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Abstract 
Starting in the early 1960’s, when the integrated-circuit (IC) technology was 
developed, micromachining and microelectromechanical systems (MEMS) have 
grown into a broad research field with several commercial successes. Typical 
applications of MEMS are in physical, chemical and biochemical sensors, as 
well as in optical systems such as the digital micromirror device of Texas 
Instruments. From the 1990’s, the advances in the processing technologies and 
the tremendous growth of the wireless-communication market have drawn much 
interest into radio-frequency MEMS devices (RF MEMS) such as filters, 
oscillators, switches and tunable capacitors. These are now beginning to 
penetrate the market. 

This thesis considers electrostatically-actuated RF-MEMS filters and delay lines. 
For filters, the work concentrates on nonlinear distortion and filter design. The 
intermodulation properties of capacitively-coupled MEMS filters are analytically 
solved in closed form and the theory is verified in numerical simulations as well 
as in measurements with MEMS resonators. The analysis is more generally valid 
than the previously published results. The theory is utilized to formulate a design 
procedure for MEMS filters that, for the first time, takes systems speci-fications 
for tolerable intermodulation distortion and insertion-loss into account. For delay 
lines, capacitive actuation of bulk-acoustic waves in a solid rod is analyzed. In 
particular, challenges in impedance matching due to the weakness of the 
electrostatic coupling are quantified. Finally, a new kind of resonator-chain 
delay line for high-frequency (HF) signals is introduced. This delay line is 
characterized by extremely slow signal group velocity (∼ 10–100 m/s), narrow-
band response, and much lower characteristic impedance than found for the 
solid-rod waveguide enabling efficient signal coupling. Properties of the 
resonator-chain waveguide are theoretically analyzed and the results are verified 
in measurements of fabricated devices. 
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Tiivistelmä 
Mikroelektromekaanisten järjestelmien (MEMS) kehitys alkoi 1960-luvun 
alussa yhdessä integroitujen piirien (IC) teknologian kanssa. Tähän päivään 
mennessä mikromekaniikka on kehittynyt laajaksi tutkimusalaksi ja johtanut 
useisiin kaupallisiin menestyksiin. MEMS-teknologiaa sovelletaan mm. 
fysikaalisissa, kemiallisissa ja biokemiallisissa antureissa sekä optisissa 
järjestelmissä, kuten Texas Instrumentsin mikropeileissä, joita käytetään 
videoprojektroreissa. Kiinnostus radiotaajuisiin MEMS- komponentteihin (RF 
MEMS) on lisääntynyt voimakkaasti 1990-luvun alusta alkaen 
valmistusteknologian ja langattoman tiedonsiirron markkinoiden kehityksen 
myötä. Radiotekniikassa MEMS-teknologiaa pyritään soveltamaan mm. 
suodattimissa, oskillaattoreissa, kytkimissä ja säädettävissä kondensaattoreissa. 
Ensimmäiset tällaiset komponentit ovat jo kaupallistuneet. 

Tässä väitöskirjassa käsitellään kapasitiivisesti kytkettyjä RF-MEMS-
suodattimia ja viivelinjoja. Suodattimien osalta työ keskittyy epälineaarisuuksien 
ja häviöiden huomioimiseen suodinsuunnittelussa. MEMS-suodinten 
intermodulaatio-ominaisuudet ratkaistaan työssä analyyttisesti aikaisempaa 
yleisemmin ja saadut tulokset varmennetaan tietokonesimulaatioissa ja 
mittauksissa. Tulosten pohjalta laaditaan MEMS-suodinsuunnittelulle säännöt, 
joissa otetaan ensimmäistä kertaa huomioon asetetut vaatimukset sekä 
intermodulaatiolle että häviöille. Viivelinjojen osalta työssä käsitellään 
mikromekaaniseen tankoon perustuvaa tilavuusaaltoviivelinjaa ja tuodaan esiin 
vaikeudet, jotka liittyvät riittävän hyvän kytkennän saavuttamiseen tällaisessa 
rakenteessa. Tehokkaampi kytkentä on HF-taajuuksilla mahdollinen 
jousimassaketjuun perustuvaan viivelinjaan, jollainen esitellään ja analysoidaan 
tässä väitöstyössä. Hyvän kytkennän lisäksi tämän viivelinjan ominaisuuksiin 
kuuluu kapeakaistaisuus ja erittäin hidas signaalin kulkunopeus. 
Mikromekaanisen jousimassaketjuviivelinjan toiminta varmennetaan mittauksin.  
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Abbreviations

VTT Technical Research Centre of Finland

TKK Helsinki University of Technology

ETSI European Telecommunications Standards Institute

GSM global system for mobile communications (an ETSI standard)

RFID radio-frequency identification

RX radio receiver

TX radio transmitter

IC integrated circuit

FET field-effect transistor

LNA low-noise amplifier

MEMS microelectromechanical systems

SOI silicon on insulator

LTO low-temperature oxide

CVD chemical vapor deposition

RIE reactive-ion etch

DRIE deep reactive-ion etch (Bosch process)

ICP inductively-coupled plasma

SAW surface-acoustic wave

BAW bulk-acoustic wave

FBAR film-bulk-acoustic resonator

RF radio frequency

IF intermediate frequency of a superheterodyne receiver

HF high frequency (3–30 MHz) (hydrofluoric acid in fabrication)

VHF very high frequency (30–300 MHz)

UHF ultra high frequency (300 MHz–3 GHz)

IM3 third-order intermodulation

IP3 third-order intercept point

IIP3 input-referred third-order intercept point

SIR signal-to-intermodulation ratio

C/I carrier-to-interference ratio
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Symbols and Notation

ǫ0 vacuum permittivity 8.85419 × 10−12 F/m

ρ density

Y Young’s modulus

ẏ time derivative of variable y

ÿ second time derivative of variable y

q charge

ϕ electrostatic potential

U voltage

V bias voltage

Vpi pull-in voltage

u AC source voltage

ū normalized AC voltage (small) = u/V

C capacitance

E capacitor energy = 1
2
CU2

A area of a capacitive transducer

x transducer or resonator displacement

d transducer gap with x = 0

ξ normalized transducer displacement (small) = x/d

C0 transducer capacitance with x = 0 = ǫ0A/d

Z0 transducer impedance with x = 0 = 1/(jωC0)

η electromechanical coupling = C0V/d

ke electromechanical spring constant = ηV/d

k spring constant of a harmonic resonator

m resonator mass

γ resonator damping constant

Q resonator quality factor =
√

km/γ

ω0 resonator eigenfrequency =
√

k/m

H(ω) resonator response function = H ′(ω) + jH ′′(ω)

ωe electromechanical frequency =
√

ke/m

k̄ spring constant with capacitive coupling = k − 2ke

ω̄0 eigenfrequency with capacitive coupling =
√

k̄/m

Q̄ quality factor with capacitive coupling =
√

k̄m/γ

Rm electrical-equivalent resonator resistance = γ/η2
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Lm electrical-equivalent resonator inductance = m/η2

Cm electrical-equivalent resonator capacitance = η2/k̄

ZL load impedance

RL load resistance

CL load capacitance

Rac source resistance

R′
S series-equivalent source resistance

C ′
S series-equivalent source capacitance

R′
L series-equivalent load resistance

C ′
L series-equivalent load capacitance

γ′ loaded resonator dissipation constant = η2 (Rm+R′
S+R′

L)

k′ loaded resonator spring constant = η2
(

1
Cm

+ 1
C′

S

+ 1
C′

L

)

Q′ loaded resonator Q value =
√

k′m/γ′

ω′ loaded resonator eigenfrequency =
√

k′/m

u′ Thévenin-equivalent-source AC voltage = u/(1 + jωC0Rac)

PIIP3 input power corresponding to IIP3

P1dB input power for to 1-dB compression

ΓIII ratio of third harmonic to fundamental

Γ interference to signal ratio

Γint amplitude ratio of interferers

GV voltage gain

kc coupling spring of a resonator chain

ka anchoring spring of a resonator chain

m0 coupling mass of a resonator chain

a period of a resonator chain

ωs frequency of a symmetric eigenmode of a two-mode resonator

ωa frequency of an antisymmetric eigenmode of a two-mode resonator

K ratio of anchoring spring to coupling spring = ka/kc

M total coupled-resonator mass = 2m + m0

λ wavelength

κ wavevector = 2π/λ

vg group velocity

vph phase velocity

Zc characteristic impedance of a transmission line
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1 Introduction

Acoustic wave propagation in solids has for a long time been utilized in RF elec-
tronics to implement various functionalities in components such as local oscilla-
tors, filters, and delay lines. Such devices are based on transduction between elec-
tric signals and acoustic waves with part of the signal processing being performed
in the mechanical domain. In these applications, one benefits from i) low attenu-
ation of acoustic waves in crystalline materials and ii) low acoustic wave velocity
compared to electromagnetic waves. The low attenuation enables high Q values of
mechanical resonators in components such as quartz-based oscillators [5] that are
widely used as low-phase-noise frequency references in mobile-communication de-
vices. The low-loss propagation is also essential in surface-acoustic-wave (SAW)
and bulk-acoustic-wave (BAW or FBAR) filters [6, 7]. The acoustic SAW and
BAW velocities are of the order of 5000 m/s that is approximately 105 times
smaller than the wave velocities for electromagnetic transmission lines. Thus,
long signal delays can be produced with small-sized components. This is utilized,
for example, in the SAW radio-frequency-identification (RFID) tags.

Recent advances in MEMS technology have opened up the possibility for cre-
ating microsized RF devices based on mechanical motion. In MEMS, integrated-
circuit (IC) batch-fabrication technologies are utilized to produce miniature me-
chanical structures usually on a silicon substrate. As an example, a MEMS plate
resonator has been demonstrated to be well suited for a high-spectral-purity os-
cillator in mobile-communication applications with phase-noise properties com-
parable to its quartz-based counterparts [8]. MEMS variable capacitors and, es-
pecially, switches are the most studied RF MEMS components with commercial
products now on sale by a few companies [9]. MEMS switches are also utilized,
for example, in phase shifters and impedance tuners [10, 11]. Micromechanical
filters are at present studied as a potential technology for bandpass filtering in
receiver front ends either at RF or IF frequencies [12–16]. Replacement of the
conventional SAW and FBAR filters with MEMS that is integrable with CMOS
electronics can reduce the cost, power consumption and physical size of the RF
circuitry. This becomes more and more important as the number of different
radios in a single device is increasing. Sometimes, also stationary components
fabricated with MEMS technology, such as inductors and waveguides, are con-
sidered as a part of RF MEMS. For recent review articles and books on RF
MEMS, see [9, 10, 17–20] and [21, 22], respectively. Besides in RF applications,
MEMS technology is utilized, for example, in sensors, such as accelerometers, gy-
roscopes, magnetometers and pressure sensors, as well as in microfluidic devices
and in micromirrors for projection displays (see, for example, [23, 24]).

This thesis considers design and analysis of electrostatically-actuated microa-
coustic RF filters and delay lines fabricated with MEMS technology for radio-
communication devices. After the introduction to microelectromechanical sys-
tems in Chapter 1, the thesis focuses on the new scientific results of the work. In
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Chapter 2, intermodulation (IM) properties of capacitively-coupled MEMS filters
are analytically solved and the theory is verified in numerical simulations as well
as in measurements. Although MEMS filters are widely studied in the litera-
ture, IM has received less attention. The new theory is utilized to formulate a
design procedure for MEMS filters that takes both IM and insertion-loss require-
ments into account. Usage of the procedure is exemplified and implications of
the analysis for different receiver architectures are discussed. MEMS delay lines
are considered in Chapter 3. First, capacitive actuation of bulk-acoustic waves
in a solid rod is analyzed. In particular, challenges in impedance matching due
to the weakness of the electrostatic coupling are quantified. Then, a new kind of
resonator-chain delay line for HF-frequency signals is introduced. This delay line
is characterized by extremely slow signal group velocity, narrow-band response,
and much lower characteristic impedance than found for the solid-rod waveguide
enabling efficient signal coupling. Properties of the resonator-chain waveguide are
theoretically analyzed and verified in simulations and measurements. Conclusions
of the work are presented in Chapter 5.

1.1 MEMS in Radio Architectures

MEMS-based components have been suggested to implement many of the needed
functionalities in modern communication devices. To set the context of the the-
sis more clearly, a typical superheterodyne radio architecture is depicted in Fig.
1 [25]. The blue shading indicates components that can possibly be realized with
MEMS technology. In addition to the switches, phase shifters, local oscillators,
filters and impedance tuners that are generally recognized as potential applica-
tions of MEMS [8–11, 15, 20–22], for the power sensor, used in the radio of Fig.
1 to control the power amplifier (PA), one can consider using MEMS, as first
discussed in [26] and developed further, for example, in [2, 27].

Instead of developing MEMS replacements of conventional components, full
utilization of the properties of MEMS may well require a redesign of the over-
all architecture and may prove well suited also for low-power low-performance
radios of wireless sensors. Namely, MEMS may allow some of the different op-
erations of Fig. 1 to be performed in a single electromechanical device, such as
the RX front-end filtering, mixing and even the low-noise amplification using
parametric pumping [1, 28]. In [15, 29], an architecture is considered, where the
RX-band-select filter is replaced with a switchable bank of narrow-band filters
with different center frequencies to cover the RX band. With such an approach,
the linearity requirements of the LNA and the mixer can be relaxed due to the
introduced selectivity against in-channel interferences. A multitude of parallel
channel-select filters is also considered in [30] with FBAR filters for a radio of
wireless sensors. Instead of many parallel filters, one can also consider using a
single multimode MEMS resonator, such as the plate resonator of [8] with Lamé
and square-extensional modes, if the size of the radio is to be minimized.

12
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Figure 1: Superheterodyne radio architecture. Components for which MEMS imple-
mentation can be considered are indicated in blue.

Figure 2 schematically shows another possible architecture for a low-power
radio transponder terminal that communicates with a high-power basestation.
Here the TX carrier is generated from the RX signal using a time delay during
which the TX/RX switch changes its state. The carrier generation can comprise,
for example, a phase-lock loop or, if the basestation is sending an unmodulated
carrier for the terminal TX, passband filtering can be enough. With a narrow-
band delay line, the filters in Fig. 2 can possibly be omitted. SAW RFID tags
are an example of a transponder radio, where the input RX pulse is coupled to a
delay line with multiple reflectors that cause many TX pulses, with identifiable
inter-pulse delays, to be sent back.

Delay

Carrier

Regen.

Demod

Mod

IC

I

Q

I

Q

Figure 2: Schematic of a radio-transponder architecture where the delay line is used
to separate reception and transmission in time.
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1.2 Mechanical Resonators

Typical mechanical resonator geometries are shown in Fig. 3. The applied force,
F , either stretches (a) or bends (b) the beam or stretches the plate (c) that is
anchored to ideally undeformable supports. For small amplitudes at and close to
the resonance frequency, the resonators can be modelled with a linear spring-mass
system, as shown in Fig. 3 (d), for which the equation of motion is

mẍ + γẋ + kx = F ⇔ ẍ +
ω0

Q
ẋ + ω2

0x = F/m ≡ F̄ . (1)

Here ω0 =
√

k/m is the eigenfrequency and Q =
√

km/γ is the quality factor
of the resonator with spring constant, k, mass, m, and dissipation, γ. The dots
above the variables refer to derivation with respect to time. Solution to (1) can
conveniently be written using the complex response function

H(ω) ≡
(

ω2
0 − ω2 + j

ωω0

Q

)−1

(2)

as
x(ω) = F̄H ′ + ˙̄FH ′′/ω, (3)

where H ′ and H ′′ denote the real and imaginary parts of H , respectively. The
second term in (3), which is proportional to the first time derivative of the applied
force, describes the power dissipation of the system. The absolute value of the
response

|H| =
√

H ′2 + H ′′2 =
[

(

ω2
0 − ω2

)2
+ (ωω0/Q)2

]−1/2

(4)

gives the amplitude, x0, of the displacement, x, as x0 = |H|F̄0, where F̄0 is the
scaled amplitude of the applied force.

For large amplitudes, nonlinearities of the resonator have to be taken into
account. Spring nonlinearities can be included in (1) by replacing the linear
spring force with a nonlinear force as

kx → kx + k2x
2 + k3x

3 + . . . . (5)

Taking the nonlinear terms into account only up to the third order, the equation
of motion (1) becomes

ẍ +
ω0

Q
ẋ + ω2

0x + αx2 + βx3 = F̄ , (6)

where α ≡ k2/m and β ≡ k3/m. The higher-order terms (αx2 and βx3) in (6)
introduce a shift to the resonance frequency, ωr ≡ ω0 + ωδ, and tilt the response
of the resonator [31, 32] (Duffing effect). The resonance frequency shift, ωδ, as a
function of the resonator amplitude, x0, is given by

ωδ = δx2
0, (7)
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Figure 3: Typical resonator geometries, (a) stretching beam (b) bending beam and
(c) extending plate of [8]. The resonators are anchored to stationary supports. (d) For
small motion close to the resonance frequency, the resonators can be modelled with a
linear spring-mass system (harmonic oscillator).

where [31, 32]

δ =
3β

8ω0

− 5α2

12ω3
0

. (8)

At the critical resonance amplitude of

x0, c =
2
√

ω0
√

3Q|δ|
√

3
, (9)

the response becomes a multivalued function of frequency with two stable and
one unstable solution for each excitation frequency resulting in hysteresis [31,32].
The amplitude responses of the linear (δ = 0) and some nonlinear resonators
are schematically shown in Fig. 4. The nonlinear responses have been obtained
by considering a unit-amplitude force (F̄0 = 1) and solving for the resonator
amplitude, x0, in (4) after substitutions |H| = x0 and ω0 → ωr = ω0 + δx2

0. The
behaviour of the response in hysteresis is also indicated.

The resonator geometries of Fig. 3 are typical in RF MEMS filters [12,13,15,33]
and oscillators [8, 34, 35]. Other state-of-the-art MEMS resonators have been
based, for example, on tuning forks, [36], folded-beams [15], ring [37] or circular
disk [38, 39] geometry. The highest frequency-Q products of microresonators
have been reported for a silicon ring [37] and a diamond disk [40] (Q > 10 000
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Figure 4: Tilting of the resonator response due to nonlinearity. The dashed arrows
show the behaviour of the solution with hysteresis, when the frequency ω of the exci-
tation force is increased (red) or lowered (blue).

at f ∼ 1 GHz). Research is also in progress towards reducing the size of the
resonators below one micrometer [41, 42]. Compared to MEMS, utilization of
these submicron nanomechanical (NEMS) devices in RF systems is much more
challenging due to their more complicated fabrication and inefficient coupling to
electric signals.

1.3 Electrostatic Transduction in MEMS

Several choices exist for coupling electrical signals and mechanical motion [21,43].
In microsystems, most common is the electrostatic actuation due to its low power
consumption, fast operation and simplicity of the needed fabrication processes
[21, 22]. The most studied RF application of MEMS is an RF switch [22] (for
recent references, see also [44–46]) for which capacitive coupling typically suffers
from high actuation voltages (high, at least, for battery-powered applications)
and inadequate reliability due to dielectric charging [22]. Therefore, for MEMS
switches, one has also utilized piezoelectric [47] and magnetic [48] transducers,
as well as combinations of magnetic and electrostatic [49] and of thermal and
electrostatic transducers [50].

Capacitively actuated MEMS resonators have been demonstrated at up to
GHz frequencies [37, 39]. However, achieving good enough signal coupling be-
comes increasingly challenging as the device size shrinks with increasing reso-
nance frequency. Consequently, higher bias voltages and smaller transducer gaps
are needed. Alternatively, piezoelectric coupling has been used also for MEMS
resonators [51–54] as well as electromagnetic [55], magnetostrictive [56] and ther-
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Figure 5: Conductors at potentials ϕ1 and ϕ2 with charges q and −q, respectively,
forming the parallel-plate (a) and comb-drive (b) capacitive transducers. The conductor
plate with charge q is movable and its displacement with respect to the initial position
is denoted with x.

mal [57] transducers. Electrostatic transducers with high-permittivity dielectrics
replacing the air gap have also recently been introduced [14,58,59] and analyzed
in detail in [4]. While offering solutions to the problems of electrostatic actu-
ation, the other approaches have their own challenges [21] such as demanding
or expensive fabrication (permanent magnets and current coils or piezoelectric
or magnetostrictive thin films), slow operation (thermal transducers) and power
consumption (thermal and magnetic transducers). In what follows, this thesis
concentrates on capacitive coupling.

Two common electrostatic transducers, parallel plate and comb drive, are
shown in Fig. 5. The actual comb drive is composed of several elements of the
type in Fig. 5 (b) in parallel [60], but here it suffices to consider only a single
element. The transducer capacitors are composed of two conductor plates at
potentials ϕ1 and ϕ2 with charges q and −q, respectively. One of the plates is
movable and its displacement with respect to the initial position is denoted with
x. Energy stored in the transducers is

E =
1

2
CU2 =

1

2

q2

C
, (10)

where U ≡ ϕ2 −ϕ1 is the voltage difference between the conductors and C is the
transducer capacitance given in Fig. 5. With biasing, either the voltage, U , or
the charge, q, is kept constant, resulting in a force between the conductor plates
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as [61]

F =
∂E

∂x

∣

∣

∣

∣

U

=
1

2
U2 ∂C

∂x
(voltage bias) (11 a)

F = − ∂E

∂x

∣

∣

∣

∣

q

= −1

2
q2 ∂

∂x

(

1

C

)

(charge bias). (11 b)

Consequently, with voltage biasing, the force (11 a) is a nonlinear function of the
displacement, x, for the parallel-plate transducer of Fig. 5 (a) while for the comb
drive of Fig. 5 (b), the force does not depend on x. Vice versa, with charge
biasing, the force (11 b) is independent of x for the parallel-plate transducer and
a nonlinear function of x for the comb-drive.

Due to its simple implementation and applicability also in the presence of sig-
nificant parasitic capacitances [62], such as pad capacitances, voltage biasing has
been the preferred solution in RF MEMS applications. Furthermore, although
the comb drive results in better linearity properties, better coupling (stronger
force) can be obtained with the parallel-plate transducer by minimizing the elec-
trode gap. Good coupling is critical, for example, in MEMS filters to minimize
the insertion loss. In the following, only voltage-biased parallel-plate transducers
are considered.

One effect of the nonlinearity of the voltage-biased parallel-plate transducer
is that when applied to the mechanical resonators of Fig. 3 at high enough bias
voltages, the resonators become unstable and are deflected against the stationary
electrodes. This effect, called pull-in, can be utilized, for example, in MEMS
switches [21] and sensors [26] but must be avoided in RF filters, thus setting an
upper limit for the bias voltage (pull-in voltage). With the transducer forces as
indicated in Fig. 3, the pull-in voltage is

Vpi,1 =

√

8kd2

27C0
, (12 a)

where C0 is the transducer capacitance with x = 0. With two transducers placed
on both sides of the resonator of Fig. 3 (b), such that the bias forces act in
opposite directions, the pull-in occurs at a higher voltage of

Vpi,2 =

√

kd2

2C0
. (12 b)

In addition, using the two transducers as a differential drive (voltage V + u on
one transducer and V −u on the other, where V is the bias voltage and u a small
signal) the second-order signal nonlinearity can be reduced. To the third-order
nonlinearities that are in focus in this thesis, the differential drive has no effect.
Appendix 5 outlines the derivation of (12 a) and (12 b). Since the rest position
of the resonator with symmetric biasing for V < Vpi,2 is at x = 0, the effective
spring constant, k̄ = k − 2ke, vanishes at the pull-in voltage.
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Figure 6: Basic MEMS device fabrication process. (a) Oxide deposition, (b) metal-
lization, (c) device patterning, (d) sawline etching, (e) device releasing.

1.4 SOI MEMS Fabrication at VTT

The silicon-on-insulator (SOI) fabrication processes used at VTT for the com-
ponents characterized in this thesis are outlined in what follows. More detailed
discussions on silicon-based MEMS surface, bulk and SOI micromachining can be
found, for example, in [63–65]. Present research also focuses on use of i) diamond
for the highest quality factors and two times higher sound velocity than in silicon
(higher frequencies with the same resonator dimensions) [40,66], ii) silicon carbide
for somewhat higher sound velocity with similar fabrication technologies as for
silicon [67,68] and iii) silicon germanium to facilitate post-CMOS integration due
to its low thermal budget [38, 69]. Diamond and silicon carbide are also consid-
ered to be more suitable than silicon for environments with demanding thermal,
chemical, radiation or wear conditions [70].

