =2, c4=1.7,c6 =0.04, c7 =0.08,c8=0.5,c9
=0.02 and c10 = 0.04 and also assuming Fy,= 0.102 (equation 7) is shown in Figure 2 for
the first hole and in Figure 3 for the last hole. In the example the total life time of the drill
is defined to be 15 holes i.e. total tool life is 60 seconds when it takes 4 seconds to drill
one hole. The signals shown in Figures 2 and 3 are supposed to show the development of
the horizontal drilling forces in the sense that in the beginning the time signal of the force
seems to be rather noisy and no one frequency component stands out of the others.
Towards the end of the life of the drill the forces get bigger and the influence of the
defined frequencies such as speed of rotation can be seen.

Dynamic model: The development of the dynamic model follows the principles used by
Yang et al. in reference [6]. It is assumed that the drill and the tool holder can be modeled
like a beam that is rigidly supported at one end and the excitation force influences at the
other end. In the above mentioned reference [6] two degrees of freedom have been studied
basically because of the development of a dynamic model for the drilling force based on
the influence of vibration to the shape of the hole which becomes distorted if compared to
the theoretically round shape. In this study only one degree of freedom is studied since the
excitation force is supposed to take into account the above described phenomenon. The
simplified dynamic model can then be described with the following differential equation

[8]:
mx’% cx’+ kx= Fy(t) (13)
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where m is the mass of the vibrating tool and tool holder, c is damping, k the stiffness and
Fx(t) the dynamic horizontal drilling force defined in the previous chapter. The forced
vibration differential equation can be solved using Runge-Kutta method [8]. In the analysis
MathCad program package has been used for calculation of the vibration response [9].
Figure 4 shows the excitation force and vibration displacement for the modeled tool life
time of 60 seconds. In order to make Figure 4 clearer vibration displacement curve has
been moved from above the force by adding five to the response and subtracting five from
the force values so that the curves do not coincide each other.
0.5 T T T T T T

Excitation force Fx(t)

Time [seconds]

Figure 2. Excitation force in the beginning of the simulation.

Exciation force Fx(t)

.5
56 56.5 57 575 58 58.5 59 59.5 60
Time [seconds)

Figure 3. Excitation force in the end of the simulation.

Signal analysis: Reference [1] gives a summary of the signal analysis methods that have
been used for drill wear monitoring. Most of the references that have been reviewed use
statistical parameters such as root mean square (rms) value in analyzing the time domain
signal. Figure 5 shows the development of such statistical parameters as rms and
maximum value of simulated horizontal vibration velocity as a function of time for the
total tool life time. (It should be noted that for this kind of a simulated signal, the rms
value and the standard deviation value is actually the same.) The parameters have been
calculated using a time constant of 0.05 seconds. The constants and parameters values
have been the same as in the previous chapters for the development of the excitation force.
In reference [2] it is reported that such statistical parameters as rms, mean deviation and
maximum where the best statistical parameters in the analysis of the best measuring signal
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i.e. horizontal vibration. The reported findings correspond very well with the trends seen
in Figure 5 with simulated data.

Force (lower) & response (upper)

0 6 12 18 24 30 36 42 48 54 60
Time [seconds]

Figure 4. Excitation force from equation 12 (lower curve) and response (upper curve).
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Figure 5. Simulated statistical vibratiou-paramgters as a function of drill wear (time).

Figure 6 shows the corresponding statistical parameters from laboratory tests reported in
reference [2]. Although there are remarkable differences between laboratory tests and
simulation the trend is very similar. The biggest difference is that in simulation there is not
much difference whether normalized rms or maximum value is used but in laboratory tests
there is more variation in the maximum value i.e. the process is not as stable as has been
defined in simulation. However, it should be remembered that there is much more
variation when the laboratory test results of individual drills are compared with each other.
The life time of drills varies a lot and also the increase of the normalized statistical
parameters during the lifetime of the tool varies remarkably. Based on the above it can be
suggested that the simulation model can be used e.g. in the development and testing of
expert systems for drill wear monitoring.

An other signal analysis method that has been widely used is the Fast Fourier Transform
(FFT). Figure 7 shows the waterfall presentation of a simulated vibration velocity
spectrum in the frequency range from 0 — 150 Hz. The FFT analysis has been done using
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the same constant and parameter values as in the case of statistical signal analysis. In
spectrum analysis hanning window has been used and the number of points has been 2000
and in the analysis the shown logarithmic spectrums represent the average of three
spectrums calculated with 50% overlap. In Figure 7 the drill wear can be seen rather
clearly. This result again corresponds to the reported result in reference [2] i.e. more
sophisticated analysis functions show the development of tool wear more clearly than just
statistical parameters. However, it should be noted that with such analysis functions like
FFT it is important to know at which frequencies the amplitudes should be followed.
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Figure 6. Statistical vibration parameters from laboratory tests.
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Figurc 7. Waterfall presentation of frequency spectrum showing the influence of wear.
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In this simulation the indication of drill wear can be seen at the excitation frequencies i.e.
multiples of rotational speed and the first natural vibration of the drill and tool holder. In
order for a tool wear monitoring system to work it should have the capability of
calculating these frequencies and following the amplitude trend at these specific
frequencies.

Conclusion: Tool wear monitoring is economically very important but technically a rather
demanding task. In this paper an attempt has been made in order to reach further
understanding of the dynamics that influence the drilling process and especially what
happens when a drill is worn. A very simplified approach has been tested in the
development of the cutting forces and modeling the influence of wear in these forces. Such
factors as geometrical difference of the cutting lips, different kind of wear history of the
lips, vibration at first natural frequency and excitation at harmonics of the speed of
rotation have been taken into account in the development of the excitation force. The
developed forces have been used for excitation of a simplified one degree of freedom
model of the drill. The dynamic model has been used for producing vibration velocity
signal as a function of drill wear and with this signal the most typical and widely used
signal analysis techniques i.e. statistical time domain parameters and spectrum analysis
have been tested. The signal analysis data produced with the developed simplified model
shows similar trends as data measured in laboratory tests and can be considered useful in
the development of an automatic diagnosis program for drill wear monitoring.
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Abstract: An increasing number of Flexible Manufacturing Systems (FMS) have been installed
in Europe during the past few years. The general experience is that the availability of the FMS is
not as high as was originally expected and especially their unmanned use during three shifts has
not been successful. One of the major problems is the deterioration or failure of the tools. To
develop a system to address this, a wide cutting test and analysis program for tool wear was
performed. The test program covered both shank end and end mills together with twist drills and
tread taps. For monitoring the tool wear a number of monitoring methods such as vibration,
acoustic emission, sound, spindle power and current, axial force, torque were tested. The
relations between the analysed signals and tool wear form a basis for the diagnosis rules that are
used in an diagnostic expert system module. An expert system for automated on-line diagnosis of
tool wear of different types of tools was built using a new approach. In this approach the faults
are described in a fault tree database and the corresponding features of condition monitoring
signals together with the machine status information are described in a symptom tree database.
Using a rule synthesiser program the information gathered in the databases is automatically
converted to expert system code.

Key Words: Artificial intelligence, Condition monitoring, Expert systems, Flexible
manufacturing systems, Tool wear monitoring ‘

INTRODUCTION. An increasing number of Flexible Manufacturing Systems (FMS) have been
installed in Europe during the past few years. A general experience is that the availability of the
installed FMS is not as high as was originally expected, and especially the unmanned use has not
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been successful [1]. A major problem is the condition of the tool. One of the most important
reasons for this is today’s existing real-time tool condition monitoring techniques do not cover
the wide range of different machining situations and machining parameters that normally take
place in practice.

There is a need to group and synchronize sensor signals together to avoid poor correlation
between a single signal source and the measured event. However, it is obvious that the
commercially available monitoring systems are exploiting just a limited number of the
capabilities of modern sensor and analyzing techniques [2]. In this survey several sensors were
installed and comprehensive laboratory tests done before the concluding sensor validation [3].
The aim was to accomplish the requirements of condition monitoring at critical points of the
machine tool and in the cutting processes. The validation was performed according to the
following criteria: sensitivity of the sensor to the measured event, correlation between the signal
and measured event, the amount of deviation and universality. The information received from
multiple sensors was analyzed with many different methods. The relations between the analyzed
signals and wear form a basis for the diagnosis rules that can be used in an Al system.

The diagnosis of the condition monitoring signals has to be done using an expert system since the
goal is to be able to use FM-systems unmanned in three shifts. One big problem in reaching this
goal is how much the FM-systems differ from each other. From this it follows that an expert
system should be easy to configure for each task. Unfortunately, the behavior of measuring
signals is a function of the machine tool and tool type. In this study a lot of emphasis has been
put on creating a generic solution, and a new approach to configuring an expert system. The basic
idea is to use databases for defining the varying information, and to use specific software to write
the expert system code automatically. The user only defines the necessary data with the aid of
modern tools for database handling and the computer translates that information into a working
expert system code.

TEST ARRANGEMENT. A small horizontal-type machining center with an 11 kW main
motor power was used in the cutting tests for tool and machine tool condition monitoring. The
tests concentrated on tool wear, tool breakage and collision monitoring. Cutting tests were
performed in order to create situations where a measurable event was present due to tool wear or
failure. In this part of the cutting tests, different types of cutting tools were used to. cover a wide
range of different cutting methods. The tools investigated in the tests were shank end mill
(diameter 6 and 10 mm, HSS), end mill (diameter 50 mm with carbide inserts), twist drill
(diameter 3.3, 5.0, 6.8, 8.5 and 10.2 mm, HSS) and thread tap (M4, M6, M8 and M12, HSS).
The tool-monitoring tests were carried out by using different kinds of measuring arrangements.
The main configuration of the measuring arrangement can be seen in Figure 1. A more detailed
description of the measuring arrangement is in reference [3].
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Figure 1. Measuring arrangement

EXPERT SYSTEM. With the increasing complexity of NC machine tools and flexible
manufacturing systems, and with the growth in diversity of systems, it is increasingly difficult for
maintenance personnel to assess the problems rapidly. Long delays in identifying the precise
problem greatly increases downtime and causes even bigger secondary problems in plants. This
is especially true for FM systems where the material flow from a machine tool to another is
performed quickly with a minimum number of buffers.

To automatically identify the condition of the machine tools and cutting process two types of
diagnostics are needed. A reactive diagnosis is needed to identify the cause of a current problem
and a predictive diagnosis is needed where ever it is possible to anticipate the need for a
maintenance action based on the condition monitoring of the machine tool or cutting process.

The development of a diagnostic expert system is based on diagnostic rules which are derived
from the results of the condition monitoring tests. From the results of the analysis it became
apparent that rules would become rather complex if the system were completely generic, i.e.
suitable for a number of different types of FMS environments, and also that there would be a
need to divide the tasks within the system so that responses would be fast enough to perform the
diagnosis in the case of collision and tool breakage also.

Principles of the chosen approach. In order to make an expert system flexible and suitable for a
wide range of FM systems, a new approach for defining and modifying the rules was developed.
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The basic idea is to use the fault tree database definition program for defining the faults, and
describe corresponding condition monitoring tools (symptoms) using the symptom tree database
definition program. After that, the user starts a rule synthesiser program that translates the
contents of the fault and the symptom databases into expert system rule code for the computer
performing the monitoring task. In principle the translation program simply takes one page from
the symptom tree at a time and writes a module to the expert system code from that. The
procedure is shown in Figure 2.

