
V
TT PU

BLICA
TIO

N
S 605

Practical adaptation of configuration m
anagem

ent
Jukka K

ääriäinen

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI-02044 VTT, Finland
Puh. 020 722 4404 Tel. 020 722 4404 Phone internat. +358 20 722 4404
Faksi 020 722 4374 Fax 020 722 4374 Fax +358 20 722 4374

ISBN 951–38–6842–7 (soft back ed.) ISBN 951–38–6843–5 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2006ESPOO 2006ESPOO 2006ESPOO 2006ESPOO 2006 VTT PUBLICATIONS 605

Jukka Kääriäinen

Practical adaptation of
configuration management

Three case studies

VTT PUBLICATIONS

583 Turunen, Erja. Diagnostic tools for HVOF process optimization. 2005. 66 p. + app. 92 p.

584 Measures for improving quality and shape stability of sawn softwood timber during
drying and under service conditions. Best Practice Manual to improve straightness of
sawn timber. Edited by Veikko Tarvainen. 2005. 149 p.

585 Hyötyläinen, Raimo. Practical interests in theoretical consideration. Constructive methods
in the study of the implementation of information systems. 2005. 159 p.

586 Koivisto, Tapio. Developing strategic innovation capability of enterprises. Theoretical and
methodological outlines of intervention. 2005. 120 p.

587 Ajanko, Sirke, Moilanen, Antero & Juvonen, Juhani. Kierrätyspolttoaineiden laadun-
valvonta. 2005. 59 s.

588 Ebersberger, Bernd. The Impact of Public R&D Funding. 2005. 199 p. + app. 12 p.

589 Kutinlahti, Pirjo. Universities approaching market. Intertwining scientific and entrepre-
neurial goals. 2005. 187 p. + app. 4 p.

590 Jantunen, Erkki. Indirect multisignal monitoring and diagnosis of drill wear. 2005. 80 p.
+ app. 110 p.

591 Rauste, Yrjö. Techniques for wide-area mapping of forest biomass using radar data. 2005.
103 p. + app. 77 p.

592 Safety and reliability. Technology theme – Final report. Ed. by Veikko Rouhiainen. 2006.
142 p. + app. 27 p.

593 Oedewald, Pia & Reiman, Teemu. Turvallisuuskriittisten organisaatioiden toiminnan
erityispiirteet. 2006. 108 s. + liitt. 10 s.

594 Lyly, Marika. Added ß-glucan as a source of fibre for consumers. 2006. 96 p. + app. 70 p.

595 Hänninen, Saara & Rytkönen, Jorma. Transportation of liquid bulk chemicals by tankers
in the Baltic Sea. 2006. 121 p. + app. 30 p.

596 Vähä-Heikkilä, Tauno. MEMS tuning and matching circuits, and millimeter wave
on-wafer measurements. 2006. 86 p. + app. 82 p.

597 Lallukka, Sami & Raatikainen, Pertti. Passive Optical Networks. Transport concepts. 2006.
123 p.

598 Lyyränen, Jussi. Particle formation, deposition, and particle induced corrosion in large-
scale medium-speed diesel engines. 2006. 72 p. + app. 123 p.

600 Kontkanen, Hanna. Novel steryl esterases as biotechnological tools. 2006. 100 p. +
app. 54 p.

601 Askolin, Sanna. Characterization of the Trichoderma reesei hydrophobins HFBI and HFBII.
2006. 99 p. + app. 38 p.

602 Rosqvist, Tony, Tuominen, Risto & Sarsama, Janne. Huoltovarmuuden turvaamiseen
tähtäävä logistisen järjestelmän riskianalyysimenetelmä. 2006. 68 s. + liitt. 20 s.

605 Kääriäinen, Jukka. Practical adaptation of configuration management. Three case studies.
2006. 71 p. + app. 48 p.

VTT PUBLICATIONS 605

Practical adaptation of
configuration management

Three case studies

Jukka Kääriäinen
VTT

ISBN 951�38�6842�7 (soft back ed.)
ISSN 1235�0621 (soft back ed.)

ISBN 951�38�6843�5 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455�0849 (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT Technical Research Centre of Finland 2006

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland
Vuorimiehentie 5, P.O.Box 2000, FI�02044 VTT, Finland
phone internat. +358 20 722 111, fax + 358 20 722 4374

VTT, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde 020 722 111, faksi 020 722 2320

VTT, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel 020 722 111, fax 020 722 2320

VTT Technical Research Centre of Finland
Kaitoväylä 1, P.O. Box 1100, FI-90571 OULU, Finland
phone internat. +358 20 722 111, fax +358 20 722 2320

Technical editing Maini Manninen

Otamedia Oy, Espoo 2006

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

 3

Kääriäinen, Jukka. Practical adaptation of configuration management. Three case studies. Espoo
2006. VTT Publications 605. 71 p. + app. 48 p.

Keywords software engineering, software configuration management, configuration
management, embedded systems, agile methods

Abstract
This research studies the adaptation of configuration management. Configuration
management (CM) is a support process for product development and it operates
in the context of the development project. Several factors, such as the size of the
project, distribution, development disciplines, etc. affect the project�s CM
solution. Nowadays, CM practices inside a project have become an industrial de-
facto standard, but the complexity emerges from the modern operational
environment of product development. Globalisation, outsourcing, product
variation and the amount of SW in modern products have characterized the
modern product development. This trend has also affected the CM practices,
which need to face these new challenges.

This study defines the initial framework of factors that affect the CM solution.
These factors represent the project characteristics that the CM adaptation needs
to solve when planning the CM solution for a project. Even though separate
factors can be identified, they coexist and therefore the planning of CM has to
take these factors into account singly and together.

The framework of factors has been used to characterise three CM adaptation
case studies. The case studies represent the two ends of the project types. Case 1
represents a large multisite development project, while cases 2 and 3 represent
small SW development projects. The CM practices are considered based on
factors in each case and the results are discussed. Furthermore, a cross-case
analysis has been carried out to detect and discuss similarities and differences
between the cases.

The results indicate that the plan-based CM worked well and provided
mechanisms for identifying CM solutions that suited the project context despite

 4

of the project size, although the formality and complexity of the CM solutions
varied. Good communication between the product development teams as early as
during the CM planning phase was found essential to ensure consistent CM
practices.

The study also revealed that inside a project, the CM practices are usually fairly
well realised, but the complexity and challenges of CM come from the size of
the project (large), work distribution (project hierarchy, multisite development,
dependence on third party software) and development disciplines (HW/SW).
Especially, the management of interfaces was found crucial in complex
development environment. Without strict practices unmanaged interfaces can
cause difficult problems in the integration phase.

 5

Preface

This research has been carried out in VTT during the years 2002�2004. The
foundation for the research was created in year 2002 in VTT�s strategic research
programme called UUTE (New software development technologies). The cases
have been documented in �Agile software technologies� -project and ITEA-
project called MOOSE (Software Engineering MethOdOlogieS for Embedded
Systems) during 2002�2004. This thesis was composed in ITEA-projects called
AGILE (Agile Software Development of Embedded Systems) and MERLIN
(Embedded Systems Engineering in Collaboration) during the years 2005�2006.
The work has been originally published as a licentiate thesis at the University of
Oulu.

I would like to give my thanks to the following persons that have made this
thesis possible. Professor Samuli Saukkonen has been the advisor of my
licentiate studies. Professor Oddur Benediktsson and Dr. Jorma Taramaa have
been the reviewers of this thesis. They provided valuable comments that
improved the quality of this thesis. Professor Pekka Abrahamsson provided
valuable comments and guidance throughout the research and writing process.

Furthermore, I would like to give my gratitude to my family for all support and
understanding during my studies.

Oulu, May 2006

Jukka Kääriäinen

 6

Contents

Abstract ... 3

Preface .. 5

List of original publications .. 8

List of acronyms ... 9

1. Introduction... 10
1.1 Scope of the Research and the Research Problem............................... 12
1.2 Structure of the Research... 12
1.3 Research Methods ... 13

2. Configuration Management .. 15
2.1 Overview ... 15
2.2 Concepts .. 16
2.3 The Principal Elements.. 19

2.3.1 Configuration Management Planning 20
2.3.2 Configuration Identification.. 22
2.3.3 Configuration Control ... 23
2.3.4 Configuration Status Accounting .. 25
2.3.5 Configuration Auditing ... 26

2.4 Configuration Management on System Life Cycle 27
2.5 Tools .. 28
2.6 Summary ... 30

3. Adapting Configuration Management in Practice .. 31
3.1 Factors Affecting the Configuration Management Solution 31

3.1.1 Size of the Project ... 31
3.1.2 Product Type ... 31
3.1.3 Project Hierarchy (Distribution).. 32
3.1.4 Multisite Development.. 32
3.1.5 Development Disciplines .. 33
3.1.6 Development Models .. 34
3.1.7 Dependence on Third Party Software 34
3.1.8 Maintenance and Multivariants... 35

 7

3.1.9 Item Types... 35
3.1.10 Management Constraints on the CM Plan............................... 36

3.2 Framework of Factors.. 36
3.3 Summary ... 38

4. Empirical Evaluation of Configuration Management Adaptation 39
4.1 Case Study Characterisation.. 39

4.1.1 Case 1 .. 40
4.1.2 Case 2 .. 40
4.1.3 Case 3 .. 41

4.2 Results ... 42
4.2.1 Case 1 .. 42
4.2.2 Case 2 .. 47
4.2.3 Case 3 .. 49
4.2.4 Cross-case Analysis .. 52

5. Introduction to the Papers ... 57
5.1 Paper I: Configuration Management Support for the Development of

an Embedded system: Experiences in the Telecommunication Industry 57
5.2 Paper II: Improving Software Configuration Management for

Extreme Programming: a Controlled Case Study 58
5.3 Paper III: Supporting Requirements Engineering in Extreme

Programming: Managing User Stories ... 58
5.4 Paper IV: Improving Requirements Management in Extreme

Programming with Tool Support � an Improvement Attempt that
Failed... 59

6. Conclusions and Future Research Needs.. 60
6.1 Evaluation of Results... 60
6.2 Answers to the Research Questions... 64
6.3 Future Research Needs .. 67

References... 68

Appendices:

Papers I�IV

 8

List of original publications

The research includes the following original publications:

I Kääriäinen, J. Taramaa, J. & Alenius, J. 2004. Configuration
management support for the development of an embedded system:
experiences in the telecommunication industry. Tools and methods of
competitive engineering. Vol. 2. Millpress. The Fifth International
Symposium on Tools and Methods of Competitive Engineering
(TMCE 2004). Lausanne, CH, 13�7 April 2004. Pp. 605�616.

II Koskela, J., Kääriäinen, J. & Takalo, J. 2003. Improving software
configuration management for extreme programming: a controlled case
study. EuroSPI 2003 Proceedings. Verlag der technischen Universität
Graz, European Software Process Improvement, EuroSPI'2003. Graz,
Austria, 10�12 Dec. 2003.

III Kääriäinen, J., Koskela, J., Takalo, J., Abrahamsson, P. &
Kolehmainen, K. 2003. Supporting requirements engineering in
extreme programming: managing user stories. Proceedings of the
ICSSEA 2003, 16th International Conference, Software Systems
Engineering and their Applications, Vol. 4. Paris, FR, 2�4 Dec. 2003,
ICSSEA.

IV Kääriäinen, J. Koskela, J., Abrahamsson, P. & Takalo, J. 2004.
Improving requirements management in extreme programming with
tool support � an improvement attempt that failed. 30th Euromicro
Conference, EUROMICRO 2004, Rennes, 31 Aug.�3 Sept. 2004.
IEEE Computer Society. Pp. 342�351.

 9

List of acronyms

ASIC Application Specific Integrated Circuit

CCB Change Control Board

CM Configuration Management

CMO Configuration Management Officer

CVS Concurrent Versions System

DM Document Management

DSP Digital Signal Processing

ERP Enterprise Resource Planning

FCA Functional Configuration Audit

FPGA Field Programmable Gate Array

HW Hardware

O&M Operation and Maintenance

PCA Physical Configuration Audit

PDM Product Data Management

PLM Product Lifecycle Management

RM Requirements Management

SCM Software Configuration Management

STD State Transition Diagram

SW Software

VTT Technical Research Centre of Finland

XP eXtreme Programming

 10

1. Introduction

The use of software has increased in many different product types. Crnkovic et
al. (2003) present that in 1990 the development costs of software (SW) were one
third of the total development costs of industrial robots while now it is two
thirds. ITEA (2005) presents that investments for SW research and development
will increase dramatically in the near future (Figure 1).

Figure 1. Forecast for the worldwide growth of R&D investment (ITEA 2005).

The ability to produce quality products on time and at competitive costs is
crucial for any industrial organisation. Nowadays, also the needs of the
customers have diverged. The customer specific product variation is often
implemented using SW rather than hardware (HW) and these customer specific
versions of the products need to be maintained.

The discipline that keeps the evolving product under control is called
Configuration Management (CM). It is a well-known concept in software
engineering and it has been widely discussed in literature and articles (for
example in Moreira (2004), Jonassen Hass (2003), Leon (2000), Estublier
(2000), Dart (1996), Buckley (1996), Berlack (1992), Bersoff et al. (1980),

 11

ISO/IEC 10007 (1995), ISO/IEC 12207 (1995), IEEE Std-828 (1998) and IEEE
Std-1042 (1987)). Configuration management has been identified as an essential
element in increasing product quality, development efficiency and enterprise
profitability (Schamp & Owens 1997).

Practical CM solutions need to be planned in the context of a product
development project. Factors, such as the size and the type of the product being
developed, size of the project, project distribution, etc. shape the CM practices
of the project. Under the different factors, CM needs to address various
challenges. For example, in a multisite development environment, work
allocation and information sharing are crucial in controlling the development
activities. In literature, the concept of configuration management has been
examined in various contexts, such as:

• Multitechnology products (SW/HW) e.g. in Taramaa (1998), Lyon
(1999), Buckley (1996) and Crnkovic et al. (2003).

• Agile development e.g. in Christensen (2001), Paulk (2001), Jonassen
Hass (2003) and Berczuk and Appelton (2003).

• Multisite development e.g. in Ebert and De Neve (2001), Battin et al.
(2001), Rahikkala (2000) and Jonassen Hass (2003).

SW development of significant products is a very complex undertaking. The
complexity of CM is a result of its context dependent nature. CM is a support
process that is adapted into the product development environment. Although the
basic elements of CM are the same, the interaction of several factors cause that
the practical implementation of CM varies. We are also living in a changing
world requiring more flexibility and abilities to adapt to new development
approaches to survive in the global competition. One example of this is the shift
from the traditional in-house product development to the collaborative
development environment with the use of subcontracting and SW components.
The changing development environment demands that CM face these new
requirements whenever they emerge.

 12

1.1 Scope of the Research and the Research Problem

This research focuses on the context dependent nature of CM. It considers the
planning process and activities of CM and examines what kind of factors
influence the CM solutions in the SW development. As SW is an important part
of any modern electronics product, the connections to the HW development will
also be considered.

The goal of the research is to gain a better understanding of the factors that
shape the CM solutions of an organisation. The research will identify the initial
set of factors forming a basis for further research. These factors will be used to
analyse case studies that are from the fields of embedded system development,
information system development and mobile SW development.

Based on the discussion above, we state the research questions as follows:

• What is the basic mechanism for adapting configuration management?

• What kind of factors influence the configuration management solutions?

• How these factors affect the CM planning and the practical CM solutions?

1.2 Structure of the Research

Section 1 introduces the structure of the study and discusses the research
problem and research methods used in this study.

Section 2 presents an overview and concepts of configuration management.
Then, it introduces the principal elements of CM, including planning,
identification, control, status accounting and auditing. Furthermore, it also
considers the role of CM in the system life cycle and the automation of CM.

Section 3 presents a framework that describes the factors that affect the CM
process instantiation. This framework is used to analyse the CM solutions in
three case studies in section 4. First, section 4 introduces the cases based on the
factors of the framework. Next the section presents how these factors map with

 13

CM solutions in the cases. Finally, the section presents a cross-case analysis
over the cases and discusses the similarities and differences of the cases.

Section 5 introduces papers that have been included into this research. Section 6
discusses the results gained from the analysis, answers the research questions
and states future research needs.

1.3 Research Methods

The selection and adaptation of the CM solution for a project is a complex where
several factors affect the selected solution. The concepts and factors related to
the adaptation of CM were considered based on literature study. This study
provides a conceptual basis for the research and resulted in an overall framework
of the factors that affect the adaptation of CM. These factors reveal the context-
dependent nature of CM.

The adaptation of CM was studied empirically through three case studies as
follows (see section 5 for more information on the papers behind the cases):

• Case 1 considers observations while adapting CM for a project
developing digital signal processing (DSP) SW and HW related DSP SW
in a distributed development environment containing HW/SW codesign.

• Case 2 considers observations while adapting CM for a project (named
eXpert) that used agile development principles for producing a SW
system for managing the research data and documents.

• Case 3 considers observations while adapting CM and improving RM
for a project (named zOmbie) that used agile development principles
for developing a financial sector mobile SW.

Yin (1994) defines a case study a method that examines a phenomenon within its
real-life context. This method is suitable because it tries to produce intensive and
detailed information on the context-dependent cases. The method also provides
room for the diversity and complexity of a phenomenon. This is essential when
practical solutions are the results of the interaction of many factors. Action
research (e.g. in Hult and Lennung (1980) and Susman and Evered (1978)) is a

 14

method that is typically used by practitioners who analyze the data to improve
their own practice. It is used to improve the quality of an organization and its
performance in the active interaction of research and practice. It aims at better
understanding of a theory while improving the state of the practice in an
organisation.

The context of each case (e.g. size of the project, distribution, methods used)
was introduced using the framework defined in this research. Based on Yin
(1994), the study can be based on one or several cases. In this research, first the
configuration management solutions in each case were introduced and discussed.
Then, these three case studies were examined using a cross case analysis to
discuss similarities and differences between the cases.

 15

2. Configuration Management

The purpose of this section is to provide an introduction for configuration
management. The section introduces the concepts, activities and tool issues of
configuration management.

2.1 Overview

The roots of CM are in the defence industry environment as a discipline to
resolve problems with poor product quality, parts ordering, and parts not fitting,
which were leading to high cost overruns (Berlack 1992). Control and
communication problems lead to the first standard for CM, called AFSCM 375-1
(Berlack 1992, Leon 2000). At the beginning, the focus was on the CM of
hardware oriented products. The need for the management of software artefacts
became topical as software engineering industry emerged. According to
Estublier et al. (2005) software CM (SCM) emerged as a separate discipline in
the 1970s, with the advent of tools such as SCCS, RCS and Make. The
traditional products that were composed based on mechanical and electronics
components included more and more software. Nowadays, also software
development as an engineering activity is more complex. It ties up more
developers from different cultural backgrounds, as globalisation removes
national borders. Furthermore, the news that a product is bad and has a bug can
spread very fast (e.g. newsgroups), which forces a company to provide the fixes
and patches very quickly to save face and prevent its market share from
dropping (Leon 2000).

The term configuration management is originally directed for the management
of hardware oriented systems while the term software configuration
management can be defined as �configuration management tailored to systems,
or portions of systems, that are comprised predominantly of software� (Bersoff
et al. 1980). Software configuration management and hardware configuration
management are quite similar. They both aim at the same objectives. However,
Tichy (1988) presents that SCM differs from CM in the two ways: software is
easier to change and SCM is easier to automate.

 16

The evolution of software configuration management has been driven by the
research community (Crnkovic et al. 2001). It has been identified as a mature
and one of the most successful branches of software engineering (Estublier et al.
2002). In this study, CM is treated especially from the point of view of software
development.

2.2 Concepts

This section explains the key concepts that are used in the CM literature and that
will be used in the following sections of the study.

Configuration management is defined by the IEEE Std 610.12 (1990) as a discipline
applying technical and administrative direction and surveillance to identify and
document the functional and physical characteristics of a configuration item, control
changes to those characteristics, record and report change processing and
implementation status, and verify compliance with specified requirements. In short,
CM is a discipline controlling the consistency between the parts of an entire system.
Standards, such as ISO/IEC 10007 (1995) and ISO/IEC 12207 (1995) introduce it as
a support process for product development.

Configuration item is treated as a single entity in the CM process. Item types that
are subject to CM may be, for instance, in-house developed or purchased from a
vendor (Buckley 1996). Further, these items can be deliverable items under the
contract or used to produce the deliverable item (Buckley 1996). The selection
of configuration items is important because different types of configuration
items have different needs for control. Buckley (1996) divides the software item
selection into two parts: the selection of software categories (e.g. product
software, vendor-provided software and test software) and the identification of
item types in each category (e.g. source files, documents and executables). The
role of the item selection is to determine these classes. A software category that
is often forgotten is a vendor-provided software that needs special attention, for
instance, from the change management point of view. IEEE Std-828 (1998)
highlights the importance of two software categories. First, subcontractor/vendor
control needs special attention because of the organisational and legal
relationships. According to the standard, there has to be practices for how the
software will be received, tested, and placed under CM; how changes to the

 17

supplier�s software are to be processed; and whether and how the supplier will
participate in the project�s change management process. Second, the external
items to which the project software interfaces need to be identified and managed.

Term version is used to describe the evolution of the item (item�s versions) and a
term product variant refers to the development of families of related products.
Check-out is the process of copying the item from the CM tool to the user�s
working area for modification. On the other hand, check-in is the process of
moving the configuration items into a CM tool. This operation produces a new
version of the item. The version control mechanisms can be divided into:
pessimistic and optimistic version control (Mens 2002):

• With pessimistic version control, all participants work on the same set of
software artefacts and parallel editing of the same artefact is prevented
by locking (when checking out an artefact for modifications).

• With optimistic version control, each developer can work on a personal
copy of a software artefact (multiple check-outs). This requires
mechanisms (merge) to integrate the personal copies when checking in
the code back into the version control.

Basically, versions are described as the linear set of developed items (v1 => v2
=> v3). Linear development is not always possible and thus we need the concept
branch (Leon 2000). Branches may be needed for the bug-fixing of the old
version of the product or for the parallel development of a single file. According
to Leon (2000), branches are deviations from the main development line for the
item and they can also be extended from the existing branch. The term merge
expresses the incorporation of parallel changes with the main development line.

A software development process transforms the description of the SW system
from abstract to concrete, typically from requirements specification via design to
implementation. The different configurations (a collection of configuration
items) need to be managed during the development process. However, all the
versions are not equally important. The configuration of the software at a
discrete point in time is known as a baseline (Leon 2000). The baseline is the
cornerstone of CM in general. The baseline serves as a reference point for the
next development activity (Figure 2).

 18

1 2 3 4

1 2 3 4 5

1 2 3

1 2 3 4 5

Baseline 1 Baseline 2

Item 1

Item 2

Item 3

Item 4

Versions

Figure 2. Two baselines from the same items.

A series of different baselines are established to permit an ordered flow of
development work (Buckley 1996). A baseline is a specification or product that
has been formally reviewed and agreed on, which thereafter serves as the basis
for further development and which can only be changed through formal change
control procedures. The baseline types that are typically presented in the CM
literature are functional baseline, allocated baseline and product baseline (see
the section 2.4).

Workspace is a development area where a set of items are collected together for
a particular purpose. Workspaces are needed, for example, for development
work and for builds and releases. SW build is the process of generating an
executable, testable system from the source code. From the CM point of view,
the build process concentrates on configuration selection problems. According to
Abran and Moore (2004):

Software building is the activity of combining the correct versions of software
configuration items, using the appropriate configuration data, into an
executable program for delivery to a customer or other recipient, such as the
testing activity. For systems with hardware or firmware, the executable program
is delivered to the system-building activity.

A build process needs information on items (selection of items) and item
versions (version selection) to be included into a certain configuration (Whitgift
1991). In addition to this, there must be a construction model (i.e. configuration

 19

data) that is usually described as a makefile. In practice, the selection of items
and versions can be done using the CM tools� functionalities (e.g. a workspace
populated with right items and item versions).

The term release can be considered a CM action whereby a particular version of
software is made available for a specific purpose (e.g. released for test) (Buckley
1996). The release should contain all required information to enable the
traceability of the configuration of the product. Therefore, in addition to the
product configuration, there is also a need to store information on the
environment where the product was produced, such as the operating system,
compile and link parameters, etc. (Leon 2000).

2.3 The Principal Elements

The CM process contains the basic CM activities and CM planning (e.g. in
ISO/IEC 12207 1995, Buckley 1996, Taramaa 1998). Traditionally CM
activities have been divided into configuration identification, configuration
control, configuration status accounting, and configuration audit (Figure 3)
(ISO/IEC 10007 1995, Bersoff et al. 1979). These elements will be introduced in
the next sub-sections.

Configuration management
planning

Configuration
identification

Configuration
control

Configuration
status accounting

Configuration
audit

Figure 3. The elements of configuration management.

 20

2.3.1 Configuration Management Planning

Configuration management planning provides mechanisms for planning and
documenting the CM solution for a project. A document that describes this
information is called a configuration management plan. It describes who is
going to do what, when, where and how related to CM (Buckley 1996). The
elaborateness of a CM plan is situation-dependent. Buckley (1996) presents that
all can be placed into a CM plan or to the relegate details. In the former case,
changes to details cause changes to the plan itself. In the latter case, the CM plan
can be smaller and more useful as a management document. Buckley (1996) states
that the latter solution is the better approach in a well-established CM culture.

Literature (e.g. Buckley 1996, Berlack 1992 and Lyon 1999) and standards
(IEEE Std-828 1998) assist the CM planning by providing pre-structured
templates for documenting the CM responsibilities and practices. Especially
IEEE Std-828 (1998) has become a widely accepted template for the CM
planning. IEEE Std-828 (1998) presents the following classes of information:

• Introduction that describes the purpose, scope of application, key terms,
and references

• CM management that identifies the responsibilities and authorities for
accomplishing the planned activities

• CM activities that identify all activities to be performed in applying to
the project

• CM schedules that identify the required coordination of the CM
activities with the other activities in the project

• CM resources that identify the tools and physical and human resources
required for execution of the plan

• CM plan maintenance that identify how the plan will be kept current
while in effect.

The main roles that are involved in the CM are the CM team and the Change
Control Board (CCB). The CM team (Leon 2000) is an organizational support
function. In practice, it can be a single person or a full team, depending on the
situation (e.g. the size of a project). According to Leon (2000), a project�s CM

 21

team contains a Configuration Management Officer (CMO), and depending on
the project, other technical (e.g. a person who is responsible for release and build
activities) and administrative (e.g. secretary) members assigned by the CMO, for
example according to the basic CM activities. The Change Control Board (CCB)
contains persons who are qualified to comprehend the scope and impact of a
change (Moreina 2004). Buckley (1996) states that the CCBs can also form a
hierarchy where the main CCB will delegate the authority of approving specified
classes of auctions to the chairs of lower-level boards. In practice, the CCB can
be a single person or a full team, depending on the situation (e.g. the size of a
project).

IEEE Std-828 (1998) states, that a successful CM plan reflects its project
environment. It should be written in terms familiar to its users and should be
consistent with the development and procurement processes of the project. So
each software project is unique with its own characteristics, such as product
type, size, methods and tools. While no two projects are exactly the same, the
CM requirements between different projects also vary (Lyon 1999, Leon 2000,
Whitgift 1991). For example, IEEE Std-1042 (1987) states that the size,
complexity and criticality of the software system being managed affect the
project�s CM practices. Whitgift (1991) lists the following factors that affect the
CM solution, among others: the size of the project, project distribution,
dependence on third party software, the item types being developed, and the
number of clients. In addition, the software and hardware development have
special needs for the CM procedures (Buckley 1996). Factors affecting the CM
solutions will be considered in section 3.

Stevens et al. (1998) argue that in complex systems separate development
projects for each subsystem are usually needed. Each project can lead to the
creation of further development projects at a level below. Abran and Moore
(2004) present that software CM activities take place in parallel with hardware
CM activities when software is developed as a part of a larger system containing
hardware. They further mention that the software CM activities must be
consistent with the system CM activities. On the other hand, Lyon (1999)
stresses the importance of good communication between HW and SW elements
of CM during the CM planning. The case of multi-level contracts is similar. The
main contractor�s CM plan is the main CM plan, and the subcontractors will
prepare their own plans or include their plans in the main CM plan (ISO/IEC

 22

10007, 1995). ISO/IEC 10007 (1995) further states that these plans, indicating
different levels of configuration management, need to be compatible with each
other. The configuration management can also be considered based on target
levels as described in Moreira (2004). Moreira (2004) defines these levels as an
organisation, an application and a project and examines configuration
management tasks on each target level.

