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Kolari, Kari. Damage mechanics model for brittle failure of transversely isotropic solids. Finite 
element implementation. [Transversaali-isotroopisen materiaalin haurasmurtuman mallintaminen 
vauriomekaniikan avulla. Implementointi elementtimenetelmään]. Espoo 2007. VTT Publications 
628. 195 p. + app. 7 p. 

Keywords failure mechanics, brittle failure, anisotropy, continuum mechanics, damage
models, finite element analysis, solid materials, structural analysis, three-
dimensional, transversal isotropy, wing crack  

Abstract 

A new continuum damage model, the wing crack damage (WCD) model, was 
developed for the analysis of brittle failure of transversely isotropic solids. 
Special attention was paid to the analysis of axial splitting under compression 
and tensile cracking under tension. 

In addition to the WCD model a three-dimensional version of the damage model 
proposed by Murakami and Kamiya was enhanced and implemented in 
ABAQUS/Standard FE software. 

The proposed WCD model is based on the use of the damage vector. The vector 
represents both the normal direction of the surface of the plane crack and the 
size of the damaged area. Damaging induces anisotropy in an originally 
transversely isotropic material. The evolution equations for damage are 
motivated by the wing crack growth mechanism. The evolution is based on 
propagation of pre-existing damage. 

The proposed model enables modelling of pre-existing cracks. The feature can 
be exploited in studying the effect of orientation and size distribution of pre-
existing cracks on the failure of materials. The model was implemented in 
ABAQUS/Standard FE software as a user subroutine. 

The unsymmetrical behaviour of cracked materials under tension and 
compression due to the opening and closure of cracks is taken into account in the 
proposed model. In the work it was shown that the widely used strain-based 
crack closure criteria cannot be reliably applied in a two- and three-dimensional 
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stress state. To attain a deformation localisation zone of finite width, a damage 
rate-dependent damage surface was introduced. 

The validity of the proposed model was verified by testing it against five basic 
structures composed of known natural materials (ice, marble and concrete). The 
numerical simulations revealed the capability of the model in modelling brittle 
failure modes of transversely isotropic materials. 
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element implementation. [Transversaali-isotroopisen materiaalin haurasmurtuman mallintaminen 
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628. 195 s. + liitt. 7 s. 
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Tiivistelmä 

Tutkimuksessa on esitetty kaksi vauriomekaniikkaan (Continuum damage 
mechanics) perustuvaa materiaalimallia: Murakami Kamiyan (MK) malli, sekä 
uusi ”wing crak damage” -malli (WCD). Molemmat mallit on liitetty ABAQUS-
elementtimenetelmäohjelmistoon UMAT-aliohjelmana. 

Esitetty uusi WCD-malli on tarkoitettu transversaali-isotrooppisten materiaalien 
haurasmurtuman mallintamiseen. Erityistä huomiota on kiinnitetty yksiaksiaali-
sessa puristuksessa tapahtuvan kuormituksen kanssa yhdensuuntaisen halkea-
misen sekä yksiaksiaalisessa vedossa tapahtuvan kuormitusta vastaan kohtisuo-
rassa olevan säröytymisen mallintamiseen. 

Esitetty WCD-malli perustuu ”vauriovektorin” käyttöön. Vauriovektori edustaa 
sekä tasomaisen särön normaalin suuntaa että vaurioituneen alueen kokoa. Vau-
rioitumisen vuoksi transversaali-isotrooppisesta materiaalista tulee anisotrooppista. 
Vaurion kasvumekanismi simuloi siipisärön (wing crack) kasvumekanismia. 

Uusi WCD-malli mahdollistaa materiaalissa ennen kuormitusta olevien alku-
säröjen mallintamisen. Piirrettä voidaan hyödyntää tutkittaessa alkusäröjen suun-
nan ja suuruuden vaikutusta materiaalin vaurioitumiseen. 

Halkeilleen materiaalin epäsymmetrinen käyttäytyminen vedossa ja puristuk-
sessa särön avautumisen ja sulkeutumisen vuoksi on otettu huomioon esitetyssä 
mallissa. Tutkimuksessa on osoitettu, että venymäperusteista sulkeutumiskriteeriä 
ei voida luotettavasti soveltaa kaksi- ja kolmiaksiaalisessa jännitystilassa. 
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Esitetyssä mallissa vauriopinta on vaurionopeuden funktio. Siksi muodonmuu-
tosten paikallistumisvyöhykkeen leveys on äärellinen. 

Esitetyn mallin pätevyys on todennettu testaamalla mallia viidessä eri kuormi-
tustapauksessa käyttäen tunnettuja luonnonmateriaaleja (jää, betoni ja marmori). 
Numeeriset testit osoittivat mallin pätevyyden ja tehokkuuden transversaali-
isotrooppisten materiaalien haurasmurtuman mallintamisessa. 
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List of symbols 

Greek 

α  internal state variable corresponding to plastic hardening 
ijδ  Kronecker delta 

ijε  total strain tensor 

ε  shear (strain) traction, parallel to the crack plane 
Nε  normal (strain) traction, perpendicular to the crack plane 
eff
ijε  effective strain 
e
ijε  elastic strain tensor 
p
ijε  plastic strain tensor 

( )ˆ iε  principal strains 

*
ijε  modified strain tensor 
*̂
ijε  modified strain tensor expressed in principal strain coordinate 

system 
η  viscosity parameter 

1 2 3 4, , ,η η η η  material constants 
γ  power of dissipation 
dγ  power of dissipation, damage part 
pγ  power of dissipation, plastic part 

κ  internal state variable corresponding to damage hardening 
λ  multiplier, Lamé constant 
dλ  damage multiplier 
pλ  plasticity multiplier 

µ  Lamé constant 

,RCµ  residual shear modulus under compression 

,RTµ  residual shear modulus under tension 

, ijν ν  Poisson’s ratio 

ω  scaling factor 
iΩ  direction of the damage vector increment in WCD model 
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( )iφ  principal value of integrity tensor 

ijφ  integrity tensor 

, , ,d e pψ ψ ψ ψ  Helmholtz free energy 

ρ  density 

cσ  compressive strength 

ijσ  Cauchy stress tensor 

uσ  ultimate stress 

tσ  tensile strength 

σ  shear (stress) traction, parallel to the crack plane 
Nσ  normal (stress) traction, perpendicular to the crack plane 
eff
ijσ  effective stress tensor 
*
ijσ  stress tensor corresponding to the modified strain tensor *

ijε  
TRσ  threshold traction 

ξ  stiffness reduction factor for fully damaged model with passive 
crack 

ζ  material parameter (concerning unilateral behaviour) 
 
 
Small caps 

a  material parameter defining damage surface 
h internar (linear) “hardening” coefficient 

1 2 3( , , )i i i  Cartesian basis 

ijk  diagonal operator which modifies principal strains to take account 
of the crack activation/deactivation 

0Dm  mean of the pre-existing damage vector length 

Dkm  mean of the pre-existing damage vector component k 
1 3 3, ,x x x  

, kn n  unit normal vector 
s  entropy per unit volume, standard deviation 

0Ds  standard deviation of pre-existing damage vector length 

Dks  standard deviation of pre-existing damage vector component k 
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0x  material parameter defining damage surface 

1 3 3, ,x x x  coordinates of rectangular Cartesian coordinate system 

1 3 3, ,x x x′ ′ ′  coordinates of local coordinate system defined by damage vector 

0z  material parameter defining damage surface 
 
 
Capital 

A  surface area 
DA  damaged surface area 
B  conjugate force corresponding to damage variable κ 

0B  material parameter 

ijklB  projection tensor 

c  material parameter 
ijklC , [ ]C  constitutive tensor, constitutive matrix 

[ ]′C  constitutive matrix in local, damage coordinate system 
D scalar damage variable 

,iD D  damage vector 

( )iD  principal values of the second order damage tensor ijD  

ijD  damage tensor 

E Young’s Modulus 
ijE  Young’s Modulus for transversely isotropic material 

F  yield surface, damage surface 
dF  damage surface 
pF  yield surface 
G  plastic potential, damage potential 
dG  damage potential 
pG  plastic potential 

FG  fracture energy ( 2/J m ) 

ijG  shear modulus for transversely isotropic material 

H() Heaviside step function 
ijklK  secant stiffness tensor 

[ ]K  secant stiffness matrix 
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[ ]′K  secant stiffness matrix in local, damage coordinate system 
t
ijklK  material Jacobian tensor (tangent stiffness) 

ijklL  damage characteristic tensor 

,iM M  vector parallel to symmetry axis of transversely isotropic material 

ijM  second order tensor related to material symmetry axis iM  

ijklM  damage effect tensor 

ijQ  rotation tensor 

R  material parameter defining damage surface 
T absolute temperature 

, [ ]ijY Y  conjugate force tensor and matrix corresponding to damage tensor 

ijD  
eqY  equivalent damage conjugate force 
, DW W  elastic strain energy 

 
 
Math 

{}  column matrix 

[ ]  matrix 

 norm of vector 
a b  vector a  and b  are parallel 

a  time derivative: a
a

t
∂

=
∂

 

1
ijM
−  inverse of ijM  

{ }
W∂
∂x

 represents { }
1 2

, , ...,
n

W W W
x x x

∂ ∂ ∂
∂ ∂ ∂

 where W is a scalar function of 

1 2, , ..., nx x x  

[ ]T  matrix transpose 

[ ]ij  component of matrix, i refers to row number and j to column 

number 
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Abbreviations 

CDM Continuum damage mechanics 

FE Finite element 

FEA Finite element analysis 

FEM Finite element method 

MK Damage model proposed by Murakami and Kamiya (1997) 

RVE Representative volume element 

WCD Wing crack damage model 
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1. Introduction 

One of the greatest challenges in material failure analysis is the modelling of 
brittle failure in continuum mechanics. Rock, concrete and ceramics are well 
known and widely used examples of brittle materials. Formation and unstable 
growth of (micro)cracks due to the material inhomogeneities and external force 
is considered to be the mechanism of brittle failure (Nemat-Nasser and Horii, 
1984). 

The finite element method (FEM) is a widely used tool in structural analysis. 
The elements used in the FE analysis of structures are based on the theory of 
continuum mechanics. FEM is therefore not well suited to crack propagation 
analysis, as crack propagation induces geometrical discontinuity in the medium. 
Despite the contradiction, tools for brittle failure analysis are needed in FEM. 

The effects of discontinuities have been modelled in FEM using e.g. higher 
order shape functions or enrichment functions. In elemental enrichment 
methods, additional internal discontinuous degrees of freedom are applied at the 
element level. Implementation in commercial FE software would therefore 
require programming of new elements, whereas classical continuum mechanics 
based approaches (e.g. damage mechanics, smeared cracking) can be 
implemented without element-level modifications. 

1.1 Objectives 

Axial splitting is known to be the most likely failure mode under uniaxial 
compression of brittle materials. Despite its generality, commercial FE software 
does not provide proper tools for splitting failure analysis. Murakami and 
Kamiya (1997) have proposed a method for the modelling of brittle failure. The 
method is based on continuum damage mechanics (CDM) and has proved to be 
promising in axial splitting analysis as shown by Skrzypek and Kuna-Ciskal 
(2003). The method also takes into account the crack activation-deactivation 
process due to crack closure and opening. 
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This work focused on the modelling of brittle failure based on the continuum 
damage mechanics approach. The two fundamental objectives (A and B) were: 

A. To enhance applicability of the damage mechanics approach proposed 
by Murakami and Kamiya (1997) for modelling brittle failure in 3D 
space as follows: 

1. Implement a 3D version of the Murakami and Kamiya model 
(MK model) in the ABAQUS/Standard FE software. 

2. Identify the weaknesses and strengths of the MK model and 
amend potential weaknesses. 

3. Study whether the MK model could be modified for analysis of 
transversely isotropic materials. 

B. To introduce a new wing crack damage (WCD) model for modelling 
pre-existing crack evolution under shear and tension and to implement 
the model in the ABAQUS/Standard FE software as follows: 

1. Damage evolution simulates wing crack growth. 

2. Damaging introduces anisotropy. 

3. Distribution, size and orientation of pre-existing defects can be 
modelled. 

4. The model can be applied in uniaxial splitting and tensile failure 
mode analysis (see Fig 3.2 c, e). 

5. Initially transversely isotropic materials can be analysed. 

6. The upper limit of the damage variable is well defined. 

7. Damage activation/deactivation corresponding to open and closed 
microcracks is taken into account. 

8. Constitutive equations are derived independently of the direction 
of principal strain. 

C. To implement the rate-dependent strength model in the wing crack 
damage model. 
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1.2 Scope 

This work concentrated on the modelling of axial splitting and tensile failure of 
brittle material. Because of the extensive nature of the subject, only a limited 
scope of applications was covered. 

The failure was assumed to be brittle, i.e. plastic dissipation was assumed to be 
negligible. Shear and crushing failure were outside the scope of this work. 

Although crack initiation, propagation and wing crack formation are the 
mechanisms behind axial splitting failure, the model in this study was not based 
on micromechanics. The approach was phenomenological, although it was 
motivated by micromechanical mechanisms. 

Material dependent parameters that define rate dependency are needed for 
practical applications. These material parameter studies were outside the scope 
of this work. The rate-dependent model was applied to reduce mesh sensitivity. 

The effect of rate-dependent softening on the mesh sensitivity was studied using 
numerical examples with coarse and fine mesh. More detailed studies were 
outside the scope of this work. 

Crack activation and deactivation due to the opening and closing crack were 
taken into account in this study. However, frictional sliding of crack surfaces 
was not studied. 

Material damaging is known to affect the apparent Poisson’s ratio and induce 
volume change in the material. The phenomenon was neglected in this study. 

The size, distribution and orientation of initial flaws such as voids and cracks 
etc. are known to affect the strength of specimens. However, the flaw 
distribution studies were outside the scope of this study. 
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2. Mathematical notation 

2.1 Tensor notation 

Vectors are denoted in bold type. The vector u  has the following representation: 

1 1 2 2 3 3u u u= + +u i i i  (2.1) 

where the vectors 1 2,i i  and 3i  are unit base vectors of the rectangular Cartesian 
basis shown in Fig. 2.1. Using summation convention the vector in Eq. (2.1) can 
be written as 

i iu=u i  (2.2) 

1x

3x

1i

3i

2x

2i

 
Figure 2.1. Rectangular Cartesian coordinate axes. 

Index notation is used throughout this study. Thus e.g. the inner product of the 
vectors u  and v  is written as 

k ku v⋅ =u v  (2.3) 

The summation indexes are subscripted. Summation over superscripted letters is 
not done. Superscript is used to represent tensor features, e.g. the total strain 
tensor is ijε  while the total elastic strain is eijε . Not all the subscripted letters are 
summation indexes. Only lowercase letters are considered as summation 
indexes. Some parameters like compressive strength cσ  are subscripted with 
lowercase letters. 
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All vectors and tensors refer to the same basis unless stated otherwise; therefore 
only components are written in this text. The components of tensors are called 
tensors. Similarly, components of vectors are called vectors. Both index (e.g. 
ku ) and boldface notation (u ) is used to represent vectors. 

Similarly to Eq. (2.3), the inner product knM  of the two tensors ijε  and ijA  is 
written as 

kn kl lnM Aσ=  (2.4) 

which, written with the base vectors, reads 

kn k n kl k l mn m n

kl ln k n

M A

A

σ

σ

= ⋅

=

i i i i i i

i i
 (2.5) 

2.2 Matrix notation 

Index notation of stress tensors ijσ  and strain tensors ijε  is used throughout this 
study. Because the finite element applications require the use of matrix notation, 
the notation is also used in this study. The column matrix of elastic strains eijε  
reads 

11 22 33 12 13 23

1 2 3 4 5 6

{ } { , , ,2 ,2 ,2 }

{ , , , , , }

e e e e e e e T

e e e e e e T

ε ε ε ε ε ε

ε ε ε ε ε ε

=

=

ε
 (2.6) 

where the order of the shear strains is the same as used in ABAQUS/Standard 
(ABAQUS, 2003) FE software. Although row and column matrices are not real 
vectors, also row and column matrices are called vectors in this text. 

The stress vector is given in the following form: 

11 22 33 12 13 23

1 2 3 4 5 6

{ } { , , , , , }

{ , , , , , }

T

T

σ σ σ σ σ σ

σ σ σ σ σ σ

=

=

σ
 (2.7) 
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Hooke’s law defining the relation between stresses and strains is 

e e
ij ijkl klCσ ε=  (2.8) 

where e
ijklC  is the constitutive tensor. Eq. (2.8) in matrix notation is given in the 

following form: 

{ } [ ]{ }e e= Cσ ε  (2.9) 

where [ ]eC  is the constitutive matrix. 

The second order, symmetric damage tensor ijD  and the thermodynamic force 
ijY  corresponding to the damage tensor have a vector notation similar to Eq. 

(2.6) and (2.7): 

11 22 33 12 13 23

11 22 33 12 13 23

{ } { , , ,2 ,2 ,2 }

{ } { , , , , , }

T

T

D D D D D D

Y Y Y Y Y Y

=

=

D

Y
 (2.10) 

Thus the inner product of { }D  and { }Y  is 

{ } { }T
ij ijD Y=D Y  (2.11) 

where { }TD  is the transpose of { }D . 
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3. Literature review 

3.1 Brittle failure and axial splitting 

Fracture of metals is often characterised by some amount of plastic hardening, 
whereas in the fracture of brittle materials like rock, concrete and many other 
materials, “plastic flow is next to nonexistent” (Bazant, 2002). The definition of 
ductile and brittle failure is usually based on the amount of plastic strain; “The 
damage is called brittle when a crack is initiated at the mesoscale without a large 
amount of plastic strain” (Lemaitre, 1992, p. 4). The order of magnitude given 
by Lemaitre (1992) is: 

1
p

e
ε
ε

<  (3.1) 

where pε  is the uniaxial plastic strain and eε  is the elastic strain. Ductile and 
brittle behaviour are illustrated in Fig. 3.1. Brittle type behaviour is often divided 
into the following two subclasses: 

a) Quasi-brittle behaviour 
b) Brittle behaviour. 

According to Bazant et al. (2004), quasi-brittle materials “(1) are incapable of 
purely plastic deformations, and (2) in normal use have a fracture process zone 
(FPZ) which is not negligible compared to structure size D. For a large enough 
D, every quasi-brittle structure becomes brittle.” This means that the definition 
quasi-brittle cannot be considered as a pure material property but depends on the 
specimen size; e.g. a concrete beam may be quasi-brittle whereas a large bridge 
made of the same material may be brittle. 

Uniaxial compression and tension tests are the most common test setup in the 
definition of material strength parameters. The failure mode (or mechanism) 
information is as important as the strength values obtained from the test. The 
failure mode is needed in the verification of material models. Kendall (1978) 
classifies compression failure modes into three categories (see Fig 3.2): yielding, 
cone failure and axial splitting. The notion of compressive strength is useful only 
in the case of yielding (ibid). An example of a tensile strength test using 
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compressive force is the Brazilian test (Fig 3.2d). Although the external load is 
compression, the test itself is considered an indirect tensile test. 

 F 

F 

F 

Axial displacement 

F 

Ductile Brittle 

Axial displacement 

 
Figure 3.1. Illustration of ductile (left) and brittle (right) response under 
uniaxial compression. 

 
a) b) c) d) e) 

 
Figure 3.2. Compressive and tensile failure modes: a) plastic yielding, b) cone 
failure, c) axial splitting, d) disk or Brazilian, e) uniaxial tensile failure (a–c 
redrawn from Kendall (1978)). 

The axial splitting shown in Fig. 3.2c characterises the macroscopic compressive 
failure mode of many brittle materials like concrete, rock, ceramics and sea ice. 
(Nemat-Nasser and Horii, 1984; Kuehn et al., 1992; Espinosa and Brar, 1995; 
Weiss and Schulson, 1995; Bhattacharya et al., 1998; Chen and Ravichandran, 
2000; Sarva and Nemat-Nasser, 2001; Gupta and Bergstrom, 2002). The axial 
splitting failure mode is sometimes called slabbing (Ashby and Hallam, 1986). 
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Axial splitting is a complex failure mechanism. The splitting does not cause a 
global energy release, although energy is needed to form and propagate the 
splitting crack. As stated by Bazant and Planas (1998, p. 299), a splitting crack 
does not change the macroscopic stress field, whereas a transverse tensile crack 
causes a change in the macroscopic stress field as shown in Fig. 3.3. The axial 
splitting failure mechanism does not have a size effect because of the absence of 
a global energy release (ibid.). 

 
a) b) c) 

σ
σ

d) 
 

Figure 3.3. a) Tensile crack, b) macroscopic tensile stress field, c) axial splitting 
crack, d) macroscopic compressive stress field (redrawn from Bazant and 
Planas (1998, p. 299)). 

3.2 Wing crack model 

The failure mechanism of brittle materials under compression has been studied 
for decades. There are several models describing the mechanisms behind axial 
splitting; wing cracks are commonly accepted to be the one of the mechanisms. 
(Nemat-Nasser and Horii, 1984; Ashby and Hallam, 1986; Cannon et al., 1990). 
The notion “wing crack” was introduced in 1963 by Brace and Bombolakis 
(Nemat-Nasser and Horii, 1984; Renshaw and Schulson, 2001). 

Axial splitting failure begins when a primary crack undergoes sliding, creating 
wing cracks at the tips of the primary crack (Fig 3.4). The failure occurs when 
series of wing cracks extend and finally link together and split the material. The 
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final failure mode consists of a series of longitudinal splits (Sanderson, 1988; 
Renshaw and Schulson, 2001). 

Primary
crack 

Secondary
crack 

 
Figure 3.4. Wing crack formation; redrawn from (Renshaw and Schulson, 2001). 

3.2.1 Wing crack initiation 

Consider stresses near the tip of a crack in a homogeneous and isotropic plate. 
Radial rσ , circumferential θσ  and shear rθτ  stresses near the tip of the crack 
shown in Fig. 3.5a can be solved based on the theory of linear elasticity (for 
further details see e.g. Hellan (1984)). In the theory of fracture mechanics the 
stresses are given as a function of the stress intensity factors (SIFs) IK , IIK , the 
radius r  and the angle θ  as follows (Hellan, 1984, p.10,13): 

( ) ( )
( ) ( )
( ) ( )

1 3 3
5cos cos 5sin 3sin

4 2 2 2 22 2
1 3 3

3 cos cos 3sin 3sin
4 2 2 2 22 2
1 3 3

sin sin cos 3 cos
4 2 2 2 22 2

I II
r

I II

I II
r

K K
r r

K K
r r

K K
r r

θ

θ

θ θ θ θ
σ

π π
θ θ θ θ

σ
π π

θ θ θ θ
τ

π π

⎡ ⎤= − + − +⎢ ⎥⎢ ⎥⎣ ⎦
⎡ ⎤= + − +⎢ ⎥⎢ ⎥⎣ ⎦
⎡ ⎤= + + +⎢ ⎥⎢ ⎥⎣ ⎦

 (3.2) 

where the stress intensity factors IK  and IIK  are functions of loading, the state 
of stress and the geometry of the crack. 
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Figure 3.5. Stresses near the tip of a crack (a) and the initiation of a new branch 
under tensile and shear loading (b). 

When SIF exceeds the fracture toughness ( ICK  in pure mode I) a crack starts to 
initiate. In 1963 Erdogan and Sih (Hellan, 1984, p. 158) investigated both the 
direction of growth and the initiation of growth under mixed mode loading. They 
proposed the following equations: 

2
0

IC

r

K
rθ

θ

σ
π

τ

=

=
 (3.3) 

where Eq. (3.3)2 indicates the direction of growth. Substituting Eq. (3.2) in (3.3) 
the following equations are obtained: 

( ) ( )
( ) ( )

3 3
3 cos cos 3 sin 3sin 4

2 2 2 2
3 3

sin sin cos 3 cos 0
2 2 2 2

I II IC

I II

K K K

K K

θ θ θ θ

θ θ θ θ

+ − + =

+ + + =
 (3.4) 

The kinking angle cθ  shown in Fig. 3.5b and the relationship between IK  and 
IIK  in mixed mode can be solved from (3.4). Under pure shear loading 

( 0IK = ) the kinking angle 70.6cθ ≈ . Determination of the kinking angle for 
anisotropic material is a more demanding task and outside the scope of this work. 
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3.2.2 Modelling wing cracks under compression 

Brittle materials like rocks and ice are assumed to contain small sized cracks that 
propagate under compression. As described earlier, the wing crack mechanism is 
a model describing the propagation of these cracks. A stress intensity factor (SIF) 
is required to estimate the initiation of wing crack growth. The frictional sliding of 
a primary crack has been found to be important in these models, therefore the 
coefficient of friction µ  is taken into account in the determination of SIF. 

The sliding crack approach has been widely analysed in the literature (e.g. 
Cotterell and Rice, 1980; Nemat-Nasser and Horii, 1982; Steif, 1984; Ashby and 
Hallam, 1986; Horii and Nemat-Nasser, 1986). Lehner and Kachanov (1996) 
have summarised differences among the proposed models. The models are based 
on the theory of fracture mechanics. The basic idea in these models is that a 
wing crack (or a “branched crack”) is loaded by “splitting” forces induced by 
frictional sliding of the primary crack. Stress intensity factors IK  and IIK  are 
derived for the crack based on orientation, length, loading etc. When the stress 
intensity factors IK  and IIK  are known, the propagation of the crack can be 
analysed similar to the theory of fracture mechanics. In a pure mode I 
propagation starts when I ICK K= . 

A representative crack of Nemat-Nasser and Horii (Nemat-Nasser and Horii, 
1984; Horii and Nemat-Nasser, 1986) is shown in Fig. 3.6b. In their model the 
stress intensity factors are defined as follows (ibid.): 

sin( )

cos( )

I

II

F
K

l
F

K
l

φ
π

φ
π

=

−
=

 (3.5) 

where the force is defined as follows: 

[

[ ]]

11 22

11 22 11 22

( )sin(2 )

2 ( )cos(2 )c

F a σ σ γ

τ µ σ σ σ σ γ

= − −

− + + − −
 (3.6) 

where cτ  is the cohesive stress,µ  is the coefficient of friction and γ  is the 
inclination angle of the primary crack. 
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Figure 3.6. a) Idealised wing crack; b) representative tension crack of Horii and 
Nemat-Nasser (1986) and c) the model of Ashby and Hallam (1986). 

In the model of Ashby and Hallam (1986) a wing crack is assumed to grow 
parallel to the axial loading as shown in Fig. 3.6c. The SIF applied in the 
analysis of crack growth is the following (Ashby and Hallam, 1986, Eq. (A36)): 

23/2 1/2

2 1
( ) 2.5 0.4

3(1 ) (1 )
I xy xx

a
K L L

L L

π
σ µσ σ

⎡ ⎤⎡ ⎤ ⎢ ⎥= + + +⎢ ⎥ ⎢ ⎥⎣ ⎦+ +⎣ ⎦
 (3.7) 

where xyσ  and xxσ  are the stresses in local coordinate system shown in Fig. 
3.6c ( xxσ  is positive under compression) and /L l a=  is the undimensional 
length. 

3.3 Continuum mechanics based brittle failure analysis 

There are two practical requirements which material failure models have to 
meet. Firstly, the model must be able to predict correct macroscopic stress and 
strain state at failure (e.g. in uniaxial compression test simulation, the model 
should give a similar force displacement diagram to that obtained in the tests). 
Secondly, the predicted failure mechanism must fit the mechanism found in the 
experiments. In practice, mathematical failure models seldom wholly fulfil both 
criteria. 
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One of the objectives of this work was to introduce material models capable of 
predicting the axial split failure mode along the loading direction under 
compression and tensile cracking perpendicular to the loading direction under 
tension (see Fig. 3.2). The second requirement was that the model should be able 
to take into account damage activation and deactivation corresponding to open 
and closed microcracks (the activation/deactivation process is often called the 
unilateral effect). 

3.3.1 Discontinuity models and FEA 

Although various methods have been introduced in modelling discontinuities in 
FEA, only a brief review of the classical (continuum) discontinuity models is 
given in this section. 

The concepts used in FEA for modelling discontinuities due to material failure 
can be divided into the following two branches (Oliver and Huespe, 2004): 

• Discrete approaches, which are based on the modelling of cohesive 
surfaces between continuum elements. The cohesive surface is ruled by 
the traction-separation law. 

• Continuum approaches based on the classical continuum mechanics (e.g. 
smeared cracking, damage mechanics) or enriched continuum (e.g. 
gradient enrichment, non-local models). 

In 1958, Kachanov introduced the concept of effective stress (Lemaitre and 
Chaboche, 1990). It can be considered as a starting point for new types of 
approaches like the smeared crack and the damage mechanics concept. 

In the damage mechanics concept, loss of stiffness can be considered to be a 
consequence of randomly distributed microcracks. The loss can be 
macroscopically measured and characterised by a single damage variable. 
Depending on the type of damage, scalar D, vector D  or tensor ( ,ij ijklD D ) 
variables can be used. Damage vectors and tensors have been introduced to take 
into account anisotropic stiffness degradation. 
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The basic phenomenological difference between the theory of plasticity and 
continuum damage mechanics (CDM) is that in the theory of plasticity inelastic 
deformation induces irreversible strains, while in CDM, material damaging 
reduces the elastic stiffness as illustrated in Fig. 3.7. The distinction between the 
mechanisms could be simplified as follows: In plasticity theory the irreversible 
strains are created by dislocation movement, while in CDM the damage is 
caused by breaking of atomic bonds or debonding because of crack initiation. 