It is considered that there are several advantages to this approach: It is not necessary to write
enormous amounts of expert system code manually. It is very easy to make changes or add more
information and, especially, it is possible to configure the program for a specific FM-system.
Apparently, there are also certain disadvantages to this approach: The amount of code in the final
expert system will be considerable since it is not possible to use the sophisticated features of an
expert programming package. Instead of a sophisticated system the expert system programming
module always writes rather simple modules for each condition defined in the symptom tree.

COFF-LINE

OM-LINE

Figore 2. Principles of the new approach to expert system rule generation,

Fault tree. In the fault tree database the machine tool is defined with the chains of
subcomponents. The number of subcomponent levels is limited to five. For the lowest level of
subcomponents where a principal fault can take place, all the possible faults are described. The
fault tree database program has all the typical search and editing functions of a normal database
program. The structure/window of the fault tree is shown in an example in Figure 3.

Symptom tree. Following the definition of all the relevant faults with the fault tree database, the
next step in building an expert system with this new approach is to define all the symptoms
related to the faults together with information about the machining process. As shown in Figure 4
the following input is defined in the symptom database: fault tree component chain identification,
fault to be processed, tool identification, the status information of the machine tool, machining
information and condition monitoring method information (symptom). The symptom is defined
with signal, general, analysis and limit value information (Figure 4).
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Figure 4. Symptom tree database program window
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SIGNAL PROCESSING. For the automatic analysis of the huge amount of data to be gathered
an interface was created using the Visual Basic programming environment for Windows. The
system gathers the data with a data acquisition board (16 A/D channels, Keithley) and the
necessary calculation procedures are defined using a collection of subroutines (VTX) for this AD

card family.

Data acquisition. The statistical analysis is based on the acquired data. Attached to the
acquisition board, a sample and hold board is used to synchronize dynamic signals. The
measured signals are analyzed with a number of different methods in the time domain and in the
frequency domain. In the case of dynamic signal analysis, only so-called cursor values are
gathered to minimize the amount of information to be stored in the databases. These actions are
also controlled by the interface. The flowchart of data acquisition is shown in Figure 5.
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Figure 5. Level | data acquisition

Signal analysis. Depending on the measured events, the data to be analyzed is first cleaned of
irrelevant signals, e.g., rapid movement during drilling, that has not been recorded during the
actual machining process. Data measured and recorded simultaneously from the sensors is
studied by calculating a number of statistical parameters: arithmetic mean, root mean square
(RMS), mean deviation, standard deviation, skewness, kurtosis, maximum and minimum.
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In the case of dynamic signals containing frequency information, Fast Fourier Transformation
(FFT) techniques are employed [4]. The sample and hold function of the data acquisition board is
used to get data from four channels simultaneously. It is possible to perform a FFT with both
time and frequency domain averaging. Different kinds of analysis functions such as spectrum,
cross-spectrum, frequency response, coherence, coherent output power, autocorrelation,
crosscorrelation, cepstrum, liftered spectrum, 1/3 octave spectrum, 1/1 octave are available.

Regression analysis. The results of the statistical analysis and FFT analyses are further analyzed
using regression analysis techniques. Different regression functions were tested to find the
highest correlation between measured tool wear and analyzed measurement signals. The sets of
data points are approximated as closely as possible with the four smoothing functions [3]: first,
second and third order polynomials and one logarithmic function based on a simplified
mathematical definition of wear [5] using the least square principle.

The degree of the fit is much higher for cursor values of the FFT functions than for the statistical
parameters. This result is logical, since the idea of the FFT analysis is to separate meaningful
information from noise. However, it takes time to carry out the FFT analysis, which makes it
impossible to use the FFT for collision and tool breakage monitoring but enables tool wear
monitoring. The goodness of fit varies with the tool-type. Drilling and shank end milling are the
easiest to monitor. Functions describing how much two signals are related to each other, show a
rather high goodness of fit (3). The use of at least two signals for tool wear monitoring coincides
with the findings of the statistical analysis, since the best methods for monitoring purposes vary
between the tool-types.

Simulation module. This work is focused on problems of automatically identifying the
condition of the cutting process. The simulation program module is used as a tool to see how the
expert system reacts in different kinds of situations with different kinds of limit values for the
chosen regression models. The program fits a selected regression curve to the existing data. The
fitted curves are the same as those used in the regression analyses. After each time the curve
fitting has been done, the program checks to see whether the tool worn-out limit has been
reached, giving a warning when the machining process has to be terminated by the expert system.
The advantage of using the simulation module together with the regression functions is that with
this procedure the amount of measuring data to be stored in the databases is greatly reduced and
the method is not too sensitive for sudden changes in the measuring signals i.e. it is possible to
avoid most false alarms.

Rule Synthesiser. Knowing what signals to process, how to process them and what features or
thresholds to look for after processing, requires considerable knowledge about how tools
deteriorate and the signal processing capabilities that are available. This ‘expert’ knowledge was
gained during the initial experimentation of the project. A key facet of the knowledge is the
processing to perform changes from tool type to tool type. Like traditional expert systems, a
mechanism is needed to allow the expert to naturally specify his knowledge of how to process
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the signals for a given tool. However, the system cannot use one fixed knowledge base, since the
best way to analyze the signals will vary from tool type to tool type. Hence a more flexible
approach to building the expert system is needed, since the ‘expert system element’ will also
change from tool type to tool type.

File Prnd Selup

Figure 6. User-interface window of the simulation program, end milling, upper curve: horizontal
vibration, mean deviation, lower curve: sound, root mean square

The information in the symptom tree database can be viewed as a specification for the knowledge
based rules. Each entry specifies what a rule should look like; what signals to examine, what
processing to perform, which features to extract and what thresholds to use. Using a traditional
expert system environment would be too complex for experts in this domain to specify all this
information. Also, hidden from the expert is the fact that each ‘rule’ has several parts,
corresponding to the above steps. The database front end provides an user interface that is natural
for the expert to use and hides this underlying complexity. Our system uses a ‘rule synthesiser’.
This takes the specification of a rule that is contained in the symptom tree database and
automatically generates the computer programs needed to implement these ‘rules’. Figure 7
shows the steps and database interactions that result from each rule. Contrasting this with the
simple layout of Figure 4, illustrates the gain that results from the use of the rule synthesiser.

The rule synthesiser works by processing each rule specification in the symptom tree database,

breaking each rule into several function calls. It also builds the links between these function calls
so that the data can progress through the steps of acquisition, signal processing, feature extraction
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and testing against the specified limits. In addition, it automatically combines rules into groups,
for example, all the rules to detect worn out 10.2 mm drills. This process hence implements one
of the key ideas of expert systems - let the expert specify the knowledge in a natural way and
have the system do all the hard work.
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CONCLUSION. It has been shown that there exists a great potential to improve the utilization
rate of a machine tool by an advanced condition monitoring system using modern sensor and
signal-processing techniques. A comprehensive cutting test procedure has been carried out with
different tools and measurement arrangements. The recorded signal information has been
processed in several ways, both in the time and the frequency domain. The effectiveness of the
best sensors and analysis methods have been verified in the prediction of the remaining lifetime
of a tool in use. The relations between the analyzed signals and tool wear form a basis for the
diagnosis rules that are used in a diagnostic expert system. A new approach to development of a
rule-based expert system is reported. The approach makes it easy to configure the expert system
for different types of FM-systems with different types of tools. The solution is based on the
adoption of fault and symptom tree databases with sophisticated user interfaces for the definition
of the relevant fault types together with the corresponding monitoring methods. A rule
synthesiser is used to take the specification of a rule and produce the detailed expansion to
control the various sub systems of the condition monitoring system. The hides from the expert
the underlying complexities of the task and lets him specify knowledge in a way that is natural to
him. Without this capability, the system would be too complex to be used by the people who
have the appropriate knowledge, and hence the value of the whole system would be greatly
reduced. This work has combined extensive laboratory testing with the implementation of a state
of the art signal processing environment and an easy to use way to specify the knowledge about
how to interpret the data that is collected. Such a system is not only practical, but is an essential
part of the how automation can be used to increase the utilization of flexible manufacturing
systems.
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ABSTRACT

For the maintenance personnel the key
questions in every day life are: Is
everything working properly and if not
should we do something? It is especially
important to know when some action
should be taken ie. will the machine in
question hold until the next scheduled
maintenance or does it not? Considering
this from the condition monitoring point of
view it is important to get a reliable
indication of an upcoming failure so early
that the necessary maintenance tasks can
be planned well in advance and really
perform them when the production
machinery is stopped for scheduled
maintenance. It is not an easy task to
predict from measured parameters how
quickly the fault will progress. The paper
discusses some possible models for the
progress of condition monitoring para-
meters i.e. how the condition monitoring
parameters indicate the development of
wear as a function of time. The prediction
of the development/increase of these
parameters is based on regression analysis
techniques. The choice of these models is
discussed keeping in mind that for
practical purposes they should be simple

and fast to use. The models are tested with
some very common components which
suffer from a type of wear which tends to
progress with increasing speed towards the
end of the life of the component. The first
example is from tool wear monitoring
where the life of the tool is very short and
the measured values usually follow a
certain trend and the second example is
from a bearing test where the trend of the
measured parameter is not that obvious. In
both cases the suggested regression
analysis technique works very well and can
give prognosis of the further development
of the monitored parameter.

KEYWORDS

Rotating machinery, wear progress,
bearing fault, tool wear, condition
monitoring, monitoring ~ parameters,
regression analysis, diagnosis, prognosis

INTRODUCTION

In the industry the maintenance personnel
need to know when to take action i.e. when
it is necessary to carry out maintenance.

3
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Usually, due to economical reasons, the
maintenance actions should be performed
during a specific period of time when
normal production is not disrupted i.e. they
should be postponed until the next
scheduled maintenance. The big question
in this planning of maintenance is: How do
the maintenance personnel know how long
the machinery keep on running if an
indication of some developing fault has
been seen e.g. in the condition monitoring
signals? Normally the decision whether or
not to stop the machinery immediately or
whether production may continue is based
on the experience of the maintenance
personnel. Skilled personnel who have
many years of experience might have seen
a similar case and can therefore say with
some kind of reasonable probability
whether the component will hold or not.
Unfortunately this kind of diagnosis is not
always correct i.e. every now and then the
diagnosis is wrong and the production
equipment has to be stopped which in turn
causes unscheduled maintenance action
with very high costs. The problem could be
avoided if good methods of prognosis
existed, that could well in advance predict
how the fault will develop based on
condition monitoring data. Unfortunately
this is not the case, this kind of models are
available but only for a rather limited
number of cases. Especially, this kind of
wear models are not available for rotating
machinery. The wear progress models are
not well known and also it is not known
how the monitored parameters indicate the
wear rate. Another factor that makes the
situation even more challenging is the fact
that often the start of the wear progress is
some odd situation which has possibly
only lasted for a very limited amount of
time, e.g. the loads have for some time
increased to such a high level that wear has
started or something has momentarily gone
wrong with lubrication so that tribological
surfaces have suffered.