The differences between projects do not mean that the planning of a CM solution
should always start from �scratch�. Existing generic CM templates, such as in
IEEE Std-828 (1998), provide a good starting point for systematising CM in a
company. Also, experiences from previous project-specific CM plans can be
utilised for defining the CM solutions for new projects. A company without any
CM can start with project-specific CM planning and then, later on according to
experiences, start to prepare a company-specific general plan, which then can be
tailored for the projects (Buckley 1996). This will facilitate the definition of a
project-specific CM plan, because a generic CM plan provides a �tried and
tested�, pre-defined structure and information for the creation of the project�s
CM plan. This approach provides the possibility of reusing the CM practices
between projects and assists towards more consistent CM in a company.
However, IEEE Std-1042 (1987) states that even if CM is applied as a corporate
policy, it should be re-examined each time it is applied in a project to ensure its
applicability.

CM activities planned for a project have traditionally been divided into four
classes. Next, these classes will be discussed in detail.

2.3.2 Configuration Identification

ISO 10007 (1995) describes configuration identification as activities comprising
determination of the product structure, selection of configuration items,
documenting the configuration item�s physical and functional characteristics
including interfaces and subsequent changes, and allocating identification
characters (IDs) or numbers to the configuration items and their documents.

Configuration item selection identifies the categories of items that will be
subject to CM. The selection of the configuration items is important because

 23

different types of configuration items have different needs for control.
Furthermore, each configuration item needs to be uniquely identified so that it
can be distinguished from other items and from the different versions of the
same item. This requires mechanisms for naming and versioning these items
(IEEE Std-828 1998). Item identification as an activity is an essential
prerequisite for other CM activities presented in sections 2.3.3, 2.3.4 and 2.3.5.
The configuration of software at a discrete point in time is known as a baseline
(Leon 2000). Baselines that will be produced should be identified. IEEE Std-828
(1998) presents that the following must be defined for a project:

• the event that creates the baseline;

• the items that are to be controlled in the baseline;

• the procedures used to establish and change the baseline;

• the authority required to approve changes to the approved baselined
documents.

Further, configuration items need to be acquired under the control of the
configuration library. These practices describe where configuration items are
physically stored, by whom, when and how. The practices should also describe
the access control and item retrieve issues. In practice, this means a set-up and
guidance for the use of the CM tool.

2.3.3 Configuration Control

ISO 10007 (1995) describes configuration control as activities comprising the
control of changes to a configuration item after the formal establishment of its
configuration documents. This means the management of changes to the
baselined configuration items.

There are various descriptions and models for the phases of change management in
literature (e.g. presented in Mäkäräinen 2000). However, usually certain high-level
steps are common for the change management models regardless of the model. The
change management contains elements for change identification/documentation
(change request), evaluation, decision and implementation (Figure 4). The
objective of systematic change management is to ensure that similar information

 24

is collected for each proposed change and that overall judgements are made of
the cost and benefits of the proposed change, as well as after the change, the new
baseline is produced.

Change
identification

Change
evaluation

Change
decision

Change
implementation

Figure 4. Change management process.

Change identification and documentation is used for collecting information
needed for characterising the proposed change and for providing sufficient
information for analysing/evaluating the change. The responsibility for the
change evaluation and decision should be explicit (e.g. defined CCB). Change
implementation realises the actual change to the configuration items. After the
change has been implemented and verified, the change history (Leon 2000) will
be recorded describing the �life� of the change including information, such as
originator, analysis done date, approving authority, approval date, etc.
According to Leon (2000), this information can be automatically recorded as and
when the events are happening when using the CM tools.

In practice, there are different kinds of change requests of which some are more
urgent than the others. A change can be, for instance, a result of a fault,
enhancement or changed requirement. The most significant distinction between
requests is whether the request represents an enhancement or reports a fault (also
known as an incident, defect or bug) (Whitgift 1991). Usually, a fault gets
immediate attention because it is a result of a problem and the problem needs to
be fixed. Leon (2000) presents the following process (Figure 5) for managing a
fault (a defect). There are also activities for defect prevention including causal
analysis and the storage of fault information to the knowledge database. Leon
(2000) states that when a fault is reported, the knowledge database can be
searched for similar problems and if one exists, the solution for the previous bug
will help resolve the underlying fault faster.

 25

Problem
identification

Problem
analysis

Problem classification

Cause identification

Causal
analysis

Documentation
(knowledge base)

Change request
creation

Change management
activities

Figure 5. Problem reporting and tracking process (Leon 2000).

2.3.4 Configuration Status Accounting

ISO 10007 (1995) describes configuration status accounting as formalized
recording and reporting of the established configuration documents, the status of
the proposed changes and the status of the implementation of the approved
changes.

According to IEEE Std-828 (1998), the following things should be considered
for the configuration status accounting: what data elements are to be tracked and
reported for baselines and changes; what types of status accounting reports are to
be generated and their frequency; how information is to be collected, stored,
processed, and reported; how access to the status data is to be controlled.

The role of the status accounting is to gather, process and present configuration
item related information for an organisation. Stakeholders who need the
information on the configuration items for their daily work are, for example, the
project manager, CCB, CM officer and audit team. For example, the status
accounting helps to monitor the progress of the project and provides the reports

 26

of configuration items for the maintenance to help resolve problems faster.
Buckley (1996) divides the types of reports to periodic reports and �on-demand�
reports, and present examples of these reports. The processing of periodic
reports, such as �list of problem reports� or �change implementation status�,
should be automatic. On the other hand, �on-demand� reports are needed more
sporadically, e.g. �where-used� report which, for maintenance reasons, indicates
all those product releases where a certain component has been used. The CM tools
usually provide reporting facilities that can be utilised for generating automatic
reports that contain the required information on the configuration items.

2.3.5 Configuration Auditing

ISO 10007 (1995) describes configuration auditing as an examination to
determine whether a configuration item conforms to its configuration
documents. In practice, the configuration audits are performed before a
configuration is released to a client.

Responsibilities and procedures for audits should be identified. Literature further
divides audit activity to functional, physical and so called in-process
configuration audit (e.g. in Leon 2000, Buckley 1996). Functional configuration
audit (FCA) verifies that a configuration item�s actual performance agrees with
its software requirements as stated in requirements specification (Berlack 1992).
This happens at the end of the development cycle and requires that tests are
completed and reported. The physical configuration audit (PCA) determines that
the design and product specifications and referenced documents represent the
software that was coded and tested for specified configuration items (Berlack
1992). The overall role of the functional and physical configuration audit for the
SW development is well summarised in Leon (2000):

Whereas the functional configuration audits authenticate that the software
performs in accordance with the requirements and as stated in the
documentation, the physical configuration audit authenticates that the
components to be delivered actually exist and that they are complete in all
respect and contain all of the required items.

 27

The product baseline is established when the functional and physical
configuration audits are successfully performed. Leon (2000) states that the
audits can be done also at the end of a phase in the development life cycle. This
has also been stated in Bersoff et al. (1980). Bersoff et al. (1980) also present
checklists for different types of baseline audits. However, the reality is that
usually it is only conducted before a system release (release that will go to the
customer) (Leon 2000). The in-process audit (Buckley 1996) (also known as the
CM system audit or the system configuration audit) is performed to determine
whether the configuration management process established in an organization is
being followed and to ascertain what needs to be improved.

Configuration audits are usually assisted using checklists and audit procedures.
The audit checklists contain issues or questions which will be discussed in the
audit session and approval is indicated for each issue as well as possible
corrective actions are identified. Different checklists for audits are presented in,
for example, Berlack (1992), Bersoff et al. (1980), and Moreira (2004).

2.4 Configuration Management on System Life Cycle

Product development is a process transforming an abstract system description to
a concrete product. This evolution can be presented as a system life cycle. The
system life cycle represents those stages through which the systems pass as they
mature (Bersoff et al. 1980). Therefore, the life cycle stages provide the
framework for the identification of milestones and the ultimate control of the
system throughout its life (Bersoff et al. 1980). Configuration management is a
support process for the product development. It captures, manages and shares
artefacts that are produced and applied during the product development process.
Therefore, it is necessary to examine, how CM maps with the typical SW
development life cycle phases to understand its relations with the SW
development activities. The various artefacts are managed under CM in different
stages of the life cycle. Furthermore, the various CM activities are needed in
different stages of the life cycle. The examples on how the stages of the life
cycle, development artefacts, and CM activities are related, are presented, for
instance, in Bersoff et al. (1980), and Leon (2000).

 28

Bersoff et al. (1980) define that life cycle management is principally baseline
management. The baselines provide reference points for the next development
steps and traceability. The main baseline types typically presented in literature
are functional baseline, allocated baseline and product baseline. The functional
baseline is established after the system specification phase. This baseline
describes the functions that the system, acting as a whole, is to perform (Buckley
1996). The allocated baseline is established after allocating the system
requirements to the hardware and software systems. The allocated baseline
contains specifications for the hardware and software systems and interface
requirements documents (Buckley 1996). In complex systems, requirements are
allocated first on the sub-system level before the allocation to the hardware and
software requirements. The baselines that indicate the sub-system levels before
HW/SW allocation are called subsystem allocated baselines (Buckley 1996).
The product baseline represents the technical and support documentation
established after the successful completion of the functional and physical
configuration audit (Leon 2000). The product baseline is usually formally
delivered to the customer. In addition to the formal baselines, there are
developmental configurations that define the evolving configurations during the
period between the allocated and the product baselines (Berlack 1992).
Developmental configurations are used to achieve control of the internal
development activities (e.g. tests, reviews).

2.5 Tools

Without automation CM is a manual and time-consuming activity. However,
nowadays organisations use CM tools for various CM tasks. The role of the CM
tools is to support and automate the CM tasks and to provide help for the
developers. Leon (2000) states that the CM tools do not solve configuration
management problems, but they can be one step towards a more effective CM.
There are dozens of CM tools available, containing features depending on their
backgrounds and purposes. Basically, the tools can be divided into two main
classes: tools that contain just the sub-set of the CM support and tools that
contain an extensive CM support (Leon (2000) uses here a term �full-fledged
tool�). Tools that belong to the former class may lack, for instance, change
management facilities. The examples of tools that contain just a sub-set of the
CM functionality are, for example, CVS (Concurrent Versions System) and

 29

Microsoft SourceSafe. Examples of tools that belong to the latter class are
Dimensions, ClearCase and Synergy. Estublier (2000) divides the basic
functionality of the CM tools to three main classes: repository for components,
help for engineers' usual activities and process control and support.

Component repository provides a basic functionality for storing and sharing the
product related information, e.g. version management and access control. One
characteristic of the software CM tools is the ability to handle complex version
structures. This means that the version management also contains support for
version tree (branching), where any version can be used to create a new version.

Engineers� support contains support for workspaces, which are views to a
certain set of versioned files for a particular purpose, e.g., development, bug-
fixing, or testing. The merge facilities are needed to support the
resynchronization of parallel changes during the cooperative work. In addition,
the SW building facilities support the combination of source files into an
executable system.

Process support provides means to support a company's pre-defined processes
(e.g., product development process, change process, etc.). There are basically
two techniques that can be used to provide support for the processes: State
Transition Diagrams (STD) and Activity Centered Modelling (Estublier 2000).
In practice, STD based solutions provide a possibility to define the states and
transitions between the states for an item type to support operation according to
the company�s processes. Therefore, it describes the legal way how an item can
evolve (Estublier 2000). In Activity Centered Modelling the activity plays the
central role, and models express the data and control flow between activities
(Estublier 2000). This type of modelling emphasises the work (or tasks) that
needs to be done. STD-based solutions are common in SCM tools. However,
both techniques are needed for efficient process support, but the integration is
not easy (Estublier 2000).

 30

2.6 Summary

Configuration management is a support process for a product development. It
aims at controlling the consistency between the parts of an entire system. CM is
divided into the CM planning and CM activities. The CM activities comprise:

• configuration identification, used to identify the configuration items that
are subject to CM. It is a prerequisite for effective CM.

• configuration control, an activity for controlling changes to identified
and approved configuration items.

• configuration status accounting, an activity for collecting and reporting
information on configuration items and changes.

• configuration audit, that is an activity for ensuring that the product
produced corresponds what has been specified and that all needed
artefacts have been produced.

Basically, CM is a discipline that provides control for the product�s life cycle
management. It captures, manages and shares artefacts that are produced and
applied during the product development process. In the past, this was a manual
activity that tied up lots of resources and was time-consuming. However,
nowadays there are dozens of sophisticated CM tools that are capable of
automating the CM tasks substantially.

 31

3. Adapting Configuration Management
in Practice

CM is a support process for product development. Therefore, the context of the
development project sets various conditions and constraints for it. This section
constructs the framework that describes factors affecting the CM solution.

3.1 Factors Affecting the Configuration
Management Solution

This section discusses the initial set of factors that affect the CM solutions in an
organisation. The factors have been collected from literature.

3.1.1 Size of the Project

CM is necessary in spite of the project size (Leon 2000). It is needed in small
and big projects. However, the formality and scale of the CM varies. According
to Leon (2000), in a small project, a single person can be responsible for CM.
Whitgift (1991) argues that in a small project it can even be, for example, the
project manager who carries out CM as a part time job. On the other hand, in
moderately large projects (several hundred people) there can be a hierarchy of
CCBs and a team responsible for the software library.

3.1.2 Product Type

The type of the product affects the CM solution. Product type can be considered
from different viewpoints. For instance, reliability (safety criticality), is product
embedded or not, complexity, etc. In this thesis the focus is on criticality.
Jonassen Hass (2003) gives an example that divides the product types into
different classes according to criticality. She mentions that it is difficult to
provide unambiguous rules for CM for different classes of products, but the need
for formality and automation increases with the level of the criticality. For
example, in a safety critical product that may cause many people to be killed, the
need of a definitely careful CM is high.

 32

3.1.3 Project Hierarchy (Distribution)

If the development is organised around one project, the CM activities are quite
straightforward. In complex systems, separate development projects for each
subsystem are usually needed (Stevens et al. 1998). Each project can lead to the
creation of further development projects at the level below. Whitgift (1991)
considers this under the term �Project distribution� where a large project is divided
into several parts. In a distributed project environment, Whitgift (1991) states that
the CM plan must describe the effective CM procedures for each part of the
distributed project, how the interfaces between the parts are defined and controlled,
as well as how configurations of the complete system are defined and built.

The CM planning should ensure that the CM practices are defined in a unified
manner to avoid inconsistencies between the projects and to prevent problems in
the integration phase. Therefore, the CM plans indicating different levels of CM
need to be compatible with each other (e.g. in Abran and Moore 2004).

3.1.4 Multisite Development

Multisite development means that the development work has been spread to
several geographically distributed sites. This kind of an environment requires
means to organise and control the development work from the CM point of
view. CM needs to address the challenges of networking, communication,
security, and concurrency management (Leon 2000). Jonassen Hass (2003)
describes that in practice, multisite development often means that, for example:

• the information needs to be doubled and synchronised;

• responsibility for items needs to be clear;

• need for formality and automation increases;

• all sites must follow the same process (if not, the differences must be
made clear).

Ebert and De Neve (2001) highlight some best practices to support the global
SW development. Related to CM, they advise to rigorously enforce CM and
build management rules (such as branching, merging, and synchronisation

 33

frequency). They also highlight the importance of the tool support in this kind of
an environment. Battin et al. (2001) highlight the global development issues that
Motorola faced when developing software in a global environment. Further, they
describe approaches to resolve these issues. They indicate that configuration
management is challenging in a globally distributed environment and a solution
for this is a common CM tool with multisite replication and a centralised bug
repository. Rahikkala (2000) has considered this problem from virtual software
corporation point of view and presents that most of the SCM challenges are
related to the SCM teamwork process (consisting e.g. security, communication,
infrastructure, etc. issues).

3.1.5 Development Disciplines

The development of the modern complex systems requires the cooperation of
different technologies (engineering disciplines). The product development might
be divided into discipline specific development processes such as software
development, electronics design and mechanics design. Each of these
development processes produce product related data and there are
interconnections between this information. For example, changes to SW might
cause changes to HW and vice versa. The management of the product data is
challenging in this kind of an environment. Crnkovic et al. (2003) describe the
typical problems in a multidiscipline development environment:

• The users of both domains (i.e. HW and SW) believe that the (product
information management) system they use can manage all situations and
they do not understand the specific requirements of the other domain.

• Different terminology is used for the same concepts and the same
terminology is used for different behaviour.

• The users of the HW and SW product information management systems
are often located in different departments.

Jonassen Hass (2003) underlines that consistent identification practices and careful
change management are needed for those items (e.g. related SW and HW items) that
are naturally related. On the other hand, Lyon (1999) stresses the importance of good
communication between HW and SW elements of CM during the CM planning.

 34

3.1.6 Development Models

CM is a support process for product development. Therefore, it operates in the
context of the development process with the elements the development process
produces. There are different methods and approaches for a product
development that have certain requirements for the CM practices (Jonassen Hass
2003). The characteristics of these methods and approaches should be taken into
account when considering the CM support for a project.

The traditional sequential development model or its extensions, the so-called V-
and W-models, emphasise the �doing it right the first time� -viewpoint (Jonassen
Hass 2003). On the other hand, the new development models, called agile-
methods, emphasise communication and iterative development and welcome
change (e.g. in Abrahamsson et al. 2002). The characteristics of the development
models shape the CM solutions. For example, an iterative development (typical
for agile methods and for HW/SW codesign (Ronkainen and Abrahamsson
2003) requires a good version management and baselining to ensure sufficient
traceability.

3.1.7 Dependence on Third Party Software

Projects use different kinds of third party software, such as compilers, tools,
software components, operating systems, etc. Whitgift (1991) states that there
must be practices on how the third party software is to be specified, delivered,
accepted, and changed. Berczuk and Appelton (2003) say that when using third
party components the challenge is to associate the versions of these components
with your product. And this is because the vendor release cycles are probably
different from your release cycles. It is important to ensure that all development
teams access the correct versions of the components to avoid problems in
integration. Furthermore, adaptations might be needed to customize the third
party components to fit your particular needs (Berczuk and Appelton 2003).

 35

3.1.8 Maintenance and Multivariants

If the system has only one customer, many CM activities are simpler (Whitgift
1991). In the case of several customers, the system might have to run in several
environments with the customer specific features. On the other hand, bug fixing,
new features and enhancements might be needed for maintenance reasons
producing the new versions of the product. Maintenance and multivariant issues
should be considered in the CM plan (Whitgift 1991):

• How are the permanent variants of the systems managed?

• How are the releases of the system to different customers built and recorded?

• How are old versions of the systems which are still in operational use
maintained, and for how long?

According to Jonassen Hass (2003), the CM of multivariants needs, for example,
clear naming principles for variants and a change control that is performed with
special care.

3.1.9 Item Types

The product development process refines the product description from abstract
to concrete through steps of the requirements specification, design, code,
integration, and testing. CM has traditionally operated with source code
elements. However, this is not sufficient anymore. All item types produced
during the development need to be managed including requirements,
management documents, designs, code, compilers, operating systems, binaries,
instructions, manuals, etc. These items have different physical characteristics
affecting how they should be identified, stored in the software library and used
to define and build configurations (Whitgift 1991). As stated above in section
2.2, the different types of configuration items have different needs for control.
Therefore, the categories and item types per each category need to be determined
(Buckley 1996) to allow proper identification and control for each type of items.

 36

3.1.10 Management Constraints on the CM Plan

According to Whitgift (1991), it is unusual that the author of a CM plan starts
with a blank sheet of paper. The use of the existing CM templates as a starting
point for the planning of the CM practices is stated in literature (e.g. Whitgift
1991, Leon 2000). Usually, the CM plan must also comply to the imposed or
established working methods and tools. The working methods might even come
from the customer or from the larger organisation of which the project is a part
(Whitgift 1991). Also, consistency between the management plans is important
and the CM plan should refer to the other plans such as the project plan and the
quality plan rather than reiterate them. As stated above, a successful CM plan
reflects its project environment (IEEE Std-828 1998). Therefore, the content of the
CM plan should be synchronized with all changes in this environment during the
life cycle of the project. The plan needs also to take into account the project
resources, including the skills and background of the project team (Whitgift 1991).

3.2 Framework of Factors

This section collects the framework of factors based on section 3.1 (Table 1).
These factors should be taken into account singly and together to allow the
definition of the CM practices that will suit a product development project. The
table also summarizes the initial set of guidelines for the CM solutions based on
literature.

 37

Table 1. Framework of factors for the adaptation of configuration management.

Factor Description Initial guidelines for CM References

Size of the
project

The size of the
development project.

Small projects need less formal practices and
a single person can be responsible for the
CM coordination.

Large projects need formal practices and a
CM team.

Whitgift (1991),

Leon (2000)

Product type The type of the
product that is being
developed.

Need for formality and automation increases
with the level of the product criticality.

Jonassen Hass
(2003)

Project
hierarchy
(distribution)

Is the product
development
distributed over
several interconnected
projects?

Effective CM procedures are needed for
each part of the distributed project.

Interfaces between the sub-systems should
be defined and controlled.

CM plans indicating different levels of CM
need to be compatible with each other.

Whitgift (1991),

Abran and Moore
(2004)

Multisite
development

Is the development
dispersed over several
geographically
distributed sites?

Address challenges of networking,
communication, security, and concurrency
management in the multisite development.

The information needs to be shared and
responsibilities made clear in the multisite
environment.

Need for formality and automation (tool
support) increases when moving from local
development environment to global.

The same process should be followed in all
sites if possible.

Enforcement that CM is practiced according
to the rules in all sites.

Leon (2000),

Jonassen Hass
(2003),

Ebert and De
Neve (2001),

Battin et al.
(2001),

Rahikkala (2000)

Development
disciplines

Are there several
developmental
disciplines (SW,
electronics, and
mechanics) that work
together for a common
system product?

Consistent identification practices and
careful change management are needed for
those items that are naturally related
(HW/SW).

Ensure good communication between HW
and SW elements of CM during the CM
planning.

Crnkovic et al.
(2003),

Jonassen Hass
(2003),

Lyon (1999)

Development
models

Models, methods,
approaches that have
been selected for the
product development.

The characteristics of the development
models shape the CM solutions. E.g. an
iterative development requires a good
version management and baselining to
ensure sufficient traceability.

Jonassen Hass
(2003),

Ronkainen and
Abrahamsson
(2003)

 38

Factor Description Initial guidelines for CM References

Dependence
on third party
software

Third party SW is used
in SW development.
Possible new versions.

Practices of how the third party software is
to be specified, delivered, accepted and
changed.

Ensure that all development teams access the
right versions of the components to avoid
problems in integration.

Whitgift (1991),

Berczuk and
Appelton (2003)

Maintenance
and
multivariants

Several customers
with customer-specific
features. Maintenance
of systems.

Define the practices how the variants are
managed and releases of the system to
different customers built and recorded.

Define the practices how old versions of the
systems, which are still in the operational
use, are maintained and for how long.

Whitgift (1991),

Jonassen Hass
(2003)

Item types Different kinds of item
types are developed
during the product
development.

Manage all product-related items produced
during the development.

Identify item categories and item types per
each category to allow proper identification
and control for each type of items.

Whitgift (1991),

Buckley (1996)

Management
constraints on
the CM plan

Working methods,
other management
related plans and the
competence of the
resources.

The CM plan needs to comply to the imposed
or established working methods and tools.

The CM plan should reflect its project
environment.

Take into account the project�s resources,
including the skills and background of the
project team.

The existing CM templates are a good starting
point for the planning of CM practices.

Whitgift (1991),

IEEE Std-828
(1998),

Leon (2000)

3.3 Summary

The context of the development project sets various constraints for CM.
Therefore, CM is a situation dependent activity that needs to face these factors to
allow efficient practices for managing the system during its life cycle. This
section constructed the initial framework of factors that affect the CM solution.
This framework has been used for analysing CM practices in three SW
development projects (see the section 4). Even though a set of these factors can
be identified, the challenge is that they need to be taken into account singly and
together to allow the definition of the CM practices that will suit a product
development project.

 39

4. Empirical Evaluation of Configuration
Management Adaptation

This section considers three CM cases. First the cases are described using the
framework defined in the previous section. Then the CM observations made of
the cases are described and analysed. A cross-case analysis is used to examine
the similarities and differences of the cases.

4.1 Case Study Characterisation

This section describes three case study projects according to the factors
presented in section 3. The following Table 2 depicts the summary of the project
characteristics. The cases are on columns and factors on rows. The sub-sections
discuss each case in more detail.

Table 2. Description of cases.

 Cases
Factors Case 1: Case 2: Case 3:

Size of the
project

Large DSP (Digital Signal
Processing) SW project.

Small. Small.

Product type The project was a part of the
radio base station development.

System for managing the
research data and
documents.

Financial sector mobile
SW.

Project
hierarchy
(distribution)

Work is organised around
hierarchical projects and teams.

One project. One project. Customer
was not present.

Multisite
development

Several geographically
distributed sites.

Local. Local.

Different
disciplines

SW development and connections
to HW development.

SW development. SW development.

Development
models

Iterative development approach.
HW/SW codesign.

Agile-based
development.

Agile-based
development.

Dependence on
third party
software

Third party components. Tool versions remained
the same.

Tool versions remained
the same.

Maintenance and
multivariants

Long product life duration. Information retrieval was
needed for reuse and
research reasons.

Information retrieval
was needed for reuse and
research reasons.

Item types Several item types. Several item types. Several item types.
Management
constraints on
the CM plan

Company policy for the CM plans. No company policies
related to the CM plans.

The CM plan adopted
from a previous project
(eXpert).

 40

4.1.1 Case 1

Case 1 related to the adaptation of CM for a project developing DSP SW and
HW related DSP SW. Case 1 is reported in detail in Paper I. The paper reports
experiences related to the embedded systems� CM in a large project in
concurrent development environment. Furthermore, the project was a part of the
radio base station development.

The development context of case 1 was a complex. The development was a part
of a larger project hierarchy where the development of the SW was divided into
several system components (e.g. DSP SW, Protocol SW and Operation and
Maintenance (O&M) SW). Furthermore, the development of DSP SW was
divided into several geographically distributed sites. The DSP functionality
solved by algorithms was divided into SW and HW. Operations with critical
execution speed are usually allocated to HW. HW is realised as ASICs
(Application Specific Integrated Circuits) or FPGAs (Field Programmable Gate
Arrays), if there is a need for field programmability. Therefore, there were
interconnections between HW and DSP SW development.

The overall development paradigm was HW/SW codesign. The nature of HW/SW
codesign is experimental and iterative (Ronkainen and Abrahamsson 2003). There
are several communication points during the development process where the SW
and HW configurations are simulated against each other. SW development also
comprises other types of elements and not just product files. Compilers, operating
systems, etc. are also elements that may evolve during the product development.
The radio base stations have a long life duration and therefore maintenance is an
issue for these products. The configuration item types that were produced
comprise different types of elements, such as text documents, diagrams, source
code, etc. To assist the planning of CM, the company had existing templates and
processes for CM including a pre-installed CM tool.

4.1.2 Case 2

Case 2 related to the adaptation of CM for a small (less than 10 persons) project
(eXpert) that used agile development principles for producing a SW system for

 41

managing the research data and documents in VTT. The case is reported in
Paper II and Paper III.

The context of case 2 was much simpler than in case 1. The development was
organised around one project working physically in one location and the
customer�s representative was also practically always present. The project
developed SW following an agile-based development method (Extreme
Programming (XP)) that brought about the challenges of iterative and fast-paced
development. The development tool versions remained the same. Although the
team did not have long maintenance responsibilities, the retrieval of the product
information was needed for reuse and research purposes. The development
process produced several types of items, such as management documents,
product code and test code. However, requirement specification was practiced
using a paper-pen board method and therefore specifications were not in the
electronic format. The organisation did not have policies for CM, which meant
that the planning of CM was started from scratch. Also, the CM tool had to be
selected and installed for the project. Persons that were involved in the CM
planning had the background of a plan-based, bureaucratic CM.

