
V
TT PU

BLICA
TIO

N
S 590

Indirect m
ultisignal m

onitoring and diagnosis of drill w
ear

Erkki Jantunen

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 1000 PB 1000 P.O.Box 1000

02044 VTT 02044 VTT FI–02044 VTT, Finland
Puh. 020 722 4404 Tel. 020 722 4404 Phone internat. +358 20 722 4404
Faksi 020  722 4374 Fax 020 722 4374 Fax +358 20 722 4374

ISBN 951– 38– 6692– 0 (soft back ed.) ISBN 951– 38– 6693– 9 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235– 0621 (soft back ed.) ISSN 1455– 0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2005 VTT PUBLICATIONS 590

Erkki Jantunen

Indirect multisignal monitoring and
diagnosis of drill wear

A  machine  tool  utilisation  rate  can  be  improved  by  an  advanced  condition
monitoring  system  using  modern  sensor  and  signal­processing  techniques.  A
drilling  test  and  analysis  program  for  indirect  tool  wear  measurement  forms  the
basis  of  this  thesis.  The  results  show  that  vibration,  sound  and  acoustic  emission
measurements are more reliable for tool wear monitoring than the most commonly
used  measurements  of  power  consumption,  current  and  force.  The  scientific
contribution  of  the  thesis  can  be  summarised  as  the  development  of  an
automatically adaptive diagnostic  tool  for drill wear detection. The new approach
is based on the use of simplified fuzzy logic and higher order polynomial regression
analysis,  and it  relies on monitoring methods that have been tested  in this  thesis.
The diagnosis program does not require a lot of memory or processing power and
consequently is capable of handling a great number of tools in a machining centre.

http://www.vtt.fi/inf/pdf/
http://www.vtt.fi/inf/pdf/




VTT PUBLICATIONS 590 

Indirect multisignal monitoring and 
diagnosis of drill wear 

 

Erkki Jantunen 
VTT Industrial Systems 

 

 

Dissertation for the degree of Doctor of Science in Technology to be presented 
with due permission of the Department of Mechanical Engineering for public 

examination and debate in Auditorium 216 (Otakaari 4) at Helsinki University of 
Technology (Espoo, Finland) on the 20th of January, 2006, at 12 noon. 

 



 

 

ISBN 951�38�6692�0 (soft back ed.) 
ISSN 1235�0621 (soft back ed.) 

ISBN 951�38�6693�9 (URL: http://www.vtt.fi/inf/pdf/) 
ISSN 1455�0849 (URL: http://www.vtt.fi/inf/pdf/) 

Copyright © VTT Technical Research Centre of Finland 2005 

 

JULKAISIJA � UTGIVARE � PUBLISHER 

VTT, Vuorimiehentie 3, PL 1000, 02044 VTT 
puh. vaihde 020 722 111, faksi 020 722 4374 

VTT, Bergsmansvägen 3, PB 1000, 02044 VTT 
tel. växel 020 722 111, fax 020 722 4374 

VTT Technical Research Centre of Finland, Vuorimiehentie 3, P.O.Box 1000, FI�02044 VTT, Finland 
phone internat. +358 20 722 111, fax +358 20 722 4374 

 

 

VTT Tuotteet ja tuotanto, Metallimiehenkuja 6, PL 1702, 02044 VTT 
puh. vaihde 020 722 111, faksi 020 722 7077 

VTT Industriella system, Metallmansgränden 6, PB 1702, 02044 VTT 
tel. växel 020 722 111, fax 020 722 7077 

VTT Industrial Systems, Metallimiehenkuja 6, P.O.Box 1702, FI�02044 VTT, Finland 
phone internat. +358 20 722 111, fax +358 20 722 7077 

 

 
Technical editing Leena Ukskoski 
 
 
Otamedia Oy, Espoo 2005 

http://www.vtt.fi/inf/pdf/
http://www.vtt.fi/inf/pdf/


 

3 

Jantunen, Erkki. Indirect multisignal monitoring and diagnosis of drill wear. Espoo 2005,
Technical Research Centre of Finland, VTT Publications 590. 80 p. + app. 110 p. 

Keywords drill wear, condition monitoring, signal analysis, polynomial regression
analysis, fuzzy logic, diagnosis 

Abstract 
A machine tool utilisation rate can be improved by an advanced condition 
monitoring system using modern sensor and signal processing techniques. A 
drilling test and analysis program for indirect tool wear measurement forms the 
basis of this thesis. For monitoring the drill wear a number of monitoring 
methods such as vibration, acoustic emission, sound, spindle power and axial 
force were tested. The signals were analysed in the time domain using statistical 
methods such as root mean square (rms) value and maximum. The signals were 
further analysed using Fast Fourier Transform (FFT) to determine their 
frequency contents. The effectiveness of the best sensors and analysis methods 
for predicting the remaining lifetime of a tool in use has been defined. The 
results show that vibration, sound and acoustic emission measurements are more 
reliable for tool wear monitoring than the most commonly used measurements of 
power consumption, current and force. The relationships between analysed 
signals and tool wear form a basis for the diagnosis system. Higher order 
polynomial regression functions with a limited number of terms have been 
developed and used to mimic drill wear development and monitoring parameters 
that follow this trend. Regression analysis solves the problem of how to save 
measuring data for a number of tools so as to follow the trend of the measuring 
signal; it also makes it possible to give a prognosis of the remaining lifetime of 
the drill. A simplified dynamic model has been developed to gain a better 
understanding of why certain monitoring methods work better than others. The 
simulation model also serves the testing of the developed automatic diagnostic 
method, which is based on the use of simplified fuzzy logic. The simplified 
fuzzy approach makes it possible to combine a number of measuring parameters 
and thus improves the reliability of diagnosis. In order to facilitate the handling 
of varying drilling conditions and work piece materials, the use of neural 
networks has been introduced in the developed approach. The scientific 
contribution of the thesis can be summarised as the development of an 
automatically adaptive diagnostic tool for drill wear detection. The new 
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approach is based on the use of simplified fuzzy logic and higher order 
polynomial regression analysis, and it relies on monitoring methods that have 
been tested in this thesis. The diagnosis program does not require a lot of 
memory or processing power and consequently is capable of handling a great 
number of tools in a machining centre. 
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1. Introduction 

1.1 Background and motivation 

Tool wear and failure monitoring has aroused interest among many researchers 
and research organisations. The background and motivation for this interest is 
that tool condition monitoring is considered important for the following reasons:  

- Cost effective unmanned production is only possible in practise if there 
is a reliable method available for tool wear monitoring and breakage 
detection. For example, based on a recent study it has been claimed that 
in machining centres tool maintenance and tool monitoring cause most 
of the stoppages during unmanned operation [Kuhmonen 1997]. 

- Tool wear influences the quality of the surface finish and the dimensions 
of the parts manufactured. The quality of the surface finish and the 
dimensions are linked to the above mentioned unmanned operation, i.e. 
if this is not monitored or the quantity of tool wear is not monitored, the 
unmanned machining might lead to poor quality. 

- The economical tool life cannot be fully benefited from without efficient 
methods for tool wear monitoring because of the variation in tool life. This 
factor is not economically as important as the above two during drilling as 
far as the cost of tools is considered, but nevertheless economically 
meaningful when the costs of production are studied in detail. 

- Where sudden tool failures are to be avoided, tool changes need to be 
made based on conservative estimates of tool life. This does not take 
into account sudden failures and at the same time leads to an 
unnecessarily high number of tool changes, because the full tool life is 
not benefited from and valuable production time is therefore lost. 

1.2 Research question 

In order to overcome the challenges described in the previous chapter, condition 
monitoring and diagnosis of tool wear is needed. This then leads to the research 
question: How can the wear of the cutting tools of a machine tool be monitored 
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and diagnosed in a practical and reliable manner? Tool wear monitoring is 
difficult because so many factors affect the signals collected, i.e. tool type, 
cutting depth, cutting speed, feed rate and work piece material. Also in a cutting 
process many factors can cause distortion in the measured signals, e.g. cutting 
fluid, changes in the environment, chip formation which is a very dynamic 
process, and the material and geometry which are not necessarily homogeneous. 
In addition to the technical boundary conditions described above, the developed 
solution has to be easy and fast to configure for different environments, since 
otherwise it would not be used. The solution also needs to rely only on a limited 
number of transducers of an acceptable price level, so that the solution can be 
economically extremely well justified. If it is not clear that it will save money, 
industry will not make the investment. Also, in the end a diagnostic system has 
to be so easy to use that no special skills are required for taking it into use and 
interpreting the results. 

1.3 Objectives of the research 

The main goal of this thesis is to develop tools for practical monitoring and 
diagnosis of drill wear. For this purpose a number of sub-goals have to be 
fulfilled. It is necessary to discover which indirect monitoring methods are best 
for drill wear. It is also necessary to identify which signal analysis techniques 
work best for this purpose. For practical reasons the diagnosis has to be made 
automatic, which leads to the use of artificial intelligence and search for a 
suitable approach. In addition the diagnosis has to be reliable, i.e. the use of a 
number of signals is tested in order to be able to handle noise in the 
measurement signals. For practical reasons the automatic diagnosis approach has 
to be easy to configure in various environments. Due to the large number of 
tools in an industrial environment, there is a need to develop an approach for 
handling the great amount of data collected. A method for handling the varying 
process conditions also needs to be developed. Finally the goal is to be able to 
predict or make a prognosis of the remaining life time of the drill in order to 
enable uninterrupted unmanned use of machining tools. 
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1.4 Contents of the thesis 

The thesis is divided into seven further chapters as follows: 

Chapter 2 reviews the current state-of-the-art study of drill wear monitoring and 
diagnosis. Commonly used indirect monitoring methods are described. The most 
common signal analysis techniques are presented. Following these the diagnosis 
methods commonly used for drill wear monitoring are discussed. 

Chapter 3 describes the test and measuring arrangement together with the test 
program. 

Chapter 4 summarises the results of laboratory tests done with various 
measuring methods and signal analysis techniques. This chapter also attempts to 
explain why some measuring signals are better than others and, similarly, why 
some analysis techniques work better than others. 

Chapter 5 presents an extremely simplified dynamic model of the drill and the 
drilling forces and especially how wear influences these forces. The model is 
used for artificially producing vibration data. The model provides further 
understanding about the reasons why certain measuring signals together with 
certain analysis techniques work better than other methods. 

Chapter 6 discusses two possible approaches to automating the diagnosis of drill 
wear by flexible expert systems. Methods of automatic adjustment of the 
diagnosis of the tool condition are given special emphasis, as well as how the 
reliability of the diagnosis can be improved by combining a number of analysed 
parameters. Also are covered the practical aspects of data management in an 
industrial environment.  

Chapter 7 discusses the findings of the thesis in different areas, i.e. the 
measuring methods, signal analysis techniques and the diagnosis based on 
artificial intelligence techniques. 

Chapter 8 concludes this thesis and provides some suggestions for future research. 
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1.5 Scope of the research  

The thesis covers all commonly used indirect monitoring methods such as 
drilling force and vibration, and tries to provide an understanding of which of 
these methods work best in drill wear monitoring. The direct tool wear 
monitoring methods that measure tool wear as such are not studied here. The 
reason is that although many attempts have been made to develop such 
monitoring methods, they still seem to be too complicated and costly for 
practical purposes. Similarly the work covers commonly used signal analysis 
techniques in condition monitoring, and tries to establish their suitability for drill 
wear monitoring. Neither new measuring nor signal analysis techniques are 
developed. However, problems related to the noise of measuring signals and the 
influence of cutting parameters are given a lot of consideration. Also a lot of 
emphasis is given to the consideration of how the drill wear monitoring and 
diagnosis can be made easy or automatic in practice even though there are so 
many factors that influence the monitoring, i.e. cutting process parameters such 
as drill size, drilling speed and feed and also the influence of the work piece 
material. For this purpose regression analysis techniques are studied together 
with fuzzy logic and the hierarchical structure of the diagnostic program. 

Although tool wear monitoring in principle has similar challenges for a number 
of tool types and it could be argued that the same approach could be used, this 
work concentrates only on drilling, which is the most widely used machining 
method and which has some specific features that tend to make it more difficult 
to monitor. These challenges are e.g. the discontinuous nature of the drilling 
process, the great variation in tool size, the difficulties in positioning the 
measuring sensors and the complexities of modelling the drilling process. 

The actual drilling process and drill wear as a physical phenomenon are not 
covered in this work, i.e. only the indirect monitoring signals are studied. 
Similarly the developed simulation model does not try to model the drilling 
forces in such a way that these could be used for the machining process. Instead, 
it merely tries to mimic the features of the measuring signals based on some 
characteristics of the drilling process.  

The aim of the developed approach is not to differentiate between types of drill 
wear such as chisel, corner, crater, flank and land wear. The purpose is simply to 
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detect whether the drill starts to get so worn that is should be changed. In 
addition tool breakage, which is the typical failure mode of smaller size drills, is 
not covered. 

