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Methods for Machine Vision Based
Driver Monitoring Applications

An increasing number of information and driver-assistive facilities – such
as PDAs, mobile phones, and navigators – are a feature of today's road
vehicles. Unfortunately, they occupy a vital part of the driver's attention
and may overload him or her in critical moments when the driving situation
requires full concentration. The scope of this thesis is to investigate the
feasibility of techniques and methods, previously examined within the
industry, for monitoring the driver's momentary distraction state and level
of vigilance during a driving task. The study does not penetrate deeply into
the fundamentals of the proposed methods but rather provides a
multidisciplinary review by adopting new aspects and innovative approaches
to state-of-art monitoring applications for adapting them to an in-vehicle
environment. The thesis includes five original publications that have
proposed or examined image processing methods in industrial applications,
as well as two experiment-based studies related to distraction detection in
a heavy goods vehicle (HGV), complemented with some initial results from
implementation in a passenger car.
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Kutila, Matti. Methods for Machine Vision Based Driver Monitoring Applications [Menetelmiä
konenäköpohjaisiin kuljettajan monitorointisovelluksiin]. Espoo 2006. VTT Publications 621. 
82 p. + app. 79 p. 

Keywords driver monitoring, machine vision, distraction, fatigue, wavelets, SVM, neural
networks, classification, cameras, traffic safety, vehicles, sensors, colour vision,
alertness, gaze, eyes, head, workload, traffic safety and vigilance 

Abstract 

An increasing number of information and driver-assistive facilities�such as 
PDAs, mobile phones, and navigators�are a feature of today�s road vehicles. 
Unfortunately, they occupy a vital part of the driver�s attention and may 
overload him or her in critical moments when the driving situation requires full 
concentration. The automotive industry has shown a growing interest in 
capturing the driver�s behaviour due to the necessity of adapting the vehicle�s 
Human�Machine Interface (HMI), for example, by scheduling the information 
flow or providing warning messages when the driver�s level of alertness 
degrades. The ultimate aim is to improve traffic safety and the comfort of the 
driving experience. 

The scope of this thesis is to investigate the feasibility of techniques and 
methods, previously examined within the industry, for monitoring the driver�s 
momentary distraction state and level of vigilance during a driving task. The 
study does not penetrate deeply into the fundamentals of the proposed methods 
but rather provides a multidisciplinary review by adopting new aspects and 
innovative approaches to state-of-art monitoring applications for adapting them 
to an in-vehicle environment. The hypotheses of this thesis states that detecting 
the level of distraction and/or fatigue of a driver can be performed by means of a 
set of image processing methods, enabling eye-based measurements to be fused 
with other safety-monitoring indicators such as lane-keeping performance or 
steering activity. The thesis includes five original publications that have 
proposed or examined image processing methods in industrial applications, as 
well as two experiment-based studies related to distraction detection in a heavy 
goods vehicle (HGV), complemented with some initial results from 
implementation in a passenger car. 
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The test experiments of the proposed methods are mainly described in the 
original publications. Therefore, the objective of the introduction section is to 
generate an overall picture of how the proposed methods can be successfully 
incorporated and what advantages they offer to driver-monitoring applications. 
The study begins by introducing the scope of this work, and continues by 
presenting data acquisition methods and image pre- and post-processing 
techniques for improving the quality of the input data. Furthermore, feature 
extraction from images and classification scheme for detecting the driver's state 
are outlined based in part on the author�s own experiments. Finally, conclusions 
are drawn based on the results obtained. 
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Kutila, Matti. Methods for Machine Vision Based Driver Monitoring Applications [Menetelmiä
konenäköpohjaisiin kuljettajan monitorointisovelluksiin]. Espoo 2006. VTT Publications 621.
82 s. + liitt. 79 s. 

Avainsanat: driver monitoring, machine vision, distraction, fatigue, wavelets, SVM, neural 
networks, classification, cameras, traffic safety, vehicles, sensors, colour vision,
alertness, gaze, eyes, head, workload, traffic safety and vigilance 

Tiivistelmä 

Kuljettajan tukijärjestelmien määrä kasvaa tulevaisuudessa. Tämä helpottaa 
ajamista ja lisää ajomukavuutta, mutta tuo toisaalta mukanaan lieveilmiöitä. 
Muiden muassa matkapuhelimet, navigaattorit ja musiikkisoittimet kilpailevat 
yhä enenevässä määrin kuljettajan huomiokyvystä. Mikä pahinta, nämä laitteet 
saattavat haitata kuljettajan keskittymistä ja aiheuttaa onnettomuuden vaaran. 
Ajoneuvoteollisuus on tästä syystä osoittanut kasvavaa kiinnostusta kuljettajan 
tilaa monitoroivia järjestelmiä kohtaan. Nämä järjestelmät mahdollistaisivat kul-
jettajan ja ajotilanteen mukaan säätyvän älykkään käyttöliittymän kehittämisen. 
Tällainen käyttöympäristö voisi esimerkiksi viivyttää ei-kiireellisten ajoneuvon 
tilatietojen välittämistä, kuten tuulilasin pesunesteen loppumisesta varoittavaa 
viestiä, kunnes kuljettaja todetaan �valmiiksi� vastaanottamaan informaatio. 
Tavoitteena on siis tehdä ajamisesta entistä mukavampaa ja mikä tärkeintä myös 
turvallisempaa, jottei kuljettajaa häirittäisi kriittisillä hetkillä. 

Tämän väitöstyön tarkoituksena on tutkia teollisessa ympäristössä kokeellisesti 
hyväksi havaittujen menetelmien soveltuvuutta kuljettajan havaintokyvyn ja 
väsymystilan arviointiin. Työn tarkoitus ei ole tuottaa syvällistä analyysia ehdo-
tetuista menetelmistä, vaan tarkastella asiaa poikkitieteellisesti. Tämä avartaa 
uusia näkökulmia ja innovatiivisia lähestymistapoja olemassa oleviin monito-
rointijärjestelmiin ja auttaa niiden sovittamisessa ajoneuvoympäristöön. Työssä 
testattava hypoteesi esittää, että kuljettajan häiriytyminen ja/tai väsymystila 
voidaan havaita kuvankäsittelymenetelmillä. Niiden avulla on mahdollista mitata 
häiriytymisaste kuljettajan silmistä ja yhdistää tätä tietoa muihin indikaattoreihin 
kuten kaistalla vaelteluun tai epätasaisiin ohjausliikkeisiin. Tämä työ koostuu 
viidestä alkuperäisjulkaisusta, joissa käsitellään ja testataan kuvankäsittely-
menetelmiä teollisissa sovelluksissa, sekä kahdesta julkaisusta, joissa tutkitaan 
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kuljettajan häiriytymisen mittaamista kuorma-autossa. Näitä tuloksia on 
täydennetty alustavilla mittauksilla henkilöautoissa. 

Tarkasteltujen menetelmien tulokset esitetään pääosin liitteenä olevissa 
alkuperäisjulkaisuissa. Johdanto-osan tarkoitus on luoda ajatus siitä, miten 
ehdotetut menetelmät tulisi yhdistää ja millaisia mahdollisuuksia ne avaavat 
kuljettajan monitorointisovelluksissa. Väitöskirjassa esitellään aluksi työn 
aihepiiri, sen jälkeen datan keruussa käytetyt laitteet, menetelmät ja kuvan-
käsittelytekniikat. Työ tarkastelee, kuinka tiedon luotettavuustaso paranee eri 
menetelmiä ja kuvankäsittelytekniikoita käyttämällä. Seuraavaksi kirja esittelee 
testituloksiin pohjautuen piirteiden irrotus- ja luokittelumenetelmiä kuljettajan 
tilan tunnistamiseksi. Lopuksi tarkastellaan saavutettuja tuloksia ja niiden 
merkittävyyttä. 
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1. Introduction 

1.1 Background 

During 2004, VTT commissioned two market analyses to assess the national 
interest in implementing camera vision technology in the plastic and food 
industry: 132 responses were gathered from the plastic industry field and 146 
from the food sector. More than half of the companies reported not yet 
employing vision techniques in their day-to-day work, which highlighted a 
growing market potential. However, an even more promising field for such 
technology is the vehicle industry, since future prospects are that more 
sophisticated In-Vehicle Information Systems (IVIS) and Advanced Driver 
Assistance Systems (ADAS) are needed to take account of driver�s states and the 
actual driving environment. So far, the vision systems have been rarely adopted 
due to cost, lack of robustness and the large size of the equipment. Monitoring 
the driver�s behaviour has received a lot of interest recently. However, it is not 
the only example in the traffic-safety field where a camera vision technique is 
generally applicable. Lane positioning, which is also an important driving 
performance descriptor (Publications VI and VII), is typically measured by an 
optical device (McCall & Trivedi 2006). Huber et al. (1998) present a camera 
implementation which uses polarisation planes to identify ice or water on the 
road, thus providing an opportunity for the driver to adapt speed and steering 
movements to reduce the chance of skidding. Hautiere et al. (2006) have 
explored a methodology for estimating the visible range in foggy conditions. 
The above examples indicate the potential for utilizing optical instrumentation in 
future vehicles and provides an understanding of why this topic is highly 
prominent in the automotive industry at the moment. 

One of the major reasons for traffic accidents is the driver�s own behaviour (e.g. 
in Figure 1) (Dingus et al. 2006, Neale et al. 2005, Klauer et al. 2006). 
According to French statistics, a lack of attention due to fatigue or sleepiness 
was a factor in one in three motorway accidents, while alcohol, drugs and 
distraction was a factor in one in five accidents in 2003 (Federation of French 
motorway and toll facility companies 2006). Moreover, Bellotti et al. (2005) and 
Tattegrain et al. (2005) recognised the necessity of adapting the information flow 
to the in-vehicle HMI by delaying non-urgent messages until the driver�s 
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dynamic behaviour returns to an unstressed traffic situation. It is anticipated that 
without smart information scheduling, the driver pays too much attention 
towards the entertainment facilities or the status of monitors in the vehicle. 
Similar rationalisations were earlier performed in designing the cockpits of 
aircrafts and fighters (Bruce et al. 1998). VTT has recently been commissioned 
by the European automotive industry in the field of monitoring a driver�s 
momentary state. Driver monitoring is useful for many types application, 
including warnings when the driver�s attention is impaired, providing possibility 
to reduce the effect of a distraction source or performing real-time HMI-
adaptation (Arensberg 2004, Almén 2003, Claesson 2003, Larsson & Victor 
2005, Victor 2000, Victor 2003). The activity, which has recently motivated the 
author, is a project called AIDE (Engström et al. 2006). The project aims to 
generate smart HMI technology for adapting the user interface of in-vehicle 
information systems (IVIS) and advanced driver assistance systems (ADAS) 
according to the driver�s ability and available attention. The theme of this thesis 
is to discover the methods and the various technological features necessary in 
order to assess the driver�s behaviour so as to enable HMI adaptation to critical 
traffic safety situations. 

Figure 1. Heavy goods vehicle accident where the driver�s attention was 
degraded due to an external event. 
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Publications I�V provide industrial experiments for constructing machine-vision 
facilities whereas Publications VI and VII explore methods and the results of 
experiments to detect the level of visual and cognitive distraction of a driver. 
The main effort in this thesis is applied to the principles of optical measurement. 
A number of studies exists that focus on creating a platform for monitoring-
applications or which relate to fatigue detection. However, publications that 
merge these two topics are not commonly presented. Furthermore, for example, 
camera calibration techniques are considered rarely, although such is crucial in 
order to use low-cost camera components in stereo vision systems. Basically, the 
machine-vision principles (e.g. the steps needed to provide the classification 
result or difficulty of the varying lighting conditions) are equally important to 
vehicle systems and to industrial applications. An industrial aspect exists 
strongly in the background of this study. Thus, various methods that have been 
evaluated in industrial applications are proposed here to improve overall 
performance, and in particular, the robustness of driver-monitoring systems. 

1.2 Hypothesis, objectives and constrains 

The aim of this study is to provide guidelines for techniques and signal 
processing methods in order to monitor the driver�s alertness and availability for 
driving (Figure 2). 
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Figure 2. The ellipses describe by whom and where the activities of multi-
disciplinary driver-monitoring are mostly performed. This study is related more 

to distraction detection (the dark grey ellipse) but provides some minor 
propositions for fatigue detection too. 

The research hypothesis of this study is: 

Image processing methods�such as data acquisition, camera calibration, 
attention mapping, feature extraction and classification�for performing eye-
based measurements (movements, blinking, attention targets, etc.) in 
combination with other indicators (e.g. lane-keeping performance or steering 
wheel movements) enable the detection of the driver�s momentary distraction or 
fatigue level. 

This thesis combines 7 different applications: camera calibration (Publication I), 
object mapping (Publication II), neural networks (Publication II), wavelets 
(Publication III), data transmission (Publication III), data acquisition 
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(Publication IV), colour classification (Publication V), which are examined in 
the context of industrial applications. The two experimental studies in relation to 
driver monitoring (Publications VI and VII) generate the foundation for the 
arguments of this dissertation. To briefly summarise, Publications I�V are 
intended to provide a broad foundation to monitoring activities, whereas 
Publications VI and VII focus on the field experiments. 

The major objectives of this thesis are: 

• To present guidelines for generating the data flow, thus creating a 
platform for machine vision applications for driver monitoring 

• To obtain experimental results for monitoring the driver's visual 
distraction level, which measures how much the driver�s eyes are 
directed to the road ahead 

• To explore cognitive distraction detection in practice. Cognitive 
distraction refers to whether the driver�s thoughts are on the driving task 
or impaired by e.g. daydreaming, fatigue, deep thinking, etc. (Victor 
2005). 

Minor contributions are also focused on: 

• Review requirements for data acquisition with camera vision equipment 

• A feasibility discussion concerning the following topics: eliminating the 
optical errors of lenses, using wavelets for eye tracking, activity 
measures with colour analysis, using neural networks for distraction or 
fatigue analysis and automatic attention target mapping in a cockpit 

• Description of the relevant parameters for assessing the state of a driver. 

This thesis does not cover the following items: 

• The experiments are restricted to vehicle drivers and are not directly 
applicable for human monitoring in other environments (e.g. aircrafts). 

• No other sensing methods than machine vision sensing are explored 
(e.g. EEG/EOG analysis for detecting drowsiness of a driver). The 
literature review anticipates that eye analysis is the most appropriate 
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methodology to perform the activity analysis; moreover, an EEG 
measurement for example would require devices that have to be installed 
in a particular location and touch a human body and therefore, are not 
feasible for commercial monitoring equipment. 

• An exhaustive analysis of compression techniques or a comparison of 
communications channels. The compression techniques have been 
researched exhaustively by a number of studies during the last two 
decades. The compression methods would generate a dissertation topic 
in itself and are, therefore, only mentioned in the text when relevant to 
discussing communication between in-vehicle information devices. 

• Experimental results for utilising optical-error-removal, eye tracking or 
performing drowsiness/fatigue detection in a true traffic environment. 
The experimental results rely on the faceLAB system, which includes 
the above methods. Therefore, the topics are investigated in one sense 
but not directly. However, since the image processing is the main 
measurement principle, the methods needed to perform driver 
monitoring with a camera vision technique are explored individually 
step by step. 

• The detection techniques are restricted to methods of supervised 
learning. Most of the time a human being behaves �normally�, being 
alert while driving. Therefore, unsupervised training methods would not 
presumably distinguish the abnormal states, since they may not appear 
under the variation of normal driving indicators. 

1.3 Prior knowledge of driver monitoring 

Monitoring of driver status can be divided into the two main branches: 
distraction detection and identifying sleepiness. However, they partially overlap 
since the context awareness of a driver is related to sleepiness and to cognitive 
distraction, which both represent mental occurrences in humans. Bergasa et al. 
(2006) have been motivated in his work to discussing distraction�also the main 
objective of Publications VI and VII�as the more severe problem due to an 
increasing number of Advanced Driver Assistance Systems (ADAS), PDAs, 
mp3 players, etc. in modern vehicles. However, in practice Bergasa et al. (2006) 
performed a hardware implementation for monitoring the level of a driver�s 
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vigilance with Percent Eye Closure (PERCLOS) and with additional camera 
measurements: eye blinking frequency, gaze fixations and head movements. 

Publication VI discusses visual distraction, which is the estimation of how much 
the driver pays attention to driving compared to non-driving related targets (e.g. 
radio, mobile phone, passenger, etc.). Dinges et al. (1998) have found that a 
relationship exists between eye closures and lapses of visual attention. Driver 
activity in the cockpit is also investigated by Wahlstrom et al. (2003), who built 
up a system for tracking the driver�s eyes and detecting, for example, radio-
directed activity. Their interest was in detecting the driver�s momentary attention 
target, as detailed in Publication VI. Fletcher et al. (2001 and 2003) discussed 
how to estimate the driver state (fatigue, inattention due to traffic context) and 
fused these with the driving performance indicators (lane-keeping and obstacle 
detection). They utilised the faceLAB system (Seeing Machines 2006) in the 
experiments and produced some promising results. However, a more advanced 
evaluation of the results is needed before making further judgements on the 
method�s performance. 

The European Commission (EC) has announced two extensive activities for 
promoting the monitoring of driver fatigue: AWAKE and Sensation. Their 
objectives are to develop a technique that could be feasibly implemented in the 
vehicle to maintain the alertness of the driver. A major conclusion of the projects 
is that typically the fatigue measurement devices should not rely solely on 
detecting eye closures. The suggestion is also to adopt a behavioural analysis 
(e.g. limb, gaze or head movements, etc.) of the driver and also to utilise driving 
performance measures (e.g. lane-keeping or steering wheel reversal rate) 
(Boverie 2004). An example of such an idea is given by Grace et al. (1998), who 
have provided a methodology for fusing PERCLOS with behavioural 
measurements (use of acceleration, steering wheel movements, lane and head 
positions) so as to detect fatigue. It is envisaged that these indicators will later be 
merged with neural networks. However, probably the only commercial optical 
fatigue-detecting device that has been offered is that of Grace (2001). The device 
provides PERCLOS-based drowsiness assessment and is intended for use in 
HGVs. 

Grauman et al. (2002) have proposed utilising PERCLOS alongside detection of 
a driver�s head movements so as to improve the robustness of their monitoring 
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scheme. The eye-closure measure that was adopted utilises principal component 
analysis (PCA) to decrease the effect of varying lighting conditions, that may 
occur, for example, as a result of tunnels, weather conditions, etc. Interestingly, 
the head nodding detection was implemented with an algorithm intended to 
increase total performance by making the eye-tracking more reliable by 
extracting glances towards a map or mirror checks. Eye-tracking was also the 
topic of Veeraraghavan and Papanikolopoulos (2001), who applied a method 
utilising skin colour for extracting eyes and thus, providing a platform for 
performing PERCLOS. Utilising colour information is the topic of Publication V 
and will also be discussed more in Chapter 4. Boverie et al. (2002) have 
examined how to detect driver vigilance by using vehicle speed, steering wheel 
movements, eye-blinking and vehicle lateral position. They model the driver 
statistically and generate a hypothesis that a large deviation compared to the 
�standard� model is the result of impaired vigilance. This is a practical approach, 
since training the classifier with non-vigilant data is almost impossible, i.e. the 
driver cannot be asked to drive drowsily for the first few kilometres. Santana 
Diaz et al. (2002) used the vehicle�s lane-position variation, steering wheel 
movements and speed variation, transforming them into wavelets so as to 
monitor the driver�s state. Bittner et al. (2000) have performed an experimental 
study measuring driver fatigue outside the laboratory and on a real road. 
Although a statistical analysis was not completed in the paper, the study reported 
effects in steering activity and lane keeping performance. However, it 
surprisingly reported sceptical results for an association between blinking 
frequency and fatigue, which does not concord with other related studies 
(Bergasa et al. 2006, Boverie et al. 2002, Dinges et al. 1998). 

Pilutti and Ulsoy (1995) have investigated the possibility of using lane keeping 
performance and variations in steering movements to create and update on-the-
fly the model of a driver. Their experiments support the assumption that the 
descriptors (lane position variation and steering activity) are relevant for 
monitoring the driver�s state. On the other hand, the study of Rimini-Doering et 
al. (2001) explored the relationship between driver�s eye movements and lane-
keeping with the driver vigilance. Heitmann et al. (2001) analysed head and gaze 
position variance, pupillary changes, and eye blink rate to estimate driver 
alertness. They observed that all the tested input variables were influenced by 
the driver state. Moreover, they concluded that any of the single signals alone 
cannot provide a reliable indication of fatigue, so they instead promoted the 
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utilisation of multiple descriptors in conjunction with a neural-fuzzy hybrid 
algorithm. Wang et al. (2003) have successfully examined the Gabor wavelet 
functions for eye measurements used in conjunction with MLP-type neural 
networks for detecting driver fatigue. 

Thus far, all the presented monitoring applications have relied solely an actual 
data. Nevertheless, it is a fact that human sleepiness does not appear suddenly: 
the transition from a vigilant to sleepy state proceeds slowly, via a slight 
drowsiness phase. Zhu and Ji (2004) used a fusion of eyelid, gaze and head 
movement monitoring with facial expression to detect fatigue and complimented 
the descriptors with information on temperature and sleep history. The test 
results disclosed a very good and robust outcome for a number of different test 
subjects of different ages, genders and ethnic background. 

Some driver monitoring techniques were investigated initially in the aviation 
industry some 20 years ago. Albery et al. (1987) published results that identified 
a correlation between the various human measures (visual evoked response, eye 
blinks, heart rates, arm muscle activities and blood pressure) and mental 
workload caused by noise in the cockpit of a fighter aircraft. Later, East et al. 
(2002) explored appropriate features and classification methods for detecting the 
mental workload of a fighter pilot. An EEG signals, accompanied by a subset of 
heart rate, breathing, and eye-blinking, were used to compare the capability of an 
MLP neural network and statistical classification methods. They concluded that 
the neural networks provided the better detection performance. O�Brien (1988) 
developed a hardware set-up for detecting the blinking frequency of the pilot�s 
eyes. The hardware was verified by comparing the result to an EOG signal and 
they reported a 90% success rate for detecting eye blinks. 

Lal et al. (2003) have created software to detect fatigue that utilises frequency 
analysis of the EEG signal. The promising results were based on tests performed 
on 10 test subjects. However, more exhaustive and naturalistic tests should be 
performed before strong conclusions can be drawn on the robustness and 
performance of the methodology. Gonzalez-Mendoza et al. (2003) used 
EEG/EOG with the support vector machines (SVM) to estimate driver vigilance. 
However, Bittner et al. (2000) reported unexpectedly in some of their 
experiments concerning the EEG/EOG signal�s dependency on fatigue, even 
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though other studies (Lal et al. 2003, Gonzalez-Mendoza et al. 2003) have 
suggested a relationship exists. 

The general conclusion is that state-of-the-art driver monitoring techniques can 
be categorised into methods that measure the driver�s actual state (e.g. eye-
blinking, gaze movement, etc.) and those that assess the driver according to 
driving performance (e.g. lane-keeping, headway to front vehicle). The third and 
more advanced technique is a fusion of these first two methods. 
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2. Structure of the Thesis 

The thesis begins (Chapter 1) by exploring the advantages of driver monitoring 
applications from the perspective of promoting traffic safety. Then the research 
hypothesis, aims and limitations of the work are declared. The final part of this 
first chapter consists of a review of the state-of-the-art techniques, 
implementations and pre-existing know-how for monitoring driver state, driver 
distraction or fatigue. Chapter 2 describes the structure of this thesis. In general, 
machine vision applications require a data flow chart which is illustrated in 
Figure 3. The data flow is also relevant in driver monitoring but the steps require 
different view points and adaptations in order to perform robustly and to be cost 
effective within in-vehicle systems. The driver monitoring technology workflow 
has not previously been considered comprehensively on scientific grounds 
despite the existence of solitary monitoring applications and their preferences. 
Therefore, a consideration of the whole chain is one of the innovations of this 
thesis. The monitoring data flow steps are discussed in more detail in Chapters 3, 
4 and 5. 

Chapter 3 presents methods for data acquisition and transmission. Optical 
sensing principles are the major focus but further aspects are considered by 
taking into account experiences from the gas sensor development project. Data 
transmission is significantly dealt with so as to explain the relevance of data 
compression when images or videos are transmitted. 

Chapter 4 starts by providing guidelines for eliminating optical errors and 
performing feature extraction. The first part concentrates on the image post-
processing stage which covers camera calibration. The feasibility of using 
wavelets and colour analysis in driver monitoring are discussed and additionally, 
the most relevant features are retrieved from the literature. 