1.4.1 Standard VTT MEMS Process

Fabrication of the devices described in Publication V is illustrated in Fig. 6.
The process makes use of a SOI wafer which contains a 1-µm buried oxide layer
beneath a 10-µm silicon device layer. After depositing an extra 1-µm-thick low-
temperature-oxide (LTO) layer on the wafer backside with chemical vapor depo-
sition (CVD) (a), metal is deposited using Argon (Ar) plasma and patterned on
the front side (b). The metallization consists of a titanium-tungsten (TiW) dif-
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fusion barrier, a 1-µm-thick aluminum (Al) layer, and a thin molybdenum (Mo)
top layer to protect the Al against the hydrofluoric acid (HF) that is later used
for release etch. Etching of the metal is carried out using either a chlorine-based
(Cl2 + BCl3 + CHCl3) reactive-ion-etch (RIE) RF plasma or by wet etching. A
short dip in Freckle etchant is used to remove the residual etch debris. Sawing
lines are then patterned on the backside oxide layer and etched a few microns
deep with CF4 +CHF3-based RIE plasma. The next step (c) is the patterning of
the resonator structures, with nominal gaps of 0.5 µm, and release holes of 1.5 µm
diameter. Inductively-coupled plasma (ICP) is used in the Bosch process [64,71]
with SF6 + C4F8-etch and C4F8 + Ar-passivation steps to form the gaps and re-
lease holes using a resist mask, which is then stripped in oxygen plasma before
the backside sawlines are etched to a greater depth (d), again using ICP etching
but with the previously patterned oxide as a mask. The Bosch process is also
called deep reactive-ion etch (DRIE). The buried oxide (and the backside LTO)
is then etched for several minutes in 49% HF and then dried in supercritical CO2

(e). The devices may be separated by cleaving along the sawlines or by sawing.

1.4.2 Fabrication Process for Narrow Gaps

Table 1: Clamped-clamped (CC) beam, free-free (FF) beam and square-plate res-
onators with narrow transducer gaps.

gap / [nm] type dimensions f / [MHz] Q Ref.

200 CC beam 3.7 µm×54µm 8 5400 [72]

100 FF beam 2 µm×40µm 10 10000 [73]

80 CC beam 3 µm×200µm 0.6 4800 [74]

60 CC beam 3 µm×30µm 30 2500 [75]

50 square plate 320 µm×320µm 13 4000 [76]

In order to obtain good-enough coupling with low-enough bias voltages for
capacitively-coupled RF MEMS resonators, several processes have been developed
to minimize the transducer gap. Resonators with vertical gaps of d ≈ 200 nm [72],
d ≈ 100 nm [73], d ≈ 80 nm [74], d ≈ 60 nm [75] and d ≈ 50 nm [76] have been
fabricated. Relevant properties of these resonators are summarized in Table 1.
In [76], a much higher quality factor of Q > 105 is found for a resonator with
otherwise the same parameter values but with the transducer gap increased to
d ≈ 180 nm. For [75], the effective gap, given by the bias-voltage dependence
of the resonance frequency, is found to be d ≈ 400 nm, which is suggested to
be caused by carrier depletion. In [72, 73, 75], the reported quality factors for
the beam resonators are in good agreement with the support-loss estimate of
Q < 2(L/w)2 [77]. For [74, 76], on the other hand, the low quality factors of
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Figure 7: VTT MEMS process for narrow-gap devices. (a) SOI starting wafer, (b)
etching of electrode areas with DRIE (Bosch process), (c) deposition of sacrificial oxide,
(d) epitaxial polycrystalline-silicon deposition, (e) grinding and polishing, (f) device
releasing.

the sub-100-nm-gap resonators can be explained neither by anchoring loss [77]
nor by thermoelastic damping [78] but are possibly due to surface effects [77] or
contamination [76] in the narrow gaps.

The narrow-gap processes [72–76] are based on a deposition of a thin sacrificial
layer of oxide or polysilicon to define the gaps. Figure 7 illustrates the process
developed at VTT [76] that is used for the devices characterized in Publications
I, II and VI. The electrode areas are first etched in the Bosch process (b) after
which a thin sacrificial layer of thermal oxide (c), and a layer of epitaxial polycrys-
talline silicon (d) are deposited on the wafer. Next, grinding and silicon-selective
chemical-mechanical polishing (CMP) are used to bring the structural layer back
to its original thickness (e). Finally, HF etch (f) is used to release the vibrating
structures. The process can be finalized with a wafer-level vacuum sealing step
as discussed in [76].

1.5 Nonlinearities in Signal-Processing Applications

After the above introduction of capacitively-coupled MEMS resonators as well as
their mechanical (5) and electrical (11 a) sources of nonlinearity, typical figures
of merit of linearity, used in signal-processing applications, are discussed in what
follows for future reference. Noise properties of MEMS resonators [79–81] that
also are of central importance in signal processing are left outside the scope of
this work.

Typically, for a narrow transducer gap, the capacitive nonlinearity is the dom-
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inant source of distortion. Odd-order nonlinearities are especially detrimental as
they can lead to unwanted frequency components at a desired-signal frequency,
ω0. For example, cubic mixing of two fundamental signals, having frequencies
ω1 and ω2, results in third-order intermodulation (IM3) products at frequencies
2ω1 − ω2 and 2ω2 − ω1. This is easily seen [82] with a signal

xin = A1 cos ω1t + A2 cos ω2t (13)

at the input of a nonlinear system for which the response can be modelled as a
third-order polynomial

xout = α0 + α1xin + α2x
2
in + α3x

3
in. (14)

Here we ignore any nonlinearities of higher than third order, although, in practise,
they can also be important. Inserting (13) to (14), one obtains

xout =
1

4

[

α0 + 2α2A
2
1 + 2α2A

2
2 +

+
(

4α1A1 + 3α3A
3
1 + 6α3A1A

2
2

)

cos(ω1t) +

+
(

4α1A2 + 3α3A
3
2 + 6α3A

2
1A2

)

cos(ω2t) +

+ 2α2A
2
1 cos(2ω1t) + α3A

3
1 cos(3ω1t) +

+ 2α2A
2
2 cos(2ω2t) + α3A

3
2 cos(3ω2t) +

+ 4α2A1A2 cos(ω1t − ω2t) + 4α2A1A2 cos(ω1t + ω2t) +

+ 3α3A
2
1A2 cos(2ω1t − ω2t) + 3α3A1A

2
2 cos(2ω2t − ω1t) +

+ 3α3A
2
1A2 cos(2ω1t + ω2t) + 3α3A1A

2
2 cos(ω1t + 2ω2t)

]

.

(15)

The boxed, underlined and overlined terms of (15) are referred to in what follows.
If ω1 = ω0+∆ω and ω2 = ω0+2∆ω, the IM3 product at 2ω1−ω2 is at ω0 corrupting
the desired signal at that frequency. In the following, we introduce the commonly
used measures of nonlinearity: third-order intercept point, 1-dB compression and
harmonics.

Third-Order Intercept Point: The third-order intercept point (IP3) is typ-
ically defined as the crossing point of the linear extrapolations of the small-
amplitude IM3 signal at 2ω1 − ω2 and a fundamental two-tone test signal at
ω1 or ω2 (with A1 = A2) in the device output. The signal level at the input, cor-
responding to IP3, is termed IIP3. Setting the boxed amplitudes in (15) equal,
one obtains for the IIP3 amplitude A2

IIP3 = 4|α1|/(3|α3|) [82]. Using the same
boxed terms of (15) but the first one for a desired signal, xsig = Asig cos(ω0t),
and the second one for interference (13) with A1 = A2 = Aint, one finds for the
signal-to-intermodulation ratio (SIR) at the output of the system

SIR = A2
IIP3

Asig

A3
int

= PIIP3

√

Psig

P 3
int

, (16)
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where the last result is expressed in terms of the signal and interference powers at
the input. The result (16) is valid also for frequency selective components, such
as filters, provided that the IP3 definition is modified as being the crossing point
of the linear extrapolations of the IM3 output signal and a wanted output signal
when the wanted signal has the same input magnitude as the interferers and is
located at the passband center.

1-dB Compression: Typically, the coefficient α3 for the third-order term in
(14) is negative and thus the gain of the system decreases for increasing signal
amplitudes as seen in the amplitude of the cos(ω1t) term in (15). The 1-dB
compression point is defined as the input signal level for which the gain has
decreased by 1 dB. The corresponding amplitude, A1dB, can be solved using
the underlined terms in (15) (A2 = 0). The linear gain for the signal with
amplitude A1 is α1 while the compressed gain is α1 + 3

4
α3A

2
1. Thus A1dB is found

by solving [82]

20 log

∣

∣

∣

∣

α1 +
3

4
α3A

2
1dB

∣

∣

∣

∣

= 20 log |α1| − 1 dB. (17)

Consequently, in terms of powers, one finds a useful relation between the intercept
point and compression

P1dB ≈ PIIP3 − 10 dB. (18)

If A2 ≫ A1, gain for the weaker signal follows from the overlined terms in (15)
and the compression point is found as in (17) but with the 3

4
replaced with 3

2
.

One finds

P̂1dB ≈ PIIP3 − 13 dB, (19)

where P̂1dB denotes the power level at which gain for a much weaker signals is
reduced by 1 dB.

Harmonics: The amplitudes of the second and third harmonics (xII
out and xIII

out)
with respect to the fundamental term (xI

out) are also easily obtained from (15).
In particular, one finds that the third harmonic can be related to PIIP3 as

ΓIII ≡ 20 log10

(

xIII
out

xI
out

)

= 2 (P1 − PIIP3) − 10 dB, (20)

where P1 is the power corresponding to the signal amplitude A1. For example,
for the GSM mobile terminal with maximum transmit power of 33 dBm, it is re-
quired that the third harmonics in TX remain below -30 dBm [83]. Consequently,
ignoring antenna and switch losses, one needs for the power PIIP3, according to
(20), PIIP3 > 60 dBm. With the switch losses and the antenna efficiency taken
into account, the minimum acceptable PIIP3 is accordingly raised.
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1.6 Objectives of the Work

The objective of the work is to contribute to the progress of reducing the size, price
and power consumption (increased operation time of battery-powered devices)
of communication systems by wider utilization of MEMS components. Both
replacement of components, such as filters, in conventional radios and devices
enabling novel radio architectures are to be considered. The research questions
of the work are:

1) In order to use capacitive MEMS resonators for front-end filters in wireless
radio receivers as suggested, for example, in [15], what are the requirements
for the central parameter values such as supply voltage, transducer gap and
resonator quality factor?

2) What are the possible obstacles of commercially using MEMS resonators
for filtering at UHF frequencies?

3) How to systematically design MEMS filters to meet filter specifications of a
communication system such as GSM [83], concentrating, in particular, on
intermodulation distortion [84] and on insertion loss?

4) What are the central tradeoffs in filter properties that affect the design?

5) Instead of replacing conventional RF components with MEMS devices, can
more be gained through a redesign of the radio architecture? What special
requirements do MEMS filters set for the overall system?

6) How can low-loss acoustic propagation in single-crystal silicon be used for
novel time-delay components and delay-line radio architectures?
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2 Designing MEMS Filters for RF Applications

In radio systems, micromechanical filters have been suggested for bandpass fil-
tering in the receiver front ends either at RF or IF frequencies. In contrast to
conventional acoustic SAW and FBAR filters that pass the entire RX band, their
MEMS replacements are often thought to have a narrower passband. This is
enabled by the high quality factors of MEMS resonators that are achievable by
utilizing low-loss single-crystal materials and vacuum packaging. For example,
capacitively-actuated MEMS resonators with quality factors of Q > 100 000 at
10 MHz [8] and Q > 10 000 at 1 GHz [37] have been reported. Consequently, one
needs tuning of the filter passband or a bank of switchable filters with different
center frequencies to cover all the RX channels of the communication system as
discussed in [15] and in Sec. 1.1. A central challenge of MEMS filters is to obtain
a low-enough mechanical impedance for acceptable insertion loss. Consequently,
for bias voltages that are practical for mobile devices, maximizing the resonator
quality factor and minimizing the transducer gap become of primary interest
although they increase the nonlinear distortion of the device. In this thesis, a fil-
ter design approach that takes both insertion-loss and intermodulation-distortion
requirements into account is developed.

2.1 Filtering with a Single Resonator

Usage of a mechanical resonator, with mass, m, spring constant, k, and dissipation
constant, γ, as a bandpass filter for capacitively-coupled electrical signals with
voltage bias is schematically shown in Fig. 8. The load impedance is denoted by
ZL, the source impedance by Rac and Z = u/i1 is the small-signal impedance
seen when looking into the input transducer. The resonator mass is grounded
and the bias voltage, V , is connected to the mechanically stationary electrodes of
the parallel-plate transducers. The transducer area is A and d is the width of the
gap with the resonator at its rest position. As the resonator mass is displaced by
x, the transducer capacitances become

C1 =
C0

1 + x/d
= C0

[

1 − ξ + ξ2 − ξ3 + . . .
]

(21 a)

C2 =
C0

1 − x/d
= C0

[

1 + ξ + ξ2 + ξ3 + . . .
]

, (21 b)

where C0 = ǫ0A/d is the rest capacitance (x = 0) and ξ ≡ x/d is the normalized
displacement. With the electromechanical coupling coefficient defined as η ≡
C0V/d and the spring constant as ke ≡ ηV/d, the small-signal electrical-equivalent
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Figure 8: Micromechanical resonator operating as a single-stage band-pass filter for
capacitively-coupled signals with unsymmetric (a) and symmetric (c) bias. In (b) and
(d), the corresponding electrical-equivalent small-signal models are shown.

parameters in Fig. 8 (b) and (d) are found as [16, 43]

Rm =
γ

η2
(22 a)

Lm =
m

η2
(22 b)

Cm,N =
η2

k − Nke
, (22 c)

where N is the number of transducers (N = 1 in Fig. 8 (a,b) and N = 2 in Fig.
8 (c,d)). With these definitions, the coupling coefficient, η, is included in the
values of the equivalent resistance, inductance and capacitance. Alternatively,
the coupling can be modelled with a transformer [43]. In App. 5, details of the
derivation of the equivalent circuits are explained. With only one transducer
(N = 1), the transducer area can be larger than for N = 2 resulting in a better
electromechanical coupling and lower Rm. For example, for the plate resonator
of Fig. 3 (c), all the four faces can be used for actuation. However, as in filtering
and delay-line applications it is important to eliminate the direct electrical signal
propagation through C0 between the input and output ports, it is better to use
two capacitive transducers (N = 2), one for input and one for output, and connect
the resonator to AC ground potential as shown in Fig. 8 (c, d). Consequently,
in what follows, we mainly concentrate on the two-transducer approach of Fig. 8
(c, d).
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Forces F1 and F2 in Fig. 8, exerted on the moving mass, are found with (11 a)
as

F1 = −1

2
U2

1

C0/d

(1 + ξ)2
= −1

2
(V + u − us)

2 C0

d

[

1 − 2ξ + 3ξ2 − 4ξ3 + . . .
]

(23 a)

F2 =
1

2
U2

2

C0/d

(1 − ξ)2
=

1

2
(V − uL)2 C0

d

[

1 + 2ξ + 3ξ2 + 4ξ3 + . . .
]

. (23 b)

Here Ui are the voltages across the transducers (U1 = V +u−us and U2 = V −uL),
us = i1Rac is the voltage drop in the source resistance and uL = i2ZL is the load
voltage as indicated in Fig. 8. The currents i1 and i2 in Fig. 8 (c,d) are

i1 =
dQ1

dt
=

d(C1U1)

dt
= C1(u̇ − u̇s) + (V + u − us)

∂C1

∂x
ẋ (24 a)

i2 =
dQ2

dt
=

d(C2U2)

dt
= −C2u̇L + (V − uL)

∂C2

∂x
ẋ, (24 b)

where the derivatives of the capacitances are the same as for the forces in (23 a)
and (23 b). Equations (23 a)–(24 b) and the equation of motion of the resonator
form the basis of the calculations in this thesis.

2.2 Multi-Stage Filters

Multistage MEMS filters can be composed, for example, by coupling resonators
in series with mechanical springs [15, 16], by using shunt capacitors or active
buffers [12] or by using direct capacitive coupling between the resonators [13].
The spring coupling [15, 16] has the same electrical-equivalent representation as
the shunt-capacitance-coupled filter [12] which is shown in Fig. 9 for two stages.
Here Cgnd is the inter-stage coupling capacitor.
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Figure 9: A two-stage MEMS filter where the inter-stage coupling is done with the
shunt capacitance Cgnd.

2.3 IM3 for MEMS Filters

The intermodulation properties of capacitively-coupled single-resonator MEMS
filters are solved in closed form in Publications I–II and the theory is generalized
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for higher-order filters in Publication III and [3]. We consider the circuit of
Fig. 8 (c) with Rac = ZL = 0 as shown in Fig. 10. Nonzero source and load
impedances will be included afterwards as done in Publication III. Furthermore,
for generality we include mechanical spring nonlinearities up to third order with
(5). The equation of motion of the resonator in Fig. 10 up to third order in the
small parameters, ū ≡ u/V and ξ ≡ x/d, is found with the forces of (23 a) and
(23 b) as

ξ̈+
ω̄0

Q̄
ξ̇+ω̄2

0ξ = −ω2
e

[

ū + k̄2ξ
2−2ūξ+

ū2

2
−

(

4−k̄3

)

ξ3 + 3ūξ2 − ū2ξ
]

= F̄ . (25)

Here, the following definitions are used: ω̄0 ≡
√

k̄/m, Q̄ ≡
√

k̄m/γ, ωe ≡
√

ke/m, k̄2 ≡ dk2/ke and k̄3 ≡ d2k3/ke with k̄ ≡ k − 2ke, ke ≡ ηV/d and
η ≡ C0V/d. The output current is found from (24 b) as

ī ≡ i2
d

=η
(

1
↓

+ 2ξ+3
↓

ξ2 + 4ξ3 + . . .
)

ξ̇. (26)

īsig ,̄i
(1)
IM3 ī

(2)
IM3

In (26), we have indicated the terms that contribute to the signal and the inter-
modulation currents at the fundamental frequency, ω̄0.

The desired signal, ūsig, at the resonance frequency, ω̄0, and an interfering
signal, ūint, at the filter input are now taken as

ūsig = ūsig,0 cos ω̄0t, (27a)

ūint = ūint,0 (cos ω1t + Γint cos ω2t) , (27b)
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where ω1 ≡ ω̄0 +∆ω and ω2 ≡ ω̄0 +2∆ω such that a third-order intermodulation
product of (27b) is at the desired-signal frequency, ω̄0. The frequency separa-
tion of the interferers is denoted by ∆ω. A possible difference in the interferer
amplitudes is taken into account with Γint.

The output signal current, īsig, in (26) is found by first obtaining the linear
signal motion, ξsig, from (3) with a force, F̄sig, given by the excitation (27a) in
(25) as F̄sig = −ω2

e ūsig. Similarly, linear resonator motion, ξint, at the interferer
frequencies, ω1 and ω2, is found from (3) with a force, F̄int, given by (27b) in (25)

as F̄int = −ω2
e ūint. The intermodulation currents, ī

(1)
IM3 and ī

(2)
IM3, in (26) at ω̄0 due

to the interference (27b) are obtained in Publication II by approximately solving
the nonlinear equation of motion (25).

The signal-to-intermodulation ratio (SIR), defined as the ratio of the signal

current, īsig, to the total intermodulation current, īIM3 = ī
(1)
IM3 + ī

(2)
IM3, is given in

Publication II for a general case. For practical usage in filter design, it is more
convenient to consider SIR in the limit of Q̄ → ∞ that becomes valid as soon as
the interferers are well outside the passband of the filter. We find

SIRQ̄→∞ =
16|∆ω|3(ω̄0 + ∆ω)(2ω̄0 + ∆ω)2

[

9∆ω4 + 28∆ω3 ω̄0 + 2∆ω2(10 ω̄2
0 − 9 ω2

e) +

− 24∆ω ω2
e ω̄0 + 3(4 − k̄3)ω

4
e

]

ΓintΓ
3 ū2

sig,0 ω2
e

, (28)

where Γ ≡ ūint,0/ūsig,0 is the interference-to-signal ratio at the filter input. As
(28) contains odd powers of ∆ω, it is asymmetric around the resonance predicting
different SIR values for interferers below the resonance and interferers above the
resonance.

Another important limit is when the interferers are inside the filter passband
(∆ω → 0). This is relevant, for example, when signal self distortion is considered.
In terms of the IIP3 voltage, we have with Γint = 1 (Publication I)

ū2
0,IIP3,IB = 1

/

√

[

3(1−k̄3/4) p3 + p/4
]2

+ 9p4/4, (29)

where p ≡ Q̄ω2
e/ω̄

2
0 = keQ̄/k̄. The corresponding SIR is found from (16).

The theoretical results are compared to measurements and numerical simu-
lations in Publication II. A good accuracy of the theory is found as shown, for
example, in figure 11 for the square-extensional-mode plate resonator of Fig. 3
(c). The resonator is fabricated on a silicon-on-insulator (SOI) wafer with the
narrow-gap process of [76] (see Sec. 1.4.2) and it has a size of 320 µm × 320
µm × 10 µm (thickness of the SOI device layer is 10 µm). For other details, see
Publication II. For signal input and output, two parallel capacitive transducers
on opposite sides of the plate are used. Each transducer corresponds to one of
the four forces shown in Fig. 3 (c). For example, for input, the transducers are on
the left- and on the right-hand side of the plate while the output transducers are
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Figure 11: Signal-to-intermodulation ratio as a function of interferer frequency sepa-
ration for the square-plate resonator of Publication II that is schematically illustrated
in Fig. 3 (c). Simulated behaviour (black curves), general analytic result of Publication
II (blue curves), analytic result in the limit Q̄ → ∞ (28) (red curves), in-band limit
(29) (dashed line), and measured results (large dots) are shown. The thin curves are
for ∆ω < 0 while the thick curves are for ∆ω > 0.

located below and above the plate. A bias voltage is brought to the stationary
transducer electrodes while the resonator is grounded. The electrical-equivalent
model for the resonator is as shown in Fig. 8 (d) but with a 180◦ phase change
in the output current due to the in-phase motion of all the faces of the plate
resonator.

The measurements are done with the MEMS resonator and a JFET (junction
field-effect transistor) preamplifier in vacuum using a −50-dBm desired signal
(corresponding to a 50 Ω source impedance) at the resonator input at the reso-
nance frequency of ω̄0 and considering two 0-dBm interferers at ω1 = ω̄0 + ∆ω
and ω2 = ω̄0 + 2∆ω. The simulations are done in Aplac circuit simulator using
harmonic balance [85]. As seen in Fig. 11, the infinite-Q limit of (28) becomes
valid as soon as the interferers are outside the resonator passband. Also, as pre-
dicted by the theory, at the intermediate frequencies of 50 Hz < |∆f | < 1 kHz we
observe that the SIR is much lower for interferers below the resonance (∆ω < 0)
than for interferers above the resonance (∆ω > 0). This difference is at great-
est when the interferer frequencies are close to the 3-dB-passband edge of the
resonator. Within the passband, the in-band approximation (29) becomes valid.
The excellent agreement between the analytical, simulated and measured results
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verifies the theory for weakly coupled (Rm ≫ {Rac, ZL}) single-stage capacitive
MEMS filters.

The previously reported experimental IM3 results [84] for ∆ω ≪ −ω0/Q are
in good agreement with (28). For example, assuming that the spring constant
of the clamped-clamped-beam resonator of [84] can be approximated by a point-
force result [86], (28) and (16) give the same IIP3 voltage as reported in [84]. On
the other hand, for ∆ω > 0 as well as for the interferers close to the passband
edge, results of Publication II and (28) differ from the analytical result of [84].

2.4 Generalization of the IM3 Theory

With source and load impedances that are large enough to not be ignorable,
a parellel-to-series impedance transformation is utilized as shown in Fig. 12 for
a single-resonator MEMS filter. Here the load impedance is represented by a
resistance RL and capacitance CL in parallel. Loading of the resonator due to
the source and load impedances can now be taken into account by using a loaded
dissipation and spring constant

γ′ = η2 (Rm + R′
S + R′

L) (30 a)

k′ = η2 (1/Cm + 1/C ′
S + 1/C ′

L) , (30 b)

to find a loaded quality factor, Q′ ≡
√

k′m/γ′, and resonance frequency, ω′ ≡
√

k′/m. The series-equivalent resistances and capacitances of Fig. 12 in (30 a)
and (30 b) are (see, for example, [87])

R′
S =

Rac

(Racω′C0)2 + 1
(31 a)

C ′
S =

C0 [(Racω
′C0)

2 + 1]

(Racω′C0)2
(31 b)

R′
L =

RL

[RLω′(C0 + CL)]2 + 1
(31 c)

C ′
L =

(C0 + CL)
{

[RLω′(C0 + CL)]2 + 1
}

[RLω′(C0 + CL)]2
. (31 d)

In addition to using the loaded quality factor, Q′, the Thévenin-equivalent input
voltage

u′ = u × 1

1 + jω′C0Rac

(32)

must be used in order to be able to utilize the unloaded SIR and IIP3 results (28)
and (29) for tightly-coupled filters.
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Figure 12: Parallel-to-series impedance transformation for a single-stage MEMS filter.
For example, u and Rac can model an antenna while CL and RL represent an LNA input.