1.6 Scientific contribution of the thesis  

The scientific contribution of the thesis can be summarised as the development 
of an automatically adaptive diagnostic tool for drill wear detection. The new 
approach is based on the use of simplified fuzzy logic and higher order 
polynomial regression analysis, and it relies on monitoring methods that have 
been tested in this thesis. The diagnosis program does not require a lot of 
memory or processing power and is thus capable of handling a great number of 
tools in a machining centre. The work consists of: 

- Extensive testing of monitoring methods and signal analysis techniques. 
Evaluation of the best combination of monitoring methods and signal 
analysis techniques for drill wear monitoring. 

- A simplified simulation model has been developed which can be used to 
produce data with features similar to real data, thus the model helps to 
understand why certain analysis techniques work and others do not. 
Especially the importance of natural vibration modes of drills and the 
influence of drill size on these becomes apparent with the model. This 
model can be used in the definition, training and testing of an automatic 
diagnostic tool based on artificial intelligence. 

- The development of higher order polynomial regression functions with a 
limited number of terms which can be used for filtering the monitoring 
signals, i.e. they remove individual peaks from the measuring signals. 
The regression functions also reduce the amount of data that needs to be 
saved, i.e. only the summary terms of the regression functions need to 
be saved in order to be able to follow the trend of the monitoring 
signals.  

- The introduction of a term into the regression functions, which controls 
the amount of emphasis that older data is given, compared to the current 
data. This feature makes the regression function fast enough to react to 
the rapidly developing increase of monitoring signals at the end of the 
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drill life. It also enables to some extent the feature that monitoring 
signals can adapt to changes in cutting parameters or to a change of 
work piece material. 

- The regression functions can be used to give a prognosis of the 
remaining lifetime of the drill at the end of the drill life. In theory, this 
kind of prognosis could in fact be done fairly early assuming constant 
cutting conditions and homogeneity of the work piece material. 
However, in practice the warning of the end of the drill�s lifetime is 
given in terms of a few percent of the total lifetime prior to the final end. 

- The development of an automatic diagnosis method based on the use of 
multiple signals and a simplified fuzzy logic approach. 

- The use of hierarchy in the diagnostic approach in order to make it 
possible to combine signals and parameters from a number of sources, 
such as the tool wear monitoring parameters and cutting process 
parameters. 
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2. Drill wear monitoring 
Successful tool wear monitoring requires that a number of technical tasks are 
understood and handled. The wear process must be understood in order to be 
able to use proper monitoring signals and signal analysis techniques. Diagnostic 
methods that can analyse the state of the tool automatically must also be 
understood. Because of the complexity of the problem many different types of 
approaches have been developed and tested. There exist a few good summaries 
and reviews of what has been published in the technical literature in this field, 
such as those by e.g. Rehorn et al. [2004] and Byrne et al. [1995]. Dimla et al. 
[1997] give a review of neural network solutions and include information about 
the sensor signals used. In an older review, Cook [1980a] lists both direct and 
indirect methods that have been used for tool wear monitoring and provides 
literature references. Also the somewhat older review by Tlusty & Andrews 
[1983] focuses on sensors used in unmanned machining. Li & Mathew [1990] 
give a good summary of wear and failure monitoring techniques that have been 
used in turning, which is the most widely studied machining process as regards 
tool condition monitoring [Jantunen 2001]; it is probably the easiest to monitor 
because the work piece rotates rather than the tool. There is also a database [Teti 
1995] of references related to tool condition monitoring, which inspired the 
compilation of the database reported by Jantunen [2001]. Publication I gives a 
more thorough summary and publication III discusses the benefits of various 
measuring signals and signal analysis techniques. Drill wear is also covered in 
publication VII. 

2.1 Drill wear 

Tool wear, and especially drill wear, is a rather complicated phenomenon. 
Drilling operations differ significantly from turning and face milling for several 
reasons [Rehorn et al. 2004]. The major difference is the fact that drilling is a 
complex three-dimensional material removal operation, unlike the relatively 
simple cases of orthogonal and oblique cutting. Drills have vastly different 
geometries compared with turning and face milling tools. They are usually much 
longer than a turning cutter and have far less cross-sectional area than a face 
milling cutter. Drilling operations are different in that they require the full 
immersion of the tool, rather than operating on the periphery or surface as is the 
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case in face milling and end milling. Altogether seven different types of drill 
wear can be recognised [Kanai & Kanda 1978]: outer corner wear, flank wear 
(actually two types), margin wear, crater wear, chisel edge wear and chipping at 
the lip. Because of adhering material many of these wear types are in practice 
difficult to measure; therefore the outer corner wear has been used as a measure 
of drill wear since it can be easily and reliably measured [Kanai & Kanda 1978]. 
It is not within the scope of this work to try to measure directly or to increase the 
understanding of what happens when a drill gets worn. Instead, it is recognised 
that in principle drill wear is an accelerating process that takes place at the outer 
margin of the flutes of the drill due to intimate contact and elevated temperatures 
at the tool work piece contact [Thangaraj & Wright 1988]. Thangaraj & Wright 
[1988] explain that there is a period of initial wear, then a period of moderate 
wear and in the third phase a period of excessive wear. Due to production 
variations, a new drill is typically slightly asymmetric. Accordingly, the two 
corners of the drill point wear gradually while the maximum wear alternates 
from one cutting edge to the other. This alternating process continues until both 
lips have zero clearance at the margin. The drill then adheres to the work piece 
and breaks if the cutting process is not stopped in time. In addition, chip flow 
creates significant friction between the cutter and the work piece inside the drill 
hole. These frictional forces can significantly change the dynamics of the system 
and they can cause the cutter to break [Rehorn et al. 2004]. Drills, like other 
cutters, can fail due to either breakage or excessive wear. Based on tests it has 
been determined that drills of a diameter less than 3 mm tend to fail by fracture, 
while larger tools will fail through excessive wear [Thangaraj & Wright 1988]. 
In tests reported in the literature there is often great variation in the wear 
development of the tested drills, as in the tests with 160 drills reported by Kanai 
& Kanda [1978]. 

Drill wear is a highly complex phenomenon, and in the published literature no 
model exists that could describe it well enough to form a basis for drill wear 
monitoring. There are studies that describe the principles of tool wear in 
machining, such as those reported by Zhang et al. [2001] or Bhattacharyya & 
Ham [1969] who develop an approach to model flank wear. This model 
discusses the influence of various wear modes (adhesion, abrasion) and the 
influence of temperature but it does not look at the dynamics. It should be noted 
that this type of study usually concentrates on turning, which is a much more 
stable process than drilling. Material has been published on how to evaluate the 
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lifetime of a tool, for example by Cook [1980b]. There are models that can be 
used to calculate the drilling forces, e.g. in the work by Williams [1974] or 
Watson [1985a, 1985b, 1985c, 1985d] for the estimation of static force 
components. In the references the geometry of the drill is taken into account 
sector by sector and a computer program to calculate the feed and the torque is 
presented. Liu [1987] presents a model to calculate the thrust and torque of 
multifacet drills as a function of drill geometry based on the summation of terms 
calculated for a number of segments. Chandrasekharan [1996] takes into account 
the drill geometry and his model is capable of predicting the drilling forces in 
the different phases of drilling a hole (tool entry, cutting lips only, entire drill). 
Also the rotational effects can be modelled. Following the principles shown by 
Chandrasekharan [1996], Yang et al. [2002] introduce dynamics into their 
model. Many of the references studied in this thesis show how important the 
dynamics are in drilling and how the dynamic response increases as a 
consequence of drill wear. Rotberg et al. [1990] show the most important 
vibration modes. They suggest that the spikes in vibration monitoring of drills 
are generated when the drill tends to stick in the work piece for a very short 
instant (stick slip) and as a consequence the drill tends to unwind. In this 
phenomenon both torsional and compressive stresses are included. As the twist 
increases, the drill releases and continues cutting and hence the impulsive nature 
of vibration is introduced. It is suggested that this phenomenon becomes 
increasingly severe as wear develops. 

2.2 Monitoring methods  

A great variety of monitoring methods have been used and tested for tool wear 
monitoring. In principle there are two possible approaches, i.e. direct and 
indirect methods. Direct methods measure tool wear directly, which means that 
these methods actually measure tool wear as such. Unfortunately these direct 
methods that can be based on visual inspection or computer vision etc. have not 
become economically or technically advanced enough for use in industry, 
therefore they are not studied here. Instead of wear, indirect monitoring methods 
measure something else which must be a function of wear. Publication I gives a 
summary of indirect monitoring methods that have been applied to tool 
condition monitoring in drilling. The following chapters give a brief description 
of the most widely used monitoring methods and try to explain why these 
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methods can be expected to work. A brief description is given of the most 
commonly used measuring methods, signal analysis techniques and fault 
diagnosis approaches. 

2.2.1 Torque, drift force and feed force 

Measuring of cutting forces is very popular in all types of cutting processes. In 
the summary given in publication I the measurement of feed force is the most 
popular method used in drill wear monitoring tests. The second most popular 
method is to monitor torque. It is logical to monitor the cutting forces since they 
increase as a function of wear as reported e.g. by Lin & Ting [1995], Pan et al. 
[1993] and Subramanian & Cook [1977]. In theory, drift force would not work 
in the case of twist drills with two cutting lips, since these two cancel the 
influence of each other and the forces are in equilibrium and thus no indication 
of drill wear should be seen. However, due to production tolerances the cutting 
lips are not exactly identical and a drill is slightly asymmetrical. Therefore, it 
only wears at one lip until the height of both lips is equal [Barker et al. 1993, 
Braun et al. 1982, El-Wardany et al. 1996]. The second lip, which is now 
sharper, starts to cut and this process of alternating the cutting lip continues until 
neither lip has any more clearance at the margin. Although the measurement of 
cutting forces has been a very popular and successful monitoring method in 
laboratory tests, there is a drawback related to their use in normal production. 
The measurement of cutting forces is not easily arranged between the tool, tool 
holder and spindle. A force or torque transducer is relatively big and possibly 
makes the change of tools more complicated. 

Aatola et al. [1994] gain the best indication of drill wear with feed force and 
torque measurements, but at the same time they suggest that the big and heavy 
force and torque transducer used in the tests might have had an adverse influence 
on the measured vibration. Another option is to make the measurement of 
drilling forces from the other direction, i.e. below the table where the work piece 
is positioned. Unfortunately this kind of measurement chain is somewhat longer 
so that the forces are measured further away from the drill. 

Von Nedeß & Himburg [1986] show the dynamic effects including the influence 
of the machine tool and the machining process on drilling and their influence on 
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the feed force and torque. They point out that the drill wear causes a much 
higher increase of the dynamic components compared to the increase of the 
static forces. König & Christoffel [1980] have reached a very similar conclusion, 
i.e. the dynamic components of thrust force and especially torque are considered 
good indicators of drill wear. In the same reference torque is also considered 
good in indicating the risk of tool fracture, whereas thrust force is considered to 
indicate the actual tool breakage better when it has already happened. Also 
Christoffel & Jung [1981] explain how drill wear can be monitored indirectly 
with the dynamic components of thrust force and torque. They also explain the 
self-exciting nature of the dynamics. Brinksmeier [1990] points out the 
importance of being able to measure the dynamic changes of torque signal in 
order to monitor drill wear and fracture. For measuring the higher frequency 
content in a torque signal, a new sensor based on eddy current technology is 
introduced. However, the tested version of the new sensor is relatively big and 
not suitable for monitoring drills with a smaller diameter. Brinksmeier [1990] 
predicts that the size of the sensor can be reduced, enabling a wider size range of 
drills to be monitored.  

Li et al. [1992] verify that the dynamic components of feed force and torque give 
a clearer indication of tool wear than an increase in the average level. In this 
case an attempt is also made to define the rules of how different wear modes 
(chisel, flank and corner) can be distinguished from each other together with the 
capability of detecting tool breakage. The dynamic influence in thrust force and 
torque is also emphasised by König & Christoffel [1982]. With a drill diameter 
of 8 mm they demonstrate how big the change is in the spectrum of thrust force 
at a frequency of 1050 Hz. It is also pointed out how great the difference is in 
the roundness and shape of the drilled hole of a sharp drill and a worn drill, the 
difference being linked to the radial vibration of the drill.  

McPhee et al. [1995] emphasise to the frequency content of the drilling power 
measured using a dynamometer. The drills in question are coated. It is noted and 
measured in the study that the dynamometer has a remarkable influence on the 
vibration response of a drill. In that study the most interesting frequencies with a 
6 mm diameter drill are around 800 Hz which is related to the dynamics of the 
dynamometer, and around 2250 Hz which is considered to be linked to the drill. 
It is concluded that frequency analysis may assist in distinguishing between 
jamming and failure.  
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Lenz et al. [1978] have studied the influence of wear on drift forces. In their 
study, however, the feed force and torque do not give a similar indication. The 
results seem to support the idea that during drilling, the cutting moves from one 
lip to another as discussed previously. 