Vibration monitoring

The judgement of condition monitoring
parameters is typically based on amplitude
levels, ie. if the amplitude of a certain
parameter e.g. root mean square (rms)
value of vibration velocity in a specified
frequency range exceeds a predefined
value a fault condition is diagnosed. The
diagnosis can be based on broadband
analysis i.e. the signal is not filtered [1].
Normally an unfiltered broadband or
overall measurement that provides the total
vibration energy between 10 and 10000 Hz
is used for this type of analysis. The
overall analysis does not provide any
innovation pertaining to the actual machine
problem or failure mode. Changes in both
the speed and load of machinery will have
a direct effect on the overall vibration
levels of the machine, which makes it very
problematic in practise to diagnose
whether a fault is developing. Narrowband
trending, like broadband, monitors the total
energy for a specific bandwidth of
vibration frequencies [1]. The technique
uses vibration frequencies representing
specific machine components or failure
modes. This method provides the means to
quickly monitor the mechanical condition
of critical machine components, not just
the overall machine condition. The
technique provides the ability to monitor
the condition of gear sets, bearing and
other machine components without manual
analysis of vibration signatures. As in the
case of broadband trending, changes in
speed, load and other process parameters
will have a direct, often dramatic, impact
on the vibration energy produced by each
machine component or narrowband. To be
meaningful, narrowband values must be
adjusted to the actual production
parameters. Unlike the two trending
techniques above, signature analysis (fre-
quency analysis) provides a representation
of each frequency component generated by
a machine [1]. Vibration signatures can be
used to determine the specific maintenance
required by plant machinery. Most
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vibration-based  condition  monitoring
programmes use some form of signature
analysis in their programme. In this kind of
monitoring some kind of warning limits
are used. There can actually be a number
of limits so that, if the amplitude of
vibration at some frequency is below a
certain limit, the situation is considered
good, and if it then gets higher, it is
considered as a warning. The latter case
could result in that the interval between
measurements is decreased and then if the
amplitude exceeds a certain value, it is
considered that a fault is present which
should be taken care of very quickly. Even
more limits could be used, ie. if the
amplitude gets higher than the previous
limit, the machine has to be stopped
immediately. The vibration standards also
recognise some kind of prognosis [2] i.e. if
the trend (linear regression) drawn from
three last measurements indicate that an
alarm limit would be reached before the
next scheduled measurement, the situation
is considered as a warning. The term
alarming rate of change has been used to
describe this kind of situation. Naturally,
the maintenance personnel are expected to
take measures in this kind of situation, e.g.
at least additional measurements should be
made prior to the next scheduled
measurement.

Wear models

Wear of rotating machinery is a very
complicated phenomenon since normally
there are two surfaces in interaction though
they are separated with a lubrication fluid.
Basically two types of wear progression
can be distinguished i.e. progressive and
cumulative [3]. An example of the
progressive type of wear process is the
wear volume of a plain journal bearing,
operating with some metal-to-metal
contact. After running-in, there might be a
stable period with a constant wear rate,
until the bearing clearance is high enough
to change the dynamic behaviour of the

shaft, causing an accelerating wear
process. A ball bearing gives an example
of the cumulative type of wear process.
After some minor running-in wear, the
wear rate is almost zero for a long period
of time. During this period, surface fatigue
damage accumulates. Fatigue cracks are
initiated, and after some time the first
metal flakes start to loosen from the
surface of a bearing race. In addition to the
above, quite often the development of a
fault starts when something abnormal takes
place either in relation to lubrication or
load. When an initial fault has occurred
wear usually progresses with an increasing
if not exponentially increasing rate. Based
on a number of studies, Onsoyen [3] has
summarized a simple model for the wear
depth shown in Eqn. 1.

h(t) =he+ h’t (1)

where h(t) is the wear depth, t is the time,
h, is the contribution from running-in and
h’ is the wear rate (the increase in wear
depth per unit of time). The time to failure
is the time t. until h(t) reaches a critical
wear depth h.. In [4] it was assumed that
the wear progression during the tests had
been of a progressive type [3] so that the
wear behaviour at the beginning was
described as mild wear and at the end as
severe wear [5]. To fulfil this assumption,
a simplified numerical expression for the
wear rate was chosen see Eqn 2 [4].

b’(t) = A* t/(tc — 1) (2)

where A is a coefficient which does not
vary as a function of time t. For simplicity,
running-in wear is not accounted for in the
above expression. By integrating the above
formula, a numerical expression for the
wear depth has been developed as shown
in Eqn. 3 [4].

h(t) = - A*t*In(1 — t/to) (3)
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Assuming that vibration at some frequency
is a function of the physical irregularity of
the contact surface, i.e. the fault and initial
vibration which is caused by unbalance,

loads in the motor etc., vibration follows
the format of wear depth shown in Eqn. 3.
This kind of development of vibration
level is schematically shown in Figure 1.
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Figure 1. Normalized vibration showing schematically the influence of progressive wear.

It should be noted that, even though the
formula in Eqn. 2 chosen for wear rate
development is very simple, the curve
shown in Figure 1 very well follows the
type of wear development curves shown in
literature. It also fits well with recorded
vibration data, i.e. very often vibration in
rotating machinery starts to increase
exponentially when a failure has occurred
and is developing in size. In wear
prognosis the purpose is to be able to
diagnose the current state of wear and to
predict the development of wear based on
possible wear models. Naturally it would
be even more tempting to try to develop a
method that could be used for many types
of components suffering from different
types of wear.

POSSIBLE FUNCTIONS FOR WEAR
MONITORING AND PROGNOSIS

Most of the diagnosis tools that are used
today are based on their capability to
recognise or classify the changes in the
parameters that they follow. For example
autoregressive models can well be used to
recognise the change in measured
6

parameters especially if the process is
stable, ie. when the models have been
defined based on recorded data they can
distinguish when a change has taken place.
Assuming that it would also be possible to
model the behaviour of condition
monitoring parameters in faulty situations
as a function of the fault, it would be
possible to predict with these models how
much time there is left until complete .
failure of the machinery. Unfortunately
this type of approach is not practical
because of the amount of modelling
involved. It can be claimed that another
very popular approach today i.e. Artificial
Neural Networks (ANNs) suffer from
similar kind of restriction. ANNs are
typically good in classification tasks i.e.
for diagnosis of changes in the situation.
For example if a net has been trained with
measured parameters in a good condition
of a machine they are capable of
recognising a change in the parameters and
thus diagnose a possibly faulty situation. In
[6] Nandi gives a good comparison of the
classification success rate of various ANNs
and also Support Vector Machines (SVMs)
approaches  together  with  simple
thresholding, and methods like Principal

TRIBOLOGIA - Finnish Journal of Tribology @ vol 22/2003

VI/4



E. Jantunen: Prognosis of wear progress based on regression analysis of condition monitoring parameters

Components Analysis (PCA). It is very
interesting to note the trend that if the
diagnosis method is very simple but relies
on more sophisticated features
(bispectrum) the results are rather good,
and if the diagnosis method is more
sophisticated, more reliable classification
results can be reached with more basic
features (statistical and spectrum). But then
again the opposite seems also to be true,
i.e. with sophisticated approaches based on
sophisticated features the results are not as
good and similarly using simplistic
approaches with simple features does not
give that reliable results. However, it is
very time consuming to try to teach
ANNsto recognise different phases of fault
development. It is by no means an
impossible task but for the method it
possibly is not the best way of using them.
Neural nets have been successfully used
for prediction or prognosis when the
approach is based on a number of input
parameters and the development of only
one or very few output parameters is
predicted. It can be claimed that in
condition monitoring the goal is quite
different. In condition monitoring the
purpose is to be able to do prognosis of the
development of the health of the
machinery in question based on a
minimum number of inputs. When
building diagnostic systems rule based
approaches offer the possibility of
effectively programming the rules of
thumb used in condition monitoring
standards, e.g. if the measured vibration
parameter has become twice that it
originally was in the beginning of the
trending, then a fault is developing and the
machine will probably only last one month
etc. Now if it were possible to model the
wear development as shown in the
previous chapter of this paper it would be
easier to predict the development of the
condition of the machinery. Unfortunately,
in the case of rotating machinery it is very
seldom the case that the exact wear
development of the machinery could be
modelled. However, the idea with the use

of regression analysis is to be able to adopt
the previous development of the monitored
parameter and then based on this and the
knowledge of typical development of
similar cases to be able to predict the
future ie. do prognosis of the future
development of the condition monitoring
parameter in question and in this manner
do prognosis of the development of wear
and predict when the machine part will
collapse so that the machine will not be
able to work properly. In practice
condition monitoring should be easy to
perform and the number of transducers that
are needed should be very limited. Also
because of economical reasons the human
involvement should be minimal and even
the computers used for recording and
diagnosing the data should be as cheap as
possible so that the monitoring system
could in practise be widely used. Based on
the above, regression analysis techniques
offer a number of advantages that are listed
below:

e Smoothens the variation of the data
between individual measurements.

e Makes it possible to remember the
history of the measured parameter with
a limited number of terms stored in a
database or a file i.e. it is sufficient to
store only the summary terms.

e Makes it easier to notice trends in the
data.

e Makes it possible to predict the future,
i.e. how much time there is before the
component will be totally destroyed.

e Enables percentage prognosis, €.g. it is
possible to predict 3 percent in the
future in stead of using an arbitrary
value like one day that would be the
case if the prognosis would be based
on prognosis of some amplitude values
measured earlier (which would have
been measured at constant intervals).

TRIBOLOGIA - Finnish Journal of Tribology @ vol 22/2003

VI/5



E. Jantunen: Prognosis of wear progress based on regression analysis of condition monitoring parameters

e Makes it possible for the prognosis to
be based on the trend of the parameter
in question ie. the prognosis can be
based on how the parameter is
developing as a function of time, in
stead of a single amplitude value which
can vary a lot from case to case due to
varying loading conditions, structural
differences etc.

e The results of the regression analysis
can be used as input to different kind of
models e.g. ANN and SVM and if the
regression models are used for the
prognosis ie. the values of the
parameters are predicted then the
diagnostic models can be used for
prognosis.

Ln Function

The logarithmic wear curve and
consequently vibration parameter model
would at first sight look rather a promising
basis for regression analysis and has
actually been tested in [7] but as a function
it is very problematic in the sense that
parameter t. has to be known in beforehand
or otherwise the mathematics become very
laborious and the actual solution of the
regression curve would be based on
iteration resulting in that the whole idea of
using a simple approach with a very
limited number of summary terms would
be ruined.

3rd Order Polynomial

In [7] the third order polynomial of the
type shown in Eqn. 4 proved to be very
promising for tool wear monitoring.

y(t) = at® +bt* +ct +d (4)

Where y(t) is the monitored parameter as a
function of time, a, b, ¢ and d are
regression coefficients and t is time.
Similarly, good results with the third order
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function are reported in [8] for monitoring
the development of a bearing fault.
However, the third order polynomial
regression curve does seem to have some
drawbacks. If it is tested against the type of
vibration parameter curve shown in Figure
1 it would not be flexible enough to adopt
the exponential shape in the end of the life
of the component. Another very important
factor is that if the regression function has
been used for a long time it tends to get
very stable, i.e. if in practise, it would have
been used for five years for monitoring a
bearing in the industry it would take very
long time for high parameter values to
change the indication of the regression
curve. Due to the drawbacks of the 3™
order polynomial another basically as
simple regression function has been
developed i.e. higher order polynomial that
emphasizes current data with a limited
number of terms.