Chapter 5 is the crucial part of this thesis, discussing distraction and fatigue 
detection techniques and also outlining experimental results. The section covers 
classification methods for detecting visual and cognitive distraction. 
Additionally, the section discusses vigilance detection and automatic adaptation 
of the attention mapping. This section also contains an analysis of the proposed 
classification methods in practice. 
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Chapter 6 explains the relevance of the original publications to the objectives of 
this thesis and the author�s contributions to each. Chapter 7 outlines the major 
achievements and considers the future development work necessary for building 
real commercial products that would likely be incorporated into vehicles by car 
manufacturers so as to monitor a driver�s momentary state. The original 
publications are attached as appendices at the end of this thesis. 

 

Figure 3. General data flow of machine vision systems, which is relevant also to 
driver monitoring applications. Items categorised in each step represent the 

topics and aspects discussed in this thesis. 
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3. Data Acquisition and Transmission 

3.1 Overview 

The topics of this chapter include two items: data acquisition and transmission, 
as detailed in top of the data flow diagram (Figure 3). The first topic is intended 
to describe the general requirements of data acquisition devices for monitoring 
driver behaviour. Since the major interests of this study are the principles of 
optical measurement, the main focus is on a stereo vision system, with a 
practical experiment of such a system detailed in Chapter 5 and Publication VII. 
However, data acquisition is also discussed at a more general level by taking 
into account the experiments of the gas sensor development process presented in 
Publication IV. 

The second topic (data transmission) addresses the necessity of data 
compression when images or videos are transmitted, since the bandwidth of the 
vehicle buses (CAN: 20 kbit/s � 1 Mbit/s, MOST: 20�50 Mbit/s) are shared by 
multiple in-vehicle applications. The description of compression and 
reconstruction takes in the wider aspects of industrial experiences, which are 
examined in more detail in Publication III. 

3.2 Data acquisition 

In many cases, a simple on/off -type output is sufficient and more reliable, as in 
the gas sensing application (Publication IV). The gas sensor�s (see Figure 4) 
correlation with a camera may sound awkward at first. However, both of them 
process an analogue signal that is converted to digital format for analysis in a 
computer. Thus the gas sensor is like an imaging element based on only one 
pixel and senses gas concentrations instead of light intensities. In general, the 
data source is not crucial for the purposes of this thesis. The main point is that 
the sensor provides the descriptors (i.e. features) that have an obvious 
dependency with the desired identification result. For example, the sensing 
system in Publication V could be an X-ray detector instead of a colour camera. 
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Figure 4. The developed data acquisition device for detecting gas concentrations 
in Publication IV. 

Eye tracking sets high demands for data quality in the driver monitoring 
applications as the following examples anticipate. Eriksson and 
Papanikolopoulos (1997) presented an eye-tracking and also iris-finding 
technique by utilizing spatial complexity around the eyes. Perez et al. (2003) 
have developed the lightning arrangement for detecting a driver�s pupils by 
using the corneal glint reflections. Ito et al. (2002) proposed motion-picture 
processing in which the peaks of the detected eye-closure shapes are utilised. 
Publication IV investigates the adaptation of the data acquisition (gas sensor) 
device to an operating environment. In the cases of driver monitoring, the 
machine vision system is utilised in outdoor conditions and therefore, a fast and 
easy sensor adaptation capability is desired. Publications VI and VII utilise a 
stereo vision system for gathering the input data to assess driver behaviour. The 
platform in both papers is the faceLAB (Seeing Machines 2006) stereo vision 
system, which provides 3D measurements concerning the driver�s head and gaze 
movements and advanced eye analysis results (e.g. blinking frequency, eye 
closure, saccades, etc.). The low-cost Small Vision Systems (Konolige & 
Beymer 2006) may achieve the necessary inputs as well (see. Figure 5), but 
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requires additional work for implementing the eye-tracking algorithm. 
Moreover, the Small Vision System requires further development before the data 
quality meets the requirements of analysing algorithms that are reported in 
Publications VI and VII. The faceLAB system provides an automatic calibration 
capability, which is the essential factor for a robust analysis of driver distraction. 

 

Figure 5. The stereo vision system installed on the driving simulator for testing 
and adapting the driver monitoring algorithms. 

Noise due to a data source requires a proper filtering technique. Mostly, the 
noise patterns are predicted according to the preliminary known characteristics 
of the hardware. However, this is an important step since the consequence of an 
unstable signal makes it more difficult to create the proper feature vectors, which 
therefore may drastically decrease the overall target identification performance. 
In principle, two alternative processing or calibration techniques exist for 
eliminating anomalies in a raw sensor signal. The first option is to use hardware-
based signal adaptation and the second is to convert the input signal to an 
appropriate format and then remove known errors. The hardware-based 
calibration methods are fast and provide in many cases a better result (e.g. the 
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gas sensor in Publication IV), since the real signal is adapted and therefore 
information loss can be better controlled. The benefit of calibrating with 
software is that parameters can be changed on the fly and this is preferable in 
driver-monitoring applications where the environment is highly dynamic. 

With proper calibration even a poor signal may provide sufficient results, but at 
a significantly lower cost than the selection of slightly better sensing elements 
(or cameras) as Publication IV indicates. It was initially predicted that typically 
the VOC or Ozone measurement devices would cost 1500 EUR each (Ho et al. 
2001), but the current expected market price for the developed sensor is 800 
EUR, which measures both gas types with adequate accuracy. The most 
demanding element in the development of the sensor was achieving proper 
calibration, which was initially successful in a laboratory. However, the example 
indicated that the final calibration had to be completed in a real environment 
where humidity, heat and dirt are realistic. An improved adaptation capability, 
which is discussed more on later, would improve the gas sensing application but 
on the other hand it would also increase the cost of the hardware. Nevertheless 
the same platform can be utilised for the sensor with an advanced adaptation 
technique if the price increase were acceptable. 

Adaptation to a dynamic environment is an essential property since the 
identification performance rate is closely related to the appropriate features. In 
the faceLAB system, the cameras are adapted to the existing lighting conditions 
by automatically adjusting the gain, thus keeping the video signal at a sufficient 
level. Publication IV shows the application in which noise removal and gain 
control are also made at the hardware level. The gas sensor is calibrated 
internally by creating a lookup table, which maps the voltage output according to 
ozone and VOC levels. The sensor applies the gas levels without the need for 
further processing in a remote computing unit (i.e. the calibration has been 
performed internally in the data source). It should be noted that calibration is 
also discussed later in Chapter 4 but there it relates more to artificial image 
correction according to preliminary created formulas, i.e. it can be considered as 
a higher level correction, which is not typically implemented inside an 
embedded sensing device. 

As mentioned, the test platform of the driver monitoring implementation of this 
thesis contains two Sony FCB-EX480A gray scale CCD cameras. The cameras 
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are sensitive, guaranteeing sufficient operation also in dark lighting conditions 
(minimum required illumination is 0,7 lux). The cameras also included auto 
focus functionality and zooming capability. The cameras are high quality 
products intended for industrial surveillance and the drawback is the big size 
(50 x 52 x 88 cm) and the high price level (> 1000 EUR) when considering the 
in-vehicle products. The cameras are connected to the computer unit where the 
faceLAB (Seeing Machines 2006) software runs. The program tracks driver�s 
eyes and performs eye based measurements (e.g. PERCLOS, saccades, etc.). 
Unfortunately, the program includes also multiple measures which consume 
computation power and are not needed by the distraction detection module. 
Thus, relevance of dedicated embedded sensing system is addressed when the 
development work progresses to a real product for minimising the size and the 
price of the module to the reasonable level for passenger cars. 

3.3 Data transmission 

One future scenario could be that even if driver monitoring is performed inside 
the vehicle, the result may be useful outside as well. Wireless sensor networks 
are becoming a reality in industrial installations and the same trend has obvious 
benefits in the traffic safety field. Future predictions anticipate that the road�s 
infrastructure will include smart driver-assistant systems that will be able to 
communicate with the vehicles and also, the vehicles will include a capability to 
communicate with other vehicles. However, the reality is and will be also for the 
foreseeable future that wireless communication is limited by the available 
bandwidth. Therefore, it will be unlikely in the short term that they are capable 
of transmitting large data samples such as videos through the communication 
channel while the vehicles are moving. In some driver monitoring applications, a 
huge number of historical data is stored, which is impossible without signal 
compression (Ilic et al. 2004). Therefore, efficient compression algorithms are 
necessary especially in wireless communication, and this is apart from the 
bandwidth constraints of the in-vehicle buses (CAN: 20 kbit/s � 1 Mbit/s), which 
will however be increased to serve the development requirements of future 
multimedia devices (MOST: 25�50 Mbit/s). 

An interesting study is Del Bue et al. (2002), which detail the development of a 
smart camera capable of efficiently compressing the background while 
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maintaining tracked faces. Publication III discusses the wavelet-based 
compression method, which does not cause a blocking effect as does a DCT-
transformation (Tan et al. 1995) of the JPEG format and additionally, may in the 
reconstruction phase, provide descriptors that are useful in driver monitoring. 
Image compression has been a topic of hundreds of articles, each proposing 
techniques dedicated to a certain application or condition. Therefore, techniques 
are not discussed deeply here but rather, some idea of the feasibility of the 
proposed methodology is given (Publication III). The relevance of the wavelet-
based method will be discussed more in the chapter reviewing appropriate 
features. 

In the prototype implementation (see Figure 6), the video monitoring unit is a 
separate computer. The monitoring computer is connected to the data logging 
unit which is capable of collecting synchronised data from the vehicle�s CAN 
bus in order to utilise speed of a vehicle for the cognitive distraction detection. 
The logging unit also captures a video of the driver�s face, which is 
synchronized with other gathered data for allowing offline analysis later. The 
videos are compressed to MPEG- or AVI-files since they are stored for 
debugging and supporting the tests. Thus they are not transmitted in the CAN 
buses due to the insufficient bandwidth. There are separate non-standard busses 
built for transmitting videos. The distraction monitoring application, to which 
the image processing unit transmits the necessary data, runs in an industrial real-
time xPC computer of The Mathworks. The idea of using distributed computing 
units is practical also when considering the commercial implementations. 

The aforementioned logging facility is an interesting feature since there have 
been discussions between European Union (EU) authorities that the vehicles at 
least those intended for professional driving should be equipped with a black 
box like aircrafts for storing the last moments before an accident. The driver�s 
behaviour could be one of recorded things but this requires proper image 
compression for keeping size and price of the data storage unit low. 
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Figure 6. The hardware of the test systems. 
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4. Image Post-Processing and Feature 
Extraction 

4.1 Overview 

Since the price level of passenger vehicles are slightly decreasing despite the 
fact that an increasing number of in-vehicle electronics are being implemented, 
the costs of camera vision systems are required to be rather low (< 1500 EUR). 
Therefore, low-cost components are desired, which consequently promotes the 
importance of a software-based camera calibration routine. The distortion 
elimination procedure that can be applied to stereo vision to increase the 
robustness of the disparity calculation is described in begin of this chapter. 

The second topic of this chapter focuses on feature extraction, as depicted in the 
data flow illustration (Figure 3). It reviews the feasibility of utilising wavelet 
descriptors and colour features in driver monitoring. They are implemented 
experimentally in the industrial applications described in Publications III and V. 
A more exhaustive treatment of the relevant features is applied in this chapter 
while utilising the literature review in Chapter 1. 

4.2 Optical errors 

Beymer (2000) introduces an application for counting the number of persons 
entering a shop. The system uses the Small Vision System (SVS) (Konolige & 
Beymer 2006), which, it was discovered, suffers high radial distortions, and 
therefore, they implemented the famous Tsai�s method (Tsai 1987) so as to 
improve the robustness of the camera vision system. Eliminating optical errors is 
accentuated in a stereo vision application because the disparity calculation 
suffers or may even fail as a consequence of distortions. Low-cost stereo vision 
systems are expected to be incorporated into future passenger vehicles, thus 
removing optical errors will remain an important step in the development of 
driver-monitoring equipment. 

Top-quality glass lenses do not cause severe errors and are usable in practical 
computer vision applications, but they are also many times more expensive than 
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�traditional� optics. Plastics lenses, which are typically used in low-cost 
consumer devices like mobile phones, are the cheapest, but their imaging 
properties are poor and the captured pictures are mostly acceptable only for 
storing travelling memories. Car owners are ordinary people and they do not 
want to waste time for calibrating vehicle sensors. Thus, in addition to the low-
price requirement, easy calibration is a crucial aspect for in-vehicle camera 
vision systems. 

Ideal lenses refract light rays according to a pinhole model without influence 
from non-linear components in ray tracing (i.e. the rays are considered to pass 
the lens straightforwardly). However, lenses are made by grinding glass, which 
implicitly applies unique properties to each surface, thus making ray tracing 
more difficult. The quality of optics varies considerably depending on the 
material used and the manufacturing method, both of which reflect the main 
price factors. Each camera model is an approximation and the ideal camera 
model is impossible to formulate since all real imaging systems include some lens 
errors, generally called aberrations. The major errors are due to off-axis light rays 
when dealing with geometric optics. Dozens of different aberration types exist, 
some of them occurring independently and some having a mutual correlation. 

The major aberration types (Hecht 1998): 

• Distortion: pixels are mapped to incorrect locations (i.e. each image 
point is sharply focused but misplaced compared to ideal optics) 

• Spherical aberration: the marginal light rays bend more than those which 
are nearby an optical axis, therefore, producing two separate image 
planes 

• Coma: the rays which pass the lens in the periphery are focused closer to 
the optical axis than those tracing nearby the lens axis 

• Astigmatism: the meridional and sagittal image planes occur at different 
distances from a lens 

• Field curvature: the real image plane is rather curved than flat since all 
paraxial rays are converging via the single focal point 

• Chromatic: a refraction index depends on the wavelength, thus bending 
colours of a light beam individually and consequently causing blurring. 
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All aberration types except the last one listed are classified as monochromatic, 
since they do not depend on the colour of a light beam. The monochromatic 
aberrations are more important in driver monitoring, since black and white 
cameras are mostly used so as to avoid chromatic aberrations. 

The comprehensive modelling of imaging equipment requires highly complex 
differential formulas and in practice, it is convenient to focus on the major error 
sources. The error-removal methodology described in Publication I focuses 
specifically on removing distortion (Correia & Dinis 1998). Lenses with a short 
focal length provide more distortions than those with longer ones. An extreme 
case is a large view fish-eye lens (Shimizu et al. 1996). Shimizu et al. (1998) 
present a lens with a very large field-of-view, intended for robot navigation on a 
curved road. For this purpose, the resolution in the centre of the lens is sufficient 
but poor in the periphery due to high distortions. In driver monitoring 
applications, distortion removal is generally important due to the above-
mentioned demands for a stereo vision system as well as due to the intention of 
using a large camera view to avoid the extra costs and complexity involved in 
implementing multiple cameras. 

Distortion reforms the image in two ways (see Figure 7). Pincushion, also called 
negative distortion, expands the distance from the optical centre to the image�s 
corner compared to the axial change. The effect of barrel (positive) distortion is 
the opposite to pincushion. There the horizontal and vertical locations are 
expanded respectively more than the pixels at the 45° angle. Distortion modifies 
the pixel locations around the optical axis. The problematic element is that the 
optical axis does not normally coincide with the centre of the lens. Therefore, the 
offset of the axis has to be solved before eliminating the distortion. Some 
methods propose mathematical formulas (Heikkilä 1997, Heikkilä, & Silven 
1997, Zhuang & Roth 1996), which are added to the camera model. The 
alternative approach is to start by determining and compensating for the offset 
and then eliminating distortion. 
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Figure 7. The left most is an undistorted image and on right are illustrated the 
effects of barrel and pincushion distortions. 

An approximated linear correction algorithm can be created even if the exact 
error model is not known. In this context, linear correction means that the pixel 
locations are changed by determining the coefficient, the magnitude of which 
depends on the distance from the optical axis. That may work as a first aid for 
minimising the error but advanced calibration algorithms utilise high-order 
polynomial functions due to the non-linear nature of distortion. Probably the 
most famous calibration algorithm has been proposed by Tsai (Zhuang & Roth 
1996). In that method, the calibration is performed in two consecutive steps, first 
solving the rotational and translational parameters and then the remaining ones. 
Weng (Zhuang & Roth 1996) also proposed calibration in multiple stages by 
first carrying out the rough parameter estimation and then secondly refining the 
result by using the first stage as an initial guess for the camera model. The same 
idea but with a different type of implementation is proposed by Heikkilä (1997). 

Publication I presents a novel way of utilising Heikkilä�s (1997) calibration 
proposition by exploring and varying the methodology and the application, 
which can adapt the calibration parameters by capturing only a single shot from 
the three-dimensional calibration object. The method gives the capability of 
removing distortion inaccuracies in the image before the stages of segmentation 
and target identification. Lens error removal is crucial, especially for the 
disparity calculation of the stereo vision system, since the quality of an image 
strongly affects the accuracy of the depth information. Furthermore, the optical 
errors deform the driver�s facial features, impairing eye-tracking performance, 
which is an important aspect of driver monitoring. 
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The possibility of utilising neural networks for camera calibration was suggested 
by Sethuramasamyraja et al. (2003) concurrently with the work of Publication II. 
Both works annotated that the camera�s internal parameters may cause severe 
errors when the image co-ordinates are mapped to a world frame. Therefore, the 
black box (i.e. the neural network as a camera model), which not only maps the 
camera co-ordinates to a global frame but also eliminates the effect of 
aberrations, has been investigated. Furthermore, Junghee and Choongwon 
(1999) have explored successfully distortion elimination with the �black-box� 
principle. The Sethuramasamyraja et al. (2003) system was used in guiding an 
autonomously moving robot. The same problems exist when faces are tracked 
with the camera vision technique in a driver-monitoring application. Ultimately, 
the idea of Publication II may also help to create an automatic calibration 
capability to adapt the vision system to the working environment and to camera 
setups. 

The prototype system uses two Sony�s high quality cameras where the optical 
errors are presumably small. Nevertheless, faceLAB includes internal calibration 
routine which according to the manuals fine tunes the focal length, thus 
representing the basics of camera calibration. The calibration method is not 
probably something which is pronounced by this thesis but the purpose and the 
idea are equivalent. 

The calibration is an important thing when size and cost of the driver monitoring 
equipment are minimised. Discussion with the colleagues in the automotive 
industry has pointed out that in HGV the price level could be 1500 EUR but this 
is too much in a passenger car case. There the price of the whole monitoring 
facility should not exceed few hundred euros. Therefore, the used high quality 
cameras are not the optimal solution for the final implementation; rather small 
embedded cameras with plastic optics are preferred. 

4.3 Wavelet features 

Heisele�s et al. (2002) study explored using a SVM classifier with the Haar 
wavelets to recognise the identity of a human. The method was discovered to 
work well in static conditions if the viewing angle was fixed (e.g. detecting 
people from a single image in a prior-known environment). However, the 
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template matching of faces was found to be a better approach in a varying 
environment where a set of facial descriptors (e.g. eyes, nose, lips, etc.) were 
extracted and classified with a tree of SVM models. 

Eye-tracking is the field in which wavelets have gained wide acceptance. Gu et 
al. (2002) have managed to increase the robustness of eye-tracking by using a 
Kalman filter for detecting large head movements and Gabor wavelets to achieve 
fast feature extraction. Retrieving the eyes from a grey-scale image is presented 
by D�Orazio et al. (2004), who explore a technique for tracking eyes with a 
combination of neural networks and wavelet descriptors. 

The wavelet transformation divides the original information to low and high pass 
bands, thus providing an enriched number of uncorrelated attributes. The idea of 
using the wavelet transformation for eye tracking is attractive since it is a widely 
exploited method for compressing data in order to transmit images from a 
camera to a data processing unit. Additionally, wavelets provide an opportunity 
to perform tracking in parallel with the reconstruction phase of the original 
image (Publication III). 

4.4 Facial feature extraction with colours 

Naturally, the common feature to all gaze-based driver analysis techniques 
(Grauman et al. 2002, Bergasa et al. 2006, Grace et al. 1998, Rimini-Doering et 
al. 2001, Boverie et al. 2002) is the necessity to track a human�s eyes. Singh and 
Papanikolopoulos (1999), Smith et al. (2000), Smith et al. (2003) and Wang et 
al. (2004) have shown how lip colour, eyes and the sides of the face can be used 
to track the orientation of the eyes. Lip detection is also important since it can 
reveal conversation with a passenger or on a mobile phone, thus signalling 
cognitive workload. The method was reported to provide a good tracking 
performance in daylight but difficulties were encountered in ambiguous lighting 
situations (such as night-driving). Publication V proposed a colour analysis 
technique that was developed for scrap-metal sorting originally but which is also 
applicable for recognising and tracking skin and therefore for resolving the face 
and eye-tracking problem. The proposed method is intended for a harsh and dirty 
industrial environment and adapts easily in varying lighting conditions. 
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Colour classification is typically sensitive to unstable lighting conditions 
(Publication V, Huber et al. 1998, Zrimec 2003). One option for minimizing the 
effect is to use a YUV colour space instead of RGB, and additionally, the errors 
due to non-ideal imaging devices can be reduced by using the size-invariant 
features (Gonzales & Woods 1993, Zrimec 2003, Stachowicz & Lemke 2002). 
Bagci et al. (2004) proposed Markov models for tracking and locating the 
driver�s eyes, which were segmented by also utilising skin colour. They 
accentuated the method�s resistance to scaling, translation and tilting of a human 
body. Glares due to light reflections from a road surface or eye glasses can also 
be minimised with the use of polarisers (Huber et al. 1998). 

Another colour vision-based driver state measurement is presented by 
Veeraraghavan et al. (2005), who reported comparable results for implementing 
unsupervised (amount of body limb movements) and supervised learning 
processes (the Bayesian eigen-image analysis). In their experiments, the driver�s 
activity was analysed by counting movements of the head and hands that were 
segmented according to skin colour. 

4.5 Driver and driving-related parameters 

Hoedemaeker et al. (2002) have identified that carmakers and research institutes 
interested in driver monitoring are doubtful whether non-intrusive measuring 
methods will succeed. Rather they prefer to estimate the workload according to 
the level of activity in using the vehicle controls and estimating their influence 
on driving (speed variation, headway to the front vehicle, etc.) or by generating a 
�lookup table� in terms of factors like age, gender, road geometry, etc. Tattegrain 
et al. (2005) give comprehensive high-level guidelines for monitoring a driver 
and environment, including indications related to a driver�s static characteristics 
(e.g. age, sex, etc.), dynamic behaviour and actual traffic context. This thesis 
neglects the driver�s static parameters since distraction and fatigue�the key 
elements of this thesis�have a dynamic nature. 

Table 1 summarises the review of prior knowledge on the subject, and is more 
detailed than that given in Chapter 1, Publication VI and Publication VII. As the 
table indicates, many different types of features exist and are being 
experimented with to detect distraction or fatigue in a driver or an aircraft pilot. 
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This thesis has selected the most appropriate features for the distraction detection 
experiments, including head and eye movements and lane-keeping analyses. Their 
relevance to the objectives of this study was explored in Publication VI. 

Table 1. A review of the proposed driver state measures in the literature. The 
summary is divided into those addressing distraction and those related to 

fatigue/vigilance detection. 

