
V
TT PU

BLICA
TION

S 561
A

 Tool for Q
ualityD

riven A
rchitecture M

odel Transform
ation

Janne M
erilinna

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000

02044 VTT 02044 VTT FI–02044 VTT, Finland
Puh. 020 722 4404 Tel. 020 722 4404 Phone internat. +358 20 722 4404
Faksi 020 722 4374 Fax 020 722 4374 Fax +358 20 722 4374

ISBN 951– 38– 6439– 1 (soft back ed.) ISBN 951– 38– 6440– 5 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235– 0621 (soft back ed.) ISSN 1455– 0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2005 VTT PUBLICATIONS 561

Janne Merilinna

A Tool for QualityDriven
Architecture Model Transformation

VTT PUBLICATIONS

543 Holopainen, Timo P. Electromechanical interaction in rotordynamics of cage induction
motors. 2004. 64 p. + app. 81 p.

544 Sademies, Anni. Process Approach to Information Security Metrics in Finnish Industry and
State Institutions. 2004. 89 p. + app. 2 p.

545 DairyNET hygiene control in Nordic dairies. Gun Wirtanen & Satu Salo (eds.). 2004.
253 p. + app. 63 p.

546 Norros, Leena. Acting under uncertainty. The coretask analysis in ecological study of work.
2004. 241 p.

547 Hänninen, Saara & Rytkönen, Jorma. Oil transportation and terminal development in the
Gulf of Finland. 2004. 141 p. + app. 6 p.

548 Nevanen, Tarja K. Enantioselective antibody fragments. 2004. 92 p. + app 41 p.

549 Koppinen, Tiina & Lahdenperä, Pertti. The current and future performance of road project
delivery methods. 2004. 115 p.

550 MiettinenOinonen, Arja. Trichoderma reesei strains for production of cellulases for the
textile industry. 2004. 96 p. + app. 53 p.

551 Hassel, Juha. Josephson junctions in charge and phase picture. Theory and applications.
2004. 38 p. + app. 40 p.

552 Niskanen, Antti O. Control of Quantum Evolution and Josephson Junction Circuits. 2004.
46 p. + app. 61 p.

553 Aalto, Timo. Microphotonic silicon waveguide components. 2004. 78 p. + app. 73 p.

554 Holttinen, Hannele. The impact of large scale wind power production on the Nordic elec
tricity system. 2004. 82 p. + app. 111 p.

555 Rintala, Kai. The economic efficiency of accommodation service PFI projects. 2004. 286
p. + app. 193 p.

556 Kiiskinen, LauraLeena. Characterization and heterologous production of a novel laccase
from Melanocarpus albomyces. 2004. 94 p. + app. 42 p.

557 MäkiAsiala, Pekka. Reuse of TTCN3 Code. 2005. 112 p.

559 Kiihamäki, Jyrki. Fabrication of SOI micromechanical devices. 2005. 87 p. + app. 28 p.

560 Tuulari, Esa. Methods and technologies for experimenting with ubiquitous computing.
2005. 136 p. + app. 2 p.

561 Janne Merilinna. A Tool for QualityDriven Architecture Model Transformation. 2005. 106
p. + app. 7 p.

http://www.vtt.fi/inf/pdf/
http://www.vtt.fi/inf/pdf/

VTT PUBLICATIONS 561

A Tool for Quality-Driven Architecture
Model Transformation

Janne Merilinna
VTT Electronics

ISBN 951�38�6439�1 (soft back ed.)
ISSN 1235�0621 (soft back ed.)

ISBN 951�38�6440�5 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1455�0849 (URL: http://www.vtt.fi/inf/pdf/)

Copyright © VTT Technical Research Centre of Finland 2005

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O.Box 2000, FI�02044 VTT, Finland
phone internat. +358 20 722 111, fax + 358 20 722 4374

VTT Elektroniikka, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde 020 722 111, faksi 020 722 2320

VTT Elektronik, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel 020 722 111, fax 020 722 2320

VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FI�90571 OULU, Finland
phone internat. +358 20 722 111, fax +358 20 722 2320

Technical editing Anni Kääriäinen

Otamedia Oy, Espoo 2005

http://www.vtt.fi/inf/pdf/
http://www.vtt.fi/inf/pdf/

3

Merilinna, Janne. A Tool for Quality-Driven Architecture Model Transformation [Työkalu
arkkitehtuurimallin laatuohjattuun transformaatioon]. Espoo 2005. VTT Publications 561. 106 p. +
app. 7 p.

Keywords model-driven development, Model-Driven Architecture

Abstract
Model-Driven Development (MDD) is about treating models as first class design
entities. Model-Driven Architecture (MDA) is an Object Management Group�s
initiative that proposes to define a set of non-proprietary standards that will
specify interoperable technologies with which to realize MDD with automated
transformations. The concept of Model-Driven Architecture lies on models at
different abstraction levels, where transformations are performed switching
between models. Transformations where the abstraction level is changed are
called vertical transformations to separate from horizontal transformations where
the abstraction level remains unchanged.

Quality-driven model transformation is a horizontal transformation where
varying quality attributes of a software product are the driving force for
transformation. The quality-driven model transformation relies on the fact that
the functionality of the system can be implemented with a wide variety of
architectures and therefore with different quality properties. The purpose is to
conform to the MDA approach and thus, the goal is to automate the
transformation with advanced CASE (Computer Aided Software Engineering
Tool) tool.

This thesis focuses on designing and implementing a tool extension that
automates the quality-driven model transformation. To accomplish this, a rule
description language for defining transformation rules was developed. In
addition, a CASE tool evaluation was performed to find the most suitable
modelling tool to be extended. Finally, the tool extension was implemented to
the Telelogic Tau/Developer.

4

Merilinna, Janne. A Tool for Quality-Driven Architecture Model Transformation [Työkalu
arkkitehtuurimallin laatuohjattuun transformaatioon]. Espoo 2005. VTT Publications 561. 106 s. +
liitt. 7 s.

Avaisnsanat model-driven development, Model-Driven Architecture

Tiivistelmä
Malliohjatun kehittämisen ajatuksena on käyttää malleja ensisijaisina
suunnittelukohteina. Model-Driven Architecture (MDA) on Object Management
Groupin ehdotus kehittää yleishyödyllisiä standardeja, jotka määrittelisivät
keskenään yhteensopivia teknologioita, joita voitaisiin käyttää malliohjatun
kehittämisen toteuttamiseen automaattisilla transformaatioilla. MDA:n perus-
ajatus on käyttää eri abstraktiotasoilla olevia malleja, joissa mallista toiseen
voidaan liikkua tekemällä transformaatioita. Transformaatioita, joissa abstraktio-
tasoa vaihdetaan, kutsutaan vertikaalisiksi transformaatioiksi ja transfor-
maatioita, joissa abstraktiotaso ei muutu, kutsutaan horisontaalisiksi
transformaatioiksi.

Laatuohjatun mallin transformaatio on horisontaalinen transformaatio, jossa
ohjelmistotuotteen muuttuvat laatuvaatimukset ovat transformaation peruste.
Laatuohjattu mallin transformaatio perustuu siihen tosiseikkaan, että
järjestelmän toiminta voidaan toteuttaa monella eri arkkitehtuurilla ja täten eri
laatuvaatimuksilla. Tarkoituksena on pyrkiä noudattamaan MDA-lähestymis-
tapaa, joten päämääränä on automatisoida transformaatio CASE-työkalun avulla.

Tämän lopputyön tavoitteena oli kehittää työkalulaajennus, joka toteuttaa
laatuohjatun mallin transformaation. Tavoitteen saavuttamiseksi kehitimme
transformaatioiden kuvaamista varten sääntökuvauskielen. Lisäksi teimme
mallinnustyökaluvertailun, jonka tavoitteena oli löytää sopiva työkalu
laajennusta varten. Lopuksi toteutimme työkalulaajennuksen Telelogic
Tau/Developeriin.

5

Preface
This thesis was completed within the VTT Electronics Software architecture
group. Work for this was carried out under Families (FAct-based Maturity
through Istitutionalisation Lessons-learned and Involved Exploration of System-
family engineering) project under Eureka S! 2023 Programme, ITEA project
ip02009.

I would like to thank Scientist Mari Matinlassi and Research Professor Eila
Niemelä from VTT Electronics for guiding me through this work. I would also
like to thank my supervisors Professors Tapio Seppänen and Jukka Riekki from
the University of Oulu from their constructive criticism.

Oulu, January 24, 2005

Janne Merilinna

6

Contents

Abstract ... 3

Tiivistelmä .. 4

Preface .. 5

Abbreviations and acronyms... 9

1. Introduction... 11

2. Software architecture development .. 14
2.1 Quality-driven Architecture Development .. 14
2.2 Unified Modeling Language.. 19
2.3 Model-Driven Architecture ... 22

2.3.1 The Model ... 24
2.3.2 Abstraction Levels .. 24
2.3.3 Platform... 25
2.3.4 Model Transformations... 26

3. Quality-driven model transformation ... 30
3.1 Overview of the Technique ... 31
3.2 Quality-driven Rule Description Language... 33
3.3 Applying Quality-Driven Model Transformation 36

3.3.1 Applying the Stylebase ... 36
3.3.2 Applying Admissibility Rules... 38
3.3.3 Defining Mappings.. 39
3.3.4 Defining Rules by Q-RDL .. 42
3.3.5 Performing Layers-to-Blackboard Transformation................. 45

4. Evaluation of UML tools for model-driven architecture 47
4.1 The First Tool Evaluation � Literature Study...................................... 48
4.2 The Second Tool Evaluation � Empirical Study 50
4.3 Summary ... 53

5. Development of the Q-Tra tool... 55
5.1 Requirements for the Tool Extension.. 55

7

5.1.1 End-User Requirements .. 56
5.1.2 Modelling Tool Requirements .. 57
5.1.3 Technical Requirements.. 57

5.2 Design of the Q-Tra Tool Extension ... 58
5.2.1 Technical Constraints for Designing the Q-Tra 59
5.2.2 Architecture of the Q-Tra.. 61

5.3 Implementation of the Q-Tra Tool Extension 76
5.3.1 Implementation of the Components .. 76
5.3.2 Testing the Components.. 85

6. Case study � layers-to-blackboard transformation 87

7. Discussion... 94
7.1 Experiences in Applying Quality-driven Rule Description Language 95
7.2 Analysis of the Tool Evaluation Result ... 96

7.2.1 Experiences of Using Telelogic Tau/Developer 97
7.3 Future Development of the Q-Tra ... 99

7.3.1 Databases .. 99
7.3.2 User Interface .. 100
7.3.3 Modelling Tool.. 101

8. Summary... 102

References... 104

Appendices
Appendix 1: The Q-RDL in Extended Backus-Naur Form
Appendix 2: Contents of the Rulebase
Appendix 3: Contents of the Stylebase

8

9

Abbreviations and acronyms
3GL 3rd Generation Language, for example C++ and Java

4GL 4th Generation Language, for example SQL

CASE Computer Aided Software Engineering, use of computer-
based support in the software development process

CIM Computation Independent Model, abstraction level of
Model-Driven Architecture

CORBA Common Object Request Broker Architecture,
middleware technology

DiSeP Distribution Service Platform, platform for software
components

DTD Document Type Definition, defines legal building blocks
of an Extensible Mark-up Language document

EBNF Extended Backus-Naur Form, context-free grammar

GUI Graphical User Interface, graphical interface for the user
to interact with a computing system

IEEE Institute of Electrical and Electronics Engineers,
electronic library

ISO International Standardization Organization

J2EE Java 2 Enterprise Edition, standard for developing
component-based multitier enterprise applications

MDA Model-Driven Architecture, framework for standards that
will enable model-driven development

MDD Model-Driven Development, software development
method

MSMQ Microsoft Message Queuing, messaging infrastructure

OMG Object Management Group, standardization organization
for object-based technologies

PF Product Family, family of products

10

PFA Product Family Architecture, software structure that is
common for all products of a product family

PIM Platform Independent Model, abstraction level of Model-
Driven Architecture

PSI Platform Specific Implementation, abstraction level of
Model-Driven Architecture

PSM Platform Specific Model, abstraction level of Model-
Driven Architecture

QADA Quality-driven architecture design and quality analysis,
architectural design and analysis method

Q-RDL Quality-driven Rule Description Language,
transformation rule description language

Q-TRA Quality-driven architecture TRAnsformation, tool that
automates quality-driven architecture model
transformation

SQL Structure Query Language, language for accessing
databases

UML Unified Modeling Language, object-based modelling
technology

WSDL Web Service Definition Language, grammar for
describing network services

XML Extensible Mark-up Language, information representation
language

11

1. Introduction
Model-Driven Development (MDD) is about treating models as first class design
entities. Modelling provides a view to a complex problem and its solutions,
which is less risky, cheaper and easier to understand than implementation of the
genuine target. [1]

Model-Driven Architecture (MDA) is defined as �an OMG initiative that
proposes to define a set of non-proprietary standards that will specify
interoperable technologies with which to realize model-driven development with
automated transformations� [2]. The concept of Model-Driven Architecture lies
on three types of models on the different abstraction levels: computation
independent model (CIM), platform independent model (PIM) and platform
specific model (PSM). The computation independent model shows the system in
the environment where it will operate. The platform independent model
concentrates on the operation of the system while hiding the details of the
underlying platform. PIM is computationally complete meaning that it is
possible to execute the system defined by this model. The platform specific
model is described as a realization of PIM with all the details of the chosen
platform. [3]

Model transformation is described as �the process of converting one model to
another model of the same system� [2]. Transformations where the abstraction
level is changed are called vertical transformations to separate from horizontal
transformations where the abstraction level remains unchanged. Horizontal
transformation is used when models are enhanced, filtered and specialized
during the design process [4].

In the sense of MDA, quality-driven model transformation is described as a
PIM-to-PIM transformation where varying quality attributes are the driving
force and the reason for the transformation [5]. Quality-driven model
transformation relies on the fact that the functionality of the system can be
implemented with wide variety of architectures and therefore with different kind
of quality properties, such as performance, modifiability and extensibility.

From the point of view of MDA, transformation from PIM into the desired PSM
is essential when considering run-time properties, but sometimes it is not

12

enough. In order to change evolution time qualities, i.e. modifiability and
extensibility, it is necessary to change the architecture of the system in the PIM
level to correspond to the new quality requirements.

Benefits from automating quality-driven model transformation are quite self-
explanatory. An architect can easily experiment and try different kinds of
architectures for a system while designing a model just by a press of a button,
when traditionally every change in the model has to be done manually.
Particularly in the context of product families, automated quality-driven model
transformation is justified.

The software product family is a family of products sharing a set of common
properties and architecture � product family architecture (PFA). However,
products of a product family may have various customer groups desiring
different qualities from a product. For instance, for one customer the hard real-
time requirements are essential but for another, reliability is important.
Automated quality-driven model transformation enables easy optimization or
change of desired quality property of a product.

Quality-driven model transformation is based on the quality-driven model
transformation technique [5]. The technique aims at conforming to the MDA
approach and therefore its goal is to automate the transformation with advanced
Computer Aided Software Engineering (CASE) tools.

The aim of this thesis is to develop a tool that automates the quality-driven
model transformation. In order to accomplish this, the following steps have to be
taken:

• to develop a rule description language, which describes the
transformation rules defined by the quality-driven model
transformation technique

• to find the most suitable CASE tool for the tool extension
• to design and implement the tool extension.

This thesis is structured as follows: First, the background information related to
the quality-driven model transformation is introduced. Second, the quality-
driven model transformation technique is introduced briefly. In addition, the

13

Quality-driven Rule Description Language (Q-RDL) is presented. Q-RDL is
applied to present the transformation rules defined by the technique.
Furthermore, an example transformation of applying the Q-RDL is given. Third,
evaluation of UML modelling tools in the context of MDA is performed. This
part of work has been published in the paper �Evaluation of UML Tools For
Model-Driven Architecture� [6]. The result of the evaluation is a modelling tool
that is extended to support quality-driven model transformation. Fourth, the
design and implementation of the tool extension, the Q-Tra, is introduced. In
order to validate the automated quality-driven model transformation, a simple
case study where the Q-Tra is applied is presented next. Finally, the experiences
of the Q-RDL and the tool evaluation and the Q-Tra are discussed and some
future improvements are introduced.

14

2. Software architecture development
This section defines the background information related to the quality-driven
model transformation. First, quality-driven architecture development is
introduced by bringing out the basic terminology of the quality properties of
software architectures. Second, Unified Modeling Language is introduced.
Third, model-driven development and its realization, Model-Driven
Architecture, are discussed in order to get basic knowledge of modelling and
model transformations.

2.1 Quality-driven Architecture Development

Software architecture is described as a structure or structures of the system.
Structures consist of the software components and their externally visible
properties, and relationships among them. [7] Bosch presents three purposes of
an explicit representation of the software architecture [8]:

• stakeholder communication
• software product lines
• quality attributes assessment.

The first reason for the explicit software architecture is that it allows early
communication between stakeholders involved in the development process. The
development process cannot proceed until the stakeholders have accepted the
architecture.

The second reason for the explicit software architecture is that it defines
components in the software product line. A software product line is a group of
systems that share common software architecture and a set of reusable
components. A software product line and software product family are often
considered synonyms, but there are some distinctions. A software product line is
considered more a process approach of making software products and thus
emphasizes inputs and outputs of the development process. A software product
family is a product oriented term emphasizing � in addition to process and
architecture � also the business and organizational aspects of a product family [9].

15

The product family architecture is an architecture, which is derived of products
of a product family. As the product family members share the same architecture
and for the fact that the architecture constrains quality attributes of a system,
choosing the right architecture is essential. This occurs especially in the case of
PFA, as the quality attributes reflect on the whole product family.

Quality attributes are non-functional features of a system that are often divided
into two main categories [10]:

• Execution qualities, i.e. performance, availability, reliability, etc.
• Evolution qualities, i.e. maintainability, modifiability, reusability, etc.

Execution qualities are discernible at run-time and evolution qualities are
considered in the architecture development. For example, quality attributes can
be defined as follows:

• Availability measures the proportion of time the system is up and
running.

• Extensibility is the systems� capability to acquire new components.
• Maintainability is the ease with which a software system or

component can be modified or adapt to a changed environment.
• Modifiability is the capability of making changes quickly and cost-

effectively.
• Portability is the capability of the system of running under different

computing systems.
• Reliability is a system or component capability of keeping operating

over the time or of performing its required functions under stated
conditions for a specific period of time.

There are four concepts of software architecture that must be defined:

• The architecture style is a description of component types and their
topology. A style defines constraints on the architecture and the
constraints define a set of architectures that satisfies them. Thus,
architecture style is not architecture, but it still conveys an image of
the system. [7]

16

• When the architecture style is strictly defined, it becomes an
architecture pattern. The architecture pattern expresses fundamental
structural schema for software systems, which are applied for high-
level system subdivisions, distribution, interaction and adaptation.
[11]

• The design pattern describes a recurring structure of communication
components, which solves a general problem in a particular context.
[12] As design patterns are applied in a particular context, they can be
considered micro architectures.