Polynomial Model of Higher Degree
with Limited Number Of Terms

The idea with higher order polynomial
regression function which has a limited
number of terms and emphasizes current
data, is really to be able to adopt the trend
that can be seen in many of the condition
monitoring parameters, ie. exponential
growth of the parameter towards the end of
the life of the component when wear is
taking place with increasing speed, see
Figure 1. Higher order polynomial can
mimic the In-function to a certain extent.
Figure 2 shows the end of the life-part of
the same simulated In-function as in Figure
1. In Figure 2 the regression analysis is
based on data that is supposed to be
available when only about three percent of
the lifetime remains. Together with the In-
function is shown the prediction made with
a higher degree polynomial, the third
degree polynomial regression function, and
also the first order regression as suggested
by the standard [2]. The prognosis made
with the higher degree function (e=9, =6,
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g=3, constant=1, k=0.95, see Eqn. 5) gives
the best estimate what is going to happen
even though it does not give a clear view
how rapidly the monitored parameter is
changing if wear would be taking place as
fast as indicated in Figure 1. The reason
for third degree polynomial for not to work
at all is simply the fact that in this function
all the data is equally weighted, i.e. current
data is not emphasized and consequently
the function reacts very slowly to the
change. Based on the above it is suggested
that the benefits of polynomial model of
higher degree regression analysis that
emphasizes current data, are:

e Higher order function  reacts
sufficiently quickly to the changes for
the maintenance personnel to react,
even if the fault in the end of the life of
the component is increasing in size and
severity very rapidly.

e Emphasizing current data is another
means to make the analysis quick
enough to adapt the current changes.
(In fact in the approach given in [2]
emphasis is given to only the three last

measurements which actually tends to
make the method in some cases rather
too sensitive, even to the extent that it
might be difficult to say how reliable
the prognosis is when at one time it
shows descending trend and then after
the next measurement the situation
seems to be critical.)

Higher order function is especially
suitable for rotating machines where
the fault, when initiated, often develops
with an exponentially increasing rate
caused by the fact that when the fault
gets bigger the loads get bigger which
in turn increases the rate of wear etc.

Emphasizing current data makes it
possible to use the approach also in
case of varying loading conditions
assuming that the consequences in the
amplitudes of the parameters that are
used in the analysis are limited, or
information of the change of loading
condition can somehow be passed to
the diagnosis model/system.

Vib

high (x)
third (x)

standard (x)

950, 960, 970, 980, 990,

1000,

Time

Figure 2. Prognosis of the development of a monitoring parameter based on regression
analysis, Vib=data also shown in figure 1, high(x)=higher degree polynomial current data
emphasised, third(x) = 3rd degree polynomial, standard(x)=regression as suggested in

standard.
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It is possible in practise to fine-tune the
way the regression analysis emphasises
past and current data. If the load varies
(indication as a parameter or as a change of
relation parameters of which one is more
sensitive to the load than the other) it is
possible to make the analysis more
sensitive to current data so that the
functions adapt to the current status more
quickly, and then let the emphasizing
move to the direction of putting more
weight to the history, and consequently
make the regression curve more stable.
The development of the function given in
Eqn. 5 follows the principles given for
example in [9].

y(t) =at® + bt + ct® + constant (5)

Where y(t) is the monitored parameter as a
function of time, a, b and ¢ are regression
coefficients and t is time. Parameters e, f
and g define the degree of the function and
there is also a constant in the function. The
solution given in [9] is based on the idea of
minimizing the sum of the squares of
residuals where the residual means the
difference between the observed and the
estimated response. The minimization of
the sum of the squares of residuals is done
by finding the partial derivatives for a, b
and c. These derivatives are then set equal
to 0 to form a system of normal equations.
In case of Eqn. 5 there are three unknown
terms i.e. a, b and ¢ and three equations. In
this solution, in the end there are nine
summary terms that need to be calculated
and saved for the definition of the
regression function. It is often good
practice to normalize the parameters that
are fed to the regression curve and, as a
consequence of that, it is practical to use a
constant in the equation that has a value of
one/unity. Equation 5 actually becomes a
second order polynomial regression
function if e is set to 2, fto 1 and g and the
constant are set to 0. Similarly the function
corresponds to third order polynomial
regression function if e is set to 3, fto 2
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and g to 1 and the constant is set to 1.
However this kind of function is not really
the complete third degree polynomial since
the constant is given and not calculated
which of course could be done if the
number of unknowns in the linear set of
equation would be increased to four. In
order to make regression function more
sensitive or aggressive the degree of terms
can be increased e.g. e can be set to 9, fto
6 and g to 3. Naturally this kind of function
does not have all the features of a complete
higher degree function but it is as easy to
calculate as the second degree function and
still behaves especially towards the end of
life of a component very sensitively
assuming that the later measurements are
emphasised at the cost of the values in the
beginning. Introducing a term shown in
Eqn. 6 does this.

p=k" (6)

Where n is the current total number of
samples, i the index in the calculation
summary terms and k is the constant that
defines how much weight the early terms
get when all the terms in the calculation of
summary terms are multiplied with p.
Typically k can have a value such as 0.99
if the process is stable with frequent
measurements where as a value such as 0.6
would mean that the last measurements are
very much emphasised just like the case is
with the standard [2]. Actually the method
given in the standard [2] corresponds to the
use of the first derivative of the regression
curve as a means to predict the future
assuming that regression curve is behaving
in a similar manner as the final three data
points suggest. It is suggested that it is
practical to use a general form higher order
regression polynomial with a constant term
of one/unity when the process is stable and
the analysis is based on a normalised
parameter, i.e. it starts from one, and this
way it is possible to monitor the
development. However, if the process
varies, e.g. because of varying load
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conditions, it is not practical to use the
coefficient in the prognosis because, it in a
way stabilises the starting point which is
not true. Instead the power of the third
term could be zero which in practise means
that actually the value of the
constant/coefficient, when calculated in
this way can have different values as the
loading condition varies (which also means
that the regression function actually has to
be made rather easily adaptive to the
current state, i.e. it should not stick to the
old value very strongly, ie. k has a low
value.)

TESTS

Two examples of the use of the proposed
approach are given. The first example
deals with tool wear monitoring which is a
very similar problem as that of condition
monitoring of rotating machinery. The big
difference actually is that tool wear takes
place in a very short time scale compared
to the wear of machine components.
However, the signals being monitored and
their behaviour are very similar, and
therefore tool wear monitoring is very
suitable for testing purposes. In fact,
because of the short timescale, monitoring
is of even greater importance in the case of
tool wear than with condition monitoring
of components of rotating machinery. The
other example deals with bearing failure,
which is one of the most, if not the most
common part of rotating machinery that is
monitored. The chosen example is
somewhat more complicated than an
ordinary case even though it is from
laboratory tests with constant loading, but
it is really showing the potential of the
chosen approach to deal with more
complicated shapes of signal history.

Tests with drills

Figure 3 shows the results of tests with
twist drills (diameter10.2 mm, cutting
speed 22 m/min, feed 140 mm/min). The
measured parameter is standard deviation
of vibration velocity. Figure 3 shows the
situation when the twist drill is still in quite
good condition and it can still be used. The
regression curves of a higher degree
polynomial (e =9, f=4, g = 0, constant =
0 and k = 0.99) and the third degree
polynomial predict that the level of the
signal will stay more or less at the same
level as has been recorded earlier. Since
standard deviation is a very sensitive
condition monitoring parameter and varies
quite a lot, in this kind of a test the use of
linear prognosis based on three last
measurements, as suggested in [2], is not
practical. The data shown in Figure 4 is
from the same test as in Figure 3, only
from a later stage of the life of the tool in
question. From Figure 4 it is possible to
see that both the higher degree polynomial
and the linear approach according to
reference [2] indicate the end of the life of
the tool very well but the third order
function seems to react a bit too slow. The
main difference between the higher order
and third order function is the fact that in
the higher order regression function
current data is emphasised compared to the
preceding data (k=0.99, see Egn. 6). From
this example of tool wear monitoring it can
be concluded that higher order regression
function that emphasises current data with
a limited number of terms seems to work
very well with this data.

11
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Figure 3. Standard deviation of horizontal vibration velocity of a twist drill, about 1/3 of life
time remaining, y=normalised measured values, high(x)=higher degree regression function,
third(x)=third order regression function, standard(x)=three point regression according to

standard.
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Figure 4. Standard deviation of horizontal vibration velocity of a twist drill, almost complete
life time shown, y=normalised measured values, high(x)=higher degree regression function,
third(x)=third order regression function, standard(x)=three point regression according to

standard.
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Tests with bearing data

Figure 5 shows the results of a bearing test
in laboratory with a small bearing. The
measured parameter is the normalised rms-
value of vibration velocity. Together with
the measured parameter also the higher
degree polynomial regression function
(e=9, =4, s=0, constant=0, k=0.99) and
the third degree polynomial regression
function as well as linear regression as
suggested in [2] are shown. All of the three

regression techniques seem to indicate that
an immediate increase of the measured
parameter could be expected, ie. the
prognosis is that the bearing will suffer
from a failure within near future. However,
it should be noted that the rate of the
increase of the measured parameter at this
moment is possibly not that strong that it
would mean that the component should not
be used anymore.

2,5 T T T T T T T T T 7
y 2 N
high(x)
third
Mird( s - -
standard (x)
A, . AA Vi
1 i A e v s —
1 | | | | | 1 | |
0, 49,28 98,56 147,84 197,12 246,4 295,68 344,96 394,24 443,52 492,8
X
Time

Figure 5. Averaged vibration velocity rms-value from a bearing test, about half the life time of
the bearing, y=rms value, high(x)=higher degree polynomial regression function,
third(x)=third degree polynomial regression, standard(x)=linear regression based on the last

three measured values.

At the specific moment which is studied in
Figure 5, linear regression based on the last
three measured values gives the highest
estimate, higher degree polynomial gives
the next highest and third degree
polynomial gives the lowest estimate for
the following measurement values. This
result is very natural since the third degree
function gives more emphasis to the past
history than higher degree polynomial
function and the linear estimation is really
based on only the latest data.

TRIBOLOGIA - Finnish Journal of Tribology @ vol 22/2003

Figure 6 shows the results from the same
bearing test in laboratory as shown in
Figure 5, but now from a much later stage
of the test. Together with the vibration
velocity rms-value the same regression
functions are as shown in Figure 5 are also
shown in Figure 6. At this moment in time
of the test, linear regression based on the
last three measured values gives an
indication of rapidly decreasing trend but it
should be noted that this type of regression
varies a lot if the signal has not been
averaged so that the data points represent a
long period of time.
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Figure 6. Averaged vibration velocity rms-value from a bearing test, total life time of the
bearing, y=rms value, high(x)=higher degree polynomial regression function, third(x)=third
degree polynomial regression, standard(x)=linear regression based on the last three measured

values.

The third degree polynomial does not
really follow the measured values because
it gives so much weight to the earlier part
of the measured rms-value. The higher
degree polynomial, which emphasises the
current data more than the data from the
beginning of the test, gives a relatively
close estimate of the measured signal. In
this test the bearing actually suffered from
a complete failure at the moment shown in
Figure 6. Based on the tested data it could
be suggested that the higher order
polynomial regression function which
emphasises current data and which is
calculated with limited number of terms
seems to follow the condition monitoring
parameters even in a rather complex case
so that it can give reasonable estimates of
the very near future, i.e. predict the trend
of the measured parameter or, in other
words, it can be used for the prognosis of
the development of condition monitoring
signals. It should be noted that when a
function is used for the prognosis of the
development of a monitoring signal it is
not of great importance how closely that
signal actually shows what has happened
in the past. Another finding is that if a
method that is extremely sensitive to
current data is used it is important to use

14

averaged data so as to get rid of the
extreme variation of the regression
function. However there is a problem
related to this, i.e. how to define how many
points are used in the averaging process so
that the function is not made too slow-
moving to react to the changes of the
measured signal.