2.2.2 Vibration and sound  

Vibration is the most widely used measuring method in condition monitoring of 
rotating machinery. However, it has not been as popular in drill wear 
monitoring, possibly due to the amount of noise in a typical cutting process. 
Vibration measurement is easily arranged, since an accelerometer can easily be 
installed close to the spindle bearing and no modifications of the machine tools 
or the work piece fixture are needed [El-Wardany et al. 1996]. There is no effect 
on stiffness and damping properties of the drilling system and the sensor can 
also be mounted on the table close to the cutting action [Abu-Mahfouz 2005]. 
Abu-Mahfouz [2005] points out that accelerometers, when properly shielded, 
have good resistance against coolants, chips, electromagnetic and thermal 
influences. It is logical to expect vibration measurements to react to tool wear, 
because if in a dynamic system such as the machine tool the cutting forces 
increase, the dynamic response will also increase. As explained in the previous 
chapter, the drift forces can be used for monitoring drill wear, and these forces 
are also the cause of increasing vibration as a function of wear. Unfortunately 
there are a number of drawbacks related to vibration monitoring. Besides the 
influence of tool wear, the vibration signal is influenced by the work piece 
material, cutting conditions and machine tool structure.  

Abu-Mahfouz [2003] has used vibration measurement to detect drill wear and also 
to differentiate between different types of wear, i.e. chisel, crater, flank, edge and 
outer corner wear. Narayanan et al. [1994] concentrate the diagnosis of drill bit 
wear on higher frequencies around 10 kHz. From their results it seems clear that 
the best indication of drill bit wear is seen at these frequencies. However, the 
geometrical details of the tool and tool holder are not reported and there is no 
explanation of the reasons why these frequencies are the best for drill bit wear 
monitoring. Also Barker et al. [1993] used vibration acceleration for monitoring 
the wear of drill bits, which were for drilling holes into electronic circuits. 
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Similarly to vibration, also sound can be used for drill wear monitoring. 
Mechanical vibration of the machine tool, tool holder and tool is partly 
transferred to airborne vibration, i.e. sound. Consequently the same information 
observed from vibration signals can be obtained from sound measurements 
recorded with a microphone. Sound measurements, although very easy to 
perform, have not been widely used, probably because they are affected by noise 
to an even greater extent than vibration measurements. In the tests covering a 
number of monitoring methods reported in publication II, vibration monitoring 
was the most effective method.  

2.2.3 Acoustic emission and ultrasonic vibration  

In addition to mechanical vibration up to 20 kHz, a higher frequency range has 
been used for monitoring drill wear. Vibration measurements in the frequency 
range 20�80 kHz are in the literature called ultrasonic vibration [Hayashi et al. 
1988]. The use of ultrasonic vibration has been justified by pointing out that at 
lower frequencies structural vibrations are dominant, and that higher frequencies 
suffer from the joints commonly found in machine tools; thus ultrasonic 
vibrations are especially suitable for e.g. drill breakage detection. There are a 
few other studies, such as those by Kutzner & Schehl [1988], König et al. [1992] 
and Schehl [1991], which describe the results with ultrasonic vibration 
measurements, but the technique has not been widely used. It should also be 
noted that in these studies the emphasis is on such a low frequency range (most 
of the information was obtained at frequencies below 60 kHz) that although 
König et al. [1992] and Schehl [1991] describe it as acoustic emission, some 
others would call it ultrasonic vibration.  

It is interesting to note that results reported with drills with very small diameters 
from 1 to 3 mm are good with this technique. König et al. [1992] point out that 
with such small drills the spindle current does not work, cutting forces do not 
give as good an indication as acoustic emission, and especially with the smallest 
drill diameters it is not possible to predict the upcoming tool breakage; acoustic 
emission does, however, give some indication even with such small drills. In 
another study [König et al. 1989] the same research team recommends the use of 
the frequency range 5�40 kHz. 
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König et al. [1992] discuss the advantages of using acoustic emission in 
monitoring drill wear, especially that of small drills. However, their signal 
analysis technique of a band passing the signal in the frequency range 1�5 kHz 
actually means that this kind of measurement is normally defined as mechanical 
vibration, although the used sensor is capable of measuring higher frequencies 
up to those defined as acoustic emission. Waschkies et al. [1994] suggest the use 
of an average value of acoustic emission measured in a wide frequency range of 
0.1�1 MHz for drill wear monitoring.  

2.2.4 Spindle motor and feed drive current 

Spindle motor current is in principle related to measuring torque, although the 
measuring chain is longer. Similarly, measuring the feed drive current can be 
considered identical to measuring thrust force, although again through a longer 
measuring chain. Since they are so easy to measure, both the spindle motor 
current and feed drive current have been used relatively widely in test, e.g. by 
Adamczyk [1998], Li [1999], Ramamurthi & Hough [1993] and Routio & 
Säynätjoki [1995]. Li [1999] reports good results with spindle current and feed 
force current monitoring of breakage of small drills. The tested drills have a 
diameter of 1�4.5 mm, i.e. they are so small that the breakage is the typical 
failure mode [Thangaraj & Wright 1988].  

Ramamurthi & Hough [1993] use the spindle motor current and feed motor 
current for tool wear detection with good results. In this case these signals are used 
together with thrust force measurement, which is used to predict tool failure. One 
of the purposes of their study was actually to test whether the current sensor would 
be sufficient for drill wear monitoring, since it is cheaper and easier to use than 
other measuring methods. From this it is concluded that if wear is not diagnosed 
then tool failure is predicted or vice versa, i.e. in this case the combination of two 
measuring techniques improves the reliability of the diagnosis.  

Kim et al. [2002] predict the flank wear of a twist drill based on measured 
spindle motor power. The developed theory starts from the model reported by 
Williams [1974]. The cutting torque is divided into three components, i.e. lip, 
chisel and margin components. Of these only the lip component depends on the 
flank wear of the drill. This dependency is shown to be remarkable. In the tests 
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the accuracy of predicting the drill wear for a drill with a 4 mm diameter was 
0.02 mm for flank wear, whereas the flank wear criterion requiring drill 
replacement was 0.18 mm. Because of the structure of the model, also the effect 
of the feed rate change can be handled.  

Adamczyk [1998] emphasises to the disengagement phase of the drilling 
process. In this phase both the feed drive current and spindle current were highly 
correlated with the flank, corner and margin wear of a drill with a 10 mm 
diameter. In fact the correlation was higher with current measurements than with 
acceleration measurements. The results reported by Routio & Säynätjoki [1995] 
on the use of spindle power for drill wear monitoring are not encouraging. 

2.3 Signal analysis techniques 

Various signal analysis techniques have been used in the context of drill wear 
monitoring. It is very important what kind of signal analysis technique is used. 
In principle the signal analysis tries to identify the meaningful part of the signal 
that is giving an indication of wear, and to remove the noise, i.e. parts of the 
signal that do not contain or show a wear-related trend. The used signal analysis 
method should be quick to perform, because during drilling the wear progresses 
very rapidly towards the end of the tool life, as explained in Chapter 2.1 of this 
thesis. In a case where drill wear is monitored in a machine tool where a great 
number of tools might be used, the amount of data that needs to be saved in 
relation to signal analysis is of some importance. Thus if a lot of information 
needs to be saved in order to follow the trend in parameters calculated with the 
signal analysis as a function of wear, the hardware must have sufficient data 
storage capability. The following chapters give a short introduction to the most 
important signal analysis methods and how they have been used in the reported 
literature. Publication I gives a more thorough presentation of the current use of 
various signal analysis methods in drill wear monitoring. 

2.3.1 Time domain signal 

The time domain signal is the first thing that is seen when a measurement is 
performed. Typically today the measurement is performed using a computer 
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with an AD card or with some measuring equipment that performs the AD 
conversion. Already at this stage the frequency at which data is gathered 
influences the result, i.e. if data is gathered at a lower frequency than what the 
transducers can measure, this actually means that information at high 
frequencies is not properly treated. It is not practical to save the raw time data 
for long periods of time and for a number of tools. Typically some statistical 
parameters are calculated from the time domain raw data, and these parameters are 
then saved and used for diagnosis of tool wear. When calculating the statistical 
parameters the choice of sample length influences the results. The root mean 
square (rms), arithmetic mean, standard deviation and kurtosis are examples of 
time domain statistical parameters. Formulae for calculating these parameters are 
found in a number of books, e.g. that by Press et al. [2002] which also gives the 
computer code in C++ to calculate the most typically used parameters. 

Noori-Khajavi [1992], Noori-Khajavi & Komanduri [1993] and Noori-Khajavi 
& Komanduri [1995a] used mean value and variance with force and torque 
transducers. In these tests no correlation with drill wear was found in the time 
domain. Lin & Ting [1995] have used average values of thrust force and torque. 
The test material was used for developing a model to calculate the force and 
torque as a function of drill feed, diameter and wear. The authors conclude that 
the models can be used for wear estimation. Liu & Anantharaman [1994] used 
average, peak, rms values and the area of thrust and torque with success. 
Radhakrishnan & Wu [1981] used mean, peak and standard deviation values of 
thrust force and torque signals. In these tests the standard deviation, which in 
practice is the same as the rms value, proved to be the best indicator of wear. 

Thangaraj & Wright [1988] calculated the mean, standard deviation and 
maximum values of thrust force sampled at a low frequency of 40 Hz for each 
hole. With this kind of approach the maximum value gives the best indication of 
wear. The results with mean, minimum and maximum values of cutting forces 
reported by Valikhani & Chandrashekhar [1987] are not promising. The 
statistical parameters were measured for each hole. It is noted that the fluctuation 
of forces increases with drill wear, which could give grounds for drill wear 
monitoring. Tansel et al. [1992] report good results in monitoring the breakage 
of micro-size drills using average and standard deviation values of thrust force. 
In this case the statistical parameters were studied in four different segments of 
drilling a hole. Ramamurthi & Hough [1993] used a number of statistical 
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parameters in connection with spindle and feed motor current together with 
thrust force. The statistical parameters are the rms value (spindle motor current), 
mean value (thrust force) and rms value of the high pass filtered signal (feed 
force current) together with a parameter that indicates the increase in each of 
these as a function of drilling time/wear.  

Schehl [1991] used band pass filtered rms values of acoustic emission with 
success. König et al. [1992] suggest the use of band pass filtering of acoustic 
emission together with the use of a rectifier. The technique has the advantage 
that in this way acoustic emission signal can be gathered at a relatively low 
frequency, which makes the measuring and analysis equipment much cheaper. 
Routio & Säynätjoki [1995] have used maximal stable values of feed force, 
torque, spindle and feed drive current. In these tests the indication of wear and 
tool failure was observed very late because the analysed signals were almost 
constant until they rose very dramatically in the last hole. El-Wardany et al. 
[1996] use the kurtosis value, which is an indicator of peakedness of the signal, 
together with a new parameter called ratio of the absolute mean value, for 
analysing vibration for drill wear and failure monitoring successfully. Kutzner & 
Schehl [1988] suggest the use of a band passed high frequency vibration signal 
for monitoring small diameter drills. The basic idea is that the rotational natural 
frequency should lie in this frequency range.  

2.3.2 Fast Fourier transform  

Fast Fourier transform (FFT) is a means to determine the frequency content of a 
measured signal. The principles of FFT can be found e.g. in a book written by 
Randall [1977]. Basically, the idea of looking at the frequency content of a 
measured signal is based on the concept that at some frequencies wear 
influences the signal more than at some others; thus FFT serves as a means to 
eliminate meaningless information and emphasise more meaningful information 
instead. Braun et al. [1982] discuss the effectiveness of using FFT in the 
development of a trend index for sound signal monitoring together with the use 
of an enveloping technique. El-Wardany et al. [1996] use FFT to calculate the 
power spectrum and also cepstrum. The power spectrum is used for monitoring 
the drill wear of large drills with a drill diameter of 6 mm. The cepstrum with 
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statistical parameters explained in the previous chapter, are used for detecting 
the tool breakage of smaller size drills with a drill diameter of 3 mm.  

Valikhani & Chandrashekhar [1987] have, alongside the statistical functions 
explained earlier, also used the power spectrum successfully to monitor tool 
wear based on the drift force. However, they indicate that the amount of test 
material is limited and suggest further testing. Govekar & Grabec [1994] used a 
relatively small number of points, 256 in the time domain instead of the typical 
2048, for FFT when measuring torque and feed force. The reason for this choice 
is apparently the use of neural networks (self organising map) as the following 
diagnostic tool in the approach.  

Noori-Khajavi [1992], Noori-Khajavi & Komanduri [1993] and Noori-Khajavi 
& Komanduri [1995a] report that use of the power spectral density (PSD) 
function gave better results in drill wear monitoring than the statistical 
parameters described in the previous chapter. The PSD function was calculated 
for thrust force, torque and strain measurement in two horizontal directions. In 
this case relatively low frequencies from 50 Hz to 300 Hz gave the best results. 
No individual frequencies were considered; instead the change of area under the 
PSD plots was used. Barker et al. [1993] tested higher order spectral (HOS) 
functions calculated for vibration for drill wear detection, and compared these 
with the normal power spectrum approach. With the tested material the HOS 
approach gave a higher detection rate of drill wear, although at the same time the 
false alarm rate also increased. 

