
V
TT PU

BLICA
TIO

N
S 608

Q
uality­driven softw

are architecture m
odel transform

ation. Tow
ards autom

ation
M

ari M
atinlassi

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI­02044 VTT, Finland
Puh. 020 722 4404 Tel. 020 722 4404 Phone internat. +358 20 722 4404
Faksi 020 722 4374 Fax 020 722 4374 Fax +358 20 722 4374

ISBN 951– 38– 6848– 6 (soft back ed.) ISBN 951– 38– 6849– 4 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235– 0621 (soft back ed.) ISSN 1455– 0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2006 VTT PUBLICATIONS 608

Mari Matinlassi

Quality­driven software
architecture model transformation

Towards automation

Software intensive products have won popularity in everyday life today. An
increasing need for faster, cheaper and even more versatile software
intensive products sets a real challenge for the software industry. The
software industry is constantly looking for ways to improve the cost­
effectiveness of software development and the quality of software products.

The dissertation summary presents a model for quality­driven software
architecture model transformation (QAMT). QAMT denotes changing an
architectural model according to changing or varying quality properties,
wherein a quality property is a non­functional interest of one or more
system stakeholders. The aim of developing the QAMT model is to promote
automation of transformation and thereby making changing software
architecture easier. Reducing the need for human interaction in
transforming an architectural model improves the cost­effectiveness and
quality of software products.

http://www.vtt.fi/inf/pdf/
http://www.vtt.fi/inf/pdf/

VTT PUBLICATIONS 608

Quality-driven software architecture
model transformation

Towards automation

Mari Matinlassi

Academic Dissertation to be presented, with the assent of the Faculty of
Science, University of Oulu, for the public discussion in the Auditorium

IT115, Linnanmaa, on September 22nd, 2006, at 12 o�clock noon.

ISBN 951�38�6848�6 (soft back ed.)
ISSN 1235�0621 (soft back ed.)

ISBN 951�38�6849�4 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455�0849 (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT Technical Research Centre of Finland 2006

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

VTT, Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O.Box 2000, FIN�02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde 020 722 111, faksi 020 722 2320

VTT, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel 020 722 111, fax 020 722 2320

VTT Technical Research Centre of Finland, Kaitoväylä 1, P.O. Box 1100, FI-90571 OULU, Finland
phone internat. +358 20 722 111, fax +358 20 722 2320

Technical editing Maini Manninen

Otamedia Oy, Espoo 2006

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

3

Matinlassi, Mari. Quality-driven software architecture model transformation. Towards automation.
Espoo 2006. VTT Publications 608. 101 p. + app 95 p.

Keywords software architecture, quality-driven software architecture development, model-
driven development, model-driven architecture (MDA), model transformation

Abstract
Model driven software development is about treating models as first class design
entities and thereby raising the level of abstraction in software development. A
model is a simplified image of a system and, further, model transformation
means converting one model to another model of the same system.
Transformation is a key to model driven development while automation of
transformation is one of the essential goals of model driven architecture (MDA),
an initiative to standardize model driven development. Model transformation
aims at automating the transition from business models to implementation
models. In addition to model refinement, model transformations are used for
improving models by restructuring, completing and optimising them.

Quality-driven software architecture model transformation (QAMT) denotes
changing an architectural model according to changing or varying quality
properties, wherein a quality property is a non-functional interest of one or more
system stakeholders. In this dissertation, I examine QAMT automation, i.e.
reducing the need for human intervention in QAMT. Therefore, the research
question in this dissertation is �how to make automation of QAMT possible�.
This dissertation provides an answer to the research question by presenting a
model to support QAMT automation. The model is derived from the experience
gained in four industrial cases and in one laboratory case study. The model is
written with Unified Modelling Language 2.0 and includes activities to describe
the process of transformation and collaborating actors that execute the activities.

The goals of the model are (1) to describe transformation as completely as
possible, (2) to provide support toward automation, (3) to stay independent of
implementation technologies, (4) to be mature and validated and (5) to conform
to standards. Transformation is described by presenting a marked model, a
mapping and a transformation record, and transformation activities. While the

4

QAMT model does not support total automation of all the activities, it does
reduce the need for human intervention. The QAMT model shows good
performance in platform independence and it is validated in five different cases.
Finally, the QAMT model promotes understandability by following, e.g., the
terminology and specification structures defined in the most important standards
in the area.

This research introduces an automation model for quality-driven software
architecture model transformation. So far, the research effort on model driven
architecture has been focusing on automating vertical transformations such as
code generation. The work in this dissertation initiates the automation of
horizontal model transformations and suggests future research topics to
accumulate the knowledge on the subject and again to derive fresh topics to
explore and new ideas to experiment with.

5

Preface

The work reported in this dissertation was carried out in the Software
Architecture group at VTT Technical Research Centre of Finland during 2001�
2005. The work was done in the following projects: PLA programme, Minttu1
2001�2002, Minttu2 2002�2003, SUVI 2002, WISE 2001�2003 and FAMILIES
2003�2005.

I am grateful for the financial support provided by Tekes, VTT Electronics, and
various Finnish industrial companies. Additional support was received from
Nokia Foundation, which awarded a scholarship for the work in 2004.

I wish to thank Professor Eila Niemelä for supervising my work and teaching me
many important things needed in the career of a researcher. I also wish to thank
the co-authors of the publications included in this dissertation and special thanks
go to the personnel involved in the projects mentioned above for creating a
friendly and inspiring atmosphere in which to work.

The manuscript of this dissertation was reviewed by Professor Jan Bosch and
Professor Philippe Kruchten. I am grateful for their expert comments which led
to remarkable improvements of the thesis. I also wish to express my sincere
gratitude to Professor Eila Niemelä for her valuable comments and constructive
criticism on the earlier versions of the manuscript.

Last but not least, I�d like to express my warm and deep gratitude to my family
Mika, Sampo, Joona, Otso and Sini for their patience during these years and
special thanks for providing a colourful counterbalance to � even so interesting �
research work. Thanks to children I have learned one of the most important Jedi
wisdom: �Try not. Do. Or do not. There is not try.�

Ii, June 2006

Mari Matinlassi

6

Contents

Abstract ... 3

Preface .. 5

List of original publications .. 8

Abbreviations.. 10

1. Introduction... 13
1.1 Introduction to the topic .. 13
1.2 Motivation ... 17
1.3 Problem, limitations and results .. 19
1.4 Research approach... 21
1.5 Outline of the dissertation ... 28

2. Quality-driven software architecture model transformation......................... 29
2.1 Quality-driven software architecture development 29

2.1.1 Quality properties.. 30
2.1.2 Variability in quality properties .. 33
2.1.3 Quality representation in an architectural model 36

2.2 Software architecture modelling.. 38
2.2.1 Software model ... 39
2.2.2 Architectural models ... 41
2.2.3 Model-driven development ... 42
2.2.4 Model-driven architecture ... 44

2.3 Architecture model transformation.. 45

3. Towards automation of quality-driven architecture model transformation .. 50
3.1 Introduction to QAMT automation.. 50
3.2 QAMT automation model � activities ... 53
3.3 QAMT automation model � actors.. 57

3.3.1 Stylebase ... 58
3.3.2 Rulebase .. 61

4. Evaluation of the QAMT automation model .. 64
4.1 Deriving the goals.. 64

7

4.2 Assessment .. 68
4.2.1 Completeness .. 68
4.2.2 Platform independence.. 70
4.2.3 Level of automation .. 71
4.2.4 Maturity... 72
4.2.5 Conformance to standards... 73

4.3 Evaluation summary.. 75

5. Conclusions... 80
5.1 Summary of the results .. 80
5.2 Limitations of the results ... 81
5.3 Future research .. 82

6. Introduction to the papers ... 85
6.1 State of the art.. 85

6.1.1 Paper I: Design method comparison 85
6.2 Method development ... 86

6.2.1 Paper II: Introducing the design method 86
6.2.2 Paper III: Refining the design method 86

6.3 Cases.. 86
6.3.1 Paper IV: Interactive gaming service 86
6.3.2 Paper V: Terminal software product family............................ 87
6.3.3 Paper VI: Service architectures ... 87
6.3.4 Paper VII: Middleware multimedia services........................... 88

References... 89

Appendices
Papers I–VII

Appendices III and IV of this publication are not included in the PDF version.
Please order the printed version to get the complete publication
(http://www.vtt.fi/publications/index.jsp)

8

List of original publications

I Matinlassi, M. 2004. Comparison of software product line
architecture design methods: COPA, FAST, FORM, KobrA and
QADA. Proceedings of the 29th international conference on
software engineering, ICSE2004. Edinburgh, Scotland, U.K., 23�28
May 2004. Los Alamitos, California: IEEE. Pp. 127�136. ISBN
0-7695-2163-0.

II Matinlassi, M. & Niemelä, E. 2002. Quality-driven architecture
design method. Proceedings of the 15th international conference
of software & systems engineering and their applications,
ICSSEA 2002. Centre pour la Maîtrise des Systèmes et du
Logiciel Conservatoire National des Arts et Mètiers, Paris,
France, 3�5 December 2002. Paris, France: CMSL. Vol. 3.
Session 11. ISSN 1637-5033.

III Purhonen, A., Niemelä, E. & Matinlassi, M. 2004. Viewpoints of
DSP software and service architectures. Journal of systems and
software, Vol. 69, No. 1�2, pp. 57�73. ISSN 0164-1212.

IV Lago, P. & Matinlassi, M. 2002. The WISE approach to architect
wireless services. In: Oivo, M. & Komi-Sirviö, S. (eds.).
Proceedings of the 4th international conference in product
focused software process improvement, PROFES�02. Rovaniemi,
Finland, 9�11 December 2002. Berlin, Heidelberg, Germany:
Springer-Verlag. Pp. 367�382. (Lecture Notes in Computer
Science 2559.) ISBN 3-540-00234-0.

V Matinlassi, M. & Niemelä, E. 2003. The impact of maintainability
on component-based software systems. In: Chroust, G. & Hofer,
C. (eds.). Proceedings of the 29th EUROMICRO conference,
New waves in system architecture. Belek-Antalya, Turkey, 1�6
September 2003. Los Alamitos, California: IEEE Computer
Society. Pp. 25�32. ISBN 0-7695-1996-2.

9

VI Niemelä, E., Matinlassi, M. & Lago, P. 2003. Architecture-centric
approach to wireless service engineering. Annual Review of
Communications, Vol. 56, pp. 875�889. ISBN 1-931695-22-9.

VII Tikkala, A. & Matinlassi, M. 2002. Platform services for wireless
multimedia applications: case studies. In: Ojala, T. & Ollila, M.
(eds.). Proceedings of the 1st International Conference on Mobile
and Ubiquitous Multimedia, MUM 2002. Oulu, Finland, 11�13
December 2002. Oulu: Oulu University Press. Pp. 76�81. ISBN
951-42-6909-8.

The author of this dissertation is the principal author in Papers I, II and V. The
author�s effort for the rest of the papers has also been essential by providing
design method expertise as well as being a co-author.

10

Abbreviations

ADL Architecture Description Language

API Application Programming Interface

CASE Computer Aided Software Engineering

CIM Computation Independent Model

CORBA Common Object Request Broker Architecture

DPS Dual Protection Style

DS Dissertation Summary

DSP Digital Signal Processing

DTD Document Type Definition

FAMILIES Fact-based Maturity through Institutionalisation Lessons-learned
 and Involved Exploration of System family engineering

ID Identification

IEEE Institute of Electrical and Electronics Engineers

ISO/IEC International Organization for Standardization/ International
Engineering Consortium

J2EE Java 2 Platform Enterprise Edition

MDA Model Driven Architecture

MDD Model Driven Development

11

MDSD Model Driven Software Development

MOF Meta Object Facility

MQ Message Queuing

MSMQ Microsoft Message Queuing

OCL Object Constraint Language

OMG Object Management Group

PC Personal Computer

PDA Personal Digital Assistant

PF Product Family

PFA Product Family Architecture

PIM Platform Independent Model

PSM Platform Specific Model

ROOM Real-time Object Oriented Modeling

SQL Structured Query Language

QADA1 Quality-driven Architecture Design and quality Analysis

QAMT Quality-driven Architecture Model Transformation

QVT Query/Views/Transformations

1 http://virtual.vtt.fi/qada

http://virtual.vtt.fi/qada

12

SWA Software Architecture

TDL Transformation Description Language

UML Unified Modelling Language

UML2 Unified Modelling Language, version 2.0

XML eXtensible Markup Language

13

1. Introduction

Software intensive products have won popularity in everyday life today. An
increasing need for faster, cheaper and even more versatile software intensive
products sets a real challenge for the software industry. The software industry is
constantly looking for ways to improve the cost-effectiveness of software
development and the quality of software products.

The dissertation summary (DS) presents a model for quality-driven software
architecture model transformation (QAMT). QAMT denotes changing an
architectural model according to changing or varying quality properties, wherein
a quality property is a non-functional interest of one or more system
stakeholders. The aim of developing the QAMT model is to promote automation
of transformation and thereby making changing software architecture easier.
Reducing the need for human interaction in transforming an architectural model
improves the cost-effectiveness and quality of software products.

In this section, I first provide definitions for the most important terms used
throughout the dissertation summary as an introduction to the topic. Then,
QAMT motivation is presented to illuminate the need for QAMT, to locate the
research gap and to reason why we shall aspire after automation, in particular.
The research problem and the limitations of the study are discussed next with a
short overview on the research results. Thereafter, the research approach is
presented including a description on how the research was conducted, how each
of the original publications contribute to the research and what kind of cases
were used to derive and validate the research results. The outline of the
dissertation provides an overview of the dissertation summary.

1.1 Introduction to the topic

Software architecture is an essential part of software intensive products.
Software architecture is the structure or structures of the system including
components, their relationships to each other and to the environment (Bass et al.
1998). Software architecture also includes the principles guiding its design and
evolution (IEEE-1471 2000). In the same way as construction architecture

14

strongly influences the properties of a building, software architecture has a
strong influence on the life cycle of a software system. Therefore, software
architecture development may be considered as one of the most important issues
in developing high quality software products.

Quality-driven software architecture development emphasizes the importance of
qualities, wherein qualities refer to the non-functional properties of software
products. The approach relies on gathering, categorizing and documenting
quality properties as at least equally important requirements as functional
requirements and constraints, and utilizing the gained knowledge in architectural
design. The quality-driven design is further complemented with an architectural
analysis.

Architectural analysis is about testing the architecture model produced in the
design, i.e. verifying whether the architecture meets the quality requirements set
in the very beginning.

A Model is a simplified image of a software system. A model is written in the
language of its unique metamodel, and a model cannot be understood and has no
meaning when separated from its metamodel. Metamodel provides the language
or legend for understanding a model.

Architecture model is a description of software structures, represented with one
or more architectural views, wherein architectural view represents a whole
software system from the perspective of a related set of concerns (IEEE-1471
2000). Views may also abstract the details away from the system and therefore a
view may include more than one abstraction level. A view may consist of one or
more architectural diagrams. Each architectural diagram is developed using the
methods established by its associated architectural viewpoint. A viewpoint
establishes the conventions by which a view is created, depicted and analyzed.

Model-driven software development (MDD) focuses on providing models �
rather than programs � as primary software products. Modelling provides a less
risky, more cost-efficient and easier to understand view to a complex problem
and its solutions than implementing a genuine target (Selic 2003). Model-driven
architecture, MDA (OMG 2003a), is an OMG (Object Management Group)
initiative designed to provide a standardization framework for MDD. MDA

15

expresses model abstraction as platform independence. In the context of
software development, platform denotes information-formatting technologies, 3rd
and 4th generation languages, distributed component middleware and messaging
middleware (Frankel 2003).

Model transformation is the process of converting one model to another model
of the same system (OMG 2003a). The definition of model transformation above
does not define whether the model is converted to another model manually,
automatically or semi-automatically. In this dissertation the transformation
concept of the MDA approach is applied, wherein transformation especially
aims at automation. Transformations are defined with rules. A rule is
responsible for transforming a particular selection of the source model to
corresponding target model elements (Gardner et al. 2003). The inputs for
transformation are a marked model (source model) and a mapping whereas the
transformation outputs are a target model and a transformation record.

A mark represents a concept in the target model, and is applied to an element of
the source model (OMG 2003a). Mark only indicates how an element is to be
transformed. The actual transformation specification is provided in mapping. A
mapping is specified using some language to describe a transformation of one
model to another. The description may be in natural language, an algorithm in an
action language, or in a model mapping language (OMG 2003a).

The record of transformation includes a map from the element of the source
model to the corresponding elements of the target model, and shows which parts
of the mapping were used for each part of the transformation (OMG 2003a). A
record consists of traces. A trace (OMG 2005a) records a link between a group
of objects from the source models and a group of objects in the target models.

Horizontal model transformation represents a special type of model
transformation. Horizontal transformations do not affect model abstraction level
(Cristoph 2004) and are used to restructure, complete, or optimise a software
model in order to improve its internal structure and/or quality (Ramljak et al.
2003). Vertical transformations, by contrast, do affect the model abstraction
level and they are used to refine or to abstract a model during forward or reverse
engineering.

16

Architecture model transformation is a horizontal model transformation at the
abstraction level of platform independence, transforming an architecture model
to another model at the same level of abstraction. In addition, architecture model
transformation aims at automation. In the case that the trigger for architecture
model transformation arises from the changing or varying of quality
requirements, the transformation is referred to as quality-driven software
architecture model transformation, hereafter briefly QAMT.

The changing or varying of quality requirements, i.e. quality variability, occurs
especially in the context of product families. A product family or a product line
generally means a group of partly similar software products developed with
specialized methods. Product family and product line are often used as
synonyms in spite of the fact that there is a clear distinction between these two
concepts.

Software product line refers to engineering techniques for creating a collection
of similar software systems from a shared set of software assets using a common
means of production (Krueger 2004). Software product line is thus a process-
oriented term emphasizing the inputs and outputs of the development process
and also the decisions made and artefacts created on products in the various
phases and activities of the development process.

Software product family, for its part, refers to a group of products sharing a
common, managed set of features satisfying the specific needs of a given
market. Software product family further consists of a product family architecture
and a set of reusable components designed for incorporation into the product
family architecture (Bass et al. 1998; Bosch 2000). Software product family
members are instances of a product family. Software product family can thus be
regarded as a product-oriented term emphasizing the business and organizational
aspects of a product family in addition to its process and architecture related
features (van der Linden et al. 2004).

Product family architecture (PFA) is an adaptable form of architecture, which is
applied to the product members of a product family and from which the software
architecture of each product member can be derived. PFA is typically software
architecture involving a set of reusable components shared by a family of
products (Bass et al. 1998).

17

1.2 Motivation

Referring to the American Programmer journal, Abrahamsson (2002) points out
that "Everyone knows the best way to improve software productivity and quality
is to focus on people."

I must agree with the statement above. However, focusing on people is not
enough. Even the best people need methods, techniques and tools to complete
their work. Methods (Kronlöf 1993) guide people to conduct a process with
steps and examples. Methods further define what language to use and also
include techniques for e.g. describing software with architectural viewpoints.
Tools complement and automate the techniques and methods. Simple tools only
help people in their work whereas advanced tools do all or most of the work on
behalf of people.

Any manually conducted work (with simple tools) requires more time and effort
than semi-automated or automated work (with advanced tools). Similarly,
manually conducted QAMT requires more time, effort and money than
automated QAMT, while QAMT can definitely be regarded as an unavoidable
part of the software product life cycle. From this point of view, the need for
automated QAMT is quite obvious. Automated quality-driven software
architecture transformation will make the architecture development process
faster and easier for the architect and therefore cheaper for the company. With
automated transformation, the software architect may also easily try out the
feasibility of various architectural options. The ease of automated development
is due to the possible simulation capabilities of the architectural model that will
retire the "architect, design, implement, test and start it all over" development
process and replace it with a more advanced and automated "model, simulate,
generate" development process. The ease of testing more architectural options
than earlier will also increase the quality of software architecture. The more
comfortable it is to try out various options the more likely it is for a software
architect to test more options. The more various options are studied the more
probable it is that a better one than the current will be found.

Quality-driven architecture model transformation provides its benefits especially
in the context of product families. The products of a product family may involve
various customer groups desiring different functions and qualities for a product.

18

For instance, one customer may value reliability while considering response time
not so important, whereas another customer may be requesting a short real-time
response time. As another example, different environments of use may affect the
variability in the quality aspects of a product family. In other words, a product
may involve varying hardware, portable and fixed-point, while its software
functionality remains unchanged. Despite common functionality the products
may also have varying security requirements. In addition, portable devices (e.g.
Personal Digital Assistants, PDAs) are evolving more quickly than fixed-point
devices (e.g. Personal Computers, PCs). This rapid evolution requires a PDA
software product to be as platform independent as possible or at least to provide
a high degree of portability. Automated QAMT would enable easier optimisation
and modification of individual product qualities.

So far, the research community has been focusing on, for example, applying
MDA in various application domains, defining transformation languages for
vertical transformations and UML (Unified Modelling Language) profiles (see
e.g. (Aßmann 2004)). The quality-driven architecture model transformation
concept has not, however, received any greater attention so far. Christoph (2004)
presents a rule-based transformation framework, which facilitates horizontal or
vertical transformations among UML 1.1 models, focusing on class-diagrams.
This approach does not, however, consider the effects of quality requirements on
horizontal transformation, and, furthermore, the framework applies an obsolete
version of modelling language, which does not support architecture modelling.
Bosch & Molin (1999) present a cyclic transformation process for improving the
quality characteristics of software architectures. Here the basic idea of
architectural transformation is that functional requirements have already been
fulfilled, while quality characteristics are determined through an evaluation of
the architecture and possible unmet quality requirements are achieved through
restructuring i.e. transforming the software architecture. This approach does not
directly deal with model-driven software development and it only considers
manual architecture transformation.

Grunske (2003) presents an approach towards automation of architecture
transformation. The approach utilizes a hypergraphs theory for automating
UML-RT model transformation. Here, the automation concentrates only on
transforming the graphical representation of architecture and checking the
behavioural equivalence between source and target with a proof algorithm.

19

Architecture evaluation (i.e. identifying source model and target model) is
mentioned but not dealt with in any detail.

One of the fundamental ideas of model-driven development is that more
modellers than developers will be needed in the future. The more modellers, the
more automated modelling tools are required. Furthermore, no technique,
including the architecture transformation technique, is effective without
appropriate tool support. Tools providing support or guidance to the modeller
and enabling automation of, for instance, traceability and transformation are, as
stated in (Steenbergen et al. 2004), the key for an industrial adoption of MDA.
Thus, the automation of MDA should be one of the main research issues at the
moment.

1.3 Problem, limitations and results

Converting architectural models to other models is likely to be a common
routine for developers in the software industry. Models are constantly manually
converted during the development process due to various reasons. Model
conversion may be, for example, due to changes in the business or in functional
or quality requirements. Thus, as QAMT already is possible and conducted
constantly in the software product life cycle, although manually, this research
does not consider the question of how to make quality-driven software
architecture model transformation possible. The specific problem to be studied
in the dissertation is:

How to make automation of quality-driven software architecture model
transformation (QAMT) possible?

Semi-automated or even automated quality-driven software architecture
transformations are a part of an ideal state of the model-driven architecture
approach. Currently, the maturity of the different specifications included in the
MDA standardization framework varies. The development of standards for
automated transformations has to be started and indeed has been started at the
grassroots level, nearer to platform dependence than platform independence. As
the semantic expressiveness of the unified modelling language increases
(Kobryn 2004), the future of developing standards for automated transformations

20

will be focusing on the higher levels of platform independence. Over the past few
years, the level of abstraction for software practitioners in software descriptions
has been increasing (Brown 2004). Within MDA, a Computation Independent
Model (CIM) has already been defined, focusing on the environment of the system
and the requirements for the system (OMG 2003a). If we assume that the
development trend of model abstraction does not change much in the not so far
future, automated transformations may be realized at the architecture level or even
at the level of product requirements. However, in the current circumstances the
scope of this dissertation is not "how to make the automation", because the
problem then would cover several implementation technologies and therefore be
far too large to be studied in this dissertation summary.

There is no fixed way to describe a software architecture model among software
professionals. Automatic conversion of models is a complicated task and the
variance in model descriptions certainly does not make it easier. Therefore, this
dissertation is restricted to architectural models described with the QADA®
methodology (Quality-driven Architecture Design and quality Analysis). The
ideology of the QADA methodology is introduced in Section 2.1 and also
discussed in Papers I�VII.

Finally, the intention of this dissertation is neither to develop new nor to
improve existing patterns for quality-driven architecture modelling but rather to
assume that the number and scope of the currently available patterns is extensive
enough to be utilized in this research. Further, the intention is not to develop any
mapping language, i.e. transformation description language (TDL), either.

Quality-driven architecture model transformation may be easily confused with
refactoring, because both approaches, to put it in general terms, change software
structure without changing functionality. However, the abstraction level of
refactoring is closer to implementation than architectural models. Refactoring
directly addresses code, whereas architecture model transformation deals with
models. In other words, quality-driven architecture model transformation may be
performed early in the architecting phase whereas refactoring changes an
existing and already implemented software. In addition, in a special case an
architectural transformation may change functionality through indirect
functional variability. In other words, the variability of quality requirements
causes indirect variability in functionality, e.g. reliability requirement changes,

21

and a new fault treatment mechanism is added to the architecture. Thus, the
question in architecture model transformation is not only about changing
structure, but also changing and improving quality.

After discussing the research question and its limitations above, I provide an
overview of the results of dissertation research. This research gives an answer to
the research question by providing a model for QAMT automation. The goals of
the model are:

• Provide as complete as possible a transformation specification, while
preserving platform independence.

• Promote automation of validated transformation process.

• Retain understandability of the model by utilizing current state-of-
practice and standards in specification structure, specification
language and terminology.

The QAMT model includes activities for describing the transformation process
and transformation actors for representing the collaborating objects that execute
the transformation.

1.4 Research approach

The work done in this dissertation is a part of a long-term research started in
2000, namely the development of the QADA® methodology. The development is
done in a sequence of various types of research projects involving several
researches, each project and researcher focusing on certain part(s) of the
methodology. The research approach of the whole concept is to create, validate
and improve parts of the methodology as methods, techniques and realizations,
to evaluate the parts and therefore to iteratively elaborate the methodology.
Methodology parts are individual methods, wherein a method (Kronlöf 1993)
denotes (1) an underlying model, (2) a language, (3) defined steps and ordering
of these steps and (4) guidance for applying the method complemented with (5)
tool support. My research efforts have concentrated on the development of the
quality-driven architecture design method and its constructs as an integrated part
of the QADA methodology.

22

This dissertation research applies the constructive research approach (Järvinen
2004). My research covers three main steps, which iteratively improve and
extend the method as follows. (1) Collect data by studying the state-of-the-art in
the specific field and/or make empirical observations in cases, (2) develop
method constructs, i.e. analyse collected data and produce parts of the method
such as steps, model, notation, tool support and guidance and (3) test method
constructs with multiple cases (van Aken 2004), self-evaluations and
comparisons (Järvinen 2004). Testing the method with a case also serves for data
collection (step 1) for the next method iteration.

The first method constructs were originally introduced in (Matinlassi et al.
2002), after which they have been tested in cases (Papers IV�VII) and
comparisons (Papers I & III), iteratively improved (Paper II) and extended
(Paper III) to finally produce the QAMT model presented in this dissertation
summary. Table 1 summarizes the cases that were used for QAMT data
collection and design method testing. The cases are identified (IDs) as C1 (case 1)
to C9 (case 9).

Table 1. Summary of cases used in the research.

Domain ID Type Description

C1 Laboratory, pf
(product family)

Distribution service management
platform

C2 Industrial Multimedia streaming service
Middleware
services

C3 Industrial Instant messaging and presence service

Wireless
services

C4 Research pilot,
ref. architecture

Multiplayer game

Terminal
software

C5 Industrial pf Terminal software for a fare collection
system used in public transportation

Control
systems

C6 Industrial pf,
third party case

Prototyping framework for a family of
multifunctionals

C7 Industrial, pf,
third party case

Analyser and simulation software
product families for telecommunication
networks

Telecommuni-
cation

C8 Industrial, pf Base transceiver station family

Measurement C9 Industrial pf Measurement system family

23

The first one of the cases, C1 (Matinlassi et al. 2002, Paper II) was the starting
point for the development of the design method. C1 was also used as a starting
point for the development of automated QAMT (Merilinna 2005). The aim of
the further cases in the domain of middleware services, namely C2 and C3
(Paper VII), was to test the method in industry, especially in small development
teams. Large development teams become familiar in test case C4 (Papers IV &
VI) wherein pilot wireless services (shortly pilots) were developed in a
European, multinational and multi-site development team. The terminal software
product family in C5 (Matinlassi 2004, Paper V) tested the design method in a
middle sized, local development team. In addition to design, quality analysis was
also applied in C5. Next, it was time for third party cases C6 and C7. In case C6
(Vrijnsen et al. 2003), in the domain of control systems, a prototyping
framework was developed for a family of multifunctionals. Third party
representatives studied and applied the design method almost independently with
minor guidance from a colleague of the author. Case C7 was also a third party
case. In this case, the company representatives studied and applied the
architecture design method providing conceptual and concrete architecture
designs. The author reviewed both architecture documents, and after feedback
meetings the company carried on with architecture development, design and
implementation independently. After applying the design method in cases C6
and C7, the representatives of the case companies answered an experience
questionnaire in the Web2 with 43 questions. The questionnaire study provided
feed back for design method development. Case C8 (Matinlassi et al. 2004)
adapted the method viewpoints to the base transceiver station family. Case C9
applied the design method for a measurement system family. Cases C1 - C5 are
selected as real cases for collecting data and validating QAMT. Cases C6 - C9 are
not valid for the purposes of this thesis because they are either third party cases
(control systems, telecommunication) or not published (telecommunication,
measurement systems). Table 2 shows the contribution of each case to QAMT.

2 http://cgi.vtt.fi/html/kyselyt/qada/

http://cgi.vtt.fi/html/kyselyt/qada/

24

Table 2. Contribution of cases C1 - C5 to the QAMT model.

Case Empirical observation(s) = Contribution

C1

Trial to execute transformation in a laboratory case.

Observed transformation triggers: quality variability in time, i.e. quality
requirements evolution.

Observed how QAMT was performed manually.

The first implementation trial of the QAMT automation model.

C2,

C3

Trial to transform architecture from case C2 to C3.

Observed transformation triggers: functional variability in space, no
quality variability (static quality attributes: modifiability, integrability
and portability), architectural transformation not relevant.

C4

Trial to develop a pilot and to transform the architecture twice.

Observed transformation triggers: quality requirements evolution in
pilot iterations (first transformation: real-time performance, second
transformation: modifiability)

C5

Trial to evaluate architecture, suggest appropriate transformations and
estimate the effects of transformations.

Observed transformation triggers: quality variability in space (e.g.
security requirements are different in differing environments) and
quality variability in time (e.g. extensibility for future functions).

Next, it is described � in more detail � how the dissertation research was
conducted (Figure 1). The illustration presents how empirical data was collected,
analysed, reported and the results tested in the next case, which again also acted
as a source for empirical data of the next method iteration (Figure 1 a). The
outermost circle represents the cases. The inner three circles represent the
research topics, which are built on top of each other as can be seen in Figure 1b.
In manual quality-driven software architecture model transformation, the
software architect needs information on the model and especially on the
architecture quality in the model. In other words, information is needed on
topics such as the abstraction level of modelling, architectural viewpoints,
modelling language, applied diagrams, as well as on the quality requirements,

25

quality variability and quality representation of the model. All the papers I�VII
are related to the topics stated above. In particular, the dissertation summary
utilizes empirical experience gained in testing the previous versions and parts of
the design method in multiple cases and also interprets the old case results in a
new way and thus produces an inductively derived model. The QAMT model
partly describes the underlying model of quality-driven design thus contributing
to the QADA methodology as one method construct. The model itself is tested in
the dissertation summary through assessing it against evaluation criteria.

Cases C1, C2, C3, C4, C5

Data analysis

Modelling &
Architecture quality
I, II, III, IV, V, VI, VII

Transformation DS

a) b)
Figure 1. Dissertation research path.

Table 3 classifies the papers I�VII, other publications related to dissertation
research and the dissertation summary according to the research topics and
research steps mentioned above.

26

Table 3. Summary of publications related to dissertation research.

Topic
Step

Architecture
quality Modelling Transformation

Study state of
the art

V I, III,
(Matinlassi 2002)

DS,
(Merilinna &
Matinlassi 2004)

Develop
method

II, V, VI,
(Matinlassi &
Niemelä
2002)

II, III, IV, VI
(Matinlassi et al. 2002)

DS,
(Matinlassi 2005)

Case
V, VII
(Matinlassi
2004)

IV, VI,
(Matinlassi et al. 2004;
Niemelä et al. 2004,
Vrijnsen et al. 2003)

DS,
(Merilinna 2005)

Test

Evalu-
ation

- I, III
(Matinlassi & Kalaoja 2002)

DS

Table 4 further clarifies the contribution of Papers I to VII for the dissertation
research. The method constructs in Table 4 are based on the definitions by
Kronlöf (1993), America et al. (2000) and March & Smith (1995). The short
names and their descriptions for constructs are as follows:

1) Model = a description of "how things are". Forms a vocabulary of the
method and constitutes the concepts for understanding the method. The
representation of the model is not constrained any way.