• Idioms are programming language specific design patterns. Thus, they
are the lowest level patterns.

The basic principle of quality-driven architecture development is to emphasize
the importance of quality attributes at the development time. That is, designing
software architecture with specific patterns and thus with specific quality
attributes. Applying QADA® (Quality-driven architecture design and analysis)
[13] method is one approach of designing software architectures from quality
point of view. The Layers and the Blackboard architecture patterns are described
as examples of architecture patterns and the quality attributes they promote.

According to Buschmann [11], the Layers architectural pattern �helps to
structure applications that can be decomposed into the groups of tasks, in which
each group is at a particular level of abstraction�. A well-known architectural
model, which implements Layers architectural pattern, is OSI 7-Layer Model,
defined by the International Standardization Organization (ISO).

The bearing idea in Layers is that each layer only communicates with the layer
below and thus hides the implementation of the lower layer from layers above. A
layer includes an inner structure, and thus, it has several kinds of internal
components. Components at higher layers may communicate with the
components of the layer below directly or via an interface object. Figure 1
presents the structure of the Layers architectural pattern. The components in
Figure 1 could also be arbitrary but the structure is the same.

17

Data : DataStorage

Data : DataStorage

Ctrl : ControlNode

Ctrl : ControlNode

Comp1 : ComputationNode1

Comp1 : ComputationNode1

Comp2 : ComputationNode2

Comp2 : ComputationNode2

topDow nRequest

topDow nRequest

bottomUpNotif ication

bottomUpNotif ication

topDow nRequest

topDow nRequest

bottomUpNotif ication

bottomUpNotif ication

topDow nRequest

topDow nRequest

bottomUpNotif ication

bottomUpNotif ication

Figure 1. Layers structure.

The quality attributes Layers promotes stems from the fact that the layers of the
pattern can easily be replaced. For quality attributes of the Layers architecture
pattern, Niemelä et al. defines four quality attributes [14]:

• maintainability
• modifiability
• portability
• reusability.

According to Buschmann [11], the Blackboard pattern �is useful for problems
for which no deterministic solution strategies are known� and �in Blackboard
several specialized subsystems assemble their knowledge to build a possibly
partial or approximate solution�.

The idea behind Blackboard is to have a collection of independent components
to work cooperatively on a common data structure. The blackboard is a central
data store, where all knowledge sources have access. The knowledge sources are
independent subsystems that solve some specific aspects of the overall problem.

18

The component, which organizes the whole system, is called Control. Control
component evaluates the current state of processing and coordinates the
knowledge sources. Figure 2 illustrates the structure of the Blackboard
architectural pattern.

Data : DataStorage

Data : DataStorage

Comp1 : ComputationNode1

Comp1 : ComputationNode1

Ctrl : ControlNode

Ctrl : ControlNode

Comp2 : ComputationNode2

Comp2 : ComputationNode2

control

control

control

control

data

data

data

data

data

data

Figure 2. Blackboard structure.

Niemelä et al. defines five quality attributes for the Blackboard architecture
pattern [14]:

• availability
• maintainability
• modifiability
• reliability
• reusability.

Maintainability, modifiability and reusability stems from the Blackboard�s
capability of allowing even dynamic addition and removal of the components.
Availability and reliability originates from the fact that the computation
components are independent from each other and the control component
iteratively activates the other components. Therefore, a fault in one component
may not cause complete failure of the system if the control component handles
exceptions successfully.

19

2.2 Unified Modeling Language

Unified Modeling Language (UML) is Object Management Group�s (OMG)
standardized graphical modelling language for specifying, visualizing and
constructing, and documenting software systems [15]. Modelling is performed
using several different diagrams to express the system�s high-level behaviour,
static and dynamic structure, and dynamic behaviour.

Current (November 2004) official UML version 1.5 offers nine different diagrams
for specifying the system�s behaviour and structure. Use case diagrams are mainly
used for expressing requirements of the system, class and object diagrams are
used for describing static structure and component and deployment diagrams catch
the system�s implementation structure. Behaviour is modelled with
communication, sequence, state chart and activity diagrams. [16] Each diagram
type focuses on certain aspects of the system only. However, it is not necessary, or
even the intention, to use all the diagrams when designing a system.

Although UML has a rich collection of diagrams and the intention is to use just a
subset of the diagrams in the development process, there are some flaws and
weaknesses in its designing capabilities [16]. From the point of expressing
architectural, structural and real-time aspects, some capabilities are missing. For
instance, real-time system consists of various independent processes that
communicate with themselves. This kind of communication, e.g. which part is
communicating with which part and with what kind of signals, is generally
expressed with ports, which are attached to active objects. Ports are connected
together by communication channels that allow sending and receiving different
kind of signal and finally, protocols, which coordinate whole I/O-activity.
Regardless, UML 1.5 does not support these kinds of expressions. There are
some means, for instance sequence or collaboration diagrams and class
diagrams for expressing communication structure, but in the end, they are not
sufficient. Besides, expressing protocols is not even possible.

By the time of writing (November 2004) this thesis, the current adopted UML
version is 1.5, but in the near future version 2.0 will be published. Perhaps the
most significant addition to this new version from the perspective of describing
software architecture [17], will be a better support to express software
decomposition, e.g. expressing internal structure of classes and components [18].

20

While in UML 1.5, classes� and components� internal structure could only be
described with class diagram, which however cannot be used for describing
hierarchical structure of models, UML 2.0 offers a completely new diagram for
the task. Composite structure diagram describes how a containing element is
composed by other elements called parts, which are not themselves classifiers,
such as classes, but more like instances of classifiers, and their communication
paths. These parts can also have their own inner structure as well and for that
reason, expressing a model in the desired abstraction level is possible.
Communication paths between parts are described by using connectors.
Connectors are connected to the ports, which also show interfaces of the
component that can be accessed. [19]

With composite structure diagram, it is possible to describe the classes� inner
structure and its parts interaction quite easily compared to the language UML
1.5 provides. Figure 3.a and 3.b describe an example of the means UML 1.5
provides for expressing communication structures and Figure 4 shows the means
UML 2.0 will provide.

In Figure 3.a, CoffeeMachine class composes of two sub classes: Controller and
Hardware. Figure 3.b tries to show the communication between sub classes, but
the sequence diagram only displays one use case and for that reason, it does not
show all the signals that can be sent and received and thus interfaces between
classes remain undefined.

21

DomainModel package CMDesign {1/2}DomainModel package CMDesign {1/2}

CoffeeMachine

CoffeeMachine

Controller

Controller

Hardware

Hardware

Ctrl

Ctrl

Hw

Hw

a) Class diagram.

sd Sequence interaction UseCase9 {1/1}sd

Hw [1]

Hw [1]

Ctrl[1]

Ctrl[1]

env[1]

env[1]

Sequence interaction UseCase9 {1/1}

IdleIdle IdleIdle

Coin(10)Coin(10)

PaidTenPaidTen

Tea()Tea()

ReturnChange()ReturnChange()

FillWater()FillWater()

MakingTeaMakingTea

WaterOK()WaterOK()

WaitFillWaitFill
b) Sequence diagram.

Figure 3. Communication structures of UML 1.5.

In Figure 4, there are two parts named Ctrl, which is the instance of Controller,
and Hw, which is the instance of Hardware, inside of active class
CoffeeMachine. Ctrl and Hw communicate with each other through a port,
which is connected together by a connector. The Interfaces between parts can be

22

seen close by the ports. Ctrl provides interface for CoffeeOK, WaterOK and
Warm signals and requires interface for FillCoffee, FillWater and HeatWater
signals. The provided interface is defined as an interface of services that the
component offers, provides, for the other components. The required interface is
defined as an interface of services, which has to be provided by the other
components. Ctrl is also communicating with the environment of the active
class CoffeeMachine through the port of the CoffeeMachine. With this notation,
it is easy to describe the composition and communication of the classes.

Comm active class
CoffeeMachine

{1/1}Comm active class
CoffeeMachine

{1/1}

FromUserFromUser

ToUserToUser

Ctrl : Controller

Ctrl : ControllerP3P3P2P2

Hw : Hardware

Hw : Hardware
P4P4

CtrlbiHw

CoffeeOK, WaterOK, Warm

FillCoffee, FillWater, HeatWater

CtrlbiHw

CoffeeOK, WaterOK, Warm

FillCoffee, FillWater, HeatWater

Figure 4. Composite structure diagram.

UML 2.0 introduces new ways for modifying and extending the actual UML
itself. Profiles are used to extend UML with domain specific elements. For
instance, the UML profile for real-time systems might include some extra
information for the model about timing, performance, scheduling policies, etc.
[16]. In this way, the language itself is not overloaded with all the features that
are not needed in every software system.

2.3 Model-Driven Architecture

Modelling in traditional engineering is considered essential or even compulsory.
No one would ever begin to build a new car or an air plain without first
constructing a proper model of it. However, in software business, modelling is

23

quite seldom used and when applied, models are left to play a secondary role.
This is peculiar, as software systems are highly complex nowadays and the
benefits of using models and modelling techniques could be considerable. [1]

Model-Driven Development is about treating models as first class design entities
[1]. While traditionally models end up just as documentation and, in addition,
they are far too often inconsistent with the source code, in MDD, the whole
source code is to be generated from models. However, both the software
modelling and code generations had been tried for years with quite limited
success and mostly in highly specialized domains, but until now standards and
automation technologies have been quite immature.

Model-Driven Architecture is defined as �an OMG initiative that proposes to
define a set of non-proprietary standards that will specify interoperable
technologies with which to realize model-driven development with automated
transformations�. [2] In addition to the MDD�s approach of using modelling
languages as programming languages, Model-Driven Architecture also tries to
solve a problem that troubles the software business: varying software platforms
and technologies. To solve this, system functions have to be defined in completely
platform independent fashion. This has also been tried before with a wide variety
of different kinds of middleware solutions, such as Common Object Request
Broker Architecture (CORBA), but results have been quite heterogeneous. In
MDA, the idea is to use multiple models at different levels of abstraction to isolate
the system specification from the underlying platform. In this way, the platform
heterogeneity is hidden at the design- and compilation-time.

The promise of MDA is to solve or ease the �hot new technology� effect. This is
possible as the system is modelled in a platform independent fashion and for that
reason, existing designs can be targeted to new implementation infrastructures.
Maintenance should also be much easier as the availability of design in machine
readable-form gives direct access to the specifications of the system. Since the
source code can be generated from developed models, testing and simulation of
the system is made much easier. The models can be validated against
requirements, tested against various infrastructures and the actual behaviour of the
system can be simulated in the very beginning of the software development. [3]

24

To get a better grasp of MDA, a set of central concepts has to be defined and
explained. First, the very basics of MDA are discussed by defining what the
actual model is and then by defining what abstraction levels there are in MDA,
starting from the most abstract one and ending up to the actual implementation.
Finally, it is explained how transformations are used to switch between models.
However, no too specific issues are discussed here, only the necessary aspects
for understanding the central thinking behind MDA.

2.3.1 The Model

The model is described as a simplified representation of the system. The model
does not answer all questions about the system. It only answers a subset of them
from whose point of the view it is made. For instance, a globe is a model of the
Earth. Distances between countries and continents can be pieced together when
knowing the scale. However, it is not possible to tell the temperature of some
place on the Earth by just looking at the globe. For this reason, multiple views of
the system usually exist to answer different kinds of questions. For instance, the
weather model tells everything about the weather. The actual view is defined as
follows: �A view is a model that is completely derived from another model (the
base model). A view cannot be modified separately from the model from which
it is derived. Changes to the base model cause corresponding changes to the
view. If changes are permitted to the view, then they modify directly the source
model.� [20] The model can be described either in textual or graphical language
with strictly defined syntax and semantics.

2.3.2 Abstraction Levels

The concepts of Model-Driven Architecture lies on three different types of
models: a computation independent model, a platform independent model and a
platform specific model.

The computation independent model is a model, which shows the system in the
environment where it will operate. None too specific details of the system are
presented, as typically this model is independent of how the system is

25

implemented. For this reason, CIM is sometimes called business or domain
model. [3]

The platform independent model concentrates on the operation of the system
while hiding the details of the underlying platform. This model is
computationally complete meaning that it must be possible to execute the system
defined by this model. A platform independent model does not change from one
to another when changing the implementation platform. [3]

The platform specific model can be described as a realization of PIM with all the
details of the chosen platform. For example, a CORBA specific PSM could be
expressed in the UML profile for CORBA and a Web Services PSM could be
expressed in Web Services Description Language (WSDL). [21] The actual
source code can also be considered as a PSM but sometimes it is called Platform
Specific Implementation (PSI) to separate it from graphical presentations.

2.3.3 Platform

�A platform is a set of subsystems and technologies that provide a coherent set
of functionality through interfaces and specified usage patterns, which any
application supported by that platform can use without concern for the details of
how the functionality provided by the platform is implemented.� [3] In this
thesis, the term 'platform' is used in the same way as David Frankel in the book
Model Driven Architecture [22]:

• information-formatting technologies, such as XML DTD and XML
Schema

• 3GLs and 4GLs, such as Java, C++, C# and Visual Basic
• distributed component middleware, such as J2EE, CORBA and .NET
• messaging middleware, such as MQSeries and MSMQ.

When platform independency and platform independent or specific models are
discussed, platform has to be defined to make sense in definitions. Especially
when speaking of a platform independent model. Figure 5 represents the
definition dilemma. The communication middleware PIM transforms into
CORBA-specific model, or briefly into a platform specific model. At the same

26

time it is PSM for the communication middleware and PIM for the operating
system. It is the same case with, for example, Java. Java is usually considered
platform independent but in fact, it relies strictly on its virtual machine. This is
why defining the platform is crucial.

Figure 5. Platform independency is relative.

2.3.4 Model Transformations

Model transformation is described as �the process of converting one model to
another model of the same system� [3]. In MDA, one of the key transformations
is from PIM to PSM, but also several other transformations are defined.
Transformations where the abstraction level is changed are called vertical
transformations to separate from horizontal transformations where the
abstraction level remains unchanged [23]. Next, vertical transformations from
CIM to PIM, PIM to PSM and PSM to the code are explained briefly:

• CIM to PIM. This transformation might be somewhat abstract as
computation independent, or business, models are typically not

27

appropriate to express all the details needed for PIM. For this reason,
PIM may be drawn separately, but all the requirements and other
aspects defined in CIM are taken into consideration.

• PIM to PSM. This transformation is used when the PIM is sufficiently
defined and its function is secured. In this transformation, the
platform specific issues are attached to the PIM to form PSM, which
should then be completely aware of its platform.

• PSM to code. This transformation is used when all the platform
specific details are defined and the model is ready for actual
implementation.

Horizontal transformation, that is, transformation between models at the same
abstraction level, is also possible. For an example, PIM to PIM transformation is
used when models are enhanced, filtered and specialized during the design
process. [4]

However, vertical transformations can be considered the key transformations, as
they push the system under development from specifications all the way to the
actual source code. Figure 6 represents the key idea of the MDA. As at the top
there is a platform independent model which is obviously does not rely on any
platform, it can be transformed into any desired target platform and finally to the
running code. This is the method, how the isolation between specification of the
system and the implementation is achieved.

28

Figure 6. PIM transforming into various PSMs.

Transformations are based on mappings, which are defined as a specification of
a mechanism for transforming the elements of a source model to the elements of
a target model [3]. Mapping makes use of things called marks, which are
attached to the model and used to guide the transformation. However, if no user-
defined marks are attached to the model, transformation can be considered
deterministic. That is, all the information required for transformation is
encapsulated in the source model. In this way, a certain source model always
transforms into a certain target model.

Either the transformation is vertical or horizontal; it should be possible to
transform the model back to the original model from where it was transformed.
This is where the transformation record is considered. When the transformation
is conducted, the result is the target model, for instance from PIM to PSM
transformation it is PSM and transformation record. The record of
transformation includes a map between elements of the original model to the
target model [3]. With the use of the transformation record it is possible to trace
every aspect and requirement defined in CIM all the way to the actual
implementation and vice versa.

29

If the transformation record is discarded, undoing the transformation is made
difficult. This is especially the case, when the abstraction level is changed.
Consider for instance, a PSM-PIM-PSM transformation. First, the platform
specific model, in this case the source code, is transformed into an
implementation language independent model, PIM. In the code, there are loops
implemented with three kinds of ways: while-, do-while- and with for-loops.
How do we express distinction between these loops in PIM? Furthermore, when
the PIM is transformed back to PSM, does the original PSM, the source code,
match perfectly with the transformed (target) PSM. Particularly if the
optimization has taken place in any stage, it is highly unlikely that the models do
match.

A similar problem is encountered even if the abstraction level is not changed.
For instance, a simple PIM-PIM transformation where all the classes� public
attributes are changed to private. There is no way to undo the transformation if
there is no record available.

If all or even some of the transformations can be automated, the benefits are
quite self-explanatory. Automated vertical transformations reduce time to
market, increase productivity and may also increase quality of the product, as
well defined transformations and code generation may produce better quality of
the source code than by hand writing it. The situation is the same, when C++ is
first compiled for assembly. It takes an expert programmer to produce a better
assembly code than a modern compiler does. Again, benefits of using horizontal
transformations might result in a more qualified model.

30

3. Quality-driven model transformation
A quality-driven model transformation [5] can be described in the sense of MDA
as a PIM-to-PIM transformation. This means that the transformation is
performed between models at the same abstraction level and, in this case,
between two platform independent models.

The quality-driven model transformation is justified especially in the context of
product families. As stated in Section 2.1, the products of a product family share
the same architecture and common properties. However, products of the same
family may promote different kinds of quality requirements, but they share the
same functionality. For instance, one product has to be as reliable as possible,
but for another, hard real-time requirements, i.e. performance is essential.

The driving force for taking quality-driven model transformations is in the
varying software quality requirements. The change may result from varying
software platforms and middleware, change in underlying hardware or domain
standards. Alteration in the quality requirements of a software product requires
modifications either in the behaviour or structure or in both of these. In the
context of quality-driven model transformation, variations of architecture models
are within the scope.

Quality-driven model transformation relies on the fact that the functionality of
the system can be implemented with a wide variety of architectures and with
different quality attributes in mind. From the point of view of MDA,
transformation from PIM into the desired the PSM is essential, but sometimes it
is not enough to develop new products if the platform, whether it is software or
just plain hardware, or the quality requirements of the product differs a lot from
quality the product family supports. Sometimes it is necessary to change the
architecture of the system first in the PIM level to correspond to the new quality
requirements and after that, the transformation from PIM to PSM can be
conducted.

Designing software architecture is about constructing a high-level structure for
the software systems. Diverse architecture styles or patterns are most suitable
for certain situations. Implementing the software with wrong architecture may
result in wide variety of problems. On the other hand, choosing the correct

31

architecture from the start will result in � from some point of view � more
qualified model.

Knowing the benefits of using a certain pattern in a certain situation will help
avoiding pitfalls while constructing the ultimate structure � architecture � for the
software systems. For this purpose, there are widely available catalogues
concerning design and architecture patterns, e.g. [11] and [12]. At the end,
choosing the correct architecture means gathering information about the problem
domain, prioritising requirements � functional and non-functional � and making
design decisions.