Parameter Distraction detection Vigilance detection 

Lane keeping Engström et al. 2005 
Fletcher et al. 2001 and 2003 
Horrey & Wickens 2004 
McCall & Trivedi 2004 
Östlund et al. 2004 

Bittner et al. 2000 
Boverie et al. 2002 
Boverie 2004 
Fletcher et al. 2001 and 2003 
Grace et al. 1998 
Pilutti & Ulsoy 1995 
Rimini-Doering et al. 2001 
Santana Diaz et al. 2002 

Vehicle headway McCall & Trivedi 2004 
Östlund et al. 2004 

 

Vehicle speed Engström et al. 2005 
Östlund et al. 2004 

Boverie et al. 2002 
Santana Diaz et al. 2002 

Accelerations  Grace et al. 1998 

Steering wheel 
movements 

McCall & Trivedi 2004 
 

Bittner et al. 2000 
Boverie 2004 
Boverie et al. 2002 
Pilutti & Ulsoy 1995 
Santana Diaz et al. 2002 

Pedal movements McCall & Trivedi 2004  

PERCLOS Dinges et al. 1998 Bergasa et al. 2006 
Grace et al. 1998 
Grauman et al. 2002 

Eye-blinking frequency Albery et al. 1987 
East et al. 2002 
O�Brien 1988 

Bergasa et al. 2006 
Boverie et al. 2002 
Dinges et al. 1998 
Heitmann et al. 2001 
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Eye movements  Engström et al. 2005 

Hammel et al. 2002 
Harbluk et al. 2002 
Heitmann et al. 2001 
Lee et al. 2004 
Recarte & Numes 2003 
Victor et al. 2005 

Bergasa et al. 2006 
Boverie 2004 
Rimini-Doering et al. 2001 
Wahlstrom et al. 2003 
Wang et al. 2003 
Zhu & Ji 2004 

Head movements  Bergasa et al. 2006 
Boverie 2004 
Grace et al. 1998 
Grauman et al. 2002 
Heitmann et al. 2001 
Zhu & Ji 2004 

Limb movements Albery et al. 1987 Boverie 2004 

Pupillary changes  Heitmann et al. 2001 
Wang et al. 2003 

Heart rate  Albery et al. 1987 
East et al. 2002 
Östlund et al. 2004 

 

Blood pressure Albery et al. 1987  

EEG / EOG East et al. 2002 
O�Brien 1988 

Bittner et al. 2000 
Gonzalez-Mendoza et al. 2003 
Lal et al. 2003 

Breathing East et al. 2002  

Skin conductance Östlund et al. 2004  

Temperature of 
environment 

 Zhu & Ji 2004 

Sleep history  Zhu & Ji 2004 

Driving environment Fletcher et al. 2005 Fletcher et al. 2005 
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5. Classification Methods 

5.1 Overview 

This chapter proposes techniques for detecting a driver�s momentary distraction 
level by using a syntactic, support vector machine or neural-network-type 
classifier. Details of the techniques are more comprehensively discussed in 
Publications II, V, VI and VII. The topic of Publication VII is the feasibility of a 
SVMlight algorithm (Joachims 1999) for detecting the cognitive distraction of a 
driver. Promising results for recognising artificially induced cognitive workload 
during real driving have been presented, which is scientifically revolutionary. 
Using an SVM-type pattern recognition method is an especially new idea in the 
field of optical driver monitoring. 

Publications VI and VII describe the practical results of the monitoring 
experiments. This chapter provides the experiments of visual distraction 
detection with a syntactic classifier and the complementary results for detecting 
cognitive distraction in a passenger car. The last topic is a proposition of using 
neural networks for distraction/vigilance detection and semi-automatic attention 
mapping, which is important for detecting visual distraction. The method is 
based on earlier implementations of neural networks for automatic object 
mapping (Publication II). 

5.2 Visual distraction detection with syntactic classifier 

A rule-based �keep it simple� idea in many cases works more robustly than the 
smart classification methods (smart referring to e.g. neural networks, Bayesian 
networks, SVM, etc.). Publication V describes the methodology for sorting scrap 
metals (copper, brass, aluminium) according to their colour attributes. The 
classifier used is syntactic and it addresses whether the features fit to the 
tolerances of the pre-defined colour models for the metals. The colour 
classification example has also promoted the importance of user-friendly tuning 
facilities to provide an optimal sorting capability. Publication VI discusses 
attention mapping and detecting visually distracting occurrences. In this case, 
the term visual distraction means whether the driver focuses his or her attention 
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towards a road or other attraction (e.g. vehicle controls, a mobile phone, radio, 
etc.). Additionally, the term visual distraction includes in this case visual time-
sharing, which is an indication that the driver is continuously making short 
glances off the road, hence sharing his/her attention between two targets (e.g. 
short glances towards mirrors). In the practical tests four different clusters were 
implemented in the prototype: road ahead, windscreen, left- and right mirror (see 
Figure 8). Optionally, the additional clusters (e.g. radio) could be implemented 
easily but were not necessary since the aim was focused on detecting eyes-off-
road and time-sharing between mirrors and road. Figure 3 in Publication VII 
shows the architecture of the developed module that was used in testing the 
visual distraction detection. 

 

Figure 8. Attention mapping in a (SEAT) demonstration vehicle. In the tests, the 
radio cluster was not used, but it was captured for future needs. Note that the 

cockpit views are mirrored, thus when the driver looks to the left mirror it seems 
like a right mirror check and vice versa. 
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The determined clusters are results of iterative boundary tuning, which in the 
end is a compromise to take into account different driving habits. Therefore, the 
main benefit of using the classification algorithm presented in Publication V is 
more flexible adaptation (see Figure 9) compared to the one presented in 
Publication VI, where the clusters are estimated by using circles and counting 
the distribution of the driver�s momentary glances. The idea of an adaptation 
facility is presented for the first time in Publication V and there is the national 
patent (Vattulainen et al. 2002) pending in connection with the proposed 
classifier adaptation method. The most innovative element is the user interface, 
which provides direct feedback for analysing false results. 
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Figure 9. Definition of the road-ahead cluster for the rule-based (syntactic) 
classifier. Firstly the training examples are gathered and secondly the borders 

of the clusters are determined by dragging lines according to the hits. 
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Optimising the clusters requires good coverage of different drivers and the test 
environment, since each driver�s behaviour is extremely individual. The 
generated clusters can be mathematically held as an average of the captured 
attention angles and therefore a lot of training data is needed to avoid statistical 
errors and consequently over-adaptation to a single driver. In practice, the 
adaptation is performed by extracting from the available data files a random 
sample of approx. 5000 hits per cluster. The test data were gathered in Sweden 
with a test HGV. The summary of the test conditions and subjects can be found 
in Table 2. The test drivers D1 and D2 are ignored when training and evaluating 
the visual distraction detection, since the eye tracking was not optimal due to an 
erroneous camera installation. The same test data, including also the drivers D1 
and D2, have also been partially used in the SVM adaptation for the HGV case 
presented in the next chapter. 

Table 2. Summary of the gathered test subjects for collecting the HGV data 
which are used in the evaluations of this thesis. 
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D1 25.4.2005 12.00 M 57 33 30 L x   1   
D2 25.4.2005 16.00 M 59 39 39 D x x 2   
D3 25.4.2005 19.30 F 37 3 4 D x x 2   
D4 26.4.2005 09.00 M 41 22 8 L x   2   
D5 27.4.2005 09.00 M 27 4 4 B x   1 X 
D6 27.4.2005 19.30 M 24 3 3 D     2 X 
D7 28.4.2005 19.30 M 44 18 19 D     1 X 
D8 29.4.2005 09.00 M 57 37 20 B     2 X 
D9 29.4.2005 16.00 M 45 18 18 L x   2 X 
D10 2.5.2005 13.00 M 45 27 26 L x x 2 X 
D11 2.5.2005 17.00 M 22 4 3 D     2 X 
D12 3.5.2005 18.30 M 21 3 2 L x   1 X 
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The new classification scheme presented shortly by Publication VI is syntactic 
(i.e. rule based) since visual distraction is considered to have resulted whenever 
the driver's attention is outside the road ahead area. However, looking to the 
periphery (windscreen area but not on estimated road) and mirror checks are also 
detected by the developed algorithm. The test results announced in Publication 
VI are performed using an older version of the algorithm developed for the 
Volvo HGV. Outlines of the completed tests for the current algorithm are given 
in Table 3 since they are not reported in the original publications. Results are 
also compared between the test subjects in Table 4. The clusters are well 
detected except for the windscreen, which appears to be a problem. This is 
partially caused by the evaluation method being executed manually with 
counting hits and comparing the observations to the appropriate video. The 
glances towards the area between a mirror and road ahead are short and hence, 
hard to observe. The main conclusion is that the road ahead cluster (i.e. eyes-on-
road) are well detected and the mirrors moderately so. Therefore, the total visual 
distraction detection (eyes-off-road and visual time-sharing) algorithms performs 
well. Table 4 also outlines the total hit rate as a reference for the eyes-off-road 
detection. There is not big difference between the drivers in performance if the 
eye tracking operates well. The improper rates of drivers 10 and 11 in Table 4 
are mainly due to insufficient eye tracking rather than the distraction detection 
algorithm. However, the road ahead glances are very well detected (> 90%) in 
the HGV, which is very important for proper estimation of the visual workload 
(i.e. inattention to the road events). 
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Table 3. The performance of the current attention mapping algorithm. The 
driver refers to the test subject. During the tests the cockpit model was  

re-adapted, which improved discrimination of the road ahead and  
windscreen clusters. 

DRIVER TEST ID 
ROAD 
AHEAD 

LEFT 
MIRROR 

RIGHT 
MIRROR 

WINDSCREEN 

D3 1 98% 32% 54% 8% 
D3 2 100% 42% 67% 15% 
D3 3 87% 31% - 6% 
D4 1 91% 21% 86% 7% 
D4 2 91% 33% 46% 13% 
D4 3 100% 26% - 0% 
D5 2 100% 21% 31% 7% 
D5 3 100% 18% 29% 7% 
D6 1 100% 71% 74% 2% 
D6 2 98% 63% 76% 9% 
D6 3 97% 68% 56% 0% 
D7 1 85% 61% 14% 8% 
D7 2 94% 51% 0% 16% 
D7 3 100% 3% - 12% 
D8 1 100% 0% - 21% 
D8 2 98% 8% 53% 20% 
D8 3 99% 6% 75% 0% 
            

COCKPIT MODEL RE-ADAPTED 

            
D6 1 80% 51% 35% 40% 
D6 2 91% 51% 13% 33% 
D6 3 75% 61% 21% 30% 
D9 1 100% 62% 53% 62% 
D9 2 89% 36% 65% 61% 
D9 3 74% 71% - 22% 
D10 1 44% 42% 34% 64% 
D10 2 46% 19% 48% 46% 
D10 3 59% 33% 31% 59% 
D11 1 48% 62% 76% 43% 
D12 1 69% 46% 10% 27% 
D12 2 96% 60% 19% 45% 
D12 3 63% 67% 44% 33% 



 

51 

Table 4. The average attention mapping hit rates per driver. The column 
�MODEL� refers to the fine-tuned SVM model while the Volvo HGV tests. 

DRIVER MODEL ROAD AHEAD TOTAL HIT RATE 

D3 OLD 94,65% 49% 
D4 OLD 93,88% 47% 
D5 OLD 100,00% 41% 
D6 NEW 82% 48% 
D7 OLD 93% 48% 
D8 OLD 99% 48% 
D9 NEW 88% 63% 
D10 NEW 50% 45% 
D11 NEW 48% 57% 
D12 NEW 76% 48% 

 

The tests were also performed with data acquired by SEAT with a passenger car. 
Coverage of the different types of drivers is not as exhaustive as in the HGV case. 
The test data was gathered for three ordinary drivers who had approx. 5�10 years 
driving experience in Spain. The test data included motorway and city driving, 
undertaken during the day time. The test samples were shorter than in the case of the 
Volvo HGV, as they included only a few hundred samples for adapting each cluster. 

Figure 10 and Figure 11 show differences between the SEAT car and the Volvo 
HGV cluster dimensions. Obviously, the driver�s eye movements are larger in 
the HGV case as can be seen from the pictures. The horizontal and vertical axes 
of the graphs are the orientations around the X- and Y-axis respectively. The 
orientations of the axis and the imaging geometry of the test arrangements are 
shown in Figure 12. The experiments have showed that large gaze and head 
movements degrade the attention mapping performance. Thus, it is anticipated 
that this algorithm works even better in a passenger car, where glances towards 
mirrors are smaller and the driver�s faces remain more in the camera view, 
which was one of the problems in the HGV tests. The initial test results with the 
passenger car support the assumption since they have provided slightly better 
results than the HGV evaluations. On the other hand, the problem according to 
the first experiments is the small mirror cluster in the car test compared to the 
HGV, which makes the sensitivity of the system more significant. 
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Figure 10. Attention clusters of the passenger car (SEAT Leon) implementation. 

 

Figure 11. The attention clusters in the HGV prototype (Volvo FH12). 
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Figure 12. Co-ordination system of the stereo vision system. 

The one aspect, which was also investigated when developing the attention 
mapping module, was opportunity to adjust the clusters on a fly. This work is 
still under construction since the first idea of adapting the location of the clusters 
according to road curve did not work as assumed. The test subjects did not react 
to the environmental changes equally and therefore the mapping performance 
unexpectedly degraded with 3% (Jokela 2006). 

5.3 Cognitive distraction detection with SVM 

Support vector machines have received a lot of attention recently due to their 
generalisation capability for processing different types of data. Therefore, multi-
discipline exemplary applications have been introduced where SVM has 
provided good classification capability. Such examples are Sebastiani (2002), 
who has introduced comparative tests for classifying text to pre-defined 
categories with the use of different classifiers (Bayesian, SVM, neural networks, 
regression analysis, rule-based, model based and linear). The conclusion was 
that support vector machines, model-based methods and regression boundaries 
give better results than the currently favoured neural networks. Bellotti et al. 
(2004) have used the SVM classifier for detecting pedestrians on a road. 
Interestingly, the application utilised wavelet descriptors to distinguish whether 
a human exists in an image or not. Xia et al. (2003) have developed a 
methodology for eye-tracking in situations of low illumination by using the IR-
band lighting and verifying the existence of eyes with SVM. 
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The SVM kernel functions can be divided to linear or non-linear ones (Burges 
1998). The following is a simple canonical dot product and is formulated as: 

 ( ) )()(, jijiK xxxx Φ⋅Φ= (1) 

Above xi and xj are pattern vectors and Φ mapping function for constructing 
linearly discriminated feature space. Since the kernel is rather simple, the 
boundary between two data sets is easy to determine. However, the linear kernel 
is not useful in the case of non-linear data. The non-linear kernel functions 
(sigmoid, RBF or polynomial) provide better adaptation properties for non-
linearly separable data and are thus mostly preferred. The RBF kernel function is: 
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where the parameter σ determines the width (i.e. coverage) of the kernel. 

Due to the aforementioned arguments, an RBF kernel is selected for the 
cognitive distraction detection application presented in Publication VII, since the 
features are strongly non-linearly distributed according to the observation from 
Figure 13. On the right side of the image, the variations of gaze rotations and 
head rotations are shown in the 2D plane. The boundary between positive and 
negative results is circular rather than a straight line. 
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Figure 13. Capture from the SVM tuning tool. The graphs show an example for 
generating the SVM model for professional HGV drivers. The gaze rotation and 
lane position deviation features are projected to the average �level� of the other 

implemented features. The cognitive area is located at the left-bottom corner, 
where the lane keeping and gaze concentrations are high. 

The idea of the SVM algorithm is to maximize the margin between two clusters. 
This is done by minimising the training set error in terms of α, which are the 
Lagrange multipliers (Bennett & Campbell 2000): 
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Solving the above optimisation problem provides the border that maximises the 
distance between positive and negative clusters. The classification function is 
(Bennett & Campbell 2000):  
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where b is the primal threshold between negative and positive clusters. 

The SVM algorithm is easy to understand especially when considering the 2-
dimensional feature space. During the training phase, the border is adapted to 
meet the requirement of the margin between positive and negative training 
examples. As Publication VII introduces, with proper training tools, an 
adaptation of an algorithm is quick to perform and minimises the danger of 
ending up at the local minima�s. The problem can be seen in the passenger-car 
tests (Table 5) where the gamma, which adjusts the �complexity� of the border 
and thus is the main reason for the over-fitting problem, is increased. With low 
gamma values the performance rates are fairly equal but with larger values there 
appears a disparity between the two tests. This anticipates a lack of 
generalisation due to too strong an adaptation within the training data. 

Table 5. Effect of the gamma parameter for the behaviour of the classifier in the 
passenger-car tests. Bigger gamma increases the risk of over-fitting to the 

training data, which is observable also by exploring the deviation between the 
two tests. 

  TEST 1 TEST 2   

GAMMA NON-
COGNITIVE COGNITIVE NON-

COGNITIVE COGNITIVE DEVIATION 

1,7 84 89 85 83 2,8 
2,0 83 88 85 83 2,2 
3,0 87 86 85 83 1,8 
6,5 84 86 79 83 2,7 
6,8 84 86 77 83 4,1 

 

The intention of Publication VII was not to survey the principles of SVM 
deeply, but rather to focus on testing the feasibility of the classifier for driver 
activity monitoring. The classifier�s advantages are apparent when several 
different features are used for recognising two different categories. The tests are 
performed by using lane-keeping performance and features related to gaze and 
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head variations. Quality factors were also calculated, which addressed the 
coverage of the data in a time window. The low coverage is typically caused by 
large head movements, which on the one hand can be attributed to the non-
cognitive state of a driver (i.e. active driving). 

Since preparing Publication VII, more tests have been performed where the 
cognitive distraction detection algorithms were adapted to a passenger car, as 
Publication VII focused on tests performed with a HGV prototype. The test car 
did not include the lane tracker for measuring improved lane-keeping 
performance, which according to the studies McCall and Trivedi (2004), 
Fletcher et al. (2003) and Östlund et al. (2004) are due to increased cognitive 
workload. Table 6 provides workload detection performances in the passenger-
car prototype for different configurations of the available features. The table still 
supports the assumption as explored for HGV in Publication VII that all the 
indicative parameters should be utilised when the cognitive distraction is 
detected. 

Table 6. Feature selection in a passenger car. 

Gaze 
Rotation 

Gaze 
Rotation 
Quality 

Head 
Rotation 

Head 
Rotation 
Quality 

Face 
Model 
Quality 

Non-
cognitive Cognitive 

X   X     47% 89% 
X X     X 59% 71% 
    X X X 51% 84% 
X X X X   44% 89% 
X X X   X 36% 93% 
X X X X X 56% 79% 

 

Further testing with the passenger car has progressed successfully and the 
results have been even better than in the HGV case, despite the absence of the 
lane tracker. With proper adaptation, an 87% detection performance was 
achieved for baseline driving and an 85% rate for detecting cognitive tasks. 
The test data included four different drivers who were driving in various 
conditions in the city and on motorways. The cognitive tasks were artificially 
induced. Part of the explanation for the improved results is that the eye 
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tracking was better in the passenger car tests than in the HGV tests and another 
that the passenger car tests did not include for example tunnels driving or dark 
conditions at all. 

The further field tests with HGV indicated that the cognitive workload is not 
worth of detection in cities since driver�s alertness remains high due to a rapidly 
varying environment. Hence in the final implementation, the vehicle speed is 
read from the CAN bus and the cognitive distraction detection is paused when 
vehicle speed is below 50 km/h. This notion increased the performance of the 
algorithm significantly. 

5.4 Discussion of neural networks for driver monitoring 

5.4.1 Distraction / vigilance monitoring 

Throughout the 1990s, laboratory work was widely carried out to adapt neural 
networks to practical applications. Today neural networks have been 
successfully examined in biotechnology, pattern recognition, speech analysis, 
and has also been experimentally applied in driver monitoring (Wang et al. 
2003). Neural networks have similarities to the learning process of a human 
brain, which also constitutes linked neurons (Haykin 1999). Unfortunately, 
computers can only feasibly process simple mathematical formulas. Humans or 
animals have millions of neurons whereas in practical artificial networks only a 
few hundreds may exist, thus limiting the ability to adapt to a changing 
operating environment. Andreeva et al. (2004) introduced an implementation in 
which they recognised the drowsiness of a driver based on body posture 
measurements. The position of the human upper body was measured three 
dimensionally and the data was fed to a neural network. Fukumi (2005) 
presented a template-matching scheme with neural networks for detecting 
whether a driver�s head existed in an image or not. The data source was a low 
resolution NIR camera (320 x 240 pixels). Additionally, a simplified PCA 
algorithm was implemented for capturing the driver�s head orientations. 

Information processing is the result of interaction between the neurons. A single 
neuron is an element, which includes an activation function for determining the 
response for the induced input. During the training phase, an error between the 
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real outputs and the network�s prediction is minimized by adjusting the weight 
factors and bias terms gradually. Different types of network model have been 
introduced in the literature and each of them has benefits and drawbacks 
depending on the target application. The Multilayer Perceptions (MLP) and 
Radial Bases Function (RBF) networks are the most widely used since they are a 
good composite of flexibility and adaptation capabilities (Publication II). 

Prior studies (Andreeva et al. 2004, East et al. 2002, Fukumi 2005, Grace et al. 
1998, Wang et al. 2003) have predicted the opportunities afforded by neural 
networks, especially in the field of drowsiness (or fatigue) detection. Fusing the 
data of multiple sources is the strength of neural networks, since in the driver 
monitoring case even the indicators of impaired vigilance may be weak 
(Publication VI). It is never desirable that a driver falls asleep; rather it is 
intended to perform wake-up stimuli when slight fatigue is present. Publication 
II discusses more about neural networks, which in that case however are pursued 
with the intention of automatically mapping the targets in the image frame co-
ordinates to the world frame. Nevertheless, the same steps exist whenever neural 
networks are implemented: starting with selecting the proper network model, 
then training the network and finally validating performance. 

Figure 14 illustrates the idea of using neural networks for detecting a cognitive 
(mental) distraction level or the fatigue of a driver. The method is quite similar 
to that presented in Publication VII, although there the support vector machine 
algorithm is examined. The benefit of the neural networks is that the fatigue and 
cognitive distraction analysis can be performed as parallel processes, while SVM 
on the other hand is a binary-type classifier, thus providing only one output. Of 
course, there might be multiple SVM models, but then the results would have to 
take into account whether the driving behaviour refers more to fatigue or to 
cognitive distraction, while neural networks could exclude the more unlikely 
result automatically. 
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Figure 14. The proposed method for performing driver distraction or fatigue 
detection with neural networks. 
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5.4.2 Neural networks for attention mapping 

Accurate mapping of the targets from an image frame to world-frame co-
ordinates has always been one of the key elements in building a machine vision 
system. Luan et al. (2001) introduce a Photonic Mixer Device (PMD) with a 
time-of-light (TOF) principle for performing three-dimensional measurements. 
They used standard CMOS or CCD chips combined with optical phase-shifting 
elements and still managed to keep the price-level down (< 800 EUR) compared 
to conventional matrix-type 3D measurement applications (> 1500 EUR). 
Chiang and Huang (2004) proposed using MLP neural networks to detect the 
gaze angles of a car driver so as to determine whether the driver is looking 
upward, downward, left, right or straight ahead. 

Chapter 5.2 (Visual distraction detection with syntactic classifier) and 
Publication VI discusses attention mapping in the cockpit of a vehicle in more 
detail, since identifying the momentary attention targets is important for 
detecting visual distraction. The proposed algorithm is based on pre-determined 
attention clusters, which eventually, could be dynamically adapted while 
driving. Ultimately, momentarily looking towards in-vehicle buttons is then 
captured by an application that monitors driver behaviour. An automatic 
adaptation capability is preferred since the driver�s behaviour is dynamic and an 
attribute of the driver�s characteristics. Publication II presents the method for 
mapping the world-frame co-ordinates from the image frame by means of a 
neural network. The same methodology could potentially be used for mapping 
the attention targets in a cockpit with a more advanced adaptation capability, 
thus minimising false mappings due to changes in driver behaviour. The 
procedure could progress such that the training is automatically restarted when 
the gaze or head orientations locate to a predefined large area of a mirror or a 
radio, then during fine-tuning, the area is minimised according to the driver�s 
orientation history. Modifying the clusters of the rule-based algorithm 
(Publication VI and Chapter 5) is somewhat time-consuming due to manual fine-
tuning despite of the presented easy adaptation facility. Therefore, the method 
explored in Publication II would provide more on-the-fly automation to the 
attention mapping, which is essential when thinking about the reliability and 
robustness of an in-vehicle product. 
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6. Description of Original Publications and 
Author�s Contributions 

Publication I, Camera Calibration in Machine Automation 

The publication presents a methodology and experimental results for eliminating 
distortions from an image caused by an imperfect optic. The calibration 
parameters are calculated by capturing a single shot from the compact 
calibration object. This is a major improvement developed by the author 
compared to existing calibration descriptions (Heikkilä 1997 and Zhuang & 
Roth 1996). The method can be generalised to be feasible for cameras operating 
in visible or near-infrared wavelengths. The distortion elimination method is 
necessary when low-cost camera vision systems are considered; for example, the 
system used in the tests of this thesis for examining the driver monitoring 
application costs approx. 35 000 EUR. 

The author performed the tests presented in Publication I, designed the software 
and reviewed the feasibility of the Heikkilä�s (1997) calibration method. The 
idea of utilising the presented calibration object was given by the co-authors. 

Publication II, Calibration of the World Coordinate System with Neural Networks 

The author has independently developed and tested the idea of using the MLP-
type neural network for target mapping. The idea is to semi-automatically map 
image frame co-ordinates to a world frame without knowing the imaging 
geometry and ultimately, taking into account possible lens errors within the 
�black-box� camera model. The idea had been earlier suggested by Berthouze et 
al. (1996), while utilising two different artificial networks and interpolating 
the network models between them. The author of this study is not convinced that 
the models behave as straightforwardly as was suggested. Publication II 
proposes using only one network and to train that on multiple levels, which then 
adapt the parameters for different distances automatically. 