For filter design, (28) and (29) can be further simplified by assuming that: i)
the pass-band desired-signal frequency is much higher than the frequency separa-
tion to the interferers present in the filter input, ii) the bias voltage is much lower
than the electromechanical pull-in voltage, and iii) mechanical spring nonlineari-
ties can be ignored as much weaker than the capacitive transducer nonlinearities.
With these assumptions we find from (28)

SIR =
8 |∆ω|ω′

5 ω2
e

× V 2

R′
S Γint

√

Psig

P 3
int

. (33)

The AC-source powers for the signal and interference are Psig = u2
sig/(2Rac) and

Pint = u2
int/(2Rac), respectively. When the interferers are inside the passband, we

have from (29) and (16) generalizing to Γint 6= 0

SIRIB =
1

√

(6p3 + p/2)2 + 9p4

× V 2

R′
S Γint

√

Psig

P 3
int

, (34)

where p ≡ Q′ω2
e/ω

′2 = Q′ ke/k
′.

In Publication III, it is shown that as SIR(∆ω) → SIR(−∆ω) for out-of-
band interferers with |∆ω| → ∞, (33) becomes valid. Furthermore, outside
the passband the single-resonator result (28) is also valid for higher-order filters
as well as for the tightly-coupled filters provided that the loaded quality factor
and the Thévenin-equivalent input voltage of (32) are used as discussed above.
Intuitively, this is to be expected as for the out-of-band interferer frequencies,
the resonator impedances are high and the resonators are therefore only weakly
coupled. Furthermore, as typically the capacitive nonlinearity is much stronger
than the mechanical spring nonlinearities, the transducers effectively set the IIP3.
Moreover, except close to the passband edge, the force nonlinearity of the first
transducer is the dominant source of intermodulation (Publication II).

For in-band frequencies, the IIP3 for higher-order filters depends on the chosen
desired-user frequency within the passband. However, the single-stage approxi-
mation is still a good order-of-magnitude estimation (Publication III).
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2.5 Design Principles of MEMS Filters

In what follows, we derive design criteria for the resonator dimensions, trans-
ducer gap, Q value and bias voltage from specified in-band and out-of-band filter
attenuation and maximum distortion. The criteria yield a systematic procedure
to design MEMS filters for communication systems. We focus on receiver (RX)
applications.

Out-of-band attenuation: For minimum performance, the filter should sup-
press the interferers situated outside the systems RX band to the same level as
the strongest interferers within the RX band. If this is achieved, the linearity re-
quirement for the LNA and mixer are set by the in-band interferers that normally
are not affected by band-select filtering. Denoting the minimum attenuation at
frequency ω with respect to the desired-signal frequency, ω′, as Amin, the mini-
mum required loaded in-circuit quality factor can be found. For the single-stage
MEMS filter, this leads to

Q′ ≥

√

A2
min − (ω/ω′)2

∣

∣1 − (ω/ω′)2
∣

∣

≡ Q′
min. (35)

Increasing the filter order makes the stop-band response a steeper function of
frequency and thus a lower quality factor for the resonators is sufficient at the
cost of higher insertion loss.

Out-of-Band Intermodulation: The weakest signal, with power Psig, to be
detected in the presence of interferers, having powers Pint at ω′+∆ω and ω′+2∆ω,
leads to requirements for intermodulation performance. Typically, this is specified
with the minimum SIR (SIRmin) that the filter needs to satisfy in its output in
order to meet the target for the overall systems carrier-to-interference (C/I) ratio.
Requiring the SIR to be greater than or equal to the minimum SIRmin gives from
(33)

d3 + (ǫ0Aω′Rac)
2d ≥ 5

8
Rac Γint SIRmin

ǫ0 A

m |∆ω|ω′

√

P 3
int

Psig
, (36)

which can also be used for higher-order filters as discussed above. Thus in order
to meet the performance requirements given as SIRmin, there is a minimum value
for the gap.

In-Band Loss: The passband voltage gain, GV ≡ 2uL/u, is easily found using
the circuits of Fig. 12 and assuming n identical filter stages. Requiring that the
passband voltage gain is larger than a specified minimum acceptable value, Gmin,
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a lower limit for QV 2 is found as

QV 2≥ nd4
√

km

(ǫ0A)2

{

2
ω′C ′

LGmin

|1+jω′C ′
LR′

L|
|1+jω′C0Rac|

−R′
S−R′

L

}

. (37)

Thus, after choosing the gap, d, the unloaded quality factor, Q, and the bias
voltage, V , need to be chosen to meet the insertion loss specifications. As the
unloaded quality factor is usually determined by material properties, effectively
this gives a requirement for the bias voltage. It is to be noted that with a dom-
inantly capacitive termination (|1/ω′C ′

L| ≫ R′
L) it is possible to obtain voltage

gain as the filter acts as an RLC impedance transformer.

In-Band Intermodulation: The in-band intermodulation is estimated from
(34) by considering the i) signal self distortion and ii) in-band interferers. How-
ever, typically the out-of-band interferers give more stringent linearity require-
ments. Therefore, after choosing the filter parameters, it is usually sufficient to
check that the filter meets the in-band specifications. If these are not met, then
the filter gap should be increased and the design adjusted accordingly.

2.6 Design Example

In the following, the usage of the above results is illustrated by a single-stage
MEMS front-end filter design for f0 = 1 GHz with requirements of GSM 900
mobile device. The simplified specifications are shown in Table 2. These should be
considered as exemplary performance requirements and a realistic system design
may set a more or less stringent goals.

Table 2: Simplified RX front-end filter requirements for GSM 900 [83].

Specification Comment

SIRmin 12 dB → (36)

Gmin -3 dB → (37)

Amin(f − f0 = 10 MHz) 23 dB → (35)

to be met with:

Psig -99 dBm Signal

Pint(∆f = 0 Hz) -49 dBm In-band interferer

Pint(∆f = 600 kHz) -43 dBm In-band blocker

Pint(∆f = 10 MHz) 0 dBm Out-of-band blocker
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Figure 13: Test geometry for resonator design showing the resonator surrounded by
the electrodes. The dotted line indicates the vibration mode shape in extended state.

Resonator geometry: Several structures have been utilized in MEMS microres-
onators such as bending and stretching beams (see Fig. 3) as well as bulk-acoustic
circular [39] or square [8] plates or ring resonators [37]. In order to reach UHF
frequencies, micromechanical bending-mode resonators are unpractical since the
fundamental frequencies are at HF range (< 30 MHz) and coupling to harmonics
of high order is difficult. Bulk-acoustic circular or square plate resonators can
have the first vibration mode at VHF range and the second or third harmonic
already at ∼ 1 GHz [39]. Alternatively, one can utilize the fundamental bulk-
acoustic mode of a thin bar or ring for which a very high quality factor is reported
in [37]. Above 1 GHz, however, the thickness of the bar becomes only few mi-
crons and can easily be limited by fabrication accuracy. As in Publication III,
we consider here the bar and ring geometries, shown in Fig. 13, to illustrate the
usage of the design equations developed in Sec. 2.5. Other resonator structures
can be treated in a similar fashion.

The resonating dimension of the bar in Fig. 13 is x = λ/2 = v/(2f0) ≈ 4µm
for f0 = 1 GHz. Here v =

√

Y/ρ is the bulk-acoustic wave velocity with ρ = 2330
kg/m3 the density and Y = 168 GPa the Young’s modulus of silicon. The bar
can also approximate the ring geometry of [37], shown on the right-hand side of
Fig. 13, when the ring radius L/(2π) is much larger than the ring width x. The
capacitive transducers at both sides of the resonator have an area of A = HL and
a rest capacitance of C0 = ǫ0HL/d. The mass and spring coefficient are now [34]

m = ρLxH/2 (38 a)

k = π2Y LH/(2x). (38 b)

We consider a typical thickness of the SOI device layer of H = 10 µm after which
the resonator length L is varied to find a good geometry. For square plate, instead
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of (38 a) and (38 b), one would use msp = ρHL2 and ksp = π2Y2DH , where Y2D is
the effective elastic modulus for the extending plate [8].

Minimum quality factor: From the minimum requirements for the interference
attenuation in Table 2, one obtains with (35) a value of Q′

min = 700 for the
minimum loaded quality factor. For channel-select filtering in GSM 900, the
passband is 200 kHz corresponding to a much higher in-circuit quality factor of
Q′ = 5000, which would also be enough for Amin = 40 dB at 10 MHz off the
passband in (35) as is typically satisfied by commercial FBAR filters. As higher
Q values enable lower bias voltages for the same insertion loss (37), we set the
unloaded quality factor to Q = 2000, which could be feasible [37], resulting in an
unloaded 3-dB bandwidth of 500 kHz.

Minimum gap: The intermodulation requirements set the minimum value for
the gap. In Publication III, the filter design is considered with two 0-dBm out-of-
band blockers of Table 2 at 10 MHz and 20 MHz off the passband edge. Conse-
quently, the gap minimum is found to be in between 10 nm and 100 nm depending
on parameter values. Here we consider only one 0-dBm blocker of Table 2 to-
gether with an in-band interferer at f0 + 5 MHz with a power of -49 dBm. In
this case (36) yields the lower limit for the gap to be as low as ∼ 1 nm. As the
gap width is more likely to be limited by the fabrication technology, we consider
d ∈ {10, 30, 90} nm in what follows.

Load impedance: In Publication III both resistive and capacitive filter ter-
minations are analyzed. It is shown, in particular, that the requirements of
low-enough bias voltage, good linearity and low insertion loss are difficult to be
met for battery-powered devices if the conventional resistive 50-Ω source and load
termination is to be used. As a capacitive termination enables voltage gain in
the filter and thus a lower insertion loss than for a resistive load with the same
bias voltage, we consider here only a capacitive termination with RL = 1 MΩ and
CL = 0.1 pF. Such an environment for the filter could be realized in an integrated
RX architecture where the filter output is directly connected to a capacitive FET
LNA (low-noise amplifier) load (CL and RL in Fig. 12) while the filter input is
fed from a resistive source such as an antenna (u and Rac in Fig. 12).

Bias Voltage: After setting values for the gap, d, resonator length, L, and the
AC source impedance, Rac, the minimum bias voltage can be solved from (37)
as shown in Fig. 14, where the voltage is drawn as a function of the resonator
length for different values of the transducer gap and the source resistance. For
low-voltage operation, the gap has to be well below 100 nm. For example, the
design marked with the circle in Fig. 14, for which d = 30 nm, Rac = 50 Ω and
L = 200 µm, needs a bias of 12 V. Other parameters for this filter solution are
given in Table 3.
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Table 3: Exemplary filter design that is marked with a circle in Fig. 14.

f0 [GHz] 1 Rm [Ω] 560 Q 2000

H [µm] 10 RL [MΩ] 1 Q′ 1840

L [µm] 200 CL [pF] 0.1 Vpi (12 a) [V] 420

k [MN/m] 390 Rac [Ω] 50 GV [dB] -2.5

m [fg] 9.9 V [V] 12 SIR (33) [dB] 99

d [nm] 30 C0 [fF] 590 SIRIB (34) [dB] 110
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3 Acoustic Transmission Lines

Acoustic transmission lines have been utilized in several applications. For ex-
ample, in wireless passive SAW RFID tags and sensors, the transmitted data is
coded into a multitude of reflections of a SAW pulse that is generated (in re-
sponse to a received radio pulse) and detected by an antenna connected to a
SAW chip [88]. In these applications, long acoustic delays and short transmission
distances guard against interference from multipath radio propagation. In radar
systems, delay lines are used, for example, to create a delayed replica of the trans-
mit signal to correlate it with the received signal reflected from the target [89],
to compensate for phase errors in FMCW radars [90], or to simulate a target. In
delay-line oscillators, long delay stabilizes the frequency and suppresses off-carrier
phase noise [91–93]. Delay-line based information processing has been applied,
for example, to implement convolution [94]. Analog delays are also proposed for
novel ultra-wideband receivers [95]. In video systems, delay lines are used, for
example, in event recorders and action replay. In this work a capacitively-coupled
bulk-acoustic microsized transmission line is analyzed and a new MEMS delay-
line structure for long time delays, consisting of a chain of coupled resonators, is
introduced.

3.1 Bulk-Wave Wavequides

An acoustic transmission line for high frequencies is obtained when the mechanical
resonator of Fig. 8 (c) is replaced with an elastic continuous medium obeying the
wave equation as shown in Fig. 15. Here longitudinal bulk-wave propagation is
utilized for signal transmission in an electrostatically-coupled microsized silicon
rod of the kind analyzed in detail in Publication IV. In Fig. 15, the wave equation
for the mechanical displacement y along the rod is

∂2y(x, t)

∂t2
= c2 ∂2y(x, t)

∂x2
, t ≥ 0 , x ∈ [0, ∆x], (39)

where c2 = Y/ρ with Y being the Young’s modulus and ρ the density of the rod
material. The boundary conditions are

∂y(x, t)

∂x

∣

∣

∣

∣

x=0

=
F1

AY
,

∂y(x, t)

∂x

∣

∣

∣

∣

x=∆x

=
F2

AY
, (40)

where F1 and F2 are the electrostatic forces of (23 a) and (23 b) of the input and
output transducers, respectively.

Solving the wave equation as is done in Publication IV, allows one to identify
the input impedance in Fig. 15 as Z = Z0||Zem, where Zem for small ke obeys the
standard transmission-line equation [96]

Zem = Zc
ZT + Zc tanh (jβ∆x)

Zc + ZT tanh (jβ∆x)
, (41)
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Figure 15: Schematic representation of a setup where an electric signal is transmitted
through a micromechanical rod as an acoustic plane longitudinal wave.

where β ≡ ω/c, Zc ≡ AY/ (cη2) and ZT ≡ Z0||ZL. The mechanical losses can
be included in (41) by substituting jβ with jβ + α where α is the attenuation
coefficient [96, 97]. For zero reflection at the output, one needs ZT = Zc, which
gives with (41)

Zem = Zc =
AY

cη2
=

A
√

ρY

η2
=

d4
√

ρY

A (ǫ0V )2 . (42)

Here A
√

ρY is the mechanical characteristic impedance of the rod [98]. The
corresponding matched load impedance is ZL = (Zc||Z∗

0). Thus Zc can be seen
as an electrical characteristic impedance of the acoustic waveguide.

For practical realisation of the MEMS waveguide, impedance matching is a
challenge. This is because the weakness of the capacitive coupling makes the
characteristic electrical impedance, Zc, in (42) extremely high. As (42) shows, Zc

can be made smaller by having a smaller gap, d, softer or sparser rod material
(smaller Y or ρ), a larger area, A, higher-permittivity material in the gap or a
higher bias voltage, V . On the other hand, the maximum displacement of the
end of the rod is limited by pull-in. For example, for a silicon rod with Y = 168
GPa, ρ = 2330 kg/m3, A = 10 × 100 (µm)2, d = 100 nm and V = 100 V, one
finds Zc = 2.5 MΩ while the lower limit for Zc, given by pull-in, is 2.1 MΩ (see
Publication IV) for a 1 mm long rod.

3.2 Resonator Chains

A capacitively-coupled spring-mass-chain waveguide of Publications V and VI,
shown in Fig. 16 without dissipation, is composed of elementary resonators that
can be modelled with two identical moving masses, m, that are coupled with a
spring of strength kc and anchored to a stationary support with springs of strength
ka. Except for the ends, the chain is periodic with period a. The waveguide can
be seen as a high-order bandpass filter [15, 16] with identical stages. Using a
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Figure 16: (a) An elementary two-mode resonator with (b) symmetric and (c) anti-
symmetric eigenmodes. (d) Delay line consisting of capacitive input (left) and output
(right) transducers with gap d and a chain of coupled resonators. Except for the ends
of the chain, the waveguide can be modelled as shown in (e). Losses are not indicated.

weak inter-stage coupling spring, much lower characteristic impedances can be
obtained than for the solid-rod waveguide of Sec. 3.1. However, not as high
signal frequencies can be used than with bulk-wave propagation. In what follows,
damping is not considered in the analytical work but is included in the numerical
simulations.

The elementary resonator of Fig. 16 has two fundamental modes of vibration
with resonance frequencies

ωs =

√

ka

m
(43 a)

ωa =

√

2kc + ka

m
. (43 b)

In the symmetric mode with resonance frequency ωs (43 a), the masses move
in phase while in the antisymmetric mode with frequency ωa (43 b), there is
a 180◦ phase difference between the mass motions. A useful parameter is the
ratio of the strength of the anchoring spring, ka, to that of the coupling spring,
kc, determined as K ≡ ka/kc = 2/ [(ωa/ωs)

2 − 1]. For a particular resonator
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Figure 17: Dispersion relation for the anchored spring-mass chain of Fig. 16.

geometry, the ratio of the resonance frequencies is obtained, for example, from
FEM eigenmode analysis or from measurements.

A periodic chain of coupled resonators can vibrate and carry signals at fre-
quencies consistent with the dispersion relation, ω(κ), that gives the frequency,
ω, as a function of the wave vector, κ ≡ 2π/λ, where λ is the wavelength. For
the anchored chain of Fig. 16, the dispersion relation is found as a generalization
of the familiar text-book result for periodic unanchored (free) chains [99]. One
obtains for the anchored chain

ω(κ) =

√

2kc

M

√

1−cos(κa)+K, (44)

where M ≡ 2m + m0 is the total coupled-resonator mass, a is the period of the
chain and the wave vector, κ ∈ [−π/a, π/a], is restricted to the first Brillouin
zone [99]. The dispersion relation (44) is illustrated in Fig. 17. As opposed
to the low-pass character of free chains, the nonzero ka forbids zero-frequency
oscillations and results in passband response.

Group velocity for signal propagation along the chain is found from (44) as
vg = ∂ω/∂κ, and it is seen to differ from the phase velocity vph = ω/κ. For the
center frequency ω0 = 2πf0 and bandwidth ∆ω = 2π∆f of the line one finds

ω0 = ω(
π

2a
) =

√

2kc

M

√
K+1 (45 a)

∆ω = ω(
π

a
)−ω(0)=

√

2kc

M

(√
K+2 −

√
K

)

. (45 b)
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At the center of the passband, one obtains for the phase and group velocities

v0
ph ≡ ω

κ

∣

∣

∣

ω0

=
2a

π

√

2kc

M

√

K + 1 (46 a)

v0
g ≡ ∂ω

∂κ

∣

∣

∣

∣

ω0

=
a

2

√

2kc

M

1
√

K + 1
(46 b)

illustrating clearly the dispersive character of the spring-mass chain.
Solving for the propagation constant κa in (44) and expanding its square as

a power series with respect to ω2 around the passband center frequency, allowes
one to identify the elements of the electrical-equivalent circuit of the transmission
line as depicted in Fig. 18 (see, for example, [100]), where

Ls =
M

η2
(47 a)

Cs =
πη2

2kc [π(1 + K) − (π/2)2]
(47 b)

Cp =
πη2

2kc
. (47 c)

Consequently, one finds for the characteristic impedance of the line

Zc =

√

Zs

Yp
=

√

kcM

η2
√

2(K + 1)
, (48)

where Zs = jωLs + 1/(jωCs) is the series impedance and Yp = jωCp is the shunt
admittance in Fig. 18.

Increasing the strength of the anchoring spring, ka, with respect to that of the
coupling spring, kc, increases the center frequency (45 a) and phase velocity (46 a)
while decreasing the bandwidth (45 b), group velocity (46 b) and the character-
istic impedance (48) that, typically, is much higher than 50 Ω with electrostatic
coupling. Furthermore, for higher K, the variation of the group velocity as a
function of frequency at the band center is reduced. For good signal coupling
and long delays, it is thus desirable to have K as high as possible.
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Figure 19: (a) Schematic of a resonator-chain design with an elementary tuning-
fork resonator having symmetric and antisymmetric eigenmodes. Here, in particular,
w = 5 µm, wf = 15 µm and L = 50 µm. (b) SEM micrograph of a fabricated structure.

3.2.1 Measurements of Test Structures

The theory for the spring-mass-chain transmission lines is validated in Publi-
cation VI with measurements of fabricated narrow-gap waveguides of various
lengths having different resonator structures. Figure 19 illustrates one of the
designs that is discussed in detail in Publication VI. Figure 20 shows a measure-
ment result and an Aplac simulation fit for the response of the waveguide of
Fig. 19 composed of 80 elementary two-mode resonators in series with a period
of a = 17.5 µm. The numerical result that reasonably well fits the measurement
is obtained by varying the parameters of the device. In particular, one finds for
the quality factor of the elementary resonators Q = 8000, spring-constant ratio
K = 8.5 and gap d = 230 nm corresponding to a group velocity of v0

g = 70 m/s
and a characteristic impedance of Zc = 6 MΩ. The passband ripple and high
loss are due to impedance mismatch at the input and output of the waveguide.
Matched termination would require the source and load impedances to equal the
characteristic impedance. However, practical matching also requires the trans-
ducer (Z0), bonding-pad (Zpad) and parasitic feed-through (Zthr) impedances to
be smaller than Zc.

3.2.2 Minimizing the Characteristic Impedance

As shown above, the MEMS resonator-chain delay lines enable record high acous-
tic time delays in a given physical size. However, to facilitate matched source and
load termination for the line and to avoid using a differential readout, a much
lower characteristic impedance, well below the pad, feed-through and transducer
impedances, is needed than what was obtained above. As shown by (48) this can
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Figure 20: Measured (a) and simulated (b) response of the transmission line of Fig.
19 with 80 resonators.

be achieved by enhancing the coupling, η, and by strenghtening the anchoring
spring, ka, with respect to the coupling spring, kc, (larger K). Reducing the an-
choring height, h, in Fig. 19 to 5 µm, doubling the beam separation (wf → 20µm)
and taking the narrowing of the structures in fabrication into account in the de-
sign, a much higher spring-constant ratio of K = 74 is expected. For good signal
coupling, it is also important to design the first and last resonator in the chain to
compensate for the electrical spring softening as well as for the stiffening of the
first and last beams due to the capacitive coupling occuring over the transducer
area as opposed to the point-force inter-resonator coupling along the chain. If, in
addition, the transducer gap is reduced to d = 100 nm, a delay line with a period
of a = 22.5 µm, estimated characteristic impedance of Zc = 22 kΩ, bandwidth
of ∆f = 185 kHz and group velocity of v0

g = 13 m/s can be obtained with a bias
voltage of 30 V (Vpi = 38 V (12 a)).

Figure 21 shows the simulated response and group delay for a low-impedance
chain of 80 resonators with reduced pad (Cpad = 91 fF ⇒ Zpad = 127 kΩ) and
feed-through capacitances (Cthr = 8 fF ⇒ Zthr = 1.3 MΩ) that are likely ob-
tainable with wafer-level vacuum packaging and IC integration. The transducer
capacitance is C0 = 37 fF corresponding to Z0 = 308 kΩ. Consequently, the char-
acteristic impedance of the transmission line is much lower than Zpad, Zthr and
Z0 as required by good signal coupling. To have a flat group delay at the band
center, resistive source and load termination to RL = 14 kΩ is used that is some-
what lower than the estimated characteristic impedance of 22 kΩ. Higher pad
and feed-through capacitances result in passband ripple and increased insertion
loss if the characteristic impedance is not simultaneously further lowered.