2) Language = how to describe software architecture. In addition to bare
language, this construct describes the viewpoints, diagrams etc. needed
to describe software architecture.

3) Steps and their ordering = how to design software architecture. Includes
overall design phases and an easy to follow 1-2-3 step for completing
the phases.

4) Guidance = Illustrative example(s) on using the constructs above.

5) Tool support = A CASE (Computer Aided Software Engineering) tool, a
set of CASE tools and/or tool extensions for supporting the models,
steps and language above.

27

Table 4. Contributions of Papers I�VII and DS for dissertation research.

Research step Ref Contribution

I
Evaluate existing SWA (software architecture)
development methods

III Evaluate existing SWA description techniques

V Study state-of-the-art of quality attributes Study state of the art

DS
Study state-of-the-art of quality-driven architecture
model transformation

Steps,
language II

Develop a method for designing and modelling software
architecture for products and product families

Language III
Improve the method with a fourth SWA description
viewpoint

Steps,
language,
guidance

IV
Adapt the method to modelling especially wireless
services

Model V
Constitute the concepts for quality-driven
architecture design: impact of maintainability

Model,
language VI

Illustrate two separate abstraction levels and four
viewpoints

Constitute the concepts for quality-driven
architecture design: quality stack

Develop
method
construct

Model DS Elaborate the method with QAMT automation model

II
Introduce C1 and report future research based on case
experiences

IV,
VI

Test quality-driven design in large development team
in the domain of wireless services, C4

V
Test quality-driven design and quality evaluation in a
product family with middle size development team in
the domain of terminal software, C5

VII
Test quality-driven design in small development
teams in the domain of middleware services, C2, C3

Case

DS
Interpret old case results in a new way to derive
QAMT automation model, C1�C5

I
Compare the design method with other similar
methods

III
Compare QADA viewpoints with DSP (Digital
Signal Processing) viewpoints

Test

Evaluate

DS Evaluate the QAMT model against criteria

28

1.5 Outline of the dissertation

Section 2 provides a reference framework and the state-of-the-art on quality-
driven software architecture model transformation. The concept is approached
by first introducing quality-driven software architecture development and then
by concentrating on architecture modelling. Further, architecture model
transformation is discussed by presenting a small taxonomy of model
transformation and introducing the most important approaches to transforming
an architectural model.

Section 3 describes the QAMT model by first introducing the main concepts
related to it, i.e. activities and actors, and illustrating how the actors collaborate
to execute transformation. After that, an automation model is presented for each
of the main activities as an UML activity diagram. Finally, the section
concentrates on the two most important automation actors and defines (1) what
information shall an actor contain and why, (2) how information is captured in a
uniform way and (3) how information is obtained.

Section 4 introduces the evaluation criteria and an assessment of the model
against the defined criteria. The evaluation criteria, as derived from the needs of
the QAMT model stakeholders, are the following: completeness of the
transformation specification, platform independence of transformation actors,
automation level of activities, maturity of activities and conformance to
standards. The results are presented in the assessment section and in the
evaluation summary. The evaluation summary also discusses the consistency of
the evaluation results.

Section 5 presents the conclusion of the dissertation summarizing its results,
discussing the limitations of the results and drawing out some points for future
research.

Section 6 is an introduction to the original papers included in this dissertation.
The main considerations of the papers are summarized and papers are
categorized into state-of-the-art, method development and case papers.

Papers I to VII are presented in appendices.

29

2. Quality-driven software architecture
model transformation

This section discusses the state-of-the-art of quality-driven software architecture
development and then especially focuses on software architecture modelling and
architecture model transformations. The main concepts of the approach are first
introduced, concentrating on quality properties, quality property variability in
software architectures and how quality is represented in models. The notions of
model, architectural model, model-driven development and especially MDA are
discussed in the SWA modelling section. The transformation section includes
two main topics: the taxonomy of model transformations and an introduction to
the most important architectural model transformation approaches.

2.1 Quality-driven software architecture development

The basic principle of quality-driven architecture development is to emphasize
the importance of quality properties. This is realised by gathering, categorizing
and documenting quality properties as at least equally important requirements as
functional requirements and constraints (Paper II), and utilizing the gained
knowledge in architecture design. The quality-driven design is further
complemented by an architectural analysis evaluating the models produced. In
practice, the quality-driven approach in software development is realized in
several ways (Paper III, Paper VI):

• Emphasizing quality properties in eliciting requirements. Eliciting
and mapping quality requirements through the design, from the
requirements to the architectural model.

• Modelling architecture with emphasis on quality properties.
Describing software architecture with viewpoints dedicated to certain
quality attributes and representing quality in viewpoints with styles,
patterns and quality profiles.

• Validating that quality properties are realised in models. Utilizing
architectural viewpoint descriptions in the evaluation, the designed
architecture is validated against the quality requirements set in the
beginning (Dobrica & Niemelä 2000; Dobrica & Niemelä 2002).

30

The next sections focus on those aspects of quality-driven software architecture
development that are closely related to architecture model transformation: quality
properties and their variability as well as the quality representation in the model.

2.1.1 Quality properties

Functional requirements specify functions that the developed software must be
capable of performing. Non-functional requirements in software development
describe how functional requirements shall be realized in the software product(s)
(Chung et al. 2000). In other words, non-functional requirements cover the full
spectrum of software development and production including non-functional
requirements from various perspectives such as business, development and user,
thus including such non-functional requirements as development cost, project
stability, maturity and learnability.

The ISO/IEC (International Organization for Standardization/ International
Engineering Consortium) Quality model 9126-1 (2001) divides product quality
attributes into two categories: quality attributes of an intermediate product (i.e.
while the product is in production) and those of a completed product (i.e. while
the product is ready and in use). The quality attributes for intermediate products
are: functionality, reliability, usability, efficiency, maintainability and
portability. The quality attributes for a product in use are: effectiveness,
productivity, safety and satisfaction.

Intermediate product quality is further divided into internal and external quality.
Different metrics are used to evaluate internal and external quality although the
names of quality attributes remain the same. How I see it, ISO 9126-1 (2001) is
a process-oriented standard looking at things through the software process.
According to this standard, internal refers to process phases where you are able
to access the �fundamental design� (i.e. code) whereas external represents the
process phases where you are not any more able to access the �fundamental
design� (e.g. in testing phase), while small improvements are still possible.

The software architecture community talks about architectural quality attributes
(Bass et al. 1998), which are the non-functional requirements especially related
to software architecture. The IEEE (Institute of Electrical and Electronics

31

Engineers) standard 1471 (2000) completes the definition of quality attribute
(although calling it �architectural concern�) as follows �..those interests which
pertain to the system�s development, its operation or any other aspects that are
critical or otherwise important to one or more stakeholders.� Examples of these
architectural concerns include performance, reliability, security, distribution, and
evolvability.

Quality attributes are often classified into two main categories (Bass et al. 1998;
Dueñas et al. 1998): development and evolution time qualities, and execution
qualities. Execution qualities, e.g. reliability and performance, are discernible at
run-time, whereas development and evolution qualities � such as extensibility or
integrability � are considered in the architecture development (Paper V).
Compared to the quality attribute categorization in ISO 9126-1, this
categorization is independent of process phase and is based on the twofold
nature of software architecture, i.e. static � dynamic (Bratthall & Runeson 1999).

Due to the variance in terminology and orientation of software quality, Figure 2
illustrates the approach used in the summary of this dissertation. The term
quality property is here used to refer to quality attribute, quality requirement or
the combination of an attribute and corresponding requirements.

The two most important sources for quality attributes and requirements are (1)
stakeholder needs and (2) application domain (Paper VI; Niemelä and Matinlassi
2005; Al-Naeem et al. 2005). Quality attributes and requirements are defined by
identifying the interested stakeholders and their targets concerning the product
family. In other words, quality property is a non-functional interest of one or
more stakeholder(s). Product quality attributes are also derived from the domain
quality attributes. That is, certain qualities are typical of the domain while
certain attributes are considered less important. An application domain is a
specific group of software systems � such as medical systems, measurement
systems, distributed systems and information systems � or a specific group of
software components in a system e.g. graphical user interface domain. Because
of the large diversity in quality attributes and their definitions, the quality
attributes used in this work are described in Table 5.

32

Figure 2. Small quality terminology.

Paper V defines the relationships between the evolution quality attributes listed
in Table 5 as follows. Maintainability is the ease with which a software system
or component can be modified or adapted to a changed environment. Therefore,
the definition of maintainability is very close to modifiability. Modifications
include adding new components (requires extensibility and integrability), porting
to different computing system (requires portability and flexibility) and deleting
unwanted functions. No matter what kind of changes the system is subjected to,
it must be tested after the changes have been made (requires testability).
Furthermore, any software with a long life-cycle requires reusability (e.g. use of
standards, component-based development and up-to-date component
documentation) from the system components. To conclude, all the attributes in
Table 5 are more or less related to maintainability.

33

Table 5. Evolution quality attributes.

Attribute Description

Maintainability The ease with which a software system or component can
be modified or adapted to a changed environment.

Modifiability The ability to make changes quickly and cost-effectively.

Extensibility The system�s ability to acquire new components.

Integrability The ability to make the separately developed components
of the system work correctly together.

Portability The ability of the system to run under different computing
systems: hardware, software or combination of the two.

Flexibility
The ease with which a system or component can be
modified for use in applications or in an environment other
than those for which it was specifically designed.

Testability The ease with which software can be made to demonstrate
its faults.

Reusability The ability of system structure or some of its components
to be reused in future applications.

2.1.2 Variability in quality properties

There seems to be disagreement within the research community on whether
variability is a quality requirement (Chung et al. 2000; Purhonen 2002) or not
(Salicki & Farcet 2001). Referring to Salicki and Farcet (2001), variability is not
a quality factor as such, but it provides a mechanism for managing the
anticipated changes in software structure(s) during the evolution of systems.
Thus, how I see it, variability is used as a mechanism to improve other quality
properties such as maintainability and extensibility � especially in product
families. Very few publications concern variability especially in quality
properties. For example, the future research plan of Andersson and Bosch
(2005) is as follows: �We also plan to study how variability management can be
improved for non-functional requirements and carry out a more in-depth study of
the dynamism aspect and how this is managed in the architectural design
process.� Therefore, I here discuss and provide a short summary on those
properties of functional variation that are applicable to quality variation. Quality

34

variation is here not regarded as an unwanted diversity of quality but as an
intentional variation in stakeholders� non-functional interests.

In order to derive varying products from a PFA, software product family
architecture has to support variability of functionality and quality in space and
time (Bosch 2000). Variability in space denotes divergence between the
products or product variants, whereas variability in time refers to product family
evolution. According to Bosch et al. (2002), the differences among products are
managed by delaying design decisions, thereby introducing variation points,
which again are bound to a particular variant. The division into space and time
variation also applies to quality variability.

A variation point identifies a location at which a variation can occur in a given
system (Salicki & Farcet 2001). A variation point may be external or internal (van
Gurp et al. 2001). External variation point refers to variability in the environment
of the system, e.g. in peripherals, hardware platform or operating system, whereas
internal variation point has to do with the internal variation of software functions
or implementations. Similarly, quality properties may have internal and external
variation points. An interesting characteristic of the quality property variation
point is that variation points in function may cause indirect variation in the quality
properties of software (Niemelä & Matinlassi 2005). For example, an external
variation point in the execution platform may cause variability in software
reliability and performance requirements i.e. the application has to compensate for
varying reliability in platforms. Indirect variation may also occur the other way
round i.e. variation in quality properties may cause variation in functionality (e.g.
variability in security requirements results in different user authentication policies
or varying data encryption algorithms).

In addition to variability in space and time, discrete and continuous variability are
introduced by Becker et al. (2002). Discrete variability offers a set of possible
features, from which a subset can be chosen for specific applications. Examples of
variant subsets are represented in (Kang et al. 1990; Anastasopoulos & Gacek
2001; Bachmann & Bass 2001). These approaches introduce variant types (e.g.
optional variant) stating the rules regarding how to select features in a variation
point i.e. �select a function or not� and �select one of two alternative functions�.
However, these �yes/no� types of variants are not fully suitable to be used as

35

quality property variants, which should also represent variation also in quality
property priorisation (e.g. high/medium/low reliability requirements).

Continuous variability represents differing realizations, which can be
parameterized later in the development process, namely in the compile, link or
runtime phases (van Gurp et al. 2001). This conforms to the above mentioned
idea of delayed design decisions and binding variants to variation points. Quality
property variants are harder to bind later in the development process than
functional variants. This is due to the fact that quality properties are realized by
utilizing architectural styles and patterns in the development phase. However,
dynamic architectures, see e.g. (Cheng et al. 2002), allow applications to
reconfigure and evolve themselves at run-time e.g. through automatic updates of
components. Figure 3 summarizes the variation types discussed here and
illustrates the relationships between them. Variation dimensions are represented
as axes and different types of variants can be placed in the variation space as is
shown with examples in Figure 3.

Variant
Occurrence

in Timeint
ern

al

ex
ter

na
l

e.g. binding time:
development

Variant
Priorisation

| |
 |

 |
| |

 |
 |

e.g. variation point in:
subsystem

e.g. variation point in:
middleware

| | | |

Disc
ret

e v
ari

ati
on

Continuous variation Evolution|
 |

 |e.g. priorisation level:

high

Vari
an

t

Occ
urr

en
ce

in
Spa

ce

Figure 3. Quality variation space.

36

2.1.3 Quality representation in an architectural model

Architecture quality may be represented in a model, e.g., with quality profiles
and with architectural styles and patterns. Quality profiles attach quality
properties to a model whereas styles and patterns are used to fulfil the quality
requirements in the software.

Quality profiles provide an informative way of mapping quality requirements
and architecture, even for the purpose of automated or semi-automated
architecture evaluation (Immonen & Niskanen 2005). Quality profiles are often
implemented as UML profiles. A UML profile is a language extension
mechanism that allows "metaclasses from existing metamodels to be extended to
adapt them for different purposes" (OMG 2005b). That is, UML may be tailored,
e.g., to model especially different platforms or domains. UML has already been
extended especially to represent quality in the software model. Examples include
a UML Profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms (OMG 2003b), a UML Profile for Schedulability,
Performance, and Time Specification (OMG 2003c), a reliability profile by
Rodriques et al. (2004) and a quality profile for representing the reliability and
availability requirements in architectural models by Immonen (2006).

Perry & Wolf (1992) define an architectural style expressing components and
the relationships between them, with the constraints of their application, and the
associated composition and design rules for their construction. Similarly, Bass et
al. (1998) define an architectural style as a class of architectures and as an
abstraction of a set of architectures that meet it. Further, architectural style
supports the building of classes of architectures in a specific domain (Monroe et
al. 1997). Architectural mechanisms realize architectural styles, thus promoting
architecture quality.

A style is determined by a set of component types, a topological layout of the
components, a set of semantic constraints and a set of connectors. In other
words, architectural styles only describe overall structural frameworks for
architectures and are not as much problem-oriented as architectural patterns.
Architectural patterns are solutions for specific problems. Patterns are also
widely reused and verified. Buschmann et al. (1996) divide patterns into
architectural patterns, design patterns and idioms. Architectural patterns

37

express the fundamental structural schema of a software system, and they are
applied for high-level system subdivisions, distribution, interaction and
adaptation. When an architectural style is strictly defined and commonly available,
it can be regarded as a pattern (Niemelä 1999). Such are, for example, layered
style (Klein & Kazman 1999) and layers pattern (Buschmann et al. 1996).

A design pattern (Gamma et al. 1994) describes a recurring structure of
communicating components, which solves a general design problem in a
particular context. Since design patterns are applied in a particular context, e.g.
to define the content of a layer or a component, design patterns as such cannot
guarantee a good overall architecture (Niemelä 1999). Idioms represent the
lowest level of patterns, describing how particular aspects of components or
relationships between them are implemented using a given programming
language (e.g. Singleton for C++ language (Gamma et al. 1994)).

Although several studies have been made with goals to compare or categorize
architectural styles � such as (Shaw 1995; Keshav & Gamble 1998; Levy &
Losavio 1999) � there is still no common understanding on the subject. For
example, there is no explicit list available on quality attributes and no explicit,
common knowledge about which attribute(s) are promoted by the different
styles. However, some remarkable research work has been done in this field,
e.g., in (Andersson & Johnson 2001; Niemelä et al. 2005). Quite often, promoted
quality attributes are derived indirectly from the style specification, e.g.,
Simplex uses redundancy to tolerate faults, thereby and therefore enhancing
reliability. Furthermore, definitions vary. For example, publish-subscribe is
known not only as a design pattern (Gamma et al. 1994) but also as an
architectural style (Klein & Kazman 1999). Another example is the case where a
model-view-controller architectural pattern (Buschmann et al. 1996) is also
considered as a design pattern (Ardis et al. 2000).

Despite the confusion of definitions and specifications, I have collected some
examples of architectural styles and the most important qualities they are
claimed to promote in Table 6.

38

Table 6. Examples of architectural styles.

Name Quality properties Reference(s)
Layers style portability,

modifiability, reusability
of layers

(Klein & Kazman 1999)

Software Architecture
for Dependable and
Evolvable
Industrial Computing
Systems, Simplex

redundancy, reliability (Sha et al. 1995) and
(Klein & Kazman 1999)

Chiron-2, C2 heterogeneity,
concurrency,
composition

(Taylor et al. 1996) and
(Medvidovic et al. 1996)

Token architecture (scalable) performance,
extensibility, portability

(Karhinen et al. 1997)

Component
programming
architectural style,
ComPAS

separation of concerns,
locality

(Gall et al. 1997)

Dual protection style,
DPS

security (Fenkam et al. 2002)

Architectural style for
deregulated power
markets

flexibility, extensibility (Zhao et al. 2001)

Point-to-point style limits component
accessibility

(Andersson & Johnson
2001)

Architectural style for
end-user
programming, E-Slate

increases end-user
accessibility

(Birbilis et al. 2000)

2.2 Software architecture modelling

This section discusses the notion of software model and also introduces the area
of architectural model descriptions. Further, this section introduces the concept
of model-driven software development (MDD) and an initiative to standardise
MDD, namely model-driven architecture initiative.

39

2.2.1 Software model

A model � as a design artefact � is an abstraction of the system from a certain
point of view, wherein a system denotes a real world object. In other words, a
design model is a representation of the real world and it represents the real world
with a certain language (Bézivin 2004). According to another quite parallel
definition �A model is a simplified representation of a system intended to
enhance our ability to understand, predict and possibly control the behaviour of
the system� (Neelamkavil 1987).

A model is written with a language, which may be textual or graphical (OMG
2005a) and the definition of a model shall not be dependent on the modelling
language. In software modelling, such questions might posed as whether
software is a real world object or is it a model of a real world object? Or if code
is software or a textual model of software? Referring to Bran Selic in MDA
summer school in September 2004, it may be stated that "Software has the rare
property that it allows us to directly evolve models into full-fledged
implementations without changing the engineering medium, tools and methods.
The model evolves into the system it was modelling." The meaning of a model in
software development may thus be concluded as follows: everything is a model.

According to Selic (2003), a good model is abstract, understandable, accurate,
predictive and inexpensive. These criteria provide a kind of ordering to the chaos
of software model definitions. An abstract model emphasizes important aspects
while removing irrelevant ones. For example, in a textual software model (i.e.
code) it is hard to emphasize anything and even harder to remove irrelevant
aspects because a textual model can only provide inadequate mechanisms for
abstracting. Järvinen (2001) refers to (Foley & van Dam 1982) by stating that
the �human eye-brain pattern recognition mechanism does indeed allow us to
perceive and process many types of data very rapidly and efficiently if the data
are presented pictorially�. That is, graphical models are often faster to read and
more efficient in representing things than text. However, the great power of
graphical models may lead to a situation where a small mistake in making a
graphical model causes a huge misunderstanding (Järvinen 2001). Therefore, the
�abstract� criterion sets high requirements for both the modelling language and
the use of the language. The language shall provide mechanisms for abstracting
away and the modeller shall be able to use these mechanisms correctly.

40

An understandable model denotes a model that is expressed in a form that can
easily be understood by observers. Again, this criterion also sets a specific
requirement for the modelling language. A software model has to be written in a
language that is understood by other software developers. Formal modelling
language is required to achieve universal understanding for both people and
machines. Formal models are also required for interoperability of models and
tools. However, formality in the sense of formal methods or mathematical
formality is not a necessity in software modelling because mathematical
software models (see e.g. Sifakis et al. 2003) are not understandable for most
software developers. For example, if a building architect should represent his/her
brilliant architecture as a mathematical model, it would not be easy to
understand? In other words, a model needs to speak the language of the reader
in order to be understandable. In an ideal situation, the appearance and language
of a model should be tailored to the specific stakeholder(s). For example, it
should be possible to represent different views of an architectural model to
different stakeholders (see architectural views in Section 2.2.2 Architectural
models). In addition to the modelling language, the modeller also contributes to
making the model understandable: even the best language will not be understood
if it is not used correctly.

An accurate model faithfully represents the modelled system. This criterion seems
to contradict the first one: abstract and accurate at the same time? How is it possible
to remove irrelevant aspects (i.e. abstract away) and simultaneously preserve the
accuracy of a software model. Abstract is more of an aspect of the modelling
language than it is an aspect of the model itself. In other words, the language should
provide mechanisms for abstracting away, while this does not necessarily mean that
different languages are needed for different abstraction levels. Accuracy has
primarily to do with the model, i.e. how the modelling language is used to produce a
model. Here, accurate models may be produced by drawing a model that includes
more than one abstraction level. The upper levels of abstraction will remove
irrelevant aspects, whereas the lower level(s) preserve accuracy. Such levels are
represented by, e.g., user level, application level and technical level (Günther &
Steenbergen 2004), and the conceptual and concrete levels in Paper II. This criterion
sets requirements for the modelling method, in particular, and also requires support
provided by a modelling tool. For instance, the method defines that a single
language is to be used to describe several abstraction levels and the tool enables
observation of the levels individually or at the same time.

41

A predictive model can be used to predict desired properties of a system from
the model before a real system has been built. A predictive model also answers
selected questions about the modelled system e.g., regarding how reliable the
software is (Immonen 2006). However, one model is capable of representing the
system "from a certain point of view", and thus one model cannot answer all the
questions about the modelled system. Therefore, the question arises if we should
talk about a software model or, rather, models? How many models are required
to produce a good model as presented above? Only one model should be
required to allow the information to be entered only once into the model. A
model can also provide multiple views that represent the system from different
points of view. In that sense, also the views are models as such, but if the
information is entered only once, the entity can be considered as one model. In
order to retain the benefits of a single model, all the views need to be consistent
with each other while still separate to support the understandability and
abstractive nature of a good model.

Finally, a model has to be inexpensive, i.e., much cheaper to construct and study
than the modelled system. In software development, the most expensive thing are
the people. The more people and working hours are required, the more expensive
the software model and software itself. Thus, as a summary, a good software
model reduces the amount of people and time needed in software development by
being adequately abstract, understandable, accurate and predictive.

2.2.2 Architectural models

According to IEEE-1471 (2000), an architectural description aggregates one or
more models and is organized by views, which again consist of one or more
models. In other words, an architectural description consists of models called
views specified in viewpoints (see definition on page 14).

An architectural view is a projection of the complete system model. Each
architectural view/model represents selected parts of the system. Specific parts
of the system may be targeted, for example, at specific stakeholders (e.g.
customer, project manager, designer) or specific parts may represent only certain
property/properties of the system (e.g. performance model).

42

There is no fixed set of architectural viewpoints, but viewpoints are rather
defined by the method at hand (see e.g. (Hofmeister et al. 2000; Jaaksi et al.
1999; Kruchten 1995; Paper III). As defined in IEEE-1471 (2000), each
architectural viewpoint may include one diagram or more, while a diagram is an
element in a model. In the context of MDA, the modelling language (e.g.
Unified Modelling Language 2.0, shortly UML2) may define certain guidelines
for a set of diagrams used in models. However, in the end, the set of diagrams is
specific for CASE tools and these tools rarely allow the user to configure any
specific viewpoints or diagram sets. More specific information on the tools can
be found in Paper I and in (Merilinna & Matinlassi 2004).

In addition to viewpoints, abstraction levels are peculiar to architectural models.
Similarly to viewpoints, abstraction levels are not a fixed set either. Usually, a
set of two or tree abstraction levels are used. The number of abstraction levels
depends, e.g., on the size of the product/product family and application domain.
Different abstraction levels may be used in architectural descriptions, for
example: conceptual and concrete architecture (Paper II), commercial and
technical (America et al. 2000) and user, application and technical architectures
(Günther & Steenbergen 2004).

Summarizing the architectural models discussed here and the properties of a
good model presented in Section 2.2.1, the use of views as architectural models
promotes architectural models being predictive. Further, the use of abstraction
levels assists in making architectural models abstract and accurate. Views and
abstraction levels in company with an adequate modelling language make
architectural models more understandable. The next section discusses an
approach that enables architectural models � and software models in general � to
be even more inexpensive: model-driven development.

2.2.3 Model-driven development

Model-driven software development, abbreviated as MDD (Selic 2003) or
MDSD (Bettin 2005) focuses on providing models � rather than programs � as
primary software products (Frankel 2003). In addition to the term "model-
driven" also model-based (Törngren et al. 2005) and model-centric (Born et al.
2005) are used as synonyms to denote the approach defined above. Further,

43

model-driven engineering is also used as a synonym for model-driven software
development.

Adopting MDD in software development (especially in the domains of
embedded and real-time software) faces hard resistance to change and, a change
in large populations denotes great inertia. The code-centric approach is deeply
rooted among software professionals, most of them thinking that models will
never be accurate enough. Further, the model-driven approach arouses fear of
loosing power. The power or the competence resides in people, and this
generation of software engineers is grown to believe that the models are in the
people, and thus, model-driven development is unlikely to be able to help this
generation. In addition, MDD does not ensure any faster development process if
the development work is done by a typical, relatively small and competent
development team incrementally evolving their software product. The software
culture has to be reconciled with MDD and with an appropriate motivator.

Hard resistance seems illogical considering that MDD embraces the principles of
well-matured and industry-adopted software development trends. According to
Bettin (2005), MDD is a multi-paradigm approach embracing the following trends:

� Domain analysis and software product line engineering
� Meta modelling and domain-specific modelling languages
� Model-driven generation
� Template languages
� Domain-driven framework design
� The principles of agile software development
� The development and use of Open Source infrastructure

In addition, applications of model-driven development already include large-
scale systems, such as a billing and customer care system (Günther &
Steenbergen 2004) and a distributed inventory tracking systems (Nechypurenko
et al. 2004).

The next section provides an introduction to an initiative designed to standardize
and therefore provide progress in the adoption of model-driven software
development: model-driven architecture.

44

2.2.4 Model-driven architecture

Model-driven architecture, MDA (OMG 2003a; OMG 2005a) is an OMG
initiative designed to provide a standardization framework for MDD. This
framework comprises a set of non-proprietary standards that will specify
interoperable technologies with which to realize model-driven development with
automated transformations (Selic 2004). However, not all of these technologies
will directly concern the transformations involved in MDA.

MDA Manifesto (Booch et al. 2005) introduces the three tenets of MDA:

• Direct representation. Direct representation means using models for
representing problems rather than using models as graphical syntax for
programming languages. The aim is to reduce the gap between domain-
specific concepts and programming technologies. Models shall map
directly to domain, not to computer technology. Direct representation
reduces the effort required to implement complex applications.

• Automation. If models are used for representing problems, we will face a
new semantic gap between the problem model and implementation
technology. In order to fast up development and reduce errors,
transformation over this semantic gap needs to be automated. Therefore,
automation means using automated tools to transform domain-specific
models into implementation code. This is the same thing that compilers
do for traditional programming languages today.

• Standards. Standards are important because they promote the
technology progress. Especially open standards ensure consistently
implemented technologies, models etc. and openness encourages the
adoption of standards by vendors.

In the MDA approach, a platform independent model (PIM) describes a system
completely, without, however, any platform specific details. Platform specific
details are described in a platform specific model (PSM), which is a realization
of PIM. That is, MDA expresses model abstraction as platform independence. In
the context of software development, it is important to define the platform.
Frankel (2003) has proposed the following platform definition:

45

• Information-formatting technologies, such as XML (eXtensible Markup
Language) DTD (Document Type Definition) and XML Schema

• 3rd and 4th generation languages, such as Java, C/C++ and Visual Basic

• Distributed component middleware, such as J2EE (Java 2 Platform
Enterprise Edition), CORBA (Common Object Request Broker
Architecture) and .NET

• Messaging middleware, such as WebSphere MQ (Message Queuing)
Integrator and MSMQ (Microsoft Message Queuing).

MDA provides mechanisms for developers to capture their domain knowledge
and to map it to implementation technology in a standardized form. This
knowledge is used to produce tools that will hopefully do most of the low-level
work automatically. �MDA has the potential to simplify the more challenging
task of integrating existing applications and data with new systems that are
developed� (Booch et al. 2005). Model transformation is the key concept in
MDA. The next section considers architecture model transformation.

2.3 Architecture model transformation

The notion of model transformation is an essential element for MDA aiming at
automated model transformation (see definition on page 14). Transformation
may be bi-directional. Ramljak et al. (2003) introduce four different types of
transformation: PIM to PIM, PIM to PSM, PSM to PSM and PSM to PIM.
Christoph (2004) refines the definition of transformation by classifying
transformations into two categories: horizontal and vertical. Figure 4
summarizes the relationships of the different types of transformations. It is hard
to define a fixed number of PIMs and PSMs for software systems. For example,
models may be written with various modelling languages, e.g. UML and ADLs
(Architecture Description Language), resulting in several models at the same
level of abstraction and for several platforms (e.g. Java and CORBA), which,
again, results in several PIMs at slightly different level of abstraction.

46

horizontal transformations

vertical
transfor-
mations

PIM

PSM

PIM

PIM

PIM
PIM

PIM

PIM

PSM

PSM

PSM
PSM PSM

Figure 4. Different types of transformations.

In order to automate any type of transformation (which is the fundamental idea
of MDA), the rules have to be written explicitly. The best way to define explicit
transformation rules is to apply a standard transformation definition language for
rule definition. The benefits of a specific standard transformation language are
that (1) it is independent of the way of executing a transformation and, therefore,
it enables automation with any other language, e.g. a procedural language, and
(2) it is unambiguous and commonly understood.

At the moment (November 2005), the standardisation of a common transformation
language is still underway. The OMG Query/Views/Transformation request for
proposals (OMG 2002) was announced in April 2002 and initial submissions were
due on October 28th, 2002. A total of eight submissions were received as proposals
(Gardner et al. 2003). OMG is currently finalising the standard. The final
competing proposals are the QVT (Query/Views/Transformations) Merge
approach and the QVT Compuware/Sun approach (Grønmo et al. 2005). The QVT
standard will be a general purpose language for model-to-model transformations.

Standardization of model-to-text transformations is an ongoing process within
OMG. The OMG MOF (Meta Object Facility) Model to Text Transformation
request for proposals (OMG 2004) was announced in August 2004. Initial
submissions were due January 10th 2005 and the issue is in progress.

47

In addition to using a special, dedicated transformation language, model
transformation can be defined through other approaches as well. Czarnecky and
Helsen (2003) provide a domain analysis for different transformation approaches
� including five QVT proposals. Sendall & Kozaczynski (2003) have proposed
two different approaches for defining transformations: (1) direct model
manipulation and (2) intermediate representation.

Direct model manipulation refers to accessing the model representation and the
ability to manipulate the representation. In practice, the direct model
manipulation approach relies largely on modelling tool properties. The
modelling tool may provide a set of procedural APIs (Application Programming
Interfaces) for manipulating the model, while the API is accessed with a general-
purpose language such as Visual Basic or Java.

Intermediate representation also requires tool support. The modelling tool may
support exporting the model in a standard form (e.g. XML), so that it can be
transformed with an external tool and then imported back to the modelling tool.

I may draw the conclusion that a dedicated transformation language is a
language-oriented approach for defining transformations, whereas direct model
manipulation and intermediate representation are tool-oriented approaches. The
tool-oriented approaches suffer from several disadvantages as compared with the
language-oriented approach. Such flaws are, for example, that they are not as
expressive as dedicated language and that they provide automation only through a
specific tool or tools. While the language-oriented approach is tool independent, it
does require becoming mature enough before it can be widely used. Grønmo et al.
(2005) evaluated the two competing transformation language proposals. Some of
the highlights of their report are summarized in Table 7.

48

Table 7. Summary of the QVT language proposal evaluation.

