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Abstract

A new continuum damage model, the wing crack damage (WCD) model, was
developed for the analysis of brittle failure of transversely isotropic solids.
Special attention was paid to the analysis of axial splitting under compression
and tensile cracking under tension.

In addition to the WCD model a three-dimensional version of the damage model
proposed by Murakami and Kamiya was enhanced and implemented in
ABAQUS/Standard FE software.

The proposed WCD model is based on the use of the damage vector. The vector
represents both the normal direction of the surface of the plane crack and the
size of the damaged area. Damaging induces anisotropy in an originally
transversely isotropic material. The evolution equations for damage are
motivated by the wing crack growth mechanism. The evolution is based on
propagation of pre-existing damage.

The proposed model enables modelling of pre-existing cracks. The feature can
be exploited in studying the effect of orientation and size distribution of pre-
existing cracks on the failure of materials. The model was implemented in
ABAQUS/Standard FE software as a user subroutine.

The unsymmetrical behaviour of cracked materials under tension and
compression due to the opening and closure of cracks is taken into account in the
proposed model. In the work it was shown that the widely used strain-based
crack closure criteria cannot be reliably applied in a two- and three-dimensional



stress state. To attain a deformation localisation zone of finite width, a damage
rate-dependent damage surface was introduced.

The validity of the proposed model was verified by testing it against five basic
structures composed of known natural materials (ice, marble and concrete). The
numerical simulations revealed the capability of the model in modelling brittle
failure modes of transversely isotropic materials.
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Tiivistelma

Tutkimuksessa on esitetty kaksi vauriomekaniikkaan (Continuum damage
mechanics) perustuvaa materiaalimallia: Murakami Kamiyan (MK) malli, sek&
uusi "wing crak damage” -malli (WCD). Molemmat mallit on liitetty ABAQUS-
elementtimenetelmaohjelmistoon UMAT-aliohjelmana.

Esitetty uusi WCD-malli on tarkoitettu transversaali-isotrooppisten materiaalien
haurasmurtuman mallintamiseen. Erityistda huomiota on kiinnitetty yksiaksiaali-
sessa puristuksessa tapahtuvan kuormituksen kanssa yhdensuuntaisen halkea-
misen seka yksiaksiaalisessa vedossa tapahtuvan kuormitusta vastaan kohtisuo-
rassa olevan sargytymisen mallintamiseen.

Esitetty WCD-malli perustuu “vauriovektorin” kayttoon. Vauriovektori edustaa
sekd tasomaisen sardn normaalin suuntaa ettd vaurioituneen alueen kokoa. Vau-
rioitumisen vuoksi transversaali-isotrooppisesta materiaalista tulee anisotrooppista.
Vaurion kasvumekanismi simuloi siipisarén (wing crack) kasvumekanismia.

Uusi WCD-malli mahdollistaa materiaalissa ennen kuormitusta olevien alku-
sérdjen mallintamisen. Piirretta voidaan hyddyntéa tutkittaessa alkusardjen suun-
nan ja suuruuden vaikutusta materiaalin vaurioitumiseen.

Halkeilleen materiaalin epasymmetrinen kayttaytyminen vedossa ja puristuk-
sessa sardn avautumisen ja sulkeutumisen vuoksi on otettu huomioon esitetyssa
mallissa. Tutkimuksessa on osoitettu, ettd venymaperusteista sulkeutumiskriteeria
ei voida luotettavasti soveltaa kaksi- ja kolmiaksiaalisessa jannitystilassa.



Esitetysséd mallissa vauriopinta on vaurionopeuden funktio. Siksi muodonmuu-
tosten paikallistumisvydhykkeen leveys on &éarellinen.