In many environments, an accurate definition of the position of a camera is 
difficult to measure, as in a vehicle. However, mapping the attention objects 
(e.g. road, mirrors, radio, buttons), which are needed for estimating the visual 
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distraction level, require easy and preferably automatic adaptation to cockpits. In 
this, the introduced methodology may assist in determining the locations of the 
attention clusters. However, the presented method was not tested experimentally 
in the driver monitoring applications directly. 

Publication III, Parallel Image Compression and Analysis with Wavelets 

The publication presents an image compression method that was applied for the 
first time to a confidential industrial application. Data compression is important 
whenever video is transmitted between computing or display units. The 
bandwidth of the in-vehicle buses is limited and therefore, the requirement for 
efficient compression is a prerequisite for transmitting images. Moreover, the 
paper discusses wavelets generally, which are interesting in relation to eye 
tracking (Heisele et al. 2002, Gu et al. 2002, D�Orazio et al. 2004) and in turn, is 
a basic requirement in optical fatigue or distraction detection. 

The wavelet-based compression methodology and the use of low- and high- pass 
bands for feature extraction were designed in co-operation with the co-author 
Prof. Jouko Viitanen. The main author has partially built up the software and 
performed the experiments with the algorithm in a laboratory. The crucial 
improvement on the earlier work presented by Hilton et al. (1994), Manduca 
(1995), Welsted (1999) and Zixiang et al. (1999) is the computationally light 
wavelet-based compression implementation, which furthermore, is able to 
perform parallel image analysis (e.g. tracking eyes). While hundreds of studies 
dealing with wavelet-based image compression or analysis exist, not many deal 
with merging the two to provide parallel analysis and compression. 

Publication IV, Sensor Array for Multiple Emission Gas Measurements 

This publication presents a sensor that is intended for gas sensing in an industrial 
kitchen. The article assists to understand the basic requirements for a proper data 
acquisition device. The parallels with camera vision are not immediately 
obvious, but there are a lot of similarities, such as converting the analogue signal 
to digital, calibrating the sensor, and ensuring its adaptability to the existing 
environment. One crucial conclusion is that calibration has to be performed in 
the practical conditions, which was a feature of later experimentation in regard 
to the driver-monitoring applications (Publications VI and VII). Fine-tuning of 
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the calibration is required for each new driver and therefore it should be easy 
and quick to execute, which in itself is an improvement on Marco et al. (1998). 
The calibration capability is even more important in achieving low-cost 
measuring devices, since many times the sufficient output needs to be achieved 
with a lower price if adaptation to the dynamic in-vehicle conditions is to be 
sensibly applied, as Publication IV shows. 

The author has built the software, executed tests and calibrated the sensors. Prof. 
Jouko Viitanen mainly participated by designing the electronics. 

Publication V, Scrap Metal Sorting with Colour Vision and Inductive Sensor 
Array 

This paper presents scrap-metal sorting by means of a colour classification 
technique and is accomplished by a sensor fusion of colour information and the 
electrical properties of a metal. The experimental results were performed by 
means of a scrap-metal sorting device. The colour classification could 
potentially be used to track driver�s limbs, face and eyes (Singh & 
Papanikolopoulos 1999, Smith et al. 2000, Smith et al. 2003, Wang et al. 2004, 
Veeraraghavan et al. 2005), thus providing an indication of the driver�s activity 
level. However, the most essential input is the syntactic classification procedure, 
which is part of the experimentation in attention mapping to detect visual 
distraction. The interface�consistent with the classifier in Publication V�for 
performing flexible adaptation of the clusters is illustrated in Figure 9 and is the 
major achievement of the author in Publication V. 

The author of this thesis has designed the lighting arrangement, built the 
programs, tuned the parameters, planned the sensor fusion implementation and 
assisted in the tests. The co-authors have participated in designing the system 
and contributing to the commercial aspects of the sorting device. 

Publication VI, Online Detection of Driver Distraction � Preliminary Results 
from the AIDE Project 

This publication presents some early results from the AIDE project, an overview 
of the data gathering, and an analysis of the relevant features for distraction 
detection. The visual distraction detection methodology introduced by the paper 
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is developed with colleagues at the Volvo Technology Corporation. The 
presented algorithms were developed after publishing the paper; however, the 
earlier algorithms form the base for later developments made by the author. The 
results for the finalised visual distraction detection algorithms are presented in 
Chapter 5, along with an important statistical analysis of most of the features 
that were able to function as indicative parameters. The design of the distraction 
estimation procedure (the CAA module) has been compiled in co-operation with 
colleagues at Volvo and is a very new approach, that is to the authors� best 
knowledge not to be found elsewhere in the scientific literature. Utilising a 
support vector machine to detect cognitive distraction is mainly a design feature 
developed by the author that has also been implemented and partially field 
tested. 

Publication VII, Driver Cognitive Distraction Detection: Feature Estimation 
and Implementation 

This journal article is a multi-disciplinary review of the features and techniques 
for and effects of detecting cognitive distraction. Publication VI, Publication VII 
and this summary section bind all the other publications under the same rubric, 
the topic of which is driver monitoring. The article includes a literature review 
and tests for relevant features and describes the experiments performed for a 
support vector machine -type classifier. The results of the statistical analysis of 
Publication VI are utilised in the presented SVM implementation. The article 
also contains a fundamental analysis of how cognitive distraction affects human 
behaviour, which has mainly been contributed by colleagues at Volvo 
Technology Corporation. The presented technique for detecting cognitive 
distraction is new and is an improvement on the state-of-the-art work in this 
field. The author has planned the cognitive distraction detection technique, the 
SVM implementation, as well as performed the reported tests. 
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7. Conclusions and Future Work 

The topics of this study cover all the items sketched in the data flow illustration 
in Figure 3. Thus this thesis provides a multi-disciplinary overview for building 
machine vision applications for driver monitoring. This thesis has outlined 
discoveries and put forward propositions and experimental results related to the 
following topics: 

• Experiments for detecting cognitive distraction in a driver by utilising a 
support vector machine -type classification procedure 

• Experimental results for detecting a driver�s visual distraction by using a 
rule-based (syntactic) classification method 

• Relevant features for detecting the driver�s momentary state 

• Requirements of data acquisition devices and data transmission 
techniques. 

Additionally, this thesis includes discussion on the following topics that are 
applicable to driver-monitoring systems, but are not tested in the human 
monitoring field. They are intended more to open up novel aspects for detecting 
the driver�s state. 

• Neural networks for distraction or fatigue detection 

• Feasibility of colour and wavelet descriptors for eye tracking and 
activity-level assessment of a driver 

• Proposition for semi-automatic attention target mapping, which is 
needed in visual distraction detection. 

Driver monitoring is a relatively young research field. The first studies were 
published at the end of the 1990s, but most activities have been carried out 
during the last 5 years. A lot of effort has been directed at fatigue detection, 
though few (~5) commercial products have been launched to date. Primarily, the 
optical measurement principal (PERCLOS) has been adopted to detect 
drowsiness. Distraction detection is a parallel sector, though it is not as widely 
investigated. Commercial products do not exist at the moment but a few patents 
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have been applied for, which relate more to measurement arrangements than to 
methods. Therefore, the technical propositions of Publications VI and VII for 
visual and cognitive distraction detection are rather novel and innovative. 
Moreover, existing know-how focuses on a limited part of the monitoring 
system and do not fully consider the whole data processing concept (e.g. 
neglecting errors due to optics or insufficient eye-tracking): However, this 
concept is a fundamental premise of this thesis. 

The developed algorithms already operate to a satisfactory level. The 
significance of the achieved results for the future is not easy to predict but at 
least the automotive industry, which is involved in the AIDE project, has 
expressed a wide interest in the proposed optical driver monitoring scheme of 
this thesis. My personal assumption is that this thesis will be published at an 
opportune moment. The last 5 years, the automotive industry has initiated their 
R&D departments to work in the optical driver-monitoring field and many 
breakthroughs have been achieved at laboratory level. It could be said that 
understanding a driver�s behaviour has proceeded more intensively than the 
technical development of monitoring facilities that can measure and understand 
the driver�s state and furthermore, take into account the size and price constrains 
of in-vehicle systems. I claim that this is one of the first attempts to bridge this 
gap between the explorations of psychologists and engineering science. 
Moreover, this dissertation is definitely among the first to adopt a holistic view 
of machine vision techniques to enable a computer to understand the driver�s 
momentary state. 

The experiments showed that even the very advanced faceLAB-vision system 
suffers some practical drawbacks. The test experiences indicated that robustness 
in varying lighting conditions is not at a sufficient level for a commercial 
monitoring product, since e.g. eye tracking is often lost in tunnels. The second 
drawback is the system�s inability to preserve eye tracking during large head 
movements. However, the system�s ability to adapt rapidly to a new driver�an 
extremely important aspect�was very pleasing. The test system included high-
quality industrial cameras that automatically adjust their own iris and include an 
external zooming property. The vision system incorporated in the test 
arrangements costs more than 35 000 EUR, which exceeds the price of a typical 
passenger car. The price level is not even acceptable for a heavy goods vehicle, 
the average price of which is as much as 500 000 EUR. Therefore, lower cost 
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components are required and can be achieved for example by installing low-cost 
optics, which however, raises the importance of camera calibration to preserve 
the stability of the stereo vision system. 

However, in order to minimise the errors few more features could be adopted for 
making especially cognitive distraction detection more reliable. The most 
promising features are variation of speed which according to literature review is 
more stable when the driver is under the cognitive workload. Also PERCLOS, 
which is more commonly utilised for detecting fatigue, should be taken into 
account in the future scenarios. However, perhaps the most interesting way 
would be adopting accomplishing the cognitive distraction detection with fatigue 
detection and visual distraction detection when perhaps the combination would 
tell something much more advanced than can be imaged in the first sight. The 
alternative way is to adopt more historical data like sleep patterns (Zhu & Ji 
2004) or braking patterns, etc. 

The hypotheses of this thesis states that detecting the level of distraction or 
fatigue can be performed with a set of image processing methods, through the 
use of eye-based measurements and a fusion with the other indicators, such as 
lane-keeping performance or steering activity. Chapter 5 and Publication VII 
present experimental tests that report on the performance of visual and cognitive 
distraction detection implementations. Chapter 5 proposes and reviews also the 
relevant driver measures for monitoring driver behaviour. Publication VI 
presents the results of the statistical analysis, which were intended to indicate the 
relevance of the tested features and the scenarios for developing the algorithm. 
The faceLAB stereo vision (Seeing Machines 2006), which included internal 
eye-tracking capability, was utilised in the tests (see Figure 6). Visual distraction 
was detected by using the attention mapping algorithm, which corresponds with 
the classifier utilised in the scrap-metal sorting example of Publication V. The 
results show that the road-ahead cluster is found to have up to a 90% accuracy, 
which in turn reflects the performance level of the visual distraction detection. 
The algorithm is reliable, but requires some more work to adapt to new types of 
cockpit more easily. Cognitive distraction was detected with a support vector 
machine type classifier (Publication VII). The results indicated a 65% 
performance in detecting artificially induced cognitive tasks for HGV and even 
80% for a passenger car. The results are competitive to the prior studies 
reviewed in Publication VII. Cognitive distraction detection progresses in the 
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right direction, but more experiments are needed before making firm conclusions 
about how close the module is to a viable product, although selecting the support 
vector machine -type technique seems to be a sensible choice. 

Thus, further work on the data processing algorithms and the platform are still 
needed in order to realise a product that meets the requirements for robustness 
and the viable price of a vehicle application. Market products for fatigue 
detection already exist, but not as an internal vehicle instrument. The first 
implementations will most probably be seen in HGVs. Distraction detection 
modules are anticipated to be implemented in the first vehicles somewhere 
around 2010�2012. 
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This paper deals with utilization of a camera calibration method in machine automation.
Currently available calibration methods are described shortly, and a new type of calibration
object which is suitable for use in, e.g. small parts assembly cells, is presented. Also the
method of searching the calibration points is given new consideration. Experimental results
are presented on the tests using the calibration method with the novel target.

1 INTRODUCTION
Simplified camera models, so called pinhole models, normally assume that light rays go

through the lens without bending. In real life light rays bend in the lens which causes
geometric distortion (aberration) to the image. Aberrations are especially amplified in short
focal length lenses. In the following, aberrations caused by the non-linearity of the lens are
called radial distortion. Another type of distortion which is typically called tangential, is the
result of the offset between the optical axis of the lens and the normal of the image plane,
together with possible tilt of the image plane. Radial distortion is formed symmetrically
around the location of the optical axis and therefore accurate correction of the radial distortion
requires that tangential distortion is corrected first.

The purpose of the camera calibration is to define the accurate camera model, which also
takes into account the distortions in the image. When the accurate camera model is known, it
is possible to remove the effects of the distortions from the image and perform accurate
geometric measurements based on it.

Several different kinds of calibration methods are proposed in literature. We have tested
and investigated especially the method introduced by Heikkilä [2] which uses four calibration
steps. We have further developed the method by adapting it to use a new kind of calibration
object, which makes it easier to utilize the method in machine automation industry. Only one
image of this object is needed for executing the calibration process. Other new developments
are the modules of software for searching the calibration points and executing the calibration
process. These were written in the ANSI C programming language. The software makes it
easy to embed the calibration method in machine vision applications in e.g. automation cells.

The advantage of the new calibration method is that it is fully automatic, while previously
several manual steps were needed, and several pictures of test images had to be taken. If the
calibration object is located inside an automatic assembly cell, the camera parameters can
even be calculated while the cell is running online.
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2 CALIBRATION METHODS

2.1 Camera model
The purpose of the camera calibration is to build an accurate mathematical camera model.

Model building starts from pinhole model:

0uX
Z
fKu xp += (1)

0vY
Z
fKv yp += (2)

where (X, Y, Z) are world frame coordinates,  (Kx, Ky) are coefficients for converting
millimeters to pixels, (u0, v0) is the location of the optical axis, (up, vp) coordinates according
to the pinhole model, and f  the focal length.

The pinhole camera model is valid only when lenses with long focal length are used. If
more accurate measurements are wanted, the radial distortion has to be taken into account.
The second and fourth order terms in the polynomial approximation that is used for modelling
the radial distortion have been proposed by Heikkilä [2]:
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where ( ) ( )22 YKXK
Z
fr yx += , (k1, k2) are radial distortion coefficients and (∆ur, ∆vr) are

the effects of the radial distortion (differences from the linear model).
There also other kinds of radial distortion models proposed in literature. For example

Correia et al. [1] use the third and the fifth order terms in their model.
Heikkilä [2] has modelled tangential distortion with the following model:
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where (t1, t2) are tangential distortion coefficients and (∆ut, ∆vt) are effects of the tangential
distortion.

The following accurate camera model combines the distortion models to the pinhole
camera model:

trp uuuu ∆+∆+= (7)

trp vvvv ∆+∆+= (8)
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2.2 Calibration routine
Many different kinds of calibration methods are presented in literature. The main

difference between the methods is that many of them calculate only radial distortion
coefficients and omit the tangential distortion. Tsai’s RAC method is probably the most
commonly used one in camera metrology [3]. With Tsai’s technique it is possible to define
radial distortion very accurately, but before using it, tangential distortion has to be removed.
Another well known calibration technique is Weng’s two step calibration process [3].
Actually, the method developed by Heikkilä [2] has similarities to Weng’s method. The main
idea is to first define a “good initial guess” for the nonlinear optimization routine by using a
linear camera model.

During the camera calibration process, the focal length (f), the position of the optical axis
on the image plane (u0, v0), the radial distortion coefficients (k1, k2) and the tangential
distortion coefficients (t1, t2) are defined. When those parameters are known, it is possible to
define the image which corresponds to the one produced by the pinhole model camera. The
external parameters of the camera, its position and orientation relative to the world frame
coordinates are also calculated.

Heikkilä’s [2] calibration process is based on four successive steps. The actual parameter
calculation is performed in three steps and the image correction is performed in the last step.
At the first step, coarse camera parameters are calculated using the linear camera model. More
accurate camera parameters are then calculated during the nonlinear optimization routine. The
third step removes the inaccuracies caused by perspective projection.

3 CALIBRATION OBJECT

3.1 Object

Figure 1. The calibration object which is suitable for positioning into an automatic assembly
cell.

In the design of the calibration object, special attention has to be paid on the compactness (see
figure 1). The idea was that it should be possible to place the object inside into the most
commonly used automatic assembly cells. The area taken by the pyramidal calibration object
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is about 221 mm x 221 mm and it’s height is 138 mm. A three-dimensional calibration object
makes it possible to calibrate the camera by using only one image. The holes in the object are
used as calibration points. The material of the object is aluminum and it has been coated matt
white for reducing specular reflections. The holes are drilled by an inaccuracy of 0,01 mm.

3.2 Calibration point searching
Not only the accuracy of locations of the calibration points on the object is important, but

also the accuracy when searching them from the image. The positions of the points have to
defined by sub-pixel accuracy. The easiest way for finding the centers of the calibration points
is to calculate their central moments, i.e. weighted averages:
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v u
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where u and v refer to the coordinates in an image and f(u, v) to the corresponding gray level.
Note that the weight at the outside of the calibration point has to be 0. For good accuracy, we
have to have plenty of pixels per calibration point. It has been found that they should be at
least 10 pixels wide.

4 EXPERIMENTAL RESULTS
The tests of the calibration method have been divided to three parts. First we tested the

ability of the method to define radial distortion parameters. Then we tested its suitability for
recognizing the offset of the optical axis, and finally we checked the correctness of the
external parameter calculation routine. A video camera with an 8 mm lens was used in the
tests. We utilized the calibration software in Matlab code made by Heikkilä [2], and the
calibration object shown in Figure 1.

A raster pattern was imaged in the radial distortion test. The distances between the raster
points were equal, which means that the same number of pixels should be found between the
points. Dividing the number of pixels by the distances of the points in millimeters gives us the
spatial resolution. If there is radial distortion, it should cause variations to the resolution at
different parts of the image area. Figure 2 shows the variation of the spatial resolution in the
image area, measured in the horizontal direction. The upper line shows the resolution in the
uncorrected image and the lower line in the corrected image that utilized the calibration
method. In the corrected image, there are only small deviations in spatial resolution, which is
mainly due to the measuring inaccuracies during the test. The effects of the aberrations have
decreased clearly.
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Figure 2. The measured spatial resolutions in the horizontal direction of the image.

The ability of the method to find the position of the optical axis from the image was
examined by comparing the search results to an opto-mechanical method developed at VTT.
The method is based on an iterative search of target points from the images of the camera
while it is rotated around an axis that is close to the direction of the optical axis. The target
points have to be far enough from the camera. The results of the measurements are shown in
Table 1. The result of the calibration method has been calculated as an average of four
measurements.

Table 1
X-Y positions of the optical axis measured with different methods.

Nominal Optomechanical method Calibration method

(313.5,  219.5)
(312.3,  224.6)
(309.6,  222.6)
(311.0, 224.6)

Measure-
ments

(320, 240) (310.7, 223.9)

(309.7,  224.1)

Result (320, 240) (310.7±3.5,223.9±3.5) (311.2±0.8,223.1±1.0)

The ability of the method to define the external parameters (position and orientation) of the
camera was tested by measuring the distance between the calibration object and the camera.
The inaccuracy of the handmade measurements can be ±2 mm. The calibration method gives
the distance to the primary principal point of the lens which is difficult to determine without
having the prescription data of the lens (the secondary principal point is, of course, well
known). However, if we move the camera to different heights, and find the differences of the
measured heights to a known reference position, then there is no dependence on the principal
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point separation in these values. Table 2 presents this difference of the measurements given
by the calibration method and those given by manual measurements. The differences between
these two methods seem to be within the error limits of the manual measurements, and the
maximum difference is 0,6% of the value of the reference position, so the method seems to
give reliable results for the camera height. Corresponding tests were performed for object
rotation along one axis, which also gave positive results, so these tests gave confidence on the
performance of the method.

Table 2
Comparisons of the manual measurements with the values given by the calibration method in
position determination. The height variations of the camera were measured when the camera
was lifted up from the reference level at 269,0 mm, and the corresponding differences from
the calibration method were recorded.

Manual measurement (mm) Calibration method (mm) Difference (mm)

30 31,7 1,7
45 46,2 1,2
65 66 1
110 110,9 0,9

5 CONCLUSIONS
We presented improvements to a camera calibration method, including a compact

calibration object, and possibility to perform the calibration with only one captured image.
The tests of the method show that significant improvement of the accuracy was achieved for
cameras that use short focal length lenses. In several tests the method was found to give
reliable results when the novel calibration object was used. We also performed a few
successful tests for determining the position and orientation of the camera with the same
method.
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Abstract

Thispaperpresentsa method,that partially solvescalibration problems
of the computervision in robotics. The methodconnectsimage and
world framecoordinatesautomatically.Thecalculationbaseson neural
network,which treats cameramodelas a black box. Theworld frame
coordinatesare mappedstraight from theimageframe.Thecoordinates
are defined in relation to the distancebetweenthe camera and the
target.Theresultsshowthat accuracyof theproposedmethodis better
than ±1,8 mm, when the sizeof the imageis 250 x 150 mm. This is
sufficient for manypractical applicationsin robotics and better than
achievable results with hand made measurements.

1 Introduction

Mapping the world frame coordinates from an image has been the topic of several
scientific papers. The accuracy of the machine vision based measurements depends
strictly on the knowledge of the camera location in relation to the world frame.
Typically, it is hard to measure location of the camera with sufficient accuracy. On the
other hand, the products in the assembly lines change frequently and the robots has to
sophisticate to new environments without time consuming configuration changes. For
this reason the coordinate mapping should be automatic and measurements with roll
meters should be forgotten. 

Spatial resolution can be calculated from the distance between the camera and the
target. If so, the linear camera model called pinhole model is used (see. Figure 1). This
means that when the distance increases, the imaging system scales the view. In reality,
the optical system always contains non-linear components, which cause errors to actual
spatial resolutions. 
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This study introduces a novel method for mapping image and world frame coordinates.
The neural network creates a camera model which behaves like a black box. In other
words, the idea is to find the black box which predicts world frame coordinates without
knowing the complex camera models. Neural networks recognise image frame
coordinates in the world frame. Fundamental benefit of this method is that the system
automatically calibrates itself to world frame if the distance to the camera changes. The
method presented in this paper is one step closer to automatic configuration of the
vision systems in robotics.

Distance 1

Distance 2

Figure 1 . Pinhole camera model

2 Network model

Numerous network models and topologies are available. Making the best choice is not a
simple task. MLP (Multilayer Perceptrons) is the most commonly used model. It is quite
easy to implement and can be adapted to various applications. RPF-networks could be
better, especially if the output was optimised in statistical sense (Haykin 1999).
However, this study bases to MLP-network. It is feasible for non-linear functions,
which is fundamental requirement for the camera model. 

After selecting the network model, the topology has to be optimised. In this study the
topology was optimised by testing up to 3 hidden layers. Additionally, the amount of
the neurons in each hidden layer varied from 2 to 15 neurons. After several test rounds
it was obvious, that two hidden layers with 7 neurons on each layer was the most
feasible for this application (see. Figure 2). Each layer has also its own bias term
affecting all the neurons on that specific layer.
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Figure 2. Topology of the proposed neural network

3 Testing arrangement

3.1Acquiring calibration data

Black and white type Sony XC-50ES camera was used in the tests (see. Figure 3). The
size of the captured image was 768 x 576 pixels. The target was analysed from three
distances: 441, 545 and 580 mm. The actual dimensions of the views varied from 189 x
132 mm to 260 mm x 180 mm. The neural network was trained with 99 calibration
points and the result was validated with 34 points.  

Figure 3. Testing arrangement

Sub-pixel theorem has to be utilised for creating calibration data. Location of the
calibration points (X, Y) was defined with self written software (see. Figure 4).
Calculation is based on central moments (see. Equations 1 and 2) . To achieve sufficient
accuracy, the size of the calibration point has to be large enough. Diameter of the
calibration points varied from 40 to 50 pixels in this case.
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X �
�

u i w j�
w j

(1)

Y �
�

v i w j�
w j

(2)

ui and vi  in the equations represent the image coordinates of a single pixel. Weight value
(wj) is 1 for the pixels inside the calibration point and 0 for the outside pixels.

Figure 4. Application for searching locations of the calibration points

3.2Testing with neural network

Calibration data has to be shuffled before dividing it to training and validation samples.
This ensures that the network does not learn the order of the calibration data. 