Figure 22 illustrates a low-power transponder terminal, communicating with
on-off keying, for example, in a low-datarate sensor application. Here, the reader
sends an RF pulse to the sensor in which the pulse is either retransmitted back to
the reader (bit 1) or shunted to ground (bit 0). Utilizing the above low-impedance
design, for a datarate of 80 kb/s, one could use a delay line of 12 µs time delay
(chain of 7 resonators) and a time pulse of ∆Tpulse = 10 µs.
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4 Discussion on Frequency Scaling

It is of interest to consider the scaling of the device properties as a function of
frequency. In single-crystal bulk silicon, the attenuation factor at f = 1 GHz for
longitudinal waves in the cube-edge direction is α = 1000 dB/m/(20 log10 e) ∼ f 2

[97]. This results in the scaling of the acoustic quality factor as Q = πf/(vα) ∼
f−1, where v is the wave velocity [97]. For f = 1 GHz, one obtains Q = 3200
which, however, is somewhat exceeded by the state-of-the-art silicon MEMS res-
onators [37]. Let us now consider three different bulk-acoustic (BAW) resonators
in the circuit of Fig. 12 with a capacitive load: i) the 1D ring resonator of Fig.
13 with only the width x scaling as x ∼ f−1, ii) the 2D plate of [8] and Fig.
3 (c) with the lateral dimensions but not the SOI thickness scaling as ∼ f−1,
and iii) a 3D resonator for which all the dimensions scale as ∼ f−1 as consid-
ered in [32]. We further assume that i) the bias and AC voltages, transducer
gap, Rac, RL ≫ 1/(ωCL), and CL do not scale with the frequency, ii) the trans-
ducer impedance Z0 is much higher than the source impedance Rac, and iii) the
bias voltage is much lower than the pull-in voltage. With these assumptions,
we find the scaling exponents of relevant resonator properties that are given in
Table 4. Here the same SIR scaling is obtained both for (33) outside the pass-
band with ∆ω ∼ ω/Q and for (34) within the band. Although scaling of the
motional impedance depends on the chosen geometry, the nonlinearity-limited
critical amplitude, x0,c, [32], pull-in voltage, SIR and voltage gain have more uni-
versal exponents. It is interesting to note that increasing the frequency enhances
SIR but degrades the voltage gain.

Table 4: Frequency scaling exponents of resonator properties.

symbol k m Q C0 η Rm x0,c Vpi SIR GV

1D ring 1 -1 -1 0 0 1 -1/2 1/2 2 -2

2D plate 0 -2 -1 -1 -1 2 -1/2 1/2 2 -2

3D -1 -3 -1 -2 -2 3 -1/2 1/2 2 -2

For the spring-mass-chain delay lines, the frequency scaling can be estimated
based on the clamped-clamped flexural-beam resonator for which m ∼ wHL and
k ∼ H(w/L)3 [32]. For w ∼ L ∼ f−1, H ∼ f 0 and w ∼ L ∼ H ∼ f−1, the
resonator scaling is the same as for the 2D-plate resonator and the 3D resonator in
Table 4, respectively. Assuming that both the anchoring and the coupling springs
of the tuning forks scale as k (keeping the spring-constant ratio K constant), the
group velocity is found not to scale with frequency. The characteristic impedance,
on the other hand, scales as Zc ∼ f for H ∼ f 0 while for H ∼ f−1 we have Zc ∼
f 2. Thus for higher frequencies, the impedance matching becomes increasingly
challenging, especially if the device-layer thickness needs to be reduced.
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5 Conclusions

Microelectromechanical systems are beginning to provide a competitive alter-
native for many components used in radio architectures of commercial battery-
powered communication devices. Several start-up companies are commercializing
RF MEMS switches, filters and oscillators with the MEMS switch already being
sold by a few companies such as TeraVicta. The MEMS switch has a better con-
tact resistance than, for example, CMOS or GaAs switches but the reliability still
needs to be improved and the voltage levels of capacitively-actuated switches need
to be lowered. The MEMS oscillator offers clear size and integration advantages
compared to conventional quartz oscillators. They are being commercialized, for
example, by Discera and SiTime as well as by VTT and VTI Technologies. Unlike
a quartz oscillator, however, the MEMS oscillator requires external temperature
compensation. Piezoelectrically-actuated FBAR filters, that often are also con-
sidered as MEMS devices, have already replaced SAW filters in some cell phones.
Focusing on the research questions stated in Sec. 1.6, this thesis has created new
scientific knowledge that is vital for RF MEMS filter design and introduced a new
kind of MEMS delay line that can be used, for example, in time-delay radios.

Filter Distortion: In this thesis, intermodulation properties of capacitively-
coupled bandpass MEMS filters were analytically solved in closed form and the
trade-off between linearity and insertion loss was quantified. The theoretical
results were verified in circuit simulations as well as in measurements. Also me-
chanical nonlinearities were included although, typically for good coupling, the
capacitive nonlinearity is the dominant source of intermodulation. The theory
was first formulated for weakly-coupled single-stage filters and then generalized
to strong coupling (low motional resistance and low insertion loss) and to higher-
order filters. What was not taken into account was the fact that for strong inter-
ferers present within the passband, Duffing effect can result in signal compression
that limits the filter performance.

The obtained formulas are more generally applicable than the previously pub-
lished results. In particular, the results of this thesis showed good accuracy also
close to the passband edge and revealed the unsymmetry in intermodulation
between positive and negative frequency separations of the interferers from the
passband. In [57], an analytical result for intermodulation in a thermally actu-
ated MEMS resonator is given that is in exact agreement with (28) if all terms
other than the one originating from the third-order mechanical nonlinearity in the
denominator are ignored. However, [57] uses an interferometric readout, which is
not suitable for commercial communication applications, and does not consider
insertion loss that is of importance in filter design.

After the analysis, a systematic procedure to design MEMS filters was formu-
lated. The conventional resistive 50-Ω source and load termination was shown to
typically result in a high insertion loss if good linearity is required with low-voltage
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operation. Consequently, it was found desirable to utilize the high resonator Q for
voltage gain that is enabled by capacitive load termination at the filter output.
This is possible in integrated receiver architectures, where 50 Ω transmission lines
are not needed between the antenna and the filter and between the filter and the
LNA. With such an approach, MEMS filters could be used to construct a receiver
front-end having a bank of narrow-band (ultimately channel-select) filters with
different passbands to cover all the RX channels as suggested in [15]. Taking also
the noise properties of MEMS resonators [79] into account in the filter design as
well as practical demonstration of the optimized filters are left for future work.

Using dielectric media other than air/vacuum for the electrode gap has poten-
tial in lowering the electrical impedance and thus alleviating the need for a very
narrow gap [14]. The analysis procedure derived in this thesis can be directly
applied for such devices as long as an appropriate value for permittivity is used.

Delay Lines: Usage of electrostatically-actuated longitudinal waves in a silicon
rod for signal transmission was analyzed in detail and challenges due to high
impedance levels were quantified. For HF frequencies, a MEMS resonator-chain
structure with record slow signal propagation was presented enabling miniatur-
ization of time-delay components. The properties of the delay line were theo-
retically analyzed and the theory was verified in measurements with fabricated
devices consisting of up to 80 series-connected MEMS resonators. The fabricated
delay lines had still too high characteristic impedances for practical applications,
but careful design can result in impedance levels of few kiloohms that can be
acceptable in integrated solutions with properly-designed impedance transform-
ers. To reach higher frequencies, the lateral resonator dimensions have to be
scaled down which, however, weakens the capacitive coupling (increases the line
impedance) unless the reduced transducer area is compensated for by a smaller
gap, thicker SOI device layer or a higher bias voltage. In addition to a group ve-
locity that is much lower than that for other acoustic delay lines (SAW or BAW),
the MEMS line is characterized by a narrow-band response. This can be utilized
in applications that would otherwise require a separate bandpass filter as in wire-
less transponder radios of sensors for which a possible structure was suggested in
Fig. 22. Compared to SAW devices, MEMS can dramatically reduce the size of
the radio unit. Demonstration of such a transponder is left for future work.

In the fabrication of capacitive MEMS filters and delay lines, several challenges
remain: i) The gap should be reduced to well below 100 nm to enable low-enough
bias voltages. High-permittivity dielectrics can provide an alternative approach
to better coupling. ii) The dimensional tolerances of the devices, manufactured
with lithography, are poor leading to wide variations in the center frequency. iii)
The parasitic feed through-capacitance may limit the filtering performance and
a differential readout may be required. If these challenges are met, MEMS filters
and transmission lines can have a large economic potential.
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[64] Jyrki Kiihamäki, “Fabrication of SOI micromechanical devices,” D.Sc. the-
sis, Helsinki University of Technology, VTT Publications 559, Espoo 2005.

54



[65] James M. Bustillo, Roger T. Howe, and Richard S. Muller, “Surface Micro-
machining for Microelectromechanical Systems,” Proc. IEEE, vol. 86, no.
8, pp. 1552–1574, 1998.
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APPENDIX 1 

Electromechanical Instability 
 

 



Electromechanical Instability

Increasing the bias voltage enhances the electrostatic coupling and lowers the typ-
ically very high impedance level of the MEMS resonator thus reducing insertion
loss from a low-impedance source such as a 50-Ω generator. As shown in (22 c),
the voltage bias also lowers the effective spring constant of the resonator. For
large-enough bias, the resonator becomes unstable and is deflected against one of
the stationary transducer electrodes (pull-in).

-1 0

0
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8 k / 27
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g
 (

 !
)

function g ( ! )

Figure 1: Function g(ξ) in (2).

The pull-in voltage can be obtained as follows. For the single-transducer
structure of Fig. 8 (a), the equation of motion with zero AC voltage becomes
using (23 a)

mẍ + γẋ + kx = F1 ⇒ mξ̈ + γξ̇ = −1

2

ke

(1 + ξ)2
− kξ. (1)

Solving for the rest position (ξ̇ = 0 and ξ̈ = 0), one obtains

ke = −2kξ(1 + ξ)2 ≡ g(ξ). (2)

The function g(ξ) is plotted in Fig. 1. One sees that if ke > 8k/27, there is
no solution for the resonator displacement inside the transducer gap resulting in
pull-in. The corresponding voltage (pull-in voltage) is given by (12 a). Similarly,
for the double-transducer circuit of Fig. 8 (c), one obtains the instability at a
higher bias voltage of (12 b).



APPENDIX 2 

Derivation of the Equivalent Circuits 
 

 



Derivation of the Equivalent Circuits

To derive the small-signal electrical-equivalent circuit of Fig. 8 (c), we assume
a harmonic excitation u = u0e

jωt that yields u̇ = jωu. For the load voltage
uL = i2ZL and for the voltage across the source resistance us = i1Rac, we also
use u̇L = jωuL and u̇s = jωus, respectively. Equations (23 a), (23 b), (24 a) and
(24 b) for the forces and currents are now approximated to first order in the small
parameters ξ ≡ x/d, ū ≡ u/V and ūL ≡ uL/V resulting in

i1 =
(

jωC0u − ηẋ
)

/
(

1 + jωC0Rac

)

= u/Z (1 a)

i2 = ηẋ/
(

1 + jωC0ZL

)

(1 b)

F1 = −η
(

V/2 + u′
)

+ kex − γsẋ (1 c)

F2 = ηV/2 + kex − γLẋ, (1 d)

where Z is the unknown input impedance, γs ≡ η2(Z0||Rac) and γL ≡ η2(Z0||ZL)
are the complex dissipation coefficients introduced by the source and load impedances
and u′ = u/(1 + jωC0Rac) is the Thévenin-equivalent AC voltage. The equation
of motion for the resonator (mẍ + γẋ + kx = F1 + F2) can now be written as

mẍ + γ̂ẋ + k̄x = −ηu′, (2)

where γ̂ ≡ γ + γs + γL and k̄ ≡ k − 2ke. Solving now, as usual, for the resonator
motion by assuming x = Aejωt, where A is an unknown complex amplitude, one
obtains the resonator velocity as

ẋ =
−jωηu′

k̄ − mω2 + jωγ̂
. (3)

Inserting (3) into (1 a) one finds the input impedance Z as shown in Fig. 8 (d)

Z = Rac + Z0||
(

Zem − (Z0||Rac)
)

, (4)

where

Zem =
k̄ − mω2 + jωγ̂

jωη2
=

γ

η2
+ jω

m

η2
+

1

jω
η2

k̄

+ (Z0||Rac) + (Z0||ZL)

= Rm + jωLm +
1

jωCm,2
+ (Z0||Rac) + (Z0||ZL).

(5)

Here Rm, Lm and Cm,2 are given by (22 a), (22 b) and (22 c), respectively. Simi-
larly, one can derive the equivalent circuit of Fig. 8 (b).
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Intermodulation in Capacitively Coupled
Microelectromechanical Filters

Ari T. Alastalo and Ville Kaajakari, Member, IEEE

Abstract—A compact model for third-order intermodulation in
capacitively coupled microelectromechanical filters is derived. A
simple expression for the input third-order intercept point is given.
This is valuable in designing micromechanical filters, for example,
for communication applications. The validity of the analytic model
is verified with numerical harmonic-balance simulations and ex-
perimental measurements.

Index Terms—Communication systems, filter distortion, filters,
intermodulation distortion, microelectromechanical devices.

I. INTRODUCTION

WIRELESS communication devices rely on high-quality-
factor ceramic, SAW, or FBAR filters for RF and IF fil-

tering. While these macroscopic filters offer excellent perfor-
mance, the cost and size make them unattractive for portable
devices. Consequently, receiver architectures such as direct con-
version have been developed in order to reduce the need for
off-chip components [1]. However, it is unlikely that the high-
filters can completely be eliminated.

Micromechanical resonators are a potential replacement for
off-chip filters due to their compact size and integrability with
IC electronics [2]. The demonstrated quality factors of microres-
onators, at 10 MHz [3] and at 1 GHz
[4], are comparable to their macroscopic counterparts. Unfor-
tunately, as the resonator size is reduced, its power handling
capacity and linearity are also lowered [5]. In filter applica-
tions, signal intermodulation (IM) due to odd-order nonlinear-
ities is especially detrimental as it can result in unwanted fre-
quency components within the filter passband. For example,
cubic mixing of two fundamental signals having frequencies
and results in third-order intermodulation (IM3) products at
frequencies and . Consequently, a useful
measure of filter linearity is the third-order intercept point (IP3)
defined as the crossing point of the linear extrapolations of the
small-signal fundamental current (or voltage or power) and the
IM3 current (or voltage or power) in the filter output. The signal
level at the filter input, corresponding to IP3, is termed IIP3.

In this letter, the first published closed-form expression for
in-band IIP3 is given for capacitively coupled microresonators,
and the result is verified with simulations and experiments. The
analysis differs from prior modeling where off-resonance forces
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Fig. 1. Harmonic resonator (k ,m, and ) coupled capacitively for filtering of
an electronic signal u. Signal u near the resonance excites mechanical motion
that is sensed as current i.

were considered [6]. Here, the filter passband output currents are
considered directly and all nonlinear terms are included to third-
order. The results in this letter provide a practical starting point
in evaluating and designing the microresonators for commercial
filter applications.

II. ANALYSIS

Fig. 1 shows a simplified model for a capacitively coupled
mechanical resonator used as a filter. Here is the bias voltage,

is the small-signal input voltage, and is the current at the
filter output. The zero-voltage gap of the input and output trans-
ducers is denoted by and is the displacement of the res-
onating mass . The spring constant and the damping coeffi-
cient of the resonator are and , respectively. The resonator
quality factor is given by . The capacitance values
of the input and output transducers are and

, where is the area of the transducer elec-
trodes. The voltages across the transducers are and

, and the forces exerted by the transducers to the res-
onating mass are , .

For small gaps, capacitive nonlinearities dominate and me-
chanical spring nonlinearities do not contribute to IIP3 [5].
Thus, the equation of motion for the resonator in Fig. 1, taking
capacitive nonlinearities into account up to third order in small
parameters and , is

(1)
where , with and , is
the electromechanical spring constant and . The
time derivative is denoted with a dot. The output current

can be expanded as

(2)

0741-3106/$20.00 © 2005 IEEE
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We use a high- approximation such that motion has no fre-
quency components outside the resonator passband. Thus, for
signals near the resonance, only the linear force term and the
three third-order force terms in (1) contribute to the motion.
Similarly, only the first and third terms in (2) contribute to the
in-band current.

A two-tone IM3 test is made with a signal
where and are inside the

filter passband. The resulting linear solution to (1),
, and (2) give the linear fundamental

current

(3)

where . The main nonlinear contributions to the
current (2) at come from the terms

and , where is the in-band motion
due to nonlinear forces in (1). A lowest order estimate for
is found by inserting the linear solution to the third-order
force terms into (1) and using the linear response to find the
corresponding motion at . One finds

(4a)

(4b)

Equating the amplitude of with the amplitude
of the fundamental current (3) at and solving for the IIP3
voltage, we obtain

(5)

where, as defined above,
. As and are almost equal, they can be canceled

out. For high , in (5) and the strongest nonlinear contri-
bution is due to the term in (1). Thus, a simple estimate for
the IIP3 voltage is obtained as

(6)

where is the electromechanical pull-in
voltage at which bias level the spring constant vanishes and
the resonator becomes unstable.

III. SINGLE-BEAM MEMS RESONATOR EXAMPLE

To validate the analytical results, an experimental test with
a clamped–clamped beam resonator was performed. The
schematic of the resonator, fabricated on a silicon-on-insulator
(SOI) wafer [3], is shown in Fig. 2(a) together with an illus-
tration of the measurement setup. Harmonic signals at and

within the filter bandwidth are generated with two Agilent
33120A signal sources. The filter output signal is amplified with
a JFET preamplifier. The filter circuitry and the preamplifier are
kept at a low pressure of 8 mbar. The output spectrum
is measured with an HP 4195A network/spectrum analyzer. To
model the resonator, the measurement was performed for

Fig. 2. Experimental setup for IIP3 measurement. (a) Measurement setup
for the capacitively coupled beam resonator. The device thickness is 10 �m,
and it vibrates horizontally in the plane of the wafer. Also shown are
the relevant resonator parameters. Values for L, w, and B are estimated
from the microscopic view while the gap size d = 173 nm and effective
length L = 66 �m (> L due to imperfect clamping) are based on the
numerical fit of Fig. 2(b). (b) Measured (thick line) and simulated (thin line)
zero-bias-calibrated response of the beam resonator for different bias voltages.
The electrical equivalent circuit is also shown (R = 55 k
,C = 179:7 aF,
and L = 2:022 H at V = 16 V).

three different bias voltages well below the pull-in voltage, as
shown in Fig. 2(b). Fitting an electromechanical model to the
measured response allows one to find a good estimate of the
filter parameters. Fitting was done by adjusting the effective
beam length , the value, the feed-through capacitance

, and the gap . The obtained value is rather low due
to the low aspect ratio of the beam, resulting in energy
leakage to supporting structures [7], [8]. The spring constant

is calculated from

(7)

which assumes the load to be uniformly distributed across the
transducer area [9]. The eigenfrequency of the resonator is given
by [10].

With the estimated parameter values, (6) gives 34.3 dBmV for
IIP3 at V (corresponding to dBm with a 50-
source). This is compared to the measured behavior as well as
to a two-tone harmonic-balance simulation [11] in Fig. 3. It is
seen that all three approaches agree very well.
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Fig. 3. Measured (asterisks) and simulated (solid curves) fundamental and
IM3 voltage at the resonator output at V = 16 V and ! � ! = 2� �

200 Hz (! and ! are inside the filter passband). The lines extrapolate the
linear behavior, found at small input voltages, to determine the IIP3.

IV. DISCUSSION

In this letter, a concise formulation for IIP3 in capacitively
coupled micromechanical filters is given. The experimental ver-
ification is given for a flexural clamped–clamped beam, but the
formulation applies to all MEMS filters: 1) that are coupled with
parallel-plate transducers and 2) for which the capacitive non-
linearities are the dominant intermodulation mechanism. Typi-
cally, for small gaps ( nm), the mechanical nonlineari-
ties do not need to be taken into account [5].

As an example of usage of (6), the published values of
, nm V, MN/m, and

fF for a demonstrated 1.1-GHz radial-mode disk resonator
[4] give kV while M . It is thus seen
that the motional impedance, rather than IM, is a challenge in
using this resonator. The motional impedance can be lowered by
increasing the bias voltage and reducing the electrode gap. How-
ever, while , the IIP3 voltage is reduced even faster as

. For example, nm and V for the
same resonator give fF, mV, and

. If this resonator were used as a bandpass filter, signal cor-
ruption due to IM can be expressed by a resulting signal-to-in-
terference ratio SIR , where and

are the input signal and interference, respectively [12].

Using a GSM phone as an example, the specifications require
operation with dBm and dBm for
the closest interferer [13]. With a 50- antenna source, we find

dB. This can be compared to the required receiver
SIR of 9 dB [13]. Thus, it is concluded that IM specifications
can set a lower limit for the gap in parallel-plate transducer cou-
pled resonators.
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Third-Order Intermodulation in
Microelectromechanical Filters

Coupled With Capacitive
Transducers

Ari T. Alastalo and Ville Kaajakari

Abstract—Third-order intermodulation in capacitively cou-
pled microelectromechanical filters is analyzed. Parallel-plate
transducers are assumed and, in addition to the capacitive non-
linearities, also the usually much weaker second- and third-order
mechanical resonator nonlinearities are taken into account.
Closed-form expressions for the output signal-to-interference
ratio (SIR) and input intercept point are derived. The analytical
results are verified in experiments and in numerical harmonic-bal-
ance simulations. It is shown that intermodulation as a function of
frequency is asymmetric with respect to the passband. The results
are valuable in designing micromechanical filters, for example, for
communication applications. [1544]

Index Terms—Communication systems, intermodulation distor-
tion, microelectromechanical devices.

I. INTRODUCTION

H IGH-QUALITY factor resonators are ubiquitous in
todays communication devices. Macroscopic ceramic,

SAW or FBAR filters offer excellent performance but their
large size, high cost and unsuitability for IC integration limit
their scope of application. In order to reduce the number of
these bulky off-chip filters, receiver architectures such as direct
conversion have been developed [1]. However, high-Q filters
remain needed as band-select or channel-select filters to sup-
press interfering signals.

Miniature mechanical resonators, fabricated with microelec-
tromechanical-systems (MEMS) technology, are a potential re-
placement of off-chip filters as they are compact in size and in-
tegratable with IC electronics [2]. The demonstrated quality fac-
tors of MEMS resonators, at 10 MHz [3] and

at 1 GHz [4], are comparable to their macroscopic coun-
terparts. While the mechanical properties of microresonators are
very promising, obtaining a low electrical impedance
is challenging, especially for the minituarized high frequency
resonators that are mechanically stiff. To obtain low impedance
levels, strong electromechanical transduction is needed which
in case of electrostatic coupling requires a large bias voltage
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Technologies, Okmetic, and Tekes (National Technology Agency of Finland).
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and/or a narrow electrode gap. As large bias voltages are not pre-
ferred, narrow electrode gaps are often used, which
introduces nonlinear electrostatic transducer forces and higher
harmonics due to the inverse relationship between the electrode
capacitance and the gap spacing. Additionally, mechanical non-
linear effects are possible in microresonators and fundamentally
material nonlinearities set the limit for minituarization [5].

In filter applications, signal intermodulation (IM) due to odd-
order nonlinearities is especially detrimental as it can lead to
unwanted frequency components within the filter passband. For
example, cubic mixing of two fundamental signals having fre-
quencies and results in third-order intermodulation (IM3)
products at frequencies and . If
and , the IM product at is at the pass-
band center frequency corrupting the desired signal.

While complete linear models for the capacitively coupled
resonators/filters have been developed [6], [7], intermodulation
has received less attention. Navid et al. measured IM3 for a
10 MHz electrostatically coupled beam resonator [8]. They
found that due to intermodulation distortion, there is a tradeoff
between linearity and motional resistance. Their measured and
calculated intermodulation results for interferers far below the
passband were in agreement. However, since in [8] the analysis
is based on transducer forces, not all mechanisms contributing
to the intermodulation for varying interferer frequencies are
taken into account. Our analysis is valid at both sides of the
passband as well as for interferers within and close to the
passband edge, where our results differ from those of [8].
Nolan et al. considered receivers with a linear MEMS filter
preceding a nonlinear low-noise amplifier (LNA) [9]. They
found that increasing the quality factor of the filter enhances
the resulting signal-to-interference ratio (SIR). However, as
we will show, this conclusion does not hold when the limiting
intermodulation is due to nonlinearities of the MEMS filter.

In this paper, our prior analysis of in-band filter distortion [10]
is extended to out-of-band interferers. Additionally, mechanical
nonlinearities are included in the analysis. All intermodulation
effects are taken into account to the first significant order and
a closed form expression is derived for the signal-to-interfer-
ence ratio (SIR). The analytical work is compared to numer-
ical large-signal harmonic-balance simulations as well as to ex-
periments and a good agreement is obtained. Due to the high
motional impedance of micromechanical filters, classical filter
matching to 50 seems challenging and the microfilters may

1057-7157/$20.00 © 2006 IEEE

II/1



142 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 15, NO. 1, FEBRUARY 2006

Fig. 1. (a) Capacitively coupled nonlinear resonator fk ; k ; k ;m; g
filtering an electronic signal u. (b) Small-signal electrical equivalent model for
the linear resonator with identical input and output transducers.