σ 

ε

a) Plasticity model

ε 

b) Damage model 

 
Figure 3.7. Stress-strain response of strain softening material; a) plasticity 
model, b) damage model. 

The smeared crack and discrete crack concepts were introduced in the 1960s 
(Rots and Blaauwendraad, 1989). Both concepts have been specially developed 
for brittle failure analysis in FEM. 

In the early days of the discrete crack approach, the crack was modelled by 
separating element edges when the separation criterion was fulfilled. Before the 
separation, element edges were tied together with interface elements. The crack 
propagation path was determined beforehand. 

The smeared crack approach has been implemented in several commercial FE 
software applications. Physically the smeared crack concept can be considered 
as a representation of series of microcracks. In the smeared crack approach, the 
direction of crack formation is usually defined by the maximum tensile principal 
stress. The crack is formed along the plane normal to the stress. When the crack 
is formed, a local coordinate system is fixed to the crack such that one of the 
coordinates points in the direction normal to the crack surface. An orthotropic 
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stress-strain law is then fixed to the local coordinate system, usually with a 
strain-softening feature. Three versions of the smeared crack approach exist: 

a) Fixed crack 
b) Multiple fixed crack 
c) Rotating crack. 

In the fixed crack approach the crack growth direction does not change with the 
varying loading direction, whereas in the rotating crack approach the crack 
orientation follows the principal tensile stress. The fixed crack approach tends to 
give an “overly stiff response” (Guzina et al., 1995). In the multiple crack 
approach a new crack is formed when the principal stress rotation increment 
exceeds a threshold value (Ohmenhauser et al., 1999). 

In 1976 Hillerborg pioneered the fictitious crack model (Hillerborg et al., 1976; 
Bazant and Planas, 1998; Cotterell, 2002; Elices et al., 2002). When the 
fictitious crack approach is used to model a pre-existing crack, the mathematical 
formalism is identical to that for the cohesive crack approach (Bazant and 
Planas, 1998, p. 158). In the fictitious crack model the cohesive stress cσ  is 
given as a function of the crack opening w  (Fig 3.8). The function ( )COH wσ  is 
called the softening function, which is a material property, and it can be related 
to the fracture energy FG  as follows: 

0
( )d

cw

F COHG w wσ= ∫  (3.8) 

where cw  is the critical crack opening. Based on the fracture energy and tensile 
strength the so-called characteristic length chl  can be derived (Elices et al., 
2002) as follows: 

2( )

F
ch

t

EG
l

σ
=  (3.9) 

where E is Young’s modulus and tσ  is the tensile strength. The characteristic 
length is an inverse measure of the material brittleness: the smaller chl  is, the 
more brittle the material (Elices et al., 2002). Although the fictitious crack 
approach is attractive, the drawback is that usually the cracking zone has to be 
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modelled using cohesive elements, i.e. the crack propagation path has to be 
defined in advance. Recently the fictitious crack model has been implemented in 
FE programs (Ruiz et al., 2001; Li and Siegmund, 2002; Planas et al., 2003; Shi, 
2004). 

w 

w

COHσ

tσ

cw  
 

Figure 3.8. Fictitious crack approach. 

The X-FEM approach has been developed based on the enrichment approach 
(Belytschko and Black, 1999; Sukumar et al., 2000). In this approach, 
discontinuous enrichment functions are added to the FE approximation to 
account for the presence of the crack. Work has recently been done to develop a 
strong discontinuity approach (SDA) (Oliver et al., 2002; Chaves, 2003) and a 
continuum strong discontinuity approach (CSDA) (Oliver and Huespe, 2004). In 
the CSDA, discontinuous kinematics and strain-softening constitutive laws are 
introduced into the continuum model, which “allows one to bridge both 
continuum and discrete approaches to material failure” (ibid.). 

3.3.2 Plasticity theory 

The theory of plasticity has been used in analysis of brittle failure. Although 
plastic deformations are negligible in brittle failure, plasticity theory can be 
applied from the phenomenological point of view. The phenomenological 
modelling of brittle failure requires the use of a strain-softening approach. As 
shown in Fig. 3.9, the sudden drop after peak stress can be modelled using the 
theory of plasticity (Kolari et al., 2002; Kolari et al., 2003). In conventional 
plasticity theory, the unilateral behaviour cannot be modelled. 
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Figure 3.9. Failure mechanism and force-displacement diagram in a 
compression test simulation using a Perzyna-type strain-softening approach 
with von Mises-type plasticity model (Kolari et al., 2003; Kolari et al., 2004). 

3.3.3 Axial splitting analysis in continuum mechanics 

As discussed in the previous section, axial splitting failure is a result of crack 
formation and propagation processes. In nature, crack initiation starts from a 
material inhomogeneity or fault (Fig. 3.10a, b). When the specimen is modelled 
using continuum mechanics, the material is usually assumed to be homogeneous 
without any faults or discontinuities. Therefore, in the classical continuum 
models there are no voids or disturbances to initiate crack formation or growth. 
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Figure 3.10. Stress state under axial compression. a–b) circular material fault 
inducing axial crack, c) stress state of undamaged and homogeneous material. 
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Figure 3.11. Strain state under axial compression: a) strain on the lower edge of 
the circular hole, b) strain state of undamaged and homogeneous material. ν is 
Poisson’s ratio. 

Failure criteria in continuum mechanics are often based on dissipation potentials 
(also called failure surface or yield surface). The evolution direction of failure is 
defined by the derivative of the potential with respect to the stress or strain 
tensor. The dissipation potential is a function of either stresses or strains. Stress-
based dissipation potentials are commonly used, although stress-based 
dissipation potentials cannot be used when modelling axial splitting. 

The uniaxial compression test shown in Figs. 3.10 and 3.11 illustrates the 
usefulness of the strain space-based formulation in axial splitting modelling. The 
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direction of damage evolution in the stress-based formulation is controlled by 
the stress state. It is common for the damage evolution of brittle materials to be 
based on the direction of maximum principal tensile stress, i.e. crack surfaces are 
assumed to be orthogonal to the direction of maximum principal tensile stress 
(Elices and Planas, 1996; Ohmenhauser et al., 1999; Oliver et al., 2003; 
Zolochevsky et al., 2005). However, there is no stress in the lateral direction, as 
shown in Fig. 3.10c. Therefore (to the author’s knowledge), there are no stress-
based failure evolution equations that give a correct evolution direction both 
under axial compression and under tension (see Figs 3.2c and 3.2e). 

The direction of damage evolution in a strain-based formulation of brittle 
materials is often based on the direction of maximum principal tensile strain, i.e. 
crack surfaces are assumed to be orthogonal to the direction of maximum 
principal tensile strain. As shown in Fig. 3.11b, the tensile strain points in the 
lateral direction, thus the crack must be vertically oriented and modelling of 
axial splitting is possible. 

3.4 Transversely isotropic elasticity 

Material models can be divided into two categories: isotropic models and 
anisotropic models. A special class of anisotropy is transverse isotropy. A 
material is transversely isotropic when it has identical properties in one plane 
and different properties in the direction normal to the plane (see Fig. 3.12). 
Wood, some rocks, columnar ice, some ceramics and piezoelectric materials are 
examples of transversely isotropic materials (Zhu and Cescotto, 1995; Cazacu et 
al., 1998; Renshaw and Schulson, 2001; Lu and Shao, 2002; Litewka and 
Debinski, 2003). 
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Figure 3.12. Material symmetry axis M  for transversely isotropic material. 

Elastic behaviour of transversely isotropic materials is described with five 
independent elastic constants, whereas only two are needed for isotropic 
materials. The most convenient way is to express the elastic strain energy using 
four of the following five independent invariants (Rogers, 1990): 
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 (3.10) 

The initial material symmetry is characterised by the second order tensor ijM , 
which is defined as follows: 

ij i jM M M=  (3.11) 

where iM  is the component of the unit vector M  defining the material 
symmetry axis direction shown in Fig. 3.12. The strain energy density W for 
linear elastic transversely isotropic material is given as follows (Rogers, 1990): 

2 2
1 2 4 1 5 4

1
( ) 2( ) ( )

2 T L TW J J J J J Jλ µ α µ µ β= + + + − +  (3.12) 
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where Tµ  and Lµ  may be interpreted as shear moduli for simple shear, and λ, 
α  and β  are material constants. 

If the symmetry axis M  is parallel to the Cartesian base vector 3i  shown in Fig 
3.12, the material constants in Eq. (3.12) expressed using the conventional 
engineering constants are 
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where 21ν  and 31ν  are Poisson’s ratios, 12G  and 13G  are shear moduli, 11E  and 
33E  are Young’s moduli in the directions 1 and 3, respectively. Poisson’s ratios 

are defined as follows: 

pp
mp

mm

ε
ν

ε
= −  (no summ.) (3.14) 

where mmε  is the strain in direction m under uniaxial compression and ppε  is the 
corresponding strain in direction p. 

3.5 Mesh sensitivity and strain softening 

Mesh sensitivity and localisation are problems that arise in strain-softening 
applications. Mesh sensitivity means that beyond a critical load level all further 
deformations tend to localise in a small band. In finite element applications, the 
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band width is a function of the element mesh; the denser the mesh the smaller 
the band width. From the mathematical point of view, the localisation is caused 
by “loss of ellipticity of the underlying differential equations” (Kang and 
Willam, 2000). Mesh-independent solutions are difficult to obtain unless a 
length scale is introduced (ibid.). The use of rate-dependent solution methods 
like viscoplasticity introduces the length scale. 

The mesh dependency can be illustrated with the simple tension spring example 
shown in Figs. 3.13–3.15 (Bazant and Planas, 1998). The system of springs 
consists of n springs having a total length of L. Each spring has an identical 
softening curve illustrated in Fig. 3.13. The tension test is force controlled. It can 
be assumed that one of the springs starts softening before the others. The 
situation is similar to the numerical applications where, due to round-off errors 
etc., the strains are not identical for all the springs. The displacement response is 
illustrated in Fig. 3.15. As shown in the figure, the end displacement approaches 
zero as the number of springs increases. 
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Figure 3.13. Softening curve for a single spring. 
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Figure 3.14. n-spring system. 
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Figure 3.15. Load displacement diagram for softening the n-spring system 
(redrawn from Bazant and Planas (1998, p. 216)). 

3.6 Damage mechanics approach 

3.6.1 Thermodynamic basis for material damage theory 

A brief review of the formulation of constitutive equations based on continuum 
thermodynamics is given in the following paragraphs, whereas more detailed 
presentations are given by Lemaitre and Chaboche (1990), Lemaitre (1992), 
Ristinmaa and Ottosen (1998), Santaoja (2001) and Olsson & Ristinmaa (2003). 

According to Lemaitre and Chaboche (1990), the variables used in 
thermomechanics can be divided into two classes: a) observable variables, and 
b) internal variables. Common examples of observable state variables are the 
total strain ijε  and the absolute temperature T, while the plastic strain p

ijε  is an 
example of an internal variable. 

The assumption of small strains is made. This allows a decomposition of total 
strain tensor ijε  into the elastic part eijε  and inelastic part pijε : 

pe
ij ij ijε ε ε= +  (3.15) 

If damage and plasticity are assumed to be uncoupled, the Helmholtz free energy 
per unit mass ψ  is (Zhu and Cescotto, 1995): 
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( , ) ( ) ( )pe p d
ij ijij Dψ ψ ε ε ψ α ψ κ= − + +  (3.16) 

where p
ijε , ijD , α  and κ  are internal state variables, ( )pψ α  is the free energy 

due to plastic hardening and ( )dψ κ  is free energy due to damage hardening. The 
Clausius-Duhem inequality takes the following form in isothermal conditions 
(Olsson and Ristinmaa, 2003): 

0ij ijγ ρψ σ ε= − + ≥  (3.17) 

where γ  is the power of dissipation and a dot denotes rate with respect to time, 
and ρ  is the density. The thermodynamic conjugate forces corresponding to the 
internal variables are 

,

,

ij ije
ij ij

Y
D

B R

ψ ψ
σ ρ ρ

ε

ψ ψ
ρ ρ

κ α

∂ ∂
= = −

∂ ∂

∂ ∂
= =

∂ ∂

 (3.18) 

The sign convention in Eq. (3.18) is similar to the convention used by Murakami 
and Kamiya (1997). With Eqs. (3.16) and (3.18) we have the dissipation 
inequality from Eq. (3.17): 

( )
( )

( )

0

p
ij ijp ij

ij ijij

ij ij

p
ij ij ij ij ij ijij

p
ij ij ijij

D
D

Y D R B

Y D R B

ψ ψ ψ
γ ρ ε ε ρ ρ α

ε ε α

ψ
ρ κ σ ε

κ
σ ε ε α κ σ ε

σ ε α κ

∂ ∂ ∂
= − − − −

∂ − ∂ ∂

∂
− +

∂
= − − + − − +

= + − − ≥

 (3.19) 

The equation can be separated into two parts if dissipation due to damage and 
plasticity are uncoupled (see Eq. (3.16)). 

0p dγ γ γ= + ≥  (3.20) 
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where 

0 

0

pp
ij ij

d
ij ij

R

Y D B

γ σ ε α

γ κ

= − ≥

= − ≥
 (3.21) 

A condition that determines whether plastic and/or damage loading occur must 
be defined. These conditions are known as the yield surface and damage surface. 
The yield surface pF  and damage surface dF  are often given as a function of 
state variable ijD  and conjugate forces 

( , ) 0

( , ) 0

p p
ij

d d
ij

F F R

F F Y B

σ= =

= =
 (3.22) 

When 

0 or 0p dF F= =  (3.23) 

plastic or damage response is possible. The response is elastic if the following 
condition is fulfilled: 

0 and 0p dF F< <   (3.24) 

The thermodynamic formulation gives the thermodynamic forces and the 
dissipation inequality equation but does not give information about the evolution 
laws for internal variables. The only restriction imposed by continuum 
thermodynamics on the evolution laws is that the dissipation inequality of Eq. 
(3.21) must be fulfilled. 

Evolution laws can be derived from the postulate of maximum dissipation using 
the definitions in Eqs. (3.22)–(3.24). The objective is to find stresses and forces 
for given thermodynamic fluxes , ,  and p

ijij Dε α κ  such that the dissipation γ  in 
Eq. (3.19) is maximised. The postulate of maximum dissipation leads to the 
following evolution laws (Zhu and Cescotto, 1995; Ristinmaa and Ottosen, 
2000; Olsson and Ristinmaa, 2003): 
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d
d

ij
ij

d
d

p
p p
ij

ij
p

p p

F
D

Y

F
B
F

F
R

λ

κ λ

ε λ
σ

α λ

∂
=

∂

∂
= −

∂
∂

=
∂

∂
= −

∂

 (3.25) 

In Eq. (3.25) the parameters 0dλ ≥  and 0pλ ≥  are called consistency 
parameters. They are assumed to obey the Kuhn-Tucker consistency 
requirements (Olsson and Ristinmaa, 2003): 

0, 0

0, 0

0, 0

d p

d p

d d p p

F F

F F

λ λ

λ λ

≥ ≥

≤ ≤

= =

 (3.26) 

In addition to condition (3.26), when 0dλ ≥  and 0pλ ≥  the consistency 
requirements must be satisfied (Olsson and Ristinmaa, 2003): 

0, 0d pF F= =  (3.27) 

In non-associative formulation the functions pF  and dF  in Eq. (3.25) are 
replaced by plastic potential function pG  and damage potential function dG  

( , )

( , )

p p
ij

d d
ij

G G R

G G Y B

σ=

=
 (3.28) 

The evolution laws are then 

,

,

d dd dij
ij

pp
p p pp
ij

ij

G GD
Y B

GG
R

λ κ λ

α λε λ
σ

∂ ∂= = −∂ ∂
∂∂

= −=
∂∂

 (3.29) 
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The non-associated formulation reduces to associated formulation when 
d dF G=  and p pF G= . As stated by Ristinmaa and Ottosen (2000) and 

Santaoja (2001), the associated formulation fulfils the dissipation inequality if 
F  is a convex function. When considering non-associated formulation it is more 
difficult to show that the dissipation inequality is fulfilled. 

Edelen (1972) introduced requirements for the non-associated potential function 
such that the dissipation inequality is fulfilled. According to Lemaitre and 
Chaboche (1990, p. 193), the dissipation inequality in non-associated formulation 
is ensured if the potential function G “is convex and positive as soon as there is 
plastic flow and includes the origin”. 

3.6.2 Basis of damage mechanics 

In models of continuum damage mechanics (CDM), damage can be considered 
as a macroscopic state variable that affects the macromechanical properties 
(stiffness degradation) of the material. Physically the loss of stiffness can be 
considered a consequence of distributed microcracks and microvoids. 

Continuum mechanics deals with mathematical quantities that represent 
averages of a certain volume (Lemaitre, 1992, p. 3). The volume must be small 
enough to avoid high gradient smoothing, “but large enough to represent an 
average of the microprocesses” (ibid.). The volume is called “representative 
volume element” (RVE). The size of the RVE depends on the material. Lemaitre 
(1992, p. 3) gives the following scales for the RVE: 

• metals and ceramics:  (0.1 mm)3 
• wood:   (10 mm)3 
• concrete:  (100 mm)3. 
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Figure 3.16. Definition of damage (Redrawn from Lemaitre (1992, p. 11)). 

The concept of damage can be illustrated by considering the RVE at a point M 
shown in Fig. 3.16, where n  is the surface normal to the intersection, x is the 
abscissa along the direction n, A  is the surface area, and DA  is the area of all 
microcracks and microcavities that lie on the intersection A. The value of the 
damage D attached to the point M in the direction n  is 

( )
( , , ) DA x
D M x

A
=n  (3.30) 

As shown in Eq. (3.30), the damage D varies with x. A continuous variable over 
the RVE for its deterioration to failure is defined considering the plane that is 
most damaged: 

Max[ ( )]
( , ) DA x
D M

A
=n  (3.31) 

Thus the value of the scalar damage variable depends on the point and direction 
considered. The value is in the range 

0 1D≤ <  (3.32) 

where the value of 0 corresponds to undamaged RVE material and the value of 1 
to fully broken material. 

In CDM, formulation of the constitutive equations is based one of the following 
two approaches: 

• Strain equivalence principle approach 
• Stress equivalence principle approach. 
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In the strain equivalence principle shown in Fig. 3.17, “any strain constitutive 
equation for damaged material may be derived in the same way as for a virgin 
material, except that the usual stress is replaced by the effective stress” 
(Lemaitre, 1992, p. 13). In the stress equivalence principle, the stress associated 
with the damaged state is the same as the stress obtained in the undamaged state 
under effective strain (fig. 3.18). 

As stated by Simo and Ju (1987), the strain equivalence principle is naturally 
associated with a strain-based formulation of the constitutive equations while the 
stress equivalence principle corresponds to a stress-based formulation. In the 
strain-based formulation the elastic energy density is written as a function of 
strains, while in the stress-based formulation the complementary form is used. 

The damage effect tensor ijklM  defines the relation between the effective and 
nominal counterparts as follows (Voyiadjis and Park, 1997; Carol et al., 2001): 

1

1

,

,

eff eff
ijkl kl ij ijklij kl

eff eff
ijkl kl ij ijklij kl

M M

M M

σ σ σ σ

ε ε ε ε

−

−

= =

= =
 (3.33) 

where 1
ijklM−  is the inverse of ijklM . Depending on the form of the damage effect 

tensor ijklM , it is possible that the effective stress in Eq. (3.33) is non-
symmetric. By contrast, the energy equivalence principle automatically induces 
symmetry in the secant stiffness tensor. 

ε  1  

σσ  

Physical space Effective space 

ε  1

effσ  effσ

 
Figure 3.17. Effective stress concept and the hypothesis of strain equivalence 
(redrawn from Simo and Ju (1987)). 
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ε  1

σσ  σ  σ

effε  1

Physical space Effective space  
Figure 3.18. Effective strain concept and the hypothesis of stress equivalence 
(redrawn from Simo and Ju (1987)). 

3.6.2.1 Effective stress concept 

The effective stress approach was introduced by Rabotnov 1968 (Lemaitre, 
1992, p. 12). Consider the RVE shown in Fig. 3.19 loaded by a force F. The 
uniaxial stress due to the force is 

F
A

σ =  (3.34) 

If the force is divided by the area that effectively resists the load ( DA A− ), the 
result is the effective stress effσ : 

eff

D

F
A A

σ =
−

 (3.35) 

Using the definition of damage given in Eqs. (3.30) and (3.31), Eq. (3.35) gives 

1
eff

D
σ

σ =
−

 (3.36) 
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Figure 3.19. Damaged element (Redrawn from Lemaitre (1992, p. 12)). 

The definition given in Eq. (3.35) is for the RVE under tension. Under 
compression the effective area resisting the load may be larger due to the closing 
defects. If all the defects close under compression, the effective stress is the 
same as the stress in the undamaged RVE. 

3.6.2.2 Isotropic damage 

The damage variable D introduced in Eq. (3.31) depends on the location and 
orientation of the RVE. If the damage is assumed to be isotropic, it has the same 
value in all directions and the scalar damage variable completely characterises 
the three-dimensional damage state: 

DAD
A

=  (3.37) 

The Hooke’s law defining the relation between stresses and strains is 

e e
ij ijkl klCσ ε=  (3.38) 

According to the effective stress concept introduced in Section 3.6.2, the stress 
in Eq. (3.38) can be replaced by the effective stress of Eq. (3.36): 

1
ij e e

ijkl klC
D

σ
ε=

−
 (3.39) 
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from which the following stress-strain relation for isotropic damage is obtained: 

(1 ) e e
ij ijkl klD Cσ ε= −  (3.40) 

3.6.2.3 Geometric second order damage tensor 

When damage is anisotropic, the damage vector or tensor must be used instead 
of a scalar damage variable. Second, fourth and higher than fourth order tensors 
have been used to represent damage, but the physical meaning of higher than 
second order tensors may be difficult to understand. The effective stress concept 
in anisotropic damage is straightforward when a second order damage tensor is 
used. The second order damage tensor can be obtained from purely geometric 
analysis as shown in this section. The tensorial nature of damage has been 
widely studied (Leckie and Onat, 1981; Betten, 1983; Voyiadjis and Deliktas, 
2000; Carol et al., 2001). 

 n

dA

n  

dA  

Damaged configuration Undamaged configuration 
Strain equivalent  

 
Figure 3.20. Damaged and undamaged surface area (Redrawn from Lemaitre 
(1992, p. 61)). 

Second order damage tensor ijD  can be derived from the surface area analogy as 
in Eq. (3.31). Let dA  represent the surface area of the material in its current 
configuration, and jn  a unit normal to the area element as shown in Fig. 3.20, 
while dA  represents the strain-equivalent undamaged area and jn  its normal, 
respectively. The relation between the damaged and undamaged and area 
elements is the following (Murakami, 1990; Lemaitre, 1992): 

( )j jk jk kn dA D n dAδ= −  (3.41) 
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The principal values ( )iD  of the damage tensor ijD  correspond to the reduction 
of the area of the tetrahedron as shown in Fig. 3.21. 

3x 1x  

2x  
n  

2dA  

1dA  
3dA

3x 1x

2x

n

2 (2) 2(1 )dA D dA= −  

1 (1) 1(1 )dA D dA= −  

3 (3) 3(1 )dA D dA= −

 
Figure 3.21. Damaged and strain equivalent undamaged configuration in 
principal coordinates of the damage tensor. (Redrawn from Lemaitre (1992, p. 61). 

The force acting on the area is 

eff
j ik kij n dA n dAσ σ=  (3.42) 

Using the definition in Eq. (3.41), Eq. (3.42) is written in the following form: 

( )eff
jk jk ikij Dσ δ σ− =  (3.43) 

The tensor kj kj kjDφ δ= −  is the continuity tensor, also called the integrity 
tensor (Valanis, 1990; Carol et al., 2001). Tensors kiφ  and kiD  share their 
principal axes and principal values and the principal values vary between 0 and 1 
(Carol et al., 2001). Their principal values are related according to 

( ) ( )1i iD φ= −  (3.44) 

where ( )iD  are the principal values of kiD  and ( )iφ  are the principal values of kiφ . 

The effective stress tensor given in Eq. (3.43) could be defined by 

eff
ik kjij aσ σ=  (3.45) 



 

52 

where kja  is the inverse of ( )ik ikDδ −  i.e. ( )ik ik kj ijD aδ δ− = . 

Similar to Eq. (3.33), also Eq. (3.45) leads to a non-symmetric effective stress 
tensor. A number of symmetrisation forms have been proposed by researchers. 
Betten (1983) has proposed the following sum-type symmetrisation form: 

[ ]1
2

eff
ik kj jk kiij a aσ σ σ= +  (3.46) 

The following product-type symmetrisation method has been proposed by 
Cordebois and Sidoroff at 1982 (Voyiadjis and Park, 1997; Voyiadjis and 
Deliktas, 2000): 

eff
ik kl jlij b bσ σ=  (3.47) 

where ikb  defined in principal damage coordinate system is: 

(1)

(2)

(3)

1
0 0

1

1
0 0

1

1
0 0

1

ik

D

b
D

D

⎡ ⎤
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 (3.48) 

Using the symmetrisation method of Eq. (3.47), the following form of the 
damage effect tensor ijklM  in Eq. (3.33) can be obtained (Voyiadjis and 
Deliktas, 2000): 

ikjl ik jlM b b=  (3.49) 

To illustrate the damage effect tensor ijklM , the tensor is written in matrix form. 
The inverse of the tensor written on the principal axis of the integrity tensor is 
(Carol et al., 2001) 



 

53 

[ ]

(1)

(2)

(3)
1

(1) (2)

(1) (3)

(2) (3)

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

φ

φ

φ

φ φ

φ φ

φ φ

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M  (3.50) 

3.6.2.4 Phenomenological damage models 

In the previous chapter, the derived second order damage tensor ijD  was based 
on the effective stress approach and the physical meaning of the tensor was 
based purely on the geometric analysis. The principal values ( )iD  of the damage 
tensor ijD  based on the effective stress concept are in the range ( )0 1iD≤ <  
(Carol et al., 2001). 

There are number of models in which the damage tensor can be considered 
(only) as an internal state variable (Murakami and Kamiya, 1997; Halm and 
Dragon, 1998; Hayakawa et al., 1998; Challamel et al., 2005). These models are 
called “phenomenological damage models” in this study. In the 
phenomenological approach, a model formulation may be based on micro-
mechanically motivated mechanisms, or the damage tensor may be considered 
only as an internal state variable affecting the stress-strain response without a 
micromechanical background. Therefore the physical meaning of the damage 
tensor might be difficult to understand. Also, the allowable range of principal 
values of the damage tensor may be indeterminate. 

In the “phenomenological approach” the Helmholtz free energy ( , )e
ij ijDψ ε  is 

often written using invariants based on the use of the damage tensor. For 
example, a combination of the basic invariants of elastic strain tensor e

ijε  and 
damage tensor ijD  can be used (Murakami and Kamiya, 1997): 

, , ,

,

e e e e e e
kk ll kl kl kk ll mm

e e e e e e
kk ml ml km ml lk kl kl mm

D

D D D

ε ε ε ε ε ε

ε ε ε ε ε ε
 (3.51) 
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where only the invariants that are linear in ijD  are given. Using the invariants in 
Eq. (3.51) the Helmholtz free energy can be written as follows (Murakami and 
Kamiya, 1997): 

2 2
1 2

* *
3 4

2

1
( ) ( )

2

1
2

e e e e e e e
kk kl kl kk ll kk mn nm

e e
kk mn nm kl lm mk

d

D D

D D

h

ρψ λ ε µ ε ε η ε η ε ε

η ε ε η ε ε

ρψ κ

= + + +

+ +

=

 (3.52) 

where *
ijε  is the modified strain describing the crack closure effect, 1 4,...,η η  and 

h  are material constants, ρ  is the density and κ  is “internal scalar variable 
prescribing the development of damage.” 

3.7 Rate-dependent brittle damaging 

The behaviour of most materials is known to be strain rate-dependent. Concrete 
and natural ice are examples of strain rate-dependent brittle materials (Lambert 
and Ross, 2000; Schulson, 2001). The rate dependency is verified experimentally 
using either the displacement-rate or force-rate controlled methods. In the 
experimental evaluation of strain-rate dependency, the effects of inertia forces 
should be carefully taken into account in order to avoid misleading results. 

The strain rate is known to affect the material strength of viscoplastic materials. 
There are also results which indicate that the strength of brittle materials is 
strain-rate dependent, e.g. the strength of concrete and ceramics has been found 
to be higher when the strain rate is increased (Chen and Ravichandran, 2000; 
Koh et al., 2001; Georgin and Reynouard, 2003). In their studies of strength 
increase due to strain rate increase, Nard and Bailly (2000) suggested that the 
apparent compressive strength increase was a result of “inertial confinement”. In 
numerical simulations, they remarked that introducing rate-dependent strength 
into the constitutive model was not necessary in order to take into account an 
experimental compressive strength increase. According to Georgin and 
Reynouard (2003), at strain rates below 1 s-1 the rate effect of concrete material 
is assumed to result from free water, while for rates over 10 s-1 it is assumed to 
result from the inertial confinement. 
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Although the mechanisms behind the strain rate dependency in brittle failure are 
not known, the rate dependency has been considered in this study. As discussed 
in Section 1.1, the objective concerning the rate effect was to implement the 
rate-dependent strength model in the wing crack damage model. 