The neural network was exited by Java application (see. Figure 5). The calibration data
was loaded from the file created after shuffling. The test network was trained with
following parameters:

• Learning rate: 0,02
• Number of the iterations: 8000

The same network application also executes validation stage and writes down the result
file. The result file can be loaded to Microsoft Excel for analysing. The quality of the
method was estimated by calculating location errors of the predicted coordinates
(Equation 3).

eNN � � X p � X � 2 � � Y p � Y � 2 (3)
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, where (Xp, Yp) are predicted world frame coordinates.

Figure 5. Test application for MLP network

3.3Reference result

The results from the neural network were compared to those defined with the pinhole
camera model. The spatial resolution for the pinhole measurements was calculated as an
average of the three known positions: the first in the upper, the second in the middle and
the third in the lower part of the image. For linear camera model the spatial resolution is
calculated as equation 4 presents. In Equation 4 R is spatial resolution, and d is distance
from the target. The same calibration points were used both in test and reference
measurements, because those were defined with sub-pixel accuracy. 

Rnew �
d new

dold

Rold
(4)

Error is defined as an absolute error between the real location (Xreal) of the calibration
point and calculated one (Xcalc). 

eHM � Xreal � X calc (5)

Comparative measurement was done only horizontally, which is sufficient to indicate
that the proposed method works properly.
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4 Experimental results

4.1Validation results

As already noted, the testing data was divided to training and validation samples. Figure
6 and Figure 7 visualise root mean square error of the predicted world frame coordinates
horizontally and vertically. Y-axis is prediction error and X-axis location of the
calibration point in world frame (see. Figure 8). The unit on both axes is millimeter.

Figure 6. Mean square errors horizontally

Figure 7. Mean square errors vertically
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Figure 8. Coordinates of the calibration points

As the figures show, the error is below two millimeters for 86% of the test cases.
Assumablythe final result is evenbetter,becauseoneof the calibrationpoint columns
causedall themajorerrors(morethan1,8mm).This canbeseenfrom theFigure6. The
peakexistsat -94,5mm. Figurealsoshowsthat sevencalibrationpointsof thatcolumn
were in validation sample.Normally only four points in eachcolumn includedin the
validationset.As a conclusion,learningof that columnwasnot completed.However,
the test indicates,that systemis reliable and can predict the points in world frame
coordinates with accuracy of ±1,8 mm.

4.2Test with interpolated coordinates

The secondtestpredictsvaluesof the interpolatedcoordinates.This indicatesthat the
systemworksproperlyfor anypoint in the imageandnot only for calibrationrowsand
columns.The real coordinateswere interpolatedfrom neighborhoods.The resultsare
presented on the Table 1. The utilised image points are drawn with cross to the Figure 8.

Table 1 . Errors of the interpolated points

X [mm] Error [mm]

-54 0,51

54 0,20

81 0,61

Meanerror is 0,44mm, which correspondswith resultof thevalidationdatasample.So
the system works also for the points which are out of the calibration pattern.

4.3Comparable measurement

Thespatialresolutionis 0,332mm / pix whenthecameradistanceis 545 mm from the
calibrationtarget.Moving camerato distance441 mm giveserrordatapresentedin the
Table2. Reallengthsaredefinedby startingmeasurementfrom thecolumn−94,5mm
(see. Figure 8). The test distances are measured horizontally on three different locations.
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Table 2. Errors caused by linear camera model

Real length [mm] Y [mm] Error [mm]

162,0 49,5 2,56

162,0 16,5 2,91

81 -49,5 1,77

5Conclusions

The testsprove that connectionbetweenthe world frame and the image coordinate
systemcan be establishedwith presentedmethod.The accuracyis better with this
methodthan the linear cameramodel (pinhole model), which becomesinvalid if the
distancebetweenthetargetandthecamerachanges.Non-linearityof realcameramodel
causes unpredicted effects to behavior of the imaging system. 

Possibleapplicationsfor thesystemcouldbequality checkingin assemblycells,where
the locationerrorsof the electroniccomponentsarenot accepted.The algorithmcould
proceedin following way.Firstly, theimagecoordinatesaremappedto theworld frame
with feedingtraining datato neuralnetwork.This is anoff-line process,which is done
in cell configurationstage.Secondly,the locationmarksandcomponentson the board
areextractedfrom the imagewith the machinevision software.This is the first part of
the on-line process.Thirdly, the distancebetweentwo componentsis defined by
utilising neural network, which compensatesnon-linearitiesof the imaging system.
Finally, thetargetcoordinatesarecomparedto calculatedonesandresultis givenif the
component is in the right place.

The original aim of the this researchwork was to build up a system, which
automaticallycalibratesitself as references(Barret et al. 1996) and (Choongwon&
Junghee1999)present.Calibrationmeansnot only connectingimageandworld frame
coordinates,but also eliminating measurementinaccuraciesof the optical system.
Normally the effectsof the aberrationsareremovedwith constructingsuitablecamera
modeland optimising parametersof that function (Heikkilä & Silven 1997). In many
casesthis leadsto a complexoptimisationroutineand cameramodel becomeserratic
comparedto therealopticalsystem.Theneuralnetworkis complexto create,if special
properties are needed.However, in practical casessimple neural network gives
sufficient accuracycomparedto cameramodel functions.Furthermore,they are also
faster and more reliable.
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Abstract—This paper presents image compression with wavelet 

based method. The wavelet transformation divides image to low- 
and high pass filtered parts. The traditional JPEG compression 
technique requires lower computation power with feasible losses, 
when only compression is needed. However, there is obvious need 
for wavelet based methods in certain circumstances. The methods 
are intended to the applications in which the image analyzing is 
done parallel with compression. Furthermore, high frequency bands 
can be used to detect changes or edges. Wavelets enable hierarchical 
analysis for low pass filtered sub-images. The first analysis can be 
done for a small image, and only if any interesting is found, the 
whole image is processed or reconstructed. 
 

Keywords—image compression, jpeg, wavelet, vlc  

I. INTRODUCTION 

N recent years the interest in image compression techniques 
has been steadily grown. The trend is firstly to store and 

transmit images and video clips digitally and secondly to add 
multimedia properties to wireless mobile devices. The 
capacity of the long distance wireless networks is limited, 
which causes need for more efficient multimedia compression 
methods. The problem is to achieve sufficient compression 
ratio with acceptable degradation in low cost embedded 
consumer devices. 
 The basic JPEG standard for still image compression is the 
most commonly used intra-image compression method at the 
moment, but wavelet based methods have promising features 
for the future needs. JPEG is based on the discrete cosine 
transformation (DCT) of the 8x8 blocks (see. Figure 1). 
JPEG2000, which is a recent compression standard, utilises 
wavelet transformations. Wavelets normally require more 
computation power than DCT. The benefit is that they also 
retain spatial domain characteristics, which can be utilised for 
other purposes easier than DCT results. 
 This publication bases to a wavelet codec which was 
created at VTT for testing the feasibility of the methods to 
practical applications. The name of the codec is wavecodec. 
Wavecodec is software which is flexible for various image 
processing applications. The wavelet based codec is suitable 
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when high compression ratios are needed [1]. Filtering is 
done in sequences of horizontal and vertical low- and high 
pass transformations.  

 

DCT transformation 

ZIG-ZAG run encoder 

Quantisation with Q-table 

VLC coding with huffman table 

 
FIGURE 1: SIMPLE DESCRIPTION OF THE BASIC JPEG ENCODING PROCEDURE 

II. WAVELET TRANSFORMATION 
 The purpose of the transformations in image compression 
is to pack the significant information through sub-band 
coding. Then information can be carried with fewer bits. 
Irrelevant information on low entropy sub-bands can be 
totally removed. 
Wavelets produce separate low and high frequency sub-bands 
(see. Figure 2) [3]. The interesting issue is that those bands 
can be investigated in spatial domain.  

 

 
FIGURE 2: ABOVE, THE ORIGINAL IMAGE AND BELOW, THE WAVELET 

TRANSFORMED IMAGE SHOWN IN SPATIAL DOMAIN. THE DISTURBANCES IN THE 

TOP LEFT CORNER ARE A NOT CONSEQUENCE FROM WAVELET 
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TRANSFORMATION. THEY ARE CAUSED BY IMAGE PRINTING TECHNIQUE TO 

USER INTERFACE. 

 The low pass filtered image is similar to original image, 
but edges are blurred and image size is smaller due to the 
narrowed sub-band width. From the high pass filtered bands, 
sharp edges and defects can be found.  

III. VARIABLE LENGTH CODING 

 Wavelet is a transformation which compresses significant 
information from the original image to narrower energy sub-
bands. The transformation does not reduce image size. On the 
contrary, after transformation more bits are needed to 
preserve information. For actual compression, variable length 
coding (vlc) is needed after the transformation [4]. 
 The purpose of the transformation is to reduce the number 
of gray levels which are needed in image reconstruction. The 
number of the quantisation levels has a direct effect onto the 
image quality and compression ratio. Decreasing the number 
of quantisation levels causes higher quality loss, but produces 
smaller images. 

High frequencies do not need as many quantisation levels 
as lower bands because their amplitude typically is much 
lower than the amplitudes of the lower frequency bands. 
Furthermore, the high frequency sub-bands contains detail 
information of the image. The low frequencies store most of 
the information and are more important for the image quality.  

IV. COMPRESSION ALGORITHM IN WAVECODEC 

 The presented compression algorithm begins by executing 
a wavelet transformation (see. Figure 3). The wavelet 
transformation is done in four nested loops. In the first round 
the whole image is filtered. In the second round only the low-
pass filtered portion is processed, which covers 1/4 of the 
image. In the third round, 1/16 and in the last round, 1/64 of 
the whole image size is filtered. 1-dimensional banks are 
convolved horizontally and vertical pixel rows sequentially.  

 

Wavelet transformation 

Quantisation 

VLC with H.261 video coding table 

 
FIGURE 3. DESCRIPTION OF THE WAVECODEC APPLICATION 

 8-tap Daubechies filters are used in wavecodec (see. Figure 
4). It is not computationally efficient. Better coding efficiency 
would be achieved with shorter filters but the compression 
ratio would be worse. LeGall 5/3 and Daubechies 9/7 filters 
are implemented in JPEG2000. Nevertheless, the used filter is 
sufficient for testing purposes. In wavecodec horizontal and 
vertical filters are executed sequentially, starting with 
horizontal one.  

 Huffman coding is done at same time with run length 
encoding (RLE). This reduces computation power 
requirements. The used coding method corresponds to the 
H.261 video standard. Typical pixel values are fetched from a 
Huffman table. The length of the zero runs is appended in the 
Huffman code word. Values not found in the table are 
presented with 24-bit ESCAPE codes. 
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FIGURE 4. 8-TAP DAUBECHIES FILTERS, WHICH ARE IMPLEMENTED IN THE 

WAVECODEC ALGORITHM. 

 Wavecodec is developed for efficient CPU units. The 
intended compression ratio was 1:10 or even better. The 
wavelet was chosen as the transformation method because 
there were interests to use small images in the pre-processing 
stage. Furthermore, the opportunity to execute image 
processing parallel with compression was an attractive 
feature. 

V. TEST METHODS AND TOOLS  

 The developed compression algorithm is compared with 
JPEG codec in the same testing environment. JPEG was 
implemented to the same application as wavecodec. Both 
compression methods were built with Borland C++ Builder 6 
compiler (Figure 5). The utilised JPEG algorithm was an 
internal component of the compiler. The testing program runs 
on Microsoft Windows XP operating system. The hardware of 
the test platform was a laptop with Intel PIII 1,13 GHz 
Mobile CPU. The size of the main memory was 320 MB. 

 
FIGURE 5. PROGRAM WHICH IS BUILT FOR TESTING PURPOSE 

 The Nyquist pattern (Figure 6) was used as a test image for 
the compression tests. The pattern contains both low and high 
frequencies. However, in most practical applications only low 
frequencies are significant. Therefore, the pattern is a kind of 
an extreme test for the high frequency retaining properties of 
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a method. For this reason the fire truck images are also 
studied in the experimental section.  
 

 
FIGURE 6. NYQUIST PATTERN 

VI. EXPERIMENTAL RESULTS 

 As mentioned above, the most attractive feature of the 
wavelet-based method is the possibility to simultaneously 
perform other image processing functions, in addition to 
compression. After the wavelet transformation, horizontal 
and vertical filtered images are available. Figure 7 and Figure 
8 show examples how to utilize high pass filters. From those 
images, direction related information can be extracted. 

 
FIGURE 7. HORIZONTAL HIGH-PASS FILTERED IMAGE PARTITION 

 
FIGURE 8. VERTICALLY HIGH-PASS FILTERED IMAGE PARTITION 

 After the wavelet transformation the energy of the image is 
mainly concentrated around the zero point, see Figure 9. The 
higher compression rate follows from the narrow energy 

band. Fewer levels are needed for maintaining image quality 
in the quantisation stage. The energy distribution of the fire 
truck image is like Gaussian and concentrated in the lower 
frequency bands. 

 
FIGURE 9. ENERGY DISTRIBUTION OF THE FIRE TRUCK AFTER THE WAVELET 

TRANSFORMATION 

 The following images show minimum and maximum 
values of each sub-band before and after the variable length 
coding. The highest frequency sub-bands are totally lost in 
VLC coding, because the quantisation threshold for those was 
high. This explains some loss of sharpness of the image in the 
coding stage. 
 

 
FIGURE 10. MINIMUM AND MAXIMUM VALUES AFTER WAVELET 

TRANSFORMATION (LEFT) AND AFTER VLC CODING (RIGHT) 

 Figure 11 and Figure 12 show differences between the 
original Nyquist pattern and the image after decompression. 
Practical tests indicate that wavecodec causes more losses 
than JPEG with a compression ratio 1:10. Peak quantisation 
signal-to-noise ratio for the wavelet based method is 25,9 dB 
and for the JPEG image 29,3 dB. This is mainly due to the 
coarse quantisation in the higher frequencies in wavecodec, 
as can be seen from the difference images. 

 
FIGURE 11. DIFFERENCE IMAGE BETWEEN WAVECODEC AND ORIGINAL 

NYQUIST PATTERN. PSNR RATIO IS 25,9 DB 
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FIGURE 12. DIFFERENCE IMAGE BETWEEN NYQUIST PATTERN AND JPEG 

COMPRESSED IMAGE. PSNR RATIO IS 29,3 DB 

 The encoding time of the wavecodec method was 311 ms 
for the Nyquist pattern (see. Table 1). Decoding is as fast. 
The wavelet transformation consumes 280 ms (see Table 2) 
from total coding time. The inverse transformation requires 
290 ms. In other words, wavelet calculation is the bottleneck 
of the current implementation. However, the results are not 
surprising because of the iterative nature of wavelet filtering, 
and the rather long filter kernel used. The algorithm of the 
wavecodec is less complicated than that for JPEG, but 
because of the iterations it requires more computation power. 

TABLE 1. COMPARISON OF THE JPEG AND WAVELET BASED METHODS 

Method Time Size of the 
result image 

JPEG 151 ms 45 KB 
wavecodec 311 ms 47 KB 

TABLE 2. PERFORMANCES OF THE WAVELET AND VLC ROUTINES 

 Time 
Wavelet transformation 280 ms 
VLC encoding 31 ms 

VII. CONCLUSIONS 

 Without any optimisation work the coding time with 
Borland’s JPEG codec is faster than that for the implemented 
wavelet-based codec. The source code was not thoroughly 
optimised, so the performance can be increased with code 
analysers and processor optimised compilers. The easiest way 
to increase performance is to calculate the wavelet 
transformation with a less iterative method. Optimisation 
work of the algorithm is active at the moment. Thus the 
computation time in the final application will be lower than 
presented in this paper. Anyway, it is clear that the JPEG 
compression and decoding methods still are faster than 
wavelet, as reference [2] proposes. Of course, we have to keep 
in mind that present CPU’s typically have dedicated 
addressing modes for DCT-type computation. 
 The wavelet transformation has two clear benefits 
compared to the conventional DCT- based compression 
methods. Firstly, low and high pass filtered parts are done 
separately, which enables frequency analysis during 
compression. Secondly, the small sub-images can be used in 
image processing (see Figure 13), which results from the 
nested transformations. This enables hierarchical image 
analysis whereas only partly reconstructing the image. If 

something abnormal is found, often only then the whole 
image needs to be decoded and analysed.  

 
FIGURE 13. TREE OF THE LOW PASS FILTERED IMAGES 

 Despite the high losses, the result of wavecodec is adequate 
for many practical applications. One example could be 
detection of defects of flat surfaces and transmission of the 
data via a LAN link. In this case the frequency analysis in 
spatial domain gives the CPU efficient way to execute image 
processing parallel with compression.  

Another example for the wavelet based method is mobile 
devices or wireless telecommunication. If the sub-bands are 
coded separately, then the quality of the image can be selected 
according to the transmission speed. It means that only the 
low-pass filtered parts of the image are transmitted which 
guarantees sufficient frame rate for video clips. This could 
solve the data overload problems of the wireless surveillance 
cameras. 
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Abstract—This paper presents a low-cost multiple gas sensing 
device developed for pollution measurements in a kitchen hood 
which is exposed to grease and dirt. The target application, 
which is an ozone control system, needs no accurate 
measurements. Low cost is achieved by using common 
electronics for all three sensing elements. A single processor 
with an user friendly interface controls the heating power of 
the sensing elements and reads the measurements in digital 
format. Two sensors can be connected to a single personal 
computer (PC). All the intelligence of the sensing system is in 
an embedded PC, which reads the raw signal from the sensor.  

The main task of the sensor system is to observe volatile 
organic compounds (VOC) from cooking emission and 
measure the ozone produced in the outlet duct. The sensor 
gives the total non-specific VOC amount and is not intended 
for special gas. Calibration with ethanol guarantees a 
representative enough response for most hydrocarbons in 
cooking emissions. The selectivity of the oxidizing type sensing 
element is poor. In the target application the sensing devices 
give an indication if more ozone is needed. The practical test 
showed that the response of the first VOC element is slow but 
stable. On the other hand, the second one reacts rapidly (< 1 s) 
to any changes. The combination of the sensing elements gives 
a very good estimate of the total VOC level. The ozone sensing 
element also reacts to VOCs, which is a harmful characteristic 
for the prospective ozone control mechanism. However, with a 
combination of the VOC and ozone measurements the errors 
in the ozone measurement can be reduced. Thus the sensor is 
like a simple electronic nose [1]. 

I. INTRODUCTION 
A novel low-cost sensing device for pollution gas 

measurements in kitchen environment is presented in this 
paper. The sensing device was developed in the EU-funded 
Nozone Project. VOC in cooking emission are a problem in 
catering kitchens. VOCs cause unpleasant odour in 
restaurants. Use of grease implies fire hazards in ventilation 
ducts. Thus, the need to neutralize VOCs and eliminate 
smells is clear.  

It is known that ozone can be used to destroy undesirable 
organic compounds [2]. The neutralisation process results 
carbon dioxide (CO2) and vaporised water (H20). The goal of 

the project was to build a system to adjust the level of ozone 
in the industrial hood. Ozone and VOC measurements are 
used for maintaining sufficient ozone level in the reaction 
chamber. The ozone level in the outlet must meet the EU 
regulations. The industrial objectives were to restrict residual 
ozone level to 0,1 PPM within average of 4 hours or 0,3 
PPM over 10 minutes and capture VOC emission to ±0,01 
mg/m3 accuracy. Cooking produces many organic gases but 
only few of the resulting odours are problematic. The 
sensing elements were selected according to the research 
work carried out by other work package in the project. The 
work indicated that hydrocarbons are the most important 
emission gas.  

The price was a key factor in the development process. 
The new sensor was developed because current commercial 
sensors are too expensive. It was pointed out that the metal 
oxidize semiconductors are the only sensing element type, 
which could comprise the price limitations. A typical 
precision gas measurements device costs more than 1500€ 
[3]. The electronic components of the proposed sensor with 
one ozone sensing element and two VOC elements cost less 
than €800.  

One secret of the relative low price is a simple 
measurement principle that reduces the number of 
components. The same electronics were used for the three 
sensing elements that included two VOC and one ozone 
sensing heads. Digital signal processing was performed by 
an external computing unit. The sensor itself consists of the 
commercial sensor elements and units for converting 
analogue signals to digital format.  

II. ELECTRONICS AND SOFTWARE 
The electronics is protected with an EMC tested 

enclosure as seen in Fig 1. The computer is connected to the 
sensing device and electronics with serial data 
communication. The sensing elements were read via 
operation amplifiers (Fig 2), which aids to set correct gain 
and operating point. The electronics also includes a low pass 
filter for removing the peaks from the signal.  

Work is done in Nozone project, which is funded by the European 
Commission. The project number is EU Craft EVK4-CT-2002-30009. Full 
title of the project is The Development of an Intelligent Responsive 
Pollution and Odour Abatement Technology for Cooking Emission 
Extraction Systems. 
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Figure 1. Electronics of the sensor device in EMC protected enclosure 

 

Figure 2. Schematics of the single sensing element 

Both the VOC and Ozone sensing elements are based on 
a thin substrate layer whereby conductivity changes when 
the sensor absorbs gas [4]. Sensing elements, which based on 
oxidisation, are the cheapest ones to measure gas 
concentration. The drawback is the poor selectivity which is 
well known for this type of sensors.  

The correct operating temperature is essential. The 
sensing elements require constant heating power. The 
heating period of the sensor to the correct operating 
temperature takes approximately 10 minutes when the 
sensing element is cold. The sensitivity of the sensor changes 
according to temperature. The control program of the sensors 
automatically sets the heating power to the correct value 
within a one second interval. The heating must be very 
strictly regulated, especially in the target environments 
where air flow cools the sensing elements. 

The program reads data from two sensors 
simultaneously, which means that 4 VOC and 2 ozone 
measurements are done in parallel. The graphical user 
interface is compiled into the Microsoft Windows 
environment. The application shows a recording for 2 hours 
in a line diagram. The median filter removes doubtful 
measurements when there is interference in communication 

between sensors and computer. The software also 
automatically resets the A/D converters whenever error bits 
are observed. 

The rates measured during the tests are done with Intel 
PIII 1,13 GHz mobile processor laptop. The sampling 
frequency is normally 5 Hz for the measurements. Faster 
sampling is possible but unnecessary in this particular 
application. The sampled measurements can also be stored in 
a file, which applies opportunity to analyze data later. The 
final data acquisition system is based on a low cost and 
compact embedded CPU board.  

III. CALIBRATION AND VALIDATION 
The operating range and optimal signal level of the 

sensing element is adjusted with potentiometers. At first, the 
operation point is set so that the sensor reacts to the changes 
in gas concentration. Then the saturation limit is checked 
with maximum concentration. Finding the optimal operation 
point is a time consuming iterative process due to the large 
variation of the characteristics of individual sensor elements. 

During calibration, the potentiometers are adjusted to the 
right operating point. The second task is to define the 
conversion table.  The calibration table is individual for each 
sensing head and they cannot be duplicated directly. The 
look-up table (LUT) removes the errors caused by the 
strongly nonlinear behaviour of the sensor. Additionally, the 
table converts the raw electrical signal to more sensible parts 
per million (PPM) values. Because of the nonlinearity of the 
sensing head, at least seven points are needed to create the 
table.  

Calibration of VOC elements was done with ethanol, 
which is a common hydrocarbon occurring in cooking 
emissions. The selected substance was found suitable 
according to practical cooking tests in the kitchen. Table 1 
presents values from the calibration process of the elements. 
The reference was acquired with MiniRAE 2000 from RAE 
Systems in the laboratory. The performance of the selected 
VOC sensing elements is really promising.  

TABLE I.  RESULTS FROM THE VALIDATION STAGE OF THE VOC 
ELEMENTS 

 Sensor 0 Sensor 1 
Reference VOC 1 VOC 2 VOC 1 VOC 2 

90 89 97 88 97 
236 232 238 228 239 
322 342 304 340 311 
45,6 57 44 57 43 
370 386 337 384 343 
182 182 165 173 165 

 
Fig 3 shows the absolute value of the measurement error 
compared to ozone levels measured with the reference 
instrument, which was O3 41 M device from Environment 
s.a. The measured values are listed in Table 2. The 
calibration was slightly different for the two sensing 
elements in sensors S0 and S1. It seems that sensor S1 
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overshoots. Fortunately, major errors can be reduced by 
multiplying the values in the unit conversion table with a 
fixed factor. Despite the inaccuracy the sensor is still 
adequate for the target application. 
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Figure 3. Errors in ozone sensing after calibration  

TABLE II.  MEASUREMENTS FROM VALIDATION STAGE 

Ref S0 S1 
0,282 0,408 0,288 
0,019 0,03 0,025 
0,097 0,12 0,144 
0,028 0,033 0,038 
0,068 0,077 0,105 
0,172 0,178 0,26 
0,011 0,02 0,018 
0,137 0,17 0,22 

IV. SELECTIVITY OF THE SENSORS 
The laboratory tests indicated lack of selectivity of the 

VOC sensors to the various gases. This was not surprise 
according to the preliminary studies [1]. The VOC sensing 
elements are intended to measure the total concentration of 
hydrocarbons. The problem is that the ozone sensor elements 
respond to hydrocarbons as well. The VOC gases attenuate 
the ozone output signal. In the kitchen hoods many gases 
exist, therefore the ozone value is incorrect in such an 
environment. The first VOC sensing element (VOC_1) 
responds to both hydrocarbons and ozone. The weak 
selectivity has also been confirmed by the manufacturer of 
the elements. 