4.1.3 Case 3

Case 3 related to the adaptation of CM and improvement of RM automation in a
project (zOmbie) that used agile development principles for developing a
financial sector mobile SW. The CM lessons learned have been collected based
on the interview of the CM expert of the project. The improvement attempt of
the RM is reported in Paper IV. Cases 2 and 3 form a project continuum in VTT
where several experimental SW development projects were established to
examine the utility of the agile development methods.

The context of case 3 was in many respects similar as in case 2. Just a few factors
were different. First, the project produced a different type of product than in case 2
(financial sector mobile SW). Second, the customer�s representative was not
present, but worked off-site. The most remarkable difference was that the CM plan
template and practices produced during case 2 could be used for tailoring the CM
practices for the zOmbie-project. Also, the CM tool and new electronic solution
for the management of requirements were pre-installed for the project.

 42

4.2 Results

This section presents results of the analysis when the lessons learned related to
the configuration management in case studies are mapped with the factors. The
results are described in tables as follows:

• The first column represents the lessons learned related to the CM
practices in the projects.

• The second column classifies the CM practices according to the CM
elements presented in section 2.

• The third column depicts an interpretation on which factors have
affected the formation of the CM practices.

4.2.1 Case 1

The following Table 3 shows the results of the analysis of case 1. It depicts an
interpretation of how certain project-dependent factors affect the applicability of
the CM practices. Each of these CM practices will be discussed. The CM plan of
case 1 is confidential information of the company, but the detailed CM
experiences have been documented in Paper I.

 43

Table 3. Mapping between the CM practices and project factors.

CM practices CM element
reference

Project factor reference
(project characteristics are in brackets)

Company/project level
CM organisation

CM planning � Size of the project (large)
� Project hierarchy (distributed over several projects)

Cooperative CM
planning

CM planning � Project hierarchy (distributed over several projects)
� Development disciplines (SW, relation to ASIC

development)

Clear responsibilities for
CM tasks

CM planning � Size of the project (large)
� Project hierarchy (distributed over several projects)
� Development disciplines (SW, relation to ASIC

development)

Managing change in a
distributed environment

Configuration
control

� Project hierarchy (distributed over several projects)
� Development disciplines (SW, relation to ASIC

development)
� Dependence on third party software (third party

components, such as compilers, etc.)

Information sharing Configuration
identification

� Project hierarchy (distributed over several projects)
� Multisite development (several sites)
� Development disciplines (SW, relation to ASIC

development)

Traceability, baselining Configuration
identification

� Project hierarchy (distributed over several projects)
� Development disciplines (SW, relation to ASIC

development)
� Development models (HW/SW codesign)
� Maintenance and multivariants (long product life

duration)

Managing iterative SW
design

Configuration
identification

� Development models (HW/SW codesign)

CM enforcement
(system configuration
audit)

Configuration
audit,
Configuration
status accounting

� Project hierarchy (distributed over several projects)
� Multisite development (several sites)
� Management constraints on the CM plan (company policy

for CM plans)

Make the items in
product life cycle
identifiable and
manageable

Configuration
identification,
Configuration
control

� Project hierarchy (distributed over several projects)
� Development disciplines (SW, relation to ASIC

development)
� Dependence on third party software (third party

components, such as compilers, etc.)
� Item types (several types in different categories)

Plan-based CM CM planning � Management constraints on the CM plan (company policy
for CM plans)

 44

Company/project Level CM Organisation

The organisation produces complex products and projects tend to be large. The
organisation of CM was divided into the organisation- and project�level. The
projects have the best understanding of the development tools they are using and
what kind of sub-systems they are producing. Therefore, the project level CM
teams tailor CM for the projects according to the CM plan template and
coordinate CM inside the projects. The organisation level team is needed to
improve and generalize CM for the organisation (e.g. CM plan templates),
provide CM consultation and technical support for the projects, as well as
coordinate overall CM in the organisation.

Cooperative CM Planning

The project environment contained several inter-connected projects. This caused
the need for co-planning and communication between the projects to resolve the
common CM issues (e.g. management of interfaces (common configuration
items)). This communication is already needed in the CM planning phase. One
�CM forum� was used as an inter-project CM planning team to resolve and
communicate the common CM planning issues as well as to share the
experiences of the successful CM practices between the projects. It is important
that the CM forum assemble for a meeting on a regular basis in the CM planning
phase. On the other hand, afterwards, the CM forum could meet less frequently.
In order to achieve compatible CM practices over the development disciplines, a
good communication between the interconnected HW and SW teams is crucial.

Clear Responsibilities for the CM Tasks

Clear responsibilities for the CM tasks are important in a project environment
where the systems under development are large with several sub-systems and
implementation technologies. CM inside a project is quite easy, but the
complexity increases when the development is organised into separate
hierarchical development projects and teams. Without clear responsibilities for
the CM activities in this multiproject environment, CM might be well realized
inside a project, but the common CM issues (management of interfaces
(common configuration items, interface specifications, etc.)) are insufficient
leading to problems in the integration and maintenance phases.

 45

Managing Change in a Distributed Environment

The sub-systems produced by projects and teams have dependencies and
changes in one of the sub-systems can cause changes in the other. For example,
changes to the SW may cause changes to the HW and vice versa. Thus, change
management practices and responsibilities should be defined in such a way that
ensures controlled change documentation, evaluation, implementation and
notification through the related projects. In particular, the impacts to other
projects should be analyzed to avoid inconsistency during the integration. Items
that require special attention here are SW/SW interface items, HW/SW interface
specifications/items and third party components to avoid uncontrolled changes
in these items.

Information Sharing

Capabilities for information sharing and management (e.g. using replication)
are important in a project environment where the development is dispersed into
several projects and disciplines as well as over several geographically distributed
sites. Proper level of information visibility is crucial to prevent the isolated
working culture where changes are not communicated to all relevant parties.
Furthermore, there need to be practices how the interfaces are defined and
controlled when different sub-systems are developed on different sites.

Traceability, Baselining

Several interconnected SW development projects make it necessary that the SW-
SW interface items are given special attention. It is vital that these items have
been identified and all participants have the correct versions (baseline of
common items) of the common items to ensure the consistency of the product
during the integration phase. Also the traceability of the product information is
essential for maintenance purposes when operating with products that have long
product life duration. Furthermore, cooperative HW/SW development where SW
and HW configurations are simulated iteratively requires attention. The releases
should be based on baselines and there should be clear practices on how to
identify and document releases to ensure their sufficient traceability. The
compatibility of SW and HW sub-releases during simulation needs to be
documented for traceability.

 46

Managing Iterative SW Design

Incremental and cooperative HW/SW development creates concurrency to the
SW development. This might make it necessary to have a parallel bug-fixing
branch for a bug-fix, when development and simulation happen concurrently.
The bug-fixing of the previous release might happen in the bug-fixing branch,
which will be merged into the main branch before the next release to ensure that
the problems are fixed in the upcoming release.

CM Enforcement (System Configuration Audit)

Mechanisms for monitoring that consistent CM practices are followed are
needed in the complex development environment where the development is
divided over interconnected projects and distributed over several sites. This is
needed, for example, to monitor that all SW elements are placed under the
configuration management. Furthermore, during long projects, CM should be
able to response to any changes in the project�s operational environment that
might affect the CM practices or tool support.

Make the Items in Product Life Cycle Identifiable and Manageable

The role of configuration management is to provide mechanisms to identify, store
and manage configuration items during product development from the requirements
specifications to the implementation. Furthermore, the proper identification and
management of items requiring special attention is important. These kinds of items
are, for example, the SW/SW and HW/SW interface items as well as third party
components, such as tools and operating systems. Without proper identification and
coordination some teams might start to use, for instance, the newer version of a
common component without notifying the other parties about the changes, which
might lead to problems when integrating the sub-systems.

Plan-based CM

The use of templates and processes for planning CM for the projects makes the
whole adaptation easier. Templates provide �tried and tested� general frameworks
for defining the CM practices that suit the special characteristics of the projects. In
this case the CM activities planned for the project covered the traditional CM issues

 47

described in section 2 (organisation, identification, control, status accounting, etc.).
It became evident that nowadays inside a project, CM is usually fairly well realised,
but the complexity and challenges of CM come from the size of the project (large),
project hierarchy, multisite development and development disciplines. Furthermore,
the pre-installed full-fledged CM tool was an essential element to support
configuration management in the complex project environment.

4.2.2 Case 2

The following Table 4 shows the results of the analysis of case 2. It depicts an
interpretation of how certain project-dependent factors affect the applicability of
the CM practices. Each of these CM practices will be discussed. Detailed CM
experiences have been documented in Paper II and the RM procedures used have
been documented in Paper III.

Table 4. Mapping between the CM practices and project factors.

CM practices CM element
reference

Project factor reference
(project characteristics are in brackets)

Manual requirements
management

Configuration
identification

� Project hierarchy (one project)
� Multisite development (local)
� Development models (agile)

Lightweight change
management

Configuration
control

� Size of the project (small)
� Development models (agile)

Flexible CM tool CM planning � Size of the project (small)
� Development models (agile)
� Management constraints on the CM plan (no company

policies for CM)
Parallel development
branches (simultaneous
modifications)

Configuration
identification

� Development models (agile)

Traceability, baselining Configuration
identification

� Development models (agile)
� Maintenance and multivariants (information retrieval

for reuse & research purposes)
Making the items in
product life cycle
identifiable and
manageable

Configuration
identification,
Configuration
control

� Item types (several item types)

CM enforcement
(system configuration
audit)

Configuration audit,
Configuration status
accounting

� Management constraints on the CM plan (no company
policies for CM)

Plan-based CM CM planning � Management constraints on the CM plan (no company
policies for CM)

 48

Manual Requirements Management

The functional baseline was managed manually using paper cards (paper-pen
board method) as described in the XP method�s practices. In many respects, the
manual practice was sufficient. This kind of a solution is possible when a small
project operates physically in the same location. However, this practice was
identified as an improvement area to achieve more control for the requirements.
This is especially needed when some stakeholders (e.g. customer�s
representative) are physically in a different location from the development team.

Lightweight Change Management

The development team was quite small and the development method stressed
lightweight practices and documentation. Therefore, special attention was paid
to �simple� change management practices.

Flexible CM Tool

A flexible, easy to use CM tool is essential in a fast agile-based development.
The selected tool was CVS, which is not a full-fledged CM tool, but rather a
version management tool. The project team used the Eclipse tool integration
framework as a development environment in the project. CVS was pre-installed
into the Eclipse environment which affected the tool selection most. The selected
tool is suitable especially for a small team.

Parallel Development Branches (Simultaneous Modifications)

Support for simultaneous updates was found essential in order to support
iterative development and XP practices, such as continuous integration and
collective ownership. This created special requirements for the CM tool to allow
for the optimistic version control mechanisms and good merge support if
conflicts were to occur in the check-in operation.

Traceability, Baselining

Generally, only the last versions of the files in the repository were relevant, but
some exceptions required that the return to the old versions was needed.

 49

Baseline was created in every iteration. The project history revealed that there
were some problems in making corrections (bug-fixing) to the product after the
last release, because the final product baseline was not done.

Making the Items in Product Life Cycle Identifiable and Manageable

Furthermore, effective CM requires that all types of developmental artefacts be
placed under the configuration management. However, especially for some
management documents this was not always done, which caused problems.

CM Enforcement (System Configuration Audit)

In agile development, a team reflects on how to become more effective and then
adjusts its behaviour accordingly. There is also a need to monitor that everyone
is operating according to the rules; for example, that all SW elements are placed
under configuration management and coding standards were followed. To
support these issues, the team used system configuration audits and made
corresponding corrective actions and modifications to the CM plan when
needed. Generally the use of configuration audits had a positive influence to the
quality of SW releases in eXpert-project.

Plan-based CM

The organisation did not have any policies for CM and, therefore, the
development needed to start from scratch. IEEE Std-828 -template (1998) was
the basis for creating a company-specific CM template. The template served as
an excellent basis for the CM planning, showing the CM practices that need
attention. The irrelevant parts of the template, such as subcontractor/vendor
control and interface control were ignored. This template was then tailored for a
project including responsibilities, schedules and project specific CM practices.

4.2.3 Case 3

This section discusses the results of the analysis of case 3 (Table 5). Case 2 and
3 were quite similar with almost the same project characteristics. Therefore, this

 50

section only analyses those CM practices that differ from the CM practices in
case 2. The only exceptions were that:

• The CM plan was based on the plan used in case 2 with minor
modifications. Also, the RM tool was constructed for the project. These
caused deviations to the factor �Management constraints on the CM
plan� if compared to case 2.

• The customer�s representative was not always present in the developer�s
workplace as he was in case 2. This caused deviation to the factor
�Project hierarchy (distribution)�, if compared to case 2.

• The �product type� was different from case 2.

Table 5. Mapping between the CM practices and project factors.

CM practices CM element
reference

Project factor referenc
(project characteristics are in brackets)

Electronic
requirements
management

Configuration
identification

� Project hierarchy (one project, customer was not present)
� Multisite development (local)
� Development models (agile)
� Management constraints on the CM plan (CM plan copied

from earlier project)
Simple change
management

Configuration
control

� Size of the project (small)
� Development models (agile)

Easy to use CM tool CM planning � Size of the project (small)
� Development models (agile)
� Management constraints on the CM plan (CM plan copied

from earlier project)
Parallel development
branches
(simultaneous
modifications)

Configuration
identification

� Development models (agile)

Traceability,
baselining

Configuration
identification

� Development models (agile)
� Maintenance and multivariants (retrieval for reuse &

research purposes)
Making the items in
product life cycle
identifiable and
manageable

Configuration
identification,
Configuration
control

� Item types (several item types)

CM enforcement
(system configuration
audit)

Configuration audit,
Configuration status
accounting

� Management constraints on the CM plan (CM plan copied
from earlier project)

Plan-based CM CM planning � Management constraints on the CM plan (CM plan copied
from earlier project)

 51

Electronic Requirements Management

Case 3 contained the improvement attempt of RM (experiences from the
improvement attempt are documented in Paper IV). This was needed because the
customer�s representative of the project was not present in the same location as
the development team. This meant that a need emerged for more effective
communication and data visibility mechanisms than in case 2 (management of
requirements data). However, the development team worked in one office room,
and therefore, the challenge was to provide a tool that was as easy and flexible to
use as the manual solution. A tool was constructed for the more automated, i.e.
electronic, management of requirements (described in Paper III). The tool
provided a possibility for describing, organising and baselining requirements.
The tool was integrated into the Eclipse environment enabling the project team
to work with one channel throughout the whole development life cycle and
providing access to the requirements information over the network for the
customer�s representative. However, the tool was not mature enough. It was
found too difficult to use and it failed to provide as powerful a visual view as the
manual paper-pen board method for the local agile development team.
Therefore, the project team returned back to the manual RM practices. The tool,
constructed to support any development method, should take into account the
underlying values of the method itself or the tool fights against the nature of the
method. This deficiency has been resolved in future projects with a new
approach to RM combining the manual and electronic solutions to enable the
external stakeholders easily to view the status of the requirements
implementation.

Plan-based CM

The CM plan was based on the plan used in case 2 with minor modifications.
Therefore, the CM planning phase was quite straightforward and the pre-
installed CM tool could be used. In the CM system audits, there were mainly
some minor modifications to the project�s CM practices, for example, some
modifications to audit templates and procedures. The only remarkable change
was the project team�s decision to return back to the manual RM practices when
the RM tool turned out to be unsuitable for the project. However, these CM
practice modifications were not documented to the CM plan anymore, because
the update procedures were found too strict. Furthermore, the interview of the

 52

project�s SCM expert revealed that in this case, when CM was turned out to be
quite stable, the documented CM plan was not an issue but �standardised�
training and tool support were the elements that replaced the extensive CM
documentation. In other words, the CM practices were somewhat stabilised as a
part of the CVS use and a separate CM plan was not updated anymore. The
successful CM practices were introduced as a part of the description of the
development method in future projects.

4.2.4 Cross-case Analysis

Cross-case analysis is used to analyse the similarities and differences between
the cases. The following Table 6 summarises the results of the analysis. Cases 2
and 3 represent a project continuum in the same organisation and therefore they
do not have many differences.

 53

Table 6. CM observations.

 Cases
Factor

CM observations from
case 1:

CM observations from
case 2:

CM observations from
case 3:

Size of the
project

Large project => formality and
clear responsibilities for the CM
activities are needed.

Small project => less formal
practices, a simple CM tool.

Small project => less
formal practices, a simple
CM tool.

Product type SW was a part of a radio base
station development => case study
did not provide clear evidence on
how the product type affects the
CM practices.

Document management
system => case study did not
provide clear evidence on
how the product type affects
the CM practices.

Financial sector mobile
SW => case study did not
provide clear evidence on
how the product type
affects the CM practices.

Project
hierarchy
(distribution)

Distributed over several projects
and teams => In distributed
projects the interconnections
require
• clear responsibilities and

enforcement for the CM
activities

• identification and management
of the interfaces (e.g. interface
specifications and common
configuration items)

• controlled change
documentation, evaluation,
implementation and notification
through related projects

• cooperation in the CM
planning to ensure consistent
practices

• information visibility for the
relevant parties

One project => not an issue. One project, customer was
not present => need for
information visibility for
the relevant parties.

Multisite
development

Several sites => In a multisite
environment, proper information
sharing, interface management
and system configuration audit
mechanisms are needed.

One site => not an issue. One site => not an issue.

Different
disciplines

SW development and connections
to HW development =>
Interconnections requireclear
responsibilities and cooperation
for the CM activities

• identification and change
management for interfacing
items,

• traceability of the related
HW/SW packages

• cooperation already in the CM
planning phase

SW development => not an
issue.

SW development => not
an issue.

 54

 Cases
Factor

CM observations from
case 1:

CM observations from
case 2:

CM observations from
case 3:

Development
models

Iterative development approach
with HW/SW codesign =>
Iterative development approach
with HW/SW codesign requires
support for the parallel SW
development (branching and
merging) and clear baselining for
traceability.

Agile-based development
method => Agile-based
development method requires
support for the simultaneous
updates, traceability,
baselining and simple easy-
to-use practices and tools.

Agile-based development
method => Agile-based
development method
requires support for the
simultaneous updates,
traceability, baselining and
simple easy to use
practices and tools.

Dependence
on third
party
software

Third party components, such as,
compilers and operating systems
=> Third party components
require strict identification and
management of the versions.

Tool versions remained the
same => not an issue.

Tool versions remained the
same => not an issue.

Maintenance
and
variation

Long product life duration =>
abilities for information retrieval.

For reuse and research
reasons the information
needs to be retrieved.

For reuse and research
reasons the information
needs to be retrieved.

Item types Several item types =>
• Item categories and types need to

be identified so that the
configuration items can be
managed and retrieved effectively
during the life cycle of the project.

• Put special attention to
common configuration items,
interface specifications and
third party SW.

Several item types => Item
categories and types need to
be identified so that the
configuration items can be
managed and retrieved
effectively during the life
cycle of the project.

Several item types => Item
categories and types need
to be identified so that the
configuration items can be
managed and retrieved
effectively during the life
cycle of the project.

Management
constraints
on the CM
plan

Company policy for the CM
plans, a pre-installed CM tool =>
• Company policies for the CM

plans and a pre-installed CM
tool are essential elements for
complex organisations. These
elements speed-up the CM
planning.

• Changes in the project
environment need to be
reflected in the CM practices
and tool support (system CM
audits).

No company policies related
to the CM plans =>

• If the company does not

have policies related to the
CM plans it is good to
start the CM planning
based on a standard
template.

• Changes in the project
environment need to be
reflected in the CM
practices and tool support
(system CM audits).

CM and development
environment adopted from
case 2 => Reuse of the
successful CM practices
from previous projects.

Some similarities can be found between cases even though the context of case 1
was in many respects different from that of cases 2 and 3.

In all cases, the plan based CM worked well. Basic CM activities, for example,
configuration identification (naming, versioning, item acquisition) and
configuration control (change management) existed in all cases, but the practical
procedures, formality and need for automation varied depending on the project
environment.

 55

Cases 2 and 3 represented a project continuum in the same organisation (VTT).
This enabled the improvement of the CM practices from project to project using
stepwise approach. The CM plan based approach was essential in case 2 when
the organisation did not have any pre-defined policies and tools for CM. On the
other hand, in case 3, formal CM plan document updates became unnecessary.
Later agile-projects in VTT, the CM practices were embedded into the
development method, and a separate CM plan -document does not exist
anymore. This could have been possible because of the project size (small) and
method (agile) used.

Clear evidence on how the product type has affected the CM solution was not
found in this study. Jonassen Hass (2003) mentions that it is difficult to provide
unambiguous rules for CM for different classes of products. But it can be
assumed that in case 1 the malfunction in a product can cause a major financial
loss for a customer and therefore the need for the formality of CM increases.

Furthermore, case 1 represented a project that was a part of a larger development
project. This caused the need for co-planning and communication between
projects to resolve the common CM issues (e.g. management of interfaces). This
kind of co-planning challenge was not an issue in cases 2 and 3.

Only case 1 was a truly multisite project that needed practices and technical
solutions for multisite development (e.g. replication, branching). Case 2 was
totally local, but case 3 had the off-site customer. This meant that a need
emerged for more effective communication and visibility of the requirements in
case 3 than in case 2 (management of requirements data). An electronic
computer-based solution was built to resolve the problem. However, the solution
was not sufficiently simple for the agile-type fast-paced development. The
results emphasize the role of adaptation in the tool development. The tool,
constructed to support any development method, should take into account the
underlying values of the method itself. Without this, the tool fights against the
nature of the method. This deficiency was resolved in later projects with a new
approach to RM which combined the manual and electronic solution.

Different development disciplines are challenging in CM. Different kind of
terminology and tools are used for the development and, in many cases, HW and
SW teams are physically in different locations, which prevents natural

 56

interactions. In cases 2 and 3, this was not an issue as it was in case 1, where the
need for the management of interfaces and support for information exchange
were observed.

Case 1 and cases 2 and 3 used different SW development approaches. At first
glance, these approaches seem to be totally different, but actually they have
some characteristics in common that led to similar CM solutions. The
development of embedded SW (especially HW/SW codesign) is experimental
and iterative, requiring an efficient tool support for version management and
baselining. This is also true for the agile development methods, especially for
XP. The importance of a fluent CM tool support was emphasised in all cases.

Third party components, such as compilers, operating systems, etc. should be
under CM if new versions emerge. This was highlighted in case 1, while it was
not an issue in cases 2 and 3. The need for information retrieval for maintenance
reasons was obvious in case 1. For cases 2 and 3, the information retrieval is
topical mainly for reuse and research reasons. However, in case 2, there were
some problems in making corrections (bug-fixing) to the product after the last
release, because the final product baseline was not done. This is a typical
occasion when the importance of traceability and baselining is emphasised.
Furthermore, configuration management has traditionally mainly operated with
the source code elements. However, this is not sufficient anymore. All item
types produced during the development need to be managed including
requirements, management documents, designs, code, compilers, operating
systems, binaries, instructions, manuals, etc. The importance of the management
of all developmental artefacts was detected in this analysis.

 57

5. Introduction to the Papers

This chapter introduces the papers that are included into this research. The
papers relate to the cases described in this study as follows:

• Paper I relates to case 1

• Papers II and III relate to case 2

• Papers III and IV relate to case 3.

The contexts of the papers are illustrated in the following Figure 6:

Tool support
Paper I

Papers II, III, IV

Procedures
Paper I

Papers II, III

�Traditional�

SW
development

Agile SW
development

Figure 6. Contexts of the papers.

5.1 Paper I:
Configuration Management Support for the Development

of an Embedded system: Experiences in the
Telecommunication Industry

Paper I presents the importance and practical experiences of configuration
management in the context of HW related SW development (DSP SW and HW
related DSP SW). First, the paper provides an introduction, based on a literature
study, to the concepts of CM and HW related SW development, and then
discusses the operational environment of CM in an organisation developing
telecommunication products. The paper highlights the complexity of the

 58

development of embedded systems. The paper describes the observations that
were made during the CM planning, setting, implementation and modification.
Requirements management is limited to cover the management of specification
documents. The work provides a case for the analysis of the CM adaptation in a
complex project environment.

5.2 Paper II:
Improving Software Configuration Management for

Extreme Programming: a Controlled Case Study

Paper II presents a case study where the CM principles are applied for a software
project (called �eXpert�) that adhered to the agile-based development method.
The project produced a system for managing the research data and documents.
The study started with a literature study following a case study where the CM
principles were planned for a SW project. The paper presents how CM was
planned and realised to support the management of the product information in
the project. The work provides a case (case 2) for the analysis of the CM
adaptation in agile environment.

5.3 Paper III:
Supporting Requirements Engineering in Extreme

Programming: Managing User Stories

Paper III presents a proposed tool for managing the requirements in the context
of the XP method. The paper first presents the basic concepts of RM and
introduces the traditional manual RM procedures that were used in VTT in the
first XP-based SW development project (eXpert). The paper then analyses the
comments from the project and lay out the requirements for RM tool support in
the XP development environment. The paper further introduces a proposed tool
for managing the requirements in the XP project. The work is a part of a case
(case 2) described in paper II extending it with functional baselining issue that is
an essential part of CM. The work also provides a starting point and describes a
proposed RM tool for case 3.

 59

5.4 Paper IV:
Improving Requirements Management in Extreme
Programming with Tool Support � an Improvement

Attempt that Failed

Paper IV presents experiences while using a tool presented in paper III in a
project developing mobile application software (financial sector mobile SW)
using an agile based development method (zOmbie -project). The tool turned out
to be too complicated and did not provide enough support for the fast-paced
development. The paper discusses issues that led to this dissatisfaction. The
paper further identifies issues that should be taken into account when
considering RM for a fast-paced development environment. The paper also
highlights that it is important to understand the development method used in a
project to avoid the RM or CM solutions that work against the underlying nature
of the development method. The RM improvement work was done using action
research -method. This work with the interview of zOmbie-project�s CM expert
provides another case (case 3) for the analysis of the CM adaptation in agile
environment.

 60

6. Conclusions and Future Research Needs

This research examined the factors that affect the practical configuration
management solutions. Set of factors were presented as a framework and they
were used to analyse three case studies to better understand how the factors
affect the CM solutions. The study provides guidelines for the CM solutions that
are based on the experiences of real life CM cases. The following sections first
discuss the results and their implications. Then, the research questions are
answered. Finally, future research needs are indicated.

6.1 Evaluation of Results

This section discusses the results of the study and the generalisation of the
results. Table 7 depicts the initial and case-based guidelines for the CM defined
in this study.

 61

Table 7. Initial and case-based guidelines for CM.

Factor Initial guidelines for CM CM guidelines based on three
case studies

Size of the
project

Small projects need less formal practices
and a single person can be responsible for
the CM coordination.
Large projects need formal practices and a
CM team.

In a small project, less formal practices and a
simple CM tool are adequate.
In a large project, formality and clear
responsibilities for the CM activities are
needed.

Product type Need for formality and automation
increases with the level of the product
criticality.

Case studies did not provide clear evidence
on how the product type affects the CM
practices.

Project
hierarchy
(distribution)

Effective CM procedures are needed for
each part of the distributed project.
Interfaces between the sub-systems should
be defined and controlled.
CM plans indicating different levels of CM
need to be compatible with each other.

In distributed projects the interconnections
require
• clear responsibilities and enforcement for

CM activities
• identification and management of

interfaces (e.g. common configuration
items)

• controlled change documentation,
evaluation, implementation and
notification through related projects

• cooperation in CM planning to ensure
consistent practices

• information visibility for relevant parties
Multisite
development

Address challenges of networking,
communication, security, and concurrency
management in multisite development.
The information needs to be shared and
responsibilities made clear in a multisite
environment.
Need for formality and automation (tool
support) increases when moving from a
local development environment to a global
one.
The same process should be followed in all
sites if possible.
Enforcement that CM is practiced
according to the rules in all sites.

In a multisite environment, proper
information sharing, interface management
and system configuration audit mechanisms
are needed.

Different
disciplines

Consistent identification practices and
careful change management are needed for
those items that are naturally related (HW,
SW).
Ensure good communication between HW
and SW elements of CM during the CM
planning.