3.1 Overview of the Technique

Quality-driven model transformation technique defines the following inputs [5]:

• What information is required to make transformation possible?
• Where does the information stand?
• How is the information obtained and used?

An overview of the technique is described in Figure 7. At the top of Figure 7
stands the source model, which is to be transformed to the other (target) model
with different quality attributes. The architect determines which architecture is
the best solution for the architecture of the system by considering the
information gathered in special database called the stylebase.

The stylebase contains a set of design patterns and architectural styles or patterns
[14]. The idea is to gather all the information of the patterns in a uniform way to
promote automation of the technique as much as possible. The following 12
aspects are stored in the stylebase: name of the pattern, reference, quality
attributes, component types, component roles, connector types, data topology,
control topology, purpose, diagram name, abstraction level and optional
rationale [5]. With the information gathered of each pattern, especially quality-
attributes, the architect can consider the most suitable design or architectural
patterns for the system.

32

Transformations are defined by the following the rules defined for the
transformations. The rules consist of the transformation admissibility rules and
feasibility rules [5] which, combined and considered together, are used to form
mappings. Mappings set the discipline how the transformation from a source
model to a target model can be implemented.

It seems that applying the quality-driven model transformation technique for
defining new transformations results in more pattern pair-specific rules than the
general rules of the transformations. In order to make automating
transformations possible, all the transformation mappings have to be defined
explicitly. For this purpose, we created a special database called rulebase, which
contains all the pair-specific mappings defined in a uniform way.

In order to pinpoint components from a model and to conduct actual
transformation, the source model has to be marked first. Matinlassi declares
three marks that have to be attached to the components of the source model: the
name of the pattern the component participates in, the component�s role in it and
the component�s type [5]. The actual transformation can then be conducted by
considering the marks of the model and by applying mappings found in the
rulebase.

33

Evalluate_source_modelEvalluate_source_model

SourceModelSourceModel

RequirementsRequirementsIdentify_target_model_candidatesIdentify_target_model_candidates

Decide_target_modelDecide_target_model

StylebaseStylebase

RulebaseRulebase TransformTransform

TargetModelTargetModel

SourceModelSourceModel

Figure 7. An overview of the quality-driven model transformation technique.

3.2 Quality-driven Rule Description Language

The best way to define transformation rules is to apply a standard transformation
description language. Object Management Group announced a request for
proposals [24] in April 2002 and initial submissions were due to October 28th
2002. A total of eight proposals was received. A review of all proposals is

34

available in [20]. Currently (November 2004), transformation description
languages are still underway and thus we decided to invent our own rule
description language.

The quality-driven model transformation technique promotes automation by
suggesting that the mappings between pattern-pairs are presented in a uniform
way. For this purpose, we introduce Quality-driven Rule Description Language
(Q-RDL), which is used to describe the mappings defined by the technique. It
must be emphasised that Q-RDL is not a general-purpose rule description
language and it can only be applied, as such, to describe transformation rules
defined by the quality-driven model transformation technique. It must also be
understood that the Q-RDL is still an immature rule description language.

Mappings described with Q-RDL for transformation includes the following
parameters:

1. Source pattern name
2. Target pattern name
3. Source component marks

a. Pattern name
b. Component role
c. Component type

4. Target component marks
a. Pattern name
b. Component role
c. Component type

5. Crucial component marks
a. Pattern name
b. Component role
c. Component type

6. Connection rules
a. Source component marks

i. Pattern name
ii. Component role

iii. Component type
b. Target component marks

i. Pattern name
ii. Component role

iii. Component type

35

The first two parameters on the list present source and target pattern names.
These are only specified once at the top of every transformation rule.

Parameters 3 and 4, which are source and target component marks, concern
mark mappings between the patterns. This means that every source component
with certain list of marks, which are pattern name, component role and
component type, is mapped to the corresponding component with target marks.
Source and target component marks always exist in pairs and there may be an
unlimited number of these pairs in all transformation rules.

The fifth parameter, crucial components marks, consists of a list of components,
which are necessary to the target pattern. This information is needed if some
components are missing in the transformation from the source to target model,
which are necessary for the target pattern to function. If this happens, the fifth
parameter proposes creating a new component into the target model with the
desired marks.

The sixth parameter consists of connection rules between components. Here we
have the source and target component marks, which provide information on
what kind of components are to be connected together. It must be noticed that
'source' does not refer to the source model but to the source component in the
target model and similarly 'target' refers to the target component in the target
model.

All parameters and attributes are presented in a single list, which follows the
same order as the parameters presented above. The parameters are separated
from each other by descriptive tags. The syntax of the Q-RDL is described in
Extended Backus-Naur Form (EBNF) in Appendix 1. Appendix 2 represents an
example transformation from Layers to Blackboard pattern defined in Q-RDL.

Defining quality-driven model transformation with Q-RDL works well, if the
transformations can be defined as one-to-one transformations, as the pair-
specific rules indicates in the first place. The one-to-one transformation means
that transformation from the source to target pattern can be described explicitly
and that the particular pattern is always transformed in the same way to this
other pattern. However, this is not the case with all transformations.
Transformations exist where the source is successfully transformed into some

36

particular target model, but reverse transformation is not possible without user
interaction. There is this defect certainly in the Q-RDL but the actual
transformation can be questioned in these kinds of situations. There is no
available technique, which could automate one-to-many, many-to-one and
many-to-many transformations without user interaction.

3.3 Applying Quality-Driven Model Transformation

Here, we illustrate the quality-driven model transformation technique with a
simple transformation example. The example illustrates how the Layers
architectural pattern can be successfully transformed into the Blackboard
pattern. The purpose of this example is to show how to

• apply the stylebase for defining source and target patterns
• apply the admissibility rules for validating transformation

admissibility
• define transformation mappings
• apply Q-RDL for rule description
• perform the Layers-to-Blackboard transformation by marking the

source model and applying Q-RDL.

3.3.1 Applying the Stylebase

The stylebase requires the following information of each pattern [5]: name of the
pattern, reference, quality attributes, component types, component roles,
connector types, data topology, control topology, purpose, diagram name,
abstraction level and optional rationale.

The first pattern we insert to the stylebase is called Layers. For the name of the
pattern we can set �Layers� and for reference we set �Bushmann, F., et al.,
Pattern-oriented software architecture � a system of patterns, 1996, Chichester,
New York: Wiley� to make sure which �Layers� pattern we are defining. For the
quality attributes, Niemelä [14] defines four quality-attributes: portability,
modifiability, maintainability and reusability. However, maintainability can be
defined as a composite of the other quality attributes [10] such as flexibility,

37

reusability, modifiability, testability and integrability and therefore
maintainability is a too abstract definition for the stylebase. In addition,
maintainability is rather a system level attribute than an architecture level
attribute. For that reason, all the quality-attributes except maintainability are
added to the stylebase. Inside Layers, there may be different types of
components and no specific types are presented, thus we set �varying� to the
stylebase. It is similar with the component roles. We set �layer� and
�component� to the stylebase. Communication between components and layers
are often called top-down requests if the communication propagates from top to
down, and bottom-up notifications in a contrary situation. Thus, we set �top-
down requests� and �bottom-up notifications� into the stylebase concerning
connector type parameters. Data and control topologies conforms hierarchical
topology [25], for this reason �hierarchical� is set to both data and control
topology parameters in stylebase. For the purpose, Buschmann [11] defines
�from mud to structure�. As Layers is concerned with how the components
relate and communicate with each other, a UML 2.0 diagram where the pattern
exists is set to �composite structure� diagram [18]. The Layers being an
architectural pattern, the abstraction level is set to �architectural� and rationale is
left blank, as no comments for the pattern are set at this time. Table 1
summarises the Layers architectural pattern.

Table 1. Layers information.

Stylebase parameter Value
Name Layers
Reference [11]
Quality attribute Portability, modifiability, reusability
Component type Varying
Component role Layer, Component
Connector type Top-down request, bottom-up notification
Data topology Hierarchical
Control topology Hierarchical
Purpose From mud to structure
Diagram Composite structure
Abstraction level Architectural
Rationale

38

The second pattern we insert to the stylebase is called Blackboard. The required
information is gathered in the same way as for Layers. In addition to the quality
attributes Niemelä [14] defines, extensibility is added to the stylebase as it can
be considered that Blackboard promotes extensibility, by providing loose
coupling between components and thus adding new components to the system
may require only minor modifications to the data and control components.
Extensibility is defined a systems capability to acquire new components. [10]
However, the quality attributes maintainability is left out again. Table 2
summarises the Blackboard architectural pattern.

Table 2. Blackboard information.

Stylebase parameter Value
Name Blackboard
Reference [11]
Quality attribute Reliability, modifiability, reusability, extensibility,

availability
Component type Data, control, computation
Component role Blackboard, control, source
Connector type Messages
Data topology Hierarchical
Control topology Star
Purpose From mud to structure
Diagram Composite structure
Abstraction level Architectural
Rationale

3.3.2 Applying Admissibility Rules

Now, we have defined how the source and the target patterns are defined in the
stylebase. To ensure transformation admissibility, we apply admissibility rules
[5] to the patterns. The first rule states that transformation is admissible only
between patterns at the same level of abstraction. If we compare Table 1 and
Table 2, the outcome is true. The second admissibility rule states that the
purpose of the patterns has to be the same. This is also true. As both the
admissibility rules are true, we can move on.

39

3.3.3 Defining Mappings

In order to develop mark mappings between the Layers and the Blackboard
patterns, we have to approach the mapping problem by constructing a simple
example, which should describe at least the most of possible mappings.
Mappings developed by using this example could be used later on in all Layers-
to-Blackboard transformations.

Since component types are not pre-defined in the Layers patterns, we have to set
some types for them to make it possible to form mark mappings. The first
feasibility rule [5] states that the component type is not allowed to vary in the
transformation. In Blackboard, data, control and computation components exist,
and thus we set these types of components into the model, which illustrates the
Layers pattern (see Figure 1) to form an example mark mappings without special
exceptions.

In addition, the corresponding roles of the components are set for both models.
For the Layers model, we set �layer� and �component� roles for the components.
For the Blackboard model, we set corresponding roles of the types of the
components. Table 3 presents the marks of the source model and Table 4
presents the marks attached to the target model.

Table 3. Marks of the Layers model.

Component
name

Pattern
name

Component
role

Component
type

Ctrl Layers Component Control
Comp1 Layers Component Computation
Comp2 Layers Component Computation
Data Layers Layer Data

40

Table 4. Marks of the Blackboard model.

Component
name

Pattern
name

Component
role

Component
type

Ctrl Blackboard Control Control
Comp1 Blackboard Source Computation
Comp2 Blackboard Source Computation
Data Blackboard Blackboard Data

Now, we have set marks for both the source and target models. Mark mappings
can be easily formed by just replacing the source pattern marks with the
corresponding target pattern marks. The component type will not change in
transformation. Table 5 presents mark mappings between Layers and
Blackboard architectural patterns. Here, the marks of the source components are
replaced with marks of the target component.

Table 5. Mark mappings between Layers and Blackboard.

Mapping pairs Pattern
name

Component
role

Component
type

Source component Layers Layer Data
Target component Blackboard Blackboard Data
Source component Layers Component Control
Target component Blackboard Control Control
Source component Layers Component Computation
Target component Blackboard Source Computation

In practice, mark mappings mean that the marks of the source components (Table
3) are changed to corresponding marks of the target components (Table 4).

In this stage, it is reasonable to consider what happens if some components are
missing in the source model that are crucial for the target model. The first
feasibility rule points out that the type of a component is not allowed to change
during transformation, thus all the component types of the target pattern have to
exist in the source model. If all these types of components do not exist in the
source model, they are generated during the transformations to the target model.

41

In this way, the transformation is made possible, but considering the
reasonableness of the transformation, it is left for the shoulders of the architect.
The list of the crucial components is specific for each pattern, not for the
transformation. For instance, when transforming (from an arbitrary pattern) to
Blackboard, the list of crucial components is always control, computation and
data. Marks of the crucial components are collected in the table (Table 6).

Table 6. Marks of the crucial components.

Crucial
component

Pattern
name

Component
role

Component
type

1. Blackboard Control Control
2. Blackboard Source Computation
3. Blackboard Blackboard Data

The second feasibility rule [5] states that the connector topology is constructed
from the scratch and thus the connection rules depend solely on the target
pattern. Considering Blackboard (see Figure 2) reveals three kinds of rules for
the Blackboard pattern:

• Computation components have access to data components.
• All computation components are controlled by a controller

component.
• A control component has access to the data component.

These rules are then collected in the table. In the Table 7, the source component
is connected to the target component. Both the components are identified by
using marks. That is, all the components with certain marks (source component)
are always connected to the components with specific marks (target component).

42

Table 7. Connector mappings.

Connection pairs Pattern
name

Component
role

Component
type

Source component Blackboard Blackboard Data
Target component Blackboard Source Computation
Source component Blackboard Control Control
Target component Blackboard Source Computation
Source component Blackboard Blackboard Data
Target component Blackboard Blackboard Control

Now, the mappings from Layers to Blackboard have been defined to make
transformation possible.

3.3.4 Defining Rules by Q-RDL

The same mappings can easily be described by using Q-RDL. The definition of
the transformation is always started by defining the �<<NEW
TRANSFORMATION>>� tag. Next, the source and target patterns are defined.
As the transformation we want to define is Layers to Blackboard, we set two
tags, �<<Source pattern>>� and �<<Target pattern>>� and define 'layers' for the
source and �blackboard� for the target. The rule list should now look like the
Figure 8 presents.

<<NEW TRANSFORMATION>>
<<Source pattern>>
layers
<<Target pattern>>
blackboard

Figure 8. Defining transformation with Q-RDL � Header.

Next, the mark mappings are defined. First, the tags, �<<Source information>>�
and �<<Target information>>� are set and then filled with correct marks. In
addition to the marks presented in Table 5, three more mark-mapping pairs are

43

defined. This is as in Layers; there are two kinds of components with different
roles (layer and component) and in this case, the role of the component in Layers
does not affect the transformation, thus we define mark-mappings for both
�layer� and �component� components. Figure 9 presents mark-mapping pairs.

Figure 9. Defining transformation wih Q-RDL � Mark mappings.

The list of the crucial components is defined (see Table 6). First, the �<<Crucial
components>>� tag is added and after that an �<<Element>>� tag to separate the
crucial elements from each other. The marks of the each crucial element are
added then (Figure 10).

<<Source information>>
layers
component
data
<<Target information>>
blackboard
blackboard
data

<<Source information>>
layers
component
control
<<Target information>>
blackboard
control
control

<<Source information>>
layers
component
computation
<<Target information>>
blackboard
source
computation

<<Source information>>
layers
layer
control
<<Target information>>
blackboard
control
control

<<Source information>>
layers
layer
data
<<Target information>>
blackboard
blackboard
data

<<Source information>>
layers
layer
computation
<<Target information>>
blackboard
source
computation

44

<<Crucial components>>
<<Element>>
blackboard
blackboard
data
<<Element>>
blackboard
control
control
<<Element>>
blackboard
source
computation

Figure 10. Defining transformation with Q-RDL � Crucial components.

Connection rules are added as follows: (1) define �<<Connection rule>>� tag,
(2) define �<<Source>>� and �<<Target>>� pairs with required information (see
Table 11). Defining transformation rules is finished by adding the �<<END
TRANSFORMATION>>� tag. Figure 11 presents the connection rules.

Figure 11. Defining transformation with Q-RDL � Connection rules.

<<Connection rules>>
<<Source>>
blackboard
blackboard
data
<<Target>>
blackboard
source
computation

<<Source>>
blackboard
control
control
<<Target>>
blackboard
source
computation

<<Source>>
blackboard
blackboard
<<Target>>
blackboard
control
control
<<END
TRANSFORMATION>
>

45

Now, the Layers-to-Blackboard transformation is successfully defined by Q-
RDL. As it can be seen, defining a new transformation with Q-RDL is easy
indeed, as the language reminds how the transformation mappings are
constructed. In addition, Q-RDL promotes using the quality-driven model
transformation technique to define new transformations correctly, as the required
data for each transformation follows the same order as the transformation to be
defined.

3.3.5 Performing Layers-to-Blackboard Transformation

Before performing a transformation, the following pre-conditions have to be met:

• The model has to be marked.
• Both the source and the target patterns are to be defined in the

stylebase.
• The transformation is admissible.
• The transformation rules are defined in the rulebase.

After securing pre-conditions, transformation can take place by following the
rules defined in the rulebase.

As illustrated by an example, the pre-conditions are met. In this example, the rules
were defined with Q-RDL for the transformation (see Figures 8, 9, 10 and 11).

1. Transformation from Layers to Blackboard begins by identifying the
correct rule in the rulebase. This is done by matching both the source
and the target pattern names with the corresponding fields (Figure 8)
in the transformation rules. When the correct rule is found, the actual
transformation process can begin.

2. The marks attached to the model are changed to corresponding marks
of the target pattern. The mark mappings (see Figure 9) define the
source components by defining all the marks attached to them and the
corresponding marks of the target pattern. The marks of the found
components are transformed.

3. After mark mapping, existence of crucial components (see Figure 10)
of the Blackboard pattern is observed. This is conducted by browsing

46

the model for crucial components. If some component is missing, it is
generated. In the example, all the crucial components are found.

4. As the connector topology relies only of the target pattern, all existing
connectors are removed. The new connector topology is constructed
by following the connection rules (see Figure 11). The connection
rules define which kind of component is to be connected to which
type of component. A data component is connected to computation
components, a controller component is connected to computation
components and to a data component.

After constructing a connector topology, the result of the transformation should
look after re-arranging the components to correspond to the new architectural
pattern, as Figure 2 presents.

47

4. Evaluation of UML tools for model-driven
architecture

In this section, several commercial and open-source tools, which are listed in
bullets below, are studied to find the most suitable one to be extended to support
the quality-driven model transformation. The tools are selected for the study by
listing the best known Computer-Aided Software Engineering tools and by
selecting some of the less known ones relatively randomly. The tools have to
support Unified Modelling Language and therefore other tools which support
some different modelling language are not considered.

At the time of writing this section (February 2004), there are some previous
studies on different CASE tools capabilities, but no research has been conducted,
or at least not published, from the perspective of supporting MDA and structural
modelling. Just some lists of tool support for different features and diagrams
exist, as Mr. Mario Jeckle presents in his web site [26]. The following modelling
tools are evaluated:

• ArcStyler 4.0
• ArgoUML (2/04)
• iUMLite 2.2
• Jvision 2.1
• Poseidon Pro 2.1.2
• Prosa UML 2004 Programmer edition
• ProxyDesigner 1.0
• Rhapsody Developer 5.0
• Rose Technical Developer
• Rose XDE Developer Plus (2/04)
• Telelogic Tau/Developer 2.2.51
• Together ControlCenter (2/04)
• UMLet 3 beta.

The evaluation is two-phased. First, tools are studied from vendors� website,
which is practically the only source of information regarding tools' capabilities.
Because of this, every fact, which will be presented leans merely on the vendors�
datasheets and sales talks: all information gathered may not be completely

48

accurate. The most unsuitable tools are then filtered out and the remaining tools
are chosen for extension trials.