Language
proposal

Advantages + Disadvantages -

QVT-Merge

• Graphical syntax can define
single transformations fully
graphically (in some complex
transformations OCL (Object
Constraint Language)
annotations are needed)

• Easy to learn:
- textual language shares many

similarities of both syntax and
constructions with well-known
object oriented languages such
as Java, c# and c++

- graphical notation is quite
intuitive to understand

• Graphical syntax not complete
- lack of graphically specifying

compositions such as �parallel split�
and �synchronization�

• Difficult to learn:
- Ambiguous guidance on how to use

the language
- Many implicit constructions for

shorthand notations

QVT
Compuware/
Sun

• Easy to learn:
- concise specification
- UML, MOF and OCL reused

with very few extensions

• Graphical syntax not complete
- graphical notation cannot be used to

fully define any transformation that
can be defined textually

- unclear on how to define multiple
target models

• Violates the evaluation criteria:
- no support for traceability
- no support for black-box

interoperability
- no support for composition of

transformations
• Difficult to learn:

- lack of examples and explanation of
some of the syntax used

Both languages offer a complete textual syntax for describing transformations
between any two MOF models. Both languages have disabilities concerning
graphical syntax (see Table 7 for details). Based on the test users opinions in
eight example transformations, the average ease of use score for the QVT Merge
language was approximately 2.5 (maximum 5) and for QVT Compuware/Sun
the score was 3 in one example transformation. Despite the lack of examples in
the evaluation, the QVT Compuware/Sun language proposal can be considered
easier to learn than QVT Merge (Table 7). On the other hand, the QVT
Compuware/Sun approach has several disadvantages that even violate the
evaluation criteria set for QVT proposals.

49

The QVT language is defined and almost standardized, but no QVT compliant
tools (e.g. syntax parser) exists yet (Grønmo et al. 2005). Although standardized
transformation language is not yet supported by any tool, various other kinds of
model transformations (Czarnecky & Helsen 2003) are supported in several
tools. OMG lists 55 tools on the page of MDA committed companies and their
products3. In addition, modelbased.net4 (a web site dedicated to tools and
information related to model-driven software development) mentions 13 open
source tools just for MDA transformation. Especially the Eclipse5 tool has
evolved into �a rich software ecosystem that has spawned an active open source
community� (Frankel 2005).

3 http://www.omg.org/mda/committed-products.htm
4 http://www.modelbased.net
5 http://www.eclipse.org/

http://www.omg.org/mda/committed-products.htm
http://www.modelbased.net
http://www.eclipse.org/

50

3. Towards automation of quality-driven
architecture model transformation

This section expands the original idea of QAMT presented as a short paper
(Matinlassi 2005). The section is structured as follows. First, an overview is
provided on how to approach QAMT automation. The overview describes the
main activities of QAMT and introduces the actors collaborating in
transformation. Second, model activities are refined to show how different parts
of the model are automated and how the automation actors operate in the
transformation process. Third, two automation actors � stylebase and rulebase �
are discussed in more detail.

3.1 Introduction to QAMT automation

Quality-driven software architecture transformation requires intellectual and
complex reasoning carried out by humans. In order to automate processing, the
complex reasoning needs to be simplified. Therefore, making automation of
QAMT possible requires developing a model that describes (simplified) manual
QAMT. Manual QAMT is then further divided into more detailed activities and
automation is approached by automating the individual activities. The QAMT
model is described with activity graphs according to UML2 (OMG 2005b).

Figure 5 illustrates the top-level activity graph for manual QAMT. An input pin
(rectangle) serves as a transformation trigger for QAMT activity (rounded
rectangle). Quality variability as a transformation trigger (see Section 2.1.2
Variability in quality properties) makes transformation quality-driven. In
transformation, an architect identifies source and target and then converts source
model into target model.

Figure 5. An overview of the quality-driven architecture model transformation.

51

Figure 6 refines quality-driven architecture model transformation. I will later (in
Section 3.2) concentrate on the automation of the activities marked with grey
colour. Identify source denotes identifying the potential parts of the architecture
that require modifications in order to meet the requirements set for the model.
Therefore, the architect needs to carefully study the existing architecture model,
to evaluate architecture against the new quality requirements and to select the
parts of architecture that would be influenced in transformation. Quality
evaluation may require using special architecture analysis methods, such as
introduced in (Dobrica & Niemelä 2002). Identify target is about finding out
how the source will be changed in transformation. The target architecture model
may have new, removed or modified components and connectors. Identifying
the target often requires searching for and studying several alternative target
models before making the final decision. The Convert source to target activity in
Figure 6 illustrates updating an architectural model manually.

Convert source to target

Identify target

Select target

Target
Target

candidate

Identify source
Transformation

trigger
Architectural

model

Transformation <<precondition>> Transformation trigger received
<<postcondition>> Transformation executed

Select source

Search target
candidates

Study
the model

Evaluate
the model

Evaluate
candidate

Receive
source and

target

Source

Update
architectural

model

Architectural
model

Figure 6. Manual transformation.

Next, the communicating actors comprising the QAMT model are defined in a
collaboration diagram (OMG 2005b) in Figure 7. The communicating actors are:
architect, modelling tool, modelling tool extension, stylebase and rulebase.
Architect and modelling tool are the fundamental actors needed in QAMT,

52

whereas stylebase, rulebase and modelling tool extension are so-called
additional actors added to the model for the sake of automation. The automation
actors can be applied not only in executing the transformation but also in
providing automated guidance for the architect in selecting source and target
patterns. Especially the decision-making process in selecting target patterns
might be tricky without automation, which will enable an easy way of trying out
various approaches to problems.

�Architect� represents the person(s) responsible for transforming the
architecture. �Modelling tool� is a CASE tool including the software architecture
model, which is described according to the architecture description principles of
the QADA methodology (Papers I�VII) with UML2 language. The methodology
defines up to four viewpoints to software architecture. The selected viewpoints
with included diagrams are modelled in a CASE tool. Although the features
supported by commercial modelling tools vary, it is supposed that these
modelling tools do not include such advanced features as automated QAMT.
The QAMT specific features that are not present in the commercial CASE tool
are represented with a "Modelling tool extension" actor. These specific features
include such features as a user interface for stylebase and automated
transformation. An implementation of the modelling tool extension is presented
in (Merilinna 2005).

Figure 7. Collaboration diagram for automated QAMT.

"Stylebase" is a knowledge repository where architectural patterns (see Section
2.1.3 Quality representation in an architectural model) are stored in a uniform
way. Stylebase is used for recording, managing and utilizing architectural
quality solutions in order to promote automation. The data stored in the stylebase

53

is strictly defined and it includes commonly available styles, i.e. architectural
patterns. Although the name �stylebase� of this knowledge base may appear
slightly misleading; it is called a stylebase because �patternbase� could easily be
confused with design patterns.

"Rulebase" is a knowledge repository where transformation mapping is
presented with rules (see definitions on page 15). Each transformation rule
defines a specific transformation from architectural pattern A to architectural
pattern B.

Table 8 maps QAMT activities (illustrated with grey colour in Figure 6) and
actors (Figure 7) together. In the next section I further clarify how collaboration
is done. An automation model is used to combine the manual QAMT model and
the collaboration model towards automated QAMT.

Table 8. The selected QAMT activities and automation actors that collaborate in
the automation of each activity.

Collaborating QAMT automation entities QAMT activity

Architect Modelling
tool

Mod. tool
extension

Stylebase Rulebase

Study the model √ √ √ √

Search target
candidates

√ √ √

Update architectural
model

√ √ √ √

3.2 QAMT automation model � activities

Figure 8 illustrates a model used for the automation of the first activity in
QAMT (i.e. Identify source). The activity diagram is categorized upon
collaboration actors in Figure 7: architect, modelling tool extension, modelling
tool, stylebase and rulebase. The architect studies and evaluates the source
model against the quality requirements set for the target model. This evaluation
step in the process is semi-automatic. An architect may, for example, search for
all the architectural patterns utilized in the source model. The search may also be
constrained to:

54

! Architectural patterns in the source model supporting a specific
attribute, e.g. reliability

! Architectural/design patterns expressed only in certain diagrams (e.g.
structural or allocation diagrams) of the source model.

Evaluate the model Select source

Identify source

Search
parameters

Perform search Search
results

Source
pattern

Transformation
trigger

Study the model

Architecture
model

Style
information

Figure 8. Automation model for the �Identify source pattern� activity.

As the result of this step, the architect identifies potential parts of the
architecture that require transformation in order to meet the requirements set for
the target model. In order to pinpoint a pattern in a model, the following
information � marks � are required in some form for each component in the
architectural model. Marks utilize stylebase parameters, which are defined later
(Section 3.3.1 Stylebase).

55

1. What is the type of the component? Component type is defined because only
components with same type (e.g. data component) can be reused.

2. What pattern(s) does a component contribute to? One component may be
used in one or more architectural styles. The component needs to contain a
reference or references to the stylebase.

3. What is the role of the component in the pattern? Role defines component
behaviour quite extensively and the role information is needed for reusing
component behaviour.

In view of the fact that quality properties are not used as marks, evolution
qualities and execution qualities should be attached to the architectural model.
This is not due to transformation capabilities but rather to semi-automatic model
evaluation. Quality requirements attached to the architectural model will make
software architecture evaluation significantly easier. The attaching of quality
properties may be done with special UML2 quality profiles (see Section 2.1.3
Quality representation in an architectural model).

In the second activity, the architect identifies potential candidates for target model
architecture. Figure 9 presents a model towards automation of the �Identify target
pattern� activity. In the same way as searching the model in the previous activity, the
architect may search the stylebase directly, for instance, for the following:

! Are there any allocation styles available that support modifiability?
Allocation styles are examples of styles that are visible at least in the
architectural deployment viewpoint.

! What style(s) would be suitable for the problems of extensible
architecture? A search with only one search parameter: quality attribute.

! Is it allowed to transform the style found in the model into something
else? A style guide would assist the architect in utilizing a pattern.

The architect makes the decision about transforming the model. Here, the
architect selects the pattern or patterns requiring to be transformed while also
making the decision for suitable target patterns. Although the decision is guided
by the information available in the tool and in the stylebase, the architect is, in
the end, responsible for the final decision.

56

Search
parameters

Select target

Target
pattern

Evaluate candidate

Target
candidate

Ar
ch

ite
ct

M
od

el
lin

g
to

ol

ex
te

ns
io

n

Identify target

M
od

el
lin

g
to

ol
S

ty
le

ba
se

Style
information

Search target
candidates

Perform search

R
ul

eb
as

e

Figure 9. Automation model for �Identify target pattern� activity.

After the architect has made the decision, the transformation can be performed.
Figure 10 presents a model towards automation of the �convert source to target�
activity. Transformation rules are applied to convert source to target. Definition
of transformation rules is presented later, in Section 3.3.2 Rulebase. In addition
to employing transformation rules, the tool uses source pattern data and target
pattern data in the automation of the transformation. Source pattern is often a
special instance of a pattern (e.g. the number of layers is not predefined in the
layers pattern) and therefore, the tool must utilize source pattern information in
the model, not only data in the stylebase. Finally, the architect possibly needs to
implement new connectors in the target model, i.e. to define how the
transformed part of the architecture connects with the remaining architecture.

57

Figure 10. Automation model for the �Convert source to target� activity.

3.3 QAMT automation model � actors

In this section, two of the QAMT automation actors are presented: stylebase and
rulebase. The third automation actor, modelling tool extension, is discussed in
(Merilinna 2005). This section discusses the following actor properties:

• What information shall an actor contain and why? That is, what
information shall be included in the stylebase and in the rulebase. The
stylebase is designed for use as an automation actor for all transformation
activities (i.e. selecting source pattern, selecting target pattern and
converting the model) whereas the rulebase is mainly designed for use as
an automation actor for transforming the model. The information included
in the actor shall serve the use which the entity is designed for.

58

• How to capture information in a uniform way? The information needs to be
captured and represented in a way allowing it to be easily and without
misunderstandings translated into implementation. That is, the information
for stylebase is defined with parameters and predefined parameter values.
The mapping in the rulebase is defined with natural language.

• How to obtain information? Obtaining actor information may be
complicated because of diverging parameter value definitions and
representations. Especially for the rulebase, a technique for defining new
rules is introduced.

Although this section does not define how to implement actors or how to represent
information included in the entities, it does suggest some examples of these.

3.3.1 Stylebase

Table 9 illustrates the structure of the stylebase data. Although several attempts
have been made to categorize architectural styles and patterns (see Section 2.1.3
Quality representation in an architectural model), none of them was found suitable
as such for describing styles in a stylebase. Pattern name and component type
parameters are based on the architectural style catalogue format (Shaw &
Clements 1996; Shaw & Clements 1997), whereas the remaining nine parameters
are specially defined here to complement the format so as to make it support
transformation better. The table also discusses the relevance of each parameter and
gives some examples on how parameter information may be implemented.

The first two stylebase parameters � pattern name and reference � are required
for identifying a pattern. In the literature, there are several definitions for a
single pattern name, or, one commonly known pattern may have several
different names. Therefore, two parameters are needed. For example: "Layered
pattern according to Buschmann et al. 1996" gives a pattern a unique identifier
and a reference for its definition.

59

Table 9. Stylebase data parameters.

Parameter Relevance Example implementation

Name of pattern
Reference

Identification of a pattern Model/diagram name

Definition Textual pattern description
embedded in model
documentation

Figure

Defining pattern
structure, behaviour,
component and
connector layout
according to reference Structural template model of

the pattern

Quality attribute Qualities promoted by a
pattern presented in a table

Rationale

Mapping requirements
and patterns

Quality note

Component
type(s)

Component stereotype

Component
role(s)

Defining pattern
structure and behaviour

Behaviour template model of
the pattern

Abstraction level

Purpose

Embedded in model, e.g. as
diagram documentation

Diagram

Selecting admissible
transformations

Tool specific diagram name

The next two parameters, pattern figure and definition, are included for the
convenience of the end user. Figure serves for illustrating pattern layout, while
definition includes the information and tips on how pattern may be utilized to its
full capacity. The figure illustrates the layout, i.e. topology, of pattern
components. Topology describes the geometric shape that the data or control
take in the architecture (Shaw & Clements 1997). For example, a layered style
has a hierarchical control topology (control passes from upper layers to lower
layers) and blackboard has a star control topology (central control component
invokes surrounding data components). The values for these parameters are not
predefined and they mainly serve the purpose of the semi-automatic
transformation activity �identify target�.

60

The next two parameters � quality attribute and rationale � are essential for
mapping quality requirements with a pattern. The quality attribute reveals the
software qualities promoted by the pattern. The quality attribute parameter is
complemented by rationale. Since the interdependencies between patterns and
quality attributes often are complicated and implicit, the rationale is recorded in
order to clarify the mapping between qualities and patterns. For example, �The
Simplex pattern promotes reliability through tolerating software faults and
providing a redundancy mechanism�.

Pattern behaviour is defined with the parameters of component type and
component role. Software components may express several different types. The
list of component types introduced here is based on the experience gained in
cases C1�C5 (Papers IV, V, VI and VII). So far, five main types of component
have been identified: data, control, computation, package and interface (Table
10). Component role refers to pattern description in reference and describes
what the responsibilities of a component in a pattern are. Therefore, roles
provide a predefined description of component behaviour. For example,
"computation component represents a client role in the blackboard pattern".
Referring to the blackboard pattern definition we may sketch the behaviour for
the different components.

Table 10. Summary of component types in stylebase.

Comp. Type Description

Data
component

Examples of data components are files, databases and data
structures. Most often the data component is passive and
accessed by other (typically computation) components.

Control
component

Control components have the property of mastering other
components by invoking them or controlling their access rights.

Computation
component

Computation components typically process data, i.e. they
acquire input data, process it further and finally produce output
data. Algorithms are examples of computation components.

Package
component

Package components are used to categorize other components
and they do not include any functionality. However, package
components may involve non-functional requirements which are
common to all components inside the packaging element.

Interface/port
component

Interfaces neither contain data nor compute, but they provide an
access to the components behind the interface and may also hide
the implementation of the accessed components.

61

Information about the pattern abstraction level, purpose and diagram is required
for selecting admissible transformations. For abstraction levels, we apply the
definition of Buschmann et al (1996): architectural patterns, design patterns and
idioms. Since idioms, however, are dependent on programming language, they
are out of the scope of this study. Transformations are allowed only between
patterns at same abstraction level. Thus, for example, an architectural pattern
cannot be transformed into a design pattern. Similarly, transformable patterns
have to have the same purpose and diagram.

For the purpose of the pattern, there exist several categorizations. Gamma et al.
(1994), for example, define five different purposes for design patterns:
structural, behavioural, fundamental, concurrency and creational. The purpose of
architectural patterns is roughly divided into four categories (Buschmann et al.
1996): interactive systems, from-mud-to-structure, distributed systems and
adaptable systems. The categories stated above are applied for design patterns
and architectural patterns as well. The set of patterns mentioned here is not an
exhaustive one, and when new patterns are added, new categories may be
required. For example, if a special pattern supporting reliability is added to the
set, the architectural pattern categories are complemented by a new purpose:
tolerating software faults.

3.3.2 Rulebase

The rulebase shall include the information relevant for mapping in architectural
model transformation. That is, a rule definition technique is needed to create the
rules on how to transform particular source patterns to corresponding target
patterns. When defining rules, the constraints for transformations need to be
defined first. Architectural transformations are admissible between patterns that

• are effective at the same abstraction level
• have the same purpose and
• are illustrated in a similar type of diagram.

Respecting the constraints above, the activities for defining a new transformation
mapping rule are introduced in Figure 11. The goal of these activities is to create
the target pattern by reusing the properties of the source pattern to as great an

62

extent as possible. The precondition for applying the technique is that the
architecting process for the structure of the target architecture is defined. For
example, the main steps of how to build the structure of a blackboard pattern are:
define the blackboard component (i.e. the central data store), specify the control
component and implement the knowledge source components (knowledge
source components process data placed in the database).

Target pattern components are implemented by analysing the target pattern
against the source pattern, paying attention to the following points: (1) Do
source and target have the same types of components, i.e. what building
blocks/components can be reused? An architectural pattern mapping rule is a
source pattern analogy with the target pattern. Pattern analogies are not always
simple one-to-one correspondences but the equivalency is often one-to-many or
even many-to-many. Therefore, a rule may need to be defined as an interactive
rule. An interactive rule interacts with the user while choosing the target
solution. That is, mapping rules may have variation points. (2) Do we have to
create new components? New components are not necessarily completely new.
Creating new component means creating a skeleton component with a default
role behaviour rather than reusing the existing component behaviour from the
source pattern. Typically, a control component is often pattern specific and may
not be reused, whereas computation and data components are defined by the user
and therefore have more reuse potential.

The mapping record between the source and target components is monitored.
For each component, the same types of data are recorded: the pattern name that
the component contributes to, the role the component represents in the pattern
and the component type. The mapping record serves for reversing the
transformation. However, not all the mappings are reversible without
transformation record because of one-to-many and many-to-many equivalencies.

The �Implement components� activity is repeated until all target components are
implemented. Next, new component topology is implemented for the target
model. A component topology is predefined for architectural patterns. However,
refinements may need to be done to the default topology after the
transformation. This activity may also result in creating an interactive variation
point into the mapping rule. Finally, connectors are implemented. If the source

63

connectors include defined messaging protocols or other reusable functionalities,
the source connectors may be reused.

Define a mapping rule

Compare source to
target component

Reuse source
component

Create new
component

Create
transformation

record

Implement
components

<<precondition>> Source and target selected
<<postcondition>> Mapping rule from source to target defined

<<precondition>> Target component selected
<<postcondition>> Target component implemented

Assemble a
rule

A
rc

hi
te

ct
R

ul
eb

as
e

S
ty

le
ba

se

Transformation
rule

Target style information

Source style
information

Transformation
record

Implement
connectors

Record a rule with
selected language

Implement
component topology

<<precondition>> All target components implemented
<<postcondition>> Component topology implemented

Define target topology Layout
components

Figure 11. The activities of the mapping rule definition technique.

Assembling a mapping rule requires information from several activities of the
technique. The rule is recorded with a selected language (see possible options
introduced in Section 2.3) and saved in the rulebase.

64

4. Evaluation of the QAMT automation
model

Evaluation of a design artefact � according to March and Smith (1995) �
involves (1) developing criteria and (2) assessing artefact performance against
those criteria. This section presents what the goals are that the QAMT model
tries to accomplish and how well it succeeds in accomplishing the goals. The
goals are represented as metrics for assessing the model (Section 4.1) and the
assessment results reveal how well the model works (Section 4.2). A summary
(Section 4.3) will provide the assessment results in a nutshell.

4.1 Deriving the goals

The goals of a model have their origin in the needs of the stakeholders. Four
main stakeholders for the QAMT model can be recognised: mapping language
developer, transformation developer, tool developer and end user (Figure 12).
Each stakeholder deals with the QAMT model from a different point of view and
therefore has different interests concerning the model.

Figure 12. Stakeholders of the QAMT model.

65

The mapping language developer translates the QAMT mapping from one
mapping language to another mapping language. The mapping language may be
a natural language, an action language (an algorithm), or a model mapping
language (see Section 2.3). This stakeholder is mainly interested in the mapping
part of the model. No matter what the language is, the mapping needs to be
completely defined to allow it to be translated into another language.

The transformation developer transforms the QAMT model into a specific
implementation platform. This stakeholder is interested in one part of the model
at a time. A platform specific model defines, for example, what technologies are
used for implementing stylebase and in what form the data is represented. In
addition, the platform specific model may define what commercial or open
source tools are used as a platform for implementation or if the tool is developed
from scratch. Therefore, the transformation developer appreciates platform
independence for all the parts of the QAMT model. Platform dependency would
restrict the work of transformation developer. On the other hand, conformance to
certain standards/practices, e.g. modelling language and transformation
specification, will help the work of transformation developer.

The tool developer implements the QAMT platform specific model in a tool.
The implementation further refines the platform specific QAMT model by
adding visual representation, usability issues etc. to the model elements. The tool
developer does not directly deal with the QAMT automation model but rather
with a platform specific definition of QAMT and, therefore, the tool developer
interacts with the transformation developer. The tool developer appreciates
platform independence (tools, programming languages) and model maturity.

The end user uses QAMT implemented in a tool. The end user is usually a
software architect that wishing to perform a quality-driven software architecture
model transformation automatically. Although the end user deals directly with
the implementation � which is only a single instance of the QAMT model � the
end user does have some interest concerning the QAMT model. The model shall
provide a high level of automation for the end user, and, in order to achieve
automated transformation, the transformed model shall utilize a MOF
compatible modelling language (Selic 2004). For a comfortable use experience,
the end user requires style descriptions that are informative and as complete as
possible.

66

Each stakeholder has different interests concerning the QAMT model. The
stakeholder requirements are grouped into form goals and a summary is
presented as an evaluation framework in Table 11. Among these goals,
Completeness denotes how complete the transformation specification is in terms
of the OMG MDA transformation definition. Transformation inputs shall be
presented as a marked model, while the mapping and outputs shall take the form
of a transformed model with a record. Since the stylebase includes valuable
knowledge utilized in all activities of the transformation, stylebase completeness
is evaluated separately. The completeness criterion deals with model actors
similarly to the goal of platform independence. Platform independence measures
how platform independent the model really is. The next two goals are related to
model activities. Level of automation measures whether the activities of the
model are manual, semi-automatic or automatic. Maturity reflects the empirical
validation of model activities. Lastly, Conformance to standards lists the most
important standards related to transformations, modelling and quality, and
assesses whether or not these are supported by the model.

Table 11. Evaluation framework for the QAMT model.

Goal Requirement(s) Stakeholder(s)
Complete specification for mapping Mapping language

developer
Complete specification for marks
and record

Transformation
developer

Completeness

Complete definitions for styles End user
Portable to many technologies and
implementations

Transformation
developer Platform

independence Independent of tools, programming
languages

Tool developer

Level of
automation

High level of automation End user

Maturity Is the model validated with empirical
data?

All

Modelling language MOF
compatible

End user,
Transformation
developer

Transformation specification
conforms to MDA

Transformation
developer

Conformance
to standards

Terminology follows state-of-
practice

All

67

4.2 Assessment

This section evaluates the QAMT model against the evaluation criteria presented
above. Table 12 illustrates how the evaluation criteria focus on the different
aspects of the QAMT model.

Table 12. Concerns of evaluation criteria.

Concerns Criterion
 Activities Actors Model

Completeness √
Platform independence √
Level of automation √
Maturity √
Conformance to standards √

Each criterion is discussed in a separate subsection, which provides a more detailed
definition of the criterion in question and an evaluation against the criterion.

4.2.1 Completeness

Figure 13 illustrates an overview of a transformation. The architect takes a
source model, marks it and then the marked source model is used to prepare the
target model according to mapping. The transformation can be done manually,
with computer assistance, or automatically. The transformation produces a target
model and a transformation record, which traces the transformation back to the
source model (OMG 2003a).

Figure 13. An overview of transformation.

68

Table 13 and Table 14 present an evaluation of QAMT completeness. In Table
13, the transformation elements are those defined in the MDA guide (OMG
2003a), excluding source and target models, which are provided for
transformation and not considered as part of the QAMT model. QAMT includes
two main automation actors: stylebase and rulebase. The rulebase corresponds
directly to mapping, whereas the stylebase as such can not be considered a
transformation element but it rather provides assistance for all the transformation
elements. The stylebase assists in developing the source and target models by
providing knowledge on existing modelling patterns. Source model components
are marked with stylebase parameters. The definition of mapping rules also
utilizes stylebase knowledge and the record tracks transformation according to
stylebase data. Further, the stylebase is an automation actor which has a
remarkable impact on end use convenience. From these points of view, stylebase
completeness is evaluated here as a part of marks, mapping and record (Table
13) and also as a separate automation actor in Table 14. Table 14 illustrates the
support of stylebase parameters for transformation (marking, mapping,
recording) and for utilizing stylebase as an architect�s handbook while designing
and evaluating an architecture model.

Table 13. Completeness of transformation elements in QAMT.

Element Completeness

Marks
Marks are supported by associating following stylebase data
parameters to the modelling components: component type, style
and role (see p. 55)

Mapping

Mapping is supported in the rulebase, but not completely. The
rulebase includes natural language rules for constraining
transformations and a technique for defining new mapping rules
(see p. 61). The mapping rule definition technique utilizes the data
parameters of the stylebase.

Record

The generation of transformation record is supported in the
mapping rule definition technique (see p. 62). The record traces
target model component mapping back to the source model with
marks (stylebase parameters).

69

Table 14. Evaluation of stylebase parameters.

Supports Stylebase parameter
Marking Mapping Recording Using

Name of pattern √ √ √ √
Reference √ √

Definition √
Figure √

Quality attribute √
Rationale √

Component type(s) √ √ √ √
Component role(s) √ √ √ √

Abstraction level √ √
Purpose √ √
Diagram √ √

4.2.2 Platform independence

Platform independence (see Section 2.2.4 Model-driven architecture) is a
desirable feature for a model because abstraction increases model portability. No
single platform is used for the whole QAMT automation model but several
platforms for the different model elements. Table 15 presents the platform
independence evaluation of each QAMT model element. Although, in the
previous section, the stylebase was evaluated as an assisting element for marks,
mapping and record, the stylebase is here evaluated only as an individual
evaluation element because the stylebase has different platforms from those of
marks, mapping and record.

70

Table 15. Platform independence of the QAMT model.

Platform independence Element or
Actor Independent of Dependent

on

Stylebase

• Knowledge base implementation e.g. linked
object list, SQL database

• Style representation in knowledge base e.g.
textual representation, graphical style
templates

-

Marks

Mark implementation:
• Marking language
• Marking mechanism

Modelling
language
(needs to
support
components)

Mapping

• Knowledge base implementation e.g. linked
object list, SQL database

• Rule representation in knowledge base e.g.
natural language, mapping language

• Transformation tool

-

Record

Record implementation:
• Recording language
• Recording mechanism
Modelling tool

-

4.2.3 Level of automation

Automation models for each of the three main activities of the QAMT model are
provided in Figures 8�10, whereas the rest of the activities are left on a high
abstraction level, i.e. the automation of those activities is not considered. Table 16
describes the level of automation in the three main activities. The automation level
of the model is not consistent across the different model activities. This may be
due to the reasons discussed in the following. Updating an architectural model is
the most trivial activity in the transformation and therefore the easiest to automate,
whereas identifying source and target are the most difficult activities to automate.
Trivial activities do not require complex reasoning made by humans. The difficult
activities can be automated only if there is an explicit mapping between quality
attributes, requirements, and software structures. This is, however, difficult or
even impossible to achieve due to the current state-of-the-art (See page 37).

71

Table 16. Level of automation in the QAMT model.

Level of model automation
Activity Sub activity Manual Semi-

automatic Automatic

Study the model √
Evaluate the model √ Identify

source Select source √
Search target candidates √
Evaluate candidate √ Identify

target Select target √
Receive source and target √ Trans-

formation Update architectural model √

4.2.4 Maturity

The maturity of the model is validated in practice. QAMT model activities are
validated in five individual cases. See case descriptions in Table 1 on page 22.
Further, Table 17 provides an overview on the cases by pointing out which activities
were validated in each case. Below, I summarize what was done in each activity.

Case C1. A new extensibility requirement required an architecture
transformation from layered to blackboard. Model activities were first done
manually and then automated by developing a platform specific implementation
model and a tool prototype (Merilinna 2005).

Cases C2 and C3. Case C2 was developed with the quality properties
modifiability, integrability and portability. Case C3 showed a totally different
functionality but the same quality properties as C2 and, therefore, no trigger for
QAMT was observed. The transformation of the architecture model was not
relevant although the activities of identifying source and target were done.

Case C4. The first sketch of the pilot was developed with the emphasis on basic
functionality and with no specified quality concerns. The architecture was
transformed twice to improve quality properties. On the server side, first, the
architecture was transformed in order to improve real-time performance. Second,
in order to improve modifiability, the separation of concerns in the server
architecture was improved.

72

Table 17. Validation of QAMT model activities in cases.

Model activities
Case ID Case description Identify

source
Identify
target

Trans-
formation

C1
Complete QAMT automation
trial with a laboratory case

Manual,
Semi

manual,
semi

manual,
automated

C2, C3

Trial to transform architecture
from case C2 to case C3. No
transformation trigger
observed, variability only in
functionality

Manual manual -

C4
Trial to develop a pilot and
transform the architecture twice.

Manual manual manual

C5

Trial to evaluate architecture,
suggest appropriate
transformations and estimate
the effects of transformations

Manual manual simulated

Case C5. Existing and working products were already on the market.
Transformation trigger was defined as the emergence of a new hardware and the
wish that the architecture should support both the existing and new hardware.
These requirements would require new quality properties from the product
architecture: portability, modifiability and extensibility. The aim of the trial was
to identify source, i.e. parts of the architecture that would require changes, to
identify target, i.e. to suggest appropriate solutions, and third, to simulate
transformation, i.e. to estimate which components would be affected and what
kind of changes were required, i.e. to estimate the effect of each scenario on the
architecture.

4.2.5 Conformance to standards

A short description of the appropriate standards related to quality-driven
software architecture transformation and a discussion on the conformance of
QAMT to the standards are provided below.

73

The UML 2.0 Superstructure Specification (OMG 2005b) is a modelling
language description providing the syntax and semantics of the language and,
further, a few examples on how to draw diagrams with the language. UML 2.0 is
utilized in the QAMT model in two ways. First, the language is utilized in
creating the architectural models for transformation. Architectural models for
transformation are provided by the QADA method, which guides the use of
UML2 for describing software architecture (Immonen & Niskanen 2005,
Merilinna 2005). The UML2 language constructs that are appropriate for
describing software architectures have their origin in the ROOM (Real-time
object oriented modelling) method (Selic et. al 1994), which later became part of
the UML2 standard. The constructs of the ROOM method have already been
adopted in the earlier versions of QADA (Paper III, Matinlassi et al. 2002).

Second, the UML2 language is utilized to describe the diagrams of the QAMT
automation model. Activity diagrams and a collaboration diagram were utilized
especially in the section 3 of this thesis.

The ISO/IEC 9126-1 Quality model (ISO-9126-1 2001) is a quality model for
software products (see also Section 2.1.1 Quality properties). It provides six
quality characteristics and sub characteristics for an intermediate product, i.e.
product in development, and four quality characteristics for a product in use. The
characteristics claim to provide a consistent terminology for software product
quality. However, the research forum is a step ahead from the standardization
forum. Furthermore, standardization is a heavy process while the research forum
continuously produces new information on the subject. Therefore, the
terminology standardized in 2001 was probably already outdated when
published. The QAMT model uses the current quality terminology applied in the
research field (described in Section 2.1.1). The major difference between the
standard and current research is that the former considers functionality as a
quality attribute whereas the latter makes a clear distinction between the
functional and non-functional properties of software.

Model Driven Architecture (OMG 2003a) is not really a standard but an
initiative, which proposes to define a set of non-proprietary standards that will
specify interoperable technologies with which to realize model-driven
development with automated transformations (see Section 2.2.4 Model Driven

74

Architecture). The terminology and ideology of the initiative is applied
throughout the QAMT model.

The Query/Views/Transformation mapping language (OMG 2002) is not yet a
standard either (see the current state of standarization on page 46). The emerging
mapping language standard will define (1) a language for making queries for
MOF models, (2) a language that enables the creation of views for a model and
(3) a language for defining transformations. The QVT mapping language is not
utilized in QAMT because the standard is still maturing and, furthermore,
because the QAMT mapping is not yet complete enough (see Section 4.2.1
Completeness) to be translated into a dedicated mapping language.