Rate-dependent solution methods introduce the length scale into the numerical 
model. The length scale eliminates the mesh sensitivity, which is known to be a 
problem in strain-softening material models. 

3.7.1 Perzyna model 

The commonly used Perzyna-type rate-dependent approach has been applied 
also in damage mechanics; e.g. Dube et al. (1996) proposed a model for 
isotropic rate-dependent damage of concrete using the Perzyna method. 
Challamel et al. (2005) have also proposed a Perzyna-type time-dependent 
equation for damage evolution. Challamel et al. have neither applied the rate 
dependency nor given any examples of rate-dependent damage. The Perzyna-
type rate-dependent method is an example of an “overstress model”. In the 
Perzyna method, material strength increases with increasing rate. 

In the Perzyna (1966) model the evolution law for plastic strains p
ijε  is given in 

the following form: 

p
ij

ij

F

F
B

ε λ
σ

κ λ

∂
=

∂

∂
=

∂

 (3.53) 

where the consistency parameter is defined as non-negative function φ  of a 
static yield function F  and viscosity parameter η  as follows: 

( )F
η

φ
λ =  (3.54) 

where  are McCauley brackets: 
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1
( )

2
x x x= +  (3.55) 

In 1995, Ponthot introduced “continuous” viscoplastic formulation (Carosio et 
al., 2000). In the formulation, Eq. (3.54) is transformed into the format of a rate-
dependent yield condition: 

1( , , ) ( , ) ( ) 0ij ijF Fσ λ λ σ λ φ ηλ−= − =  (3.56) 

where 1( )φ ηλ−  is inverse function of ( )Fφ  in Eq.(3.54). 

The viscoplastic consistency condition is then  

( ) ( )1 1

0ij
ij

F F φ ηλ φ ηλ
σ λ λ

σ λ λ λ

− −⎛ ⎞∂ ∂∂ ∂ ⎟⎜ ⎟⎜+ − − =⎟⎜ ⎟∂ ∂ ∂ ⎟⎜ ∂⎝ ⎠
 (3.57) 

3.7.2 Consistent viscoplasticity 

Wang (Wang et al., 1997; Wang, 1997) proposed a so-called consistency 
viscoplastic formulation where the rate-dependent yield surface was introduced 
in such way that Kuhn-Tucker conditions remain valid. In addition to time-
dependent solutions, Wang’s formulation can be used to introduce a length scale 
into the model. In the approach, the proposed rate of state variables is included 
as an independent variable into the yield criteria: 

( , , ) 0ijF F σ κ κ= =  (3.58) 

The corresponding consistency condition is then 

0ij ijn hσ κ ξκ− − =  (3.59) 

where the yield surface gradient ijn , the hardening modulus h  and the viscosity 
parameter ξ  are defined as follows: 
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, ,ij
ij

F F F
n h ξ

σ κ κ
∂ ∂ ∂

= = − = −
∂ ∂ ∂

 (3.60) 

In the consistency approach, the yield surface can expand and shrink due to both 
the hardening and hardening rate effects. 

As shown by Carosio et al. (2000) and Heeres et al. (2002), the consistency 
approach of Eq. (3.59) reduces to the Perzyna formulation of Eq. (3.57) when 

1( )φ λη
ξ

λ
κ λ

−∂
=

∂
=

 (3.61) 

3.7.2.1 Consistent viscoplasticity in damage mechanics 

The damage surface is given as a function of the total elastic strain e
ijε , 

hardening variable κ  and hardening variable rate κ  

( , , ) 0e
ijF F ε κ κ= =  (3.62) 

The consistency condition is 

0e
ije

ij

F F F
F ε κ κ

ε κ κ
∂ ∂ ∂

= + + =
∂ ∂ ∂

 (3.63) 

In finite element formulation, stresses and internal state variables are updated in 
integration points. The update starts from time t with the known variables: 

,, ,e tt t
ij ijσ ε κ . In the update process the corresponding values at time t t+ ∆  are 

calculated: ,, ,e t tt t t t
ij ijσ ε κ+∆+∆ +∆ . 

There are no plastic deformations in this approach, therefore the elastic strain 
tensor ,e t t

ijε
+∆  is known. The hardening variable κ  is solved iteratively from the 

discretised consistency condition of the damage surface following the same 
procedure as Wang et al. (1997). The Newton-Raphson iteration process is used to 
solve the hardening variable κ. The consistency condition at iteration step i is: 
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( )( , , ) 0e i e
ij ije

ij

F F F
F Fε κ κ δε δκ δκ

ε κ κ
∂ ∂ ∂

≈ + + + =
∂ ∂ ∂

 (3.64) 

where e
ijδε  is the iterative strain increment, δκ  is the iterative hardening variable 

increment, δκ  is the increment of the iterative hardening variable rate and 
( )( ) ( ) ( )( , , )e ii i i
ijF F ε κ κ=  is the ith residual of the damage function F  at iteration 

step i. The variable κ  is integrated by the Euler backward algorithm: 

( )

( ) ( )

i

i i

i

tδκ δκ

κ δκ

= ∆

∆ = ∑  (3.65) 

where t∆  is the time increment and ( )iκ∆  is the hardening variable increment. 
The updated hardening variable increment κ∆  when ( ) 0iF ≈  is 

t t tκ κ κ+∆ = + ∆  (3.66) 

Using Eqs. (3.64) and (3.65) the consistency condition can be rewritten as 

( ) 1i e
ije

ij

F F F
F

t
δε δκ

ε κ κ
∂ ∂ ∂⎛ ⎞⎟⎜− = + + ⎟⎜ ⎟⎝ ⎠∂ ∂ ∂ ∆

 (3.67) 

from which δκ  is obtained as follows: 

1
( )1 i e

ije
ij

F F F
F

t
δκ δε

κ κ ε

− ⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎟⎜⎟⎜= − + + ⎟⎜⎟⎜ ⎟ ⎟⎟⎜⎝ ⎠∂ ∂ ∆ ∂⎝ ⎠
 (3.68) 

During local iteration the iterative strain increment e
ijδε  in Eq. (3.68) vanishes. 

In incremental solution of equilibrium equations, the stress-strain relation must 
be formulated into incremental form. Assuming that the stress is a function of 
damage and elastic strain as follows: 

( , )e
ij ij kl klDσ σ ε=  (3.69) 

the incremental form is obtained from Eq. (3.69) is 
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ij ije
ij kl kle

kl kl
D

D
σ σ

δσ δε δ
ε

∂ ∂
= +

∂ ∂
 (3.70) 

In this study the hardening parameter equals the multiplier 

κ λ=  (3.71) 

Thus also δκ δλ= . The damage increment is obtained from (3.29)1 as follows: 

ij ij

ij
ij

D D t

t

G
D

Y

δ

δλ λ

δ δλ

= ∆

= ∆

∂
=

∂

 (3.72) 

Substituting Equations (3.71) and (3.72) into Eq. (3.70), the following for the 
stress increment is obtained: 

ij ije
ij kle

kl kl kl

G
D Y

σ σ
δσ δε δκ

ε
∂ ∂ ∂

= +
∂ ∂ ∂

 (3.73) 

Substitution of (3.68) into Eq. (3.73) gives the material Jacobian when the 
residual ( )iF  vanishes: 

1
1

ij ijt
ijkl e e

kl mp mp kl

G F
K

F F D Y
t

σ σ
ε ε

κ κ

∂ ∂ ∂ ∂
= −

∂ ∂∂ ∂ ∂ ∂+
∂ ∂ ∆

 (3.74) 

3.8 Murakami Kamiya damage model 

3.8.1 Objectives 

In the continuum damage model of Murakami and Kamiya (1997) the damage 
evolution induces anisotropic stiffness degradation of initially isotropic material. 
Under uniaxial compression, the damage tensor evolution is mainly determined 
by the directions of principal tensile strain. Thus the approach enables modelling 



 

60 

of the axial splitting failure mode under compression. The model also produces 
the correct tensile failure mode (see Fig. 3.2e). 

Besides the Murakami and Kamiya (1997) model there are several other models 
suitable for unilateral behaviour modelling (Florez-Lopez, 1995; Fremond and 
Nedjar, 1995; Papa, 1996; Vinet and Priou, 1997; Voyiadjis and Zolochevsky, 
1998; Comi and Perego, 2001; Pensee et al., 2002; Gambarotta, 2004). As 
discussed in Section 3.3.3, stress-based failure surfaces are generally not suitable 
for modelling the axial splitting and tensile failure, because it is difficult to 
formulate a dissipation potential function whose derivative gives a correct 
damage evolution both under uniaxial compression and tension. Halm and 
Dragon (Halm and Dragon, 1998; Dragon et al., 2000; Halm et al., 2002) have 
introduced a damage model suitable for modelling the axial splitting and tensile 
failure, but as pointed out by Cormery and Welemane (2002) their method leads 
to non-uniqueness of free energy. 

The Murakami and Kamiya (MK) model has promising features for modelling of 
quasi-brittle material. The model was recently studied by Skrzypek and Kuna-
Ciskal (2003), and Kuna-Ciskal and Skrzypek (2004). They implemented the 
MK model in ABAQUS FE software but only for 2D problems. Challamel et al. 
(2005) introduced a modified MK model by changing the function controlling 
unilateral behaviour and simplifying the Helmholtz free energy equation. 

The MK model was chosen as a basis for the brittle failure model development 
because of both its capability and simplicity. The MK model has the basic 
features needed: a unilateral feature and a splitting feature. The simplicity 
enables FE implementation. The experience of Skrzypek and Kuna-Ciskal 
(2003) with the MK model also encourages its choice. 

As described in Section 1.1, the objective concerning the MK model was: 

A. To enhance applicability of the damage mechanics approach proposed by 
Murakami and Kamiya (1997) for modelling brittle failure in 3D space as 
follows: 

1. Implement a 3D version of the Murakami and Kamiya model (MK model) 
in the ABAQUS/Standard FE software. 
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2. Identify the weaknesses and strengths of the MK model and amend 
potential weaknesses. 

3. Study whether the MK model could be modified for analysis of transversely 
isotropic materials. 

3.8.2 Murakami-Kamiya model 

3.8.2.1 Helmholtz free energy 

In the MK model the Helmholtz free energy per unit mass is expressed in the 
following form: 

2 2
1 2

* *
3 4

2

1
( ) ( )

2

1
2

e d

e e e e e e e
kk kl kl kk ll kk mn nm

e e
kk mn nm kl lm mk

d

D D

D D

h

ρψ ρψ ρψ

ρψ λ ε µ ε ε η ε η ε ε

η ε ε η ε ε

ρψ κ

= +

= + + +

+ +

=

 (3.75) 

where eijε  is the elastic strain tensor, *
ijε  is modified strain describing the crack 

closure effect, λ  and µ  are lame constants, 1 2 3 4, ,  and η η η η  are scalar material 
constants describing the damage surface, h is a material parameter, and κ  is the 
scalar damage variable. 

The modified strain in the principal strain coordinate system *̂
ijε  can be 

represented using the following (Skrzypek and Kuna-Ciskal, 2003): 

*
( ) ( ) ( )ˆ ˆ , no summ.e
i i ikε ε=  (3.76) 

where ( )
ê
iε  is the principal strain and the function ( )ik  describes the crack closure 

effect as follows: 

( ) ( ) ( )ˆ ˆ( ) ( )e e
i i ik H Hε ζ ε= + −  (3.77) 
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where H is the Heaviside step function and ζ is a material constant describing 
the crack closure effect. When ζ = 1 the crack closure effect is neglected. The 
rotation of the strain tensor into principal coordinates can be expressed using the 
rotation tensor ijQ  as follows: 

ˆ

ˆ

e e
ij ki kl lj

e e
ij ik kl jl

Q Q

Q Q

ε ε

ε ε

=

=
 (3.78) 

where the rotation tensor has the following feature: 

ij ik jkQ Qδ =  (3.79) 

The expression of Eq. (3.76) can be written in the following form 

*̂ ê
ij ik kjkε ε=  (3.80) 

where 
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 (3.81) 

Using Eqs. (3.78) and (3.80) the modified strain tensor may be given as follows: 

* *̂

( )

ij ip pr jr

e
ip pm km kl lr jr

e
ijkl kl

Q Q

Q k Q Q Q

B

ε ε

ε

ε

=

=

=

 (3.82) 

where ijklB  is the projection tensor. 
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3.8.2.2 Constitutive equations and damage evolution 

Using the Helmholtz free energy per unit mass ψ  in Eq. (3.75) the relation 
between stress and strain is obtained from (3.18)1: 

[ ]1 3 2

*
* *

3 4

2 2 2

ij e
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e e e e e
kk ij ij kk ll kl lk ij kk ij
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D D D

D D D
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σ ρ

ε

λε δ µε η ε η ε δ η ε

ε
η ε η ε ε

ε

∂
=

∂

= + + + +

∂⎡ ⎤+ + +⎣ ⎦ ∂

 (3.83) 

Substituting Eq. (3.82) into Eq. (3.83) the following formula is obtained: 

e
ij ijkl klKσ ε=  (3.84) 

where ijklK  is the constitutive (secant stiffness) tensor as follows: 
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K D D
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D D
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η δ δ η δ η
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 (3.85) 

Using the matrix notation for stress and strain, Eq. (3.84) can be written in the 
following form: 

{ } [ ]{ }e= Kσ ε  (3.86) 

where [ ]K  is the secant stiffness matrix. 

The associated variable (thermodynamic conjugate force) for damage is obtained 
from Eq. (3.18)2: 

[ ]2 * *
1 2 3 4( )e e e e e

ij kk kl lk ij kk ji jl li
ij

Y
D
ψ

ρ η ε η ε ε δ η ε ε η ε ε
∂

− = = + + +
∂

 (3.87) 
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The force ijY  represents energy release due to the development of damage at 
constant stress: 0ijdσ =  (Lemaitre, 1992, p. 43; Murakami and Kamiya, 1997). 
Respectively, the associated variable for κ is obtained from (3.18)3 

B h
ψ

ρ κ
κ

∂
= =

∂
 (3.88) 

For the damage evolution equations, a proper expression for the dissipation 
potential is needed. Murakami and Kamiya (1997) have expressed the 
dissipation potential (Damage Surface) as a function of thermodynamic 
conjugate forces B and ijY  as follows: 

0( ) 0eqF Y B B= − + =  (3.89) 

where 

1
2

eq
ij ijkl klY Y L Y=  (3.90) 

The fourth order tensor ijklL , called a damage characteristic tensor (Zhu and 
Cescotto, 1995), is used to represent the anisotropic nature of damage growth. In 
general, the tensor ijklL  can depend on the internal state variables and material 
orientation. According to Murakami and Kamiya (1997) the damage 
characteristic tensor for isotropic material is: 

1
( )

2ijkl ik jl il jkL δ δ δ δ= +  (3.91) 

In Eq. (3.89) 0B  is a constant representing the initial threshold of damage 
evolution (in plasticity theory 0B  corresponds to the yield stress). Substituting 
Eq. (3.91) into Eq. (3.90), the following form is obtained: 

1
( )

4
eq

kl kl lk klY Y Y Y Y= +  (3.92) 

Evolution equations for damage tensor ijD  and damage variable κ are based on 
the normality rule. From Eqs. (3.25)1,2, (3.89) and (3.92) after some 
manipulation the following is obtained: 
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where dλ  is a multiplier which can be determined from the consistency 
condition given in Eq. (3.27): 

0ij
ij

F F
Y B

Y B
∂ ∂

+ =
∂ ∂

 (3.94) 

The multiplier dλ  can be solved using Eqs. (3.88), (3.89) and (3.94): 
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 (3.95) 

The ijY  is a function of strain. Thus from Eq. (3.95)1 we have 

1 ijd e
kle

ij kl

YF
F F F Y
B B

λ ε
ε

κ

∂∂
=

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂

 (3.96) 

3.8.2.3 Material Jacobian 

Eq. (3.83) gives the stress tensor as a function of the strain and the damage 
tensor. The tensor ijklB  is a function of strains, therefore the equation is 
nonlinear in the strain and linear in the damage tensor. In numerical solution of 
nonlinear problems, a structural response is solved using incremental iterative 
methods like the Newton-Raphson method. The material Jacobian tensor (tangent 
stiffness at equilibrium) is needed in the global solution of state equations. 

Using the relations given in Eqs. (3.18)1 and (3.18)2 the rate form for the stress 
tensor can be written as 
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Substituting Eq. (3.93) and Eq. (3.95) into Eq. (3.97) and noting that ijY  is 
symmetric, the stress rate can be written as 
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 (3.98) 

Using the matrix notation described in Section 2.2, Eq. (3.98) can be written in 
the following form: 

{ } [ ( , )]{ }t e e= K Dσ ε ε  (3.99) 

where [ ( , )]t eK D ε  is the material Jacobian. The stress tensor derivatives in Eq. 
(3.98) are obtained from Eq. (3.83) as follows: 
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All derivatives are straightforward to calculate in numerical application, apart 
from the derivatives of *

ijε  and ijklB  which are cumbersome also according to 
Skrzypek and Kuna-Ciskal (2003). 

3.8.3 Damage in tension-compression cycles 

Due to the axial splitting feature of the MK model, the stiffness degradation in 
the compression direction is small compared to the perpendicular direction. The 
degree of degradation depends on the constant ζ  in Eq. (3.77). A higher value of 
ζ  results in increasing damage in the compression strain direction. The response 
is illustrated in Fig. 3.22 for uniaxial loading cases. Under compression, major 
damage evolution occurs perpendicular to the direction of compression stress. 
The perpendicular damage evolution introduces the splitting failure mode. If 
compression is continued after rupture, the stress-strain response follows path 
No. 2) in Fig. 3.22. 

The tension-compression cycle is illustrated in Fig. 3.23. The stiffness 
degradation in the tension direction coincides with the loading direction. The 
degree of degradation is limited by the secant matrix positive definiteness 
condition. If the material is “fully damaged” (ruptured) under tension as 
illustrated in Fig. 3.23, it will not suffer further damage in the compression cycle 
(path No. 4 in Fig. 3.23). If tension of the fully damaged material is continued 
after tensile rupture, the stress-strain response follows path No. 3) shown in Fig. 
3.23. The coefficient RK  in Fig. 3.23 illustrates the residual stiffness of 
ruptured material. 

Ruptured material behaves like softened elastic material, having different 
stiffness under compression and tension. Thus if a material is ruptured in a 
cyclic loading case, it is questionable whether the response is in a reliable range. 
Therefore, the MK damage model is not recommended for cyclic (compression-
tension) loading cases where the material is considerably damaged. The 
behaviour in cyclic loading should be studied more carefully and modified 
before it can be reliably used in cyclic loading simulations. 

Axial stiffness is recovered when the loading direction is changed from tension 
to compression. 
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Figure 3.22. Illustration of uniaxial compression-tension cycle under 
displacement-controlled loading. 

1) 
2) 

4) 

ε  

σ

3)

Rupture RKσ ε=  

 
Figure 3.23. Illustration of uniaxial tension-compression cycle under 
displacement-controlled loading. RK  is the residual stiffness. 
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3.9 Conclusions of the literature review – remarks on the 
Murakami-Kamiya model 

Axial splitting under compression and tensile cracking under tension are the 
failure modes studied in this work. One of the mechanisms behind the axial 
splitting failure mode is known as the wing crack mechanism. 

Continuum damage models have been successfully applied in the analysis of 
brittle failure of materials. In these models, damage initiation is based on the use 
of the damage surface (cf. yield surface in the theory of plasticity). In order to 
model axial splitting, the surface is formulated based either on the strains or on 
the thermodynamic conjugate force corresponding to the damage tensor. 

Due to damaging, the stiffness of the material is degraded. In continuum damage 
models the degradation is described by the strain softening approach. The strain 
softening applications are subject to mesh sensitivity and localisation problems. 
Rate-dependent solution methods can be applied to avoid mesh sensitivity 
problems, therefore the Perzyna and the consistency models have been 
introduced in Section 3.7. The consistency model was further formulated and an 
equation for the material Jacobian was introduced. 

The approaches where the physical meaning of the damage tensor is 
indeterminate are called phenomenological approaches in this study (see 
3.6.2.4). In the phenomenological approaches the upper limit of the damage 
tensor ijD  is often undefined. To ensure the positive definiteness of the strain 
energy density, the upper limit of damage must be well defined. 

Many natural materials like ice, many rocks and ceramics are transversely 
isotropic. A strain energy equation for modelling the elastic behaviour of 
transversely isotropic materials was discussed in Section 3.4. 

The unsymmetrical behaviour of cracked materials under tension and 
compression due to the opening and closure of cracks is called unilateral 
behaviour. Many continuum damage models for analysis of brittle damage take 
into account the unilateral behaviour. Either stress or strain-based methods are 
generally used. 
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Various continuum damage models capable of analysing axial splitting have 
been presented in the literature, but few of them have been verified by 
implementing them in FE software. The MK model was chosen as a starting 
point of this work due to its promising features and the encouraging results 
obtained by Skrzypek and Kuna-Ciskal (2003). They have implemented the MK 
model in ABAQUS/Standard FE software as a plane stress version. 

Remarks on the Murakami-Kamiya model 

The constitutive equations of the MK model are based on the theory of 
continuum thermodynamics. The damage evolution equations are derived 
similarly to the theory of plasticity. Because of the thermodynamic approach, the 
equations are well formed and theoretically consistent. As discussed in Section 
1.1, one of the objectives was to implement a 3D version of the MK model in 
ABAQUS/Standard FE software. The following conclusions can be made 
concerning the applicability of the MK model: 

1. The model is formulated in such way that it can be implemented in FE 
software. 

2. The method for carrying out the derivative of the modified strain *
ijε  must 

be introduced before successful 3D FE implementation. 

3. A more general damage surface should be introduced to extend the model 
applicability to various materials. 

4. A method to ensure positive definiteness of the secant stiffness during 
damage evolution must be introduced. 

5. The derivative of the modified strain *
ijε  is needed in the incremental 

formulation of FE applications. Skrzypek and Kuna-Ciskal (2003) 
proposed a simplified method which can be used in plane stress problems 
(2D). A new formulation is required for 3D applications. 

6. The dissipation potential (damage/failure surface) given by Murakami and 
Kamiya (1997) is given as a function of the thermodynamic conjugate force 
ijY . The material constants were determined for concrete material in such 

way that the response in a uniaxial compression test can be simulated. The 
initial damage surface in the strain space is shown in Fig. 3.24. The original 
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damage surface of the MK model must be modified before the model can be 
used for various materials. 

7. As described in Section 1.1, one of the objectives was to study whether 
the MK model could be modified for the analysis of transversely isotropic 
materials. Due to the shortcomings described above, it was decided that 
the MK model would not be modified for this purpose. 

 

11 22ε ε=

33ε

 
Figure 3.24. Damage surface of Murakami and Kamiya (1997) in principal 
strain space, when 11 22ε ε= . The numbers in parentheses refer to the 
corresponding stress state in MPa. 

The MK model takes into account damage-induced anisotropy using the second 
order damage tensor ijD . In the MK model the damage tensor is considered an 
internal state variable. As described in Section 3.6.2.4, the upper limit of the 
principal values of the damage tensor is not explicitly defined in these 
phenomenological approaches. If the upper limit is exceeded, the positive 
definiteness of the secant stiffness matrix is lost. Therefore, a method to 
determine the upper limit is needed. 

In the MK model the crack opening closure criterion is based on the modified 
strain *

ijε  although the criterion is not universally valid as described in Section 
4.2. The opening criterion can be reliably applied only in uniaxial loading. 
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4. Formulation of the wing crack  
damage model 

This work tested the hypothesis that the brittle failure phenomenon can be 
represented by a model, namely the wing crack damage model (WCD model), 
which has the following main features: 

• Damage evolution simulates axial splitting under uniaxial compression 
as well as tensile cracking under tension 

• The effect of orientation and size distribution of pre-existing cracks can 
be taken into account 

• Initially transversely isotropic materials can be modelled as well, and 

the model can be implemented in ABAQUS/Standard FE software. 

4.1 Introduction to wing crack model formulation 

Formulation of the wing crack damage model consists of the following Sections: 

• Discussion of strain- and stress-based activation criteria, arriving at a 
conclusion on applying the stress-based criterion throughout the model 
formulation. 

• Enhancement of phenomenological damage models such as the MK 
model. 

• Detailed presentation of the principles of the new WCD model proposed 
in this work. 

• Detailed presentation of the thermodynamic formulation of the proposed 
damage model. 

• Directions for determination of material parameters. 

• Condensed presentation of the main features of the proposed method 
and its applications. 
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4.2 Criticism of strain-based damage activation criteria 

Due to the directionality of defects, damage is anisotropic in nature. In many 
brittle failure models, the stiffness normal to the crack surface direction is 
assumed to recover when the crack is fully closed (unilateral effect), while the 
stiffness is assumed to be considerably less than the undamaged material when 
the crack is open. 

Damage is “activated” when the crack is open and “deactivated” (or passive) 
when the crack is closed. In this study, the expression “active/passive crack” is 
used as a synonym for “active/passive damage”. 

The crack opening-closure criterion is called the unilateral condition. The 
condition defines whether the damage is active or passive. The closure criteria 
are based on either the stress or strain state. Different versions of strain-based 
criteria are used in damage mechanics, although the criteria considered here do 
not hold true in all loading conditions. 

Chaboche (1993) has proposed both strain-based and stress-based methods for 
activation/deactivation criteria. According to the criterion, “the damage can be 
considered as fully active if the normal strain N

k kl ln nε ε=  associated to that 
direction1 is positive” (ibid). The strain Nε  is the strain in the direction of the 
normal vector in . Thus the strain-based damage deactivation criterion of 
Chaboche is written as 

N

N
k kl l

< 0

= n n

ε

ε ε
 (4.1) 

where kn  is the unit normal parallel to the principal direction of the damage 
tensor ijD . When Eq. (4.1) holds, damage is inactivated and stiffness is 
recovered in the direction of vector in . The criterion of Eq. (4.1) holds true 
under the uniaxial compression and tension shown in Figs. 4.1a and 4.1b, where 
the crack plane is perpendicular to the loading. 

                                                      

1 Chaboche refers to the principal direction of the damage tensor. 
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The stress-based crack closure criterion can be written using normal traction Nσ . 
The closure criterion reads: 

0N
k kl l= n nσ σ <  (4.2) 

For isotropic material the traction in Eq. (4.2) can be written as a function of 
strains: 

( 2 )

2

N
k mm kl kl l

N
mm

= n nσ λε δ µε

λε µε

+

= +
 (4.3) 

The contradiction in the strain-based criterion is that the normal strain Nε  given 
in Eq. (4.1) does not include information about the stress state, unless the stress 
state is uniaxial. Positive normal strain Nε  may occur due to either the tensile 
stress or the Poisson effect. Therefore, normal strain may be positive although 
the normal stress is negative. 

To illustrate the contradiction, let us consider the case shown in Fig. 4.1c. After 
closure of the crack (II in Fig. 4.1b), the confined compression stress 11σ  is 
increased while 22σ  is constant. Damage in the state II shown in Fig. 4.1b is 
inactivated (both Nε  and Nσ  are negative) i.e. stiffness parallel to 2i  is 
recovered. The vector (0,1, 0)=n  represents the unit normal vector of the crack 
plane. Assuming that the material is homogeneous and isotropic, the Lamé 
constants λ  and µ  determine the material behaviour. It can be shown that the 
strain 22ε  is 

22 11
22

2( )

2(3 2 )

λ µ σ σ λ
ε

λ µ µ

+ −
=

+
 (4.4) 

where tensile stresses are positive. The strain 22ε  is positive if 

11 22

2( )λ µ
σ σ

λ

+
<  (4.5) 

When the confined compressive stress 11σ  is increased, the normal strain Nε  
becomes positive (III in Fig. 4.1c). According to Eq. (4.1) the damage should be 
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activated when 0Nε >  i.e. the stiffness parallel to 2i  should be degraded. 
However, the compressive stress 22σ  shown in Fig. 4.1c is closing the crack. 
Therefore the stiffness should remain unchanged and the damage deactivated. If 
the damage were activated, the stiffness into the direction of 22σ  would be 
degraded. Therefore the activation of damage due to positive strain Nε  under 
increasing confining stress would lead to an erroneous result. 

In the example shown in Fig. 4.1c, the stress-based criterion of Eq. (4.2) gives 

22 0N
k kl l= n nσ σ σ= <  (4.6) 

Therefore the damage remains deactivated. 

 

1i  
2i  

Active 
damage 

n  n

Passive 
damage 

0

0

N

N

ε

σ

<

<
 0

0

N

N

ε

σ

>

>
 

n

Passive 
damage 

11 22( / )

0

N

N

fε σ σ

σ

=

<
 

(a)  (b)  (c) 

22( )Nε ε=  

22( )Nσ σ=  

22( )Nε ε=  

22( )Nσ σ=  

22( )Nε ε=  

22( )Nσ σ=  

II 

III 

Increasing  
confinement 

Constant 
compression

 
Figure 4.1. Sequential loading of a damaged sample. 

The strain-based damage activation criterion given in Eq. (4.1) should be used 
only in uniaxial load cases, because it may lead to an erroneous result even in 
the simple biaxial load case illustrated in Fig. 4.1c. The stress-based criterion 
given in Eq. (4.2) should be used instead. 
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Another criterion for damage activation is based on the sign of principal strain 
(Murakami and Kamiya, 1997; Challamel et al., 2005). In the MK model 
described in Section 3.8, the “modified elastic strain tensor” was introduced to 
“represent the unilateral response of a damaged material” (Murakami and 
Kamiya, 1997). The idea in the method is that the damage is activated in the 
direction where the principal strain is positive. Nor does this criterion hold true 
in the confined compression test illustrated in Fig. 4.1c. 