In the second evaluation phase, the evaluation versions of the remaining tools
are obtained. The second phase of evaluation consisted of two tasks: performing
all including modelling tutorials and evaluating the tools� extension capabilities.
Finally, the tools are compared against each other.

This section is structured as follows: First, the first evaluation framework is
presented against which the tools are compared to resolve a couple of the most
promising tools. Second, the second evaluation framework is introduced in order
to resolve the most suitable tool to be a platform for the tool extension. Finally,
the summary of the evaluation is presented.

4.1 The First Tool Evaluation � Literature Study

Table 8 presents the evaluation framework of the first evaluation phase. In
architectural modelling, expressing the internal structure of the classes and
defining component interfaces are considered essential. For that reason, the
UML versions of the tools are observed. As UML 2.0 is currently in the
finalization phase and some uncertainty exists on how tool vendors implement it
at a moment, the structural modelling capability is observed separately, as well.

As it is intended to implement a tool extension, modelling tools has to provide
some kind of extension interface. What kind of interface and what languages
could be used for extensions are not considered as essential aspects in the first
framework and for that reason these are not observed. Just whether the tools are
extendable or not are considered.

As it is defined in MDA, models are ultimately transformed into code. For that
reason, code generation for at least one language has to be provided. As code
generation is not a straightforward task, there are two kinds of generators: full
source code and code template generating generators. The full source code
generators should generate all or nearly all of the code, while the code template
producing generators only generates class and function templates. Code
generation for C, C++ and Java are observed, as it is assumed that these are the
most common languages to be used. Only full code generators are considered.

49

Some features that could lighten and quicken the development, maintenance and
testing are also chosen into the evaluation framework. Automatic document generator,
which should produce readable documents from designed models, is observed.
Support for some kind of testing and debugging environment is observed, too.

Table 8. The first evaluation framework.

Aspect Question
UML What is vendor's announced UML version?
StructM Does the tool support structural modelling?
Ex Does the tool provide extensibility interface for user-defined plug-ins?
C Does the tool support code generation for C?
C++ Does the tool support code generation for C++?
Java Does the tool support code generation for Java?
Doc Does the tool provide any automatic document generator?
Sim Does the tool support any testing and debugging environment?

From the perspective of the first evaluation framework, every evaluated tool is
reported in Table 9. Mark �X� means �yes� answer to the question presented in
the first evaluation framework.

Table 9. Summary of the results of the first evaluation.

Tool UML Ex StructM C C++ Java Doc Sim
ArcStyler 4.0 1.4 X X X X
ArgoUML (2/04) 1.3 X
iUMLite 2.2 1.4 X X X
JVision 2.1 1.3 X
Poseidon Pro 2.1.2 1.4 X X
Prosa UML 2004 Prog. 1.5 X X X X X
ProxyDesigner 1.0 N/A
Rhapsody Developer 5.0 2.0 X X X X X X
Rose Technical Developer 1.4 X X X X X X X
Rose XDE Developer Plus (2/04) 1.4 X X X
Telelogic Tau/Developer 2.2.51 2.0 X X X X
Together ControlCenter (2/04) 1.4 X X X X X
UMLet 3 beta N/A X

50

UML is on the threshold of a new era, as version 2.0 is being published in the
near future. For that reason, it would not be reasonable to consider further any
tools that do not support UML 2.0. On the other hand, Rose Technical
Developer does support ports, structure modelling and other typical features of
UML 2.0 even with version 1.4. Due to this, it must be considered that a
supported UML version does not explicitly reveal the real structural modelling
capabilities and for that reason, the supported UML version cannot be used for
evaluation.

The most effective way to drop out unsuitable tools is by checking whether the
tools support structural modelling. This criterion filters ten tools out from further
consideration and leaves Rhapsody Developer, Rose Technical Developer and
Telelogic Tau/Developer for further consideration.

The remaining tools do provide some kind of extension interface and support for
full code generation for at least one language. Therefore, no tools are dropped
out at this stage. Neither are any of the tools filtered out when the support for
document generation and for testing and debugging environment were observed
as these were considered minor aspects. Due to this, the remaining three tools
are selected for a more detailed evaluation.

4.2 The Second Tool Evaluation � Empirical Study

As the first evaluation is based on vendors� datasheets and sales talk only, a few
the same features listed in the first evaluation framework are selected to the
second evaluation framework to ensure the correctness of information. Again,
the purpose is to describe significant characteristics of the tool from the
perspective of MDA and extendability, not to show every feature. The second
evaluation framework is presented in Table 10.

The UML version and especially the structural modelling capability are taken
into the framework to make certain that the tools do support structural
modelling, as it is told. This is because vendors often promise more than they
deliver.

51

Extensibility is divided into two separate categories: extensibility interfaces and
UML profile extensions. The extensibility interfaces are for accessing the tool
through provided application programming interface (API) with some
programming language. The UML profile extension is for modifying and
extending UML itself.

Platform independent and platform specific modelling is observed when the
tool�s support for MDA is considered. At this time, the platform considered can
be any 3GL or 4GL, so being platform independent, the tool has to provide its
own action language for describing the model�s behaviour. In this way, a model
can be compiled to any supported target languages. If no action language is
defined, it is considered that the tool only allows platform specific modelling.

Table 10. The second evaluation framework.

Aspect Question
UML What is vendor's announced UML version?
StructM Does the tool support structural modelling?
ExtL What languages can be used for tool extension?
Profiles Does the tool provide support for defining new UML profiles?

MDA In what extent does the tool supports MDA?

Three tools � Rhapsody Developer, Rose Technical Developer and Telelogic
Tau/Developer � are selected for closer evaluation. Telelogic Tau/Developer and
Rhapsody Developer are evaluation versions, downloadable completely free
from the vendors� web site, whereas Rose Technical Developer is a commercial
version.

The evaluation is performed as follows. First, the tools are installed and after
that, the tools are evaluated one at the time. The tool evaluation consists of two
tasks: First, all the included modelling tutorials are performed. Second, the tool
extension tutorials and some modifications of our own are done to get better
acquainted with the extension interfaces.

From the perspective of the second evaluation framework, the evaluated tools
are reported in Table 11.

52

Table 11. Summary of the results of the second evaluation.

Tool UML StructM ExtL Profiles MDA
Rhapsody Developer 2.0 Only C++ COM, VBA X PSM
Rose Technical Developer 1.4 X OLE, RRRTS PSM
Telelogic Tau/Developer 2.0 X COM, TCL X PIM, PSM

The vendors� announced UML version does not seem to be an important aspect
when ranking, as the tools do support ports and structural modelling whether the
version is 1.4 or 2.0. Currently, Rhapsody Developer only supports structural
modelling when working with C++ language.

The tools support at least two extension mechanisms for plug-ins, therefore the
count cannot be used for ranking. Nor can the number of extension languages be
used, as there are plenty of where to choose from in all cases. API cannot be
assessed either, as only trivial extensions were made during the tool evaluation.
Because of that, there is no experience implementing full-fledged plug-ins and
for that reason, some uncertainty remains on every provided API. According to
the documents, the tools are freely extendable, so they have to be considered as
equals at this stage. Instead, support for creating new UML profiles can be used
for consideration.

Tau/Developer is the only tool which supports platform independent
development, as no target code has to be written anywhere. This is due to the
fact that Tau/Developer provides its own platform independent action language.
Whereas in Rhapsody Developer and Rose Technical Developer, the behaviour
of state machines and classes' operations has to be implemented with the target
language. In Tau/Developer, the platform specific issues have to be taken care of
just when the model is integrated with the actual environment.

When MDA is considered, none of these tools support it in all its forms.
Although Tau/Developer allows platform independent developing, it does not
support platform specific modelling as it is defined in MDA. There is no
transformation from PIM to PSM defined in any way. PIM can be made into a
PSM by writing an inline target code into the model, but no transformation takes
place, or at least no automatic transformation. In fact, the model is more like a

53

blend of PIM and PSM than just plain PSM, as platform independent action
language still exists in the model. On the other hand, if the source code is
considered a platform specific model, then a clear transformation from PIM to
PSM exists. A direct transformation from PIM to code is also defined in MDA,
so no standard is violated. However, the whole developing cycle from CIM to
PIM and from there to PSM and finally to the code does not exist.

The two remaining tools do not support MDA in any of its forms, as at least one
PIM has to exist when Model-Driven Architecture is considered. On the other
hand, if the platform is defined as an operating system, then these two tools do
support MDA. In summary, the support for MDA is just a matter of definitions.

Overall, Tau/Developer is considered the most suitable one, as it is the only one,
which allows platform independent developing. Rhapsody Developer and Rose
Technical Developer are quite similar tools, as neither of them can be used for
platform independent developing. Some differences occur in structural
modelling, as Rose Technical Developer has its capsules whereas Rhapsody
Developer structure is designed straight into classes. There is actually no
specific reason why one should be preferred above the other, but we lean
towards Rhapsody Developer, as it supports creating new UML profiles. For that
reason, Rhapsody Developer is ranked the second and Rose Technical Developer
the third.

4.3 Summary

Thirteen CASE tools were studied to find the most suitable one to be extended to
support quality-driven model transformation. The tools had to support UML 2.0
or at least structure modelling. In addition, an extensibility interface was
required. These two criteria filtered ten unsuitable tools out and left three for
further evaluation. Telelogic Tau/Developer, Rhapsody Developer and Rose
Technical Developer were evaluated one at the time and later compared against
each other.

Tau/Developer allows platform independent developing by including its own
action language to describe the model�s behaviour completely, but also target
code can be written in any place if desired. Tau provides two extension

54

interfaces for one's own plug-ins and allows defining new UML profiles. Thus,
the extension possibilities are relatively unlimited.

Rhapsody Developer and Rational Rose RealTime are in the most part quite
similar. Platform independent developing is not possible as no strong action
language is included and the target code has to be written in to describe
behaviour. There are also restrictions in Rhapsody Developer�s modelling
capabilities, as it only supports class structure modelling when working with
C++. Both tools support two extension interfaces for plug-ins, but only
Rhapsody Developer allows defining new UML profiles.

Tau/Developer seemed to be the most suitable tool; Rhapsody Developer was
considered the second and Rational Rose RealTime the last. None of these tools
is incompetent, but the main reason why Telelogic Tau/Developer achieved the
first place is that it makes platform independent developing possible, whereas it
is not possible with the other two.

55

5. Development of the Q-Tra tool
The aim of applying the quality-driven model transformation technique is to
enable automation of the transformation process [5]. Without tool support,
automation is not possible. This section introduces a tool extension, Quality-
driven architecture TRAnsformation tool (Q-Tra), to Telelogic Tau/Developer.

The technique describes transformation between two platform independent
models. The source model where from the transformation is to be taken is a
model, which is designed certain quality-attributes in mind and implemented
with carefully considered design solutions � design and architectural patterns.
All elements participating in a certain pattern in the source model are marked
with the required marks for making the application of the technique feasible. The
purpose of the Q-Tra is to help the architect in choosing a new architecture for a
system by offering a set of alternative solutions, which promotes certain quality
attributes. In addition to guiding the architect in making wise decisions, the Q-
Tra provides a possibility of performing the desired transformation.

The Q-Tra is discussed as follows: First, the requirements for the Q-Tra are
presented. Requirements are concerned with what the Q-Tra is supposed to do,
and what is required of the operating environment. In addition, some
requirements for the implementation are presented. Second, the design of the
tool extension is discussed. The design of the Q-Tra is concerned with how the
tool relates to its environment, what kind of architecture it has, components roles
and their interoperability. Finally, the solution is presented by introducing
implementation and testing of the components.

5.1 Requirements for the Tool Extension

The requirements of the tool extension can be divided into three categories: (1)
end-user requirements, (2) requirements for the modelling tool and (3) other
technical requirements. The end-user requirements are concerned with what an
architect or developer needs. Requirements of the modelling tool are concerned
with the special requirements the tool extension sets for the modelling tool.
Finally, the technical requirements of the tool extension are related to the

56

implementation of the end-user requirements and the architecture of the tool
extension.

5.1.1 End-User Requirements

The implementation of the quality-driven model transformation clearly relies on
a few aspects, which have to be implemented in the first version of the tool
extension. The first version of the Q-Tra tool is a prototype, no requirements are
set for performance nor any other special requirements for usability etc. Based of
that scoping, the following essential requirements for enabling model
transformation were defined:

1. UML model has to be able to browse for different kinds of entities
and diagrams. It must be possible to find all the design and
architectural patterns, which are applied in the model. In addition, an
end-user should be able to select, which attributes constrain the
search. At the end, the user has to be able to see the search result.

2. To store all the design and architecture patterns, some kind of data
storage has to exist. In addition to being a completely passive pattern
repository, the user may want to add new patterns, remove and edit
the existing ones. For every pattern, the following data has to be
stored: pattern name, reference, quality attributes, component types,
component roles, connector types, data topology, control topology,
purpose, diagram name, abstraction level and rationale.

3. The user wants to perform a quality-driven model transformation
between two patterns. Conducting a transformation between user-
chosen patterns should require as little as possible user attention.
However, semi-automatic transformations are allowed, as the nature
of the quality-driven model transformation may restrict the making of
completely automatic transformations. No demands on component
topology after the transformation are set, as re-arranging components
to conform to the new architecture may not give good results. That is,
it is assumed that an architect wants the components to stand at the
same place after the transformation. In this way, the architect does not
need to re-locate the components. In addition, it may be easier to

57

observe the changes in the model if the component topology is not
modified.

5.1.2 Modelling Tool Requirements

In addition to the general requirements presented in Section 4 for the modelling
tool, a few specific requirements are set because of the quality-driven model
transformation technique:

1. The modelling tool must allow adding information, marks, to the
components in the model. In addition to marking the model, the tool API
must have access to the marks. No restrictions for the place, where the
marks are located, are set.

2. Due to the quality-driven model transformation, support for the
following UML 2.0 diagram types is essential: deployment, composite
structure, class and state machine. These are the diagram types where
the transformation will take place. In addition, either the modelling tool
or the end-user must validate the syntax and semantics of the model, as
ill-formed models may cause peculiar errors at some stage.

5.1.3 Technical Requirements

The tool extension has to be implemented in a modular way because there is
uncertainty:

• what modelling tool will be used as the basis of the tool extension
• what kind of user interface should be implemented
• how the stylebase and other possible databases are implemented
• the whole transformation technique itself.

Thus, all components should be designed in a way that replacing one component
does not affect to the other ones and if it does, the impact should be minimal. In
addition, the modelling tool, where the tool extension is used, should be

58

replaceable. Thus, promoting loose coupling between components is essential
when designing the architecture for the tool.

The user interface of the tool extension should be graphical. It must be possible
to conduct the following tasks:

• adding, removing and editing patterns in the stylebase
• browsing the stylebase
• browsing patterns on the basis of the quality attributes they promote
• selecting which pattern to be searched from the model
• selecting which pattern to be transformed.

The following requirements are defined for the stylebase:

• All patterns have to be defined in the same stylebase.
• Implementation technology is not limited.

The technical requirements of the tool extension were defined abstractly,
because the tool extension was developed parallel to the development of the
quality-driven model transformation technique. Practically, the uncertainty of
the final implementation of the components of the tool extension and the
capability of implementing the transformations at issue, can be considered the
driving forces of the Q-Tra.

5.2 Design of the Q-Tra Tool Extension

This section describes the technology dependent constraints and architectural
solutions of the Q-Tra tool. The purpose is to introduce what components the Q-
Tra consists of, what their responsibilities are, and how they interact.

59

5.2.1 Technical Constraints for Designing the Q-Tra

Programming Constraints

Telelogic Tau/Developer�s COM interface provides full access to its UML
model. COM is �a platform-independent, distributed, object-oriented system for
creating binary software components that can interact�. [27] Thus, as an
implementation language, any given COM enabled language, such as Visual
Basic and C++, can be used for writing tool extensions. We chose C++ although
there was no extensive experience. In addition, there was no previous experience
on COM interfaces. However, the choice was clear as Telelogic Tau/Developer
only provides a minimal set of tool extension examples and all the provided
examples are implemented by C++. Documentation of extension interfaces is
minimal and some of the examples are even erroneous. Considering previous
facts, the only rational choice is to implement the tool extension with the above-
mentioned technology. Telelogic Tau/Developer also provides TCL API, but it
was not even considered, as it is meant for simpler scripting extensions.

Tool API

Telelogic Tau/Developer can be considered a meta-model driven tool, i.e. the
structure of the tool repository is based on the publicly available metamodel. A
metamodel is a set of metaclasses and meta-attributes that defines the conceptual
view of the information stored in the model. For instance, the model consists of
classes and their interaction. In a metamodel, the classes are described explicitly
in a way that they can be used in the model. That is, a metamodel presents the
vocabulary of the language and its usage. This also reflects the way in which the
tool repository is accessed.

COM API only provides a small set of general-purpose primitives for accessing
the elements in the model. The elements in the model are formed of other
elements by inheriting them. In addition, all the elements have just a small set of
basic primitives that can be accessed. For example, to get all comments attached
to a specific entity, we can write:

comments = entity->GetEntity(�ModelElement�)->GetEntities(�Comment�)

60

Here, �entity� means, for example a class in the class diagram, of which we want
to extract comments. As the entity presents just a class symbol, and no actual
class model element, we apply the GetEntity(�ModelElement�) method in order
to get the class�s parent class, which contains a comment field. When we have
the ModelElement, we can apply the GetEntities(�Comment�) method in order
to access one of its meta-attributes called �Comment�. The comment consists of
a set of comments � entities. In order to access the first comment of the
comment list we must apply two more methods:

comment = comments->GetItem(1)->GetValue(�Text�)

The GetItem(1) method is applied in order to access the first line, the first entity,
of the comment list. Then, we apply the GetValue(�Text�) method to the
comment entity to get the actual comment string, which was the first comment
line of the entity we accessed.

Here, the �Text� meta-attribute is the only primitive in the whole sequence that
can be considered a variable in the general sense. All the other model aspects in
Tau are called Entity classes or Entities, which present a collection of Entity
classes. Thus, all the methods for all the elements in the model are the same. In
this way, the API becomes simple, but knowing the structure of the UML 2.0
metamodel becomes essential. In fact, there is roughly a fistful of methods that
are most generally used in accessing the model but there are tens of metaclasses
and meta-attributes in the metamodel that have to be known.

Integration of a Tool Extension

All COM plug-ins are introduced to Telelogic Tau/Developer in the following
way:

• A special add-on introduction file has to be written to inform
Tau/Developer about the new plug-in. The main purpose of this
introduction file is to describe the location of the TCL script, which is
used to start the actual tool extension. The TCL script describes the
place to which in the menu structure the start menu item of the add-in
is to be attached. In addition, it describes the actual tool extension,
which is to be launched when the user clicks the menu item. TCL

61

script is also responsible for initiating the tool extension by sending
the necessary parameters to it. However, the contents of these files are
outside the scope of this thesis.