Fortunately, the VOC_2 sensor does not respond to 
ozone as can be seen in Fig 4. This means that the error of 
ozone measurements can be compensated using VOC_2 data 
at a higher priority in the ozone control system or the error in 
ozone sensing can be straightforwardly eliminated by using 
the VOC_2 readings. On the other hand, VOC_2 sensor is 
too sensitive to changes in emission gasses. Combination of 
VOC_1 and VOC_2 measurements is observed to provide a 
good performance for accuracy and response time. 

The difference between the VOC_1 and VOC_2 sensing 
elements is substrate of the sensing material. Both are tin-
dioxide (SnO2) sensors, but better oxidation catalysers with 
suitable concentrations are added to VOC_2 sensing surface 
than in VOC_1.  

 
Figure 4. The VOC_2 sensor is insensitive to ozone. Pure ozone was 

exposed to the sensor in this experiment 

V. SENSOR RESPONSE TIME 
In the ozone control system a rapid response to gas level 

changes is essential. Fig 5 and Fig 6 show the reaction times 
of the sensing elements compared to the reference 
measurements. The problem is that changing ozone level 
rapidly in the chamber is nearly impossible. The ozone is 
mostly produced with UV tubes, which require a few 
seconds for ozone generation to start. However, the 
laboratory tests and prototype machine showed that response 
times are at least reasonable. Reaction to ozone and VOC 
level changes takes no more than 2 seconds. The sensors 
react fast to level changes, but reaching the final value may 
take up to 5-10 minutes.  
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Figure 5. Response of the ozone sensing elements compared to reference 

measurements 
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Figure 6. Response of the VOC sensing elements compared to reference 

measurements 
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VI. EXPERIMENTAL RESULTS 
The practical tests were done in a hood system 

constructed to simulate a real industrial hood system (see. 
Fig 7). The ventilation and air flow correspond to real 
kitchens (e.g. fast food restaurants). Cooking emissions in 
tests come from hamburgers and steaks fried under the 
canopy. The measurement conditions were not completely 
comparable for all actions in the kitchen. The goal of the test 
was to see if the laboratory measurements were valid in a 
practical environment. As already mentioned, the 
preliminary knowledge shows that ozone neutralizes the 
VOCs [2]. The test results prove this assumption.  

 
Figure 7. Test rig which simulates industrial hood system 

The sensors work well in short period tests as Table 3 
indicates. The dirt did not affect the sensor readings as much 
as expected. In fact, the sensor needed no recalibration after 
three days of testing. In the tests, cooking actions were 
simulated and the data collected for analysis. The behaviour 
of the sensing elements corresponds to human observations 
with eyes and nose. The odours persist in the outlet duct 
while VOC level increased according to the sensors and the 
smell of the ozone corresponded with measurements as 
assumed. 

TABLE III.  THE TEST RESULTS FROM PROTOTYPE 

Action Ref O3 O3 VOC1 VOC2 
No cooking emission  0,029 16 32 
No cooking, ozone 

produced 
0,16 0,161 0 43 

More ozone  0,17 0 42 
Ozone: off and 

cooking with oil 
started 

 0,095 33 110 

VOC level stabilized  0,09 50 193 
Ozone: on, VOC 

decreasing 
 0,13 0 141 

No food cooked, 
ozone on 

 0,17 0 85 

Steaks cooked, ozone 
on 

0,13 0,15 3,2 170 

Ozone reacts  0,16 3 110 
Ozone on, cooking 

stopped 
0,14 0,17 0 80 

No cooking, ozone 
turned off 

0,08 0,07 10 135 

No ozone,  sensors 
stabilized 

 0,042 21 0 

 

The reference ozone values were measured from the 
same sampling point with a handheld measuring device. The 
results show that the ozone readings follow the reference. 
VOC measurements showed that VOC_1 head is slow. The 
VOC_2 device is actually too sensitive to the changes in the 
environment. The combination of the two sensing elements 
seems to produce really a good estimate of the VOC level. 

VII. CONCLUSIONS 
A combination of two different VOC sensing heads is 

needed for a reliable result. The accuracy of the ozone 
measurement is impaired by other emission gases. However, 
the important feature is that the VOC_2 sensor element is 
insensitive to ozone. This means that the error in ozone 
measurement can be tackled in the ozone control system. 
From another view, the ozone sensor is more sensitive to 
ozone than to other gasses. In the application, the presented 
accuracy of the ozone sensor is probably sufficient in 
practical kitchen conditions. 

The calibration of the sensor should be considered 
carefully, when the final product is designed. Calibration of 
the single sensor might take even 3 hours with current 
method. The trimmers for adjusting correct operating point 
have to search iteratively. By replacing the trimmers with 
digital potentiometers, which can be controlled with 
software, would reduce calibration time to few minutes.  

If no accurate measurements are needed as in the target 
application in a commercial kitchen environment the gas 
indicators work well enough. The measurement resolution of 
the developed low-cost sensors is appropriate. The proposed 
ozone control principle was shown to work with the sensors.  
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Abstract 
 

This paper presents a novel automatic scrap metal 
sorting system which employs a colour vision based 
optical sensing system and an inductive sensor array. 
The operation of the system is verified in a real metal 
recycling plant. The long period test results indicate 
that 80 % purity can be achieved when the feeding 
conveyor speed is limited below 1,5 m/s. The described 
system is not designed for any particular metal. 
However, the above separation result can only be 
achieved when reddish (brass, copper) and bright 
metals (stainless steel) are separated. The properties 
of aluminium, zinc, and magnesium are too similar for 
the current sensing principle. The results do not only 
depend on the sensing system, but also optimal work 
flow, lighting, dust and vibrations have to be 
considered in a practical sorting machine. The 
achieved purity and capacity is sufficient for industrial 
use. Efficient use of sensor fusion provides good 
performance despite the diversity of the scrap metals.  
 
1. Introduction 
 

This paper presents a combined machine vision and 
inductive sensing system intended for scrap metal 
sorting. The sensing principle is realised in a sorting 
machine called Kombi, Figure 1, in an industrial 
environment. The computer vision setup is based on 
the colour difference, or chrominance components in a 
CCTV signal [1]. The differences are calculated using 
the red channel as the common component to which 
amount of green and blue are compared. Such metals 
as copper and brass produce signals with a strong red 
component [2] and low response in the blue band. On 
the other hand, the blue component is more significant 
for stainless steel and aluminium. 

In a practical industrial application, positions of dirt 
and variations in ambient lighting will complicate the 
separation task. Stable lighting can only be arranged in 

laboratory conditions. Furthermore, specular 
reflections from clear surfaces may cause saturated 
regions in the image, or direct the light rays mostly out 
of the view of the camera. The sorting result depends 
heavily on the used image pre-processing techniques 
that alleviate such artefacts. Proper digital filtering 
methods are described in this paper for achieving a 
reliable recognition result. 

The inductive system complements the sorting 
process by measuring the electrical properties of the 
metals (i.e. it can be said that the inductive system 
measures invisible properties while machine vision 
system is for visible ones). In some cases, it is 
sufficient to use either the inductive sensor system or 
the machine vision system alone, while in some cases 
fusion of the decisions of the two setups is needed. An 
example for the latter case is coloured metals (e.g. 
copper and brass) for which there is no reason to use 
colour vision, because dirt would cause unnecessary 
degrade to the classification performance of the 
inductive system. 

 
 

 
 

Figure 1. The sorting machine Kombi with 
inductive and colour camera sensing systems 
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2. System description 
 

The hardware of the system consists of a Sony XC-
003P CCD matrix camera with individual sensor 
elements for the three colour components. The camera 
allows separate adjustment of the gains of the colour 
channels for optimising the sensitivity according to the 
sorted metal. The matrix camera was selected for 
Kombi; however, a line scan camera can also be 
implemented, especially if higher resolution across the 
conveyer belt is needed. For noise attenuation and less 
demand for computational power, neighbouring pixel 
values are averaged. In the lighting setup, the crucial 
factors are sufficient intensity on the conveyer plane 
and suitable spectral density for colour rendering. High 
intensity is needed because some stained metal objects 
are very dark. Also, colour cameras are obviously less 
sensitive than black-and-white cameras. Therefore 
fluorescent bulbs with good efficiency were used, as 
shown in Figure 2. Secondly, the spectra provided by 
the lighting equipment should be adapted to the kinds 
of metals to be separated, so that both reddish metals 
(copper and brass) and bright metals (aluminium, steel 
and magnesium) receive sufficient spectral density 
over the bands that are important for the classifier. 

 
 

 
 

Figure 2. The lighting frame in the Kombi 
machines 

 
The inductive system consists of 52 sensors that 

measure the electric properties of metals. The output of 
an inductive sensor depends both on the induced eddy 
currents which are a function of the conductivity of the 
target, and the magnetic properties of the metals. 
Commercial inductive sensors, whose output voltages 
are read via an A/D converter to the computer unit, are 
used in Kombi. Actually, the sensors are intended to 
use as on/off type triggers to detect when conductive 

material is approaching. However, observations 
support an idea to utilise the sensors, which price level 
is low, for distinguishing metals by determining unique 
voltage limits for each material if calibration is done 
precisely. 

 
3. Image processing 
 

At the pre-processing stage the goal is to remove 
noise and irrelevant data from the image and segment 
the metal pieces from the background. Multiple metals 
may exist in a single image and they all have to be 
separately classified. The locations of the metal pieces 
are first labelled by creating a mask over the bright 
pixels. Dark pixels belong either to the background or 
they are undesired dirty spots of the objects. Dirty and 
saturated pixels are eliminated based on acceptable 
intensity levels, so only a limited number of the 
connected pixels around the extracted target are used. 
Further reduction and filtering is done by averaging 
the measurement points and selecting only about 30 % 
for the classification stage. This process eliminates 
most dirty pixels and other disturbances, such as 
specular reflections and secondary reflections from the 
conveyor, but still retains a large number of good 
pixels to be used by the classifier. 

The core of the classifier is based on the use of 
colour difference signals i.e. chrominance values [3]. 
In colour space defined by the red, green and blue 
components, the differences relative to the red channel 
are calculated. The boundaries for the clusters that 
form the different classes are created for each metal in 
the two-dimensional space defined by the blue-red and 
green-red colour differences, as seen in Figure 3. 

 
 

 
Figure 3. The two-dimensional classification 

space 
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The classification of the pixels to be used for the 
measurement is done in two phases. First, all the points 
in the metal region are used for calculating a rough 
estimate of the optical properties of the metal. Then the 
final classification is done by using only points near to 
the weighted centre. This method produces reliable 
classification because the pixels not representing good 
data points are ignored. 
 
4. Inductive measurement 

 
An inductive sensor measures the electrical 

properties of the metal fragments as already annotated. 
An electro-magnetic field is created by the transmitter 
in the sensor, and the induced currents are measured 
with a receiver. Both the conductance (through the 
induced eddy currents in the objects) and the magnetic 
properties of the objects will have an effect to the 
induction at the receiver. Both properties are 
characteristic to the specific metals or metal 
combinations to be sorted. 

The biggest problem in an inductive sensor system 
is that the sensors are sensitive to the distance changes 
between the target and the sensor. The shape of the 
shredder scrap is normally complex, which causes 
variation in the measurements. The practical tests 
indicated that the response differs for planar objects 
and arbitrary formed scraps. When the sensors were 
calibrated with brass metal, the following voltages 
were observed in practice for the specific commercial 
sensor: brass 8.5 V, aluminium 6.0 V and steel 10.0 V. 
The range of the sensor output was 0 - 10 V. 
 
5. Sensor fusion and software architecture 
 

Some similarities with the proposed sensing 
principle can be identified from the patent [4]. 
Inductive and colour vision are independent but 
parallel systems. Practically, the reddish metals 
(copper and brass) are recognised with a colour vision 
system and remaining fragments are sorted with an 
inductive system. The both sensing systems provide 
the recognition decision before a final sorting result. If 
the both systems end up the same result according to 
sensor fusion, then a metal is accepted to a class.  

Two methods are implemented to the software for 
connecting results of the sensing systems. When purity 
of the sorting is the most critical, AND type connection 
is used. It simply means that the both sensors have to 
accept the criteria for an entire metal region. However, 
typically, the camera captures metal boundaries better 
than the inductive system. In this case, the software 
includes the option that the machine vision is used to 

calculate metal area, and the inductive system only 
accepts or rejects the sorting result from the vision 
system. 
 
6. Experimental Results 
 

Two sorting machines (Kombi 1 and 2) were 
installed along the separation conveyor. The first one 
is used for separating stainless steel from the material 
flow. The second sorting machine recognises the 
reddish metals (brass and copper, Figure 4). A 
combination of an inductive system and a system 
based on computer vision was utilised in Kombi 1. In 
Kombi 2, colour classification was found to work even 
better than the combination mode of the two methods. 
As noted earlier, the inductive system suffers from 
distance variations between the sensor and the metal. 
For maximising the copper-brass production, the 
inductive system was rejected. The inductive system 
was dedicated to stainless steel but before Kombi 2 
steel has already been separated from the material 
flow. 

 
 

 
 

Figure 4. Copper, brass and stainless steel in 
camera view 

 
 
Tables 1 and 2 show results from a real scrap metal 

sorting process in a recycling factory. Totally, 4646 kg 
of metal scrap (e.g. aluminium, zinc, steel, magnesium, 
copper, brass etc.) were sorted with the proposed 
technique. The speed of the conveyors was 1,5 m/s. 

The practical results indicate that nearly 80 % was 
separated correctly in both Kombi 1 and 2. The biggest 
problem is caused by aluminium, which is not a 
surprise. The colour is similar to steel. Even with the 
human eye, it is hard to distinguish those two metals. 

The quality of the sorted fractions is reasonable. 
The 80% pure fraction meets the first level industrial 
requirements. The purity can be increased, but as a 
consequence, the cost of the operation will be higher 
because many useful metal pieces are classified as 
waste like wood, plastics, etc. In fact, the current 
system suffers from the number of unrecognised 
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metals, which are then separated from the residual 
metals. Table 3 shows that 18.9 % of waste is 
incorrectly separated brass and copper. 

 
Table 1. The sorting results from the first 

Kombi separation unit. The purpose of this 
machine was to separate a stainless steel 

from the material flow. 
 

Metal Weight [kg] Success 
percentage of 

separation [%] 
Stainless steel 350.0 79.1 
Al (grey) 30.3 6.8 
Al (red/yellow) 3.1 0.7 
Pb 1.8 0.4 
Cu / Brass 22.1 5.0 
Cans 2.8 0.6 
Mixed 32.6 7.4 
Total 442.7 100.0 

 
Table 2. The second machine was used to 

find the reddish metals (copper and brass). 
 

Metal Weight [kg] Success 
percentage of 

separation [%]
Cu 134.0 37.4 
Brass 132.0 36.8 
Cu/Brass 33.2 9.3 
Al (grey) 12.0 3.3 
Al 
(red/yellow) 

10.2 2.8 

Cans 0.7 0.2 
Others 36.3 10.1 
Total 358.4 100.0 
 

Table 3. Material flow after separation 
machines 

 
Metal Weight [kg] Success 

percentage of 
separation [%]

Al 48.3 50.3 
Cu 5.6 5.8 
Brass 12.6 13.1 
Stainless steel 17.3 18.1 
Cans 0.1 0.1 
Others 12.0 12.5 
Total 95.9 100.0 

 
7. Conclusions 

 
The practical implementation of the separation 

system has shown issues which were not considered 
while prototyping. In the laboratory 90 % separation 
accuracy was achieved, but vibrations, ambient 
lighting, reflections from wet belts etc. reduces the 
recognition result in industrial conditions. The realistic 
sorting result for the developed separation machine is 
about 80 % for stainless steel and coloured metals 
(brass and copper), when the speed of the belt is 
limited below 1,5 m/s.   

An important practical aspect is that the workers in 
the plant normally are not engineers. Many of them 
have worked already before the computer era and their 
knowledge is restricted to normal office programs. The 
user interface of the machine should be simple and 
prevent adjustment of any configurations which could 
affect the recognition result. It is preferable to use 
fixed parameters for avoiding accidental set-up 
changes. On the other hand, optimal imaging 
conditions cannot be arranged by implementing a large 
number of adjustable parameters in the software. It is 
more desirable to use few parameters and in particular 
to avoid any cross references between adjustments. 
The camera setups and colour of the lighting are 
arranged for achieving maximum amount of relevant 
information. 

The optimal configuration is not only a matter of 
the best adjustments in the program, but also the 
optimal work order must be considered. In this case, it 
was observed that stainless steel should be separated 
before the coloured metals. When the stainless steel is 
no longer in the material flow the coloured metals can 
be sorted without the inductive system which is 
sensitive to distance changes.  In that way the 
effectiveness of the sensing system is enhanced. 
Aluminium is the biggest open issue for the Kombi 
machines. When the purity of the sorting result is to be 
improved, sorting of aluminium should be considered 
more carefully. 

Despite the number of incorrect recognitions, the 
real test results indicate that a combination of the 
inductive measurement and colour vision works well 
and a sufficient separation result is achieved for 
practical use of the proposed sensor fusion method. 
The brass and copper fractions can be separated from 
the material flow with two-dimensional colour 
classification. The proposed scrap metal separation 
system is based on a rule-based sensor fusion method; 
reliable metal recognition cannot be achieved with a 
single sensing system. Colour vision could be seen as 
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the heart of the system, while the inductive system acts 
like an assistant, allowing also measurement of the 
inner properties of the metals, when and the vision 
system only captures the externally visible features. 
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Summary/Abstract: A preliminary version of the Cockpit Activity 
Assessment (CAA) module, developed as a part of the AIDE EU-funded 
project, is described and evaluated  The CAA module is a real-time software 
implementing algorithms for online detection of visual and cognitive driver 
distraction.  Algorithms for analyzing head/eye tracker output are presented, 
and are shown to be useful for visual distraction detection purposes although 
further developments are needed.  The problem of cognitive distraction 
detection is addressed by suggesting three cognitive distraction indicators, 
defined so as to be robust to variations in sensor data quality, and shown to be 
individually sensitive to cognitive load in the driver.  Finally, a support vector 
machine classifier, using the cognitive distraction indicators as input, is 
presented.  On motorway, rural and suburban roads, the classifier currently 
reaches a 40 – 80 % accuracy at detecting a cognitive task, while maintaining 
an almost 80 % correct classification of non-distracted driving. 

 
 
INTRODUCTION 
 
Driver distraction is known as one of the primary causes of accidents (Neale et al., 2005).  
Distraction can be due to “eyes-off-road”, e.g. glances towards in-vehicle or outside targets 
(children, information systems, traffic signs etc.), often involving a visual time sharing between 
the road ahead and the target, but also to “mind-off-road” effects caused e.g. by phone 
conversation, voice-controlled interfaces or daydreaming.  The first type of distractions will be 
referred to here using the general term “visual distraction”, whereas the second will be referred 
to as “cognitive distraction”. 
 
Real-time monitoring of driver distraction is useful for many types of applications, e.g. 
distraction mitigation or warning functions and real-time adaptation of human-machine interface 
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(HMI) functionality (Arensberg, 2004; Almén, 2003; Claesson, 2003; Larsson and Victor, 2005; 
Victor, 2000, 2003).  This paper describes work performed within the AIDE (Adaptive 
Integrated Driver-vehicle InterfacE) EU-funded project, and focuses on distraction detection 
mainly for the second type of application.  The general goal of the AIDE project is the 
development of an adaptive HMI capable of integrating large numbers of Advanced Driver 
Assistance Systems (ADAS) and In-Vehicle Information Systems (IVIS) into a functioning 
whole.  In this paper we report preliminary results from the development of the AIDE sub-
module known as the Cockpit Activity Assessment (CAA) module, of which the main purpose is 
to detect driver distraction.   
 
The specification of the AIDE system is based on a top-down approach where required 
functionality on the HMI level implies requirements on lower level components such as the CAA 
module.  The required real-time distraction detection functionality of the CAA is “momentary 
eyes-off-road detection”, “visual time sharing detection”, and “cognitive distraction detection”.  
Having this information permits the AIDE system to adapt timing, modality and/or intensity of 
high priority messages (forward collision warning, critical vehicle diagnostics etc.) if the driver 
has a reduced focus on the driving, and to delay low priority information in situations where the 
driver is occupied with a secondary task.   
 
Although the algorithms described in this paper have been developed for a truck platform, they 
are well-suited for use in a bus or car context, albeit with some minor adaptations of e.g. 
parameter settings. 
 
The text will be structured as follows: First, we describe the data collection performed in order to 
acquire input to the algorithm development.  Next, we give a description of the developed real-
time algorithms.  Then, results from tests of the algorithms are given.  Finally, we discuss the 
results, suggest future work, and make conclusions. 
 
DATA COLLECTION 
 
To acquire data to use while developing and testing the distraction detection algorithms, twelve 
professional truck drivers were recruited.  The drivers drove a Volvo FH12 truck, equipped with 
standard vehicle sensors (speed etc.), a stereo-camera based head/eye tracker and a camera based 
lane position sensor.  The truck also contained a data logging system capable of saving all sensor 
and video data to a common log.   
 
While driving, the drivers were instructed to perform a number of distracting secondary tasks, 
thoroughly explained before the experiment, as well as a baseline non-distraction reference task.  
The distracting tasks included reading sequences of numbers from stickers situated at different 
locations in and outside the cockpit (mirrors, speedometer etc.), using a handheld phone, 
operating the radio, and a cognitive task where the driver was told to repeatedly subtract an 
integer value, between four and seven, from an initial large integer value.   
 
A test route was selected to contain a diversity of different traffic environments.  To the extent 
possible the route to take was explained to the drivers before beginning the experiment.  The 
total length of the route was about one hour. 
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During the experiments, two test leaders inserted annotations in real-time into the data.  The 
annotations contained information on beginnings and ends of tasks, as well as traffic 
environment information.  Traffic environments were defined as: “City” (50 km/h speed limit or 
lower in a built-up area), “Motorway” (90 km/h speed limit or higher on Swedish road class 
“motorväg”), and “Intermediate complexity” (not city or motorway, in practice covering rural 
and suburban roads). 
 
REAL-TIME ALGORITHMS 
 
An overview of the CAA module’s distraction algorithms is given in Figure 1.  In the following 
sections, the sub-modules depicted in this figure will be described separately.   

 
Figure 1.  Overview of the distraction detection algorithms of the CAA module. 

 
 
Head/Eye Data Post Processing 
 
The output from the head/eye tracking system includes head position, head orientation, gaze 
orientation, saccade and blink identification, as well as confidence values for most of these 
quantities.  The post processing of the head/eye output proceeds in a number of steps, as outlined 
below.  These processing steps are further outlined in detail in Larsson and Victor (2005). 
 
o Noise filtering.  A 13 sample (≈0.2 s at 60 Hz sample rate) median filter is applied to reduce 

noise in head position, head orientation and gaze orientation signals.  New confidence values 
for the filtered signals are calculated as average values of the raw signal confidence values in 
the 13 sample time window. 

o Saccade and blink removal.  Gaze orientation values measured at samples where a saccade (a 
rapid eye movement between two fixations) or an eye blink is identified, are disregarded 
from further calculation. 

o Head position dependence removal.  The head/eye tracker reports gaze and head orientation 
angles relative to a coordinate frame that moves with the driver’s head.  To remove the head 
position dependence, projections of the gaze direction vector and the head normal direction 
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vector are made onto the inside of an imagined sphere, of such size and position that the 
sphere’s perimeter follows the surface of the instrument panel as closely as possible.  The 
location of the projected point is expressed as a yaw/pitch angle pair measured along the 
surface of the sphere.   

o Calibration of gaze signal using road-ahead peak.  A constant error offset, different between 
drivers, is removed from the head/eye tracker output by using the fact that drivers’ gaze angle 
distributions generally exhibit a sharp “road-ahead peak” that can be located in real-time (see 
Larsson and Victor, 2005; and Victor, Harbluk, and Engström, 2005).  After finding this 
peak, all head and gaze angle data is translated so that the road-ahead peak lies at the origin.  
In this way, gaze and head angle values are comparable between drivers. 