2.3.3 Other analysis techniques  

Envelope detection is one method of signal analysis that has become popular 
especially in rolling bearing fault detection. Envelope detection is a means of 
looking at the signal energy contents in a certain frequency range. Typically this 
range is rather high, i.e. of the order of 10 kHz, and the idea is that by using 
band pass filtering it is possible to concentrate on the information in this range. 
Braun et al. [1982]] and Braun & Lentz [1986] suggest the use of envelope 
detection or a somewhat further developed signal analysis technique which can 
pick up the information at higher frequencies for drill wear monitoring using 
sound signal measurements. Hayashi et al. [1988] used envelope detection of 
high frequency vibration (20 kHz � 80 kHz) together with a statistical parameter 
called the clipped running mean, i.e. a running mean from which some higher 
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peaks that pass a certain threshold value have been clipped away. Together with 
this parameter, the number of occurrences of values that are higher or lower than 
certain limits that have been calculated in relation to the clipped running mean 
are followed. These then give an indication of tool breakage.  

Drilling a hole is not a stable process in that the measured signals vary from the 
beginning to the end of drilling a hole. Quadro & Branco [1997] recognise five 
stages and two of these are considered best for monitoring drill wear using 
acoustic emission. In this study acoustic emission is studied using the measured 
area under the rectified signal envelope (MARSE). One approach that can be 
used in signal analysis is autoregressive modelling. Radhakrishnan & Wu [1981] 
use the autoregressive moving average (ARMA) model for modelling the thrust 
force and surface waviness. The approach is suggested for use in on-line 
monitoring of drill wear. 

Wavelet transform is another method that can be used to extract meaningful 
information from the measured time signal. The principles of wavelet analysis 
can be found e.g. in a book written by Newland [1993]. When compared to FFT, 
which only gives information in the frequency domain, or the time domain 
parameters, which only contain information in the time domain, a wavelet can be 
considered to include both of them, i.e. information in the time-frequency 
domain. Li [1999] used wavelet transform for drill breakage detection based on 
AC servo motor current measurements of all four axis motors. The drill size in 
the tests was small, from 1 mm to 4.5 mm in diameter. However, the diagnosis 
was passive, i.e. there was no warning prior to actual breakage. Tansel et al. 
[1993] used wavelets to diagnose a severely damaged micro drill from a new 
one. The monitored signal was thrust force. Again there is no indication whether 
a warning was obtained prior to the drill being severely damaged. Hiebert & 
Chinnam [2000] used wavelets to analyse the thrust force and the torque. Some 
of the wavelet parameters were used as input into a neural network, which aimed 
to diagnose the degradation of drill bits. The reliability of the method is 
discussed and it is noted that since many degradation signals increase in slope as 
they approach failure, the accuracy of failure predictions should increase when 
approaching the critical limit.  

Abu-Mahfouz [2003] combines and also compares, in the case of a vibration 
acceleration signal, the effectiveness of statistical time domain parameters such 



 

32 

as mean, variance, skewness and kurtosis, together with parameters calculated 
using discrete harmonic wavelet transform and the eight highest peaks calculated 
with the Burg power spectral density function. In the approach, different types of 
wear can be detected and in that study the parameters calculated with the 
wavelet transform proved to be superior compared to the other methods. 

2.4 Fault diagnosis systems  

Today machining processes are usually automatic and unmanned. However, 
various types of problems or faults in the process necessitate manual 
intervention. Tool wear and breakage is one of the factors that prohibit fully 
automatic production in three shifts. If tool wear and breakage monitoring is 
used, in practice it needs to be automatic, i.e. the system used for tool 
monitoring needs to be able to diagnose the condition of the tool automatically, 
which means that some sort of artificial intelligence is involved.  

Tönshoff et al. [1988] define the components that are needed in a tool wear 
monitoring system: sensor, signal conditioning, model and strategy. The three 
first components are covered in the previous chapters. Strategy means that 
different actions are taken based on the monitored signals. A monitoring system 
only gives an indication or alarm if the signals reach a certain level. A diagnostic 
system tries to find a functional or causal relation between the failures in 
machining and their origin. Adaptive control systems automatically adapt 
machining conditions according to a given strategy. Tönshoff et al. [1988] also 
point out the advantages and challenges of multi-sensor systems, and how they 
bring more information. At the same time the importance of building multi-
model systems is explained. It is claimed that the use of more sensors and 
models results in a more reliable and more flexible supervising process and 
increases the feasibility of better control.  

Ertunc et al. [2001] employed Hidden Markov Models (HMM), which have 
successfully been used in speech recognition, for drill wear detection based on 
thrust force and torque. In the approach three different stages of the tool were 
recognised, i.e. sharp, workable and dull. It is suggested that different models 
should be defined for different cutting conditions since these influence the 
results. In addition to the HMM approach, Ertunc & Oysu [2004] tested a so-
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called phase plane method. They report that one of the benefits of this approach 
is its simplicity, since the thrust force is plotted as a function of the torque, and if 
the tool is in a normal condition the plotted results stay within a predefined 
rectangle. The authors state that even though the method is very simple, it does 
give satisfactory criteria for monitoring tool wear. 

Liu et al. [2000] report the results of using a polynomial network for predicting 
corner wear in drilling operations. The input parameters are cutting speed, feed 
rate, drill diameter, torque and thrust force. The development of a polynomial 
network is rather straightforward, but it means that the network is first trained 
with suitable data. Liu et al. [2000] had 27 training cases and eight test cases. It 
is concluded that the use of thrust force gives a more reliable indication than the 
use of torque. The difference between the predicted corner wear and measured 
corner wear was less than 10% with the test data. 

2.4.1 Predefined limits / rule based systems  

The simplest way to automate the diagnosis of tool condition is to use predefined 
limits for the measured signals and parameters calculated from those signals. 
This means that if a parameter value exceeds the limit given to it, the tool is 
considered worn. The approach can be made more reliable by combining the 
information from various sensors and/or calculating a number of parameters of 
these signals. This information can be combined with the information from the 
cutting process parameters, e.g. using the so-called rule based approach in 
building rules, i.e. the knowledge base, so that a number of conditions need to be 
fulfilled simultaneously. One example could be that if the drill diameter is more 
than 4 mm and less than 5 mm and the drilling speed is � and � etc then �. 
Erdélyi & Sántha [1986] describe the principles of this kind of approach in 
general for a production cell. Publication V addresses the principles of this type 
of approach in greater detail for tool wear monitoring. 

The use of sophisticated analysis methods can be seen as one attempt to make 
the use of predefined limits more reliable and possibly more general. If the 
parameter that is used to detect tool wear is insensitive to other factors, such as 
the cutting speed, it is easier to build rules that define the condition of the tool. 
This highlights one drawback of the rule based approach. If many different types 
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of tools are used in the machine tool, it might be very laborious to build a rule 
based expert system that can detect tool wear and warn of the upcoming 
breakage. However, the rules might also be very simple for each machining 
state/tool and one way to define the limits is simply to define them manually for 
each tool type.  

Another possibility to make the definition of limits more general is to use 
trending, which means that the parameter values are saved when the tool is in 
good condition and the limits are defined at the beginning for the relation of the 
current measurement to the measured value. For example, Thangaraj & Wright 
[1988] use the gradient of the thrust force and state that the proposed control 
system does not require considerable tuning for operation under a wide range of 
cutting conditions. Another example is given by El-Wardany et al. [1996], who 
perform the more sophisticated analysis only when a certain parameter reaches a 
predefined value compared to the initial value. Also Lechler [1988] discusses the 
definition of limit values and how they can be used for tool wear and fracture 
monitoring with various force and strain based sensors. They point out how 
important it is for the personnel to have sufficient training.  

Adamczyk [1998] suggests a relatively simple combination of rules based on 
standard deviation values of the feed drive and spindle current for the stable and 
transient phase of drilling. Basically, if a simple condition is fulfilled in both 
conditions the drill is considered worn. Adamczyk [1998] shows a simple 
procedure for combining information from three different sensors (two current 
and one accelerometer). Takata et al. [1986] present some results with the 
pattern recognition technique, which is based on speech recognition. The signal 
measured and analysed with a sound sensor forms a 16 x 16 time/frequency 
pattern which can be used for defining the cutting state and detecting a broken 
tool. Tönshoff et al. [1988] describe the principles of building a rule based 
approach that relies on the information from three different types of sensor: 
force, temperature and vibration.  

Li et al. [1992] use a simple rule set based on the relationship between the 
current value and the average value of feed force, torque and their dynamic 
components. One of the advantages of the approach is that there is no need for 
training or definition of the limits; instead they are calculated for each of the 
monitored tools. The rule set can also distinguish between various types of drill 
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wear. However, the approach has been developed based on only four tested drills, 
which unfortunately raises the question of how general the results actually are. 

2.4.2 Fuzzy logic  

The rules in rule based systems are usually crisp but they can also be fuzzy, i.e. 
not exact. The principles of fuzzy logic can be found e.g. in a book by Rao & 
Rao [1993]. Li & Wu [1988] categorise drill wear into four fuzzy classes: initial, 
small, normal and severe. In this approach fuzzy limits are defined based on an 
algorithm used for clustering thrust force and torque data. When the data is 
analysed, the result is not crisp but shows membership to each of the four 
classes. The approach works, although only two test cases are shown. In the 
approach, only the parameters (rms value) related to thrust and torque are used 
and a so-called c-mean algorithm is used for defining the relationship between 
the tool conditions and the measured parameters. Du et al. [1995] describe the c-
mean algorithm in a more general form together with other possible approaches 
to linking together the measured parameter values and state of the tool. Xiaoli & 
Zhejun [1998] used this kind of approach for monitoring tool wear during 
boring. The monitored seven parameters in this case were from wideband AE 
measurements which had been treated using wavelet transform. The seven 
parameters were actually a set chosen from 16 frequency bands. The authors 
conclude that the proposed approach can give a high success rate over a wide 
range of cutting conditions.  

Du et al. [1995] justify the use of fuzzy classification by claiming that for dealing 
with uncertainties inherent in the metal cutting processes, fuzzy systems offer the 
advantage of providing systematic means for describing the relationship between 
tool condition and various process signatures. Fuzzy logic can also be used in 
connection with neural networks for pre-processing input data into the network 
and/or post-processing the output of the network [Rao & Rao 1993].  

Li & Tso [1999] develop regression models for spindle motor current and feed 
motor current as a function of cutting variables, i.e. cutting speed, feed rate and 
drill diameter, for various flank wear states. Using fuzzy classification it is then 
possible with the test data to predict the membership in three different wear 
states. The number of definition cases for development of the regression 
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functions is 12. In this set eight cutting speeds are used together with five feed 
rates and three drill diameters. The number of test cases is also 12. The result is 
considered good since the grade of membership function associated with the 
relevant flank wear states is always close to unity. However, although the results 
in the paper are considered good, the relatively small number of test cases 
compared to the number of input parameters raises some questions about the 
generalised nature of the methodology.  

Li et al. [2000] used fuzzy logic together with neural networks. In this case drill 
wear is monitored using vibration acceleration. The rms value in five separate 
frequency bands between 0 and 2500 Hz are used as input features. Drill wear is 
categorised in five different classes: initial wear, normal wear, acceptable wear, 
severe wear and failure. It is concluded that a fuzzy relationship between the tool 
condition and monitoring may be identified by using a fuzzy neural network. 
However, the recognition rate for initial wear is reported to be 52% and for severe 
wear 68%. Drill failure and air cutting have been recognised at a rate of 100%. 

2.4.3 Neural networks  

Neural networks have become very popular in industry because of their 
classification and optimisation capabilities [Dimla et al. 1997]. Neural networks 
can be seen as an attempt to automate the process of building a diagnostic 
system. In principle neural networks can be trained to model non-linear 
dependencies of manufacturing process parameters and parameters which 
indicate tool wear and failure. The principles of neural networks can be found 
e.g. in a book by Rao & Rao [1993]. Dimla et al. [1997] critically examine 37 
approaches that have been tried with different types of neural networks in order 
to diagnose tool wear and breakage in various types of machining processes. The 
success rate is tabulated based on references. Some of the main conclusions by 
Dimla et al. [1997] are: The most widely tested neural network approach is a so-
called multilayer perception (MLP) network. MLP networks are particularly 
suitable for high-speed real time applications. In many cases more than one 
feature has been extracted from one sensor and this is criticised as not really 
being a multi-sensor approach. Although most of the references claim to be on-
line solutions they actually seem to be off-line networks, which have not been 
tested in a real production environment. In most cases the data has been sampled 
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using only one set of cutting conditions. A tool condition monitoring system 
needs to be able to handle various cutting conditions. 

Liu & Ko [1990] built a simple network comprising two input features and one 
output. Drill wear was classified into five categories. The inputs were peak to peak 
acceleration and the percentage increase of the thrust force. They concluded that 
an on-line recognition level of over 85% can be reached. The limited number of 
tests did not include variation of cutting process parameters. The same data was 
used to develop a two-category linear classifier for drill wear detection in studies 
by Liu [1987] and Liu & Wu [1990]. In this case a success rate greater than 90% is 
reported for drill wear monitoring in one drilling process condition.  

Liu & Anantharaman [1994] tested the influence of the number of hidden layers. 
In the cases tested the number of input features was nine based on thrust force, 
torque and one process parameter. It is concluded that artificial neural networks 
can distinguish between a worn and a usable drill with 100% reliability and also 
accurately distinguish the average flank wear even under different drilling 
conditions. However, the authors have not included documented material of the 
variation of cutting conditions. They compare different versions of the number 
of neurons in the hidden layer and also a modified version with adaptive 
activation-function slopes. This modified neural network is reported to converge 
to a solution much faster than a conventional feedforward network.  