The IEEE Recommended practice for architectural descriptions (IEEE-1471
2000) is a standard describing the terminology and interdependencies between
the terms concerning architectural descriptions. The standard also recommends
basic principles for architectural documentation including viewpoints, views and
rationale. The terminology of the standard is utilized throughout the QAMT
model. The models provided as an input for quality-driven architecture
transformation also follow the recommended practice for architectural
documentation (conformance of architectural models to IEEE standard 1471-
2000 is discussed in Paper III).

4.3 Evaluation summary

The QAMT model defines model activities and actors that execute the activities.
The actors correspond to the transformation elements defined in (OMG 2003a).
The evaluation of the QAMT model was performed from the two points of view
provided by transformation actors and model activities. The evaluation of model
elements and actors considered the completeness and platform independence of
elements/actors, whereas the evaluation of model activities considered the
automation level and maturity of model activities. Furthermore, the conformance
of the QAMT model to the most important standards in the area was evaluated.

This summary provides the evaluation results in tables (Table 18, 19 and 20) and
also discusses the internal consistency of the model, i.e. to which extent the

75

different parts of the model show a uniform level of completeness, platform
independence, automation and maturity.

Table 18. Summary of QAMT element evaluation.

Criterion

Element Completeness Platform independence

Stylebase

The stylebase includes valid
parameters in order to
support: model marking,
constraining and defining
mapping rules, generating
transformation record and
end-user convenience.

Independent of
programming language
and modelling tool,
dependent on modelling
language

Independent of
knowledge base
implementation and style
representation in
knowledge base

Marks

Marks are supported by
associating the following
stylebase data to model
components: component
type, style and role

Independent of marking
language and mechanism,
dependent on model

Mapping

Mapping is supported in the
rulebase.
Rules are not complete:
• Only admissibility rules

defined (with natural
language)

• A technique for defining
feasibility rules

• Standard mapping
language not utilized

Independent of
knowledge base
implementation, rule
representation in
knowledge base and
transformation tool

Transformation
record

Transformation record
supported in the rule
definition technique

Independent of recording
language and mechanism,
modelling tool

76

Table 19. Summary of QAMT activity evaluation.

Level of automation Validation in
cases C1�C5

 Criterion

Activity

Manual Semi Auto 1 2 3 4 5

Study the model √
Evaluate the
model

√ Identify
source

Select source √

√ √ √ √ √

Search target
candidates

 √

Evaluate
candidate

√ Identify
target

Select target √

√ √ √ √ √

Receive source
and target

 √

Transfor-
mation Update

architectural
model

 √

√ - - √ √

Table 20. QAMT conformance to standards.

Standard How applied?

UML2
Superstructure specification applied
� as an architecture modelling language
� as the language of the QAMT model

MDA
Terminology and ideology applied in
� transformation specification and in
� architecture modelling

IEEE-1471
Terminology and recommendations applied in
� the structure of architectural descriptions

The internal consistency of each criterion is summarized below. Summarizing
the consistency of completeness, I may draw the conclusion that the marks,
record and the stylebase are the most complete elements, whereas mapping rules
suffer from a lack of completeness (Figure 14).

77

Figure 14. Internal consistency of completeness in the QAMT automation model.

The abstraction level of the QAMT automation model is relatively high, because it
is only dependent on the modelling language, and dependence on the modelling
language is already a pre-requirement in MDA. The internal consistency of
abstraction throughout the QAMT automation model is fairly uniform (Figure 15).
Only the model with marks is dependent on modelling language, whereas
stylebase, rulebase and record are independent of any platform.

Figure 15. Internal consistency of platform independence in the QAMT
automation model.

The automation level of the model is not consistent across the model activities
(Figure 16). Updating the architectural model is the most trivial activity in the
transformation and therefore it is the easiest activity to automate, whereas
identifying source and target are the most difficult activities to automate.

Figure 16. Internal consistency of level of automation in the QAMT model.

78

The �Convert source to target� activity is less mature than the other activities
included in the QAMT model (Figure 17). Figure 17 illustrates how many times
each activity was validated in the different cases. �Identify source� and �identify
target� were done five times, whereas �convert source to target� was validated
only three times.

5
4
3
2
1

 | | |
Identify source Identify target Convert source

 to target
Figure 17. Internal consistency of validation in the QAMT model.

The goals of the model were to (1) describe transformation as completely as
possible, (2) provide support towards automation, (3) stay independent of
implementation technologies, (4) be mature and validated and (5) conform to
standards. The model was evaluated against these criteria. As a result, it was
concluded that the QAMT model describes transformation quite completely,
while only mapping suffers lack of explicit specification. QAMT does not totally
automate all the model activities but it reduces the need for human intervention
while identifying the source and target and completely eliminates the need for
human intervention in the transformation activity, except for some individual
transformation cases that still need human interaction in transformation. The
QAMT model succeeds well in platform independence and is validated in five
individual cases, although not consistently, i.e. different cases cover different
parts of the model. Finally, the QAMT model promotes understandability by
following, e.g., the terminology and specification structure defined in the most
important standards applicable in the area.

79

5. Conclusions

This section concludes the dissertation by presenting the summary of the results,
the limitations of results, and outlining the future research. The summary of the
results draws a conclusion to the research question and summarizes how the
research question was answered in the papers and in the dissertation summary.
The limitations of the results discuss the validity and applicability of the results.
Future research section points out both the incomplete and the most robust areas
of the dissertation and draws out a future research plan to complement and
continue the work.

5.1 Summary of the results

Quality-driven software architecture model transformation is about making
changes to an architecture model according to changing or varying quality
properties. The automation of quality-driven software architecture model
transformation will reduce human involvement in the modelling process and
therefore decrease software development costs. On the other hand, although
automation does not eliminate the errors made in software development, it
increases the probability of higher quality for the product. The research question
studied in this dissertation was the following.

How to make automation of quality-driven software architecture model
transformation (QAMT) possible?

The answer to the research question is presented in seven papers and in the
dissertation summary. Automation is made possible by defining and unifying the
knowledge needed in quality-driven software architecture model transformation
in form of a transformation specification. The transformation specification
includes a model, marks, a mapping and a transformation record, wherein a
model definition provides the foundation stone for the specification while the
marks, the mapping and the record complement the specification. The model
used in this transformation specification is a quality-driven architecture model
and it is covered in the dissertation as follows.

80

The concept of architecture quality is discussed in Papers V and VI by
presenting the terminology and a quality model for software architecture.
Section 2.1 updates and unifies the terminology presented in earlier papers.

Papers II and III concentrate on defining how an architectural model is
described using architectural viewpoints. The state-of-the-art of architecture
modelling is updated and refined towards model driven architecture in Section
2.2. The definition of architectural model descriptions required studying and
comparing the existing methods for architecture design (Paper I & III). The
state-of-the-art of transformation is presented in Section 2.3 and a definition of
complementing transformation elements (marking, mapping, record) is presented
in Section 3 in this dissertation summary. Section 3.3 focuses on defining the
actors that make the automation possible.

The experience of designing software architecture gained in the different cases
is presented in Papers IV, V, VI and VII. In addition to the empirical validation
through the cases, the model is validated through the self-evaluation presented in
the dissertation summary, Section 4.

5.2 Limitations of the results

The research results have two specific limitations. The first limitation has to do
with the extent to which the results can be generalized beyond the cases studied.
The number of cases is too limited for broad generalizations. However, the
intention was not to produce a general model for automating architectural
transformations but rather to create a starting point for model transformations in
software architecture. Partly due to the limited number of cases involved in this
research, the resulting model does not explicitly define the processes used by a
software engineer during architectural transformation or automate all the
complex reasoning done during the process. However, exact fidelity to real
world phenomena was not the goal of the QAMT model, but rather to provide a
model that would be accurate enough for approaching the automation of model
activities. Furthermore, a model is generally a simplified representation of the
real phenomenon. Accordingly, the aim was to simplify the design process in
order to make automation possible. To facilitate automation, a simplified model
is created of the factual process, the model is then split up into smaller functional

81

pieces and these pieces are automated one by one. The model does not make any
attempt to provide the �right� way to automate transformation either. This is
partly due to the fact that the ways (or approaches) of automating a
transformation are manifold (see Section 2.3). The results aim to provide an
outcome that is as platform independent as possible, thereby improving the
applicability of the model.

The second limitation concerns the applicability of the model in product
families. The adoption of an automated QAMT in product family architecture,
however, sets certain requirements for the PFA implementation. Product family
architectures that are mature and stable enough will be able to derive the most
benefit from adopting automated QAMT. Referring, e.g., to the maturity levels
defined in (van der Linden et al. 2004), to make the most of automating QAMT,
the product family architecture shall be at level 4 or 5, i.e. variant products or
self-configurable products. The three lowest levels of product family maturity,
namely independent components, standardized infrastructure and software
platform, are considered too immature as product family engineering approaches
for adopting automated QAMT. In practice, the fourth product family maturity
level means that a PFA may be implemented either with (1) a software
architecture that enables systematic product derivation according to the given
PFA or (2) with configurable features or a component base where architecture is
integrated into the platform and also into the common component base (Niemelä
2005). In the most mature case of PFA (the fifth level), PFA is implemented
using a configurable product family base, wherein the product family members
are automatically generated according to the architecture.

5.3 Future research

This research has introduced an automation model for quality-driven software
architecture model transformation, which is employed as a means to move
towards automating quality-driven software architecture model transformation.
Here, I will draw out a future research plan to complement and continue the
work done in this dissertation.

The evaluation of the automation model revealed that the mapping specification
was the most incomplete part of the model. Therefore, the future research will

82

start by completing the mapping part of the transformation specification in
natural language and then translating the mapping into a dedicated mapping
language. This will make mapping compatible with any modelling tool
supporting the mapping language. This will serve the purpose of increasing the
level of automation in this area.

However, in order to remarkably increase the level of automation, more explicit
knowledge on the qualities promoted by styles and patterns is needed. Today,
this knowledge is context sensitive and also dependent on the experience and
skills of the architect. Further, while each style has a prime purpose for which it
can be applied, styles may also be adapted and applied for other than the prime
purposes. The quality attributes supported by a style also depend on such factors
as system size and domain (e.g. distributed system), as presented in Paper VI.
Further, experienced architects have advanced knowledge on applying particular
styles in different contexts, which allows them even to easily figure out new
styles. The skills, background, opinions and other properties of the architect
affect the content and constitution of the quality attributes used by the architect
and these factors may be reflected in the way styles are applied to support the
quality attributes. This information is required for transformation, and,
furthermore, it is only possible to perform transformation if it relies on a set of
uniform quality attribute definitions.

In addition to the topics above, the stylebase shall be also developed into a more
advanced knowledge repository and the implementation of the stylebase will
have to be experimented with new ideas. Further, the stylebase will be integrated
with quality properties, thereby mapping the road towards automated
transformation from quality requirements to architectural styles. Thus, what is
also needed is support for representing the evolution qualities in architectural
models. For now, UML profiles are used for describing the execution quality
properties in a model (See Section 2.1.3, example quality profiles for fault
tolerance, time, schedulability, performance, reliability and availability). Similar
kind of support, perhaps in form of quality profiles, will also be needed for
utilizing evolution qualities in automating architecture model transformations.

So far, the research effort on model driven architecture has been focusing on
automating vertical transformations, such as code generation, and on defining
standard mapping languages from models to models and from models to text.

83

The work in this dissertation initiates the automation of horizontal model
transformations and the work is still in progress. The future research topics
suggested above will accumulate the knowledge on the subject and also derive
fresh topics to experiment with new ideas.

84

6. Introduction to the papers

This section gives an overview on the original papers constituting the basis of
this dissertation. Table 21 presents basic information of the papers and illustrates
their main considerations. A more detailed presentation of the contributions of
the papers is given in Table 3 (Summary of publications related to dissertation
research) and Table 4 (Contributions of Papers I�VII and DS for dissertation
research) on pages 26�27. The following sections discuss the considerations and
observations of the papers.

Table 21. Original papers and their main considerations.

Considers mainly Original
paper

Published in, forum
State of
the art

Method
development

Cases

Paper I 2004, ICSE √
Paper II 2002, ICSSEA √
Paper III 2004, Journal of Systems

and Software, Vol. 69
 √

Paper IV 2002, Profes √
Paper V 2003, Euromicro √
Paper VI 2003, Annual Review of

Communications, Vol. 56
 √

Paper VII 2002, MUM √

6.1 State of the art

6.1.1 Paper I: Design method comparison

Paper I presents a study of comparing product family architecture methods by
developing an evaluation framework for comparing the design methods and
introducing and comparing five methods that are known to answer the needs of
software product families: COPA, FAST, FORM, KobrA and QADA.

The main consideration of the paper is that the methods studied show
distinguishable ideologies making the methods not overlapping or competing
with each others. Paper I serves both for revealing state-of-the-art of product

85

family architecture design methods and also as a comparative analysis of the
QADA methodology and other similar methods.

6.2 Method development

6.2.1 Paper II: Introducing the design method

Paper II introduces the first release of the quality-driven architecture design
method with two abstraction levels: conceptual architecture design and concrete
architecture design. The architectural descriptions at both abstraction levels are
defined from three viewpoints: structural, behaviour and deployment. The paper
also shortly introduces case C1 and discusses the case experiences.

6.2.2 Paper III: Refining the design method

Paper III puts forward the following points in the quality-driven architecture
design method. First, a development view is provided, and second, the
viewpoints are described according to standard viewpoint description guidelines.
The paper also introduces a perspective to the viewpoints needed for developing
digital signal processing software and provides a comparison and analysis of the
defined viewpoints in two domains. A comparison in Paper III shows that
domain and system size are the dominant issues to be considered when
architectural viewpoints are being selected.

6.3 Cases

6.3.1 Paper IV: Interactive gaming service

Paper IV introduces the problem overview of case C4 and summarises the initial
non-functional requirements of the case: portability, maintainability,
integratability, and simplicity. The viewpoints of the QADA methodology are
adapted to suit especially the wireless domain and the paper provides some
example diagrams for the viewpoints. The discussion section of the paper is
concerned with the learning curve of the method in a multinational software

86

development team, while it also focuses on tool support and tool use learning,
along with presenting some experiences on how well the viewpoints served the
purposes of the stakeholders.

6.3.2 Paper V: Terminal software product family

Paper V introduces case C5, a product family for different kinds of client
terminals used for fare collection in public transportation. Further, Paper V
introduces a framework for maintainability. The main considerations of the
paper are the following:

− Maintainability means different things for different parts of the system
with different dimensions, e.g. system, architecture and single
component in the architecture

− Not all the �ilities� are non-functional requirements, e.g. traceability,
variability, tailorability and monitorability are techniques for promoting
and supporting the achievement of maintainability and its sub-attributes.

6.3.3 Paper VI: Service architectures

Paper VI refines case C4 by introducing the stakeholders of the case and
illustrating how non-functional requirements are derived from stakeholders.
Further, the non-functional requirements (portability, maintainability,
integratability, and simplicity) introduced in Paper IV are mapped to viewpoints
introduced in Paper II. Finally, the case C4 architecture is evaluated against the
non-functional requirements set in the beginning. Summarizing, the main
considerations in the paper are the following:

− The quality properties of software are derived from the stakeholders� needs,
while quality accumulates through cooperation with the stakeholders

− Further justification for the necessity of two separate levels of abstraction
and the need for multiple viewpoints in architectural representations.

87

6.3.4 Paper VII: Middleware multimedia services

Paper VII introduces two cases (C2 and C3), which have to do with service
platform development for multimedia applications. C2 provides a streaming
service, and C3 is concerned with instant messaging and presence services for
various types of multimedia applications. Among the key observations presented
in the paper are:

− Although having different functional requirements, both platforms
conform to similar architectures because of convergent quality
requirements: modifiability, integrability and portability.

− The dominant architectural styles in the cases (blackboard and layered
styles) achieved the qualities of modifiability, integrability and portability

− In addition to architectural styles, also design level choices affect
software quality. Interoperability, simplicity and maintainability, for
example, are influenced even at the design level.

88

References

Abrahamsson, P. 2002. The role of commitment in software process
improvement. Oulu: Oulu University Press. 162 p. (Acta Universitatis
Ouluensis, Scientiae Rerum Naturalium A386.) ISBN 951-42-6729-X.

van Aken, J. E. 2004. Management research based on the paradigm of the design
sciences: The quest for field-tested and grounded technological rules. Journal of
Management Studies, Vol. 41, No. 2, pp. 219�246. ISSN (printed): 0022-2380.
ISSN (electronic): 1467-6486.

Al-Naeem, T., Gorton, I., Babar, M. A., Rabhi, F. & Benatallah, B. 2005. A
quality-driven systematic approach for architecting distributed software
applications. Proceedings of the 27th International Conference on Software
Engineering, ICSE 2005. St. Louis, Missouri, USA, 15�21 May 2005. New
York, NY, USA: ACM Press. Pp. 244�253. ISBN 1-59593-963-2.

America, P., Obbink, H., Muller, J. & van Ommering, R. 2000. Copa: A
component-oriented platform architecting method for families of software
intensive electronic products. Tutorial in the First Conference on Software
Product Line Engineering, SPLC1. Denver, Colorado, August 28�31 2000.

America, P., Obbink, H., van Ommering, R. & van der Linden, F. 2000. Copam:
A component-oriented platform architecting method family for product family
engineering. In: Donohoe, P. (Ed.). Software product lines, experience and
research directions, proceedings of the first software product lines conference,
SPLC1. Denver, Colorado, USA, August 28�31 2000. Boston: Kluwer
Academic Publishers. (Kluwer international series in engineering and computer
science Vol. 576.) Pp. 167�180. ISBN 0-7923-7940-3.

Anastasopoulos, M. & Gacek, C. 2001. Implementing product line variabilities.
Symposium on Software Reusability, SSR'01. Toronto, Ontario, Canada, 18�20
May 2001. USA: ACM. (Software Engineering Notes Vol. 26, No. 3.) Pp. 109�
117. ISSN 0163-5948.

89

Andersson, J. & Bosch, J. 2005. Development and use of dynamic product-line
architectures. IEE Proceedings � Software, Vol. 152, No. 1, pp. 15�28.
ISSN 1462-5970.

Andersson, J. & Johnson, P. 2001. Architectural integration styles for large-scale
enterprise software systems. Proceedings of the Fifth IEEE International
Enterprise Distributed Object Computing Conference, EDOC'01. Seattle, WA,
USA, 4�7 September 2001. Los Alamitos, California: IEEE Comput. Soc.
Pp. 224�236. ISBN 0-7695-1345-X.

Ardis, M., Daley, N., Hoffman, D., Siy, H. & Weiss, D. 2000. Software product
lines: A case study. Software Practice and Experience, Vol. 30, No. 7, pp. 825�
847. ISSN 0038-0644.

Aßmann, U. (ed.). 2004. Proceedings of model-driven architecture: Foundations
and applications, Linköping: Linköping University. 253 p.
http://www.ida.liu.se/~henla/mdafa2004/proceedings.pdf.

Bachmann, F. & Bass, L. 2001. Managing variability in software architectures.
Symposium on Software Reusability, SSR'01. Toronto, Ontario, Canada, 18�20
May 2001. USA: ACM. (Software Engineering Notes Vol. 26, No. 3.)
Pp. 126�132. ISSN 0163-5948.

Bass, L., Clements, P. & Kazman, R. 1998. Software architecture in practice.
Reading, Massachusetts: Addison-Wesley. 452 p. ISBN 0-201-19930-0.

Becker, M., Geyer, L., Gilbert, A. & Becker, K. 2002. Comprehensive
variability modelling to facilitate efficient variability treatment. Proceedings of
the 4th International Workshop in Software Product-Family Engineering,
Bilbao, Spain, 3�5 October 2001. Berlin, Germany: Springer-Verlag. (Lecture
Notes in Computer Science 2290.) Pp. 294�303. ISBN 3-540-43659-6.

Bettin, J. 2005. Model-driven software development. In: Frankel, D. & Parodi, J.
MDA journal: Model driven architecture straight from the masters. Tampa, FL,
USA: Meghan-Kiffer Press. ISBN 0-92965-225-8. Available online:
http://www.bptrends.com/publicationfiles/04%2D04%20COL%20MDSD%20Fr
ankel%20%2D%20Bettin%20%2D%20Cook%2Epdf.

http://www.ida.liu.se/~henla/mdafa2004/proceedings.pdf
http://www.bptrends.com/publicationfiles/04%2D04%20COL%20MDSD%20Fr

90

Bézivin, J. 2004. On the basic principles of model engineering. In: Gérard, S.,
Champeau, J. & Babau, J.-P. (eds.). Proceedings of the second summer school,
MDA for Embedded Systems. Brest, Brittany, France, 6�10 September 2004.
France: ENSIETA. Part I. Pp. 1�47.

Birbilis, G., Koutlis, M., Kyrimis, K., Tsironis, G. & Vasiliou, G. 2000. E-slate:
A software architectural style for end-user programming. Proceedings of
International Conference on Software Engineering. Limerick, Ireland, 4�11 June
2000. Los Alamitos, California, USA: IEEE Computer Society. Pp. 684�687.
ISSN 0270-5257.

Booch, G., Brown, A., Iyengar, S., Rumbaugh, J. & Selic, B. 2005. An MDA
manifesto. Frankel, D. & Parodi, J., MDA journal: Model driven architecture
straight from the masters. Tampa, FL, USA: Meghan-Kiffer Press. ISBN 0-
92965-225-8. Available online: http://www.bptrends.com/publicationfiles/05-
04%20COL%20IBM%20Manifesto%20-%20Frankel%20-3.pdf.

Born, M., Schieferdecker, I., Kath, O. & Hirai, C. 2005. Combining system
development and system test in a model-centric approach. In: Guelfi, N. (ed.).
Revised selected papers from the first international workshop in rapid
integration of software engineering techniques, RISE2004. Luxembourg-
Kirchberg, Luxembourg, 26 November 2004. Berlin, Germany: Springer-Verlag.
(Lecture Notes in Computer Science Vol. 3475) Pp. 132�143. ISBN
3-540-25812-4.

Bosch, J. 2000. Design and use of software architectures: Adopting and evolving
a product-line approach. 1st edition. Harlow: Addison-Wesley. 368 p. ISBN
0201674947.

Bosch, J. Florijn, G., Greefhorst, D., Kuusela, J., Obbink, H.J. & Pohl, K. 2002.
Variability issues in software product lines. Proceedings of the 4th International
Workshop, PFE 2001. Bilbao, Spain, 3�5 October 2001. Revised Papers.
(Lecture Notes in Computer Science 2290.) Berlin, Germany: Springer-Verlag.
Pp. 13�21. ISBN 3 540 43659 6.

Bosch, J. & Molin, P. 1999. Software architecture design: Evaluation and
transformation. Proceedings of IEEE Conference and Workshop on Engineering

http://www.bptrends.com/publicationfiles/05-

91

of Computer-Based Systems. Nashville, TN, USA, 7�12 March 1999. Los
Alamitos, CA, USA: IEEE Computer Society. Pp. 4�10. ISBN 0769500285.

Bratthall, L. & Runeson, P. 1999. A taxonomy of orthogonal properties of
software architecture. Proceedings of the second Nordic software architecture
workshop, NOSA�99. University of Karskrona, Ronneby, Sweden, 12�13
August 1999.

Brown, A. 2004. An introduction to model driven architecture � part 1: MDA
and today's systems. IBM. Rational Edge. Electronic magazine. [Referenced
4.1.2006]. URL www-106.ibm.com/developerworks/rational/library/3100.html.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. & Stal, M. 1996.
Pattern-oriented software architecture � a system of patterns. 1st edition.
Chichester, New York: John Wiley & Sons. 456 p. ISBN 0471958697.

Cheng, S.-W., Garlan, D., Schmerl, B., Sousa, J. P., Spitznagel, B. & Steenkiste,
P. 2002. Using architectural style as a basis for system self-repair. Proceedings
of the 3rd Working IEEE/IFIP Conference on Software Architecture, WICSA3.
Montreal, Quebeck, Canada, 25�30 August 2002. Norwell, MA, USA: Kluwer
Academic Publishers. Pp. 45�59. ISBN 1 4020 7176 0.

Christoph, A. 2004. Describing horizontal model transformations with graph
rewriting rules. Proceedings of Model driven architecture: European MDA
workshops: Foundations and applications, MDAFA 2003 and MDAFA 2004.
Twente, the Netherlands, June 26�27 2003 and Linkoping, Sweden, June 10�11
2004. Revised selected papers. (Lecture Notes in Computer Science 3599.)
Heidelberg, Germany: Springer-Verlag. Pp. 93�107. ISSN 0302-9743.

Chung, L., Nixon, B., Yu, E. & Mylopoulos, J. 2000. Non-functional
requirements in software engineering. Boston, Dordrecht: Kluwer Academic
Publishers. 439 p. ISBN 0-7923-8666-3.

Czarnecky, K. & Helsen, S. 2003. Classification of model transformation
approaches. Workshop on generative techniques in the context of model-driven
architecture in ACM Conference on Object-Oriented Programming, Systems,

92

Languages and Applications, OOPSLA�03. Anaheim, California, USA, 26�30
October 2003.

Dobrica, L. & Niemelä, E. 2000. Attribute-based product-line architecture
development for embedded systems. Proceedings of the 3rd Australasian
workshop on software and systems architectures, AWSA�2000. Sydney,
Australia, 19�20 November 2000. Pp. 76�88.

Dobrica, L. & Niemelä, E. 2002. A survey on software architecture analysis
methods. IEEE Transactions on Software Engineering, Vol. 28, No. 7, pp. 638�653.
ISSN 0098-5589.

Dueñas, J. C., de Oliveira, W. & de la Puente, J. 1998. A software architecture
evaluation model. Proceedings of the second international ESPRIT ARES
workshop on development and evolution of software architecture for product
families. Las Palmas de Gran Canaria, Spain, 26�27 February 1998. Berlin,
Germany: Springer-Verlag. Pp. 148�157. ISBN 3-540-64916-6.

Fenkam, P., Gall, H., Jazayeri, M. & Kruegel, C. 2002. DPS: An architectural
style for development of secure software. Proceedings of International
conference on infrastructure security, InfraSec 2002. Bristol, UK, 1�3 October
2002. Berlin, Germany: Springer-Verlag. (Lecture Notes in Computer Science
Vol. 2437.) Pp. 180�198. ISBN 3 540 44309 6.

Foley, J. D. & van Dam, A. 1982. Fundamentals of interactive computer
graphics. Reading: Addison-Wesley. 664 p. ISBN 0-201-14468-9.

Frankel, D. 2003. Model driven architecture, applying MDA to enterprise
computing. New York: Wiley. 328 p. ISBN 0-471-31921-1.

Frankel, D. 2005. Eclipse and MDA. David Frankel Consulting, Business
Process Trends. Web column. [Referenced 4.1.2006].
URL http://www.bptrends.com/

Gall, H., Jazayeri, R., Klosch, R. & Trausmuth, G. 1997. The architectural style
of component programming. Proceedings of the 21st Annual International
Computer Software and Applications Conference, COMPSAC'97. Washington,

http://www.bptrends.com/

93

DC, USA, 13�15 August 1997. Los Alamitos, CA: IEEE Computer Society.
Pp. 18�25. ISBN 0 8186 8105 5.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. 1994. Design patterns:
Elements of reusable object-oriented software. Addison Wesley. 416 p. ISBN
0-201-63361-2.

Gardner, T., Griffin, C., Koehler, J. & Hauser, R. 2003. A review of OMG MOF
2.0 QVT submissions and recommendations towards the final standard.
In: Evans, A., Sammut, P. & Willans, J. S. (eds.). Proceedings of the 1st
international workshop on metamodeling for MDA. Kings Manor, York,
England, 24�25 November 2003. Pp. 178�197.
URL http://www.cs.york.ac.uk/metamodel4mda/onlineProceedingsFinal.pdf.

Grønmo, R., Aagedal, J., Solberg, A., Belaunde, M., Rosentrhan, P., Faugere,
M., Ritter, T. & Born, M. 2005. Evaluation of the QVT Merge language
proposal. White paper, 31st of March. [Referenced 4.1.2006]. 85 p. URL
http://www.modelware-ist.org/public_area/publications/white_papers/QVT-
Eval-OMGReport.pdf.

Grunske, L. 2003. Automated software architecture evolution with hypergraph
transformation. Proceedings of the Seventh IASTED International Conference
on Software Engineering and Applications. Marina del Rey, CA, USA, 3�5
November 2003. Galgery- Alberta, Canada: International Association of Science
and Technology for Development. Pp. 613�620. ISBN 0889863946.

van Gurp, J., Bosch, J. & Svahnberg, M. 2001. On the notion of variability in
software product lines. Proceedings of Working IEEE/IFIP Conference on
Software Architecture, WICSA 2001. Amsterdam, Netherlands, 28�31 August
2001. Los Alamitos, CA, USA: IEEE Computer Society. Pp. 45�54. ISBN
0 7695 1360 3.

Günther, J. & Steenbergen, C. 2004. Application of MDA for the development
of the DATOS billing and customer care system. In: van Sinderen, M. J. &
Ferreira Pires, L. (Eds.). Proceedings of the 1st European workshop on model-
driven architecture with emphasis on industrial applications, MDA-IA 2004.
University of Twente, Enschede, The Netherlands, 17�18 March 2004.

http://www.cs.york.ac.uk/metamodel4mda/onlineProceedingsFinal.pdf
http://www.modelware-ist.org/public_area/publications/white_papers/QVT-Eval-

94

Netherlands: University of Twente. (CTIT Technical Report TR-CTIT-04-12.)
Pp. 53�62. ISSN 1381-3625.

Hofmeister, C., Nord, R. & Soni, D. 2000. Applied software architecture.
Reading, MA: Addison-Wesley. 397 p. ISBN 0-201-32571-3.

IEEE-1471. 2000. IEEE recommended practice for architectural descriptions of
software-intensive systems. New York: IEEE. 23 p.

Immonen, A. 2006. A method for predicting reliability and availability at the
architectural level. In: Käkölä, T. & Dueñas, J. C. (Eds.). Software Product
Lines: Research Issues in Engineering and Management. Berlin, Heidelberg,
New York: Springer. Pp. 373�422. ISBN-10 3-540-33252-9, ISBN-13 978-3-
540-33252-7.

Immonen, A. & Niskanen, A. 2005. A tool for reliability and availability
prediction. Proceedings of the 31st Euromicro conference on Software
Engineering and Advanced Applications, Euromicro 2005. Porto, Portugal, 30
August � 3 September 2005. Los Alamitos, CA, USA: IEEE Computer Society.
Pp. 416�423.

ISO-9126-1. 2001. Software engineering � product quality � part 1: Quality
model. ISO/IEC. 25 p.

Jaaksi, A., Aalto, J.-M., Aalto, A. & Vättö, K. 1999. Tried & true object
development: Industry-proven approaches with UML. Cambridge Univ.:
Cambridge University Press. 315 p. ISBN 0-521-64530-1.

Järvinen, P. 2001. Improving the quality of drawings. Computers and Networks
in the Age of Globalization. Proceedings of the IFIP TC9 world conference on
human choice and computers. Geneva, Switzerland, 25�28 August 1998.
Norwell, MA, USA: Kluwer Academic Publishers. Pp. 245�259. ISBN 0 7923
7253 0.

Järvinen, P. 2004. On research methods. New edition. Tampere, Finland:
Opinpajan kirja, Tampereen yliopistopaino Oy. 204 p. ISBN 952-99233-1-7.

95

Kang, K. C., Cohen, S., Hess, J., Novak, W. & Peterson, A. 1990. Feature-oriented
domain analysis (FODA) Feasibility study. Pittsburgh, PA, USA: Software
Engineering Institute. 147 p. (SEI Technical Reports CMU/SEI-90-TR-21.)

Karhinen, A., Kuusela, J. & Tallgren, T. 1997. An architectural style decoupling
coordination, computation and data. Proceedings of the third IEEE international
Conference on Engineering of Complex Computer Systems. Como, Italy, 8�12
September 1997. Los Alamitos, CA, USA: IEEE Computer Society. Pp. 60�68.
ISBN 0 8186 8126 8.

Keshav, R. & Gamble, R. 1998. Towards a taxonomy of architecture integration
strategies. In: Magee, J. & Perry, D. (Eds.). Proceedings of the third international
software architecture workshop, ISAW-3. Orlando, FL, USA, 1�5 November
1998. New York, NY, USA: ACM. (Foundations of Software Engineering.)
Pp. 89�92. ISBN 1-58113-081-3.

Klein, M. & Kazman, R. 1999. Attribute-based architectural styles. Pittsburgh,
PA, USA: Software Engineering Institute. 74 p. (SEI Technical reports
CMU/SEI-99-TR-022.)

Kobryn, C. 2004. UML 3.0 and the future of modeling. Software and Systems
Modeling, Vol. 3, No. 1, pp. 4�8. ISSN 1619-1366 (Paper) 1619-1374 (Online).