4.3 Enhancements for phenomenological 
damage models 

Due to its undesirable features, the MK model was not developed further (see 
Section 3.9). The modifications proposed in Sections 4.3.2 and 4.3.3 are 
applicable both to the MK model and to most of the “phenomenological damage 
models” described in Section 3.6.2.4. 

4.3.1 Introduction and objectives 

Murakami and Kamiya (1997) introduced a continuum damage model based on 
the modified strain tensor *

ijε . The modified strain is the feature that makes the 
MK model attractive compared to other continuum damage models. The 
principal directions of the modified strain tensor determine the damage evolution 
“direction” and enable the axial splitting failure mode under uniaxial 
compression, as well as the tensile failure mode under uniaxial tension. In 
addition to the features described above, the crack opening/closure criterion is 
based on the modified strain tensor. 

Despite these desirable features, the modified strain tensor *
ijε  creates difficulties 

in the numerical implementation of the model. Firstly, the derivative of the 
modified strain tensor cannot be expressed explicitly; secondly, the opening/ 
closure criterion can be applied reliably only in the analysis of uniaxial loading. 

The MK model is based on the use of a combination of invariants of the damage 
tensor ijD  and the elastic strain tensor eijε , as well as the modified strain tensor 

*
ijε  (see Section 3.8.2.1). As described in Section 3.6.2.4, the rupture criterion 
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(upper limit of damage) in “phenomenological damage models” is undetermined 
and often neglected. The criterion is needed to ensure positive definiteness of the 
secant stiffness matrix. 

The following subjects were studied: 

• To ensure positive definiteness of the secant stiffness, a criterion for the 
upper limit of the damage tensor was introduced. 

• Non-associated formulation with a strain-based failure surface was 
introduced to extend the applicability to various materials. 

• A numerical derivative of the modified strain tensor *
ijε  was introduced. 

4.3.2 Rupture criterion 

When damage is considered as isotropic, the effective stress eff
ijσ  is defined as 

described in Section 3.6.2.2: 

1
ijeff

ij D
σ

σ =
−

 (4.7) 

where D must be in the range 

0 1D≤ <  (4.8) 

When damage tensor ijD  is used instead of a scalar damage variable, it is not 
obvious what the admissible state is for ijD . Murakami and Kamiya (1997) 
imply that the “magnitude” of the damage variable might be limited to unity: “... 
[the] final fracture usually occurs before the magnitude of the damage variable 
D  attains to the unity”. They do not determine how the magnitude is obtained 

for the second order tensor. In their numerical analyses, they have observed that 
a practical value for the rupture criterion of a damaged material could be the 
following: 

0.4, (no summ.)kkD ≈  (4.9) 
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The numerical value of the rupture criterion defined in Eq. (4.9) depends on the 
material parameters 1 2 3 4, ,  and η η η η . Kuna-Ciskal and Skrzypek (2004) have 
formulated a general criterion for rupture: ”Loss of the positive definiteness of 
the tangent stiffness matrix is used as a failure criterion”. 

In the numerical application, Kuna-Ciskal and Skrzypek (2004) have degraded 
the stiffness of the failed element to zero when the failure criterion is fulfilled. 
They have also released the failed element from stress. Unfortunately there are 
drawbacks in the criterion itself and in the actions carried out for the failed 
element: 

1. The actions (stiffness degradation to zero and release of integration point 
stress) might yield to ill-conditioning in the numerical model and to 
severe convergence problems. 

2. By degrading the stiffness to zero the original idea of anisotropic 
unilateral damage in the MK model is lost. 

The elastic strain energy density function W  must be positive definite (Malvern, 
1969, p. 292). The requirement is fulfilled when the secant stiffness matrix [ ]K  
is positive definite, i.e. all eigenvalues are positive. Therefore it is evident that 
the loss of the positive definiteness of the secant stiffness matrix can be used as a 
rupture criterion as proposed by Van (Van, 2001; Van and Vasarhelyi, 2001) in a 
more general context. The restrictions for material constants can be derived from 
the positive definiteness requirement as follows: 

det[ ] 0>K  (4.10) 

A procedure to determine the allowable damage increment { }∆D  is given here. 
In FE application damage at time t t+ ∆  is obtained as follows: 

{ } { } { }t t t+∆ = + ∆D D D  (4.11) 

where { }tD  is the damage vector before update and { }∆D  is the damage 
increment obtained from the evolution equation (3.25)1. 
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The admissible damage increment could be solved easily if the secant stiffness 
tensor were independent of strain, but it is not. An approximate solution to the 
problem can be found if the tensor ijklB  in Eq. (3.85) is replaced by ik jlδ δ , which 
means that the unilateral feature of the model is neglected. When ijklB  is 
replaced by ik jlδ δ  the secant stiffness matrix [ ( )]K D  of Eq. (3.86) becomes a 
linear function of the damage tensor as follows: 

[ ( )] [ ( )]β β=K D K D  (4.12) 

where β  is a scalar variable. In view of Eqs. (4.11) and (4.12), the secant 
stiffness at time t t+ ∆  can be written as 

[ ( )] [ ( )] [ ( )]t t t β+∆ = + ∆ ∆K D K D K D  (4.13) 

where [ ( )]tK D  is the secant stiffness matrix before damage vector update and 
[ ( )]∆ ∆K D  is the damage-induced part of the secant stiffness matrix which is a 
function of the damage increment { }∆D  and β  is a scalar multiplier.  

Using Eqs. (4.10) and (4.13) the following rupture criterion is obtained: 

( )det [ ( )] [ ( )] 0t β+ ∆ ∆ =K D K D  (4.14) 

Eq. (4.14) is similar to the solution of the generalised eigenproblem: 

[ ( )]{ } [ ( )]{ } , no summ.t
k k kβ= − ∆ ∆K D K Dϕ ϕ  (4.15) 

where kβ−  is the eigenvalue corresponding to the k:th eigenvector { }kϕ . If 1β  
( 1k kβ β +< ) is less than 1.0, the damage increment ∆D  is inadmissible. The 
admissible increment is then 

1{ } { }β∆ = ∆D D  (4.16) 

In the specific case when only 11 0D ≠  and when the material parameters are 
the same as given by Murakami and Kamiya (1997), the critical value of 0.436 is 
obtained for 11D  from Eq. (4.14). The obtained value is close to that of 0.4 
proposed by Murakami and Kamiya. 
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A material is considered fully damaged when 1 0β ≈ , which means that damage 
evolution is not admissible: { } { }∆ =D 0 . When the material is fully damaged 
the damage tensor remains constant and the last term in the material Jacobian in 
Eq. (3.97) becomes 

0ij
kl

kl
dD

D
σ∂

=
∂

 (4.17) 

Thus the material Jacobian equals the constitutive matrix of Eq. (3.85) when the 
material is fully damaged. 

4.3.3 Damage surface 

In damage mechanics models the damage surface is usually given as a function 
of thermodynamic conjugate forces, i.e. as a function of ijσ  or ijY . In the MK 
model the surface is based on the conjugate force ijY . Damage surfaces based on 
the force ijY  are widely used and very often the surface is formulated in the 
following way (Zhu and Cescotto, 1995; Murakami and Kamiya, 1997; Halm 
and Dragon, 1998; Luo et al., 2003; Alliche, 2004; Challamel et al., 2005): 

( ) 0ij ijkl klF Y L Y B κ= − =  (4.18) 

where the coefficient tensor ijklL  is often taken as a symmetric unit tensor and 
( )B κ  defines the size of the damage surface. 

The use of the conjugate force ijY  is complex in the formation of a more general 
damage surface. Thus a non-associative formulation was proposed in this work. 
The damage surface is given as a function of the elastic strain eijε  and damage 
rate ijD : 

0( ) ( ) ( ) 0e ekv
ij

ekv
kl kl

F F f D B

D D D

ε κ= − − =

=
 (4.19) 

The rate dependency was not implemented into the MK model. Damage tensor 
evolution is obtained using a potential function G  that is similar to the MK model: 
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( ) 0

ij
ij

ij ijkl kl

G
D

Y

G Y L Y B

λ

κ

∂
=

∂

= − =

 (4.20) 

The strain-based damage surface is commonly applied in damage mechanics (e.g. 
Fonseka and Krajcinovic, 1981; Simo and Ju, 1987). The proposed approach is 
non-associated because the damage surface F and the potential function G do not 
coincide. Therefore special attention must be paid to the dissipation inequality 
condition, which is not necessarily fulfilled as described in Section 3.6.1. 

4.3.4 Derivative of modified elastic strain of the MK model 

As described earlier, Skrzypek and Kuna-Ciskal (2003) and Kuna-Ciskal and 
Skrzypek (2004) have implemented a plane-stress version of the MK model in 
ABAQUS FE software. In their numerical examples they successfully analysed 
macrocrack propagation under tensile and compressive stress in the plane stress 
condition. To overcome the cumbersome derivatives in Eqs. (3.100) and (3.101), 
they introduced simplified equations for describing the modified elastic strain 
dependence of the elastic strain: * ( )eij ijfε ε= . The simplified equations are 
applicable only in the state of plane stress. 

The modified strain *
ijε  is obtained as follows (see Eq. (3.77)): 

1. Define the principal strains ( )
ê
kε  

2. Multiply those principal strains that have a negative sign by factor ζ  to 
obtain modified strains *

( )ˆ kε  in the principal coordinate system defined 
by elastic strain tensor 

3. Rotate the modified principal strains back to the spatial coordinate 
system to obtain the modified strain *

ijε . 

In the incremental formulation the following derivatives related to the modified 
strain are needed (see Eq. (3.101)): 

*
jm
e
op

ε
ε

∂
∂

 and 
ijkl
e
op

B

ε

∂

∂
 (4.21) 
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The derivatives cannot be explicitly formulated; therefore the derivatives are 
obtained numerically starting from the definition of the derivative: 

0

( ) ( )
lim
x

f x x f xf
x x∆ →

+ ∆ −∂
=

∂ ∆
 (4.22) 

Using the definition we can write the approximation for the derivatives at the 
beginning of the current time increment (t t+ ∆ ): 

* * , * ,

, ,

( ) ( )

( ) ( )

e t e e t
jm jm op jm op
e e
op

e t e e t
ijkl ijkl op ijkl op
e e
op

B B B

ε ε ε ε ε ε
ε ε

ε ε ε
ε ε

∂ + ∆ −
≈

∂ ∆

∂ + ∆ −
≈

∂ ∆

 (4.23) 

where ,e t
opε  is the elastic strain at the beginning of the increment and eε∆  is the 

strain increment. Eq. (4.23) gives a numerical approximation of the derivative at 
the beginning of the increment, although the derivative at the end of the 
increment was needed. 

The proposed method was implemented in ABAQUS/Standard software as a 
user material subroutine. The strain increment size eε∆  needed in the derivative 
evaluation is based on experience with numerical application of the MK method: 

max( )/10e e
klε ε∆ = ∆  (4.24) 

4.4 Wing crack damage model for transversely  
isotropic solids 

In this study a new continuum damage model for analysis of brittle transversely 
isotropic solids was proposed. Damaging was assumed to induce anisotropy. 
Although the approach is phenomenological, the model was motivated by the 
growth mechanism of wing cracks. Special attention was paid to the axial 
splitting failure mode under uniaxial compression and transverse tensile cracking 
under uniaxial tension. 
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4.4.1 Objectives and scope 

Several damage models for brittle failure and anisotropic damaging have been 
proposed (e.g. Betten, 1986; Murakami, 1990; Chaboche, 1993; Murakami and 
Kamiya, 1997; Halm et al., 2002), but few of them have been implemented in 
FE software. Often the numerical examples given are simple and based on the 
numerical application of the constitutive equation in a uniaxial case. However, 
applicability of methods is best revealed using examples where the sample is 
under multiaxial stress and is modelled with several elements. 

In anisotropic continuum damage models, often the second or fourth order tensor 
represents the damage, and the damage evolution is determined by the derivative 
of the damage potential surface. It is not known how to formulate the evolution 
equation for second and fourth order tensors such that the evolution of brittle 
failure modes is captured. 

In brittle damage models, the direction of damage evolution is often based on the 
sign of principal stresses or strains (Simo and Ju, 1987; Chaboche, 1993; 
Murakami and Kamiya, 1997; Halm and Dragon, 1998). The principal values 
and directions may also be needed in the formulation of the Helmholtz free 
energy equation (Murakami and Kamiya, 1997; Halm and Dragon, 1998). An 
approach based on directions of principal tensile strain may introduce a 
projection tensor into the constitutive equations (see ijklB  in Section 3.8.2.1). 
The use of the projection tensor may lead to cumbersome derivatives in 
incremental formulation of the stress-strain relation as stated in Section 3.9 and 
by Skrzypek and Kuna-Ciskal (2003). 

In the model of Murakami and Kamiya (1997), principal directions and values of 
the strain tensor are used in the derivation of the “modified strain tensor” *

ijε . 
The tensor was introduced to take into account the unilateral condition of 
damage due to the opening and closure of microcracks. As shown in Section 4.2, 
the method based on the modified strain tensor approach cannot give correct 
information about the opening and closure of a crack in biaxial loading 
conditions. Therefore a new approach was introduced. 

Due to the requirement for positive definite strain energy density discussed in 
Section 4.3.2, the constitutive stiffness matrix must be a positive definite in all 
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strain and damage states. Therefore a condition for the upper limit of the damage 
tensor should be well defined to ensure the positive definiteness. In the 
phenomenological approaches described in Section 3.6.2.4, the condition for 
positive definiteness is difficult to formulate explicitly and usually the condition 
is disregarded in these models. 

It is well known that the mechanical strength and response of the solid are 
dependent on the orientation, distribution, size and type of the defects in its 
structure (Ashby and Hallam, 1986; Krajcinovic, 1989). 

At this point, besides the items described above this work focused on the derivation 
of a new damage model having the following features (as described in Section 1.1): 

1. Damage evolution simulates wing crack growth. 

2. Damaging introduces anisotropy. 

3. Distribution, size and orientation of pre-existing defects can be modelled. 

4. The model can be applied in uniaxial splitting and tensile failure mode 
analysis (see Fig 3.2 c, e). 

5. Initially transversely isotropic materials can be analysed. 

6. The upper limit of the damage variable is well defined. 

7. Damage activation/deactivation corresponding to open and closed 
microcracks is taken into account. 

8. Constitutive equations are derived independently of the direction of 
principal strain. 

The approach described in the following Sections (4.4.2–4.4.6) was based on the 
assumption of pre-existing cracks. As stated in Section 1.2, the flaw distribution 
studies were outside the scope of this study. 

4.4.2 Presumptions 

In the model formulation, special attention was paid to the axial splitting failure 
mode. The proposed “wing crack model” is based on the following presumptions: 
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1. Axial splitting occurs when a series of wing cracks link together to form 
an axial splitting crack (see Fig. 4.2). 

2. A wing crack and a series of wing cracks can be approximated by a 
single plane crack. 

3. Damage vector kD  represents the orientation and relative size of the 
plane crack (see Fig. 4.3). 

4. Material rupture is taking place when the damage vector length equals 1 
( 1k kD D = ). 

Wing Crack profile Splitting Crack 

 
Figure 4.2. Schematic drawing of the proposed failure model (dashed line). 

A number of damage vector-based models have been proposed (Davison and 
Stevens, 1973; Krajcinovic and Fonseka, 1981; Mikkola and Piila, 1984; Van, 
2001), although the use of a second order damage tensor is more general. The 
damage vector kD  can be interpreted to represent an averaged normal direction 
of a series of microcracks (Van, 2001). 

As shown by Leckie and Onat (1981), a damage vector is not appropriate for the 
representation of the distribution of voids (or cracks), while the use of a second 
order damage tensor enables representation of the crack distribution in the three 
orthogonal directions. In this study it is assumed that the element considered is 
small enough to contain very few plane cracks, and that the average orientation 
of the plane cracks is well defined by the damage vector. 
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n

 
Figure 4.3. Global and local coordinate systems. The Local coordinate system is 
defined by the vectors D  and M. Vector M  defines the material symmetry axis 
for a transversely isotropic material, while D  is the damage vector. 

In the proposed model, the damage vector iD  represents both damage 
orientation and the relative size of the damage. The vector orientation is normal 
to the crack plane as shown in Fig. 4.3. The damaged area DA  and the damage 
vector are defined as follows: 

D i i

D
i i

A n AD

A
D n

A

=

=
 (4.25) 

where A  is the undamaged area and in  is the unit normal vector of the crack plane. 

A single vector represents satisfactorily one plane crack or a series of parallel 
plane cracks. A kinked crack can be replaced by a representative straight crack 
as done by e.g. Basista and Gross (1989). When the straight crack is used to 
represent a wing crack, the result can only be a rough estimate of the real wing 
crack. In the proposed model it is assumed that the crack is formed of parallel 
plane surfaces and that the ratio of crack surface area projections shown in Fig. 
4.4 is small: 

2

1
1

p

p
A
A

 (4.26) 
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Figure 4.4. Actual wing crack and representative crack. 

4.4.3 Basic concepts in the WCD approach 

The basic idea in the WCD approach is to describe the behaviour of a cracked 
material with constitutive relation. The equations describing the relation are 
based on the known anisotropic material models. 

To illustrate the WCD concept, the behaviour of initially isotropic, cracked 
material was considered in the damage coordinate system shown in Fig. 4.3. 
Consider a case when specimen rupture has taken place i.e. 1k kD D =  as 
described earlier. The crack is idealised as a plane surface. The vector n  in Fig. 
4.5b is the unit normal of the crack surface. 

F  

a) Tensile crack b) Idealised crack

n  

c) Sliding e) Model 

Q  Q  

Q  
F  

1x′  

2x′  
 

Q  

122 eε ′  

d) Idealised sliding

Q  

Q  

 
Figure 4.5. Behaviour of idealised crack model. 
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Shear behaviour 

Assume there is no friction. The crack surfaces are then free of shear stresses 
( 12 13 0σ σ′ ′= = ) during sliding of the surfaces as illustrated in Figs 4.5d and 
4.6. In this study the stiffness corresponding to the nonzero stresses 
( 22 23 33, ,σ σ σ′ ′ ′ ) was assumed to remain unchanged. 

Crack surface 

n  11σ′  12 4( ) 0σ σ′ ′= =  

13 5( ) 0σ σ′ ′= =

32σ′  
31σ′  

33σ′  
23σ′  

21σ′  

22σ′  

3x ′  

1x ′  

2x ′  
3x ′  

1x ′  

2x ′  
 

Figure 4.6. Sliding of the crack surfaces and stresses on the crack surface 
expressed in the damage coordinate system (see Fig. 4.3). 

In the model, shear strains 12
eε′  and 13

eε′  represent sliding (see Fig 4.5e). When 
sliding is frictionless the shear strains ( 12 13,e eε ε′ ′ ) must not induce stresses. 
Therefore the constitutive relation of ruptured material must be such that the 
nonzero stresses are independent of the shear strains ( 12 13,e eε ε′ ′ ). In isotropic 
material model the condition is fulfilled when the shear modulus Rµ  
corresponding to the shear stresses 12σ ′  and 13σ ′  equals zero ( 0Rµ = ). 

Active crack 

The crack surface of an open crack was assumed to be free of normal stress; 
11 0σ ′ = , therefore the nonzero stresses are: 22 23,σ σ′ ′  and 33σ ′ . The stress state 

corresponds to the plane state of stress. In the model the stiffness corresponding 
to the stress 11σ ′  was assumed to be zero. The strain 11

eε′  represents opening of 
the crack. Therefore the following conditions must be fulfilled: 

1. Normal and shear stresses ( 11 12 13, ,σ σ σ′ ′ ′ ) vanish on the crack surface. 
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2. Normal and shear strains ( 11 12 13, ,e e eε ε ε′ ′ ′ ) do not affect the stress state. 

3. The stresses in plane 2 3x x′ ′−  ( 22 23 33, ,σ σ σ′ ′ ′ , see Fig. 4.6) are determined 
as in the plane stress state. 

4. The stiffness in the direction of the nonzero stresses ( 22 23 33, ,σ σ σ′ ′ ′ ) 
remains unchanged. 

Passive crack 

When a crack is closed due to compressive stress the stiffness corresponding to 
the stress 11σ′  was assumed to be the same as for virgin material. The following 
conditions must be fulfilled for a passive crack: 

1. Shear stresses ( 12 13,σ σ′ ′ ) vanish on the crack surface. 
2. Shear strains ( 12 13,e eε ε′ ′ ) do not affect the stress state. 
3. The stiffness in the direction of the nonzero stresses ( 11 22 23 33, , ,σ σ σ σ′ ′ ′ ′ ) 

remains unchanged. 

As stated above, normal and shear stresses vanish on the crack surface when the 
crack is open. The condition of vanishing shear and axial stress has also been 
applied e.g. by Valanis (1990). The condition can be expressed using the shear 
traction σ  and the normal tractions Nσ  (shown in Fig 4.7) related to the 
damage orientation. The tractions are obtained as follows (Kachanov, 1982): 

0

0

N
k kl l

N
kl l kk

= n n =

= n - n =

σ σ

σ σ σ
 (4.27) 

where kn  is the unit vector component in the direction of the damage vector 
defined as follows: 

k
k

m m

D
n =

D D
 (4.28) 
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D  Nσ
 

σ
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n

 
Figure 4.7. Crack orientation given by the damage vector (a). Normal and shear 
tractions (b). 

The WCD model 

The features described above were attained by applying the constitutive relation 
of transversely isotropic material described in Section 3.4. Vector n  represents 
material symmetry axis. Based on Eq. (3.12) the following expression for the 
strain energy density was introduced: 

[

2

1
2

( )

e e e e e e e e
D kk ll kl kl m m D kk ll D k i ij jk

e e e
D k l kl ii D k l kl

i
i

k k

W D D n n

n n n n

D
n

D D

λε ε µε ε λ ε ε µ ε ε

α ε ε β ε

= + + +

⎤+ + ⎥⎦

=

 (4.29) 

where the four unknown parameters ( , , ,D D D Dλ µ α β ) can be solved for active 
and passive crack using the conditions described in this section. Lamé constants 
( ,λ µ ) describe the behaviour of isotropic material. 

The stress tensor is obtained from the following equation: 

D
ij e

ij

W
σ

ε
∂′ =

′∂
 (4.30) 

where e
ijε′  is the strain tensor in the damage coordinate system. 
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The parameters for an active crack, when rupture has taken place ( 1k kD D = ), 
can be solved from Eqs. (4.29) and (4.30). When the conditions described earlier 
in this section are fulfilled, the following parameters are obtained: 

2

2 ( )2
2 2

2
2

D D

D D

µ λ µλµ
α β

λ µ λ µ

λ
λ µ µ

λ µ

+
= − =

+ +

= − = −
+

 (4.31) 

For a passive crack ( 11 0σ ′ ≠ ) the parameters are respectively: 

0 2

0 2

D D

D D

α β µ

λ µ µ

= =

= = −
 (4.32) 

Stiffness matrices for both active and passive cracks are shown in Figs. 4.8a and 
4.8b. 
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Figure 4.8. Stiffness matrix of ruptured material in the damage coordinate 
system ( 1n i ). Parameter ξ  describes the effect of transversal damage. 
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Transversal damaging 

The idea in the proposed approach is that damaging degrades the shear stiffness 
in the crack plane and the “normal stiffness” when the crack is active. It means 
that the stiffness of the split specimen in the direction of the axial load shown in 
Fig. 4.9 is the same as the stiffness of the undamaged specimen. If in addition to 
splitting other failure mechanisms are present, the stiffness in the loading 
direction (i.e. transversal to the vector n ) is degraded as well. The “transversal 
damage factor” ξ, ( 0 1ξ< ≤ ) illustrated in Figs. 4.8c and 4.9c was introduced 
to take into account the stiffness degradation in the transversal direction. 

The transversal damage factor ξ  has a similar effect on stiffness as the material 
parameter ζ  in Eq. (3.77) of the MK model. 

a) Undamaged  

F k u=    

F  

u  

F k u=  

F  

u  

b) Splitted 

n   

c) Transversal damage 

F  

u  

n    

, 0 1F k uξ ξ= < ≤   

 
Figure 4.9. Axial stiffness of undamaged (a) and split (b) specimen is the same. 
Illustration of the transversal damage factor (c). 

4.4.4 Anisotropic stiffness degradation of transversely  
isotropic materials 

The conditions describing active and passive crack behaviour introduced in 
Section 4.4.3 are valid for transversely isotropic material as well. An additional 
feature was introduced to improve the numerical behaviour of the proposed 
model: 
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1. Instead of vanishing shear stresses on the crack surface, a residual shear 
stiffness was introduced to avoid numerical problems. 

• the residual shear stiffness for an active crack is ,RTµ . 
• the residual shear stiffness for a passive crack is ,RCµ . 

4.4.4.1 Damage-induced anisotropy 

The proposed method is based on the equations derived for materials having two 
‘preferred’ directions. The damage vector D  is considered as a new preferred 
direction besides the preferred direction M  of the transversely isotropic material 
as illustrated in Fig. 4.10. Therefore the resulting material is anisotropic. The 
concept of the proposed method was described in Section 4.4.3. 

1x

3x  

1i

3i  

2x  

2i  

M

n
D

 
Figure 4.10. Material with two preferred directions. M  defines the direction of 
the undamaged transversely isotropic material. The unit vector n  defines the 
second preferred direction (n D ). 

The elastic strain energy DW  density for a material with two preferred directions 
is based on the equation given by Rogers (1990). He gives the stress-strain 
relation in the following form: 
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 (4.33) 

where the 13 material parameters are: λ , µ , 1µ , 2µ , 3µ , 1α , 2α , 3α , 1β , 2β , 3β , 
4β  and 5β . The tensors related to the material direction are defined by the 

components of the vectors kM  and kD : 
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 (4.34) 

Based on Eqs. (3.12) and (4.33) the following form of elastic strain energy 
density DW  was introduced: 
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 (4.35) 

where the material parameters Tµ , Lµ , λ, α  and β  determine the elastic 
behaviour of a transversely isotropic material as described in Section 3.4. The 
remaining 13 parameters ( Dλ , TDµ , LDµ , Dβ , Dα , 2α , 3α , 2µ , 3µ , 2β , 3β , 4β , 5β ) 
depend on the damage vector orientation and the sign of the normal traction Nσ . 
The parameters are determined such that the features described in Sections 4.4.3 
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and 4.4.4 are attained. The parameters have to be derived both for active 
( 0Nσ ≥ ) and passive ( 0Nσ < ) cracks. 

As discussed earlier and shown in Eqs. (4.35) and (4.34), the damage vector 
orientation determines the second preferred direction of the material, while the 
damage vector length k kD D  determines the “intensity” of the anisotropy. The 
elastic strain energy density of Eq. (4.35) reduces to the energy equation of the 
transversely isotropic material (Eq. (3.12)) when 0k kD D = . The anisotropy 
of the material increases with increasing length of the damage vector. 

When solving the 13 material parameters in Eq. (4.35), the strain energy is 
expressed in a local rectangular coordinate system, the orientation of which is 
defined by the damage vector kD  and the material symmetry vector kM  (see 
Fig. 4.3). In the local coordinate system the 1x ′ -axis is parallel to the damage 
vector. The 2x ′ -axis direction is chosen such that the material symmetry vector 
kM  is located in the plane 1 2x x′ ′− . 

The strain energy of the fully damaged material in the local coordinate system is 
obtained by inserting i iM M ′=  and i in n ′=  into Eq. (4.35), where: 

1 2 3

21 32

1 0 0

01 ( )

1

N N

N k k

k k

n n n

M M MM M
M M n

D D

′ = ′ = ′ =

′ = ′ =′ = −
=

=

 (4.36) 

The use of Eq. (4.36) simplifies the strain energy equation. 