TABLE I
DEFINITIONS USED IN THE PAPER

be best suited for on-chip channel select filtering where inter-
facing to 50 may not be required [2]. The analysis in this
paper is therefore formulated in terms of filter input voltages
and output currents to facilitate analysis with any source and
load impedance with minimal effort.

The paper is organized as follows. First, in Section II, an an-
alytical model for the intermodulation is developed. This is fol-
lowed by Section III, where the analytical results are compared
to measured and simulated intermodulation of two different mi-
croresonators. In Section IV, the present results are discussed
and compared to other published results and the utility of the
paper is demonstrated by calculating the IM for micromechan-
ical filters at 1 GHz. Section V concludes the paper.

II. ANALYSIS

Fig. 1 shows a simplified model for a capacitively coupled
mechanical resonator used as a filter and Table I collects the
shorthand notations used in this paper. Here is the bias

voltage, is a small-signal input voltage and is the output cur-
rent. The zero-voltage gap of the input and output transducers
is denoted and is the displacement of the resonating mass

. The linear and nonlinear mechanical spring constants of the
resonator are , and and is the damping coefficient.
For generality, the displacement at the output transducer is
related to the resonator displacement by , where (1) is
shown at the bottom of the page. In Section III, we will show
measurement results for the both cases of (1). The capacitance
values of the input and output transducers are

(2a)

(2b)

where is the area of the transducer electrodes. The voltages
across the transducers are and and the
forces exerted by the transducers to the resonating mass are

(3)

The positive direction of the force is as shown in Fig. 1.
The equation of motion for the resonator in Fig. 1 is

(4)

where and are found from (3) after expanding the capac-
itances of (2a) and (2b) in power series as

(5a)

(5b)

where . Taking nonlinearities into account up to
third order in small parameters and , one
finds for the equation of motion

(6)

For definitions of the variables in (6), see Table I. The time
derivative is denoted with a dot. The fundamental frequency of
the resonator is . The dc force term (a) is nonzero for
(1) which is the case for example for a BAW resonator in the
square-extensional mode [3] or for a flexural-beam resonator if
the input and output transducers are at the same side of the beam.
For in (1), the dc force vanishes . For intermod-
ulation performance, the dc term has no effect and will not be
considered in what follows.

e.g., for transducers at different sides of a flexural beam.
e.g., for transducers at the same side of a flexural beam or for a BAW resonator.

(1)
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For a force term in the right-hand side of (6), the re-
sponse function

(7)

with real and imaginary parts

(8)

gives the linear solution as

(9)

where the second term is due to dissipations. Note the short no-
tation for the real and imaginary parts, and , respectively.
For the resonance frequency we have

(10)

The output current

(11)

can be expanded with (5b) as

(12)

Here we have indicated the terms that contribute to the signal
and intermodulation currents at the fundamental frequency .
Since scales all the considered current terms and therefore
does not affect SIR, is set to unity in the following analysis
for simplicity.

Analytical expressions will now be derived for the signal cur-
rent as well as for the two IM3 terms and in (12)
and the resulting SIR will be discussed. The desired signal
at the resonance frequency and an interfering signal at
the filter input are

(13a)

(13b)

where

(14)

The linear motion due to the excitations (13a) and (13b) is easily
found with (6) , and (9)

(15a)

(15b)

Here . The signal output current is with (12)

(16)

The signal current is in phase with the signal input voltage (13a)
and its amplitude is denoted .

To obtain a first-order estimate for the intermodulation cur-
rent at due to the interference motion at and (15b)
requires some work. We assume that and that the
value of the resonator is high enough to forbid motion at the
harmonics of the excitation frequencies. Thus, the second-order
terms (c,d,e) in (6) can be ignored. When the interference mo-
tion of (15b) and signal of (13b) are substituted to the
third-order terms (f,g,h) in (6), a force at

is generated according to the formulas expressing trigono-
metric exponents and products, such as , in
terms of first order functions, such as . The
corresponding motion at , given by (9), results in an in-
termodulation current contribution in (12)

(17)

where the subscripts and refer to in-phase and quadrature
components, respectively. The second contribution to the
intermodulation current is obtained by substituting of
(15b) to the term in the current expansion (12) and is
given by

(18)

The total intermodulation current is a sum of the two contribu-
tions (17) and(18)

(19)

where

(20a)

(20b)

Thus, the two IM3 mechanisms, force intermodulation 1) and
current intermodulation 2), can be summarized as:

1) & 2) Interfering signal:

interfering force:

linear displacement:

1) linear displacement

IM3 force:

IM3 displacement:

IM3 current: .

2) linear displacement

IM3 current
The approximative nature of the analysis is mainly due to the
IM3 displacement being only a first-order estimate of the solu-
tion to the nonlinear equation of motion (6).
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After some algebra, the current contributions , ,
, and in (17) and(18) can be written as

(21a)

(21b)

(21c)

(21d)

Equations (21a) and (21c) give the amplitude of the in-phase in-
termodulation current (20a), while (21b) and (21d) give the
quadrature-phase current (20b). The signal-to-interference
(or signal-to-intermodulation) ratio (SIR) can now be expressed
as

(22)

At the limit , (22) is determined by the first in-phase cur-
rent component of (21a) only. This is seen from the limits
of the response functions as : ,

and . Thus is the only
nonlinear current component that goes to infinity in addition to
the linear current in (22) resulting in finite SIR. The quadra-
ture currents in (21b) and (21d) approach a finite value while

in (21c) vanish as . Consequently, (22) simplifies
considerably as shown by (23) at the bottom of the page where

is the interference-to-signal ratio at the filter
input. As will be illustrated with measurements in Section III,
(22) can actually be approximated by (23) as soon as the inter-
fering signals are outside the resonator passband. The labels ,

and in (23) correspond to those in (6) showing the origin

of different SIR contributions. As (23) contains odd powers of
, it is asymmetric around the resonance predicting different

SIR values for interferers below the resonance and interferers
above the resonance. Especially, the odd-order term labeled
in (23) proves to be important in Section III.

The third-order intercept point (IP3) is a useful measure of
linearity and is typically defined as the crossing point of the
linear extrapolations of the small-amplitude IM3 signal and a
fundamental two-tone test signal in the device output. For fre-
quency selective components such as filters, the above definition
may be modified as IP3 being the crossing point of the linear ex-
trapolations of the IM3 output signal and a wanted output signal
when the wanted signal has the same input magnitude as the in-
terferers and is located at the passband center. The signal level
at the filter input, corresponding to IP3, is termed IIP3 and is
found from SIR as [11]

(24)

Alternatively, IIP3 is obtained by setting
in (22) or (23) and solving for the signal amplitude that gives

.
The in-band result, given in [10], is obtained in the limit

and . With nonvanishing mechanical non-
linearities , the result of [10] is slightly modified to

(25)

where

(26)

Here the approximation is valid if and
the electromechanical pull-in voltage, at which bias level the
resonator becomes unstable, is

(27)

where for (bias forces act at opposite directions on
the resonator) and for in (1). As discussed
in [10] the strongest contribution in (25) for high is due to the

nonlinearity in (6) . On the other hand, as the interferers
are moved far outside the passband, the term becomes unim-
portant in SIR.

III. EXPERIMENTAL VERIFICATION

To verify the intermodulation model, narrow gap single-
crystal silicon (SCS) resonators fabricated on silicon-on-insu-
lator (SOI) wafers were characterized with linear and nonlinear

(23)
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Fig. 2. Measurement setup. Pressure (P ) in the vacuum chamber is measured
and controlled using the valve to vary the Q value of the resonator.

excitation. As the fabrication process is detailed elsewhere [12],
only the experimental setup and results are given here.

A. Measurement Setup

Fig. 2 shows the measurement setup used to validate the an-
alytical results. The resonator is kept in a vacuum chamber to-
gether with a JFET preamplifier that has a gain of 10 dB, an
input resistance of 1 , and an input capacitance of 8.5 pF.
Pressure in the camber is controlled with a valve to tune the
value of the resonator. To measure the intermodulation at ,
signals at and are generated and summed at
the resonator input. The signal generators (Agilent 33250A and
HP 8648B) are isolated with 20 dB attenuators to prevent inter-
modulation at the signal sources. The resonator output signal is
buffered with a preamplifier and measured with a spectrum ana-
lyzer (HP 4195A). As the preamplifier is kept in its linear range,
it does not affect the SIR. The signal generators and the spec-
trum analyzer are locked to a common frequency reference. The
desired-signal output power is measured with one of the signal
generators turned off and the other tuned to .

B. Simulation Model

To accurately model the characterized microresonators, the
resonator, the electric biasing, and read-out circuitry are imple-
mented in a circuit simulator [14]. The resonator is modeled as
an electrical equivalent of the spring-mass system in Fig. 1. For
the capacitive coupling, the accurate nonlinear model is used
[13]. The simulations are used: i) to obtain good estimates of
the mechanical and electrical parameters by fitting the simulated
transmission curves to the measured responses and ii) to verify
the analytical model of the intermodulation. For the intermod-
ulation simulations, the large-signal harmonic-balance analysis
with multiple input and output signal tones is used. As the har-
monic-balance analysis is carried out in the frequency domain,
it is computationally efficient for systems that have high quality
factors and are thus slow to settle in the time-domain (transient)
analysis [15]. Schematic of the simulation setup is shown in
Fig. 3.

C. BAW Resonator

Fig. 4(a) shows the schematic of a bulk-acoustic-wave
(BAW) resonator oscillating in the square-extensional mode [3]

Fig. 3. Schematic of the harmonic-balance Aplac®-circuit-simulator model
[13] for the desired signal (a) and the interferers (b). The model for the resonator
(see Fig. 1) and the nonlinear transducers are included in the shaded three-port
components. SIR is determined as the ratio of OUT voltage to OUT
voltage at the fundamental frequency.

Fig. 4. Schematics of the two experimentally characterized resonators. Also
indicated are the input and output ports corresponding to 1 and 2 in Fig. 2. (a)
BAW resonator in the square-extensional mode [3]. The dotted lines illustrate
the movement of the plate from the rest position. The two input ports as well
as the two output ports are electrically shorted. (b) Clamped-clamped flexural
beam resonator [10].

for which in (1) (all the faces of the square plate move
in phase). The resonator is fabricated on a silicon-on-insulator
(SOI) wafer and has a size of 320 320 10 .
Two transducers at opposite sides of the square plate are used
for signal input and output. Fitting the simulated response to
measured behavior at different bias voltages, as shown in Fig. 5,
allows one to find the equivalent-model parameters given in
Table II. Fitting was done by adjusting the spring constant

, eigenfrequency , value, feed-through capacitance
, gap , and that is a parasitic contact resistance

at the ground connect of the resonator and accounts for the
weakening of the antiresonance in Fig. 5(a). The same order of
DC resistance for was also measured. As the capacitive
nonlinearity is the dominant effect, the mechanical nonlineari-
ties and are neglected (for the 184 nm gap, the capacitive
nonlinearity dominates at bias voltages greater than 2.5 V) [5].
With a 5.77 V bias voltage, corresponding to the middle curve
in Fig. 5, the theoretical estimate of in-band IIP3 given by (22)
is 21 dBm (corresponding to a 50 source impedance) and the
estimate for off-resonance interferers with , given
by (23) and (24), is .
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Fig. 5. Measured (dashed lines) and simulated (solid lines) S for the
BAW resonator with three different bias voltages. The result is calibrated
with a zero-bias response, that is, S is defined as the ratio of the motional
current through the electrical-equivalent RLC circuit of Fig. 1 to the parasitic
feed-through current through C . Measured and simulated results differ
slightly only at the peaks of the curves.

TABLE II
PARAMETER VALUES FOR THE BAW RESONATOR. VALUES AT THE

BOTTOM ROW ARE FOR 5.77 V BIAS VOLTAGE

Fig. 6(a) shows the measured, simulated and analytic results,
all in very good agreement, for the SIR as a function of interferer
separation at the output of the BAW resonator with the signal
(13a) and interferer (13b) input powers of
and , respectively. The large interferer power was
chosen to obtain a sufficient signal-to-noise ratio in the mea-
surements. The infinite- limit of (23) becomes valid as soon
as the interferers are outside the resonator passband of

for in vacuum. Also, as pre-
dicted from the theory, at intermediate frequencies of

we observe that the SIR is much lower for inter-
ferers below the resonance than for interferers above
the resonance . The difference between the SIR for

and is at greatest when the interferer frequen-
cies are close to the 3-dB-passband edge of the resonator. Of the
odd-order terms in (23) that explain this difference, the one
originating from in (6) dominates.

Fig. 6. Simulated (solid), analytic (22) (dashed), analytic for Q ! 1

(23) (dotted) and measured (large dots) intermodulation results for the BAW
resonator are shown for �f < 0 (thin lines) and �f > 0 (thick lines). Bias
voltage is 5.77 V corresponding to the middle curve in Fig. 5. The signal and
interferer input powers are P = �50 dBm and P = 0 dBm.

Fig. 6(b) shows the SIR at constant interferer separation for
different quality factors obtained by adjusting the chamber pres-
sure. At low , the analytic estimates expectedly deviate from
the measured and simulated results due to the approximations
utilized in Section II. Increasing reduces SIR toward the in-
finite- limit (23).

Fig. 7 shows the different intermodulation current compo-
nents , , , and in (21a)–(21d) as functions of
the interferer frequency separation. It is seen that the force inter-
modulation mechanism 1) dominates over the current intermod-
ulation 2), that is, and except

at small positive for which .

D. Flexural Beam Resonator

To have a further justification of the analysis of Section II, we
consider a flexural-beam resonator [10], shown schematically
in Fig. 4(b), with , and
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Fig. 7. Intermodulation current contributions (21a)–(21d) for the BAW
resonator.

TABLE III
PARAMETERS FOR THE FLEXURAL-BEAM RESONATOR WITH A 13 V BIAS

. Equivalent-model parameters for the beam resonator
are given in Table III.

Fig. 8(a) shows the measured, simulated and analytic results
for the SIR as a function of interferer separation. Again, a very
good agreement is obtained and the predicted asymmetry in
is observed. At small , the analytic result deviates from the
measured and simulated. This is because the interferer power is
of the same order as the in-band IIP3 point [10] and thus the in-
termodulation signal at is weaker than its analytical estimate.
Fig. 8(b) shows the SIR at different quality factors. Here the
value is considerably lower than for the BAW resonator and as
much tuning range is not obtained by varying the pressure in the
vacuum chamber.

IV. DISCUSSION

In this paper, a concise formulation for SIR and IIP3 in ca-
pacitively coupled micromechanical filters is given. The exper-
imental verification is provided for two single-resonator struc-
tures but the formulation applies to all single-stage MEMS fil-
ters that are coupled with parallel-plate transducers. Such filters
could be used to construct a receiver front-end structure having
a bank of narrow-band (ultimately channel-select) filters with
different passbands to cover all the RX channels [2]. While the
results in the present paper are believed to be indicative of the
MEMS filter performance in general, further work is needed to
expand the analytical results to more complex multi-stage filter
structures. This will be a subject of future research.

In the paper, the motional impedances are much higher
than the source and load impedances (see Figs. 1

and 2). As the analysis has been formulated in terms of input
voltages and output currents, the derived expressions for SIR
and IIP3 are valid also for tightly coupled resonators with source
and load impedances being comparable to or larger than the

Fig. 8. As Fig. 6 (thick lines for �f > 0 and thin lines for �f < 0) but for
the flexural-beam resonator [10]. Bias voltage is 13 V, P = �50 dBm, and
P = �10 dBm.

motional impedance provided that: i) the source and filter input
impedances are used to adjust the resonator input voltages and ii)
the loaded in-circuit quality factor is used for SIR calculations.
What is not taken into account is that in the strongly coupled case,
the motional impedance is a strong function of frequency and the
different interfering signals now see different mechanical im-
pedances. Consequently, the interference input voltage levels do
not remain equal as assumed in this paper. However, simulations
show that this effect is not significant. Finally, we note that for
strong interferers within the passband, Duffing effect results in
signal compression that may also limit the filter performance [5].

The previously obtained experimental IM3 results of [8] for
are in good agreement with (23). For example,

assuming that the spring constant of the beam can be approx-
imated by the point-force result [16],
where is the Young modulus, (23) and (24) give the same
IIP3 voltage of (corresponding to
18 dBm with a 50 source impedance) as reported in Fig. 5 of
[8]. On the other hand, for as well as for the interferers
close to the passband edge, our results (22)–(24) differ from the
analytical results (absolute value of (11)) in [8] by up to 10 dB
for the BAW and flexural-beam examples of this paper.
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Fig. 9. The theoretical IIP3 voltage from (22)–(24) for the 1.156 GHz
resonators of [4]. The curves for R = 2:5 M
 are for a fabricated device
while R = 750 
 corresponds to a theoretical device.

To further demonstrate the utility of this paper, we consider
the recently reported radial-mode 1.156 GHz disk resonators
of [4]. Fig. 9 shows the IIP3 voltage, corresponding to a 50

source impedance, given by (22)–(24) for a measured and
a theoretical improved resonator. For the fabricated device
with a motional resistance of , the SIR is sym-
metric around the passband. The exceptionally high IIP3 is not
suprising as most of the power is reflected due to impedance
mismatch. For the theoretical device with that has
an improved electromechanical coupling and correspondingly
better impedance match and lower IIP3, there is a clear asym-
metry of IIP3 with respect to also outside the passband of

. Both resonators of Fig. 9 have
an IIP3 that meet the requirements set, for example, for GSM
receivers [17]. On the other hand, the motional resistance is still
far from 50 even for the theoretical device. Lower resistances
can be obtained, for example, by reducing the gap and/or
increasing the bias voltage which, however, lowers the IIP3 [8].

V. CONCLUSION

Detailed analysis of intermodulation in capacitively coupled
MEMS filters was presented and closed form expressions for
SIR and IIP3 were derived. It was shown that the force inter-
modulation mechanism is usually the dominant effect. However,
close to or within the filter passband, the current intermodula-
tion mechanism is also important. The analytical results were
verified with experiments and simulations and excellent agree-
ment was obtained.

The results of this paper may be used in designing microme-
chanical filters, for example, for communication applications.
Well outside the passband, the obtained SIR does not depend on
the quality factor. Within the passband, increasing the quality
factor lowers the IIP3. The asymmetry observed near the pass-
band edge results in interferers below the passband being more
difficult to block than interferers above the passband.
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Coupled Microelectromechanical Filters

Ari T. Alastalo and Ville Kaajakari, Member, IEEE

Abstract—A design procedure for microelectromechani-
cal (MEMS) band-pass filters is formulated that takes into
account specifications set for carrier-to-interference ratio
(C/I) and insertion loss. Since suppressing intermodulation
distortion to maximize C/I in MEMS filter design typically
leads to increased loss and vice versa, it is necessary to aim
at a feasible compromise in filter performance that meets
all of the requirements. In order to meet specifications that
are typical for a handheld communication terminal, an inte-
grated receiver architecture, where filter input and output
impedances other than 50 Ω can be used, is found to be
more feasible than resistively terminating the front-end fil-
ter at source and load to 50 Ω.

I. Introduction

Communication systems operate in noisy environ-
ments where interferer powers may be 1010 times

larger than the wanted-signal power. In order to ease
the linearity and dynamic-range requirements of the re-
ceiver, high-quality-factor analog filters are used to block
the interfering signals. Off-chip macroscopic ceramic sur-
face acoustic wave (SAW) or film bulk acoustic resonator
(FBAR) filters offer excellent performance but their large
size, high cost, and unsuitability for integrated circuit (IC)
integration limit their scope of application.

Miniature mechanical resonators, fabricated with mi-
croelectromechanical systems (MEMS) technology, are a
potential replacement for off-chip filters as they are com-
pact in size and integratable with IC electronics. The
potential of miniature filters was already realized in the
1960s, leading to the development of the “resonant-gate
transistor”—a field-effect transistor with a vibrating metal
gate [1]. However, this early work was plagued by problems
with a low quality factor (∼500 at 5 kHz), poor stability
of the metal resonator, and limited dynamic range due to
nonlinear electrostatic effects arising from the inverse gate
capacitance-displacement relationship.

In the 1990s, the advances in processing technology
and the tremendous growth of the communication-device
market led to renewed interest in micromechanical res-
onators and filters [2]–[5]. The demonstrated quality fac-
tors of MEMS resonators, Q > 100 000 at 10 MHz [6] and
Q > 1 000 at 1 GHz [7], are comparable to those of their

Manuscript received October 13, 2005; accepted April 26, 2006.
This work is supported by the Academy of Finland (grant 20542),
Aplacr Solutions, VTI Technologies, Okmetic, and Tekes (National
Technology Agency of Finland).

The authors are with VTT Technical Research Center of Finland,
Tietotie 3, Espoo, FIN-02150, Finland (emails: ari.alastalo@vtt.fi,
ville.kaajakari@vtt.fi).

macroscopic SAW and FBAR counterparts. While the me-
chanical properties of MEMS resonators now are very
promising, the electrostatically coupled resonators charac-
teristically suffer from high electrical impedance due to the
weak electromechanical coupling. Increasing the coupling
by reducing the electrode gap also increases the nonlinear
electrostatic effects leading to trade-off between insertion
loss and linearity [8].

In this paper, we quantify the trade-off in MEMS filter
performance between the insertion loss and intermodula-
tion distortion. Our prior analysis of filter distortion for the
interferers at filter passband [9] and at stopband [10], [11]
is summarized and a design procedure for MEMS band-
pass filters is formulated in more general terms than in
[11]. By means of advanced simulation tools, the analyti-
cal and experimental results on intermodulation in capac-
itively weakly coupled resonators are shown to also hold
for higher-order filters as well as for tightly coupled filters.
The central challenges for MEMS in high-frequency filter
design are identified and exemplified by using the Global
System for Mobile Communications (GSM) 900 specifica-
tions as a case study. Different filter architectures are com-
pared and bandpass MEMS filters are shown to be more
suitable for novel integrated receiver architectures than for
the conventional resistive 50-Ω termination at filter input
and output.

II. Theory of MEMS Filters

To facilitate practical filter design, the exact theory of
MEMS filter distortion for single-stage weakly coupled fil-
ters, presented in [9], [10], is generalized to hold for tightly
coupled and multi-stage filters. With simplifying assump-
tions, a set of easy-to-use design equations is derived.

A. Electrical Model

Fig. 1(a) shows a schematic of a MEMS resonator with
spring coefficient k, effective mass m, resonance frequency
ωres =

√
k/m, and dissipation γ =

√
km/Q, where Q is

the unloaded quality factor of the resonator. The electri-
cal transduction is provided by two capacitive transducers
biased with DC voltage Vbias. The resonator is electrically
grounded. Identifying the electromechanical coupling co-
efficient η = C0Vbias/d and electromechanical spring con-
stant ke ≡ ηVbias/d, where C0 is the rest capacitance
of the electrostatic transducers and d is the transducer
gap, the well-known electrical-equivalent model, shown in

0885–3010/$20.00 c© 2006 IEEE
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(a)

(b)

(c)

Fig. 1. MEMS resonator and filter models. The DC-blocking capac-
itance is denoted Cblk. The electrical equivalent of the resonator
in (a) is the RLC series-resonance circuit (Rem, Lem, Cem) with the
two shunt capacitors C0 in (b). Close to the resonance frequency, the
single-stage filter has a series equivalent shown in (c). (a) Schematic
of a micromechanical resonator (k, m, γ) operating as a single-stage
band-pass filter for capacitively coupled signals. (b) Electrical equiv-
alent of a single-stage (a) and multi-stage MEMS filters. Coupling
of the filter stages is done with a shunt capacitance Cgnd. (c) Series
equivalent of the single-stage filter.

Fig. 1(b) [3], [4], [12], can be developed. Here, Rem = γ/η2,
Lem = m/η2 and Cem = η2/(k − 2ke) are the resistance-
inductance-capacitance (RLC)-equivalent parameters of
the MEMS resonator. The inter-stage coupling is repre-
sented with a shunt capacitance Cgnd but it may be either
a physical capacitance or a mechanical spring.