CONCLUSION

For the maintenance personnel relying on
condition based maintenance it is of great
importance to know when they should
perform the maintenance actions. Is it
possible to carry on with production until
the next scheduled maintenance or should
the production be stopped immediately? A
similar problem exists with machine tools
and especially with the cutting tools that
are used and changed very frequently. The
question is when should the tool be
changed, since a worn tool can cause a lot
of damage but also the changing of tools
too frequently causes excessive downtime
and higher tool costs. Due to the
complicated nature of wear it is not easy to
predict the future, especially since in
rotating machinery wear tends to progress
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exponentially towards the end of the life of
the component in question. In this paper
some possible models for the development
of condition monitoring parameters are
given ie. how the condition monitoring
parameters may indicate the development
of wear as a function of time. The
prediction of the progressive change of
these parameters is based on regression
analysis techniques. The models have been
developed keeping in mind that, for
practical purposes, they need to be simple
and fast to use. In practise, a high degree
polynomial regression function that has a
limited number of terms and that
emphasises current data seems to work
very well with a simulated exponentially
developing wear. The developed function
also works well in the case of monitoring
drill wear and bearing failure. The real
benefit of a regression function is that it
can into some extent predict the future i.e.
give a prognosis of wear development
based on condition monitoring parameters.
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Tool wear monitoring is important for a number of reasons. Automatic diagnosis of tool wear enables the
unmanned use of flexible manufacturing systems and machine tools. Besides, a worn tool if unnoticed
could cause a lot of damage, i.e. the machined products could be damaged and unfit for their planned
use. As such the machining process is very challenging to monitor due to various reasons. Tool type
and cutting parameters may vary resulting in variation of the monitored parameters. Also, there can be
a lot of noise in the measured signals. The paper deals with the use of regression analysis techniques
together with fuzzy logic in order to overcome the challenges in tool wear monitoring. Regression analy-
sis, based on a higher order polynomial function that emphasizes the most recent measured data and has
a limited number of terms, can very well follow and give prognosis of the development of the monitored
parameters from such signals as vibration, sound and acoustic emission. The use of fuzzy logic makes it
possible to automatically define limits for the monitored parameters and to combine the information from
a number of signals. The proposed approach is tested with data from drilling tests.

Keywords: tool wear; drilling; tool condition monitoring; regression analysis; fuzzy clarification;
diagnosis.

1. Introduction

Tool wear and failure monitoring is very important due to a number of reasons. Unmanned production is
not possible without tool wear and breakage detection. The quality of surface finishing and dimensions
of the product can only be guaranteed with proper tool wear monitoring methods. Full benefit from
the economical tool life cannot be realized without tool wear monitoring. In principle, there are two
approaches in tool wear monitoring, i.e. direct and indirect.

The direct methods include methods that can monitor or measure the tool wear as such. In spite of
many attempts, direct methods such as visual inspection or computer vision etc. have not yet proven
to be very attractive economically or technically. The challenges with direct measuring methods are
related to the demanding environment in machining. The flow of cutting fluid and the flow of removed
material (chips) together with mechanical vibration do not encourage the use of sensitive measuring
equipment. Naturally, it is possible either to protect the measuring equipment during machining or to
do the measurement outside the machine tool, but in both cases the measurement is not taking place on-
line and it has an adverse influence on the effective cutting process since machining cannot take place
when the tool is being measured, taken away from the machine tool or put back in place again.

Indirect methods include methods like vibration, sound, acoustic emission, force, torque and electri-
cal power measurements. These measuring signals are influenced by the wear of a cutting tool and can
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thus be used for monitoring tool wear. Jantunen (2002) gives a summary of the indirect tool wear mon-
itoring methods in drilling. The summary also covers the used signal analysis and diagnosis methods.

Tool wear monitoring with indirect monitoring methods is a very challenging and demanding task.
The cutting parameters may vary, causing variations in the monitored parameters. The work piece ma-
terial can also vary, causing different kinds of response in the measured signals. In the cutting process,
there is a lot of noise in the measured signals due to various reasons, e.g. the flow of cutting fluid in-
fluences the measured signals as does the flow of cutting chips. One way to solve the problem, i.e. to
reduce noise and the influence of outside factors, is to use sophisticated signal analysis methods. Un-
fortunately, this kind of approach does not seem very beneficial because tool wear at the end of tool
life often increases very rapidly as can be seen in the results of this paper or e.g. in the tests carried
out by Subramanian & Cook (1977) and by Pan et al. (1993). This tendency of rapid development of
wear at the end of the tool life means that when an indication of wear is seen in the signals, there is
not necessarily much time left until the complete failure of the tool takes place. In addition, because the
number of tools that can be used in one flexible manufacturing system can be really large, i.e. hundreds
of tools, the analysis and data handling have to be effective.

The suggested approach in this paper relies on the use of a number of indirect tool wear monitoring
methods so as to make the process more robust in the varying cutting conditions. The use of higher order
polynomial regression functions is briefly described by Jantunen (2003). The use of regression analysis
can solve the problem of saving data for a number of tools and it can also make the signal analysis
more stable. To some extent, it also enables prognosis of the development of monitored signals. It is
also suggested here that the automatic use of fuzzy classification could be utilized after the regression
analysis in making the decision whether the tool is worn or not.

2. Tool wear

Tool wear, and especially drill wear, is a rather complicated phenomenon. In their review of tool condi-
tion monitoring in milling, turning and drilling, Rehorn et al. (2004) explained that drilling operations
differ significantly from turning and face milling for several reasons. The major difference is the fact
that drilling is a complex 3D material removal operation, unlike the relatively simple cases of orthog-
onal and oblique cutting. Drills also have vastly different geometries than turning and face milling tools.
They are usually much longer than a turning cutter and have far less cross-sectional area than a face
milling cutter. Drilling operations are also different in that they require the full immersion of the tool,
rather than operating on the periphery or surface as is the case in face milling and end milling.

Thangaraj & Wright (1988) explained that in principle, drill wear is an accelerating process which
takes place at the outer margin of the flutes of the drill due to the intimate contact and elevated tem-
peratures at the tool work piece contact. They also point out how there is a period of initial wear, then
a period of moderate wear and in the third phase a period of excessive wear. El-Wardany et al. (1996)
point out that due to production variations, a drill is typically slightly asymmetric. Accordingly, the two
corners of the drill point wear gradually while maximum wear alternates from one cutting edge to the
other. This alternating process continues until both lips have zero clearance at the margin. The drill then
adheres to the work piece and breaks if the cutting process is not stopped in time. In addition, chip
flow creates significant friction between the cutter and the work piece inside the drill hole. Rehorn et al.
(2004) point out that these frictional forces can significantly change the dynamics of the system and they
can cause the cutter to break. Drills, like other cutters, can fail either from breakage or excessive wear.
Thangaraj & Wright (1988) determined that drills of a diameter less than 3 mm tend to fail by fracture,
while larger tools will fail by excessive wear.
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It is generally known and accepted that cutting forces increase as tool wear increases, see e.g.
Subramanian & Cook (1977), Pan et al. (1993) or Lin & Ting (1995). The same references also show
the logical dependency between cutting forces and wear. The increase of cutting forces due to increased
wear is then the cause of the increase of wear rate although the whole process is more complicated if also
the dynamics and the material properties of the tool were taken into account. From the above, it follows
that drill wear is accelerating, i.e. the wear rate increases as the wear progresses. Therefore, it is possible
to use a similar simplified theoretical approach as has been used in the case of rotating machinery when
defining how wear depth could develop as a function of time, i.e. the shape of this development.

Based on a number of studies, Onsgyen (1991) has summarized a simple formula for the wear depth
shown in (2.1).

h(t) = ho + h't, @.1)

where h(z) is the wear depth, ¢ is the time, & is the contribution from running-in and /' is the wear rate
(the increase in wear depth per unit of time). The time to failure is the time 7 until /(¢) reaches a critical
wear depth h.. It should be noted that (2.1) does not have any physical parameters in it which means
that it is very basic and simply defines the relationship of wear and wear rate. When this formula is used
for tool wear then, instead of using the term running-in wear depth, it might be more relevant to assume
that there are originally differences in the dimensions of the unused tools, i.e. they are not absolutely
symmetrical and their dimensions do not absolutely fulfil the defined geometry. Jantunen & Poikonen
(1993) assumed that the wear progression (of rotating machinery, gear) during the tests had been of
accelerating type, see e.g. Onsgyen (1991) for definition, so that the wear behaviour at the beginning
was described as mild wear and at the end as severe wear, see e.g. Holmberg (1991) for definition. To
fulfil this assumption, Jantunen & Poikonen (1993) chose a simplified numerical expression for the wear
rate; see (2.2).

h'(@t) = Ate/(te — 1), (2.2)

where A is a coefficient which does not vary as a function of time ¢. For simplicity, running-in/(geo-
metrical tolerance) wear is not accounted for in the above expression. By integrating the above formula,
Jantunen & Poikonen (1993) developed a numerical expression for the wear depth shown in (2.3).

h(t) = —At.In(1 —t/t;). 2.3)

Again, it should be noted that (2.2) and (2.3) are not physically explaining tool wear but are numerical
expressions which as a function of time try to mimic the trend seen in tests with cutting tools as a
function of wear. The reason for using this kind of numerical approach for drill wear is simply the fact
that on the basis of literature studies there does not exist a published wear model for twist drills.

Assuming that vibration at some frequency (e.g. natural frequencies of the drill can be seen) is a
function of the physical irregularity of the contact surface, i.e. the fault/wear (influencing the cutting
and chip formation process), and initial vibration which is caused by unbalance, loads in the motor
etc., vibration follows the format of wear depth shown in (2.3). Jantunen (2003) defined this kind of
development of vibration level as shown schematically in Fig. 1.

Even though the formula in (2.2) chosen for wear rate is very simple and does not physically describe
what is taking place when a drill is getting worn, it should be noted that Fig. 1 describes quite well in
principle the development of vibration or any other similar monitoring signal in tool wear reported in
the literature, see e.g. the test results of Subramanian & Cook (1977) and Pan et al. (1993). In the
case of vibration and forces that are measured perpendicular to the axis of the drill, it is well worth
remembering that in theory an ideal drill that has two cutting lips is balanced in this direction. Therefore,

VII/3



50 E. JANTUNEN

8]

Normalized vibration

0 200 400 600 800 1000
Time

FIG. 1. Normalized vibration showing schematically the influence of progressive wear.

the forces and vibration should not actually exist but due to the dynamics and irregularities the type of
development shown in Fig. 1 can be seen in practice. It should also be noted that when the purpose is
to give prognosis of the future development of a monitoring signal, and consequently the wear of the
component in question, it is essential to know the shape of the wear function as e.g. shown in Fig. 1.