• When designing an interactive tool extension into Tau/Developer, the
client plug-in has to implement a certain interface, which is accessed
when the tool extension is started. When starting the tool extension,
Tau/Developer gives two parameters. The first one is a pointer to an
application which works as a server for the client. The second
parameter is a pointer to the actual UML model. This means that a
UML model is not accessed by sending a request through API to
Tau/Developer, but manipulating the model directly inside the tool
extension with the provided API. This also means that the model is
only sent to the tool extension once at the beginning. This affects the
implementation of the tool extension.

Quality-Driven Model Transformation Technique

The technique assumes that components of the platform independent model have
to be marked in order to apply the technique for the transformation. As stated,
marks include three aspects: the name of the pattern where the component
participates in, component role and type. As Tau/Developer provides a way for
extending and refining UML with profiles, the most logical choice for the marks
would be creating a new UML profile for quality-driven model transformation
technique, which would add new fields for marks to the components of the
model. However, the marks were added to the comment field of the components,
as the method how to access the new fields added by a new UML profile
remained unknown.

5.2.2 Architecture of the Q-Tra

Designing architecture for the Q-Tra begins from identifying the necessary
components to realize the quality-driven model transformation. An example
transformation presented in Section 3.3 suggests the use of two databases: one
for storing all the style and pattern information and one for storing the rules. The
interfaces for both of these databases have to be implemented. In addition, an
interface to Tau/Developer has to exist. For human interaction, a graphical user

62

interface (GUI) has to be implemented. A component responsible for controlling
all other components has to be implemented between the interface layer and
GUI. Considering the constraints, the conceptual architecture of the Q-Tra can
be constructed (Figure 12 [5]).

TAU/Developer

Rulebase Stylebase

Architect

GUI

Engine

Interface layer

Q-Tra Legend:

= data storage

name = logical software
componet

Figure 12. Conceptual architecture of the Q-Tra and its context.

The Q-Tra consists of three layers (Figure 12): GUI, Engine and Interface layer.
The Interface layer provides access to both databases and to Tau/Developer. An
architect using the Q-Tra through the user interface has also access to
Tau/Developer for modelling purposes. The Engine component between GUI
and the Interface layer coordinates and controls transactions between GUI,
Tau/Developer and databases.

The technical requirements for the Q-Tra architecture demanded that the
architecture of the tool should be designed to promote loose coupling between
components. In addition, it should be possible to replace the components with a
minimal impact on the implementation of the others. Thus, all tasks have to be
implemented with separate components.

The graphical user interface of the Q-Tra can be considered a component but the
Interface layer has to be divided into three separate components. As there are
two kinds of databases � stylebase and rulebase � there will also be two database
access handlers. It can be concluded that only one component needs access to
the rulebase. Thus, we define a separate component, which is responsible for

63

both handling the access to the rulebase and conducting the transformations. In
addition, accessing the UML model is divided into its own separate component.
As all the tasks are divided into their own separate components, the only role of
the Engine component is to connect all the components together and to work
more like a router between components.

Tau/Developer requires a certain kind of interface to be implemented in order to
start the Q-Tra and to send the necessary parameters; a separate component for
this task is defined. The responsibility of this component, in addition to
providing interface to Tau/Developer, is to encapsulate all the modelling tool
specific data in a way that no other component than this one and the component
responsible for accessing Tau/Developer needs to be changed, if the modelling
tool is changed.

Overall, the Q-Tra has six components, which play different roles in the
architecture. Table 12 summarises the responsibilities of the components and
estimated changes that have to be conducted if something varies on either the
environment or the other components.

Table 12. Summary of the components.

Name Responsibility Interdependency
UIHandler Provides graphical user

interface
Does not affect the other
components

Engine Router Interfaces
DatabaseHandler Stylebase access handler Does not affect the other

components
ModelHandler Accesses the UML model Complete reconstruction of

ModelHandler if the modelling
tool changes

Transformer Rulebase access handler,
conducts transformations

Does not affect the other
components

CTtdAddIn Tau connection point,
encapsulates the modelling
tool specific parameters

Causes complete reconstruction
of ModelHandler if the
modelling tool changes

64

Architecture of the Q-Tra has to be designed to provide loose coupling between
components by hiding their implementation from each other. This is achieved by
applying a well-known behavioural pattern called mediator [12]. The Mediator
pattern states that only two components know each other and all components
interacts among themselves through one central component. By applying the
mediator, the changed implementation of one component is not shown in the
other components. Moreover, there is no need to change the components�
responsibilities that have already been decided. Therefore, the mediator pattern
seems more than suitable for the architecture of the Q-Tra.

By applying the mediator, the component topology takes the following form
(Figure 13): At the centre, there is the Engine, which works as a router or
mediator for the whole tool extension. All the other components are connected
to the Engine component only. There are no connectors between components.

Figure 13 also describes four connection points to the outside world.
DatabaseHandler communicates with the environment, in this case with the
stylebase, through the StylebaseAccess port. Transformer has its own
communication channel to the rulebase. The communication port of the
UIHandler describes the communication with the end-user. The communication
direction is only to inside the Q-Tra, as the purpose is to present the end-user
driven interaction. That is, all the graphical data is presented by UIHandler but
the interaction from the end-user comes from the outside world. This is the
reason why there is only a provided interface. The fourth environment interface
is from CTtdAddIn. This connection point describes the communication with
Tau/Developer. In practise, through this port Tau/Developer makes its first
access to the Q-Tra and sends the compulsory parameters. As there is no
outgoing message exchange between the Q-Tra and Tau/Developer in general,
there is no required inteface.

65

CompositeStructure active class QTra {1/1}CompositeStructure active class QTra {1/1}

APIaccessAPIaccess

UIportUIport

cTtdAddIn : CTtdAddIn

cTtdAddIn : CTtdAddIn

engine : Engine

engine : Engine

uiHandler : UIHandler

uiHandler : UIHandler

 dbHandler: DatabaseHandler

 dbHandler: DatabaseHandler

mHandler : ModelHandler

mHandler : ModelHandler

transformer : Transformer

transformer : Transformer

rr

StylebaseAccessStylebaseAccess

RulebaseAccessRulebaseAccess

Figure 13. Architecture of the Q-Tra.

Encapsulating all specific parameters of the modelling tool into one specific
container object promotes modelling tool independency. That is, when
Tau/Developer first starts Q-Tra, it sends two parameters to the CTtdAddIn
component. CTtdAddIn encapsulates those parameters into one container object
and sends it to the ModelHandler, which is the only component in addition to
CTtdAddIn that is aware of the modelling tool. In this way, replacing the
modelling tool should affect the other components as little as possible, if the
connection to other modelling tools is implemented in somewhat same way as it
is with Tau/Developer.

Figure 14 presents, how the Q-Tra is conceptually started and created. First,
Tau/Developer sends ITtdInteractiveServerPtr and ITtdEntitiesPtr to CTtdAddin
(signals from env[1] to cTtdAddIn[1]) in order to start the Q-Tra.
ITtdInteractiveServerPtr is a pointer to the application, which works as a server

66

for the Q-Tra and ITtdEntitiesPtr is a pointer to the particular UML model.
Then, CTtdAddIn encapsulates these parameters into an object called
ToolSpecificParameters, creates Engine and sends ToolSpecificParameters to it.
This is the only task that is set for CTtdAddIn. After that, Engine creates all
other components and sends ToolSpecificParameters to ModelHandler.

sd Creation interaction Creation {1/1}sd

dbHandler[1]

dbHandler[1]

uiHandler[1]

uiHandler[1]

engine[1]

engine[1]

transformer[1]

transformer[1]

mHandler[1]

mHandler[1]

cTtdAddIn[1]

cTtdAddIn[1]

env[1]

env[1]

Creation interaction Creation {1/1}

ITtdInteractiveServerPtr()ITtdInteractiveServerPtr()

ServerReceivedServerReceived

ITtdEntitiesPtr()ITtdEntitiesPtr()

createEngine()createEngine()

ToolSpecif icParameters()ToolSpecif icParameters()

DoneDone createDB()createDB()

createMH()createMH()

ToolSpecif icParameters()ToolSpecif icParameters()

createT()createT()

createUI()createUI()

CreatedCreated CreatedCreated CreatedCreatedCreatedCreated CreatedCreated

create ToolSpecif icParameters;create ToolSpecif icParameters;

Figure 14. Initiation of the Q-Tra.

All requirements for the architecture of the Q-Tra are met. However, the overall
idea of the signal propagation in the Q-Tra needs to be elucidated. Clarification
of the roles of the components is necessary before continuing further. Therefore,
a quite extensive example of the workflow is presented.

67

Model transformation is the most laborious task of all the use cases. As stated in
Section 3.1, conducting transformation composes of the following tasks:
applying admissibility rules, finding the right rule for transformation and
conducting the transformation at issue.

From the point of the Q-Tra, admissibility rules are applied by fetching both the
source and the target patterns for transformation from the stylebase and then by
checking if the patterns share the same abstraction level and purpose. If applying
the admissibility rules results positive, the transformation can be performed.
This is done by fetching the correct rule from the rulebase and by conducting the
transformation by following the transformation rules.

Figure 15 presents the message propagation of the Q-Tra when the
transformation is conducted:

1. An architect selects the transformation between certain patterns from the
user interface.

2. UIHandler forwards the transformation request to Engine, which routes
the transformation request to Transformer.

3. In order to validate the transformation admissibility, Transformer
requests the source and the target patterns from Engine. The request is
forwarded to DatabaseHandler.

4. DatabaseHandler performs a query to the stylebase for the required
patterns and returns them back to Engine, which forwards them to
Transformer.

5. Transformer validates the transformation admissibility by applying the
admissibility rules to the patterns. In this case, the transformation is
admissible.

6. In order to conduct the transformation, transformation rules are fetched
from the rulebase. The transformation rules contain all the necessary
information for conducting the transformation.

7. The final task is to guide ModelHandler in accessing and modifying the
UML model. This is performed by sending a series of guidance signals
to ModelHandler via Engine.

68

sd Transformation interaction Transformation {1/1}sd

transformer[1]

transformer[1]

mHandler[1]

mHandler[1]

dbHandler[1]

dbHandler[1]

uiHandler[1]

uiHandler[1]

engine[1]

engine[1]

cTtdAddIn[1]

cTtdAddIn[1]

env[1]

env[1]

Transformation interaction Transformation {1/1}

transform()transform()

Transformation()Transformation()

IdleIdle

Transformation()Transformation()

IdleIdle validateTransformation()validateTransformation()

WaitingReplyWaitingReplyvalidateTransformation()validateTransformation()

WaitingReplyWaitingReply

fetchPattern()fetchPattern()

WaitingReplyWaitingReply

pattern()pattern()

validateTransformation()validateTransformation()

IdleIdle

validateTransformation()validateTransformation()

IdleIdle

fetchRule()fetchRule()

WaitingReplyWaitingReply

transRule()transRule()

guideTransformation()guideTransformation()

IdleIdle

guideTransformation()guideTransformation()

IdleIdle

IdleIdle

1. Architect select
transformation from UI
1. Architect select
transformation from UI

2. Engine routes
the request to
transformer

2. Engine routes
the request to
transformer

3. Transformers validates
transformation admissibility
3. Transformers validates
transformation admissibility

6. Transformer fetches
the right rule for the
transformation

6. Transformer fetches
the right rule for the
transformation

7. Transformer conducts
the transformation by
guiding ModelHandler

7. Transformer conducts
the transformation by
guiding ModelHandler

4. DatabaseHandler fetches
patterns from stylebase
and returns them to
the Transformer

4. DatabaseHandler fetches
patterns from stylebase
and returns them to
the Transformer

validateAdmissibility();validateAdmissibility();

transformation();transformation();

5. Transformer validates
transformation admissibility
5. Transformer validates
transformation admissibility

Figure 15. Transformation workflow of the Q-Tra.

69

When examining the roles and responsibilities of the components and interactions
of the components, the most important concrete signals and interfaces can be
defined. The interfaces and contents of the signals are described in the following
order: The interface and signals to DatabaseHandler are described. Then interfaces
and signals to Transformer and ModelHandler are described. CTtdAddIn and
UIHandler are discussed next. Interfaces of Engine implements all interfaces of
the other components, as all the signals go through it.

DatabaseHandler

DatabaseHandler is responsible for accessing the stylebase and replying to
queries. Since the implementation of the stylebase can vary, only the provided
interface to the Engine is defined and the definition of the interface to the
stylebase is left to the implementation stage. DatabaseHandler provides basic
services for accessing the stylebase:

1. Add new element.
2. Remove element.
3. Query elements.
4. Load stylebase.
5. Save stylebase.
6. Clear stylebase.

All services are to be implemented with their own functions, thus the interface
consists of six different functions. Services 1, 2 and 3 takes parameters called
Element when applied. Element is a special object, which contains the fields of
one element in the stylebase, information about one design or architectural
pattern. Service 1 applies Element as such and adds a new pattern into the
stylebase. Service 2 queries the stylebase with the information gathered in
Element and deletes the desired pattern. Service 3 queries the stylebase with the
information gathered in Element and returns all the patterns, which match the
provided information. The query result is returned as a special object called
ResultSet, which consists of series of Elements. Services 4 and 5 take the
parameter character string used in loading and storing the stylebase. The
character string could be, for example, a filename from which the stylebase is
loaded or to which the stylebase is stored, or IP address where the stylebase is

70

located. The last service is used when the entire stylebase must be cleared. Table
13 summarises the interface of DatabaseHandler.

Table 13. Summary of the interface of DatabaseHandler.

Service Name Input Output Responsibility
1. setElement Element Boolean Adds new element into

stylebase
2. deleteElement Element Boolean Removes element from

stylebase
3. query Element ResultSet Queries elements from

stylebase and returns
query result

4. loadDatabase Character string Boolean Loads stylebase
5. saveDatabase Character string Boolean Stores stylebase
6. clear - Clear entire stylebase

Transformer

Transformer is responsible for accessing the rulebase and guiding ModelHandler
in performing transformations. In the case of the stylebase, implementation of
the rulebase can also vary freely; the required interface to the rulebase is not
defined. However, the provided interface to Engine is defined. Transformer is an
independent controlling component and thus its interface remains simple.
Transformer provides two services:

1. Check transformation admissibility.
2. Conduct transformation.

Service 1 takes two character strings as parameters. The first parameter defines
the source pattern name and the second the target pattern name. Transformer
performs two queries to the stylebase in order to get both the source and the
target patterns. Transformer applies the transformation admissibility rules
according to information and validates the transformation admissibility. Service
2 conducts the transformation according to the parameters it gets, when applied.
Three parameters are given: two character strings for source and target pattern
names for the transformation, and a list of entities, which are participating in the

71

transformation. The list of entities consists of a group of objects called Entity.
Entity consists of marks and information, which can be used to locate the parts
explicitly in the UML model. Table 14 summarises the interface of Transformer.

Table 14. Summary of the interface of Transformer.

Service Name Input Output Responsibility
1. checkPatternCompatibility 2 Character

string
Boolean Validates transformation

admissibility
2. transform 2 Character

string,
entityList

Boolean Conducts transformation

ModelHandler

The responsibility of ModelHandler is to provide access to the UML model.
ModelHandler is the only component which is allowed to handle a model, and
all queries and model handling related functionality are conducted here. As the
way the model is passed � at least with Tau/Developer � and handled in
ModelHandler, there is no outgoing interface to the environment of Q-Tra. Thus,
the model is accessed inside ModelHandler. However, the interface between
ModelHandler and Engine is defined explicitly with all tasks needed to conduct
a transformation. The following services must be provided:

1. Initiate modelling tool specific aspects.
2. Fetch entities from the model.
3. Modify marks attached to the entities.
4. Create new entity into the model.
5. Clear obsolete connectors between entities in the model.
6. Connect entities in the model.

ModelHandler is initiated by service 1. The service takes one parameter,
ToolSpecificParameters, in order to get knowledge of the UML model and all
other modelling tool related aspects.

Service 2 has two character strings as parameters. The first parameter is for
identifying and fetching entities participating in a certain pattern in the model.

72

The second parameter defines the abstraction level of the entities. This is for
identifying a diagram which the query is supposed to apply. The result of the
query is an Entity list.

Service 3 attaches marks to a specific entity. The entity is selected by giving one
Entity parameter when the service is called. Entity describes explicitly the entity
to which the marks are attached. Marks are given in the second parameter.

Service 4 takes one Entity parameter and creates a new entity into the desired
location in the model.

Service 5 uses the Entity parameter to specify the diagram name from which all
connectors of the entities participating in a certain pattern are removed.

Service 6 specifies two entities that are to be connected together with a
connector. Information for this task is given by two Entity parameters. Table 15
summarises the interface of ModelHandler.

Table 15. Summary of the interface of ModelHandler.

Service Name Input Output Responsibility
1. setParameters ToolSpecific-

Parametes
- Initiates modelling tool

specific parameters
2. fetchEntities 2 Character strings Entity list Fetches entities from

model
3. setPatternParameters Entity, Character

string array
Boolean Modifies marks

attached to the model
4. createEntity Entity Boolean Creates new entity to

the model
5. clearObsolete-

Connectors
Entity Boolean Clears connectors

between entities
6. connectComponents 2 Entity Boolean Connects entities

CTtdAddIn

The CTtdAddIn component is a compulsory modelling tool specific component, and
its interface to outside the Q-Tra is always defined by the modelling tool, to which

73

the Q-Tra is integrated. However, interfaces between Engine and CTtdAddIn should
be the same. CTtdAddIn provides interface to the modelling tool and a packaging
and forwarding service for the modelling tool specific parameters. The interface for
sending ToolSpecificParameters is on the required interface of CTtdAddIn. The
Interface for CTtdAddIn consists of the following services:

1. Provide an interface for the modelling tool.
2. Forward modelling tool specific parameters.

When Tau/Developer is the modelling tool to which the Q-Tra is integrated, two
signals are sent to the Q-Tra at the beginning. Service 1 provides an interface to
the modelling tool. Service 2 is used to forward ToolSpecificParameters
onwards. Table 16 summarises the interfaces of CTtdAddIn.

Table 16. Summary of the interface of CTtdAddIn.

Service Name Input Output Responsibility
1. raw_OnExecute ITtdInteractiveServerPtr,

ITtdEntitiesPtr
- Interface

2. setupModel-
Handler

- ToolSpecific-
Parameters

Tool specific
parameters

UIHandler

As the nature of the user interface is to master and control the other components
by sending series of messages and requests, UIHandler does not provide any
services for the other components inside the Q-Tra. However, the required
interface is described explicitly, i.e. interface provided by Engine.

The purpose of the user interfaces is to the control other components. The
services required by UIHandler reflect the interfaces of the other components
inside the Q-Tra. Thus, the tasks needed to perform transformations and handle
databases are included in the required interface of UIHandler. The following
services are required by UIHandler:

1. Add new stylebase element.
2. Remove stylebase element.

74

3. Query stylebase elements.
4. Load stylebase.
5. Save stylebase.
6. Clear stylebase.
7. Fetch entities from model.
8. Check transformation admissibility.
9. Perform transformation.