For the single-resonator filter, the loaded in-circuit qual-
ity factor Q′ can be calculated as

Q′ =
√

k′m/γ′. (1)

Here,

γ′ = η2 (Rem + R′
S + R′

L) , (2)

k′ = η2 (1/Cem + 1/C′
S + 1/C′

L) , (3)

where R′
S , C′

S , R′
L, and C′

L are the narrow-band series-
equivalent resistances and capacitances of the parallel

source (Rac||C0) and load (RL||(C0+CL)) circuits, respec-
tively, given by

R′
S =

Rac

(Racω0C0)2 + 1
, (4)

C′
S =

C0
[
(Racω0C0)2 + 1

]
(Racω0C0)2

, (5)

R′
L =

RL

[RLω0(C0 + CL)]2 + 1
, (6)

C′
L =

(C0 + CL)
{
[RLω0(C0 + CL)]2 + 1

}
[RLω0(C0 + CL)]2

, (7)

and ω0 = ω′ ≡
√

k′/m is the loaded resonance frequency.
In addition to the loaded Q value of (1), the Thévenin-
equivalent input voltage

V ′
ac = Vac

1
1 + jωC0Rac

(8)

must be used in order to utilize the unloaded third-order
input intercept point (IIP3) and signal-to-intermodulation
ratio (SIR) results of [9] and [10] for tightly coupled filters,
as in what follows.

B. Intermodulation

In filter applications, signal intermodulation (IM) due
to odd-order nonlinearities is especially detrimental as it
can lead to unwanted frequency components within the
filter passband. For example, cubic mixing of two fun-
damental signals having frequencies ω1 and ω2 results in
third-order intermodulation (IM3) products at frequencies
2ω1−ω2 and 2ω2−ω1. If ω1 = ω0+∆ω and ω2 = ω0+2∆ω,
the IM product at 2ω1 − ω2 is at the passband center fre-
quency ω0, corrupting the desired signal.

The SIR in the output of a capacitively coupled MEMS
single-resonator filter for interferers outside the passband
is given in [10] for a general case. For present purposes,
we assume that: 1) the passband desired-signal frequency
ω0 is much higher than the frequency separation ∆ω to
the interferers present in the filter input at frequencies
ω1 = ω0 + ∆ω and ω2 = ω0 + 2∆ω; 2) the bias voltage
is much lower than the electromechanical pull-in voltage
at which bias level the resonator becomes unstable; and
3) mechanical nonlinearities in the spring k of Fig. 1(a)
can be ignored as much weaker than the capacitive trans-
ducer nonlinearities. With these assumptions, (23) of [10]
simplifies as

SIR =
8 |∆ω| ω0 V 2

bias

√
Psig

5ω2
e R′

S Pint
√

Pint
, (9)

where ωe ≡
√

ke/m. It is convenient to use (9) for filter
design instead of the general solution of [10] because (9)
can be solved for the gap d in the closed form (ωe and R′

S

are functions of d). The AC-source powers (see Fig. 1) for
the signal and interference are Psig = V 2

ac,sig/(2Rac) and
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Pint = V 2
ac,int/(2Rac), respectively. The AC power corre-

sponding to the IIP3 is related to the SIR as

PIIP = SIR

√
P 3

int

Psig
. (10)

When the interferers are inside the passband, we have [9]

P IB
IIP =

V 2
bias

R′
S

√
(6q3 + q/2)2 + 9q4

, (11)

where q ≡ Q′ ω2
e/ω2

0 = Q′ ke/k
′.

C. Insertion Loss

The passband voltage gain is

GV =
Vout

Vac/2

=
2

ω0C′
L(R′

S + nRem + R′
L)

|1 + jω0C
′
LR′

L|
|1 + jω0C0Rac|

, (12)

where n is the filter order and R′
S , Rem, R′

L, Rac, C′
L, C0,

Vac, and Vout are as shown in Fig. 1. We note that with a
dominantly capacitive termination (|1/ω0C

′
L| > R′

L) it is
possible to obtain voltage gain because the filter acts as
an RLC impedance transformer.

III. Model Verification

The validity of the analytical SIR model has been veri-
fied by harmonic-balance Aplac� circuit simulations [13],
[14] and experiments for single-stage filters [9], [10]. In
what follows, simulations with one-, two-, and three-stage
filters are performed to show that the analytical SIR model
can also be applied for higher-order filters as well. More-
over, by analyzing 1-GHz MEMS filters and comparing
their performance to GSM specifications, it is shown that
the simplified expressions (9) and (11) suffice to estimate
the linearity properties of MEMS filters.

A. 13-MHz Band-Pass Filters

We consider the one-, two-, and three-stage filters of
Fig. 1 with the 13-MHz bulk acoustic wave (BAW) MEMS
resonators of [10] where Q = 47000 but with a reduced gap
of 25.5 nm in order to have a low mechanical impedance
of 38 Ω. The other relevant resonator parameters are sum-
marized in Table I. We use Cgnd = 20 pF and Cgnd = 30
pF for the two-stage and three-stage filters, respectively.
Furthermore, we use a resistive termination with CL = 0
and RL = Rac in Fig. 1. What is not included is a parasitic
feed-through capacitance between input and output that
would reduce the stopband attenuation of the filters but
would not affect the intermodulation properties.

Fig. 2 shows simulated responses of the filters with 2 Ω
(unloaded, Rac � Rem) and 450 Ω (loaded, Rac � Rem)

TABLE I
Parameters for the BAW Resonator.

k 16.3 MN/m fres 13 MHz Q 47000
d 25.5 nm C0 2 pF Upi 38 V

Vbias 3.8 V η 335 µFV/m ke 51 kN/m
Rem 38 Ω Lem 22 mH Cem 7 fF

Fig. 2. Unloaded (a) and loaded (b) responses of the filters composed
of one, two, and three BAW resonators, as shown in Fig. 1. The
desired-user frequency ω0 for the SIR results of Fig. 3 is marked
with a dot.

source and load impedances. The 450-Ω source and load
yields Q′ = 1900 for the in-circuit quality factor (1) of the
resonator. The unloaded case is not useful as a filter due
to the large insertion loss and ripple in the passband. The
loaded cases demonstrate that, with increasing filter order,
the stopband slope steepens but the insertion loss increases
also due to the increasing series resistance at resonance.

Fig. 3 shows the analytic and simulated SIR for the fil-
ters with ω0 as indicated in Fig. 2. A different choice for
ω0 within the passband would be equally justified. The
analytic results, calculated with the exact formulas of [10]
for the single-stage filter, are in excellent agreement with
the simulations. Moreover, for out-of-band interferers with
∆ω → ∞, the approximate expression (9) (marked as ap-
proximation in Fig. 3) becomes valid. It is seen that outside
the passband the unloaded single-resonator result is also
valid for the higher-order filters as well as for the tightly
coupled filters provided that the loaded quality factor of
(1) and the Thévenin-equivalent input voltage of (8) are
used. Intuitively, this is to be expected because for the out-
of-band interferer frequencies, the resonator impedances
are high and the resonators are therefore only weakly cou-
pled. Thus, the first resonator and the first transducer
effectively set the SIR. At some frequencies close to the
passband edge, the numerical harmonic-balance simulation
does not converge for the unloaded two-stage and three-
stage filters. This is seen in the discontinuities of the cor-
responding curves of Fig. 3 with Rac = 2 Ω.
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(a)

(b)

Fig. 3. Signal-to-intermodulation ratio as a function of the interferer
frequency separation ∆f = ∆ω/(2π) for the filters of Fig. 2. (a) SIR
as a function of ∆f for the filters of Fig. 2 with a −20 dBmV desired
signal at ω0, marked with a dot in (b) and in Fig. 2, and with 0 dBmV
interferers. The result given by (9), used in this paper for filter design,
is marked approximation. (b) In-band SIR for the loaded two-stage
and three-stage filters in (a) with ∆f = 20 Hz and with the signal
frequency f0 = ω0/(2π) swept across the passband.

For the single-stage filters in Fig. 3, the in-band ap-
proximation (11) approaches the exact results as ∆ω → 0.
Namely, (11) and (10) give SIR = −13.4 dB (IIP3 =
3.3 dBmV) and SIR = 67 dB (IIP3 = 43.5 dBmV) for the
unloaded and loaded single-stage filters, respectively. The
higher source and load resistances result in a lower loaded
quality factor of the filter and thus a higher SIR. The devi-
ation of the analytical estimate from the simulated results
for the unloaded filter, when ∆f → 0, is understood since
the interferer voltage of 0 dBmV is of the same order as
the IIP3 input voltage of 3.3 dBmV. Consequently, for such
strong interferers, harmonics higher than third order, that
are not taken into account in theory, become important
and reduce the gain for the IM3 products.

For the higher-order filters, the in-band SIR is seen to
depend on the chosen ω0 within the passband as demon-
strated in Fig. 3(b). This is expected because the S21 also
has ripples as the coupled resonators move in and out
of phase. However, the single-stage approximation is still
shown to be a good order-of-magnitude estimation.

TABLE II
Parameters for the 1-GHz Filter Configurations.

∗

A B C Units

Vbias 40 147 16 V
d 30 30 10 nm
ωe 152 560 316 106 rad/s
Rac 1000 50 50 Ω
R′

S 690 49.9 49.5 Ω
Rem 663 49 51 Ω
C0 93 93 278 fF
Q′ 2500 2500 2600
f ′ 1.149 1.143 1.148 GHz

GV −16 8.3 6.7 dB
∗(A) The theoretical resonator of [7]; (B) same as (A) but scaled to
Rem ≈ 50 Ω by increasing the bias voltage; (C) same as (A) but
scaled to Rem ≈ 50 Ω by reducing the gap.

TABLE III
SIR for the Resonators of Table II Used as a Filter for

GSM 900.
∗

GSM 900 resulting SIR
∆f Pint A B C

−10 0 −2 14 −10 outside GSM-RX band
−3 −23 55 63 44

−0.6 −43 96 87 76
0.6 −43 111 90 85
3 −23 59 77 58
10 0 −1 28 −5 outside GSM-RX band

± 10 0 −2 21 −8 (9)
MHz dBm dB dB dB

∗The approximation (9) gives a good estimate for |∆f | = 10 MHz.
The signal power (Psig = −99 dBm) and the interferer powers (Pint)
are as specified in [15].

B. 1-GHz Single-Stage Filters

As another example, we consider 1-GHz single-stage fil-
ters based on the resonators of [7] with k = 373.1 MN/m,
fres = 1.150 GHz, and Q = 5100. The load of the filter is
now taken to be an FET amplifier stage with RL = 1 MΩ
and CL = 1 pF in Fig. 1. This does not reduce the in-
circuit Q value (1) as much as the resistive termination at
both sides of the filter. Furthermore, by effectively tapping
the mechanical RLC resonator, voltage gain becomes at-
tainable, enabling the use of resonators with Rem ∼ 1 kΩ
without introducing significant signal attenuation. The fil-
ter input is thought to be directly connected to an an-
tenna, where different impedances can be realized, but the
different impedance levels can also be realized with a trans-
former. For a given impedance level, the source voltage Vac
is calculated from the source power level.

Table II shows relevant parameters for three different
filter configurations where (A) is based on the resonator
of [7] whereas for (B) and (C) the mechanical impedance
is reduced to Rem ≈ 50 Ω by changing the bias voltage and
the gap. Table III shows the resulting SIR when the filters
(A), (B), and (C) of Table II are used as a front-end filter
for GSM 900. As the filter passband is narrower here than
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the GSM-RX band, one would need a multitude of such
filters with different center frequencies to cover all of the
channels. The filters could be connected in parallel or a
switch could be used to select only one of the filters, corre-
sponding to a particular channel, to be used at a time. The
signal and interference powers in Table III are as specified
for a desired signal and for blockers in [15]. Furthermore,
we assume two blockers of equal amplitude at frequencies
f0+∆f and f0+2∆f to interfere with the desired signal at
f0. The same SIR is found in simulations and with the the-
ory of [10]. The approximation (9) gives a good estimate
for |∆f | = 10 MHz. It is seen that two 0-dBm interferers
at 10-MHz and 20-MHz separation from the desired sig-
nal reduce the SIR below acceptable levels except for filter
(B) for which the bias voltage is not feasible at least in
portable devices. For these interferers, marked as outside
GSM-RX band in Table III, the desired-user frequency is
taken to be at the edge of the GSM-RX band.

As the results in Table III clearly show, the hardest lin-
earity requirements are set by the 0-dBm out-of-GSM-RX-
band interferers at 10 MHz and 20 MHz off the desired-
signal frequency1. As the SIR for the other interferers is
easily sufficient, it is enough to use the simplified expres-
sion (9) as a starting point for filter design. Moreover, suc-
cessful filter design is not trivial and a systematic design
approach is needed. This is developed in Section IV.

IV. Filter Design

In what follows, we derive design criteria for the res-
onator dimensions, transducer gap, Q value, and bias volt-
age from specified in-band and out-of-band filter attenua-
tion and maximum distortion. The criteria yield a system-
atic procedure to design MEMS filters for communication
applications.

A. Out-of-Band Attenuation

For minimum performance, the filter should suppress
the interferers situated outside the systems reception (RX)
band to the same level as the strongest interferers within
the RX band. If this is achieved, the linearity requirement
for the low noise amplifier (LNA) and mixer are set by
the in-band interferers that normally are not affected by
band-select filtering. Denoting the minimum attenuation
at frequency f with respect to the desired-signal frequency
f0 (selectivity) as Amin, the minimum required in-circuit
Q′ value in (1) can be derived. For the single-stage MEMS
filter, this leads to

Q′ ≥

√
A2

min − (f/f0)
2∣∣∣1 − (f/f0)

2
∣∣∣ ≡ Q′

min. (13)

1The intermodulation performance for out-of-band blockers is not
clearly defined in the GSM specifications. However, the out-of-band
intermodulation is known to set the strongest linearity requirements
in code division multiple access (CDMA) design [16]. The out-of-
band intermodulation is therefore considered also for GSM.

Increasing the filter order makes the stopband response
a steeper function of frequency, and thus a lower quality
factor for the resonators is sufficient at the cost of a higher
insertion loss.

B. Out-of-Band Intermodulation

The weakest signal, with power Psig, to be detected in
the presence of interferers, having powers Pint, at f0 + ∆f
and f0 + 2∆f leads to requirements for intermodulation
performance. Typically, this is specified with the minimum
SIR (SIRmin) that the filter needs to satisfy in its output
in order to meet the overall system carrier-to-interference
(C/I) ratio target. Requiring that the SIR be greater than
or equal to the minimum SIRmin gives from (9)

d3 + (ε0Aω0Rac)2d ≥ ε0ARac

m

5Pint
√

PintSIRmin

8|∆ω|ω0
√

Psig
,
(14)

which is also valid for higher-order filters as shown in Sec-
tion II. Result (14) is easily derived after noting that both
ωe and R′

S in (9) are functions of the gap. If R′
S ≈ Rac ⇔

(Racω0C0)
2 � 1, (14) simplifies to

d ≥
(

ε0ARac

m

5Pint
√

PintSIRmin

8|∆ω|ω0
√

Psig

)1/3

. (15)

Eq. (14) and (15) show that to meet the performance re-
quirements given as SIRmin, there is a minimum for the
gap.

C. In-Band Loss

Requiring that the passband voltage gain GV , given by
(12), be greater than a minimum gain Gmin, set by the
insertion loss specifications, gives

QV 2
bias ≥

nd4
√

km

(ε0A)2
{

2
ω0C

′
LGmin

|1 + jω0C
′
LR′

L|
|1 + jω0C0Rac|

− R′
S − R′

L

} . (16)

Thus, once the gap d is chosen, the unloaded quality factor
Q and the bias voltage Vbias need to be chosen to meet the
insertion loss specifications. As the unloaded quality factor
is usually determined by material properties, effectively
this gives a requirement for the bias voltage.

D. In-Band Intermodulation

The in-band intermodulation is estimated from (11) by
considering 1) the signal self distortion, and 2) in-band
interferers. However, typically the out-of-band interferers
give more stringent linearity requirements. Therefore, after
choosing the filter parameters, it is usually sufficient to
check that the filter meets the in-band specifications. If
these are not met, then the filter gap should be increased
and the design adjusted accordingly.
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TABLE IV
Simplified Filter Requirements for GSM 900 [15].

Specification Comment

SIRmin 9 dB (9) ⇒ (14), full rate speech
Gmin −3 dB (12) ⇒ (16), in-band loss

Amin(f − f0 = 10 MHz) 23 dB (13), minimum selectivity

to be met with :

Psig −99 dBm Signal
Pint(∆f = 0 Hz) −49 dBm In-band interferer

Pint(∆f = 10 MHz) 0 dBm Out-of-band interferer

Fig. 4. Test geometry for resonator design showing the resonator
surrounded by the electrodes. The dotted line indicates the vibration
mode shape in the extended state.

V. GSM 900 Filter Design Example

In the following, the usage of the design equations of
Section IV is illustrated by a single-stage MEMS front-
end filter design for f0 = 1 GHz with the requirements of
the GSM 900 mobile device. The simplified requirements
are shown in Table IV. These specifications should be con-
sidered as exemplary performance requirements and a re-
alistic system design may set more or less stringent goals.

A. Resonator Geometry

Let us now, as a simple example, consider a bar ge-
ometry shown in Fig. 4. The resonating dimension is x =
λ/2 = v/(2f0) ≈ 4 µm for f0 = 1 GHz. Here v =

√
Y/ρ

is the bulk acoustic wave velocity with ρ = 2330 kg/m3

the density and Y = 168 GPa the Young’s modulus of
silicon. This simple geometry can also approximate the
ring geometry [17], shown at the right-hand side of Fig. 4,
when the ring radius L/(2π) is much larger than the ring
width x. The capacitive transducers at both sides of the
resonator have an area of A = HL and rest capacitance of
C0 = ε0HL/d, where d is the gap. The effective mass and
spring coefficient are now [18]

m = ρLxH/2, (17)

k = π2Y LH/(2x). (18)

Fig. 5. Minimum gap (14), determined by the maximum out-of-band
intermodulation, for the resonators of Fig. 4 with H = 10 µm.

B. Minimum Quality Factor

From the minimum interference attenuation require-
ments in Table IV, one obtains (13) Q′ = 700 for the
minimum loaded quality factor. For channel-select filter-
ing, the passband is 200 kHz, corresponding to a much
higher in-circuit quality factor of Q′ = 5000, which would
also be enough for Amin = 40 dB at 10 MHz off the pass-
band in (13), as typically satisfied by commercial FBAR
filters.

C. Minimum Gap (Linearity)

Given the resonator geometry, the minimum gap dmin
is solved from (14). Fig. 5 shows the minimum gap for
Rac ∈ {10, 50, 200, 1000} Ω as a function of the transducer
length L with H = 10 µm. For small L, (15) is a good
approximation and gives, for example, dmin = 19 nm and
dmin = 33 nm for Rac = 10 Ω and Rac = 50 Ω, respectively.
With increasing L, the effect of increasing C0 requires the
use of (14). As Fig. 5 illustrates, the minimum gap dmin
increases with increasing source impedance Rac. This is
due to increase in source voltage level Vac for given source
power.

D. Minimum QV 2
bias (Insertion Loss)

We now set the gap close to its minimum value for the
resonators of Fig. 5, say, d(L) = dmin + 3 nm, after which
C0 and the other needed parameters are determined in
order to calculate the minimum value for QV 2

bias in (16).
In what follows, two architectures are considered: 1) the
conventional resistive termination, and 2) an integrated
filter where the filter output is directly connected to a
capacitive FET LNA load while the filter input is fed from
a resistive source such as an antenna.

Fig. 6 shows the calculated minimum QV 2
bias for three

different loads: a resistive load and two different capacitive
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loads. Note that in Fig. 6, the d(L) = dmin + 3 depends
on the resonator length L and is obtained from Fig. 5.
The central challenge in MEMS filter design for portable
low-voltage devices, namely, very high QV 2

bias, is clearly il-
lustrated. To calculate the actual filter parameters, we as-
sume Q = 5000 and H = 10 µm. Table V summarizes the
selected filter designs that are indicated in Fig. 6 with cir-
cles and labels (A) and (B). All designs of Table V, except
the one with a 1-kΩ resistive load, satisfy the requirements
in Table IV. For the resistive 1-kΩ load, the loaded qual-
ity factor is too low for (9) to be a good approximation
for the SIR. A solution would be to correct the design by
requiring a somewhat higher SIRmin. It is also seen that
with the resistive load quite a large resonator size and a
small electrode gap are needed.

As is evident from (12), terminating the resonator with
a capacitive load enables voltage gain as the resonator
RLC circuit is effectively tapped. Consequently, a capac-
itive load of CL = 1 pF corresponding to a typical LNA
FET input, would allow a more realistic filter size. With
an even higher load impedance of CL = 0.1 pF, the filter
could be realized at Vbias < 5 V.

In Fig. 6, it was assumed for the gap that d = dmin +
3 nm corresponding to the minimum gap dmin of Fig. 5. If
the minimum achievable gap is determined by the fabrica-
tion process, Figs. 7 and 8 may be used to determine the
minimum QV 2

bias for capacitive and resistive loads, respec-
tively. It is seen that for a fixed gap, there is an optimal res-
onator size resulting in the lowest QV 2

bias. For a capacitive
load (see Fig. 7), a smaller source impedance Rac results
in smaller QV 2

bias as larger impedances load the resonator
more and thus reduce the attainable voltage gain from the
resonator. The opposite holds for resistively terminated
resonators as shown in Fig. 8. That is, for a resistive load
with fixed gap, the source and load impedances should be
large in comparison to Rem to minimize the insertion loss.

E. In-Band Linearity Check

For the in-band interference with Pint = −49 dBm [15]
and a signal with Psig = −99 dBm, (10) with a minimum
SIR of 9 dB gives the requirement of

P IB
IIP ≥ −19.5 dBm ≡ P IB

IIP,min, (19)

where P IB
IIP is given by (11). As shown in Table V, all de-

signs satisfy the in-band linearity requirement.

VI. Conclusions

In this paper, the capacitive MEMS filter design was
analyzed and the trade-off between linearity and insertion
loss was qualified. For simplicity, a single-stage filter was
considered and it was assumed that several filters would
be in parallel to cover the entire RX band. For GSM, this
would require more than ten filters which may be imprac-
tical. However, as the SIR analysis was shown to be valid

(a)

(b)

(c)

Fig. 6. Minimums of QV 2
bias (16), determined by the maximum in-

band loss of the filter, corresponding to the resonator geometries of
Fig. 5 with d(L) = dmin + 3 nm. The circles labeled (A) and (B)
correspond to the designs of Table V. (a) Resistive load (CL = 0,
RL = Rac); (b) capacitive load (CL = 1 pF, RL = 1 MΩ); (c) ca-
pacitive load (CL = 0.1 pF, RL = 1 MΩ).
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TABLE V
GSM 900 Filter Designs

∗
Indicated with Circles in Fig. 6.

Load Selected SIR SIR [10] SIR [10] P IB
IIP GV

impedance case in Rac L d Vbias Rem Q′ Eq. (9) ∆f < 0 ∆f < 0 Eq. (11) Eq. (12)
in Fig. 6 Fig. 6 [Ω] [µm] [nm] [V] [Ω] Eq. (1) [dB] [dB] [dB] [dBm] [dB]

Resistive load (A) 200 500 37 24 52 1500 10 11 9.7 34 −3
Fig. 6(a) (B) 1k 500 12 15 1.5 1400 11 17 5.6 15 −2.9

Capacitive load (A) 10 200 22 6.4 230 4800 13 13 12 30 −2.6
1 pF, Fig. 6(b) (B) 200 300 48 37 102 2200 10 11 9.6 29 −3
Capacitive load (A) 10 100 22 4.7 841 4900 13 13 12 33 −2.6
0.1 pF, Fig. 6(c) (B) 50 200 36 9.8 690 4700 12 12 11 33 −2.9
∗In all designs H = 10 µm and Q = 5000.

Fig. 7. Minimum of QV 2
bias, for a filter with capacitive load (CL =

0.1 pF, RL = 1 MΩ), and fixed gap sizes of d ∈ {20, 40, 60} nm.

Fig. 8. Minimum of QV 2
bias, for a filter resistive load (RL = Rac) and

a fixed gap size of d = 60 nm.

also for multi-stage filters, the conclusions also hold for
higher-order pass-band filter designs. What is different for
higher-order filters is that the losses in each stage add up
and, consequently, the motional resistance has to be even
lower than for the single-stage designs.

After the analysis, a systematic procedure to design
MEMS band-pass filters was formulated. It was found de-
sirable to utilize the high resonator quality factor for volt-
age gain that is enabled by capacitive load termination at
the output of the filter. This is possible in integrated re-
ceiver architectures, where 50-Ω transmission lines are not
needed between the antenna and the filter and between
the filter and the LNA.

