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Rauste, Yrjö. Techniques for wide-area mapping of forest biomass using radar data. Espoo 2005. 
VTT Publications 591. 103 p. + app. 77 p. 
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Abstract 

Aspects of forest biomass mapping using SAR (Synthetic Aperture 
Radar) data were studied in study sites in northern Sweden, Germany, 
and south-eastern Finland. Terrain topography – via the area of a 
resolution cell – accounted for 61 percent of the total variation in a 
Seasat (L-band) SAR scene in a hilly and mountainous study site. 

A methodology – based on least squares adjustment of tie point and 
ground control point observations in a multi-temporal SAR mosaic 
dataset – produced a tie point RMSE (Root Mean Square Error) of 56 m 
and a GCP RMSE of 240 m in the African mosaic of the GRFM (Global 
Rain Forest Mapping) project. The mosaic consisted of 3624 JERS SAR 
scenes. A calibration revision methodology – also based on least 
squares adjustment and points in overlap areas between scenes – 
removed a calibration artifact of about 1 dB. 

A systematic search of the highest correlation between forest stem 
volume and backscattering amplitude was conducted over all 
combinations of transmit and receive polarisations in three AIRSAR 
scenes in a German study site. In the P-band, a high and narrow peak 
around HV-polarisation was found, where the correlation coefficient was 
0.75, 0.59, and 0.71 in scenes acquired in August 1989, June 1991, and 
July 1991, respectively. In other polarisations of P-band, the correlation 
coefficient was lower. In L-band, the polarisation response was more flat 
and correlations lower, between 0.54 and 0.70 for stands with a stem 
volume 100 m3/ha or less. 

Three summer-time JERS SAR scenes produced very similar regression 
models between forest stem volume and backscattering amplitude in a 
study site in south-eastern Finland. A model was proposed for wide area 
biomass mapping when biomass accuracy requirements are not high. A 
multi-date regression model employing three summer scenes and three 
winter scenes produced a multiple correlation coefficient of 0.85 and a 
stem volume estimation RMSE of 41.3m3/ha. JERS SAR scenes that 
were acquired in cold winter conditions produced very low correlations 
between stem volume and backscattering amplitude. 
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Preface 

This thesis summarizes the work published in six papers over the period 
1990–2005. All six papers can be considered to contribute to a theme 
“Techniques for wide-area mapping of forest biomass using radar data”. 
The term “wide-area mapping” here is understood to cover such mapping 
situations where the whole mapping area cannot be covered by a single 
space-borne SAR scene. 

The supervisor of the work is Professor Henrik Haggren of the Laboratory 
of Photogrammetry and Remote Sensing in the Department of Surveying, 
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and the Joint Research Centre (JRC, Ispra, Italy) of the European Union. 
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Herland, and Tuomas Häme at VTT as well as Frank De Grandi at JRC – 
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Global Vegetation Monitoring (GVM) group at JRC for many fruitful 
discussions in a scientific atmosphere during the work. 
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of Finnish Forest Industries (Suomen Metsäteollisuuden Keskusliitto), 
and the Human Capital and Mobility program of the European Union. 

I also thank my wife Erja and my children Turo and Noora for their 
understanding and patience during the years of this work. 
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The work can be divided into four themes:

• Incidence-angle effects on radar backscatter in forests (Paper 1),

• Pre-processing techniques – block adjustment in mosaicking and
block adjustment in calibration revision of SAR images (Papers 2 and
3),

• Radar backscatter of forests in various wavelengths and polarisa-
tions (Papers 4 and 5), and

• Multi-temporal L-band radar backscatter in forest biomass mapping
(Paper 6).

Paper 1 was written in VTT in project SLARSAR. I was the sole author of
Paper 1.

Papers 2 and 3 were written at the Joint Research Centre (JRC) of the
European Union while I was a post doctoral grant holder in 1997–1999.
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tie point production, block adjustment for SAR mosaicking, application of
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experimental results described in sections V, VI, and VII of Paper 3.

Paper 4 was written in VTT during project MAESTRO. My contribution to
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results using AIRSAR polarimetric SAR data.
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1 Introduction

The synthetic aperture radar (SAR) satellites Seasat (Lewis et al. 1983,
Moore et al. 1983), ERS-1 and 2 (ESA 1988), JERS-1 (NASDA 1988),
Radarsat-1 (Williamson 1990), and Envisat (Louet 2001) have created an
opportunity to map various properties of the earth’s surface at high res-
olution using microwave radiation. Future SAR satellites such as ALOS
(Shimada et al. 2005 and Shimada et al. 2002a) will further extend the ca-
pabilities of space-borne microwave remote sensing. Vegetation cover is
an important characteristic of the earth’s surface. Mapping forest and veg-
etation cover using radar has been studied extensively since Morain and
Simonett (1967). The biomass of vegetation cover is needed especially
in environmental and climatological studies, where the greatest amount of
uncertainty arises from lack of information on biomass density (e.g., Sader
et al. 1989 and Häme et al. 2003). Since tree trunks are the most impor-
tant raw material of the Paper and timber industries, information on forest
biomass is also needed in sustainable forestry.

In many countries, fertile low-lying flat areas are typically in agricultural
use. Forests tend to be in areas with more pronounced topography. When
mapping forest biomass – or other forest characteristics – the influence
of topography on the radar signal needs to be known. Paper 1 studies
the influence of topography (via incidence angle) on the radar signal that
scatters back from various forest areas.

When mapping forest biomass for large areas, large numbers of SAR
scenes must be used to cover the area. Individual scenes must be mo-
saicked together. This can be done in two ways: SAR scenes can be
mosaicked before image analysis or the results from single-scene analy-
sis can be mosaicked after the image analysis. In this mosaicking process,
various sensor-specific geometric and radiometric characteristics must be
taken into account. Mosaicking of SAR data and geometric and radiomet-
ric techniques needed in mosaicking are studied in Papers 2 and 3.

Radar signals from various radars interact with the forest canopy in differ-
ent ways. When mapping forest biomass, the accuracy of results depends
on the type of radar data used. In Papers 4 and 5, the use of various radar
wavelengths and polarisations in forest biomass mapping is studied.

Even if a radar sensor is considered accurate and efficient in forest biomass
mapping, practical space-borne mapping is restricted to those radar sen-
sors that are available on satellites in the foreseeable future. In Paper 6,
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the temporal development of L-band radar signal of forests and the pos-
sibilities of using multi-temporal methods in forest biomass mapping are
studied.

The following sections describe the context in which the themes mentioned
above were studied. Samples of relevant literature are mentioned until the
year of submission of the corresponding paper. More recent literature is
cited where this is necessary for understanding the relevance of the paper
today.

Interferometric techniques (e.g., Pulliainen et al. 2003, Wagner et al. 2003,
Shimada et al. 2002b, Koskinen et al. 2001) in forest biomass mapping
have been investigated in recent years. Repeat pass interferometry poses
some additional requirements on image acquisition conditions (e.g., low
wind). Interferometric techniques at least double the number of image
acquisitions (compared to techniques that can work with backscattering
amplitude data only). For these reasons, interferometric techniques are
not very attractive when aiming at covering large areas with homogeneous
mapping results. Interferometric techniques are left outside the scope of
this thesis.

Forest biomass is a quantity that is difficult to measure. In boreal forests,
the biomass is tightly coupled to forest stem volume (Häme et al. 1992,
Kauppi et al. 1995, and Häme et al. 1997). Häme et al. (1992) presented
an (approximate) analytical form for this relation in boreal forest:�������	��

�

(1)

where
�

is forest stem volume (m
�
/ha) and

�
is dry biomass (tons/ha).

Equation (1) ignores differences between species (see e.g. Kauppi et al.
1995). Equation (1) may underestimate the biomass by up to 20 percent.
In the absence of large datasets of biomass measurements, forest stem
volume data were converted into forest biomass using Equation (1).

Radars measure the return of a signal emitted by the radar. The strength of
this signal can be expressed as a power or amplitude. The amplitude is the
square root of the received power. In the following, the term backscattering
amplitude is used to refer to the square root of received power. In case of
SAR, the radar does not measure directly the power backscattered from
a resolution unit, but the final signal is derived in a computational process
called SAR processing. In SAR data, the backscattering amplitude can be
defined as the square root of the power that would have been measured by
a real aperture radar that has the same resolution as the SAR. The term

12



backscatter is used in a more general context without making assumptions
on power or amplitude formats.

Table 1. SAR sensors used in Papers 1 through 6.

Sensor Band(Wave- Pols. Res. (m) Inc. Launch End of Life
length in cm) /Looks (deg)

Seasat L(23) HH 25/4 23 1978-06-28 1978-10-10
JERS L(23) HH 18/3 39 1992-02-11 1998-10-12
AIRSAR C(6), L(23) Full 12/4 30- N/A N/A

P(63) 70

Table 1 lists the main characteristics of radar systems used in this thesis.
The column “Pols.” lists the polarisations of the sensors. AIRSAR is a
fully polarimetric sensor (measuring HH, HV, VH, and VV polarisations) in
all three wavelength bands. Column “Res.” gives the ground resolution
and the number of looks for which the resolution is given. The AIRSAR
resolution is approximate. Held et al. (1988) report a pixel spacing of
12.1 m in azimuth and 6.67 m in slant range. Column “Inc.” gives the
incidence angle. This is the mid-swath incidence angle for space-borne
sensors and the minimum and maximum incidence angles over flat earth
for the air-borne AIRSAR sensor. A nominal incidence angle of 38 degrees
is mentioned in some literature for JERS SAR. The nominal orbit elevation
of 570 km and mid-swath off-nadir angle of 35° (NASDA 1988) give a mid-
swath incidence angle of 38.68 degrees.

1.1 Incidence Angle Effects on Radar Backscatter in Forests

Topographic effects have been observed to influence or even dominate
SAR images of forests (e.g. Drieman 1987). Few studies have evaluated
the topographic effects on SAR images of forests in quantitative terms.

Teillet et al. (1985) studied terrain effects in a rugged forested study site
in Canada using data from the Canadian Convair-580 SAR. This SAR op-
erates in X- and L-bands and can record in both bands four polarisations:
HH, VV, HV, and VV. The terrain topography has its influence on radar
backscattering amplitude by the (local) incidence angle ( � ). Terrain eleva-
tion varied between 330 and 1100 m above sea level. In a shallow mode

13



scene (nominal incidence angle 22°), ����������� accounted for 26 to 38 per-
cent of the total variation in HH- and HV-polarisations of X- and L-bands
(in forested areas). In a steep mode scene (nominal incidence angle 43°),�������
����� accounted for 8 to 27 percent.

Foody (1986) studied terrain effects in an undulating study site in England.
A set of 227 grass covered fields were divided into seven zones (a mini-
mum of 30 fields per zone) to minimize the variation due to antenna gain
and sensor look angle. This grass-land study is included here because
early works in forested areas are so rare in the published literature. The
SAR data were acquired by the Canadian Convair-580 SAR system. The
polarisation was HH in both X- and L-bands. The SAR had the nominal in-
cidence angle range 32° to 63° (aircraft altitude 5.4 km, swath width 7 km
in ground range). The square of the multiple correlation coefficient ( � � )
was used to measure the effect (on radar backscatter) of two variables:
slope and aspect (relative to the SAR look direction). The � � statistic was
derived from zero and first order partial correlations using the formula:����! #" � �%$ ��!"'& $ �� �  #" �)(+* $ ��!" � where subscript 0 was image tone and sub-
scripts 1 and 2 slope and aspect respectively. ����! #" � was the proportion
of variance in image tone (0) accounted for by the variables 1 and 2 both
jointly and separately and

$
was the correlation coefficient. The propor-

tion of variation in L-band that was explained by slope and aspect was
between 3 and 30 percent, except in the two zones furthest away from the
radar, where 50 and 38 percent of the total variation was accounted for by
these variables. In X-band, the proportion of variation that was explained
by slope and aspect was between 3 and 30 percent in all zones.

Hinse et al. (1988) reported a reduction between 3 and 9.5 percent in the
variance of spectral signatures of land cover types (variance in backscatter
amplitude within a land cover type) after terrain corrections of an air-borne
C-band (Convair-580 SAR) HH-polarised scene. The land cover types
were deciduous, coniferous, corn, agriculture, and combined. The vari-
ance in backscatter amplitude in the corn land cover increased slightly in
the terrain corrections. The study site (in Canada) had moderate relief
(elevation variation of 210 m within the study site). The corrections were
based on the total incidence angle (not an explicit calculation of scattering
area).

In newer remote sensing literature, Small et al. (2004b) reported error
histograms on the estimation of backscattering coefficient ,.- as a function
of DEM resolution. The backscattering coefficient ,/- is related to the more
widely used backscattering coefficient 01- by: ,/- � 0.-324���4�5����� . Small et al.
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(2004b) produced a (radiometrically normalized) , - mosaic of Switzerland
using five ASAR (C-band) wide-swath scenes (nominal incidence angle
19° to 38°) with opposing look directions.

Goering et al. (1995) reported a reduction of 30 and 13 percent in pixel
value variance in an ascending and descending ERS-1 SAR scene, re-
spectively, after removal of terrain effects, which included the effect of the
size of a resolution cell. The study site was a tundra site (in Alaska) with
moderate relief and elevations between 410 and 490 m. The nominal in-
cidence angle in the 1.5 km by 1.5 km study site was 23.1319° for the
ascending scene and 23.1619° for the descending scene.

Bayer et al. (1991) reported that local incidence angle accounted for 36
percent of the total variation in forested areas and the range component
of local incidence angle 33 percent in a Seasat SAR scene in a German
study site. The nominal incidence angle for the Seasat SAR was 23°. The
regression analysis did not include a scattering area as an independent
variable. The study site had terrain slopes of up to 53 degrees. The eleva-
tion varied between 46 and 180 m.

Sun et al. (2000 and 2002) presented a technique for radiometric correc-
tion of terrain topography when using polarimetric SAR data. Because the
resolution of an available DEM (DTED level 1) was too low for radiomet-
ric corrections the dependence of backscatter on the incidence angle was
estimated from model calculations for HH- and HV-polarised L-band data
separately. The local incidence angle was estimated from HH-polarised
data. The incidence angle was used to correct the HV-polarised data
to the nominal incidence angle of the SIR-C SAR. The terrain-corrected
L-band HV-polarised data were used to derive a forest biomass model
( 67 �8�:9;�	<5= & ���>��? 0@- ). The estimates produced by this model had an

$ �
value of 0.91 with the ground data in a stand-wise forest biomass dataset,
where the biomass varied between 11.6 and 240 tons/ha. The RMSE (root
mean square error) was 18.1 tons/ha. 28 stands were used for model de-
velopment and another 28 stands for testing.

Goyal et al. (1999) combined the incidence angle and soil roughness into
a linear correction function when mapping soil moisture in a mountainous
grass-land area. They used L-band HH-polarised data from the AIRSAR
sensor. Elevation in the study site (56.25 km � ) varied between 1097 and
2252 m). The nominal incidence angle in the study site varied from 38°
to 54°. The use of the regression model between radar backscattering
intensity, incidence angle, and soil roughness (root mean square height)
reduced the variance in 0A- by 85 percent.
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The power measured by a radar can be described by the radar equation
(here for real aperture radar, a fully focused SAR has � � instead of ��B ,
e.g. Rosisch and Meadows 2004):C1D'� CFE�G �IHJ�K0� <4L � � � B (2)

whereCFD
= received power,CFE
= transmitted power,G
= antenna gain,H = radar wavelength,0 = radar cross-section of the target, and� = distance between the radar and the target.

In earth observation radars, where the target is a spatially extended piece
of earth’s surface, the radar cross-section 0 can be expressed:

0 � 0 -!M (3)

where0@- = radar cross-section per unit surface area,M = surface area of a resolution cell.
The term 0 - is called the backscattering coefficient.

The radar equation can be written:C1DN� CFEOG ��HJ�K0 - M� <�L � � � B �
(4)

The terms by which terrain topography affects the power measured by
radars are the backscattering coefficient 0A- and the area of the resolution
cell M .

The incidence angle (or angle of incidence) � is defined as the angle (in 3-
dimensional space) between the propagation direction of the radar signal
and the normal vector of an (assumed planar) resolution cell.

The backscattering coefficient 0A-P���4� of smooth targets (in terms of radar
wavelength) decreases steeply with an increasing incidence angle. The
backscattering coefficient of rough targets does not decrease so steeply
with the increasing incidence angle (Ulaby et al. 1982).

The area of resolution cell M depends not only on the total incidence angle,
but on its components in azimuth (along track) direction �RQ and in range
(cross track) direction � D .
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Figure 1. Dimension of a resolution cell in range direction.

Figure 1 shows a vertical cross-section plane that goes through the SAR
and a pixel. N’ is the orthogonal projection of the surface normal vector on
the vertical plane. Angle � D is the angle between the vector S (pointing to
the SAR) and N’ in the vertical plane of Figure 1.

A space-borne SAR produces its resolution in the range direction using
a pulse of finite duration (which is determined by the pulse compression
technique utilized). Since the pulse length is constant, slant range resolu-
tion SUT is constant through the image swath. As can be read in Figure 1,
the range dimension S3V of a resolution cell can be calculated:S3V � S����WYXZ��� D � (5)

Figure 2 shows a vertical cross-section plane that goes through a pixel
and is parallel to the SAR orbit. N” is the orthogonal projection of the
surface normal vector on the vertical plane (of Figure 2). Angle �PQ is the
angle between a vertical line and vector N” in the vertical plane of Figure
2. Angle ��Q is also the terrain slope in the orbit direction of the SAR.
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In a SAR scene, the azimuth resolution (on a horizontal surface) is con-
stant through the image swath. The azimuth dimension of a (tilted) planar
resolution cell is determined by two vertical planes (a " and a � in Figure 2,
separated by azimuth resolution S
[ ) that are orthogonal to the SAR orbit
(unless the SAR scene has been acquired and processed in squint mode).
The azimuth dimension of a tilted pixel SP\ can be calculated (see Figure
2): S
\ � S
[���4�5����Q�� (6)

The surface area M (in Equation 4) of a resolution cell is the product of
range and azimuth dimensions:M � SIV 
 SP\ � S���RW�XZ��� D � S
[���4�5����Q�� (7)

In more recent literature, Ulander (1996) has presented an approach for
terrain slope correction that takes into account the simultaneous effects
of pixel tilting in azimuth and range directions. This approach is equal to
the case where the plane of Figure 2 is not horizontal but tilted by � D . In
this formulation, �RQ is no longer equal to the slope in the azimuth direction
(unless � D equals zero). The angle ��Q can be defined as the angle be-
tween two planes: the vertical plane containing the sensor and the pixel
(= plane 1), and the plane that contains the terrain normal vector and in-
tersects plane 1 along the intersection of the terrain plane and plane 1. If��Q is defined this way, Equation (7) is equal to the pixel area of Ulander
(1996). As Ulander (1996) points out, the difference between these two
approaches is insignificant (less than 0.01 dB) unless the terrain slope
is higher than 20 degrees (and less than 0.1 dB within slopes between
-40 and +40 degrees). In such high-relief landscapes lay-over seriously
reduces the usefulness of SAR data regardless of terrain correction meth-
ods (unless multiple scenes with opposing look directions can be used as
by Small et al. 2004a).

An alternative way for the backscattering coefficient 0A- is the (gamma)
backscattering coefficient ,/- 0 � , -K] (8)

where,/- = radar cross-section per unit projected area,] = projected area of a resolution cell.
As ,/- is directly proportional to the projected area of a resolution cell, and

19



δs δo

SAR

N’

θrθr

Earth surface

S

Figure 3. Projected dimension of a resolution cell in range direction.

consequently to the power intercepted by the resolution cell, the effects of
terrain tilt components in range and azimuth directions are more uniform.
In this alternative, the radar equation can be written:CFDN� C1EOG ��HJ�!, - ]� <4L � � � B (9)

The projected resolution cell area ] can be calculated (Figure 3, the same
vertical plane as in Figure 1):

] � S�� 
 S�[ � S4� 
 S�[^ [_XZ��� D � (10)

Noting that the received power must be the same in both Equations (4)
and (9), the relation between 0@- and ,`- is:

, - � 0@-���4�5��� D �a���4�5����Q�� � (11)
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Figure 4. Resolution cell size for scattering volume. The scattering volume is
proportional to the resolution surface area both with horizontal ground, a) and
with sloping ground, b).

Because � D and ��Q are two orthogonal components of the total incidence
angle � , Equation (11) is equivalent to:, - � 0 -�����5���4� � (12)

Leclerc et al. (2001) describe in addition to 0A- and ,`- the backscatter
relative to Lambertian scatterer ( 0@-K���4� � � ). They used C-band HH- and VV-
polarized data from the Convair-580 SAR in the so-called narrow mode
(nominal incidence angles typically 45° to 76°). Slopes of up to 40° were
present in the study site. After terrain correction relative to the Lambertian
scatterer, forest and banana plantations could be distinguished from coffee
plantations on slopes facing towards the radar.

The surface area of a resolution cell M and projected area ] can be com-
puted if a digital elevation model (DEM) is available. Small et al. (2004a)
note that the assumption of a planar pixel has the disadvantage that it does
not account for fore-shortening, lay-over, and radar shadow.

When correcting radar images for the area of resolution cell, the the same
correction can be applied in areas dominated by surface scattering and
those dominated by volume scattering. In most forest scattering models,
the forest canopy is divided into layers of constant thickness that can be
considered as homogeneous in terms of backscattering. The equidistant
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circles (C " and C � in Figure 4, drawn as straight lines to describe the long
distance to space-borne SAR sensors) that define the range resolution of
a radar intersect an equal area ( S3V 
 S
\ ) of all boundary surfaces between
the canopy layers and the ground surface. This is true for horizontal and
tilted pixels (Figure 4). The size of scattering volume (the volume from
which the scattering that contributes to a single resolution unit originates)
is � T�bOQ EA� SIV 
 SP\ 
Pcd
 �����5��ef��g (13)

where h is the vertical thickness of the layer and e (Figure 4) is the terrain
slope component in range direction (i.e. in the cross track vertical plane).
Normalisation to a constant unit scattering volume is not feasible because
the balance of backscattering and absorption can vary widely in forest
canopies of varying age. Normalisation to a constant unit scattering vol-
ume would also require that the thickensses of the layers within the canopy
are known (or the tree heigth if the canopy is considered as a single layer).
This is difficult to map with high resoltion using today’s earth observation
instruments. The application of the �����5��ef� term in radiometric correction
would require information on where the backscattering is dominated by
surface scattering and where by volume scattering. This information is
also difficult to map. The difference would also be small. For example
for a terrain slope of 20° (36 percent slope), the �����5��ef� term is 0.97 for
amplitude images. The most varying term (excluding the layer thickness)
in the expression of scattering volume (13) is the area of the (upper and
lower) surface of the scattering layer. Radiometric correction by this term
leads to a correction procedure that is identical to the corecction that is
approporiate for areas dominated by surface scattering.

Similar to the surface area of volume scattering layers, the projected area
of all layer boundaries is constant from boundary to boundary (Figure 5).

Backscatter modelling studies (e.g., Richards et al. 1987, Sun and Simon-
ett 1988) indicate that the so-called double-bounce scattering mechanism
is important in L-band SAR data. This phenomenon should be visible in
the angular backscatter curve 0 - ����� .
1.2 SAR Mosaicking Techniques

When several images are mosaicked together, the geo-location of individ-
ual scenes must fit on the image boundaries within a sub-pixel. If this is
not the case, discontinuities – like rivers that do not flow continuously –
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Figure 5. Projected area for volume scattering elements. The projected area
of layer boundaries is constant from boundary to boundary both for horizontal
ground, a) and for sloping ground, b).

occur at image seams. If a multi-temporal mosaic is compiled, the tempo-
ral components of the mosaic must also fit together within a fraction of a
pixel. Otherwise mis-registration of mosaic components produces artifacts
around high-contrast edges in multi-temporal image analysis techniques.

The scene radiometry must also be calibrated in such a way that no abrupt
changes occur between individual scenes of the mosaic. Very sophisti-
cated calibration methods have been developed for SAR data (e.g., Menges
et al. 2001). This approach makes a frequency table of backscatter values
separately for each range co-ordinate in a SAR image. This table is then
used as a look-up table in the actual calibration phase. The approach,
which was applied to AIRSAR C-, L-, and P-band polarimetric dataset, as-
sumes uniform distribution of land cover classes across image swath. The
calibration method in mosaicking must be robust and free of restrictive re-
quirements on scene contents.

The error sources of space-borne SAR data are different from those of
air-borne data, and different methods are optimal for space-borne data,
where the orbit information is usually more accurate. However, the or-
bit control and measurement accuracy of, for example, the JERS satellite
was not very high. The initial (orbit-data based) geo-location accuracy of
the SAR scenes was, consequently, also low. This emphasizes the need
for adequate geometry revision techniques when mosaicking JERS SAR
scenes.
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Leberl (1975) studied mosaicking methods using a simulated set of 20
air-borne SAR strips (600 km long, 37 km wide, 63 percent sidelap). Se-
quential block formation with splines, followed by external interpolative ad-
justment, was found to be more robust and accurate than various forms of
simultaneous block adjustment. The main error source in the simulation
of the air-borne SAR data was the periodic error of the inertial navigation
system that was used in the mosaic construction.

The GRFM (Global Rain Forest Mapping) project was launched by the
Japanese space agency (NASDA) using the JERS SAR for rain forest
mapping (Rosenqvist 1996). The major objectives of the project were to
create spatially and temporally consistent JERS SAR image mosaics at
100-m resolution covering the entire equatorial belt and to provide these
as ’ready-to-use’ datasets freely and openly to the international science
community and educational institutions as tools to help improve our un-
derstanding of the tropical ecosystems (Rosenqvist et al. 2000). In this
international project, NASDA and NASA (Alaskan SAR Facility) processed
raw SAR signals into image form. NASDA, JRC, and JPL produced SAR
mosaics in South-East Asia, Africa, and South and Central America, re-
spectively. The GRFM project was followed by the GBFM project. One of
its main objectives was the generation of extensive, pan-boreal, SAR im-
age mosaics to provide snap-shots of the forest, wetland, and open water
status in the mid-1990’ies in the boreal forest zone of Eurasia and North
America (Rosenqvist et al. 2004).

Rosaz et al. (1994) describe a methodology for using least squares ad-
justment in the compilation of a SAR mosaic. This technique was used
when compiling a mosaic of 15 ERS-1 SAR scenes over the territory of
French Guiana. Tie points between scenes were first measured manually
and then refined using image correlation. SAR images of the same orbit
were first combined into an image strip. A similarity transformation of the
form: hjiJkl knm � hpo�q�rts * r!uwvpsrauxvys o�q�rts m 
 hji l m & hjz/{z`|}m (14)

was determined between two neighbouring strips. This was done using
tie points and a least squares adjustment. One of the two strips was re-
sampled to the geometry of the other strip using the parameters (rotation

s
and translations

z/{
and

z/|
in
i

and l ) of the similarity transformation. The
pair-wise combination of strips was repeated until all strips were combined
into a mosaic.

Rosaz et al. (1994) made the mosaic compilation in a co-ordinate system
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that was aligned with the azimuth-range (line-column) co-ordinate system
of one of the image strips. In this approach, the need for the rotation angles

comes from the difference of the orbit heading of the reference scene
and the orbit heading of the other scene where the latter heading is taken
with respect to the meridian of the reference scene. The expected value
of
s

is a non-zero function of scene latitude and depends on the imaging
geometry of the (ERS-1) SAR sensor.

Rosaz et al. (1994) also normalized image radiometry in a pair-wise man-
ner. One scene was modified on the basis of a transformation determined
by a least squares estimation over a set of points in the overlap area be-
tween the two scenes.

Siqueira et al. (2000) presented a geometry revision methodology, which
was also based on similarity transformation. The methodology was ap-
plied to the South-American JERS SAR dataset of the GRFM project.
In this methodology, the transformation parameters were determined in
a global least squares adjustment comprising all scenes in the mosaic,
which included one acquisition layer. This methodology treats ground con-
trol points like adding a single, pan-continental scene that is not allowed
to undergo any transformation (regarded as a “truth scene”). This treat-
ment disturbs the structure of the normal equation coefficient matrix by
adding an extended row and column since the “truth scene” has common
elements with a large number of other scenes in the mosaic.

Shimada and Isoguchi (2002) presented a methodology for mosaicking
long JERS SAR scenes (over 1000 km long path images) produced by the
so-called Sigma-SAR processor. As the sensor yaw angle is known with
high accuracy, this methodology uses only translations to make neighbour-
ing scenes fit. Ground control points and an affine transformation are used
to prevent error propagation due to path integration.

Shimada and Isoguchi (2002) used second-degree polynomials to normal-
ize the range dependency of backscatter. Additional gain correction was
determined on the basis of points in overlap areas between scenes and a
least squares estimation.

Hutton et al. (2000) compiled a Radarsat-1 mosaic of Canada. Over 100
image strips (4 to 7 scenes each, 300 km by 300 km scenes, scanSAR nar-
row B beam mode, 50 m resolution) were mosaicked using approximately
3000 ground control points measured from 1:50 000 and 1:250 000 topo-
graphic maps. Radiometric balancing within image strips was performed
when necessary. An algorithm was designed to automatically calculate ra-
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diometric variations across a scene and to produce more consistent gray
values in the output image. The global elevation model GTOPO30 was
used in ortho-rectification. The output mosaic was produced in Lambert’s
conformal conical map projection with a pixel spacing of 250 m.

Noltimier et al. (1999) compiled a Radarsat-1 mosaic of Antarctica. The
mosaic consisted of approximately 4000 Radarsat images acquired in stan-
dard beam modes 2 to 7 and extended high beam 4. The scenes, which
had a ground resolution of 25 m, covered an area of 100 km by 100 km.
The mosaic was constructed in blocks consisting of approximately 150
scenes. Ground control points, tie points (between image swaths), and
satellite ephemeris data were used in block adjustment. A digital elevation
model was used to ortho-rectify images. The ensemble of ortho-rectified
images was radiometrically balanced to remove seams and other artifacts.
Individual blocks were combined in the final processing stages including
block to block balancing and grand geometric correction.

In Siberia project (Wagner et al. 2003), mosaicking was done after (inter-
ferometric) image analysis. ERS scenes acquired at the same track-frame
co-ordinates were co-registered by cross-correlation. JERS scenes were
co-registered to ERS-frames. A total of 122 ERS-JERS “stacks” were then
mosaicked to a larger coverage after image analysis.

1.3 Radar Wavelength and Polarisation in Forest Biomass Map-
ping

The interaction between the electromagnetic radiation of a radar signal
and components of forest canopy and forest floor depend strongly on the
wavelength and polarisation of the radar (e.g., Ulaby et al. 1982).

The electric field of a radar pulse oscillates in two dimensions that are or-
thogonal to each other and to the propagation direction of the radar pulse.
These oscillations have a constant phase difference in such a way that
the electric field vector draws an ellipse on the plane perpendicular to the
propagation direction (Figure 6). The polarisation of the pulse can be de-
scribed by two angles: the orientation angle ~ between the vertical and
the semi-major axis of the ellipse and the ellipticity angle � (van Zyl et al.
1987). The ellipticity angle � is the angle between two end points of the
semi-minor axis of the ellipse seen from the end point of the major axis
(Figure 6).
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Figure 6. Orientation and ellipticity angles of an electromagnetic radar pulse on
a plane orthogonal to the propagation direction of the pulse.
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The ellipticity angle � varies between -45° and 45°. The orientation angle~ varies between -90° and 90°. An ellipticity angle of 0° produces a linear
polarisation (where the electric field oscillates in one dimension only) and� of 45° (or -45°) produces a circular polarisation.

Sader (1987) studied L-band SAR polarimetric data in forest biomass map-
ping. The sensor was a JPL-developed predecessor of the AIRSAR sen-
sor (nominal incidence angle 15° to 60°), which was operated on a Convair
990 aircraft. A correlation coefficient of 0.76 was obtained in a dataset of
nine forest stands between the biomass and HV-polarisation digital num-
ber. The HH- and VV-polarisations were not significantly correlated with
biomass. The stands included two pine species: longleaf pine (Pinus
palustris Mill.) and slash pine (Pinus elliotti Englem.) in a relatively flat
study site (elevation 3 to 15 m). The green weight biomass varied from 25
to 230 tons/ha.