The solution of the unknown material parameters is based on the use of a 
(undamaged) constitutive matrix and fully damaged material stiffness matrices. 
The constitutive tensor for undamaged transversely isotropic material ijklC ′  in 
the local coordinate system is obtained from Eq. (4.35) as follows: 

2

, where 0D
ijkl ke e

ij kl

W
C D k

ε ε
∂′ = = ∀
′ ′∂ ∂

 (4.37) 
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where e
ijε′  is the elastic strain tensor in the local coordinate system. The 

corresponding matrix form is: 

2

[ ] , where { } { }
{ }{ }

D
e e
W∂′ = =

′ ′∂ ∂
C D 0

ε ε
 (4.38) 

where }e′{ε  is the elastic strain vector in the local coordinate system. The secant 
stiffness tensor and matrix for fully damaged material obtained from Eq. (4.35) 
and (4.36) are 

2

,   where 1D
ijkl k ke e

ij kl

W
K D D

ε ε
∂′ = =
′ ′∂ ∂

 (4.39) 

2

[ ] ,   where 1
{ }{ }

D
e e
W∂′ = =

′ ′∂ ∂
K D

ε ε
 (4.40) 

The secant stiffness and constitutive matrices in the damage coordinate system 
obtained from equations (4.37) and (4.39) are denoted by [ ]′K  and [ ]′C . The 
matrices are given in Appendix A. The shape of the constitutive matrix [ ]′C  is 
shown in Fig. 4.11a. Solution of the 13 unknown components in Eq. (4.35) is 
based on the components of matrices [ ]′K  and [ ]′C . The procedure is illustrated 
in Fig. 4.11. 
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Passive crack. Stiffness matrix for 
fully damaged transversal isotropic 
material in damage coordinate 
system 

,R Cµ  is residual shear modulus for 
passive crack. ξ  is the transversal 
damage factor. 
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(b) 
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(d) 

 
Figure 4.11. Derivation of stiffness matrix coefficients in the damage coordinate 
system 1 2 3( , , )x x x′ ′ ′  shown in Fig. 4.3. 
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4.4.4.2 Parameter derivation for an active crack 

Consider the case in which material is fully damaged ( 1=D ) and a crack is 
open. Therefore the stresses 11 12 13, ,σ σ σ′ ′ ′  are assumed to vanish on the crack 
surface as described in Section 4.4.3. The corresponding stress-strain relation 
can be written in the local coordinate system as follows: 

2

3

6

0

[ ]{ }0
0

e
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⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪′⎪ ⎪⎪ ⎪⎪ ⎪′⎪ ⎪⎪ ⎪ ′ ′=⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪′⎪ ⎪⎪ ⎪⎩ ⎭

C ε  (4.41) 

where the notation described in Section 2.2 is used for the stress and strain 
components. [ ]′C  is the stiffness matrix for undamaged (virgin) material as 
described in Eq. (4.38) and { }e′ε  is the corresponding strain vector. Eq. (4.41) 
corresponds to the state of plane stress. Eliminating the strain components 1

eε′ , 
4
eε′  and 5

eε′  Eq. (4.41) can be written as: 
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where [ ]p′C  is the stiffness matrix for the state of plane stress, given in Eq. 
(A.3) of Appendix A. Since the stiffness corresponding to the stresses 

11 12 13, ,σ σ σ′ ′ ′  was assumed to be zero, the stiffness matrix ˆ act⎡ ⎤′⎣ ⎦K  for fully 
damaged material is: 
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The shear stiffness ,RTµ  was introduced to improve numerical behaviour as 
follows: 
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As described in Section 4.4.3, besides anisotropic damaging the transversal 
damage factor ξ  (0 1)ξ< ≤  was introduced to degrade stiffness in the 
transversal direction. The stiffness matrix [ ]act′K  for fully damaged material is: 

[ ]act actξ ⎡ ⎤′ ′= ⎣ ⎦K K  (4.45) 

Using Eqs. (4.40) and (4.45) the 13 unknown parameters in Eq. (4.35) can be 
solved from the following equation: 

[ ] actξ ⎡ ⎤′ ′= ⎣ ⎦K K  (4.46) 

The matrices [ ]′K  and act⎡ ⎤′⎣ ⎦K  are given in Appendix A. The explicit solution 
of the equations is not given here (see Appendix B). The solution was carried out 
using Mathematica (2003) software. When the material orientation is 
perpendicular to the damage vector orientation ( 0NM =  in Eq. (4.36)), the 
non-zero parameters are 
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 (4.47) 

 

4.4.4.3 Parameter derivation for a passive crack 

The derivation of the 13 unknown material parameters is similar to the approach 
used in the previous section. When compressive stress is closing the crack, the 
crack (damage) is deactivated and the stiffness in the direction of Nσ  is 
recovered. As mentioned in Section 1.2, frictional sliding is outside the scope of 
this work, therefore the sliding was assumed to be frictionless. The shear strain 
γ  shown in Fig. 4.12b represents sliding in the model. To avoid numerical 
problems the shear stiffness ,RCµ  corresponding to the shear strain γ  was 
introduced. 
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Figure 4.12. Modelling of passive crack behaviour. Sγ  represents sliding and 
Eγ  shear deformation. 

Due to the frictionless sliding, the shear stresses ( 4 5,σ σ′ ′ ) are assumed to vanish 
on the crack surface as described in Section 4.4.3. The corresponding stress-
strain relation can be written in the local coordinate system as follows: 
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Eliminating the strain components 4
eε′  and 5

eε′  Eq. (4.41) can be written as: 

1 1 11 12 13

2 2 22 23

3 3 33

6 6 44

0
, where

. 0

e c c c

e c c
c c

e c

e c

C C C
C C

symm C
C

σ ε
σ ε
σ ε
σ ε

′ ′ ′ ′ ′⎧ ⎫ ⎡ ⎤⎧ ⎫
⎪ ⎪ ⎢ ⎥⎪ ⎪′ ′ ′ ′⎪ ⎪ ⎪ ⎪ ⎢ ⎥′ ′⎡ ⎤ ⎡ ⎤= =⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎢ ⎥′ ′ ′⎪ ⎪ ⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎪ ⎪′ ′ ′⎩ ⎭ ⎣ ⎦⎩ ⎭

C C  (4.49) 



 

102 

where the stiffness matrix [ ]c′C  is given in Eq. (A.4) of Appendix A. Since the 
stiffness corresponding to the stresses 12σ ′  and 13σ ′  was assumed to be zero, the 
stiffness matrix pass⎡ ⎤′⎣ ⎦K  for fully damaged material is: 
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where ,RCµ  is the residual shear modulus introduced for a passive crack. Similar 
to the active crack, the 13 unknown parameters in Eq. (4.35) can be solved from 
the following equation: 

[ ] passξ ⎡ ⎤′ ′= ⎣ ⎦K K  (4.51) 

The matrices [ ]′K  and pass⎡ ⎤′⎣ ⎦K  are given in Appendix A. The material 
parameters obtained from Eq. (4.51) are given in Appendix B. When the 
material orientation is perpendicular to the damage vector orientation ( 0NM =  
in Eq. (4.36)), the non-zero parameters are: 
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4.4.5 Damage vector evolution 

A model of a growing, pre-existing crack was introduced to simulate damage 
evolution and failure modes of brittle materials both under compression and 
tension. Formation of new cracks was not considered. The damage evolution 
equation was motivated by the formation mechanism of wing cracks. A damage 
vector determines the orientation of anisotropic damage of an initially 
transversely isotropic material. 

As briefly discussed in Section 3.2, the wing crack formation under compressive 
stress is considered to start with sliding along the primary crack (Nemat-Nasser 
and Deng, 1994; Renshaw and Schulson, 2001). The sliding generates stress 
concentration at the tips of the primary crack and initiates wing cracks as 
illustrated in Fig. 4.13. The wing cracks propagate parallel to the direction of 
compressive stress. 

xσ  

Primary 
crack 

wing crack

 
Figure 4.13. Wing crack formation under biaxial compression when the primary 
crack is inclined at 45° to the compressive stress xσ . 

Numerical models motivated by the wing crack growth mechanism and the 
splitting failure mode are of considerable current interest (Chen and 
Ravichandran, 2000; Huang et al., 2002; Mitaim and Detournay, 2004; Tang et 
al., 2005). Huang et al. (2002) introduced an isotropic damage model with a 
single damage parameter D. The model takes account of e.g. the effects of 
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friction and flaw distribution on failure strength. Swoboda and Yang (1999a; 
1999b) introduced a model capable of simulating kinking of pre-existing cracks. 
The model based on three damage vectors (or a second order tensor) is capable 
of predicting anisotropic damaging of an isotropic material. 

As stated in Section 4.4.1, the proposed model is based on the assumption of a 
pre-existing crack. A pre-existing damage vector 0

iD  represents the orientation 
and size of the pre-existing crack as described in Section 4.4.2. The damage 
vector evolution initiates when the damage criterion is fulfilled, i.e. 0F = . 

In order to simulate both wing crack and tensile crack propagation mechanisms, 
the direction of damage vector evolution is based on the shear traction iε  and 
normal traction N

iε . The tractions are determined as follows (Carol et al., 1991; 
Bazant and Zi, 2003): 

N e
k kl l

N N
i i

e N
ik k ii

n n

n

n n

ε ε

ε ε

ε ε ε

=

=

= −

 (4.52) 

where the direction of the unit normal vector kn  is parallel to that of the damage 
vector as defined in Eq. (4.28). 

The shear traction iε  is considered the driving “force” in the wing crack 
initiation mechanism. The traction direction with respect to the damage vector 
determines the wing crack evolution direction (kinking angle) as shown in Fig. 
4.14a. 

ε  

D  
ε  
D

Nε
D D

Nε  

a) b)  
Figure 4.14. Crack propagation determined by the shear traction ε  (a) and the 
normal traction Nε (b). 
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As shown in Fig. 4.14b, the normal traction N
iε  is assumed to activate crack 

growth in the direction of the damage vector normal. This corresponds to the 
fracture mode I in Irwin’s notation. When the normal traction is “compressive” 
the traction does not activate the “mode I evolution”. 

0D
∆D  

ε  

Nε  
0D

∆D

Crack increment Damage vector increment 

Initial crack

 
Figure 4.15. Direction of damage vector evolution determined by the shear 
traction ε  and normal traction Nε . 

As discussed above, the normal traction Niε  and shear traction iε  are considered 
driving forces in crack propagation. It is therefore logical to use tractions to 
construct an equation for damage vector evolution. The evolution direction 
depends on the traction directions as shown in Fig. 4.15. The following equation 
was proposed: 

1 2( )

i i

N N
i i i

D

H n

λ

η ε ε η ε

= Ω

Ω = +
 (4.53) 

where the positive material parameters 1η  and 2η  determine the kinking angle. 
The Heaviside function ( )NH ε  either activates or deactivates the tensile crack 
growth mechanism (fracture mode I) as follows: 

( ) 1, when   0

( ) 0, when   0

N N

N N

H

H

ε ε

ε ε

= >

= ≤
 (4.54) 

As shown in Eq. (4.53), tensile crack growth is activated when the tensile strain 
is positive with respect to the damage vector orientation despite the stress state. 
As shown in Section 4.2, the strain Nε  does not give information about the 
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corresponding normal stress Nσ . Therefore the normal stress may be either 
positive or negative. 

As proposed by Van (2001), it was assumed that damage can only grow, 
therefore Van introduced the following essential condition for damage vector 
evolution: 

0k kD D ≥  (4.55) 

Evolution equation (4.53) fulfils the condition of Eq. (4.55). In numerical 
computation it was found that the condition given in Eq. (4.55) enables limitless 
crack rotation. The condition does not guarantee that the Clausius-Duhem 
inequality equation is fulfilled. The rotation may induce stiffness recovery of 
already degraded stiffness as illustrated in numerical verification tests (Section 
5.2). Therefore a new condition based on the Clausius-Duhem inequality 
equation Eq. (3.21)2 was introduced. The inequality equation is: 

0d
k kY D Bγ κ= − ≥  (3.21)2 

Inserting Eqs. (4.53) and (3.71) into Eq. (3.21)2 the following expression is 
obtained: 

( ) 0d
k kY Bγ λ= Ω − ≥  (4.56) 

From which the following condition is obtained: 

k kY BΩ ≥  (4.57) 

A conservative solution is obtained if B  is replaced by maxB , which is the 
maximum value that B  can have. The value of maxB  depends on the material 
parameters. In the upcoming numerical examples max 31.0 10B −< ⋅ , but the 
conservative value of 0.01 was used. In the numerical examples the condition of 
(4.57) was applied as follows: 

1) Damage increment direction iΩ  is calculated from Eq. (4.53). 
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2) The condition of Eq. (4.57) is checked. If the condition is not fulfilled 
the damage increment vector is modified such that the condition will be 
fulfilled as illustrated in Fig. 4.16. 

Ω  

Y

′Ω

Y

0dγ <  0dγ =   
Figure 4.16. Illustration of calculation of the allowable direction of the damage 
increment i′Ω  according to Eq. (4.57) when 0B = . 

The evolution according to Eq. (4.53) is illustrated in Fig. 4.17. The evolution 
equation is cost-effective in numerical applications. The evolution direction 
takes into account the two axial failure modes such that both the axial splitting 
failure mode (Fig 3.2c) and the tensile failure mode (Fig 3.2e) can be simulated. 

F  

F  

0D  

0∆D

0D

0∆D

1D

1D  ND  

1N−∆D  

 
Figure 4.17. Illustration of damage vector evolution under uniaxial compression 
when the primary (initial) crack is inclined at 45° to the compressive force F. 

0D  is the initial damage vector, k∆D  is the damage increment obtained from 
Eq. (4.53) and ND  is the damage at the end of analysis. 

Because this approach is not based on the use of the normality rule described in 
Section 3.6.1, the dissipation inequality of Eq. (3.21) must be verified either 
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analytically or numerically. The inequality has been studied numerically in FE 
implementation (see Section 5.2). 

4.4.6 Evolution of anisotropic damage 

It is known that the material orientation ( iM ) affects the kinking angle of a pre-
existing crack. The maximum energy-release-rate criterion of the theory of 
fracture mechanics can be employed in predicting the kink angle of anisotropic 
materials (Obata et al., 1989; Azhdari and Nemat-Nasser, 1996). 

The damage evolution Eq. (4.53) introduced in Section 4.4.5 is based on the 
strain state and the damage vector orientation and is independent of material 
orientation information. The material orientation effect is taken into account 
indirectly through strains, because strains depend on the material orientation. 

In CDM models the damage growth direction of anisotropic materials is often 
based on the use of the damage characteristic tensor ijklL  as described in Eq. 
(3.91). A brief review of various damage characteristic tensors has been 
introduced by Zhu and Cescotto (1995). In the associative approach of the MK 
model the evolution equation has the following form when ijklL  is used (see 
Section 3.8.2.2): 

1
2

ijkl
ij kleq

eq
ij ijkl kl

L
D Y

Y

Y Y L Y

λ=

=
 (4.58) 

As discussed in Section 3.8.2.2, the damage characteristic tensor ijklL  can be a 
function of internal state variables and material orientation. The evolution Eq. 
(4.53) can be modified in anisotropic form similar to Eq. (4.58) as follows: 

*
i ik kD L D=  (4.59) 

where *
iD  is the damage rate for anisotropic material, ikL  is the second order 

damage characteristic tensor and kD  is the damage rate given in Eq. (4.53). The 
damage characteristic tensor can be defined experimentally as described by 
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Chow and Lu (1989). The tensor was assumed to equal the unit tensor in the 
upcoming numerical examples as follows: 

ik ikL δ=  (4.60) 

4.5 Application of the wing crack approach 

The equations needed in the FE implementation of the proposed wing crack 
model were introduced in Sections (4.5.3−4.5.2). Most of the derivatives were 
solved using Mathematica (2003) software. The explicit expressions of 
derivatives were not given. 

The introduced wing crack model is based on the assumption of vanishing shear 
and normal tractions on the crack surface (see Section 4.4). The surface 
orientation and size are determined by the damage vector kD  normal to the 
crack surface. Damaging introduces anisotropy in the initially transversely 
isotropic material. Eq. (4.35) determining the elastic strain energy of the 
damaged material consists of 13 unknown parameters, which can be solved from 
the conditions given in sections 4.4.4.2 and 4.4.4.3. Only three parameters must 
be defined by the user: residual shear moduli for the active and passive crack 

, ,,RT RCµ µ  and the transversal damage factor ξ. In addition, parameters 
defining the initial damage surface and softening as well as the pre-existing 
damage vector size and orientation are also needed. The determination of 
material parameters is considered in Section 4.5.5. 
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4.5.1 Helmholtz free energy 

The Helmholtz free energy per unit mass ψ  for a damaged transversely isotropic 
material is: 

[
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2 2
2

2 3 2 3

1
2( ) ( )

2

2( )

( ) ( )

( )

e e e e e e e
kk ll T kl kl L T kl lm mk kl kl

e e
kl kl mm

e e e e e e
k k D kk ll TD kl kl LD TD kl lm mk

e e e e
D kl kl D kl kl mm k l kl

e e e
k l kl lm mk k l kl kl

M M

M

D D M

M M n n

n n A n n A

ρψ λε ε µ ε ε µ µ ε ε β ε

α ε ε

λ ε ε µ ε ε µ µ ε ε

β ε α ε ε β ε

µ µ ε ε α α ε

= + + − +

+

+ + + −

+ + +

+ + + +

( ) ]3 4 5

( 1)( )
1

h

e
mm

e e
kl m n kl mn kl m n kl mn

n

h

M n n M A A n n

h
n

ε

β β β ε ε

κ +

+ + +

+
+

 (4.61) 

where the damaged and elastic part are obtained from Eq. (4.35). h  and hn  are 
material parameters to be defined by the user. κ  is an internal variable related to 
the material softening. Although the 13 parameters ( Dλ , TDµ , LDµ , Dβ , Dα , 2α , 

3α , 2µ , 3µ , 2β , 3β , 4β , 5β ) are functions of the damage vector kD  and traction 
Nσ  the parameters were assumed to be constants in the derivation of the 

material Jacobian of Eq. (4.64). The last term represents the free energy induced 
due to the damage development. The term corresponds to dρψ  in the MK model 
(see Eq. (3.75)). 

It can be assumed that the material softening parameters in the direction of the 
material orientation axis kM  are not the same as in the transversal direction. The 
anisotropic softening parameters were not available for the materials in the 
numerical examples (Chapter 5). Therefore in subsequent applications it was 
assumed that softening is isotropic. 

The thermodynamic conjugate forces are obtained substituting Eq. (4.61) into 
Eqs. (3.18)1–3 as described in Section 3.6.1: 
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 (4.62) 

The secant stiffness is obtained from Eq. (4.62) as follows: 

ij
ijkl e

kl
K

σ
ε

∂
=

∂
 (4.63) 

The material Jacobian derivation was prescribed in Section 3.7.2.1. Noting that 
κ λ=  (see Eq. (4.67)), the Jacobian obtained from Eq. (3.74) is written as: 

1
1

ij ijt
ijkl e e

kl m m kl

G F
K

F F D Y
t

σ σ
ε ε

λ λ

∂ ∂ ∂ ∂
= −

∂ ∂∂ ∂ ∂ ∂+
∂ ∆∂

 (4.64) 

where the damage surface F  is given in Eq. (4.69) and the damage potential G  
in Eq. (4.65). 

4.5.2 Evolution equation 

To follow the procedure and formalism of continuum thermodynamics (Section 
3.6.1), the evolution equation was reformulated in potential form although it was 
not compulsory. The following damage potential function was introduced: 

k kG Y B= Ω −  (4.65) 

where kY  is obtained from Eq. (4.62) and kΩ  is based on the evolution Eq. (4.53): 

1 2( )N N
i i iH nη ε ε η εΩ = +  (4.66) 

The normal strain Nε  and the tractions ( , )N
i iε ε  are obtained from (4.52). 

Substituting Eq. (4.65) into Eq. (3.29)2 the following relation is obtained: 
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κ λ=  (4.67) 

The damage vector evolution equation is obtained from Eq. (3.29): 

i
i

G
D

Y
λ
∂

=
∂

 (4.68) 

Substituting Eq. (4.65) into Eq. (4.68) gives the evolution equation derived in 
Section 4.4.5. 

4.5.3 Damage surface for transversal isotropy 

Consistent viscoplasticity formulation as described in Section 3.7.2 was applied. 
The following strain-based dynamic damage surface was applied: 

0( ) 1
ekv

c

h

e m D
ij
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F F c e B

B h

ε

κ

−⎡ ⎤= − − −⎢ ⎥⎣ ⎦
=

 (4.69) 

where c  is the material parameter for damage rate dependency and h  is a hardening 
parameter. Parameters hn  and cm  are related to the shape of the rate-dependent 
hardening diagram. 0( )eijF ε  is the initial damage surface defined in Eq. (4.71). With 
the evolution law of Eq. (3.29) the equivalent damage rate is defined as 

  

ekv
k k

k k

D D D
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∂ ∂
=

∂ ∂

 (4.70) 

As described earlier, in damage models the damage surface is often written as a 
function of the conjugate force ijY  corresponding to the damage tensor ijD . In 
this study, a strain-based damage surface was proposed. A four-parameter 
damage surface used in the upcoming examples is written as follows: 

2
0 0 1 12 0 2 22

2
0 0 12

( ) 2 ( ) ( 1)

( 2 )

e
ijF x I I x I a I

z z a I R

ε = − + + + −

+ + −
 (4.71) 
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where 
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 (4.72) 
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Figure 4.18. Four-parameter transverse isotropic damage surface in the plane 
strain space when 3M i . 

The damage surface is illustrated in Fig. 4.18. The material parameters 
( 0 0, , , x z a R ) in Eq. (4.71) can be given as a function of failure strains shown 
in Fig. 4.18. The failure strains 1 1 3 3( , , , )c t c tε ε ε ε  are considered as positive 
quantities. The coefficients are defined in the strain space when 3M i  as follows: 

3 3

1 1

t c
R R

t c
t c

ε ε
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= =   (4.73) 
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4.5.4 Pre-existing damage distribution 

As discussed in Section 1.2, crack distribution studies are outside the scope of 
this work. To illustrate the usefulness of the proposed method, pre-existing 
damage size and orientation were assumed to be normally distributed. The Pre-
existing damage vector components are defined as follows: 

1. To define the orientation of pre-existing cracks, each component k 
( 1,2, 3k = ) of damage vector D  is obtained from the normal distribution 
based on the given mean value Dkm  and standard deviation Dks . 

2. After determining the components, the damage vector length 0D  is 
set based on the lognormal distribution with the given mean value 

0Dm  and the standard deviation 0Ds . Therefore the distribution 
parameters Dkm  and Dks  do not represent the real distribution of the 
components of pre-existing damage. The parameters Dks  and Dkm  are 
relative; they determine the orientation but not the size. 

The orientation and size distribution of the pre-existing cracks was not known. 
In the upcoming examples the orientation of pre-existing damage was assumed 
to depend on the orientation of the material symmetry axis M  when a 
transversely isotropic material was considered. Otherwise pre-existing cracks 
were assumed to be randomly oriented. 
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4.5.5 Determination of material parameters 

4.5.5.1 Elastic properties 

A total of five material parameters given in Eqs. (3.12) and (3.13) are needed to 
define the elastic behaviour of a transversely isotropic material. In addition to 
the material properties, the material orientation axis M shown in Fig. 3.12 has to 
be defined. Usually the above-mentioned material parameters are available for 
common transversely isotropic materials. 

4.5.5.2 Damaged material parameters 

To define the damaged material stiffness, four material parameters given in Eqs. 
(4.35) and (4.44) must be defined: 

• Shear modules for active and passive crack: ,RCµ , ,RTµ  
• Threshold stress TRσ  for damage deactivation 
• Transversal damage factor ξ  
• Upper limit of damage to retain positive definiteness of the stiffness matrix. 

In this work, the residual shear modulus Rµ  was assumed to be a function of the 
normal compressive traction Nσ  obtained from Eq. (4.27) as illustrated in Figs. 
4.19 and 4.20: 

, , ,
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,

, 0

N
TR N

R RT RC RTTR
N TR

R RC

NR RT

σ σ σµ µ µ µ
σ

µ µ σ σ
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≤ ≤= + −

= <
= >

 (4.78) 

where TRσ  is the threshold compressive stress value. There are two reasons for 
using the approach described in Eq. (4.78): firstly, numerical difficulties occur if 
there is a jump in material parameters when an open crack is closed; secondly, 
the approach simulates both degradation of shear stiffness due to damage and 
apparent dependence of shear stiffness on compressive stress. Therefore in the 
numerical implementation of the WCD model both ,RTµ  in Eq. (4.44) and ,RCµ  
in Eq. (4.50)were replaced by Rµ  given in Eq. (4.78). 
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Rµ

,RCµ

,RTµ

Compression Tension 

 
Figure 4.19. Residual shear modulus as a function of normal traction Nσ . 

Residual shear modulus for active crack ,RTµ  

The residual shear modulus ,RTµ  for an active crack was introduced to retain 
positive definiteness of the secant stiffness matrix. Therefore ,RTµ  is not 
considered a physical material parameter but numerical. In the following 
numerical examples, the value of ,RTµ  was set to about 2% of the undamaged 
shear modulus. To avoid numerical difficulties the residual shear modulus Rµ  
was given as a function of compressive traction as described in Eq. (4.78). 

Residual shear modulus for passive crack and threshold stress , , TR
RCµ σ  

The shear stress of damaged material in the direction of the crack surface is 
often assumed to be a function of the compressive stress that is closing the crack 
(Fig. 4.20). The relation between shear and normal stresses could be modelled 
using e.g. the classical Coulomb friction law or the thermodynamic approach of 
Halm and Dragon (Halm and Dragon, 1998). However, as mentioned in Section 
1.2, modelling of frictional sliding was outside the scope of this work. 

Nσ

σ

 
Figure 4.20. Normal and shear tractions. 



 

117 

Neither the residual shear modulus under compression ,RCµ  nor the threshold 
stress TRσ  is a known material parameter, but they could be defined 
experimentally. In the numerical examples the threshold stress TRσ  was 30% of 
the tensile strength. The residual shear modulus under compression ,RCµ  was 
assumed to be about 40% of the undamaged shear modulus. 

Parameters ,RCµ  and TRσ  do not significantly affect the results of the numerical 
examples (see Chapter 5) because crack deactivation does not take place in the 
examples, except for Example 5.2.1, which illustrates the efficiency of the 
method in crack activation-deactivation cycles. 

If the proposed method is applied in cyclic loading cases, the parameters ,RCµ  
and TRσ  must be experimentally verified. 

Transversal damage factor ξ  

The transversal damage factor ξ  enables modelling of “transversal” stiffness 
degradation as described in Section 4.4.3 and in the numerical examples (see 
Fig. 5.9). Factor ξ  reduces stiffness in the direction perpendicular to the damage 
vector. Without factor ξ  the stiffness is not degraded in pure uniaxial 
compression where the failure mode is splitting, because the splitting crack does 
not affect the stiffness in the load direction. The effect is illustrated in Fig. 4.21. 
Factor ξ  can be considered to take account of the effects of other failure modes 
besides the splitting mode. Before using the transversal damage factor ξ  it 
should be experimentally verified. The use of the factor is illustrated in the 
numerical example of Section 5.2.1. In the other numerical examples the effect 
of the factor has been neglected: 1ξ = . 

1ξ =

b

F 

F 

F 

Axial displ. Axial displ. 

0 1ξ< <

 
Figure 4.21. Effect of the reduction factor ξ  on axial stiffness degradation 
under uniaxial compression. 
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Parameter treatment for active and passive cracks 

As described in Sections 4.4.4.2 and 4.4.4.3, the material parameters which need 
not be explicitly defined ( Dλ , TDµ , LDµ , Dβ , Dα , 2α , 3α , 2µ , 3µ , 2β , 3β , 4β , 

5β ) are different for active and passive cracks. When an open crack is closed, 
there is an abrupt change in stiffness, i.e. an abrupt change in material 
parameters. To avoid numerical difficulties the material parameters were 
assumed to be a function of the normal compressive traction Nσ  and the 
threshold stress TRσ  similar to the residual shear modulus described in Eq. 
(4.78). 

Upper limit of damage 

Although material rupture has taken place when the damage vector length equals 
one as described earlier, the damage vector upper limit was set at 0.9999995 in 
numerical examples to retain positive definiteness of the stiffness matrix. 

4.5.5.3 Damage evolution parameters 

The ratio of the parameters 1η  and 2η  in the damage evolution Eq. (4.66) 
defines the wing crack “kinking angle” α  shown in Fig. 4.22b. The angle 
depends both on the stress state and on the material considered. The parameter 
ratios 1 2/ 1η η =  and 1 2/ 1/2η η =  were studied numerically under uniaxial 
compression when the angle of the inclined pre-existing damage was 45°. The 
numerical studies showed that when the pre-existing damage is small the 
difference is negligible. In practice the ratio 1 2/η η  has an effect on the time 
needed to form a splitting crack as illustrated in Fig. 4.22a. 
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2 1/ 1η η =  
2 1/ 2η η =  

ε  

0D
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α

a) b)  
Figure 4.22. a) Effect of the ratio 1 2/η η  on splitting crack evolution under 
uniaxial compression (material parameters are the same as in the numerical 
example of Section 5.2.1: 4

1 1.0 10η = ⋅ ). b) Wing crack kinking angle α. 

4.5.5.4 Damage surface and softening parameters 

The following parameters must be defined: 

• The initial damage surface is based on compressive end tensile strengths 
in the two directions as described in Eq. (4.73). Parameters R, 0x , 0z  and 
a  must be defined. 

• Softening parameters h  and hn  as described in Eq. (4.69) must be defined. 

• Damage rate-dependent parameters c  and cm  (see Eq. (4.69)) must be 
defined. 

The above-mentioned parameters could be determined from tensile and 
compression tests as a function of the strain rate. Because the material parameters 
were not available, the procedure described below was applied in this work. 

Although tensile and compressive strengths for various materials are available, 
the complete stress-strain curve which defines the damage initiation stress and 
the shape of the curve are not generally available. Quasi-brittle material 
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damaging initiates at stress level 0σ  which is lower than the ultimate stress uσ  
as illustrated in Fig. 4.23. 

uσ  

0σ  

uε ε  
Figure 4.23. Stress-strain diagram for materials having the same uσ  and 0σ  but 
a different shape of the softening diagram. 

Because the ratio of the damage initiation stress and ultimate stress ( 0 / uσ σ ) is 
not known, damage was assumed to initiate at a stress level 20% lower than the 
tensile strength. Based on this assumption the initial damage surface parameters 
can be defined (R, 0x , 0z  and a ) when uniaxial compressive and tensile 
strengths are known. 

Although the proposed approach resembles modelling of creep brittle materials, 
the damage rate-dependent approach was introduced into the proposed model to 
avoid localisation of deformations. With the damage rate-dependent approach, 
material strength is a function of strain rate. Therefore all the material 
parameters affecting material strength must be defined at a known strain rate. 
Because the strain rate was not known, it was assumed in the numerical 
examples that tensile and compressive strength are obtained when the strain rate 
is 10-3 1/s. 