Kronlöf, K. 1993. Method integration: Concepts and case studies. Chichester:
John Wiley & Sons. 402 p. ISBN 0-471-93555-7.

Kruchten, P. 1995. The 4+1 view model of architecture. IEEE Software, Vol. 12,
No. 6, pp. 42�50. ISSN 0740-7459.

Krueger, C. 2004. Introduction to Software product lines. Web page.
[Referenced 14.10.2004]. URL http://www.softwareproductlines.com.

Levy, N. & Losavio, F. 1999. Analyzing and comparing architectural styles.
Proceedings of XIX international conference of the Chilean computer science
society, SCCC�99. Talca, Chile, 11�13 November 1999. Los Alamitos, CA,
USA: IEEE Computer Society. Pp. 87�95. ISBN 0 7695 0296 2.

http://www.softwareproductlines.com

96

van der Linden, F., Bosch, J., Kamsties, E., Känsälä, K. & Obbink, H. 2004.
Software product family evaluation. In: Nord, R. Proceedings of the Third
International Software Product Line Conference, SPLC 2004. Boston, MA,
USA, 30 August � 2 September 2004. Berlin, Heidelberg: Springer. Pp. 110�129.
ISBN 3-540-22918-3.

March, S. T. & Smith, G. F. 1995. Design and natural science research on
information technology. Decision Support Systems, Vol. 15, No. 4, pp. 251�266.
ISSN 0167-9236.

Matinlassi, M. 2002 Evaluation of Product line architecture design methods.
Proceedings of young researchers� workshop in the seventh international
conference on software reuse, ICSR7. Austin, Texas, USA, 15�19 April 2002.
Web proceedings. [Referenced 4.1.2006]. URL http://www.info.uni-
karlsruhe.de/~heuzer/ICSR-YRW2002/papers/MariMatinlassi_Evaluation_of_
Product_Line_Architecture_DesignMethods.pdf.

Matinlassi, M. 2004. Evaluating the portability and maintainability of software
product family architecture: Terminal software case study. In: Magee, J.,
Szyperski, C. & Bosch, J. (Eds.). Proceedings of the 4th IEEE/IFIP conference
on software architecture, WICSA 2004. Oslo, Norway, 12�15 June 2004. Los
Alamitos, CA, USA: IEEE Computer Society. Pp. 295�298. ISBN 0-7695-2172-X.

Matinlassi, M. 2005. Quality-driven software architecture model transformation.
Proceedings of the fifth working IEEE/IFIP conference on software architecture,
WICSA 2005. Pittsburgh, PA, USA, 6�9 November 2005. Pp. 199�200. ISBN-
13: 978-0-7695-2548-8. ISBN-10: 0-7695-2548-2.

Matinlassi, M. & Kalaoja, J. 2002. Requirements for Service Architecture
Modeling. Proceedings of the Workshop of Software modeling engineering of
UML2002, WISME2002. Dresden, Germany, 30 September � 4 October 2002.
Web proceedings. [Referenced 4.1.2006].
URL http://www.metamodel.com/wisme-2002/papers/matinlassi.pdf.

Matinlassi, M. & Niemelä, E. 2002. Designing high quality architectures.
Proceedings of the workshop on software quality in ICSE 2002. Orlando, USA,
25 May 2002. 4 p.

http://www.info.uni-karlsruhe
http://www.metamodel.com/wisme-2002/papers/matinlassi.pdf

97

Matinlassi, M., Niemelä, E. & Dobrica, L. 2002. Quality-driven architecture
design and quality analysis method, a revolutionary initiation approach to a
product line architecture. Espoo: VTT Electronics. 129 p. + app. 10 p. (VTT
Publications 456). ISBN 951-38-5967-3; 951-38-5968-1. http://virtual.vtt.fi/
inf/pdf/publications/2002/P456.pdf.

Matinlassi, M., Pantsar-Syväniemi, S. & Niemelä, E. 2004. Towards service-
oriented development in base station modules. In: Trappl, R. (Ed.). Cybernetics
and Systems 2003, Proceedings of the 17th European meeting on cybernetics
and system research. Vienna, Austria, 13�16 April 2004. Austria: Austrian
Society for Cybernetic Studies. Pp. 440�444. ISBN 3-85206-169-5.

Medvidovic, N., Oreizy, P., Robbins, J. E. & Taylor, R. N. 1996. Using object-
oriented typing to support architectural design in the C2 style. Proceedings of the
Fourth ACM SIGSOFT Symposium on the Foundations of Software
Engineering, SIGSOFT '96. San Francisco, CA, USA, 16�18 Oct. 1996. New
York, NY, USA: ACM. Pp. 24�32. ISBN 0 89791 797 9.

Merilinna, J. 2005. A tool for quality-driven architecture model transformation.
Espoo: VTT Electronics. 106 p. + app. 7 p. (VTT Publications 561). ISBN 951-
38-6439-1;951-38-6440-5. http://virtual.vtt.fi/inf/pdf/publications/2005/P561.pdf.

Merilinna, J. & Matinlassi, M. 2004. Evaluation of UML tools for model-driven
architecture. Proceedings of the 11th Nordic workshop on programming and
software development tools and techniques, NWPER�2004. Turku, Finland, 17�19
August 2004. Turku: Åbo Akademi University. Pp. 155�165. ISBN 952-12-
1385-X.

Monroe, R. T., Kompanek, A., Melton, R. & Garlan, D. 1997. Architectural
styles, design patterns, and objects. IEEE Software, Vol. 14, No. 1, pp. 43�52.
ISSN 0740-7459.

Nechypurenko, A., Lu, T., Deng, G., Schmidt, D. & Gokhale, A. 2004. Applying
MDA and component middleware to large-scale distributed systems: A case
study. In: van Sinderen, M. J. & Ferreira Pires, L. (Eds.). Proceedings of the 1st
European workshop on model-driven architecture with emphasis on industrial
applications. University of Twente, Enschede, The Netherlands, 17�18 March

http://virtual.vtt.fi/
http://virtual.vtt.fi/inf/pdf/publications/2005/P561.pdf

98

2004. Netherlands: University of Twente. (CTIT Technical Report TR-CTIT-04-12.)
Pp. 1�10. ISSN 1381-3625.

Neelamkavil, F. 1987. Computer simulation and modeling. 1 edition. John Wiley
& Sons Inc. 324 p. ISBN 0471911291.

Niemelä, E. 1999. A component framework of a distributed control systems
family. Espoo: VTT Electronics. 188 p. + app. 68 p. (VTT Publications 402).
ISBN 951-38-5549-X; 951-38-5550-3. http://virtual.vtt.fi/inf/pdf/publications/
1999/P402.pdf.

Niemelä, E. 2005. Strategies of product family architecture development. In:
Obbink, H. & Pohl, K. (Eds.). Software Product Lines: Proceedings of the 9th
International Conference, SPLC 2005. Rennes, France, 26�29 September 2005.
Berlin, Heidelberg: Springer-Verlag. (Lecture Notes in Computer Science 3714)
Pp. 186�197. ISBN 3-540-28936-4.

Niemelä, E., Kalaoja, J. & Lago, P. 2005. Toward an architectural knowledge
base for wireless service engineering. IEEE Transactions on Software
Engineering, Vol. 31, No. 5, pp. 361�379. ISSN 0098-5589.

Niemelä, E. & Matinlassi, M. 2005. Quality evaluation by QADA. A half-day
tutorial in the 5th Working IEEE/IFIP Conference on Software Architecture,
WICSA 2005. Pittsburgh, PA, USA, 6�9 November 2005.

Niemelä, E., Matinlassi, M. & Immonen, A. 2004. Practical evaluation of
software product family architectures. In: Nord, R. (Ed.). Software Product
Lines: Third international conference, SPLC 2004. Boston, MA, USA, 30
August � 2 September. New York: Springer Verlag. (Lecture Notes in Computer
Science 3154). Pp. 130�145. ISBN 3-540-22918-3.

OMG. 2002. MOF 2.0 Query / Views / Transformations RFP. Request for
Proposals, April 10th. 32 p. URL http://www.omg.org/docs/ad/02-04-10.pdf.

OMG. 2003a. MDA guide version 1.0.1. Miller, J. & Mukerji, J. (Eds.). Object
Management Group, omg/2003-06-01. 12th June. 62 p.
URL http://www.omg.org/cgi-bin/apps/doc?omg/03-06-01.pdf.

http://virtual.vtt.fi/inf/pdf/publications/
http://www.omg.org/docs/ad/02-04-10.pdf
http://www.omg.org/cgi-bin/apps/doc?omg/03-06-01.pdf

99

OMG. 2003b. UML profile for modeling quality of service and fault tolerance
characteristics and mechanisms. Object Management Group, Revised
submission, 94 p. URL http://www.omg.org/cgi-bin/apps/doc?ptc/05-05-02.pdf.

OMG. 2003c. UML profile for schedulability, performance, and time
specification. Object Management Group, 235 p. URL http://www.omg.org/
docs/formal/05-01-02.pdf.

OMG. 2004. MOF model to text transformation language. Request for
proposals, August 2004. 31 p. URL http://www.omg.org/docs/ad/04-04-07.pdf.

OMG. 2005a. A proposal for an MDA foundation model. ormsc/05-04-01. An
ORMSC White Paper V00-02, 7 p. URL http://www.omg.org/docs/ormsc/05-04-
01.pdf.

OMG. 2005b. Unified modeling language 2.0: Superstructure. Object
Management Group. 804 p. URL http://www.omg.org/docs/formal/05-07-04.pdf.

Perry, D. & Wolf, P. 1992. Foundations for the study of software architecture.
ACM Sigsoft � Software Engineering Notes, Vol. 17, No. 4, pp. 40�52. ISSN
0163-5948.

Purhonen, A. 2002. Quality attribute taxonomies for DSP software architecture
design. In: van der Linden, F. (Ed.). Proceedings of the 4th international
workshop on software product-family engineering, PFE-4. Bilbao, Spain, 3�5
October 2001. New York: Springer. (Lecture Notes in Computer Science 2290.)
Pp. 238�247. ISBN 3-540-43659-6.

Ramljak, D., Puksec, J., Huljenic, D., Koncar, M. & Simic, D. 2003. Building
enterprise information system using model driven architecture on J2EE platform.
In: Proceedings of the 7th international conference on telecommunications,
ConTEL 2003. Zagreb, Croatia, 11�13 June 2003. Zagreb, Croatia: University of
Zagreb. (Vol. 2.) Pp. 521�526.

Rodriques, G. N., Roberts, G. & Emmerich, W. 2004. Reliability support for the
model driven architecture. In: de Lemos, R., Gacek, C. & Romanovsky, A.

http://www.omg.org/cgi-bin/apps/doc?ptc/05-05-02.pdf
http://www.omg.org/
http://www.omg.org/docs/ad/04-04-07.pdf
http://www.omg.org/docs/ormsc/05-04-
http://www.omg.org/docs/formal/05-07-04.pdf

100

Architecting Dependable Systems II. Berlin, Germany: Springer-Verlag.
(Lecture Notes in Computer Science 3069.) Pp. 79�98. ISBN 3 540 23168 4.

Salicki, S. & Farcet, N. 2001. Expression and usage of the variability in the
software product lines. In: van der Linden, F. (Ed.). Proceedings of the 4th
international workshop on software product-family engineering, PFE-4. Bilbao,
Spain, 3�5 October 2001. New York: Springer. (Lecture Notes in Computer
Science 2290.) Pp. 287�297. ISBN 3-540-43659-6.

Selic, B. 2003. The pragmatics of model-driven development. IEEE Software,
Vol. 20, No. 5, pp. 19�25. ISSN 0740-7459.

Selic, B. 2004. Model-Driven Development in the embedded environment with
OMG Standards. Presentation in the second Summer School �MDA for
Embedded Systems�. Brest, Brittany, France, 6�10 September 2004.

Selic, B., Gullekson, G. & Ward, P. T. 1994. Real-time object oriented
modeling. New York: Wiley. 525 p. ISBN 0-471-59917-4.

Sendall, S. & Kozaczynski, W. 2003. Model transformation: The heart and soul of
model-driven software development. IEEE Software, Vol. 20, No. 5, pp. 42�45.
ISSN 0740-7459.

Sha, L., Rajkumar, R. & Gagliardi, M. 1995. A software architecture for dependable
and evolvable industrial computing systems. Pittsburgh, PA, USA: Software
Engineering Institute. 24 p. (SEI Technical Reports CMU/SEI-95-TR-005.)

Shaw, M. 1995. Comparing architectural design styles. IEEE Software, Vol. 12,
No. 6, pp. 27�41. ISSN 0740-7459.

Shaw, M. & Clements, P. 1996. Toward boxology: Preliminary classification of
architectural styles. Proceedings of the 2nd International Software Architecture
Workshop, ISAW-2. San Francisco, CA, USA, 14�15 October 1996. New York,
NY, USA: ACM. Pp. 50�54.

Shaw, M. & Clements, P. 1997. Field guide to boxology: Preliminary
classification of architectural styles for software systems. Proceedings of the

101

21st Annual International Computer Software & Applications Conference,
COMPSAC'97. Washington, DC, USA, 13–15 August 1997. Los Alamitos, CA,
USA: IEEE. Pp. 6–13. ISBN 0730-3157.

Sifakis, J., Tripakis, S. & Yovine, S. 2003. Building models of real-time systems
from application software. Proceedings of the IEEE, Vol. 91, No. 1, pp. 100–111.
ISSN 0018-9219.

Steenbergen, C., Rapella, D., Belaunde, M., Nektarious, G. & Tinella, S. 2004.
Panel discussion: What is the added value of MDA for industry? The 1st
European workshop on model-driven architecture with emphasis on industrial
applications, MDA-IA 2004. University of Twente, Enschede, The Netherlands,
17–18 March 2004.
URL http://modeldrivenarchitecture.esi.es/ pdf/PanelDiscussion.zip

Taylor, R., Medvidovic, N., Anderson, K., Whitehead, E., Robbings, J., Nies, K.,
Oreizy, P. & Dubrow, D. 1996. A component- and message-based architectural
style for GUI software. IEEE Transactions on Software Engineering, Vol. 22,
No. 6, pp. 390–406. ISSN 0098-5589.

Törngren, M., Chen, D. & Crnkovic, I. 2005. Component-based vs. Model-based
development: A comparison in the context of vehicular embedded systems.
Proceedings of the 31st Euromicro conference on Software Engineering and
Advanced Applications, Euromicro 2005. Porto, Portugal, 30 August – 3
September 2005. Los Alamitos, CA, USA: IEEE Computer Society. Pp. 432–441.

Vrijnsen, L., Delnooz, C., Somers, L. & Hammer, D. 2003. Experiences with
scenario based architecting. Proceedings of the 16th international conference of
software & systems engineering and their applications, ICSSEA 2003. Centre
pour la Maîtrise des Systèmes et du Logiciel Conservatoire National des Arts et
Mètiers, Paris, France, 2–4 December 2003.

Zhao, Q., Huang, G., Luo, X. & Wu, X. 2001. A software architectural style for
deregulated power markets. Proceedings of 2001 Winter Meeting of the IEEE
Power Engineering Society. Columbus, OH, USA, 28 January – 1 February 2001.
Piscataway, NJ, USA: IEEE. (Vol. 3). Pp. 1497–1502. ISBN 0 7803 6672 7.

Appendices III and IV of this publication are not included in the PDF version.
Please order the printed version to get the complete publication
(http://www.vtt.fi/publications/index.jsp)

PAPER I

Comparison of software product line
architecture design methods

COPA, FAST, FORM, KobrA and QADA

In: Proceedings of the 29th international conference on
software engineering, ICSE2004. Edinburgh, Scotland,

U.K., 23–28 May 2004. Los Alamitos, California:
IEEE. Pp. 127–136.

Reprinted with permission from the publisher.

Comparison of Software Product Line Architecture Design Methods:

COPA, FAST, FORM, KobrA and QADA

Mari Matinlassi

VTT Technical Research Centre of Finland, P.O Box1100, 90571-Oulu FIN

Mari.Matinlassi@vtt.fi

Abstract

Product line architectures (PLAs) have been under

continuous attention in the software research community

during the past few years. Although several methods have

been established to create PLAs there are not available

studies comparing PLA methods. Five methods are known

to answer the needs of software product lines: COPA,

FAST, FORM, KobrA and QADA. In this paper, an

evaluation framework is introduced for comparing PLA

design methods. The framework considers the methods

from the points of view of method context, user, structure

and validation. Comparison revealed distinguishable

ideologies between the methods. Therefore, methods do

not overlap even though they all are PLA design methods.

All the methods have been validated on various domains.

The most common domains are telecommunication

infrastructure and information domains. Some of the

methods apply software standards; at least OMG’s MDA

for method structures, UML for language and IEEE Std-

1471-2000 for viewpoint definitions.

1. Introduction

Software product lines (PL) are a well-known

approach in the field of software engineering. Several

methods have been published to address the problems of

PL engineering. Methods are diverging in terminology

and application domains. Therefore it is difficult to find

out the differences and similarities of the methods.

Only few attempts have been made to evaluate or

compare the product line architecture (PLA) design

methods, e.g. in [1], [2] and [3]. Lopez-Herrejon and

Batory propose a standard example case for evaluating

product line methods. However, this example is very

close to implementation and measures method features

with performance benchmarking of the products the

method outputs. This kind of evaluation of product line

methods is very limited and a comparison covering also

the other aspects of PL methods is required. The other

example of surveys on product line architectures touches

all the aspects related to the product line from assessment

to domain engineering and testing. However, this report

either does not provide any comparisons that would

concern product line design methods. The third attempt

represents a covering survey on software architecture

analysis methods however, software architecture design

methods are not considered.

On the basis of our studies, there are five methods

answering the needs of product lines from the software

architectural point of view. In alphabetical order they are

COPA[4], FAST[5], FORM[6], KobrA[7] and QADA[8].

The first of the methods mentioned, a Component-

Oriented Platform Architecting Method for product

family engineering, i.e. COPA, is a component-oriented

but architecture-centric method that enables the

development of software intensive product families.

FAST – Family-Oriented Abstraction, Specification and

Translation - is a software development process focused

on building families. Feature-Oriented Reuse Method for

product line software engineering, FORM is an extension

to the FODA [9] method. The core of FORM lies in the

analysis of domain features and the use of these features

to develop reusable and adaptable domain artifacts. That

is, FORM is a feature-oriented approach to product line

architecture engineering. Kobra again is an acronym for

Komponentenbasierte Anwendungsentwicklung, denoting

a practical method for component-based product line

engineering with UML. Quality-driven Architecture

Design and Analysis, shortly QADA states a product line

architecture design method providing traceable product

quality and design time quality assessment.

The purpose of this investigation was to study and

compare the existing methods for the design of software

product line architectures. The intention of this paper is

not to provide an exhaustive survey on the area but

provide a state-of-the-art of current PLA practices and

help others to understand and contrast alternative

approaches to product line design. This paper does

neither guide in selecting the right approach for PLA

design but opens up a basis for creation of such a decision

tool. First, this paper provides background knowledge on

architectural design methods and introduces a comparison

framework for evaluating PLA design methods. Then, the

five PLA design methods are briefly presented and

compared against the framework. The most remarkable

observations of the comparison close the paper.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

I/1

2. Architecture Design

Architectural views have been the basis for a number

of techniques developed and used during the last few

years for describing architectures. It seems that the first of

them was "4+1 views to software architecture" [10]. The

four main views used are logical, process, physical and

development view. The logical view describes an object

model. The process view describes the design’s

concurrency and synchronization aspect. The physical

view describes the mapping of the software onto the

hardware reflecting the distributed aspect of the system.

The development view describes the software’s static

organization in its development environment. The ‘+1’

denotes the use-case view consisting of scenarios that are

used to illustrate the four views.

Jaaksi et al. [11] suggests a slightly modified version

of the 4+1 view technique and ends up with 3+1 views

necessary to describe the software architecture. The views

are the logical, runtime and development view, plus the

scenario view. The 3+1 method applies the Unified

Modeling Language (UML) as an architectural

description language.

Hofmeister et al. [12] define four views (conceptual,

module, execution and code view) that are based on

observations done in practice on various domains, e.g.

image and signal processing systems, a real-time

operating system, communication systems, etc.

Despite the fact that the techniques introduced above

are capable and exhaustive in their own way; none of

them concerns the product line approach to the

architectural design.

Architecture Based Design (ABD) method [13] is a

quality driven method for designing the software

architecture for a long-lived system at the conceptual

level of abstraction. In ABD, the conceptual architecture

is a representation of the high-level design choices

described with three architectural views. Even though the

ABD method has been developed further into a new

method called the Attribute Driven Design method, ADD

[14], it still does not provide more than a coarse grained

high-level, i.e. conceptual architecture as an output. Also

the support for product line architecture design in the

ABD and in the ADD is mentioned but immature.

Only methods (1) specialized for architecture

engineering of software product lines and (2) with

sufficient materials were selected for comparison. The

product line practices concerned e.g. in [15], namely at

least Synthesis, Sherlock and Odyssey-DE, are out of the

range of this investigation. In addition, QASAR by Bosch

[16] describes the process and lists method artifacts

leaving the other aspects of the method hidden. SPLIT by

Coriat et al. [17] also has insufficient materials and is out

of the scope of the evaluation.

3. An Evaluation Framework

An evaluation framework that is introduced in Table 1
is used as an analysis tool. The framework is based on

three sources. The first is the NIMSAD (Normative

Information Model-based Systems Analysis and Design)

evaluation framework [18]. NIMSAD framework uses the

entire problem solving process as the basis of evaluation

and it can be used to evaluate methods on any category.

According to NIMSAD, there are four essential elements

for method evaluation.

Firstly, the method is evaluated from the element of

the problem situation, i.e. the method context. The second

element is the intended problem solver, i.e. the user of the

method. The third element is the problem solving process,

i.e. the method itself. The last element brings the three

elements together through self-evaluation. Because rare

methods consider evaluation of the method context, or

user or contents, herein, the method evaluation element is

turned to method validation element and it considers the

validation of the method in question and validation of

method outputs.

In addition to the NIMSAD framework, the definition

of a method and its ingredients [19] has influenced the

third element of the framework, i.e. the method contents.

Kronlöf defines method ingredients as follows: 1) an

underlying model, 2) a language, 3) defined steps and

ordering of these steps and 4) guidance for applying the

method. Because tools help in execution of the methods,

they are also considered in the element of method

contents. The third source for the evaluation framework is

an application of the NIMSAD framework for

component-based software development methods [20].

The goal of this evaluation was not to rate the methods

but to provide an overview of current PLA engineering

methods and find out if - and how - the methods differ in

any aspects of the PLA design. Therefore a neutral,

common and quite extensive NIMSAD framework for

method evaluation was utilized to derive the fundamental

element categories for the framework. NIMSAD

framework has earlier been applied in evaluation of

software engineering methods. This application of the

framework on software engineering methods provided the

basis for detailed element definition for categories. With

various questions this study tries to address e.g. maturity,

practicality and scope of the methods to find differences.

On the other hand the goal was to study if the methods

really have what it takes to call them a method. These

elements were considered in the category of 'contents' by

questioning if the methods satisfy the definition of a

method. Framework elements were refined to cover

features special for product line methods (e.g. variability

support). Herein, the evaluation of the “artifact” element

is excluded because of space limitations.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

I/2

Table 1. The categories and elements of the framework and the questions used in the evaluation.

Category Elements Questions

Specific goal What is the specific goal of the method?

Product line aspect(s) What aspects of the product line does the method cover?

Application domain(s) What is/are the application domain(s) the method is focused on?

Method inputs What is the starting point for the method?

Context

Method outputs What are the results of the method?

Target group Who are the stakeholders addressed by the method?

Motivation What are the user’s benefits when using the method?

Needed skills What skills does the user need to accomplish the tasks required by the

method?

User

Guidance How does the method guide the user while applying the method?

Method structure What are the design steps that are used to accomplish the method’s specific

goal?

Artifacts What are the artifacts created and managed by the method?

Architectural viewpoints What are the architectural viewpoints the method applies?

Language Does the method define a language or notation to represent the models,

diagrams and other artifacts it produces?

Variability How does the method support variability expression?

Contents

Tool support What are the tools supporting the method?

Method maturity Has the method been validated in practical industrial case studies? Validation

Architecture quality How does the method validate the quality of the output it produces?

4. Overview of PLA design methods

4.1. COPA

A Component-Oriented Platform Architecting Method

for Families of Software Intensive Electronic Products

(COPA) is being developed at the Philips Research Labs.

The COPA method is one of the results of the Gaudi

project [21]. The ambition of the Gaudí project is “to

make the art and emerging methodology of System

architecture more accessible and to transfer this know

how and skills to a new generation of system architects”.

The specific goal of the COPA method is to achieve

the best possible fit between business, architecture,

process and organization. This goal results in the middle

name of the COPA method: the BAPO product family

approach [22]. The specific goal of architecture design is

to find a balance between component-based and

architecture-centric approaches [23], wherein the

component-based approach is a bottom-up approach

relying on composition. The architecture-centric approach

is a top-down approach relying on variation.

COPA covers the following aspects of product lines:

business, architecture, process and organizational aspects.

Herein, our evaluation concentrates on the architecture

and process aspects. According to [24], the application

domains of the COPA method are telecommunication

infrastructure systems and the medical domain. In

addition, the case studies on the consumer electronics

domain are discussed in [4] and [25]. Within these

domains, COPA assists in building product populations

[23]. Product populations denote the large-scale diversity

in a product family developed with a component-driven,

bottom-up, partly opportunistic software development

using, as much as possible, available software to create

products within an organization.

Originally, the COPA method starts by analyzing the

customer needs. To be more specific, the inputs of the

method’s architecting phase are facts, stakeholder

expectations, (existing) architecture(s) and the

architects(s) intuition. The completely applied COPA

method produces the final products. To be more specific,

the phase of “architecting” aims to produce a lightweight

architecture (see [26] for definition) as an output. A

lightweight architecture denotes guidelines for

architecture more than traditional software

decomposition.

COPA is an extensive method targeted to all interest

groups of a software company. Especially, the

architecture stakeholders of the COPA method are the

customers, suppliers, business managers and engineers

[27]. The “multi-view” architecting is addressed for these

four main stakeholders [26]. Motivation to use COPA is a

promise to manage size and complexity, obtain high

quality, manage diversity and obtain lead time reduction.

4.2. FAST

David Weiss introduced a practical, family-oriented

software production process in the early 1990’s. The

process is known as the Family-Oriented Abstraction,

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

I/3

Specification, and Translation process. At the time of

writing the book on FAST (1999), the process was in use

at Lucent Technologies and the evolution was continuing.

The FAST [5] process is an alternative to the traditional

software development process. It is applicable wherever

an organization creates multiple versions of a product that

share significant common attributes, such as common

behavior, common interfaces, or common code.

The specific goal of FAST is to make the software

engineering process more efficient by reducing multiple

tasks, by decreasing production costs, and by shortening

the marketing time.

Considering the product line aspects, the FAST

method defines a full product line engineering process

with activities and artifacts. FAST divides the process of

a product line into three sub processes, i.e. domain

qualification, domain engineering and application

engineering [5].

FAST has been applied successfully at Lucent

Technologies at least on the domains of

telecommunication infrastructure and real-time systems.

Domain qualification starts from receiving the general

needs of business line by distinguishing between two

cases: one in which you pay little or no attention to

domain engineering, and a second one in which you

engineer the domain with the intent of making production

of family members more efficient. Application

engineering starts when application engineers receive the

requirements from customers.

Domain qualification outputs an economic model to

estimate the number and value of family members and the

cost to produce them. Domain engineering generates a

language for specifying family members, an environment

for generating family members from their specifications,

and a process for producing family members using the

environment. Application engineering generates family

members in response to customer requirements as an

output.

The FAST method was born in the industry and has a

high practical background. Therefore, FAST seems to be

aimed at software engineers and designers currently

working in the industry. The use of the FAST method is

motivated with a desire to alleviate the problems that

make the software developers’ task a lengthy and costly

one.

4.3. FORM

Kyo C. Kang and his co-fellows in Pohang University

of Science and Technology, Korea, propose a Feature-

Oriented Reuse Method (FORM) [6] as an extension to

the Feature-Oriented Domain Analysis (FODA) method

[9]. FORM extends FODA to the software design and

implementation phases and prescribes how the feature

model is used to develop domain architectures and

components for reuse.

FORM has a specific goal on how to apply domain

analysis results (commonality and variability) to the

engineering of reusable and adaptable domain

components with specific guidelines.

The application domain(s) for the FORM method are

the telecommunication domain and the information

domain. However, the feature exists in any application

domain. If the feature model can be obtained from the

application domain, FORM can be fit to the needs of

other specific domains.

FORM starts with feature modeling to discover,

understand, and capture commonalities and variabilities

of a product line. Domain engineering starts from the

beginning of the software development: context analysis.

The primary input is the information on systems that

share a common set of capabilities and data.

Domain engineering creates the feature model,

reference architecture, and reusable components as an

output. Application engineering creates the application

software after features have been selected from the

feature model, application architecture has been selected

from reference architecture and reusable components

have been selected from reusable components.

FORM is targeted to the wide spectrum of domain and

application engineering, including the development of

reusable architectures and code components. It is used at

software engineering in many industrial aspects.

The model that captures commonalities and

differences is called a “feature model”. The use of

features is motivated by the fact that customers and

engineers often speak of product characteristics in terms

of “features the product has and/or delivers”. Features are

abstractions that both customers and developers

understand and should be the first class objects in

software development.

4.4. KobrA

Fraunhofer IESE has been developing the KobrA

method [28], [29], [30] that is a methodology for

modeling architectures. The method stands for

Komponentenbasierte Anwendungsentwicklung that is

German for “component-based application development”

[7].

KobrA denotes itself as a component-based

incremental product line development approach or a

methodology for modeling architectures. It is also

designed to be suitable for both single system and family

based approaches in software development. In addition,

the approach can be viewed as a method that supports a

Model Driven Architecture (MDA) [31] approach to

software development, in which the essence of a system’s

architecture is described independently of platform

idiosyncrasies. Another important goal is to be as

concrete and prescriptive as possible and make a clear

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

I/4

distinction between the products (i.e. artifacts) and

processes.

KobrA defines a full product line engineering process

with activities and artifacts. The most important parts of

PL engineering are framework engineering and

application engineering with their sub steps, but KobrA

also defines implementation, releasing, inspection and

testing aspects of product line engineering process.

KobrA is developed for the information systems

domain (i.e. library system in [32]). However, different

application domains demand different methodical

support. Therefore, KobrA can be customized to better fit

the needs of a specific project. The method provides

support for being changed in terms of its processes and

products. In addition to the application domain, the

factors influencing the KobrA method are organizational

context, project structure and the goals of the project.

Framework engineering starts from the very beginning

of the software development: context realization.

Framework engineering does not need any other input

than the idea of a new framework with two or more

applications.

The other main activity of the method - application

engineering - starts when a customer contacts the

software development organization. When such an

expression of interest is received, an application

engineering project is set up and the context realization

instantiation is initiated. This activity equals to the

elicitation of user requirements within the scope of the

framework.

‘Komponent realizations’ mean low level designs of

software components. However, the process is defined as

far as to the implementation and testing phases of the

software product.

KobrA is definitely aimed at software engineers and

designers currently working in the industry. It is a simple

method for developing software and the adoption of the

method does not probably express overwhelming

challenges for software practitioners today. It also

provides an opportunity to get involved in the

development of a family of applications and smoothly

encourages seeking the benefits of reusing existing assets.

KobrA states it is a simple, systematic, scalable and

practical method [7]. Simple here means that a method is

as economic as possible with its concepts and the features

in a method should be as orthogonal as possible. In

addition, a method should separate concerns to the

greatest extent possible. Systematic expects that the

concepts and guidelines defined in the method should be

precise and unambiguous. Also, a method should tell

developers what they should do, rather that what they

may do. Another feature of the method, that products of a

method are strictly separated from the process, also serves

in reaching a systematic method. A scalable method

provides two aspects of scalability, these being

granularity scalability and complexity scalability. The

first one means that a method should be able to

accommodate large-scale and small-scale problems in the

same manner using the same basic set of concepts,

whereas fulfillment of the last one refers to incremental

application of the method concepts. Practicality requires

that a method is compatible with as many commonly

used implementation and middleware technologies as

possible, particular those that are either de facto or de jure

standards.

4.5. QADA

The QADA method is being developed at VTT, the

Technical Research Centre of Finland. QADA is an

abbreviation for Quality-driven Architecture Design and

quality Analysis, a method for both to design and to

evaluate software architecture of service-oriented

systems.

QADA claims to be a quality-driven architecture

design method. It means that quality requirements are the

driving force when selecting software structures and, each

viewpoint concerns certain quality attributes [33].

Architecture design is combined with quality analysis,

which discovers if the designed architecture meets the

quality requirements set in the very beginning.

QADA method describes the architectural design part

of the software development process, including steps and

artifacts produced in each step. It also covers the

description language used in the artifacts. It does not

cover organizational or business aspects.