Hussin et al. (1991) also studied slash pine biomass and L-band polari-
metric SAR data. The sensor was the JPL-developed polarimetric L-band
SAR before the AIRSAR sensor (on-board a Convair 990 aircraft). A co-
efficient of determination ( � � ) of 0.97 was obtained between HV-polarised
SAR data and biomass data that had been transformed by the Box-Cox
power transformation. The dataset contained 35 stands with an age of be-
tween 4 and 31 years. The biomass varied between 35 and 428 tons/ha.

Le Toan et al. (1991) studied forest biomass with AIRSAR multi-band po-
larimetric radar. High correlations ( ��� values of 0.95, 0.90, and 0.88) were
obtained between stem biomass and P-band data in VH-, HH-, and VV-
polarisations. The study site was on flat soil. The stem biomass varied
between 0 and 105 tons/ha and stand age between 0 and 42 years. Tree
species was mainly maritime pine (Pinus pinaster (Ait.)). The dataset con-
sisted of 24 forest stands and 9 clear-cut stands.

In more recent literature, Hoekman and Quinones (1998 and 2000) studied
AIRSAR data in forest biomass mapping in a tropical study site in Colom-
bia. The ground data set consisted of 13 plots of primary forest, 10 plots
of secondary forest, and 5 plots of grassland with bushes. The size of
primary and secondary forest plots was 1000 m � . The biomass varied be-
tween a few tons/ha and 315 tons/ha. The non-linear regression model
(3 parameters) was between the logarithm of ,/- (dependent variable) and
the exponential of the logarithm of biomass. C-band produced the lowest
coefficient of determination, followed by L-band, and P-band, which pro-
duced the highest. In both L- and P-bands, the HV-polarisation produced
the highest R � values (0.93 and 0.94). Hoekman and Quinones (2000, p.
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693) note that the biomass map is useful for land and forest degradation
assessment. The biomass map is of limited value for foresters who want
to assess parameters such as timber volume.

Ranson and Sun (1994) studied forest biomass mapping in a study site in
Maine, USA using AIRSAR data. The elevation varied only within 68 m.
The ground dataset consisted of 39 stands with above-ground dry biomass
between 0 and 350 tons/ha. The natural forest stands consisted of mix-
tures of hemlock-spruce-fir, hemlock-hardwoods and hardwood stands (mix-
tures of aspen, birch, maple and beech). Ranson and Sun (1994) used
only HV-polarised data because earlier studies suggested HV-polarisation
to be most correlated with forest biomass. In linear regression between
the logarithm of biomass and backscatter, P-band produced an R � value
of 0.81 and L-band 0.75. Using the band ratios P/C and L/C improved the
R � values slightly.

Saatchi and Moghaddam (2000) used an AIRSAR mosaic (C-, L-, and
P-bands, all in HH-, HV-, and VV-polarisations) for forest biomass map-
ping in a boreal study site in Canada. Elevation in the study site was
between 550 and 730 m. The method started with estimating (using an
iterative non-linear least squares estimation method) the parameters for a
semi-empirical forest backscatter model for four homogeneous stands of
trembling aspen, old jack pine, old black spruce, and young jack pine. The
parameters included crown moisture content, stem moisture content, rms
height of (ground) surface roughness, surface reflectivity (a function of soil
moisture), and 11 attenuation or scattering cross-section coefficients. The
crown and stem moisture content were used to estimate the crown and
stem biomass (by a conversion factor). The method required at least seven
independent radar measurements that were sensitive to these parameters.
This condition was met in the AIRSAR polarimetric 3-band dataset. When
applying the method in forest biomass estimation, a land cover map was
included. For mixed stands, a separate set of structural model parameters
was computed. A dataset of 18 stands (with biomass between 7.42 and
153.52 tons/ha) was used to evaluate the accuracy of forest biomass map-
ping. The total biomass mapping accuracy was 91 percent for a set of P-,
L-, and C-bands (P-HH, P-HV, L-HV, and C-HV). The accuracies for po-
larimetric (HH-, HV-, and VV-polarised data) P-band and L-band datasets
were 92 percent and 86 percent, respectively.

Balzter et al. (2002) studied forest biomass mapping in a Finnish study
site using polarimetric EMISAR (C- and L-band) data. Landsat-derived
forest inventory data were used as surrogate ground data. The most com-
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mon tree species were pine (Pinus sylvestris L.), spruce (Picea abies L.),
and birch (Betula spp.). The average forest stem volume was 50.5 m

�
/ha

(variation 0–140 m
�
/ha). Pixel values averaged over 100 m by 100m pix-

els (20 by 20 averaging) were used as observations instead of the usual
stand-wise data (about 410 observations). Single-band regression models
– exponential in stem volume – produced correlation coefficients of 0.54
and 0.63 in L-band HH- and L-band HV-polarisations, respectively, (0.26,
0.55, and 0.57 in C-band HH-, HV- and VV-polarisations, respectively) be-
tween the estimated and measured stem volume.

Castel et al. (2001) studied forest stem volume mapping in a French study
site using ERS (C-band VV-polarisation, 23° incidence angle), JERS (L-
band HH-polarisation, 39° incidence angle), and SIR-C (C- and L-bands,
HH- and HV-polarisations, 55° incidence angle) data. The ground dataset
consisted of 58 stands (over 2 ha) of Austrian pine (Pinus nigra nigricans).
The elevation was between 1600 and 1200 m. There were slopes of up
to 45°. The stem volume varied between 0 and 700 m

�
/ha. Terrain to-

pography effects were corrected using a facet-based method. The terrain
corrected 0 - was further modelled and corrected as a function of incidence
angle ( � ). Linear regression between the logarithm of the backscattering
coefficient 0@- and the logarithm of the stem volume was employed. Sum-
mer acquisition of SIR-C data produced the highest coefficient of determi-
nation (R � values of 0.80, 0.71, 0.46, and 0.32 in L-HV, L-HH, C-HV, and
C-HH, respectively), followed by JERS (R � values of 0.58) and ERS (R �
values of 0.01).

Santos et al. (2001 and 2003) studied air-borne (AeroSensing) P-band
SAR data for forest biomass mapping in a tropical study site in Brazilian
Amazon. The data set included 17 (2001) and 18 plots (2003). The six pri-
mary forest plots measured 10 m x 250 m. The twelve regrowth plots mea-
sured 10 m by 100 m. Characteristic species in primary forest included
Carapa guianensis Aubl., Eschweilera odorata (Poepp) Miers, Syzygiopsis
oppositifolia Ducke, Trattinickia rhoifolia, Tachigalia myrmecophylla Ducke,
Coumarouma odorata Aubl., and Nectandra mollis Nees. The most com-
mon species in regrowth areas were Tapirira guianensis Aubl., Cecropia
spp., Vismia guianensis (Aubl) Choisy, Guatteria poppigiana Mart., Didy-
mopanax morototoni Aubl., Inga alba (Sw) Willd., Murcia bracteata (Rich)
D.C. The biomass was between 8.00 and 271.82 tons/ha. The regres-
sion model was logarithmic in biomass. R � values of 0.62, 0.65, and 0.47
were obtained for HH-, HV-, and VV-polarisations, respectively (Santos et
al. 2001). HV-polarisation had the highest dynamic range, (Santos et al.
2003). Multiple (HH, HV, and VV) regression did not increase the signif-
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icance of R � values compared to those obtained with HH- or HV- single-
polarisation data.

Israelsson et al. (1997) studied CARABAS VHF SAR in forest biomass
mapping. The CARABAS operated in the frequency range 20–90 MHz
(wavelength 3–15 m) with HH-polarisation. The study site (in Öland, Swe-
den) was dominated by oak (Quercus robur), birch (Betula sp.), and alder
(Alnus Glutinosa). In a dataset of 12 stands (2–12 ha), the forest stem
volume varied between 0 and 210 m

�
/ha. Incidence angle was between

60° and 65°. The study site had no variation in elevation. Israelsson et al.
(1997) found that the backscattering coefficient increases with increasing
stem volume without saturation in the stem volume range 0–200 m

�
/ha.

Smith and Ulander (1998 and 2000) studied CARABAS data for forest
biomass mapping in a study site in Finland (Tuusula). Dominant tree
species were Scots pine (Pinus sylvestris) and Norway spruce (Picea abies)
with some deciduous trees (most common birch, Betula pendula). The
study site was generally flat. The dataset included about 140 stands
(Smith and Ulander 1998) with size varying between 0.1 and 6 ha. Forest
stem volume varied from close to zero to 550 m

�
/ha. Disturbing non-forest

objects (like power lines, buildings, and fences) were manually excluded
from the dataset. In two scenes with incidence angles of 64° and 53°,
R � values of 0.66 and 0.64 were obtained between the logarithm of 0 -
and stem volume (Smith and Ulander 1998). Smith and Ulander (2000)
used a regression model of the form �O�P� "�� �Y��-K� � � &�� 
 �O�P� "�� � � � where�R- is backscattering amplitude and

�
forest stem volume. The model was

determined from a set of 112 stands with stem volume higher than 100
m
�
/ha. The inverted model was used to compute stem volume for the

stands used. The correlation coefficient between the estimated and mea-
sured forest stem volume was 0.82 and 0.81 for the scene with 64° and
53°, respectively. The corresponding RMSE were 89 and 84 m

�
/ha.

Fransson et al. (2000) studied CARABAS data in forest biomass map-
ping in a boreal coniferous study site (Tönnershöjden) in southern Swe-
den. The prevailing tree species were Norway spruce (Picea abies) with
some Scots pine (Pinus sylvestris) and some deciduous species including
beech (Fagus sylvatica). Elevation varied between 55 and 140 m. For-
est stands on relatively flat terrain, larger than 2 ha, and more than 70
percent Norway spruce were selected for analysis. The data set was lim-
ited to stands with stem volume 80 m

�
/ha or more (average 339 m

�
/ha,

highest 725 m
�
/ha). The 80 m

�
/ha limit was applied to avoid problems

due to the noise floor of the CARABAS sensor. Disturbing non-forest ob-
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jects (like power lines, buildings, and fences) were manually excluded from
the dataset. Stands with terrain slope higher than 4° were also excluded.
Fransson et al. (2000) obtained a correlation coefficient of 0.83 between
stem volume and backscattering amplitude in a dataset of 201 stands. In
a more limited, objectively inventoried dataset of 30 stands, an R � of 0.88
was obtained between the square of stem volume and backscattering co-
efficient ( 0@- ). No saturation was observed in either of these datasets.

The sensitivity to environmental factors varies from radar bands to others.
Dobson et al. (1991) observed that a rain shower had the strongest effect
(in a C-, L-, and P-band AIRSAR dataset) on C-band and the weakest
effect on the P-band.

The stability of the relation of radar backscatter with forest biomass and
environmental factors has been studied among others by Villasenor et al.
(1993), Ahern et al. (1993), Keil et al. (1994), Conway & Estreguil (1994),
Ranson et al. (1995), Quegan et al. (2000), Ulander et al. (2000), Angelis
et al. (2001), and Askne et al. (2003).

Villasenor et al. (1993) studied ERS-1 SAR data (C-band, VV-polarisation,
incidence angle 23°) from the commissioning phase of the ERS-1 satellite
(the same orbit repeated every 3 days) in a tundra site in Alaska, USA.
The elevation in the study site varied typically between 430 and 730 m with
some mountains up to 1220 m. Backscatter ratio from scene to scene was
used to study the changes in backscatter. The freezing between images
acquired on 26 and 29 September caused a drop of backscatter. This drop
was over 4 dB higher in dryer, coarse textured soils on upper slopes than
on lower, finer textured soils on a flood plain.

Ahern et al. (1993) studied HH-polarised data from the Canadian C-band
SAR (on-board a Convair-580 aircraft) in a forested study site in Canada.
The study site had low relief (generally less than 25 m). The dataset cov-
ered 18 forest areas dominated by black spruce (Picea mariana), white
spruce (Picea glauca Voss.), jack pine (Pinus banksiana Lamb.), red pine
(Pinus resinosa Ait.), white pine (Pinus strobus L.), tamarack (Larix laric-
ina) and some deciduous species. In addition, the dataset included six
clear-cut areas. No biomass or stem volume data were reported in Ahern
et al. (1993) but the age varied between 32 and 100 years, height between
12 and 27 m and diameter at breast height between 12 and 36 cm in the
forest areas. Canopy closure was high. The radar dataset of four acquisi-
tions (August, October, February, and May) was not absolutely calibrated
but the scenes were scaled to a common mean backscatter value. The
dynamic range in the forested areas was highest in May (6 dB) and lowest
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in February (3.5 db, temperature -4°, 46 cm of snow in forest). The range
of backscatter from open forest land was large. The separation between
forested and clear-cut areas was highest in February.

Conway & Estreguil (1994) studied a set of 21 ERS-1 SAR scenes in a
tropical study site in Papua New Guinea. The study site was almost flat.
Dense evergreen forest had a very stable backscattering coefficient vary-
ing less than 1 dB within the year. The backscattering coefficient of sa-
vannah varied by 4.5 dB. The contrast between forest and savannah was
typically 4 dB in scenes acquired in the dry season and about 1 dB in
scenes acquired in the rainy season.

Keil et al. (1994) studied four ERS-1 SAR scenes in a tropical study site
in Brazil. They also observed that the contrast between rainforest and
deforested areas was higher in the scenes that were more within the dry
season.

Ranson et al. (1995) studied HV-polarised L- and C-band data from the
Shuttle imaging radar SIR-C. The topography of the study site was gen-
tle with elevations between 550 and 730 m. The dataset of 13 stands
was dominated by jack pine (Pinus banksiana) with one spruce stand and
one stand of mixture of jack pine and aspen (Populus tremuloides). The
biomass varied between 6 and 251 tons/ha. Ranson et al. (1995) de-
rived two regression models between the logarithm of L-band HV-polarised
backscattering coefficient and the forest biomass for scenes acquired on
10 April, 1994 and 1 October, 1994. The April scene was acquired with air
temperature around 4° C (after a night with -4°), but the soil (at the depth
of 10 cm) still frozen. The October temperature was around +3° both in
day and the preceding night, with 1 mm of rain during the 24 hours before
the image acquisition. The biomass functions were:l ��=;� (�� � & ���>��<_� i (15)

for the April scene and l ��<���=
<_� & ���>�4� ( i (16)

for the October scene. Here l = logarithm of forest biomass (kg/m � ) andi
= backscattering coefficient (dB). The coefficient of determination was

0.863 for the April scene and 0.846 for the October scene. When evaluated
at a backscattering coefficient of -20 dB, the April and October functions
produce biomass estimates of 21 and 33 tons/ha, respectively. At -16 dB,
they produce estimates of 195 and 210 tons/ha.

Quegan et al. (2000) studied ERS 1 and 2 data in an English site domi-
nated by Corsican pine using a dataset of 20 SAR scenes. No data on
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stem volume or biomass was available, but forest age was used as a
variable correlated with biomass. The study site was flat. The soil was
porous and dry and contained flints, sand, and chalk. The mean backscat-
ter of Corsican pine first decreased with age, reached then its lowest level
around 15–20 years, and then increased to a saturation level around -9 to
-10 dB. The decline in backscattering with age (or biomass) arised from
increased attenuation. The backscatter level and the slope of the curve
depended strongly on ground return, which was time and site dependent.
Quegan et al. (2000) studied the temporal stability of young forest, old
forest, and non-forest areas. Young forest (2–5 years) changed by 7 dB
over the year while old forest (13–60 years) changed by 2.5 dB. Non-forest
(agricultural) areas changed by at least 5 dB. Quegan et al. (2000) used
this difference in variability to map mature forest areas. They note that in
boreal regions the times of freezing or snow must be excluded because
these conditions cause marked changes in the forest backscatter.

Ulander et al. (2000) studied the VHF (20–80 MHz) radar CARABAS in
a site (Tönnersöhede) in south-western Sweden. The site was dominated
by Norway spruce (Picea Abies) and had a modest topography with el-
evations between 55 and 145 m. The backscatter amplitude remained
stable over a period of 20 months. Linear regression analysis between
the stand-wise averaged backscatter amplitude data from two acquisitions
produced a coefficient of determination of 0.91. Ulander et al. (2000) also
derived regression models between forest stem volume and CARABAS
backscatter amplitude in five study sites dominated by conifers in Sweden,
Finland, and France. The coefficient of determination in these regression
analyses varied between 0.64 and 0.97. The differences in the regression
coefficients between sites were due to differences in the ground reflection
coefficient.

Angelis et al. (2001) studied a set of three ERS-1 scenes (acquired in July
1992, September 1993, and April 1996) in a tropical study site in Brazilian
Amazonia. The first two scenes were normalized to the mean backscatter
of the last scene. Forests with selective logging had higher backscatter
than other forests, forests affected by fire had lower backscatter than other
forests, and the undisturbed forest had a stable backscatter.

Askne et al. (2003 and 2004) studied JERS and ERS SAR data in for-
est stem volume mapping in a Swedish study site (Kättöle) dominated by
Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) with some
deciduous trees like birch (Betula pendula). The topography of the site
was relatively flat with elevations between 75 and 110 m. Forest stem
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volume data from 42 stands (2–14 ha) varied between 8 and 335 m
�
/ha

(mean 135 m
�
/ha). The ERS dataset consisted of nine tandem pairs (18

scenes) between ERS-1 and ERS-2 from the so called tandem phase
(1-day difference between ERS-1 and ERS-2 acquisitions). The JERS
dataset included nine scenes. Only one JERS coherence scene (between
acquisitions on 15 April and 29 May, 1997) had high enough coherence
values to use. Askne et al. (2003) found that the ERS backscatter for dif-
ferent acquisitions varied inconsistently from one image to another. Cor-
relation coefficient (against forest stem volume) was typically less than
0.3. The coherence was more consistent and produced correlation coef-
ficients higher than 0.6 in most cases. The RMSE (corrected for ground
data sampling error) in forest stem volume mapping with the nine tandem
coherence scenes varied between 20.9 and 151.5 m

�
/ha. In JERS SAR

backscatter data, the correlation coefficient with forest stem volume was
generally of the order of 0.8. The (corrected) RMSE values in forest stem
volume mapping using JERS backscatter data varied between 36.5 and
140.1 m

�
/ha. The multitemporal stem volume mapping using three best

JERS backscatter observations and one coherence observation produced
(corrected) RMSE values of 27.2 and 38.0 m

�
/ha depending on which half

of the ground data was used as training and testing set. Using all nine
backscatter observations, the RMSE was 36.4 or 59.0 m

�
/ha. Askne et

al. (2004) also made a multiple regression model of the backscatter es-
timation models of the three best JERS SAR scenes and the coherence
estimation model, which produced a correlation coefficient of 0.91 between
the estimated and measured stem volume. The use of the four best ERS
coherence images (out of the nine pairs acquired) produced a (corrected)
RMSE value of 10.0 m

�
/ha. In the multitemporal estimation cases, each

scene was weighted by its scene-specific RMSE value.

Change detection in forested areas using SAR data has been studied
among others by Rignot & van Zyl (1993) and Kuntz et al. (1999).

Rignot & van Zyl (1993) studied ERS SAR data in two Alaskan sites. Com-
pared to difference between acquisitions, the ratio between acquisitions
had the benefit that the detection probability was independent of backscat-
ter level. Rignot & van Zyl (1993) also used temporal decorrelation of
speckle. As the decorrelation of speckle helped to detect changes in the
position of scatterers the ratio method provided information about the mag-
nitude of the observed changes. Rignot & van Zyl (1993) recommended
that both methods should be used in detailed monitoring studies.
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Kuntz et al. (1999) used colour composites of texture filtered and speckle
reduced Radarsat and JERS SAR scenes in mapping clear-cutting, plan-
tation, and shifting cultivation in a tropical rainforest in Kalimantan, Indone-
sia. Visual interpretation was done after geo-coding in a GIS system. The
problems in separating clear-cutting, plantation, and shifting cultivation in
undulating terrain could be overcome by using timeseries of images or
by using image pairs acquired from ascending and descending orbits at
almost the same time. The L-band JERS SAR data discriminated areas
of recent clear-cuts and initial regrowth on plantations better than ERS or
Radarsat (C-band) data.

1.4 Multi-Temporal L-Band Radar Backscatter in Forest Biomass
Mapping

Boreal forest biomass mapping using L-band SAR data has been studied
by, among others, Harrell et al. (1995), Fransson and Israelsson (1999),
and Pulliainen et al. (1999). For further references, see the introduction of
Paper 6.

Harrell et al. (1995) studied JERS SAR data for forest biomass mapping
in Alaska in a study area of 14 sites with a minimum size of 25 ha. Dom-
inant tree species were black spruce (Picea mariana) and white spruce
(Picea glauca). The sites were selected avoiding extreme relief. The total
biomass ranged between 0.7 and 5.6 kg/m � . This corresponds to about
12 to 93 m

�
/ha (Equation 1). Harrell et al. (1995) obtained an R � value

of 0.40 (14 sites) between the logarithm of total biomass and logarithm
of backscattered power in a mosaic acquired in July-August 1992. When
recently burned sites were excluded R � rose to 0.66 (11 sites).

Fransson and Israelsson (1999) studied JERS SAR data for forest biomass
mapping in north-eastern Sweden in a study site of 59 stands. The domi-
nant tree species were Scots pine (Pinus sylvestris), Norway spruce (Picea
abies), and birch (Betula pendula and Betula pubescens). Elevation var-
ied between 30 and 310 m. The stem volume varied between 0 and 285
m
�
/ha. Fransson and Israelsson (1999) obtained R � value of 0.57 be-

tween the exponential of stem volume and backscattering coefficient 0A- in
a scene acquired in June 1992. In a subset of 37 stands (overlap with other
scenes), R � rose to 0.60. Fransson and Israelsson (1999) also obtained
R � values of 0.57 an 0.56 in scenes acquired in December 1992 and May
1994, respectively. The regression lines of the December and June scenes
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were around 2 dB lower than the one of the May scene. Fransson and Is-
raelsson (1999) also determined the saturation level of the backscatter vs.
forest volume relation. The method used the backscattering coefficients of
mature forest and ground, the slope of the backscattering coefficient vs.
stem volume ( �t0 - 2�� � ), and the attenuation coefficient � . The saturation
level was at 136, 130, and 157 m

�
/ha for JERS SAR scenes acquired in

June 1992, December 1993, and May 1994, respectively.

Pulliainen et al. (1999) studied multi-temporal JERS SAR data in a boreal
study site in southern Finland. The dominant tree species was Norway
spruce (Picea abies). Ground data on stem volume was computed from a
Landsat-derived forest inventory map and aggregated to six stem-volume
classes between 25 and 260 m

�
/ha. The scenes were acquired in Decem-

ber 1994, March 1995, April 1995, and May 1993. The backscatter level
in frozen conditions was around 2 dB lower than in non-frozen conditions.

In more recent literature, Santos et al. (2002) studied biomass mapping
with JERS SAR data in two tropical study sites in Brazil. Santos et al.
(2002) used regression models (logarithm of biomass and a sigmoid func-
tion) to model L-band backscatter using a ground data set of 68 plots (2500
m � in primary forest, 1000 m � in secondary forest). They found that the sig-
moid function has a high sensitivity below (above ground) biomass values
of 60 tons/ha, where the backscattering coefficient ( 0 - ) saturates at about
-7.45 dB.

Pierce et al. (2003) mapped re-growth biomass in two Brazilian (tropical)
study sites using a combination of JERS and Radarsat wide-swath SAR
data. The radar data were ortho-rectifed using a digital elevation model
(DEM). The local incidence angle was also computed and used to calibrate
the SAR data to account for the ground area illuminated. The logarithm of
biomass was modelled as a linear combination of L- and C-band data. An
R � value of 0.92 was obtained in a set of 15 ground plots of 10 m by 50 m.
The biomass varied between 8 and 160 tons/ha.

Kuplich and Curran (1999) mapped forest biomass in a Brazilian study site
using a time-series of ten JERS SAR scenes. The biomass was between 8
and 104 tons/ha for 15 regenerating plots and about 370 tons/ha for three
primary forest plots. The size of plots was 10 m by 50 m (Luckman et al.
1997). A correlation coefficient of 0.67 (based on 18 plots) was obtained
between the logarithm of above-ground biomass and the logarithm of the
backscattering coefficient. The biomass-backscatter relation saturated at
around 60 tons/ha.
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Castel et al. (2000 and 2002) studied biomass mapping in Venezuela
using a mosaic of six JERS SAR scenes. The stem volume varied between
0 and 200 m

�
/ha in a dataset of 78 (76 in 2002) stands of Caribbean pine

(Pinus caribaea var. Hondurensis) plantations. Using a semi-empirical
forest backscattering model, a correlation coefficient of 0.85 (Castel et al.
2000) was obtained between the estimated and measured stem volume
(0.92 in Castel et al. 2002).

Tsolomon et al. (2002) studied a site in Mongolia. Elevation varied be-
tween 1100 and 1600 m. They derived regression models between biomass
(dependent variable) and the backscattering coefficient (independent vari-
able) from JERS SAR data. The form of the regression model was a
quadratic polynomial. Tsolomon et al. (2002) obtained R � values of 0.55,
0.68, and 0.72 for larch (10 to 30 tons/ha, Larix sibirica), pine (15 to 25
tons/ha, Pinus sibirica), and poplar (3 to 6 tons/ha, Populas) stands, re-
spectively. The data set consisted of one scene and ground data for ap-
proximately 25 stands per species.

Kellndorfer and Ulaby (2003) studied JERS and ERS SAR data for biomass
mapping in a boreal study site with 17 jack pine (Pinus banksiana) stands.
The biomass varied between 1 and 90 tons/ha. R � values of 0.93 and
0.80 were obtained for JERS and ERS SAR data, respectively, between
logarithm of biomass and logarithm of 0 - .
Askne et al. (2004) studied forest stem volume mapping with JERS SAR
data in a boreal study site in Sweden (Kättböle). The data set included
42 stands between 2 and 14 ha in size. Elevation varied between 75 and
110 m. The dominant tree species were Scots pine (Pinus sylvestris) and
Norway spruce (Picea abies) with some deciduous trees (most common
birch, Betula pendula). The highest stem volume was 350 m

�
/ha and the

mean 135 m
�
/ha. The backscatter model was exponential in stem volume.

Askne et al. (2004) obtained stem volume estimation errors (RMSE, cor-
rected for errors in in situ data) that varied between 36.5 m

�
/ha and 85.4

m
�
/ha in nine scenes. Askne et al. (2004) found only one interferometric

pair (in a dataset of nine scenes) to be useful for stem volume estimation.
Askne et al. (2004) made a multiple regression model of the backscatter
estimation models of the three best scenes and the coherence estima-
tion model, which produced a correlation coefficient of 0.91 between the
estimated and measured stem volume.

Santoro et al. (2004) studied forest stem volume mapping with JERS SAR
data in a boreal study site in Russia near the city Krasnoyarsk. The domi-
nant tree species were spruce (Picea sibirica), fir (Larix dahurica and Larix
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sibirica), and birch (Betula spp). The study site consisted of four compart-
ments. In one compartment, elevation varied between 220 and 260 m,
whereas other compartments had an elevation variation of several hun-
dred metres. SAR backscatter data were corrected for topographic effects
using the GTOPO30 elevation model (resolution about 800 m). The terrain
correction did not produce significant improvements in stem volume esti-
mation. Forest stem volume varied between 5 and 470 m

�
/ha in the study

site. In the subset (used in analysis) of stands of 8 ha or larger, the stem
volume varied between 5 and 410 m

�
/ha. The backscatter model was ex-

ponential in stem volume. One third of the data was used for determination
of the coefficients of the backscatter model and two thirds for validation.
The best R � values (in a set of 13 SAR scenes) were 0.71, 0.52, 0.35, and
0.70 for compartments 1 (91 stands), 2 (146 stands), 3 (113 stands), and
4 (156 stands), respectively. The corresponding RMSE values were 57,
74, 87, and 63 m

�
/ha, respectively.

If various physiological properties affect the backscatter in various sea-
sonal conditions multi-temporal techniques can benefit from efficient use
of data from various seasons. The year can be divided (Paper 6) into the
following periods and image acquisition conditions:

G1: the peak bio-chemical activity during the first half of the growing sea-
son,

G2: the second half of the growing season before the drop of the leaves
of deciduous trees,

G3: the leaves-off period before the first snow,

WD: dry winter conditions, and

WW: wet winter conditions.
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2 Materials and Methods

2.1 Study Sites and Data

The selection of study sites in the papers of this thesis was based on the
availability of the necessary data, primarily the availability of SAR data, but
also of ground data.

Study sites were located in three European countries (Sweden, Germany,
and Finland) and in Africa. SAR data were used from the satellites Seasat
and JERS and the airborne AIRSAR sensor.

2.1.1 Site and Data for Incidence Angle Study

The study site where topography and incidence angle effects on radar
backscatter (Paper 1) were studied was in northern Sweden close to the
village Arjeplog. The centre co-ordinates of the site were 66°.0 N (northern
latitude) and 17°.3 E (eastern longitude relative to Greenwich).

The site includes mixed forests (mainly pine dominated), plantations of
Norway spruce (Picea abies) and Scots pine (Pinus sylvestris), clear-cut
areas, marshes, and lakes. In this northern study site, forest stem volume
ranges form zero to about 100 m

�
/ha. The soil type is mainly till (glacial

drift). The soil contains stones and boulders up to 50 cm in diameter. The
elevation varies between 420 and 780 m above mean sea level. The area
can be considered as hilly or mountainous.

The Seasat SAR image of the site was acquired on 20 August 1978.
Seasat SAR was an L-band, HH-polarised radar with a nominal mid-swath
incidence angle of 23 degrees (Pravdo et al. 1983). The incidence angle
varied between 20° (near range) and 26° (far range). The nominal (4-look)
ground resolution was 25 m. The Seasat image was SAR processed by
FOA (National Defence Research Establishment, currently FOI, Swedish
Defence Research Agency, in Linköping, Sweden).

A digital elevation model (DEM) was used to geo-code the SAR image into
the Swedish national grid (“rikets nät”) and to compute incidence angles
and resolution cell areas ( M in Equation 7). The DEM (grid cell size 25 m
by 25 m) was derived from the contour lines of Swedish topographic maps
to a scale of 1:100 000 (contour interval 10 m). The DEM was generated
by the Institute for Image Processing and Computer Graphics, Joanneum
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Research Centre, Graz, Austria. The DEM covered an area of 19 km by
21 km. The terrain slopes in the area are smaller than 23 degrees. No
accuracy estimate of the DEM were available. If half of the contour interval
is used to describe the accuracy of the interpolated DEM – like in the case
of a Finnish DEM (see section 2.1.4) – the vertical accuracy of the DEM in
the Arjeplog study site can be assumed to be of the order of 5 m.

Estimation of forest stem volume and forest type classification were de-
rived from an analysis of a Landsat Thematic Mapper scene (world refer-
ence system identifier 197-14) acquired on 25 June 1986. The RMSE of
the stem volume model was 17.8 m

�
/ha ( � � of 0.67) in the training data.

Since the model was applied to another TM scene, the estimation error
can be much worse, perhaps of the oder of 30...40 m

�
/ha.

2.1.2 Site and Data for SAR Mosaicking Study

The study site where JERS SAR mosaicking techniques (Papers 2 and 3)
were studied comprised the whole forest belt of Africa. The mosaic area
covers latitudes 10° S to 10° N and longitudes 14° W to 42° E. The mosaic
includes large areas of tropical rain forest, with tree and grass savannah
along the northern and southern borders of the area. Most of the area
is flat or gently undulating below 500 m, but the eastern part of the area
includes high mountains (e.g. Mount Kilimanjaro 5985 m).

SAR scenes (Paper 2) that were acquired for the GRFM African mosaic
were divided in two acquisition layers: low water layer and high water layer.
Two acquisitions were made in the GRFM project to allow the use of multi-
temporal techniques in analysis of the mosaic images. The naming of
these layers was based on the water level of the most important river sys-
tem in the mosaic area, the Congo river. The low water layer covered the
whole area as described above. The high water layer covered only longi-
tudes 8° E to 36° E. The two layers included a total of 3624 JERS SAR
scenes. The low water layer was acquired in January–March 1996. The
high water layer was acquired in October–November 1996.