Rationales for services 1 to 6 are the same as the interface of DatabaseHandler.
The service 7 stands the same as service 2 in the interface of ModelHandler, and
for services 8 and 9 the same interface rationale stands as provided by
Transformer. Table 17 summarises the required interface of UIHandler.

Table 17. Summary of the interface of UIHandler.

Service Name Input Output Responsibility
1. dbSetElement Boolean Element Adds new element

into the stylebase
2. dbDeleteElement Boolean Element Removes element

from the stylebase
3. dbQuery ResultSet Element Queries elements from

the stylebase and
returns query result

4. dbLoadDatabase Boolean Character string Loads the stylebase
5. dbSaveDatabase Boolean Character string Saves the stylebase
6. dbClear Clears entire stylebase
7. mFetchEntities Entity list 2 Character strings Fetches entities from

the model
8. tCheckPattern-

Compatibility
Boolean 2 Character string Checks transformation

admissibility
9. tTransform Boolean 2 Character string,

entityList
Conducts
transformation

Engine

The Engine component acts as a junction point for all the other components and
all signals travel through it. For this reason, Engine implements all the interfaces

75

of the other components, i.e. Engine uses the services of the other components
and every component can access the services of the rest of the components
through Engine. Figure 16 summarizes all the interfaces of Engine.

EngineInterface package QTra {2/2}EngineInterface package QTra {2/2}

Engine

Engine

uiPortuiPort

UserinterfaceUserinterfaceResultSet, Boolean, entityListResultSet, Boolean, entityList

dbPortdbPort

ResultSet, ElementResultSet, Element StylebaseStylebase

tauPorttauPort

ToolSpecif icParametersToolSpecif icParameters

tPorttPort

ModelHandler, Stylebase, BooleanModelHandler, Stylebase, Boolean TransformerTransformer

mhPortmhPort
Boolean, entityListBoolean, entityList

ModelHandlerModelHandler

<<interf ace>>

Stylebase
setElement
deleteElement
query
loadDatabase
saveDatabase
clear

<<interf ace>>

Stylebase
setElement
deleteElement
query
loadDatabase
saveDatabase
clear

<<interf ace>>

Userinterface
dbSetElement
dbDeleteElement
dbQuery
dbLoadDatabase
dbSaveDatabase
dbClear
mFetchEntities
tTransform
tCheckPatternCompatibility

<<interf ace>>

Userinterface
dbSetElement
dbDeleteElement
dbQuery
dbLoadDatabase
dbSaveDatabase
dbClear
mFetchEntities
tTransform
tCheckPatternCompatibility

<<interf ace>>

ModelHandler
setParameters
fetchEntities
setPatternParameters
createEntity
clearObsoleteConnectors
connectComponents

<<interf ace>>

ModelHandler
setParameters
fetchEntities
setPatternParameters
createEntity
clearObsoleteConnectors
connectComponents

<<interf ace>>

Transformer
checkPatternCompatibility
transform

<<interf ace>>

Transformer
checkPatternCompatibility
transform

Figure 16. Interfaces of the Engine.

In Figure 16, both the provided and required interfaces of the components can be
seen. Although all the interfaces of the components are discussed above, the
interfaces of Transformer requires clarifying.

76

Transformer is a control component, whose nature is to control other
components, while the rest of components are passive, except UIHandler. By
observing tPort in Figure 16 (bottom right of Engine), it can be seen that the
required interface implements Transformer interface, which consists of the
interface declared above, but the provided interface implements two other
interfaces. When Transformer applies admissibility rules [5], it fetches both the
source and the target patterns from the stylebase. For this reason, there is also a
Stylebase interface. Transformer guides ModelHandler during transformations,
and thus there is a ModelHandler interface.

5.3 Implementation of the Q-Tra Tool Extension

As stated in Section 5.2.1, C++ was selected for the implementation language.
For the development environment, Visual Studio 6.0 was chosen, as it provides a
good environment for writing plain source code and creating graphical user
interfaces. Next, the implementation of the components is discussed. The
purpose is not to explicate the source code of classes and components. The
purpose is to introduce how the design plan is realized.

5.3.1 Implementation of the Components

DatabaseHandler

The implementation of DatabaseHandler begins from examining possible
database solutions for the stylebase. At the beginning, Structured Query
Language (SQL) [28] based database solutions seemed to be the best choice, as
there was some previous experience implementing databases with the current
technology. SQL was abandon for the following reasons: the Q-Tra was to be
designed and implemented at the same time as the quality-driven model
transformation technique was developed. Thus, the implementation process
would definitely go through some iterations and later lead to some changes in
the stylebase structure. Therefore, the stylebase should be implemented in a way
that it could be easily modified. The easiest way to realize a highly modifiable
stylebase is to design and implement it by yourself, i.e. by constructing the
database from the scratch.

77

As there were no special requirements for the implementation of the stylebase,
such as distribution, performance and high-end database, a linked list based
solutions seemed to be sufficient. A Linked list can be described as a list of
objects connected linearly together in order to form a dynamically changeable
list structure. For nodes in the list, there would be classes called Element. As
stated, (see Section 5.2.2) Element contains the fields required for specifying
one design or architectural pattern. The idea is to keep the list in the main
memory at the run time and to store it to the disk when necessary. For the data
saving format, a text file was chosen to promote modifiability. Appendix 3
presents the contents of the tag-based solution of the stylebase.

By choosing a trivial solution for the stylebase, implementing DatabaseHandler
becomes easy. There is no need for setting up database servers or any such thing;
just maintaining a linked list is sufficient.

Transformer

The implementation of Transformer is highly dependent on how the rules for the
transformations are described. In this case, the rules are described with Q-RDL
and thus Transformer remains simple. This is because the rules defined by Q-
RDL contains all the information necessary for conducting transformations and
thus no complement semantics for guiding the transformation has to be coded to
Transformer.

The rulebase is implemented in the same way as the stylebase i.e. as a linked list
based object database, where the transformation rules are nodes of the list. The
rules are described by the objects called TransRule, which contain the aspects
defined in one transformation rule. The rulebase is accessed in the same way as
the stylebase.

Transformer, being a component responsible for accessing and handling the
rulebase, does not provide a service for adding, removing or updating rules such
as DatabaseHandler does. This is because there is still an enormous amount of
uncertainty how the transformation rules will be described and Transformer may
have to be re-designed and re-implemented. Therefore, Transformer is left to
remain as simple as possible. The Transformer can only read the rulebase, and

78

the new transformation rules have to be written by using some third-party text
editor.

Transformer is also responsible for applying the admissibility rules and
conducting transformations. Transformer controls the other components and thus
the implementation consists of function calls to other components through
Engine.

Transformation process consists of the following tasks:

1. Fetch the rcorrect transformation rule from the rulebase.
2. Change marks of the model.
3. Generate missing entities to the model.
4. Remove connectors between entities that are to be re-connected.
5. Create new connector topology.

ModelHandler

When the Q-Tra is started, ModelHandler receives the ToolSpecificParameters
object from Engine. ITtdInteractiveServerPtr is a pointer to the COM servers, in
this case to Tau/Developer and ITtdEntitiesPtr is a pointer to the entities of the
UML model.

In order to get to the root of the UML model, the following code is written:

 root = entities->GetItem(1)->GetEntity(�Session�)->GetEntity(�root�);

After getting the root entity, it is possible to start browsing the model. Currently,
a composite structure diagram is the only diagram accessed.

The implementation of ModelHandler consists, for the most part, of model
browsing, i.e. fetching entities from the model and fetching parameters from the
entities. In order to manipulate the elements in the model, the following steps are
performed:

• Fetching the entities from the model begins from the root entity.

79

• Next, the diagrams of the model are browsed in order to find the
correct diagram.

• When the correct diagram is found, the entities in it are browsed.
• After the correct entity is found from the diagram, the right attribute

(or entity, for instance port is an entity of a part) is located.
• When the correct attribute is found, it can be manipulated.

As stated, ModelHandler is the only component allowed to access the UML
model and its implementation is strongly driven by the modelling tool, to which
the Q-Tra is attached. Understanding the implementation of the functions and
services of ModelHandler requires knowledge of COM API and UML 2.0
metamodel, therefore no implementation details are presented here.

CTtdAddIn

Telelogic Tau/Developer dictates a lot of the implementation of the CTtdAddIn.
The purpose of CTtdAddIn is to

• provide an interface to Tau/Developer
• package the modelling tool specific parameters
• create Engine component in order to start the Q-Tra.

Providing the interface for Tau/Developer is performed by implementing a
certain interface called ITtdInteractiveClient. In addition to implementing an
interface to Tau/Developer, CTtdAddIn implements COM specific interfaces.
However, these are not discussed here, because COM specific issues such as the
interface and objects are outside the scope of this thesis. More information on
COM can be found in [27].

Encapsulating all the modelling tool specific parameters, which are
ITtdInteractiveServerPtr and ITtdEntitiesPtr, is realized by creating a special
container object ToolSpecificParameters, which contains space for the
parameters. In this way, ToolSpecificParameters acts like a shuttle for the
parameters, and no other components, except for ModelHandler, needs to know
anything of its contents.

80

The last task of the CTtdAddIn is to create the Engine component in order to
start and initialize the rest of the components of the Q-Tra. This is conducted by
reserving memory for it and by sending ToolSpecificParameters. The Engine
component then commands and no other tasks are performed in the CTtdAddIn.

UIHandler

Tau/Developer allows adding self-made plug-in applications directly into its
menu structure. Thus, the start button of the Q-Tra is added there.

The Q-Tra tool extension has a dialog based graphical user interface, i.e. the Q-
Tra is a pop-up program. There are two kinds of dialogs. The modal dialog is a
window, which retains the focus until it is explicitly closed. The modeless dialog
is a window, which does not require closing before switching to another
window.

The modeless dialog would be a better choice for the GUI, as it allows switching
between the Q-Tra and Tau/Developer on the fly, and it would not be necessary
to close the Q-Tra while doing other tasks with Tau/Developer, but there were
some problems in implementing the GUI with it. Tau/Developer became
extremely unstable and the reasons for the peculiar behaviour were never
reasoned out. Therefore, the modal dialog type was chosen. However, starting
the Q-Tra is easy; the modal dialog is not a bad choice.

Implementation of the GUI consists of the main dialog (Figure 17), which is
used to start other task specific dialogs. The task specific dialogs are concerned
with accessing the stylebase and conducting the transformations.

81

Figure 17. Main dialog of the Q-Tra.

Adding, removing and updating contents of the stylebase are performed by using
separate dialogs. Figure 18 presents the dialog, which is used for adding new
design and architectural patterns into the stylebase. The dialog contains the
information necessary for describing patterns. Four buttons at the bottom of the
dialog are used to browse the stylebase and to add a new pattern into it. The
dialog is responsible for validating that the necessary fields are filled in order to
add a new pattern into the stylebase. If some fields are left blank, the dialog
requests the architect to fill in the blank ones. Remove and update dialogs
function similarly as the add dialog.

82

Figure 18. Add dialog.

Transformation is performed using the transformation dialog (Figure 19). The
transformation dialog consists of three sections and two buttons:

• Source pattern information field
• Target pattern information field
• Found component window, which shows components participating in

the source pattern

83

• Fetch button, which is used to perform queries to the UML model
• Transform button, which is used to conduct transformation.

Source and target pattern sections consist of three fields:

• Name of the pattern
• Quality attributes
• Abstraction level switch, which defines the abstraction level of the

patterns shown in the pattern name list.

Figure 19. Transformation dialog.

Querying the stylebase for patterns and quality attributes is easy as the pattern
name field and the quality attribute field are updated dynamically: The architect
can select �All� from the quality attribute field and browse the pattern name
field in order to show all design or architectural patterns the stylebase contains.
On the other hand, if the architect selects �All� from the pattern name field and
browses the quality attribute field, it shows all quality attributes that are found in
the stylebase. Moreover, if the architect selects, for instance, �modifiability�
from the quality attribute field, the pattern name field is updated with a list of

84

patterns, which promotes this quality attribute. Again, by selecting a certain
pattern from the pattern name field, the quality attribute field is updated with all
the attributes the pattern promotes.

Updating dynamically the pattern name field and the quality attribute field
results in good usability after some practise. For instance, if the architect wants
to find all the patterns, which promote �portability�, he or she selects �All� from
the pattern name field and �portability� from the quality attribute field. Now, the
architect can browse the pattern name field for all patterns that promote the
desired quality attribute. Selecting one pattern, the architect can browse what
other quality attributes the pattern promotes and make the final decision by
considering all the quality attributes.

The architect can perform a query to the UML model by (1) selecting one
pattern in the source pattern field and (2) pushing the �Fetch� button. The Q-Tra
browses the model and returns list of components participating in the pattern.
The architect can double click the components in the list in order to see some
more information about them (Figure 20). The transformation is conducted by
pressing �Transform� button.

Figure 20. Entity information field.

Implementation structure for the user interface consists of some task specific
classes, which are activated by a class representing the main dialog.
Communication to Engine is implemented through an interface, which is
common for all the user interface classes.

85

Engine

Engine provides a loose coupling between components by routing a service to
another. In addition, Engine is responsible for creating and deleting the other
components in the Q-Tra. In practice, the Engine creates a component and gives
its pointer to the component in order to make bi-directional communication
possible. Thus, the created component has access to Engine at the same way as
Engine has access to the created component. Engine also implements the
interfaces of the other components. Thus, the created components see Engine
with the services of the other components. In this way, interdependency of the
components is minimized.

5.3.2 Testing the Components

The testing of the Q-Tra implementation was carried out in many different
phases during the development of the tool extension. Testing the functionality
and correctness of the components was performed with black-box approach, i.e.
sending series of inputs to the component and observing the results it returned.
Once the tests were successfully passed and the faults were corrected, the work
continued with implementing the next component.

The first component that was implemented and tested was DatabaseHandler,
which is responsible of accessing the stylebase. The tests covered the basic
services of simple database, i.e. loading and saving elements, performing queries
and adding new elements to the data repository.

The second component that was implemented and tested was the CTtdAddIn,
which provides an interface to Tau/Developer. The tests to the component
remained trivial, as CTtdAddIn does not contain any complex behaviour. After
this, ModelHandler was implemented and tested. As the ModelHandler is
responsible for accessing and manipulating the UML model, extensive tests to
this component were difficult to perform. This is because there could be
numerous different kinds of anomalies in UML models that the architect
constructs if correctness of the model is not verified. Therefore, the tests
performed at this point covered only correctly build models and handling various
anomalies were left for further development.

86

The fourth component that was implemented and tested was UIHandler, which
provides a graphical user interface. As UIHandler accesses the other
components, the mediator component, Engine, was also created at this point.
Now, the first integration tests were carried out. The last component that was
implemented and tested was Transformer. The tests remained more or less the
same as with DatabaseHandler. Implementing all components successfully
resulted in the final testing of the Q-Tra functionality.

87

6. Case study � layers-to-blackboard
transformation

For illustrating quality-driven model transformation with the Q-Tra, a simple
case study is presented. The case is called Distribution Service Platform
(DiSeP). The purpose of the DiSeP is to make the software components in a
networked environment to interact spontaneously. Components in the DiSeP are
various kinds of services that are either a part of the platform or a part of the
application that utilizes the platform. The configuration of the network may
change dynamically. That is, the number of modules or the range of the available
services may change. The main goal of the DiSeP is to maintain the
interoperability of the services despite the dynamic nature of the network. [13]
Figure 21 presents the conceptual architecture of the DiSeP.

Architecture class DiSep {1/1}Architecture class DiSep {1/1}

App : Application

App : Application

LU : Lease_user

LU : Lease_user

LG : Lease_granter

LG : Lease_granter

APS : Application_service_provider

APS : Application_service_provider

ASU : Application_service_user

ASU : Application_service_user

LS : Lease_services

LS : Lease_services

DS : Directory_service

DS : Directory_service

DD : Data_distribution

DD : Data_distribution

AS : Activator_service

AS : Activator_service

LS : Location_service

LS : Location_service

Intr : Interpreter

Intr : Interpreter

Comm : Communication_services

Comm : Communication_services

DS : Data_storage

DS : Data_storage

Figure 21. DiSeP � Source model.

At the top of the Figure 21, stands Application, which illustrates the application
using the DiSeP. The layer below Application contains four interface

88

components, which provide interfaces for services that can be directly accessed
by the application. Furthermore, the layer below the interface layer contains two
components. The Lease service utilizes the lease management and the Directory
service provides a directory for distributed data storage. The most complex layer
contains five components, which are responsible for receiving and processing
the incoming control information and sending the outgoing control information.
The Activator service monitors the state of the network, the Data storage works
as distributed data storage, the Interpreter encodes and decodes XML messages,
the Data distribution operates the data storage and the Location service manages
the location information specific aspects. The last layer, the Communication
service provides services that handle communication between different units in
the network.

The architecture of the DiSeP applies the Layers architectural pattern. In order to
apply quality-driven model transformation, the source model has to be marked.
By knowing the roles and types of the components, the marks of the source
model can be defined. The Marks of each component (Table 18) are added to the
comment fields of the components in the model.

Table 18. Related component marks in the source model.

Component Style Role Type
Application - - -
Activator service Layers Component Control
Application service provider Layers Component Interface
Application service user Layers Component Interface
Communication services Layers Layer Computation
Data distribution Layers Component Computation
Data storage Layers Component Data
Directory service Layers Component Computation
Interpreter Layers Component Computation
Lease grantor Layers Component Interface
Lease user Layers Component Interface
Lease service Layers Component Computation
Location service Layers Component Computation

89

The Q-Tra provides means for easy resolving of an optimal architecture for the
system. This is done by following the six steps defined below:

• Open transformation dialog from the Q-Tra main window.
• Press �Design� or �Architecture� pattern abstraction level switch in

both the source and the target information fields in order to begin
browsing patterns in the desired abstraction level.

• Select the current architecture from the source pattern name field and
set �All� to the source attribute field.

• Select the desired quality attribute from the target attribute field in
order to update the target pattern name field with all patterns that
promote the current attribute.

• Browse the target pattern name field for the target architecture
candidates and select one.

• Validate the other quality attributes of the target architecture pattern
candidate by browsing the target attribute field.

After selecting the target architecture for the system, the transformation can be
conducted. The transformation is performed by the following two steps:

• Press �Fetch� button in order to query the model for components
participating in the source pattern.

• Press �Transform� button to transform the source model to the target
model with the desired architecture.

In this example, we present how to change quality attributes of the architectural
model of DiSeP to promote extensibility. As stated in Section 3.3.1, the Layers
architectural pattern promotes modifiability, portability and reusability. Thus,
Layers pattern is not an optimal solution for the architecture of DiSeP if
extensibility is considered essential.