Quality-driven design is aimed for middleware and

service architecture domains. The case studies cover the

design of distributed service platform [8], two kinds of

platform services for wireless multimedia applications

[34] and the design of wireless multimedia game [35]. In

addition, a recent case study on traffic information

management system is mentioned in [36]. Quality

analysis has been applied to the middleware platform [8],

spectrometer controller [37] and terminal software [36].

The method starts with the requirements engineering

phase that – even though called requirements engineering

- means a link between requirements engineering and

software architecture design. The aim is in collecting the

“driving ideas of the system and the technical properties

on which the system is to be designed” [8]. In addition to

functional properties, the quality requirements and

constraints of the system are captured as input.

The output of the QADA method is twofold: design

and analysis. Design covers software architecture at two

abstraction levels: conceptual and concrete. Conceptual

architecture covers the conceptual components,

relationships and responsibilities, which are intended to

be used by certain high level stakeholders related to

product line, e.g. product line architects or management.

Concrete architecture is closer to the so-called

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

I/5

‘traditional’ architecture description aimed for software

engineers and designers. The QADA method does not

produce implementation artifacts.

Analysis provides precious information concerning the

quality of the design. Analysis results in feedback of

whether the design addresses the quality requirements

defined for the system. Analysis may also produce quality

feedback about an existing system.

The method users are product line architects and

software architects or an architecting team. However, the

group of stakeholders that use the method output is much

wider. At the conceptual level, the stakeholders include

system architects, service developers, product architects

and developers, maintainers, component designers,

service users, project manager and component

acquisition, whereas at concrete level, the architectural

descriptions are aimed at component designers, service

developers, product developers, testing engineers,

integrators, maintainers and assets managers. These

groups continue by implementing, testing or maintaining

the architecture that is designed.

QADA claims - as do almost all the methods – to be a

systematic method and simple to learn. In addition, it is

applicable to existing modeling tools [8]. The architecture

modeling method also improves communication among

various stakeholders [38] and conforms to the IEEE

standard for architectural description [39].

5. Comparison Results

5.1. Context

Each of the methods under evaluation is

distinguishable concerning the specific goal the method

has. All the methods have the same overall goal, i.e.

produce product line architectures. However, to find a

difference, a specific goal denotes what point(s) does the

method press or highlight in PLA development.

Although e.g. both COPA and KobrA are component-

based, the COPA method stands out by combining

component-based (i.e. bottom-up) and architecture-centric

(top-down) approaches with a novel way. Another top-

down approach in addition to COPA is the QADA

method. However again, QADA has a diverging goal in

combining quality-driven approach with the architecture-

centric one. The FAST method expresses itself as a

process-driven method, and finally, the FORM method

represents well-known feature-orientation to product line

engineering.

As a feature-oriented approach, FORM states that it

also covers the requirements engineering. The

commonality analysis in the FAST method covers the

requirements phase extensively. The other methods seem

to step aside in this area, except that the QADA method

represents an interface between requirements engineering

and architecture design however this interface cannot be

considered as a systematic approach to gather and analyze

product requirements. In addition to requirements

engineering, the FORM method covers architecture,

implementation and process, as does also the KobrA

method. What comes to the other methods, the COPA

method is the most complete, covering all the aspects of a

product line, whereas FAST captures only the process

aspect and QADA extends the method’s scope from

process aspects to architectural aspects.

The information systems domain is the most popular

application domain; three methods altogether, namely

KobrA (library system [32]), FORM (electronic bulletin

board [40]) and QADA (traffic information management

system [36]). In addition to the information system,

QADA has been applied in middleware [8], [34], the

wireless multimedia domain [35] and in the space

application domain [37].

In addition to the electronic bulletin board system, the

FORM method has been applied on the elevator control

system [41] and the telecommunication infrastructure

system [42]. The telecommunication infrastructure

domain has been the application domain of also COPA

[24] and FAST [5]. The FAST method has been applied

on the domain of real-time systems as well [5]. Quite

apart from that, the COPA method alone among the

methods extends to the medical domain. The COPA case

studies on the consumer electronics domain are discussed

in [4], [25].

All the methods start from the very beginning, taking

context or user requirements as input. While considering

the method outputs, all the methods seem to produce quite

in-depth outputs by generating results that are close to the

implementation. COPA also takes a wider insight into the

issue by considering the business and organizational

aspects. KobrA defines the process as far as to the

implementation and testing phases of the software

product. Furthermore, the QADA method is distinguished

with output information concerning the quality of the

design.

5.2. User

The users of the method are either people who actually

use the method, i.e. follow the steps and create the

defined artifacts, or people who benefit and use the

outputs of the method. It seems the methods agree on the

rough division of stakeholder groups related to product

line engineering: engineers, architects, business managers

and customers. To make a difference, KobrA perhaps is

the most practical method aimed at software engineers

and designers currently working in the industry. It is a

simple method for developing software, and the adoption

of the method does not probably express overwhelming

challenges for software practitioners today. The

conformance to a language standard (UML) and usage of

commercial tools emphasizes the practicality and

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

I/6

applicability of the KobrA method. Quite the contrary one

may say that FORM is aimed at the academic audience.

What comes to the motivation, adopting any of these

product line architecture design methods provides several

benefits e.g. reuse, complexity management, higher

quality and shorter time-to-market. However, these

benefits do not motivate the real method users (software

architects) as well as the following implicit reasons. Both

KobrA and QADA are developed with a goal to produce

a simple and systematic method. They also conform to

commonly known standards: UML (KobrA), MDA

(KobrA [7] and QADA [38]) and IEEE-Std-1471-2000

(QADA [33]). With an industry proven background

COPA is a practical method, and with extensive

architectural descriptions, it improves communication

among various stakeholders of PL engineering. As well,

feature-orientation of FORM gives a common language

and therefore improves communication between

customers and engineers.

Considering the question of what are the skills the

method users need when applying the method, the

following issues were concluded. One of the essential

method properties is the method language. Two of the

methods have a special notation language or ADL to learn

(see [6] for FORM notation and COPA Koala [43]) and

the most of the methods apply UML as description

language. However, current commercial UML tools do

not provide a sufficient customization aspect to the needs

of architectural descriptions and therefore, every one of

the methods need special or extended tool support. This

will scale up the effort needed to learn the method.

Furthermore, each method has its own method ideology

needed to learn. However a ‘skill’ needed for this purpose

is just an open mind.

All the methods provide descriptive case studies. In

addition, FORM provides a special guideline [44] for

using a feature-oriented approach. COPA and QADA

suffer a lack of method documentation, whereas FAST

and KobrA are captured in extensive manuals.

5.3. Contents

FORM, FAST and KobrA define a quite similar

structure for the method. The basic idea is to first define

the context of the system. After that the main two phases

are (1) domain engineering and (2) application

engineering. Domain engineering is also called product

family engineering or framework engineering and it

analyses the commonalities and variabilities among

requirements and defines the domain architecture or a

component framework. Application engineering

instantiates the architectural model from domain

architecture and produces application realization. In

addition to these two main phases, the COPA method

introduces the third phase called platform engineering.

Platform engineering focuses on the development,

maintenance and administration of reusable assets within

the platform. Therefore, platform engineering is nothing

more than a sub phase derived from domain engineering.

Despite, the steps defined in the QADA method are

diverging. First, an interface is defined for requirements

engineering, which is somewhat compliant to the context

analysis. However, design is divided into two phases of

conceptual and concrete architecture design. After both

design phases, QADA introduces the phase of quality

evaluation that assesses the quality of architectural design

against defined quality attributes.

FORM and FAST explicitly define support for

variability in requirements elicitation, whereas the other

methods do not. In addition, through tool support [45]

FORM provides automatic transformation from the

requirements to an instance of the domain architecture.

The other methods concentrate on capturing variability

with graphical language in architectural design. QADA

and KobrA content themselves with adapted UML and

manual transformation to code, whereas COPA has

developed its own language and tools to represent

variability and transform component descriptions

automatically into code skeletons.

FAST does not define explicit tool support. Instead,

Process and Artifact State Transition Abstraction

(PASTA) process modeling tool of FAST serves to

explain FAST in more detail, to help the user to improve

FAST and to help the user to develop automated support

for FAST. Quite contrary, the FORM method has a single

tool, ASADAL [45] supporting all the features mentioned

in [40]. Concerning the rest of the methods, they all

mention a set of tools (Table 2).

Table 2. Comparing sets of tools in COPA,
KobrA and QADA.

MethodTool

COPA KobrA QADA

Koala compiler (special

code generator)

X

KoalaMaker (produces a

makefile)

X

Commercial code editor X

Commercial UML tool X X

Plug-ins for code editor X

Visio (with special stencil) X X

Word processing tool X X

Configuration management X

Only two of the methods (COPA and QADA) apply

views/viewpoints. Also FORM mentions three

architectural models (also called viewpoints): subsystem,

process and module [6]. However, an architectural

view/viewpoint [39] is a far broader concept than just a

model and closely related to various stakeholders of PLA.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

I/7

The COPA method refines architecture into five

views: customer, application, functional, conceptual and

realization views [24], [46]. When looking at the view

descriptions (Table 3) it is seen that COPA views are

more oriented on describing the whole product than just

software architecture. The first two views are so called

“commercial” views and the last two are technical views.

The Functional view in the middle is both commercial

and technical [27]. However, “no attempt has been made

yet to map out the collected viewpoints on the IEEE [39]

ontology [27]“. Instead, QADA viewpoints (Table 4)

conform to the IEEE standard viewpoint description and

provide various viewpoints on the software architecture

of the system. The four viewpoints are provided at two

levels of abstraction. The difference between the levels is

partly also in the aggregation dimension (see [47] for

definitions of architectural dimensions). Abstraction level

means both abstractions with respect to the main

architectural concepts of the system and abstraction from

the physical world. Therefore a component at the

conceptual level is not a software component but more

like a logical concept.

Table 3. Introducing COPA views.

View Description

Customer Describes the customer’s world.

Business modeling from the customer’s

viewpoint.

Application Describes the applications that are

important to the customer. Application

modeling. Customer ‘how?’

Functional Captures the system requirements of a

customer application. Product ‘what?’

Conceptual Includes the architectural concepts of the

system. Product ‘how?’ Component

identification and aspect design

Realization Describes the realization technologies

for building the system. Product ‘how?’

“Implementation is part of the realization

view [48]”

Table 4. Introducing QADA viewpoints.

Viewpoint Description

Structural Structures involved in particular

functional or/and quality

responsibilities. Quality analysis [36].

Behavior Dynamic actions of, and within a

system, their ordering and

synchronization. Analysis of execution

qualities [36].

Deployment Structures are deployed into processes

and/or physical computing units.

Analysis of execution qualities.

Development Organizing the design work, describes

the technological choices made upon

standards, software realization asset

management

5.4. Validation

All of the methods have been validated in practical

industrial case studies. The COPA method was born in

the industry and therefore, perhaps, has the strongest

industrial experience with software applications in large

product families.

Most of the methods i.e. FORM, FAST, COPA and

KobrA ensure quality attributes with non-architectural

evaluation methods, such as model checking, inspections

and testing. Although KobrA also proposes scenario-

based architecture evaluation (SAAM [49]) for ensuring

maintainability, none of these methods define an explicate

way to validate the output from the domain of application

engineering. Despite this, the QADA method has an

exceptional way of evaluating software architecture

designs before implementation. The quality of the design

is validated with a scenario based evaluation method in

two phases: conceptual and concrete [8].

6. Conclusions

This study has compared five methods for product line

architectural design: COPA, FAST, FORM, KobrA and

QADA according to specially developed question

framework. The comparison largely rested on the

available literature. Based on the combined experience of

the five product line engineering methods, the most

important conclusions were as follows.

The methods do not seem to compete with each other,

because each of them has a special goal or ideology. All

the methods highlight and follow this ideology

throughout the method descriptions.

• COPA. Concentrated on balancing between top-

down and bottom-up approaches and covering all

the aspects of product line engineering i.e.

architecture, process, business and organization.

• FAST. Family oriented process description with

activities, artifacts and roles. Therefore, it is very

adapting but not applicable as it is.

• FORM. Feature-oriented method for capturing

commonality inside a domain. Extended also to

cover architectural design and development of

code assets.

• KobrA. Practical, simple method for traditional

component-based software engineering with

UML. Adapts to both single systems and family

development.

• QADA. Concentrated on architectural design

according to quality requirements. Provides

support for parallel quality assessment of product

line software architectures.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

I/8

The most popular domains for applying the methods

have been information and telecommunication

(infrastructure) domains. These domains have six case

studies published all together. However, also the real-time

domain, wireless services, middleware, medical systems

and consumer electronics domains have been on trial.

All the methods agree that none of the available

commercial tools alone and/or without extensions support

product line architectural design. Therefore, special tools

or tool extensions have been developed to form a set of

tools. This way, product line methods may have a full,

practical tool support.

There are not available de jure standards for product

line architecture development. KobrA and QADA apply

other software standards - namely OMG MDA and UML

and IEEE Std-1471-2000 – which provide support for

formalizing PLA design.

The aim of this study was to provide a comparative

analysis and overview on the PLA engineering methods.

In addition, this study may provide a basis for developing

a decision tool for selecting an appropriate PLA

engineering practice. Meanwhile, getting familiar with all

the approaches before embarking on suitable PLA

development method is recommended.

Acknowledgements

I want to thank Philips, Avaya Labs, Pohang University,

IESE and VTT on their constructive criticism. I also

appreciate the help of Mr. Hailang Zuo in data collecting

and want to thank Professor Eila Niemelä for providing

valuable comments during the work.

7. References

[1] R. Lopez-Herrejon and D. Batory, "A Standard Problem for

Evaluating Product-Line Methodologies," in the Proc. of

Generative and Component-based Software Engineering: Third

International Conference, GCSE 2001, vol. 2186, Lecture Notes

in Computer Science. Springer Verlag, Berlin Heidelberg, 2001.

[2] M. Harsu, "A Survey of Product-Line Architectures,"

Tampere University of Technology, Report 23, March 2001.

[3] L. Dobrica and E. Niemelä, "A Survey on Software

Architecture Analysis Methods," IEEE Transactions on

Software Engineering, vol. 28, 2002, pp. 638-653.

[4] P. America, H. Obbink, J. Muller, and R. van Ommering,

"COPA: A Component-Oriented Platform Architecting Method

for Families of Software Intensive Electronic Products,".

Denver, Colorado: The First Conference on Software Product

Line Engineering, 2000.

[5] D. Weiss, C. Lai, and R. Tau, Software product-line

engineering: a family-based software development process.

Addison-Wesley, Reading, MA, 1999.

[6] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh,

"FORM: A Feature-Oriented Reuse Method with Domain-

Specific Reference Architectures," Annals of Software

Engineering, vol. 5, 1998, pp. 143 - 168.

[7] C. Atkinson et al., Component-based product line

engineering with UML. Addison-Wesley, London, New York,

2002.

[8] M. Matinlassi, E. Niemelä, and L. Dobrica, "Quality-driven

architecture design and quality analysis method, A

revolutionary initiation approach to a product line architecture,"

VTT Technical Research Centre of Finland, Espoo, 2002.

[9] K. C. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson,

"Feature-Oriented Domain Analysis. Feasibility study,,"

Software Engineering Institute, Pittsburgh CMU/SEI-90-TR-21,

1990.

[10] P. Kruchten, "The 4+1 View Model of Architecture," IEEE

Software, vol. 12, 1995, pp. 42-50.

[11] A. Jaaksi, J.-M. Aalto, A. Aalto, and K. Vättö, Tried &

True Object Development: Industry-Proven Approaches with

UML. Cambridge University Press, Cambridge Univ., 1999.

[12] C. Hofmeister, R. Nord, and D. Soni, Applied Software

Architecture. Addison-Wesley, Reading, MA, 2000.

[13] F. Bachmann, L. Bass, G. Chastek, P. Donohoe, and F.

Peruzzi, "The Architecture Based Design Method," CMU/SEI,

Technical report 2000-TR-001, 2000.

[14] L. Bass, M. Klein, and F. Bachmann, "Quality Attribute

Primitives and the Attribute Driven Design Method," in 4th

International Workshop on Software Product-Family

Engineering, F. van der Linden, Ed. Springer, Berlin

Heidelberg, 2002, pp. 163 - 176.

[15] C. Kuloor and A. Eberlein, "Requirements Engineering for

Software Product Lines," in the Proc. of the 15th International

Conference of Software and Systems Engineering and their

Applications (ICSSEA'2002), vol. 1. Conservatoire National de

Arts et Métiers, Paris, 2002.

[16] J. Bosch, Design and use of software architectures:

adopting and evolving a product-line approach. Addison-

Wesley, Harlow, 2000.

[17] M. Coriat, J. Jourdan, and F. Boisbourdin, "The SPLIT

Method, Building Product Lines for Software-Intensive

Systems," in the Proc. of the First Software Product Lines

Conference, P. Donohoe, Ed. Kluwer Academic Publishers,

Boston, 2000, pp. 147 - 166.

[18] N. Jayaratna, Understanding and evaluating

methodologies: NIMSAD: a systematic framework. McGraw-

Hill, London, 1994.

[19] K. Kronlöf, Method Integration: Concepts and Case

Studies. John Wiley & Sons, Chichester, 1993.

[20] M. Forsell, V. Halttunen, and J. Ahonen, "Evaluation of

Component-Based Software Development Methodologies," in

Proceedings of FUSST'99, J. Penjan, Ed. Institute of

Cybernetics at TTU, Tallinn, 1999.

[21] Philips,

http://www.extra.research.philips.com/natlab/sysarch/GaudiProj

ect.html

[22] R. van Ommering, "Building Product Populations with

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

I/9

Software Components," in Proceedings of ICSE'02. ACM,

2002, pp. 255 - 265.

[23] R. van Ommering and J. Bosch, "Widening the Scope of

Software Product Lines - From Variation to Composition," in

The Proc. of the Second Product Line Conference, SPLC2, vol.

2379, Lecture Notes in Computer Science, G. Chastek, Ed.

Springer-Verlag, Berlin, Heidelberg, 2002, pp. 328 - 347.

[24] J. Wijnstra, "Critical Factors for a Successful Platform-

Based Product Family Approach," in the Proc. of the Second

Product Line Conference SPLC2, vol. 2379, Lecture Notes in

Computer Science, G. Chastek, Ed. Springer-Verlag, Berlin

Heidelberg, 2002, pp. 68 - 89.

[25] R. van Ommering, "Building Product Populations with

Software Components," in the Proc. of the ICSE'02. ACM,

2002, pp. 255 - 265.

[26] G. Muller, "Light Weight Architecture: the way of the

future?," Embedded Systems Institute, Article written as part of

the Gaudí project 18th March 2003.

[27] G. Muller, "A Collection of Viewpoints," Philips Research,

2001.

[28] C. Atkinson, J. Bayer, and D. Muthig, "Component-Based

Product Line Development. The KobrA Approach," in the Proc.

of the First Software Product Lines Conference (SPLC1). P.

Donohoe, Ed. Kluwer Academic Publishers, Boston, 2000, pp.

289 - 309.

[29] C. Atkinson, J. Bayer, O. Laitenberger, and J. Zettel,

"Component-based Software Engineering: The KobrA

Approach," 22nd International Conference on Software

Engineering (ICSE2000), International Workshop on

Component-Based Software Engineering, Limerick, Ireland,

June 5-6, 2000 2001.

[30] C. Atkinson and D. Muthig, "Component-based product-

line engineering with the UML (tutorial)," in the Proc. of the 7th

International Conference on Software Reuse, Berlin2002.

[31] D. Frankel, Model Driven Architecture, Applying MDA to

Enterprise Computing. Wiley Publishing Inc., Indianapolis,

Indiana, 2003.

[32] J. Bayer, D. Muthig, and B. Göpfert, "The Library System

Product Line - A KobrA Case Study," Fraunhofer Institute for

Experimental Software Engineering, Kaiserslautern, Technical

Report IESE-Report No. 024.01/E, 2001.

[33] A. Purhonen, E. Niemelä, and M. Matinlassi, "Viewpoints

of DSP Software and Service Architectures," Journal of Systems

and Software, vol. 69, 2004, pp. 57 - 73.

[34] A. Tikkala and M. Matinlassi, "Platform services for

wireless multimedia applications: case studies," in the 1st

International Conference on Mobile and Ubiquitous

Multimedia, Oulu, Finland, 2002, pp. 76 - 81.

[35] P. Lago and M. Matinlassi, "The WISE Approach to

Architect Wireless Services," in Proceedings of the 4th

International Conference in Product Focused Software Process

Improvement, PROFES2002, Lecture Notes in Computer

Science, M. Oivo and s. Komi-Sirviö, Eds. Springer, Berlin,

Heidelberg, 2002, pp. 367 - 382.

[36] M. Matinlassi and E. Niemelä, "The Impact of

Maintainability on Component-based Software Systems," in the

Proc. of the 29th Euromicro Conference. IEEE Computer

Society, Antalya, Turkey, 2003, pp. 25 - 32.

[37] Dobrica Liliana and N. Eila, "Attribute-based product-line

architecture development for embedded systems," in the Proc.

of the 3rd Australasian Workshop on Software and Systems

Architectures. IEEE, Sydney, 2000, pp. 76 - 88.

[38] M. Matinlassi and J. Kalaoja, "Requirements for Service

Architecture Modeling," in Workshop of Software Modeling

Engineering of UML2002. Dresden, Germany, 2002.

[39] IEEE, "IEEE Recommended Practice for Architectural

Descriptions of Software-Intensive Systems," Std-1471-2000.

New York: Institute of Electrical and Electronics Engineers Inc.,

2000.

[40] K. C. Kang, "A Feature-Oriented Method for Product Line

Software Engineering," Denver, Colorado: The First Software

Product Lines Conference, 2000.

[41] K. Lee, K. C. Kang, E. Koh, W. Chae, B. Kim, and B. W.

Choi, "Domain-Oriented Engineering of Elevator Control

Software: A Product Line Practice," in Software Product Lines,

Experience and Research Directions, P. Donohoe, Ed. Kluwer

Academic Publishers, Boston, 2000, pp. 3 - 22.

[42] K. C. Kang, S. Kim, J. Lee, and K. Lee, "Feature-Oriented

Engineering of PBX Software for Adaptability and Reusability,"

Software Practice and Experience, vol. 29, 1999, pp. 875 - 896.

[43] R. van Ommering, F. van der Linden, J. Kramer, and J.

Magee, "The Koala component model for consumer electronics

software," IEEE Computer, vol. 33, 2000, pp. 78 - 85.

[44] K. Lee, K. C. Kang, and J. Lee, "Concepts and Guidelines

of Feature Modeling for Product Line Software Engineering," in

the Proc. of the 7th International Conference on Software

Reuse, LNCS 2319, C. Gacek, Ed. Springer-Verlag, Berlin

Heidelberg, 2002, pp. 62 - 77.

[45] ASADAL,

http://selab.postech.ac.kr/realtime/public_html/index.html

[46] P. America, H. Obbink, and E. Rommes, "Multi-View

Variation Modeling for Scenario Analysis," in PFE-5: Fifth

International Workshop on Product Family Engineering, F. van

der Linden, Ed. Springer, 2003.

[47] L. Bratthall and P. Runeson, "A Taxonomy of Orthogonal

Properties of Software Architecture," in the Proc. of the Second

Nordic Software Architecture Workshop, 1999.

[48] G. Muller, "Software Reuse; Caught between strategic

importance and practical feasibility," Embedded Systems

Institute, Article as part of the Gaudí project, 19th March 2003.

[49] L. Bass, P. Clements, and R. Kazman, Software

Architecture in Practice. Addison-Wesley, Reading,

Massachusetts, 1998.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

I/10

PAPER II

Quality-driven architecture
design method

In: Proceedings of the 15th international conference of
software & systems engineering and their applications,
ICSSEA 2002. Centre pour la Maîtrise des Systèmes et
du Logiciel Conservatoire National des Arts et Mètiers,

Paris, France, 3–5 December 2002. Paris, France:
CMSL. Vol. 3. Session 11. 8 p.

Reprinted with permission from the publisher.

II/1

inftla
Text Box

inftla
Text Box

II/2

inftla
Text Box

II/3

inftla
Text Box

II/4

inftla
Text Box

II/5

inftla
Text Box

II/6

inftla
Text Box

II/7

inftla
Text Box

II/8

inftla
Text Box

PAPER V

The impact of maintainability on
component-based software systems

In: Chroust, G. & Hofer, C. (eds.). Proceedings of the
29th EUROMICRO conference, New waves in system

architecture. Belek-Antalya, Turkey, 1–6 September
2003. Los Alamitos, California: IEEE Computer

Society. Pp. 25–32. ©2003 IEEE.
Reprinted with permission from the publisher.

The Impact of Maintainability on Component-based Software Systems

Matinlassi Mari, Niemelä Eila
VTT Technical Research Centre of Finland

Software Architectures Group
{Mari.Matinlassi, Eila.Niemela}@vtt.fi

Abstract

There is a great deal of inconsistency and vagueness in
the treatment of and terminology involved with software
maintainability. This is exacerbated by the fact that there
are a number of different dimensions of maintainability,
each requiring specific treatment. The trends of
increasing systems functionality and increasing systems
complexity have given rise to new dimensions of
maintainability since ISO/IEC defined maintainability as
“the capability of the software to be modified” in 1996.
This paper introduces the framework of maintainability
and the techniques that promote maintainability in three
abstraction levels; system, architecture and component.
In the system dimension, the maintainability requirement
is considered from a business-related point of view. In
architecture, maintainability means a set of quality
attributes, e.g. extensibility and flexibility. At the
component level, maintainability focuses on modifiability,
integrability and testability.

1. Introduction
Software maintenance is long known as one of the most

expensive and resource requiring phase of the software
development process. Therefore, the requirement of
maintainability and its impact on software development
has to be clearly understood. The term “software
component” has varying definitions. According to [1]
software component is a nontrivial, nearly independent,
and replaceable part of a system that fulfills a clear
function in the context of a well-defined architecture. In
addition, a component conforms to and provides the
physical realization of a set of interfaces. In addition,
component-based software engineering (CBSE) is about
developing, marketing and utilizing software components
with their related assets. Therefore, CBSE goes well
beyond enabling technologies e.g. JavaBeans and
CORBA. CBSE includes wide-ranging issues from the
theory of software reuse to the reality of commercial
software markets, from available tools to programming

language mechanisms and from practical testing to
rigorous formal specification.

This study discusses maintainability, i.e. the capability
of the software to be modified [2, 3] from the perspective
of component-based software systems, wherein today, the
concept of maintainability is of major importance [4], [5].
As a matter of fact, most of the software engineering
methods and techniques e.g. reuse, product line approach
and component-based software engineering have the same
final goal: maintainability. For instance, reusability
promotes maintainability through decreasing development
costs. On the other hand, maintainability is a prerequisite
for reusable software, because there is no meaning in e.g.
a long-living reusable component that is not maintainable.
As seen in many cases, some characteristics of
maintainability can be seen as a pre-requisite for the
provision of another.

The definitions for maintainability are many and its
various nuances are often confused or misunderstood, as
are all the other quality attributes [6], [7], [8]. Therefore,
this study defines the dimensions of the maintainability
requirement in component-based software systems and
clarifies the impact of maintainability on software
systems.

The requirement of maintainability permeates all levels
of component-based software. Therefore, software
developers need support for each maintainability
dimension and in order to provide that support, it has to
be understood what maintainability means and what its
impact on component-based software systems is. In
particular, maintainability of software that involves
externally developed components differs from the
traditional software maintenance in that the activity of
maintenance is likely to be performed by someone other
than the developer. This is the case whether the
component is an ‘in-house’ developed component or a
pure commercial component.

The structure of this paper is as follows. First, we
define not only the pre-required quality attributes for
maintainability but also techniques that promote
maintainability. Then, we divide software into three
abstractions; system, architecture and component

V/1

dimensions and discuss the impact of quality attributes on
each dimension. A case study of a product line of the
traffic information systems illustrates the impacts of
maintainability. In the end, we conclude our statements
and draw out our future plans.

2. Background

2.1. Quality attributes
ISO/IEC Draft 9126-1 defines a software quality model

[2] with six categories of quality characteristics:
functionality, reliability, usability, efficiency,
maintainability and portability. Quality characteristics are
also called quality attributes [9], which can be categorized
into execution and evolution quality attributes (also called
simply ‘qualities’). Execution qualities are observable at
run-time. That is, they express themselves in the behavior
of the system. Evolution qualities cannot be discerned at
run-time, meaning that the solutions for evolution qualities
lay in static structures of the software system. Therefore,
they should be considered in the phases of the product’s
life cycle, i.e. in development and maintenance of a
software system. Although we use categorization into
execution and evolution qualities, other categorizations
are available (see a collection e.g. in [10]).

Chung et al. [10] define a framework for representing
the design process of non-functional requirements (or
quality attributes, if you will). However, the framework
does not categorize neither define the quality attributes
explicitly but concentrates on recording the reasoning
process behind the design decisions.

Table 1 and Table 2 define the execution and evolution
qualities by extending the definitions in [11] with new
attributes, namely being adaptability (execution quality)
and extensibility (evolution quality). [3] denotes
adaptability as a synonym for flexibility. However, we
believe the meaning of adaptability and flexibility is
different today and these attributes exist even in different
attribute categories (execution and evolution).
Adaptability means the ability of software to adapt its
functionality according to the current environment or user,
whereas the strict meaning of flexibility is about easy
adaptation of software to environments other than those
for which it was specifically designed.

Although the quality model includes functionality, i.e.
the system’s ability to do the work for which it was
intended, we see it as a main category of execution quality
attributes, realizing that functionality cannot be
considered an architectural quality attribute [9]. However,
interoperability, adaptability and reliability can be
considered special, newly emerged forms of functionality,
the forms that are architectural in nature [12]. While the
characteristics of software systems are changing from

monolithic to modular networked systems, and
furthermore, to spontaneously self-organizing nets of
adaptive computing units, new quality attributes are
defined in order to characterize the qualitative properties
of systems. Thus, the list of quality attributes is sensitive
to changes in a similar way to attractiveness of systems’
qualities.

Table 1. Execution qualities.

Attribute Description
Performance Responsiveness of the system,

which means the time required to
respond to stimuli (events) or the
number of events processed in
some interval of time.

Security The system’s ability to resist
unauthorized attempts at usage and
denial of service while still
providing its service to legitimate
users.

Availability Availability measures the
proportion of time the system is up
and running.

Usability The system’s learnability,
efficiency, memorability, error
avoidance, error handling and
satisfaction concerning the users’
actions.

Scalability The ease with which a system or
component can be modified to fit
the problem area.

Reliability The ability of the system or
component to keep operating over
the time or to perform its required
functions under stated conditions
for a specified period of time.

Interoperability The ability of a group of parts to
exchange information and use the
one exchanged.

Adaptability The ability of software to adapt its
functionality according to the
current environment or user.

With a quick look, some of the evolution qualities in
Table 2 seem to be almost the same. However, the
attributes really have at least a different sound to their
meaning. For example, maintainability may be equalized
with modifiability [9]. However, we think maintainability
is also affected by many other evolution quality attributes
than modifiability. Modifiability includes adding, deleting
and changing software structures and therefore,
extensibility (also called expandability or extendability
[3]) and portability can be considered special forms of

V/2

modifiability. Furthermore, modifiability includes e.g.
optimization and fault correction.

Two of the evolution qualities have a qualitative sound
to their definition. In other words, two of the quality
attributes define the others qualitatively as follows.
Flexibility means the ease with which software can be
modified and modifiability means the quickness and cost-
effectiveness of modifications.

ISO/IEC defines sub characteristics of maintainability
as follows: changeability, testability, analysability and
stability. Changeability is a synonym for modifiability.
The definition of testability in [2] is somewhat restricted
and our definition of testability therefore covers both
testability and analysability. As far as stability is
concerned it equals to modularity [3] both meaning the
degree to which software is composed of discrete
components such that a change to one component has
minimal impact on other components. These definitions
are very close to coupling, i.e. the manner and degree of
interdependence between software modules [3]. Low
coupling is generally known as a basic rule of thumb in
component-based software, not as a quality requirement or
attribute of any particular system.

Table 2. Evolution qualities.

Attribute Description
Maintainability The ease with which a software

system or component can be
modified or adapt to a changed
environment.

Flexibility The ease with which a system or
component can be modified for use
in applications or an environment
other than those for which it was
specifically designed.

Modifiability The ability to make changes quickly
and cost-effectively.

Extensibility The systems ability to acquire new
components.

Portability The ability of the system to run
under different computing systems:
hardware, software or combination
of the two.

Reusability The system’s structure or some of
its components can be reused again
in future applications.

Integrability The ability to make the separately
developed components of the
system work correctly together.

Testability The ease with which software can
be made to demonstrate its faults.

With the interpretation represented above, we conclude
the definition of maintainability as in Figure 1.

Maintainability is the ease with which a software system
or component can be modified. Modifications may include
extensions, porting to different computing systems or
improvements. However extensibility and portability
occur as distinct attributes, “improvability” does not – so
far – appear in literature as a quality attribute.
Improvements include correcting faults or exceeding any
execution or evolution qualities of the system. Flexibility,
reusability, testability and integrability contribute to
modifiability and therefore, are defined as sub attributes
of maintainability.