Liu et al. [1998] introduced the influence of drill size, feed rate and spindle 
speed together with the same thrust force and torque parameters used earlier in 
the neural network solution. They report that the network can reach up to 100% 
reliability for on-line detection of drill wear states and that it is feasible to 
recognise the drill wear states on-line even if the drill size, feed rate and spindle 
speed have changed. However, it should be noted that there was no variation of 
the work piece material and that the total number of tests was seven, in which 
five different drill sizes, six feed rates and five spindle speeds were used, which 
would suggest that the number of test cases was rather small compared to the 
number of influencing parameters.    

Noori-Khajavi [1992], Noori-Khajavi & Komanduri [1993] and Noori-Khajavi 
& Komanduri [1995b] use neural networks for sensor signal integration. This is 
done based on torque, feed and drift force signals. Noori-Khajavi [1992] shows 
that it is not advantageous to integrate information from these because they are 
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equally good and contain the same information of drill wear. Govekar & Grabec 
[1994] use a self-organising neural network. Torque and feed force spectra are 
further treated so that the low frequency information below 200 Hz is left out 
and the information at higher frequencies is combined into 30 representative 
bands. They conclude that the approach is promising. The effect of cutting 
process parameters is not covered.  

Tansel et al. [1992] tested a different kind of neural network called a restricted 
coulomb energy (RCE) network for drill wear diagnosis in micro drilling. The 
theory of RCE network is explained in their report. The drilling of each hole is 
divided into four segments and the average and standard deviation of feed force 
is used as the input features, i.e. altogether eight inputs. The RCE network 
recognized tool failure with an accuracy of over 90%. The processing 
parameters were not varied, although it is pointed out that the feed force varied a 
lot from test to test. The same test data as in the previous reference has been 
tested in connection with another type of neural network based on adaptive 
resonance theory (ART) [Tansel et al. 1993]. In this case the input features were 
calculated using wavelet transform of the feed force. The approach was tested 
with two network structures, one with 22 input features and the other with six. 
The approach with a higher number of input features gave a better indication, 
only one error in 61 cases, but was slower. Again there was no variation of 
process parameters.  

Tsao [2002] tested two types of neural network solution for flank wear 
prediction of a coated drill based on maximum values of thrust force and torque. 
The two neural network methods were radial basis function network (RBFN) 
and a modified RBFN called adaptive RBFN (ARBFN). With a training set of 
18 cases and a set of nine test cases good results were obtained. In the prediction 
the maximum drill wear error was only 0.4% which is a remarkable result. It 
should be noted that together with the variation of spindle speed and feed rate, 
also the drill coating deposition was varied. One thing that is clearly noticeable 
in the measured data is that the results are very consistent, i.e. the relation 
between the maximum thrust force and torque with the drill wear is very similar 
in all three cases for all the varied input parameter combinations, which would 
indicate that possibly very simple methods could give good results with the 
measured data. 
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Fu & Ling [2002] have developed a very basic neural network for the detection 
of breakage of micro drills. The solution is based on torque signal together with 
such parameters as the drill diameter, feed and spindle speed. The maximum and 
average values of torque were used. The approach works with very small drills 
but is passive in the sense that detection is made only after drill breakage has 
occurred, which is much easier than making a prognosis of breakage beforehand. 
There are benefits related to this late detection, although not as remarkable as in 
the case of prognosis. 

Brophy et al. [2002] report the results of a project in which the network 
developed was based on input from a spindle power signal. In this case a 
network was developed to detect abnormalities in drilling. The spindle power 
was treated in the first stage with principal component analysis (PCA) to get the 
input features for the neural network. After a training phase of 3 weeks the 
neural network was tested in real production for 3 months. The authors report 
that the network draws similar conclusions to those of an experienced operator.  

Abu-Mahfouz [2003] used a multiple layer neural network to detect drill wear 
and to differentiate between different types of wear such as chisel, crater, flank, 
edge and outer corner wear based on a vibration acceleration signal. From 
acceleration signal statistical time domain parameters together with wavelet 
based parameters and parameters of Burg power spectral density function were 
calculated. In the study, different types of architectures of the neural network 
were tested and also the process parameters, i.e. speed and feed, were varied. 
The reported results are promising. The percentage of correct predictions was 
around 80 to 90 when differentiating between the various artificially introduced 
wear types, and 100 when detecting drill wear. Based on the same measured 
signal and analysed parameters as described above Abu-Mahfouz [2005] reports 
the results of two other neural network approaches, namely learning vector 
quantization (LVQ) and fuzzy learning vector quantification (FLVQ), in 
detecting drill flank wear. Again the reported results are good with success rates 
of 86% with LQV and 88.8% with FLVQ. Also in this case the process 
parameters are varied. The test material was based on drilling tests in dry 
conditions covering the total tool life [Abu-Mahfouz 2005].  
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3. Machining tests  
The complete test and measuring set-up and the test program are described in 
detail in publication II. In this chapter the main characteristics of the set-up and 
the drilling program are described briefly.  

3.1 Test set-up  

A horizontal-type machining centre was used in the drilling tests for tool 
condition monitoring. The main specification of the machining centre is shown 
in Table 1. 

Table 1. Specification of the machining centre in the tests. 

Machine tool Niigata EN40B Spindle nose NT No. 40 for BT 

Control unit Fanuc 11 MA Number of 
tools 

30 tools 

Controlled axis 4 axis (X, Y, Z, and B) Spindle speed 15�6000 1/min 

Table size 400 x 400 mm Main motor 
power 

11/7.5 kW 

3.2 Test program  

The twist drill sizes investigated in the tests were: diameter 3.3 mm, 5.0 mm, 6.8 mm, 
8.5 mm and 10.2 mm. The drill material was HSS and the work piece material 
was Fe52. The total number of tested drills was 26. A description of the drilling 
parameters and monitoring methods is given in publication II. 

3.3 Measuring arrangement  

In the drilling tests the tested measuring methods included vibration, sound, acoustic 
emission (200 kHz and 800 kHz centre frequencies and also 100�1000 kHz 
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frequency range), spindle power and current, z-servo current, force measured 
from guideways, feed force and torque with a dynamometer and 3-axis table 
dynamometer. In the tests the measuring signals were recorded with a 14 
channel instrument tape recorder and analysed afterwards in the laboratory. The 
measuring configuration was varied during the measurements due to the 
limitations of the tape recorder, i.e. the number of channels used (12) was not 
sufficient for recording all the possible signals simultaneously. A more thorough 
description with a graphical presentation of the measuring arrangement is given 
in publication II.  



 

42 

4. Signal analysis  

A detailed description of the signal analysis methods and results is given in 
publication II. Some results are also shown in publications III, VI and VII. Due 
to the great amount of test data, an automatic analysis program for PC was used. 
The data recorded with an instrument data recorder was analysed overnight with 
a PC equipped with an AD card. A mathematical programming toolbox MatLab 
was used for the signal analysis. The signal analysis was done both in the time 
domain (statistical parameters) and in the frequency domain (FFT analyses). 
Prior to the signal analysis the data was cleaned of irrelevant signals, i.e. data 
recorded during rapid movements of the tool prior to actual drilling. Regression 
analysis was used to rank the different methods used in the tests. 

4.1 Statistical analyses  

For all of the recorded measuring signals (12 sensors), except for the tachometer 
pulse used for recording the running speed of the tool, altogether eight statistical 
parameters in the time domain were calculated. These were: arithmetic mean, 
root mean square (rms), mean deviation, standard deviation, skewness, kurtosis, 
maximum and minimum. All of these time domain parameters are easy and fast 
to calculate [e.g. Press et al. 2002]. Usually they contain the whole frequency 
content of the measured signals and are therefore rather sensitive to noise, i.e. 
there is a lot of variation in the measured values. In the case of vibration signals, 
low-pass filtering was also tested to improve them. In drill wear monitoring the 
best results with statistical parameters were obtained with the root mean square 
and mean deviation of low-pass filtered horizontal vibration (cf. publication II). 
Figure 1 shows an example of the analysed root mean square value of a low-pass 
filtered horizontal vibration signal in drill wear monitoring. 

4.2 FFT analyses  

Fast Fourier transform (FFT) was used in the case of dynamic monitoring 
signals (vibration, force/torque, spindle motor power and sound) that were 
expected to contain frequency dependant information. A sample and hold card 
was used together with the normal AD card in order to analyse data 
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simultaneously from four channels. A MatLab mathematical package was used 
for programming the tested functions. FFT based functions including 
autocorrelation, spectrum, 1/3 octave spectrum, 1/1 octave spectrum, cepstrum 
and liftered spectrum were tested for one signal at a time. For simultaneous 
analysis of more than one signal at a time, the tested functions were frequency 
response, coherence, coherent output power, cross-correlation, signal to noise 
ratio, Scot and multi-signal frequency response and partial coherence. In the 
signal analysis a Hanning window [Randall 1977] was used, as well as time and 
spectrum domain averaging. In order to save space, normally only the 20 highest 
amplitudes of each function were saved together with the corresponding 
frequency. As seen from the tabulated lists in publication II, it makes little 
difference whether the analysis is based on one or more signals. Due to the large 
number of analysis functions and analysed parameters, a procedure based on 
regression analysis was developed for further analysis of FFT based functions in 
order to define which of the measuring signals and analysis functions could be 
expected to work best for diagnosing drill wear. Of all the functions analysed 
with FFT the best results in drill wear monitoring were obtained with a 
horizontal vibration spectrum. 
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Figure 1. Normalised rms value of vibration (perpendicular to drill axis) for a 
10.2 mm twist drill. 
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4.3 Regression analyses  

In order to define which analysis functions work best for drill wear monitoring, 
regression analysis was used for parameters calculated using both statistical and 
FFT based signal analysis methods. The four regression analysis functions (1st, 
2nd and 3rd order polynomials and a logarithmic function based on the idea 
developed and reported by Jantunen & Poikonen [1993]) used to rank the signal 
analysis results are described in publication II. The idea behind the ranking of 
monitoring parameters was that the coefficient of determination calculated in the 
regression analysis could be used to define the ranking order of the measuring 
signals, analysis functions and parameters. Of all the measured signals the best 
results were gained with horizontal vibration. However, it can be said that the 
difference is not big and other measuring signals such as sound, force and 
acoustic emission also worked well. A more detailed discussion of the 
applicability of various monitoring methods is given in publication III. In 
publication II the conclusion is that for practical purposes it could be beneficial 
to use more than one measuring method in order to get rid of false alarms. 

The development of a higher order polynomial regression function with a limited 
number of terms is described in detail in publications VI and VII. The principle 
of why a regression analysis technique can be expected to help in monitoring 
and diagnosis of drill wear is explained in detail in publication VI. Basically the 
idea is simply to mimic the development of the wear curve, which in the case of 
tools typically develops exponentially towards the end of the tool life. A higher 
order polynomial regression function with a limited number of terms is defined 
in its general form by the following equation: 

dtctbtaty gfe +⋅+⋅+⋅=)(     (1) 

where y(t) is the monitored parameter as a function of time. The parameter can 
be either a statistical time domain parameter such as root mean square (rms) 
value or an amplitude value at a specific frequency if FFT has been used. In the 
equation a, b and c are regression coefficients and t is time. The exponents e, f 
and g define the degree of the function and there is also a constant d in the 
function. With a proper choice of exponents e, f and g Equation 1 can also be 
used to define the 1st, 2nd and 3rd order polynomials (with the 3rd order d also 
becomes a regression coefficient). As shown in publication VI Equation 1 also 
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mimics quite closely the behaviour of the logarithmic regression function, with 
the difference that with Equation 1 the total lifetime of the drill does not need to 
be known. The principles of the solution for regression coefficients can be found 
e.g. in the book by Milton & Arnold [1995].  

For emphasising the most recent data, a factor to be used when calculating the 
summary terms in regression analysis is introduced: 

)( in
i qp −=      (2) 

where n is the current total number of samples, i is the index in the calculation of 
the summary terms, and q is a constant that defines how much weight the earlier 
terms are given when all the terms in the calculation of the summary terms are 
multiplied by p. The most important reason for the introduction of factor q is that 
regression analysis functions tend to become very stable, i.e. they do not react to 
current data very rapidly if they have been used for some time with similar data. 
This lack of response is contradictory to what was presented in chapter 2 
concerning the rapid development of wear towards the end of the tool life, hence 
the introduction of factor q is needed. 

Figure 2 shows the same data as in Figure 1, analysed using a higher order 
polynomial regression function with the following parameter values: e = 9, f = 6, 
g = 3, d =1 and q = 0.99. 
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Figure 2. Normalised rms value of vibration (perpendicular to drill axis) for a 
10.2 mm twist drill analysed using a higher order polynomial regression function. 
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5. Simulation model  
The development of artificial drilling forces that are influenced by drill wear and 
a simplified dynamic model that can be used for producing vibration simulation 
data are described in detail in publication IV. The purpose of developing this 
simple model was to get a better understanding of the dynamics that influence 
the drilling process, especially what could happen when a drill is worn. The 
simulated signals can be used in the testing and training of automatic diagnosis 
tools. The drilling force model is not supposed to predict the absolute level of 
drilling forces correctly, consequently it is not of use in the adjustment of 
machining processes. 