Interconnections require
• clear responsibilities and cooperation for

the CM activities
• identification and change management for

interfacing items
• traceability of related HW/SW packages
• cooperation already in CM planning phase

 62

Factor Initial guidelines for CM CM guidelines based on three
case studies

Development
models

The characteristics of the development
models shape the CM solutions. E.g. an
iterative development requires a good
version management and baselining to
ensure sufficient traceability.

The iterative development approach with
HW/SW codesign requires support for
parallel SW development (branching and
merging) and clear baselining for
traceability.
The agile-based development method
requires support for the simultaneous
updates, traceability, baselining and simple
easy-to-use practices and tools.

Dependence
on third party
software

Practices how third party software is to be
specified, delivered, accepted and changed.
Ensure that all development teams access
the correct versions of the components to
avoid problems in the integration.

Third party components, such as compilers
and operating systems, require strict
identification and management of the
versions.

Maintenance
and variation

Define practices how variants are managed
and releases of the system to different
customers built and recorded.
Define practices how old versions of the
systems, which are still in operational use,
are maintained and for how long.

Long product life duration requires abilities
for information retrieval (traceability) for
maintenance reasons. Information retrieval
might also be needed for reuse and research
reasons.
The CM evidence for the variation
management was not found (customisation
was not an issue in the cases).

Item types Manage all the product-related items
produced during the development.
Identify item categories and item types per
each category to allow proper identification
and control for each type of items.

The item categories and types need to be
identified so that the configuration items can
be managed and retrieved effectively during
the life cycle of the project.
Pay special attention to common
configuration items, interface specifications
and third party SW.

Management
constraints on
the CM plan

The CM plan needs to comply to the
imposed or established working methods
and tools.
The CM plan should reflect its project
environment.
Take into account the project�s resources,
including the skills and background of the
project team.
The existing CM templates are a good
starting point for the planning of the CM
practices.

Company policies for the CM plans and a
pre-installed CM tool are essential elements
for complex organisations. These elements
speed-up the CM planning.
If the company does not have policies related
to the CM plans, it is good to start the CM
planning based on a standard template.
Changes in the project environment need to
be reflected on the CM practices and tool
support (system CM audits).
Reuse of successful CM practices from
previous projects.

The CM guidelines gained from the three case studies are in many respects the
same as the initial CM guidelines collected in section 3. Case-based CM

 63

guidelines that were found in this study are not in conflict with the initial CM
guidelines. However, clear CM guidelines for certain factors could not be found.
These factors were product type and variation.

CM observations from case studies did not provide clear evidence on how the
product type affects the CM practices. Literature states that the need for the
formality and automation increase with the level of criticality (Jonassen Hass
2003). Likewise, the effects of the product variation for CM practices could not
be studied in this research, because the customisation was not an issue in the
cases. However, it is clear that variants need to be managed and maintained as
described e.g. in Whitgift (1991).

Basic CM activities that should be planned for projects are the same (e.g.
defined in standard template IEEE Std-828), but the practical procedures,
formality and needs for automation vary depending on the project environment.
This has also been stated in literature, e.g. in Leon (2000). The study also
revealed that inside a project, CM is usually fairly well realised, but the
complexity and challenges of CM come from the size of the project (large),
work distribution (project hierarchy, multisite development, dependence on third
party software components) and development disciplines (HW/SW). Especially
the management of interfaces was found crucial in this kind of environment.
Without strict practices unmanaged interfaces can cause difficult problems in the
integration phase. According to Estublier et al. (2002) the basic concepts of
(software) configuration management have been settled and the new challenges
of CM come from its relationship to other domains, such as product data
management (connection to system and HW development), component-based
software development and software architecture. Nowadays, tough competition
requires more flexibility and abilities to adapt to new development approaches to
survive in the global competition. This changing development environment
demands that CM face these new requirements whenever they emerge.

The research has been limited to the initial set of factors as described in section
3. Other potential factors, such as the maturity of an organisation and working
culture have not been considered. Therefore, there is still much work to be done
in future research to collect the more complete set of factors and their
corresponding CM guidelines.

 64

Can we generalise the results of the study? Separate factors, such as multisite
development, dependence on third party SW and development disciplines clearly
indicate the need for special CM concerns. However, projects tend to be
different with the special characteristics of the development environment.
Therefore these �factor-specific� solutions can only be used as guidelines for
CM and their applicability need to be considered in the context of a project. This
is because detailed CM solutions are the result of the interaction of several
factors and each factor coexists with other factors and they need to be taken into
consideration singly and together (Jonassen Hass 2003). Also, the nature of the
case study method limits the generalisation of results. According to Yin (1994) a
case study investigates a contemporary phenomenon within its real-life context.
The results of this study are the most valuable when seeking configuration
management solutions for projects operating within a similar context as those
presented in this research. Therefore, this study attempts to provide a practical
viewpoint to the CM adaptation so that CM practitioners can compare the
operational environment of their projects with our case studies and apply the
findings of this study to their daily work when appropriate.

6.2 Answers to the Research Questions

Answers to the research questions that were laid in section 1 are the following:

What are the basic mechanisms for adapting configuration management?

The basic mechanism is the CM planning. The CM responsibilities and
procedures are described in the CM Plan -document. The plan itself can be a
separate document or be included into, for example, project plan or quality plan.
The CM planning should be done for each project, even if CM is practiced as a
company policy, to ensure that the overall judgements are made about the
applicability of the policies. A generic CM template usually referenced in
literature is IEEE Std-828 (1998). It has become a widely accepted basis for the
planning of initial CM practices.

 65

What kind of factors influence the configuration management solutions?

The framework of the initial factors that present the project characteristics that
affect the CM solutions has been constructed in this research. This framework is
presented in section 3.

How do these factors affect the CM planning and practical CM solutions?

The following empirical guidelines are collected based on the three case studies
presented in this research:

CM planning:

• Project hierarchy (distribution): the development of complex systems is
usually divided into several interconnected projects. The cooperation
between the projects already during the CM planning phase is essential to
form consistent CM practices between the related projects.

• Different disciplines: several interconnected development disciplines require
cooperative CM planning. HW/SW codesign especially requires the defining
of the connection points between the HW and SW development to allow
consistent management of the HW/SW product information.

• Management constraints on the CM plan: if an organisation does not have
existing policies for CM, the formal plan-based definition of the CM
responsibilities and practices is particularly useful. This is true even if the
operational environment of the project is simple with, for instance, a small
local development team. The existing CM templates provide a pre-defined
base for the initial planning activity.

CM activities (practical CM solutions):

• Size of the project: the formality of the CM solutions varies. In large projects
there is a need for formal procedures and clear responsibilities for the CM
planning and activities, whereas in a small project the procedures can be less
formal.

• Product type: clear evidence on how the product type has affected the CM
solution was not found in this study. However, according to literature, the

 66

need for formality and automation increases with the level of criticality
(Jonassen Hass 2003).

• Multisite development: information sharing, interface management and
enforcement to operate according to the agreed rules (i.e. system
configuration audits).

• Project hierarchy (distribution), different disciplines and dependence on
third party software: Interconnections between projects, HW/SW codesign
and third party components require that the interfaces (specifications and
other interfacing items) are given special attention (proper identification,
baselining and change management). Communication and information
sharing mechanisms are needed to support working in a multidiscipline and
multiproject environment. Furthermore, complexity requires that there are
clear responsibilities, formality and enforcement (i.e. system configuration
audit) of the CM practices.

• Development models: CM is a support activity for the product development.
Therefore, the nature and special needs of the development method used in a
project should be taken into account. For example, for agile-based
development, the solutions should be flexible and easy to use and they
should comprise efficient practices for simultaneous updates, traceability
and baselining.

• Maintenance and multivariants: the archiving and retrieval of information is
needed for maintenance, reuse and other reasons (e.g. research purposes in
cases 2 and 3). The case projects did not customise the products for
customers and, therefore, the evidence on how different product variants
were managed was not found in this study.

• Item types: the item types being managed should cover all artefacts on
development life cycle from requirements to maintenance. These should also
include the interface items, tools and management documents.

• Management constraints on the CM plan: changes in the operational
environment of the project require that there are mechanisms to adapt the
CM practices and tool support on the fly.

 67

6.3 Future Research Needs

The study generated several ideas for future research topics. First, the framework
needs to be elaborated (new factors) and further work needs to be done to
empirically validate how the factors affect the CM solutions. Second, the life
cycle approach to product information management is interesting. The consistent
management of information from initial product ideas to physical electronics
products involves several types of information management domains. These
domains comprise, among others, requirements management (RM), software
configuration management (SCM), product data management (PDM), supply
chain management, enterprise resource planning (ERP), and document
management (DM). The term �product lifecycle management� (PLM) provides a
generic frame of reference for the systems and methods that are needed for
managing all product related data during the product�s life cycle. The planning
of PLM for an organisation is extremely complex with several interconnected
organisational functions, such as development, management, marketing, sales,
manufacturing, etc. Understanding the complexity of PLM and mechanisms for
planning and discovering effective solutions for it are essential in order to form
consistent support for the product information management of complex
products. Third, interface management was found complex topic that needs more
consideration. Fourth, configuration management has recently been studied in
the context of agile methods. Practical CM solutions for agile projects have
stressed simplicity and automation to support the fast-paced development.
However, it would be interesting to study how the agile CM solutions can
contribute to the CM of HW/SW codesign, since there are some similarities in
agile-based development and HW/SW codesign.

 68

References

Abrahamsson, P., Salo, O., Ronkainen, J. & Warsta, J. (2002) Agile Software
Development Methods: Review and Analysis. Technical Research Centre of
Finland, Espoo. VTT Publications 478. 107 p. ISBN 951-38-6009-4; 951-38-
6010-8. http://virtual.vtt.fi/inf/pdf/publications/2002/P478.pdf.

Abran, A. & Moore, J. (Executive editors) (2004) SweBok: Guide to the Software
Engineering Body of Knowledge. 2004 version, IEEE Computer Society.

Battin, R.D., Crocker, R., Kreidler, J. & Subramanian, K. (2001) Leveraging
resources in global software development. IEEE Software, Volume 18, Issue
2, March � April 2001. Pp. 70�77.

Berlack, H. (1992) Software configuration management. John Wiley & Sons.

Bersoff, E., Henderson, V. & Siegel, S. (1980). Software Configuration
Management � An Investment in Product Integrity. Prentice Hall.

Bersoff, E., Henderson, V. & Siegel, S. (1979) Principles of software
configuration management. Prentice-Hall, Englewood Cliffs, New Jersey.

Berczuk, S. & Appelton, B. (2003) Software configuration management patterns:
effective teamwork, practical integration. Boston, Addison-Wesley. 218 p.

Buckley, F. (1996) Implementing configuration management: hardware, software,
and firmware. IEEE Computer Society Press, Los Alamitos.

Christensen, H.B. (2001) Tracking Change in Rapid and eXtreme Development:
A Challenge to SCM-tools? Tenth International Workshop on Software
Configuration Management.

Crnkovic, I., Asklund, U. & Persson Dahlqvist, A. (2003) Implementing and
Integrating Product Data Management and Software Configuration Management.
Artech House, Boston.

http://virtual.vtt.fi/inf/pdf/publications/2002/P478.pdf

 69

Crnkovic, I., Dahlqvist, A.P. & Svensson, D. (2001) Complex systems
development requirements � PDM and SCM integration. In: Asia-Pacific
Conference on Quality Software.

Dart, S. (1996) Best practice for a configuration management solution. In:
Sommerville, I. (ed.) Software Configuration management. Lecture Notes in
Computer Science, Vol. 1167. International workshop on software configuration
management (SCM6), Berlin, Germany. Springer-Verlag, Heidelberg, Germany.
Pp. 239�255.

Ebert, C. & De Neve, P. (2001) Surviving global software development. IEEE
Software, Volume 18, Issue 2, March � April 2001. Pp. 62�69.

Estublier, J. (2000) Software Configuration Management: A Roadmap.
Finkelstein, A. (ed.) The Future of Software Engineering, 22nd International
Conference on Software Engineering (ICSE 2000).

Estublier, J., Leblang, D., van der Hoek, A., Conradi, R., Clemm, G., Tichy, W.
& Wiborg-Weber, D. (2005) Impact of software engineering research on the
practice of software configuration management. ACM Transactions on Software
Engineering and Methodology (TOSEM). Volume 14, Issue 4, October 2005,
ACM Press, New York, USA. Pp. 383�430.

Estublier, J., Leblang, D., Clemm, G.R., Conradi, R., van der Hoek, A., Tichy, W.
& Wiborg-Weber, D. (2002) Impact of the research community for the field of
software configuration management. ICSE 2002. Proceedings of the 24rd
International Conference on Software Engineering. Pp. 643�644.

Hult, M. & Lennung, S. (1980) Towards a definition of action research: A note
and bibliography. Journal of Management Studies, May 1980. P. 241�250.

IEEE Std-610.12 (1990) IEEE standard glossary of software engineering
terminology.

IEEE Std-828 (1998) IEEE Standard For Software Configuration Management
Plans.

 70

IEEE Std-1042 (1987) IEEE guide to software configuration management.

ISO/IEC 10007 (1995) Quality management � Guidelines for configuration
management, International Standard.

ISO/IEC 12207 (1995) Information technology � Software life cycle processes,
International Standard.

ITEA, ITEA 2 brief: Investing in Software-intensive Systems � Investing in
Europe's Future. ITEA (Information Technology for European Advancement).
http://www.itea-office.org/documents/Publications/ITEA-2_brief.pdf, available
29.11.2005.

Jonassen Hass, A. (2003) Configuration Management Principles and Practice.
Addison Wesley. 370 p.

Leon, A. (2000) A Guide to software configuration management. Artech House,
Boston.

Lyon, D. (1999) Practical CM � Best Configuration Management Practices for
the 21st Century. 2nd edition, RAVEN Publishing Company.

Mens, T. 2002 A state-of-the-art survey on software merging. IEEE Transactions
on Software Engineering. Volume 28, Issue 5, May 2002. Pp. 449�462.

Moreira, M. (2004) Software configuration management implementation roadmap.
John Wiley & Sons. 244 p.

Mäkäräinen, M. (2000) Software change management processes in the
development of embedded software. Technical Research Centre of Finland,
Espoo. 185 p. + app. 56 p. VTT Publications 416. 185 p. + app. 56 p. ISBN 951-
38-5573-2; 951-38-5574-0. http://virtual.vtt.fi/inf/pdf/publications/2000/P416.pdf.

Paulk, M.C. (2001) Extreme Programming from a CMM Perspective. IEEE
Software, November/December 2001.

http://www.itea-office.org/documents/Publications/ITEA-2_brief.pdf
http://virtual.vtt.fi/inf/pdf/publications/2000/P416.pdf

 71

Rahikkala, T. (2000) Towards virtual software configuration management. A
case study. Technical Research Centre of Finland, Espoo. VTT Publications 409.
110 p. + app. 57 p. ISBN 951-38-5567-8; 951-38-5568-6.
http://virtual.vtt.fi/inf/pdf/publications/2000/P409.pdf

Ronkainen, J. & Abrahamsson, P. (2003) Software development under stringent
hardware constraints: do agile methods have a chance? Fourth International
Conference on eXtreme Programming and Agile Processes in Software
Engineering, XP 2003, Genova, Italy, 25�29 May 2003, Springer-Verlag.
Pp. 73�79.

Schamp, A. & Owens H. (1997) Successfully Implementing Configuration
Management. IEEE Software, Vol. 14, No. 1, pp. 98�101.

Stevens, R., Brook, P., Jackson, K. & Arnold, S. (1998) Systems Engineering �
Coping with Complexity. Prentice Hall, London.

Susman, G. & Evered, R. (1978) An Assessment of the Scientific Merits of
Action Research. Administrative Science Quarterly, 1978, 23. P. 582�603.

Taramaa, J. (1998) Practical Development of Software Configuration
Management for Embedded System. Technical Research Centre of Finland,
Espoo. VTT Publications 366. 147 p. + app. 110 p. ISBN 951-38-5344-6.
http://virtual.vtt.fi/inf/pdf/publications/1998/P366.pdf

Tichy, W. (1988) Tools for Software Configuration Management. In: Winkler, J.
(ed.) The German Chapter of the ACM. Vol. 30, International Workshop on
Software Version and Configuration Control Grassau, Germany, January 1988.
Teubner Verlag, Stuttgart, Germany. Pp. 1�20.

Whitgift, D. (1991) Methods and Tools for Software Configuration Management.
John Wiley & Sons, England.

Yin, R.K. (1994) Case study research: Design and methods. 2nd edition. Sage,
Newbury Park, CA.

http://virtual.vtt.fi/inf/pdf/publications/2000/P409.pdf
http://virtual.vtt.fi/inf/pdf/publications/1998/P366.pdf

PAPER I

Configuration management support
for the development of an embedded

system
Experiences in the telecommunication

industry

Tools and methods of competitive engineering. Vol. 2.

Millpress. The Fifth International Symposium on Tools
and Methods of Competitive Engineering (TMCE

2004). Lausanne, CH, 13–17 April 2004. Pp. 605–616.
Reprinted with permission from the publisher.

CONFIGURATION MANAGEMENT SUPPORT FOR THE DEVELOPMENT OF AN
EMBEDDED SYSTEM: EXPERIENCES IN THE TELECOMMUNICATION

INDUSTRY

Jukka Kääriäinen
Technical Research Centre of Finland

Finland
jukka.kaariainen@vtt.fi

Jorma Taramaa
Jukka Alenius

Nokia Technology Platforms
Finland

{jorma.taramaa,jukka.alenius}@nokia.com

ABSTRACT

As an embedded system, a radio base station involves

several design parties including HW development,

HW-related SW development, and application SW

development with solutions for air interface

standards and the base station itself. The

development usually follows the concurrent

development paradigm where different SW and HW

portions are developed in parallel in separate

projects. On the other hand, configuration

management (CM) is a widely used and well-known

support discipline for product development. This

paper reports experiences from the telecommuni-

cation industry, in Nokia Networks, related to the

embedded systems’ CM in a concurrent development

environment. It deals with CM concerns that were

found especially useful during this study. It also

encourages discussion about issues concerning

embedded system’s CM. The findings are based on

an empirical study performed while the authors were

working on a project developing DSP application

software and hardware-related DSP software. In

complex systems the product development is usually

organized into separate hierarchical development

projects. The paper highlights the efficient inter-

project CM planning in a hierarchical project

environment. The term inter-project CM planning

refers to the planning of those CM practices and

constraints that need to be collectively agreed and

compatible between projects. Without the inter-

project approach the CM might be well realized

inside one project but the whole system’s CM would

be inadequate.

KEYWORDS

Configuration management, concurrent development,

embedded system development, DSP software,

telecommunication, radio base station

1. INTRODUCTION

Products are getting more complex, containing

several implementation technologies such as

software (SW) and hardware (HW). These products

contain increasingly embedded computer systems,

which are application-specific computing devices

consisting of standard and custom hardware and

software components (ITEA, 1998; MEDEA+,

2002). The development environment is often global

and without physical boundaries, consisting of

several sites where the team members may come

from different cultural backgrounds (Takalo, J. et al.,

2000). At the same time, faster time-to-market and

better product quality is required, as the companies

should be more cost-effective in a harsh business

environment.

As an embedded system, a radio base station

involves several design parties including HW

development, HW-related SW development, and

application SW development with solutions for air

interface and base station itself (Blyler, J., 2002;

Ronkainen, J. et al., 2002). The development usually

follows the concurrent development paradigm where

different SW and HW portions are developed in

parallel in different projects. This paradigm has

displaced the traditional sequential design model to

meet the very tight time-to-market window. System

architects define a system architecture consisting of

cooperating system functions that form the basis of

concurrent hardware and software design. Although

605

SW and HW are developed in parallel, the design

teams are not isolated from each other, since changes

to one part can cause changes to the other (Ernst, R.,

1998). For example, HW/SW interface specification,

created by a HW design team in cooperation with a

SW team, provides the basis for SW driver

development. Changes to that specification will

likely cause changes to the driver specification. More

important than to avoid the change is to adapt to the

situation that there will likely be changes. Ernst, R.

(1998) states that nowadays, concurrent HW and SW

design starts even before the system architecture and

specification are finalized. Thus, the proper

cooperation between design projects, the

communication of changes, consistent understanding

of the system, and the management of interface

information are essential in order to avoid

inconsistencies in the integration phase.

Configuration management (CM) is a widely used

and well-known support discipline for product

development. The traditional CM process contains

the CM elements, such as configuration

identification, configuration control, configuration

status accounting, and configuration auditing as well

as their planning for a project (Taramaa, J., 1998).

Reference models and standards include generic

models for CM (e.g. in ISO 10007, ISO 12207, SW-

CMM (Software Capability Maturity Models) and

CMMI (Capability Maturity Model Integration)).

Some references, e.g. Taramaa, J. (1998), consider

CM especially in the embedded system context.

This paper reports experiences from the

telecommunication industry, in Nokia Networks,

related to the configuration management of embed-

ded systems in a concurrent development environ-

ment. It communicates CM concerns that were found

especially useful during this study. The findings are

based on an empirical study performed while the

authors were working on a project developing DSP

application software and hardware-related DSP

software. Our perspective on embedded system

development is the DSP project and its connections

to other SW and HW development projects. The aim

is also to open discussion about embedded system’s

CM. The paper highlights efficient inter-project CM

planning. The term inter-project CM planning refers

to the planning of those CM practices and constraints

that need to be collectively agreed and compatible

between projects. Without the inter-project approach

the CM might be well realized inside one project but

the whole system’s CM would be inadequate.

This paper is organized as follows. In the next

section, CM concepts are introduced based on

literature. In specific, the role of CM in product

development and its main activities, the basic

terminology, CM organization issues, and

automation issues are introduced. The aim is to

provide solid background for the basic principles of

CM and explain the CM terminology used in this

paper. The paper further considers the development

of the embedded system in order to expose problem

fields for CM. Then the paper reports experiences

related to configuration management in embedded

systems development in Nokia Networks. Finally, the

conclusions and future research needs are identified.

2. CONFIGURATION MANAGEMENT

Configuration management is defined by the IEEE

Std 610.12 (1990) as a discipline applying technical

and administrative direction and surveillance to

identify and document the functional and physical

characteristics of a configuration item, control

changes to those characteristics, record and report

change processing and implementation status, and

verify compliance with specified requirements. In

short, CM is a discipline controlling the consistency

between the parts of an entire system. The roots of

CM are in the defense industry as a discipline to

resolve problems with poor product quality, parts

ordering, and parts not fitting, which were leading to

high cost overruns (Berlack, H., 1992). Shamp, A., &

Owens, H. (1997) introduce CM as an essential

process to increase product quality, development

efficiency and enterprise profitability.

Traditional CM and software CM (SCM) are quite

similar if they are compared, but SCM and the tools

are tailored to the software elements of a system

(Bersoff, E. et al., 1980; Gatt, I., & Davidovitz, M.,

1990). According to Tichy, W. (1988), SCM differs

from CM in the two ways. First, software is easier to

change than hardware. Second, SCM is easier to

automate. CM in pure SW or HW development is

well known, but in complex environments where

SW/HW codesign and project hierarchies exist it is

more complicated and less examined. SW and HW

development do not understood each other. Crnkovic,

I. et al., (2003) state that there are cultural differences

between SW and HW development, which cause

problems in product information management. These

problems arise e.g. from different terminology used.

In this paper we do not distinguish between SCM and

CM, but consider CM planning and organization in

general in the embedded system development. We

606 Jukka Kääriäinen, Jorma Taramaa & Jukka Alenius

consider CM from the DSP project perspective

including its connections to related HW development

and other SW development projects. Even though our

viewpoint regarding CM is from the SW project, we

will emphasize the integrated planning of software

CM and hardware CM to achieve consistent

management of a complex product.

The sub-section 2.1 introduces the elements of CM

according to literature. Then sub-section 2.2 defines

the basic concepts used in CM. After that section 2.3

presents organizational concerns related to CM. The

last sub-section 2.4 considers automation issues

related to the CM.

2.1. Elements of CM

ISO standards, such as ISO/IEC 10007 (1995) and

ISO/IEC 12207 (1995), introduce CM as a support

process for product development. It is a process of

controlling the evolution of complex systems. The

CM process contains the basic CM activities and

their CM planning (ISO/IEC 12207, 1995; Buckley,

F., 1996; Taramaa, J., 1998; Rahikkala, T., 2000).

Traditionally CM activities have been divided into

configuration identification, configuration control,

configuration status accounting, and configuration

audit (ISO/IEC 10007, 1995)(Bersoff, E. et al.,

1979). Figure 1 depicts the traditional classification

of CM elements.

CM planning is used for planning and documenting

certain configuration management solution for a

project. E.g. how to identify configuration items and

control changes. Buckley, F. (1996) views the CM

plan as one of the major ways towards

Configuration management

planning

Configuration

identification

Configuration

control

Configuration

status accounting

Configuration

audit

Figure 1 Basic CM elements

communicating a comprehensive understanding of

what should be done to maintain the integrity of the

products. It provides the means to define CM

practices for a project: who is going to do what,

when, where and how (Buckley, F., 1996).

Ideally, the whole company can utilize common

configuration management. If this can be achieved,

the effort spent on the planning, tailoring and

modification of configuration management for

projects can be avoided. However, the literature

emphasizes that CM should be defined for a project

and it needs to be maintained, e.g. Buckley, F.

(1996), Lyon, D. (1999), and Leon, A. (2000). While

no two projects are exactly the same, the CM

requirements between different projects also vary

(Lyon, D., 1999; Leon, A., 2000; Whitgift, D., 1991).

For example, IEEE Std-1042 (1987) states that the

size, complexity and criticality of the software

system being managed affects the project’s CM

practices. Whitgift, D. (1991) argues that software

CM depends on, for example, the size of the project,

project distribution, dependence on third parties

software, the item types being developed, and the

number of clients. In addition, software and hardware

development have their own special needs for CM

procedures (Buckley, F., 1996).

Differences between projects do not mean that CM

planning should always start from “scratch”.

Experiences from previous project-specific CM plans

can be collected to a generic CM plan or CM “best-

practices” for a company, which then will be

examined and tailored for future projects (Buckley,

F., 1996). This will facilitate the definition of a

project-specific CM plan, because a generic CM plan

provides “tried and tested”, pre-defined structure and

information for a project’s CM plan creation. This

approach provides the possibility for reusing CM

practices between projects and assists towards more

consistent CM in a company. However, IEEE Std-

1042 (1987) states that even if CM is applied as a

corporate policy, it should be reexamined each time

it is applied in a project to ensure its applicability.

Configuration identification refers to the activities for

identifying and documenting configuration items.

Configuration control covers activities for controlling

changes to configuration items. Configuration status

accounting contains activities for formalized

recording and reporting of the configuration

documents. Configuration auditing refers to the

examination to determine whether a configuration

item conforms to its configuration documents. In

607Confi guration management support for the development of an embedded system:
Experiences in the telecommunication industry

addition, Buckley, F. (1996) states that an in-process

audit (system configuration audit) is performed to

determine whether the configuration management

process established in an organization is being

followed and to ascertain what needs to be improved.

These basic activities have been extended by Dart, S.

(1991) to include, for example, SW manufacturing

issues (usually referred to as “build”) and teamwork

issues. On the other hand, IEEE Std-828 (1998)

extends basic classification with interface control and

subcontractor/vendor control activities in the context

of software development. Interface control activities

coordinate changes to the project configuration

items’ with changes to interfacing items outside the

scope of the plan. According to IEEE Std-828

(1998), for example hardware, system software and

other related projects and deliverables should be

examined for potential interfacing effects on the

project. Subcontractor/vendor control incorporate

items developed outside the project environment into

the project configuration items.

2.2. CM Concepts

ISO/IEC 10007 (1995) defines the term

Configuration Item (CI) as follows:

Aggregation of hardware, software, processed

materials, services, or any of its discrete portions,

that is designated for configuration management and

treated as a single entity in the configuration

management process.

Baseline has an important role when managing

changes. It is configuration of a product, formally

established at a specific point in time, which serves

as a reference for further activities (ISO/IEC 10007,

1995). Baseline is the cornerstone of CM in general.