Each JERS SAR scene covered an area of 80 km by 80 km. The im-
ages were SAR processed by the Japanese Space Agency NASDA (cur-
rently JAXA) using the so-called NASDA processor. The pixel spacing
in the 3-look images was 12.5 m. The images were standard level 2.1
products with geo-location data in Universal Transverse Mercator (UTM)
co-ordinates. The images were down-scaled to 100 m pixel spacing by a
wavelet-based technique (Simard et al. 1998).
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Two types of cartographic data were used for geometric control of the mo-
saic:

• shore line polygons from the World Vector Shoreline database, and

• raster images of topographic maps.

The World Vector Shoreline database (NOAA 2005) was compiled by the
Defense Mapping Agency (DMA) of the US (currently NIMA, National Im-
agery and Mapping Agency). The database was intended for use in a
scale of 1:250 000 or smaller. The database was derived mainly from
Joint Operations Graphics and coastal nautical charts produced by DMA.
The accuracy requirement in this database is that 90 percent of identifiable
features are within 500 m from their true position. The (preferred) datum
is WGS-84.

The topographic maps were digitized raster images of 1:200 000 topo-
graphic maps in the Central African Republic and in the Republic of Congo.
The maps were produced by the French mapping agency IGN and digitized
by the Belgian company I-Mage in a World Bank program. The accuracy
of these maps is not known.

2.1.3 Site and Data for Wavelength and Polarisation Study

The wavelength and polarisation aspects of forest biomass mapping (Pa-
pers 4 and 5) were studied in a study site in Schwarzwald, Germany. The
study site (centre 48°03’ N, 8°23’ E) is located near the town of Villingen-
Schwenningen. The site was the German study site (named Freiburg
study site) in the MAESTRO-1 program (Churchill and Attema 1991) or-
ganized by the Joint Research Centre (JRC) of the European Union and
the European Space Agency (ESA).

Due to the fairly high elevation (750 to 970 m) the site is dominated by
tree species that are typical in boreal forest. Norway spruce (Picea abies
Karst.) covers 1370 ha, Scots pine (Pinus sylvestris L.) 280 ha, and Silver
fir (Abies alba Mill.) 200 ha. Forest stem volume varied between 0 and
830 m

�
/ha.

The SAR data in Paper 4 consisted of two AIRSAR scenes (Held et al.
1988) acquired on 18 August 1989. Each scene had three bands: C, L,
and P (wavelengths 6 cm, 23 cm, and 63 cm, respectively). The data
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were SAR processed by Jet Propulsion Laboratory (JPL). Each pixel in
each band contained the full scattering matrix: HH-, HV-, VH-, and VV-
polarisations as complex numbers. The scattering matrix AIRSAR data
were 1-look data (with nominal ground resolution of 4 m in azimuth and 14
m in range at 45° incidence).

The data were uncalibrated, but a number of 1.8 m trihedral corner re-
flectors were deployed in the study site during image acquisition. The
incidence angle varied between 35° and 55° in scene 1105 and between
48° and 55° in scene 1107, which covered the study site only partially.

The SAR data in Paper 5 consisted of (in addition to the MAESTRO-1
scene 1105) two new AIRSAR scenes acquired on 15 June 1991 (scene
3169) and 16 July 1991 (scene 3275). These data were also SAR pro-
cessed by JPL. These data were 16-look compressed Stokes matrix data
(nominal ground resolution of 16 m in azimuth and 14 m in range at 45°
incidence).

A number of 1.8 m trihedral corner reflectors were also deployed in the
study site during the 1991 acquisitions. The author of this thesis (assisted
by JRC personnel) constructed a 5 m trihedral corner reflector (of chicken
wire) for the calibration of P-band data. The July 1991 scene was already
calibrated by JPL, but the June 1991 scene was uncalibrated.

Meteorological data for the AIRSAR scenes of the study site is scarce.
On 18 August 1989, temperature was 22 degrees C and air humidity 36
percent. Cloud cover was 4/8. There was no rain up to 24 hours before
the image acquisitions (JRC 1990). There were some slight rain a few
days before 15 June 1991. The day of image acquisition was without rain.
The weather was partly cloudy (the AIRSAR aircraft was visible from the
study site most of the image acquisition time) and the wind was weak. No
meteorological data are available for 16 July 1991. High contrast between
agricultural fields and forests suggest that vegetation has not at least been
soaked with rain water.

DEM was used in the geo-coding of SAR data. The DEM was made in the
MAESTRO-1 program by Universität Stuttgart/Instut für Navigation. The
DEM (grid spacing 30 m) was produced using contour lines from German
topographic maps of a scale of 1:50 000. An evaluation of the accuracy
of the DEM was made against a more accurate topographic map in scale
1:25 000. Horisontal displacements in contour line positions of up to 45
m were found between the DEM and the 1:25 000 topographic map. The
maximum vertical difference (in a set of three controlled points) in hill-top
elevations was 8.9 m.
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Forest inventory ground data in Papers 4 and 5 covered 230 forest stands
totaling 1 920 ha (19.2 km � ). The inventory was made in 1981. The accu-
racy of this stand-wise inventory data is not known. An average RMSE in
stand-wise stem volume inventory in Finland has been estimated to be of
the order of 24.1 percent (Haara & Korhonen 2004). As the forest inventory
data in the Freiburg study site was 8 and 10 years old at the time of SAR
data acquisitions, it can be assumed that the forest inventory ground data
in Papers 4 and 5 was less accurate than the ground data in the Ruoko-
lahti study site in Paper 6. The forest inventory data consisted of a stand
map in a scale of 1:10 000 and stand-wise data sheets (situation 1 Octo-
ber 1981). An attempt was made to take tree growth into account. Forest
stem volume was plotted against stand age and a piece-wise linear regres-
sion model was fitted with the data. The forest stem volume of the forest
inventory dataset was then updated with this simple “growth model” over
the 8 year time before the first AIRSAR acquisition. The updated forest
stem volume data were compared to ground measurements (June 1991,
Rauste 1991) in eight stands. The difference between the updated forest
stem volume data and the ground measurements were more random than
the difference between the 1981 forest stem volume and the ground mea-
surements. For this reason, the updating approach was abandoned and
data from the 1981 forest inventory was used in analysis of the AIRSAR
data.

2.1.4 Site and Data for Multi-Temporal L-Band Radar Backscatter Study

The study site (centre 61°31’ N, 28°46’ E) for the multi-temporal L-band
study was located in south-eastern Finland within the municipalities Puu-
mala and Ruokolahti (Paper 6). The most common tree species in the site
were Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies Karst.),
and birch (Betula pendula and Betula pubescens). The dominant soil type
was till (glacial drift). Forest stem volume varied between 0 and 364 m

�
/ha.

The SAR data included six JERS SAR scenes. The JERS SAR is an
L-band, HH-polarisation SAR with a nominal incidence angle of 39°and 3-
look ground resolution of 18 m. The JERS SAR scenes were acquired on
20 February 1993, 25 January 1995, 20 July 1995, 2 September 1995, 16
October 1995, and 14 March 1998. These scenes are later referred to as
scenes Dry93Feb, Wet95Jan, S95Jul, S95Sep, S95Oct, and Dry98Mar,
respectively. All scenes were acquired on the same nominal orbit path
so that the imaging geometry is identical from scene to scene. Summer
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scenes were acquired in fairly dry conditions. The precipitation on the
acquisition day varied between 0.1 and 1.5 mm and on the preceding day
between 0.1 and 2.4 mm. The dry winter scenes were acquired in cold
conditions. The temperature had been below zero for four days before
the scene Dry93Feb and for 13 days before the scene Dry98Mar. The
scene Wet95Jan was acquired on a day when the maximum temperature
was 0.2° C and the minimum -2.1. The precipitation (as snow) on the
acquisition day of the scene Wet95Jan was 1.4 mm and on the previous
day 9.7 mm.

The first JERS scene was SAR processed by ESA. The 1995 scenes were
SAR processed by NASDA using the so called new NASDA processor.
The last scene was processed by NASDA using the Sigma-SAR proces-
sor. The first scene was uncalibrated. For the other five scenes NASDA
provided calibration factors (Shimada 1996, Shimada and Isoguchi 2002).

The DEM (25 m grid spacing) used in the geo-coding of the SAR data
was produced by the Finnish National Land Survey. Contour lines of topo-
graphic maps of the scale of 1:20 000 were used in the DEM production.
The DEM covered an area of 38 km by 51 km. The vertical accuracy of
the DEM is considered to be 2.5 m (half of the contour interval of the topo-
graphic map material, Haggrén & Honkavaara 2004).

Forest inventory ground data were available from two sources:

• the forest management information system of Stora Enso Ltd. (the
forest owner), and

• measurement of a grid of plot data by the Finnish Forest Research
Institute.

The stand-wise data were inventoried in 1997. The stand-wise forest in-
ventory dataset did not include accuracy estimate of the data. Haara and
Korhonen (2004) have studied the reliability and accuracy of stand-wise
forest inventory data that were made using similar inventory methods.
Haara and Korhonen (2004) found the RMSE of stand-wise forest stem
volume data to be 21.4 percent (of the stem volume). They also found
that the RMSE in stem volume inventory varied from 10.6 to 33.9 percent
depending on the person who made the inventory. The stand-wise forest
management data included – after elimination of stand boundary areas
and stands smaller than 2 ha – 206 stands that covered a total of 845 ha.

The plot data (covering an area of 1 km by 1 km inside the area covered
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by the stand-wise inventory data) were measured in a regular grid with 50-
m spacing between grid points. The diameter of a plot was about 25 m.
The plot data were measured in 2000. The plot size is of the order of one
(3-look) pixel in JERS SAR data. This means that very little averaging can
be done in SAR data to obtain accurate backscattering coefficient data
for each plot. For this reason, the plot data was used in Paper 6 as an
independent but less representative data source to verify results obtained
using the stand-wise data.

2.2 Methods

2.2.1 Methods for Incidence Angle Study

Pre-processing of Seasat SAR data in Paper 1 included ortho-rectification
using a DEM and manually measured ground control points (Rauste 1988).
The SAR data were averaged to 75 m pixel size to reduce speckle before
statistical analysis.

Linear regression analysis was used to determine the amount of variation
in the SAR data explained by terrain topography (including topography-
simulated SAR data, resolution cell area, slope and aspect) or forest stem
volume.

A simulated SAR scene that depends only on terrain topography was
made. Using only land pixels (water masking by Landsat TM data), each
pixel value (backscattering amplitude in the SAR scene) was divided by the
square root of the area of the resolution cell M . The data were then cross-
tabulated against the incidence angle. A second-degree polynomial was
then fit to the cross-tabulated data. This polynomial gives the backscatter-
ing coefficient 0A- as a function of incidence angle. In the simulation stage,
the incidence angle was computed from the DEM. A 0A- value was then
computed using the polynomial. The 0A- was then multiplied by the area of
the resolution cell M , which was also computed using the DEM.

In the computation of the simulated SAR scene, the so-called thermal
noise floor was first subtracted from Seasat SAR data. The noise floor
was estimated from the SAR data using the darkest water areas of the
scene.

The double-bounce backscattering mechanism is illustrated in Figure 7.
When the ground is flat and horizontal (Figure 7 a), vertically growing tree
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a) b)

Figure 7. Double-bounce scattering with horizontal ground, a) and with sloping
ground, b).

stems form a 90 degree angle to the ground. This geometry forms a corner
reflector: the incoming radar signal reflects from the ground and the tree
stems in such a way that it always returns back to the direction it came
from – independent of the incidence angle. If the ground is tilted and the
tree stems vertical (Figure 7 b), there is no 90 degree angle between the
ground and tree stems. The double-bounce signal is then reflected in a
direction away from the radar.

The following hypothesis was proposed: If the double-bounce component
is important in the SAR data of a study site, the backscattering coefficient
( 0@- , corrected for the scattering area effects as described above) of hori-
zontal flat pixels should be higher than the 0A- of pixels where the terrain
slope is higher. For the testing of this hypothesis, the dataset was divided
into two parts:

• pixels with a slope of between 0 and 2 degrees, and

• pixels with a slope of between 2 and 5 degrees.

Pixels with very high slopes were excluded because very steep slopes
tend to have sparse forest cover and outcrops, which could influence the
analysis.
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In the absence of forest inventory data from the study site of Arjeplog, for-
est stem volume was estimated using a Landsat TM scene and a regres-
sion model developed in a northern Finnish study site by Tomppo (1986).
A forest type classification was also made.

The dependence of 0 - on incidence angle was studied using linear re-
gression. The 0@- values were cross-tabulated against incidence angle ( � )
separately for various forest types. A linear regression model 01- vs. � was
derived for each forest type. The slope of these linear models was then
used to study differences in the 0A- vs. � relation between forest types. The
slope terms were compared in pair-wise students t-tests between forest
types.

2.2.2 Methods for SAR Mosaicking Study

The SAR mosaicking methodology is described separately for scene ge-
ometry and scene radiometry.

Geometric Methodology for SAR Mosaicking The image geometry revi-
sion method adopted in the mosaicking of JERS SAR data (Papers 2 and
3) is based on automatic correlation-generated tie points and on the use
of least squares adjustment over the whole set of SAR scenes. In addi-
tion to the global adjustment as described by Siqueira et al. (2000) this
approach includes the multi-temporal dimension, which guarantees the
multi-temporal consistency between mosaics acquired at different times.

Since the scene geo-location data of JERS SAR level 2.1 products can be
considered to describe the internal image geometry well, these data were
used as the starting point in mosaic geometry revision. Like in Rosaz et
al. (1994) and Siqueira et al. (2000), the similarity transformation (Figure
8) was chosen as the geometric model of scene revision.

Unlike in Rosaz et al. (1994) and Siqueira et al. (2000), the co-ordinatesi
and l are not image co-ordinates (azimuth-range) but cartographic co-

ordinate differences relative to the scene centre. The map projection of the
northing-easting co-ordinates (N and E in Figure 8) can be chosen. The
Mercator projection had been chosen in connection with the definition of
the GRFM project.

Also unlike in Rosaz et al. (1994) and Siqueira et al. (2000), the rotation
angle

s
is not a heading difference between orbits but a deviation from
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Figure 8. Image co-ordinate systems centred at scene centre.
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the scene orientation as estimated by the SAR processor. Therefore, the
expected value of

s
is zero, and its variance can also be expected to be

small because the orbit heading can be reliably estimated from orbit data.

In the least squares adjustment (e.g., Hirvonen 1965), observations are
expressed as a function of unknown parameters (vector � ):�P� ��� ���F� � (17)

Here
� ���F� is a function of the form where the observed quantity is sub-

tracted from the theoretically calculated value of that quantity.

The number of observations n must be greater than the number of param-
eters m. Linearizing Equation 17 gives:�P� � ���!� " � �� i � S i � & �.� � � (18)

Here S i � is the improvement to the initial value
i � � . �/� � is the estimated

value of observation W with initial values of vector � . Equation 18 can be
written in vector form: � ��� � &�� (19)

where
�

= residual vector of n elements, � = vector of n
�/�

values (before-
adjustment discrepancies), and

�
is an n by m matrix of partial derivatives:

[ �w� � � � � �� i � g (20)

evaluated at the point corresponding to observation W .
If the observations have different weights ( � is a diagonal weight matrix
with V �x� � the weight of observation W ) the weighted square sum of errors is:�F� � � � � � � � � � � &�� � � � � � ��&�� � � � � (21)

Using the following notations: � ��� � � � (22)

and � ��� � � � g (23)

the minimum of the weighted square sum of errors can be found by solving
(Hirvonen 1965)

� � & � �� 
(24)

50



between layers

within layer within strip

ground control point

within layer between strips

Figure 9. Ground control points and types of tie points with respect to acquisition
layers and image strips (orbits).

for � . Matrix N is called the normal equation coefficient matrix. The vector 
is a vector of � zeroes.

In the block adjustment method adopted in Papers 2 and 3, the observation
Equations (17) are of three different types:

1. tie point equations between scenes,

2. ground control point equations between a scene and the cartographic
co-ordinate system, and

3. orbit data equations.

Tie points can be further divided into three groups (Figure 9):

1. tie point within a single acquisition layer between two adjacent strips,

2. tie point within a single acquisition layer within a strip between two
consecutive frames, and

3. tie point between two acquisition layers.

If scenes of an orbit are acquired on the same day, tie points within strips
(type 2 above) are special in the sense that these points can be correlated
without strong contrast in the scene. This is due to the fact that the speckle
pattern is identical in both scenes in the overlap area (due to common
raw data in SAR processing). Other tie point types require a contrast-rich
feature that remains stable over the image acquisition interval. From the
point of view of observation equations, all tie point types are identical.
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In the following observation equations, the unknown parameters that are
solved in the least squares adjustment are:S�¡ b = translation in northing of the scene,S�¢ b = translation in easting of the scene, ands

= rotation of the scene.

For tie point observation equations, we can read in Figure 8:¡}£ � ¡ b & S
¡ b & l¥¤ ���4�5� s �¦* i ¤ ��WYXn� s � (25)¢§£ � ¢ b & S
¢ b & i ¤ ���4�5� s � & l¥¤ ��W�XZ� s � (26)

where¡ £ = northing of point P,¢ £ = easting of point P,¡ b = northing of the scene centre,¢ b = easting of the scene centre,i g l = image co-ordinates relative to scene centre (see Figure 8).

For a tie point observed in two scenes, the observation equations are:�t¨A© � ¡ £" *ª¡ £�� ¡ b" *ª¡ b� & S
¡ b" *«S�¡ b� & l " ¤ ���4�5� s " �¦* l � ¤ ���4�5� s � �¦* (27)i " ¤ ��WYXZ� s " � & i � ¤ ��WYXn� s � �
and �J¬ © � ¢ £ " *ª¢ £�� ¢ b" *ª¢ b� & S
¢ b" *ªS�¢ b� & i " ¤ ���4�5� s " �¦* i � ¤ ������� s � � & (28)l " ¤ ��W�XZ� s " �¦* l � ¤ ��WYXZ� s � �Ig
where

�t¨ ©
and

�J¬ ©
are the residual error of the tie point co-ordinates in

northing and easting, respectively.

For ground control points with known geodetic co-ordinates ¡®­ and ¢j­ and
estimated co-ordinates ¡¥¯ and ¢p¯ , the observation equations are:�t¨F° � ¡ £¯ *ª¡ £­� ¡ b & S�¡ b & l¥¤ �����5� s �F* i ¤ ��WYXZ� s �¦*ª¡ £­ (29)

and �t¬ ° � ¢ £¯ *±¢ £­� ¢ b & S
¢ b & i ¤ ���4�5� s � & l²¤ ��W�XZ� s �¦*ª¢§£­ g (30)
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where
�t¨ °

and
�t¬ °

are the residual error of the ground control point co-
ordinates in northing and easting, respectively.

The orbit data equations are:� ¨1³´� S
¡ b g (31)� ¬J³´� S
¢ b , and (32)��µ � s �
(33)

In the linearization of observation equations (computation of partial deriva-
tives needed in the matrix

�
) the following approximations were made be-

cause the angle
s

is always very small:��WYXn� s � ¶ s ¶ �
(34)

and������� s � ¶ ( (35)

The partial derivatives needed in matrix
�

) were derived from Equations
(27) through (33).

Residual errors after least squares block adjustment can be used as a di-
agnostic tool to evaluate the geometry of the resulting SAR image mosaic.
An additional tool for the evaluation is a diagram of error ellipses of the es-
timated scene centres. The semi-major ( �¸·I· ) and semi-minor ( �º¹)¹ ) axes
of the error ellipses are (Hirvonen 1965):�º·I· � � -U» ¼ ·�· (36)�º¹)¹ � � - » ¼ ¹½¹ (37)

where � - is the mean square error of a unit weight observation and

¼ ·I· � (�n� ¼ ¨f¨ & ¼ ¬t¬ &�¾ � (38)

¼ ¹)¹ � (� � ¼ ¨f¨ & ¼ ¬t¬ * ¾ � � (39)

Here ¼ ¨f¨ and ¼ ¬t¬ are the main diagonal elements (of the inverse of
the normal equation coefficient matrix) corresponding to the northing and
easting translations of the scene in question and¾ � » � ¼ ¨f¨ * ¼ ¬t¬ � � & < ¼ � ¨f¬ (40)
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= diagonal element

= off-diagonal zero element

= off-diagonal non-zero element

= element never referenced

Original Condensed

Figure 10. Condensed form of the normal equation coefficient matrix

�
.

where ¼ ¨f¬ is the off-diagonal element corresponding to the northing and
easting co-ordinates of the scene in question.

The orientation angle
^

of the semi-major axis can be solved from:

�RW�XZ� � ^ � � � ¼ ¨F¬¾ (41)���4�5� � ^ � � ¼ ¨f¨ * ¼ ¬t¬¾ �
(42)

The dimension � of the normal equation coefficient matrix

�
is three times

the number of scenes in the adjustment. If thousands of scenes are in-
cluded, the

�
matrix becomes large. If the scenes are numbered system-

atically, the

�
matrix is a block diagonal matrix with a limited band-width¿ . The band-width depends on the order in which the various indices grow

in the mapping from indices to image number. If scene numbering is such
that the fastest growing index (of acquisition layer, strip, and scene within
strip) is scene within strip, then acquisition layer, and slowest strip, the
band-width is: ¿ � � � ¤ � � & (P� ¤ X.À ¤ � (43)

where � � is the maximum number of scenes in a single strip (in an acqui-
sition layer) and X.À the number of acquisition layers.

The

�
matrix was stored in the condensed form (Figure 10). Matrices

�
and � were not constructed, but the contribution to the matrix

�
(and to

the
�

vector) of each observation equation was summed up directly to the
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condensed-form

�
matrix (and

�
vector) when processing tie point and

ground control point observations.

The conjugate gradient method (Press et al. 1992) was used to solve the
normal equation system (24).

Radiometric Methodology for SAR Mosaicking The radiometric calibra-
tion revision was carried out in two phases:

1. removal of constant range dependent artifacts, and

2. radiometric adjustment in overlap areas.

The constant range dependent artifacts result from the sensor antenna
pattern, the sensor STC (Sensitivity Time Control) pattern, and the uncer-
tainties connected with the removal of these effects in the SAR processor.
The STC is a technique that aims at keeping the recorded signal level ap-
proximately constant despite the changes in antenna gain and spreading
loss across the image swath. A major source of uncertainty in these cor-
rections is the uncertainty of satellite attitude sensors (roll in particular)
because the antenna gain changes rapidly with varying look angle close
to the margins of the (vertical) antenna pattern.

An average range pattern was determined over all scenes in the mosaic
(Paper 3). Each scene was then scaled (using the average range pat-
tern) so that the average range pattern of the scaled scenes was a linear
function of range.

As in Rosaz et al. (1994), the scene radiometry was adjusted using least
squares adjustment. Unlike the pairwise processing of Rosaz et al. (1994),
the least squares adjustment (in Paper 3) determined the calibration revi-
sion parameters for all scenes of the mosaic in a single adjustment.

The use of calibration tie points in scene-overlap areas and the aiming at
identical radar responses in both scenes is justified because the backscat-
tering coefficient ,/- can be expected to

1. be constant over the incidence angle range of JERS SAR , and

2. stay constant over the image acquisition interval.

The first assumption has been confirmed by scatterometer measurements
in C-band (Lecomte and Attema 1992) and by JERS SAR data (Shimada
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1996). The second assumption can be made because the African JERS
SAR data of adjacent orbits were acquired on consecutive days for the
major part of the mosaic area.

A bi-linear multiplicative calibration model was adopted in Paper 3 between
the original backscattering amplitude

$ - and the calibrated backscattering
amplitude

$ b : $ b � � ¤ $ - (44)� � � � & i ¤ � " & l¥¤ � � & i ¤'lÁ¤ � � � 
�$ - (45)

where
i

and l are the normalized centred image coordinates.

Denoting: � � � ( & S � � g� " � � � & �aS � " g� � � � � & �aS � � , and� � � � � & �aS � �
the observation equation for a calibration tie point

C
was:�ÁÂ§�Ã$�Â" ¤ S � "��& i " ¤ $
Â" ¤ S � ""j& l " ¤ $�Â" ¤ S � "� & i " ¤'l " ¤ $�Â" ¤ S � "��& $�Â" *$�Â� ¤ S � �� * i � ¤ $�Â� ¤ S � �" * l � ¤ $
Â� ¤ S � �� * i � ¤'l � ¤ $�Â� ¤ S � �� * $�Â� (46)

where
� Â

is the error (difference between the backscattering amplitudes
in the two overlapping scenes) at point

C
. Here$ Â" = observed backscattering amplitude in scene 1,$ Â� = observed backscattering amplitude in scene 2,S � "� = improvement of term

� � for scene 1,S � "" = improvement of term
� " for scene 1,S � "� = improvement of term
� � for scene 1,S � "� = improvement of term
� � for scene 1,S � �� = improvement of term
� � for scene 2,S � �" = improvement of term
� " for scene 2,S � �� = improvement of term
� � for scene 2,S � �� = improvement of term
� � for scene 2.

Corresponding to the orbit data Equations (31) to (33) in geometric block
adjustment, the calibration adjustment included the following observation
equations for the calibration parameters:�`Ä � � S � � (47)
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�`Ä " � S � " (48)�`Ä � � S � � (49)�`Ä � � S � � � (50)

where
�tÄ � to

�tÄ � are the errors of calibration revision coefficients
� � to

� � ,
respectively.

2.2.3 Methods for Wavelength and Polarisation Study

Polarimetric AIRSAR data were used when studying the optimal wave-
lengths and polarisations for forest biomass mapping (Papers 4 and 5).
Those AIRSAR scenes that were not already calibrated were calibrated us-
ing the methods described by van Zyl (1990) and Zebker and Lou (1990).
The August 1989 scenes, which were stored in scattering matrix format,
were converted to Stokes matrix format. A linear correction was made
to the range pattern of the June 1991 scene to correct for a calibration
anomaly in that scene.

The Stokes matrix scenes were ortho-rectified using ground control points
and a digital elevation model. Averaging was done in ortho-rectification to
reduce speckle. Gaussian weights were used in the resampling of Stokes
matrix elements of the ortho-rectified scenes. The amount of speckle re-
duction was controlled by the standard deviation of the Gaussian weight
function. In the ortho-rectification of the August 1989 scenes, the standard
deviation was 0.8 pixels in slant range and 0.8 pixels in azimuth (about 70
percent of the 12.5 m pixel spacing of the ortho-rectified scenes). In the
ortho-rectification of the 1991 scenes (with lower speckle due to 16-look
format), the standard deviation of the Gaussian weight function was 0.35
pixels in slant range and 0.5 pixels in azimuth.

The Stokes matrix elements, which were proportional to received power
quantities, were corrected for topographic effects:C b ��C - ^ [_XZ��� D �^ [_XZ���UÅ5� (51)

where
C b is the terrain-corrected Stokes matrix element,

C - is the origi-
nal Stokes matrix element, � D is the incidence angle in range (depending
on the local topography), and ��Å is the nominal incidence angle (which
varies across the image swath) assuming a flat earth. This form of terrain-
correction means that the corrected Stokes matrix elements are propor-
tional to ,`- of Equation (9).
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Stokes matrix data were averaged per forest stand using a digital stand
mask derived from the forest inventory map.

A systematic search was used to find the polarisation combination that
maximised the correlation between backscattering amplitude and forest
stem volume. Starting with the stand-wise averaged Stokes matrix data
and forest stem volume data for stands:

• the received power was computed for each stand using polarisation
synthesis (van Zyl et al. 1987),

• correlation coefficient was computed between the forest stem volume
and the backscattering amplitude over all stands.

The above optimisation was computed over the 4-dimensional space of po-
larisation combinations (receive orientation, transmit orientation, receive
ellipticity, and transmit ellipticity) in a grid with a grid spacing of 10 degrees
in all dimensions.

Visual comparison of correlation coefficient diagrams was used to analyse
the temporal stability of the forest biomass vs. backscattering amplitude
relation. Multiple linear regression analysis was used to study the relation
between forest stem volume and backscattering amplitude. The form of
the regression function was:�Æ� s - & s " 
 i " & s � 
 i � & s � 
 i � � &�Ç � (52)

where
�

was forest stem volume, independent variables
i " to

i � were the
AIRSAR acquisitions of August 1989, June 1991, and July 1991, respec-
tively,

s - to
s � were regression coefficients, and Ç was the random error.

Scatter plots between backscattering amplitude data from two acquisitions
were used for change detection.

2.2.4 Methods for Multi-Temporal L-Band Radar Backscatter Study

Multi-Temporal L-band SAR data in forest biomass mapping were studied
in the Ruokolahti study site (Paper 6). JERS SAR scenes were ortho-
rectified using a DEM, manually measured ground control points, and tie
points between scenes.
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The JERS SAR data, which were in backscattering amplitude format, were
corrected for terrain effects on image radiometry:$ b ��$ -ÉÈÊÊË ^ [_XZ��� D �^ [_XZ���UÅ5� (53)

where
$ b is the terrain-corrected backscattering amplitude,

$ - is the origi-
nal backscattering amplitude, � D is the incidence angle in range, and ��Å is
the nominal incidence angle (39 degrees for JERS SAR; since the study
site was only 40 km wide a constant ��Å could be used for a space-borne
sensor). This form of terrain-correction means that the corrected backscat-
tering amplitude is proportional to

7 , - of Equation (9). Since the terrain
correction is made relative to the nominal incidence angle, the average
level of the backscattering amplitude does not change from the original
level. The calibration factors presented by Shimada (2001) are therefore
also applicable to the terrain-corrected backscattering amplitude data. The
result of the calibration equations in Shimada (2001) is called 01- . Because
all radar-biomass relations published in the literature have been described
in terms of 0 - (not , - ) the notion of 0 - was used in Paper 6 also.

JERS SAR data were averaged (in power format) per forest stand using
a stand mask from forest inventory data. The stands were first eroded by
one (25 m) pixel, and only those stands were included in analyses where
the stand was 2 ha or more after the erosion step.

Regression analysis, both simple regression and multiple regression, were
used to analyse the relation between forest stem volume and L-band back-
scattering amplitude. Regression analyses were made for various datasets
limited by the stem volume range. In these analyses, the number of obser-
vations (stands) varied between 19 and 206. In Paper 6, the adjusted � �Ì
(Rudner et al. 2002) was used to take this variation into account:� �ÌtÍ � � � * �½(p*ª� � � 
 VX¸*ÎV & ( (54)

where � � is the coefficient of determination, X = number of observations,
and V = number of independent variables (1 to 6 SAR scenes). There are
at least two other variations of the adjusted � �Ì (Wulder 2005):� �Ì�Ï � � � * �)(y*«� � � 
 �ÐVd*Ñ(P�XÒ*ÓV (55)

and (Jensen 2005): � �Ì 6 � (y* �)(p*±����� 
 ��X¸*Ô(P�X¸*ÎV}*Ô( �
(56)

The � �Ì values of these definitions are also listed in section 3.5.
59



3 Results and Discussion

3.1 Incidence Angle Effects on L-band Radar Backscatter in
Forests

Incidence angle effects – due to local topography – were studied in the
Arjeplog study site in northern Sweden. Five independent variables were
used in regression analysis where the dependent variable was the Seasat
SAR-measured (not corrected for any topographic effects) backscattering
amplitude:

topo: topography-simulated SAR image in amplitude as described in sec-
tion 2.2.1,

vol: forest stem volume estimated from Landsat TM data,

area: (square root of the) area M of the resolution cell computed using
DEM data, as described in section 1.1 (Equation 7),

slope: terrain slope computed using DEM data, and

aspect: azimuth of steepest slope with respect to the SAR illumination di-
rection.

Table 2 shows the coefficient of determination (the proportion of total vari-
ance accounted for by the independent variables) and the correlation co-
efficient from linear regression. The correlation coefficient in Table 2 can
be considered as the correlation coefficient between a predicted and ob-
served backscattering amplitude when using the independent variables as
predictors. In the single-variable cases this is equal to the correlation coef-
ficient between the independent variable and the observed backscattering
amplitude (the dependent variable).