5.1 Drilling force model  

The artificial drilling force model was developed for calculation of the 
horizontal drilling force, i.e. the force perpendicular to the axis of the drill. This 
is also known as the drift force. In principle it should be zero when there are two 
cutting lips in a drill, since these cancel the influence of each other. However, 
for a number of reasons the force is not zero in practise, as discussed in chapter 2 
of this thesis. As explained in chapter 2, Yang et al. [2002] have treated the 
dynamics and especially the horizontal vibration of a drill due to the imbalance 
of forces in their model, which gave the idea for the development of the 
following simplified model, which is described in more detail in publication IV. 

The developed model tries to introduce excitation forces perpendicular to the 
drill axis at frequencies which might be seen in reality, and also a term is 
introduced which is a function of drill wear. The simplified horizontal force is 
calculated according to the following formula: 

)()()()()()( 021 tFtFtFtFtFtF rndnrpmrpmrpmx ++++=   (3) 

The first two terms in the formula, Frpm1 and Frpm2, try to take into account the 
possible geometrical differences between the two cutting lips and are defined as 
follows: 
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where c1 � c4 are constants, tc is the total lifetime of the drill, ω is the angular 
speed of rotation, φge is the angular geometrical error due to the tolerance in 
manufacturing the drills, φwd is the difference in wear of the two cutting lips of 
the drill and Fdp is a drilling process force that scales the size of the forces and is 
defined as follows:  

)()( 5 tFfHctF dhBdp ⋅⋅⋅=     (6) 

where c5 is a constant, HB is the Brinell hardness of the work piece material and 
f is the feed per revolution. The influence of the work piece hardness and the 
feed follows the statistical model presented by Subramanian & Cook [1977]. 
However, two terms that take into account the influence of the geometry and 
wear have been left out since the model described here does not try to predict the 
cutting forces. It should be noted that the statistical model [Subramanian & Cook 
1977] deals with torque and thrust force and the model in this study deals with 
the horizontal drilling force, which can be estimated to be a function of the thrust 
and torque [e.g. Yang et al. 2002]. 

Here the term Fdh takes into account the unstable nature of the drilling process, 
i.e. in the beginning the forces increase when a hole is started, reaching a stable 
level when the cutting lips of the drill have fully reached the work piece 
material. Fdh is defined as follows:  
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where t is time, i is a counter for the hole number, td is the time it takes to drill 
one hole and b1 is a coefficient that defines the relation between the increasing 
part and the stable part of the thrust force.  
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The term Fnrpm is supposed to describe a number of harmonic components that 
are multiples of the drilling speed and that can originate from such sources as the 
bearings and the electric motors of the machine tool in question:  
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where c6 and c7 are constants, n defines the order of the harmonic component, 
Fdp(t), ω and tc as defined above.  

In order to make the simulation produce signals that also contain random noise, 
the term Frnd is introduced:  
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where c8 is a constant and rnd denotes the MathCad program function [Mathsoft 
2002] that produces an equally distributed random number between 0 and c8.  

One phenomenon that can quite clearly be seen and understood is the influence 
of vibration on the drilling forces, i.e. since the drill is vibrating perpendicular to 
its axis the drilling forces are also a function of this. The phenomenon can be 
seen, for example, in the paper by Yang et al. [2002]. The influence of vibration 
at the natural frequency of the drill is taken into account by the term F0.  
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where c9 and c10 are constants, tc is the total tool lifetime, Fdp is the drilling force 
as defined above, and fo is the first natural frequency of the drill and tool holder 
calculated using the following formula [Thomson 1972]: 

m
kf o ⋅
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1     (12) 

where m is the mass of the drill and tool holder, and k is the stiffness of the 
structure. Assuming the drill is a straight round bar that is fixed at one end, the 
formulae for calculating the natural bending and torsional frequencies can be 
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found e.g. in the book by Young [1989]. For bending, the formula for natural 
frequency can be written in the following way:  

42 lS
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where Kn is a coefficient that depends on the vibration mode, E is Young�s 
modulus, I is the moment of inertia, ρ is the density of the material, S is the 
cross-sectional area and l is the length of the drill. Making assumptions about the 
effective diameter and length of a drill, the influence of the drill diameter on the 
natural frequency can be calculated according to Equation 13. Figure 3 shows 
the approximate frequency of the first and second bending modes together with 
the first rotational natural frequency of a drill as a function of drill diameter. As 
Figure 3 shows, there is a strong dependency of the drill diameter, i.e. the 
smaller the drill diameter is the higher is the natural frequency. The calculation 
formula for the natural frequency of the torsional vibration mode is also found in 
the book by Young [1989]. It should be noted that the torsional natural 
frequencies are quite a lot higher (more than 10 times) than those of the lowest 
bending modes. 
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Figure 3. Approximate frequency of the first (lowest line) and second 
(intermediate line) natural bending vibration modes together with the first (highest 
line) rotational natural frequency of a drill as a function of drill diameter. 
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All of the terms described above, except for the random force, are described to 
some degree as functions of a term, which could be called the wear influence 
shown in the following formula: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

ct
tLnh 1  (14) 

where t is the time and tc is the total lifetime of the drill. All the terms except for 
the random term in equation 3 are scaled by a term that takes into account the 
Brinell hardness of the work piece and the feed of the drill. The influence of 
drilling separate holes is also included in these terms, i.e. when a new hole is 
started the forces start from zero again except for the random term. 

It is quite apparent in the above development of the simplified simulation model 
that the model is not a physical one that could correctly predict the horizontal 
forces in a drilling process. There are many constants in the formulae which 
were chosen by trial and error when judging the predictions. However, the 
model can easily be used for producing test data for the development of a 
diagnostic approach for the automatic diagnosis of drill wear. Based on literature 
references the model includes terms that could be expected to influence the 
drilling process but their size as such and relation to each other has no 
justification through testing. 

5.2 Dynamic model 

The simplified dynamic model has been developed following the principles 
presented by Yang et al. [2002]. In the model it is assumed that the tool and tool 
holder can be modelled as a beam that is rigidly supported at one end and that 
the excitation force influences at the other end. In their approach Yang et al. 
[2002] performed the study with two degrees of freedom, i.e. with two 
differential equations which gave the basis for the iterative calculation of the 
excitation force. In the present study a model with only one degree of freedom is 
used and the excitation force is assumed to take into account the influence of the 
rotating route that the drill travels in the hole during the drilling process. The 
following basic differential equation describes the dynamic model [Thomson 
1972 and Yang et al. 2002]: 



 

51 

)(tFxkxcxm x=⋅+′⋅+′′⋅     (15) 

where m is the mass of the vibrating tool and tool holder, c is the damping, k is 
the stiffness, and Fx(t) is the dynamic horizontal drilling force as defined in the 
previous chapter.  

Figure 4 shows an example of the calculated vibration acceleration response, 
together with the excitation force for holes two, three and four. Figure 5 shows 
the corresponding acceleration response together with the excitation force for the 
last three holes when the drill was defined as having broken right after the 60th 
hole. In the examples the following values of input parameters have been used: c 
= 1.21 Ns/m, c1 = 20, c2 = 400, c3 = 2, c4 = 1.7, c5 = 1, c6 = 0.04, c7 = 0.08, c8 = 
0.5, c9 = 0.02, c10 = 0.04, b1 = 4, f = 0.2 mm/rev, fo = 84.539 Hz, k = 395 N/mm, 
m = 1.4 kg, tc = 240.001 s, td = 4 s, φge = 0.00013 rad, φdw = 0.00027 rad and ω = 
10 rad/s. The mass, damping and stiffness in this example are the same as in the 
example given by Yang et al. [2002]. The calculated standard deviation of the 
vibration acceleration during the simulated drilling of the last hole is about seven 
times that during the drilling of the first holes. 
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Figure 4. Excitation force (lower curve) and vibration response (upper curve) 
for holes two, three and four. 
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Figure 5. Excitation force (lower curve) and vibration response (upper curve) 
for the last three holes. 
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6. Diagnosis of tool wear  
In order to enable the unmanned use of machine tools and flexible 
manufacturing systems, the diagnosis of tool wear needs to be made automatic. 
In practice this means that some kind of artificial intelligence is needed. Also 
important is easy configuration for a range of machine tools. The principles of 
an expert system based approach are described in detail in publication V. The 
advantages of regression analysis are discussed in publication VI. In publication 
VII, regression analysis techniques are combined with fuzzy logic. The 
possibilities of a hierarchical neuro-fuzzy approach that combines information 
from various sources are described in publication VIII. 

6.1 Expert system  

Assuming that the diagnosis of drill wear can be based on diagnostic rules such 
as: �If the amplitude of some parameter increases beyond a predefined limit the 
drill is worn,� it is possible to build rule based expert systems that can be used 
for the diagnosis of drill wear. The main practical problem with this kind of an 
approach is the time it takes to describe all the rules. For example, if there is 
variation in the measuring signals and parameters used for diagnosing wear, a lot 
of work is needed to redefine the expert system for the specific case it will be 
used in, or if a generic system is developed it will be very complicated. In the 
developed approach the basic idea is to use a fault tree database interface 
program for defining the faults to be monitored, such as drill wear, and describe 
the corresponding condition monitoring methods (symptoms) using a symptom 
tree database interface program. After defining the fault and corresponding 
symptoms that can be used to diagnose the fault, the user starts a rule synthesiser 
program. The rule synthesiser translates the contents of the fault and the 
symptom databases into an expert system rule code for the computer performing 
the monitoring task. In this automatic code writing process, the rule synthesiser 
takes one page at a time from the symptom tree and from it writes a module onto 
the expert system code. The procedure is shown in Figure 6. 
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Figure 6. Principles of the new approach to expert system rule generation. 

6.1.1 Fault tree  

In the fault tree user interface window and the corresponding table of the 
database, the machine tool is defined by a chain of subcomponents. The 
approach is general, i.e. it can handle various types of faults and also various 
types of rotating machinery. In the case of drill wear, the subcomponent chain is 
defined as follows: component = machine tool, subcomponent = spindle, 
subsubcomponent = tool holder, subsubsubcomponent = drill. For this chain 18 
different types of fault can be defined, e.g. such as worn out. Since the fault tree 
is part of a database, all the typical features of a relational database program 
such as find, copy etc. are available. 

6.1.2 Symptom tree  

In the following step of building an expert system for each of the faults, a 
symptom tree database definition is performed. The definition of symptoms that 
define a fault include the following: status of the machine tool (power on, 
hydraulics on etc.), machining information (spindle rotating, machining etc.) and 
condition monitoring information (signal, sensor, time criticality, analysis 
method, averaging, alarm limit etc.). The definitions include all the necessary 
information for defining the data collection through an AD card and also all the 
necessary information for performing signal analysis using a collection of 
mathematical subroutines. When FFT is used to calculate e.g. the power 
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spectrum or other analysis functions, only the so-called cursor values, i.e. the 20 
highest peaks of the analysed functions, are saved to keep the size of the 
database reasonable. Again all the features of a typical relational database are 
available. Since the above definitions are done for each tool type included in the 
wear monitoring program, the editing functions are important to make the 
amount of work manageable. 

6.1.3 Rule synthesiser  

The idea of the rule synthesiser is to automate the laborious writing of expert 
rules for different types of machine tools using a variety of tools. In principle, all 
the necessary information is saved in the fault and symptom tree database tables. 
The rule synthesiser takes the information from the symptom tree database table 
and automatically generates the computer program code containing the needed 
expert system rules. The rule synthesiser works by processing each rule 
specification in the symptom tree database, then breaking each rule into several 
function calls. The rule synthesiser also builds the links between these function 
calls in a logical order so that the data can go through the steps of data 
acquisition, signal processing, feature extraction and testing against the specified 
limits. In addition, the rule synthesiser automatically combines rules into groups 
corresponding to each fault defined in the fault tree, e.g. all the rules needed to 
detect a worn-out drill of a specific size e.g. 10.2 mm.  

6.1.4 Fault manager  

The purpose of the fault manager module is to combine the information based on 
various sensors and analysis functions into the final conclusion. Typically in a 
cutting process there are a number of changes taking place in the measured 
signals. These can be due to changes in the cutting parameters or variation in the 
work piece material etc. In order to handle this it is suggested that a number of 
measuring signals and analysis functions are used. The rule synthesiser can build 
the rules for each of these features used in the expert tool. Development of the 
analysed features with time is saved using regression analysis techniques, thus 
only the summary terms of the regression functions need to be saved. The fault 
manager then follows these features and their reliability based on the coefficient 
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of determination of the regression analysis functions, and calculates the sum of 
the coefficients of determination of those analysis functions that have triggered 
the predefined threshold limit. The final conclusion of whether a tool is worn is 
then based on comparison of the sum of coefficients of determination.  

6.2 Fuzzy classifier  

Fuzzy classification is one possible way to automate the diagnosis of tool wear 
as described in chapter 2 of this thesis. The development of the approach of 
using simplified fuzzy classification following the principles shown by Rao & 
Rao [1993] in the diagnosis of drill wear is explained in publication VII. The 
idea is that in the beginning, when a tool is in good condition, some of the early 
data is used for defining the fuzzy classification limits for the analysed 
parameters of the monitored signals. In the developed approach the number of 
classes has been limited to eight, class two meaning that the tool is in good 
condition and class eight that it is completely worn. Class one has been reserved 
for lower values of the monitored parameter, which possibly mean that the 
cutting conditions are different from those when the limits were defined.  