Basically, a baseline is the collection of items (such

as documentation and source code) that make up a

configuration item at a discrete point in time (Figure

2).

Check-in is the process of moving configuration

items into a controlled environment (data vault). On

the other hand, check-out is the process of copying

the item from data vault to the user’s area for

modification. Usually the CM tool locks the checked

out version to prevent concurrent modifications.

Check in/out functionalities are basic features of the

CM tools.

The term version is used to describe the evolution of

an item (configuration item’s versions). Basically,

1 2 3 4

1 2 3 4 5

1 2 3

1 2 3 4 5

Baseline 1 Baseline 2

Item 1

Item 2

Item 3

Item 4

Versions

Figure 2 Two baselines from the same items

versions are described as a linear set of developed

items (0.0.1 => 0.0.2 => 0.0.3). This is also called

revisioning (Whitgift, D., 1991). Linear development

is not always possible. Thus we need a concept

branch (Leon, A., 2000). Here Whitgift, D. (1991)

uses the terms: temporary and permanent item

variants. According to Leon, A. (2000) the branches

are deviations from the main development line for

the item and they can also be extended from the

existing branch. The term merge expresses the

incorporation of branches (temporary variants) with

the main branch. Branch and merge concepts are

fundamentals for parallel development (Figure 3).

Fix branch

Main branch

Merge

Figure 3 Branching and merging

SW build is the process of generating an executable,

testable system from source code. The term release

can be considered a configuration management

action whereby a particular version of software is

made available for a specific purpose, e.g. released

for test (Buckley, F., 1996).

2.3. CM organization in a company

Leon, A. (2000) argues that detailed procedures and

resources are needed for the efficient execution of

CM functions. He emphasizes that the most

important resource is qualified people. So there is a

need for competent persons to do the various CM

functions, like CM planning, software building,

auditing, etc. However, different organizational

structures in different organizations will require the

CM team to be structured and positioned differently

608 Jukka Kääriäinen, Jorma Taramaa & Jukka Alenius

(Leon, A., 2000). Leon, A. (2000) introduces three

organizational possibilities for software CM:

− Central CM team: Central CM team, operating at

a company-level. Strong involvement in the

projects’ CM issues. This provides good

enforcement to generic procedures but might lack

the understanding of project-specific needs and

project level monitoring.

− Central CM team and project specific CM teams:

The central CM team is responsible for generic

CM plans and procedures as well as CM system

in the company as a whole. The projects’ CM

teams, operating at a project-level, have the main

responsibility for customizing CM plans and

procedures for the projects.

− Independent CM teams for projects: Project

specific CM teams handle all CM issues in

projects. This does not provide coordinated

central generic CM planning for a company, but

every project takes care of CM issues indepen-

dently.

The term ”CM team” will be used accordingly to

denote an organizational support function. In

practice, it can be a single person or a full team,

depending on the situation (e.g. the size of a project).

According to Leon, A. (2000) a project’s CM team

contains a Configuration Management Officer

(CMO), and depending on the project, other technical

(e.g. a person who is responsible for release and

build activities) and administrative (e.g. secretary)

members assigned by the CMO e.g. according to

basic CM activities. The CMO is responsible for

customizing CM plan and procedures for the project

(Leon, A., 2000). He also has reporting responsibility

for the central CM team about the project’s current

CM status. Lyon, D. (1999) considers organization

from the multi-technological product’s point of view

and divides CM organization accordingly into

software and hardware CM. He places emphasis on

the importance of good communication between the

hardware and software elements of CM during the

planning phase. This kind of communication enables

the definition of CM procedures to support

interactions between teams. For example, change

impact analysis procedures between hardware and

software development teams.

Stevens, R. et al., (1998) argue that in complex

systems separate development projects for each

subsystem are usually needed. Each project can lead

to the creation of further development projects at a

level below. Configuration management also occurs

in this kind of project environment. Abran, A. &

Moore, J. (2001) present that software CM activities

take place in parallel with hardware CM activities

when software is developed as a part of a larger

system containing hardware. They further mention

that software CM activities must be consistent with

system CM activities. ISO/IEC 12207 (1995) states

that the software project’s CM plan can also be part

of a system CM plan, which contains the whole

system’s CM support issues. The case of multi-level

contracts is similar. The main contractor’s CM plan

is the main CM plan, and subcontractors will prepare

their own plans or include their plans into the main

CM plan (ISO/IEC 10007, 1995). ISO/IEC 10007

(1995) further states that these plans, indicating

different levels of configuration management, need

to be compatible with each other.

2.4. CM automation

The role of CM tools is to support and automate CM

functions and provide help for developers. However,

Leon, A. (2000) states that CM tools do not solve

configuration management problems, but they can be

one step towards more effective CM. Even though

tools can automate some functions, it is important

that the project team knows the CM procedures

defined for a project to ensure an understanding of

why certain CM functions are needed as well as

when and by whom they should be performed. In

addition, the project should have instructions on how

to use the tools in practice.

There are hundreds of CM tools available containing

features depending on their backgrounds and

purposes. For example, simple version management

tools, CM tools, document management tools, etc. In

the context of software engineering so called “SCM

tools” are usually used to manage product

information. Currently software CM systems provide

the following services (Estublier, J., 2000):

− Repository for components.

− Help for engineers' usual activities.

− Process control and support.

Component repository provides basic functionality

for storing and distributing product-related

information, for example, version management and

access control. One characteristic of software CM

tools is the ability to handle complex version

structures. This means that version management also

contains support for the version tree (branching)

609Confi guration management support for the development of an embedded system:
Experiences in the telecommunication industry

where any version can be used to create a new

version.

Engineer’s support contains support for workspaces

(worksets) which are views to a certain set of

versioned files for a particular purpose, e.g.,

development, bug-fixing, or testing. Cooperative

work provides the possibility for concurrent item

modifications using branching and merging. In

addition, SW build support is also an obvious feature

because SW designers usually build and test the SW

product or sub-system.

Process support provides the means to support a

company's pre-defined processes (e.g., product

development process, engineering change process,

etc.).

The evaluation, selection and implementation of the

CM tool are not trivial problems. For example,

Schamp, A. (1995) and Dart, S. (1996) have

considered the evaluation, selection and

implementation issues of the CM tool. Schamp, A.

(1995) introduces a selection process that maps key

organizational, development, and technical

considerations to CM-toolset capabilities. The

selection process provides the possibility to rate each

tool against its required function and thus support

tool selection. Schamp, A. (1995) also states that

complex development environments even require an

integrated CM toolset. Dart, S. (1996) presents best

practices to support the procurement, evaluation,

strategic planning and deployment of the CM tool in

a company. Dart, S. (1996) divides the scope of a

CM solution into an enterprise-wide CM solution and

a project-oriented CM solution. In the former case

the solution must meet every group’s requirements

for the CM tool. In the latter case the solution

addresses a single project’s requirements for the CM

tool.

3. EXPERIENCES FROM THE
TELECOMMUNICATION INDUSTRY

This section introduces the CM experiences from the

field of telecommunication. Our viewpoint to CM is

DSP project and its connections to the related SW

and HW development. Section 3.1 provides a context

for our CM observations. It describes the parties

involved into radio base station development, the role

of HW and SW development and connections

between development parties. It also illustrates the

complexity of embedded systems development.

Lessons learned have been collected into section 3.2.

The intention is to highlight issues, which have been

found important during the study and encourage

discussion about embedded system’s configuration

management.

3.1. The development of embedded
systems

Embedded systems in radio base station development

involve several design parties including HW, driver

SW, DSP (Digital Signal Processing) SW, and

control processor SW development (Figure 4). The

development usually follows the concurrent

development paradigm. (Blyler, J., 2002; Ronkainen

et. al., 2002).

From the DSP point of view, a crucial activity is

SW/HW partition, i.e. SW/HW tradeoff. It divides

signal processing functionality solved by algorithms

into SW and HW. In general, operations with critical

execution speed are allocated to HW development as

ASICs (Application Specific Integrated Circuit) and

further HW components that need field

programmability as FPGAs (Field Programmable

Gate Array) and operations better suited for SW are

allocated for DSP SW development (Kalavade, A. &

Lee, E., 1993; Paulin, P. et al., 1997; Gogniat et al.,

2000). The increasing use of software in embedded

systems enables the inclusion of late specification

changes in the design cycle as well as the reuse of

System

design

HW

development

Driver

development

DSP SW

development

Control processor

SW development

System

integration

Interconnected

testing and

verification

Figure 4 HW and DSP SW codesign related to control

processor SW development (adapted according

Ronkainen, J. et al., 2002)

610 Jukka Kääriäinen, Jorma Taramaa & Jukka Alenius

previously designed functions (Goossens, G. et al.,

1997). The trend where SW is taking a bigger role

for implementing signal processing functionality is

known today as SW-defined radio. However, HW-

based solutions today hold their own strong position

in signal processing -based product solutions and the

concurrent SW/HW development practices have to

be taken into efficient use. The HW development

first operates with abstract descriptions from HW,

e.g. VHDL (VHSIC Hardware Description

Language) descriptions. After that FPGA and ASIC

technology can be used to prototype and implement

the design.

In complex systems, the product development is

usually organized into separate hierarchical

development projects (Stevens, R. et al., 1998). Each

project can lead to the creation of further

development projects at a lower level. The different

parties, such as DSP SW, control processor SW

(including Protocol SW and Operation and

Maintenance SW) and HW development projects, are

not isolated with each other, but detailed interfaces

are needed to control the compatibility of units and

describe the practical connection between them

(Ernst, R., 1998). For example, an HW development

project creates HW interface specifications for driver

SW development and SW-SW interface

specifications are used to describe interconnections

between SW units, for example, message interfaces

between the DSP and control processor SW. The

development of HW related SW happens usually

incrementally and thus it actually has some features

of agile development (Larman, C. & Basili, V.,

2003). Ronkainen, J. & Abrahamsson, P. (2003) has

considered the applicability of agile methods for the

development of embedded SW.

The management of interfaces and configurations as

well as a common understanding about the product

plays a central role when managing the product

integrity. HW, SW and interface development are

closely related. For example, any changes to HW

configuration usually cause major changes to the

related SW (Blyler, J., 2001). Thus the

communication of changes and the management of

HW/SW and SW/SW interface information are vital

for successful and efficient product development.

The lack of communication and configuration

management between different design teams and

projects will cause difficult, tedious and expensive

problems in the system integration phase.

Early verification of HW and SW designs occurs

during co-simulation. At the beginning HW is

abstracted using e.g. VHDL description and later on

FPGA and ASIC prototypes are used to describe final

HW. During verification the SW configuration is

simulated against the HW configuration (Figure 4).

The importance of cooperation during verification is

crucial, because SW is used to verify that HW

operates properly.

3.2. Lessons learned from the empirical
study

The lessons learned from the empirical study are

discussed in this section. The observations are made

from the DSP SW project’s point of view. The

observations are divided into general observations

and specific CM practice observations:

General Observations

General observations relate to the CM organization

and the role of CM in a company as well as its tool

support. The following general observations were

found important during the study:

Organize and support CM planning in a

hierarchical development project:

In complex systems, the product development is

usually organized into separate hierarchical

development projects. Each project can lead to the

creation of further development projects at a lower

level. Different parties, such as DSP SW

development, control processor-based application

SW development, HW development, and system

level design and integration teams, are not isolated

with each other but coordination and communication

is needed during product development, integration

and maintenance. CM is usually well realized inside

a project but the system CM is usually inadequate

and without the clear responsibilities. The projects

need to operate with common configuration items,

exchange information between projects, and ensure

that all changes are properly analyzed in the context

of the whole system. This requires compatible inter-

project CM practices, clear responsibilities for

practices, and a means for data exchange between

related projects. Thus the communication and

cooperation between projects are already needed

during CM planning. Without the inter-project

planning approach, the CM is well-realized inside a

project but the whole products’ CM is inadequate.

The following observations were made during the

study:

611Confi guration management support for the development of an embedded system:
Experiences in the telecommunication industry

− The use of a company level CM team and project

level CM teams is useful because projects have

the best knowledge about the sub-systems they

are producing. Thus, project level CM teams

tailor CM for projects according to the CM plan

template and coordinate CM inside the projects.

On the other hand, a company level team is

needed to improve and generalize CM for the

company (e.g. CM plan templates), provide CM

consultation and technical support for projects, as

well as coordinate overall CM in the company.

− Inter-project CM practices need to be defined for

hierarchical projects and their execution should

be monitored. This means that CM plans,

indicating different levels of configuration

management, need to be compatible with each

other. According to our experiences, the main

project’s CM team could be responsible for

coordinating the development of inter-project

CM activities. To assist in this work the concept

of a “CM forum” can be introduced (Figure 5). A

CM forum is an inter-project CM planning team

containing the main-project’s CM team, sub-

projects’ CM teams, and a representative from a

company‘s CM team. It is a good forum for

discussing, communicating and agreeing on

common CM practices and responsibilities, and

for monitoring (system configuration audit) their

usage in hierarchical project. This is also a good

channel for exchanging “successful CM

practices” between related projects. It is

important that the CM forum assemble for a

meeting on a regular basis in the CM planning

phase. Afterwards, the CM forum can meet less

frequently.

Understand the role of CM in a product

development project:

The important role of CM as a part of a product

development project is not always understood. CM

provides support for product development processes.

It is not responsible for creating requirements

specifications, deciding implementation architecture

or developing source code, but it helps to store these

configuration items and make them identifiable and

manageable.

The role of CM can also be understood too narrowly

in a project. It might be seen as an individual-level

activity where SW code files are produced, modified

and versioned without a broader understanding of

change implications. Thus, CM should be seen from

a broader perspective especially when several

geographically distributed development teams exist

in a project. The individual and isolated working

culture when design files reside in local workstations

and changes are not communicated inside a project

does not work like a charm anymore.

On the other hand, CM practices can be defined for

distributed working, but enforcement fails.

Therefore, proper information distribution and the

communication of changes fail between development

teams and the CM of the whole system is inadequate.

According to our experiences it is important that

there is consensus in a project about processes, their

importance for a project and for product quality, and

enforcement for playing according to the rules. Here

system configuration audits step into the picture.

They are used to determine if the CM process is

being followed in a project and to determine what

needs to be improved.

Use tools to support CM:

The role of the CM tool is important. They can be

used for storing, versioning and accessing

configuration items and prevent uncontrolled and

parallel modifications to configuration items.

However, the CM tool might “dictate” the users to

operate according to a certain tool-specific process,

which is different than the one in the organization.

This can encourage the use of unofficial and

uncontrolled procedures. Thus, the processes used in

a project are a primary starting point for the tool

support. The CM tools should be adapted to support

defined processes and project personnel should have

a clear understanding of processes. Furthermore the

Company’s

CM team

Main project’s

CM team

Sub-project’s

CM team

Sub-project’s

CM team

Sub-project’s

CM team

CM forum

Generics

(templates,…),

guidance, etc...

Figure 5 CM forum integrates different teams during

inter-project CM planning

612 Jukka Kääriäinen, Jorma Taramaa & Jukka Alenius

tool should be flexible enough to be easily adapted

when a project’s needs for CM support change.

The tools used for SW development, e.g. compiler

versions used in projects, should also be under

configuration management. Without control some

teams might start to use a newer compiler version

without notifying other parties about the changes.

This leads to a situation where different teams might

use incompatible compiler versions that cause

problems when teams start to integrate their outputs.

Specific CM Practice Observations

The specific CM practice observations describe those

CM activities that were found to be important during

the empirical study when producing complex

embedded systems in the hierarchical project

environment. A common feature of all these

observations is that they are all inter-project

practices. There has to be clear practices and

responsibilities for these activities defined during the

inter-project CM planning phase.

Manage common items (manage SW-SW

interfaces):

The common configuration items between concurrent

projects require consistent and accurate management.

These common configuration items include, for

example, common header files (e.g. constants,

message interfaces) used across several SW projects.

Without control these items start to live their own

lives. Some projects might modify header files

without notifying other projects about the changes.

This leads to a situation where different projects

might use slightly different header files, which then

cause problems during integration.

A single channel (e.g. CM system) is useful for

controlling common configuration items. It is used to

store and distribute the official compatible set of

common items (the baseline of common items). A

project can access this repository and select

appropriate common items’ baseline for their builds.

At the same time the project can be confident that

other projects also use a compatible set of items.

However, using this kind of central point of control

needs clear practices. There has to be clear

responsibilities and procedures for requesting,

evaluating and implementing changes to the items

and communicating changes to all parties. This

avoids uncontrolled changes to items and several

“official copies” from items.

Manage HW/SW co-design (manage HW-SW

interfaces and co-verification):

The HW/SW co-design and incremental development

approach incrementally produces SW and HW sub-

releases, which are simulated against each other. The

simulation usually happens concurrently with coding

during incremental development (Figure 6).

Concurrency means that the next increment is under

development when the previous increment’s release

is under simulation. At the beginning HW is

abstracted using e.g. VHDL description and later on

FPGA and ASIC prototypes are used to describe

HW. During verification the SW configuration is

simulated against the HW configuration. New

versions are produced from SW and HW items in

order to meet the requirements of the next increment.

However, if there have been problems in simulation,

it is essential to be able to trace SW and HW item

versions that have been included into the release, to

support problem analysis and bug-fixing for the next

release.

Another concern here is the management of the

HW/SW interface specifications developed by the

HW team. Driver SW development uses these

specifications, which describe used register

interfaces, to create drivers for HW. This specifica-

tion should be available for the driver development

Analysis

Design

Code

Test

Increment 1

Analysis

Design

Code

Test

Increment 2

Analysis

Design

Code

Test

Increment 3

C
a

le
n

d
a
r
 t

im
e

Increments

Figure 6 Incremental development model (adapted

according Pressman, R., 1997)

613Confi guration management support for the development of an embedded system:
Experiences in the telecommunication industry

team and placed under configuration management to

avoid uncontrolled changes to it.

In order to support HW/SW co-design a single

official channel (e.g. CM system) for managing and

delivering specifications and releases between teams

is necessary. This prevents the use of unofficial

delivery channels, such as network drives, e-mails

and floppy disks. The CM tool’s component

repository –functionality can be used for storing and

delivering these items. The valid version from the

interface specification should be available for driver

development in a specified location in the CM

system. Any changes to this specification should be

communicated to the relevant parties. Furthermore,

the releases should be based on baselines and there

should be clear practices on how to identify and

document releases to ensure their sufficient

traceability. The compatibility of sub-releases during

simulation needs to be documented for traceability.

The compatibility describes which SW release (ID)

has been simulated against certain HW release (ID).

If there have been problems in simulation it is then

possible to trace the related HW and SW releases

back to the CM system for modifications. The

modification might need a parallel bug-fixing branch

when development and simulation happens

concurrently. The bug-fixing of the previous release

might happen in the bug-fixing branch, which will be

merged into the item’s main branch before the next

release to ensure that the problems are fixed in the

upcoming release.

Manage change hierarchically:

Changes are inevitable in the product development.

In hierarchical product development the projects

have dependencies and changes in one of the projects

can cause changes to the other projects. Thus, change

management practices and responsibilities should be

defined in such a way that ensures controlled change

documentation, evaluation, implementation and

notification through project hierarchy and develop-

ment phases (integrated change management). In

particular, the impacts on other projects should be

analyzed to avoid inconsistency during integration.

4. CONCLUSIONS AND FUTURE
RESEARCH

The study shows that central control for inter-project

configuration management is useful in a hierarchical

development environment when developing embed-

ded systems. Without the central control the configu-

ration management is well realized inside a project,

but the management of the whole system is deficient.

Inter-project CM issues already need to be

considered during the CM planning phase. CM

planning should start from the main project level

(system level), which provides CM planning

constraints and requirements for CM planning in sub-

projects. It also fixes clear responsibilities for inter-

project activities such as common items’

management, integrated change management, etc.

Without central control the inter-project CM

activities are rudderless and there are no clear

responsibilities, mandated by organization, assigned

for these activities. This leads to a situation where

CM is well realized inside a project but common CM

issues are insufficient. Without clear practices and

responsibilities CM problems are likely to occur in

the integration, testing and maintenance phases.

The organization has developed practical solutions

for supporting embedded systems’ CM. However,

HW/SW codesign was recognized as the most

difficult sector in the study, which especially needs

more analysis. The work will continue with the

analysis and enhancement of practical solutions for

the CM in the company developing complex

multidisciplinary products using the concurrent

development paradigm.

ACKNOWLEDGMENTS

The authors would like to acknowledge the

contributions from several colleagues with Technical

Research Centre of Finland (VTT) and Nokia

Technology Platform.

REFERENCES

Abran, A., Moore, J., (2001), “SweBok: Guide to the Soft-

ware Engineering Body of Knowledge. Trial Version

1.0”, IEEE Computer Society Press, California.

Berlack, H., (1992), “Software configuration manage-

ment”, John Wiley & Sons.

Bersoff, E., Henderson, V., Siegel, S., (1980), “Software

Configuration Management - An Investment in Product

Integrity”, Prentice Hall.

Bersoff, E., Henderson, V., Siegel, S., (1979), “Principles

of software configuration management”, Prentice-Hall,

Englewood Cliffs, New Jersey.

Blyler, J., (2001), “Challenges Are Ahead For Embedded

Software Simulation”, Wireless Systems Design. Vol.

6, No. 8, August (2001), pp. 33-34.

614 Jukka Kääriäinen, Jorma Taramaa & Jukka Alenius

Blyler, J., (2002), “Will Baseband Technology Slow Base-

Station Evolution?”, Wireless Systems Design. Vol. 7,

No. 7, July/August (2002).

Buckley, F., (1996), “Implementing configuration

management : hardware, software, and firmware”,

IEEE Computer Society Press, Los Alamitos.

Crnkovic. I., Asklund, U., Persson Dahlqvist, A., (2003),

“Implementing and Integrating Product Data Manage-

ment and Software Configuration Management”,

Artech House, Boston.

Dart, S., (1991), “Concepts in Configuration Management

Systems”, In: Feiler P. (ed.): International Workshop

on Software Configuration Management (SCM3).

Trondheim, Norway, ACM Press, Baltimore,

Maryland, pp. 1-18.

Dart, S., (1996), “Best practice for a configuration

management solution”, In: Sommerville, I. (ed.):

Software Configuration management. Lecture Notes in

Computer Science, Vol. 1167. International workshop

on software configuration management (SCM6),

Berlin, Germany, Springer-Verlag, Heidelberg,

Germany, pp. 239-255.

Ernst, R., (1998), “Codesign of Embedded Systems: Status

and Trends”, IEEE Design & Test of Computers, Vol.

15 No. 2, April-June (1998), pp. 45 –54.

Estublier, J., (2000), “Software Configuration Manage-

ment: A Roadmap”, Ed. Anthony Finkelstein, The

Future of Software Engineering, 22nd International

Conference on Software Engineering (ICSE 2000).

Gatt, I., Davidovitz, M., (1990), “Configuration manage-

ment-integration of software and hardware at top-level

Management”, CompuEuro '90. Proceedings of the

1990 IEEE International Conference on Computer

Systems and Software Engineering (1990), pp. 532 –

535.

Gogniat, G., Auguin, M., Bianco, L., Pegatoquet, A.,

(2000), “A Codesign Back-End Approach for

Embedded System Design”, ACM Transactions on

Design Automation of Electronic Systems, Vol. 5,

No.3, July (2000), pp. 492-509.

Goossens, G., Van Praet, J., Lanneer, D., Geurts, W., Kifli,

A., Liem, C., Paulin, P., (1997), “Embedded Software

in Real-Time Signal Processing Systems: Design

Technologies”, Proceedings of the IEEE , Vol. 85, No.

3, March (1997), pp. 436 –454.

IEEE Std-610.12, (1990), “IEEE standard glossary of

software engineering terminology”.

IEEE Std-828, (1998), “IEEE Standard For Software

Configuration Management Plans”.

IEEE Std-1042, (1987), “IEEE guide to software configu-

ration management”.

ISO/IEC 10007, (1995), “Quality management –

Guidelines for configuration management”, (1995),

International Standard.

ISO/IEC 12207, (1995), “Information technology -

Software life cycle processes”, (1995), International

Standard.

ITEA – Information Technology for European Advance-

ment, (1998), Rainbow Book, Eindhoven University,

Netherlands.

Kalavade, A., Lee, E., (1993), “A hardware-software

codesign methodology for DSP applications”, IEEE

Design & Test of Computers, Vol. 10, No. 3, March

(1993), pp. 16 –28.

Larman, C., Basili, V., (2003), “Iterative and incremental

development: a brief history”, IEEE Computer, Vol.

36, No 6, June 2003, pp 47 –56.

Leon, A., (2000), “A Guide to software configuration

management”, Artech House, Boston.

Lyon, D., (1999), “Practical CM - Best Configuration

Management Practices for the 21st Century” (2nd

edition), RAVEN Publishing Company.

MEDEA+ - “Design Automation Roadmap”, (2002), The

MEDEA+ Office, Paris, France.

Paulin, P.G., Liem, C., Cornero, M., Nacabal, F.,

Goossens, G., (1997), “Embedded Software in Real-

Time Signal Processing Systems: Application and

Architecture Trends”, Proceedings of the IEEE, Vol.

85, No. 3, March (1997), pp. 419-434.

Pressman, R., (1997), “Software engineering: a

practioner’s guide”, McGraw-Hill.

Rahikkala, T., (2000), “Towards Virtual Software Con-

figuration Management: a case study”, Technical

Research Centre of Finland. VTT Publications 409,

Espoo.

Ronkainen, J., Abrahamsson, P., (2003), “Software

development under stringent hardware constraints : do

agile methods have a chance?”, Fourth International

Conference on eXtreme Programming and Agile

Processes in Software Engineering, XP 2003, Genova,

Italy, 25 - 29 May 2003, Springer-Verlag, pp. 73 - 79

Ronkainen, J., Taramaa, J., Savuoja, A., (2002),

“Characteristics of Process Improvement of Hardware-

related SW”, LNCS 2559: Product Focused Software

Process Improvement, 4th International Conference on

Product Focused Software Process Improvement,

PROFES 2002, Rovaniemi, Finland, December 2002.

Springer-Verlag. Berlin Heidelberg, pp. 247 – 257.

Schamp, A., (1995), “CM-tool Evaluation and Selection”,

IEEE Software, Vol. 12, No. 4, pp. 114 –119.

615Confi guration management support for the development of an embedded system:
Experiences in the telecommunication industry

Schamp, A., Owens H., (1997), “Successfully Implemen-

ting Configuration Management”, IEEE Software, Vol.

14, No. 1, pp. 98 –101.

Seppänen, V., (1990), “Acquisition and Reuse of

Knowledge to Design Embedded Software”, Technical

Research Centre of Finland. VTT Publications 66.

Espoo.

Stevens, R., Brook, P., Jackson, K., Arnold, S., (1998),

“Systems Engineering -Coping with Complexity”,

Prentice Hall, London. UK

Takalo, J., Taramaa, J., Savolainen, P., Partanen, J.,

(2000), “Experiences of Distributed Product Data

Management of Electro-mechanical Products in

Multisite Organization”, Proceeding of the Third

International Symposium on Tools and Methods for

Competitive Engineering - TMCE 2000, Delft

University Press, Netherlands, pp. 217-224.

Taramaa, J., (1998), “Practical Development of Software

Configuration Management for Embedded System”,

Technical Research Centre of Finland. VTT

Publications 366. Espoo.

Tichy, W., (1988), “Tools for Software Configuration

Management”, In: Winkler J. (ed.): the German

Chapter of the ACM Vol. 30, International Workshop

on Software Version And Configuration Control,

Grassau, Germany, January 1988. Teubner Verlag,

Stuttgart, Germany. pp. 1-20.

Whitgift, D., (1991), “Methods and Tools for Software

Configuration Management”, John Wiley & Sons, UK.

616 Jukka Kääriäinen, Jorma Taramaa & Jukka Alenius

PAPER II

Improving software configuration
management for extreme

programming
A controlled case study

EuroSPI 2003 Proceedings. Verlag der technischen
Universität Graz, European Software Process
Improvement, EuroSPI’2003. Graz, Austria,

10–12 Dec. 2003. 10 p.
Reprinted with permission from the publisher.