In order to resolve optimal architecture for DiSeP, we follow the steps defined
above. First, (1) the transformation dialog is opened (see Figure 19) from the Q-
Tra. As we want to manipulate the architectural specific aspect of the DiSeP, we
(2) press �Architecture� of the pattern abstraction level switches in both the
source and the target information fields. For (3) the source pattern name field
�layers� is selected, as the DiSeP currently utilizes the Layers pattern. For

90

attribute field, �All� is chosen. In order to find the architectural solution, which
utilizes extensible architecture, (4) �extensibility� is selected form the target
attribute field. By selecting the desired attribute from the target attribute field,
browsing target pattern name field for pattern candidates is possible. Browsing
the target pattern name field reveals that the Blackboard pattern promotes the
desired quality attribute. By (5) selecting �blackboard� from the target pattern
name field, the target attribute field is updated with the quality attributes that the
Blackboard architectural pattern promotes. The target attribute field (6) reveals
that, in addition to extensibility, Blackboard promotes availability, modifiability,
reliability and reusability, thus Blackboard seems to be a good choice for the
new architecture of the DiSeP.

In order to start the transformation process, we (1) fetch all entities, which
participate in the source, Layers, architecture of the DiSeP by pressing the fetch
button. The result is a list of components (see Figure 19) participating in the
current pattern. Here, we can see the components which will take part in the
transformation process. Now, everything is set for transformation.

Transformation is performed by (2) pressing the transform button. The Q-Tra
takes control, makes its computations and carries out the transformation from
Layers to Blackboard pattern. Figure 22 presents the result of model
transformation.

91

Architecture class DiSep {1/1}Architecture class DiSep {1/1}

App : Application

App : Application

LU : Lease_user

LU : Lease_user

LG : Lease_granter

LG : Lease_granter

APS : Application_service_provider

APS : Application_service_provider

ASU : Application_service_user

ASU : Application_service_user

LS : Lease_services

LS : Lease_services

DS : Directory_service

DS : Directory_service

DD : Data_distribution

DD : Data_distribution

AS : Activator_service

AS : Activator_service

LS : Location_service

LS : Location_service

Intr : Interpreter

Intr : Interpreter

Comm : Communication_services

Comm : Communication_services

DS : Data_storage

DS : Data_storage

datadata
datadata

datadata

datadata

datadata

datadata

controlcontrol
controlcontrol

controlcontrol

controlcontrol controlcontrol

controlcontrol

datadata

Figure 22. DiSeP � Target model after transformation.

In model transformation, the marks of the components are also transformed to
correspond the new purposes of the components. Table 19 presents marks that
are attached to the target model.

92

Table 19. Related component marks in the target model.

Component Style Role Type
Application - - -
Activator service Blackboard Control Control
Application service provider Layers Component Interface
Application service user Layers Component Interface
Communication services Blackboard Source Computation
Data distribution Blackboard Source Computation
Data storage Blackboard Blackboard Data
Directory service Blackboard Source Computation
Interpreter Blackboard Source Computation
Lease grantor Layers Component Interface
Lease user Layers Component Interface
Lease service Blackboard Source Computation
Location service Blackboard Source Computation

As it can be seen in Figure 22, components in the model are not relocated; just
the connector topology is modified in addition to the marks (see Table 19). By
inspecting the marks of the components, it can be noticed that not all
components are transformed, as there still are interface components with pattern
name mark �Layers� attached. The reason is that no rule was found for
transforming interface components and thus they are left out of the process.

Since the component topology is not rebuilt in the transformation and only the
connector topology is considered in the graphical presentation, some of the
architect�s attention is required to make the model more expressive. After re-
arranging the components and adjusting the component topology, the model takes
a new form, which reminds the Blackboard architectural pattern (Figure 23).

93

Architecture class DiSep {1/1}Architecture class DiSep {1/1}

App : Application

App : Application

LU : Lease_user

LU : Lease_user

LG : Lease_granter

LG : Lease_granter

APS : Application_service_provider

APS : Application_service_provider

ASU : Application_service_user

ASU : Application_service_user

LS : Lease_services

LS : Lease_services

DS : Directory_service

DS : Directory_service

DD : Data_distribution

DD : Data_distribution

AS : Activator_service

AS : Activator_service

LS : Location_service

LS : Location_service

Intr : Interpreter

Intr : Interpreter

Comm : Communication_services

Comm : Communication_services

DS : Data_storage

DS : Data_storage

datadata

datadata
datadata

datadata

datadata

datadata

controlcontrol

controlcontrol

controlcontrol

controlcontrol

controlcontrol

controlcontrol

datadata

Figure 23. DiSep � Target model after rearranging components.

In Figure 23, it is easy to discern the Blackboard architectural pattern. At the
centre of the model the controller component, Activator service, can be seen to
control the other components. The Data storage in the role of data component
can be found at the bottom of the diagram.

94

7. Discussion
The quality-driven model transformation is one attempt to bridge the gap
between the quality properties and the architectural structures. As no
transformation technique is effective without a proper tool support, the goal is to
automate the transformation with advanced CASE tools.

In this thesis, we presented the Q-Tra tool that automates the quality-driven
model transformation. Although the Q-Tra and the transformation technique is
far from ready, the time for the first trials on automating quality-driven model
transformations is here. Currently, we have managed to implement one
horizontal transformation from the Layers architectural pattern to the Blackboard
pattern successfully, but in the near future, more transformations will be defined.
In addition to defining more architectural transformations, the aim is to adapt the
quality-driven model transformation technique and its automation for
transforming the design patterns. The most ambitious goal of the horizontal
transformation would be to extend the technique for the model dynamics, i.e.
transforming in addition to the structure of the system, the behaviour.

In this thesis, we have shown that the transformation technique and the quality-
driven model transformation are realizable. This is a tiny step bridging the gap
between quality attributes and architectural structures but far from insignificant.
Significance of the work comes from breaking the ice. If a complete quality-
driven model transformation, i.e. transforming the model structure and the
behaviour could be realized, the benefits would be revolutionary. It would be
possible to optimize whole systems for the desired quality properties just by a
press of a button.

Although we have managed to realize the quality-driven model transformation,
the time for further development is not favourable due to a change of generation
in the modelling languages. At the time the modelling tool evaluation was
performed (see Section 4.), UML 2.0 was in the finalization phase. Currently
(December 2004), the situation has not changed, as UML 1.5 is still the official
version. In addition to the confusing state of the modelling language standard,
modelling tool vendors implement the upcoming UML 2.0 and its new features
differently and with a certain delay. On the top of that, new features often come
up immature: such is the case with Tau/Developer. Whether the transformations

95

are vertical or horizontal, a lot of work is still required in order to accomplish the
goals of the MDA. Considering the facts above, development of the automated
quality-driven model transformation is on the crest of the research area.

Next, we analyse the work done against the research problems that were
presented in Section 1. In addition, future development of the Q-Tra tool will be
discussed.

7.1 Experiences in Applying Quality-driven Rule
Description Language

Several restrictions were encountered in the automation while applying the Q-
RDL for transformation description. As a case, we look at the Blackboard-to-
Layers transformation.

Mark mappings between patterns work correctly, as they are one-to-one
mappings. The problems arise while trying to construct a new connector
topology, as in Layers, components do not have pre-defined types, roles or are in
any pre-defined order. It cannot be defined that a certain data component must
have access to a certain computation component. We can define that all data
components have access to computation components, but not to a certain
computation component or vice versa.

This is surely a restriction of the Q-RDL, but a completely automated
transformation to Layers from any arbitrary pattern can be questioned. This is
because the transformation to Layers is always a one-to-many or even many-to-
many transformation and these kinds of transformations may not be even
possible without user interaction. Currently, expressing the need of user
interaction in a certain phase of the transformation with the Q-RDL can be easily
done by just writing the desired field, for instance, �user interaction required�.

Currently, the Q-RDL lacks support for expressing all kinds of anomalies,
except for missing crucial components. For instance, in the Layers to Blackboard
transformation if there are two data components instead of one in Layers, what
to do with the other one, as in Blackboard only one data component, blackboard,

96

is allowed? How to express it that you have to get rid of the other data
component if that is wanted?

Restrictions of the Q-RDL can easily be understood, as there is even no other
experience of applying the quality-driven model transformation technique than
to defining Layers-to-Blackboard transformation. However, Q-RDL will evolve
at the same phase as the technique does, and the restrictions in it will diminish
when the quality-driven model transformation techniques mature. Currently, it
seems that Q-RDL can be used at least for the one-to-one transformation as
such.

As transformations defined by using the Q-RDL result in pair-specific
transformation rules, which is also the case when applying the quality-driven
model transformation technique for transformation definitions, may lead to
problems. Adding one new pattern into the pattern repository, where the
transformation between the patterns in both directions (source-to-target, target-
to-source) must be defined, may result in a workload explosion. This is because
n patterns, where n is the total number of patterns, have n! possible pair
combinations and when one new pattern is added into the pattern repository, this
multiplies of the number of possible new combinations by n+1. For instance, if
at the beginning we have three patterns in the pattern repository and they have
n!, that is six combinations, after introducing one new pattern into the repository
there is total of (n+1)!, i.e. 24, pair combinations.

Despite the restrictions and possible workload explosion of applying Q-RDL, it
is still a viable solution for describing transformation rules defined by applying
the quality-driven model transformation technique. However, it may be
abandoned when standard transformation description languages emerge.

7.2 Analysis of the Tool Evaluation Result

In Section 4, thirteen UML modelling tools were evaluated to find the most
suitable one to be extended with a tool that automates the quality-driven model
transformation. The evaluation was two-phased: First, the evaluation iteration
was performed in order to get a general view of the available modelling tools

97

and to filter out the most unsuitable ones. The second iteration was conducted to
the remaining tools to resolve the most suitable one to be extended.

The evaluation of the modelling tools emphasised two aspects: extendability and
support for MDA. The extension capabilities of the tools were observed by
checking whether the tools offer support to API for plug-ins and support for
making new UML profiles. Support for MDA was considered by checking
whether the tools allow platform independent developing. If the tool provided an
action language which does not restrict the ultimate implementation language, it
was considered that the tool supports to PIM extend of MDA. Otherwise, the
tool only supports the PSM extend of MDA.

Telelogic Tau/Developer was considered the most suitable modelling tool to be
extended and the rest of the tools were abandon. In order to analyse the success
and accuracy of the evaluation result, some experiences gained of
Tau/Developer while designing and implementing the Q-Tra are presented.

7.2.1 Experiences of Using Telelogic Tau/Developer

At the beginning when the first design plans were made, it was thought that the
Q-Tra would be implemented by the MDA approach. That is, the source code for
the tool extension would have been generated from the model, or at least of a
part of it. However, the MDA approach was given up for certain reasons.

When the simplified model of the Q-Tra was realized and simulated (see Figures
13, 14 and 15) with Tau/Developer, it seemed that the model cannot be compiled
to source code directly, but the model had to be refined with some extra
information. These did not include marks (see Section 2.3.4), but some action
code had to be written here and there just for the purpose of creation of
components and other objects on the model. This was considered peculiar, as the
simulation did work well without any special component creation code. In
addition, the main method had to be written to make the program start. Neither
of these was considered a burden, but some questions occurred about what else
would have to be done in order to get the program running. However, these are
not flaws of the modelling tool. The uncertainty of everything rose from the lack
of expertise. Yet, there are certainly loads of bugs in Tau/Developer.

98

While writing the main method to the model, some peculiar software bugs were
encountered. It seemed that writing certain aspects into the main method caused
corruption of the model. This was extremely annoying, as the model could not
be resurrected. After consulting the Telelogic support, they admitted that there
certainly is a bug in Tau/Developer and it will be corrected in some upcoming
version.

It was clear that the Q-Tra could not be completely constructed by modelling, as
at least the graphical user interface had to be implemented in a more traditional
way. Therefore, importing external code to the model was tried. At this stage,
the lack of documents and expertise on using the tool backfired again.
Tau/Developer imports external code correctly but it does not complete the
importing process, i.e. it does not save the imported library anywhere. By
manually saving the imported library to a separate file, importing and compiling
the code agreed to work. This was not a bug of the modelling tool. It was more
like a thing that has to be known, because there is no reference in
Tau/Developer�s help that suggests saving the imported libraries before
compiling the model. Similar cases were encountered every now and then, as
documents were not sufficient or were in some cases even erroneous.

There are also some bugs in the modelling. A model consists of two views: a
diagram, which shows a graphical presentation of the model, and a model
browser, which shows the model as a tree. If a user removes connectors between
ports from composite structure diagram, the connectors are not removed from
the model browser. If the user wants to show the connectors again in the diagram
view, he/she has to know which part is connected to which part, as an auto
layout feature for connectors does not work. This affected the later
implementation of the Q-Tra, as the auto layout feature had to be implemented
by ourselves. After consulting the Telelogic support, they admitted a bug and
promised to correct it.

When considering and summarising the experiences gained so far, it seemed that
Tau/Developer is not ready for extensive utilization if there are serious flaws
even in the small and simple models. Despite the bugs and lack of documents of
Telelogic Tau/Developer, the evaluation of the modelling tool results still hold
up. Tau/Developer delivers all features that were promised.

99

7.3 Future Development of the Q-Tra

The purpose was to automate the quality-driven model transformation in a
CASE tool. The experience gained so far of the Q-Tra has shown that the
automated quality-driven model transformation is realizable to some extend.
However, development work of the Q-Tra is far from ready, as there are clearly
some subjects which require further attention. The following aspects are
considered:

• Implement the stylebase and the rulebase with distributed databases.
• Refine user interface.
• Replace Telelogic Tau/Developer with another modelling tool.

7.3.1 Databases

Currently, the stylebase and the rulebase are implemented with a linked list based
solution. However, it seems that the databases have to be implemented with
distributed databases, i.e. the databases would be located in a separate server. This
is because, the architects may develop new patterns and transformation rules,
which should be shared with the others. Updating the pattern and rule repositories
is easier when the data are located in just one place. In addition, at least the
stylebase may be used by other tools developed in the future.

Interaction between the database server and the clients, i.e. the architects, can be
conducted at least in three ways:

1. Queries to the distributed database are performed every time when
needed.

2. Contents of the database are loaded when the Q-Tra tool is started.
3. Contents of the database is only loaded once and saved to the clients�

hard drive. The clients� databases are updated in some period.

The first method requires an online connection between the client and the server
in order to function. The information exchange should be minimal, as only
queried patterns are transferred from the server to the client.

100

The second method also requires a connection to the server, but after the
contents of the database are loaded, the connection is disconnected. In this way,
a client has always up-to-date contents of the database. However, loading
database every time to the client may take some time. Furthermore, it is
considered unnecessary, as it is assumed that the databases will not change
often.

The third method does not require online connection, as the database is loaded
only once at the first time when the Q-Tra is launched. Connection to the server
is required only when an architect wants to update his/her database.

7.3.2 User Interface

The user interface provides a way of modifying contents of the stylebase and of
performing queries and transformations. Currently, the user interface is not
designed from the point of view of usability; thus, it will be refined.

At this moment, modifying the contents of the stylebase is implemented with
three dialogs: add, remove and update dialog. The dialogs will be implemented
with a single dialog, which allows all editing tasks.

Now, querying the model gives the results in a list of components participating
in a certain pattern. The list will be replaced by a tree view of the components,
i.e. nodes will be diagram names and the components participating in the
diagrams are leaves. Querying may be conducted by fetching all known patterns
from the model instead of fetching the pattern at the time. In this way, an
architect can much more easily discern what patterns are used in the diagrams
than by clicking every component in the list and after that resolving the use of
the patterns.

Currently, the transformation is performed for all components participating in a
certain pattern. This should be refined to support selective transformation. That
means that from a tree view, an architect can select the diagrams and
components, which will take part in the transformation.

101

7.3.3 Modelling Tool

Telelogic Tau/Developer was extended to support the quality-driven model
transformation by introducing the Q-Tra to it. However, Tau/Developer may be
replaced in some stage by another modelling tool. As stated, it is assumed that
the only changes that have to be performed in the Q-Tra are replacing the CASE
tool accessing point (CTtdAddIn) and re-writing ModelHandler, which is
responsible of accessing the UML model. Thus, the accuracy of the estimated
changes will be tested.

102

8. Summary
The automated quality-driven model transformation comes with many uses: An
architect can easily experiment and try different kinds of architectures for a
system while designing a model just by a press of a button, when traditionally
changes in the model have to be made manually. Particularly in the context of
product families, quality-driven model transformation is justified. This is, as
products of a product family may have various customer groups desiring
different qualities from a product. The automated quality-driven model
transformation enables easy optimization or change of the desired quality
property of a product.

The aim of this thesis was to develop a tool that automates the quality-driven
model transformation. In order to accomplish this, three actions were carried out:

• to develop a rule description language for describing the rules defined
by the quality-driven model transformation technique

• to find the most suitable CASE tool to be extended with a support for
quality-driven model transformation

• to design and implement a tool extension, which automates the
transformation.

In order to encapsulate rules for the transformation, defined by the quality-
driven model transformation technique, a simple rule description language, Q-
RDL, was developed. The basic idea of Q-RDL is to define transformations as
pattern-pair specific rules. Currently, transformation from Layers architectural
pattern to Blackboard has been defined by applying Q-RDL.

For purpose of finding the most suitable modelling tool to be extended, thirteen
CASE tools were studied. The tools had to support UML 2.0 or at least the
structure modelling. In addition, an extensibility interface was required. These
two criteria filtered ten unsuitable tools out and left three for further evaluation.
Telelogic Tau/Developer, Rhapsody Developer and Rose Technical Developer
were then evaluated one at the time and later on compared against each other. As
a result, Telelogic Tau/Developer seemed to be the most suitable one and
therefore it was chosen to be extended.

103

The last phase was to implement a tool extension, the Q-Tra, to Telelogic
Tau/Developer. The Q-Tra assumes that the software architecture is available as
a marked platform independent model in the CASE tool. For every component,
the marks include the name of the pattern where the component participates in,
the role and type of the component. With use of the marks in the model, the
contents of the stylebase and the the transformation rules described with Q-RDL,
the Q-Tra can make transformations. Currently, the transformation from the
Layers architectural pattern to the Blackboard pattern has been defined and
implemented.

To conclude, we have managed to automate the quality-driven model
transformation with the Q-Tra. However, the development work is not ready.
Both the Q-RDL and Q-Tra still need a lot of work to make more
transformations feasible and user friendlier.

104

References
[1] Selic, B. The Pragmatics of Model-Driven Development. IEEE Computer

Society. IEEE Software, 2003. Pp. 19�25.

[2] Selic, B. Model-Driven Development in the Embedded Environment with
OMG Standards. Presentation in the second international summer school
on MDA for embedded systems, Brest, Brittany in France, 6th September,
2004.

[3] Miller, J. & Mukerji, J. MDA Guide Version 1.0.1. Object Management
Group, 2003. 62 p.

[4] Ramljak, D., Puksec, J., Huljenic, D., Koncar, M. & Simic, D. Building
enterprise information system using model driven architecture on J2EE
platform. In: Proceedings of the 7th International Conference on
Telecommunications, IEEE, 2003. Pp. 521�526.

[5] Matinlassi, M. Quality-driven Architecture Model Transformation for the
Software Product Families. Submitted to the Journal of Software and
Systems Modelling, 2004. 32 p.

[6] Merilinna, J. & Matinlassi, M. Evaluation of UML Tools for Model-
Driven Architecture. In: 11th Nordic Workshop on Programming and
Software Development Tools and Techniques, Turku, Finland: Åbo
Akademi, 2004. Pp. 155�163.