The classes are defined using the mean and standard deviation of the measured 
signal. These statistical parameters are typically used when so-called health 
indexes are calculated [Williams et al. 1994] or alarm limits are defined in 
condition monitoring standards such as the PSK 5705 Standard [2004]. In the 
developed approach the classes are defined using the following definitions: The 
mean value of each class (class index i = 1..8) is defined according to the 
following formula: 

µσ +⋅⋅−= jiClassMeani )2(     (16) 

where j is a coefficient defining the size of the classes, k is a coefficient that 
defines the shape of the classes, and µ is the mean value and σ the standard 
deviation of the first measured parameters. The upper and lower limits of the 
classes are defined as follows: 

2/)1( σ⋅+⋅−= kjClassMeanLowLow ii    (17) 
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2/)1( σ⋅−⋅−= kjClassMeanLowHigh ii    (18) 

2/)1( σ⋅−⋅+= kjClassMeanHighLow ii    (19) 

2/)1( σ⋅+⋅+= kjClassMeanHighHigh ii    (20) 

Figure 7 shows an example of fuzzy classification of the rms value of vibration. 
In this example the basic signal is the same as that used in the analysis of data in 
Figure 1 and Figure 2. In the example, the 20 first values analysed have been 
used for defining the mean and standard deviation in the above equations. The 
values used are j = 1 and k = 0.5. 

The results of fuzzy classification can be used as input for a neural network as 
shown in the following chapter. The use of fuzzy logic in pre-processing the 
input data for a neural network follows the principles presented by Rao & Rao 
[1993]. 
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Figure 7. A result of fuzzy classification of the rms value of vibration. 

6.3 Hierarchy  

Publication VIII describes the principles of building a flexible hierarchical 
neuro-fuzzy system for prognosis. The basic idea is simply to use a hierarchy, 
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i.e. to build a bigger and a more complicated model using sub-models, as seen in 
Figure 8. In the most simplified level a higher level conclusion is drawn based 
on a number of monitoring parameters analysed. In this approach the maximum 
number of parameters in a sub-model is limited to eight, i.e. the conclusion at the 
lowest level is based on eight parameters. The choice of eight as the maximum is 
based on numerical and logical reasons. It is relatively easy to handle models of 
this size and eight is a multiple of two, which can be handled with three bits. At 
sub-model level the idea is to define the condition of the monitored tool or, more 
generally, the condition of a machinery part.  

High (factory) level diagnosis (1 ... 8 inputs)

Sub-model
(machine tool) diagnosis
(based on 1 ... 8 inputs)

Sub-model
(machine tool) diagnosis
(based on 1 ... 8 inputs)

Sub-model
(tool wear) diagnosis

(based on 1 ... 8 inputs)

 
Figure 8. Structure of the hierarchical neuro-fuzzy system. 

Table 2 shows the principal idea of the hierarchical approach. In case of drill 
wear monitoring, typically two measuring signals such as vibration and acoustic 
emission could be used. If four statistical parameters are calculated from these 
two signals, this actually fills the lowest level sub-model and should be the basis 
for defining that the drill is worn. At any level of the hierarchical approach the 
decision making process is similar, since at the maximum there are always eight 
inputs and only one output representing the conclusion. In the case of drill wear 
monitoring, it is important also to be able to define when drilling is taking place 
so that the signal analysis is only carried out when it is relevant to do so. In the 
case of flexible manufacturing systems, the hierarchical model could be used in 
such a way that various tool types could have various sub-models and also the 
condition of the machine tool could be followed using some sub-models 
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dedicated to various types of relevant wear models, such as spindle bearings and 
tool changers etc. However, this is beyond the scope of this thesis.  

Table 2. Principles of the hierarchical approach. 

Model level Fault Parameters 
to handle 

Technique for 
classification 

Technique for 
conclusion 

Low level 
(linked to 
wear of 
component 
which can be 
monitored) 

E.g. drill 
wear 
(bearing 
fault etc.) 

Parameters 
analysed 
from 
monitoring 
signals 

Fuzzy logic 
based on values 
of mean and 
standard 
deviation, 
allows manual 
interpretation 

Simple logic: 
highest wins, 
if two signals 
indicate, etc., 
Could be 
neural net if 
statistical data 
for training 

Machine 
level(s), 
possible to 
handle 
various 
process states, 
different tool 
types etc. 

Machine 
needs 
maintenance, 
tool change 
etc. 

Conclusion 
from lower 
level  

Values from 
lower level 

Usually 
logical, 
corresponds to 
rule based 
approach  

High level 
(factory level) 

Production 
can be 
followed 
(are there 
any faults) 

Conclusion 
from lower 
level 

Values from 
lower level 

Usually logical 
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7. Discussion  

7.1 Measured signals and signal analysis 

In the reported tests and in the available literature, which is covered in chapter 2 
of this thesis, there is a lot of variation in how well different measuring signals 
and analysis techniques have worked. This is due to the wide variety of factors 
influencing the results. The size of drills and the work material together with the 
drilling process parameters influence the measured signals. For example, it is 
easy to understand that the smaller the drill, the smaller the forces and the higher 
the frequencies are at which one could expect the greatest variation to take place. 
This tendency can be well understood in the light of dynamic simulation. The 
natural frequencies of a drill and the drill holder increase with a decrease in the 
diameter of the drill. This then actually means that a combination of measuring 
and signal analysis techniques that works well with a certain size of drills does 
not work as well with others. 

Feed force and torque have been used a lot in laboratory tests with drills and 
some good results have been reported. However, it is difficult to measure forces 
at very high frequencies and this is one reason why good results with small drills 
have been reported with measuring techniques such as high frequency 
(ultrasonic) vibration measurements capable of sensing these higher frequencies. 
Also when smaller drills are used this influences the analysis techniques that 
should be used. These should be simple and quick enough to react to the quick 
changes and they should not be too demanding on the analysis equipment. As a 
consequence, measuring motor currents works better with large drill diameters 
because the drilling forces are higher; their portion of the total signal is then 
higher and also the measuring chain might be able to react quickly enough, but 
when the drill sizes are smaller the opposite is true. 

The results reported in publications II and III apply to drills of moderate size, i.e. 
about 5 mm and more in diameter for the reasons stated above. The measuring 
equipment and signal analysis techniques that have been used with dynamic 
signals such as force, vibration and sound cover the frequencies of interest, i.e. 
rotational frequency and the lowest natural frequencies of the tested drills. 
However, already the somewhat more complex analysis based on FFT was 
occasionally rather slow with the equipment being used to analyse the test 
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signals. It could be claimed that although the amplitudes at certain frequencies 
gave a better indication of drill wear, there is a risk that since the drills in these 
tests (as in many tests reported in the literature) wear very quickly at the end of 
their life, this phenomenon could be missed between analysis rounds. 

In the literature even more complicated approaches than FFT, such as 
autoregressive modelling [Radhakrishnan & Wu 1981], are suggested for 
diagnosing drill wear. It would seem that this kind of method is not very generic, 
i.e. the models work for one specific drill size and work piece material, but they 
would need to be trained for new combinations and this would be very time 
consuming and laborious, even though it would apparently work in a fixed case.  

Publication II lists the best measuring and analysis functions for drill wear 
monitoring. Vibration, acoustic emission, sound and some of the force 
measuring techniques were the best methods. Publication III shows good 
examples of vibration, acoustic emission and sound measurements analysed in 
the time domain. All of these measuring techniques can be considered 
acceptable for on-line use in a real production environment, in the sense that the 
necessary sensors can be mounted relatively easily to a typical machine tool and 
they do not influence the production. In publication II, statistical time domain 
parameters such as root mean square, mean deviation and maximum were listed 
as the best in drilling tests. However, as explained above, especially the drill size 
has a great influence on what would be the optimum measuring arrangement and 
signal analysis technique, thus the results shown in this thesis should not be 
over-generalized. To overcome the challenges brought about by drill size, it is 
suggested that the smaller the drills are, the higher the frequencies should be that 
are included in the measuring and analysis chain. Also, since the proportion of 
signals from the drill decreases with decreasing drill size, it raises the question 
of how close to the drill the sensors should be able to measure. In other words, 
the closer to the drill the sensors can measure, the higher the proportion of the 
drill signal is of all the signals that the sensor can measure. In order to overcome 
this problem of low signal levels with smaller drills more sophisticated signals 
analysis might be needed than is the case with medium and bigger size drills 
which introduce higher signal levels from drilling.  

The higher order statistical parameters such as kurtosis and skewness were 
especially sensitive to variation in the tests, therefore they were not as good as 
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the above-mentioned parameters. It is logical that the minimum value is not a 
very good parameter for drill wear monitoring, because the lowest values in the 
measuring signals resulted from some disturbance in the measuring procedure.  

7.2 Simulation model  

In theory, assuming the static drilling forces can be calculated as explained in 
chapter 2, and knowing how the cutting forces introduce wear into the drill, and 
also knowing how the drill dynamics influence the cutting forces and vice versa, 
it would be possible to build a dynamic drill wear model. This kind of model 
would also need to have probabilistic features in order to introduce differences 
between the cutting lips, which is one of the important factors that influence the 
vibration response of a worn drill. As stated earlier, this type of model does not 
seem to exist today and the simulation studies presented in publication IV are 
very far removed from this kind of approach.  

The approach suggested in publication IV and covered briefly in chapter 5 of 
this thesis simply tries to show and test the possible influence of various 
artificial dynamic loads, which would increase with a similar trend to that seen 
in laboratory tests, and then to hide this trend behind noise and see how the used 
analysis functions work in this type of scenario. The model presented by Yang et 
al. [2002] is much cleverer in the way it calculates real forces and torque, taking 
into account the dynamic influence caused by the fact that drills do not drill 
straight but vibrate and consequently move from one edge to the other. 
However, the model only vibrates if it is given an initial push from equilibrium, 
and the only dynamic influence taken into account is then vibration due to the 
natural vibration modes of the drill and the unstable forces introduced by this 
vibration. In publication IV a number of dynamic excitation forces are 
introduced into the model; these are not derived from laboratory tests or theory, 
but are the results of a trial and error approach in the sense that with a suitable 
combination of parameters and logically chosen excitation forces, the final result 
resembles that seen in the tests when vibration is considered. It is also important 
to remember that the influence of wear has been introduced into the excitation 
forces as a function of the term defined by Equation 14, and consequently this 
term defines the influence of wear throughout the simulation model. The 
simulation is also very limited in the sense that it could be expected that 
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different types of wear, e.g. chisel, corner, flank and margin wear, introduce 
different kinds of vibration spectra [El-Wardany et al. 1996], but this is not 
covered at all in the model.  

It should also be remembered that when the simulation model described in 
chapter 5 and publication IV is limited to the first radial vibration mode, Rotberg 
et al. [1990] point out on the basis of measurements that the most important 
vibration mode in drill wear monitoring is the torsional vibration mode coupled 
with the axial vibration mode. The natural frequencies of these vibration modes 
are higher than for the radial modes. Also when studying the drilling process it is 
somewhat unclear how much support the drilled hole actually gives in a radial 
direction when there is no support in the torsional direction. However, in 
principle the situation seems to be similar for all of the vibration modes. Wear 
introduces higher dynamic loads and consequently the vibration increases at the 
first natural modes (the second mode in a radial direction might be more easily 
excited than the first, due to the supporting effect of the hole) in all possible 
directions. This means that the behaviour could be expected to be similar in all 
directions, and in fact in reality all of these vibration modes are combined. 
Although the calculation procedure is similar, it becomes more demanding the 
higher the natural frequencies are, and in this sense the modelling in the radial 
direction is easiest to perform. Again the findings presented by Rotberg et al. 
[1990] point out how far from reality the simulation described in chapter 5 really 
is, although it is claimed that the principles and the trends could be similar in 
reality as are the indications in measured parameters.  

It should be noted that the simplified simulation shown in publication IV with 
MathCad [Mathsoft 2002] takes about an order of magnitude longer than the 
wear process of a typical twist drill because of the high frequency range. It could 
be deduced that the introduction of a real drill geometry by performing the 
calculation over a number of sections would multiply the calculation effort by 
hundreds if not thousands.  

With this kind of simplified model, with a one-degree-of-freedom model the 
vibration at the natural frequency is very dominant. However, this tendency of 
some frequencies to dominate the spectrum is similar to what was measured in 
the reported tests, and in some cases this phenomenon is used in signal analysis 
using band pass filtering [e.g. Kutzner & Schehl 1988]. It could also be claimed 
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that the simulation model supports the idea that the measuring technique and 
analysis function used should be able to handle the frequency range where the 
torsional and radial natural frequencies of a drill installed in a drill holder lie. 
This simulation model supports what was said in the previous chapter about the 
influence of drill size. With small drill diameters the frequency range goes 
beyond the capabilities of normal vibration measuring equipment, i.e. the 
frequencies for a drill with a 1 mm diameter might be of the order of 25 kHz 
[Kutzner & Schehl 1988]. The simulation model also supports what has been 
claimed about the best statistical indicators of tool wear, but this proof should be 
treated as uncertain because the input, i.e. forces introduced into the model, 
certainly have an affect what the produced signal looks like. 