Juha Koskela, Jukka Kääriäinen and Juha Takalo
Technical Research Centre of Finland, VTT Electronics

P.O.Box 1100, FIN-90571 Oulu, Finland
{Juha.Koskela, Jukka.Kaariainen, Juha.Takalo}@vtt.fi

Abstract

Extreme programming (XP) is currently the most popular agile software development method.
It is as its best for small teams developing software subject to rapidly changing requirements.
Software configuration management (SCM) is a method of bringing control to the software de-
velopment process. SCM is known as an indispensable activity that must take place whenever
developing software. It is inseparable part of quality-oriented product development regardless
of development method. Existing studies show that SCM is partially addressed via XP's col-
lective ownership, small releases, and continuous integration practices. However, currently
there exist very few empirical data on SCM exploitation in XP. This paper reports results from
a controlled extreme programming case study supported by well-defined SCM activities and
tools. Results show that SCM activities and tools, when properly used, provide essential sup-
port for XP development process and its practices.

Keywords

Agile methods, extreme programming, software configuration management

Improving Software Configuration
Management for Extreme

Programming: A Controlled Case Study

Session I: Management of the failure correction process

1 Introduction

Extreme programming (XP) developed by Kent Beck is currently the most popular agile method [e.g.
1,2]. XP like other agile methods focus on generating early releases of working products. They aim to
deliver business value immediately from the beginning of the project. Software configuration manage-
ment (SCM) is a method of bringing control to the software development process and has been
proved to be an invaluable part of developing high quality software [3]. It is also known as an indis-
pensable activity that must take place whenever developing software [4] and, therefore, it can be seen
important also in XP and other agile methods. Paulk [5] presents that SCM is partially addressed in XP
via collective ownership, small releases, and continuous integration. However, traditional definition
divides SCM into configuration identification, configuration control, configuration status accounting and
configuration audits [6, 7]. Thus, XP's approach to SCM can be seen implicit and incomplete.

Currently there exist very few empirical data of SCM exploitation in XP. This paper reports results from
a controlled extreme programming case study supported by SCM. A team of four developers was ac-
quired to implement a system for managing the research data obtained over years at a finish research
institute. As the project team had no earlier experience on XP or SCM, they were given two days
practical training before the start of the project. The focus in this paper is on reporting the SCM expe-
riences and observations found during the project. In this case software configuration management
implementation was taken into account right from the beginning of the project. Results show that SCM
activities and tools, when properly used, provide essential support for XP development process and its
practices.

The paper is organized as follows. The following section introduces the XP method, software configu-
ration management and related research. This is followed by a description of the research methods,
research settings, the results and the discussion. Lastly, section six concludes the paper.

2 Related Research

This section briefly introduces Extreme Programming method and software configuration manage-
ment. In addition also the current knowledge of SCM in XP is presented.

2.1 Extreme Programming

Extreme programming (XP) developed by Kent Beck is an agile method for teams developing software
subject to rapidly changing requirements. It is focused on delivering immediate business value to the
customers. The XP process can be characterized by short development cycles, incremental planning,
continuous feedback, reliance to communication and evolutionary design [8]. According to Beck [9]
rather than planning, analyzing, and designing for the far to the future, XP suggests to do all of these
activities at a little at a time, throughout software development.

Primarily, XP is aimed at object-oriented projects using at most dozen programmers in a one location
[10]. According to surveys, XP is currently the most popular and well-known method in the agile family
of methodologies [e.g. 1, 2]. It is made up of a simple set of common-sense practices. In fact, most of
XP ’s practices have been in use for a long time and therefore they are not unique or original. Many of
them have been replaced with more complicated practices in the process of time, but in XP they are
collected together. Practices are planning game, small releases, metaphor, simple design, testing,
refactoring, pair programming, collective ownership, continuous integration, 40-hour week, on-site
customer, coding standards, open workspace and just rules. From the viewpoint of our study, the most
interesting practices are collective ownership and continuous integration. Collective ownership means
that anyone can change anything at any time. Respectively, continuous integration recommends to
integrate changes often with existing code. For an overview of other agile methods readers are re-

Session I: Management of the failure correction process

ferred to [e.g. 11].

2.2 Software Configuration Management

ISO standards [6, 12] introduce configuration management (CM) as a support process for a product
development. It is a process of controlling the evolution of complex systems. CM process includes
elements containing the basic CM activities and their CM planning [12, 13, 14, 15]. Traditionally CM
activities have been divided into configuration identification, configuration control, configuration status
accounting and configuration audit [6, 7].

Configuration management
planning

Configuration
identification

Configuration
control

Configuration
status accounting

Configuration
audit

Figure 1. Basic CM elements.

CM planning is used for planning and documenting certain configuration management solution for a
project. Buckley [13] views CM plan as one of the major ways to communicate comprehensive under-
standing on what should be done to maintain the integrity of the products. CM planning provides
means to define CM practices for a project: who is going to do what, when, where and how [13]. Stan-
dards such as IEEE Std-828 [16] and ISO 10007 [6] provide recommendations for CM plan contents.
These recommendations can be utilized when creating CM plans for a company.

The role of CM tools is to support and automate CM functions and provide help for developers. How-
ever, Leon [17] states that CM tools do not solve configuration management problems, but they can
be one step towards more effective CM. Even though tools can automate some functions, it is impor-
tant that project team knows CM procedures defined for a project to ensure understanding why certain
CM functions are needed as well as when and by whom they should be performed.

2.3 SCM in XP

Currently, there exist very few studies of software configuration management in XP. Paulk [5] has
reviewed XP from the perspective of the Capability Maturity Model (CMM) and presents that SCM is
partially addressed via collective ownership, small releases, and continuous integration. Christensen
[3], who has researched change tracking in rapid and extreme development, presents that SCM has
something to offer fast-paced development processes like XP. Our point of view is similar to Christen-
sen as we think that SCM is needed in XP and it can support the XP development process.

XP literature emphasizes the importance of SCM automation to support XP practices [e.g. 10, 18 and
19]. Jeffries et al. [10] state that, in general, SCM tool should be easy to use. Further they emphasize
that there should be as few restrictions as possible in SCM tool. For example, no passwords, no group
restrictions, as little ownership hassle as possible. They mention SCM tools such as ENVY, CVS and
Visual SourceSafe that can be used in XP projects. Succi and Marchesi [19] present that XP practices,
such as collective ownership and continuous change integration, are not particularly well supported by
traditional version and configuration management systems. Therefore, they have developed a new
paradigm for supporting team software development, called team streams, that provides dynamic and
easy to use team support. Succi and Marchesi [19] enumerate the team streams' characteristics that
make them well suited for XP, such as easy to learn and to use, continuous integration, collective
code ownership, fully optimistic concurrency, conflict detection and merging and tightly integrated
team support.

Session I: Management of the failure correction process

Bendix and Hedin [18] report how CVS is used by students for simple configuration management on
XP projects. According to their results, the students found CVS to be indispensable for the success of
the group's effort. However, empirical data of comprehensive SCM exploitation in XP is rare and it
indicates that more studies are required.

3 Research Approach

The purpose of this section is to clarify research methods used, and to introduce the basis for the re-
search.

3.1 Research Methods

We used literature study as basis for our research and adopted principles from case study. Literature
study was carried out to reveal the current state of software configuration management in extreme
programming and to assist us in defining the configuration management principles and technical sup-
port for them. Research itself was carried out as a case study.

Järvinen [20] and Yin [21] presents the characteristics of a case study. Case study, as well as con-
trolled experiment, uses research questions like how and why and it focuses on contemporary events.
The difference between controlled experiment and case study is that experiment requires the control
over behavioral events but the case study does not require such a control [21]. According to Järvinen
[20], one specific aspect for controlled experiment is that researcher should be "a neutral observer"
when the experiment is carried out in a laboratory environment. In our case, a researcher was in a role
of customer who is an active participant in XP based product development and has a control to ex-
periment through the required product features. Therefore, our research can be seen as a case study
instead of controlled experiment. The framework, i.e. research manuscript, was created to guide us
throughout the experiment. To decrease the number of data needed to collect during the case study
the research focus was defined beforehand as the principals of case study emphasizes. The other
factors we defined for the experiment were product features, product development environment and
procedures, and templates for data gathering and SCM purposes.

3.2 Research Settings

A team of four developers was acquired to implement a system for managing the research data ob-
tained over years at a finish research institute. The developers were 4-6th year students with 1-5
years of industrial experience in software development. Because team members had no earlier expe-
rience of XP nor software configuration management, they were given one day training on XP and
other on SCM. Before actual training team members studied two books on XP to get the basics for the
training. Both training days included theoretical and practical parts. Theoretical part of SCM training
dealt with main SCM activities and their organization during the project. Practical part was focused on
SCM tool usage in the XP environment. The project was conducted in 1-2 weeks iterations total of two
months work effort. At the end of every iteration project team had produced full working software re-
lease, which was given to 17 allocated testers for the purpose of system testing. Table 1 shows the
technical environment used in the development of system.

Session I: Management of the failure correction process

Table 1. Technical implementation environment.

Item Description
Language Java (JRE 1.4.1), JSP (2.0)
Database MySQL (Core 4.0.9 NT, Java connector 2.0.14)
Development Envi-
ronment

Eclipse (2.1)

SCM CVS (1.11.2); integrated to Eclipse
Unit testing JUnit (3.8.1); integrated to Eclipse
Documents MS Office XP
Web Server Apache Tomcat (4.1)

Planning of SCM implementation was conducted in the beginning of the first iteration using the generic
SCM plan, which already included some general information and served as a template for project spe-
cific SCM plan. The generic SCM plan template was done according to IEEE standard 828-1998 [16].
Tailoring of generic plan template included adding of roles and responsibilities, schedules and project
specific SCM practices.

The role of SCM tool in XP was found important in the literature study and, therefore, it was consid-
ered very carefully. The chosen tool was CVS mostly because the development environment (Eclipse)
was shipped with a built in client for the CVS. In addition, CVS also supports XP's collective ownership
and continuous integration -practices.

Traditional change management approaches can be seen too rigid for XP. Therefore, the purpose was
to create simple change management approaches for the needs of this project including both release
change management and customer change management processes. Basis for the release change
management process was that team should be empowered to make changes through comprehensive
unit testing according to collective ownership and continuous integration -practices. Table 2 shows the
six stepped development process that was supported by CVS. The purpose of these steps was to
ensure that developers would integrate only working versions of software to the repository.

Table 2. Release change management process.

1. Implement a task using the test first methodology
2. Compile and run all unit tests
3. Repeat the first two steps until the task is finished and all unit tests run at 100 %
4. Synchronize with repository
5. If conflicts or incoming files merge and go back to step 2
6. If no conflicts or incoming files commit changes to the repository

The basis for the customer change management process was that in XP the customer decides what to
change and s/he can change the requirements at any time [8]. Thus, customer maintained a simple
change request form (Excel form), in which change requests were listed. Figure 2 shows that the
customer served as a filter between testers and project team. Testers send feedback to customer and
he removed, for example, duplicates and impractical proposals. Every change request was equipped
with additional information like classification, description and priority of change. New change request
were approved or disapproved in the next iteration's planning game. As mentioned customer decides
what to change, but project team helped by bringing their technical knowledge to decision-making.
This simple customer change management process was mobilized after the first product baseline had
been approved and the system had been sent to testers.

Session I: Management of the failure correction process

Bugs
&

enhancements

Bugs
&

enhancements

Bugs
&

enhancements

On-site customer

Change
requests

Figure 2. Customer change management process.

Three types of audits were performed during the project. Functional (FCA) and physical configuration
audits (PCA) were conducted using a simple checklist method containing a number of requirements of
both FCA and PCA. This checklist was examined at the end of every development cycle. FCA’s re-
quirement was, for example, that built software system corresponds with the user stories. The third
type of audits, in-process audits, were conducted to ensure that SCM practices were followed as
planned and everything was working correctly.

4 Results

The focus of this section is on reporting the SCM experiences and observations found during the proj-
ect. This includes both quantitative and qualitative data of the project. First three development cycles
were two-week releases and the following two were one-week releases. The release number six was
two days long and included final bug fixes and enhancements of the system. Table 3 shows the data
obtained from the project's releases. Data was drawn from the CVS tool.

The essential role of SCM tool emphasized during the project. Development artifacts were continu-
ously safe in CVS server and developers integrated their changes through well-defined process. Team
integrated code changes an average of two times per hour. Development team was interviewed after
the project had been finished and asked that how often the code should be integrated. According to
their answers, team tried to integrate at least once during the task, but even more often if possible.

There was couple of times during the project, when intervals between integrations stretched too long
and lots of changes directed to the same files. One reason for this was that developers wanted not to
integrate unfinished items to the repository. Regardless of the reason, not following of continuous in-
tegration -practice caused complex merge-operations. Usually changes of one code integration cycle
focused to a one file. However, the average number of files per code integration was 2.6. Due to CVS,
team was able resume any earlier version of development artifacts they needed. There were situations
when problems with item under development could not be solved without comparing the current item
version with the previous ones. However, generally only the last versions of items in the repository
were relevant.

Table 3. Concrete data from releases.

Collected data Rel. 1 Rel. 2 Rel. 3 Rel. 4 Rel. 5 Rel. 6 Total
Code integrations 65 81 71 42 41 17 317
Code
integrations/workingday

8.1 10.1 7.9 10.5 8.2 8.5 8.9

Session I: Management of the failure correction process

Avg. time between two
code integrations (min)

26 21 40 31 27 30 29

Avg. number of files per
code integration

1.7 2.4 3.1 2.6 3.0 3.0 2.6

New files (code) 22 15 16 1 9 0 63
New files (other) 3 3 18 20 2 0 48
New versions (code) 111 198 219 110 123 49 810
New versions (other) 7 9 30 58 14 1 119

Both the release change management and customer change management processes proved to prac-
tical for this project. However, this was not so straightforward as both processes required commitment
from the persons performing. The six stepped release change management process (see Table 2)
ensured that everything in the CVS repository was always 100 % working. The basis was that release
change management process steps were carefully defined and the SCM tool supported the process.
In addition developers had to strictly follow the process steps and make unit tests comprehensive
enough. Respectively the customer change management process required commitment from the on-
site customer. Figure 3 shows data of releases' change requests. The on-site customer filtered testers'
feedback to a list of change requests. As we can see from Figure 3, some of the change requests in
first two releases had to disapprove, because they would have been too complicated to implement
within the project's time schedules. A one example of disapproved change requests was version con-
trol feature. Approved change request were written down to tasks during the planning game and
scheduled as a part of next release's content.

0

10

20

30

40

50

60

70

Change requests
Approved CRs
Disapproved CRs

Change requests 21 18 9 7 11 66

Approved CRs 17 17 9 7 11 61

Disapproved CRs 4 1 0 0 0 5

R1 R2 R3 R4 R5 Total

Figure 3. Data of releases’ change requests.

Functional and physical configuration audits were conducted at the end of development cycles total of
5 times. If the results reviewed satisfied the audit requirements, system was ready to be released. Not
once audit results were rejected. However, 2/5 times of FCAs and PCAs the results were acceptable
with changes. These were the times when coding standards was followed insufficiently. SCM system
audits were conducted at the beginning of every development cycle (except the first one). Therefore,
the total count for in-process audits was four. In practice only two first of in-process audits produced
changes to SCM practices documented in SCM plan. These changes concerned, for example, roles
and responsibilities and change management practices.

In the final interview project team were asked that how important they see SCM in this kind of projects.
Answers were very similar and emhasized the importance of SCM. SCM tool support was seen indis-

Session I: Management of the failure correction process

pensable. The most experienced team member answered as follows:

"It (SCM tool) is an essential part in the support of teamwork and should be axiomatic in every
project."

5 Discussion

The results presented in the previous section pointed some important requirements for SCM imple-
mentation in XP. Bendix and Hedin [18] have reported that students considered the merge support
extremely helpful in XP projects. During this study there were only four persons (two pair programming
pairs) developing the system. Results show that development team integrated their code changes on
an average of 9 times per working day. XP literature [e.g. 8, 10] do not give exact integration intervals,
but suggest to integrate often. Despite the fact that team integrated their changes often, merge opera-
tions occurred regularly, almost daily. Therefore, from SCM tool perspective it is important that there is
straightforward and easy to use merge support, because concurrent changes are likely to happen.
Bendix and Hedin [18] also report that very few of students in their XP projects had ever retrieved an
older version of file. The results of this study support their findings, because generally only the last
versions of files in the repository were relevant. However, there were some exceptions when previous
versions were needed and, therefore, it is important that previous items and releases are identified
and traceable. The great number of files and their versions speak for importance of version manage-
ment. Overall SCM tool should be easy to use and not disruptive to encourage developers in tool ex-
ploitation. Leon [17] has argued that the role played by SCM tools is becoming more and more impor-
tant in today’s complex software development environments. In this study students found SCM tool
very important and also the results show that SCM tool had an important role in this project. CVS
proved to be good choice for project's SCM tool. Development artifacts were continuously in safe and
developers had no fear to implement and integrate their changes.

SCM audits revealed, for example, that coding standards were not always completely followed.
Therefore, audits had a positive influence to the internal quality of software releases. Results show
that in practice only two first of in-process audits produced changes to SCM practices documented in
SCM plan. This indicates that in-process audits were essential so that SCM practices matured to the
level, where they were viable for this project.

Jeffries et al. [10] suggest to write problem reports to cards and schedule them in a current iteration or
future iterations. Basically our customer change management process was based on their approach.
However, our solution contained also change filtering, documentation and evaluation phases. Then,
according to Jeffries at al.'s [10] suggestion, approved change requests were written down to task
cards by development team and scheduled to the release. The results of this study show that this
definite customer change management process works if the on-site customer have time to commit.

6 Conclusions

Agile software development methods have attracted great attention in the last few years. XP, currently
the most well known agile method, is focused on delivering immediate business value to the custom-
ers. SCM is a method of bringing control to the software development process and is known as an
inseparable part of quality-oriented product development regardless of development method. Thus,
the value of SCM should not be underestimated in the case XP and other agile methods. Current
studies show that SCM is partially addressed in XP via collective ownership, small releases, and con-
tinuous integration. However, traditional definition divides SCM into configuration identification, con-
figuration control, configuration status accounting and configuration audits. Currently there exist very
few empirical data of SCM exploitation in XP. This paper reports results from a controlled extreme
programming case study supported by well-defined SCM activities and tools. Project team was trained
to SCM before the start of the project. The SCM implementation was taken into account right from the
beginning of the project, which means that project team tailored generic SCM plan template for the
purpose of this project. During the project SCM implementation was audited regularly to ensure that
SCM practices were followed as planned and everything was working correctly.

Session I: Management of the failure correction process

Results show that especially SCM tool has a remarkable role in XP project. Easy to use SCM tool with
well-defined release change management process enables that project team can develop the system
according to XP's collective ownership and continuous integration -practices. In other words the SCM
tool can support the use of these practices. The results also show that SCM tool should have
straightforward merge support and previous versions of files need to be identified and traceable. How-
ever, SCM tool was only a one part of project's SCM implementation. A simple customer change man-
agement process proved to be practical, but it was find out that on-site customer's commitment is re-
quired. In-process audits were found essential in order that project's SCM practices can be modified or
even removed if needed. Because of regular in-process audits, SCM plan is up to date in every re-
lease. Functional and physical configuration audits had a positive influence to the internal quality of
software releases. Overall the results show that SCM activities and tools provide essential support for
XP development process and its practices.

7 Literature

[1] Maurer, F., Martel, S.: Extreme Programming: Rapid Development for Web-Based Applications. IEEE
Internet computing. Vol. 6, Issue 1, 86-90 (2002)

[2] Charette, R.: The Decision Is in: Agile Versus Heavy Methodologies. Cutter Consortium e-Project
Management Advisory Service, Vol. 2, no. 19 (2001)

[3] Christensen, H. B.: Tracking Change in Rapid and eXtreme Development: A Challenge to SCM-tools?.
Tenth International Workshop on Software Configuration Management (2001)

[4] Compton, S. P., Conner, G. R.: Configuration Management for Software. New York: Thomson Publishing
company (1994)

[5] Paulk, M. C.: Extreme Programming from a CMM Perspective. Paper of XP Universe (2001)

[6] Quality management – Guidelines for configuration management. International Standard. ISO/IEC
10007:1995. (1995)

[7] Bersoff, E., Henderson, V., Siegel, S.: Software Configuration Management - An Investment in Product In-
tegrity, Prentice Hall (1980)

[8] Beck, K.: Extreme Programming Explained: Embrace Change. Reading, MA.: Addison Wesley Longman,
Inc. (1999)

[9] Beck, K.: Embracing Change with Extreme Programming. Computer. Vol. 32, no 10, 70-77 (1999)

[10] Jeffries, R., Anderson, A., Hendrickson, C.: Extreme Programming Installed. NJ: Addison-Wesley (2001)

[11] Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile Software Development Methods: Review and
Analysis. Technical Research Centre of Finland, VTT Publications 478 (2002)

[12] Information technology - Software life cycle processes. International Standard. ISO/IEC 12207:1995. (1995)

[13] Buckley, F.: Implementing configuration management : hardware, software, and firmware. IEEE Computer
Society Press, Los Alamitos (1996)

[14] Taramaa, J.: Practical devalopment of software configuration management for embedded system. Technical
Research Centre of Finland. VTT Publications 366. Espoo (1998)

[15] Rahikkala, T.: Towards virtual software configuration management: a case study. Technical Research
Centre of Finland. VTT Publications 409, Espoo, (2000)

[16] IEEE Standard For Software Configuration Management Plans. IEEE Std-828-1998. (1998)

[17] Leon, A.: A Guide to software configuration management. Artech House, Boston (2000)

[18] Bendix, L., Hedin, G.: Summary of the subworkshop on extreme programming. Nordic Journal of Computing
9 (2002)

[19] Succi, G., Marchesi, M.: Extreme Programming Examined. Boston: Addison-Wesley (2001)

[20] Järvinen, P.: On Research Methods. Tampereen Yliopistopaino Oy, Juvenes-Print, Tampere (2001)

[21] Yin, R., K.: Case study research: Design and methods, Sage Publications, Beverly Hills Ca (1989)

Session I: Management of the failure correction process

8 Author CVs

Juha Koskela

Juha Koskela has now worked since June 2002 as a research trainee and since July 2003 as
a research scientist in Embedded product data management -research group at the Technical
Research Centre of Finland. He has received Master of Science Degree in June 2003 in
information processing science from the University of Oulu. His research interests include
Software Configuration Management and agile software development methods.

Jukka Kääriäinen

Jukka Kääriäinen has now worked since 1999 as a research scientist in Embedded product
data management -research group at the Technical Research Centre of Finland. He has
received Master of Science Degree in 1999 in Computer Science and Bachelor of Science
Degree in 1994 in Industrial Engineering and Management. His research interests include
Software Configuration Management and Product Data Management (PDM).

Juha Takalo

Juha Takalo has received Master of Science Degree in computer science in 1995 from the
University of Oulu. He works as a research scientist in Embedded product data management -
research group at the Technical Research Centre of Finland. His current research interests
cover product data management (PDM), configuration management (CM), and document
management.

PAPER III

Supporting requirements engineering
in extreme programming

Managing user stories

Proceedings of the ICSSEA 2003, 16th

International Conference, Software Systems
Engineering and their Applications. Vol. 4.

Paris, FR, 2–4 Dec. 2003, ICSSEA. 8 p.
Reprinted with permission from the publisher.

ICSSEA’2003, Paris, December 2-4, 2003

III/1

Supporting requirements engineering in extreme programming:
managing user stories

Jukka Kääriäinen, Juha Koskela, Juha Takalo, Pekka Abrahamsson, Kari Kolehmainen

VTT Technical Research Centre of Finland
P.O.Box 1100, FIN-90571 Oulu, Finland

Phone: +358 8 551 2191, Fax: +358 8 551 2320
{jukka.kaariainen, juha.koskela, juha.takalo, pekka.abrahamsson}@vtt.fi, kari.kolehmainen@annuminas.com

Abstract
One objective for the agile methods is to lower cost of changing requirements. Currently the most popular agile
software development method is Extreme Programming (XP). XP addresses this issue by simplifying
management tasks and documentation while the traditional software engineering places more emphasis on strict
control and extensive documentation. Requirements management (RM) is the activity that ensures that
requirements are traceable and all changes to requirements are properly handled. In a dynamic and fast moving
project with an iterative process, RM may tie up too much resources. Requirements management and
configuration management (CM) are only implicitly addressed by XP. It may be that the method developers
viewed RM and CM too bureaucratic, heavy weight or ceremonial to be included in XP. Currently, in the XP
process, user requirements called as “user stories” are written and managed on paper cards. The objective of this
paper is to examine the challenges involved in the requirements management in an XP project. The aim is also to
study possibilities to integrate the support for user story management into single tool framework. Based on the
study, an approach for managing user stories with the respect of XP’s basic principles is depicted. Our study is
based on an empirical XP case study. According to our study, the following issues were recognized especially
important when considering the management of requirements in XP. First, XP provides the basic set of practices
that should be shaped into the development situation. This means that practices are tailored for the purposes of a
project and the organization, and they can be further changed on-the-fly on periodic process assessments, i.e. if
they do not work. Thus, the tool support should not force detailed procedures but provide just enough basic
abilities for storing, relating and retrieving user stories and tasks. Second, the tool should allow the XP process to
remain agile. This means that the tool should not jeopardize XP’s intentions for open communication and
lightweight management and documentation. Third, requirements management tool support should be integrated
into the project’s overall development environment. This allows the project team to operate via one channel from
a user story definition, through implementation, up to testing. Our solution for the management of user stories
and tasks is called StoryManager. The solution has been integrated as plug-in into Eclipse –tool integration
framework to enable integrated environment for an XP project.

Keywords

Extreme programming, requirements management, requirements engineering

ICSSEA’2003, Paris, December 2-4, 2003

III/2

1 Introduction

New software development methodologies called as agile methods have been developed to address the needs for
lightweight and faster software development processes [3]. Currently the most popular one is Extreme
Programming (XP), an agile development method developed by Kent Beck [4]. One objective for the agile
methods is to lower cost of changing requirements. XP addresses this issue by simplifying management tasks
and documentation while the traditional software engineering places more emphasis on strict control and
extensive documentation. In order to achieve simplicity, XP uses an iterative and incremental software process
and very short development cycles. Further, it minimizes documentation and ties up customer involvement into
the product development.

Requirements management (RM) ensures that requirements are traceable and all changes to requirements are
properly handled [20]. In the development of complex software products, the requirements management can be
difficult and effort consuming when detailed traceability is targeted. In a dynamic and fast moving project with
an iterative process, this may tie up too much resources. XP strives for efficient use of resources, an early
introduction of functional product releases and continuous feedback from the on-site customer. Therefore, it is
inefficient if major proportion of resources has to be used for management tasks that do not deliver concrete
results.

The objective of this paper is to examine the challenges involved in the requirements management in an XP
project. The aim is also to study possibilities to manage user stories and tasks electronically as part of integrated
tool framework. Requirements engineering, especially capturing and analyzing user’s conception about the
system, happens in planning game phase in XP. Thus, our approach focuses on planning game phase of the XP
process. First, the paper introduces XP and RM concepts. After that, the related work concerning user story
management is considered. It describes also how user requirements are handled in the current XP process and
identifies the potential problem areas that arise from the use of manual solution. Then, findings based on an
empirical XP case study are introduced. Based on these findings, an approach for managing user stories with the
respect of XP’s basic principles is depicted. Finally, conclusions and future research activities are identified.

2 Background

The following sub-sections introduce XP and RM concepts as well as related work.

2.1 Extreme Programming (XP)

Extreme programming (XP) as a concept has emerged in the late 90's along with Kent Beck's book “Extreme
Programming explained: Embrace Change” [4]. Along with XP, many more of these ”agile” methods have
emerged (for an overview see e.g., [2]). XP addresses issues of changing requirements and their cost by
simplifying management tasks and documentation. XP uses an iterative and incremental software process in
relatively short cycles. Traditionally this type of approach would yield increased management overhead because
management activities related to ending and starting iteration have to be executed for every iteration, but these
are minimized in the XP process. XP introduces many practices but two techniques which are characteristic to
XP are pair programming and test driven development [4]. XP may first seem quite chaotic, but it includes
several good engineering practices [18]. However, for example, inadequacy of requirements management
practices have raised some concerns [16].