Using dielectric other than air/vacuum for the electrode
gap has potential in lowering the electrical impedance, thus
alleviating the need for a very narrow gap [19]. The analy-
sis procedure derived in this paper can be directly applied
for such devices as long as an appropriate value for per-
mittivity is used.

The analysis in this paper was mainly theoretical and
only few references were made to manufacturing where sev-
eral challenges remain: 1) The gap should be reduced below
30 nm to enable bias voltages of the order of 5 V; 2) The
dimensional tolerances of the filters, manufactured with
lithography, are poor, leading to wide variations in cen-
ter frequency; 3) The parasitic feed through capacitance
may limit the filtering performance, and differential read-
out may be required. If these challenges are addressed,
MEMS filters can have a large economic potential.
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Analysis of a MEMS Transmission Line
Ari T. Alastalo, Tomi Mattila, Member, IEEE, and Heikki Seppä

Abstract—A microelectromechanical system (MEMS) sound
waveguide is considered as a transmission line for RF signals. We
analyze a device geometry of a straight one-dimensional microsize
silicon rod, where a longitudinal acoustic wave is generated and
detected using capacitive transducers. Linear, isotropic, and
nondispersive acoustic-wave propagation is assumed. Based on
the calculation of the electromechanical impedance, an electrical
equivalent model is derived for the acoustic transmission line. A
numerical example and a comparison to measured properties of a
MEMS–transmission-line resonator shows that the characteristic
impedance level of the waveguide is typically high, which causes
challenges for matched termination. Solutions to overcome the
matching problems are discussed.

Index Terms—Electromechanical coupling, microelectrome-
chanical system (MEMS) devices, RF MEMS, transmission line,
waveguide.

I. INTRODUCTION

ACOUSTIC-WAVE propagation in solids is an old and
widely studied topic [1], [2]. Typical applications, such

as delay lines, filters, and resonators, bear an analogy with the
microwave electromagnetic devices [1], [3]. Acoustic wave
theory is extensively used e.g. in bulk acoustic-wave (BAW)
resonators and surface acoustic-wave (SAW) filters [3], [4]. The
recent advances in microelectromechanical system (MEMS)
technology have opened the possibility for creating miniatur-
ized acoustical devices. As an example, a micromechanical
resonator based on BAW operation has been demonstrated to
be well suited for creating a high spectral purity oscillator [5].
Integrability with CMOS electronics, as well as size reduction
and power savings of MEMS components compared to off-chip
solutions (such as SAW devices) facilitate design of efficient
single-chip radio transceivers that could revolutionize wireless
communication devices [6]–[8].

In this paper, we investigate the possibility of creating mi-
croacoustical components, such as delay lines, for RF signals.
We focus on a typical device geometry of a straight one-di-
mensional microsize silicon rod, where a longitudinal acoustic
wave is generated and detected using capacitive transducers.
Linear, isotropic, and nondispersive acoustic-wave propagation
is assumed.1 Based on the calculation of the electromechanical
impedance, an electrical equivalent model is derived for the

Manuscript received December 19, 2002; revised February 27, 2003.
The authors are with VTT Information Technology, Microsensing, Espoo

FIN-02044 VTT, Finland (e-mail: ari.alastalo@vtt.fi).
Digital Object Identifier 10.1109/TMTT.2003.815270

1For a review of nonlinear and dispersive one-dimensional models see, e.g.,
[9] and the references therein.

Fig. 1. Schematic representation of a setup where an electric signal is
transmitted through a micromechanical rod as an acoustic plane longitudinal
wave. Coupling between the electric signal and acoustic wave is done
capacitively at both ends of the rod.

acoustic transmission line. The acoustic reflection and voltage
transmission at the receiving transducer are evaluated using
typical values for electrostatic coupling. The results show that
obtaining perfect nonreflecting termination for the microsize
transmission line is not straightforward, but requires tailored
impedance-transforming techniques.

II. ELECTROMECHANICAL MODELING

The setup that we are considering is schematically illustrated
in Fig. 1. An electric signal is capacitively coupled to and from
the MEMS rod at both ends through fixed electrodes. The rod
is allowed to vibrate longitudinally between the electrodes to
enable wave propagation along the rod. The rod is assumed to
be anchored to the surrounding structures such that the wave
propagation is not notably disturbed. In practice, the circuitry
to connect the bias and signal voltages, as well as the shape of
the electrodes and other details can differ from the simplified
system of Fig. 1, which, however, captures the relevant physical
properties. Some generalizations, e.g., for nonsymmetric bias,
will be discussed after analyzing the system of Fig. 1. The elec-
trodes and waveguide can be fabricated, e.g., on a device layer of
a silicon-on-insulator (SOI) wafer. To reduce dissipation caused
by air friction to moving MEMS structures, the device can be
packaged in a vacuum.

In Fig. 1, is a constant bias voltage applied to the elec-
trodes at both ends of the rod and is a time-dependent
signal voltage at the left (input) electrode. The signal is taken
to be harmonic . The signal voltage in-
duces currents and through the input (left-hand side)
and output (right-hand side) transducer capacitorsand ,
respectively. Consequently, voltage across the load impedance

is . Since the rod is grounded, voltages
and are seen across

the transducer capacitors. The rod has a length, a constant

0018-9480/03$17.00 © 2003 IEEE
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cross-sectional area, Young’s modulus , density , and is
assumed to have no mechanical2 or electrical3 losses. When
no voltages are applied , the gap between the
rod and electrodes is at both ends. With nonzero voltages,
the ends of the rod are displaced by and , as shown in
Fig. 1. We assume the transducer capacitors to be ideal par-
allel-plate capacitors with capacitances
and . The voltages across and currents
through the capacitors are thus related by and

. We further assume that the voltage sources
are ideal with no internal losses. The electric input impedance
is now .

We assume that the voltages and are small with
respect to the bias voltage and that the displacements and

are much smaller than the zero-voltage gap. We also assume
the system to be linear. Expanding the currentsand up to
linear order in the small parameters , , ,
and , we obtain

(1a)

(1b)

Here, is the zero-voltage capacitance and
is the electromechanical coupling constant. For van-

ishing mechanical motion, the electric input impedance is from
(1a) .

For the forces and exerted by the capacitors and
to the left- and right-hand-side ends of the rod, respectively, one
finds through up to linear order

(2a)

(2b)

where is the electrical spring-softening term and
( and in parallel) is a complex damping

2We assume that despite doping and imperfections, acoustic properties of the
SOI device layer material can be approximated by those of single-crystal sil-
icon within the frequency range of interest. Atf = 10 MHz, for longitudinal
plane-wave propagation in cube-edge direction in single-crystal bulk silicon,
one has an attenuation factor of� � 10 dB=mm / f [1]. This corre-
sponds to an acoustical quality factor ofQ � 3:3� 10 / 1=f [1]. An elec-
trical equivalent resistanceR , of the mechanical dissipation over a distance of
1 mm, in series with a load resistanceR is found by voltage division to be
R = R (10 � 1). For� = 10 dB=mm at f = 10 MHz,
we findR = R � 10 . For longitudinal wave propagation in a microme-
chanical narrow rod, a quality factor ofQ � 1:8� 10 has been reported [5],
which is only half of the bulk value above and yields a doubling of� andR .
Thus, at least for frequencies in the range of 10 MHz, mechanical losses can be
neglected for small systems.

3In practice, one places electrical ground connections closer to the ends of
the rod and not only in the middle, as shown in Fig. 1, for simplicity. This is in
order to reduce dissipation caused by nonzero resistivityr of the rod material.
Groundings can be done in places where the rod is hanged to the surrounding
structures. Details of hanging are not studied in this paper. Resistance at the ends
of the rod can be calculated asR = r l =A, wherel is the distance from the
end of the rod to the closest grounding andA is the cross-sectional area of the
rod. For the heavily boron-doped material of [5] (r � 2 � 10 
m [14]),
with l = 100 �m andA = 100 �m� 10 �m, one findsR � 20 
, which,
as will be seen, is much smaller than other typical impedances of the system and
will be ignored in this paper. If taken into account,R becomes in series with
the capacitancesC in Fig. 3.

Fig. 2. Mechanical equivalent model of the setup of Fig. 1. Here,@ y and@ y
are shorthand notations for the second-order space and time derivatives of the
displacement field, respectively.

Fig. 3. Electrical small-signal equivalent model of Fig. 1.

coefficient. Here, the sign of is selected as shown in Fig. 2.
usually represents only a small correction and can be omitted.

The mechanical model is now as follows. The longitudinal
displacement field of the rod obeys a wave equation

(3)

with boundary conditions following from (2a) and (2b) as-
suming Hooke’s law to be valid:

(4)

and has a harmonic time dependence due to the harmonic force.
Here, is the phase velocity of the longitudinal wave.
The mechanical model is illustrated in Fig. 2.

III. A NALYTICAL SOLUTION

A solution to the wave-propagation problem of (3) and (4)
is found by subtracting a time-independent zero-signal solution

from the displacement field and seeking a solution
in the form

(5)

for the deviation , which also satisfies
the wave equation (3) and a zero-bias form of the boundary con-
ditions (4). For the current in (1a) through the input capacitor

, we find

(6)

where the electromechanical impedance (see Fig. 3)

(7)
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expresses the coupling of the electric signal to the mechanical
motion and is, thus, the quantity of primary interest here. Sub-
stituting (5) to the boundary conditions (4) with zero bias allows
one to solve for the unknown coefficientsand and to ob-
tain in (7). For simplicity, we only consider the case where

, which generally is a good approximation for practical
MEMS structures. Consequently, one obtains the standard ex-
pression [2], [10], [11]

(8)

where , , and (see
Fig. 3). The mechanical losses can be included in (8) by sub-
stituting with , where is the attenuation coefficient
[1], [10], [11].

The mechanical amplitude reflection coefficient for the right-
hand-side end of the rod can be expressed as

(9)

For zero reflection, one needs , which gives with (8)

(10)

Here, is the mechanical characteristic impedance
of the rod [2]. The corresponding matched load impedance
is . The above discussion shows that

can be seen as an electrical characteristic
impedance of the acoustic waveguide. One can thus relate the
inductance and capacitance densities in Fig. 3 to and
to the phase velocity through and .
One finds , and that are similar to
the corresponding relations known for MEMS resonators [5].

Of interest are also the current in (1b) through the
output capacitor and the voltage across the load
impedance. The transfer impedance is found
similarly to the input-impedance calculation above as follows:

(11)

and gives the load voltage through . In
particular, for the matched load, one finds

(12)

in which case, the acoustic waveguide only introduces a sign
change and a phase shift to the electric signal and delivers a
power of to the load.

If the matched load is represented by an inductance4 of
in parallel with a resistance of , trans-

mission through the line becomes bandpass centered atwith
a 3-dB bandwidth of . Due to the reac-
tances in the system, it is now possible that the load voltage
exceeds the source voltage. This can be prevented by requiring

.

4Wide-band termination would require a reactance of+j=(!C ).

IV. GENERALIZATION OF THE SYSTEM

More insight is gained by separating the problem into elec-
trical and mechanical propagation. This is conveniently done
by introducing transmission matrices. We take the mechanical
equivalent of voltage and current to be negative of the force
field and the velocity field in the waveguide. The me-
chanical impedance along the waveguide is now .
The input (left-hand side) end current and force relations (1a)
and (2a) now give

(13)

where is the left-hand-side-end transmission matrix. Here,
and denote and at the input end. Similarly for the

right-hand-side (output) end, one finds from (1b) and (2b)

(14)

with and denoting and at the right-hand-side
transducer. The mechanical propagation is given by the familiar
waveguide transmission matrix

(15)

yielding for mechanical impedances the same result shown
above in (8) for the electromechanical impedance (with
interchanges , , and ). The
electrical input impedance is now found using the total
transmission matrix of the system from

.
The matrix formulation enables one to consider more general

situations with, for example, nonsymmetric bias or transducer
geometries. Also, other transducer coupling mechanisms can be
considered. The formulation also applies to different waveguide
geometries, e.g., with varying cross-sectional area, for which the
transmission matrix can be formulated. Furthermore, anchoring
effects can be taken into account.

V. NUMERICAL EXAMPLE

Table I shows , , resistance , inductance , and
bandwidth at center frequency MHz for a
1-mm-long silicon rod ( , m

m [5]) with m m and m
m (one of the dimensions is limited by the typical height of

the device layer of the SOI wafer), and . The center
frequency is selected to obey (see discussion
in Section III). We consider three different values for the gap

(reaching a controllable gap size of 0.1m has been demon-
strated [12]). The values of Table I (such as for

and m m) reveal that, for prac-
tical realization of the MEMS waveguide, impedance matching
is a challenge. This is because the weakness of the capacitive
coupling makes the characteristic electrical impedance of the
waveguide extremely high.
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TABLE I
PARAMETERS FORMATCHED TERMINATION OF AN ACOUSTICTRANSMISSION

LINE AT f = 10:573 MHz

Equation (10) shows that can be made smaller by having
a smaller gap, softer or sparser rod material (smalleror ), a
larger area , higher permittivity material in the gap, or a higher
bias voltage . On the other hand, the maximum displacement
of the end of the rod is limited by , where ,
in order to avoid pull-in. Considering only the bias voltage,
it is easy to show that the requirement to avoid pull-in leads to
a lower limit for as follows:

(16)

For example, in Table I, with M , we have
M for a 1-mm-long rod. Increasing now the bias voltage

by a factor of ten, decreases to 30 k , but leads to
, resulting in pull-in. Thus, both (10) and (16) must be taken

into account. One candidate for a softer and sparser rod mate-
rial is porous silicon. For example, for a porosity of 60%, the
Young’s modulus is reported to drop almost 90% of the value
for nonporous material [13]. This would divide by five, but
also yield a four times larger .

Fig. 4 shows the voltage ratio and mechanical reflec-
tion coefficient when an inductor of is
used to tune out the transducer capacitance. The solid curves
are for a center frequency satisfying , while,
for the dashed curves, a slightly different frequency with

is considered.

VI. COMPARISON TOEXPERIMENTS

The characteristic impedance of the MEMS transmission line
can feasibly be probed in the short- or open-circuited resonator
configuration [10], [11], when the quality factor of the res-
onator is sufficiently large. For example, for an open-circuited
transmission-line resonator, the lumped-element values for an
equivalentRLCseries-resonant circuit are ,

, and [11]. Here, is
the length of the line, is the wavelength corresponding to
the resonant frequency , is the electrical characteristic
impedance of the waveguide in (10), andis the resistance per
unit length of the line. The equivalentRLCcircuit is valid in the
vicinity of the resonant frequency. Since losses in the waveguide
are not considered in this paper, resistanceis not shown in
Fig. 3 in series with the inductance. Measurements for such a

(a)

(b)

Fig. 4. (a) Voltage transmissionju =uj and (b) mechanical reflection
coefficient r for center frequenciesf = 10:573 MHz (solid line) and
f = 10 MHz (dashed line). Other parameter values are the same as in Table I
with the larger values of area and gap.

high- MEMS transmission-line resonator were reported in [5]
at 11.75 MHz corresponding to m. Other resonator
dimensions and parameter values of [5] were the same as here in
Table I with m and m m. The parameter
values for the equivalentRLCcircuit were obtained through fit-
ting the simulation results to the measured data. In particular, it
was found in [5] that aF and kH. Using the
results of this paper, one obtains kH
and aF, which are in good agreement
with the measurement-based values of [5]. Direct experimental
study of the transmission-line operation of the MEMS wave-
guide requires solution to the impedance-matching problem that
is one of the focuses of future research in this area.

VII. D ISCUSSION ANDCONCLUSIONS

Using sound waveguides as delay lines for RF signals is
desirable since much smaller group velocities can be reached
than with electromagnetic waveguides. However, impedance
levels needed for efficient signal transmission through an
acoustic waveguide become extremely high, as shown in this
paper, for a single-crystal silicon rod with capacitive coupling.
This is due to the weakness of the electromechanical coupling
constant. Thus, one needs to consider different coupling
mechanisms, softer and sparser rod materials, electrical and
mechanical impedance transformations, and other structures
for acoustic-wave propagation. It is easy to show that, for
example, with a microsize piezoelectric quartz transducer,

IV/4



ALASTALO et al.: ANALYSIS OF MEMS TRANSMISSION LINE 1981

one does not reach a stronger coupling to a silicon rod when
the length of the rod is much larger than the transducer size
and when small enough capacitor gaps (of the order of half a
micrometer) and high enough bias voltages (tens of volts) can
be used. On the other hand, high-values of microelectrome-
chanical resonators suggest that, at least for narrow bandwidths
below 100 MHz, mechanical impedance transformation can
enable efficient acoustic waveguide operation with capacitive
coupling.
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Abstract— We consider a chain of coupled micromechanical
resonators as a delay line for radio-frequency signals. Wave
propagation in the chain is generated and detected using ca-
pacitive transducers. Analytical results, numerical simulations
and  rst measurements for the response of a prototype device
are presented. The delay line is shown to have a bandpass
response and a very low signal group velocity of the order of
only few meters per second. Weaknesses of the  rst prototypes
are identi ed through simulations and a more optimal design is
suggested.

I. INTRODUCTION

Acoustic wave propagation in solids is an old and widely-
studied topic. Typical applications, such as delay lines, filters
and resonators, bear an analogy with the microwave elec-
tromagnetic devices [1]. Acoustic wave theory is extensively
used e.g. in bulk-acoustic-wave (BAW) resonators and surface-
acoustic-wave (SAW) filters. The recent advances in micro-
electromechanical systems (MEMS) technology have opened
the possibility for creating minituriased acoustical devices.
As an example, a micromechanical resonator based on BAW-
operation has been demonstrated to be well suited for creating
a high spectral purity oscillator [2], [3]. Integrability with
CMOS electronics as well as size reduction and power savings
of MEMS components compared to off-chip solutions (such
as SAW devices) facilitate design of efficient single-chip radio
transceivers that could revolutionise wireless communication
devices [4], [5].

In this paper we focus on a device geometry of a chain of
coupled micromechanical resonators. Wave propagation along
the chain is excited and detected using capacitive transducers.
We present an analytical model for the device as well as
numerical simulations and measurements for a first prototype
device operating at 1.85MHz. The numerical simulations are
done in Aplac circuit simulator where both the mechanical
resonators and the electronic circuitry of the measurement
setup are modelled. It is shown, in particular, that reducing the
feed-through capacitances to a minimum level is essential for
good performance. Also dimensions of the resonator structures
need to be carefully chosen, for example, to compensate
for electrical spring softening introduced by the capacitive
transducers. The first prototype device reported here does not
reach sufficient performance but validates the analytical and
numerical models. Improvements for the structure are sug-
gested and will be concentrated on in future work. Furthemore,
to reach higher frequencies the dimensions of the delay line
need to be scaled down.

II. PROTOTYPE DELAY LINE

An IR spectroscope picture of a prototype spring-mass-
chain delay-line structure is shown in Fig. 1. The device has
been fabricated at VTT on a silicon-on-insulator (SOI) wafer
having a device-layer thickness of 10µm. The silicon is heavily

Fig. 1. IR microscope picture (top view) of a spring-mass-chain delay-line
structure consisting of 16 coupled tuning forks. Length of the period in the
chain is 12.5µm.

boron doped having a resistivity of r ≈ 2 × 10−4Ωm. The
chain consists of 16 coupled tuning-fork elements that are
released from the substrate below to vibrate in the plane of
the picture. The tuning forks are identical and each of them
has two beams of size 2.5µm×100µm coupled at the ends
of the beams and anchored to the surrounding structures by
the vertical connects of size 2.5µm×10µm. The size of the
coupling connect between the tuning forks is 2.5µm×5µm.
The capacitive transducer pads at left and right ends of the
chain have a size of 40µm×75µm and are separated from the
first and last tuning fork by a gap of size 0.5µm. The gap has to
be made as small as possible in order to maximize the strength
of the capacitive coupling (reaching gaps of size 0.1µm has
been demonstrated [6]). The signal is brought to the capacitive
transducer pads along the metallizations as shown in left and
right edges of Fig. 1.

The fabrication process is illustrated in Fig. 2. Process
begins with a SOI wafer having a 1µm buried oxide beneath
a 10µm silicon device layer. After depositing a 1µm low
temperature oxide on the wafer backside (a), an Al metal-
lization is deposited and patterned on the front side (b). This
metallization consists of a TiW diffusion barrier, 1µm Al,
and a thin Mo top layer. Etching is carried out using either
dry chlorine-based chemistry or wet etching. A short dip in
Freckle etchant is used to remove the residual etch debris.
Sawing lines are then patterned into the backside oxide and
etched a few microns deep. The next step (c) is the patterning
of the resonator structures, with nominal gaps of 0.5µm, and
release holes with 1.5µm diameter. Inductively coupled plasma
(ICP) etching is used to form the narrow gaps using the resist
mask, which is then stripped in oxygen plasma before the
backside sawlines are etched to a greater depth (d), again
using ICP etching but with the previously patterned oxide as
a mask. The buried oxide (and backside LTO) is then etched
several minutes in 49% HF followed by drying in supercritical
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Fig. 2. MEMS device fabrication process. (a) Oxide deposition, (b)
metallization, (c) device patterning, (d) sawline etching, (e) device releasing.
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Fig. 3. Simplified model of the tuning-fork chain of Fig. 1.

CO2 (e). The devices may be separated by cleaving along the
sawlines or by sawing.

III. ANALYTICAL MODEL

At the frequency range of interest, each tuning fork can be
modelled as two equal masses m connected to each other by
a coupling spring k and anchored to walls with springs k′.
The squared frequency ratio (ωa/ωs)

2 of the antisymmetric
(masses moving with 180◦ phase difference) and symmetric
(masses moving in phase) resonances of the tuning forks
determines the ratio of the spring constants k and k′:

k′/k =
2

(ωa/ωs)2 −1
. (1)

If the masses coupling the consecutive tuning forks have a
size of m0, the chain can be modelled as shown in Fig. 3
without dissipation that can easily be included. Calculation
of the dispersion relation for the anchored spring-mass chain
of Fig. 3 is a straightforward generalization of the common
text-book result for an unanchored chain [7]. Defining K ≡
k′/k one finds for the center frequency ω0 = 2π f0, bandwidth
∆ω = 2π∆ f and signal group velocity in the center of the
passband vg of the chain:

ω0 =

√

2k
2m+m0

√
K +1

∆ω =

√

2k
2m+m0

(√
K +2−

√
K

)

vg =
a
2

√

2k
2m+m0

/
√

K +1 ,

(2)

where a is the length of the period of the chain. For the struc-
ture in Fig. 1 we have a = 12.5µm, and assume k′ = 258N/m,
k = 33.5N/m, m = 2.1× 10−12kg, and m0 = 2.91× 10−13kg.
Parameters k′, k and m have been approximated based on FEM
simulations with ANSYS and with the well known results
for vibrating beams [8] using an isotropic approximation for
the SOI material with Young’s modulus Y = 130GPa and
density ρ = 2330kg/m3. The coupling mass m0 is taken as
the dimensional mass of the connect. One finds with (2)
f0 ≈ 1.8MHz, ∆ f ≈ 210kHz and vg ≈ 8.2m/s. Result (2)
furthermore shows that increasing the strength of the anchoring
spring k′ with respect to the coupling spring k increases the
center frequency while decreasing both bandwidth and group
velocity.

IV. MEASUREMENT AND SIMULATION RESULTS

Measurement of the S21 for the delay line has been done
with HP4195A network analyser. The MEMS device and a
JFET preamplifier were placed in a vacuum chamber having a
0.001bar pressure. The circuit diagram of the measurement
setup is shown in Fig. 4 with the preamplifier modelled
by measured input capacitance and resistance. The resonator
chain and the capacitive signal connects have been mod-
elled with the MEMS transducer and resonator components
of Aplac. Noise has not been included in the simulations.
The center frequency and bandwidth expected based on the
analytic calculation above is in relatively good agreement with
the measured response of Fig. 5. Furthermore, as shown in
Fig. 6 the Aplac simulation produces essentially the same
result that has been measured. The absolute level of S21 has
been removed in the measurement by calibrating the network
analyser with zero bias voltage. Here Cthr has been measured
for the device, (ωa/ωs)

2 is obtained through FEM simulations,
and Q is selected based on measured properties of single
tuning-fork resonators.