[7] Bass, L., Clements, P. & Kazman, R. Software Architecture in Practice.
Reading, Massachusetts: Addison-Wesley, 1998. 452 p.

[8] Bosch, J. Design and use of software architectures: adopting and evolving
a product-line approach. Harlow: Addison-Wesley, 2000. 354 p.

[9] van der Linden, F., Bosch, J., Kamsties, K., Känsälä, K. & Obbink, H.
Software Product Family Evaluation. In: Proceedings of the Third
International Conference on Software Product Lines, Springer Verlag:
Boston, 2004. Pp. 110�129.

[10] Matinlassi, M. & Niemelä, E. The Impact of Maintainability on
Component-based Software Systems. In: 29th Euromicro Conference
(EUROMICRO�03), Turkey, 2003. Pp. 25�32.

105

[11] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. & Stal, M.
Pattern-oriented software architecture � a system of patterns. Chichester,
New York: Wiley, 1996. 457 p.

[12] Gamma, E., Helm, R., Johnson, R. & Vlissides, J. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional Computing Series, Addison Wesley, 1994. 416 p.

[13] Matinlassi, M., Niemelä, E. & Dobrica, L. Quality-driven architecture
design and analysis method. A revolutionary initiation approach to a
product line architecture. Espoo: VTT Technical Research Centre of
Finland, VTT Publications 456, 2002. 128 p.

[14] Niemelä, E., Kalaoja, J. & Lago, P. Towards an Architectural Knowledge
Base for Wireless Service Engineering. IEEE Transactions on Software
Engineering, vol. 31, 2004. 46 p.

[15] Erikson, H., Penker, M., Lyons, B. & Fado, D. UML 2 Toolkit. Wiley
Publishing Inc, Indianapolis, Indiana, 2004. 511 p.

[16] Berkenkötter, K. Using UML 2.0 in Real-Time Development: A Critical
Review. In: SVERTS: Specification and Validation of UML models for
Real Time and Embedded Systems, October 20, 2003. 14 p.

[17] IEEE Recommended Practice for Architectural Descriptions of Software-
Intensive Systems in Std-1417-2000. New York: Institute of Electrical and
Electronics Engineers Inc, 2000. 23 p.

[18] Object Management Group. UML 2.0 Superstructure Specification,
8.9.2003. 623 p.

[19] Bjökander, M. & Kobryn, C. Architecting Systems with UML 2.0. In:
IEEE Computer Society, July/August, 2003. 5 p.

[20] Gardner, T., Griffin, C., Koehler, J. & Hauser, R. A review of OMG MOG
2.0 QVT Submissons and Recommendations towards final standard. In: 1st
International Workshop on Metamodeling for MDA, York, 2003. 20 p.

[21] Burt, C., Bryant, B., Raje, R. & Auguston, M. Quality of service issues
related to transforming platform independent models to platform specific
models. In: Proceedings of the Sixth International Conference on
Enterprise Distributed Object Computing, 2002. Pp. 212�223.

106

[22] Frankel, D. Model-Driven Architecture, Applying MDA to Enterprise
Computing. Indianapolis, Indiana: Wiley Publishing Inc., 2003. 328 p.

[23] Christoph, A. Describing Horizontal Model Transformations with Graph
Rewriting Rules. In: Proceedings of Model-Driven Architecture
Foundations and Applications, 2004. Pp. 76�91.

[24] OMG. MOF 2.0 Query/Views, Transformations RFP, 2002. 32 p.

[25] Shaw, M & Clements, P. Field guide to boxology: Preliminary
classification of architectural styles for software systems. In: Proceedings
of the 1997 21st Annual International Computer Software & Application
Conference, COMPSAC�97, August 13�15 1997, Washington, DC, USA.
Los Alamitos, CA, USA: IEEE, 1997. Pp. 6�13.

[26] Jeckle, M. UML Tools, CASE and Drawing.
URL: www.jeckle.de/umltools.html, 6.5.2004.

[27] Microsoft Corporation. COM: Component Object Model Technologies.
URL: http://www.microsoft.com/com/default.mspx, 2.11.2004.

[28] SQL.org. URL: http://www.sql.org, 12.11.2004.

http://www.microsoft.com/com/default.mspx
http://www.sql.org

 1/1

Appendix 1: The Q-RDL in Extended
Backus-Naur Form

Transformation rules are described by applying Q-RDL rule description language.
The syntax of the rules is described below in Extended Backus-Naur Form. The
last line (<letter>) presented below is shortened for the sake of clarity.

<newTransformation_stmt> ::= <newTransformation> |
<newTransformation_stmt> <newTransformation>

<newTransformation> ::= <<NEW TRANSFORMATION>>
<sourcePatternName_stmt> <targetPatternName_stmt> <componentInfo_stmt>
<crucialComponents_stmt> <connectionRules_stmt> <<END
TRANSFORMATION>>
<sourcePatternName_stmt> ::= <<Source pattern>> <sourcePatternName>
<sourcePatternName> ::= <anyKnownPattern>
<targetPatternName_stmt> ::= <<Target pattern>> <TargetPatternName>
<targetPatternName> ::= <anyKnownPattern>

<componentInfo_stmt> ::= <componentInfo_stmt> <sourceInfo> <targetInfo> |
<sourceInfo> <targetInfo>

<sourceInfo> ::= <<Source information>> <markInfo>
<targetInfo> ::= <<Target information>> <markInfo>
<markInfo> ::= <anyKnownPattern> <anyKnownRole> <anyKnownType>

<crucialComponents_stmt> ::= <crucialComponents_stmt>
<crucialComponents> | <crucialComponents>

<crucialComponents> ::= <<Crucial components>> <crucialElement>
<crucialElement> ::=<crucialElement><<Element>><markInfo> |
<<Element>><markInfo>

<connetionRules_stmt> ::= <connectionRules_stmt> <sourceRule>
<targetRule> | <sourceRule> <targetRule>

 1/2

<sourceRule> ::= <<Source>> <markInfo>
<targetRule> ::= <<Target>> <markInfo>

<anyKnownPatten> ::= <word>
<anyKnownRole> ::= <word>
<anyKnownType> ::= <word>
<word> ::= <word> <letter> | <word>
<letter> ::= a | b | .. | ö

 2/1

Appendix 2: Contents of the Rulebase

Transformation from the Layers architectural pattern to the Blackboard pattern is
described below by applying Q-RDL for rule description.

<<NEW TRANSFORMATION>>
<<Source pattern>>
layers
<<Target pattern>>
blackboard
<<Source information>>
layers
component
data
<<Target information>>
blackboard
blackboard
data
<<Source information>>
layers
component
control
<<Target information>>
blackboard
control
control
<<Source information>>
layers
component
computation
<<Target information>>
blackboard
source
computation
<<Source information>>
layers

 2/2

layer
data
<<Target information>>
blackboard
blackboard
data
<<Source information>>
layers
layer
control
<<Target information>>
blackboard
control
control
<<Source information>>
layers
layer
computation
<<Target information>>
blackboard
source
computation
<<Crucial components>>
<<Element>>
blackboard
blackboard
data
<<Element>>
blackboard
control
control
<<Element>>
blackboard
source
computation
<<Connection rules>>
<<Source>>

 2/3

blackboard
blackboard
data
<<Target>>
blackboard
source
computation
<<Source>>
blackboard
control
control
<<Target>>
blackboard
source
computation
<<Source>>
blackboard
blackboard
data
<<Target>>
blackboard
control
control
<<END TRANSFORMATION>>

 3/1

Appendix 3: Contents of the Stylebase

Contents of the stylebase are saved in a text file. Patterns and fields are separated
from each other by descriptive tags.

<<--ELEMENT BEGIN-->>
<<Pattern name>>
blackboard
<<Data topology>>
hierarchical
<<Control topology>>
star
<<Diagram>>
composite structure
<<Purpose>>
from mud to structure
<<Abstraction level>>
conceptual
<<Component type>>
computations
control
data
<<Component role>>
blackboard
control
source
<<Connector type>>
messages
<<Attribute>>
modifiability
reusability
extensibility
availability
<<Reference>>
Bushmann et al. 1996
<<Rationale>>
DiSep
<<--ELEMENT END-->>
<<--ELEMENT BEGIN-->>

 3/2

<<Pattern name>>
layers
<<Data topology>>
hierarchial
<<Control topology>>
hierarchial
<<Diagram>>
composite structure
<<Purpose>>
from mud to structure
<<Abstraction level>>
conceptual
<<Component type>>
varying
<<Component role>>
component
layer
<<Connector type>>
bottom-up notifications
top-down requests
<<Attribute>>
modifiability
portability
reusability
<<Reference>>
Bushmann et al. 1996
<<Rationale>>
DiSep
<<--ELEMENT END-->>

Published by

 Series title, number and
report code of publication

VTT Publications 561
VTT�PUBS�561

Author(s)
Merilinna, Janne
Title

A Tool for Quality-Driven Architecture Model
Transformation
Abstract
Model-Driven Development (MDD) is about treating models as first class design entities.
Model-Driven Architecture (MDA) is an Object Management Group�s initiative that
proposes to define a set of non-proprietary standards that will specify interoperable
technologies with which to realize MDD with automated transformations. The concept of
Model-Driven Architecture lies on models at different abstraction levels, where
transformations are performed switching between models. Transformations where the
abstraction level is changed are called vertical transformations to separate from horizontal
transformations where the abstraction level remains unchanged.
Quality-driven model transformation is a horizontal transformation where varying quality
attributes of a software product are the driving force for transformation. The quality-
driven model transformation relies on the fact that the functionality of the system can be
implemented with a wide variety of architectures and therefore with different quality
properties. The purpose is to conform to the MDA approach and thus, the goal is to
automate the transformation with advanced CASE (Computer Aided Software
Engineering Tool) tool.
This thesis focuses on designing and implementing a tool extension that automates the
quality-driven model transformation. To accomplish this, a rule description language for
defining transformation rules was developed. In addition, a CASE tool evaluation was
performed to find the most suitable modelling tool to be extended. Finally, the tool
extension was implemented to the Telelogic Tau/Developer.
Keywords
model-driven development, Model-Driven Architecture
Activity unit
VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FI�90571 OULU, Finland
ISBN Project number
951�38�6439�1 (soft back ed.)
951�38�6440�5 (URL:http://www.vtt.fi/inf/pdf/)

E3SU00217

Date Language Pages Price
March 2005 English, Finnish abstr. 106 p. + app. 7 p. C
Name of project Commissioned by
FAMILIES
Series title and ISSN Sold by

VTT Publications
1235�0621 (soft back ed.)
1455�0849 (URL: http://www.vtt.fi/inf/pdf/)

VTT Information Service
P.O.Box 2000, FI�02044 VTT, Finland
Phone internat. +358 20 722 4404
Fax +358 20 722 4374

http://www.vtt.fi/inf/pdf/
http://www.vtt.fi/inf/pdf/

Julkaisija

 Julkaisun sarja, numero ja
raporttikoodi

VTT Publications 561
VTT�PUBS�561

Tekijä(t)
Merilinna, Janne
Nimeke

Työkalu arkkitehtuurimallin laatuohjattuun
transformaatioon
Tiivistelmä
Malliohjatun kehittämisen ajatuksena on käyttää malleja ensisijaisina suunnittelukohteina.
Model-Driven Architecture (MDA) on Object Management Groupin ehdotus kehittää
yleishyödyllisiä standardeja, jotka määrittelisivät keskenään yhteensopivia teknologioita,
joita voitaisiin käyttää malliohjatun kehittämisen toteuttamiseen automaattisilla
transformaatioilla. MDA:n perusajatus on käyttää eri abstraktiotasoilla olevia malleja,
joissa mallista toiseen voidaan liikkua tekemällä transformaatioita. Transformaatioita,
joissa abstraktiotasoa vaihdetaan, kutsutaan vertikaalisiksi transformaatioiksi ja transfor-
maatioita, joissa abstraktiotaso ei muutu, kutsutaan horisontaalisiksi transformaatioiksi.
Laatuohjatun mallin transformaatio on horisontaalinen transformaatio, jossa
ohjelmistotuotteen muuttuvat laatuvaatimukset ovat transformaation peruste. Laatuohjattu
mallin transformaatio perustuu siihen tosiseikkaan, että järjestelmän toiminta voidaan
toteuttaa monella eri arkkitehtuurilla ja täten eri laatuvaatimuksilla. Tarkoituksena on
pyrkiä noudattamaan MDA-lähestymistapaa, joten päämääränä on automatisoida
transformaatio CASE-työkalun avulla.
Tämän lopputyön tavoitteena oli kehittää työkalulaajennus, joka toteuttaa laatuohjatun
mallin transformaation. Tavoitteen saavuttamiseksi kehitimme transformaatioiden
kuvaamista varten sääntökuvauskielen. Lisäksi teimme mallinnustyökaluvertailun, jonka
tavoitteena oli löytää sopiva työkalu laajennusta varten. Lopuksi toteutimme
työkalulaajennuksen Telelogic Tau/Developeriin.

Avainsanat
model-driven development, Model-Driven Architecture
Toimintayksikkö
VTT Elektroniikka, Kaitoväylä 1, PL 1100, 90571 OULU
ISBN Projektinumero
951�38�6439�1 (nid.)
951�38�6440�5 (URL: http://www.vtt.fi/inf/pdf/)

E3SU00217

Julkaisuaika Kieli Sivuja Hinta
Maaliskuu 2005 Englanti, suom. tiiv. 106 s. + liitt. 7 s. C
Projektin nimi Toimeksiantaja(t)
FAMILIES
Avainnimeke ja ISSN Myynti:

VTT Publications
1235�0621 (nid.)
1455�0849 (URL: http://www.vtt.fi/inf/pdf/)

VTT Tietopalvelu
PL 2000, 02044 VTT
Puh. 020 722 4404
Faksi 020 722 4374

http://www.vtt.fi/inf/pdf/
http://www.vtt.fi/inf/pdf/

V
TT PU

BLICA
TION

S 561
A

 Tool for Q
ualityD

riven A
rchitecture M

odel Transform
ation

Janne M
erilinna

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000

02044 VTT 02044 VTT FI–02044 VTT, Finland
Puh. 020 722 4404 Tel. 020 722 4404 Phone internat. +358 20 722 4404
Faksi 020 722 4374 Fax 020 722 4374 Fax +358 20 722 4374

ISBN 951– 38– 6439– 1 (soft back ed.) ISBN 951– 38– 6440– 5 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235– 0621 (soft back ed.) ISSN 1455– 0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2005 VTT PUBLICATIONS 561

Janne Merilinna

A Tool for QualityDriven
Architecture Model Transformation

VTT PUBLICATIONS

543 Holopainen, Timo P. Electromechanical interaction in rotordynamics of cage induction
motors. 2004. 64 p. + app. 81 p.

544 Sademies, Anni. Process Approach to Information Security Metrics in Finnish Industry and
State Institutions. 2004. 89 p. + app. 2 p.

545 DairyNET hygiene control in Nordic dairies. Gun Wirtanen & Satu Salo (eds.). 2004.
253 p. + app. 63 p.

546 Norros, Leena. Acting under uncertainty. The coretask analysis in ecological study of work.
2004. 241 p.

547 Hänninen, Saara & Rytkönen, Jorma. Oil transportation and terminal development in the
Gulf of Finland. 2004. 141 p. + app. 6 p.

548 Nevanen, Tarja K. Enantioselective antibody fragments. 2004. 92 p. + app 41 p.

549 Koppinen, Tiina & Lahdenperä, Pertti. The current and future performance of road project
delivery methods. 2004. 115 p.

550 MiettinenOinonen, Arja. Trichoderma reesei strains for production of cellulases for the
textile industry. 2004. 96 p. + app. 53 p.

551 Hassel, Juha. Josephson junctions in charge and phase picture. Theory and applications.
2004. 38 p. + app. 40 p.

552 Niskanen, Antti O. Control of Quantum Evolution and Josephson Junction Circuits. 2004.
46 p. + app. 61 p.

553 Aalto, Timo. Microphotonic silicon waveguide components. 2004. 78 p. + app. 73 p.

554 Holttinen, Hannele. The impact of large scale wind power production on the Nordic elec
tricity system. 2004. 82 p. + app. 111 p.

555 Rintala, Kai. The economic efficiency of accommodation service PFI projects. 2004. 286
p. + app. 193 p.

556 Kiiskinen, LauraLeena. Characterization and heterologous production of a novel laccase
from Melanocarpus albomyces. 2004. 94 p. + app. 42 p.

557 MäkiAsiala, Pekka. Reuse of TTCN3 Code. 2005. 112 p.

559 Kiihamäki, Jyrki. Fabrication of SOI micromechanical devices. 2005. 87 p. + app. 28 p.

560 Tuulari, Esa. Methods and technologies for experimenting with ubiquitous computing.
2005. 136 p. + app. 2 p.

561 Janne Merilinna. A Tool for QualityDriven Architecture Model Transformation. 2005. 106
p. + app. 7 p.

http://www.vtt.fi/inf/pdf/
http://www.vtt.fi/inf/pdf/

	Abstract
	Tiivistelmä
	Preface
	Contents
	Abbreviations and acronyms
	1. Introduction
	2. Software architecture development
	2.1 Quality-driven Architecture Development
	2.2 Unified Modeling Language
	2.3 Model-Driven Architecture
	2.3.1 The Model
	2.3.2 Abstraction Levels
	2.3.3 Platform
	2.3.4 Model Transformations

	3. Quality-driven model transformation
	3.1 Overview of the Technique
	3.2 Quality-driven Rule Description Language
	3.3 Applying Quality-Driven Model Transformation
	3.3.1 Applying the Stylebase
	3.3.2 Applying Admissibility Rules
	3.3.3 Defining Mappings
	3.3.4 Defining Rules by Q-RDL
	3.3.5 Performing Layers-to-Blackboard Transformation

	4. Evaluation of UML tools for model-driven
	4.1 The First Tool Evaluation Ł Literature Study
	4.2 The Second Tool Evaluation Ł Empirical Study
	4.3 Summary

	5. Development of the Q-Tra tool
	5.1 Requirements for the Tool Extension
	5.1.1 End-User Requirements
	5.1.2 Modelling Tool Requirements
	5.1.3 Technical Requirements

	5.2 Design of the Q-Tra Tool Extension
	5.2.1 Technical Constraints for Designing the Q-Tra
	5.2.2 Architecture of the Q-Tra

	5.3 Implementation of the Q-Tra Tool Extension
	5.3.1 Implementation of the Components
	5.3.2 Testing the Components

	6. Case study Ł layers-to-blackboard
	7. Discussion
	7.1 Experiences in Applying Quality-driven Rule
	7.2 Analysis of the Tool Evaluation Result
	7.2.1 Experiences of Using Telelogic Tau/Developer

	7.3 Future Development of the Q-Tra
	7.3.1 Databases
	7.3.2 User Interface
	7.3.3 Modelling Tool

	8. Summary
	References
	Appendix 1: The Q-RDL in Extended
	Appendix 2: Contents of the Rulebase
	Appendix 3: Contents of the Stylebase

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