Maintainability

Flexibility

Modifiability

Testability

Integrability

Reusability

Extensiblity

Portability

Figure 1. Sub attributes of maintainability.

2.2. Other characteristics related to
maintainability

In this section, we introduce other characteristics
related to maintainability. Often, these characteristics are
confused with quality attributes, but actually they are
techniques that promote and support achievement of
maintainability and its sub-attributes.

2.2.1 Traceability. Traceability is the ability to
document and follow the life of a concept throughout
system development. It is forward directed (post
traceability: describing the deployment and use of a
concept) as well as backward directed (pre traceability:
describing the origin and evolution of a concept) [13].
Although traceability is an essential characteristic of the
component-based software development to achieve a
maintainable solution, it is a supporting technique to
achieve the qualitative property of the artifacts produced
during the development process.

2.2.2 Variability. According to [14], the differences
among products are managed by delaying design
decisions, thereby introducing variation points, which
again are bound to a particular variant or variants. A
variation point identifies a location at which a variation
can occur in the system [15]. Therefore, variability is not
a quality factor as such, but it provides a mechanism to
manage the anticipated changes in software structure(s)

V/3

during the evolution of systems, thus increasing all sub-
qualities of maintainability.

Different (and overlapping) types of variants are
introduced [16], [17], [18], but the most commonly used
are:
• Mandatory; the type included in all products in the

domain.
• Optional; the type for any product in the domain.
• Alternative; a choice that cannot coexist with other

alternatives (in the same variation point).

Possible dependencies between variants are the
‘requires’ relationship and the ‘mutually exclusive’ i.e.
mutex relationships.

2.2.3 Tailorability. Tailorability is a loose term used
in component-based software development to describe the
ability to customize and configure components, but also to
add new components to the system and combining
services of multiple components in novel ways [4]. Here
we consider tailoring as a technique (like variation points)
but instead of software architecture, tailorability focuses
on customizing the internal capabilities of components
according to customers’ needs.

2.2.4 Monitorability. Isolating the faults in a
component-based system is difficult, especially in systems
that utilize third party components, because the integrator
has to ascertain (1) how the components work and (2) why
they do NOT work. The source of the difficulty is
obvious: the integrator has no visibility into the
components and no control of their operation [19].
Therefore, monitorability, that is the systems property to
support e.g. measurement of performance and resource
usage, watching for failures, chase up security violations
or monitoring of user behavior, is an essential property for
a maintainable system [4].

According to [19], the classification of monitoring
capabilities is as follows:
• Intra-component; these techniques observe the

behavior of a component, to understand and
demystify the component developer’s assumptions
and intended usage of the component.

• Inter-component; these techniques observe the
behavior of two or more components, to understand
potential mismatches between components.

• Extra-component; these techniques observe a system
of cooperating components, to understand macro-
level issues dealing with performance and misfits, etc.
That is to say, extra-component monitoring is system
level monitoring.

A Built-In-Test (BIT) component [20] is a component
model that has one or more test interfaces (for intra-

component monitoring) and a test mechanism (for inter-
component monitoring) embedded in a component. BITs
offer two benefits: the component user can check the
behavior of the component and the component can check
if it is deployed in an inappropriate environment. Thus,
monitorability is a technique that promotes testability.

3. The impact of maintainability
Maintainability has an impact on three abstraction

levels: system, architecture and component dimension. In
the following, we define the impact of the maintainability
requirement on all dimensions. Table 3 summarizes the
impact of maintainability on a software system (S),
architecture (A) and component (C). ‘X’ means quality
attribute having a certain impact at the level in question.
Each column in Table 3 and Table 4 will be concerned in
more detail in the following sections from 3.1 to 3.3,
wherein the differences of attribute impacts at each level
are discussed.

Table 3. Quality impacts on the dimensions of
maintainability.

Attribute S A C
Flexibility X
Reusability X X X
Modifiability X X
Extensibility X X
Portability X
Testability X X X
Integrability X X

Table 4 illustrates how each technique related to
maintainability promotes the sub-qualities of
maintainability. Also, the dimensions of impact (S, A or
C) are defined. Tailorability largely means modifiability
in the component dimension. Monitorability is expressed
in all dimensions as follows. Extra-component
monitorability affects system level testability and second,
inter-component monitorability affects testability on the
architectural level and finally, intra-component
monitorability is conducive to individual component
testability. Variability appears largely in the architecture
dimension but also in the system dimension whereas
traceability must be provided from the system level
through the architecture and the design to the components.

Table 4. Factors conducive to quality
attributes.

Technique S A C Attribute
Tailorability X Modifiability
Monitorability X X X Testability
Variability X X Extensibility
Traceability X X X Maintainability

V/4

These key factors may be similar to what normally
exist also in non component-based systems. However,
using components means that the nature of these
maintenance activities changes as described below.

3.1. System dimension
When the overall quality requirement is

maintainability, at the system level its value is considered
from business-related points of view as follows [21]:

• Estimation of the effort required for adopting
software to other contexts, i.e. for producing other
products, sub-systems or components. How often
is this kind of work required?

• Extent of software usable for future products.
When will it be utilized?

• Identification of the execution platforms upon
which software should be executed. Why are they
selected?

• Identification of software that might be changed
during the life cycle of the product. Which
standards will be adhered to?

• Assumptions of the extended purpose of the
system. Why and how is it happening?

• Anticipation of maintenance cost based on
estimated length of the life cycle of the system.
What does an upgrade cost, and how often is it
required?

Discovering the facts of the above-mentioned list of
issues attempts to assist in finding out the type, scope and
position where realization of maintainability provides the
most benefits. After prioritizing the sub-qualities of
maintenance, the appropriateness of supporting techniques
has to be estimated.

Monitoring of behavior and system resource usage
gives information required when changed systems have to
be tested. Monitoring techniques also set prerequisites for
the system-level test support.

On the other hand, variability management provides a
mechanism to handle the hot spots of changing
functionality, structure, behavior and allocation.

Post traceability of requirements through architecture
and components to code requires robust and reasonable
documentation, but it also provides a path to put
maintainability into practice and a tracking mechanism for
quality maintenance.

A standard way of providing traceability is the
establishment of cross-reference data. Such references can
be expressed as links or matrices where connections
between the various artifacts in code, architecture and
requirements are made explicit [17].

3.2. Architecture dimension
In the architecture dimension maintenance definitely

means modifications that have to be done quickly and
cost-effectively. Modifications may include porting the
system into a new operating system or other environment,
or extending the system with new functional features. That
is, quality requirements (derived from maintainability)
that should be considered at the architectural level are at
least modifiability, portability and extensibility.

Extensions to the architecture may also mean the
integration of third party software components. Therefore,
integrability concerning future third-party components
also has to be supported in architecture.

In spite of the fact that architecture has been designed
to be easily modifiable for changes that can be predicted,
in order to have a maintainable architecture, the
modifications that are not predicted should also be easy to
do. Easy modifications for environments the architecture
was not initially designed for means flexibility of the
architecture.

So far, all the maintainability impacts described above
have been related to modifying the architecture. Testing
the modified parts of the architecture follows
modifications. As a matter of fact, testability is the
capability of the architecture to enable modified software
to be validated. However, at the architecture level,
testability means quality analysis, i.e. evaluation of
architecture and how maintainable it is. There are several
appropriate scenario-based analysis methods that can be
applied [22]. However, in order to be testable the
architecture has to be documented properly [23].

Reuse of architecture may be the only way to
implement reusability when implementation technology is
changing from one product to another. Although it is not
the case in most component-based software systems,
architecture sets the conditions, scope and time when
reuse is possible and beneficial.

3.3. Component dimension
The impact of maintainability varies depending on the

size of the component. At least the following
maintainability impacts apply to small components:
• Integrability, i.e. conformance to component model

and standards used in the system the component is to
be integrated in.

• Interoperability with components from many different
vendors. Although interoperability is an execution
quality, it is related to integrability and transitively to
maintainability.

• Modifiability, how easy it is to modify the component
to satisfy local requirements.

• Testability of black box components through
monitoring intra-component behavior and failures.

V/5

In the case of large software components that have their
own architecture or perhaps a product line architecture,
the impacts are naturally the same as the impact on
architecture dimension as described above.

Monitoring black-box components is difficult because
the intra-component behavior is hidden. Thus, rather than
intra-component capabilities maintainers must use inter-
component and extra-component monitoring capabilities
to observe system behavior [4]. Component suppliers are
responsible for intra-component monitoring capabilities
through creation of special open monitoring interfaces.

Business factors also affect maintainability of
commercial components [4], [24]. The following criteria
[24] aim to address the factor of system evolution in
component selection:
• Vendor business stability. how long has the vendor

been in business? Is there a risk of the vendor going
out of business?

• Development process. What kind of testing process
does the vendor use? Is the certification process at the
vendor site appropriate?

• Obsolescence of the component. What happens if the
vendor goes out of business? What happens if the
component becomes obsolete?

• Maintenance contract. Who (vendor/integrator) is
responsible for the component maintenance and to
what degree?

• Stability of the component. What does the component
version history reveal? How high is the frequency of
upgrades? What are the reasons for upgrades?

• Marketing trends. What are the technology
alternatives on the markets? Are there alternative,
comparable components available in the market?

• Availability of customer support. How complete is
the customer support for the component? What is the
form of the support (phone-based, online, discussion
groups etc.)? Is the support cost in balance with the
assistance provided by the vendor?

4. Case study

4.1. Overview
Our case study, a product line (PL), consisted of

different kinds of client terminals used for fare collection
in public transportation. When considering a product line
we define the first two product line members as:
• P1; a driver terminal, used for fare collection, travel

card loading and usage, data transfer and locating.
The device is a fixed-point device located in a vehicle
or point of sales.

• P2; a conductor terminal used for fare collection,
travel card loading and usage, data transfer and

locating. The device is a wireless, portable terminal
used in a vehicle.

At the end of the day, accountings are transferred from
the Px devices to an office system at the depot. The office
system states for software connected with the PC
computers of the X system. However, the office system’s
software was out of the scope of this product line.

Both products share a common software architecture
and many common features. Both product line members
also have in-product variability, meaning different product
versions depending on the target country and market area.

The aim of this case study was to improve the
maintainability of the software product line.
Maintainability requirements were discovered in a product
line phase, wherein one product (P1) was already
implemented and the first customer deliveries of that
product were just about to emerge (Figure 1). The
feasibility study of the second product, the family member
P2 was ongoing.

The case study concentrated on considering
maintainability from the perspective of architecture. In
addition, the case study included one OCM (Original
software Component Manufacturer) and one COTS
(Commercial-Off-the-Shelf) component, which refined the
scope of the example. The OCM component serves for
data transfer between the product (P1 or P2) and the
depot, whereas a database was acquired as a COTS
component. The system level dimension of maintainability
was achieved through considering the system from the
perspective of overall functional and quality requirements
of software. However, marketing trends, emerging
standards and future advances in hardware capabilities
also affected the maintainability requirements in the
system dimension.

New productPL initiation

P1

V1 V2 V3

P2

V1 V2

Functional
Requirements

Quality
Requirements

Evolution
qualities

Execution
qualities

Maintainability,
extensibility, portability

Reusability,
portability

PL Requirements

Figure 1. Case study: extension of a PL.

V/6

4.2. The impact of maintainability on the case
study

Table 5 summarizes the impact of maintainability
requirements on the PL case study with two product
members. In the table, lines with gray shading concerned
the case study. The main quality requirement was
maintainability. During the evaluation, it revealed that in
this particular case, maintainability was expressed in the
form of modifiability, extensibility and portability.

Table 5. Maintainability dimensions in the case
study.

Attribute S A C
Flexibility X
Reusability X X X
Modifiability X X
Extensibility X X
Portability X
Testability X X X
Integrability X X

At the architecture level, modifiability included
requirements such as deleting features that are related to
obsolescent travelling card technologies. At the
component level, the OCM component for data transfer
was required to be easily customized (that is, component
level modifiability) to support different data transferring
technologies.

At the system level, extensibility included the
possibility to easily extend the product features towards
public transportation information management, instead of
bare fair collection and accounting. Thus, at the
architecture level, extensions to the architecture were
implemented through variation points. Variability was
traced through the chain of development artifacts.

Portability in the architecture dimension meant
capturing the environment-specific software into
components or layers that encapsulated environment users
from the environment. Environment here means e.g.
different peripherals, display and printer types. Therefore,
in some of the portability requirements variability was
used as a supporting technique. One of the portability
requirements was also that the software should be portable
to a single fixed node and to a distributed environment
with the main module and a trip computer.

5. Conclusion and future work
Maintainability permeates all levels of component-

based software and therefore its nature is often
misunderstood. In order to clarify the meanings of
maintainability, its relations to other qualities were
analyzed resulting in a framework that attempts to assist
software developers become aware of when, where and

how they should pay attention to the many faces of
maintainability.

Maintainability concerns the whole life cycle of the
component-based software, and therefore, it exists at all
abstraction levels in software development. We identified
three levels: system, architecture and component. In these
dimensions, maintainability means different things, and
therefore, techniques to achieve it also vary. However,
traceability from one level to another is the key; if it is
omitted, investments will not be returned. That is why our
further work will focus on the qualities essential for
evolvable systems and methods and techniques to develop
and keep them living on.

Acknowledgment
We would like to thank Buscom Oy for providing the

case study. The publication of this paper has been
supported by a national joint research project funded by
the National Technology Agency (Tekes), VTT and
Finnish industry.

References
[1] A. Brown and K. Wallnau, "The Current State of

CBSE," IEEE Software, vol. September/October, pp.
37 - 46, 1998.

[2] ISO/IEC, "Information Technology - Software Quality
characteristics and metrics - Part 1: Quality
characteristics and sub-characteristics,"., 1996, pp. 21.

[3] IEEE, "IEEE standard glossary of software
engineering terminology," in Std 610.12-1990: IEEE,
1990, 84p.

[4] M. Vidger, The Evolution, Maintenance and
Management of Component-based Systems. Boston:
Addison-Wesley, 2001.

[5] P. Bengtsson and J. Bosch, "Architecture Level
Prediction of Software Maintenance," in Proceedings
of the Third European Conference on Software
Maintenance and Re-engineering, 1999, pp. 139 -
147.

[6] O. Preiss, A. Wegmann, and J. Wong, "On Quality
Attribute Based Software Engineering," in The
Proceedings of the 27th Euromicro Conference:
IEEE, 2001, pp. 114 - 120.

[7] M. Bertoa and A. Vallecillo, "Quality Attributes for
COTS Components," presented at ECOOP Workshop
on Quantitative Approaches in Object-Oriented
Software Engineering, Malaga, Spain, 2002.

[8] J. Offutt, "Quality Attributes of Web Software
Applications," IEEE Software, vol. 19, pp. 25 - 32,
2002.

[9] L. Bass, P. Clements, and R. Kazman, Software
Architecture in Practice. Reading, Massachusetts:
Addison-Wesley, 1998.

[10] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-
functional requirements in software engineering.
Boston, Dordrecht: Kluwer Academic Publishers,
2000.

V/7

[11] L. Dobrica and E. Niemelä, A strategy for Analyzing
Product Line Software Architectures, vol. 427. Espoo:
VTT Electronics, 2000.

[12] L. Davies, Gamble, R. F., Payton, J., "The impact of
component architectures on interoperability," The
Journal of Systems and Software, vol. 61, pp. 31-45,
2002.

[13] M. Anastasopoulos, J. Bayer, O. Flege, and C. Gacek,
"A Process for Product Line Architecture Creation and
Evaluation, PuLSE-DSSA," IESE, IESE-Report
038.00/E, June 2000 2000.

[14] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, H.
Obbink, and K. Pohl, "Variability Issues in Software
Product Lines," in Proceedings of the 4th
International Workshop on Product Family
Engineering, PFE-4. Bilbao, Spain: European
Software Institute (ESI), 2001, pp. 11 - 19.

[15] S. Salicki and N. Farcet, "Expression and usage of the
Variability in the Software Product Lines," in
Proceedings of the 4th International Workshop on
Product Family Engineering. Bilbao, Spain: European
Software Institute (ESI), 2001, pp. 287 - 297.

[16] K. C. Kang, S. Cohen, J. Hess, W. Novak, and A.
Peterson, "Feature-Oriented Domain Analysis.
Feasibility study,," Software Engineering Institute,
Pittsburgh CMU/SEI-90-TR-21, 1990.

[17] M. Anastasopoulos and C. Gacek, "Implementing
Product Line Variabilities," in Proceedings of the
SSR'01: ACM, 2001, pp. 109 - 117.

[18] F. Bachmann and L. Bass, "Managing Variability in
Software Architectures," in Proceedings of the
SSR'01: ACM, 2001, pp. 126 - 132.

[19] S. Hissam, "Experience Report: Correcting System
Failure in a COTS Information System," in
Proceedings of the International Conference on
Software Maintenance: IEEE, 1998, pp. 170 - 176.

[20] H. Edler, Hörnstein, J., "BIT in software components,"
EC 5th Framework Project IST-1999-20162. 2001.

[21] E. Niemelä and T. Ihme, "Product Line Software
Engineering of Embedded Systems," in Proceedings
of SSR'01, Symposium on Software Reusability.
Toronto, Ontario, CA, 2001, pp. 118 - 125.

[22] L. Dobrica, Niemelä, E., "A Survey on Software
Architecture Analysis Methods," IEEE Transactions
on Software Engineering, vol. 28, pp. 638-653, 2002.

[23] A. Purhonen, E. Niemelä, and M. Matinlassi,
"Viewpoints of DSP Software and Service
Architectures," To be appeared in the Journal of
Systems and Software, 17p, 2003.

[24] S. Yacoub, A. Mili, C. Kaveri, and M. Dehlin,
"Hierarchy of COTS Certification Criteria," in
Proceedings of the First Software Product Lines
Conference, P. Donohoe, Ed. Boston: Kluwer
Academic Publishers, 2000, pp. 397 - 411.

V/8

PAPER VI

Architecture-centric approach to
wireless service engineering

In: Annual Review of Communications 2003.
Vol. 56, pp. 875–889.

Reprinted with permission from the publisher.

Abstract1

Telecom carriers, wireless application service providers, and
traditional Internet service providers (ISPs) are developing
new services and new business models to support the
mobile customer and create new revenue opportunities. At
the same time technologies are evolving faster and faster
and providing new features that make software engineering
both promising and challenging for this domain. Next gen-
eration networks (NGNs) and services, GRID services and
mobile services over 3G and 4G technologies, such as I-
mode and Universal Mobile Telecommunications System
(UMTS), represent some examples.

In this evolving scenario industry requires software engi-
neering techniques that help in mastering time-to-market
service engineering, fast and profitable evolution, and
know-how protection and exploitation. In order to respond
to the needs of various stakeholders related to service archi-
tectures, architecture descriptions must contain several
viewpoints, at different levels of abstraction, defined by the
quality-driven architecture design and quality analysis
(QADA) method. To achieve this multiperspective represen-
tation, differing modeling notations for both abstract and
concrete architecture descriptions are needed. This is to pre-
vent confusion caused by diverse meanings for the same
symbol. In particular this paper proposes a service-engi-
neering approach for architecting wireless services. The
approach relies on a modeling notation extending Object
Management Group (OMG) unified modeling language
(UML), and it is based on two separate levels of abstraction:

• High-level notation should enable drafting and under-
standing the whole of a system. It means that concep-
tual models should be easy to modify and should not

contain too specific details. It should also provide a
suitable communication mean among stakeholders
that need to interact on a technical basis but also con-
sider business issues.

• Low-level notation should support detailed design. It
means that concrete models should integrate the neg-
lected or informally described details of high-level
models. It should also support design-level reuse by
providing both context-independent and context-
dependent models.

In order to facilitate understanding, service engineering
requires readable, simple, and intuitive notations for both
the conceptual and concrete architecture descriptions. High-
level notation at the conceptual level should allow the
grouping of functionality of services according to common-
alties and variables and assist in the creation of interdepen-
dencies between the services. It also provides the means to
draft service and work allocation for a distributed system in
a distributed development environment. On the other hand,
the notation at the concrete level should allow the separa-
tion of the externally and internally visible structure and
behavior. In addition distributed interfaces, local interfaces
and interactions among components and with external
products should be clearly identified. The latter needs spe-
cial attention as interactions typically take place among dif-
ferent business entities, using different protocols, standards,
and business policies.

1. Introduction

The general software architecture of a future wireless
telecommunication system can be divided into system infra-
structure services, middleware, and applications. Service

Architecture-Centric Approach
to Wireless Service Engineering

ANNUAL REVIEW OF COMMUNICATIONS, VOLUME 56 � 875

Eila Niemelä, Ph.D.
Research Professor
VTT Technical Research Centre of Finland,
Oulu, Finland

Patricia Lago, Ph.D.
Assistant Professor
University of Turin, Politecnico di Torino,
Italy

Mari Matinlassi, M.Sc.
Research Scientist
VTT Technical Research Centre of Finland,
Oulu, Finland

VI/1

ARCHITECTURE-CENTRIC APPROACH TO WIRELESS SERVICE ENGINEERING

876 � ANNUAL REVIEW OF COMMUNICATIONS, VOLUME 56

architecture is the architecture of applications and middle-
ware. Infrastructure services are based on access technolo-
gies, digital signal processing (DSP), software, and network
services. There are at least three reasons why the role of soft-
ware architecture has changed. First the architecture of mid-
dleware services and applications is based on the widely
accepted assumption and consensus that the wireless and
mobile access systems will be converged with Internet sys-
tems. Nowadays infrastructure services form the largest cat-
egory of software products available on the market, but the
maturing of software service solutions is going to extend the
global software market for generic middleware services.
Therefore the quality of software services will become a
vital factor, especially for service providers and service
developers who purchase and rent software from third par-
ties and extend the use of open source software in their plat-
forms.

Second the increased size and complexity of software sys-
tems has also led to a need for more explicit definitions and
descriptions of architecture. Architecture is the structure or
structures of a computing or software system, which are
comprised of software components and the externally visi-
ble properties of those components and the relationships
among them (Bass, 1998). This architecture also must meet
the functional and quality requirements set by different
stakeholders. For service providers the service platform is a
long-term investment that must be used in a set of products
in order to be cost effective, but end users prefer real added
value at a reasonable price. Service architecture should con-
sider and balance the quality requirements before the devel-
opment and during the evolution of a service.

Third the domain of wireless Internet technologies is on the
leading edge of technological development. This means that
industrial companies in the wireless service domain are pio-
neers, i.e., as early as new technologies are available, they
are eager to apply them in order to develop new richer and
more attractive services for their customers. From the tech-
nological point of view, this means that reusable design
knowledge should be presented in an implementation-
indent way and in a form that can be adapted to several
kinds of execution environments. The more requirements,
the more complex is the architecting, and that is why archi-
tecting guidelines must be developed, i.e., principles for
how to develop and maintain the software architecture of
wireless services.

The taxonomy of the formally defined orthogonal proper-
ties of software architectures (TOPSA) (Bratthall, 1998)
extends the definition of software architecture defined ear-
lier in Bass’ work. TOPSA defines a space with three
dimensions: abstraction (conceptual or realization);
dynamism (static or dynamic); and aggregation.
Accordingly, our contribution is the QADA method that
defines a conceptual architecture description for identify-
ing software architecture in terms of abstract criteria
(Matinlassi, 2002), whereas a concrete architecture descrip-
tion captures architectural issues closer to software realiza-
tion. In addition both architectural descriptions need sev-
eral viewpoints in order to represent the whole system
from various perspectives. Every viewpoint of conceptual
architecture is an abstraction of the ones in concrete archi-
tecture. Abstraction means the selected removal of infor-
mation, i.e., bigger components, fewer details, and

deferred functions. Conceptual architecture descriptions
are essential in the early phases of design when roughing
out the structures of software in order to reach a common
understanding with the technical and nontechnical stake-
holders involved in the development of a software service
or a system. For example managers analyzing which serv-
ice level agreements (SLAs) influence the deployment of a
certain service category and how demand a business view.
This is not suitable for analysts who study which func-
tional features need to be developed from scratch, rather
than reused or bought. In these cases a view of functional
requirements or usage scenarios is more appropriate, e.g.,
a use-case view. Again business and use-case views are not
suitable for developers that need to map software compo-
nents on networked devices or machines to agree on com-
munication protocols, exported interfaces, security policies
and information exchange.

Conceptual and concrete architecture descriptions are to be
made with notation for which we define requirements and
practical reasons. First the architectural descriptions repre-
sented with the notation should be expressive and intu-
itively understood. Second notation should be simple, i.e.,
easy to learn and use. In addition the notation should con-
form to the UML standard. Third it should support separa-
tion of concerns, i.e., orthogonal properties of software
architectures are visible and manageable. Fourth the nota-
tion should assist the communication between the stake-
holders involved in architecting. Finally the architectural
descriptions should also be easily maintainable, reusable in
different contexts, and still specific to the implementation
decisions chosen for the current development.

Here architecture modeling is considered the domain of
wireless services in particular. Service architecture is a set
of concepts and principles for the specification, design,
implementation, and management of software services
(TINA). A service is the capability of an entity, such as the
server, to perform, upon the request of another entity, in
this case, the client, an act that can be perceived and
exploited by the client. This paper introduces the reasoning
and background for the two levels and four viewpoints in
service architecture modeling and especially how these
viewpoints are intended for the use of technical and busi-
ness stakeholders, such as vendors, operators, and service
providers in a multiorganization development environ-
ment. Furthermore it introduces the notation of architecture
modeling based on UML at both levels of abstraction and
exemplifies the wireless service engineering (WISE)
approach by examples of a game service that is under
development in the WISE project.

The paper is organized as follows: after an introduction to
the problem of engineering wireless service architectures,
the second section identifies the requirements from the per-
spective of different stakeholders. Requirements are
mapped on the two abstraction levels introduced in the pre-
ceding paragraphs. The third and fourth sections focus on
the architectural descriptions of the service engineering
approach for both conceptual and concrete levels respec-
tively. The fifth section reports initial experiences gained in
applying the approach to pilot projects developing wireless
services, e.g., trading on-line through mobile terminals and
entertainment applications such as interactive gaming.
Conclusions and directions for future work close the paper.

VI/2

ANNUAL REVIEW OF COMMUNICATIONS, VOLUME 56 � 877

EILA NIEMELÄ, PH.D., PATRICIA LAGO, PH.D., AND MARI MATINLASSI, M.SC.

2. Development of Wireless Service
Architectures

2.1. Stakeholders of Service Architecture
When considering the use of service architectures, we found
several reasons why the architecture of wireless services is a
fundamental tool in communication and cooperation for the
persons involved in the development of a service. The serv-
ice architecture is used for communication in order to

• Get an overview of available services and their use,
• Classify needed services into generic and specific cate-

gories,
• Describe responsibilities and context of services and

components,
• Consider the appropriateness of service architecture

(technical and business issues),
• Prioritize quality attributes of the service architecture

and reasoning them,
• Evaluate how quality requirements are achieved with

architectural styles and patterns and
• Understand and integrate third-party components

used in the service development.

To achieve better cooperation between team members, the
service architecture is essential in

• Allocating and understanding the work division,
• Mapping services to components and vice versa,
• Mapping functional and quality requirements to serv-

ices, and
• Clustering the components to be developed into

potential technology domains.

As demonstrated the intention of software architecture is
communicative; it is developed and used mainly for gaining

a better understanding of what to do and sharing this
understanding. That is why software architecture must be
described in several ways, i.e., to present a slice of architec-
ture in a certain light so that various stakeholders, such as
customers, marketing and production staff, technical and
administrative managers in addition to the software and
hardware developers, understand it. A common under-
standing is difficult to achieve, because even if the basic
intention of stakeholders is similar, different stakeholders
need information at different levels of abstraction and
aggregation.

Table 1 summarizes the stakeholders identified to play a cer-
tain role in wireless service engineering. In service engi-
neering the main interest of service developers, service
providers, and content providers are the services to be
offered to the end users. A system architect develops a sys-
tem structure that meets the requirements and constraints
set by the earlier mentioned stakeholders. A software archi-
tect or a software product line architect plays the same kind
of role in software development. He or she is responsible,
however, for showing that the defined requirements are also
met on the software architectural level. That is why it is
obvious that one kind of architectural description is not
enough, but that the architecture must be described with
several different views.

Stakeholders of service development are closely associated
with the roles of wireless service business (see Figure 1).
Service users take advantage of deployed services, and serv-
ice providers market services to customers. In addition rela-
tively new business roles are content providers whose busi-
ness is to sell providers the information needed to operate a
service, e.g., movies, literature, and social statistics, and net-
work operators who sell to service providers network capa-
bilities needed to execute end-user services. Differing from

TA B L E 1
Service Architecture Engineering Stakeholders

VI/3

ARCHITECTURE-CENTRIC APPROACH TO WIRELESS SERVICE ENGINEERING

878 � ANNUAL REVIEW OF COMMUNICATIONS, VOLUME 56

other roles application and technology providers do not
play an active role in service provisioning. Instead they pro-
duce applications, such as graphical metaphors for user
interfaces, and technologies, such as mobile devices, sold to
service providers to make up services, and after service
deployment they are no longer involved in wireless service
business.

2.2. Quality of Service Architecture
The main roles of stakeholders, i.e., a service user, a service
developer, and a service provider, were used as a starting
point to identify the essential quality attributes of wireless
service architecture.
Figure 2 represents an overview of the quality stack that clas-
sifies qualities into internal and external qualities of four
categories. Here we consider only the three upper levels that
match the scope of service architecture.

The internal qualities are the nonfunctional properties of
software service that are important for the developers of
that part of the software in question but may be invisible or
unimportant to the other stakeholders involved in the serv-
ice development. The external qualities are the quality
requirements that have to be visible to the stakeholders that
use the software when they develop or provision the final
product, a software service.

Various stakeholders in wireless services, i.e., users, appli-
cation developers, platform or middleware service develop-
ers, and network operators, prefer different qualities.
External quality provided by a stakeholder is a prerequisite
for internal quality of another stakeholder in the stake-
holder stack. The real quality of a service, or how well the
service meets all end-user’s requirement, weighing the cost
versus benefits, defines the real added value for an end user.
This quality is achieved only if prerequisite technical and
economic qualities are met.

Applicability, or how easily the application can be applied
in different contexts, is a quality that the application devel-
opers are most interested in. This quality is visible as exter-

nal qualities through a graphical user interface’s (GUI’s)
usability, performance of the application, and ease of service
use by a scaling number of end users.

Interoperability of platform services is the criterion a service
developer considers a required quality of the software when
a service is provisioned. Interoperability is achieved if plat-
form services such as middleware with communication and
management services are generic and new platform services
can be easily integrated by aggregating the old ones, which is
horizontal integration. The same platform services should
also be usable in new sets of applications, which is vertical
integration, and application developers should be able to use
them easily enabling simplicity of provided application inter-
faces. In order to be profitable with regard to development
cost and time-to-market from the service provider’s point of
view, the platform services should also be portable, modifi-
able for different applications, expandable, maintainable, and
easily used and accessed by application developers.

In summary the following quality attributes are the most
important in the development of service architectures:

• External qualities: integratability, reusability, and sim-
plicity

• Internal qualities: portability, modifiability, perform-
ance, and usability

Some of these qualities can be analyzed after the first imple-
mentation is ready, i.e., with the use of the platform services
such as performance, but some are visible in the service
architecture even from the first draft, namely portability,
maintainability, integratability, and simplicity. We will now
turn to the different viewpoints required in service architec-
ture modeling.

2.3. Viewpoints of Service Architecture
An architectural view is a representation of a whole system
from the perspective of a related set of concerns (IEEE,
2000). In the literature there are several approaches to the
design of software architecture that concentrate on different

F I G U R E 1
Roles in the Wireless Services Business

F I G U R E 2
The Real Quality Accumulates in Cooperation with Various
Stakeholders

VI/4

ANNUAL REVIEW OF COMMUNICATIONS, VOLUME 56 � 879

EILA NIEMELÄ, PH.D., PATRICIA LAGO, PH.D., AND MARI MATINLASSI, M.SC.

views of architecture. The first of these view-oriented design
approaches was the 4+1 approach (Krutchen, 1995). After
this several others have approached the jungle of architec-
tural viewpoints (Hofmeister, 2000; Jaaksi, 1999). Among
these approaches there is no agreement on a common set of
views or on ways to describe the architectural documenta-
tion. This disagreement arises from the fact that the need for
different architectural views and architectural documents is
dependent on two issues: system size and the domain, e.g.,
the wireless services domain. Again both the system size
and domain have an impact on the amount of different
stakeholders. Therefore it is obvious that none of these
methods alone is comprehensive enough to cover the design
of software architectures for systems of a different size in
various domains or provide an explicit means to create
architectural descriptions for all the systems.

Here we concentrate on the service architecture domain and
the viewpoints needed in service architecture modeling. The
definition of viewpoints is based on the three viewpoint ele-
ments defined in the QADA method extended with a defi-
nition of the fourth viewpoint, the development viewpoint
(Matinlassi, 2002 A and B). Viewpoints for both levels of
abstraction, conceptual and concrete, are similarly named:
structural, behavior, deployment, and development (see
Figure 3). These viewpoints embody the quality of service
architecture and a service developed by using it. Qualities
are visible at the architectural level only through the docu-
mentation of service architecture, views, models and dia-
grams, and notation used in them, as well as reasons behind
the design decisions or the design rationale.