The terrain topography is the strongest single factor contributing to the
variation in backscattering amplitude in the study site. The topography-
simulated SAR image explained 63.1 percent of the total variance in the
SAR scene. It is possible that a more detailed and accurate DEM would
have increased the proportion of variation that is accounted for by terrain
topography. Visual inspection of the SAR scene and the DEM suggested
that the SAR scene contained fine-scale topographic variation that was
poorly described by the DEM. However, the averaging of the SAR scene
to 75 m pixel spacing reduced this fine-scale variation.
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Table 2. Regression analysis results in the Arjeplog study site. Dependent variable
is the digital number (backscattering amplitude) in a Seasat SAR scene. See sec-
tion 3.1 for the independent variables. The number of observations (pixels) was
23446 (Paper 1).

Independent Coefficient of Correlation
variables determination (%) coefficient
topo + vol 65.4 0.81
topo 63.1 0.80
vol 0.3 0.05
area + vol 62.4 0.79
area 60.8 0.78
slope + aspect 3.4 0.19

When adding the (Landsat-derived) stem volume, the proportion of ex-
plained variance rose to 65.4 percent. When correlating the stem volume
against SAR data that has not been corrected for topographic effects, stem
volume is almost uncorrelated to SAR data (the correlation coefficient is
only 0.05).

Most of the topography influence comes from the variation of the area
of the resolution cell because this (the variable ’area’ in Table 2) alone
explained 60.8 percent of the total variance. Adding the dependence of
the backscattering coefficient 0A- on the incidence angle (variable ’topo’ in
Table 2), increased the coefficient of determination to 63.1 percent.

Terrain slope and aspect do not explain well (in linear regression analysis)
the effects of topography on backscattering amplitude. This can be under-
stood because an increasing terrain slope on fore-slopes (slopes toward
the radar) increases the backscattering amplitude whereas an increasing
terrain slope on back-slopes (slopes away from the radar) decreases the
backscattering amplitude (see Equations 4 and 9).

The proportion explained by terrain topography in Foody (1986) was sig-
nificantly lower than the 60 percent accounted for by scattering area in
Table 2. The main reasons for this might be the higher nominal incidence
angle of the Convair-580 sensor (32° to 63° vs. 23° of Seasat), which
reduces the topographic effects, and a study site (undulating) with less
topographic variation. The proportion of variation explained by slope and
aspect in Foody (1986) was on the average higher than the 3.4 percent in
Table 2. The reason for the higher � � in Foody (1986) is most likely the
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different statistical analysis techniques (multiple linear regression in Paper
1 vs. computation using zero and first order partial correlations in Foody,
1986).

The hypothesis on the double-bounce scattering component was tested
with flat (slope 0 to 2 degrees) and non-flat (slope 2 to 5 degrees) forested
pixels. The flat average backscattering amplitude was 104 (in arbitrary
units) while the non-flat average backscattering amplitude was 106. This
suggests that the double-bounce component is not very important in the
study site. The reason may be rough (in terms of the 23 cm wavelength
of the Seasat SAR) ground (glacial drift with stones and boulders). Rough
ground reduces the ground reflection of the double-bounce component (in
flat pixels) and also increases the direct backscattering component (both
in flat and sloping pixels). Pulliainen et al. (1999) also found in a Finnish
study site that the stem-ground reflection is small compared to the direct
backscattering from forest canopy.

Figure 11 shows the square root of backscattering coefficient ( 0 - ) as a
function of incidence angle in the Arjeplog study site and linear regression
functions for the following forest types:

• spruce-dominated mixed forest,

• pine-dominated mixed forest,

• deciduous-dominated mixed forest, and

• clear-cut areas.

The independent variable in the regression analysis was �����5���4� and the de-
pendent variable

7 0 - . The forest types were mapped using a Landsat TM
scene (section 2.2.1). When using tens of thousands of pixels as observa-
tions, the slope terms of the regression functions differed significantly (at
a 5 percent significance level) between all possible pairs of forest types.
The slightly different backscatter-dependence on incidence angle is prob-
ably due to different stem volumes in different forest types. On average,
spruce-dominated mixed forests had the highest average stem volume in
the study site. Also many other factors can have an influence such as
understory, soil type, and tree structure.

Even though the regression functions were different for different forest
types the 0@- data of forest types overlapped. At 30° incidence angle, where
the forest type differences were largest, the average L-band backscattering
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Figure 11. Backscattering coefficient ( 01- ) in L-band Seasat SAR data as a function
of incidence angle ( � ) for various forest types in the Arjeplog study site. Total
number of observations (pixels) = 23 446.
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amplitude for spruce-dominated mixed forests was only 17 percent higher
than that of clear-cut areas and 11 percent higher than the deciduous-
dominated mixed forest.

3.2 Geometry in SAR Mosaicking

The geometry revision approach described in Papers 2 and 3, and in sec-
tion 2.2.2 was applied to the GRFM African dataset of JERS SAR scenes.
A total of about 62 000 tie points were produced using an automatic image
correlation method. A set of 248 ground control points (GCPs) were mea-
sured using an interactive method by displaying shoreline polygons on top
of JERS SAR scenes from the World Vector Shoreline database. A set of
about 50 GCPs were measured from topographic maps. Water areas and
outlines of land features were displayed as opaque colours (other areas
as transparent) on top of JERS SAR data.

Table 3 shows the root mean square error (RMSE) statistics when the tie
point and GCP datasets were used in block adjustment. The column ’Tie
point’ gives RMSE computed over all 62 000 tie points in the adjustment,
separately for easting and northing. The column ’Scene centre’ gives the
square average of all scene translations (a scene translation is considered
as an error, Equations 31 and 32), separately in easting and northing. The
column ’GCP’ gives RMSE computed over the set of GCPs, separately in
easting and northing. The column ’V�­ ’ gives the weight assigned to GCP
observations. The weight of a tie point observation was always 1. The
weight of the scene centre Equations (31 and 32), was always

""��Õ�Õ� . The""��Õ�Õ� weighting of scene centre positions from scene header data corre-
sponds approximately to the estimated variance ratio between these data
and the tie point measurements as estimated in some problem scenes in
connection with preliminary mosaicking attempts.

When compiling the GRFM African mosaic, obtaining accurate and reliable
cartographic data for geometric validation was difficult. The strategy for
evaluating the geometric accuracy of the mosaic was to use the tie point
and GCP datasets in different combinations. Table 3 shows the RMSE
statistics for three adjustments:

1. the adjustment where only tie points and orbit data were used to
determine the mosaic geometry,

2. the adjustment where tie points, orbit data, and GCPs from the World
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Table 3. Root mean square error statistics of the geometric block adjustments of
the GRFM African JERS SAR mosaic. All values are in metres. N = northing, E
= easting (Paper 2).

Case Tie point Scene centre GCP Vt­
N E N E N E

1 33.2 34.8 477.5 751.7 503.0 1021.4 0
2 35.5 40.8 532.0 736.2 193.7 201.6 2
3 40.1 39.7 543.3 758.0 173.2 166.3 2

Vector Shoreline database were used to determine the mosaic ge-
ometry, and

3. the adjustment where tie points, orbit data, and GCPs from the World
Vector Shoreline database and topographic maps were used to de-
termine the mosaic geometry.

In the first adjustment (case 1 in Table 3) GCPs from the World Vector
Shoreline database were included but their weight was zero. The GCPs
served as independent validation data. The tie point RMSE values of 33.2
and 34.8 m (in easting and northing) indicate that the mosaic internal con-
sistency is good at sub-pixel level. The pixel size of the scenes to mosaic
was 100 m. The RMSE values in GCPs (503.0 m in northing and 1021.4
m in easting) show that absolute geo-location accuracy is (on average)
of the order of 10 pixels if no GCPs are used. The scene centre Figures
(477.5 m in northing and 751.7 m in easting) tell how large relative move-
ments (from the scene positions given in scenes’ geo-location data) are
needed to compile a spatially consistent JERS SAR mosaic when using
SAR scenes from the so-called new NASDA processor.

In the second adjustment (case 2 in Table 3), GCPs from the World Vec-
tor Shoreline database were included in the determination of the mosaic
geometry also. The tie point RMSE increased slightly compared to the
tie-points-only case, but the RMSE is still within a sub-pixel of the mosaic.
The mosaic was shifted by about 0.5 to 1 km with respect to the loca-
tion derived from the scenes’ geo-location data. This shift decreased the
RMSE values of GCPs to about 200 m. This value is smaller than the ac-
curacy requirement of the World Vector Shoreline polygons (90 percent of
features within 500 m of its true location).

In the third adjustment (case 3 in Table 3), GCPs from topographic maps
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(in the Central African Republic and Republic of Congo) were also added.
This shifted the mosaic only slightly, and the RMSE values did not change
much from case 2. This suggests that adding new GCPs would not change
the mosaic geometry much. The mosaic geo-location accuracy (Paper 2)
was therefore considered to be most likely within a few hundred meters
throughout the mosaic.

The accuracy figures of Table 3 cannot be directly compared to accuracy
figures from other studies. This is due to the differences in SAR systems,
SAR processors, and orbital data used in the SAR processors. Rosaz et
al. (1994) presented no geometric accuracy figures for the compiled ERS-
1 SAR mosaic. Siqueira et al. (2000) estimated the mean geo-location
error of the JERS-1 SAR mosaic of Amazon to be 38 m in latitude and 32
m in longitude, when applying average geo-location correction to clusters
of 1 degree by 1 degree. This error describes the internal accuracy of the
mosaic. When the mosaic was transformed using similarity transforma-
tion (rotation and shifts in latitude and longitude) the residuals in GCPs
(27 used to tie down the mosaic, 30 used to estimate geo location accu-
racy) were estimated to be within +/- 400 m. Shimada and Isoguchi (2002)
estimated the geometric accuracy of the Southeast Asian JERS-1 SAR
mosaic to be 406 m. Hutton et al. (2000) estimated the geometric accu-
racy of the Radarsat-1 mosaic of Canada to be in the order of one pixel or
250 m. Noltimier et al. (1999) estimated the absolute geometric accuracy
of the Radarsat-1 mosaic of Antarctica to be 150 m or better.

The error ellipses (for case 3 in Table 3) were computed using Equations
(36) to (42) and shown in Figure 1 of Paper 2. The semi-major axis of the
error ellipse (for a scene centre) varied between 6 and 55 m (median 11
m). The semi-minor axis varied between 6 and 30 m (median 10 m).

Most of the error ellipses were almost circular, which indicates that the
uncertainty in the geo-location in these areas is approximately equal in
all directions. Most of the ellipses were also of the average dimension,
which indicates that the uncertainty in geo-location in these areas is ap-
proximately uniform over the area. In sea areas, where tie points were
impossible to find between neighbouring strips (orbits), the error ellipses
increased in dimension and became elongated. Other such areas where
larger and less regular error ellipses indicated worse geo-location accu-
racy were found along the northern and southern margin of the mosaic
area. These were areas where the closest GCPs were distant. Irregu-
lar shaped “extensions” of the mosaic area also produced large error el-
lipses. This phenomenon was especially prominent in the north-western
and north-eastern corners of the mosaic.
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a) b)

Figure 12. A subset of the high-water acquisition layer of the GRFM African
mosaic before a), and after b) calibration revision. The area covered is about
1000 km in east-west direction and about 670 km in north-south direction (Paper
3).

The geometric methods of mosaicking that were applied in the compilation
of the GRFM African mosaics can be applied to other similar SAR data
sets. This requires that the SAR data has associated geo-location data
the describes the internal geometry of SAR scenes reliably even though
absolute locations may include random or systematic errors of hundreds
of meters or even kilometres.

3.3 Radiometry in SAR Mosaicking

No simultaneous calibration measurement were made for validation of the
calibration level of the GRFM African mosaic. Removal of visible artifacts
were used as an indication of the calibration revision in Paper 3.

Figure 12 shows an example of the calibration approach. There is a clear
calibration artifact in the mosaic before calibration (Figure 12 a). As the
look direction of the JERS SAR was from east to west, the backscatter
increases with increasing range (all scenes were acquired in descending
orbits). The calibration method has removed this artifact completely (Fig-
ure 12 b).

Figure 13 shows a profile computed cross the white rectangle in Figure
12. The profiles were computed summing all pixels within the rectangle
along lines parallel to the orbit direction of JERS. The near-range to far-
range increase in backscattering amplitude is about 1 dB (Figure 13 a).
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Figure 13. A range profile in the GRFM African mosaic extract before a), and
after b) calibration revision (Paper 3).

The calibration has clearly removed the artifact. The remaining variation
in backscattering amplitude in Figure 13 b) is due to variation in land cover
type and vegetation characteristics.

In addition to the validation techniques discussed above, mosaic data can
be used in computerized image analysis algorithms to evaluate the pos-
sible existence of calibration artifacts. In Paper 3, a land-cover classifi-
cation was made (not by the author of this thesis) using the calibrated
mosaic data. This classification (Figure 12 in Paper 3) does not show visi-
ble calibration-related artifacts, which indicates that the calibration method
is suitable for producing mosaics for land-cover classification.

As with geometric accuracy, the comparison of mosaic methods in terms
of radiometric accuracy is not feasible due to differences in SAR sensor,
SAR processors, and available verification data for radiometric accuracy.

The radiometric methods of mosaicking that were applied in the compila-
tion of then GRFM African mosaics can be applied to other similar SAR
datasets. The assumption of stable backscattering between neighbouring
scenes in the overlap areas must be valid. In SAR systems where the ac-
quisition interval between neighbouring orbits is longer than one day the
validity of this assumption can be less probable than in the case of the
JERS-1 SAR system. Also higher-frequency SAR systems can have less
stable backscattering as a result of changes in weather conditions.
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3.4 Radar Wavelength and Polarisation in Forest Biomass Map-
ping

Multi-band polarimetric AIRSAR data were studied in the Freiburg study
site (Papers 4 and 5). Table 4 shows the correlation coefficient between
backscattering amplitude and the forest stem volume for the August 1989
scene. There were two scenes of August 1989 (1105 and 1107). Only
scene 1105 is included in Table 4 because scene 1107 covered the study
site only partially. Table 4 was computed using the stand-wise averaged
Stokes matrices of all 230 stands of the study site except for those cases
where stem volume range was limited to 0–170 m

�
/ha. When computed

over the whole range of stem volumes (0–830 m
�
/ha) the correlation coeffi-

cients in C- and L-bands are negative. This is because the radar backscat-
ter vs. stem volume relation saturates at fairly low stem volume levels
in C- and L-bands as seen in Figure 14, which shows the HV-polarised
backscattering amplitude as a function of forest stem volume for all AIR-
SAR bands. In L-band, the saturation level is somewhere between 120
and 150 m

�
/ha. Figure 14 cannot be said to be in disagreement with the

saturation values (130 to 157 m
�
/ha) reported by Fransson and Israelsson

(1999).

Even though the saturation point is somewhere between 120 and 150
m
�
/ha, the backscattering amplitude does not drop rapidly after the sat-

uration point. Fairly high linear correlation coefficients can be obtained up
to about 170 m

�
/ha. When including only those stands where the stem

volume is 170 m
�
/ha or less, the L-band correlation coefficients turn pos-

itive and the magnitude increases to about 0.45. The highest correlation
coefficient (0.73) between backscattering amplitude and stem volume was
obtained using P-band HV-polarised data.

Estimation RMSE was computed in Paper 4 for those regression models
whose correlation coefficient was larger than 0.40. In the L-band analy-
sis of the 0–170 m

�
/ha stem volume range, the dataset included only 72

stands. The RMSE was estimated from the same dataset that was used for
the development of the regression model. The RMSE values were 41.7,
40.9, and 42.5 m

�
/ha for the HV, HH, and VV models, respectively. The

0–830 m
�
/ha dataset that was used for the P-band model included 230

stands. This dataset was split in two equally sized subsets, one for model
development and one for computing an estimation RMSE. For P-band HV-
polarisation data, the estimation RMSE was 141.7 m

�
/ha (in a data set

where the forest stem volume varied between 0 and 830 m
�
/ha).
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The correlation coefficients in P-band (0.73, 0.31, and 0.21 in HV-, HH-,
and VV-polarisations, respectively) are lower than those obtained by Le
Toan et al. (1991) in a French study site ( � � values of 0.95, 0.90, and
0.88). Two reasons have probably contributed to the lower correlations in
the Freiburg study site:

1. Species composition: in the French study site, pine is practically
the only tree species in evenly-aged stands whereas the forest in
the Freiburg study site includes spruce, fir, pine, and some decidu-
ous species. The age distribution within a stand is also wide in the
Freiburg study site.

2. The 8-year old forest inventory data in the Freiburg study site may
have lowered the correlation coefficients.

Table 4. Correlation coefficient between AIRSAR backscattering amplitude and
forest stem volume for C-, L-, and P-bands in various polarisations in the Freiburg
study site. The AIRSAR data were acquired in August 1989 (scene 1105). The
number of observations (stands) was 230 for the stem volume range 0-830 and 72
for the range 0-170 (Paper 4).

Band and Stem volume Correlation
polarisation (m

�
/ha) coefficient

C-HV 0-830 -0.37
C-HH 0-830 -0.33
C-VV 0-830 -0.06

L-HV 0-830 -0.19
L-HV 0-170 0.47
L-HH 0-170 0.50
L-VV 0-170 0.43

P-HV 0-830 0.73
P-HH 0-830 0.31
P-VV 0-830 0.21
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Figure 14. AIRSAR HV-polarised backscattering amplitude as a function of forest
stem volume in the Freiburg study site: a) C-band, b) L-band, c) P-band. The 99
percent confidence limits of the regression function are shown as dashed lines for
the P-band regression function. The AIRSAR data were acquired in August 1989
(scene 1105, Paper 4).
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The search for optimal polarisation for stem volume mapping was con-
ducted separately for each radar band in the 4-dimensional space of polar-
isation combinations using the search method described in section 2.2.3.
The optimal polarisation combination was always at, or close to, the origi-
nal linear polarisations measured by the radar (HH, HV, VV, VH).

Figure 15 shows the correlation coefficient between the backscattering
amplitude and forest stem volume as a function of polarisation combina-
tion. Two sub-spaces of the 4-dimensional space of polarisation combina-
tions are shown (in Figure 15): the co-polarised (receive orientation equals
transmit orientation, receive ellipticity equals transmit ellipticity) and the
cross-polarised (receive orientation is orthogonal to transmit orientation,
receive ellipticity is the transmit ellipticity multiplied by -1). In Figure 15 a
and b, only those stands were included where stem volume is 170 m

�
/ha

or lower.

In L-band, the correlation coefficient between backscattering amplitude
and stem volume varied very little with the polarisation combination (Fig-
ure 15 a and b). In P-band, on the other hand, the correlation has a strong
and narrow peak at HV- and VH-polarisations, while the rest of the co-
polarisation and cross-polarisation sub-spaces are in the 0.3 to 0.4 range.
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Figure 15. Correlation coefficient between backscattering amplitude and forest
stem volume as a function of polarisation combination for AIRSAR data (Au-
gust 1989, scene 1105) in the Freiburg study site: a) L-band, co-polarisation,
b) L-band, cross-polarisation, c) P-band, co-polarisation, and d) P-band, cross-
polarisation. In the L-band figures, only those stands were included where stem
volume is 170 m

�
/ha or lower. Number of observations (stands) was 230 in P-band

and 72 in L-band (Paper 4).
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Volume vs. P-band cross-
polarisation, August 1989
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Volume vs. P-band cross-
polarisation, June 1991
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Volume vs. P-band cross-
polarisation, July 1991
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Figure 16. Correlation coefficient between backscattering amplitude and forest
stem volume as a function of polarisation combination for P-band AIRSAR data
in the Freiburg study site: a) August 1989 (scene 1105), b) June 1991, and c)
July 1991. Only stands of 1 ha or larger were included. The number of observa-
tions (stands) was 182, 176, and 179 for August 1989, June 1991, and July 1991,
respectively (Paper 5).

The temporal stability of the relation between stem volume and radar back-
scatter was also studied in the Freiburg study site (Paper 5). Figure 16 (Pa-
per 5) shows the correlation coefficient between the P-band backscattering
amplitude and forest stem volume as a function of polarisation combination
for three dates:

a) August 1989,

b) June 1991, and

c) July 1991.

All sub-figures of Figure 16 correspond to the same cross-polarised sub-
space of the 4-dimensional space of polarisation combinations as Figure
15 d). Figure 16 a) was computed from the same data as Figure 15 d), but
only stands of 1 ha or larger were included in Figure 16. As can be seen
in Figure 16 a) to c), the relation between the stem volume vs. backscat-
tering amplitude is fairly constant over time. The corresponding correlation
surfaces of C- and L-bands have a lower level of the correlation coefficient
and irregular shape. This is in agreement with the observation by Dobson
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et al. (1991) that rain shower had the weakest effect on P-band (out of C-,
L-, and P-bands).

Table 5 illustrates the development of the correlation coefficients between
stem volume and backscattering amplitude for AIRSAR C- and L-band
data. As the C-band saturation limit is about 60 m

�
/ha and the L-band

limit somewhere between 120 and 150 m
�
/ha, 100 m

�
/ha has been used

in Table 5 as compromise between these two values. This choice also al-
lowed the C-band dataset to include more stands than a limit of 60 m

�
/ha.

Only stands of 1 ha or larger were included in Table 5. The number of
such stands varied between 35 and 37. The C-band correlation coeffi-
cients varied widely except in VV-polarisation. The L-band correlations
were constantly between 0.5 and 0.7.

Table 5. Correlation coefficient between AIRSAR backscattering amplitude and
forest stem volume for C- and L-bands in various polarisations in the Freiburg
study site in three acquisition times. Only stands of 1 ha or lager with stem vol-
umes 100 m

�
/ha or less were included. The number of observations (stands) was

between 35 and 37 (Paper 5).

Scene Band Correlation
coefficient

HH VV HV
August 1989 C 0.315 0.575 0.215
June 1991 C 0.107 0.631 0.491
July 1991 C -0.062 0.667 0.386

August 1989 L 0.539 0.674 0.671
June 1991 L 0.635 0.584 0.637
July 1991 L 0.684 0.679 0.699

In addition to the stability of of the relation between stem volume and radar
backscatter, the temporal stability of the backscattering was also studied
in Paper 5. As the meteorological and soil moisture data were limited,
no conclusions could be drawn on the reasons of changes in backscatter
between image acquisition times.

In Figure 17, forest stem volume is plotted against the estimated stem
volume using AIRSAR P-band HV-polarised data from three dates. The
model of the regression function was of the form:��� [ i " &�Ö i � & � i � &�× � &�Ç � (57)

75



0 800

0

800

Stem volume prediction using 3-date P-band HV-polarisation data

Predicted (m3/ha)

A
ctual (m

3/ha)

8000 

1:1

St
em

 v
ol

um
e 

(m
 /h

a)
3

Predicted stem volume (m /ha)3

Stem volume prediction using 3-date P-band HV-polarisation data

Figure 17. Multi-date regression analysis results for forest stem volume using
AIRSAR P-band HV-polarised data in the Freiburg study site. The number of
observations (stands) was 120 (Paper 5).

where�
= forest stem volumei " = backscattering amplitude in the August 1989 scene (1105),i � = backscattering amplitude in the June 1991 scene,i � = backscattering amplitude in the July 1991 scene,[tg Ö gK�
g and × = regression coefficients, andÇ = random error.

The multiple correlation coefficient (the correlation coefficient between the
predicted stem volume and the true stem volume) was 0.82, which is
higher than any of the single-date correlations (0.79, 0.60, and 0.75). Only
stands of 2 ha or larger were included in this multiple regression model
(120 observations).
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Figure 18. Change detection in the Freiburg study site using stand-wise AIRSAR
P-band HV data. Backscattering amplitude of August 1989 (scene 1105) is shown
on the horizontal axis and the backscattering amplitude of July 1991 on the ver-
tical axis. The number of observations was 179. The filled symbols are forest
stands that were not clear-cut between 1989 and 1991. The two outlined symbols
are stands that were clear-cut between August 1989 and July 1991 (Paper 5).

Figure 18 shows a change detection example using AIRSAR P-band HV-
polarised data. The figure shows the stand-wise backscattering amplitude
of July 1991 plotted against the backscattering amplitude of August 1989.
The two stands (open symbols) that have been logged between image
acquisitions are clearly separable from other stands.
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3.5 Multi-Temporal L-Band Radar Backscatter in Forest Biomass
Mapping

Multi-temporal L-band JERS SAR data were studied in the Ruokolahti
study site. Table 6 shows single-date regression results for the six SAR
scenes that were available (Paper 6). Columns A and B give the slope and
intercept of a linear regression model of the form:�Æ� M 
R$ b & � � &�Ç � (58)

where
�

is forest stem volume (m
�
/ha),

$ b is backscattering amplitude cor-
rected for topography (relative to the 0A- calibration factor 68.2 dB, 0A- �( �Ø
 �O�P�.� $ �b �N* �49����

dB, all scenes were scaled to this calibration standard
before regression analyses), and Ç is random error. Column RMSE gives
the the root mean square error of the estimated forest stem volume. The
RMSE values of Table 6 were computed using the leave-one-out method.

The correlation coefficient is highest (0.63 to 0.81) for the summer scenes.
One of the winter scenes (Wet95Jan), had also a correlation coefficient
similar to those of the summer scenes. This was a scene acquired in
conditions where a layer of moist new snow was present on top of older
snow layers, which also were thawed. The other two winter scenes, which
were acquired in cold and dry conditions, had low correlations. This is
in agreement with the observation by Santoro et al. (2004) that frozen
conditions were least suitable for forest biomass retrieval.

The level of the summer-time correlation coefficients and the scene
Wet95Jan in Table 6 is in agreement with the correlation coefficients of
Askne et al. (2003) who found the correlation coefficients to be generally
of the order of 0.8. The RMSE values of Table 6 are generally lower than
the RMSE values of single-date JERS SAR results (69.5–140.1 m

�
/ha) in

Askne et al. (2003) even though the RMSE values in Table 6 have not
been corrected for uncertainty of the ground data. The main reason for
this is most likely the lower average stem volume in the Ruokolahti study
site (100 m

�
/ha) compared to that in the Kättböle study site (140 m

�
/ha).

Summer Scenes As the summer-time response of L-band backscattering
amplitude to forest stem volume is stable from scene to scene, a general L-
band model was proposed in Paper 6 for approximative mapping of forest
stem volume and biomass. The general function was computed from the
three summer scenes combined, leaving out clear-cut areas. The function
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Table 6. Correlation coefficients (r) and parameters of linear regression functions
(A = slope, B = intercept) between forest stem volume and JERS backscattering
amplitude at various times of the year in the Ruokolahti study site. The RMSE was
computed using the leave-one-out method. There were 206 observations in all six
cases. The regression was significant at 5 % confidence level in all cases except
the Dry98Mar. See section 2.1.4 for scene identifiers (Paper 6).

Scene A B r RMSE (m
�
/ha)

S95Jul 0.60 -562 0.81 44.79
S95Sep 0.72 -743 0.70 56.18
S95Oct 0.87 -894 0.63 61.25

Dry93Feb 3.22 -3239 0.40 72.93
Wet95Jan 0.71 -560 0.78 49.22
Dry98Mar -30.33 26896 -0.05 79.27

was derived from Equation (58):�������	�_=�
�$ bF* � � < (59)

or �Æ�����	�_= 7 ( ��Ù>ÚIÛ!Ü�ÝÕÞ  �)ßáà "�� * � � < (60)

where
�

is forest stem volume in m
�
/ha and

$ b is L-band backscatter-
ing amplitude (relative to calibration factor 68.2 dB). This function is valid
for VV-polarised L-band radar scenes (with a nominal incidence angle of
about 39°) that are acquired in summer conditions similar to the condi-
tions of the three scenes used in Paper 6 (i.e., no heavy rain in the weeks
preceding radar data acquisition).

In Paper 1, forest stem volume was correlated against L-band Seasat
backscattering amplitude that had not been corrected for topography ef-
fects. The very low correlation coefficient (0.05) shows that stem volume
mapping is not feasible without terrain corrections in a hilly or mountainous
area. One reason why forest stem volume estimation was not attempted
in Paper 1 after radiometric correction of terrain effects (as done in Paper
6) was the coarse ground data and DEM. Another reason was the poor
(Landsat derived) stem volume data in the Arjeplog site.

The summer-time correlations in Table 6 (0.81, 0.70, and 0.63) are slightly
higher than the correlations obtained for young stands in the Freiburg study
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site using AIRSAR L-band HH-polarised data (0.54, 0.64, and 0.68, Table
5). The reasons for the slight difference can be:

• less accurate ground data in the Freiburg study site (8- or 10-years
old inventory in an area where forest growth is fast) than in the Ruoko-
lahti study site (2-year time difference between forest inventory and
SAR image acquisition in 1995), and

• a narrower range of stem volumes (restricted to stands with 0 to 100
m
�
/ha) in the Freiburg study site than in the Ruokolahti study site

(stands with 0 to 364 m
�
/ha), which tends to lead to lower correlation

coefficients in regression analysis; correlation coefficients in scenes
S95Jul, S95Sep, and S95Oct were 0.78, 0.62, and 0.45, respectively,
when computing over the 95 stands with stem volume of 100 m

�
/ha

or less.

Differences in tree species composition, understory, and soil conditions
may also have contributed to the differences on correlation coefficients
between the Freiburg and Ruokolahti study sites.

Figure 19 shows regression functions and stand-wise observations be-
tween backscattering amplitude and forest stem volume for all six scenes.
In addition to similar correlation coefficients, the linear regression functions
are also similar between all summer scenes.

Winter Scenes In the dry winter scenes (Figure 19), the average backscat-
ter is about 2 dB lower than in the summer scenes. This is in agreement
with the well known phenomenon of backscatter drop when the forest
canopy freezes. Kwok et al. (1994) observed a drop of 3 dB in L-band
HH-polarised data when the forest canopy and ground froze. Ranson and
Sun (2000) reported a difference of about 2.5 dB between the frozen and
thawed state in non-water areas. Santoro et al. (2004) found an increase
of approximately 4 dB in spring when the forest went from frozen winter
conditions to snow-free summer conditions. Santoro et al. (2004) men-
tioned that the calibration error was 1–2 dB.

The dry winter scenes are almost uncorrelated with stem volume. One
explanation of this could be that the forest canopy – in areas with average
stem volume of about 100 m

�
/ha – in a frozen state is almost transparent

to L-band radar, and therefore the ground backscattering dominates the
radar image.
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a) b)

c) d)

e) f)

Figure 19. Regression functions between JERS backscattering amplitude and for-
est stem volume for winter (left) and summer (right) scenes in the Ruokolahti study
site. The solid line shows the regression line computed for the observation data in
the diagram. The dashed lines show the regression lines for the other five scenes.
The dotted lines around the solid line show the variation of the regression function
in the leave-one-out testing method (Paper 6).
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Figure 20. Forest and clear-cut backscatter (schematically) in dry and wet winter
conditions (Paper 6).

The wet winter scene Wet95Jan (Figure 19) has a regression function with
a similar slope to those of the summer scenes, but the backscatter level is
about 2 dB lower than in the summer scenes. This can be an indication that
forest canopy and soil included very small amount of liquid water during
the acquisition of the scene Wet95Jan, when the temperature had risen
to about 0 C in January. The scene Wet95Jan also discriminates well
between clear-cut areas and forested areas.

Figure 20 shows a possible explanation for the high correlation coefficient
between backscattering amplitude and forest stem volume in wet winter
conditions. In dry, frozen winter conditions, the backscatter from the forest
canopy is not notably higher than the backscatter from open areas – from
the ice particles in the snow pack and from stones and other scattering
sources under the snow. If a wet snow layer absorbs the backscatter from
ground and lower snow pack, open area backscatter becomes very low.
The backscatter from the forest canopy may increase if the liquid water
contents of canopy components increases. This increases the correlation
coefficient between backscattering amplitude and forest stem volume and
also increases the separation between open and forested areas.
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Multi-Date Regression Analysis Multiple linear regression analyses (de-
pendent variable forest stem volume, independent variables six JERS SAR
scenes) were made in a series varying the stem volume range included in
the dataset (Paper 6). Table 7 shows the results of these regression anal-
yses. Column ’ ��� ’ gives the coefficient of variation. Columns ’ �²�Ì`Í ’ to ’ ���Ì 6 ’give the adjusted � � as computed using Equations (54) to (56). Column
’RMSE’ gives the root mean square error of the multiple linear regression
model as computed by the leave one out method. The column ’RelE’ gives
the RMSE as a percentage of the width of the forest stem volume range
included in the analysis.