Softening parameters (h  and hn ) were adjusted assuming that the uniaxial tensile 
strength at 0ε =  is 5% lower than the ultimate tensile strength at 3 110 sε − −= . 
If the fracture energy FG  is known, softening parameters could be adjusted such 
that the absorbed energy is the same as the fracture energy FG  as described in the 
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upcoming example in Section 5.1. Because the softening diagram shape is 
unknown, it is assumed that the softening is linear, i.e. 1hn = . 

Damage rate-dependent parameters (c  and cm ) were determined such that the 
known uniaxial tensile strength was attained with a strain rate of 10-3 1/s. The 
procedure is illustrated in Figs. 4.24 and 4.25. In the determination it was 
assumed that 0.05c R= , where R  is the radius of the initial damage surface as 
described in Eq. (4.73). 
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0σ  
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Figure 4.24. Determination of material parameters 0 / 0.8uσ σ = . 

 

uσ0σ

3,σ M
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Figure 4.25. Determination damage surface in the stress space. 
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4.6 Conclusions of the model formulation 

As described in section 1.1, the objective was to introduce a continuum damage 
model capable of simulating compressive and tensile failure modes in brittle 
failure of transversely isotropic materials. 

Unilateral condition 

It was shown in Section 4.2 that the strain-based crack opening/closure criteria 
cannot be reliably applied when the stress state is two- or three-dimensional, but 
a stress based criterion should be used instead. 

The main reasons for finding another solution method instead of developing the 
MK model were: a) The invalid opening/closure criterion of the MK model and 
b) the need to calculate an eigensystem at each increment. 

Upper limit of damage 

A method based on the positive definiteness of the secant stiffness matrix for 
determining the upper limit of the damage tensor was introduced in Section 
4.3.2. As discussed in the previous sections, the upper limit of damage tensor 
ijD  is generally undefined in the phenomenological damage models described in 

Section 3.6.2.4. 

Wing crack damage (WCD) model 

A new wing crack damage model was introduced for modelling of transversely 
isotropic materials. The method is capable of simulating both the axial splitting 
failure mode due to the wing crack growth mechanism under compression, and 
the tensile cracking failure mode under tension. 

In the proposed model, damage vector kD  is used to represent the size and 
orientation of the plane crack. The derived strain energy equations are based on 
the equations derived for materials having two preferred directions. The damage 
vector and the axis of the material symmetry of virgin transversely isotropic 
material define the two directions. 
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The evolution equation of damage vector kD  is based on the wing crack growth 
mechanism. The evolution direction is determined by the normal and shear strain 
tractions on the crack surface. The approach is non-associative; therefore it must 
be verified either analytically or numerically whether the Clausius-Duhem 
inequality equation is fulfilled. In this work it is verified numerically. 

The rupture criterion of the material is the same as the upper limit of the 
damage. The limit is reached when the length of the damage vector equals unity. 

Damage surface of the WCD model 

Damage initiation in the WCD model is based on the damage surface given in 
the strain space. A four-parameter surface was introduced. It enables definition 
of the damage surface when tensile and compressive strengths are known both in 
the direction of the material symmetry axis and the transverse direction. A more 
detailed surface can be easily applied if necessary. 

Stiffness degradation in the WCD model due to damaging is based on the strain 
softening approach. The softening function was assumed to be linear and 
isotropic, although more precise anisotropic functions can be applied if material 
parameters are known. Softening was assumed to be a function of the damage 
rate. The rate dependency was applied only to avoid mesh sensitivity and 
localisation problems. 

Pre-existing cracks 

The proposed method is based on the assumption of pre-existing cracks. A pre-
existing damage vector represents a crack. If the pre-existing damage vectors are 
small enough they do not affect damage initiations stress. Increasing the length 
of pre-existing damage vectors makes it possible to study the effect of size and 
orientation distribution of pre-existing cracks on strength and failure modes. 
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5. Numerical results and verification of 
wing crack and MK damage models 

The damage model described in the previous Sections has been implemented in 
ABAQUS/Standard FE software as a user material subroutine (UMAT). 

As described in Section 3.9, the model of Murakami and Kamiya (1997) (MK 
model), was not further enhanced. Therefore this work concentrated on the 
development of the proposed wing crack damage model only. 

In the upcoming paragraphs the validity of the wing crack damage model was 
verified by testing it against five basic structures composed of known natural 
materials (ice, marble and concrete). Only one verification test, using concrete as 
the test material, was executed using the modified MK model. 

Not all the material parameters were available for verification. Therefore, the 
missing parameters were defined following the procedure described in Section 
4.5.5. The parameters were not fitted to obtain equivalent results with 
experiments, although a better correspondence would have been achieved. 

All of the following examples were analysed with ABAQUS/Standard software 
using a dynamic analysis method with implicit time integration, except in 
Section 5.2 where static loading was applied. 

5.1 Model verification test 1 

5.1.1 Mesh sensitivity analysis 

The objective of this example was to show that the proposed model is not mesh 
sensitive. As shown in the following pages, the damage rate-dependent failure 
surface proved to be an efficient tool for avoiding mesh-dependent solutions. To 
illustrate the effectiveness of the proposed method, models without the damage 
rate-dependent failure surface were studied as well. 
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In addition to the load-displacement diagram, the energy dissipated in each of 
the models was studied. If due to softening the deformations localise into a 
single element, the dissipated energy within the loading-unloading cycle 
decreases with decreasing element size. 

In the mesh sensitivity study, the tensile test of the tapered bar shown in Fig. 5.1 
was simulated. The specimen end velocity was 0.1 mm/s, which would 
correspond to the average strain rate of 0.001/s if the bar were not tapered. After 
tension of 20 µm the bar end was returned to the original position. The tensile 
phase time was 0.2s. 

0.1 m 

0.01 m 
0.01 m 

0.011 m 

Symmetry plane 

Symmetry plane 

0.1 mm/s 

1x  

0.01 m 
2x  

 
Figure 5.1. Tapered bar geometry and boundary conditions. 

Because of the brittle-like softening, the specimen response is dynamic after 
material failure at the narrow end. An implicit time integration method was used. 
The sample was modelled with linear brick elements (C3D8) with various mesh 
densities. The mesh densities studied were 10, 100 and 200. The element mesh 
was denser at the narrow end such that the ratio of the smallest and the largest 
element length ( 1/Nl l  in Fig. 5.2) was 100 for the 10-element model and 1000 
for the 100 and 200-element models respectively. 
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Undeformed Mesh, 10 elements 

1l  Nl  

 
Figure 5.2. Finite element mesh of 10 elements,  1/ 100Nl l = . 

The material properties are shown in Tables 5.1, 5.2 and 5.3. The properties are 
the same as used for columnar ice in the upcoming example in Section 5.3.1. 
The damage surface parameters (a, 2R , 0x  and 0z ) shown in Table 5.3 were 
obtained based on the following assumption (see Section 4.5.5.4): 

• Damage initiation was assumed to start at the stress level 0.8 0.28tσ =  
MPa, where tσ  is the tensile strength in the transverse direction. 
Therefore the damage initiation stress is 0.07 MPa less than the ultimate 
stresses given in Table 5.1. 

The hardening parameter h  shown in Table 5.3 was determined such that the 
tensile strength in the transverse direction is 0.95 0.333tσ =  MPa when strain 
rate equals zero: 0ε = . The hardening rate-dependent parameter cm  was 
determined such that the tensile strength equals the ultimate strength given in 
Table 5.1 when 310 1/ sε −=  ( 0.35tσ =  MPa). 

After failure at the narrow end the elastic strain energy stored in the bar induces 
a dynamic response in the bar. The solution was found to be sensitive to the 
increment length such that the angle of the unloading path varied when the 
increment length was large. In the automatic time incrementation procedure the 
maximum time increment was set to 0.001s and the half step force residual 
tolerance (HAFTOL) to 50N. The mass proportional damping coefficient was set 
to α = 200E3. Artificial (numerical) damping of α = -0.1 was used. 

Pre-existing small cracks were assumed to be perpendicular to the tension 
direction. Therefore the damage vectors were set parallel to the tension direction. 
The length of the damage vector was set to 1.0E-5. 
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Table 5.1. Tensile ( tσ ) and compressive ( cσ ) stresses along and transverse to 
the direction M.  

Ultimate stress 

Direction M Transverse direction 

tσ  (MPa) cσ  (MPa) tσ  (MPa) cσ  (MPa) 

1.1 6.0 0.35 3.0 

Damage initiation stress 

Direction M Transverse direction 

tσ  (MPa) cσ  (MPa) tσ  (MPa) cσ  (MPa) 

1.03 5.93 0.28 2.93 
 

Table 5.2. Wing crack model: elastic material properties and material 
orientation. Subscripts refer to the direction of material orientation axis M as 
shown in Fig. 3.12 and Eq. (3.13). 

Elastic material properties Material orientation 

11E (GPa) 33E (GPa) 13G (GPa) 21ν 31ν ρ (kg) 1M  2M  3M  

6.0 8.5 3.2 0.313 0.301 1000 0 1 0 

Residual Shear  Damage evolution 

,RCµ (GPa) ,RTµ (GPa) ξ  TRσ (MPa) 1η  2η  

0.4 13 21( )G G⋅ +  0.02 13 21( )G G⋅ + 1.0 0.1 1.0E+4 1.0E+4 
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Table 5.3. Wing crack model: material properties; m is the mean and s is the 
standard deviation.  

Damage surface F 

2R  a  0x  0z  h  hn c  cm (s) 

1.627E-6 0.3409 4.683E-4 1.0786E-3 1.9E-5 1 0.05R  6.0E-4 

Distribution of orientation and size of pre-existing damage 

0D  0
1D  0

2D  0
3D  

0Dm  0Ds  1Dm  1Ds  2Dm  2Ds  3Dm  3Ds  

1.0E-5 0.00 1.00 0.00 0.00 0.00 0.00 0.00 
 

5.1.2 Results of verification 

The displaced shapes in Fig. 5.3a and the distribution of the damage in Fig. 5.4a 
show that instead of localising in a single element, the damage is distributed into 
several. Also the force-displacement diagrams of Fig. 5.5 show that with mesh 
densities of 10, 100 and 200 elements, the force displacement paths practically 
coincide. 

When the damage rate effect was neglected, the response was dependent on the 
mesh density as shown in Figs. 5.3b, 5.4b and 5.7. As shown in Fig. 5.3b, 
damaging and deformations localise in one element only, compared with several 
when the rate effect is taken into account (Fig. 5.3a). 
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Figure 5.3. Displacement shape and damage contour plot of the damage vector 
length at the beam end. Displacement magnification factor = 400. Deformations 
localise in one element only (b) if the damage rate effect is neglected. 

  

 

10 el.

100 el.

200 el.

10 el.

100 el. 

200 el. 

Rate dependent solution Rate independent solution

 
Figure 5.4. Distribution of damage k kD D  along the 1x -coordinate of the bar. In 
the rate-independent solution (right) damage is localised in a single element only. 

Strongly damaged  Strongly damaged 
area, D  ≈ 1 area, D  ≈ 1 

a) Rate dependent solution b) Rate independent solution 

+1.000e+00 
+9.100e–01 
+8.200e–01 
+7.300e–01 
+6.400e–01 
+5.500e–01 
+4.600e–01 
+3.700e–01 
+2.800e–01 
+1.900e–01 
+1.000e–01 
+1.000e–02 
+1.000e–02 
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200 elem. 

10 elem. 

100 elem. 

 
Figure 5.5. Force-displacement diagrams for loading-unloading cycle. 

  

 

w 
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Figure 5.6. Softening curve according to the fictitious crack approach. 
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200 elem. 

10 elem. 

100 elem. 

 
Figure 5.7. Force-displacement diagrams when the damage rate effect is neglected. 

To compare the displacement response with softening diagrams of the fictitious 
crack approach, the softening curve was drawn as shown in Fig. 5.6 following 
the procedure given by Hillerborg (1983). In Hillerborg’s notation the 
displacement w (Fig. 5.6) is considered as an “additional deformation due to the 
fracture zone.” The area inside the wσ −  curve shown in Fig. 5.6 represents the 
energy absorbed by the fictitious crack, which is considered to equal the fracture 
energy FG  as briefly described in Section 3.3.1. 

The absorbed energies per unit area shown in Table 5.4 were obtained as follows: 

1
DW F du

A
= ∫  (5.1) 

where A is the area of the narrow end of the bar, F is the tensile force and u is 
the bar end displacement. The corresponding energy in the fictitious crack 
approach is 

1
FG F dw

A
= ∫  (5.2) 

where the “additional displacement” w is illustrated in Figure 5.6. 
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Table 5.4. Energy absorbed per unit area during the loading-unloading cycle. 

 Energy absorbed per area, 2/J m  

 10 elem. 100 elem. 200 elem. 

With D-rate effect*, WD 1.3174 1.3205 1.3223 

With D-rate effect+, GF 1.2082 1.2312 1.2330 

No D-rate effect*, WD 0.9690 0.9656   0.9630 

No D-rate effect+, GF 0.9511 0.9450 0.9391 

+   According to the fictitious crack approach (see Eq. (5.2) and Fig. 5.6) 
*   see Eq. (5.1) 

 

5.2 Model verification test 2 

5.2.1 Wing crack damage evolution – Clausius-Duhem inequality 

In order to illustrate the behaviour of the proposed model under uniaxial 
compression and tension, as well as the tension-compression cycle, the cube 
shown in Fig. 5.8 was analysed. The example demonstrates both the response in 
cyclic loading and evolution of the damage, and tests the fulfilment of the 
Clausius-Duhem inequality when the evolution constraints of Eq. (4.55) are 
applied instead of Eq. (4.57). The constraints were the following: 

0k kD D ≥  (4.55) 
 
k kY BΩ ≥  (4.56) 
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Figure 5.8. Analysed cube of 0.1x0.1x0.1 m3 and initial damage orientation. 

The cube was modelled with a single C3D8R element which has only one 
integration point. The hourglass stiffness was set to 90 MPa. The load was 
displacement controlled such that in cyclic loading the tensile displacement was 
13.2 µm. After tension the cube was compressed to 75 µm (from its initial position). 

The initial damage vector was inclined at 45° to the axial loading as shown in 
Fig. 5.8. The length of the initial damage vector was set to 0.1. The material 
parameters are given in Tables 5.5 and 5.6. The material is isotropic. Damage is 
initiated with a uniaxial tensile stress of 2.33 MPa and compressive stress of 
12.12 MPa. 

The value of the parameter ξ  describing “transversal” damaging was set to 0.85 
(see Fig. 4.11 and Sections 4.4.4.2 and 4.4.4.3). Therefore material softening 
takes place also in the direction transverse to the damage vector orientation. 
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Table 5.5. Wing crack model: elastic material properties and material 
orientation. Subscripts refer to the direction of material orientation axis M as 
shown in Fig. 3.12 and Eq. (3.13). 

Material properties Material orientation 

11E (GPa) 33E (GPa) 13G (GPa) 21ν 31ν ρ (kg) 1M  2M  3M  

20 20 7.69 0.20 0.20 2.5E3 1 0 0 

Residual Shear  Damage evolution 

,RCµ (GPa) ,RTµ (GPa) ξ  TRσ (MPa) 1η  2η  

0.4 13G⋅  0.02 13G⋅  0.85 0.1 1.0E+4 1.0E+4 
 

Table 5.6. Wing crack model: material properties; m is the mean and s is the 
standard deviation.  

Damage surface F  

2R  a  0x  0z  h  hn c  cm (s) 

1.210E-6 1.00 7.413E-4 7.413E-4 5.0E-6 1 0.1E-6 3.5E-4 

Distribution of orientation and size of pre-existing damage 

0D  0
1D  0

2D  0
3D  

0Dm  0Ds  1Dm  1Ds  2Dm  2Ds  3Dm  3Ds  

0.1 0.00 1.00 0.00 1.00 0.00 1.00 0.00 
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5.2.2 Results of verification 

The diagrams for the compression, tension and tension-compression cycles are 
shown in Figs. 5.9–5.12, 5.16 and 5.17. 

The Clausius-Duhem inequality (Eq. (3.21)2) has the following form in the 
WCD approach: 

0d
k kY D Bγ κ= − ≥  (5.3) 

In order to test the fulfilment of the Clausius-Duhem inequality, the power of 
dissipation dγ  was evaluated at the integration point of the element as shown in 
Figs. 5.9–5.11. 

Failure modes 

Figs. 5.9 and 5.10 illustrate the damage evolution under pure compression and 
tension. The failure modes were axial splitting under compression and transverse 
cracking under tension. 

Evolution of the splitting crack under compression is illustrated in Fig. 5.9. The 
stiffness is degraded during splitting crack development due to the transversal 
damage factor ξ. 

The tension test simulation shown in Fig. 5.10 illustrates the stiffness recovery 
when the crack is closed after tensile damage. 
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axial splitting crack. 

 
Figure 5.9. Force-displacement diagram and power of dissipation dγ  in the 
compression tension cycle. The letters a, b,..., d show the time sequence. The 
damage evolution constraint of Eq. (4.55) was applied. The Clausius-Duhem 
inequality equation was not fulfilled. 
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Figure 5.10. Force-displacement diagram and power of dissipation dγ  in the 
tension compression cycle. The damage evolution constraint of Eq. (4.55) was 
applied. The Clausius-Duhem inequality equation was not fulfilled. 
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In the cyclic loading case the tension phase was carried out such that the 
material was only partly damaged under tension (see Fig. 5.11b). As shown in 
Fig. 5.11, stiffness was recovered after the tension phase when the crack was 
closed due to compression. Damage also occurred during the compression phase. 
Although the material was being damaged during compression, there was no 
significant stiffness degradation in the loading direction because the developed 
crack was parallel to the loading direction. During damage evolution in the 
compression phase, the crack rotated from the transverse to the axial orientation. 
During rotation the stiffness was temporarily degraded (Fig. 5.11c) and then 
recovered (Fig. 5.11d). When the orientation approached axial orientation, the 
stiffness was degraded due to the transversal damage factor ξ  (Fig. 5.11e). 

Crack closure. 

b) 

c) 

e) 

d) 

a) 

1
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1
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2 
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F 

F 

 
Figure 5.11. Force-displacement diagram and power of dissipation dγ  in the 
tension compression cycle. The letters a, b,..., e show the time sequence. The 
damage evolution constraint of Eq. (4.55) was applied. The Clausius-Duhem 
inequality equation was not fulfilled. 
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Clausius-Duhem inequality 

In order to fulfil the Clausius-Duhem inequality of Eq. (5.3), dγ  must be 
positive. As shown in Figs. 5.9, 5.10 and 5.11, the inequality was not fulfilled 
throughout the analysis when the constraint of Eq. (4.55) was applied. 

The inequality was fulfilled when the constraint of Eq. (4.57) was applied. The 
force displacement diagram obtained when Eq. (4.57) was applied is shown in 
Figs. 5.12 and 5.17. 
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Figure 5.12. Force-displacement diagram and power of dissipation dγ  in the 
compression tension cycle. The letters a, b,..., d show the time sequence. The 
damage evolution constraint of Eq. (4.57) was applied. The Clausius-Duhem 
inequality equation was fulfilled. 

When the damage evolution is limited by the constraint of Eq. (4.55), material 
stiffening due to the crack rotation may occur. The phenomenon is illustrated in 
Figs. 5.13 and 5.16. Assuming that the virgin material stiffness in the loading 
direction is 22

vE , the damage evolution acts as follows: 

a) The pre-existing crack degrades the stiffness in the loading direction; 
0
22 22

vE E<  
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b) Due to damage development an axial splitting crack develops; therefore 
the representative crack rotates such that the orientation of the 
representative crack is parallel to the loading. Therefore the stiffness in 
the loading direction equals the stiffness of the virgin material, i.e. 
stiffness in the loading direction is recovered. 

If the transversal damage is neglected ( 1ξ = ) and displacement-controlled 
loading is applied in the above-mentioned case, the reaction force is increased 
during damage development due to the stiffness recovery as shown in Figs. 5.13 
and 5.16. It also means that the strain energy density is increased due to the 
damage evolution. Clearly the stiffness must not be recovered due to damage 
evolution. When stiffness recovery takes place the Clausius-Duhem inequality 
equation is not fulfilled, 0dγ < . 

 

22
vE  0

22 22
vE E< 0

22 22 22
t vE E E= >

F = 0 F = F0 F > F0 
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F0  
Damage 
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0) virgin material  a)  b)  

Representative 
crack 
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vE  0

22E 22
tE

Evolution path 
of the crack tip 

 
Figure 5.13. Stiffness recovery due to damage development when the damage 
evolution constraint of Eq. (4.55) is applied. The transversal damage effect is 
neglected ( 1ξ = ). 

Damage evolution and rotation of the representative crack under the constraint 
of Eq. (4.57) is illustrated in Figs. 5.14 and 5.17. When the constraint of Eq. 
(4.57) is used, the stiffness recovery does not take place and the Clausius-
Duhem inequality is fulfilled 0dγ ≥ . 
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Figure 5.14. Damage development when the damage evolution constraint of Eq. 
(4.57) is applied. The transversal damage effect is neglected ( 1ξ = ). 

Without transversal damaging) 
( 1.0ξ = ) 

With transversal damaging 
( 0.85ξ = ) 

0dγ <  0dγ <  0dγ ≥  0dγ ≥  
 

Figure 5.15. Damage evolution paths under uniaxial compression; 0dγ ≥  
when constraint of Eq. (4.57) is applied. 0dγ <  when the constraint of Eq. 
(4.55) is applied. 
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Figure 5.16. Force-displacement diagram and power of dissipation dγ  under 
uniaxial compression when the transversal damage effect is neglected ( 1ξ = ). 
The damage evolution constraint of Eq. (4.55) was applied. The Clausius-
Duhem inequality equation was not fulfilled. 
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Figure 5.17. Force-displacement diagram and power of dissipation dγ  under 
uniaxial compression when the transversal damage effect is neglected ( 1ξ = ). 
The damage evolution constraint of Eq. (4.57) was applied. The Clausius-
Duhem inequality equation was fulfilled. 
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5.3 Model verification test 3 

5.3.1 Saline columnar ice 

5.3.1.1 Ice material properties 

Because of its anisotropic nature, columnar ice properties are different in the 
horizontal and vertical directions. If the c-axes are randomly oriented in the 
horizontal direction, the ice can be considered transversely isotropic. Therefore 
five independent parameters are needed to model its elastic response. Although 
ice strength has been measured and studied quite extensively, the elastic material 
properties of columnar ice have not been widely examined. Numerical values of 
Young’s modules in both the vertical ( vE ) and horizontal ( hE ) direction are 
available in the literature, but Poisson’s ratios and shear modulus (G) have not 
received much attention in ice studies. 

When the c-axes are oriented, the ratio /v hE E  is 1.23 (Michel, 1978; Sinha, 
1989). Theoretical elastic properties based on single crystal characteristics 
deviate from the properties of polycrystalline columnar ice (S2) based on 
laboratory tests. Theoretically, Young modulus for S2 ice in the vertical 
direction is only a few percent higher than in the horizontal plane (Michel, 1978; 
Sinha, 1989). The value of E has been found to vary significantly with porosity 
(Cox and Weeks, 1983; Mellor, 1983; Takekuma et al., 1983; Cole, 1998). 
Andersson (1958) demonstrated experimentally a decrease in E with increasing 
porosity (Cox and Weeks, 1983). 

Measured values of E depend on the test method used. Because of the 
viscoelastic behaviour of ice, there is more variation in static measurements than 
in high frequency vibrational methods (Cox and Weeks, 1983; Mellor, 1983). 

Häusler (1981) obtained a value of 15.1 ±2.9 GPa in the vertical direction, which 
is significantly higher than the theoretical value for vE  reported by Michel 
(1978). The experimental and theoretical results shown in Table 5.7 indicate that 
in nature the ratio between the vertical and horizontal Young’s modulus is 
higher than the theoretical value proposed by Michel (1978). 
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Table 5.7. Elastic properties of columnar polycrystalline ice. 

Author Eh, 

GPa 

Ev, 

GPa 

Strain 

rate 1/s 

T, 

°C 
Type, (salinity, ‰) Notes 

(Michel, 1978) 9.40 9.72  -10 S2, Theoretical, based 
on single crystal   

(Häusler, 1981) 4.56 
±1.94 

15.1 
±2.9 0.2 -10 Saline, (10.6), 

columnar Lab ice 

(Takekuma  
et al., 1983) ~0.9 ~2.5 0.036...90 -4..-

20 Saline, columnar Sea ice 

(Varsta, 1983) 7.28 10.16 0.25 -6 Saline, columnar Sea ice 

(Kuehn et al., 
1988) 6.0 8.5 1.0 -10 Saline, columnar (4.3) Lab ice, 

Tension 

(Kuehn et al., 
1988) - 8.0 1.0 -10 Saline, columnar (4.3) Sea ice, 

Tension 

(Sinha, 1988) 4.0 - 0.0001 -20 Fresh water Lab ice 

(Sinha, 1988) 9.5 - 10.0 -20 Fresh water Lab ice 

 

5.3.1.2 Ice failure mechanisms 

The brittle failure of columnar ice cubes was studied under uni- and biaxial 
compression. As described in the previous section, columnar ice is transversely 
isotropic. Its behaviour depends on the temperature, orientation and strain rate. 

Although all material parameters were not available, this example illustrates the 
wing crack model capability to capture the brittle failure modes under 
compression and tension. 

According to Schulson (2001), the dominant brittle failure mechanism under 
axial compression is axial splitting. The split angle depends on the orientation of 
the sample and the stress state. The mechanisms are illustrated in Fig 5.18. The 
tensile failure mechanism is tensile cracking perpendicular to the loading 
direction (Schulson, 1987; Kuehn et al., 1988). 
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Figure 5.18. Compressive and tensile failure mechanisms (a–c redrawn from 
Schulson (2001)). 

Based on the tests of Gratz and Schulson (1997) the uniaxial compressive 
strength along the columns was assumed to be 6.0 MPa, and 3.0 MPa across the 
columns. 

Kuehn et al. (1988) obtained a tensile strength of 1.1 MPa along the column 
direction and 0.35 MPa in the direction perpendicular the columns. The Young 
modulus along the columns was 8.5 GPa and 6.0 GPa across the column 
direction (Kuehn et al., 1988). The shear modulus 23G  and the Poisson ratios 

12ν , 31ν  were obtained from the equations given by Derradji-Aouat et al. (2000). 
Thus the material properties in the coordinate system shown in Fig. 5.18 are: 
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where 11cσ  and 33cσ  are compressive strengths in direction 1 and 3 respectively, 
and 11tσ  and 33tσ  are the tensile strengths. 
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Figure 5.19. Damage surface in plane stress space; units: MPa. 

The material parameters were defined as described in Section 4.5.5. The 
parameters are the same as in example 5.1, except for the size and orientation of 
initial damage which are as shown in Table 5.8. The damage surface is shown in 
Fig. 5.19. To study the effect of initial damage size on the ultimate stress, 
analysis was carried out also using smaller damage, as shown in Table 5.9. 

Brine pockets are formed during freezing when salt water is trapped in sea ice. 
“The entrapped brine occurs in the form of fine pockets of fluid between 
platelets of pure ice...” (Sanderson, 1988, p. 13). Although the real shape of 
brine pockets is not known, the pockets were considered to be oriented 
microcracks, as done by (Zhan et al., 1996). 

The shape and orientation of brine pockets was assumed to be such that the 
normal of the crack surface is perpendicular to the columns. Therefore the initial 
damage vector components were assumed to be distributed such that major 
components were in the transversal plane ( 1 2X X− ) and minor components 
were parallel to the columns. The average length of the initial damage vector 
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was set to 0.05 and the standard deviation to 0.01. The vector length is not based 
on measured values. 

Table 5.8. Orientation of initial damage; m is the mean and s is the standard 
deviation.  

Distribution of orientation and size of pre-existing damage 

0D  0
1D  0

2D  0
3D  

0Dm  0Ds  1Dm  1Ds  2Dm  2Ds  3Dm  3Ds  

0.05 0.01 0.0 1.0 0.00 1.0 0.00 0.1 
 

Table 5.9. Orientation of initial (small) damage; m is the mean and s is the 
standard deviation. 

Distribution of orientation and size of pre-existing damage 

0D  0
1D  0

2D  0
3D  

0Dm  0Ds  1Dm  1Ds  2Dm  2Ds  3Dm  3Ds  

1.0E-5 1.0E-5 0.0 1.0 0.00 1.0 0.00 0.1 
 

5.3.1.3 Model of an ice cube 

The side length of the cubic sample was the same as used by Gratz and Schulson 
(1994): 159 mm. The number of linear brick elements (C3D8R) in the model 
was 1872. The cube was loaded through perfectly stiff frictionless plates using 
the contact feature of ABAQUS/Standard FE software. In the biaxial loading 
case the load was pressure-controlled. The stress ratio 22 11/ 1σ σ =  was kept 
constant during loading. The stress rate of 22σ  was set to 2.0 MPa/s. 

Under tension, the displacements of the bottom face nodes in direction 2 were 
restrained, while the topmost nodes were displacement rate-controlled. The 
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loading rate with displacement-controlled loading was set to 310−  m/s in both 
compression and tension loading cases. 

 
Figure 5.20. FE model dimensions under axial compression. 

5.3.2 Results of verification 

The ultimate stresses obtained from numerical simulations are given in Table 
5.10. As described in the upcoming sections, the failure modes were the same as 
illustrated in Fig. 5.18. 