Fragments of the viewpoint elements are shown in Table 2
and Table 3 (Purhonen, in review). The tables capture the
issues each view concerns. These issues are aimed at certain
stakeholders. Each view also produces its own specific arti-
facts such as models or diagrams that provide appropriate
information for the stakeholders. The differences between
the two levels of abstraction lie in the degree of details

expressed and in the depth of aggregation. For example con-
ceptual architecture describes control and data and uses
relationships between services categorized into domains,
but concrete architecture defines strict interfaces and proto-
cols used for communication between distributed and local
component interfaces.

Mapping qualities to viewpoints is not straightforward.
Simplicity is required in each view. Portability is covered
mainly by the structural view, by a layered architectural
style on the conceptual level and loosely coupled interfaces
between layers and cohesive components on the concrete
level. Integratability is mainly considered at the concrete
level by most of the views. Maintainability has an affect on
the structural and deployment views on both abstraction
levels. Reuse of earlier developed components is considered
in the development view. In addition each view includes
design rationale that argues the decisions made during
architecting.

3. Conceptual Service Architecture

While defining the conceptual structure of service architec-
ture, the conceptual domain entities that are responsible for
fulfilling the requirements are identified first. Second the
responsibilities of these entities, computational and infor-
mational, are defined. Third the ways the identified entities
use the properties provided by other entities are defined. A
list or table is suitable for structuring information at this
stage. Next graphical diagrams are used to ensure under-
standability, although the full benefit of graphical diagrams
are not visible until the overall structures are stable and rela-
tions between entities are mature enough. Because the mod-
els on the conceptual architecture level are used for infor-
mation sharing and promoting ideas of the architecture, it is
essential that the models are easy to modify and maintain.

On the conceptual level stakeholders are primarily others
than software engineers, therefore, simple models with intu-

F I G U R E 3
Views on Two Levels of Abstraction in Service Architecture Modeling

VI/5

ARCHITECTURE-CENTRIC APPROACH TO WIRELESS SERVICE ENGINEERING

880 � ANNUAL REVIEW OF COMMUNICATIONS, VOLUME 56

itive notations are required. The conceptual architecture has
to be understandable to various stakeholders. Managers and
marketing staff in particular prefer a larger picture of the sys-
tem and models that contain information relevant to them.

Structural views of software architecture are the most
important. Design of the conceptual structure starts archi-
tecting by clustering the functional and quality require-
ments defined in the requirements definition phase and
mapping them to the architectural entities, i.e., subsystems,
services and components. Architectural styles are also
selected in this phase.

3.1. The Conceptual Structural View
The conceptual structural view records the conceptual ele-
ments, the composition of the computational and informa-
tional entities inside each other, the interfaces between the
elements, and the responsibilities the elements have in the
system. In service architectures the purpose is to separate
the computational structure and architectural relations from
the structure of information shared by them (see Table 4).

Conceptual entities divide the software architecture into
large functional and informational blocks. These blocks can
be understood as systems, subsystems, services, or large-

scale architectural components. Conceptual entities can
also, however, be abstract categories of functionality, e.g.,
domains of services. Relationships define the interfaces
between the entities. Composition is one relation, others are
defined as types of relationships, namely data, uses and
control relations that are used in the computational struc-
ture contrary to the information structure that uses the is-a
and has relations. Types of relations are used in an attempt
to avoid freezing design decisions too early, i.e., to be flexi-
ble for modification during alterations.

The computational structure is a decomposition model,
using UML structure diagrams. Decomposition is natural as
a result of the breaking down of the functional and infor-
mation properties. Decomposition supports readability and
modifiability, contrary to the hierarchical diagrams that lose
their benefits if information required in modifying models is
hidden. Therefore composition is presented in a single dia-
gram if possible. Furthermore the use of inheritance shifts
the focus away from defining the relationships and respon-
sibilities of architectural entities, which is the main goal in
conceptual architecting.

The UML package symbol is used to represent the high level
conceptual entities. It is also, however, the symbol for low-

TA B L E 2
Summary of the Elements of Conceptual Service Architecture

VI/6

ANNUAL REVIEW OF COMMUNICATIONS, VOLUME 56 � 881

EILA NIEMELÄ, PH.D., PATRICIA LAGO, PH.D., AND MARI MATINLASSI, M.SC.

level entities. In practice the use of the same symbols on two
levels of abstraction, conceptual entities and design-level
UML diagrams, confuses stakeholders, and that is why a
slightly different visual look and feel on different abstrac-
tion levels increases readability and understandability of the
architectural descriptions. Figure 4 describes the conceptual
computational structure of the game example used as a pilot
in the WISE project.

The information structure that is shared between conceptual
entities is described with class diagrams (see Figure 5). Here
the benefits of object-oriented design and analysis are use-
ful. The information is best modeled with class and object
diagrams. Inheritance and is-a has and other similar rela-
tions between classes are appropriate and important. The
types of relations, however, should be kept simple, and
implementation-specific information should not be used on
the conceptual level.

TA B L E 3
Summary of the Elements of Concrete Service Architecture

TA B L E 4
Structural Elements, Their Types, and Responsibilities on the Conceptual Leve

VI/7

ARCHITECTURE-CENTRIC APPROACH TO WIRELESS SERVICE ENGINEERING

882 � ANNUAL REVIEW OF COMMUNICATIONS, VOLUME 56

3.2. The Conceptual Behavior View
The behavior viewpoint presents and justifies the selection
of essential use cases and their clustering to the collabora-
tion diagrams. The detailed interfaces are not yet defined in
the conceptual structure and that is why behavior is mod-
eled with collaboration diagrams. The messages should be
abstract descriptions, as collaborations are. The use of mes-

sage sequence charts (MSC) might be possible, but they are
more appropriate on the concrete level when concrete struc-
ture with detailed information has already been defined.

Figure 6 presents a collaboration diagram of the game serv-
ice. The aim of the conceptual behavior view is to map only
the essential use cases to the conceptual structure, and in
this way, illustrate the behavior of the software service
graphically. The main use cases may be clustered and pre-
sented in a single collaboration diagram.

3.3. Conceptual Deployment and Development Views
The deployment view that describes the allocation of con-
ceptual entities with a UML deployment diagram is an
essential part of service architecture. The conceptual
deployment is defined for the processing nodes (see Figure
7). In order to maintain consistency, however, the same sym-
bols as in the structure view should be used for the deploy-
ment entities. In Figure 7 it is assumed that a game server
node handles the management of a number of players with
mobile devices and all synchronization and communication.
The management services are most likely in a separate node

A similarly named conceptual element can be deployed
both to the terminal and server side. This does not mean that
the software elements or their responsibilities are the same.
Such entities can be presented in separate deployment dia-
grams that make it easier to manage deployment diagrams.

The deployment viewpoint also includes an abstract busi-
ness model. A business model describes “the various busi-
ness actors, their roles, sources of revenues and links, inter-
faces and interaction between all the actors involved in the
multifunctional environment” (Timmers, 1998). The busi-

F I G U R E 4
An Example of the Computational Structure of the Game Service

F I G U R E 5
Conceptual Information Structure of the Game Domain

VI/8

ANNUAL REVIEW OF COMMUNICATIONS, VOLUME 56 � 883

EILA NIEMELÄ, PH.D., PATRICIA LAGO, PH.D., AND MARI MATINLASSI, M.SC.

ness model represents the formalization of the business
roles played by a group of stakeholders carrying out com-
mercial relationships. The fundamental information tech-
nology (IT) aspect is the identification of which subsystems
or components carry out which commercial relationships or
which commercial relationships are delegated to a comput-
erized system. Furthermore commercial relationships
involve multiple and different business partners or different
companies; hence they are subject to contractual agreements
that formally identify all, which, and in which way the inter-
actions among different companies must be accomplished.

The business model instantiated for the game service is
depicted in Figure 8, in which only business roles and busi-
ness relationships relevant to the service have been kept
from the generic WISE business model. The shaded business
roles play some task in the operation of the game service.
The task can involve service provisioning (see the roles
inside the dashed box) if there will be some software com-
ponents deployed in a networked structure. The task does

not involve service provisioning (see the roles outside the
dashed box) if they have a business relationship prior to
service provisioning, such as technology provider.

Relationship ApplicProv: This business relationship models
the game download prior to game provisioning. Game
download supports the acquisition from the user side of the
application, i.e., client components, needed to play the
game. Download can be carried out from both a fixed node,
e.g. using any Internet browser, and a mobile node.

Relationship Peer: The game considers authentication and
user profile storage as management services supported by a
third-party service provider.

The development view should serve as a guide when con-
sidering the features required and provided by commercial
off-the-shelf (COTS), original software component manufac-
turing (OCM), modified-off-the-shelf (MOTS), tailored, or
new components. There is no clear choice in UML for this

F I G U R E 6
Conceptual Behavior as a Collaboration Diagram

F I G U R E 7
Conceptual Deployment of the Game Service

VI/9

ARCHITECTURE-CENTRIC APPROACH TO WIRELESS SERVICE ENGINEERING

884 � ANNUAL REVIEW OF COMMUNICATIONS, VOLUME 56

viewpoint. Color-coding for the different degrees of reuse
can be used, as defined in Figure 9. Furthermore it should be
easy to link the development view models to the structural
view, so that the changes in structures are apparent in the
development view and a separate description of structure is
avoided.

4. Concrete Service Architecture

4.1. The Concrete Structural View
The concrete structural view defines the conceptual struc-
ture in more detail, including strictly defined component
interfaces and patterns that are followed. The require-

F I G U R E 8
Business Model of the Game Service

F I G U R E 8
The Conceptual Development View Allocates Development Responsibilities

VI/10

ANNUAL REVIEW OF COMMUNICATIONS, VOLUME 56 � 885

EILA NIEMELÄ, PH.D., PATRICIA LAGO, PH.D., AND MARI MATINLASSI, M.SC.

ments for the notation of concrete architecture have
already been fixed and initially applied in the context of
various international service engineering projects (Lago,
2001 A and B). Further studies are still needed, however,
especially when a quality-driven architecting approach is
applied. Figure 10 illustrates part of the structural view of
the game service on the concrete level. The uppermost part
of the figure describes the externally visible structure of
components. These can export or implement multiple
interfaces that can be distributed if remotely accessible by
other components or local if private to the component
itself. Distributed interfaces support distributed communi-
cation among components, whereas local interfaces define
how the internal elements of a component are involved in
local interactions.

The lower part of the figure describes the internal structure
of a component, namely, how it is decomposed into compo-
nent elements realizing the various interfaces. A component
can be of two types: black box components represent those
acquired from external sources, for example, commercial
products or third-party components, and used or perceived
by the system as opaque peers. On the other hand white box
components are under development and therefore have a
well-known internal structure.

The main contribution of the structural viewpoint is to pro-
vide an insight into software composition, which is espe-
cially important for distributed systems in which a compo-
nent represents an atomic unit of distribution, and software
distribution, i.e., the border between local and distributed
subsystems. This requirement is achieved by making
explicit (1) which components are parts of the system and
which are external to the system, (2) which interfaces and
supported interactions are distributed and which are local.
The structural viewpoint also provides the building blocks
on which the other viewpoints rely.

4.2. The Concrete Behavior View
The behavioral view defines how components interact to
achieve the system’s functionality. By identifying the
dynamics of a system and the interactions among classes or
among components, the behavioral viewpoint is based on
sequence diagrams. Special attention will be paid to the
specification of cross-components and intracomponents
interactions. Cross-component interactions occur between
different components and realize overall system functional-
ity. Intracomponent interactions occur internally to a
selected component and realize encapsulated implementa-
tion of a service offered to the external world. Diagrams
providing the behavioral viewpoint belong to both the class
and the instance spaces: class-level behavior is modeled
using sequence diagrams, and whenever needed, instance-
level sequence diagrams will show relevant example execu-
tion scenarios. The concrete behavioral view also defines
rules for exceptions in communication protocols.

The behavioral view provides a two-step representation of
how system functionality is realized in concrete terms: by
separating intra- and intercomponent representation in both
structure and behavior, a high-level system architecture is
easily grasped from the intercomponent viewpoints,
whereas a detailed system decomposition can be expanded
in the intracomponent viewpoints.

Also, by separating system behavior in the two perspec-
tives, a compact model can be easily understood by non-
technical stakeholders such as end users, thanks to a com-
pact overall system representation, while component
designers can use a detailed model.

4.3. The Concrete Deployment and Development Views
The UML Deployment Diagram maps the concrete compo-
nents to the nodes of the execution environment. The dia-
gram is also extended to map the deployment on the imple-

F I G U R E 1 0
An Example of the Concrete Structural View of the Game Service

VI/11

ARCHITECTURE-CENTRIC APPROACH TO WIRELESS SERVICE ENGINEERING

886 � ANNUAL REVIEW OF COMMUNICATIONS, VOLUME 56

mented game specific business model, as depicted in Figure
11. In particular, the diagram evidences the following
important issues:

• The domain associated with role of service user can be
deployed on a fixed node, e.g., an Internet machine,
for what concerns game download or on a mobile
node, e.g., a cellular phone or any other mobile device.

• On the service provider side, there are two types of
nodes mapped to two different domains playing the
same role: the service node belonging to the provider
of game control, and where the service core compo-
nents are deployed, and the management service node
belonging to the provider of outsourced management
services, on which service-common components are
located. In particular these components implement
orthogonal services, such as user profile access and
storage and authentication.

An additional advantage of the deployment viewpoint is
that it provides a concrete analysis of security issues from
architectural and business perspectives, and in addition to
the usual implementation perspective, provides the neces-
sary framework for adopting architectural standards.
Furthermore the development viewpoint adds technology
and implementation details. In particular it describes rele-
vant aspects and constraints set by technologies deployed as
black box components in the deployment viewpoint.

The concrete development view describes interfaces as
abstract messages and parameters needed in component
implementation. They are described in a separate document
by tables in order to circulate documents according to work
allocation between business stakeholders.

5. Quality Analysis of Service Architecture

Setting of the quality goals is essential in service engineer-
ing in order to reap the benefits of quality-oriented software
development. Reasonable quality means that return on
investment (ROI) should be considered for the different
parts of software, i.e., the services used only in one applica-
tion and the others used for a family of services. The rea-
soning rules of economic benefits might be input informa-
tion from business models to the architecture development.

Although the pilot service is still under development, the
initial analysis can be done based on the requirement speci-
fication and first draft descriptions of the service architec-
ture. In the following sections the quality of service archi-
tecture is considered from the point of view of portability,
maintainability, integratability, and simplicity.

5.1. Portability of Services
Portability is the ability of the system to run under different
computing systems: hardware, software, or a combination
of the two (Dobrica, 2002). There are two issues that require
portability: diversity of implementation technologies and
diversity of communication technologies.

The architecture of the game service is heavily based on the
existing Java technology; Java MIDlets on the client side and
Java Enterprise Edition (J2EE) and Java Standard Edition
(J2SE) on the server side. Although portability is not consid-
ered in the requirements specification, it can be seen from
the architecture descriptions that game manager is the only
component that is directly connected to the Kjava support
component. Therefore portability of client software could be
supported by a technology platform specific layer inside
game manager that provides the required services for com-

F I G U R E 1 1
Concrete Deployment View of the Game Service

VI/12

ANNUAL REVIEW OF COMMUNICATIONS, VOLUME 56 � 887

EILA NIEMELÄ, PH.D., PATRICIA LAGO, PH.D., AND MARI MATINLASSI, M.SC.

munication, graphical user interfaces, and other elements.
This layer has been defined on the conceptual level but is
not visible on the concrete level. Thus the coarse-grained
components do not give enough information on the concrete
level of service architecture.

In the requirement specification of the game service,
diversity of communication is defined as general packet
radio service (GPRS) and UMTS. GPRS is used in the first
phase, UMTS in the second or third phase. An initial com-
munication description between the client and the server
has been defined, but how the change over from GPRS to
UMTS affects service development is not considered. Thus
further exploration is needed in order to be able to antici-
pate architectural changes and isolate changing parts from
the stable part of architecture. This separation makes it
possible to identify generic components that can be uti-
lized in several services and new features provided by
UMTS can be quickly and easily utilized in wireless serv-
ice engineering.

5.2. Maintainability of Service Platform
Maintainability is the ease with which a software system or
component can be modified to correct faults, improve per-
formance or other attributes, or adapted to a changed envi-
ronment (Dobrica, 2002). As can be seen from the definition,
maintainability is related to portability. It is a broader con-
cept, however, considering the whole life cycle of a service
and its execution environment.

The ease of making architectural modifications depends on
at least the following prerequisites:

• Architecture is described in the same way; the mean-
ing of terms and notation is shared and descriptions
are made with the same accuracy.

• Architecture is carefully documented; the necessary
information is available, dependencies between archi-
tectural elements have been identified and defined,
traceability between descriptions is supported, and the
reasons behind design decisions are documented.

• Implementation conforms to the architectural descrip-
tions and defined standards.

Although maintainability is not mentioned as a quality
requirement in the requirement specification and the
architectural descriptions of the game service, we consider
it through analysis of (1) the meaning of terms and nota-
tion and (2) dependencies and traceability. Conformance
to the architecture can be analyzed once the implementa-
tion is ready.

In WISE we defined a short vocabulary and guidelines to
how the pilot architectures should be defined. There are
misunderstandings and weaknesses however. This may be
the result of defective tutoring or unwillingness to change
existing design practices or adapt the QADA method that
has documented guidelines with examples, but it is a new
method and approach in WISE. Because the terms, nota-
tion, and structure of the architectural descriptions form
the common language with which architects communicate,
more tutoring and communication of the method is

required. The reason for the anomalies in notation was
mainly the diversity of CASE tools utilized. A new tool,
however, which was provided by the WISE architects, was
applied, and notation guidelines were partially followed. In
conclusion the map view of the architecture document was
prepared in order to assist in following the guidelines. It
seems that brief lists of instructions are more useful in prac-
tice than comprehensive guidelines, because they can be
used and reread while architecting.

Concerning dependencies and traceability, two major weak-
nesses of the recent documentation are the incomplete inter-
face descriptions of components and a lack of traceability
between the viewpoints of the same abstraction level and
between the conceptual and concrete levels. The aim is that
the conceptual level captures commonalties and variables
and provides overall information without technical details.
This description is used for communication between hetero-
geneous stakeholders such as managers and developers.
The objective of the concrete architecture is to provide com-
ponent descriptions with strictly defined interfaces. The
concrete architecture is used as a specification when the nec-
essary components are allocated to the software developers
inside or outside the organization, i.e., to be developed by
the company itself, ordered from a subcontractor or bought
from a commercial marketplace.

In summary, the following needs for improvements could
be observed:

• Interfaces should be strictly defined in the concrete
development view.

• Dependencies on selected technologies should be
defined in a separate diagram in the development
viewpoint.

• Mapping between abstraction levels is required. In
order to address traceability to a greater degree, a sep-
arate view for mapping might be a better choice.

• A large number of message sequence chart (MSC) dia-
grams could be avoided by favoring collaboration dia-
grams and interface descriptions in a tabular form.

• The name of a component is part of its identification
and therefore the name should be the same in every
description reference.

• Design rationale is now part of each viewpoint but
might be necessary in each diagram.

5.3. Integratability of Service Architecture
Integratability means the ability to make the separately
developed components of the system work correctly
together (Dobrica, 2002). Interoperability is a special case of
integratability that measures the ability of a group of parts
that constitutes a system to exchange information and use
the one exchanged. Interoperability is omitted here because
portability has a similar overall purpose. On the other hand
integratability has been separated into two parts, namely
horizontal integratability and vertical integratability. The
purpose is to classify the service developers and their prod-
ucts into two categories: those that aim at global software

VI/13

ARCHITECTURE-CENTRIC APPROACH TO WIRELESS SERVICE ENGINEERING

888 � ANNUAL REVIEW OF COMMUNICATIONS, VOLUME 56

markets with generic service products and those that pro-
vide customized services to end users.

In the game service horizontal integratability was consid-
ered on the conceptual level, but as the result of missing def-
initions of the services management service, only some
observation can be made. The interface between communi-
cation manager and game server has been defined on the
semantic level. In order to integrate the separately devel-
oped components, the interfaces and protocols need to be
defined strictly. Vertical integratability was also difficult to
see from the concrete architecture. An assumption was
made that the communication manager provides a generic
communication service to the game manager that is tightly
coupled with the game application service. This means that
the communication service might also be used in other serv-
ices, but the game manager service must be developed sep-
arately for each game.

The following suggestions were proposed as improvements:

• Integration should be supported by a separate inter-
face description with the protocol definitions in the
development view.

• Integration interfaces should be generic and the first
ones to be fixed in a service architecture.

The rationale for separated integration interfaces is that
wireless service engineering is heavily based on the cooper-
ation of several industrial partners that need flexibility in
developing their own products but also strictly defined
interfaces that are controlled by a coordination organization
such as the Open Mobile Alliance (OMA

2
).

5.4. Simplicity of Architectural Descriptions
Simplicity can be defined as ease application and use of the
architectural descriptions and therefore closely related to
usability and reusability (Dobrica, 2002). Simplicity in this
context, however, means the ability to use the platform serv-
ices for different kinds of end-user services and add or cre-
ate new platform services when richer applications require
more powerful platform services or new adopted technol-
ogy makes it possible to develop new support services or
simplify their implementation.

In summary this ability was considered slightly on the con-
ceptual level, but as the result of missing interface descrip-
tions and application programming interface (API) for the
game family this ability should be addressed much more in
the next iteration phases. Therefore variability of services
will be described in the most important services. The poten-
tial service categories that need variability support are the
following: user interface services of mobile terminals, com-
munication services, authentication services, and game
application management services.

The results presented here are the first results from a pilot
architecture that is not completely defined yet. It is obvious,
however, that the application of the architecture-centric
approach in wireless service engineering still requires fur-
ther studies, improvements, and applications. That is why
two other pilot architectures of different services will be
constructed during the next two years. Furthermore all pilot
architectures are developed incrementally which simulates

the evolution of wireless services; the situation industrial
partners encounter in wireless service business.

6. Conclusions

The aim of this paper is to justify the necessity of two sepa-
rate levels of abstraction and the need for multiple view-
points in architectural representations. These issues were
argued with the different stakeholders and business roles
related wireless service engineering. Second we emphasized
quality as a key issue of wireless services and attested that
quality has a different meaning depending on the role of the
stakeholder. We defined the quality stack and applied it to
illustrate the dependencies between qualities, stakeholders,
and software components in the realization of a wireless
service. As a link between end users’ real added quality and
the service architecture, we addressed the architecture-cen-
tric approach with the use of the QADA method that high-
lights how quality attributes are considered on different
abstraction levels and how quality is carried through several
development phases towards the realization of a wireless
service.

Although the approach still needs further improvement,
reassuring results have already been detected. During the
first six months of the adoption of the approach to wireless
service engineering, the common understanding of the
meaning of service architecture has greatly increased and
architectural descriptions have improved. Obstacles to the
use of the WISE approach are partly organization-specific
issues, such as earlier defined practices and tools and per-
son-dependent issues such as available time to learn and
take a new method into practice.

Acknowledgements

We would like to thank all partner members of the WISE
project, especially Mr. Kalaoja and Mr. Tikkala who are the
coauthors of the architecture guidelines and the game serv-
ice architecture. Mr. Forchino and Mr. Tiella provided their
insightful, practical knowledge about wireless service
development as design descriptions of the game service and
service management service for our use.

References

1. Bass, L., P. Clement, and R. Kazman. Software Architecture in Practice.
Addison-Wesley, Reading, MA (1998).

2 Bratthall, L., and P. Runeson. “A Taxonomy of Orthogonal Properties of
Software Architectures,” Proceedings of NOSA’99. University of Karlskrona
(1998).

3. Dobrica, L., and E. Niemelä. “A Survey on Software Architecture Analysis
Methods” IEEE Transactions on Software Engineering, vol. 28, no. 6 (July
2002): 638–653.

4. Hofmeister, C., R., Nord, and D. Soni. Applied Software Architecture.
Addison–Wesley Longman Inc., Reading, 2000.

5. IEEE Computer Society. IEEE Recommended Practice for Architectural
Descriptions of Software-Intensive Systems. IEEE Std–1471–2000, 2000.

6. Jaaksi, A., J-M. Aalto, A. Aalto, and K. Vättö. “Tried and True Object
Development,” Industry-Proven Approaches with UM, 315. New York:
Cambridge University Press, 1999.

7. Krutchen, P.B. “The 4+1 View Model of Architecture,” IEEE Software 12,
(1995): 42–50.

8. Lago, P., C.A. Licciardi, and A. Cuda. “Internet Boosts IN Towards New
Advanced Services,” IEC Annual Review of Communications, vol. 54, 2001.

9. Lago, P. “Rendering Distributed Systems in UML,” Unified Modeling
Language: Systems Analysis, Design, and Development Issues, edited by K.
Siau and T. Halpin, Idea Group Publishing, 2001.

VI/14

ANNUAL REVIEW OF COMMUNICATIONS, VOLUME 56 � 889

EILA NIEMELÄ, PH.D., PATRICIA LAGO, PH.D., AND MARI MATINLASSI, M.SC.

10. Matinlassi, M., E., Niemelä, and L. Dobrica. Quality-Driven Architecture
Design and Quality Analysis Method: A Revolutionary Initiation Approach to a
Product Line Architecture. VTT Publications 456, Espoo: Technical Research
Centre of Finland, 2002.

11. Matinlassi, M., and J. Kalaoja. “Requirements for Service Architecture
Modeling.” To be published in Workshop in Software Modeling Engineering
of UML2002, Dresden, Germany (Sep.30–Oct. 4, 2002).

12. Nenad, M. “Modeling Software Architectures in UML.” Workshop on
Software Architectures and the Unified Modeling Language (2000).

13. Purhonen, A., E. Niemelä, and M. Matinlassi. “Views of DSP Software and
Service Architectures.” Submitted to Journal of Systems and Software. 30.

14. Timmers, P. “Business Models for Electronic Markets.”
/netacademy/publications.nsf/all_pk/715__EM – Electronic Commerce

in Europe_. EM – Electronic Markets, edited by Yves Gadient, Beat F.
Schmid, and Dorian Selz, vol. 8, no. 2 (July 1998).

15. TINA Consortium Service Architecture specification. http.//www.tinac.org.

Notes

1. This work has been partially supported by IST Project WISE (Wireless
Internet Service Engineering), URL http://www.wwwise.org

2. http://www.openmobilealliance.org/overview.htm

VI/15

PAPER VII

Platform services for wireless
multimedia applications

Case studies

In: Ojala, T. & Ollila, M. (eds.). Proceedings of the 1st
International Conference on Mobile and Ubiquitous

Multimedia, MUM 2002. Oulu, Finland,
11–13 December 2002. Oulu: Oulu University Press.

Pp. 76–81.
Reprinted with permission from the publisher.

VII/1

VII/2

VII/3

VII/4

VII/5

VII/6

VII/7

Published by

 Series title, number and
report code of publication

VTT Publications 608
VTT�PUBS�608

Author(s)
Matinlassi, Mari
Title

Quality-driven Software Architecture Model Transformation
Towards automation

Abstract
Model driven software development is about treating models as first class design entities and thereby raising the level of abstraction in software
development. A model is a simplified image of a system and, further, model transformation means converting one model to another model of the same
system. Transformation is a key to model driven development while automation of transformation is one of the essential goals of model driven
architecture (MDA), an initiative to standardize model driven development. Model transformation aims at automating the transition from business
models to implementation models. In addition to model refinement, model transformations are used for improving models by restructuring, completing
and optimising them.

Quality-driven software architecture model transformation (QAMT) denotes changing an architectural model according to changing or varying
quality properties, wherein a quality property is a non-functional interest of one or more system stakeholders. In this dissertation, I examine QAMT
automation, i.e. reducing the need for human intervention in QAMT. Therefore, the research question in this dissertation is �how to make
automation of QAMT possible�. This dissertation provides an answer to the research question by presenting a model to support QAMT automation.
The model is derived from the experience gained in four industrial cases and in one laboratory case study. The model is written with Unified
Modelling Language 2.0 and includes activities to describe the process of transformation and collaborating actors that execute the activities.

The goals of the model are (1) to describe transformation as completely as possible, (2) to provide support toward automation, (3) to stay
independent of implementation technologies, (4) to be mature and validated and (5) to conform to standards. Transformation is described by
presenting a marked model, a mapping and a transformation record, and transformation activities. While the QAMT model does not support total
automation of all the activities, it does reduce the need for human intervention. The QAMT model shows good performance in platform
independence and it is validated in five different cases. Finally, the QAMT model promotes understandability by following, e.g., the terminology
and specification structures defined in the most important standards in the area.

This research introduces an automation model for quality-driven software architecture model transformation. So far, the research effort on model
driven architecture has been focusing on automating vertical transformations such as code generation. The work in this dissertation initiates the
automation of horizontal model transformations and suggests future research topics to accumulate the knowledge on the subject and again to derive
fresh topics to explore and new ideas to experiment with.

Keywords
software architecture, quality-driven software architecture development, model-driven development, model-driven
architecture (MDA), model transformation

ISBN
951�38�6848�6 (soft back ed.)
951�38�6849�4 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number

VTT Publications
1235�0621 (soft back ed.)
1455�0849 (URL: http://www.vtt.fi/publications/index.jsp)

Date Language Pages Price
August 2006 English 101 p. + app. 95 p. D

Name of project Commissioned by

Contact Sold by
VTT Technical Research Centre of Finland, Kaitoväylä
1, P.O. Box 1100
FI-90571 OULU, Finland
Phone internat. +358 20 722 111
Fax +358 20 722 2320

VTT Technical Research Centre of Finland
P.O.Box 1000
FI-02044 VTT, Finland
Phone internat. +358 20 722 4404
Fax +358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

V
TT PU

BLICA
TIO

N
S 608

Q
uality­driven softw

are architecture m
odel transform

ation. Tow
ards autom

ation
M

ari M
atinlassi

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI­02044 VTT, Finland
Puh. 020 722 4404 Tel. 020 722 4404 Phone internat. +358 20 722 4404
Faksi 020 722 4374 Fax 020 722 4374 Fax +358 20 722 4374

ISBN 951– 38– 6848– 6 (soft back ed.) ISBN 951– 38– 6849– 4 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235– 0621 (soft back ed.) ISSN 1455– 0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2006 VTT PUBLICATIONS 608

Mari Matinlassi

Quality­driven software
architecture model transformation

Towards automation

Software intensive products have won popularity in everyday life today. An
increasing need for faster, cheaper and even more versatile software
intensive products sets a real challenge for the software industry. The
software industry is constantly looking for ways to improve the cost­
effectiveness of software development and the quality of software products.

The dissertation summary presents a model for quality­driven software
architecture model transformation (QAMT). QAMT denotes changing an
architectural model according to changing or varying quality properties,
wherein a quality property is a non­functional interest of one or more
system stakeholders. The aim of developing the QAMT model is to promote
automation of transformation and thereby making changing software
architecture easier. Reducing the need for human interaction in
transforming an architectural model improves the cost­effectiveness and
quality of software products.

http://www.vtt.fi/inf/pdf/
http://www.vtt.fi/inf/pdf/

	Abstract
	Preface
	Contents
	List of original publications
	Abbreviations
	1. Introduction
	1.1 Introduction to the topic
	1.2 Motivation
	1.3 Problem, limitations and results
	1.4 Research approach
	1.5 Outline of the dissertation

	2. Quality-driven software architecture
	2.1 Quality-driven software architecture development
	2.1.1 Quality properties
	2.1.2 Variability in quality properties
	2.1.3 Quality representation in an architectural model

	2.2 Software architecture modelling
	2.2.1 Software model
	2.2.2 Architectural models
	2.2.3 Model-driven development
	2.2.4 Model-driven architecture

	2.3 Architecture model transformation

	3. Towards automation of quality-driven
	3.1 Introduction to QAMT automation
	3.2 QAMT automation model Ł activities
	3.3 QAMT automation model Ł actors
	3.3.1 Stylebase
	3.3.2 Rulebase

	4. Evaluation of the QAMT automation
	4.1 Deriving the goals
	4.2 Assessment
	4.2.1 Completeness
	4.2.2 Platform independence
	4.2.3 Level of automation
	4.2.4 Maturity
	4.2.5 Conformance to standards

	4.3 Evaluation summary

	5. Conclusions
	5.1 Summary of the results
	5.2 Limitations of the results
	5.3 Future research

	6. Introduction to the papers
	6.1 State of the art
	6.1.1 Paper I: Design method comparison

	6.2 Method development
	6.2.1 Paper II: Introducing the design method
	6.2.2 Paper III: Refining the design method

	6.3 Cases
	6.3.1 Paper IV: Interactive gaming service
	6.3.2 Paper V: Terminal software product family
	6.3.3 Paper VI: Service architectures
	6.3.4 Paper VII: Middleware multimedia services

	References
	PAPER I
	PAPER II
	PAPER V
	PAPER VI
	PAPER VII

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