Product development in the XP process starts with “planning game.” Planning game can be divided into “release
planning” and “iteration planning” [5]. During planning game, customer writes user stories, which the
developers estimate and customer then subsequently prioritizes. Planning game is a phase in XP development
when requirements, that is stories, are elicited, estimated and selected for release. Planning game is performed
for each release. A release is divided into iterations. The subset of stories based on priority and size is then
selected for each iteration. This is called iteration planning. Developers then divide stories into tasks and give an
estimate for each task. Estimating user stories is difficult in other than very coarse level. On the other hand,
estimating tasks is much more easy and accurate because tasks are defined in more detailed and concrete level.
The next step in the XP process is development when the iterations are produced and released. Then acceptance
tests are used to validate the completion of stories. Our consideration in this paper focuses on planning game
phase of the XP process.

ICSSEA’2003, Paris, December 2-4, 2003

III/3

2.2 Requirements Management (RM)

Requirements management (RM) can be seen as a parallel support process for other requirements engineering
processes [20][12]. It ensures that requirements are documented and traceable during product development and
changes to them are properly handled.

Requirements identification is an essential pre-requisite for RM. It focuses on the assignment of unique identifier
for each requirement [20]. These identifications can be used to unambiguously refer to requirements during
product development and management. Further, requirement attributes can be used to record additional
information about requirements [13]. Leffingwell and Widrig [13] emphasize that by using attributes, you get
better management of complexity of information.

Requirements traceability (RT) refers to the ability to describe and follow the life of a requirement in both a
forwards and backwards direction [9][10]. Gotel [9] emphasizes the life cycle aspect of the traceability.
Requirements form the basis for design and implementation activities, and they should be traceable through
product’s life. Requirements’ traceability is needed, e.g. for verification and change impact analysis activities.
Traditional solutions for RT are based on manual traceability tables (e.g. solutions based on spreadsheets) and
automatic management of traceability information stored in database management system (e.g. RM tools).

Requirements change management refers to the ability to manage changes to the requirements [12]. It also
ensures that similar information is collected for each proposed change and that overall judgments are made about
the costs and benefits of proposed change. Requirements are “frozen” when moving to the design phase
(requirements baselining). Even if requirement specification is comprehensive, something can change during
development, for example, customer’s needs or regulations. This causes the need for clear practices that guide
how possible changes to requirements are handled.

2.3 Related work

Currently, XP has generated a lot of interest from practitioners and academia. However, the management of user
stories has received only little attention in the respective XP literature. A user story can be thought as a high
level requirement or a user requirement. It is the user’s conception about a functionality that the system should
provide. RM and configuration management (CM) are only implicitly addressed by XP. It may be that the
method developers viewed RM and CM too bureaucratic, heavy weight or ceremonial [7] to be included in XP.
Currently, in the XP process, user stories and tasks are written on paper cards [4]. Story and task cards are
identified using story and task numbers, and story cards are placed onto the wall with their respective task cards.
This procedure was used in the eXpert -project, an empirical XP case study carried out in VTT Electronics [1].
This is a very simple and powerful way of visualizing the traceability between stories and tasks when a project
team works in co-located workspace.

Few authors have considered requirements engineering in XP development. Paetsch et al. [17] analyze the
commonalities and differences of traditional RE and agile SW development. They further analyze possibilities
how agile methods can benefit from traditional RE methods. Breitman and Leite [6] support XP by using a
scenario structure to organize information elicited through the user stories. They do not agree with Beck that
implemented stories should be discarded but highlight the traceability of stories. Alike, Wagner [21] concludes
that the lack of written, traceable requirements can make it difficult to maintain the software over time. He also
emphasizes that user stories are not complete requirements, but requirements are actually spread into stories, test
cases and code. On the other hand, Wagner [21] states that requirements baselining exists, in some form, in the
XP process, because each iteration contains agreed set of stories. Internet-based tool support for distributed XP,
called MILOS, has been introduced by Maurer and Martel [15]. Solution supports virtual software teams with
communication, collaboration and coordination. The solution allows you to write and manage stories and tasks in
electronic format. Lippert et al. [14] claim that a computer cannot be used for the planning game. On the other
hand, they further specify that a computer can be used just for writing stories and tasks and printing them out on
paper. The XP process itself does not exclude the use of automated tools for storing user stories. However, it is
obvious that they still should be printed and put onto the wall if necessary.

Pinheiro [19] discusses requirements research from the point of view of agile methods, especially from XP
viewpoint. Paulk [18] considers XP from software CMM (Capability Maturity Model) perspective and concludes
that XP has many good practices, but they are not suitable for every occasion. Requirements process
modifications in the XP process are introduced by Nawrocki et al. [16]. They assess XP against CMM-model
and model introduced by Sommerville and Sawyer [20]. They state that the main weaknesses of the XP approach

ICSSEA’2003, Paris, December 2-4, 2003

III/4

to requirements management is the lack of requirements documentation. This causes problems especially when
managing changes to requirements and maintaining traceability. According to the model introduced by
Sommerville and Sawyer, XP supports only few practices. Thus, Nawrocki et al. [16] introduced an extended XP
process that address the most of the deficiencies of the traditional XP process, but still remains lightweight.
Grunbacher and Hofer [11] complement XP with EasyWinWin requirements negotiation technique. They state
that this approach has the following benefits: emphasis of shared vision, more complete stakeholder
identification, full perspective for on-line customer and extensive stakeholder involvement in decision-making.

The literature identifies the storage and documentation of requirements as one problem area in XP. This activity
can be included and partly automated in XP, in some form, but the challenge is not to jeopardize XP’s intentions
to remain agile.

3 Principal findings from an empirical case study

This section introduces our findings based on the analysis of empirical case study. For details of this case study,
see [1]. According to our study and experiences, the following issues were recognized especially important when
considering the documentation and storage of user stories and tasks in XP.

First, XP provides the basic set of practices that should be adapted into the development situation. This means
that practices are tailored for the purposes of a project and the organization, and they can be further changed on-
the-fly on periodic process assessments, i.e. if they do not work. For example, some attributes in story and task
cards were found unnecessary during the experiment. Thus, the tool support should not force detailed procedures
but provide just enough basic abilities for defining project-specific user story and task attributes as well as
abilities for storing, relating and retrieving user stories and tasks.

Second, the tool should allow the XP process to remain agile. This means that the tool should not jeopardize
XP’s intentions for open communication and lightweight management and documentation. Paper cards were
used in experiment for story and task documentation. Story cards were placed onto the wall with their respective
task cards. This was an efficient way of visualizing the dependencies between stories and tasks when operating
co-located workspace. In XP methodology, a customer is always present in the project room and communicates
with the project team. However, this is not always possible in real life. Thus electronic storage, management and
distribution of story and task cards were considered important if the customer cannot always be present.

Third, requirements management tool support should be integrated into the project’s overall development
environment. This allows the project team to operate via one channel from a user story definition, through
implementation, up to testing. The integration should also store and manage all project-related information under
the appropriate project. This means that the project personnel can easily find all relevant project-related data
from the system.

4 Integrated tool support for the management of user stories

In this section, we introduce our solution for the management of user story and task cards called StoryManager.
In specific, the proposed solution has been integrated in Eclipse –environment (Eclipse project [8]). Eclipse is a
development environment and a tool integration framework found suitable for XP development. Eclipse –
environment was used successfully in VTT’s XP case study [1]. Tools are integrated through plug-ins into
Eclipse. Currently there are hundreds of plug-ins available. In VTT’s experiment, the Eclipse environment
contained integrations with CVS (Concurrent Versions System), JDT (Java Development Tooling) and Junit
(Testing framework). This framework complemented with StoryManager extension enables integrated tool
environment for XP-based development from stories through implementation up to testing. Eclipse allows the
user to easily navigate between tool perspectives during product development (Figure 1).

Our intention has been to remain agile since any new solution or practice should not jeopardize the fundamental
idea of adaptable and lightweight processes. We maintain that the solution proposed is flexible enough to be
tailored for an individual XP project with the respects of a project’s needs. On the other hand, it integrates the
basic functionality needed for adequate user story and task definition and management in the integrated
development tool framework (Figure 2). Integrated tool framework enables the project team to work with one
channel throughout the whole development life cycle. During planning game, the team works through
StoryManager plug-in. Stories and tasks are stored into MySQL relational database. During implementation and

ICSSEA’2003, Paris, December 2-4, 2003

III/5

testing, the team works, e.g. through JDT plug-in and Junit view. From information management point of view,
our approach includes support for requirements management and configuration management. Requirements
management (StoryManager) is used in this environment to share and manage user stories and tasks. On the
other hand, configuration management (CVS) is used to manage and share code and other documentation.

Eclipse’s
resource
perspective

CVS repository
exploring
perspective

StoryManager
perspective

Java
perspective

Figure 1: Navigation between perspectives in Eclipse

Project
set-up

Planning
game / release
planning

Planning
game / iteration
planning

Implementation
Testing

Releasing
Maintaining

Eclipse
projects

 Eclipse framework

CVS

JDT JUnitStoryManager

MySQL

Project_id.cfg

Mapping between a
CVS project and
MySQL databaseProject1Project2

Project3

JDT = Java Development Tooling

JUnit = Regression testing framework

CVS = Concurrent Versions System

Figure 2: StoryManager as part of integrated tool environment for XP development

The introduction of StoryManager facilities is divided into process steps. Each process step introduces relevant
application facilities and explains their usage. Phase “Project set-up” is used to describe activities that need to be
performed before planning game:

Project set-up
First, the relevant Eclipse project is selected or created. Attribute definition facility is used to define user-defined
attributes for stories and tasks. This facility allows flexible story/task attribute definitions according to the needs
of the project (Figure 3). Then StoryManager creates project-specific database under the Eclipse –project. The
program creates project-specific configuration file (CFG-file) which will be stored in CVS into project-root
(Figure 2). The CFG-file indicates for StoryManager the correspondent MySQL database with the respect of the
selected CVS project.

Planning game / release planning
First during the Planning Game -phase, a customer defines stories in cooperation with a project team. The
program enables to fill-in story/task cards according to project-specific attributes. The program’s AutoID facility
is used to create automatically unique identifiers (ID) for stories (and tasks). This facility corresponds with
requirements identification activity. Certain attributes are mandatory including:

ICSSEA’2003, Paris, December 2-4, 2003

III/6

− ID: automatically created by the system (story_xxx, task_xxx)
− Status: Defined, Implementing, Done, Postponed (color codes are used in tree-view to indicate status)
− Release: Not specified, 1, 2, 3, …
− Iteration: Not specified, 1, 2, 3, …
− Description: actual text for story / task

Other attributes are user-defined and optional. The program allows the user to modify stories, but in XP, only the
last story version is relevant. Thus, the application contains only the last updated version. According to basic XP
principles, formal and bureaucratic change management activities are not appropriate. However, the application
stores a version history from the item (story/task) which can be used to examine the history of the item (Figure
3). Release and Iteration -attributes illustrate the selection of items for certain release and for certain iteration.
Actually this corresponds with requirements baselining facility indicating agreed set of items for certain release
and iteration.

Project specific
attributes

Mandatory
attributesStory- task

hierarchy

Release /
iteration
filters

Item’s history

Color codes
for status

Figure 3: StoryManager main perspective.

Planning game / iteration planning
During iteration planning, the certain set of stories is selected for next iteration. This will be illustrated using
Iteration -attribute. Then tasks are defined for next iteration. Mandatory attributes and main facilities are same
for story and task cards, but optional attributes can vary. In addition to this, the task can be related under a story
(traceability between stories and tasks) (Figure 3). In this case, the program stores the linking information in
MySQL Link-table. However, a task can be created also under a project root and related afterwards.

Process phase independent facilities
Certain facilities are needed despite of a process phase. These facilities include the check out/in, views and
reporting. Parallel story/task modification has been disabled to avoid uncontrolled changes when someone is
modifying a story or task. When a user check out a story or task from database for modification, the system locks
the story or task and it cannot be modified or deleted by others. When the user checks in the item, the system
unlocks it and after that other users can modify it. Views are used to describe StoryManager database’s content
for a user (retrieving information) (Figure 3). The basic StoryManager perspective contains tree-view containing
hierarchical story/task structure, story/task –content view and history view. Hierarchical story/task structure can
be filtered by using release and iteration attributes. Finally, reporting facilities are used to create reports from the
contents of database. This facility can be used if stories and tasks need to be printed and put onto the wall.
Currently the following reports are possible: all stories, all tasks, stories and corresponding tasks, stories and
tasks based on selected release and iteration (baseline).

ICSSEA’2003, Paris, December 2-4, 2003

III/7

5 Conclusions and future research

Requirements management and configuration management are only implicitly addressed by XP. Requirements
management is needed to ensure that requirements are identified, traceable and all changes to requirements are
properly handled. However, in a dynamic and fast moving XP project, traditional RM may tie up too much
resources. In this paper, we introduce an approach for supporting requirements engineering in XP by managing
user stories and tasks, called StoryManager. Traditionally this has been done manually using story and task
cards. Our aim was to consider requirements management in XP and provide integrated, yet lightweight,
approach for user story and task management. Integration was carried out in Eclipse –environment. The
advantages of solution are the following.

First, the approach integrates all information from requirements (stories) through implementation up to testing
under the appropriate Eclipse –project. Users can operate through one environment that store and control project-
related data in electronic format including stories, tasks, code and other documentation.

Second, StoryManager allows you to define project-specific attributes for stories and tasks. This is a very simple
way to define templates to collect minimum information about stories and tasks with the respect of each project.

Further development of solution includes the validation of the first version of the solution. Further research
should also consider integration between stories and implementation/testing. The validation will analyze the
applicability of solution for XP and verify if the solution remains lightweight. Bureaucratic and complicated
solution just jeopardize simplicity. Empirical validation of the proposed system is currently ongoing. The
verification is carried out in the XP experiment project developing mobile application software in Eclipse
environment. The experiment project works according to XP practices, but the customer is off-site. Thus, the
customer can follow the implementation of stories from the remote office using StoryManager.

The limitation of our solution is that the StoryManager is not a stand-alone program, but it has to be used in the
context of Eclipse environment. Therefore, it dictates the development environment. Also the reporting facilities
and visualization of user stories and tasks is challenging.

Acknowledgments

The work was funded by the Technical Research Center of Finland (VTT) and by the National Technology
Agency (TEKES). This work has been part of the ITEA project called MOOSE (http://www.mooseproject.org)
and VTT’s strategic research project called AGILE (http://agile.vtt.fi).

References:

[1] Abrahamsson, P.: Extreme programming: First results from a controlled case study. Euromicro 2003,
Antalya, Turkey, 2003.

[2] Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development methods: Review and
analysis, VTT Publication 478, Espoo, 2002.

[3] Abrahamsson, P., Warsta, J., Siponen, M., Ronkainen, J.: New directions on agile methods: A
comparative analysis. International Conference on Software Engineering (ICSE25), Portland, Oregon,
USA, 2003.

[4] Beck, K.: Extreme Programming Explained: Embrace Change. Reading, Massachusetts: Addison-
Wesley, 1999.

[5] Beck, K., Fowler, M.: Planning extreme programming. Addison-Wesley, 2000.

[6] Breitman, K., Leite, J.: Managing User Stories. International Workshop on Time-Constrained
Requirements Engineering, TCRE 02, 2002.

[7] Cockburn, A.: Agile Software Development, Boston, Addison-Wesley, 2002.

http://www.mooseproject.org
http://agile.vtt.fi

ICSSEA’2003, Paris, December 2-4, 2003

III/8

[8] Eclipse project.: http://www.eclipse.org/. Available in 29th September 2003.

[9] Gotel, O.: Contribution Structures for Requirements Traceability, Ph.D. Thesis, Imperial College of
Science, Technology and Medicine, University of London, August, 1995.

[10] Gotel, O., Finkelstein, A.: An Analysis of the Requirements Traceability Problem, Proceedings of the
First International Conference on Requirements Engineering, pp.94-101, 1994.

[11] Grunbacher, P., Hofer, C.: Complementing XP with Requirements Negotiation. XP2002.

[12] Kotonya, G., Sommerville, I.: Requirements Engineering: Process and Techniques, John Wiley & Sons,
1998.

[13] Leffingwell, D., Widrig, D.: Managing Software Requirements - A Unified Approach, Addison-Wesley,
2000.

[14] Lippert, M., Roock, S., Wolf, H.: eXtreme Programming in Action. John Wiley & Sons, 2002.

[15] Maurer, F., Martel, S.: Process Support for Distributed Extreme Programming Teams, ICSE 2002
Workshop on Global Software Development, 2002.

[16] Nawrocki, J., Jasinski, M., Walter, B., Wojciechowski, A.: Extreme Programming Modified: Embrace
Requirements Engineering Practices, 10th IEEE Joint International Requirements Engineering
Conference, RE'02 Essen, Germany, September 2002.

[17] Paetsch, F., Eberlein, A., Maurer, F.: Requirements engineering and agile software development. IEEE
International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE-2003 / KMDAP2003), June 9-11, Austria, 2003.

[18] Paulk, N.: Extreme programming from a CMM perspective, IEEE Software , Volume: 18 Issue: 6,
Page(s): 19 -26, Nov/Dec 2001.

[19] Pinheiro, F.: Requirements Honesty. International Workshop on Time-Constrained Requirements
Engineering, TCRE 02, 2002.

[20] Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practise Guide. John Wiley & Sons,
1997.

[21] Wagner, L. : Extreme Requirements Engineering. Cutter IT Journal, Vol. 14, No. 12, December 2001.

http://www.eclipse.org/

PAPER IV

Improving requirements
management in extreme

programming with tool support
An improvement attempt that failed

30th Euromicro Conference, EUROMICRO 2004,

Rennes, 31 Aug.�3 Sept. 2004. IEEE Computer
Society. Pp. 342�351.

Reprinted with permission from the publisher.
© 2004 IEEE.

Improving Requirements Management in Extreme Programming with Tool

Support – an Improvement Attempt that Failed

Jukka Kääriäinen, Juha Koskela, Pekka Abrahamsson, Juha Takalo

VTT Technical Research Centre of Finland

P.O. Box 1100, FIN-90571 Oulu, Finland

{jukka.kaariainen; juha.koskela; pekka.abrahamsson; juha.takalo}@vtt.fi

Abstract

While Extreme programming (XP) relies on certain

principles, it requires an extensive set of tools to

enable an effective execution of its practices. In many

companies, putting stories on the board may not be

sufficient for managing rapidly changing

requirements. The objective of this paper is to report

the results from a study where a requirement

management tool – the Storymanager – was developed

to meet the needs of a XP project team. The tool was

used in a case project where a mobile application for

real markets was produced. The tool was dropped by

the team only after two releases. The reasons of the

process improvement failure are addressed in this

paper. The principal results show that the tool was

found to be too difficult to use and that it failed to

provide as powerful a visual view as the paper-pen

board method. The implications of these findings are

addressed for both the practitioners and researchers in

the field.

1. Introduction

Extreme programming (XP) is a well known agile

software development method. While XP relies on

certain principles, such as communication and

simplicity, it also requires tools to enable an effective

execution of its practices. In many companies, listing

the stories on to the board is not sufficient for

managing changing requirements. We made an attempt

at finding a solution for managing user stories and tasks

in electronic format as a part of the Eclipse tool

integration framework, but there were no solutions

available for this. Thus, we decided to develop a

specific plug-in application for the Eclipse

environment, which was called the Storymanager. One

of the characteristic of methods and tools is that they

need to be adapted to fit a certain company or project

context [1]. Thus, these tools have to take into account

the nature of the project, including the development

methods used in the project.

The objective of this paper is to report the results

from a study where a requirement management tool –

the Storymanager - was developed to meet the needs of

a fast moving XP project team. The aim of the tool was

to minimize rework and automate the time consuming

paper-pen practices, such as recording story and task

items on the board and then separately on an excel

sheet, or equivalent.

The paper is composed as follows. The background

concepts of Extreme Programming and Requirements

Management (RM) are first introduced. Then the

related research is laid out regarding RM in XP

context. This is followed by a detailed discussion on

our solution for RM in XP environment. Then, research

design is described. Finally, the results are presented

and discussed. The paper is concluded with final

remarks and the identification of future research needs.

2. Background

This section introduces the concepts of extreme

programming and requirements management.

2.1. Extreme Programming

Extreme programming (XP) as a concept has

emerged in the late 90's [2]. Along with XP, several

agile methods have emerged (for an overview, see, e.g.,

[3]). XP addresses the issues of changing requirements

and their cost by simplifying management tasks and

documentation. XP uses an iterative and incremental

software process performed in relatively short cycles.

Product development in the XP process starts with a

“planning game.” Planning game can be divided into

“release planning” and “iteration planning” [4]. During

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

the planning game, the customer writes user stories,

which are estimated by the developers and then

prioritized by the customer. After this, developers

divide the stories into tasks and give an estimate for

each task. The next step in the XP process is the actual

development, during which the iterations are produced

and released. Then finally, acceptance tests are used to

validate the completion of stories.

2.2. Requirements Management

Requirements management (RM) can be seen as a

parallel support process for other requirements

engineering processes [5, 6]. It ensures that

requirements are documented and that they are

traceable during product development and that changes

to them are properly handled.

Requirements identification is an essential pre-

requisite for RM. It focuses on the assignment of an

unique identifier for each requirement [5]. These

identifications can be used to unambiguously refer to

requirements during product development and

management. Further, requirement attributes can be

used for recording additional information about

requirements [7].

Requirements traceability (RT) refers to the ability

to describe and follow the life of a requirement in both

forward and backward direction [8, 9]. Gotel [8]

emphasizes the life cycle aspect of traceability.

Requirements form the basis of design and

implementation activities, and they should be traceable

through the life-cycle of a product. Requirement

traceability is needed, e.g., for verification and change

impact analysis activities.

Requirements change management refers to the

ability to manage changes to requirements [6]. It also

ensures that similar information is collected for each

proposed change and that overall judgments are made

about the costs and benefits of a proposed change.

Even if requirement specification is comprehensive,

some changes can take place during development. This

gives rise to the need for clearly defined practices that

provide guidance for handling possible changes to

requirements.

3. Related research

In this section, the related research is presented. The

results of this review are used for building research

lenses (an analysis framework), which will be used to

analyze the results of this case project later in the

paper.

Traditional XP relies on efficient communication,

which is one of the basic values of the method [2, 10].

XP emphasizes communication, e.g. through practices,

such as “Open Workspace”, "Pair Programming" and

“Planning Game” [2, 11]. Macias et al. [12] state that

interactive communication between the developers,

clients and managers in XP should be emphasized.

Face-to-face communication is an efficient mechanism

in realizing this. For an agile team to be successful,

good communication mechanisms have been found to

be critical [13].

The agile principles value working software over

comprehensive documentation [3]. Beck [2] also

emphasizes lightweight documentation in XP based

development. Ambler [13] emphasizes the slogan

“Travel light” in the context of documentation. Ambler

states that it is useful to produce just enough

documentation and to update it only when needed. This

enables the team to be more effective in producing

results that deliver more business value for the

customer than traditional paper-driven methodologies.

Ease-of-use is an important aspect when developing

tool support for XP development (and actually for any

SW related work). For example, Lippert [14] identifies

ease-of-use as a very important aspect for XP tool

support during continuous integration. The tool should

not slow down the product development or cause

additional maneuvers during fast-paced development.

O'Brian Holt [15] present some factors for assessing

usability, including aspects such as: Is the system easy

to learn to use? Is it possible to modify the system

without reducing its usability? Is the system

comfortable and satisfying to use? Nielsen [16] defines

the different aspects of usability as follows: easy to

learn, efficient to use, easy to remember, few errors,

and subjectively pleasing.

Some authors have considered requirements

management from an XP point of view. Breitman and

Leite [17] support XP by using a scenario structure to

organize information elicited through user stories.

While they do not agree with Beck who maintains that

implemented stories should be discarded, they highlight

the traceability of stories. Nawrocki et al. [18] state that

the main weaknesses of the XP approach to

requirements management is the lack of requirements

documentation. This causes problems especially when

managing changes to requirements and maintaining

traceability. Alike, Wagner [19] concludes that the lack

of written, traceable requirements can make it difficult

to maintain the developed software over time. On the

other hand, Wagner [19] states that requirements

baselining exists, in some form, in the XP process,

because each iteration contains an agreed set of stories.

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

From a change management viewpoint, the

requirements management literature in fact proposes

quite rigorous processes for managing requirement

changes [20]. However, formal and cumbersome

practices for change management do not fit the nature

of XP. Therefore, lightweight and simple practices for

managing changes in XP have turned out effective in

practice [21].

Several authors have addressed the tool support

used for managing user stories and tasks. Internet-

based tool support for distributed XP, called MILOS,

has been introduced by Maurer and Martel [22]. This

solution supports virtual software teams with

communication, collaboration and coordination. The

solution allows the user to write and manage stories

and tasks in electronic format. Rees [23] has presented

a tool called DotStories for managing user stories,

claiming that the tool approaches an ideal solution for

user story management. Rees also refers to

spreadsheets and databases as further potential tools for

managing user stories. Lippert et al. [24] claim that a

computer cannot be used for the planning game. On the

other hand, they further argue that a computer can be

used just for writing stories and tasks and printing them

out on paper. The XP process itself does not exclude

the use of automated tools for storing user stories.

Actually, tools and databases can provide a means for

more effective information management [25] [5].

Integrated environment and data sharing enable the

project team to focus on development work, while daily

data management has been automated. This means that

all project-related data is managed at a unified location

and integrated tool support eases tedious tasks, such as

information retrieval, distribution, consistency

checking, archiving, etc. It has been stated in literature

that management system integration is likely to

improve the consistency and sharing of product-related

information (e.g. [26] and [27]).

4. Tool support for the management of user

stories: the Storymanager tool

Our solution to managing user stories and tasks is

called Storymanager. The proposed solution was

integrated in the Eclipse environment. Eclipse is a

development environment and a tool integration

framework found suitable for XP development. A

detailed description of the proposed Storymanager

solution has been published in [28] (Figure 1).

Our intention was to remain agile, no new solution

or practice should jeopardize the fundamental idea of

adaptable and lightweight processes. The basic

intention of this study was to transfer manual XP

requirements management practices into an electronic

form and yet try to remain agile. A further aim was to

integrate the solution into the Eclipse tool integration

framework. An integrated tool framework enabled the

project team to work with one channel throughout the

whole development life cycle. During the planning

game, the team was working through the Storymanager

plug-in. Stories and tasks were stored into an MySQL

relational database. During implementation and testing,

the team was working, e.g., through a JDT (java

development environment) plug-in and a Junit (testing

framework) view. From an information management

point of view, our approach included support for

requirements management and configuration

management. Requirements management was used in

this environment for sharing and managing user stories

and tasks, while configuration management (CVS) was

used for managing and sharing code and other

documentation.

Figure 1. Storymanager - the main view

The Storymanager allows a specification of story

and task attributes according to the needs of the

project. The program enables filling in story/task cards

according to project-specific attributes. The AutoID

facility of the program is used to automatically create

unique identifiers (ID) for stories (and tasks). Certain

attributes, however, are mandatory, e.g. status,

description, release identifier, iteration identifier. Other

attributes are user-defined and optional.

The program allows the user to modify stories, but

in XP only the last story version is relevant. Thus, the

application contains only the last updated version.

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

According to basic XP principles, formal and

bureaucratic change management activities are not

considered appropriate. However, the application

stores a version history of the item (story/task), which

can be used for examining the history of the item. The

attributes “Release” and “Iteration” contain information

about the selection of items for specific releases and

iterations. In fact, this corresponds with the

requirements baselining facility indicating an agreed set

of items for a specific release and iteration.

During iteration planning, a set of stories is selected

for next iteration. This is illustrated using an iteration

attribute. Then the tasks are defined for next iteration.

A task can be assigned to a story (traceability between

stories and tasks). In this case, the program stores the

linking information in a MySQL Link-table. However,

a task can also be created under a project root and

allocated afterwards.

Certain supporting features are needed regardless of

the phase of the project. These features include check

out/in capabilities, views and reporting. The reporting

features are used for printing stories and their

respective tasks and putting them on the board when

operating in an open workspace.

5. Research design

This section describes how the research and

experiment settings were designed.