3. Tool wear monitoring

There are so many influencing factors due to random noise, variation of cutting parameters and cut-
ting tool and work piece material that tool wear and failure monitoring is a very demanding task. As
Jantunen (2002) showed in the summary based on 31 references in which tool condition monitoring in
drilling have been studied, quite a number of different methods have been tested and suggested. The
most widely tested method is the measurement of the feed force but it could be argued whether feed
force measurement can be done so effectively in practice that it could be in daily use. Vibration, sound
and acoustic emission are easier to measure when the sensor type and its positioning is considered. In
their study based on about 25 drill monitoring related references, Rehorn et al. (2004) came to the same
conclusion about the popularity of monitoring methods. The similarity of conclusion is very natural
since both reviews use mostly the same references which have been available in this field of research.
Jantunen & Jokinen (1996) tested a number of measuring methods together with a number of signal
analysis methods. The conclusion was that vibration was the most effective method in monitoring tool
wear, and that more complicated signal analysis methods such as fast Fourier transform (FFT) gave
a more reliable indication of tool wear than the simpler statistical parameters. However, the problem
with more sophisticated analysis methods is that the analysis takes time and in that sense the more
sophisticated approaches might sometimes be too slow to react to the rapid degradation of the tool.
Also, the amount of data that needs to be saved during the monitoring might be excessive to be handled
in case a large number of tools are used. Figure 2 gives an example of statistical measuring data. Four
drills have been tested and the statistical parameter shown is the normalized vibration velocity root mean
square value (rms-value) on a logarithmic scale. It is evident that there is a lot of variation from one tool
to another. The tool life varies as does the measured parameter value. Although some of the variation is
due to the difference of cutting parameters, there is also remarkable variation from test to test shown in
Fig. 2 and also reported by Jantunen & Jokinen (1996) which means that it is not realistic to expect that
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FIG. 2. Vibration velocity rms-value from four drilling tests.

some absolute level of such a simple parameter could give an indication that the tool should be changed
due to wear.

El-Wardany et al. (1996) described similar difficulties with vibration monitoring in the following
way: 1) Materials such as cast iron are not homogeneous and will affect the amplitude of the vibration
measured, and this may cause false alarms. 2) Tool damage in drilling produces a high level of transient
vibrations (spikes) which are largely attenuated by the averaging procedure typically used in spectrum
calculation, and this makes it difficult to extract a discriminating feature to distinguish the change in the
tool conditions. 3) Non-uniform hardness of the work piece material, built-up edges and micro-cracks
can also cause false alarms by increasing the vibration amplitude. In order to minimize the effects of
these difficulties when monitoring the change in drill condition, El-Wardany et al. (1996) have used
averaging, varying the number of averages from 6 to 10 depending on the phase of the drill life.

4. Polynomial regression model of higher degree with limited number of terms

One possible way to handle the problem described above of saving a lot of data is to use regression
analysis techniques which results in that only the summary terms need to be saved for each tool and
each analysed parameter. A higher order regression function can actually quite well mimic the wear
development or the development of a monitoring parameter shown in Fig. 1. Jantunen (2003) suggested
the use of polynomial regression models of higher degree that emphasize the most recent data, with a
limited number of terms.

The development of the function described by Jantunen (2003) follows the principles described
e.g. by Milton & Arnold (1995). Jantunen (2003) suggested the use of the following type of regres-
sion function.

y(1) = at® + bt! + 18 +d, (4.1)
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FIG. 3. Comparison between second-order and ninth-order polynomial regression functions with limited number of terms.

where y(¢) is the monitored parameter, as a function of time. The parameter can be either a statistical
time domain parameter such as rms-value or an amplitude value at specific frequency if FFT has been
used. In this equation a, b and c are regression coefficients and ¢ is time. Exponents e, f and g define
the degree of the function and there is also a constant ¢ in the function. Jantunen (2003) suggested that
relatively high values, such as e =9, f = 6 and g = 3 give good results.

Figure 3 shows a comparison of a second-order polynomial (¢ =2, f =1, g =0andd = 0) and
a ninth-order polynomial (¢ =9, f = 6, g = 3 and d = 1) regression function with limited number
of terms. As can be seen from Fig. 3, the higher order function has a rather similar shape as the wear
function in Fig. 1 and it can be expected to be fast enough to react to the rapid changes close to the end
of the life of the monitored tool. The optimal order of the polynomial regression function has not been
defined, but based on trial and error with limited number of test data, polynomial functions of sixth or
ninth order have given good results while second- and third-order functions react too slowly. It should
be noted here that the original logarithmic wear function shown in (2.3) is not suitable for regression
analysis because it would be very complicated to be handled since it has the time to failure term ¢, inside
the logarithm.

It could be claimed that a simple exponential function could also be used so that the exponent would
be calculated as one of the regression coefficients. This kind of a function really reacts quickly enough
and also has a similar shape as the normalized vibration in Fig. 1. However, the drawback of the expo-
nent function could actually be that it is too sensitive and, consequently, with noisy data it could react
too quickly and thus give unreliable indications. Certainly, a number of other possible functions exist
that could be tested for the purpose of mimicking the development of wear and those parameters used for
monitoring it but it is not in the scope of this paper to try cover the whole range of possibilities. Instead,
the purpose is to suggest a working solution which is much closer to reality than e.g. linear regression
with the last three measurements which is a rather widely used approximation of the development of the
monitoring parameters.
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For emphasizing the most recent data, Jantunen (2003) introduced a factor that is used when the
summary terms in regression analysis are calculated.

pi=q"", (42)

where n is the current total number of samples, i the index in the calculation of the summary terms
and ¢ is a constant that defines how much weight the earlier terms are given when all the terms in the
calculation of the summary terms are multiplied with p. The most important reason for the introduction
of the factor ¢ is that regression analysis functions tend to get very stable, i.e. they do not react to
current data very rapidly if they have been used for some time with similar data. This lack of response
is naturally very contradictory to what has been presented in Section 2 about the rapid development of
wear towards the end of tool life, and hence the introduction of this factor ¢ is needed.

Typically g can have a value such as 0.99 if the process is stable with frequent measurements whereas
a value such as 0.6 would mean that the last measurements are very much emphasized. Again, the sug-
gested values are based on limited testing with a trial and error approach. However, the use of weighting
function worked also well with bearing data that Jantunen (2003) has tested. In order to keep the sum-
mary terms from getting too big for practical reasons, they can be scaled down by dividing them all with
a suitable number. Such a limit could e.g. be two, i.e. whenever ¢ gets higher than two, it is divided by
two and in this manner kept small and consequently the summary terms will not grow too big.

The benefits of the suggested approach are:

o A higher order function reacts sufficiently quickly so that a worn tool can be noticed in time. The data
shown by Jantunen (2003) compare linear, second-order, third-order and higher order polynomial
regression functions and the results are promising as are the results shown later in this paper.

o Emphasizing the most recent data is another means to make the analysis quick enough to adapt to
the current changes. This means that it is possible to handle the change of the cutting parameters and
the change of work piece in this way, assuming that it is accepted that the diagnosis can start some
time after the change has taken place and also assuming that information of the change is passed to
the measuring system. It should also be remembered that a regression function tends to become slow
to react to changes if a lot of data in a constant situation have been gathered without any changes in
the monitored parameter and this kind of phenomenon can also be avoided with the introduction of
the weighting function shown in (4.2).

o A higher order function is especially suitable for tool wear which, towards the end of the tool life,
develops with an exponentially increasing rate, due to the increasing wear leading to increasing loads
which in turn increases the rate of wear and so on as explained in Section 2 of this paper.

o In practice, the suggested higher order function is very easy and fast to calculate and only nine
summary terms need to be saved. In order to keep the summary terms from getting too big, for
practical reasons they can be scaled down by dividing them all by a suitable number. Such a limit
could e.g. be two, i.e. whenever ¢ gets higher than two, it is divided by two and in this manner kept
small and consequently the summary terms will not grow too big.

When considering the possible drawbacks of using a higher order polynomial regression function
with limited number of terms, it could be argued that higher order polynomial regression functions tend
to be unstable especially with noisy data. This is actually a drawback but the use of a limited number
of terms improves the situation at the same time as it makes the calculation more simplified. Another
possible weakness is the problem that higher polynomial dependencies increase the relative error. Again
this is a drawback but unfortunately there is no way avoiding this because of the nature of the problem.
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The development of the monitored parameters tend to be very progressive and whichever regression
function was used, the same problem would exist if the regression analysis was able to follow the trend of
the monitored parameter because here we have a phenomenon where at first there are very small changes
taking place and then after a long period of time the changes are taking place with an increasing speed.

The use of the weighting function does also help because with that the influence of data gathered
long before the time of monitoring is not so remarkable. In fact, it can be claimed that in the developed
approach the regression analysis function actually acts as a filter that removes some of the unwanted
variation of the measured parameters and then gives prognosis of the trend in the measurement. This
trend can be seen in the analysed examples shown later in this paper. Naturally, if only time-series data
smoothing would have been the target of the data manipulation, a much more simplified function would
have been available such as described by Williams et al. (1994) when they give examples of the use of
moving average or exponential smoothing in condition monitoring. The biggest difference between the
suggested approach and those very simple methods is that they do not give prognosis of the forthcoming
trend of the monitored parameter. With this restriction, simple smoothing techniques do not react as
quickly to the changes of the monitored parameter. On the other hand, the suggested approach in this
paper is so simple that there are no practical problems with it in relation to the time it takes for a cheap
and low speed processor to calculate the regression analysis of higher order polynomial functions with
limited number of terms.

5. Fuzzy classification

In order to automatically classify the results of the higher order polynomial regression function, a very
simple fuzzy classification approach following the example shown by Rao & Rao (1993) has been
used. In principle, the idea is that in the beginning, when data are measured from a tool that is in good
condition, some of the early data are used for the definition of fuzzy classification limits for the analysed
parameters. In the approach, the number of classes is limited to eight with the assumption that class 2
means that the tool is in good condition. Higher classes then mean that the monitored component is
getting into a worse condition. Class 1 is reserved for lower values of the monitored parameter, meaning
possibly that the cutting conditions are not similar as in the beginning when the limits were defined in
the first place.

In the definition of the classes, it is logical to use the mean and the standard deviation of the param-
eter in question for the definition since there is always variation in the monitored parameters and it can
be expected that this variation can be used as a basis for the future change of the parameter as a function
of wear. Naturally, this kind of choice has to be tested with the mechanical component, monitoring the
signal and parameter in question so that proper choice of sensitivity can be made. It is probably worth
noticing that it is typical to use mean value and variation or standard deviation of the monitored param-
eter when so-called health indices are defined, e.g. the health index shown by Williams et al. (1994) uses
these parameters. Similarly, these parameters are used for the definition limits in vibration data trending
in international and national condition monitoring standards such as PSK 5705 Standard (2004).

In the developed approach, the classes are defined using the following definitions. The mean value
of each class (class index i = 1, ..., 8) is defined according to the following formula:

ClassMean; = (i —2)jo + u, 5.1)

where j is a coefficient defining the size of the classes, k is a coefficient that defines the shape of
the classes and y is the mean value and o the standard deviation of the first measured parameters.
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FIG. 4. An example of classification limits.

The upper and lower limits of the classes are defined as follows:

LowLow; = ClassMean; — j(1 + k)(c/2). 5.2)
LowHigh; = ClassMean; — j (1 — k)(c/2). (5.3)
HighLow; = ClassMean; + j(1 — k)(c/2). 5.4)
HighHigh; = ClassMean; + j (1 4+ k)(c/2). (5.5)

Figure 4 shows an example of the classification limits (j = 2, k = 0.33, u = 2 and ¢ = 0.5). As-
suming that monitoring is based on vibration measurements and the monitored parameters are statistical
values calculated from the time domain data, it can well be assumed that limits can be automatically
defined based on e.g. the 20 first measured values. In practice, the most important parameter to define in
this automatic approach is the value of coefficient j which defines how sensitive the approach really is
in diagnosing wear. In this paper different values of coefficient j are tested with data from drilling tests.
It should be noted that for practical purposes the first class can be defined to start from minus infinity,
and corresponding to that, the highest class can be defined to go to infinity. Also, only half of the limits
need to be saved in the memory since the HighLow value of a lower class is the same as the LowLow of
a higher class etc. as can easily be seen in Fig. 4.