Table 7. Multiple regression analysis results as a function of forest stem volume
range. The dependent variable was forest stem volume. The independent variables
were the six JERS scenes (1 = Dry93Feb, 2 = Wet95Jan, 3 = S95Jul, 4 = S95Sep,
5 = S95Oct, 6 = Dry98Mar). RelE = relative RMSE = RMSE/(Vol � Q { - Vol � � Å ).
S = significant at 5 % risk level, - = not significant (Paper 6).

Vol-Rg n â � â �Ì Í â �Ì�Ï â �Ì 6 RMSE RelE 1 2 3 4 5 6
eq 54 eq 55 eq 56 (m

�
/ha) (%)

0-360 206 0.71 0.70 0.70 0.70 42.8 11.7 S S S - - S
50-360 139 0.37 0.34 0.35 0.34 47.2 15.0 S - S - - -

100-360 112 0.35 0.31 0.32 0.31 44.8 16.9 S - S - - -
150-360 59 0.43 0.37 0.38 0.36 44.6 20.7 - S S - - -
200-360 19 0.53 0.33 0.35 0.30 68.8 41.7 - - - - - -

0-300 202 0.77 0.76 0.76 0.76 35.2 11.7 S S S - - S
0-250 202 0.77 0.76 0.76 0.76 35.2 14.1 S S S - - S
0-200 187 0.79 0.78 0.78 0.78 30.1 15.0 - S S - - S
0-150 152 0.83 0.82 0.82 0.82 22.9 15.3 - S S - - S
0-100 95 0.83 0.82 0.82 0.82 15.5 15.5 - S - - - S

0-50 67 0.64 0.61 0.61 0.60 7.6 15.2 - S - - - S

In the first set of cases (the upper end of the stem volume range, in-
creasing the lower bound of the range), the coefficient of determination
decreases with decreasing range of stem volumes (and decreasing num-
ber of stands). The number of significant variables also decreases – the
last case with only 19 stands makes the whole regression insignificant at 5
percent significance level. The RMSE increases with decreasing range of
stem volumes. Only one (S95Jul) summer scene out of three is significant.
This is because sumer scenes are highly correlated among themselves.
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In the second set of cases (the lower end of the stem volume range, de-
creasing the upper bound of the range), the coefficient of determination
increases with decreasing range of stem volumes (and decreasing num-
ber of stands) until 0–150 or 0–100 m

�
/ha. In other words, the highest

coefficient of determination (in the lower range of stem volumes) is ob-
tained when including data below the saturation zone only. The RMSE de-
creases with decreasing range of stem volumes. Also in this set of cases,
the scene S95Jul is the only summer scene with a significant contribution
to the regression.

A two-piece multi-temporal stem volume estimator was derived from the
multiple regression analyses. This estimator is a combination of two multi-
ple linear regression models having three independent variables:

W = backscattering amplitude in the wet winter scene, Wet95Jan,

D = backscattering amplitude in the dry winter scene, Dry98Mar, and

S = average backscattering amplitude in the three summer scenes (S95Jul,
S95Sep, and S95Oct).

The two piece-wise estimates are ( ãPä for the lower stem volume range, ãPå
for the upper stem volume range):ã�ä � *¥(4( 9��	9 & ���>��< � 
 ¾ * ���>��=4��
Pæ (61)

and ãRå � *Á( ?�<��>ç & ��� ( 9 � 
 ¾ * ���>� � ç�
Pæ & �����4? � 

è¦� (62)

The combined estimate is computed:

if ãRåÑé�( �4�Øê ã � ãRå
if ãRå�ë 9��Øê ã � ã�ä (63)

if ãPåÑì 94�
and ãRåÑíî( �4�Øê ã � ( �4� *±ãRå<_� ã�ä & ãRå«* 9��<�� ãRå �

It was decided to split the forest stem volume range at 100 m
�
/ha and not at

150 m
�
/ha which is closer to the saturation point of L-band backscattering

amplitude. This decision, which was based on experimentation, aimed
at stronger correlation in the lower stem volume range. The regression
coefficients of the upper stem volume range were determined using the
whole stem volume range of 0–360 because the function for the upper
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a) b)

Figure 21. Estimated stem volume for multi-date regression models in the Ruoko-
lahti study site. All six JERS SAR scenes were used as independent variables of
a linear model in a). The 2-piece model (see section 3.5) was used in b). There
were 208 observations in both cases. A triangle marks the maximum estimated
stem volume in the leave-one-out method. A plus sign marks the corresponding
minimum estimate.

stem volume range was used to select between the pieces of the two-
piece estimator. All regression coefficients in Equations (61) and (62) were
significant at 5 percent risk level.

Figure 21 shows the estimated vs. true forest stem volume for a 6-date lin-
ear multiple regression model (a) and the 2-piece model described above.
Both models had very similar RMSE figures (41.3 m

�
/ha for 6-date lin-

ear, 41.6 m
�
/ha for the 2-piece model) as estimated by the leave-one-

out method. The 2-piece model, which depends more on the wet winter
scene, reduces the bias at the lower end of the forest stem volume range.
The RMSE value (41.3 m

�
/ha) of the six-date estimation is lower than the

RMSE obtained by Askne et al. (2003) in the Kättböle study site with
nine-date JERS backscatter data (36.4 or 59.0 m

�
/ha, depending on the

selection of training and test datasets) when taking into account that no
uncertainty figures for ground data has been subtracted from the RMSE
value in the Ruokolahti site. If a similar reduction was made in the RMSE
value of the Ruokolahti study site, it would be about on the level (27.2–38.0
m
�
/ha) of the RMSE of the model that used three backscatter observations

and one coherence observation in Askne et al. (2003). The reason for
smaller RMSE values in the Ruokolahti study site is most likely the lower
mean stem volume in Ruokolahti.

In addition to the two-piece estimator of Equations (61) and (62), another
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Figure 22. JERS-estimated forest stem volume for a 38 km by 38 km area in the
Ruokolahti-Puumala region. Black corresponds to a stem volume of 0 m

�
/ha and

white to 200 m
�
/ha. Compact blue is water. For a colour version, see the front

cover of this publication (Paper 6).
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estimator was derived using those original scenes (not the averaged sum-
mer scene) that produced significant regression coefficients. The upper
stem volume range model was determined using only data from the stem
volume range of its validity, not over the whole range 0–360 m

�
/ha. This

estimator produced a better correlation coefficient between the estimated
and ground-measured forest stem volume and also a smaller RMSE2. This
model was abandoned because it produced very poor estimates outside
the area of the stands that were used in its derivation.

Figure 22 shows the combined multi-temporal stem volume estimate (two-
piece estimate, Equations 61 and 62) computed over an area of 38 km by
38 km around the Ruokolahti study site.

2It appears that the RMSE figure of the 2-piece model that was reported in Paper 6 (28.5 m ï /ha)
was computed using this model, not the one described by Equations (61) and (62). This was an
error in Paper 6.
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4 Summary of Papers and Contribution

In Paper 1, the incidence angle effects due to local topography on L-band
Seasat SAR data in a forested area were analyzed using a digital elevation
model. Topographic effects accounted for over 60 percent of the total vari-
ation in the L-band Seasat SAR scene in a hilly and mountainous study
site in northern Sweden. The most important topographic factor was the
size of the resolution cell, which varies with varying incidence angle com-
ponents. This was the first study where topographic effects – in the form
of the size of a resolution cell – were analysed in quantitative terms in a
large study site in boreal forest.

In Paper 2, a methodology for the revision of the geometry of SAR scenes
for mosaicking multi-temporal sets of SAR scenes was presented. JERS
scenes of the GRFM African mosaic were used as SAR data. Sub-pixel
internal consistency of the mosaic was obtained. Absolute geometric ac-
curacy was estimated to be within a few hundred meters. This was the
first time that a rigorous least squares adjustment was applied to a multi-
temporal SAR mosaic dataset of over 3000 scenes. Error ellipses were
used to evaluate the spatial distribution of the uncertainty in scene loca-
tions.

In Paper 3, the geometric mosaicking method was described in more de-
tail. A methodology for improving the calibration of SAR scenes when a
large number of scenes are mosaicked was also presented. The same
set of JERS SAR scenes was used as SAR data as in Paper 2. The cal-
ibration artifacts before the calibration revision were about 1 dB or even
higher. The calibration revision method produced mosaics that enabled
image analysis without scene boundary effects.

In Paper 4, the characteristics of various radar wavelengths and polar-
isations were analysed in mapping forest biomass. AIRSAR data were
used in a German study site. A systematic method was presented to find
the optimal combination of transmit and receive polarisations for forest
biomass mapping. The method uses stand-wise averaged Stokes ma-
trix data and a polarisation synthesis algorithm. This method maximises
the correlation coefficient between forest stem volume and SAR backscat-
tering amplitude. P-band HV-polarisation was the optimal single radar
dataset in mapping forest stem volume. In stands with stem volumes less
than 170 m

�
/ha, L-band also had a strong correlation between stem vol-

ume and backscattering amplitude. Paper 4 was the first study where
optimal polarisation was systematically analysed – using the correlation
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coefficient between forest stem volume and backscattering amplitude –
over the whole transmit-receive polarisation space in a dataset of over 200
conifer-dominated forest stands.

Paper 5 extended the wavelength-polarisation analysis of Paper 4 to a
multi-temporal AIRSAR dataset. In P-band, the HV-polarisation was the
optimal single radar dataset in all three scenes acquired in August 1989,
June 1991, and July 1991. The form of the correlation surface (between
forest stem volume and backscattering amplitude) in the P-band cross-
polarised sub-space was also similar from scene to scene. Also in L-band,
the correlation coefficients between forest stem volume and backscattering
amplitude were almost constant from scene to scene when the analysis
was restricted to stands with stem volumes less than 100 m

�
/ha. In C-

band, the stem volume correlations varied from scene to scene in HH- and
HV-polarisations.

In Paper 6, a multi-temporal JERS SAR dataset was studied in a site in
south-eastern Finland. The dataset included three scenes acquired in
summer (July to October), two scenes acquired in freezing winter con-
ditions, and one scene in winter conditions with a moist new snow layer
on top of old snow. The forest inventory ground data included 206 stands
of boreal forest. In the JERS SAR scenes that were acquired in freez-
ing winter conditions the correlation between stem volume and backscat-
tering amplitude was low. The relation between forest stem volume and
backscattering amplitude was so similar in summer scenes that one re-
gression model could be proposed for forest stem volume mapping in wide
areas if accuracy requirements are not high.
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5 Conclusions

An optimal tool – among weather independent microwave sensors – for
space-borne forest biomass mapping is a P-band HV-polarised SAR. This
is due to its strong relation with forest biomass as shown in Paper 4 and
the literature (e.g., Le Toan et al. 1991). The P-band relation with forest
biomass is also sTable as shown in Paper 5.

In the absence of a space-borne P-band SAR in the foreseeable future,
summer-time L-band SAR data can be used for approximate forest biomass
mapping in areas where biomass is not very high, e.g., in the northern
part of the boreal forest zone. The L-band has a stable relation with for-
est biomass in areas with fairly low biomass as shown in Papers 5 and 6.
This stability of the relation between L-band backscattering amplitude and
forest biomass was observed in a dataset that only included SAR scenes
acquired in fairly dry conditions. The L-band biomass mapping – using
the biomass function derived in Paper 6 – may require that SAR scenes
are not degraded by excessive amounts of rain that could decrease the
contrast between high and low biomass areas. The results of Conway &
Estreguil (1994) and Keil et al. (1994) suggests that rain has an impact on
the contrast between open and forested areas in C-band SAR data. The
relation between L-band backscattering amplitude and forest biomass in
rainy SAR scenes was not studied in Paper 6 because the dataset did not
include scenes acquired in very rainy conditions.

L-band forest biomass mapping in wide areas requires accurate mosaick-
ing of a large number of SAR scenes. This can be achieved using geome-
try revision techniques like that described in Paper 2. Application of forest
biomass estimation models to a mosaic of SAR data requires good relative
calibration from scene to scene. Such calibration can be obtained by cali-
bration revision techniques, for example the technique that was described
in Paper 3.

In all forest biomass mapping using SAR backscattering amplitude, the
effects of terrain topography must be corrected from the SAR scenes be-
fore forest biomass estimation models are used. Terrain topography can
account for more than 60 percent of the variation in SAR backscattering
amplitude in hilly forested areas as shown in Paper 1.
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6 Future Research

The future space-borne SAR systems – especially the Japanese ALOS
PALSAR, which operates in L-band – will enhance the potential for wide
area forest biomass mapping. The results of Paper 6 suggest that the
derived biomass function can be used in forest biomass mapping in wide
boreal forest areas with L-band HH-polarised SAR. As these results were
verified in a single study site, the biomass function should be validated in
a larger set of study sites with wider variation in forest types and forest
management practices.

Polarimetric interferometry has been proposed for forest biomass map-
ping. As this technique requires fully polarimetric data acquisitions, the
technique may turn out too demanding in terms of data acquisition and
area coverage. In fully polarimetric mode, the SAR sensors of the near
future have an image swath width that is only half of the nominal single-
polarisation swath. The so called dual-polarisation configuration, which in-
cludes simultaneous HH- and HV-polarised data, covers the whole swath
of the single-polarisation mode. Therefore, the use of HV-polarisation –
alone or in addition to the HH-polarised data – is a central research topic
in the coming years.

The forest biomass function derived in Paper 6 is valid in forested areas.
Mapping of forest and non-forest land cover types should be made prior
to forest biomass mapping to avoid gross errors and mis-interpretation
of mapped biomass values. Even though forest area mapping has been
studied for a long time reliable discrimination between forest and various
non-forest land cover types is challenging in wide areas that include wide
variation in climatic and topographic conditions. When forest biomass is
mapped in country-wide or continent-wide areas mapping of forest and
non-forest land cover types requires research on reliable and accurate
methods and on earth observation data that can be used in this task.

A digital elevation model (DEM) was a key element in geometric and ra-
diometric processing of SAR scenes in Papers 1 and 4 through 6. In all
these cases, the DEM-based processing was done on single SAR scenes.
In wider areas, a mosaicking process hides the growth direction of the
range co-ordinate, which is essential for both geometric and radiometric
DEM-based processing of SAR scenes. Use of DEMs in geometric and
radiometric processing of SAR mosaics requires further research.

91



References

Ahern, F., Leckie, D., and Drieman, J. 1993. Seasonal changes in relative
C-band backscatter of northern forest cover types, IEEE Transactions on
Geoscience and Remote Sensing, 31(3), p. 668–680.

Angelis, C., Freitas, C., Dutra, L., and Valeriano, D. 2001. ERS-1 mul-
titemporal backscatter analysis of different types of land cover in Brazil-
ian Amazonia, Proceedings of the International Geoscience and Remote
Sensing Symposium IGARSS 2001, Sydney, Australia, 9–13 July, 2001,
IEEE, Piscataway, NJ, USA, Vol. 5, p. 2019–2021.

Askne, J., Santoro, M., Smith, G., and Fransson, J. 2003. Multitemporal
repeat-pass SAR interferometry of boreal forests, IEEE Transactions on
Geoscience and Remote Sensing, 41(7), p. 1540–1550.

Askne, J., Smith, G., and Santoro, M. 2004. L-band observations of boreal
forest stem volume, Proceedings of the 23rd Symposium of the European
Association of Remote Sensing Laboratories, Ghent, Belgium, 2–5 June
2003, Millpress Science Publishers, Rotterdam, the Netherlands, p. 159–
165.

Balzter, H., Baker, J., Hallikainen, M., and Tomppo, E. 2002. Retrieval
of timber volume and snow water equivalent over a Finnish boreal forest
from airborne polarimetric synthetic aperture radar, International Journal
of Remote Sensing, 23(16), p. 3185–3208.

Bayer, T., Winter, R., and Schreier, G. 1991. Terrain influences in SAR
backscatter and attempts to their correction, IEEE Transactions on Geo-
science and Remote Sensing, 29, p. 451–462.

Castel, T., Beaudoin, A., Stach, N., Stussi, N., Le Toan, T., and Durand,
P. 2001. Sensitivity of space-borne SAR data to forest parameters over
sloping terrain – Theory and experiment, International Journal of Remote
Sensing, 22(12), p. 2351–2376.

Castel, T., Guerra, F., Caraglio, Y., and Houllier, F. 2000. Retrieval biomass
of a large Venezuelan pine plantation using JERS-1 SAR data, Proceed-
ings of the International Geoscience and Remote Sensing Symposium
IGARSS 2000, Honolulu, USA, 24–28 July, 2000, IEEE, Piscataway, NJ,
USA, Vol. 1, p. 396–398.

Castel, T., Guerra, F., Caraglio, Y., and Houllier, F. 2002. Retrieval biomass
of a large Venezuelan pine plantation using JERS-1 SAR data, Analysis of

92



forest structure on radar signature, Remote Sensing of Environment, 79,
p. 30–41.

Churchill, P. and Attema, E. 1991. The European airborne polarimetric
SAR campaign MAESTRO 1, Proceedings of the International Geoscience
and Remote Sensing Symposium IGARSS’91, Helsinki University of Tech-
nology, Espoo, Finland, 3–6 June, 1991, IEEE, Piscataway, NJ, USA, Vol.
II, p. 327–328.

Conway, J. and Estreguil, C. 1994. Evaluation of multi-temporal ERS-1
SAR data for tropical forest mapping in Papua New Guinea, Proceedings
of the Second ERS-1 Symposium – Space at the Service of our Environ-
ment, Hamburg, Germany, 11–14 October, 1993, ESA SP-361 (January
1994), p. 481–484.

Dobson, C., Mc Donald, K., Ulaby, F., and Sharik, T. 1991. Relating the
temporal change observed by AIRSAR to surface and canopy properties
of mixed conifer and hardwood forests of Northern Michigan, Proceedings
of the 3rd Airborne Synthetic Aperture Radar (AIRSAR) Workshop, May
23–24, 1991, JPL Publication 91–30, p. 34–43.

Drieman, J. 1987. Evaluation of SIR-B imagery for monitoring forest de-
pletion and regeneration in western Alberta, Canadian Journal of Remote
Sensing, 13(1), p. 19–25.

ESA 1988. ERS-1 – A keen eye on the earth, ESA F12, 2nd edition,
European Space Agency, the Netherlands, August 1988, 6 p.

Foody, G. 1986. An assessment of the topographic effects on SAR image
tone, Canadian Journal of Remote Sensing, 12(1), p. 124–131.

Fransson, J. and Israelsson, H. 1999. Estimation of stem volume in bo-
real forests using ERS-1 C- and JERS-1 L-band SAR data, International
Journal of Remote Sensing, 20(1), p. 123–137.

Fransson, J., Walter, F., and Ulander, L. 2000. Estimation of forest parame-
ters using CARABAS-II VHF SAR data, IEEE Transactions on Geoscience
and Remote Sensing, 38, p. 720–727.

Goering, D., Chen, H., Hinzman, L., and Kane, D. 1995. Removal of terrain
effects from SAR satellite imagery of arctic tundra, IEEE Transactions on
Geoscience and Remote Sensing, 33, p. 185–193.

Goyal, S., Seyfried, M., and O’Neill, P. 1999. Correction of surface rough-
ness and topographic effects on airborne SAR in mountainous rangeland
areas, Remote Sensing of Environment, 67, p. 124–136.

93



Haara, A. and Korhonen, K.T. 2004. Kuvioittaisen arvioinnin luotettavuus
(Reliability of stand-wise forest inventory data, in Finnish), Metsätieteen
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ABSTRACT 

The Global Rain Forest Mapping project GRFM is an inter- 
national collaborative effort promoted by the National Space 
De:velopment Agency of Japan NASDA. Main goal of the 
project is to produce a wall to wall map of the entire tropical 
rain forest using the L-band SAR on board the JERS-1 space- 
craft. Within the GRFM project the European Commission 
Joint Research Centre acts as main processing node for the 
assemblage and validation of the radar mosaics related to the 
African continent. In this paper we give an overview of the 
techniques used for the compilation of these wide area radar 
mosaics, with emphasis on the scene geo-referencing. A global 
opl.imization technique is used based on a least squares estima- 
tioin of the scene geometry parameters given observations 
which comprise intra-scenes correlation measures, ground 
control points and nominal scene position derived by orbital 
parameters and the range-doppler equation. Two acquisitions 
at different dates are simultaneously included in the estimation 
process, thus assuring optimal co-registration between dates. 
A similar technique is used for radiometric calibration of the 
mosaic. Validation of the multi-temporal radar map's geometry 
with respect to existing cartographic data - a key issue in view 
of certain thematic applications - is also discussed. A RMSE 
(Residual Mean Squared Error) of 56 m was obtained when 
using tie-points between scenes only. This error characterizes 
the mosaic internal consistency for scenes down-sampled to a 
pixel spacing of 100 m. A RMSE of 240 m was obtained when 
using ground control points (GCP) derived from digital carto- 
graphic data. This figure characterizes the absolute geo-loca- 
tion accuracy of the GRFM Africa mosaics. 

INTRODUCTION 

The Global Rain Forest Mapping project (GRFM) [1][2] 
Africa data sets consists of two blanket coverages of the Cen- 
tral Africa tropical region 10"s - 1O"N 8"E - 36" W ,acquired 
during January-March and October -November 1996. A one 
date continuous coverage of an area in West Africa between 
14'E - 8"W and the island of Madagascar are also included. 
The: overall data set comprises approximately 4000 scenes 
acquired by the NASDA JERS-1 L-band synthetic aperture 

radar (SAR). The SAR raw data were correlated into ground 
range detected images by the NASDA EORC centre in Japan; 
processing at the JRC entailed a multi-resolution (from 100 m 
to 1.6 Km) decomposition using wavelets into radiometry and 
texture maps, and the generation of wide area mosaics with 
good radiometric and geometric accuracy. This challenging 
job required the set up of suitable techniques and processing 
chains, a full description of which is given in [3]. Given the 
scope of this short communication, we will focus here on the 
geo-referencing aspects of the mosaicking procedure. 

MULTI TEMPORAL BLOCK ADJUSTMENT 

Internal geometric consistency and between dates co-regis- 
tration of the mosaics for the multi-temporal analysis require 
that the location accuracy of individual scenes is better than the 
pixel dimension (100 m). The standard deviation of the scene 
geo-location data was estimated to be several hundreds of 
meters. Discontinuities of up to 600 rn were detected in early 
mosaicking experiments without geometric corrections. Meth- 
ods for revising the geo-location data had therefore to be 
applied in the mosaic compilation. 

A global optimization technique was developed based on a 
linear least squares estimation (LLS) [4] of the scene geometry 
parameters given observations which comprise intra-scenes 
correlation measures, ground control points and nominal scene 
position derived by orbital parameters and the range-doppler 
equation. 

The two acquisitions at different dates are simultaneously 
included in the estimation process, thus assuring optimal co- 
registration between dates. 

The scene geometry model used in the LLS includes two 
translations and a rotation in a Northing Easting (Mercator) 
coordinate system with origin at the scene centre. This model 
relies on the - confirmed - assumptions that there is no internal 
deformation in the JERS products. For observations based o n  
tie-points between scenes this model gives for instance: 

-y2cos (a,) -.xisin ( a , )  +x,sin(a,) 
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where ff is the NortWng of point P; x, y are the image 
c o 6 M w ;  Af is the Northing of the scene centre; d& is the 
translation in Northimgafthe scene. A similar equation m i e s  
for the Easting direction. Theobservation equations are linear- 
ized for smaH a. 

Tie point measurement is based on image correlation per- 
formed at 100 m pixel spacing between adjacent scenes 
belonging to the same date mosaic, or between scenes at two 
different dates. For scenes acquired along the same orbit the 
correlation peak is well defined even without high-contrast 
features; even homogeneous areas can be correlated success- 
fully because the same speckle pattern is present in both 
scenes. The points within one date and between strips require 
always the presence of a high-contrast feature that remains sta- 
ble during the interval between the SAR acquisitions of the 
adjacent strips. The same applies to the points between dates, 
but here the overlap area to search for candidate features is 
larger because the scenes (same node or path-row position) 
cover the same area. 

To increase the probability of a high correlation maximum, 
a simple interest operator was implemented. A small area 
around the centre point of a correlation block is searched for 
candidate templates. The template that produces the highest 
value of the interest operator is then selected to be used in the 
correlation. 

The structure of the LLS normal equations coefficient 
matrix N is block diagonal, with bandwidth: 

w = @spat,, + 1 )  * adareS. npar (2) 

where sparh is the maximum number of scenes in a single 
path (fast row index), ndnter is the number of dates (SAR cov- 
erages), and npnr is the number of parameters in the geometric 
model. 
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A conjugate gradient method can be used efficiently for the 
solution of linear systems with a block diagonal coefficient 
matrix. In the implementation of the multi-temporal block 
adjustment applied to the JERS SAR data the elements of the 
N matrix within the bandwidth are taken into account when 
computing the conjugate gradient iterations. 
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VALIDATION 

In order to validate the geo-referencing accuracy, a sequence 
of block adjustments using different sources for the observa- 
tions in the LSS were performed, and the relative residual 
mean square errors (RMSE) measured. The hierarchy of tests 
included: 1) observations based only on tie-points (see previ- 
ous section); 2) additional observations based on ground con- 
trol points (GCP) located on the coast lines; 3)  additional 
observations based on GCP located inland in the Central 
Africa continent. 

All three adjustments included 3624 scenes and 62006 tie- 
points. 

Digital data from the World Vector Shoreline data base was 
used for the GCPs along coastlines. The World Vector Shore- 
line data covers fairly well West Africa, the Western coastal 
zone of Africa down to Angola, and the part of the Tanzanian- 
Kenyan coast that is included in one of the mosaics. Digital 
topographic maps scale 1:200000 in the Central African 
Republic and the Republic of Congo (CongoKinshasa) were 
used in test case 2. The maps were produced by IGNErance 
mainly in the 1950s. The maps were scanned and digitized by 
I-Mage Consult, Namure, Belgium within the framework of 
the Regional Environmental Information Management Project 
on Central Africa (REIMP-CA), initiated under the PRGIE 
program of the Worldbank. 
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Fig. 1 - Error ellipsis of the scene centres in the whole Central Africa 100 m mosaic after the multi-temporal 

adjustment using GCPs. 
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TABLE 1. Residual mean square error statistic (in meters) in the block adjustment of the Central Africa GRFM mosaic 

Test case Tiepoint N Tiepoint E Centre N Centre E GCP N GCP E Mean dN Mean dE 

1 33.2 34.8 477.5 751.7 503.0 1021.4 26.6 -289.7 
2 35.5 40.8 532.0 736.2 193.7 201.6 18.6 -69.3 
3 40.1 39.7 543.3 758.0 173.2 166.3 24.3 -46.8 

Results of the validation process are reported in Table 1. The 
columns Centre N, Centre E are scene translations in Northing 
and Easting. The column Mean dN, Mean dE give the average 
relative translations between the two dates mosaics. The GCP 
RMSE in case 1 indicates the mean squared error computed 
when the 248 coastline GCPs are not considered in the LLS 
estimator; they are only used to check the error. 

As to case 2, the inclusion of GCPs in the LLS degrades the 
tie-points RMSE by a few metres. On the other hand, it greatly 
reduces the discrepancy between the mosaic and external con- 
trol data (from 500 m to less than 200 m in Northing and from 
1000 m to less than 200 m in Easting). In case 3 about 50 GCPs 
located in the Central African Republic and the Republic of 
Congo were added to the observations, but the RMSE statistics 
is not change significantly.From this fact we can infer that 
these GCPs are compatible with the coast line GCPs at the 
scale of the mosaic pixel size (100 m). 

Another interesting way of characterizing the error budget 
in the scene geometry revision is to plot the local mean and 
variance of the LLS estimator in Northing and Easting (associ- 
ating to each scene centre an error ellipse). An example for the 
whole Central Africa mosaic after the block adjustment using 
GCPs is shown in Fig. 1. In this case, the semi-major axis of 
tht: error ellipse varies between 6 and 55 m with a median at 11 
m. The semi-minor axis varies between 6 and 3 m with a 
median at 10 m. Larger error ellipses correspond to scenes 
where the number of tie points is reduced because of lack of 
inter-scene correlation. 

CONCLUSIONS 

Registration in the sub-pixel range between two dates 
GRFM Africa mosaics with a sampling interval of 100 m was 
achieved using the multi-temporal block adjustment described 
in this paper. A figure of the internal geometric consistency and 
the between dates registration accuracy is given by a RMSE of 
40 m for the tie points. 

Adding ground control point data (derived from the World 
Vector Shoreline data set) shifted the mosaic on the average by 
a distance between 0.5 and 1 km with respect to the geo-loca- 
tion data from scene headers. Adding more ground control 
points defined in the central part of the African continent 
shifted the mosaic only by order of 100 m. Therefore we are 
confident that the absolute geo-location accuracy is within a 

couple of hundred nietres throughout the whole mosaic that 
extends from the Western coast of Africa in Sierra Leone to the 
Eastern coast in Kenya and Tanzania. 

A rigorous multi-temporal least squares block adjustment 
was applied to a semi-continental SAR mosaic consisting of 
over 3600 scenes and extending over a distance of more ihan 
6000 km. In this respect, the GRFM Africa data set probably 
represents a milestone in wide area radar mapping of the earth 
ecosystems. 
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Abstract—The Global Rain Forest Mapping Project (GRFM)
is an international collaborative effort initiated and managed by
the National Space Development Agency of Japan (NASDA). The
main goal of the project is to produce a high resolution wall-to-wall
map of the entire tropical rain forest domain in four continents
using the L-band SAR onboard the JERS-1 spacecraft. The pro-
cessing phase, which entails the generation of wide area radar mo-
saics from the raw SAR data, was split according to the geographic
area. In this paper, the focus is on the part related to Africa. The
GRFM project’s goal calls for the coverage of a continental scale
area of several million km2 using a sensor with the resolution of
tens of meters. In the case of the African continent, this entails the
assemblage of some 3900 high resolution SAR scenes into a bitem-
poral mosaic at 100 m pixel spacing and with known geometric ac-
curacy. While this fact opens up an entire new perspective for veg-
etation mapping in the tropics, it presents a number of technical
challenges. In this paper, we report on the solutions adopted in the
GRFM Africa mosaic development and discuss some quantitative
and qualitative aspects related to the characterization and valida-
tion of the GRFM products. In particular, the mosaic geolocation
and its validation are discussed in detail. Indeed, the internal geo-
metric consistency (subpixel accuracy in the coregistration of the
two dates), and the absolute geolocation (residual mean squared
error of 240 m with respect to ground control points) are key fea-
tures of the GRFM Africa mosaic. Other important aspects that are
discussed are the multiresolution decomposition approach, which
allows for tracking the evolution of natural phenomena with scale;
the internal semi-automatic radiometric calibration, which min-
imizes artifacts in the mosaic; and the thematic information con-
tent for vegetation mapping, which is illustrated by a few examples
elaborated by visual interpretation. Experience gained so far indi-
cates that the GRFM products constitute an important source of
information for global environmental studies.

Index Terms—Calibration, geometric modeling, image clas-
sification, radar applications, radar cross sections, radar data
processing, radar signal analysis, synthetic aperture radar (SAR),
tropical regions, vegetation mapping, wavelet transforms.

I. BACKGROUND

T HE GLOBAL Rain Forest Mapping Project (GRFM) [1],
[2] is an international collaborative effort initiated and
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managed by the National Space Development Agency of Japan
(NASDA), Hatoyama. The main goal of the project is to produce
a high resolution wall-to-wall map of the entire tropical rain
forest domain in four continents (South America, Africa, Asia,
and Australia) using the L-band synthetic aperture radar (SAR)
onboard the JERS-1 spacecraft.