 
Vehicle Data Post Processing 
 
The vehicle data post processing algorithms consist of a simple averaging filter, used to reduce 
noise in the vehicle speed signal, and an algorithm for calculating a robust single lane position 
value from the left and right lane marking distances reported from the lane position sensor.   
 
Gaze-World Mapping And Eyes-Off-Road Detection 
 
The purpose of the gaze-world mapping step is to map gaze and head angles onto actual real 
world targets of visual attention.  In the distraction detection context only one such target is used, 
the “road-ahead” target.  (The CAA has other purposes in which mapping to other objects, such 
as mirrors, are relevant, but this is not described here.) In the current implementation, the size 
and location of the road-ahead target is static, determined offline by inspecting a distribution of 
gaze angles for road-ahead data coming from a number of different drivers, and manually 
enclosing this distribution in a rectangle.  A similar rectangle is fit to road-ahead head angle data.  
In online mode the mapping consists of determining whether or not a measured gaze angle falls 
within the rectangle that was fit to the gaze data, or, in situations where the sensor only manages 
to track the head and not the eyes, whether a measured head angle falls within the head data 
rectangle.  The eyes-off-road detection step of the CAA algorithms merely consists of outputting 
“on road” or “off road”, depending on the output from the gaze-world mapping.   
 
Visual Time Sharing Detection 
 
This algorithm has yet to be implemented in the AIDE project.  However, several visual time 
sharing detectors are implemented and described in Larsson and Victor (2005), for example a 3-
10 second moving time window over gaze classified as on/off road.  The preliminary idea here is 
to use a simple rule reminiscent of the eyes-off-road rule, measuring the driver’s division of 
visual attention between the road ahead of the vehicle and other visual targets.  However, while 
the eyes-off-road detection measures short momentary distractions from the road scene ahead, 
the visual time sharing detection is used to measure longer term visual distractions. 
 
Cognitive Distraction Indicator Calculation 
 
In recent publications, a number of behavioral effects observed when cognitively loading the 
driver have been reported, different from the effects typically observed when using visual loads.  
In the cognitive distraction indicator calculation step we calculate indicators with potential of 
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being sensitive to two of these behavioral effects.  The first is the decrease in visual scanning 
during cognitive tasks reported in e.g. Recarte and Nunes (2003), and Victor, Harbluk, and 
Engström (2005) The second is the decrease in lane position variance reported in Engström, 
Johansson, and Östlund (2005).    
 
The indicators implemented in the current work are: standard deviation of gaze angle (Victor, 
Harbluk, & Engström, 2005), standard deviation of head angle (hypothesized to also decrease 
with decreased visual scanning), and standard deviation of lane position.  To calculate the head 
and gaze indicators we need scalar values instead of yaw/pitch angle pairs.  For this purpose we 
calculate the Euclidean distances from the yaw/pitch angle points to the origin, as measured in 
the spherical reference frame.  The indicators are calculated in a sliding time window of fixed 
length.  Parts of the time windows where sensor data confidence is lower than fixed minimum 
values are excluded, and standard deviations are calculated on the remaining data.  To control the 
effect of this shortening of the effective size of time windows, a “quality factor” of each 
indicator value is calculated as the average of sensor data confidence in the time window.  In this 
average, confidence values count as zero if lower than the minimum required value.   
 
Cognitive Distraction Detection 
 
To detect cognitive distraction in the driver, a support vector machine (SVM) classifier is used.  
This is one of the approaches for cognitive distraction detection suggested in Lee et al. (2004) 
and is an alternative to the algorithm implemented in Larsson and Victor (2005).  The output of 
an SVM is a scalar value, and a threshold value is then applied as a cut-off to get a classification 
into one of two classes.  See e.g. Burges (1998) for a complete description of SVM classifiers.  
The input to our classifier consists of the cognitive distraction indicators described above.  A 
radial basis function SVM kernel is used, as defined in Burges (1998).  Training data was 
extracted from the experimental data by calculating indicator values for non-overlapping time 
windows containing data from baseline driving and driving with the cognitive task, respectively.  
Only time windows with “quality factor” values higher than a minimum level for all indicator 
values were used.  Different SVM output thresholds were tested as a means of managing the 
trade-off between false positives and false negatives, see further under Analysis and Results. 
 
ANALYSIS AND RESULTS 
 
In this section we present analyses performed to test the quality of the algorithms at their current, 
preliminary level of development.  The vehicle data post processing is not analyzed specifically, 
but is implicitly tested in the analysis of cognitive distraction indicator calculation. 
 
Head/Eye Data Post Processing 
 
As a means of qualitatively benchmarking the head/eye data post processing algorithms, 
measured gaze angle distributions for a number of visual attention targets (road ahead, mirrors, 
speedometer, tachometer, radio) were manually (and thus approximately) described for each 
driver separately, by enclosing the peaks in the distributions in circles.  This peak identification 
was performed both for raw gaze angle data, and for the gaze angle data output from the post 
processing algorithms.  The results of this is shown in Figure 2.  If excluding the head position 
dependence removal step from the post processing algorithm, the results are very similar. 
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Figure 2.  Approximate location and spread of gaze angle distributions for different drivers 

and targets, before and after applying the head/eye data post processing algorithms (left 
and right plot, respectively).  The targets are “road-ahead” (bold line), left and right 

mirrors (dashed lines), radio (bold dotted line), speedometer and tachometer (dotted lines). 
 
Gaze-World Mapping And Eyes-Off-Road Detection 
 
The gaze-world mapping algorithm was tested by applying it to the real driving data.  By 
comparing how the measured distribution of visual attention between on and off road targets 
changes from baseline driving to driving with tasks, we get a rough idea of the quality of the 
mapping.  Figure 3 shows how the gaze-world mapping algorithm interprets the head/eye data 
during tasks involving different targets, for one of the drivers. 
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Figure 3.  Distributions between targets of mapped attention for one driver during 
different tasks (dark bars) as compared to baseline driving (light bars).  Targets are: 

“sensor not tracking/driver not fixating” (N/A), “road ahead” (R), and “other target” (O). 
 
Cognitive Distraction Indicators 
 
The sensitivity of the used cognitive distraction indicators was measured by statistically 
analyzing the effect of the cognitive task on extracted SVM input values from different traffic 
environment and task conditions.  Figure 4 shows mean values and 95 % confidence intervals for 
all three indicators, as measured during baseline and cognitive task driving in all three traffic 
environments defined in Data Collection above. 

VI/6



1 2 1 2 1 2
0

5

10

15
S

td
 d

e
v 

o
f 
g

a
ze

 a
n
g
le

 (
d
e
g

)
MW IM CI

1 2 1 2 1 2
0

2

4

6

8

10

S
td

 d
e

v 
o
f 
h
e
a
d
 a

n
g

le
 (

d
e
g
)

MW IM CI

1 2 1 2 1 2
0

0.1

0.2

S
td

 d
e
v 

o
f 
la

n
e
 p

o
s 

(m
) MW IM CI

 
 

Figure 4.  Mean values and 95% confidence intervals for the three different cognitive 
distraction indicators (15 second time window) for different tasks in different traffic 

environments.  Tasks are baseline (1), and cognitive task (2).  Environments are motorway 
(MW), intermediate complexity environment (IM), and city (CI). 

 
In the intermediate complexity traffic environment the cognitive task had effects significant at 
the 95 % confidence level on all three indicators.  t(54) = -3.29, p = 0.002 for standard deviation 
of gaze angle; t(54) = -2.05, p = 0.045 for standard deviation of head angle; t(67) = -2.12, p = 
0.038 for standard deviation of lane position.  These results were obtained using a 15 second 
time window for the indicators.  When using larger time windows (30, 60 and 120 seconds) 
effects are qualitatively similar, though less statistically significant since the requirement of non-
overlapping time windows lowers the number of acquired indicator values as the size of the time 
window increases. 
 
Cognitive Distraction Detection 
 
A number of different SVM classifiers were trained, using different inputs, different training data 
sets, etc.  Here we report results for the most promising setup.   
 
An SVM, taking all three cognitive distraction indicators as input, was trained on baseline and 
cognitive task data from driving in intermediate complexity environments.  Using a 15 second 
time window, 154 baseline data points and 37 cognitive task driving data points could be 
extracted from the data.  Ten training data sets with 20 baseline and 20 cognitive points in each, 
randomly selected from the complete set were created.  A validation data set was also created, 
containing all 37 cognitive task points and 100 randomly selected baseline points.  A separate 
SVM was then trained on each training set, and the classifier with the highest total hit rate on the 
validation set was selected.  This classifier’s output is visualized in Figure 5a.  Its validation hit 
rate on cognitive task points is 92%, and on baseline data the hit rate is 67%.  A motorway 
validation data set was also created, with 22 baseline points and 12 cognitive task points, and on 
this set the same SVM classifier has a 50% hit rate on cognitive task data, and a 68% hit rate on 
baseline data. 
 
By modifying the SVM output threshold value (default is zero), we can to a certain extent 
manage the trade-off between false positive and false negative classifications, Figure 5b 
illustrates this.  Judging by this figure, using a threshold value of for example 0.5 seems 
reasonable, yielding hit rates of 76 % and 78 % for cognitive task and baseline, respectively.  
Using the same threshold when classifying the motorway validation set we get hit rates of 42 % 
and 77 %. 
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Figure 5.  SVM classifier results.  a) A two dimensional representation of the output of the 
three dimensional SVM classifier, with the “standard deviation of head angle” input value 

held constant at its median value 4 degrees.  The intermediate complexity environment 
validation data set is also shown.  b) Effects of SVM output threshold value on hit rates for 

the intermediate complexity environment validation set. 
 
DISCUSSION 
 
Visual Distraction Detection Algorithms 
 
Figure 2 suggests that the head/eye post processing algorithms are successful at translating gaze 
data for different visual attention targets into different, fairly separated clusters.  This is a 
necessary prerequisite if one wants to create a working gaze-world mapping that uses the gaze 
data.  However, our analyses have not been able to establish that the (theoretically sound) head 
position dependence really improves the algorithm. Its effects are minor in comparison with the 
effects of the “calibration” step.  Insufficient sensor output quality seems a reasonable 
explanation to this phenomenon, but further investigations are needed.   
 
The gaze-world mapping works fairly well, at least on an average for the specific driver for 
which results are shown in Figure 3.  Actual attention towards the radio, a handheld phone or the 
speedometer causes the measured attention to decrease for the “road-ahead” target, and an 
increase is seen for the “other target” target.  For the coin task, the reduction in “road-ahead” 
time is accompanied by an increase of sensor non-tracking.  This could be expected, since the 
location of the coins was such that the drivers had to lean forward to pick them up, often out of 
view of the head/eye tracker cameras.  It could be investigated to what extent non-tracking can 
be used as an indicator of visual distraction.  Overall, a more thorough analysis of the gaze-world 
mapping would be needed to completely assess its usefulness in its present form.  However, 
modifications to this algorithm are foreseen, why analysis efforts have been kept at a less 
ambitious level. 
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Cognitive Distraction Detection Algorithms 
 
The effect of cognitive distraction on the suggested cognitive distraction indicators follow well 
the hypothesis of decreased visual scanning and lane position variance, but only for the 
intermediate complexity environment.  That there are no clear effects for the highly complex city 
environment was expected, but the motorway was included in the experiment as an assumed 
lowest-complexity environment, where the effects of cognitive distraction could be expected to 
be most clearly visible.  However, it may be that the assumption of the motorway environment 
having a low complexity does not really hold, since the motorway segments used in the data 
collection were close to a city, with frequent entrances and exits, and always at least some 
surrounding traffic.  It is the impression of the test leaders that this can have caused the drivers to 
refuse to allocate any substantial cognitive resources to the secondary task, instead putting effort 
into maintaining safe levels of situational awareness. 
 
The accuracy of the SVM classifier is fair but not excellent.  It is actually obvious from Figure 5 
that it will be difficult, if not impossible, for any classifier to completely separate baseline and 
cognitive task data points from each other, since there is a considerable overlap between the 
classes (at least in the two input dimensions shown in the figure).  One cause of this overlap 
could be variations between drivers in their reactions to a cognitively loading task, why some 
kind of online adaptation of the algorithm to the current driver could be a viable approach.   
 
Finally, the SVM threshold proves to be a useful parameter for tuning the algorithm behavior.  It 
can be used to optimize hit rates for the different classes given 1) actual frequencies of the two 
classes in real data (not well known here), and 2) strategies on whether it is more important to 
avoid false positives or false negatives.  For our classifier, one option could be to move the 
threshold value from zero to about 0.5, which then seems to give us a classification performance 
of just under 80 % on non-distracted data, and 40 - 80 % accurate cognitive distraction detection 
in intermediate complexity and motorway environments.  This may or may not be an acceptable 
level of performance, depending on how the cognitive distraction output is to be used.   
 
FUTURE WORK 
 
There are many opportunities for future work with the presented algorithms, some of which will 
be pursued within the AIDE project.  Possible examples include real-time adaptation of 
algorithms to individual drivers, and addition of more input dimensions to the SVM classifier.  
An important future work item is a forthcoming verification in online mode. 
 
CONCLUSION 
 
We have described a set of real-time algorithms for detection of driver distraction, of both visual 
and cognitive type, and we have evaluated the performance of our algorithms on real driving data 
collected in a distracted driving experiment using professional truck drivers.  The visual 
distraction algorithms show promising results, but some further development and testing is 
needed.  As for cognitive distraction detection, we have been able to reproduce results reported 
elsewhere in the literature on some of the effects of cognitively loading the driver, and we have 
described a support vector machine classifier that uses indicators sensitive to these effects as 
input.  The performance of the classifier is fair, but tests in online mode are needed. 
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Abstract: This article focuses on monitoring a driver's cognitive impairment, 

due to talking to passengers or on a mobile phone, daydreaming or just thinking about 

something else than driving-related matters. This work is part of the AIDE project, 

which aims at scheduling the increasing information flow of navigation systems, 

IVIS, nomadic devices, etc. in future vehicles and thus at providing the driver with a 

possibility to understand and assess incoming messages and, more importantly, 

protect him/her against distractions when the traffic situation requires increased 

attention. The whole system is based on estimating the driver's momentary awareness 

of the surrounding traffic environment and the driver's physiological state. Cognitive 

workload has a major role when the driver's alertness is estimated. This paper 

describes an investigation of cognitive distraction, firstly giving an overall idea of its 

effects on the driver, and secondly discussing the practical implementation of an 

algorithm for detection of cognitive distraction using the Support Vector Machine 

classifier. The tests performed show that cognitive workload can be detected with 

approximately 65 - 80 % confidence despite the fact that the test material represented 

medium difficulty cognitive tasks (i.e. the induced workload was not very high). The 

assumption is that a more challenging cognitive task would yield better detection 

results.  
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1. INTRODUCTION 
Driver information overload as a source of distraction has been a topic for traffic 

safety research since the late 1920's when the first radio receivers were introduced as 

an option for cars. With the landing of mobile phones, the issue of distraction has 

again received widespread attention. Furthermore, this problem may become even 

more critical in future vehicles, when an increasing number of ADAS (Advanced 

Driver Assistance System), IVIS (In Vehicle Information System) and nomadic 

devices such as PDAs, mobile phones, mp3 players, etc. are introduced to assist and 

entertain drivers. The information introduced from various sources to the cockpit 

needs intelligent management systems. To keep the driver’s levels of distraction 

within reasonable levels, some technical applications for monitoring a driver is 

needed to manage and prioritise the information presented to the driver. Therefore, 

the European Commission has released the AIDE (Adaptive Integrated Driver-vehicle 

interfacE) project to develop the necessary technologies. 

It is a common interest of the automotive industry and the authorities 

responsible for traffic safety to develop a technology for managing the drivers' 

increasing information load, so that they can handle both visual and acoustic 

information timely and focus their main attention on the driving task. A large field 

study of a hundred vehicles indicated that secondary tasks such as using wireless 

devices and vehicle or passenger related workload have a major role in the crash or 

near-crash incidents [1]. The test period covered one year including 100 vehicles and 

241 drivers. Some 43 000 hours of video on vehicle state and kinematics data were 

recorded. One possible way of addressing the inattention problem highlighted by the 
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study is to develop an intelligent Human-Machine Interface (HMI) capable of 

adapting the information from various sources to the driver’s state and the driving 

situation. This means in practice that the information to be presented needs to be 

prioritised according to urgency and traffic situation e.g. by selecting appropriate 

modalities in order to ensure that the driver can optimally concentrate on the driving. 

The AIDE architecture will consist of five independently running Driver-

Vehicle-Environment (DVE) monitoring modules [2], which are interacting with the 

Interaction and Communication Assistant (ICA) module. The purpose of the ICA is to 

conclude whether different driver and environmental parameters suggest that an HMI 

adaptation is necessary. The modules are listed in Table 1 with a short description of 

their function and relevance to the AIDE concept. 

The development of DVE modules was initiated by addressing the use cases 

and defining the requirements for understanding, which driving-related variables 

would be useful for effectively scheduling the HMI information. The Cockpit Activity 

Assessment (CAA) module is dedicated to the detection of secondary task activities 

such as inattention to the road ahead or mental workload, which affect the controlling 

of a vehicle. The AIDE architecture includes also the module DAE (Driver 

Availability Estimator) the objective of which is to estimate the demands set for the 

driver by the primary driving task, i.e. how much attention is required from the driver 

by the actual driving context. A few exemplary scenarios are listed in Table 2 to 

clarify the idea behind adapting the vehicle's HMI in accordance with the CAA 

outputs. 

This article focuses particularly on explaining the methodology, the principles 

and the evaluation results of examining cognitive distraction. The CAA module also 

provides the level of visual distraction, which is the measure of how much the driver 

pays attention to the road ahead and, on the contrary, scans the surrounding 
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environment. However, the cognitive impairment is of special interest here and more 

challenging to estimate, since we are dealing with human mental activity. Cognitive 

workload may occur due to daydreaming, thinking, talking on a phone etc. The 

research hypothesis of this article originates from the results of the HASTE project 

[3], which suggest that a cognitive task creates gaze concentration to the road ahead, 

which in turn actually improves lane keeping. Our attempt is to prove that a multi-

dimensional Support Vector Machine (SVM) -type classifier can detect cognitive 

workload by combining a set of driver and driving related parameters, which are 

discussed in greater detail in section 3.  

2. PRIOR STUDIES ON COGNITIVE DISTRACTION RELATED ACTIVITIES 
The HASTE project [3], which proposed methodologies and guidelines for the 

development of novel in-vehicle HMI technologies, identified a need of handling 

cognitive and visual workload separately. One of the project's major conclusions was 

that the lateral driving indicators, namely steering control and lane position 

maintenance improve, when the driver is in a cognitively impaired state [3, 4].  

The idea of utilising the SVM algorithm is not only adopted by AIDE but was 

also raised by the SAVE-IT project [5]. Nevertheless, in SAVE-IT it was decided to 

implement the Hidden Markov Model (HMM) in the first phase of the project with a 

limited success. The benefit of the HMM is that historical events are "automatically" 

adopted when the workload is estimated. The input parameters of the SAVE-IT 

classifier were eye movements and advanced eye based measurements like saccades, 

fixation duration and blinking. HMM performance was evaluated by investigating the 

method's capability to predict [5] interaction of a driver with an IVIS (In Vehicle 

Information System), which induced cognitive workload. In the second phase the 

traditional linear regression method and the support vector machines were considered 

to be worth evaluating.  
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Engström et. al. [4] and Victor et al. [6] describe tests with fixed and moving 

base simulators and compared the results with those of field tests. They applied 

visually and cognitively loading tasks for a driver and analysed gaze movement, 

physiological, lateral and longitudinal data by comparing the measurements to the 

baseline driving. They observed speed reduction and larger steering wheel movements 

for maintaining the lateral position during visually loading tasks. Cognitive workload, 

induced by using an auditory task, was associated with improved lane-keeping and 

increased micro-movements of the steering wheel. Another major result was that the 

auditory task, which is a more cognitive than visual distraction, also caused increased 

gaze concentration towards the road.  

In response to increased complexity of cognitive or auditory tasks, drivers 

increase their road viewing time and spatially focus their gaze on the road centre 

region at the expense of peripheral glances. This gaze concentration effect has reliably 

been observed during cognitive and auditory tasks [6, 7, 8, 9, 10], but also in 

connection with demanding driving conditions, alcohol and fatigue (see. [7]). 

Significant reductions in horizontal and vertical variability (i.e. standard deviation) of 

gaze direction, longer on-road fixations (more intense staring), and reduced glance 

frequency at mirrors and speedometer are typically observed. 

The gaze concentration associated with cognitive tasks is strongly related to a 

loss of event detection capability across the entire visual field (e.g. Recarte et al. 

[10]), but there is little interference with path control. In a recent meta-analysis of the 

impact of talking on a mobile phone, Horrey et al. [11] conclude that the reduction in 

driving performance caused by talking is primarily on reaction time, not tracking 

performance. Engström et al. [4] suggest that the increased spatial gaze concentration 

in the auditory tasks is associated with improved lane keeping performance. This 
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finding was consistent across six experimental sites in HASTE, and is in line with 

other research results.  

Taken together, these findings suggest that the visual guidance of path control 

is more immune to interference from cognitive tasks than the identification and 

planning tasks that require glances at the visual periphery (e.g. speedometer, signs, 

vehicles, pedestrians). A by-product of increasing visual concentration on the road 

centre area is better lane keeping performance.   

These results are congruent with biased competition approaches of attention 

[12] and functional differences in vision between vision-for-action and vision-for-

identification [7, 13]. In short, visual guidance of path control appears to be more 

immune to interference because vision-for-action (the dorsal stream) utilizes non-

conscious vision-action links, and because gaze spends more time on the distant path 

region, whereas vision-for-identification (the ventral stream) is more affected by 

conscious cognitive tasks. Increased attention to a subset of cognitive or auditory 

stimuli amplifies that stimulus but it also simultaneously inhibits other stimuli. The 

inhibition of unattended stimuli means poorer stimulation from stimulus-driven 

attention, leading to less stimulus-driven eye-movements. Likewise, the engagement 

of goal-directed attention to in-vehicle tasks reduces the capability to react to other 

goal-directed attention stimuli.  

The prior studies raise the research hypothesis that the driver's cognitive 

distraction can be detected automatically by utilising the driver's gaze and lane 

keeping information since they were discovered to decrease due to cognitive 

workload. Victor [7] describes an implementation of a real-time PRC algorithm that 

identified cognitive distraction and gave a specific cognitive distraction alert (two 

flashing lights in the side portions of the windshield). Both off-line and real-time 

recognition of cognitive state have been implemented using both the Percent Road 
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Centre (PRC) and Standard deviation of gaze (SDG) measures [6, 7, 14]. A cognitive 

distraction alert was conceived, developed in several versions, and tested in a driving 

simulator and on-road. The real-time algorithm was based on calculation of Percent 

Road Centre wherein a cognitive distraction alert was issued when PRC reached 92 

%. However, Victor et al. [6] show that SDG is more sensitive than PRC. 

Here, the SVM method is chosen because it has capability to recognise 

patterns (i.e. the feature vectors) in a multi-dimensional feature space. Thus, the head 

movements and the lane keeping information were added to descriptors of cognitive 

workload for increasing reliability of the previous gaze based detection algorithms, 

which then is hypothesised to work also when the cognitive indicative signals are 

weak. 

3. INDICATIVE PARAMETERS OF COGNITIVE DISTRACTION 
As a part of the present work within AIDE, test data of distracted driving 

experiments was gathered involving twelve professional drivers driving an 

instrumented Volvo FH12 truck. Each of them drove the truck for about an hour, in 

different traffic environments described by the experimenters as ”motorway” (low 

complexity environment), ”city” (high complexity) and ”intermediate complexity 

environment”. One of the distracting secondary tasks performed by the drivers while 

driving was a purely cognitively loading task consisting of repeated subtractions from 

a large integer number. In addition to head and eye data and vehicle data, video 

recordings of the road ahead were also made during the data gathering. 

During the data gathering procedure the subjects were asked to undertake 

different kinds of tasks, which were assumed to cause mental workload and thus 

simulate real cognitively distracting events. Examples of such tasks include using a 

hand-held device, picking up coins, summing up a sequence of numbers, which were 

stuck on the cockpit, or discussing with a test leader.  The test data was manually 
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labelled with markers, which were added during the data gathering procedure when 

the cognitive workload for the driver was induced.  