The definition of failure stress is not clear when the failure mode is splitting, 
because splitting does not reduce stiffness in the loading direction. Therefore, 
the value of ultimate compressive stress is the stress value (see Fig. 5.24) 
obtained when the average length of the damage vector equals ∼1.0. 



 

148 

Table 5.10. Ultimate stresses obtained in numerical simulation, MPa. 

 11cσ  11tσ  33tσ  11 22σ σ=  

Test 3.0 0.35 1.1 - 

FEM, ( 0D , Table 5.8) 3.25* 0.30 1.03 6.16* 

FEM, (small 0D , Table 5.9) 3.29* 0.35 1.05 6.20* 

* Obtained when average length of the damage vector = 1.0 

As described in Section 5.1 (see also Section 4.5.5.4), material parameters were 
adjusted such that the tensile strength 11tσ  equals 0.35 MPa during tension of 
the tapered bar shown in Fig. 5.1 when the strain rate 310 /sε −= . The strength 
in the column direction ( 33σ ) is therefore affected by parameters based on 11tσ . 
This explains the lower value of 33tσ  shown in Table 5.10. The ultimate tensile 
stress for 11tσ  equals 0.35 MPa when the initial damage is small. 

The results shown in Table 5.10 illustrate the effect of initial damage size on 
ultimate stress. 

5.3.2.1 Tensile test simulations 

The tensile failure modes obtained in numerical simulations were similar to the 
modes obtained in tests as illustrated in Figs. 5.18. As shown in Figs. 5.21–5.23, 
the failure mode was cracking perpendicular to loading. 

Damage vector evolution as a function of displacement is illustrated in Figs. 
5.22 and 5.23. As shown in Fig. 5.22, the direction of damage vector evolution is 
correct despite the unfavourable initial direction. 
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Figure 5.21. Contour plot of the length of the damage vector under tension 
along (left) and across (right) the columns. 
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Figure 5.22. Evolution of damage vector components and average stress. 
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Figure 5.23. Evolution of damage vector components and average stress. 

5.3.2.2 Compression test simulations 

Although the direction of damage evolution is correct in compression test 
simulations as shown in Figs. 5.24 and 5.25, the failure mode is not as visual as 
in the tensile test simulations (see Fig. 5.26). Damage vector orientations at the 
end of the analyses correspond to the splitting failure mode. 

As shown in Figs. 5.24 and 5.25, there is no drop in the average stress curve 
although the damage is fully developed. The drop does not take place because 
the splitting crack (parallel to the loading) does not reduce the stiffness in the 
loading direction. Therefore the load can be increased beyond the point where 
the damage is fully developed. 



 

151 

 

σ 

X3 X2 
X1 

2D  

1D  

σ

3D  
σ 

”Failure stress” 

 
Figure 5.24. Evolution of damage vector components and average stress under 
compression across columns. 

 
Figure 5.25. Evolution of damage vector components and average stress. 
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Figure 5.26. Contour plot of evolution of length of damage vector under 
compression across the columns (above) and under confined compression (below). 

5.4 Model verification test 4 

5.4.1 Hualien marble – the ring test simulation 

Many rocks are anisotropic and brittle. This example illustrates the usefulness of 
the proposed wing crack method in the analysis of transversely isotropic marble. 
Numerical results are compared with the experimental results obtained from 
Chen and Hsu (2001). 
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Figure 5.27. Geometry of the ring split test by Chen and Hsu (2001). The vector 
M  represents the material symmetry axis orientation. Disk thickness t = 11.55 mm. 

The objective of the numerical examples was to: 

1. Compare failure modes based on FE analysis with the experimental 
modes given by Chen and Hsu (2001). 

2. Compare the numerical and experimental failure loads as a function of 
material symmetry axis orientation. 

5.4.1.1 Experimental tests and results 

The objective of the ring tests of Chen and Hsu (2001) was to obtain the tensile 
strength as a function of the material symmetry axis angle with respect to the 
loading direction. Although the external load is compression, the ring test itself 
can be considered an indirect tensile test. 

The dimensions and elastic material properties of the disk shown in Fig. 5.27 are 
given in Table 5.11. The material properties are expressed in the material 
coordinate system shown in Fig. 5.28. The thickness t in Table 5.11 is the 
average thickness of all ring tests. 
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Figure 5.28. Coordinate system used in material property definition. Vector M  
represents the material symmetry axis orientation. ( 11 ,E E=  33 ,E E ′=  

23 ,G G ′=  12 31,ν ν ν ν ′= = , see Eq. (3.14)). The prime refers to the notation 
of Chen and Hsu (2001). 

Table 5.11. Geometrical and elastic material properties in the ring tests (Chen 
and Hsu, 2001). 

d  
(mm) 

id  
(mm) 

t * 
(mm) 

11E  
(GPa) 

33E  
(GPa) 

23G  
(GPa) 

12ν  31ν  ρ  
(kg) 

74.0 16.4 
12.8 
4.8 

11.55 78.3 67.68 25.34 0.267 0.185 1691 

* Average thickness of test specimens 

Chen and Hsu (2001) studied the behaviour of Hualien marble both 
experimentally and using the Boundary Element Method (BEM). The marble has 
a visible black-and-white foliated structure, based on which Chen and Hsu 
assumed it to be transversely isotropic. They carried out a total of 42 tests with 
three hole diameters and seven material inclination angles. The failure mode was 
splitting along the loading line. 

Chen and Hsu (2001) used BEM to determine the relation between the 
compressive force F and tensile strength tσ . They also used it to determine the 
stress distribution around the central hole. Then they assumed that disk rupture 
takes place when the maximum tensile stress is attained at the intersection of the 
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loading line and the hole as shown in Fig. 5.35. Based on these assumptions and 
the test results shown in Table 5.12 and Fig. 5.29, they obtained the tensile 
strength values given in Fig. 5.30. From their analysis they concluded that “...the 
tensile strength of Hualien marble decreases with the increase in the hole 
diameter...”(ibid). 

Table 5.12. Average ultimate compressive force F obtained experimentally by 
Chen and Hsu (2001). 

β  
(degree) 

F (kN) 
(di = 4.8)

F (kN) 
(di = 12.8)

F (kN) 
(di = 16.4)

0 11.00 6.79 6.13 
15 10.33 6.65 5.90 
30 8.49 6.59 5.21 
45 7.28 5.04 4.20 
60 5.19 3.60 3.14 
75 4.28 3.36 2.88 
90 3.88 2.67 2.73 

 

 

β

M

F

F

 
Figure 5.29. Experimental compressive force F by Chen and Hsu (2001). 
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β

M

 
Figure 5.30. Tensile strength obtained from tests with BEM by Chen and Hsu 
(2001). The circled tensile strength values were used to determine the damage 
surface for FE analysis. 

5.4.1.2 FE simulation of Hualien marble and its tests 

Although Chen and Hsu (2001) concluded that tensile strength is a function of 
the hole diameter, in this study the tensile strength was assumed to be 
independent of the specimen geometry. The damage surface was determined 
based on the tensile strengths obtained from tests with a hole diameter of 
12.8mm (see Fig. 5.30), when the material inclination angle is 0º and 90º. The 
compressive ( ,c ijσ ) and tensile ( ,t ijσ ) strengths used in damage surface 
determination are given in Table 5.13. The subscripts i and j refer to the 
coordinates of the material orientation axis shown in Fig. 5.28. 
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Table 5.13. Compressive and tensile strength based on marble tests (Chen and 
Hsu, 2001). 

,11cσ
¶ 

(MPa) 
,33cσ

¶ 
(MPa) 

,11tσ
† 

(MPa) 
,33tσ

‡ 
(MPa) 

22.93 76.43 40.61 13.94 
¶ Given by Chen and Hsu (2001) 
† Average of ring tests when β = 0° and di = 12.8mm (see Fig 5.31) 
‡ Average of ring tests when β = 90° and di = 12.8mm (see Fig 5.31) 

Because the damage evolution parameters were not known, the material 
parameters were obtained following the procedure described in Section 4.5.5: 

• Damage initiation stress ,330.8 11.2tσ⋅ =  MPa 

• Static tensile strength ,330.95 13.2tσ⋅ =  MPa 

• Tensile strength ,33 13.9tσ =  MPa when strain rate 310 /sε −=  

The material parameters are shown in Table 5.16 and the damage initiation 
stresses in Table 5.15. 

Due to the foliated structure of the material, flaws were assumed to be parallel to 
the layers, i.e. the pre-existing damage vector 0D  was assumed to be nearly 
parallel to the material orientation vector M  as illustrated in Fig. 5.31. A small 
deviation in the orientation of the pre-existing damage vector was assumed as 
follows: 

0.1D M

D M

s
m

⊥ =  (5.5) 

where D Ms ⊥  is the standard deviation of the damage vector component that is 
perpendicular to vector M  ( 0⊥MD  in Fig. 5.31); D Mm  is the mean of the 
damage vector component that is parallel to M  ( 0 MD  in Fig. 5.31). 0⊥MD  
was assumed to be normally distributed with a mean of 0. The effect of two 
different pre-existing damage sizes shown in Table 5.14 was studied. 
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Table 5.14. Mean 0Dm  and standard deviation 0Ds  for the pre-existing 
damage vector length 0( )D distribution. 

Case 0Dm  0Ds  

a 0.01 0.001 

b 0.075 0.005 
 

 Fp
d tα

=  

a) b)

0⊥MD  M  

0 MD  

0D  
Damaged area 

 
Figure 5.31. a) FE model of marble ring, b) foliated structure and orientation of 
pre-existing damage. 

The samples were modelled using linear brick elements (C3D8). The FE model 
is shown in Fig. 5.31. According to Chen et al. (1998), the contact angle α  in 
the tests (see Fig. 5.27) was always less than 15°. The value of 10° was used for 
α  in the FE simulation. The pressure loading rate was set to 1 MPa/150 s. 
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Table 5.15. Tensile ( tσ ) and compressive ( cσ ) stresses along and transverse to 
the direction M. 

Ultimate stress 

Direction M Transverse direction 

tσ  (MPa) cσ  (MPa) tσ  (MPa) cσ  (MPa) 

13.94 76.43 40.61 22.93 

Damage initiation stress 
Direction M Transverse direction 

tσ  (MPa) cσ  (MPa) tσ  (MPa) cσ  (MPa) 

11.2 73.6 37.8 20.1 

 

Table 5.16. Material properties of Hualien marble; m is the mean and s is the 
standard deviation.  

Damage surface F  
2R  a  0x  0z  h  hn c  cm (s) 

3.00E-7 0.834 7.495E-5 3.898E-4 6.5E-4 1 0.05R  6.5E-2 

 

Table 5.17. Elastic material properties of Hualien marble. Subscripts refer to 
the direction of the material orientation axis M (see Fig. 5.28 and Eq. (3.13)). 

Elastic material properties Material orientation 

11E (GPa) 33E (GPa) 13G (GPa) 21ν 31ν ρ (kg) 1M  2M  3M  

78.3 67.68 25.34 0.267 0.185 1691 Cos β Sin β  0 

Residual Shear  Damage evolution 

,RCµ (GPa) ,RTµ (GPa) ξ  TRσ (MPa) 1η  2η  

0.4 13 21( )G G⋅ +  0.02 13 21( )G G⋅ + 1.0 0.1 1.0E+4 1.0E+4 
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5.4.2 Results of verification 

A total of 42 FE analyses were done. Each of the three rings was analysed with 
seven material orientation angles using two different pre-existing damage 
distributions (see Table 5.14). In addition, the effect of the sampling variation on 
the failure load was studied when the hole diameter id  was 12.8mm. 

As shown in Figs. 5.32 and 5.33, failure loads obtained by numerical simulation 
coincide well with the experimental results. The correspondence between 
numerical and experimental results is best when the material orientation angle β  
is 90º. The failure mode was splitting in all analysed specimens. 

FEA 

0 0.010Dm =

0 0.075Dm =

β

M

F

F

Tests 

Tests 

0 0.010Dm =

0 0.075Dm =

 
Figure 5.32. Comparison of test and FE analysis results with different mean 
lengths of the pre-existing crack. 

As discussed in the previous section, Chen and Hsu (2001) concluded that 
tensile strength is a function of the hole diameter. Although numerical 
simulation was based on strength values obtained from ring tests with an inner 
diameter of 12.8mm, the proposed wing crack approach was able to predict quite 
accurate failure loads for rings with hole diameters of 4.8mm and 16.4mm also. 
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The difference between numerical simulation and test results was greatest when 
material orientation axis M  was inclined at 45º to the loading direction. 

The damage surface used in this work (see Section 4.5.3) is based on uniaxial 
tensile and compressive strengths obtained when the load is parallel ( 0β = ) 
and perpendicular ( 90β = ) to the material orientation axis M. Therefore, it is 
obvious that the proposed method cannot predict the correct failure load when 
the material orientation axis is inclined to the loading. A more detailed failure 
surface can be derived to obtain more accurate results when 0 90β< < . 

FEA 

Tests 

β

M

F

F

0 0.010Dm =

0 0.075Dm =

 
Figure 5.33. Comparison of test and FE analysis results. 

The effect of pre-existing damage size was studied by analysing rings using two 
different sizes and distributions as shown in Table 5.14. An increase of the pre-
existing damage size decreases the failure load as shown in Figs. 5.32 and 5.33. 

Although the statistical parameters were the same, there is always a variation 
between samples. To study the effect of sampling variation, five samples with 
seven orientation directions were analysed. Although the number of analyses 
was small, it appeared that the structure is sensitive to sampling variations when 
the material orientation angle β > 60º as shown in Fig. 5.34. 
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Figure 5.34. Effect of sampling variation on the failure load, when the hole 
diameter is 12.8 mm and 0 0.075Dm = (case b in Table 5.14). 

As discussed in the previous section, Chen and Hsu (2001) assumed in the 
determination of tensile strength that failure initiates at the intersection of the 
load line and hole as shown in Fig. 5.35. The numerical results based on the 
proposed wing crack method showed that damage initiation takes place at the 
intersection only when 0β =  or 90β = . Otherwise damage initiation occurs 
on the weaker side w  as illustrated in Fig. 5.35. 

Due to the foliated structure, the tensile strength in the circumferential direction 
is higher on the right side than on the left of the upper part of the hole, as shown 
in Fig. 5.35b, when 45β = . Also the circumferential stress is higher on the 
right side as illustrated in Fig. 5.36. Therefore damage initiates on the left side as 
shown in Fig. 5.37. 

The damaged area is illustrated in Figs. 5.37 and 5.38. The damage evolution 
path consists of several branches, which is common in brittle failure of 
materials. 
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sw

 
Figure 5.35. a) Assumed location of critical tensile stress by Chen and Hsu 
(2001), b) location of damage initiation according to numerical analysis using 
the proposed wing crack model. w  is the weaker side of the upper part of the 
hole. 

 

 

45β =  

M

F

F

 

Figure 5.36. Maximum principal stress contour when id =12.8mm, 45β =  
and 0 0.075Dm =  (case b in Table 5.14). 
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Figure 5.37. Damaged area (dark) obtained in numerical simulation of ring 
tests; id =12.8mm and 0 0.075Dm =  (case b in Table 5.14); 45β = (left) 
and 90β = (right). 
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Figure 5.38. Evolution of damage pattern obtained in numerical simulation of 
ring tests when id =12.8mm, 0β =  and 0 0.075Dm =  (case b in Table 5.14). 
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5.5 Model verification test 5 

5.5.1 Plate with 3-D defect 

A plate with an inclined three-dimensional defect as shown in Fig. 5.39 was 
analysed under compression and tension using both the modified Murakami-
Kamiya (MK) and the proposed wing crack models. 

The objective of this example was to demonstrate splitting crack evolution under 
compression, and kinking of the crack under tension when the stress state is 
three-dimensional. 

 
Figure 5.39. Dimensions of the cracked plate (mm). 

The damage surface, damage evolution and the elastic material properties were 
the same as used in the example in Section 5.2.1. The hardening parameters 
were different. The material parameters are shown in Tables 5.18 and 5.19. The 
elastic material properties and the damage surface resemble concrete material 
with a tensile strength of 4.4 MPa and compressive strength of 18.5 MPa. 

In the wing crack model the pre-existing damage was assumed to be small and 
randomly oriented. The rate-independent damage surface shown in Fig. 5.41 was 
applied. 

The material parameters 1 2 3 4, ,  and η η η η  used in the MK model were the 
same as used by Murakami and Kamiya (1997) in their example for concrete. 
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The hardening parameter was adjusted such that the tensile failure stress is the 
same as in the wing crack model. The MK model is more ductile than the wing 
crack model as shown in Fig. 5.40. 

Damage initiation 
stress, 2.33 MPa 

σ

σ

 
Figure 5.40. Stress-strain curves under uniaxial tension for the damage models. 
Tensile strength 4.4 MPa. 

5.0 

2σ  

1σ

-20.0 -10.0 

-10.0 

-20.0 

  5.0 

 
Figure 5.41. Damage surface in plane stress space for both models. Units are in 
MPa. 



 

167 

Table 5.18. Material parameters for the modified MK model. 

1η  2η  3η  4η  ζ  h  

-400E6 MPa -900e6 MPa 100E6 MPa -23.5E6 GPa 0.2 1.24E-6 
 

Table 5.19. Material parameters for the wing crack damage model. 

Distribution of orientation and size of pre-existing damage  

0D  0
1D  0

2D  0
3D  Hardening 

0Dm  0Ds  1Dm  1Ds  2Dm  2Ds  3Dm  3Ds  h 

0.0001 0.0 0.0 0.1 0.0 0.1 0.0 0.1 6.5E-4 
 

The plate was modelled using first-order tetrahedral elements (C3D4). Although 
the first-order tetrahedral element is not the best choice for accurate stress 
analysis, elements can be used to illustrate the failure modes of the structure 
shown in Fig. 5.42. The loading was displacement-rate controlled with a rate of 
0.01 mm/s. The top and bottom surfaces of the sample were assumed to remain 
planar during loading. 



 

168 

  

 

A 

A 

A - A 

u  

A

 
Figure 5.42. FE model of the plate. 

5.5.2 Results of verification 

The failure patterns under tension are similar, as shown in Fig. 5.44, although 
the load displacement curves shown in Fig 5.43 are dissimilar. Due to the more 
ductile-like stress-strain curve, the failure load of the MK model is higher under 
tension than that of the wing crack model. The behaviour of the wing crack 
model is clearly brittle-like. 

Splitting is the compressive failure mode for both models as shown in Fig. 5.46. 
As shown in Fig. 5.45 the force displacement curves are almost linear up to the 
failure load, as is the case in uniaxial compression of brittle materials. The 
material parameter ζ  of the MK model enables stiffness degradation in the 
loading direction also. Therefore the failure load is lower for the MK model. 



 

169 

Wing crack 
model 

F 

MK model 

u 

 
Figure 5.43. Tensile force curve as a function of displacement. 

a) Wing crack model b) MK model 

F F 

 
Figure 5.44. Failure modes under tension. The dark colour is the damaged area. 
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Figure 5.45. Compressive force curve as a function of displacement. 

  

F F 

a) Wing crack model b) MK model (backside view) 
 

Figure 5.46. Failure modes under compression. The dark colour represents the 
damaged area. 
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5.6 Conclusions from the test results 

The proposed WCD model proved to be efficient in modelling the behaviour of 
isotropic and transversely isotropic materials. The correct brittle failure modes 
were captured. 

The validity of the proposed wing crack damage (WCD) model was verified by 
numerical simulation of five specimens in various loading conditions. The 
specimens were composed of known transversely isotropic materials like ice and 
marble, as well as concrete that was considered an isotropic material. 

The material parameters needed in the model were not all known. Where they 
were not, they were determined following the procedure described in Section 
4.5.5. The parameters were not fitted to obtain identical results with the 
experiments. 

Model verification test 1 – mesh sensitivity analysis 

The verification analysis with a tapered bar under uniaxial tension showed that 
due to the applied rate-dependent damaging feature, the proposed model is not 
imposed on localisation of deformations in a single element layer, although the 
strain softening approach was applied. 

The analysis without rate dependency showed that deformations localise in one 
element independently of element size. 

Model verification test 2 – Clausius-Duhem inequality 

It was numerically established that the condition of Eq. (4.55) alone does not 
guarantee the fulfilment of the Clausius-Duhem inequality. 

When the proposed condition of Eq. (4.57) was applied the Clausius-Duhem 
inequality equation was fulfilled, as shown in the verification test. 
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Model verification test 3 – Columnar ice 

The behaviour of columnar ice cubes both under compression and under tension 
were verified numerically using the WCD model. Columnar ice is known to be a 
transversely isotropic material with different strength in the material symmetry 
axis direction and transversal directions. 

The capability of modelling oriented pre-existing cracks was applied in the 
verification case. The normal of the crack surface was assumed to be normal to 
the columns as in nature. 

Under tension, both the failure modes and the failure loads were in line with the 
test results. Although the damage vector evolution indicated correct failure 
modes under uniaxial compression and confined compression simulations, the 
failure modes were not as visual as under tension test simulations. 

Model verification test 4 – marble ring test simulation 

The numerical simulation of ring tests with Hualien marble revealed the 
capability of the WCD model in modelling transversely isotropic materials. In 
ring tests, the tensile strength of a specimen is determined indirectly from the 
known compressive ultimate load. Because of the foliated structure of Hualien 
marble, the tensile strength is a function of the material orientation angle with 
respect to the loading direction. The strength was experimentally verified by 
Chen and Hsu (2001). 

The capability of modelling-oriented, pre-existing cracks was exploited also in 
this verification test. Due to the foliated structure of the marble, pre-existing 
cracks were assumed to be parallel to the foils. The effect of length of pre-
existing cracks on the failure load was studied based on two different means and 
standard deviations. The effect of sampling variation was also studied. 

The resemblance between the test results and the numerically obtained results 
was good. The deviation was greatest when the angle between the material 
orientation axis and the loading axis was about 45º. The deviation can be 
explained by a fairly simple damage surface used in the WCD model. The 
surface is based on the strength obtained with orientation angles of 0º and 90º. A 
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more precise damage surface would give more accurate results when the angle is 
between 0º and 90º. 

Not only the pre-existing damage size but also sampling variation was found to 
affect the failure load. Damage size, location and orientation have a significant 
effect on failure load because damage initiation tends to start from the weakest 
point, therefore sampling variation also affects the failure load. 

Based on numerical simulation, it appeared that the location of crack initiation is 
a function of the material orientation angle. When the angle was 0º the damage 
evolution path was strongly branched. 

Model verification test 4 – Plate with 3-D defect 

The plate with an inclined three-dimensional defect was analysed to illustrate 
both the MK and WCD models’ ability to predict the direction of crack 
evolution also when the stress state is three-dimensional. The material 
parameters were similar to those of concrete. Both models were able to predict 
the formation of splitting and tensile cracks. 
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6. Discussion of results and further 
developments 

As described in Section 1.1 the fundamental objectives of this work were: 

a) To enhance the Murakami Kamiya (MK) model, 

b) To introduce a new model, the wing crack damage (WCD) model, for 
analysis of brittle transversely isotropic materials, and 

c) To implement both models in ABAQUS/Standard FE software. 

In this work the hypothesis that the brittle failure phenomenon can be estimated 
by a model, namely the wing crack damage model (WCD model), was tested. It 
was shown that the proposed WCD model can be successfully applied in the 
numerical analysis of brittle, transversely isotropic materials. 

In order to verify the efficiency of the WCD model it was implemented in 
ABAQUS/Standard FE software as a user material subroutine. 

Murakami Kamiya (MK) model 

Continuum damage models motivated by the axial splitting mechanism are of 
considerable current interest. Most of the models are phenomenological, based 
on neither the effective stress nor the effective strain concept. The Helmholtz 
free energy equation is often formulated by the use of projection tensor. The 
projection tensor is used to dismantle negative strains from the strain tensor. 
Formulation of the projection tensor requires determination of principle strains. 
The drawback is that the derivatives of the projection tensor needed in numerical 
applications cannot be explicitly formulated. In this work the MK model was 
enhanced by obtaining the derivatives numerically. 

In the continuum damage models the associative approach is often used; the 
damage surface (damage potential) is a function of the thermodynamic conjugate 
force for damage. Although the Clausius-Duhem inequality equation is fulfilled 
in the associative, convex approaches, the use of the conjugate force makes the 
determination of general damage surface quite complicated. A strain-based 
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damage surface was applied both for the MK and WCD models. Therefore 
determination of the damage surface is straightforward for various materials. 

The upper limit of damage is not well defined in the phenomenological models; 
therefore further conditions are required to retain positive definiteness of the 
strain energy density. In this work the MK model was enhanced by introducing a 
condition based on the eigenvalues of the secant stiffness matrix, to define the 
upper limit for MK model. 

Unilateral behaviour 

The unsymmetrical behaviour due to the opening and closure of cracks is called 
unilateral behaviour. The unilateral feature is important in the analysis of brittle 
failure, even though cyclic loading cases were not considered. In dynamic 
analysis, the stress relief due to fast crack formation induces stress wave 
propagation. Due to the stress wave propagation, reflection and interaction of the 
waves, cracks already formed may close. 

Studies on strain- and stress-based criteria described in Section 4.2 showed that 
strain-based crack opening/closure criteria cannot be reliably applied when the 
stress state is two- or three-dimensional. It was further shown that a stress-based 
criterion should be used instead. 

The invalid opening/closure criterion of the MK model and the need to calculate 
the eigensystem at each increment were the main reasons to find another 
solution method instead of further developing the MK model. 

Wing crack damage model 

The proposed method was introduced to overcome the difficulties discussed 
above. Formulation of the Helmholtz free energy equation is based on the 
concept where it is assumed that the surface of an open crack is free of stresses 
and that the virgin material is transversely isotropic. The damage vector was 
used to determine the orientation of the surface. The sign of normal traction 
(based on the damage vector and stress tensor) was used to obtain information 
about the crack state, whether it is open or closed. Material rupture takes place 
when the damage vector length reaches unity. 
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In the proposed WCD model the upper limit of the damage is well defined, 
therefore the positive definiteness of the strain energy is retained. 

The direction of the damage also represents the preferred material direction. A 
transversely isotropic material has one preferred material direction; therefore the 
second preferred direction due to damage introduces anisotropy. This fact was 
taken into account in the proposed method because it is based on the equations 
derived for materials having two preferred directions. All the material 
parameters used to define the strain energy density of damaged material have a 
clear physical background. 

The proposed new method is well defined because it is motivated by an 
experimentally and theoretically verified mechanism, namely the wing crack 
formation mechanism. In this approach the direction of shear traction on the 
crack surface determines the kinking direction of the developing wing crack. 
Numerical studies showed that the method is capable of simulating wing crack 
growth, the axial splitting failure mode, and tensile cracking. The approach was 
based on the assumption of pre-existing cracks. 

It is well known that all materials are prone to various defects like cracks. 
Orientation, size and distribution of the defects affect the material response and 
strength. The proposed new method based on the pre-existing damage makes it 
possible to study the effect of size and orientation of these pre-existing defects 
on the behaviour of materials. 

Rate-dependent damaging 

Stiffness degradation due to the damage evolution was modelled applying the 
strain softening approach combined with the damage rate-dependent damage 
surface. Therefore problems arising from the localisation of deformations were 
avoided as shown in the numerical examples. 

Verification of the WCD model by numerical simulation 

Both the proposed WCD and MK models were implemented in ABAQUS/ 
Standard FE software as a user subroutine. The validity of the wing crack 
damage model was verified by testing it against five basic structures composed 
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of known natural materials (ice, marble and concrete). One of the tests was 
executed using the modified MK model. 

The verification tests revealed the capability of the proposed WCD model in the 
analysis of brittle materials. The model can be used in the analysis of brittle 
failure of materials; both axial splitting and tensile failure modes were captured. 
Both the failure modes and failure loads obtained in the simulation corresponded 
well with the reference results. 

6.1 Need for further development 

Although the proposed wing crack damage (WCD) model was found to be 
efficient in analysing brittle materials, some further developments can be 
suggested. The main needs are listed below. 

1. Frictional sliding of crack surfaces and the effect of compressive force 
on sliding could be taken into account. 

2. The apparent Poisson ratio is known to change when a material is 
undergoing damage. The effect could be included in the WCD model. 

3. Structural failure is often associated with some amount of plastic flow 
besides the damaging process. Therefore the combined damage and 
plasticity model could be considered. 

4. Nucleation of cracks could be included in the model. 
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7. Conclusions 

In this work a new continuum damage model, the wing crack damage (WCD) 
model was introduced. The proposed method was found to be efficient in 
analysing the brittle failure of transversely isotropic solids. The method can be 
applied in the analysis of axial splitting and tensile cracking failure modes. The 
model was implemented in ABAQUS/Standard FE software as a user material 
subroutine. 

In addition the model proposed by Murakami and Kamiya (1997) was enhanced 
and implemented in ABAQUS/Standard FE software. 

Wing crack damage model (WCD model) 

A new wing crack damage model was introduced for modelling of transversely 
isotropic materials. The method is capable of simulating the axial splitting 
failure mode due to the wing crack growth mechanism under compression, as 
well as the tensile cracking failure mode under tension. 

The derived strain energy equations are based on the equations derived for 
materials having two preferred directions. 

The evolution equation of damage vector kD  is based on the wing crack growth 
mechanism. Because of the non-associative approach the Clausius-Duhem 
inequality equation was verified numerically. 