The adequate monitoring of Earth ecosystems is a prereq-
uisite to the sustainable management of renewable resources.
Tropical and boreal forests are a case in point because they rep-
resent important pools of economical, biological, and ecological
resources. These ecosystems are furthermore threatened by the
rapid increase, worldwide, in the demand for new agricultural
land and for new products.

Another important aspect related to these ecosystems is their
role in the exchange processes between the atmosphere and the
geo-, biosphere, and in particular for the carbon cycle and for
fluxes of green house gases (GHGs) such as carbon dioxide and
methane. In turn, this issue is linked to global climate change, a
problem of major concern for all mankind on spacecraft Earth,
and henceofgreat political and scientific relevance. TheProtocol
to the U.N. Framework Convention agreed to in Kyoto, Japan,
has stressed the severity of the problem and confirmed the gen-
eral awareness and political will to take action toward a long term
solution. The Kyoto protocol makes provision for the use of bi-
ological GHG sources and sinks to meet commitments, and un-
derstandably requires inventory of resources such as forestry and
land use change as a basis on which decisions will be taken for
future action to account for anthropogenic disturbances. Space
provides a unique vantage point and Earth observations by satel-
lite, a unique technology to acquire such information.

An important requirement in the case of ecosystem-wide
monitoring is the combination of timeliness, completeness,
and spatial resolution of the observations. The NASDA GRFM
project is a possible answer to this requirement, based on
the recognition that the JERS-1 L-band spaceborne SAR
characteristics are ideally suited for mapping and monitoring
the vegetation distribution of an entire ecosystem at continental
scale, at several spatial resolutions, and with no weather or time
of day constraints.

The sheer size and complexity of the project (some 13 000
radar images covering some 50 million km) demanded inter-
national cooperation from an early stage. Among the main insti-
tutions that take part in the project worldwide, we cite the Earth
Remote Sensing Data Analysis Centre of Japan (ERSDAC),

0196–2892/00$10.00 © 2000 IEEE
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Tokyo, Japan, the National Aeronautics and Space Adminis-
tration (NASA), Washington, DC, the Jet Propulsion Labora-
tory (JPL), Pasadena, CA, the Alaska SAR facility (ASF), Fair-
banks, AK, the European Commission Joint Research Centre
(EC JRC), Ispra, Italy, the National Institute for Space Research
of Brazil (INPE), São Jose Dos Campos, Brazil, the National
Institute for Amazonian Research of Brazil (INPA), Manaus,
Brazil, and the University of California, Santa Barbara (UCSB).

Certainly, this strategic vision, which brought together the ex-
pertise of major space-related institutions in Japan, the U.S., and
Europe and the knowledge and skills of scientists all around the
world, was one of the majorassets thatassured the so far verysuc-
cessful outcome of the project. The GRFM is also, in our opinion,
a good example of how the study of global environmental prob-
lems requires a concerted effort at the international level.

The project includes a technology part related to the satellite
operations, data acquisition and processing for the generation of
the wide area radar mosaics, and a science program to support
global or local area thematic studies of the tropical ecosystems.
As far as the technology part is concerned, the following task
structure and allocation was adopted. The SAR data downlink
and correlation was performed at the NASDA Earth Observation
Center, Hatoyama, Japan, and at the ASF, Fairbanks, Alaska.
The latter effort was funded by NASA.

The SAR high resolution detected images were then
distributed to a number of main processing nodes for the post-
processing phase involving low resolution product generation
and wide area radar maps compilation, suitable for further
automatic processing and thematic information extraction. The
load was shared according to a geographic area criterion. The
South America data set was assigned to the Jet Propulsion
Laboratory, California Institute of Technology (funded by
NASA), the Africa data set to the EC JRC Space Applica-
tions Institute (SAI), the Asia and Australia part to NASDA
Earth Observations Research Center EORC. Each center was
responsible for developing its own processing algorithms and
software, since due to the project’s requirements no off the
shelf solution was available.

In this paper, the focus is on the Africa postprocessing part
of the GRFM project. The postprocessing baseline product con-
sists of a georeferenced, calibrated, bitemporal SAR wide area
mosaic at 100 m pixel spacing, comprising radiometric and tex-
tural information. Additional products are also generated in-
cluding multiresolution maps and texture measures (from 200
m down to 1.6 km). In particular, we will describe the main
technical and engineering issues of the processor that was de-
veloped for the generation of the GRFM Africa products and
will discuss some quantitative and qualitative aspects related to
the characterization and validation of the products.

The paper is structured as follows. In the next section, we
highlight the project’s main characteristics and novel aspects.
The generation of the Africa mosaic products entails several
data sets, software and hardware components, that we collec-
tively indicate as the Africa mosaic engine. These components
are described in Section III. In Section IV, a statistical character-
ization of some baseline products is given. The next Section V
deals with the core issue of the mosaic compilation and georef-
erencing, with particular emphasis on the geometric validation

process (Section VI). In Section VII, the problem of correcting
radiometric distortions is tackled. In Section VIII, we give a
first assessment of the mosaic information contentvis-a-visthe
theme of tropical vegetation mapping. This step, which is con-
ducted at this stage by visual inspection, is an important pre-
requisite to characterize the potential of the GRFM products for
future automatic classification pursuits. Finally, we summarize
the current status of the project and hint at the ongoing and fu-
ture activities within the GRFM Africa project.

II. PROJECT’SHIGHLIGHTS

The GRFM approach calls for the coverage of a continental
scale geographic area (a linear distance of some 6000 km in the
case of the Africa mosaic) using a SAR sensor which acquires a
scene within a swath of some 75 km and with a ground resolu-
tion of approximately 18 m. This is obtained by tiling together
several acquisitions which are not taken instantaneously but still
within a short time frame (two months). Moreover due to the or-
bital characteristics of the JERS-1 spacecraft contiguous swaths
are imaged within two consecutive days, which assures a smooth
time evolution through the whole coverage.

The resulting product is a spatially continuous radar map,
which can eventually be degraded to lower resolutions for
studying scale dependent natural phenomena, or to extract
thematic information at the most suitable resolution. In the
case of the tropical ecosystems, the merit of the approach lies
therefore in the possibility of estimating some geophysical
parameters of interest (e.g., biomes distribution, deforestation)
globally and at unprecedented resolution.

Previous approaches relying on optical sensors were either
producing wide area continuous sampling but low resolution
maps (e.g., the EC Tropical Ecosystem Environment monitoring
by Satellites TREES project vegetation maps based on NOAA
AVHRR 1 km data [3]) or high resolution but random coverage
data sets [4]–[6] (e.g., LANDSAT TM data). In this case, some
global geophysical parameters were then estimated by extrapo-
lation using statistical sampling techniques.

The combination of continuous coverage, short acquisition
time, and high resolution is a unique asset of the GRFM ap-
proach. Experience gained so far lets us confidently say that
data sets such as the GRFM ones will bring forth entirely new
paradigms for the remote sensing of wide area terrestrial phe-
nomena and will add enormously to our knowledge of the trop-
ical and other poorly documented earth ecosystems. However
the benefit comes at the cost of a number of technical hurdles.

First the end to end process from the satellite down link to
the generation of several layers of lower resolution products
entails a staggering data volume, and a high processing com-
plexity. Experience in handling large data volumes was certainly
not lacking among the major GRFM processing nodes. For in-
stance, a wide area radar mosaic of Central Africa using the ESA
ERS-1 SAR data had already been generated at the JRC SAI
[7]. Still, the GRFM project introduced one more shift in com-
plexity, due to the geographically distributed processing, and
the layers of low resolution products (multitemporal, multires-
olution). To give a flavor, the GRFM Africa mosaic consists of
some 3900 SAR scenes which is tantamount to 312 Gb of high
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resolution ground range data, and 4.8 Gb for one 100 m baseline
product, without accounting for all the intermediate and special
purpose lower resolution products. This level of data volume al-
ready poses some problems even for simple operations like data
ingestion if the available off-the-shelf computer technology in
the high end Unix servers and workstation class is used.

Second, since the coverage is not obtained in one snapshot,
perturbation of the imaging system nominal values (e.g., the
satellite attitude) affect the images that compose the mosaic ac-
cording to their position differently (e.g., radiometric and geo-
metric distortions). These effects must be taken in due account
and corrected for. Moreover, the problem of parameters esti-
mation is exacerbated by the data volume issue, because most
manual techniques, like tie-pointing, must be ruled out.

Third, even a self-consistent measure of a physical parameter
still requires a comparison with independent estimates to be val-
idated. Validation of the image characteristics and, as a second
step, of the thematic information that can be eventually extracted
(e.g., a vegetation map), is in our opinion one of the central is-
sues in the generation and exploitation of wide area high res-
olution remote sensing data sets. The validation of a measure-
ment that is spatially dependent and extends over a wide area re-
quires a reference set of known and suitable accuracy and must
be dense enough to assure the correct sampling of the signal to
validate. The problem is compounded by the fact that ad hoc
ground experiments are nowadays difficult to set up in areas of
the world like Central Africa, which are plagued by high social
and political unrest. Historical data sets are in this case the only
source for benchmarks.

In the context of the GRFM Africa postprocessing the valida-
tion of the georeferencing accuracy was of particular relevance,
because clearly it constitutes a prerequisite to the use of the
GRFM radar maps for cartographic applications. These pecu-
liar connotations needed to be taken into account in the GRFM
development process and constituted the rationale for the devel-
opment of suitable processing techniques and tools, which are
reported in this paper.

III. T HE GRFM AFRICA MOSAIC ENGINE

The GRFM Africa processing chain can be seen from a purely
computational point of view as an ensemble of data sets and
processes that perform a transformation from the input data sets
(the JERS-1 imagery supplied by NASDA) to the output data
sets, which are referred to as the GRFM Africa multiresolution
products. We indicate this ensemble of data sets, software, and
the hosting hardware devices as the “GRFM engine.” In this
section, we give an overview of the engine main components
and their interactions (see diagram in Fig. 1).

A. Input Data Sets

TheJERS-1SARdataacquisitionsof theGRFMAfricaproject
include two blanket coverages of the Central Africa tropical re-
gion between 10S and 10N. The first coverage was acquired
during January–March 1996 and extends from 8E to 42 E. The
second during October–November 1996 and extends from 8 to
36 E. In the following, the two data sets will be dubbed the “low
water” and “high water” data sets, with reference to the perceived

Fig. 1. Diagram of the main components of the GRFM Africa processing
chain. The ensemble of the hardware, software processes (square boxes), the
digital products (curved boxes), and their interconnections (arrows) is referred
to as the GRFM Africa engine. The main processes are numbered for reference
in the description of the data flow given in Section III.

hydrological state of the main river network in the region, the
Congo river and its tributaries. In addition, the low water data set
covers West Africa from 14W to 8 E and the island of Mada-
gascar (acquired on January 1997).

The SAR raw data corresponding to these acquisitions were
correlated at NASDA Earth Observations Center EOC. The
output of this processing phase is a product defined by NASDA
as a standard geocoded image in a Universal Transverse
Mercator (UTM) projection and dubbed Level 2.1 product.
However, the rows and columns of the Level 2.1 raster file are
aligned with the slant range and azimuth directions and not
with the Mercator reference system.

The low water acquisition comprises 2173 scenes, the high
water acquisition 1460 scenes in continental Africa, and 263
scenes for the Madagascar island. All the scenes were acquired
on descending orbits.

B. Data Flow

Proper management of the data flow in terms of hardware re-
source allocation, operation synchronization, and housekeeping
information is an issue of primary importance in a complex pro-
cessing system like the GRFM one. Typically the following data
flow takes place. The NASDA level 2.1 high resolution images
are ingested in batches into the system. The data ingestion step
is the most time critical in the overall chain of operations; in our
configuration it required approximately two calendar months for
all the GRFM data sets.

The high resolution data are then processed by the wavelet de-
composition block (block 2 in Fig. 1 and Section III-C), which
generates images and texture measures downsampled at 100 m.
This product is the basic building block for all successive op-
erations needed to build the mosaic. Products at this resolution
will be called framelets.

The framelets are radiometrically calibrated (block 4 in
Fig. 1) and geolocated and tiled together (block 5 in Fig. 1).
This step produces the baseline products at 100 m resolution
(bitemporal mosaics and texture measures).

Larger scale (lower resolution) maps and texture measures
are generated again by wavelet decomposition from the base-
line products (block 6 in Fig. 1). The multiscale radiometric and
texture products are finally used to support further analysis, data
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distribution, visual interpretation, and automatic thematic infor-
mation extraction (block 8 in Fig. 1).

C. Wavelet Multiresolution Decomposition

A multiresolution signal decomposition based on the wavelet
transform is used to generate the GRFM Africa products. The
rationale for using this approach instead of a classical down-
sampling method such as block averaging, stems from several
considerations.

1) Multiresolution is an intrinsic concept in the wide area
radar mapping approach, where a high resolution sensor
is used for wide area mapping. The wavelet pyramid gives
the possibility of generating approximations of the orig-
inal radar imagery at several spatial scales (at each stage
in the pyramid, the pixel size is double with respect to
the previous level). Therefore, it is possible to generate a
set of products that best match the thematic analysis re-
quirements for a certain application in terms of resolution,
SNR, and data volume.

2) The wavelet coefficients at a scalecarry information on
the “details” of the signal that were present in the approx-
imation at a finer scale 1 and were lost in the approx-
imation at scale. The wavelet coefficients can therefore
be interpreted as texture measures at that scale and the
wavelet decomposition provides at the same time the ap-
proximated image, and information on spatial structures
that exist in the image at a certain scale. This fact opens up
several possibilities for the automatic extraction of struc-
tural and textural information [11], a definite advantage
over other multiresolution techniques.

3) The existence of fast discrete wavelet transform algo-
rithms, which require only a number of operations pro-
portional to the size of the original data, makes this
approach ideal in the case of high data volume (in contrast
for instance, fast Fourier transforms (FFTs) are typically

algorithms).

The basic theory behind the wavelet based decomposition
used in the GRFM engine was developed by Mallat [8]. Details
on the adaptation of the theory in the case of SAR imagery and
multiplicative speckle noise and on the retrieval of textural and
singularity information can be found in [9]–[13].

D. Multiresolution Products

The wavelet decomposition generates from each high reso-
lution level 2.1 image and for each scale three products: 1) the
smooth signal; 2) the wavelets coefficients (horizontal, vertical,
oblique); and 3) the scalogram. The scalogram at scaleas de-
fined in [10] is the quadratic sum of the wavelet coefficients
normalized by the squared smooth signal at that scale to com-
pensate for the wavelet amplitude modulation due to multiplica-
tive speckle noise in stationary areas. Scalograms are useful for
constructing multiscale texture maps [11].

It is important to notice that the low pass and high pass filters
in the decomposition are applied after a square law detector. In
this way, over stationary areas, the intensity mean value is pre-
served after low pass filtering and therefore, an unbiased esti-

mation of the radar backscattering coefficient is still possible at
higher scales (lower resolution).

In parallel to the main pyramid another texture measure
product is generated by computing the normalized standard
deviation (sample standard deviation normalized by the sample
mean) of the high resolution amplitude signal over
contiguous blocks of 8 8 pixels. This texture measure is intu-
itively proportional to the one point signal variations (namely
independent of the spatial ordering) within a resolution element
of 100 m. For an homogeneous area with constant underlying
radar reflectivity, they are entirely due to speckle noise.
will therefore assume the nominal value for a 3-look amplitude
image with correlated fully developed speckle. Deviations from
this nominal value indicate that other variations are occurring in
the signal within the 100 m resolution cell. See the next section
for some statistical considerations on this texture measure.

It is important to realize that the normalized standard devi-
ation is complementary and bears different information
with respect to the wavelet scalogram . The scalogram at
resolution contains the details that were lost from the higher
resolution 1 in approximating the signal, and therefore con-
tains variations that were detectable at scale1 but that were
wiped out at scale. For instance, at 100 m contains tex-
tural information at the 50-m scale. By contrast, the mea-
sure contains texture at all scales from 12.5 m up to 100 m.

IV. STATISTICAL CONSIDERATIONS

A. Speckle Strength in the Low Resolution Products

The baseline radiometric products at 100-m pixel size are de-
rived from the high resolution level 2.1 data by low pass fil-
tering, the intensity signal, and by decimation. Speckle noise,
which is present in the original data, will therefore be attenuated
at larger scales but still be present. This has to be taken into ac-
count in the development of postprocessing analysis tools such
as classifiers and edge detectors.

A quantitative estimation of the speckle strength for a
stationary area with fully developed correlated speckle can be
obtained considering a simple theoretical model. In the discrete
wavelet decomposition, the two-dimensional (2-D) smooth
signal at each scale is generated by convolution with a sepa-
rable (rows and columns) low pass filter and by decimation.
Relationships between the input and output random processes
statistical parameters (expectations and correlation functions)
at each stage in the decomposition can be obtained using the
theory of stable, time-invariant linear filters.

Assuming that at the first stage (highest resolution), the input
signal will be correlated only up to 1 lag, the normalized
second moment of the output processcan be expressed as

(1)

where
normalized second moment of the
random process and indicator of the
speckle strength;
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autocorrelation sequence of the
wavelet low pass filter impulse re-
sponse;
normalized autocovariance at 1 lag.

Typical values for JERS-1 level 2.1 data are 0.355 in az-
imuth and 0.4 in range.

Since the decimation process after both convolutions (by
rows and columns) decorrelates the signal, we can assume
white speckle noise from the second scale downward. Then,
cascading such filter stages, a relationship between the
normalized second moment at the input of the wavelet
decomposition and the normalized moment at stage
can be obtained

(2)

Since there are two filters in the decomposition the scale level
is linked to by 2 1. Substituting numerical values

for the low pass filter coefficients used in the wavelet decom-
position in (1) and (2) and considering at the input a stationary
random process drawn from intensity data with an equivalent
number of looks 2.6 (as in a level 2.1 product), we
obtain at the output of the pyramid 59 for the 100 m
product and 154.2 for the 200 m product. For compar-
ison a block average of 8 8 pixels would generate a product
at 100 m pixel size with 46.6.

B. Variance of the Normalized Standard Deviation Estimator

We now turn to the statistical characterization of the tex-
ture measure based on the normalized standard deviation of the
high resolution level 2.1 amplitude data. As explained in Sec-
tion III-D, a local estimator is implemented in the GRFM pro-
cessing by computing the sample normalized standard devia-
tion of the data (three looks, 12.5 m pixel size) using an NN
window. The window is moved blockwise in the image.

This estimator turns out to be a good discriminator for some
thematic forest classes of interest such as the swamp and the
lowland rain forest, because it is sensitive to the upper canopy
structure. It is therefore important to estimate the variance of the
estimator in order to assess the SNR (or in other words the class
separability).

The estimator can be expressed as a function of the statistics
and

(3)

(4)

where are the observations and in this case, the amplitude
values of the level 2.1 radar image.

Performing a first order Taylor expansion around the mean
values and , we have [14]

(5)

Equation (5) can be expanded as a function of the moments
of the observables , of the estimation window size, and the of
normalized autocovariance function ofat 1 lag. All of these
quantities can be computed from a theoretical probability dis-
tribution function and a correlation model of the SAR data. A
detailed derivation is given in [25].

Numerical evaluation of (5) for -distributed 3-looks ampli-
tude data as a function of the order parameterof the
distribution and the estimator window size gives the results re-
ported in Table I.

For a stationary area with Rayleigh or K-distributed speckle,
the expected value of is a constant, which we consider the
signal. The noise component is due to the estimator variance.
In this sense, the standard error in Table I can be interpreted as
the SNR of the texture measure. This analysis indicates how an
improvement of the S/N can be traded off against the spatial res-
olution. Alternatively, the texture measure signal can be filtered
to improve the SNR before the classification engine.

The theoretical estimator variance is the basis for the construc-
tionofsuchafilter(block7inFig.1).Thefilterusesthelocalstatis-
tics in theneighborhoodofapixel in the imagetodetectstationary
areaswhere thestatistical regimedescribedabove ispresent.This
is achieved using the theoretical estimator variance (5) as a func-
tion of the mean value. If the variance threshold is exceeded, an
adaptivewindowalgorithmisentered,similar to theoneproposed
in [15]. Ifastationaryarea isnotdetectedevenat thissecond level,
then the original value is stored in the filtered set. Otherwise, the
local sample mean is substituted for the current pixel.

The scope of the filter is therefore to smooth the texture mea-
sure in stationary areas with constant or Gamma distributed
radar cross section and to preserve fine and strong features in
nonstationary areas of the texture signal.

V. GEOLOCATION

The geolocation of the individual scenes (framelets) is a fun-
damental step in the mosaic compilation. The problem can be
explained as follows. If each framelet were to be positioned in
a Mercator reference system relying only on the scene coordi-
nates given in the NASDA product ancillary data, geometric in-
consistencies would arise with respect to other framelets. Points
belonging to the same feature on the ground would be displaced
as seen in a framelet or in a neighboring one. This is due to er-
rors in the sensor’s position and uncertainty in the estimation
of the Doppler centroid frequency that propagate in the solu-
tion of the range Doppler equations used by NASDA to rectify
the geolocated level 2.1 product. The standard deviation of the
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TABLE I
THEORETICAL VARIANCE OF THE SAMPLE ESTIMATOR SD̂ (NORMALIZED

STANDARD DEVIATION) FOR AMPLITUDE STATIONARY K-DISTRIBUTED SAR
DATA AS A FUNCTION OF THEORDER PARAMETER � OF THEK(�; I)
DISTRIBUTION. THE ESTIMATOR VARIANCE AND STANDARD ERROR

ARE REPORTED FOR ANESTIMATOR MOVING WINDOW OF 8 � 8
PIXELS AND 16� 16 PIXELS

scene geolocation data was experimentally estimated to be sev-
eral hundreds of meters, and discontinuities of up to 600 m were
detected. On the other hand, internal geometric consistency and
between dates coregistration of the mosaics for the multitem-
poral analysis require that the location accuracy of individual
scenes is better than the pixel dimension (100 m). Methods for
revising the geolocation data must therefore be applied in the
mosaic compilation. A global optimization technique was de-
veloped based on a linear least squares estimation (LLS) of the
scene geometry parameters given observations that comprise in-
terscenes correlation measures, ground control points, and nom-
inal scene position. The two acquisitions at different dates are
simultaneously included in the estimation process, thus assuring
optimal coregistration between dates.

From an intuitive point of view, the internal mosaic geometric
consistency would be assured if the same features in different
neighboring images were to match perfectly. Now the same fea-
ture on the ground is indeed imaged twice in the overlap area
of two adjacent framelets. This fact can be exploited to get a
measure of the relative discrepancies in the positions of the two
framelets. The next problem is to move one framelet relative to
the other in such a way as to be consistent with the positions of
the other neighboring framelets and to avoid the propagation of
errors in one direction as a function of the order in which the
relative displacements are considered. The solution is to look
for a global minimization of all the observed discrepancies.

This kind of global optimization technique has been studied
in an application area of linear algebra which is called the cal-
culus of observations [17]. The principle that underpins the cal-
culus of observations can be summarized as follows. Suppose
we experimentally perform M observations (e.g., coordinates
of a point in two images) that are linked to parameters
to be adjusted by a linear system of equations. In matrix form,

0, where is a vector of parameters, and is an
by matrix.

If no error were present in the observations the linear system
would be consistent. Otherwise, we would have a discrepancy

that we would want to minimize in the least square
sense. This requires [17] that be a minimum or

(6)

These are the so-called normal equations and can be solved
for the parameters vectorif the matrix is non-
singular. Weighting factors can be also introduced in the error

criterion in order to emphasize the samples that are deemed
more reliable. Then the error to be minimized becomes ,
where is a positive definite weighting matrix.

The application of this global optimization technique to the
case of image block adjustment requires the definition of a geo-
metric model or in other words the definition of the observation
equations . We use a model [18] where, given a
framelet in the Mercator projection, the scene center translation

and the rotation angle are considered as parame-
ters. This model relies on the confirmed assumption that there
is no internal deformation in the NASDA level 2.1 products.
Working the problem in a conformal mapping projection min-
imizes the risk of introducing projection-dependent systematic
deformations. Also, the rotation angles are kept small and there-
fore, the block adjustment can be simplified by linearizing the
observation equations.

With the aid of an auxiliary reference system with origin at the
scene center, the relationship in the Mercator reference system
between one point P in the image and the unknown parameters
can be derived where

(7)

Mercator coordinates of point ;
image coordinates in the auxiliary reference system
and are the coordinates of the scene center;
rotation angle of the auxiliary system with respect
to the Mercator system.

The observations equations based on tie-points
between scenes are

(8)

(9)

These equations are put into the suitable linear form in the pa-
rameters by a Taylor’s series and retaining
only first order terms. Thus, for example for the Northing term

(10)

where
translations in Northing of the scene;
rotations of the scenes with respect to their local
reference systems;
initial Northing discrepancy at point .

The elements of the matrix A in the observations equations
are the partial derivatives with respect to the parameters, and
the vector corresponds to the initial discrepancies before the
adjustment. Tie-point measurement is based on image correla-
tion performed at 100 m pixel spacing between adjacent scenes
belonging to the same date mosaic or between scenes at two
different dates. For scenes acquired along the same orbit, the
correlation peak is well defined even without high contrast fea-
tures. Even homogeneous areas can be correlated successfully,
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because the same speckle pattern is present in both scenes. The
points within one date and between strips always require the
presence of a high contrast feature that remains stable during
the interval between the SAR acquisitions of the adjacent strips.
The same applies to the points between flood season, but here
the overlap area to search for candidate features is larger because
the scenes (same node or path-row position) cover the same area.

Measurements related to tie points between two neighboring
scenes assure only control over the internal consistency and the
coregistration of the bitemporal mosaic. However, in order to
improve the absolute geolocation accuracy also ground control
points (GCPs) derived by external cartographic data were in-
troduced. In this case, the observation equations for a GCP of
known geodetic coordinates are

(11)

(12)

Finally, information on the image location derived from the
SAR ancillary data was added to the LLS adjustment. This last
information is by far less accurate than the one derived by tie
points between images but is still useful in establishing a bound
on image rotation and translation with respect to the original
position.

The structure of the LLS normal equations coefficient matrix
is block diagonal with bandwidth

(13)

where
maximum number of scenes in a single path (fast row
index);
number of dates (SAR coverage);
number of parameters in the geometric model.

A conjugate gradient method [19] can be used efficiently for
the solution of linear systems with a block diagonal coefficient
matrix. In the case of the bitemporal Africa mosaic, the matrix
size is 10 875 10 875, which is also an indicator of the pro-
cessing complexity.

VI. GEOLOCATION VALIDATION

In order to validate the georeferencing accuracy, a sequence
of block adjustments using different sources for the obser-
vations in the LLS were performed, and the relative residual
mean square errors (RMSE) measured. The hierarchy of tests
included: 1) observations based only on tie-points between
neighboring scenes; 2) additional observations based on GCPs
located on the coast lines; and 3) additional observations based
on GCPs located in the interior of the continent. All three
adjustments included 3624 scenes and 62 006 tie-points.

Digital data from the World Vector Shoreline data base was
used for the GCPs along coastlines. The World Vector Shoreline
data covers fairly well West Africa, the Western coastal zone of
Africa down to Angola, and the part of the Tanzanian–Kenyan

TABLE II
RESIDUAL MEAN SQUARE ERROR (RMSE) STATISTIC IN THE GRFM

GEOLOCATION BLOCK ADJUSTMENT. ALL QUANTITIES ARE IN METERS.
CENTREN AND CENTREE ARE SCENE TRANSLATIONS IN NORTHING AND

EASTING. THE COLUMN MEAN rN AND MEAN rE GIVE THE AVERAGE

RELATIVE TRANSLATIONS BETWEEN THETWO DATES MOSAICS. GROUND

CONTROL POINT (GCP)N AND GCPE ARE THE COORDINATES OF THE

GROUND CONTROL POINTS

coast that is included in one of the mosaics. Digital topographic
maps with scale 1 : 200 000 in the Central African Republic
and the Republic of Congo (Congo/Kinshasa) were used in test
case 2. The maps were produced by IGN/France mainly in the
1950s. The maps were scanned and digitized by I-Mage Con-
sult, Namure, Belgium within the framework of the Regional
Environmental Information Management Project on Central
Africa (REIMP-CA), initiated under the PRGIE program of
the Worldbank.

Results of the validation process are reported in Table II. The
tablegivesRMSerrors inmeters for variousquantitiesof interest.
ThecolumnsCentreN,CentreEarescenetranslationsinNorthing
and Easting. The columnMean , Mean give the
average relative translations between the low water and the high
water mosaics. The RMS error on GCP’s in case 1 indicates the
error computed when the 248 coastline GCPs are not included in
the LLS adjustment but only used to estimate the error.

As to case 2, the inclusion of GCPs in the least squares esti-
mation LLS degrades the tie-points RMSE by a few meters. On
the other hand, it greatly reduces the discrepancy between the
mosaic and external control data (from 500 m to less than 200 m
in Northing and from 1000 m to less than 200 m in Easting). In
case 3, about 50 GCPs located in the Central African Republic
and the Republic of Congo were added to the observations, but
the RMSE statistic of scene translation vectors did not change
significantly. From this fact we can infer that these GCPs are
compatible with the coast line GCPs at the scale of the mosaic
pixel size (100 m).

In case 1, the GCP data were a completely independent test
set. In the error analysis of cases 2 and 3, the same GCP data
set is used both to derive the parameters of the model and to
test the accuracy of the model. Theoretically, a better error es-
timate could be obtained using an independent test set. How-
ever, to the best of our knowledge, no such set exists for trop-
ical Africa given the error budget and extension required. One
solution could have been to divide the GCP population into two
sets (one for model derivation and the second for testing), al-
ternating for instance 500-km stretches along the coast line for
each set. This approach was not followed for two reasons. First,
it was thought that RMS errors of the order of 200 m are already
close or below the accuracy specification of the vector shore line
data (dividing the population into two sets would still give the
same level of RMS errors). Second, the splitting could introduce
systematic errors (as a result of differences in origin and quality
of the map material used to derive the coast line data) into the
analysis depending on the way the partitioning is made.
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Fig. 2. Typical JERS-1 level 2.1 product range pattern (average backscatter
amplitude as a function of the range coordinate). Notice the anomalous behavior
where the backscatter increases from near to far range. This pattern cannot be
expected for any natural target and is therefore a processing artifact probably
due to the sensor’s attitude variations. However, since the artifact manifests itself
randomly in the set of images composing the mosaic and cannot be characterized
by analysis of the SAR ancillary data, an empirical calibration algorithm had to
be devised that relied on a global minimization of radiometric discrepancies
between the same ground target imaged in two neighboring images.

VII. RADIOMETRIC CALIBRATION

A. Calibration Algorithm

The calibration of most spaceborne SAR sensors is based on
the use of the tropical forest as a calibration target [20], [21].
Usually the antenna pattern, determined on the ground before
the launch of the satellite, is revised based on the fact that the
backscattering coefficient of the tropical forest is constant
over a wide range of incidence angles. The revised antenna pat-
tern is then used in connection with SAR processing to pro-
duce calibrated SAR products. This approach works well if all
the necessary spacecraft (such as platform attitude angles) and
processing parameters remain constant or are known with the
required accuracy. Uncontrolled drift in these parameters may
cause changes in the SAR range pattern and degrade the (rela-
tive) calibration accuracy.

Indeed the main calibration artifact that pollutes the JERS-1
level 2.1 products is related to the average backscatter amplitude
as a function of the range coordinate in homogeneous areas. In
many scenes, the range pattern shows an anomalous behavior
whereby the average amplitude increases from near range to far
range (see Fig. 2). Typically, the increase is of 1 dB across the
image swath. This kind of backscatter curve cannot be expected
for natural targets.

Other radiometric problems in the JERS-1 imagery are re-
lated to striping in the along track direction due probably to er-
rors in processing the sensitivity time control (STC) data and
between scenes gain imbalance.