It could be argued that the introduction of fuzzy logic does not bring a lot of advantages, if any, in
such a simple case as the classification of the drill monitoring data. In fact, if kK = 0 was used, this would
actually mean that the limits would become crisp in the above equations (5.2)—(5.5) which is the same as
no fuzziness at all. However, it can be claimed that in real life the limits actually are fuzzy and we cannot
define exact limits for this type of classes. Also, using fuzzy limits brings some benefits in the following
steps of the approach. In the automatic approach that has been developed for tool wear monitoring,
the step after the fuzzy classification is the use of neural networks for distinguishing between various
cutting conditions and at that stage the introduction of fuzzy classes has a beneficial influence in making
the neural net model more robust. The use of fuzzy logic in pre-processing the input data follows the
principles shown by Rao & Rao (1993).

As discussed in Section 3, the measured data in tool wear monitoring are noisy in practice due to
the nature of the machining process. One possible way to handle this and to make the monitoring more
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FIG. 5. Comparison of simplified rules for combined classification of tool wear.

reliable is to monitor a number of signals and parameters simultaneously, instead of monitoring and
relying on just one single signal. Figure 5 shows an example of tool wear monitoring where the diagnosis
of the state of the tool is based on three different signals (vibration, sound and acoustic emission), and
altogether eight statistical parameters (rms, mean deviation and maximum for vibration and sound, and
rms and mean deviation for acoustic emission) have been derived from these signals. One of the curves is
based on the highest indication of the eight monitored parameters. In the other curve the final conclusion
is based on a very simple idea, i.e. it is assumed that if only one parameter indicates that the tool is worn,
this is not considered sufficient but instead it is expected that at least two parameters have to give this
indication. This in fact is the same as saying that the second highest class of the calculated classes of
eight signals is the one that rules. Both curves have been calculated using a higher order regression
function. In the regression analysis, the ninth-order polynomial with the sixth- and third-order terms
and a term of unity (because of normalization) has been used. In addition, in both curves, the factor ¢
has been chosen as 0.99 and the classes have been defined so that j is 1 and k is 0.5 in (5.1)—(5.5). In
both curves, the calculation of the mean value and standard deviation is based on the 25 first values.
The tool in question is tool number 42 which is one of the tools for which data are shown in Fig. 2. In
this case the simple classification rule, where the indication of at least two parameters is needed for the
conclusion that the tool is worn, seems to give a more consistent result, i.e. the combined class does not
vary a lot and reaches class 8 in the last measurements when the tool is worn.

Figure 6 shows the influence of the definition of the parameter j in (5.1)—(5.5) defining the fuzzy
limits. In the three chosen cases, j has been 1, 2 and 3 while k has been kept constant, i.e. 0.5 in all of the
cases. In the example shown in Fig. 6, the combination with j = 1 seems to work best and to distinguish
best the difference between worn and unworn tools, since with j = 1 class 8 is reached at the end of the
drill life, whereas with j = 2 only class 6 is reached, and with j = 3 only class 5 is reached. In practice,
it would probably be advantageous to choose the parameters in a conservative way, i.e. in such a way
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FIG. 6. Comparison of three different automatically defined classification limits.

that the indication of a worn tool will be seen rather too early than too late, and hence lower values of j
are suggested in order to be on the safe side. All the other parameters remain the same as in the previous
example. In this case, the classification rule of relying on two indicators is used in all the three cases.

Figure 7 shows a comparison of the ninth- and third-order regression functions together with a
classified case where no regression function has been used. From the figure it is apparent that the use of
aregression function makes the analysis smoother, i.e. it filters out the effect of individual measurements
which in tool wear monitoring tend to vary a lot. There is not that much difference between the ninth-
and third-order regression functions with limited number of terms and hence either one could be used.
Logically, the use of a regression function also gives the ability of predicting the future, i.e. it makes
it possible to give prognosis of the future development of the monitored signal. In this sense, the ninth
order has been better in some tests because it reacts to changes more quickly than the third-order function
but the difference is not very big. In the analyses shown in Fig. 7, the simple classification rule of
following the second highest value has been used, the factor ¢ has been 0.9 and j and k have been the
same as in the previous example (i.e. j = 1 and k = 0.5).

Figure 8 shows the influence of ¢, the factor that emphasizes the current data at the cost of older
data. In the two examples, the values of 0.9 and 0.99 have been used. Naturally, a lower value of ¢
makes the curve more sensitive. In the example of the third-order regression function, the simple rule
of relying on the second highest parameter value and the values j = 1 and k = 0.5 have been used. It
should be noted that the use of a higher order function together with a higher value of ¢ has a similar
kind of influence as using a lower value of g together with a lower order regression function, i.e. the
sensitivity of the response to changes in the measured signal or parameter is rather similar. However,
it can be argued that a higher order regression function can possibly mimic the shape of the simplified
wear curve shown in Fig. 1 more closely and thus give a somewhat better prognosis of the remaining
lifetime of the tool in question, see e.g. Fig. 5.
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FIG. 8. Comparison of the influence of the factor ¢ which defines how much emphasis more recent data has in the regression
analysis.
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6. Conclusion

Tool wear and breakage monitoring is important for economical reasons. Without reliable monitoring
methods, the unmanned use of flexible manufacturing systems is not possible and the quality of products
cannot be guaranteed. In order to be able to diagnose and to do prognosis when the tool is worn, the
progressive development of tool wear and its influence on the monitored parameters are described.
The use of a higher order polynomial regression function is suggested. With the use of the regression
function, it is possible to reduce the amount of data that needs to be saved when automated monitoring
is performed. The regression analysis also reduces the variation of noisy data from a typical machining
process based on simple statistical parameters calculated from time domain data. Since there is a lot of
variation from test to test in these simple parameters, it is also suggested that fuzzy logic can be used
to classify these parameters. An automatic approach for the definition of classification limits has been
developed and tested. Finally, it is concluded that the diagnosis whether a tool is worn and should be
changed should in practice be based on a number of signals and a number of calculated parameters
instead of one monitoring signal and only one calculated parameter. This conclusion is simply based on
the test results where usually there is no similar variation in all of the parameters even though there might
be great variation in one measured signal and parameters calculated from it. Although there are quite a
number of steps in the approach, the methodology is easy to program and does not need a very powerful
processor or a lot of memory in this device. In addition, all the steps can be performed automatically,
i.e. the user does not need to interfere in the process when the developed computer program is used.
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Abstract: An easy to configure hierarchical neuro-fuzzy system has been defined for the
configuration of a prognosis system for condition monitoring of machinery. The system
consists of a number of modules: data acquisition, signal processing, data handling, fuzzy
classifier and a neural net for diagnosis. Data acquisition is based on the use of an AD
card, and signal processing on the use of traditional FFT. The fuzzy classifier together
with the neural network is organised in a hierarchical structure, which enables the easy
configuration of the whole system. The approach is especially flexible in the sense that
the total number of parameters the system can handle is not limited in practice. In the
hierarchical structure the individual sub-models are restricted to handling eight fuzzy
inputs simultaneously. In the system, the type of neural networks can be chosen from a
list of choices based on the desired type of behaviour. In a normal case, parts of the
hierarchical system are configured based on crisp information. Similarly, the features of
neural nets are not used in all of the sub-models and they can be substituted with
arithmetic expressions if there is no need for handling non-linear information or the
behaviour is well known and can be easily defined otherwise.

Keywords: Condition monitoring, Diagnosis, Fuzzy logic, Neural networks, Prognosis,
Signal processing

Introduction: Condition monitoring of rotating machinery has become increasingly
popular in recent years as a result of better understanding of the financial values involved
[ 1 ]. However, when organising condition monitoring in the plant environment, even
though the transducers are still not cheap and cabling can be even more expensive, the
problem in practice is the amount of work often involved in analysing the monitoring
data. The analysis work is also very demanding, and it takes time to train people to a
sufficient level of experience so that analysts become real professionals. Basically for the
above reasons, quite a number of attempts have been made to automate the whole
analysis and diagnosis procedure. The first kind of automatic analysis tools were rule-
based expert systems. The rule-based approach as such can be considered in principle to
be rather generic, assuming the developers have taken into account all possible situations
which can occur with the machinery in question. However, herein already lies the
problem in practice: only well-defined situations can be handled, and this in turn pushes
the solution towards working only with very simplistic machinery. One way to overcome
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this restriction is to use so-called case-based reasoning, where the principle is to develop
a system which can document all possible problems or cases and the corresponding
information from the transducers. Assuming that suitable information from analysis is
available, this kind of approach should lead to quite a reliable result if there is time and
resources to do the definition work. Since the features of condition monitoring signals
can be rather complicated to analyse, and it is not always easy to know when a fault is
present, different types of neural networks or statistical approaches have been used for
this classification task. Basically the idea with the use of neural nets and other numerical
methods is usually rather simple, i.e. let the net see a sufficient number of cases and it can
then learn how the measured parameters are linked and consequently learn how faults can
be recognised. Again, it is rather easy to say where the problem lies, i.e. how the system
can be fed enough information from a set of transducers so that the whole range of
interesting faults are covered in a remarkable set of running conditions. It is not the
purpose of this introduction to try to cover the wide field of artificial intelligence (AI)
and of knowledge based approaches to diagnosis of condition monitoring signals. Instead
the idea is merely to show, using some examples, how solving one problem might lead to
a range of other problems. There are so many approaches and none of them, although
they work well in certain cases, are suitable for every kind of purpose, and that is why
there is still room for new ideas and attempts in this demanding field of engineering and
maintenance. The approach described in the following could be described as an attempt
to combine a number of techniques referred to above in the most suitable way that would
make the system easy to use, reliable, and wide in scope.

Principles of the approach: The system consists of a number of modules: data
acquisition, signal processing, data handling, a fuzzy classifier and a neural net for
diagnosis. Data acquisition is based on the use of an AD card, which can be configured to
work with a number of sensors including, for example, vibration transducers. The system
can also handle the on/off type of crisp information. Signal processing is mainly based on
the use of traditional FFT (Fast Fourier Transform) together with ordinary statistical
parameters. The novelty in signal processing and data handling lies in the use of
regression analysis functions which make it possible to monitor a great number of
different kinds of components, e.g. the tools in a machining process, without running into
problems with available computer hard disk space. In the approach fuzzy logic, neural
networks and case based reasoning are combined to build a system where the user can
easily, through a graphical user interface, use and configure the system. The fuzzy
classifier together with the neural network is organised in a hierarchical structure, which
enables the easy configuration of the whole system. The approach is especially flexible in
the sense that the total number of parameters the system can handle is not really limited
in practice. In the hierarchical structure the individual sub-models are restricted to
handling eight fuzzy inputs simultaneously (see Figure 1). The user can construct the
whole diagnosis model through a graphical user interface. In practice, the most time
consuming task is not the configuration of the system but the adjustment of the limits of
the fuzzy classes, which again takes place through an easy to use graphical user interface
with built-in editing features, such as copying. In the system the type of neural networks
can be chosen from a list of choices based on the desired type of behaviour. In a normal
case, parts of the hierarchical system are configured based on crisp information, and in
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these sub-models the fuzzy classifier does not have its normal function but is merely used
as such to render the treatment of data similar in all cases. Similarly, the features of
neural nets are not used in all of the sub-models and they can be substituted with
arithmetic functions or expressions if there is no need for handling non-linear information
or the behaviour is well known and can be easily defined otherwise. The system has been
programmed using Visual Basic programming language in a Windows operating system
environment and is based on the use of multiple windows [ 2 ]. The major advantages in
the proposed approach are its flexibility of working with different types of machinery and
the possibility to copy parts of the model (=sub-models) from one industrial plant to
another where similar components are used.

r High level diagnosis (basedon 1 ... 8 inputs)J

Sub-model diagnosis Sub-model diagnosis é é
(based on 1 ... 8 inputs) (based on 1 ... 8 inputs)

EERERT e
1T 17

(based on 1 ... 8 inputs)

ERERR

Figure 1. The structure of the hierarchical neuro-fuzzy system.