It is found that the main reasons for suboptimal performance
in Fig. 5 are the feed-through capacitance Cthr, too low bias
voltage and electrical softening of the first and last springs in
the chain introduced by the capacitive transducers. Improving
on these issues leads to significantly better performance as
suggested by the simulation results of Fig. 7 where also the
resulting group delay has been shown. In particular, we have
reduced the feed-through capacitance to 1fF, increased the bias
voltage close to its limits to Udc = 35V (76% of the pull-
in voltage), and canceled the electrical spring softening in
the first and last tuning fork. Compensation for the electrical
spring softening by strengthening the first and last springs is
critical for optimum signal coupling to the line. The reduction
of the feed-through capacitance has a smaller effect on the
dynamic range and pass-band ripple of the device. The feed-
through capacitance can be reduced, for example, by using a
differential readout amplifier as suggested in [9]. The ripple in
the passband response and in the group delay can be further
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2 is obtained through FEM simulations. Parameters
of the model in Fig. 3 are as stated in text below (2).
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Fig. 7. (a) Simulated Vout/Vin in a measurement setup of Fig. 4 for a structure
where extra masses of m0 =2.5e-11kg are added between the tuning forks with
(ωa/ωs)

2 = 1.06 and Q = 104 in a chain of N = 32 (period of the chain is
now 25µm). Half of the extra mass is added before the first and after the last
tuning fork in the chain. Furthermore, bias voltage is set to Udc = 35V, feed-
through capacitance is reduced to Cthr = 1fF, and resistors of Rdiss = 1MΩ are
used to reduce the quality factor (smooth out the resonances of the chain).
The first and last tuning-fork springs are strengthend to cancel the electrical
softening. For the rest of the chain we have (see Fig. 3) k′ = 307N/m, k = 9N/m
and m = 2.1 × 10−12kg. (b) Group delay in seconds through the structure
considered in (a). At the passband center the delay is 450µs corresponding to
signal group velocity of 1.8m/s. The simulated results are in agreement with
(2).
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reduced by increasing the number of the periods in the chain,
increasing the electrical dissipation Rdiss and decreasing the
bandwidth by strengthening the achoring springs as discussed
above.

The characteristic impedance level of the MEMS transmis-
sion line can conveniently be probed in Aplac simulations.
With 0.5µm transducer gaps, the impedance level varies ac-
cross the passband in the few-megaohms range. Reducing the
transducer gap is an effective solution to reach significantly
lower impedances. Namely, the characteristic impedance de-
pends on the gap as Z ∝ d4 while the depence on other parame-
ters, such as resonator mass (m), spring constant (k), transducer
area (A) and bias voltage (Udc), is at most of the second
order. In fact, the result for the characteristic impedance of
bulk-acoustic rod wavequides in [10] (Z = d4√ρE/(A(ε0V )2),
where E and ρ are the Young modulus and density of the
rod material, respectively) roughly generalizes to the current
situation when the mechanical characteristic impedance of the
rod A

√
ρE is replaced by

√
km (see Fig. 3). Furthermore, com-

paring to [10], it is found that the characteristic impedance of
the spring-mass chain typically is several orders of magnitude
lower than the rod-wavequide values. Thus the spring-mass-
chain approach can provide a more feasible realization for
a MEMS delay line when the needed operation frequency is
not too high. Among other possible solutions to reduce the
impedance level of MEMS delay lines is to use inductive
coupling instead of the capacitive transducers. This, however,
would require an external magnetic field.

V. CONCLUSION

We have described a MEMS structure where mechanical
wave propagation with extremely low velocity can be used
for signal trasmission to construct a delay line reaching high

delays without digital signal processing. Future work
focuses on optimizing the performance of the line and on
reducing the gap as well as the vibrating dimensions of
the structure in order to reach higher frequencies and lower
characteristic impedances of the delay line.
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Abstract. A slow-wave microelectromechanical delay line, composed of a chain of

coupled resonators, is introduced. The delay line has a bandpass response and,

depending on structural details, signal group velocity can be as low as ∼ 10 m/s

that is over 100 times smaller than for acoustical SAW or BAW delay lines. Properties

of the delay line are analyzed theoretically and the theory is verified in measurements.

PACS numbers: 84.40.Az, 85.85.+j

1. Introduction

Acoustic wave propagation in solids has for a long time been utilized in electronics to

implement various components such as resonators, filters, and delay lines. In these

applications, one benefits from i) low attenuation of acoustic waves in crystalline

materials and ii) low acoustic wave velocity compared to electromagnetic waves. Low

attenuation enables high Q values of mechanical resonators such as in quartz-based

oscillators that are widely utilized as low-phase-noise frequency standards in mobile

communication devices. Low-loss propagation is also essential in surface-acoustic-

wave (SAW) and bulk-acoustic-wave (BAW) filters [1]. The acoustic SAW and BAW

velocities are of the order of 5000 m/s that is approximately 105 times smaller than the

wave velocities for electromagnetic transmission lines. Thus large signal delays can be

produced with small-sized components. SAW and BAW delay lines and filters can be

used up to several GHz frequencies. The microelectromechanical delay line, presented in

this paper, enables a further reduction of group velocity by a factor of ∼ 100 for signal

frequencies in the HF range (3-30 MHz) and below, which are relevant frequencies, for

example, for wireless communication of low-datarate sensor applications and RFID.

Acoustic delays have been utilized in several applications. For example, in wireless

passive SAW RFID tags and sensors, the transmitted data is coded into a multitude

of reflections of a SAW pulse that is generated (in response to a received radio pulse)

and detected by an antenna connected to a SAW chip [2, 3]. In these applications,

long acoustic delays and short transmission distances guard against interference from

multipath radio propagation. In radar systems, delay lines are used, for example, to
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create a delayed replica of the transmit signal to correlate with the received signal

reflected from the target [4], to compensate for phase errors in FMCW radars [5] or to

simulate a target [6]. In delay-line oscillators, long delay stabilizes the frequency and

suppresses off-carrier phase noise [7, 8, 9, 10]. Delay-line based information processing

has been applied to implement convolution, time inversion and Fourier transforms

[11, 12, 13]. Analog delays are also proposed for novel ultra-wideband receivers [14].

In video systems, delay lines are used, for example, in event recorders and action replay.

The recent advances in microelectromechanical systems (MEMS) technology have

opened the possibility for creating minituriased acoustical devices. As an example, a

micromechanical resonator based on BAW-operation has been demonstrated to be well

suited for a high-spectral-purity oscillator [15] in mobile-communication applications.

Integrability of MEMS technology with CMOS electronics as well as size reduction

and power savings of MEMS components compared to off-chip solutions (such as

SAW devices) facilitate design of efficient single-chip radio transceivers that could

revolutionise wireless communication devices [16].

In this paper, a narrow-band capacitively-coupled dispersive MEMS delay line for

signals at HF frequencies is analyzed in detail. The delay line consists of a chain of

coupled and anchored micromechanical resonators and can have a 100 times smaller

signal group velocity than in SAW or BAW delay lines thus facilitating miniaturization of

delay-line components. A similar structure for lower frequencies was introduced in [17].

In this paper, general theory of anchored spring-mass-chain delay lines is formulated

and an electrical-equivalent model is derived. The theory is verified with measurements

of two different fabricated delay lines composed of 80 tuning-fork resonators in series.

Design improvements necessary for practical applications are discussed.

2. Theory

The anchored spring-mass-chain waveguide, shown in figure 1 without dissipation, is

composed of elementary resonators that can be modelled with two moving masses, m,

that are coupled with a spring k and anchored to a stationary support with springs k′.

Except for the ends, the chain is periodic with period a. The waveguide can be seen as a

high-order bandpass filter [16, 18] with identical stages. Transduction between electrical

signals and a mechanical wave propagating along the chain is done with capacitive

parallel-plate transducers with gap d, area BH and rest capacitance C0 = ǫ0BH/d.

Here H is the thickness of the device (perpendicular to the plane of the picture) and B

is the length of the transducers as shown in figure 1. The model in figure 1(e) is also

applicable, for example, for periodic resonator chains where the inter-stage coupling is

done with a capacitor instead of the mechanical spring. In this paper, damping is not

considered in theory but is modelled in simulations. For low losses, this results in good

theoretical estimates of the properties of the waveguide.

The elementary resonator of figure 1 has two fundamental modes of vibration with
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Figure 1. (a) Rest position of an elementary two-mode resonator with symmetric (b)

and antisymmetric (c) eigenmodes. (d) Delay line consisting of capacitive input (left)

and output (right) transducers with gap d and a chain of coupled resonators. Except

for the ends of the chain, the waveguide can be modelled as shown in (e). Losses are

not indicated.

resonance frequencies

ωs =

√

k′

m
(1)

ωa =

√

2k + k′

m
. (2)

In the symmetric mode, with resonance frequency ωs (1), the masses move in phase

while in the antisymmetric mode, with frequency ωa (2), there is a 180◦ phase difference

between the mass motions. A useful parameter is the ratio of the anchoring spring k′

to the coupling spring k, determined by ωa/ωs as

K ≡ k′/k =
2

(ωa/ωs)2 − 1
. (3)

For a particular resonator geometry, the ratio of the resonance frequencies is obtained,

for example, in FEM eigenmode analysis or in measurements.

A periodic chain of coupled resonators can vibrate and carry signals at frequencies

allowed by the dispersion relation ω(κ) that gives the frequency ω as a function of the

wave vector κ ≡ 2π/λ, where λ is the wavelength. For the anchored chain of figure 1,
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Figure 2. Dispersion relation for the anchored spring-mass chain of figure 1.

the dispersion relation is found as a generalization of the familiar text-book result for

periodic unanchored (free) chains [19]. One obtains for the anchored chain

ω(κ) =

√

2k

M

√

1−cos(κa)+K, (4)

where M ≡ 2m + m0 is the total coupled-resonator mass, a is the period of the chain

and the wave vector κ ∈ [−π/a, π/a] is restricted to the first Brillouin zone [19]. The

dispersion relation (4) is illustrated in figure 2. As opposed to the low-pass character

of free chains, nonzero k′ forbids zero-frequency oscillations and results in passband

response.

Group velocity for signal propagation along the chain is found from (4) as

vg =
∂ω

∂κ
=

a

2

√

2k

M

sin(κa)
√

1−cos(κa)+K
, (5)

and is seen to differ from the phase velocity vph = ω/κ. For the center frequency

ω0 = 2πf0 and bandwidth ∆ω = 2π∆f of the line one finds

ω0 = ω(
π

2a
) =

√

2k

M

√
K+1 (6)

∆ω = ω(
π

a
)−ω(0)=

√

2k

M

(√
K+2 −

√
K

)

. (7)

At the center of the passband, one obtains for the phase and group velocities

v0
ph ≡ ω

κ

∣

∣

∣

ω0

=
2a

π

√

2k

M

√
K + 1 (8)

v0
g ≡ ∂ω

∂κ

∣

∣

∣

∣

ω0

=
a

2

√

2k

M

1√
K + 1

(9)



Microelectromechanical delay lines with slow signal propagation 5

L
s

C
s

C
p

L
s

C
s

C
p

L
s

C
s

C
p

Figure 3. Electrical-equivalent model for the spring-mass-chain transmission line in

figure 1 for center-band operation.

illustrating, again, clearly the dispersive character of the spring-mass chain.

For single capacitively-coupled MEMS resonators with spring constant k, mass m

and quality factor Q, the electrical equivalent is a series RLC circuit (see, for example,

[20]) with R =
√

km/(Qη2), L = m/η2 and C = η2/k, where η = C0V/d is the

electromechanical coupling coefficient while C0 is the transducer rest capacitance, V the

bias voltage and d the transducer gap as in figure 1. To find a similar representation for

the spring-mass-chain transmission line, the propagation constant κa in (4) is solved and

its square, (κa)2 = ZsYp, [21] is expanded as a power series with respect to ω2 around

the passband center. Here Zs is the series impedance and Yp is the shunt admittance of

the waveguide per unit length. One finds

(κa)2 =

{

jωM

η2 +
2k

jωπη2

[

π(1 + K) −
(π

2

)2
]}

jωπη2

2k
, (10)

where Zs = jωLs + 1/(jωCs) and Yp = jωCp can now be identified, as shown in figure

3, with

Ls =
M

η2 (11)

Cs =
πη2

2k [π(1 + K) − (π/2)2]
(12)

Cp =
πη2

2k
. (13)

Consequently, one obtains the characteristic impedance of the line as [21]

Zc =

√

Zs

Yp

=

√
kM

η2
√

2(K + 1)
. (14)

The scaling of the terms in (10) with the squared coupling coefficient, η2, is done in order

to have the correct Zc ∼ 1/η2 dependence of the characteristic impedance as verified in

simulations.

It is seen that increasing the strength of the anchoring spring k′ with respect to

the coupling spring k increases the center frequency (6) and phase velocity (8) while

decreasing bandwidth (7), group velocity (9) and the characteristic impedance (14)

that, typically, is much higher than 50 Ω with electrostatic coupling. Furthermore, for

higher K, the variation of the group velocity as a function of frequency at band center
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Figure 4. Two different tuning-fork designs (fork 1 in (a) and fork 2 in (b)) for the

elementary resonator of figure 1.

is reduced. For good signal coupling and long delays, it is thus desirable to have K as

high as possible.

3. Design with tuning-fork resonators

One possible realization for the elementary resonators in figure 1 is the doubly-supported

tuning-fork structure for which two geometries are schematically shown in figure 4. For

both designs, the distance between the anchoring connects to the stationary supports is

the same and the vibrating beams are of same size (5 µm ×50 µm). The only difference

in the designs is at the anchoring structure. Fork 2 (figure 4(b)) has a weaker coupling

to the support than fork 1 and, correspondingly, a stronger coupling between the

beams (stronger k and smaller K) resulting in wider frequency separation between the

eigenmodes and higher characteristic impedance. The dimensions and central properties

of the tuning forks as well as corresponding transmission lines composed of 80 resonators

are collected in table 1. The FEM results are calculated with ANSYS .
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Table 1. Design values and FEM results for the parameters of the tuning-fork

resonators of figure 4. For Zc a bias voltage of V = 25.6 V has been used. For the

group delay T 0
g , a chain of 80 resonators, with a total length of the line of Lline = 1.4

mm, is considered.

fork 1 fork2 unit comment

h h1 =10 h2 =7.5 µm design

fs 13.573 11.406 MHz FEM

fa 13.992 13.748 MHz FEM

k′ 17.3 12.4 kN/m FEM

K 31.9 4.42 FEM

M 4.77 4.81 ng (1), (2)

f0 13.8 12.6 MHz (6)

∆f 0.42 2.34 MHz (7)

v0
ph 965 884 m/s (8)

v0
g 23 128 m/s (9)

T 0
g 60.8 10.9 µs Lline

v0
g

Zc 0.96 5.42 MΩ (14)

L 50 µm design

B 45 µm design

w 5 µm design

wf 15 µm design

d 200 nm design

H 10 µm design

a 17.5 µm design

Lline 1.4 mm design

C0 20 fF

4. Experimental verification

To verify the spring-mass-chain model, periodic narrow-gap single-crystal-silicon

resonator chains, corresponding to the tuning-fork designs in figure 4 and table 1, were

fabricated on silicon-on-insulator (SOI) wafers and characterized. Figure 5 shows a

SEM picture of the fabricated resonator chains. The number of coupled resonators in

the chain is 80 as considered in table 1. One thus expects center-band group delays of
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Figure 5. SEM picture of tuning-fork chains composed of fork 1 (up) and fork 2

(lower) of table 1.

45 µs and 10 µs for 1.4 mm long tansmission lines made of fork 1 and fork 2 of figure 4,

respectively. As the fabrication process is detailed elsewhere [22], only the experimental

set-up and results are given here.

Figure 6 shows a schematic of the measurement and simulation setup. The

mechanical transmission lines, chain 1 and chain 2 of figure 5, and their input and

output transducers are represented by the black-box components. Component values of

figure 6 are collected in table 2.

In measurements, the input (in) and output (out) are connected to an HP 4195A

network analyzer. The resonator chains, biasing circuits and the differential low-noise

preamplifier (AD8129) are kept in a vacuum chamber with a pressure of 3 µbar. Only

one of the transmission lines is measured at a time with nonzero bias voltage. In

the other branch, with zero bias, signal propagates only through the parasitic feed-

through capacitance Cthr1 or Cthr2. Consequently, the differential readout suppresses the

feed-through signals and amplifies only the signal propagating through the mechanical

waveguide. As Cthr1 and Cthr2 are slightly different, trimmer capacitors, Ctune1 and

Ctune2, are utilized in the waveguide inputs such that a common-mode-rejection ratio

(CMRR) of 61 dB is achieved. Here the feed-through capacitances of the two devices

are almost equal and thus the cancellation is conveniently done using the unbiased
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Table 2. Parameter values for the measurement and simulation setup of figure 6.

parameter value unit

Cthr1 ≈ 30 fF

Cthr2 ≈ 30 fF

Ctune1 ∈ [0.5, 15] pF

Ctune2 ∈ [0.5, 15] pF

Ccpl 100 nF

Cpad 360 fF

Cin 4 pF

C ′
in 3 pF

Rac 50 Ω

Rbias 3.6 MΩ

Rin 4 MΩ

R′
in 1 MΩ
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component as a reference. More generally, one can use a tuneable capacitance of the

same order as the feed-through capacitances for the reference. In addition to the

high CMRR, the preamplifier has a differential gain of 17 dB. The transmission S21

is measured with respect to a short connecting the input and output of the network

analyzer.

In simulations, the electrical circuit, transducers and the mechanical resonator

chains are modelled in Aplac [23] circuit simulator. The preamplifier is modelled

as shown in figure 6. The voltage-controlled voltage source (VCVS) is used to tune the

common-mode-rejection ratio to the measured level of 61 dB.

Figure 7 shows the measured and simulated responses for the two different spring-

mass-chain transmission lines. The simulation results that reasonably well fit the

measurements are obtained by varying the electrode length B, mechanical quality factor

Q of the elementary resonators, the ratio of the spring coefficients K, the anchoring

spring k′ and the transducer gap d from the design values given in table 1. The fitting

values for these parameters are given in table 3. The difference between the designed

(table 1) and fitted (table 3) values for the spring coefficients can be explained by i) a

finite stiffness of the support (assumed stationary in design as indicated in figure 4) at

the anchoring of the tuning forks and ii) slight narrowing (3− 6 %) of the structures in

processing. The passband ripple and high loss are due to impedance mismatch at the

input and output of the waveguide. Matched termination would require source and load

impedances to equal the characteristic impedance Zc given in table 1. The gentle slope

of the measured responses in the lower passband edge can be due to the finite stiffness

of the low-Q anchoring connects. For the higher passband frequencies, the consecutive

resonators move mostly out of phase, which suppresses the anchor motions and the

associated losses. The dip in figure 7 (b) is likely caused by unideal periodicity of the

chain due to fabrication tolerances or by contamination.

Figure 8 shows the measured and simulated group delays for the resonator chains.

As in the response of figure 7, the ripple is due to impedance mismatch. Simulation with

matched source and load impedances removes the ripple and gives center-band group

delays of 20 µs and 10 µs for chain 1 and chain 2, respectively, as indicated with a thick

solid line in figure 8. This is in agreement with theoretical predictions when the fitted

values for the spring coefficients in table 3 are used in (9).

5. Low-impedance design

As the above measurement results show, the analysis of section 2 can be used to

design MEMS resonator-chain delay lines with record high time delays in a given

physical size. However, to facilitate matched source and load termination for the

MEMS delay line and to avoid using a differential readout (see figure 6), a much lower

characteristic impedance, well below the pad (Cpad), feed-through (Cthr) and transducer

(C0) impedances, is needed than what was obtained above in table 3. As shown by (14)

this can be achieved by enhancing the coupling, η, and by strenghtening the anchoring



Microelectromechanical delay lines with slow signal propagation 11

Table 3. Parameter values for the tuning-fork resonators that give a better fit between

simulations and measurements in figure 7 than the design values of table 1.

fork 1 fork2 unit

k′ 12.6 9.9 kN/m

K 8.5 3.3

f0 12 11 MHz

∆f 1.3 2.6 MHz

v0
g 70 140 m/s

T 0
g 20 10 µs

Zc 6 13 MΩ

B 42 µm

d 230 nm

Q 8000
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and (c)) and chain 2 ((b) and (d)). The ripple is due to impedance mismatch at source

and load.



Microelectromechanical delay lines with slow signal propagation 12

11 12.8

-50

62

175

287

f / [MHz]

!
/ 

[
µ

s
]

11 12.8

-50

-12

25

62

100

9.3 12.8

-50

-22

5

32

60

9.3 12.8

-50

90

230

370

f / [MHz] f / [MHz]

f / [MHz]

!
/ 

[
µ

s
]

!
/ 

[
µ

s
]

!
/ 

[
µ

s
]

Chain 1 Chain 2

M
e
a
s
u

r
e
d

(a) (b)

(c)

S
im

u
la

te
d

(d)

! = 20 µs ! = 10 µs

Figure 8. Measured and simulated group delay with ripple due to impedance
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spring, k′, with respect to the coupling spring, k (larger K). Reducing the anchoring

height, h1, in figure 4 to 5 µm, doubling the beam separation (wf → 20 µm) and taking

the narrowing of the structures in fabrication into account in design, a much higher

spring-constant ratio of K = 74 is expected with k′ = 18 kΩ and M = 4.8 ng. For

good signal coupling, it is also important to design the first and last resonator in the

chain to compensate for the electrical spring softening as well as for the stiffening of the

first and last beams due to the capacitive coupling occuring over the transducer area

as opposed to the point-force inter-resonator coupling along the chain. If, in addition,

the transducer gap is reduced to d = 100 nm, a delay line with estimated characteristic

impedance of Zc = 22 kΩ (14), bandwidth of ∆f = 185 kHz (7) and group velocity of

v0
g = 13 m/s (9) can be obtained with a bias voltage of 30 V (η = 11 µFV/m).

Figure 9 shows the simulated response and group delay for a low-impedance chain

of 80 resonators with reduced pad (Cpad = 91 fF ⇒ Zpad = 127 kΩ) and feed-through

capacitances (Cthr = 8 fF ⇒ Zthr = 1.3 MΩ). The transducer capacitance is C0 = 37

fF corresponding to Z0 = 308 kΩ. Consequently, the characteristic impedance of the

transmission line is much lower than Zpad, Zthr and Z0 as required by good signal

coupling. Figure 10 shows the corresponding simulation setup. To have a flat group

delay at band center, resistive source and load termination to RL = 14 kΩ was used that

is somewhat lower than the estimated characteristic impedance of 22 kΩ. Higher pad

and feed-through capacitances result in passband ripple and increased insertion loss if

the characteristic impedance is not simultaneously further lowered.
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Figure 11 shows voltage amplitudes for a simulated transmission of a signal pulse

through the delay line. The pulse duration is 115 µs to have the signal spectrum fit in

the passband of the line. The signal frequency in the pulse is 13.875 MHz which is at

the passband center. The rise time of the output voltage from 10 % to 90 % of the peak

value in figure 11(b) is 15 µs.

6. Discussion and conclusions

A capacitively-coupled MEMS delay-line structure with record slow signal propagation

was presented for HF frequencies enabling miniaturization of time-delay components.

The properties of the delay line were theoretically analyzed and the theory was verified
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width ∆T = 115 µs transmitted through the delay line of figure 9 at the passband

center.

in measurements with fabricated devices consisting of 80 series-connected MEMS

resonators. The fabricated delay lines had too high characteristic impedances for

practical applications but careful design can result in impedance levels of few kiloohms

as shown in the paper. To reach higher frequencies, the resonator dimensions have

to be scaled down which, however, weakens the capacitive coupling (increases the line

impedance) unless the reduced transducer area is compensated by a smaller gap or a

higher bias voltage. For clamped beams, the resonance frequency, f , depends on the

width, w, and length, L, of the beam as f ∼ w/L2. Since the beam height, H , needs

to be kept as high as possible for good coupling, fabrication tolerances easily limit the

beam to be well thicker than a micrometer. Thus, for higher frequencies, a lower aspect

ratio, L/w, of the beam is required which results in a lower quality factor, Q ∼ (L/w)3,

due to clamping loss [24]. In addition to a group velocity that is much lower than for

other acoustic delay lines (SAW or BAW), the MEMS line is characterized by a narrow-

band response. This can be utilized in applications that would otherwise require a

separate bandpass filter such as in wireless RF or ultrasound communication systems.

For example, a low-power transponder terminal, communicating with on-off keying, is

schematically shown in figure 12. Such transponders could be utilized, for example,

in low-datarate sensor applications. Here, the reader sends an RF pulse to the sensor

terminal in which the pulse is either retransmitted back to the reader (bit 1) or shunted

to ground (bit 0).
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