Since the reasons for these calibration artifacts are not known,
and related characterization data cannot be deduced from the
header data of the SAR level 2.1 products, an empirical method
based on backscatter estimates of the same target in neighboring
scenes was devised to remove the artifacts. Also, the procedure
requires a minimum amount of manual intervention, a relevant
factor in the GRFM Africa context, where a large number of
scenes acquired at different times must be processed.

The resulting calibration should be considered accurate only
in flat areas. Indeed due to the unavailability of suitable dig-
ital elevation models at continental scale in the Africa tropical
region, techniques to compensate radiometric errors due to the
influence of topography were ruled out. Also, since topography
is not accounted for, the term “incidence angle” in the following
must be understood under the assumption of flat terrain.

The automatic calibration procedure is based on the following
rationale. The dominant land cover type in the area covered by
the GRFM project is tropical rain forest. Scatterometer measure-
ments at C-band [20] indicate that this natural target exhibits a
constant backscattering coefficient over 50 incidence angle
range from 18 to 68. The same results are confirmed at L-band
for the JERS-1 SAR in [21]. For the 4incidence angle range
used (96% of the mosaic pixels have an incidence angle be-
tween 37.4 and 41.5due to the overlap between strips and the
far-range-on-top mosaic compilation mode), it is safe to assume
that also other land cover types with rough surfaces such as dry
wood, land, or open-canopy forest (savanna), have a practically
constant .

Assuming a constant for major land cover types over
the range of incidence angles means that a pixel observed at
far-range incidence angle and near-range incidence angle in
an overlap area between strips should have the same backscat-
tering value in both strips provided that no environmental
change has influenced the backscatter level between the two
acquisitions. Due to its unique orbit, the JERS-1 radar acquired
the two adjacent strips on two consecutive days. Therefore, it is
reasonable to assume that theof an overlap area remains the
same in the relatively weather-insensitive L-band SAR data.

The objective of the calibration procedure is to produce mo-
saics with minimum radiometric difference between scenes in
the overlap areas (and consequently along the seams between
scenes), both within a strip and between strips.

This is achieved by using an LLS of the coefficients in a bi-
linear radiometric correction model

(14)

where are normalized line and columns coordinates derived
from the line and column indices in the SAR image.

The model incorporates a constant gain factor and coordinate
dependent gain factors. The main part of the calibration artifact
is a function of the range coordinate only (see Fig. 2). Since
the reason for this artifact is not known, it cannot be assumed
that the calibration artifact would remain constant as a function
of time. Azimuth and cross terms are therefore included in the
radiometric correction model.

Points in the overlap area between two neighboring scenes
are used to derive observations for the LLS adjustment. The
observation equation for two scenes is

(15)
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(a)

(b)

Fig. 3. (a) Subset of the high water mosaic compiled using the original,
noncalibrated 100-m framelets. The effect of the anomalous range pattern is
clearly visible and produces what could be called a striping effect in the image.
(b) The same mosaic after the bilinear LLS calibration revision. Clearly, the
major calibration artifacts have been removed.

where is the correction factor for imageand order , and
are digital values of image 1 and 2 in the

overlap area.

B. Calibration Results

This section reports on sample results of the GRFM calibra-
tion procedure. A subset of the high water mosaic composed
using the original uncalibrated 100-m scenes is shown in frame
a) of Fig. 3. An average profile computed over the rectangle
highlighted in Fig. 3 is plotted in frame a) of Fig. 4. This profile
was computed projecting each pixel to an Easting coordinate
along lines parallel to the orbit direction. Because the look di-
rection of JERS-1 in descending orbits is westwards, the range
coordinate decreases with increasing Easting coordinate. This
graph clearly indicates that there is a pronounced increase of al-
most 1 dB over the image swath.

The same mosaic subset compiled using the calibrated
framelets and the associated range profile are shown in frame
b) of Figs. 3 and 4. The calibration anomaly (increasing
backscatter with increasing range) has been clearly compen-
sated for.

(a)

(b)

Fig. 4. (a) Average range profile computed on the noncalibrated mosaic in
the window highlighted in Fig. 3. There is a pronounced increase if 1 dB in the
backscatter over the image swath. (b) The average range profile of the calibrated
image confirms that the calibration artifacts have been corrected for.

Analysis of the calibration results for the bitemporal mosaics
confirms that the method works in a satisfactory way using auto-
matic (systematic grid sampling) selection of calibration points
in forested areas. However in very dynamic environments such
as flooding in savanna or in grassland areas, the backscatter may
change considerably even during the one-day interval between
the acquisition of adjacent strips. These cases can be detected by
careful inspection of the calibration factors, and must be handled
by a separate semiautomatic procedure. This procedure calls for
the removal of the automatically selected calibration points and
the interactive selection of points in areas which can be expected
to be less prone to meteorological changes in backscatter level
(e.g., the primary rain forest).

The GRFM calibration method produces a constant response
backscatter curve which corresponds to the constantin
forested areas. The calibration coefficient (in the near-range
far-range direction) does not change notably when going from
a forest area into a savanna area. This confirms the assumption
that the backscatter coefficient of savanna can also be
considered as constant over the incidence angles present in the
mosaic.

Finally, one comment should be made regarding the possi-
bility of retrieving values form the DN values of the Africa
mosaics. The assumptions made in the radiometric model for the 
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Fig. 5. Synoptic view of the GRFM Africa mosaic. The mosaic extends from the western coast of Africa in Sierra Leone at 14W to the eastern coast in Kenya
and Tanzania at 42E in longitude and from 10S to 10 N in latitude. In addition, the island of Madagascar is included (see inset). A blanket coverage of the
whole area was acquired in January–March 1996 during the low water season of the Congo river. A second acquisition from 8E to 36 E was also performed
during the high water season in October–November 1996. The area covered by the two acquisitions is shown in false color in the figure. Areas of interestfor
relevant thematic features are highlighted and enlarged in the next figures.

calibration algorithm, and the several steps needed to compen-
sate for various radiometric artifacts in the NASDA products,
suggest (to be on the safe side) the disclaimer that the GRFM
Africa mosaic is not suitable for building a radar cross section
map. Rather, it is an internally consistent image (an approxima-
tion of the radar reflectivity) that is useful as input to supervised
classification algorithms, which rely on relative comparisons of
the local image amplitude statistics and texture measures.

In particular cases, such as for areas belonging to the lowland
rain forest, it is safe to derive estimates of thecoefficient
from the local statistics of intensity data. Knowledge of the local
incidence angle would then allow for the retrieval of values
in dB using for instance the equation supplied by NASDA [21].

VIII. T HEMATIC INFORMATION CONTENT

The richness in information content is one of the most striking
assets of the GRFM Africa wide area radar mosaics. From the
first analyses based on visual interpretation, a series of features
related mainly to vegetation regional mapping and landcover
change studies have already emerged and indicate that these
radar maps are of great interest for global vegetation mapping, a
major objective of research programs such as the International
Geosphere Biosphere Programme (IGBP) and the Global Ob-
servation of Forest Cover (GOFC).

In order to give evidence about this statement, a few exam-
ples of the thematic content derived by visual inspection of the
GRFM products will be reported in the following. A synoptic
view of the Africa mosaic derived from the 100 m digital image
is shown in Fig. 5.

The colored area corresponds to the bitemporal coverage. Al-
ready at this scale it is evident how the mosaic represents a

unique cross section of important tropical biomes from the sa-
vannah and dry forest in the north through the entire rain forest
domain and again through the seasonal formations south of the
equator (savannah and edge of the Miombo woodland). The cov-
erage of the mosaic is such that, since it crosses the equator,
it contains at the same time dry and rainy season acquisitions
with a gradient of wetness in between [23]. This allows a range
of observations to be made with respect to the occurrence or to
the lack of seasonal contrasts between various vegetation for-
mations.

Areas related to the cases that are discussed are highlighted
in the synoptic view and enlarged in the next series of figures.

The first case is related to the swamp forests in the Congo
river floodplain. Swamp forests are interesting ecosystems that
function as water storage, faunistic and florensis habitat, and
fish stock. Moreover, they host a series of biochemical processes
such as nitrogen turnover and methane emission. Since methane
is a greenhouse gas, this process has a significance in global
change issues [24]. Due to the density of the hydrographic net-
work, swamp forests cover large areas in the center of the Congo
basin, leaving room for the lowland rain forest in the inter flu-
vial areas only.

Different types of swamp forests coexist according to the
frequency and the duration of the flooding, and they can be
discriminated in the radar image by textural and radiometric
differences. The L-band SAR onboard the JERS-1 satellite
offer unique characteristics to map these ecosystems [25], [26].
Indeed, electromagnetic waves at L-band can penetrate even
through the thick closed canopy of the Africa swamp forests
and the backscattered signal is thus sensitive to standing water
on the terrain through a double bounce scattering mechanism.
The upper canopy of the swamp forest is closed and very homo-
geneous, and the radar reflectivity from direct backscattering
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Fig. 6. Flood plains along the Congo river in Central Africa are covered
by forests adapted to the soil conditions (area A in Fig. 5). As an example,
in this figure, permanently inundated forests are characterized by a brighter
tone (strong backscatter due to the double bounce mechanism) because of
the presence of standing water. Smooth texture allow us to the distinguish
periodically inundated forests to the west of the Congo River or in the large
patches at the center of the image.

exhibits smooth textural properties (statistically it approximates
very well the fully developed speckle Rayleigh regime). On the
other hand, species heterogeneity and a higher fragmentation
modulates the spatial variations of the thick upper canopy in
the lowland rain forest. This produces a microtopography effect
that changes the textural properties of the radar backscatter
even at L-band. An example is shown in Fig. 6.

Permanently inundated forests are characterized by brighter
tone in the image (strong backscatter) because of the presence
of standing water. Smooth texture permits the distinction of pe-
riodically inundated forests at the west of the Congo River or in
the large patches at the center of the image.

Fig. 7 reveals the presence of large industrial plantations
(Hevea, Elaeis) established in colonial times in the proximity
of the Congo River and his tributaries.

The plantations are characterized by a uniform cover and
follow a geometrical layout, clearly identifiable on the center
and the right center of the image. The different backscatter re-
sponses correspond to different practices used in the plantation
management (mainly fires). The dense river network and the nu-
merous branches of the Congo River are very clearly delineated
in the image. The capability of monitoring the river configura-
tion, which undergoes continuous modifications, is of primary

Fig. 7. Large industrial plantations (Hevea, Elaeis) established in colonial
times in the proximity of the Congo River and his tributaries are readily
detectable in this image due to their regular geometric shape (area B in Fig. 5).
The dense network of the Congo River (lower part of the image) is very sharply
delineated. The flooded swamp forests are also visible along the river due to
the high double-bounce return.

interest for the local economy of the many villages and settle-
ments along the Congo river.

Coastal ecosystems are the target of ecological pressures by
several anthropogenic activities: urbanization, oil extraction,
fishing, forest logging, and hunting. In Fig. 8, the Niger
Delta is shown. This area is covered by a dense network of
mangroves. Mangroves are forest formations associated with
marine alluvium, partially steeped in salt water. The survey of
the mangrove degradation is particularly crucial in this region
where many oil-extraction activities are under way and cause
soil pollution.

The coastal part of Gabon, namely the city of Port-Gentil
(Fig. 9), is also a site with intensive offshore oil extraction ac-
tivities. The Ogooué river estuary is covered by a complex of
swamp grasslands with gramineae and Papyrus, mangroves and
swamp forests, lagoons and coastal savanna, and rain forests.

The city of Bangui in Central African Republic is located
on the Oubangui river at the border between the savanna and
the forest domains. It is clearly visible as a strong scatterer in
Fig. 10. The urban expansion has a major impact since the 1960s
on the forest degradation taking place toward South from the
city, as attested by many openings in the forest (dark tone in the
image). On the other side of the Oubangui river, a reticulated
network of gallery forests penetrates into the savanna domain. 
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Fig. 8. The Niger Delta is a coastal ecosystem that is the target of ecological
pressures by several anthropogenic activities (area C in Fig. 5). This area is
covered by a dense network of mangroves (in light gray), easily distinguishable
from the surrounding rain forests. A wide ribbon of dense rain forest extends
along the Niger River at the North of the image in the middle of savanna and
secondary zones. Note the presence of offshore platforms (bright dots in the
sea).

Fig. 9. The Ogooué river estuary, near by the city of Port-Gentil (area D in
Fig. 5), is covered by swamp grassland, mangrove, and swamp forests (bright
return). Lagoons and coastal savanna appear in black, while rain forests present
an intermediate reflectivity.

These gallery forests play a key role in the biodiversity conser-
vation.

Fig. 10. The city of Bangui in the Central African Republic is located on
the Oubangui river at the border between the savanna and the forest domains
and is clearly visible in this image as a strong scatterer. On the other side of
the Oubangui river, a reticulated network of gallery forests penetrates into the
savanna domain.

Fig. 11. A reticulated pattern of agricultural fields within the woodland and
tree savanna domain in the central part of the Central African Republic.

Fig. 11 shows a reticulated pattern of agricultural fields
within the woodland and tree savanna domain in the central
part of the Central African Republic.

The relatively low population is concentrated along the road
network. Common crops are cassava, maize, and peanuts used
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Fig. 12. Classification map of the entire Congo river floodplain at 200 m pixel size. The map was generated from the GRFM Africa high water data set (radiometry
and texture) using a maximum likelihood classifier and by stratification with the TREES project GIS data. The insets show the reticulated pattern of gallery forests
penetrating into the savanna domain at the south and north of the Congo basin and the presence of swamp forests in the depressions.

locally as food source and cotton for export trading. These
fields with bare soil or low biomass vegetation exhibit lower
L-band backscatter than the surrounding areas with higher
biomass trees. In the northeast area of the picture, very dark
patterns correspond to a region with more intensive agricultural
practices due to the presence of a development project.

Derivation of regional scale vegetation maps from the GRFM
mosaics calls for automatic thematic information extraction

techniques. In this direction the first attempts using a simple
supervised classification have already produced very promising
results. As an example, a thematic map of the swamp and
lowland rain forest in the entire Congo river basin at 200 m
pixel size is reported in Fig. 12.

The map constitutes a significant update in the information on
biomes like the swamp forests in the Congo floodplain that were
thus far not well documented at a continental scale. Validation
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of the classification accuracy, a topic of central importance in
continental scale studies, is under way and will be reported in a
future paper.

IX. SUMMARY AND FUTURE PERSPECTIVES

We have given on overview of the main technical aspects re-
lated to the compilation and the validation of the wide-area radar
map of the tropical forest domain in Africa, an effort which is
part of the GRFM Project.

The most salient characteristics of the GRFM Africa mosaic
can be summarized as follows.

• Multitemporal and continental scale data set: Continuous
coverage of tropical Africa at two dates from the west
coast in Sierra Leone to the east coast in Kenya and Tan-
zania, covering a distance of some 6000 km, was obtained
by the assemblage of more the 3900 JERS-1 SAR scenes.

• Multiresolution approach: Generation of a pyramid of
products (reflectivity and texture maps) at different spatial
resolutions to accommodate the needs of different types
of thematic analyses. Starting from the NASDA level 2.1
SAR images at 12.5 m pixel size, the baseline mosaics
are generated at 100 m pixel size, and lower resolution
maps at dyadic scales down to 1.6 km.

• High internal geometric consistency of the mosaics: A
multitemporal block adjustment algorithm based on tie-
pointing between neighboring images gives a figure of 56
m for the RMSE. This also means that coregistration at
subpixel accuracy is achieved between the two dates.

• Validated absolute geolocation accuracy: Using ground
control points derived from the World Vector Shoreline
data in the block adjustment and in the validation process
a RMSE of 240 m was measured. This absolute geoloca-
tion accuracy probably constitutes a first in wide area radar
mapping.

• Revised radiometric calibration to minimize artifact: A
semiautomatic calibration method is applied in the mosaic
compilation process to correct radiometric artifacts intro-
duced mainly by the sensor’s attitude errors. Although the
mosaic cannot be considered a radar cross section map, it is
still an approximation of the radar reflectivity suitable for
the generation of thematic products either by visual inter-
pretation or by automatic supervised image classification.

• Richness in thematic information content: Thanks to the
characteristics of the JERS-1 L-band radar a number of
very important features of great importance for land appli-
cations such as vegetation mapping, geomorphology, and
cartography can be readily delineated in the GRFM Africa
mosaics. This puts this product in a firm position for its ex-
ploitation in global environmental studies.

• Breadth of scope: The breadth of scope of the project, due
to the intrinsic global (at ecosystem level) nature of the
target and the involvement of several partners in a large
international collaborative effort has brought forth several
added value consequences. Among these are the arousal of
the remote sensing community’s awareness and consensus
on the potential of wide area high resolution radar map-
ping for global environmental studies, the development

of advanced processing methods, the establishment of a
common technological platform through the shared expe-
rience of the involved partners, which will be the basis for
bridging the GRFM approach over to future pursuits, with
more global and operational characteristics.

The GRFM Africa project is now entering a second phase
where the focus isongeophysicalparameters retrievaland ingen-
eralonautomatic thematic informationextraction.Otheravenues
currently being explored are the fusion with the ERS-1 C-band
Africa mosaic and with other optical sensors’ data sets. On the
other hand, development of more sophisticated classification
techniques thatwould fullyexploit themultiresolutionproperties
of the GRFM mosaics is under way, in particular at JPL. The
reader is referred to [27], [28] for some preliminary results.

The GRFM Africa data set represents a milestone in wide area
radarmappingof theEarth’secosystems.However,at thisstage, it
isa foundationwhosevaluewillbe fullyexploitedonly ifontopof
it, geoscience applications will be developed by the science com-
munity at large for providing adequate information on local and
global environmental issues to the policy and decision makers. In
this perspective, the availability of the GRFM present and future
products will be a key asset. In response to these requirements, a
CD-ROM set with the GRFM Africa baseline products is already
available for distribution to interested parties.
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Abstract

Multi-temporal JERS SAR data were studied for forest biomass mapping. The study site was located in South-eastern Finland in

Ruokolahti. Pre-processing of JERS SAR data included ortho-rectification and radiometric normalization of topographic effects.

In single-date regression analysis between backscatter amplitude and stem volume, summer scenes from July to October produced

correlation coefficients (r) between 0.63 and 0.81. Backscatter level and the slope of the (linear) regression line were stable from scene to

scene. Winter scenes acquired in very cold and dry winter conditions had a very low correlation. One winter scene acquired in conditions

where snow is not completely frozen produced a correlation coefficient similar to summer scenes.

Multivariate regression analysis with a 6-date JERS SAR dataset produced correlation coefficient of 0.85. A combined JERS–optical

regression analysis improved the correlation coefficient to 0.89 and also alleviated the saturation, which affects both SAR and optical data.

The stability of the regression results in summer scenes suggests that a simple constant model could be used in wide-area forest biomass

mapping if accuracy requirements are low and if biomass estimates are aggregated to large areal units.

D 2005 Elsevier Inc. All rights reserved.
Keywords: Remote sensing; Biomass; Microwave; Boreal forest
1. Introduction

Standing forest biomass forms an essential part of active

carbon pool participating in the global carbon cycle.

Mapping the amount and geographic distribution of forest

biomass – and its change with time – is important for

understanding the development of the carbon cycle. Main

part of forest biomass in boreal forests is in tree stems,

which can be used as raw material in wood and pulp

industry. Information on the spatial distribution of forest

biomass is therefore important for forest industry and

sustainable forestry.

In the GRFM (Global Rain Forest Mapping) project,

several continental SAR mosaics were produced for tropical

areas. In a follow-on project GBFM (Global Boreal Forest

Mapping), similar mosaics are being produced for the whole

boreal forest belt of the world (Rosenqvist et al., 2000).

These mosaics can serve as a starting point and important
0034-4257/$ - see front matter D 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.rse.2005.05.002

E-mail address: Yrjo.Rauste@vtt.fi.
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input dataset when global forest biomass evaluations are

made for carbon cycle studies and other environmental

applications. In the context of the GBFM project, a Northern

Europe science node was organised by Metria Miljoanalys

(Jonsson, 2002) as a ‘‘regional exploratory addition to the

GBFM programme’’.

Most of the forest biomass in boreal forests is in tree

stems. Since large datasets on biomass measurements in

boreal forests are difficult to obtain, stem volume data from

forest inventory data bases are widely used instead of forest

biomass. As an approximation, forest stem volume (m3/ha)

in boreal forests can be converted into dry biomass (tons/ha)

by multiplying the stem volume estimate by 0.6 (Häme et

al., 1992).

Active microwave sensors from 10-GHz X-band (e.g.,

Beaudoin et al., 1992; Le Toan et al., 1992) to 28- to 80-

MHz VHF SAR (e.g., Israelsson et al., 1997) have been

studied for forest biomass mapping. X-band has the lowest

dynamic range and sensitivity to forest biomass (Le Toan et

al., 1991). The three-band (C, L, and P) polarimetric

AIRSAR sensor has been used in many forest biomass
ent 97 (2005) 263 – 275
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studies (e.g., Green, 1998; Kasischke et al., 1991, 1995;

Moghaddam et al., 1994; Ranson & Sun, 1997). The

strongest correlation between SAR backscatter and forest

biomass has been reported in P-band and the weakest in C-

band (e.g., Beaudoin et al., 1992; Dobson et al., 1992;

Israelsson et al., 1992; Rauste et al., 1992; Skriver &

Gudmandsen, 1992). A spaceborne P-band SAR will not be

available in the foreseeable future even though it has been

proposed (e.g., Rignot et al., 1995). Despite the very strong

backscatter–biomass relation in VHF SAR (Melon et al.,

2001, report even a 0.99 correlation), a spaceborne VHF

SAR is not practical. Studies using dual-frequency (C- and

L-bands) polarimetric SIR-C data (e.g., Dobson et al., 1995;

Harrell et al., 1997) point out the importance of L-band data

in coniferous forest biomass mapping.

The correlation between forest biomass and the C-band

backscatter measured by the ERS-1 and ERS-2 SAR sensors

has been reported to be low in tropical forests (e.g.,

Luckman et al., 1997) and oil palm and rubber plantations

(Rosenqvist, 1996). Kasischke et al. (1994) describe the C-

band dynamic range due to biomass variation as low in

young loblolly pine forests. In boreal forests, the biomass

vs. C-band backscatter correlation depends heavily on the

soil moisture conditions (Pulliainen et al., 1994, 1997;

Wang et al., 1994). Pulliainen et al. (1996) have used a

highly multi-temporal ERS dataset and a semiempirical

backscatter model for boreal forest biomass estimation. A

correlation coefficient (r) of 0.66 was obtained in a test site

where the stem volume ranged from 0 to 300 m3/ha. Since

the method includes per-scene soil and vegetation moisture

variables (and biomass reference data), its use in wide-area

biomass mapping may be difficult.

Repeat-pass interferometry with C-band ERS data has

been studied for forest biomass mapping (e.g., Fransson et

al., 2001; Luckman et al., 2000). Luckman et al. (2000)

obtained a coefficient of determination (R2) of 0.805

between ERS-1/2 (1-day difference) tandem coherence

and the logarithm of forest biomass in regenerating tropical

forests (biomass mainly between 0 and 100 tons/ha).

Fransson et al. (2001) studied 5 ERS-1/2 interferometric

pairs of a test site where stem volume ranges from 0 to 300

m3/ha. The highest (adjusted) coefficient of determination

(RA
2) between stem volume and ERS coherence was 0.87

while the lowest was 0.06. In a more recent study, Pulliainen

et al. (2003) used 14 ERS-1/2 interferometric pairs (1-day

difference in scene acquisition) in a Finnish site (stem

volume 0. . .539 m3/ha, mean stem volume 174 m3/ha). The

correlation coefficient (r) between coherence and stem

volume varied mainly between 0.46 and 0.87 while one pair

(during snow melting period) had an r value of 0.07. These

last two examples suggest, as Pulliainen et al. (2003) note,

that the repeat-pass interferometry in forest biomass map-

ping is influenced by weather conditions.

Even though L-band backscatter is stronger correlated

with forest biomass, a limiting factor is the saturation of the

backscatter–biomass relationship at some biomass level
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(Imhoff, 1993). Based on a dataset combined from three test

sites (Hawaii/USA: broad-leaved, North Carolina/USA:

pine forests, and France: pine forests), Imhoff (1995) reports

the L-band saturation level at 40 tons/ha of dry biomass.

Luckman et al. (1998) found a saturation of 60 tons/ha in a

Brazilian test site. In boreal forests, the 40 tons/ha limit

corresponds to a forest stem volume of approximately 70

m3/ha. Israelsson et al. (1995) found the saturation level of

100 to 150 m3/ha in a boreal test site in Sweden and

Fransson and Israelsson (1999) obtained a saturation level

of 143 m3/ha. Rauste et al. (1994) found an L-band

saturation level of about 120 m3/ha in a coniferous forest

site in Germany. Kurvonen et al. (1999) report a saturation

level of 225 m3/ha in two JERS SAR scenes. Toshio et al.

(1995) obtained a correlation coefficient (r) of 0.75 between

forest stem volume and JERS SAR amplitude in a test site in

Japan where the forest stem volume goes up to 900 m3/ha.

So the saturation level may depend on the tree species and

forest types as well as the ground surface type. In addition to

tree species, the L-band backscatter vs. biomass relationship

also depends on forest management practices. Kuplich et al.

(2000) found a strong L-band vs. biomass correlation

(r =0.77) in a Brazilian test site (re-growth after a clear

cut) while the correlation was weak in a Cameronian test site

(selective logging). Paloscia et al. (1999) report an r2 value

(between the logarithm of woody biomass and logarithm of

backscatter power) of 0.77 using a few forested areas in a

JERS-1 SAR dataset in Italy. Kellndorfer et al. (2001) report

an adjusted RA
2 values of 0.72 and 0.56 (between the

logarithm of biomass and logarithm of backscatter power)

for two JERS SAR scenes in Michigan in a stand-wise

dataset consisting of 39 pine stands. Smith et al. (1998)

report R2 values of 0.27 and 0.30 for two summer-time

JERS SAR scenes (uncalibrated) in a Finnish study site in

stands with stem volumes 0. . .150 m3/ha.

Fransson and Israelsson (1999) and Harrell et al. (1995)

have published regression models between L-band back-

scatter and forest biomass (see later chapter comparison of

new regression models and existing models).

Dobson et al. (1991) observed that a rain shower had the

strongest effect (in a C-, L-, and P-band dataset) on C-band

data and the weakest effect on the P-band data. The stability

of the relation between polarimetric P-band data and forest

biomass through the growing season was also confirmed by

Rauste (1993). Chipman et al. (2000) observed (in a C- and

L-band dataset) that the L-band is likely to be more

temporally stable than the C-band. Since boreal forest

environment – with low temperatures and seasonal snow

cover – has widely variable physical attributes for micro-

wave scattering, the seasonal variations in L-band SAR data

can be expected to be pronounced in boreal forests (e.g.,

Pulliainen et al., 1999).

The literature has documented the relationship of L-

band backscatter and forest biomass. Seasonal effects in

this relationship have also been observed. These obser-

vations are rather occasional. No systematic effort to
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exploit these seasonal effects in L-band biomass mapping

has been documented in literature. The objectives of the

study were:

1. To study seasonal variation in L-band SAR data and the

potential of L-band SAR data acquired in various seasons

in mapping the biomass of boreal forest;

2. To study the potential of combining L-band SAR data

and optical satellite data in boreal forest biomass

mapping.

2. Materials and methods

2.1. Ground data

The study site (centre 61-31VN, 28-46VE) was located in

Puumala and Ruokolahti in South-eastern Finland. The

dominant soil type in the site is glacial drift. The most

common tree species was pine (Pinus sylvestris). Other

common species were spruce (Picea abies) and birch

(Betula betula).

Ground data came from two sources: (1) stand-wise

forest inventory data from Stora Enso Ltd., and (2) a set of

point-wise measurements made by the Finnish Forest

Research Institute.

The stand-wise forest inventory data included one forest

stem volume for the whole stand. Since this dataset was

compiled for practical forest management purposes, its

accuracy is not perfect. The forest inventory was made in

1997. The stand-wise forest inventory data were turned to

image format and resampled to 25 m pixels as used in the

ortho-rectification of the SAR data. One erosion step (pixels

whose all neighbouring pixels are not of the same stand as

the pixel itself rejected) was done to the ground data image.

Stands smaller than 2 ha (32 pixels) were excluded. The

forest inventory dataset finally included 206 stands covering

845 ha. The average stem volume within these 206 stands

was 102 m3/ha (lowest 0 m3/ha, highest 364 m3/ha, standard

deviation 79 m3/ha).

The point-wise (plot) ground data covered a 1-km-by-1-

km area with a regular grid of points at a distance of 50 m

(20 lines by 20 columns). The average stem volume within

the point-wise ground dataset was 104 m3/ha (lowest 0 m3/
Table 1

JERS SAR scenes used and the meteorological conditions (in Lappeenranta airpo

Acquired Temperature (-C) Precipitation (mm)

Max Min Day Prev

20.02.1993 �5.8 �11.2 2.4 7.7

25.01.1995 0.2 �2.1 1.4 9.7

20.07.1995 20.4 12.0 0.2 1.6

02.09.1995 17.0 8.0 0.1 2.4

16.10.1995 8.6 0.6 1.5 0.1

14.03.1998 �9.0 �13.6 0.7 2.8
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ha, highest 355 m3/ha, standard deviation 68 m3/ha). Total

stem volume measurement data were used as an independ-

ent test data for JERS-derived biomass estimates.

A digital elevation model (DEM) was used for ortho-

rectification of JERS SAR data. The DEM was produced

with contour-line data from 1:20,000 topographic maps. The

pixel spacing in the DEM was 25 m and the vertical

accuracy about 2 m. The DEM covered an area of 38.15 km

(in northing) by 50.85 km (in easting).

2.2. SAR data

The conceptual model of seasonal changes included 5

seasonal configurations based on meteorological and phys-

ical conditions controlling overall backscattering and the

phenological state of trees:

1. the peak bio-chemical activity during the first half of the

growing season (G1),

2. the second half of the growing season before the drop of

the leaves of deciduous trees (G2),

3. leaves-off period before the first snow (G3),

4. cold winter conditions (WD), and

5. wet winter conditions (WW).

The aim in image selection was to obtain at least one

scene from all seasons defined above. Only those descend-

ing-orbit scenes were considered that were acquired on the

same track as the first scene (20.02.1993) of the dataset.

Some scenes that were listed in JERS SAR catalogues were

not of high enough quality for SAR processors. Table 1

shows the scenes that were available for analysis. The first

growing season configuration (G1) remained missing due to

quality problems of raw SAR data. The meteorological data

in Table 1 are from the airport of Lappeenranta 60 km from

the study site. Temperatures (min and max) are for the

image acquisition day. Precipitation data are for the

acquisition day (column Day) and the day preceding the

acquisition day (column Prev). The form of precipitation has

been snow on 20.2.1993 and 14.3.1998 and water on

20.7.1995, 2.9.1995, and 16.10.1995. On 25.1.1995, the

precipitation may have been either water or snow or – most

likely – wet snow. The summer and autumn scenes

(20.7.1995, 2.9.1995, and 16.10.1995) are all from reason-
rt)

Frost days Conf Processor

4 WD ESA

WW NASDA/ERS-DPS/434

G2 NASDA/ERS-DPS/434

G2 NASDA/ERS-DPS/434

G3 NASDA/ERS-DPS/434

13 WD NASDA/Sigma-SAR



Y. Rauste / Remote Sensing of Environment 97 (2005) 263–275266
ably dry conditions. Precipitation of only 0.2. . . 1.5 mm

suggests that the rain has been light, low intensity showers,

where the water evaporates from leaves and other canopy

components in a matter of an hour or less. Because there

has been some precipitation, trees and other plants have

not been plagued by drought. Column Frost days gives the

number of days during which the maximum temperature

has been below 0 -C before the image acquisition day.

Column Conf gives the classification of the meteorological

conditions to the seasons listed above. Column Processor

gives the SAR processor used to generate the SAR image

product.

Most of the SAR scenes were within 2 years from the

forest inventory (summer 1997). Since the yearly growth in

the climatic conditions of the study site is only a few

percent, the data can be considered to be from the same time

as the SAR data.

A Landsat TM scene acquired on 29 August 1997 was

used to study SAR-optical synergy.