5.1. Research settings

In this chapter, the research settings used for

developing and validating the solution designed for

managing user stories are depicted. Application

development and validation are based on two XP

experiment projects (Figure 2) using the action

research [29, 30] approach as the principal

methodological driver. Avison [31] and Fowler &

Swatman [32] have used the action research method to

build information system development methods. Action

research is done in cycles, each cycle consisting of

planning, action, observation and reflection phases.

After each cycle, there will be a revised plan for the

next cycle as a result. We applied the action research

approach while trying to improve the management of

user stories and tasks in XP development.

A project called eXpert was used for developing a

system for managing the research data and documents

at VTT. The project used XP practices for developing

the system. Detailed results of the eXpert project can

be found in [33]. The project used a manual solution

for managing user stories and tasks, as suggested in the

XP literature. During the project, the need for

electronic user story and task management emerged.

After the project, the results were analyzed and an

application was constructed to support a more

automated, i.e. electronic, user story management. The

requirements for electronic story management and the

application itself were introduced in [28]. The

validation and improvement planning of the application

were carried out as part of the zOmbie-project, which

was concerned with developing mobile application

software in the Eclipse environment. The validation of

the electronic user story management tool was carried

out and observations and interviews were made during

the project. After the project, the results were analyzed

and improvement ideas were produced for future

development.

The eXpert

-project

The zOmbie

-project

Storymanager

application

development

XP-RM

requirements

definition

Validation

Analysis &

reporting

06/2003

01/2004

01/2003

Figure 2. Storymanager development

An analysis framework was constructed to analyze

and understand the results of the validation. The

framework was based on the survey of related research

and underlying XP concepts and requirements

management, as presented in sections 2 and 3 of this

paper. Our analysis framework reflects technical issues

as well as those concerning the methodological aspects

of XP. The technical issues focus on the definition of

functionality that is needed for requirements

management in an integrated XP development

environment. The methodological aspects refer to the

underlying nature of the XP method. Table 1 presents

the analysis framework.

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

Table 1. Analysis framework

Perspective Description Key references

Communication Does the solution allow open communication between

developers and between developers and customers?

[2, 10, 11]

Documentation Does the solution allow lightweight documentation? [2], [3], [13]

Ease-of-use Is the solution easy to use, so as to support fast-paced iterative

development?

[14], [15], [16]

Functionality Does the solution support functional needs for requirements

management (identification, traceability and change

management) and integrated development environment?

Requirements management : [5], [6],

[7], [8], [9], [21], [17],[19], [24]

Integrated development environment:

[26], [27]

5.2. Experiment settings

The functionality of the application was validated

and tested in an experimental XP project called

zOmbie. In the zOmbie project, mobile application

software was developed in the Eclipse environment. In

this experiment, the Eclipse environment was

complemented with Storymanager. The aim of the

zOmbie project was to produce a real financial sector

software product for real markets. The project was an

engineering success. The product is now being

marketed. The Eclipse environment was used

successfully already in the previous XP case study of

VTT [33]. In zOmbie case study, the Eclipse

environment was used together with the following tools

(Table 2).

Table 2. Tool environment in the zOmbie

experiment

Tool Version Description

Eclipse 2.1 Tool integration framework

Storymanager 1.0.0 User story and task

management

JDT (part of

Eclipse package)

2.1 Java development

environment

Junit 3.8.1 Testing framework

CVS 1.11.2 Version management

The verification was carried out in the XP

experiment project developing mobile application

software in Eclipse environment. The project team

consisted of 5 developers and a project manager. The

project worked according to XP practices, but some of

the practices needed slight adaptation (e.g., test-first

development in mobile application is challenging)

according to the business needs.

The aim of Storymanager validation was to use the

XP project to verify our solution for requirements

management. The focus was to ensure that

requirements management support was adequately

considered in the integrated development environment

and that the solution allowed the XP project to remain

“agile” and “lightweight”. The project team was

allowed to systematically change any practices if they

felt that these did not work. Thus the project group

were trained and encouraged to “think according to XP

values”.

Quantitative and qualitative data were collected

throughout the project. The project had nominated a

person responsible for metrics, who was monitoring

that data was collected systematically. The metrics and

practices for gathering quantitative data were defined

before the project start-up. Qualitative data was

collected from the project team by using a specified

comment template. The template contained questions

about the applicability of the Storymanager solution.

The comments were processed and analyzed using Post

Mortem [34] sessions. The role of XP coach was

extended in zOmbie. The coach was also acting as a

Storymanager advisor, collecting experiences

concerning its usage. Even after the project, comments

and improvements were inquired from the project team

and coach. The inquiry performed after the project

contained the following questions, which were

formulated based on the experience that the

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

Storymanager was abandoned after two releases and

manual story and task management was used during the

rest of the project:

− Which were the advantages of Storymanager

compared to manual story and task management?

− Which were the disadvantages of Storymanager

compared to manual story and task management

and why was the Storymanager abandoned?

− Give other comments and suggestions for the

improvement of electronic management of user

stories and tasks?

6. Results

Table 3 presents the basic quantitative data from the

experiment. It provides basic information about the size

and schedule of the project and helps the reader to

understand the nature of the project where the

Storymanager tool was used.

Table 3. Background information about the mobile application case project

Collected data Release 1 Release 2 Release 3 Release 4 Release 5 Correction

release

Total

Calendar time (weeks) 1 2 2 2 1 0.4 8.4

Total work effort (h) 115.3 238.9 273.2 255.6 123.7 66.8 1073.5

Planning day effort (h) 37.1 22.7 32.8 24.5 15.7 13.5 146.3

User stories implemented 3 4 5 5 1 1 19

Tasks implemented 11 25 18 18 10 10 92

The development team used Storymanager for

storing, distributing and retrieving story and task

information during the first two releases. Stories and

tasks were created, modified and maintained in

Storymanager and printed out from the system and put

on the board. After the second release, the project team

moved into manual story and task management,

because of the visualization and usability problems of

electronic story and task management. The project

manager had some experience with manual

management of user stories and tasks, which made it

possible to move from electronic to manual

management.

This section introduces the results of the interviews.

First, the project team and coach were asked to voice

their opinion about the advantages of the Storymanager

for story and task management. A collection of answers

from the zOmbie coach and team members are

presented in the following:

“Easy to operate with stories and tasks when they are

in electronic format. In manual format, story or task

modification required rewriting the whole card .”

“Integration to Eclipse enables easy access to tool.”

“Manual cards are sometimes lost, but when they are

in electronic format, they are easily accessible.”

“The use of the status attribute was easy and the color

codes were practical.”

“The customer can easily follow the implementation of

stories from a remote office using Storymanager”

“Manual archiving is not needed after a project”

Then the project team and coach were asked about

the disadvantages of Storymanager for story and task

management and they were also asked to give the

reasons for abandoning the tool. The answers received

from the zOmbie team members and coach are listed in

the following:

“Not clear. It is easier to see the Big Picture of the

project (e.g. status) when the manual story and task

cards are put on the board”

“The reports (layout of printed story/task cards) were

not good. If they were better, it would be more useful.”

“The tasks in Storymanager are in text format.

However, tasks sometimes also contain other formats

than just pure text (i.e. pictures, etc.).”

“It was difficult to move tasks between stories.”

“The usability was not good.”

“The AutoID functionality was confusing in

Storymanager.”

“More disadvantages than advantages.”

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

The project team and coach were also asked to give

further comments and suggestions for improvement. In

the following, a summary of answers received from

zOmbie team members and coach is presented:

“Support is needed for XP project management.”

“A tool should be easy to use.”

“It should be easy to see the Big Picture of the project

when using the tool.”

“The tool should allow moving tasks more easily

between stories.”

“The tool should allow linking tasks with application

code.”

“Printing of stories and tasks with bigger font.”

 Table 4 summarizes the advantages and

disadvantages of the Storymanager. The reasons for

moving from electronic management to manual

management and their implications are analyzed in next

section.

Table 4. Summary of the results gained from the Storymanager tool study

Perspective Results (“+” strengths,” –“ weaknesses/enhancements)

Communication + The customer can easily follow the implementation of stories from a remote office using Storymanager

+ Color codes can be used to visualize the status of the story/task on computer screen

– the Storymanager system or printed story/task reports do not make it easy to see the overall status (“big

picture”) of a project

Documentation + Manual stories or task cards need not be archived separately

– Tasks can contain just text description

– Reports are not clear (layout and font size)

Ease-to-use + It is easy to manage stories and tasks (modification)

+ Stories and tasks are easily accessible in electronic format

– General usability of the tool is not good

– Moving tasks between stories is difficult

Functionality + Integration to Eclipse enables easy access to tool and information

+ Tool provides reliable means to store, modify and retrieve information

– AutoID provides “meaningless” code for a story or task

– Support for XP project management should be added to the tool

– There should be a possibility of linking tasks with application code

7. Discussion

This section analyses the results against the analysis

framework defined in section 5.1. Agile methods, such

as XP, aim towards efficient communication and

lightweight documentation. Although some additional

or modified XP practices were used in the VTT

zOmbie-project, the basic development philosophy

relied on open communication and lightweight

documentation. As presented in related literature, [e.g.

5, 25, 35, 36], the adaptation of product information

management should be made on the basis of the

business context of a project. Thus, in this case, the

nature of the XP method drives the adaptation of

requirements management tool support. Table 5

summarizes the most important findings and their

implications.

When considering the results in section 6, it can be

noted that the developed solution for electronic

management of user stories and tasks tackles mainly

the same things as the manual one. The clear

advantages of the electronic solution compared with

manual management are related to the ability to reliably

store, modify, distribute, retrieve and archive stories

and tasks and the ability to operate in an integrated

development environment where all development tools

are available.

There are two fundamental differences between

electronic and manual management. These are related

to information visibility and usability. Open workspace

allows the project team to use paper cards for stories

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

and tasks and put them on the board. This allows the

team to get an overview of stories and tasks just by

having a look at the board, discussing the items and

making modifications directly to the story and task

cards. While this way of working is, in fact, highly

effective and it emphasizes natural interaction between

developers, it does require that the team members share

an open workspace. Rees [23] states that one problem

connected with using databases for managing user

stories is that they provide just poor group visualization

of all cards. Our experiment supports this claim. Of

course, electronic management also allowed us to print

the stories and tasks and then to put them on the board.

This has been suggested by Lippert et al. [24], who first

claim that a computer cannot be used for the planning

game, and then further specify that a computer can be

used just for writing stories and tasks and printing them

out on paper. However, our experiment shows that not

even this approach works, if the editing and

maintaining of printed story and task cards takes up too

much effort in fast-paced development. Furthermore,

the format of printed cards should be highly distinct to

be able to compete with manual ones. Thus, further

research is needed to explore the possibilities for

improving visualization in electronic management of

user stories and tasks.

Table 5. Findings and their implications

Perspective Findings Implications

Communication Electronic management of stories and tasks enables

remote customers and other stakeholders to view the

status of the project in real-time. Electronic

management seems to be an obvious solution when

operating in a distributed development environment but

it can jeopardize natural interaction between developers

and the visibility of information in open workspace.

Visualization of stories and tasks is a challenge and

requires further research. Furthermore, electronic

management of user stories and tasks seems to be

effective if the customer is off-site and the project is

distributed over several sites.

Documentation Electronic task cards should be able to contain also

other formats of information than text descriptions. The

format of reports should be clear.

Possibilities of integrating a drawing or modeling

tool into Storymanager and Eclipse should be

considered.

Ease-of-use Tool usability should be good in fast-paced

development.

Application development using, e.g., a User-Centered

Design approach to ensure that usability issues are

considered.

Functionality The tool should also provide additional value for daily

routines, not just automated support for the old “pen

and paper” practices.

Support for XP project management and linking

between tasks and application code should be

examined as a part of the Eclipse environment.

It also became apparent during the zOmbie-project

that electronic management should also allow other

formats of information than just pure text (e.g. pictures,

models, etc.). During the project, the operation with

models was an important part of the work because the

product being developed was complicated. On the

other hand, in the eXpert-project, graphical modeling

was not an important aspect. Therefore, the product

being developed itself seems to affect the requirements

management needs of the project. This claim is

supported, e.g., by Kotonya and Sommerville stating

that the type of system under development affects the

requirements management solution [6]. The use of

modeling in XP has been considered by Beck [2], who

argues that although modeling can be used during the

XP process, the pictures should not be saved. We

cannot, however, agree with this proposition. If models

are made, they should be archived as any other

information during the project for maintenance reasons.

On the other hand, modeling support easily makes the

Storymanager tool complex.

If a project is distributed over several sites,

electronic management of stories and tasks seems quite

an obvious solution. This has been demonstrated by

Maurer and Martel [22], for example. However, one

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

problem encountered with Storymanager had to do with

its usability. In fast-paced development, the usability

should be good. It is difficult to justify tool usage if the

tool slows down the development and requires

additional maneuvers. One way of tackling this kind of

problem is to use User-Centered Design approaches

during tool development, so as to ensure that usability

issues are considered [37].

The basic problem in the Storymanager

requirements management solution is that even though

it does address the requirements management issues of

product development, it also fights against the values of

the XP method. The solution reduces simplicity and

open communication between team members when

operating in an open workspace during fast-paced

product development.

The developed automatic solution focused mainly

on the automation of manual story and task

management activities. However, Tolvanen [1] states

that, in the long run, the promise of tools does not lie

just in the automated support of old “pen and paper”

methods. Our findings support this claim.

Consequently, the aim of supporting manual operations

without providing extensive features or significant

additional value for developers proved too narrow.

Some of the comments gained from the zOmbie project

team addressed this issue. For example, some

enhancement ideas were voiced concerning providing

support for project management using story and task

efforts and related automatic calculation, and also

concerning automated traceability between tasks and

code.

8. Conclusions and future research

This paper presents the results from a study where a

requirements management tool called Storymanager

was developed to meet the needs of a fast moving XP

project. The aim of the tool was to minimize rework

and to automate time consuming paper-pen practices,

such as recording story and task items on the board.

The tool was used in a project where mobile

application software for real markets was produced.

The team abandoned the tool only after two releases.

Essentially, the tool failed to provide as powerful a

visual view as the paper-pen board method. The

developed tool also turned out to be too difficult to use

in fast-paced development environment. The interview

data further revealed that a computerized solution is

not by any means self-evident, but rather it has to be

able to compete with the best alternate solutions, i.e.

manual paper-pen approach in this case, and even

provide additional value for the project team.

The experiences, findings and implications of this

study should be of interest to any organization

considering requirements management tool support for

XP projects.

The results emphasize the role of adaptation in tool

development. The tool, constructed to support any

development method, should take into account the

underlying values of the method itself. If this is not the

case, the tool is likely to work against the nature of the

method.

Future research will be concerned with constructing

a new solution addressing the lessons learned that were

found relevant during this study. This is to be followed

by validating and enhancing the solution in future SW

development projects.

References

[1] J. P. Tolvanen, "Incremental method engineering with

modeling tools," in PhD dissertation. Jyväskylä University

Printing House and ER-Paino Ky: University of Jyväskylä,

Finland, 1998.

[2] K. Beck, Extreme programming explained: Embrace

change. Reading, MA.: Addison Wesley Longman, Inc.,

2000.

[3] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta,

Agile software development methods: Review and Analysis.

Espoo, Finland: Technical Research Centre of Finland, VTT

Publications 478.

[4] K. Beck and M. Fowler, Planning extreme

programming. New York: Addison-Wesley, 2001.

[5] I. Sommerville and P. Sawyer, Requirements

Engineering: A Good Practise Guide: John Wiley & Sons,

1997.

[6] G. Kotonya, Sommerville, I., Requirements Engineering:

Process and Techniques: John Wiley & Sons, 1998.

[7] D. Leffingwell and D. Widrig, Managing Software

Requirements - A Unified Approach: Addison-Wesley, 2000.

[8] O. Gotel, "Contribution Structures for Requirements

Traceability," in Imperial College of Science, Technology

and Medicine: University of London, 1995.

[9] O. Gotel and A. Finkelstein, "An Analysis of the

Requirements Traceability Problem," presented at First

International Conference on Requirements Engineering,

1994.

[10] L. Williams, "The XP Programmer: The Few-Minutes

Programmer," IEEE Software, vol. 20, pp. 16-20, 2003.

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

[11] R. Jeffries, A. Anderson, and C. Hendrickson, Extreme

Programming Installed. Upper Saddle River, NJ: Addison-

Wesley, 2001.

[12] F. Macias, M. Holcombe, and M. Gheorghe, "A formal

experiment comparing extreme programming with traditional

software construction," presented at Proceedings of the

Fourth Mexican International Conference on Computer

Science, 2003.

[13] S. Ambler, "Lessons in Agility from Internet-Based

Development," IEEE Software, vol. 19, pp. 66 - 73, 2002.

[14] M. Lippert, S. Roock, R. Tunkel, and H. Wolf,

"Stabilizing the XP Process Using Specialized Tools,"

presented at XP 2001, 2001.

[15] P. O'Brian Holt, "HCI tools, methods and information

sources," presented at IEE Colloquium on Usability Now,

1991.

[16] J. Nielsen, Usability engineering. San Francisco, CA:

Morgan Kaufmann Publishers, 1993.

[17] K. Breitman and J. Leite, "Managing User Stories,"

presented at International Workshop on Time-Constrained

Requirements Engineering (TCRE 02), 2002.

[18] J. Nawrocki, M. Jasinski, B. Walter, and A.

Wojciechowski, "Extreme Programming Modified: Embrace

Requirements Engineering Practices," presented at 10th

IEEE Joint International Requirements Engineering

Conference, RE'02, Essen, Germany, 2002.

[19] L. Wagner, "Extreme Requirements Engineering,"

Cutter IT Journal, vol. 14, pp. 34-38, 2001.

[20] I. Hooks and K. Farry, Customer-centered products :

creating successful products through smart requirements

management. New York, NY: American Management

Association, 2001.

[21] J. Koskela, J. Kääriäinen, and J. Takalo, "Improving

Software Configuration Management for Extreme

Programming: A Controlled Case Study," presented at

European Software Process Improvement, EuroSPI'2003,

Graz, Austria, 2003.

[22] F. Maurer and S. Martel, "Process Support for

Distributed Extreme Programming Teams," presented at

ICSE 2002 Workshop on Global Software Development,

2002.

[23] M. J. Rees, "A feasible user story tool for agile software

development?," presented at Ninth Asia-Pacific Software

Engineering Conference, 2002.

[24] M. Lippert, S. Roock, and H. Wolf, Extreme

Programming in Action: Practical Experiences from Real

World Projects: John Wiley & Sons Ltd., 2002.

[25] A. Leon, A Guide to software configuration

management. Boston: Artech House, 2000.

[26] I. Crnkovic, Asklund, U., Dahlqvist, A., Implementing

and Integrating Product Data Management and Software

Configuration Management. London: Artech House, 2003.

[27] A. Sääksvuori and A. Immonen, Product lifecycle

management. Berlin: Springer-Verlag, 2004.

[28] J. Kääriäinen, J. Koskela, J. Takalo, P. Abrahamsson,

and K. Kolehmainen, "Supporting Requirements Engineering

in Extreme Programming: Managing User Stories," presented

at ICSSEA 2003, Paris, France, 2003.

[29] M. Hult and S.-A. Lennung, "Towards a definition of

action research: A note and bibliography," Journal of

Management Studies, pp. 241-250, May 1980.

[30] G. I. Susman and R. D. Evered, "An Assessment of the

Scientific Merits of Action Research," Administrative

Science Quarterly, vol. 23, pp. 582-603, 1978.

[31] D. Avison, "Action research: a research approach for

cooperative work," presented at The 7th International

Conference on Computer Supported Cooperative Work in

Design, 2002.

[32] D. C. Fowler and P. A. Swatman, "Building

information systems development methods: synthesising

from a basis in both theory and practice," presented at

Australian Software Engineering Conference, 1998.

[33] P. Abrahamsson and J. Koskela, "Extreme

programming: A survey of empirical results from a controlled

case study," To be presented at ACM-IEEE International

Symposium on Empirical Software Engineering (ISESE

2004),, Redondo Beach, CA, USA, 2004.

[34] T. Dingsøyr and G. K. Hanssen, "Extending Agile

Methods: Postmortem Reviews as Extended Feedback,"

presented at 4th International Workshop on Learning

Software Organizations, Chicago, Illinois, USA, 2002.

[35] F. Buckley, Implementing configuration management :

hardware, software, and firmware. Los Alamitos: IEEE

Computer Society Press, 1996.

[36] D. Lyon, Practical CM - Best Configuration

Management Practices for the 21st Century, 2nd ed:

RAVEN Publishing Company, 1999.

[37] A. L. Ames, "Users first! An introduction to usability

and user-centered design and development for technical

information and products," presented at Professional

Communication Conference, IPCC 2001, 2001.

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04)
1089-6503/04 $ 20.00 IEEE

Published by

 Series title, number and
report code of publication

VTT Publications 605
VTT�PUBS�605

Author(s)
Kääriäinen, Jukka
Title

Practical adaptation of configuration management
Three case studies

Abstract
This thesis studies the adaptation of configuration management. Configuration management (CM) is a
support process for product development and it operates in the context of the development project.
Several factors, such as the size of the project, distribution, development disciplines, etc. affect the
project�s CM solution. Nowadays, CM practices inside a project have become an industrial de-facto
standard, but the complexity emerges from the modern operational environment of product
development. Globalisation, outsourcing, product variation and the amount of SW in modern products
have characterized the modern product development. This trend has also affected the CM practices,
which need to face these new challenges.

The study defines the initial framework of factors that affect the CM solution. These factors represent
the project characteristics that the CM adaptation needs to solve when planning the CM solution for a
project. The framework of factors has been used to characterise three CM adaptation case studies. The
CM practices are considered based on factors in each case and the results are discussed. Furthermore,
a cross-case analysis has been carried out to detect and discuss similarities and differences between
the cases.

Keywords
software engineering, software configuration management, configuration management, embedded
systems, agile methods

ISBN
951�38�6842�7 (soft back ed.)
951�38�6843�5 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number

VTT Publications
1235�0621 (soft back ed.)
1455�0849 (URL: http://www.vtt.fi/publications/index.jsp)

E4SU00314

Date Language Pages Price
June 2006 English 71 p. + app. 48 p. C

Name of project Commissioned by
MERLIN (Embedded Systems Engineering in
Collaboration)

Tekes, VTT

Contact Sold by
VTT Technical Research Centre of Finland
Kaitoväylä 1, P.O. Box 1100,
FI-90571 OULU, Finland
Phone internat. +358 20 722 111
Fax +358 20 722 2320

VTT Technical Research Centre of Finland
P.O.Box 1000,
FI-02044 VTT, Finland
Phone internat. +358 20 722 4404
Fax +358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

V
TT PU

BLICA
TIO

N
S 605

Practical adaptation of configuration m
anagem

ent
Jukka K

ääriäinen

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI-02044 VTT, Finland
Puh. 020 722 4404 Tel. 020 722 4404 Phone internat. +358 20 722 4404
Faksi 020 722 4374 Fax 020 722 4374 Fax +358 20 722 4374

ISBN 951–38–6842–7 (soft back ed.) ISBN 951–38–6843–5 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2006ESPOO 2006ESPOO 2006ESPOO 2006ESPOO 2006 VTT PUBLICATIONS 605

Jukka Kääriäinen

Practical adaptation of
configuration management

Three case studies

VTT PUBLICATIONS

583 Turunen, Erja. Diagnostic tools for HVOF process optimization. 2005. 66 p. + app. 92 p.

584 Measures for improving quality and shape stability of sawn softwood timber during
drying and under service conditions. Best Practice Manual to improve straightness of
sawn timber. Edited by Veikko Tarvainen. 2005. 149 p.

585 Hyötyläinen, Raimo. Practical interests in theoretical consideration. Constructive methods
in the study of the implementation of information systems. 2005. 159 p.

586 Koivisto, Tapio. Developing strategic innovation capability of enterprises. Theoretical and
methodological outlines of intervention. 2005. 120 p.

587 Ajanko, Sirke, Moilanen, Antero & Juvonen, Juhani. Kierrätyspolttoaineiden laadun-
valvonta. 2005. 59 s.

588 Ebersberger, Bernd. The Impact of Public R&D Funding. 2005. 199 p. + app. 12 p.

589 Kutinlahti, Pirjo. Universities approaching market. Intertwining scientific and entrepre-
neurial goals. 2005. 187 p. + app. 4 p.

590 Jantunen, Erkki. Indirect multisignal monitoring and diagnosis of drill wear. 2005. 80 p.
+ app. 110 p.

591 Rauste, Yrjö. Techniques for wide-area mapping of forest biomass using radar data. 2005.
103 p. + app. 77 p.

592 Safety and reliability. Technology theme – Final report. Ed. by Veikko Rouhiainen. 2006.
142 p. + app. 27 p.

593 Oedewald, Pia & Reiman, Teemu. Turvallisuuskriittisten organisaatioiden toiminnan
erityispiirteet. 2006. 108 s. + liitt. 10 s.

594 Lyly, Marika. Added ß-glucan as a source of fibre for consumers. 2006. 96 p. + app. 70 p.

595 Hänninen, Saara & Rytkönen, Jorma. Transportation of liquid bulk chemicals by tankers
in the Baltic Sea. 2006. 121 p. + app. 30 p.

596 Vähä-Heikkilä, Tauno. MEMS tuning and matching circuits, and millimeter wave
on-wafer measurements. 2006. 86 p. + app. 82 p.

597 Lallukka, Sami & Raatikainen, Pertti. Passive Optical Networks. Transport concepts. 2006.
123 p.

598 Lyyränen, Jussi. Particle formation, deposition, and particle induced corrosion in large-
scale medium-speed diesel engines. 2006. 72 p. + app. 123 p.

600 Kontkanen, Hanna. Novel steryl esterases as biotechnological tools. 2006. 100 p. +
app. 54 p.

601 Askolin, Sanna. Characterization of the Trichoderma reesei hydrophobins HFBI and HFBII.
2006. 99 p. + app. 38 p.

602 Rosqvist, Tony, Tuominen, Risto & Sarsama, Janne. Huoltovarmuuden turvaamiseen
tähtäävä logistisen järjestelmän riskianalyysimenetelmä. 2006. 68 s. + liitt. 20 s.

605 Kääriäinen, Jukka. Practical adaptation of configuration management. Three case studies.
2006. 71 p. + app. 48 p.

http://www.vtt.fi/inf/pdf/
http://www.vtt.fi/inf/pdf/

	Abstract
	Preface
	Contents
	List of original publications
	List of acronyms
	1. Introduction
	1.1 Scope of the Research and the Research Problem
	1.2 Structure of the Research
	1.3 Research Methods

	2. Configuration Management
	2.1 Overview
	2.2 Concepts
	2.3 The Principal Elements
	2.3.1 Configuration Management Planning
	2.3.2 Configuration Identification
	2.3.3 Configuration Control
	2.3.4 Configuration Status Accounting
	2.3.5 Configuration Auditing

	2.4 Configuration Management on System Life Cycle
	2.5 Tools
	2.6 Summary

	3. Adapting Configuration Management
	3.1 Factors Affecting the Configuration
	3.1.1 Size of the Project
	3.1.2 Product Type
	3.1.3 Project Hierarchy (Distribution)
	3.1.4 Multisite Development
	3.1.5 Development Disciplines
	3.1.6 Development Models
	3.1.7 Dependence on Third Party Software
	3.1.8 Maintenance and Multivariants
	3.1.9 Item Types
	3.1.10 Management Constraints on the CM Plan

	3.2 Framework of Factors
	3.3 Summary

	4. Empirical Evaluation of Configuration
	4.1 Case Study Characterisation
	4.1.1 Case 1
	4.1.2 Case 2
	4.1.3 Case 3

	4.2 Results
	4.2.1 Case 1
	4.2.2 Case 2
	4.2.3 Case 3
	4.2.4 Cross-case Analysis

	5. Introduction to the Papers
	5.1 Paper I:
	5.2 Paper II:
	5.3 Paper III:
	5.4 Paper IV:

	6. Conclusions and Future Research Needs
	6.1 Evaluation of Results
	6.2 Answers to the Research Questions
	6.3 Future Research Needs

	References
	PAPER I
	PAPER II
	PAPER III
	PAPER IV

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