Three parameters were chosen as the main candidates for being indicators of 

cognitive distraction in this test data:  

o Standard deviation of gaze angle. This is calculated as the standard 

deviation, in a time window, of the quantity 22 θϕ + , where φ and θ 

are the yaw and pitch angles of the driver’s gaze, respectively. 

o Standard deviation of head angle. The same as standard deviation of 

gaze angle above, but calculated from the driver’s head movements. 

o Standard deviation of lane position. 

All three indicators were measured in a time window of the same length. 

Figure 1 illustrates their sensitivity to the cognitive task sequences in the data set, for 

a 15 second time window. Two-sided t-tests, without assuming equal variances and 

making the Smith-Satterthwaite approximation for effective degrees of freedom [15], 

were performed on these results. Statistically significant (p < 0.05) decreases in 

deviations from baseline values, in accordance with the previous results discussed 

above, were found for all three indicators in the intermediate complexity environment, 

whereas the effects were less pronounced in the motorway environment and 

inconsistent in the city environment. The inconsistent effect in the urban area was 

expected, due to the high complexity of the environment. The weaker effect obtained 

in the motorway environment can possibly be explained by the choice of the 

motorway segment, featuring many exits and entrances where the traffic situation may 

have caused the driver to refuse to allocate any substantial cognitive resources to the 

secondary task. A combined set of motorway and intermediate complexity 

environment data was identified as a suitable data set for SVM training.  
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Since further analysis of the acquired data also indicated that there might be a 

dependency between cognitive load and observed head/gaze tracking quality output 

from the head/eye sensor, three additional potential cognitive distraction indicators 

that could be suitable SVM inputs were defined: 

o Gaze angle quality factor, calculated as the mean gaze signal quality 

value given by the stereo vision system during the time window when 

the gaze tracking is valid and multiplied by the fraction of the time 

window when the data is available (i.e. this is like a combined measure 

of quality and completeness of the data in the captured time window). 

o Head angle quality factor, similar to the previous parameter, but for 

head angle. 

o Face model quality factor, basically a longer time window version of 

head angle quality factor. This parameter was added since it was 

hypothesized that the deviation of the observed head angle quality 

factor from a longer term average could be a more efficient cognitive 

distraction indicator than the head angle quality factor itself, and since 

it was noticed that there were considerable variations in average head 

tracking quality levels between individuals. 

4. SUPPORT VECTOR MACHINES FOR COGNITIVE DISTRACTION 
DETECTION 

Support vector machine (SVM) is a classification method, which optimises the 

locations of hyperplanes in such a way that the margin between the negative and 

positive feature examples is maximised. Our work utilises the well-known SVMlight 

algorithm [16]. It was in our interest to focus more on testing the feasibility of the 

SVM to the highly non-linear input data, in which the cognitive indicators are quite 

poorly interpretable. Thus, the previously tested SVM gave us an opportunity to avoid 
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too heavy resource allocation for writing the classifier and allowed us to put more 

effort on optimising the performance. Therefore, the SVM principles are not 

explained here in depth but rather the goal is to identify the constraints in order to 

detect in-vehicle cognitive distraction. 

Typically, SVM has a very good generalisation property and consequently, the 

classification performance of the method is not restricted to any specific application 

or type of data. Despite the fact that this discussion focuses on a binary type classifier 

since only a true or a false detection with confidence estimation is necessary, the 

algorithm can be adapted to multidimensional environments by splitting the 

classification algorithm to sub-problems.  

After studying the typical applications of the different kernels and doing 

statistical analysis of the gathered test data, it was quite obvious that the linear kernel 

function cannot optimise the separation plane. Thus, the Radial Basis Function (RBF) 

type non-linear kernel [17], which can be applied also when the boundary is complex, 

was chosen, although the drawback was that the RBF kernel is sensitive to incorrect 

training samples and may consequently over-fit easily.  

5. PROTOTYPE IMPLEMENTATION 
The actual CAA module implementation uses the FaceLab stereovision 

system of SeeingMachines for capturing the driver-related variables (see. Figure 2). 

The system tracks head and gaze positions and orientations, eye blinking frequency, 

saccades, thus providing a basic data acquisition platform for the high-level software 

development. The system uses two CCD-type cameras, which have sufficient 

sensitivity also in low ambient illumination. The images of the stereo pair are pre-

processed in real time (60 Hz) in a separate Intel Pentium-based PC. The cognitive 

distraction detection algorithm combines the camera vision system’s output with the 

vehicle's internal data, which is read from the CAN bus, as well as lane tracking data. 
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Figure 3 shows the internal software architecture of the CAA module, in 

which the feature extraction is divided into two parts [18]. The left side is for 

detecting the visual distraction and the right side is the routine for estimating the 

cognitively distracted driver, which is the subject of this paper. The real-time 

algorithms have been written in the C programming language, and they run in a 

Matlab/Simulink environment. In Matlab/Simulink applies a development platform in 

which pre-recorded data files can be replayed. Using this platform the performance of 

the algorithms can be evaluated by simulating real driving (i.e. kind of hardware-in-

the-loop simulation) before they are compiled to real-time PC compatible binaries.  

Tuning the parameters is the most important part of optimising the SVM 

performance. For improving the SVM adaptation capability, a special Microsoft 

Windows tool was programmed (see Figure 4). The application makes the iterative 

parameter optimisation process easier and faster by printing the correct and incorrect 

hit rates. The tool is written with exactly the same source code as the core of the 

previously mentioned Simulink blocks. The application also assists in adaptation of 

the complex multi-dimensional classification routine to different types of cockpits 

(i.e. truck, passenger car, new vehicle models, etc.).   

6. RESULTS OF SVM PARAMETER TUNING 
The cognitive distraction indicative parameters (gaze, head, lane and face 

model quality) and the quality factors (gaze and head uniformities in a 15 s time 

window) were added to investigate their influence on the classification results. The 

following reported tests were executed in office premises, running the gathered data 

of real driving. 

The results in Table 3 suggest that all the features improve the classification 

performance, despite that the test is not comprehensive. Actually, a closer analysis 

pointed out that the additional features compensate for the errors caused by 
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ambiguities of the training data items, as can be seen from the graphs in Figure 5. The 

quality of the performance depends of course on the nature of the applied training 

data. Our aim was to retrieve a feasible generalisation, which works also in varying 

conditions, i.e. the goal was a good robustness of the algorithm. All the tests were 

done by dividing the data to separate training and validation samples. There were 

approximately 220 feature vectors in both cases. Most of the tests were verified twice 

by changing the training and validation samples mutually. 

The two crucial parameters when fine-tuning a Support Vector Machine 

engine with a Radial Basis Function kernel are gamma and criterion (C). Gamma 

determines the spreading of a single node in the network, i.e. bigger gamma provides 

a better coverage, but the consequence might be an over-fit. C is the parameter for 

controlling the error margin for the positive detection (i.e. cognitive distraction). That 

is, bigger C produces a greater number of false detected non-cognitive results as 

Table 4 indicates.  

Since there was more negative (non-cognitive) examples than positive 

(cognitive) in the training data, an equal balance between the criterion parameters was 

not desirable. Rather, different criteria for positive and negative examples (more 

formally C-= C and C+ = c x C, where c = cost-factor) are preferred. Cost-factor 

emphasizes the total error caused by positive training examples compared to the 

negative ones. A large cost-factor allows bigger aggregated errors for positive training 

examples than for the negative ones. There was approximately 1.5 times more 

baseline data compared to cognitive examples in the training samples, which was 

taken into account when the error balance was estimated. The effects of the cost-

factor test are listed in Table 5. 

A threshold adjusts the location of the classification boundary. Typically, the 

result of the SVM routine is in the range of -1 to + 1, which, however, does not 
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determine the absolute limits. When the threshold is positive, the size of the positive 

class decreases, resulting in fewer cognitive outputs (see Table 6). Figures 6 and 7 

show an alternative way to retrieve the optimal value for the threshold. These graphs 

show percentages of correct hits for baseline and cognitive tasks, for different values 

of the threshold parameter, in motorway and intermediate complexity environments. It 

should be noted that the data used to generate these figures is different from the 

samples used in the prior tests (Tables 3-7), since the main objective was to 

investigate whether the intermediate and motorway driving complexities provide a 

significantly different solution. The data contains also samples from the training set 

and give therefore better results than the rates in the prior tests. By studying the 

graphs of Figures 6 and 7, a threshold value can be chosen that gives a trade-off 

between false positives and false negatives that is suitable for the application at hand. 

If e.g. designing a cognitive distraction warning system false positives can be 

accepted to a very small extent, so the threshold may need to be set high. In 

applications envisioned for the CAA module output, false positives are not as critical 

and we can thus set the threshold lower than for a warning application, to allow a 

better distraction hit rate (i.e. a lower false negative rate). 

When comparing Figures 6 and 7, an assumption can be made that 

intermediate and motorway driving complexities provide similar results, which is not 

a surprise. However, this is still under consideration since it seems that the average 

gap between baseline and cognitive distraction levels is bigger in the motorway than 

in the intermediate driving complexity. 

The fine-tuning of parameters has improved the classification performance 

compared to the prior work done during the initial module development phase. Due to 

over-fitting risk, the classification borders are visualised by showing two-dimensional 

cognitive and non-cognitive feature spaces, whereas the other features were 
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approximated using their averages in the training sample. The idea worked well in 

giving a significantly better understanding of how to adjust the gamma, criterion and 

cost-factor parameters for achieving the desired performance level.  The better 

visualisation properties of the laboratory tool have helped to understand the meaning 

and behavioural effects of the SVM kernel and to avoid over-fitting, which caused a 

big problem during the first test period. In Table 7 the initial before the visualisation 

facilities results are compared to the actual performance rates.  

Since similar prior implementations are not easily available it is hard to make 

comparative evaluations with other works. If the results are compared with the 

SAVE-IT project [5], it may hardly be said that the proposed method works better, but 

at least the performance is equal. Additionally, the results support the HASTE 

achievements [3] very well, i.e. in some cases the signals induced by a cognitive 

workload are arbitrarily more obvious than in others (e.g. the amplitude may depend 

on the number of exits in the motorway, the driver's driving experience, etc.), which 

of course cause many false detections. Fortunately, in most of the cases the indicative 

signals remain within the expected limits, which indicates that the SVM 

implementation covers well the expectations of the research hypothesis, which 

specified that the cognitive workload can be detected using the vehicle's lateral 

position and the driver's attention variations measures. 

7. DISCUSSION 
The data used in the training phase were gathered during real driving, but the 

cognitive tasks were artificially induced. We assume the data to be quite realistic, but 

we have not evaluated how closely the tasks correspond to real cognitive workload. 

Presumably, the drivers were not highly cognitively loaded because the tasks were not 

very difficult in comparison to the previous work reported in [6, 7, 10], or because the 

driver prioritised the driving situation in the city, paying less attention on the 
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cognitive task, thereby lowering the induced cognitive load. However, the aim of this 

study was to develop a practically usable module, and therefore it was of major 

interest to detect cognitive workload also in extreme cases (i.e. to process also very 

low distraction levels).  Thus the module would presumably provide more accurate 

results when the driver is under a higher cognitive load. It should be pointed out that 

in the dissertation work [7], the cognitive workload was induced by asking a driver to 

do backward counting by subtracting 7, but in this case subtractions were in the range 

3-7, which is on an average easier and will not cause an equally consistent high 

workload.  

The doctoral thesis [7] proposed that standard deviation of the gaze signals 

can be utilised for detecting the cognitive distraction. Moreover, the thesis also 

suggested adopting a PRC (Percent Road Centre) measurement, which was 

investigated to reduce by cognitive workload. The idea of using SVM type classifier 

is actually not very far from the proposition of the thesis but the major difference is 

capability to increase dimensions of the feature space (i.e. adopting the vehicles 

lateral position among to indicate parameters) by tuning a new model and additionally 

"draw" non-linear classification borders. The current implementation does not use 

PRC measurement but as the thesis [7] shows that could be worth of a future 

comparison. 

Another open issue is an opportunity to use the module in city driving. 

However, the current scenario is that detecting the cognitive distraction in those 

circumstances is probably not even necessary, since attention demand presumably 

does not allow severe cognitive impairment. Rather, visual distraction has a greater 

unwanted influence in heavy traffic when the secondary task types are considered. 

Fletcher et al. [19] have implemented an interesting scene monitoring application, 

which is intended for increasing robustness of the fatigue detection with gaze 

VII/15



analysis. The method recognises the monotony driving context from a video. The 

same technique would potentially be beneficial for increasing performance of the 

cognitive distraction detection since the workloads like daydreaming are more 

relevant in a monotony environment (i.e. motor and intermediate ways). 

An SVM type classifier was selected for this application, which turned out to 

be a good choice. Perhaps the neural networks would allow a more advanced 

processing methodology, like better robustness to "abnormal behaviour" during a 

cognitive workload. On the other hand, the drawback of SVM is its sensitivity to 

outliers in data, especially in the training or validation stages. It is also possible that 

the use of a simple syntactic classifier (i.e. using rules) would have provided a 

feasible first step approach. However, the earlier good experiences and the results of 

the SAVE-IT project [5] encourage adopting the SVM classifier when dealing with 

multi-dimensional non-linear feature space. 

8. CONCLUSIONS 
Literature review, prior work and applied analysis verify that gaze direction 

variation as well as lane deviation (i.e. deviation of the vehicle’s lateral lane position) 

decreases when the driver is cognitively distracted. The reference [4] proposes that 

increased gaze concentration is actually related to the lane keeping performance. Due 

to these findings, measurement of the gaze, head and lane related parameters was 

adopted for recognising the cognitive load, which means that in a sense cognitive 

impairment is actually discovered as a result of improved driving measures. However, 

as already noted in section 3, cognitive distraction increases the driver's reaction time 

and is thus an important factor in decreasing driving performance. 

The SVM classifier was envisioned to be an effective method for the CAA 

solution, since the main intention is only to detect whether the driver's attention is 

reduced by the cognitive load or not. The experimental results made it clear that the 
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utilised input features created a highly non-linear boundary surface, which implicated 

the need of a RBF- type kernel. The selected algorithm improves the detection 

capability when an additional number of driving related parameters is implemented to 

the classifier. Moreover, the algorithm enables pretty easy adaptation to different 

sensor arrays, which will be the case in a passenger car demonstration when no lane 

position sensor exists. 

As a result of iterative tests, the optimal SVM variables were retrieved for a 

truck cockpit. The optimisation was quite time-consuming because of the multiple 

fine-tuned parameters. The main issue is that there is a dependency between the 

classifier tuning parameters (e.g. cost-factor, gamma, etc.), i.e. changing one 

parameter requires subsequently retuning the others, which makes it impossible to 

adjust only one parameter at a time. However, robustness of the algorithm is held as 

the key factor and the achieved solution minimises the false detections. The 

performance tests in Figures 6 and 7 show that even an 80% classification capability 

was achieved. However, in those cases the test sample included also the training 

points and thus a reliable estimation would be that the rate of correct hits is more than 

65%. One aspect is also the dynamic behaviour of the drivers. Therefore, the 

detection performance depends also on the driver's reactions to the cognitive tasks. 

For example, one of the drivers started continuous visual scanning to the right side of 

the cockpit despite there was nothing to that side of the road but trees. The 

visualisation facilities help to avoid the over-fitting problem by showing if there are 

"islands" located in the classification space. 

The created software pieces worked well despite the fact that the training data 

mostly represented low cognitive workloads. Consequently, it be may hypothesise 

that in further tests the performance will not degrade. The AIDE project was formed 

around existing driver-monitoring techniques and improving the earlier developed 

VII/17



algorithms. The objective was to avoid fundamental basic research work and rather 

focus on adopting the existing knowledge to a practical prototype implementation, 

which will be ultimately realised in a Volvo truck and a SEAT passenger car during 

2006.   

9. FURTHER WORK 
The final module is intended to be run in an embedded xPC module. The 

installation will launch the practical test period, which will show how well the 

performed work fulfils the expectations of the laboratory tests. The developed 

software modules have an adequate performance. One important future aspect is 

minimising the size of the hardware, so that the driver does not see the equipment on 

the dashboard.  At the moment, the camera modules in typical stereovision systems 

are too large-dimensioned, especially for passenger car applications. Nevertheless, the 

recently introduced miniature CMOS cameras with thin glass optics are close to the 

size of a stamp, so they can easily be hidden in the cockpit.  

At present the module is mainly designed for truck environment, but the near-

future scenario is to adapt the system to a passenger car, which does not include lane 

position measurement. So, the CAA module will run relying only on the gaze and 

head based features. The performance quality will be lower than in the case of a truck, 

but it is of great interest to observe the performance of the system in a totally different 

type of vehicle environment, and especially to see, how much work for the adaptation 

is required. Presumably, the SVM engine is rather easy to reconfigure. 
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Table 1. Purpose of the modules in the AIDE driver/environment monitoring system 
Module Description 
Cockpit Activity Assessment (CAA) Detection of the visual and cognitive workload, which impairs 

the driver's attention on receiving/understanding messages via 
an in-vehicle HMI 

Driver State Degradation (DSD) Recognition of the driver's reduced spryness due to drowsiness 
(i.e. driver's physiological state degradation) using eyelid, lane 
tracking and steering position sensors. 

Driver Availability Estimator (DAE) Assessment of the driver’s availability for primary task 
(=driving). The analysis fuses the cartographic context and the 
basic sensor measurements like steering wheel, pedals, etc. 

Traffic and Environment Risk Assessment (TERA) Measurement of the environmental risk factors i.e. risks caused 
by surrounding vehicles, speed in curves, road profile, etc. and 
additionally the driver's manoeuvre intention 

Driver Characteristics (DC) Estimation of the driver's performance ability via the driver's 
profile including age, driving experience, gender, type of trips, 
average headway , etc. 

 
 

Table 2. The CAA module related adaptation examples 
Conflict scenario example CAA output HMI adaptation example 
The driver is picking up a 
dropped wallet from the 
vehicle's floor. While the driver 
is looking for his wallet the 
vehicle ahead brakes and 
forward collision warning 
initiates. 

The driver is not looking at the road 
ahead 

The forward collision warning is 
given earlier and possible with a 
greater intensity and/or with 
additional output modalities. 

The driver is talking to a 
passenger when a brake failure 
is detected 

Cognitive distraction is detected, 
which may reduce the driver's 
concentration on the vehicle status 
displays. 
 

The brake failure message is 
enhanced with a warning sound 
or a voice output in addition to 
the standard instrument panel 
telltale 

 
 

Table 3. Comparison of the different feature selections for classification performance. 
The best performance is highlighted in green colour. 

Gaze 
rotation 

Gaze rot 
quality 

Head 
rotation 

Head rot 
quality 

Lane 
position 

Face 
model 
quality Non-cogn Cogn 

x    x  54,9 54,8 
  x  x  57,7 54,8 

x  x  x  64,8 53,4 
x x   x x 76,1 54,8 
  x X x x 65,5 60,3 

x x x X x  78,2 50,7 
x x x  x x 81,0 41,1 
x x x X x x 80,3 54,8 
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Table 4. Results of the tests for retrieving the optimal gamma - criterion adjustments 
  TEST SET 1 TEST SET 2 

gamma C Non-cogn Cogn Non-cogn Cogn 
1,7 5,0 71,8 56,2 78,2 35,4 
2,0 5,0 73,9 54,8 75,0 38,1 
2,2 3,0 72,5 54,8 79,8 33,6 
2,2 8,0 76,1 54,8 67,7 46,0 
3,0 4,0 76,8 52,1 71,0 45,1 
3,0 6,5 79,6 53,4 68,5 45,1 
3,0 9,0 80,3 52,1 68,5 43,4 
5,0 3,0 80,3 54,8 71,0 45,1 
5,3 4,0 81,7 52,1 68,5 44,2 
5,7 4,0 81,7 47,9 68,5 45,1 
6,0 10,0 83,8 45,2 70,2 47,8 
6,3 6,0 83,8 46,6 70,2 48,7 
6,5 5 83,1 46,6 70,2 48,7 
6,5 6 84,5 46,6 70,2 48,7 
6,5 6,2 84,5 46,6 70,2 49,6 
6,5 6,5 84,5 46,6 70,2 47,8 
6,6 6,3 84,5 46,6 70,2 47,8 
6,7 6 84,5 46,6 70,2 48,7 
6,8 5 83,8 46,6 70,2 48,7 
8,0 15,0 83,8 49,3 69,4 46,9 
10,0 10,0 85,9 47,9 72,6 46,9 
15,0 10,0 89,4 42,5 77,4 42,5 

100,0 1,0 97,9 8,2 98,4 0,9 

 

Table 5. Tests with different cost-factors 
c Gamma C Non-cogn Cogn Non-cogn Cogn 

0,5 6,5 6,2 86,6 43,8 72,6 36,3 
1,0 6,5 6,2 84,5 46,6 70,2 49,6 
1,5 6,5 6,2 82,4 49,3 70,2 47,8 
2,0 5,0 8,0 78,2 52,1 69,4 47,8 
2,0 6,5 6,2 80,3 50,7 70,2 48,7 
3,0 6,5 6,2 80,3 53,4 69,4 49,6 
5,0 6,5 6,2 80,3 53,4 69,4 49,6 
10,0 6,5 6,2 80,3 53,4 69,4 49,6 

 

Table 6. The following threshold adaptation tests were executed with gamma: 6.5, C: 
6.2 and cost-factor: 3.0 

Threshold Non-cogn Cogn Non-cogn Cogn 
-0,30 37,3 71,2 62,1 54,9 
-0,25 71,8 57,5 65,3 54,9 
-0,23 73,2 56,2 65,3 54,0 
-0,20 73,2 54,8 66,1 53,1 
0,00 80,3 53,4 69,4 49,6 
0,20 84,4 46,6 75,8 39,8 
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Table 7. Comparison to the earlier work in the CAA module development steps. The 
best trials are the results of the over-fitted SVM model. The non-over fitted rates are 

given using the SVM parameters, which are close to the currently used. 
 Earlier results Current 

test data the best trials non-over fitted  
1 72,0 45,3 68,4 
2 55,5 43,8 58,6 
3 59,5 61,9 65,0 
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Figure 1.  Mean values and 95% confidence intervals for the three main cognitive 
distraction indicators (15 second time window) for different tasks in different traffic 
environments. The tasks are baseline (1) and cognitive tasks (2). The environments 

are motorway (MW), intermediate complexity environment (IM), and city (CI). 
 
 
 
 

 

Figure 2. The FaceLab system setup in the test truck 
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Stereo vision system Lane position sensor
 

Head/eye data post 
processing 

Vehicle data post 
processing 

Attention mapping 

Cognitive workload 
indicator calculation

Head/gaze curve 
dependency removal 

Lateral manoeuvring 
intention detection 

Eyes off road 
detection 

Visual time sharing 
detection 

Cognitive distraction 
detection with SVM 

 
Traditional vehicle 
sensors (connected 

to CAN bus) 
INPUTS 

POST PROCESSING 

FEATURE EXTRACTION

ACTIVITY ASSESMENT 

Figure 3. The internal software architecture of the CAA module 

 
 
 

a) 
 

b) 

 
 
 
 
 

c) 

Figure 4. The user interfaces of the developed laboratory tool, which are used for 
tuning the SVM parameters as well as estimating the performance rates. The window 
a) is the main form, which replays the captured data, b) is for training the SVM and 
visualising the reason of false detections and c) shows the related video on what is 

happening in the surrounding traffic and the driver's behaviour. 
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a) 2D (gaze rotation, lane position) b) 3D (gaze rotation, head 
rotation, lane position) 

 
c) 6D 

Figure 5. Difference in gaze rotation - lane position spaces (on average level 
of the other features) when the number of the inputs is varied. Red colour relates to a 
cognitive and green colour to a non-cognitive region. When the result is close to the 
threshold between cognitive and non-cognitive limit the colour becomes lighter. The 

SVM parameters in the graphs are gamma: 6.5, criterion: 6.2, cost-factor: 3.0 and 
threshold: 0. 

 
 

SVM thresholds in intermediate road type
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Figure 6. The hits rate aggregation as a function of the SVM threshold in the 

intermediate driving complexity. The horizontal axis is a SVM threshold or output 
and the vertical axis represents hit rates. The histogram line describes amount of data 
resulting the SVM output regarded to the horizontal axis. Note that the data used here 

include not only data points from the validation set, but also training data, which is 
why the hit rates here are generally higher than in Tables 3-7. 

 

VII/26



Motorway
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Figure 7. The hits rate aggregation as a function of the SVM threshold in the 

motorway. As in Figure 6 the used data set also includes training data points. 
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