2.3. Pre-processing of SAR data

The SAR data that stemmed from 3 different SAR

processors were not calibrated to the same standard. The

older NASDA processor (ERS-DPS, version 434) was

chosen as a reference and the remaining two scenes were

scaled to that system. The first scene (acquired on

20.2.1993, no calibration data were supplied with the data)

was approximately calibrated. Two sample areas were

chosen in mature forest areas and in water areas. Image

data ratio (in amplitude) was computed between the average

of the 4 scenes of 1995 and the scene of 20.2.1993. An

average between the water and forest ratio was calculated.

The scene of 20.2.1993 was scaled by this factor to

approximately match the scenes of 1995. The scene

acquired on 14.3.1998 was scaled (the amplitude values of

this scene were multiplied by 0.139) to take into account the

difference in calibration factors of the older NASDA

processor (68.2 dB, Shimada, 1996, 2001) and the Sigma-

SAR processor (85.34 dB, Shimada & Isoguchi, 2002).

The JERS SAR scenes were ortho-rectified to 25-m pixel

spacing. The rectification made use of tie points between

scenes, ground control points (GCPs) between scenes and

topographic maps, and block adjustment by the least squares

method (see De Grandi et al., 2000). Affine (6 parameter)

geometric model was used in the block adjustment. The tie

point RMSE (Residual Mean Square Error) was 19 m in

northing and 12 m in easting. The GCP RMSE was 24 m in

northing and 22 m in easting.

JERS SAR data were radiometrically normalized in

connection with ortho-rectification:

DNout ¼ DNin4sqrt tan hlocalR

��
=tan hoÞð

��
ð1Þ

where DNout=normalized pixel amplitude, DNin= input

pixel amplitude, hR
local = the local incidence angle in the
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vertical cross-track plane, ho =the nominal incidence angle

of the sensor (38-).
This normalization gives a constant response (with

respect to incidence angle) for targets whose backscattering

coefficient co (not rO) is uniform with respect to incidence

angle.

An adaptation of median and average filtering (5-out-of-

9 filtering) was used in speckle reduction of JERS SAR

scenes. Pixel values in each 3-by-3 window are sorted. The

highest 2 values and the lowest 2 values are excluded. A

weighted average is computed of the remaining 5 pixels.

The weighting function is Gaussian with standard deviation

of half a pixel. This filtering was used when producing

pixel-wise stem volume maps, not in connection with

regression analysis.

2.4. Regression analysis

Regression analysis is an appropriate statistical technique

to study the relationship between continuous variables such

as forest biomass and radar backscatter. Regression analysis

(both single-variable and multivariate regression analysis)

was used in stem volume estimation. Stand-wise forest

inventory data were used as training data to derive

regression models between stem volume (the dependent

variable) and various sets of JERS SAR and Landsat TM

data as independent variables. The earth observation data

were averaged for the 206 stands using a stand mask image

to obtain the value of the independent variable(s). The JERS

SAR amplitude data were squared before averaging and a

square root was taken after the averaging. The stem volume

of the stand (just one figure per stand) was used as the value

of the dependent variable.

Past studies (e.g., Rauste et al., 1994) have shown that a

fairly linear relationship (at least for low biomass levels) can

be expected between forest stem volume and radar back-

scatter amplitude. Since the variable to estimate was stem

volume, not the logarithm of stem volume, any non-linear

transformations could only be applied to radar backscatter

data. The JERS SAR data were supplied by NASDA in the

form of backscatter amplitudes. Because amplitude is a

widely used form of SAR data distribution, JERS SAR data

were input in regression analysis as amplitude values. The

form of the regression function in single-date regression

analysis was:

V ¼ A4DNJERS þ B ð2Þ

where V =stem volume (m3/ha), DNJERS= JERS SAR

amplitude scaled as in the scenes used in this study, i.e.,

r-=10*log10(DNJERS*IDNJERS)�68.2 dB, A=slope of the

regression model, B =intercept of the regression model.

Multivariate regression analysis was used to study the

increased potential of multi-temporal L-band SAR data in

forest biomass mapping.

The relationship between forest stem volume (or

biomass) and L-band radar backscatter saturates somewhere
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between 100 m3/ha and 200 m3/ha. For this reason,

regression analyses were made in a series of steps leaving

a part of the stem volume range out. The reference case

included all stands (with stem volume range 0...360 m3/ha).

The first set of cases included the upper end of the stem

volume range present in the study site. The lower limit of

the stem volume range was increased in steps (50, 100,

150 and 200 m3/ha). The second set of cases included the

lower part of stem volume range. In this set of cases, the

upper limit of the stem volume range was decreased in

steps (300, 250, 200, 150, 100, and 50 m3/ha). Because the

number of observations varied from 19 to 206, an adjusted

R2 was also computed in addition to the usual coefficient

of determination:

R2
A ¼ R2 � 1� R2

��
p= n� pþ 1ð Þ ð3Þ

where RA
2=adjusted R2, R2=coefficient of determination,

n =number of observations, and p =number of predictor

variables (6 SAR scenes).

The accuracy of JERS-SAR-based stem volume estimate

was measured by root-mean-square error:

RMSE ¼ sqrt R Vg � VJ

�� 2
= n� 2Þð

��
ð4Þ

where RMSE=root-mean-square error, Vg=stem volume in

ground data, VJ=stem volume in JERS-based estimate, and

n =number of observations.
3. Results and discussion

3.1. Single-date regression models

Table 2 shows regression results for each of the JERS

SAR scenes against forest stem volume. Column Vol-Rg

shows the range of stem volume of the stands that were

included in the analyses. Column n shows the number of

stands. The variation by one stand is due to a slightly

varying coverage of the scenes. Columns A and B show the

coefficients of a linear regression model (Eq. (2)) between

JERS SAR amplitude and stem volume. Column r in Table

2 shows the correlation coefficient between SAR amplitude
Table 2

Regression results between forest stem volume and single-date JERS SAR

data

Scene Vol-Rg n A B r R2

S95Jul 0–360 205 0.60 �562 0.81 0.66

S95Sep 0–360 205 0.72 �743 0.70 0.49

S95Oct 0–360 206 0.87 �894 0.63 0.40

Dry93Feb 0–360 206 3.22 �3239 0.40 0.16

Wet95Jan 0–360 206 0.71 �560 0.78 0.61

Dry98Mar 0–360 206 �30.33 26896 �0.05 0.00

Summer 0–360 616 0.71 �713 0.71 0.50

Summer 10–360 529 0.65 �634 0.73 0.53
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and stem volume. Coefficient of determination is R2. The

scene identifiers in Table 2 are of the form:

CYYMMM

where C=designation of the seasonal configuration: dry for

the winter/dry scenes, wet for the winter/wet scene, and S

for the summer scenes, YYMMM=acquisition year (YY)

and month (MMM). The full acquisition date is shown in

Table 1.

The lines titled Summer at the end of Table 2 combine all

observations of scenes S95Jul, S95Sep, and S95Oct into a

single dataset. The 616 observations in the summer dataset

are not completely independent because the stands cover the

same area on the ground, and therefore, three observations

have the same value of dependent variable. The observa-

tions of the SAR backscatter are independent because the

speckle and other noise sources are independent from scene

to scene.

The regression model of the combined summer dataset

can be written:

V ¼ 0:65 sqrt 10 rOþ68:2Þð =10Þð
��
� 634 ð5Þ

where rO =backscattering coefficient in dB and V=stem

volume in m3/ha. The corresponding model for forest

biomass (dry) is:

B ¼ 0:39 sqrt 10 rOþ68:2Þð =10Þð
��
� 380 ð6Þ

where B =dry biomass in tons/ha.

Fig. 1 shows the stand average data and regression lines

separately for winter and summer scenes. The correlation

between stem volume and JERS SAR data is very weak in

winter scenes acquired in cold, dry conditions (scenes

Dry93Feb and Dry98Mar in Fig. 1). Correlation coefficients

are low (0.4 and �0.05). There is a more pronounced

relationship between the JERS SAR data and stem volume

in summer scenes. Correlation coefficients range from 0.63

to 0.81. The form of the relationship (regression lines in Fig.

1 and A and B coefficients in Table 2) is similar from scene

to scene. No significant difference can be seen between the

scenes acquired in leaves-on conditions (S95Jul and

S95Sep) and the scene acquired in leaves-off conditions

(S95Oct). The slope of the regression line is slightly lower

in the late-autumn scene and its correlation coefficient is

slightly lower than that of the July–September scenes,

though. All three estimator lines (S95Jul, S95Sep and

S95Oct) are within 60 m3/ha from each other over the whole

range from 0 to 200 m3/ha. This suggests that a linear model

with constant coefficients can be used to produce an

estimate of forest stem volume when using L-band SAR

data acquired in reasonably dry summer conditions,

especially if accuracy requirements are not high.

The scene Wet95Jan forms an exception in the set of

winter scenes. Correlation coefficient (0.78) is as high as in



Fig. 1. Regression diagrams between forest stem volume and JERS SAR data for winter (left) and summer (right) scenes. The solid line shows the regression

line computed from the observation data in the diagram. The dashed lines are the regression lines from the other 5 scenes.
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a typical summer scene. The slope of the regression line is

also very similar to the summer scenes, but the overall

backscattering level is lower in this winter scene, which was

acquired in conditions with a moist layer of new snow on

top of older snow layers. In addition to high stem volume

vs. backscatter correlation, the scene Wet95Jan discrimi-

nates well between clear-cut areas and forest.

Fig. 2 shows one mechanism that can explain the

separability of clear-cut areas in scene Wet95Jan. In normal

dry winter conditions, the backscatter from the snow pack

(with various ice crust layers and other ice objects inside)

and from the underlying soil surface (in clear-cut areas) is

about as high as the backscatter from various components of

forest canopy. If there is a layer of new snow (or snow with

a high moisture content in general), the backscatter from the

snow pack and underlying soil is absorbed in the clear-cut
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areas while the canopy backscatter in forested areas remains

about the same as in dry winter conditions. This generates a

difference between clear-cut areas and forest in the scene in

wet winter conditions. The lower the stem volume, the

closer a stand is to the clear-cut case, which creates a

positive correlation between stem volume and backscatter.

3.2. Comparison of new regression models and existing

models

Harrell et al. (1995) found a regression model between

total biomass and JERS-1 SAR backscatter:

y ¼ 2:555log xð Þ � 9:644 ð7Þ

where x = total biomass (kg/m2) and y =backscattering

coefficient (dB). The model was derived in an Alaskan test



Fig. 3. Summer-time JERS data with the models of Harrell et al. (1995) and

Fransson and Israelsson (1999). The observation data of Pulliainen et al.

(1999) is also shown. The solid line is the regression model corresponding

to line ‘‘Summer, 10–360’’ in Table 2.
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Ground Ground
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and ice particles
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Fig. 2. Forest and clear-cut backscatter (schematically) in dry and wet winter conditions.
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site (11 stands) with the total biomass ranging from 1 to 6

kg/m2 (10 to 60 tons/ha). The JERS SAR data were acquired

in July–August 1992.

Fransson and Israelsson (1999) found a regression model

between stem volume and JERS-1 SAR backscatter:

V ¼ 786þ 79rO ð8Þ

where rO =backscattering coefficient (dB) and V=stem

volume (m3/ha). The model was derived in a Swedish study

site close to Umeå (37 stands) with the stem volume ranging

from 0 to 300 m3/ha. The JERS SAR data were acquired in

June 1992.

Published regression models from literature can be

directly compared to regression models derived using

calibrated data. Fig. 3 shows the JERS SAR summer data

from the Ruokolahti study site. The continuous line is the

regression line corresponding to these points. Data for a

Finnish Boreal forest study site by Pulliainen et al. (1999)

has also been included in Fig. 3. These data were averaged

over a JERS image (23 May 1993) for 6 stem volume

classes based on a forest map by the Finnish Forest

Research Institute. The curvilinear dotted line that ends at

100 m3/ha is from Harrell et al. (1995). The biomass values

have been converted to stem volume by the formula (Häme

et al., 1992):

V ¼ B=0:6 ð9Þ

where V=stem volume (m3/ha) and B =dry biomass (tons/

ha). The JERS SAR data of Harrell et al. (1995) were

acquired in July–August 1992. The test site of Harrell et al.
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(1995) was in Interior Alaska with a fairly low biomass

level. The almost linear dashed line in Fig. 3 is from

Fransson and Israelsson (1999). This model is based on

JERS SAR data acquired on 17 June 1992. The slight

curvature of the Fransson–Israelsson model is due to the

fact that this model was determined as a linear regression

between the logarithm of the backscattering coefficient (rO

in dB) and stem volume. The Ruokolahti model was

determined as a linear regression between the square root

of the backscattering coefficient (amplitude) and the stem

volume.

The Harrel et al. model in Fig. 3 fits the data from the

Ruokolahti site fairly well. The form of the model seems
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appropriate in the narrow stem volume range. Young stands

(stem volume less than 30 m3/ha) are not very well in line

with this model. This may be due to soil effects (outcrops

and stones in Ruokolahti site).

Fransson and Israelsson (1999) model (dashed line in

Fig. 3) and the data by Pulliainen et al. (1999) are about 1.3

dB lower than the Ruokolahti data. The difference is within

the limits of calibration accuracy. Shimada (1996) reports a

standard deviation of 1.86 dB for the JERS SAR calibration

factor. In addition, the Umeå study site used by Fransson

and Israelsson (1999) is situated on the West coast of Gulf

of Botnia. In this type of area, a descending-orbit JERS SAR

scene can include sea area in the near-range part of the

scene. Shimada (2001) points out that the NASDA-supplied

calibration factor is not valid in this situation because the

AGC (Automatic Gain Control), which measures the

average backscatter level from the near-range 18 km zone,

causes the raw data to saturate. This in turn leads to a

reduced backscatter level in the processed scene. The JERS

SAR data of 21 May 1994 in Fransson and Israelsson (1999)

fit well the Ruokolahti data. The numerical values for the 21

May 1994 regression line were not included in Fransson and

Israelsson (1999).

The reason why the backscatter data of Pulliainen et al.

(1999) are lower than in the current study may be a higher

soil moisture in spring (May) after snow melt. The attempt

to obtain JERS data of late spring or early summer failed in

the current study.

The regression models derived in this study are valid for

stands where the species composition is similar to that in the

study site, typically pine or spruce dominated mixed forest.

If these models are applied to sites where trees of very

different canopy structure (e.g., multi-stem deciduous trees

like rowan) are common, the models perform worse.

Coniferous and conifer-dominated mixed forests dominate

in the boreal forest zone.

3.3. Multi-date regression models

Table 3 shows the results of two sets of multivariate

regression analyses. Column R2 gives the coefficient of
Table 3

Multivariate regression results as a function of stem volume range

Vol-Rg n R2 r RA
2 Dry93Feb

0–360 206 0.71 0.85 0.70 S

50–360 139 0.37 0.61 0.34 S

100–360 112 0.35 0.59 0.31 S

150–360 59 0.43 0.65 0.37 �
200–360 19 0.53 0.73 0.33 �
0–300 202 0.77 0.87 0.76 S

0–250 202 0.77 0.87 0.76 S

0–200 187 0.79 0.89 0.78 �
0–150 152 0.83 0.91 0.82 �
0–100 95 0.83 0.91 0.82 �
0–50 67 0.64 0.80 0.61 �
S=significant at 5% risk, �=not significant.
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determination. Column r gives the correlation coefficient

between the estimated stem volume and the ground data (for

comparison with the data of Table 2). Column. RA
2 gives the

adjusted R2, which takes into account the variation in the

number of observations (Eq. (3)). The significance columns

give the result of the t test that tests the significance of the

independent variable in the regression function.

In the first set of cases, the correlation coefficient

decreases with decreasing range of stem volume. The

number of significant independent variables also decreases

with decreasing range of stem volume (and decreasing

number of observations). The last case with only 19

observations renders the whole regression insignificant at

5% significance level. Of the scenes acquired during

growing season (S95Jul, S95Sep, and S95Oct), which are

highly correlated among themselves, only one (S95Jul) has

a significant contribution to the multivariate regression. The

dry winter scene Dry93Feb, which alone does not correlate

well with stem volume, is so uncorrelated with summer

scenes that it adds a significant contribution to the multi-

variate regression in 3 cases out of 5.

In the second set of cases, the correlation coefficient first

increases with decreasing range of stem volume. After

reaching the saturation zone (somewhere around 50...150

m3/ha), the correlation coefficient does no longer increase

with decreasing range of stem volume (and decreasing

number of observations). The number of significant

independent variables again decreases with decreasing stem

volume range (and decreasing number of observations).

Again, the only summer acquisition with a significant

contribution is the July scene (S95Jul). Even this scene

becomes insignificant at 0–100 m3/ha (with 95 observa-

tions). This is due to the high correlation between the

summer scenes and the wet winter scene (Wet95Jan).

An attempt was made to derive an optimal 2-piece linear

regression model for stem volume estimation (a) using all

three summer scenes in an average summer scene, and (b)

using the scenes as independent variables (see Table 4). Use

of an average summer scene seems not to improve over the

original bands. Computation of two models in image form

showed that the 2-piece linear regression model with
Wet95Jan S95Jul S95Sep S95Oct Dry98Mar

S S � � S

� S � � �
� S � � �
S S � � �
� � � � �
S S � � S

S S � � S

S S � � S

S S � � S

S � � � S

S � � � S



Fig. 4. Regression result: combined stem volume estimate vs. ground-

measured stem volume.

Table 4

Multivariate regression results with summer scenes averaged

Vol-Rg n R2 r Dry93Feb Wet95Jan S95Jul Dry98Mar Summer

0–360 206 0.70 0.82 � S 0 S S

0–100 95 0.83 0.91 � S 0 S �
0–150 152 0.82 0.91 � S 0 S S

100–360 112 0.24 0.49 � � 0 � S

150–360 59 0.38 0.62 � S 0 � S

0–150 152 0.82 0.91 0 S 0 S S

0–150 152 0.83 0.91 0 S S S 0

150–360 59 0.36 0.60 0 S 0 0 S

150–360 59 0.40 0.63 0 S S 0 0

S=significant at 5% risk level, �=not significant, 0=not included in the analysis.
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original bands only (the last and third-last lines of Table 4)

did not produce reliable stem volume estimates for the test

site. In Table 4, column r gives the correlation coefficient

between the estimated stem volume and ground data.

A 2-piece linear estimator was designed based on the

regression experiments above. Since summer scenes are

highly correlated, an average was computed over the 3

summer scenes (S95Jul, S95Sep, and S95Oct). The com-

bined estimator used one winter-time wet-condition scene

(scene Wet95Jan), one winter-time dry-condition scene

(Dry98Mar), and the average summer scene. Two estimates

were computed: eL for lower volume range and eH for upper

volume range:

eL ¼ � 118:8þ 0:2434W � 0:0564D ð10Þ

eH ¼ � 174:9þ 0:1834W � 0:2394Dþ 0:2734S ð11Þ

where W=amplitude in the winter-wet scene, D =amplitude

in the winter-dry scene, and S =amplitude in the summer

average scene.

The decision which estimate to use was based on the

SAR-derived estimates, not on ground data. This is essential

for an estimator that must be applicable also outside study

areas with ground data. If eH>100 m3/ha, eH was assigned

as the combined estimate, eL otherwise. The division point

was determined by visual analysis of regression data.

Within a zone of T20 m3/ha around the dividing line of

100 m3/ha, the combined estimate was computed as a

weighted average of eL and eH:

if eH > 120 : e ¼ eH
if eH < 80 : e ¼ eL
if eH � 80 and eHV120 : e ¼ 120� eHÞð =40Þð eL þ eL � 80Þð =40Þð eH

ð12Þ
The application of the 2-piece linear regression model for

mapping large forest areas is difficult because acquiring the

needed winter-wet scene (and winter dry scene) depends on

weather.

Fig. 4 shows the combined estimate against ground data

in the stand-wise dataset. The RMSE was 28.5 m3/ha. As

most input SAR data are from the year 1995, the reference

year of the estimate is 1995.
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The combined estimate of stem volume was computed

over the whole area where rectified JERS SAR data existed.

To reduce the effects of speckle, JERS SAR scenes were

filtered by the 5-out-of-9 filtering technique described

earlier. The standard deviation of the Gaussian weight

function was set to half a pixel (with 25-m pixel spacing).

Fig. 5 shows the combined estimate for a sub-window (4

km by 4 km) of the study site. The water mask was made

with Landsat TM (near-infrared) data. An extract from an

Ikonos multispectral (true colour) image is also shown for

comparison. Recent clear-cut areas are fairly well presented

in the stem volume estimate. Locations of high-estimate

areas also correspond well with the locations of mature

forests.

Fig. 6 shows the combined stem volume estimate over an

area of 38 km by 38 km. The water mask was made with

Landsat-TM data. The black triangle at the South-western

corner is due to lack of coverage in one of the five JERS

SAR scenes used.

The accuracy of the JERS-SAR-based stem volume

estimate was tested using the point-wise dataset of stem

volume measurements. The root-mean-square error between

the JERS estimate and the ground measurement was 59.8

m3/ha. The average stem volume in the ground dataset was



Fig. 5. Stem volume estimate using 5-date JERS SAR data (left) and Ikonos 4-m multispectral image. The scaling of stem volume shows the range 0...200 m3/

ha as black to white. Ikonos image: ‘‘Includes material (c) Space Imaging L.P.’’
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104 m3/ha and the maximum 355 m3/ha. The average stem

volume in the JERS-SAR-based stem volume estimate was

89 m3/ha and the maximum 218 m3/ha. The correlation

coefficient between the estimated and measured stem

volume was 0.57. The correlation in this point-wise dataset

is lower than in the stand-wise dataset used as training data.

This is partly due to speckle and other noise sources in the

SAR data. Averaging SAR data over forest stands reduces

speckle and enhances the relationship between forest

biomass and SAR backscatter. Stand-wise averaging is a

standard technique in studies of forest biomass and SAR.

Another reason for the somewhat low accuracy is the

difference in spatial scale between the datasets. The

diameter of a ground measurement plot is of the order of

25 m. The JERS-based estimate was computed from a
Fig. 6. JERS-based stem volume estimate over a 38-km-by-38-km area in

Ruokolahti.
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dataset where SAR pixels were averaged in a 75-m by 75-m

window.

3.4. JERS-TM synergy

Regression analysis and stand-wise averaged JERS SAR

and Landsat TM data were used to study the synergy

between L-band SAR and optical data in forest biomass

estimation. Landsat TM bands 2 (green visible light), 3 (red

visible light), 4 (near-infrared), 5 (middle-infrared), and 7

(middle-infrared) were included in the analyses. Atmos-

pheric corrections were applied to Landsat TM data and the

pixel values were proportional to surface reflectance. Band

1 (blue visible light) of TM data was left out due to noise

and band 6 (thermal band) due to lack of consistency from

scene to scene in forest biomass estimation. NDVI

(TM4�TM3) / (TM4+TM3) was also tested. Because

NDVI had a low coefficient of determination (32%), it

was left out in further analysis. Table 5 shows the

correlation coefficient and coefficient of determination for

a number of combinations of JERS acquisition dates and

TM spectral bands. Column r in Table 5 gives the

correlation coefficient between the estimated stem volume

and ground data. The multi-temporal regression results

shown on the first row of Table 3 is also shown here for

convenience. The JERS regression was made in one unit

over the whole range of stem volumes, not using the 2-piece

approach defined by Eqs. (10)–(12). Multiple correlation

coefficients of the order of 0.85 were obtained both for

JERS data and TM data when these datasets were analysed
Table 5

Regression analysis of combined JERS SAR and Landsat TM data

Bands r R2 n

JERS, 6 dates 0.85 0.71 206

TM, 5 bands 0.85 0.73 206

TM, bands 3 and 4 0.85 0.72 206

JERS+TM, all bands 0.89 0.79 206

JERS+TM, significant bands 0.88 0.77 206
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separately. The corresponding coefficient of determination

(R2) was about 0.7, i.e., 70%. When combining optical

(TM) and microwave (JERS) sensors, the correlation

coefficient rose to almost 0.9 and the coefficient of

determination to over 0.75 (75%). When restricting to only

those bands in the JERS+TM combination that were

significant at 5% significant level (TM band 3 and JERS

scenes Dry93Feb and S95Jul), the correlation coefficient did

not drop much.

Fig. 7 shows some of the regression results in graphical

form. Triangles (top left) are Landsat TM estimates, squares

(top right) JERS estimates, and diamonds (bottom left)

JERS-TM estimates. One of the problems in Earth-

observation-based forest biomass estimation is the satura-

tion of the estimate at a fairly low level of biomass both for

optical data and for L-band microwave data. Combination of

sensors seems to alleviate this problem somewhat because

the highest JERS-TM estimates are higher than either of the

single-sensor estimate (the upper most dashed regression

line at higher stem volumes in the bottom right figure

belongs to the JERS-TM estimate). Similarly the lowest

biomass estimates are slightly better in the JERS-TM

estimate than in the single-sensors estimates. The slope of

the regression line (slightly higher for the JERS-TM data)

also reflects this phenomenon.
Fig. 7. Estimated vs. ground-observed stem volume for Landsat TM data (top left

figure (bottom right) shows all three estimates with their linear regression lines i
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4. Conclusions

The single-date regression analysis showed that the stem

volume vs. L-band backscatter relationship is very stable

over the summer period. The regression models obtained in

Ruokolahti site fit well with the model (for low biomass

values) of Harrell et al. (1995). The fit between the

Ruokolahti model and the model by Fransson and Israelsson

(1999) was not as good, but the difference is within the

limits of calibration accuracy of the JERS SAR sensor. The

stability of the regression models from scene to scene

suggests that a constant regression model could be used in

mapping boreal forest biomass using a single summer

acquisition. This could be applied, e.g., to wide area

mosaics produced in the GBFM project (Rosenqvist et al.,

2000) if accuracy requirements are low and if biomass is

aggregated to larger units before the data are used in

quantitative models. Eqs. (5) and (6) above could be used

for stem volume and biomass when the available Earth

observation data are from an L-band SAR (HH-polarized,

nominal incidence angle 39-) and the scenes have been

acquired in summer conditions. This type of wide area

biomass estimation would ideally require well-calibrated L-

band SAR data. For instance, an increase of 1.86 dB due to

calibration error increases the stem volume estimate from
), JERS data (top right), both datasets combined (bottom left). The last sub-

n the same diagram.

1
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100 m3/ha to 275 m3/ha. A calibration accuracy of 0.7 dB

produces an increase from 100 m3/ha to 162 m3/ha, which is

better in balance with the estimation accuracy (60 m3/ha).

The high correlation (r=0.85) obtained in regression

modelling between multi-temporal JERS SAR data and

forest stem volume data suggests that multi-temporal L-

band SAR data can be used for forest biomass mapping for

large stands and forest management units larger than stands.

Data from varying winter conditions, in addition to summer

data, were used to obtain the correlation coefficient of 0.85.

In winter data, the relationship between L-band backscatter

and forest biomass varies widely from scene to scene. The

regression model is applicable in scenes acquired in the

same meteorological conditions as those used to derive the

regression model. In practice, this technique requires

reference data within each mapped scene. This technique

can be efficient for areas that consist of one or a few scenes

(along an orbit). For larger areas, e.g., for continental

mapping, multi-temporal image acquisitions in uniform

meteorological conditions are practically impossible. Even

in a local context, the mapping of high-biomass areas (e.g.,

dry biomass greater than 100 tons/ha) is not accurate.

The use of optical Landsat TM data, in addition to JERS

SAR data, improved the biomass estimation accuracy

slightly (r increased from 0.85 to 0.89). The inclusion of

optical data also improved the saturation of the regression

model. Since the only significant optical bands in the SAR-

optical regression model were the red and near-infrared

bands, data from practically all optical satellites can be used.

A detailed (25-m pixel spacing, 2-m vertical accuracy)

DEM was used when analysing the JERS SAR data of the

Ruokolahti study site. For wide-area biomass mapping, the

acquisition of a DEM of the same standard is costly if such a

DEM is available at all. Global DEM data are too coarse for

radiometric normalization of topographic effects in JERS

SAR data. An accurate and detailed DEM is essential for

pixel-wise biomass estimation because even a 5- slope

(towards the sensor) causes a change of 63 m3/ha in the stem

volume estimate. If biomass mapping is made for larger

areal units, the topographic effects can be expected to cancel

out from the averaged biomass estimate if the estimation

unit includes equal areas of fore-slopes and back-slopes.
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Kasischke, E., Bourgeau-Chavez, L., Christensen, N., & Dobson, C.

(1991). The relationship between aboveground biomass and radar

backscatter as observed on airborne SAR imagery. Proceedings of the

Third Airborne Synthetic Aperture Radar (AIRSAR) Workshop, May

23–24, 1991. JPL Publication, vol. 91–30 (pp. 11–21).

Kasischke, E., Bourgeau-Chavez, L., Christensen, N., & Haney, E. (1994).

Observations on the sensitivity of ERS-1 SAR image intensity to

changes in aboveground biomass in young loblolly pine forests.

International Journal of Remote Sensing, 15(1), 3–16.

Kasischke, E., Christensen, N., & Bourgeau-Chavez, L. (1995). Correlat-

ing radar backscatter with components of biomass in Loblolly pine

forests. IEEE Transactions on Geoscience and Remote Sensing, 33(3),

643–659.

Kellndorfer, J., Dobson, C., & Pierce, L. (2001). Forest biometrics

from ERS and JERS in Michigan. Proceedings of IGARSS’2001

(pp. 780–782).

Kuplich, T., Salvatori, V., & Curran, P. (2000). JERS-1/SAR backscatter

and its relationship with biomass of regenerating forests. International

Journal of Remote Sensing, 21(12), 2513–2518.

Kurvonen, L., Pulliainen, J., & Hallikainen, M. (1999). Retrieval of

biomass in boreal forest from multitemporal ERS-1 and JERS-1 SAR

images. IEEE Transactions on Geoscience and Remote Sensing, 37(1),

198–205.

Le Toan, T., Beaudoin, A., & Guyon, D. (1992). Relating forest biomass to

SAR data. IEEE Transactions on Geoscience and Remote Sensing,

30(2), 403–411.

Le Toan, T., Beaudoin, A., Riom, J., & Guyon, D. (1991). Relating

forest biomass to SAR data. Proceedings of the International

Geoscience and Remote Sensing Symposium IGARSS’91, Helsinki

University of Technology, Espoo, Finland, June 3–6, 1991, vol. II

(pp. 689–692).

Luckman, A., Baker, J., Honzak, M., & Lucas, R. (1998). Tropical forest

biomass density estimation using JERS-1 SAR: Seasonal variation,

confidence limits, and application to image mosaics. Remote Sensing of

Environment, 63, 126–139.

Luckman, A., Baker, J., Kuplich, T., Yanasse, C., & Frery, A. (1997). A

study of the relationship between radar backscatter and regenerating

tropical forest biomass for spaceborne SAR instruments. Remote

Sensing of Environment, 60, 1–13.

Luckman, A., Baker, J., & Wegmüller, U. (2000). Repeat-pass interfero-

metric coherence measurements of disturbed tropical forest from JERS

and ERS satellites. Remote Sensing of Environment, 73, 350–360.

Melon, P., Martinez, J., Le Toan, T., Ulander, L., & Beaudoin, A. (2001).

On the retrieving of forest stem volume from VHF SAR data:

Observation and modeling. IEEE Transactions on Geoscience and

Remote Sensing, 39(11), 2364–2372.

Moghaddam, M., Durden, S., & Zebker, H. (1994). Radar measurement of

forested areas during OTTER. Remote Sensing of Environment, 47,

154–166.

Paloscia, S., Macelloni, G., Pampaloni, P., & Sigismondi, S. (1999). The

potential of C-band and L-band SAR in estimating vegetation biomass:

The ERS-1 and JERS-1 experiments. IEEE Transactions on Geoscience

and Remote Sensing, 37(4), 2107–2110.
 6/1
Pulliainen, J., Engdahl, M., & Hallikainen, M. (2003). Feasibility of

multi-temporal interferometric SAR data for stand-level estimation

of boreal forest stem volume. Remote Sensing of Environment, 85,

397–409.
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