7.3 Regression analysis  

As pointed out in chapter 2 there are a number of problems related to automatic 
diagnosis of tool wear in practice. The measured signals are noisy because of the 
nature of the cutting process and there may be sharp peaks in the signal, which 
may not indicate anything. The absolute values of the analysis parameters are 
usually not meaningful because there is so much variation due to the variation in 
tool size, the cutting parameters, work piece material etc. Instead it is important 
to notice the trend in the parameters analysed. However, this could mean that a 
lot of information would need to be saved. The use of the higher order 
polynomial regression function with a limited number of terms as described in 
chapter 4 and in more detail in publications VI and VII provides a solution to the 
problems described above: The higher order polynomial regression function 
smoothens sudden individual peaks and picks up the trend in the analysed 
parameter. Since the regression function mimics the shape of wear development, 
the function can also be used to give a prognosis of the upcoming tool failure. 
When regression functions are used, the trend in a signal is saved. One of the 
benefits of regression functions is that in order to save the information they 
contain, only a very limited number (nine) of summary terms need to be saved.  

There are also possible drawbacks related to regression functions. One is that 
they may be slow to react to changes if a stable situation has continued for a 
long time. In the proposed approach, the idea behind introducing a weighting 
term is to solve this problem and keep regression functions quick enough to 
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respond. Another factor that influences this is the order of the function, and for 
this reason the use of relatively high order functions is suggested. A drawback of 
higher order polynomial functions is that they may behave in very strange ways, 
i.e. they tend to become unstable with noisy data. The use of a limited number of 
terms helps in this respect because with this limitation the functions actually 
behave like a third order function, with the difference that now the changes can 
take place more rapidly.  

It could be argued that higher order polynomial regression functions tend to 
increase the relative error. However, this is not really linked to the higher order 
polynomial functions but rather to the nature of the problem. Wear tends to 
develop very quickly towards the end of the tool life so there is no way of 
avoiding this, i.e. any prediction technique/function would suffer from the same 
problem of the relative error increasing. The use of the weighting function, i.e. 
that the current data is emphasized at the cost of older data, provides some help 
in this respect and makes the prognosis more reliable than if all the data had 
equal weight. Introduction of the weighting function can in some cases also 
make it possible for the approach to adapt to small changes caused by a change 
of cutting parameters. However, this is something that should be tested more 
thoroughly. The polynomial regression function does filter out some of the 
unwanted variation of the measured parameters, i.e. short peaks due to noise in 
the signals, and in this way makes the analysis more robust which is important in 
a machining environment. Naturally, if smoothing of the time-series data had 
been the sole target of the data manipulation, a much more simplified function 
would have been available, such as that described by Williams et al. [1994]. 
Their study gives examples of the use of moving average or exponential 
smoothing in condition monitoring. The biggest difference between the approach 
suggested in this thesis and those very simple methods is that the simple 
methods do not give a prognosis of the forthcoming trend of the monitored 
parameter. Due to this restriction, simple smoothing techniques do not react as 
quickly to changes of the monitored parameter. 

The results of publications VI and VII suggest that relatively high values of the 
parameters of the regression function such as e = 9, f = 6 and g =3 give good 
results. Typically q can have a value of e.g. 0.99 if the process is stable with 
frequent measurements. The lower the value is, the more the last measurements 
are emphasized. In fact, using lower exponent values such as e = 3, f = 2 and  
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g =1 together with a lower value of q = 0.9 would give a result quite close to that 
obtained with the higher exponent values mentioned earlier. However, if there is 
enough data the higher values result in a regression function that more closely 
resembles the wear function described in publications VI and VII.  

Certainly, instead of the higher order polynomial regression function quite a 
number of other functions could also be tested. One of the simplest possible 
solutions would be the exponential function. In simple format this kind of 
function also includes three unknowns, i.e. the exponent, a parameter used to 
multiply the exponent term, and a coefficient. Based on the definition an 
exponent function could be rather sensitive and possibly not as well suited to 
prognosticating as the polynomial regression function. However, it has not been 
within the scope of this thesis to widely compare different possible regression 
functions. It is accepted at this stage that the polynomial function is suitable for 
the defined task and it is left to further studies to suggest and compare other 
possible functions. 

7.4 Expert system  

There are a number of advantages in building an expert system as suggested in 
chapter 6.1 of this thesis. It is not necessary to write a lot of expert system code 
manually that could handle a huge number of tools. It is easy to make changes or 
add information thanks to the practical user interface. Unfortunately there are 
also disadvantages in this approach. The amount of work is still relatively high 
and demanding, i.e. the user must know what to do and how to define limits for 
the various signals, and this need for professional manpower makes the whole 
approach unpractical for everyday use. In addition the size of the final program 
will be extensive, but this is not possibly so meaningful today because of the 
improvement of processing power.  

7.5 Fuzzy classification  

The simplified fuzzy classification has been introduced into the approach in 
order to make diagnosis of tool wear automatic. The same approach can be 
applied using both fuzzy limits and crisp limits. In both cases the conclusion can 
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be shown in eight classes and it can be argued whether the simplified use of 
fuzzy limits actually brings any benefits. One argument is that in reality the 
limits are fuzzy, and thus the use of fuzzy limits is closer to reality. Another 
argument is that the use of fuzzy limits could make the following step more 
robust if neural nets were used. The reason for this is that the use of fuzzy limits 
brings some variation to the inputs of the neural net.  

The diagnosis examples shown in Publication VII are based on the use of two 
measuring signals, i.e. vibration and acoustic emission, and the final conclusion 
of drill wear is in most cases based on the simple rule that at least two 
parameters must give an indication of drill wear. In publication VII different 
parameter values and principles in making the final conclusion are tested. The 
conclusion is that relying on more than one statistical parameter makes the 
diagnosis more stable, and that conservative values (small values of j) should be 
preferred when the fuzzy limits are defined. The use of small values of j actually 
means that the upcoming tool failure is seen too early rather than too late. It 
should be noted that there is a remarkable difference in using fuzzy classification 
in such a simplified manner as was done in publication VII, compared to that 
shown e.g. in the paper by Du et al. [1995]. The more sophisticated (normal) 
way of using fuzzy limits could reveal a much improved connection between the 
various parameters and improve the reliability of the conclusion. However, the 
problem is that this relationship would have to be trained prior to the use of the 
approach, which again is a very severe limitation if an automatic approach is the 
final goal.  

7.6 Automatic diagnosis  

Many of the approaches that have been developed for tool wear diagnosis and 
are reported in the literature rely on training and a definition phase in order to 
work properly. This is also true for the rule based approach described in chapter 
6.1 of this thesis. In normal production, the need for training and the definition 
phase might be very problematic if a great number of tools are used in different 
machining conditions with varying work piece materials. The following 
development phase based on the use of regression analysis techniques and fuzzy 
logic does not suffer from this as much. A number of parameters have to be 
defined, but when this has been done for the production environment these could 
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be kept the same for a number of tools, and the definition of limits for 
diagnosing tool wear should take place automatically. There are also limitations 
to the suggested approach. The first measurements are used for defining the 
limits, and if the tool fails during that period the diagnosis system does not 
provide any help. This restriction does not apply in cases where the tool type and 
cutting parameters are kept constant, i.e. there is historical information of similar 
cases and thus the same limits can be used that were defined earlier and have 
proved to work.  

Naturally, significant questions related to the suggested approach remain open. 
Although the approach works with laboratory data from medium and large size 
drills, does it really work in real life in normal production where the 
environment is much more demanding? There are external disturbances 
influencing the signals and there is variation in the work piece materials etc. Is 
the approach really so easy to define that it attracts users? Will there be too 
many mistakes in the diagnosis, so that users do not rely on the system? The 
only way to get answers to the above is to test the system in real production. 
This has not been done to date, but hopefully the opportunity will come to test 
and gain experience of the capabilities of the suggested approach in real 
production. 
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8. Conclusion  
There exists a great potential to improve the machine tool utilisation rate with an 
advanced condition monitoring system using modern sensor and signal 
processing techniques. A comprehensive cutting test procedure was carried out 
with drills. Based on the tests, different measuring methods and analysis 
techniques together with their benefits and disadvantages have been discussed. 
Especially vibration measurements and methods that are closely related to it, i.e. 
sound and acoustic emission, seem to be potential and practical methods that 
could be recommended for everyday use in production. The importance of 
natural vibration modes of the drill and tool holder is apparent in the light of 
tests and the simplified simulation carried out. The use of higher order 
polynomial regression analysis functions with a limited number of terms is 
suggested for filtering the measured data and saving it in a compact form, which 
is especially beneficial when the number of monitored tools is high. An 
automatic diagnosis approach has been developed based on simplified fuzzy 
logic. The approach can be linked to a wider context, e.g. monitoring a complete 
machine tool through the proposed hierarchical structure. However, even though 
the results with laboratory data are promising, there are no test results from a 
real production environment. It should also be noted that the current results 
apply to medium and large size drills, and unfortunately the diagnosis of wear 
and breakage of small size drills is more demanding. The proposed approach is 
unable to detect what kind of wear is taking place, i.e. it does not differentiate 
chisel, corner, crater, flank or land wear from each other.  

Based on the research reported in this thesis and the above conclusions, some 
suggestions can be made for further work: 

- First of all, wider testing of the developed approach both in the 
laboratory and in the industry is suggested. In these tests the benefits of 
the higher order regression analysis function could be tested more 
thoroughly, including mathematical optimisation of the order of the 
function and the emphasis of current data, i.e. the variation of parameter q. 
These tests could also include testing of the whole automatic diagnosis 
approach in the prediction of the remaining lifetime of the tool. 
Furthermore, the tests might also help to widen the scope of the 
approach so that it could also be used for monitoring small size drills.  
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- One further step in gaining a better understanding of drill wear monitoring 
could be the development of a real physical wear model for drill wear. 
This could include the statistical treatment of material variation both in 
the drill and in the work piece, leading to a natural variation of the wear of 
the cutting lips. The model could also aim to differentiate between various 
wear types. This kind of model would probably have to be built using the 
finite element method (FEM) for modelling. However, it should be noted 
that even the very simplified model presented in this thesis could be used 
more widely in the development of automatic tool wear monitoring, 
diagnosis and prognosis. 

- Assuming that all the above-mentioned testing gave positive results, one 
further task that would then have to be carried out is the development of 
an automatic tool monitoring information database for practical and 
easy handling of the numerous tools in a real production environment. 

- Further work could also be done in testing the same approach in diagnosing 
and predicting the condition of machinery components suffering from a 
similar type of exponentially increasing wear, such as rolling bearings. 
Although the first version of the hardware capable of performing all the 
tasks presented in this thesis has been built, a further version could be 
developed that would include a better capability of signal amplification and 
filtering and improved automatic adjustment of parameters. 
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Abstract 
A machine tool utilisation rate can be improved by an advanced condition monitoring system using modern 
sensor and signal processing techniques. A drilling test and analysis program for indirect tool wear measurement 
forms the basis of this thesis. For monitoring the drill wear a number of monitoring methods such as vibration, 
acoustic emission, sound, spindle power and axial force were tested. The signals were analysed in the time 
domain using statistical methods such as root mean square (rms) value and maximum. The signals were further 
analysed using Fast Fourier Transform (FFT) to determine their frequency contents. The effectiveness of the best 
sensors and analysis methods for predicting the remaining lifetime of a tool in use has been defined. The results 
show that vibration, sound and acoustic emission measurements are more reliable for tool wear monitoring than 
the most commonly used measurements of power consumption, current and force. The relationships between 
analysed signals and tool wear form a basis for the diagnosis system. Higher order polynomial regression 
functions with a limited number of terms have been developed and used to mimic drill wear development and 
monitoring parameters that follow this trend. Regression analysis solves the problem of how to save measuring 
data for a number of tools so as to follow the trend of the measuring signal; it also makes it possible to give a 
prognosis of the remaining lifetime of the drill. A simplified dynamic model has been developed to gain a better 
understanding of why certain monitoring methods work better than others. The simulation model also serves the 
testing of the developed automatic diagnostic method, which is based on the use of simplified fuzzy logic. The 
simplified fuzzy approach makes it possible to combine a number of measuring parameters and thus improves 
the reliability of diagnosis. In order to facilitate the handling of varying drilling conditions and work piece 
materials, the use of neural networks has been introduced in the developed approach. The scientific contribution 
of the thesis can be summarised as the development of an automatically adaptive diagnostic tool for drill wear 
detection. The new approach is based on the use of simplified fuzzy logic and higher order polynomial 
regression analysis, and it relies on monitoring methods that have been tested in this thesis. The diagnosis 
program does not require a lot of memory or processing power and consequently is capable of handling a great 
number of tools in a machining centre. 
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used  measurements  of  power  consumption,  current  and  force.  The  scientific
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automatically adaptive diagnostic  tool  for drill wear detection. The new approach
is based on the use of simplified fuzzy logic and higher order polynomial regression
analysis,  and it  relies on monitoring methods that have been tested  in this  thesis.
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