Data acquisition: Data acquisition is based on the use of an AD card, which can be
configured to work with a number of sensors including, for example, vibration, sound,
acoustic emission, pressure, current, voltage, power, speed of rotation and strain. The AD
card is configured using a graphical user interface. The user is expected to define such
parameters as the sampling rate, number of channels, type of windowing function,
amplification/sensitivity, name of sensor, type (vibration, pressure, strain etc.) of sensor,
units definition, type of averaging and number of averages. The idea is for the system to
be capable of supporting a number of AD cards from a number of manufactures, although
to date it has been configured to support only two models from different manufacturers.

Signal analysis: Signal processing is based on the use of traditional (spectrum, cepstrum)
FFT (Fast Fourier Transform) together with statistical (root mean square, average,
maximum, minimum, skewness and kurtosis) parameters and also the on/off type of
information [ 3 ]. The user has a choice of these parameters and can assign from one to
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eight of them to the system at the lowest defined classification level in a suitable optimal
mix. The novelty in signal processing and data handling lies in the use of regression
analysis functions which make it possible to monitor a great number of different kinds of
components, e.g. the tools in a machining process [ 4 ]. When using regression analysis
techniques, only the regression analysis coefficients are stored in the database. This
markedly reduces the amount of data to be stored, especially if the system is used to
monitor such a complex target that this might become a problem. The available
regression functions are first-, second- and third-order polynomials, and a logarithmic
function developed to indicate or follow the progress of wear and thus to be suitable for
prognosis of the remaining lifetime of the machine component [ 5 ].

Database: All data used by the system is stored in an Access database. The neuro-fuzzy
diagnosis part of the database consists of five tables, as shown in Table I along with the
function of each. The database, although very easily described, is actually the key
element of the whole system. All communication internally is through this database, i.e.
the definition of the structure of the system is there, as is all the measured data saved
there, taken from there for diagnosis, and the results of the diagnosis. The consequence of
the above is naturally that the database size can with time become immense, although
both signal analysis techniques and regression analysis are used to reduce the amount of
data.

Table I. Tables of the database of the neuro-fuzzy diagnosis module.

Table Description

Hierarchy Describes the hierarchy of the system

Measurement-Data-Fuzzy | Gives the measurement results

Measurement-Conditions Describes the measurement conditions

Text Texts that the program uses for communication in different
languages
Diagnosis The results of fuzzy classification

Fuzzy classifier: In the approach, fuzzy logic, neural nets and case-based reasoning are
combined to build a system which the user can easily configure through a graphical user
interface. The fuzzy classifier, together with the neural network, is organised in a
hierarchical structure which enables easy configuration of the whole system. The fuzzy
classifier acts as a pre-processor to the neural net [ 6 ]. The approach is especially flexible
in the sense that the total number of parameters the system can handle is not limited in
practice (i.e. with the limitations given below there can be a total of 4681 lines in the

VIII/4




hierarchy table). In the hierarchical structure the individual sub-models are restricted to
handling eight fuzzy inputs simultaneously. The number of hierarchy levels in the system
is limited to four. The user can construct the model through a graphical user interface. In
practice the most time-consuming task is not configuring the system, but adjusting the
limits of the fuzzy classes, which again takes place through an easy-to-use graphical user
interface show in Figure 2.

%8 Fuzzy classification

x

JUnbalance

i

I

- [Misalignment

[eangfo

=

her re:

Figure 2. User interface of the fuzzy classification module.

The number of fuzzy classes can vary from one to eight. The classes must be continuous
but the user can turn off checking for continuity while changes are being made, and then
turn it on again. In the example shown in Figure 2, the number of fuzzy classes is five.
For all of these inputs the user is expected to give four values which define the limits of
that specific fuzzy class. However, two of these values actually define two values for the
next class, i.e. only two additional values are needed for definition of the next class. In
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practice this means that two plus n times two values are needed in the definition of n
classes. The user interface shows the fuzzy classes graphically. It also gives the user the
opportunity to test what happens when the parameter being classified gets a certain value,
i.e. into which class it falls. It should be noted that all the measured parameters go
through the fuzzy interface, and similarly all the results of fuzzy classification of lower
sub-models pass through this interface. However, not all the classes need to be fuzzy, i.e.
it is possible to define sharp limits between the classes. Sharp limits are often used when
the results of fuzzy classification are passed further on, or when on/off type information
is being handled. The example shown in Figure 2 is from a higher level, i.e. it is not the
lowest level that handles parameters from condition monitoring signals or process status
information. The example shows the fuzzy interface at the level where the diagnosis
system distinguishes between a number of typical faults that can be diagnosed with the
use of vibration measurements.

Diagnosis: In the system, the type of neural networks can be chosen from a list of
choices based on the desired type of behaviour. In a normal case parts of the hierarchical
system are configured based on crisp information, and in these sub-models the fuzzy
classifier does not have its normal function but is merely used as such to make the
treatment of data similar in all cases. Similarly, the features of neural nets are not used in
all of the sub-models, and they can be substituted with arithmetic functions if there is no
need to handle non-linear information. If the behaviour is well known, i.e. it is implicitly
defined what combination of results a fuzzy sub-model means, this information can be
defined into the system through the interface shown in Figure 3. When the updating
routines of the system are started, the hierarchy is first optimised during which all
unnecessary nodes of the hierarchy tree are deleted. After optimisation the system goes
through all the nodes and levels, starting at the bottom. If classification between the
levels is based on neural nets or other algorithms, the whole classification process
proceeds automatically. However, if the user has chosen to specify that a certain
combination in a sub-model should be translated or classified to correspond to a specific
situation, i.e. to a certain number, this combination may not yet have been defined.
Should this be the case, the system will stop and ask the user to make this specification.
In the case of neural nets there is some variation depending on the type of nets used. In
the case of a traditional feed forward network, it is assumed that the user will train the
sub-model first so that it can handle all possible situations [ 7 ]. In the case of self-
organised maps it is possible to let the system organise itself, so that after a learning
period it can handle various situations. The aim is especially to configure a specific
version of the QSOM routine [ 8 ] so it can be used as a self-organising map. For each of
the sub-models, the system shows on the interface the corresponding interpretation of that
model using a colour code. It also shows the result both as a number and as plain text if
the cursor is moved to that point on the interface (see Figure 4). The idea is that when the
system is running continuously, the user can easily identify where the indication of a fault
or something peculiar appears in the system. More specifically, the system shows the
item the user is looking at, and gives information about the fault. Naturally all this
information has had to be defined for the system, and if the number of connected
channels is high this might be quite a task. However, to make the system definition more
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effective in the case of complicated systems, it is possible to copy information from one
parameter to another.

£ Interpretation of classification

Item name |Whole spstem : Hietarchy path: D
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Channel 3 [TGk Var_Aks (mmis)
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r Used classifier

lFuzzy classification combination _'] el

Save andretun |
hierarchy windo
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Figure 3. The interpretation of fuzzy classification.

The copy and paste technique is very practical and saves a lot of time if the machinery to
be monitored has, for example, a number of rolling bearings that are monitored using a
number of acceleration sensors. In principle, all of these are monitored using basically the
same set-up and fuzzy limits at the start, so it is easy to copy the definition of bearing
monitoring for all of these bearings. In practice, the way these bearings behave may vary,
which affects what sort of parameters should be used and what the exact fuzzy limits are.
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However, it is a lot easier to do a little fine tuning than to define the same thing a number
of times from scratch.
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Figure 4. User interface of the hierarchical neuro-fuzzy prognosis system.

The time it takes for the system to go through all the sub-models with all parameters
naturally depends on the number of parameters defined, and on the power of the
computer. With a typical Pentium-type PC it takes only a few seconds if only a few
channels are connected, or several minutes if a number of sub-models are connected. The
user interface shows how the system is progressing. Naturally, if these times are
compared with off-line monitoring lasting 2 weeks they are ridiculously short, but to a
hurried user used to quick responses with a PC, they may feel a lot longer. Especially
during the training and definition phase it may be frustrating to wait for the system to
update, but it is possible to concentrate only on sub-models of interest by clicking off
those parts that are not of interest. Even though a channel is turned off, the definition for
that channel will be held in the database unless purposely altered or deleted. Because the
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structure of the whole system is large it is impossible to show it all at once; consequently
the user can move around in the model using the arrows shown in Figure 4. The user
interface shows the level and channel in question.

Further development: The system is undergoing a testing phase in e.g. the food and
manufacturing industries, power production and the monitoring of conveyors and lifts.
The neural network part of the system cannot be regarded as complete due to the number
of approaches that could be installed. Connections to different kinds of measuring
equipment could widen the scope of the system. In many cases it would be logical to use
the system on the World Wide Web as this could lower the cost of ownership, and offer
ease of upgrading and a larger number of sub-models in the library [ 9 ]. Naturally the
most important thing is to take into account feedback from industrial users, especially
concerning any bugs in the system, and their views on how to make the system easier,
faster and more logical to use.

Conclusion: An easy to configure hierarchical neuro-fuzzy system has been defined for
the configuration of a prognosis system for condition monitoring of machinery. The
system consists of a number of modules: data acquisition, signal processing, data
handling, a fuzzy classifier and neural networks for diagnosis. Data acquisition is based
on the use of an AD card, which can be configured to work with a number of sensors
including, for example, vibration, sound and pressure. The system can also handle the
on/off type of crisp information. Signal processing is based on the use of traditional FFT
(Fast Fourier Transform) together with statistical time domain parameters. The novelty in
signal processing and data handling lies in the use of regression analysis functions which
make it possible to monitor a great number of different kinds of components, like the
tools in a machining process. The fuzzy classifier together with the neural network is
organised in a hierarchical structure, which enables easy configuration of the whole
system. The approach is especially flexible in the sense that the total number of
parameters the system can handle is not limited in practice. In the hierarchical structure
the individual sub-models are restricted to handling eight fuzzy inputs simultaneously.
The user can construct the model through a graphical user interface. In practice the most
time-consuming task is not the configuration of the system but the adjustment of the
limits of the fuzzy classes, which again takes place through an easy-to-use graphical user
interface. In the system the type of neural networks can be chosen from a list of choices
based on the desired type of behaviour. In a normal case parts of the hierarchical system
are configured based on crisp information, and in these sub-models the fuzzy classifier
does not have its normal function but is merely used as such to render the treatment of
data similar in all cases. Similarly, the features of neural nets are not used in all of the
sub-models and they can be substituted with arithmetic functions if there is no need for
handling non-linear information, or if the behaviour is well known and can be easily
defined otherwise. The major advantages in the proposed approach are its flexibility of
working with different types of machinery and the possibility to copy parts of the model
(=sub-models) from one industrial plant to another where similar components are used.
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