Unilateral condition 

It was shown in Section 4.2 that the strain-based crack opening/closure criteria 
cannot be reliably applied when the stress state is two- or three-dimensional, but 
a stress-based criterion should be used instead. 

The main reasons for finding another solution method instead of developing the 
MK model were the invalid opening/closure condition and the need to calculate 
the eigensystem at each increment. 
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Upper limit of damage 

A method based on the positive definiteness of a secant stiffness matrix for 
determining the upper limit of the damage tensor was introduced in Section 
4.3.2. 

Rate-dependent damaging 

Due to damaging, the stiffness of the material is degraded. In continuum damage 
models the degradation is described by the strain softening approach. The strain 
softening applications are subject to mesh sensitivity and localisation problems. 
Rate-dependent solution methods can be applied to avoid mesh sensitivity 
problems; therefore the rate-dependent “consistency model” was utilised in the 
proposed WCD model. Problems arising from the localisation of deformations 
were thus avoided, as shown in the numerical examples. 

Damage surface 

Damage initiation in the WCD model is based on the damage surface given in 
the strain space. A four-parameter surface was introduced. It enables definition 
of the damage surface when tensile and compressive strengths are known both in 
the direction of the material symmetry axis and in the transverse direction. A 
more detailed surface can be easily applied if material parameters were 
available. 

Pre-existing cracks 

The proposed method is based on the assumption of pre-existing cracks. The 
method makes it possible to study the effect of the size and orientation 
distribution of pre-existing cracks on the strength and failure modes. 

Numerical verification 

The validity of the proposed wing crack damage (WCD) model was verified by 
numerical simulation of five specimens in various loading conditions. The 
specimens were composed of known transversely isotropic materials like ice and 
marble, and concrete that was considered an isotropic material. 
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The proposed WCD model proved to be efficient in modelling the behaviour of 
isotropic and transversely isotropic materials. The correct brittle failure modes 
were captured. 
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Appendix A: Stiffness matrices in  
damage coordinate system 

In the derivation of material parameters stiffness matrices are needed in the local 
“damage coordinate” system shown in Fig. 4.3. The matrices are given in this 
appendix. 

From (Eq. (4.38)) 

2

[ ] , where { } { }
{ }{ }

D
e e
W∂′ = =

′ ′∂ ∂
C D 0

ε ε
 

the following stiffness matrix for undamaged material is obtained (upper 
triangle, nonzero terms): 

11 2 ( 2 2 ) 2N N L T TC M Mλ α β µ µ µ′ = + + + − +  
12 2( 1 )N NC M Mα β λ′ = − − + +  

13 NC M α λ′ = +  

14 (1 )( 2( ))N N N L TC M M Mα β µ µ′ = − + + −  
2

22 2 ( 1 ) 2( 1)

4 4 2 4

N N

L N L T N T

C M M

M M

α β λ

µ µ µ µ

′ = − − + + − +

+ − − +
 

23 N(1 M ) +C α λ′ = −  

24 N L T(1 )( +2( M + ))N NC M M α β β µ µ′ = − − −  (A.1) 

33 T2C λ µ′ = +  

34 (1 )N NC M M α′ = −  

44 2( 1)N N LC M M β µ′ = − − +  

55 ( )N L T TC M µ µ µ′ = − +  

56 (1 )( )N N L TC M M µ µ′ = − −  

66 ( )L N T LC Mµ µ µ′ = + −  
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From (Eq. (4.40) 

2

[ ] ,   where 1
{ }{ }

D
e e
W∂′ = =

′ ′∂ ∂
K D

ε ε
 

the following stiffness matrix for fully damaged material is obtained (upper 
triangle, nonzero terms): 

[

]
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D T TD
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56 3
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(1 )( 2( ))
2 N N L LD T TDK M M µ µ µ µ µ′ = − + + − −  

66 ( )L N L LD N LD T TDK M Mµ µ µ µ µ µ′ = − + + − + +  
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The stiffness matrix [ ]act′K  corresponding open crack is the following (see Eqs. 
(4.42) and (4.44), upper triangle, nonzero terms) 

2 2
22 14 22 12 14 24 12 4411

2 2
11 24 22 44 14 11 44

( 2

(( )))/(C C C )

pactK C C C C C C C C

C C C C

′ ′ ′ ′ ′ ′ ′ ′ ′= = − +

′ ′ ′ ′ ′ ′ ′+ − −
 

2
23 14 23 14 13 24 12 34 12 13 4412

2
11 24 34 23 44 14 11 44

(( - (( ))

(( - ))))/( )

pactK C C C C C C C C C C C

C C C C C C C C
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′ ′ ′ ′ ′ ′ ′ ′+ −
 (A.3) 

2 2
33 14 33 13 14 34 13 4422

2 2
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( 2

(( )))/( )
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C C C C C C C
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44 55 ,
act act

RTK K µ′ ′= =  
2

66 66 56 5533 /pactK C C C C′ ′ ′ ′ ′= = −  

where terms ijC ′  are given in Eq. (A.3). 

The stiffness matrix [ ]pass′K  corresponding closed crack is the following (see 
Eqs. (4.49) and (4.50), upper triangle, nonzero terms) 

2
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Appendix B: Material parameters in  
Fortran form 

The material parameters obtained from Eq. (4.46) for active damage / open crack 
are the following: 
 
muR = muRT 
 If(MN > 1.0E-3) Then 
  mu3 = (-2*xi*MN*(muT*muL*(alpha**2 - 2*beta*(2*muT + lambda)) +  (muT - muL)*( 
& -8*alpha*muT*(muT - muL) + alpha**2*(4*muT - muL) +  4*(muT 
& - muL)**2*(2*muT + lambda) +  beta*(-8*muT**2 + 4*muT*muL - 8*muT*lambda 
& + 2*muL*lambda))*MN))/ ((muT*(-1 + MN) - muL*MN)*(muL*(2*muT + lambda) +  
& (-alpha**2 + alpha*(4*muT - 2*muL) + 4*muT*(-muT + muL) +  2*beta*(2*muT 
& + lambda))*MN +  (alpha**2 - 4*alpha*(muT - muL) + 4*(muT - muL)**2 -  
& 2*beta*(2*muT - muL + lambda))*MN**2)) 
 mu2 = (muR*(muT*(-1 + MN) - muL*MN)* (muL*(2*muT + lambda) + (-alpha**2 
& + alpha*(4*muT - 2*muL) +  4*muT*(-muT + muL) + 2*beta*(2*muT 
& + lambda))*MN +  (alpha**2 - 4*alpha*(muT - muL) + 4*(muT - muL)**2 -  
& 2*beta*(2*muT - muL + lambda))*MN**2) +  xi*(muT*muL**2*(2*muT + lambda) 
& -  2*muT*muL*(2*muT*(muT - muL) + alpha*(-2*muT + muL))*MN +  (alpha**2*( 
& -2*muT + muL)**2 -  4*alpha*muT*(2*muT**2 - 3*muT*muL + muL**2) -  
& 2*(beta*(-2*muT + muL)**2*(muT + lambda) -  2*(muT - muL)**2*(muT*(2*muT 
& - muL) + (muT - muL)*lambda)))* MN**2))/ ((muT*(-1 + MN) 
& - muL*MN)*(muL*(2*muT + lambda) +  (-alpha**2 + alpha*(4*muT - 2*muL) 
& + 4*muT*(-muT + muL) +  2*beta*(2*muT + lambda))*MN +  (alpha**2 
& - 4*alpha*(muT - muL) + 4*(muT - muL)**2 -  2*beta*(2*muT - muL 
& + lambda))*MN**2)) 
 alpha2 = (-2*xi*(muT*muL*(2*muT*(-muT + muL) + (-2*muT + muL)*lambda) +  
& muT*(2*alpha**2*muT + alpha*(-4*muT**2 + 7*muT*muL - 2*muL**2) -  
& 4*beta*muT*(muT + lambda) +  (muT - muL)*(4*muT*(muT - muL) + (2*muT 
& + muL)*lambda))*MN +  (muT - muL)*(alpha**2*(2*muT - muL) + alpha*muT*( 
& -4*muT + 3*muL) +  2*(-(beta*(2*muT - muL)*(muT + lambda)) +  (muT 
& - muL)*(2*muT*(muT - muL) + (muT - 2*muL)*lambda)))*MN**2))/ ((muT*(-1 
& + MN) - muL*MN)*(muL*(2*muT + lambda) +  (-alpha**2 + alpha*(4*muT 
& - 2*muL) + 4*muT*(-muT + muL) +  2*beta*(2*muT + lambda))*MN +  (alpha**2 
& - 4*alpha*(muT - muL) + 4*(muT - muL)**2 -  2*beta*(2*muT - muL 
& + lambda))*MN**2)) 
 alpha3 = (2*xi*(2*muT*muL*(alpha*muT - (muT - muL)*(2*muT + lambda)) +  
& muT*(alpha**2*(4*muT - muL) -  2*alpha*(4*muT**2 - 5*muT*muL + muL**2) +  
& 4*(muT - muL)**2*(2*muT + lambda) +  beta*(-8*muT**2 - 8*muT*lambda 
& + 2*muL*lambda))*MN +  (muT - muL)*(-8*alpha*muT*(muT - muL) 
& + alpha**2*(4*muT - muL) +  4*(muT - muL)**2*(2*muT + lambda) +  beta*( 
& -8*muT**2 + 4*muT*muL - 8*muT*lambda + 2*muL*lambda))*MN**2))/ ((muT*(-1 
& + MN) - muL*MN)*(muL*(2*muT + lambda) +  (-alpha**2 + alpha*(4*muT 
& - 2*muL) + 4*muT*(-muT + muL) +  2*beta*(2*muT + lambda))*MN +  (alpha**2 
& - 4*alpha*(muT - muL) + 4*(muT - muL)**2 -  2*beta*(2*muT - muL 
& + lambda))*MN**2)) 
 beta5 = (-4*muT*xi*(muL*(alpha*muT - (muT - muL)*(2*muT + lambda)) +  
& (alpha**2*(2*muT - muL) - alpha*(4*muT**2 - 5*muT*muL + muL**2) +  2*( 
& -(beta*(2*muT - muL)*(muT + lambda)) +  (muT - muL)**2*(2*muT 
& + lambda)))*MN))/ ((muT*(-1 + MN) - muL*MN)*(muL*(2*muT + lambda) +  ( 
& -alpha**2 + alpha*(4*muT - 2*muL) + 4*muT*(-muT + muL) +  2*beta*(2*muT 
& + lambda))*MN +  (alpha**2 - 4*alpha*(muT - muL) + 4*(muT - muL)**2 -  
& 2*beta*(2*muT - muL + lambda))*MN**2)) 
 beta4 = (-2*xi*(muT*muL*(alpha**2 - 2*beta*(2*muT + lambda)) +  (muT - muL)*( 
& -8*alpha*muT*(muT - muL) + alpha**2*(4*muT - muL) +  4*(muT 



 

B2 

& - muL)**2*(2*muT + lambda) +  beta*(-8*muT**2 + 4*muT*muL - 8*muT*lambda 
& + 2*muL*lambda))*MN))/ ((muT*(-1 + MN) - muL*MN)*(muL*(2*muT + lambda) +  
& (-alpha**2 + alpha*(4*muT - 2*muL) + 4*muT*(-muT + muL) +  2*beta*(2*muT 
& + lambda))*MN +  (alpha**2 - 4*alpha*(muT - muL) + 4*(muT - muL)**2 -  
& 2*beta*(2*muT - muL + lambda))*MN**2)) 
 beta3 = (2*xi*(muT*muL*(alpha*muT - (muT - muL)*(2*muT + lambda)) +  
& muT*(2*alpha**2*muT - alpha*(4*muT**2 - 5*muT*muL + muL**2) +  2*(muT 
& - muL)**2*(2*muT + lambda) -  2*beta*muT*(2*muT + muL + 2*lambda))*MN +  
& (muT - muL)*(-8*alpha*muT*(muT - muL) + alpha**2*(4*muT - muL) +  4*(muT 
& - muL)**2*(2*muT + lambda) +  beta*(-8*muT**2 + 4*muT*muL - 8*muT*lambda 
& + 2*muL*lambda))*MN**2))/ ((muT*(-1 + MN) - muL*MN)*(muL*(2*muT + lambda) 
& +  (-alpha**2 + alpha*(4*muT - 2*muL) + 4*muT*(-muT + muL) +  
& 2*beta*(2*muT + lambda))*MN +  (alpha**2 - 4*alpha*(muT - muL) + 4*(muT 
& - muL)**2 -  2*beta*(2*muT - muL + lambda))*MN**2)) 
 beta2 = (2*(muT**2*xi*(-(muL*(muT + lambda)) +  (alpha**2 - 2*alpha*(muT 
& - muL) - 2*beta*(muT + lambda) +  (muT - muL)*(2*muT - muL + lambda))*MN) 
& -  muR*(muT*(-1 + MN) - muL*MN)* (muL*(2*muT + lambda) +  (-alpha**2 
& + alpha*(4*muT - 2*muL) + 4*muT*(-muT + muL) +  2*beta*(2*muT 
& + lambda))*MN +  (alpha**2 - 4*alpha*(muT - muL) + 4*(muT - muL)**2 -  
& 2*beta*(2*muT - muL + lambda))*MN**2)))/ ((muT*(-1 + MN) 
& - muL*MN)*(muL*(2*muT + lambda) +  (-alpha**2 + alpha*(4*muT - 2*muL) 
& + 4*muT*(-muT + muL) +  2*beta*(2*muT + lambda))*MN +  (alpha**2 
& - 4*alpha*(muT - muL) + 4*(muT - muL)**2 -  2*beta*(2*muT - muL 
& + lambda))*MN**2)) 
 lambdaD = (muT*muL*(4*muT*(-muT + muL)*xi +  2*(muT - 2*muT*xi 
& + muL*xi)*lambda + lambda**2) +  (alpha**2*muT*(4*muT*xi - lambda) +  
& 2*alpha*muT*(2*muT - muL)*(-2*muT*xi + 2*muL*xi + lambda) +  2*beta*muT*( 
& -4*muT**2*xi + muT*(2 - 4*xi)*lambda + lambda**2) +  (muT 
& - muL)*(8*muT**3*xi + 2*muT*muL*(-1 + 2*xi)*lambda -  muL*lambda**2 
& - 4*muT**2*(muL*xi + lambda - xi*lambda)))*MN +  (alpha**2*(-5*muT*muL*xi 
& + 2*muL**2*xi + 2*muT*lambda - muL*lambda) +  2*alpha*(muT 
& - muL)*(2*muT*muL*xi - 4*muT*lambda + muL*lambda) +  2*(-4*(muT 
& - muL)**2*(muT*muL*xi - muT*lambda + muL*xi*lambda) +  
& beta*(muT**2*(6*muL*xi - 4*lambda) +  muL*lambda*(-2*muL*xi + lambda) +  
& muT*(-2*muL**2*xi + muL*(3 + 5*xi)*lambda - 2*lambda**2))))* MN**2 - (muT 
& - muL)*(-4*alpha*(muT - muL)*(2*muT*xi + lambda) +  alpha**2*(4*muT*xi 
& - muL*xi + lambda) +  2*(2*(muT - muL)**2*(2*muT*xi + lambda + xi*lambda) 
& +  beta*(2*muT*(-2*muT + muL)*xi +  (-2*muT + muL - 4*muT*xi 
& + muL*xi)*lambda - lambda**2)))*MN**3 )/((muT*(-1 + MN) - muL*MN)* 
& (4*muT**2*(-1 + MN)*MN + (alpha**2 - 2*beta*lambda)*(-1 + MN)*MN +  
& 4*muL**2*MN**2 + muL*(lambda + 2*MN*(-alpha + 2*alpha*MN + beta*MN)) +  
& muT*(-4*(alpha + beta)*(-1 + MN)*MN + muL*(2 + 4*MN - 8*MN**2)))) 
 muLD = (xi*(-(muT*muL**2*(2*muT + lambda)) +  muT*muL*(alpha**2 - 4*alpha*muT 
& - 4*beta*muT + 4*muT**2 +  2*alpha*muL - 4*muT*muL - 2*beta*lambda)*MN -  
& 2*muT*muL*(2*muT**2 - 2*alpha*(muT - muL) - 4*muT*muL +  muL*(beta 
& + 2*muL))*MN**2 +  (muT - muL)*(-8*alpha*muT*(muT - muL) 
& + alpha**2*(4*muT - muL) +  4*(muT - muL)**2*(2*muT + lambda) +  beta*( 
& -8*muT**2 + 4*muT*muL - 8*muT*lambda + 2*muL*lambda))*MN**3)  - muL*(muT*( 
& -1 + MN) - muL*MN)* (4*muT**2*(-1 + MN)*MN + (alpha**2 - 2*beta*lambda)*( 
& -1 + MN)*MN +  4*muL**2*MN**2 + muL*(lambda +  2*MN*(-alpha + 2*alpha*MN 
& + beta*MN)) +  muT*(-4*(alpha + beta)*(-1 + MN)*MN + muL*(2 + 4*MN 
& - 8*MN**2))))/ ((muT*(-1 + MN) - muL*MN)*(4*muT**2*(-1 + MN)*MN +  
& (alpha**2 - 2*beta*lambda)*(-1 + MN)*MN + 4*muL**2*MN**2 +  muL*(lambda 
& + 2*MN*(-alpha + 2*alpha*MN + beta*MN)) +  muT*(-4*(alpha + beta)*(-1 
& + MN)*MN + muL*(2 + 4*MN - 8*MN**2)))) 
 muTD = (muT*muL*(muT - muL*xi)*(2*muT + lambda) +  muT*(-(alpha**2*muT) 
& + 2*alpha*(2*muT - muL)*(muT - muL*xi) +  2*beta*muT*(2*muT + lambda) -  
& (muT - muL)*(4*muT**2 + muT*muL*(2 - 4*xi) + muL*lambda))*MN +  
& (2*alpha*muT*(muT - muL)*(muL + 4*muT*(-1 + xi) - 2*muL*xi) -  
& alpha**2*(muL**2*xi + muT**2*(-2 + 4*xi) + muT*(muL - 5*muL*xi)) +  2*( 
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& -2*(muT - muL)**2*(2*muT**2*(-1 + xi) - muL*xi*lambda +  muT*xi*(-muL 
& + lambda)) +  beta*(4*muT**3*(-1 + xi) -  muT**2*(-1 + 2*xi)*(3*muL 
& - 2*lambda) + muL**2*xi*lambda +  muT*muL*(muL*xi + lambda 
& - 5*xi*lambda))))*MN**2 +  (muT - muL)*(-4*alpha*muT*(muT - muL)*(-1 
& + 2*xi) -  alpha**2*(muT - 4*muT*xi + muL*xi) +  2*(2*(muT 
& - muL)**2*(muT*(-1 + 2*xi) + xi*lambda) +  beta*(-(muT*(2*muT - muL)*(-1 
& + 2*xi)) +  (muT - 4*muT*xi + muL*xi)*lambda)))*MN**3)/ ((muT*(-1 + MN) 
& - muL*MN)*(4*muT**2*(-1 + MN)*MN +  (alpha**2 - 2*beta*lambda)*(-1 
& + MN)*MN + 4*muL**2*MN**2 +  muL*(lambda + 2*MN*(-alpha + 2*alpha*MN 
& + beta*MN)) +  muT*(-4*(alpha + beta)*(-1 + MN)*MN + muL*(2 + 4*MN 
& - 8*MN**2)))) 
 betaD = (4*beta**2*MN*(muT*(-1 + MN) - muL*MN)* (2*muT*(-1 + MN) + lambda*(-1 
& + MN) - muL*MN) +  xi*(-8*alpha*muT*(muT - muL)**2*MN +  4*(muT 
& - muL)**3*(2*muT + lambda)*MN +  alpha**2*(4*muT**2*MN + muL**2*MN 
& + muT*(muL - 5*muL*MN))) -  2*beta*(4*muT**3*(xi + (-1 + MN)**2)*MN +  
& muL*MN*(-(alpha**2*(-1 + MN)*MN) - 4*muL**2*MN**2 +  muL*((-1 
& + xi)*lambda + 2*alpha*(1 - 2*MN)*MN)) -  2*muT**2*(2*(-(xi*lambda) 
& + alpha*(-1 + MN)**2)*MN +  muL*(1 + MN - 8*MN**2 + 6*MN**3 + xi*(-1 
& + 3*MN))) +  muT*(alpha**2*(-1 + MN)**2*MN +  2*muL**2*MN*(-1 + xi - 4*MN 
& + 6*MN**2) +  muL*(lambda*(-1 + xi + MN - 5*xi*MN) +  2*alpha*MN*(1 
& - 5*MN + 4*MN**2)))))/ (2.*(muT*(-1 + MN) - muL*MN)* (4*muT**2*(-1 
& + MN)*MN + (alpha**2 - 2*beta*lambda)*(-1 + MN)*MN +  4*muL**2*MN**2 
& + muL*(lambda + 2*MN*(-alpha + 2*alpha*MN + beta*MN)) +  muT*(-4*(alpha 
& + beta)*(-1 + MN)*MN + muL*(2 + 4*MN - 8*MN**2)))) 
 alphaD = (muT*muL*(2*(muT - muL)*xi*(2*muT + lambda) +  alpha*(-2*muT*(-1 
& + xi) + lambda)) +  (-(alpha**3*muT) + alpha**2*muT*(muL*(-2 + xi) 
& - 4*muT*(-1 + xi)) +  alpha*(2*beta*muT*(2*muT + lambda) +  (muT - muL)*( 
& -2*muT*muL*(1 + xi) + muT**2*(-4 + 8*xi) -  muL*lambda)) - 2*muT*xi* 
& (2*(muT - muL)**2*(2*muT + lambda) +  beta*(-4*muT**2 - 4*muT*lambda 
& + muL*lambda)))*MN +  (alpha**3*(2*muT - muL) - alpha**2*(4*muT**2 
& - 5*muT*muL + muL**2)* (2 + xi) + 2*alpha*(4*muT*(muT - muL)**2*(1 + xi) 
& +  beta*(-4*muT**2 + 3*muT*muL - 2*muT*lambda + muL*lambda)) -  2*(muT 
& - muL)*xi*(2*(muT - muL)**2*(2*muT + lambda) +  beta*(2*muT*(-2*muT 
& + muL) + (-4*muT + muL)*lambda)))*MN**2 -  alpha*(muT - muL)*(alpha**2 
& - 4*alpha*(muT - muL) + 4*(muT - muL)**2 -  2*beta*(2*muT - muL 
& + lambda))*MN**3)/ ((muT*(-1 + MN) - muL*MN)*(4*muT**2*(-1 + MN)*MN +  
& (alpha**2 - 2*beta*lambda)*(-1 + MN)*MN + 4*muL**2*MN**2 +  muL*(lambda 
& + 2*MN*(-alpha + 2*alpha*MN + beta*MN)) +  muT*(-4*(alpha + beta)*(-1 
& + MN)*MN + muL*(2 + 4*MN - 8*MN**2)))) 
 
 Else 
! 
! MN = 0 
! 
 mu2 = muR - muL*xi 
 alpha2   = 2*xi*(-2*muT + muL + (2*muT**2)/(2*muT + lambda)) 
 beta3    = 2*xi*(muT - muL - (alpha*muT)/(2*muT + lambda)) 
 beta2    = -2*muR + (2*muT*xi*(muT + lambda))/(2*muT + lambda) 
 lambdaD = 4*muT*xi - 2*muL*xi - lambda - (4*muT**2*xi)/(2*muT + lambda) 
 muTD    = -muT + muL*xi 
 betaD = beta*(-1 + xi) - (alpha**2*xi)/(2.*(2*muT + lambda)) 
 alphaD = 2*(-muT + muL)*xi + alpha*(-1 + (2*muT*xi)/(2*muT + lambda)) 
 EndIf 
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The material parameters obtained from Eq. (4.51) for passive damage / closed 
crack are the following: 
 
 muR = muRC 
 If(MN > 1.0E-3) Then 
 mu3 = (4*xi*MN*(beta*muT*muL -  (muT - muL)*(2*(muT - muL)**2 + beta*(-4*muT 
& + muL))*MN))/ ((muT - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN)) 
 mu2 = -((-(muR*(muT - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN)) +  xi*( 
& -(muT*muL**2) + 2*(-2*(muT - muL)**3 + beta*(-2*muT + muL)**2)* 
& MN**2))/((muT - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN))) 
 alpha2 = (-2*xi*(muT*muL*(-muT + muL) + (alpha - 2*beta)*muT**2*MN +  (muT 
& - muL)*(-(alpha*muT) + 4*(muT - muL)**2 + beta*(-6*muT + 2*muL))* 
& MN**2))/((muT - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN)) 
 alpha3 = (-2*xi*(muT*(-alpha + 2*muT - 2*muL)*muL +  (4*beta*muT**2 
& - alpha*(2*muT**2 - 3*muT*muL + muL**2))*MN +  2*(beta*(6*muT - 2*muL) 
& + alpha*(muT - muL) - 4*(muT - muL)**2)* (muT - muL)*MN**2))/ ((muT 
& - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN)) 
 beta5 = (-4*muT*xi*(muL*(-muT + muL) +  2*((muT - muL)**2 + beta*(-2*muT 
& + muL))*MN))/ ((muT - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN)) 
 beta4 = (4*xi*(beta*muT*muL - (muT - muL)* (2*(muT - muL)**2 + beta*(-4*muT 
& + muL))*MN))/ ((muT - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN)) 
 beta3 = (-2*xi*(muT*(muT - muL)*muL -  2*muT*(-2*beta*muT + (muT - muL)**2)*MN 
& -  2*(muT - muL)*(2*(muT - muL)**2 + beta*(-4*muT + muL))*MN**2))/ ((muT 
& - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN)) 
 beta2 = -2*muR - (2*muT**2*xi*(muL + (2*beta - muT + muL)*MN))/ ((muT - muT*MN 
& + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN)) 
 lambdaD = -((lambda*(muT - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN) +  
& xi*(-8*muL**3*(-1 + MN)*MN**2 +  muL*(-1 + MN)*(-(muT*(2*muT + lambda)) 
& +  (alpha**2 + 16*beta*muT - 24*muT**2 - 2*beta*lambda)*MN**2) +  muT*(-1 
& + MN)*MN*(-((alpha**2 - 2*beta*lambda)*(-1 + MN)) +  8*muT**2*MN 
& - 4*beta*muT*(1 + 3*MN)) +  muL**2*(-2*muT + MN*(2*muT + lambda -  
& 4*(beta - 6*muT)*(-1 + MN)*MN))))/ ((muT - muT*MN + muL*MN)*(-muL 
& + 2*beta*(-1 + MN)*MN))) 
 muLD = -((muL*(muT - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN) +  
& xi*(muT*muL**2 + 2*beta*muT*muL*MN -  2*(muT - muL)*(2*(muT - muL)**2 
& + beta*(-4*muT + muL))*MN**3))/ ((muT - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN))) 
 muTD = -((4*muL**3*xi*(-1 + MN)*MN**2 +  muT*muL*(-1 + MN)*(muT + 2*(beta 
& - 5*beta*xi + 6*muT*xi)*MN**2) -  2*muT**2*(-1 + MN)*MN*(2*muT*xi*MN 
& + beta*(-1 + MN - 4*xi*MN)) +  muL**2*(-(muT*MN) + xi*(muT + 2*(beta 
& - 6*muT)*(-1 + MN)*MN**2)))/ ((muT - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN))) 
 betaD = (2*(muT - muL)**3*xi*MN +  2*beta**2*(-1 + MN)*MN*(muT*(-1 + MN) 
& - muL*MN) -  beta*(muL**2*(-1 + xi)*MN + 4*muT**2*xi*MN +  muT*muL*(-1 
& + xi + MN - 5*xi*MN)))/ ((muT*(-1 + MN) - muL*MN)*(muL - 2*beta*(-1  + MN)*MN)) 
 alphaD = (alpha*(muT*(-1 + MN) - muL*MN)* (2*(muT*xi + beta*(-1 + MN))*MN 
& + muL*(-1 + xi - 2*xi*MN)) +  2*xi*(-4*muT**3*MN**2 + 2*muL**2*(beta 
& + 2*muL)*MN**2 -  muT*muL*(muL + 8*beta*MN**2 + 12*muL*MN**2) +  
& muT**2*(muL + 12*muL*MN**2 + 2*beta*MN*(1 + 3*MN))))/ ((muT*(-1 + MN) 
& - muL*MN)*(muL - 2*beta*(-1 + MN)*MN)) 
  Else 
  mu2= muR - muL*xi 
 alpha2  = 2*(-muT + muL)*xi 
 beta3   = 2*(muT - muL)*xi 
 beta2   = -2*muR + 2*muT*xi 
 lambdaD= 2*muT*xi - 2*muL*xi + (-1 + xi)*lambda 
 muTD    = -muT + muL*xi 
 betaD = beta*(-1 + xi) 
 alphaD = alpha*(-1 + xi) + 2*(-muT + muL)*xi 
  EndIf
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implemented in ABAQUS/Standard FE software as a user subroutine.

The proposed method is based on the assumption of pre-existing
cracks. The feature can be exploited in studying the effect of orientation
and size distribution of pre-existing cracks on the failure of materials. The
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The validity of the proposed WCD model was verified by numerical
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were composed of known transversely isotropic materials like ice and
marble, and concrete that was considered an isotropic material. The
model was found to be efficient in the analysis of axial splitting and
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In addition to the WCD model a three-dimensional version of the
damage model proposed by Murakami and Kamiya was enhanced and
implemented in ABAQUS/Standard FE software.
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