Esitetyn mallin pétevyys on todennettu testaamalla mallia viidessa eri kuormi-
tustapauksessa kéyttéden tunnettuja luonnonmateriaaleja (jaa, betoni ja marmori).
Numeeriset testit osoittivat mallin patevyyden ja tehokkuuden transversaali-
isotrooppisten materiaalien haurasmurtuman mallintamisessa.
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List of symbols

Greek

o internal state variable corresponding to plastic hardening

bij Kronecker delta

€ total strain tensor

el shear (strain) traction, parallel to the crack plane

el normal (strain) traction, perpendicular to the crack plane

ell effective strain

€5 elastic strain tensor

el plastic strain tensor

é(l.) principal strains

Eij modified strain tensor

5; modified strain tensor expressed in principal strain coordinate
system

n viscosity parameter

M, M, M3,M4 Material constants

v power of dissipation

4 power of dissipation, damage part

~? power of dissipation, plastic part

K internal state variable corresponding to damage hardening
A multiplier, Lamé constant

A1 damage multiplier

AP plasticity multiplier

i Lamé constant

HR.c residual shear modulus under compression
HR.T residual shear modulus under tension
v,V Poisson’s ratio

w scaling factor

Q, direction of the damage vector increment in WCD model
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i) principal value of integrity tensor
on integrity tensor
¢, ¢¢, b Helmholtz free energy

p density

o, compressive strength

o Cauchy stress tensor

oy ultimate stress

o, tensile strength

ol shear (stress) traction, parallel to the crack plane

oV normal (stress) traction, perpendicular to the crack plane

olf effective stress tensor

o stress tensor corresponding to the modified strain tensor &;;

TR threshold traction

1S stiffness reduction factor for fully damaged model with passive
crack

¢ material parameter (concerning unilateral behaviour)

Small caps

a material parameter defining damage surface

h internar (linear) “hardening” coefficient

(iy,19,13) Cartesian basis

k;; diagonal operator which modifies principal strains to take account
of the crack activation/deactivation

™y poj mean of the pre-existing damage vector length

Mpp mean of the pre-existing damage vector component k

215 T3, X3

ny, N unit normal vector

s entropy per unit volume, standard deviation

810| standard deviation of pre-existing damage vector length

Spie standard deviation of pre-existing damage vector component k

14



T material parameter defining damage surface

Ty, T3, T3 coordinates of rectangular Cartesian coordinate system
zf, %, 7} coordinates of local coordinate system defined by damage vector
20 material parameter defining damage surface

Capital

A surface area

Ap damaged surface area

B conjugate force corresponding to damage variable «
By material parameter

B projection tensor

c material parameter

Cijuir [C] constitutive tensor, constitutive matrix

[C] constitutive matrix in local, damage coordinate system
D scalar damage variable

D,,D damage vector

Dy principal values of the second order damage tensor D;;
D damage tensor

E Young’s Modulus

E;; Young’s Modulus for transversely isotropic material
F yield surface, damage surface

F damage surface

F? yield surface

G plastic potential, damage potential

e damage potential

G? plastic potential

Gp fracture energy (J / m?*)

Gi; shear modulus for transversely isotropic material

H(Q Heaviside step function

K secant stiffness tensor

K] secant stiffness matrix
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[K']
Kl

Lijwy
M, M

Math

secant stiffness matrix in local, damage coordinate system
material Jacobian tensor (tangent stiffness)

damage characteristic tensor

vector parallel to symmetry axis of transversely isotropic material
second order tensor related to material symmetry axis M,
damage effect tensor

rotation tensor

material parameter defining damage surface
absolute temperature
conjugate force tensor and matrix corresponding to damage tensor

D;;
equivalent damage conjugate force
elastic strain energy

column matrix
matrix
norm of vector

vector a and b are parallel

time derivative: ¢ = %
ot

inverse of M;;

ow ow ow
Oz, 0z, O,

represents { } where W is a scalar function of

Ty, T2,y Ty

matrix transpose

component of matrix, i refers to row number and j to column

number
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CDM

FE

FEA

FEM

MK

RVE

WCD

Abbreviations

Continuum damage mechanics

Finite element

Finite element analysis

Finite element method

Damage model proposed by Murakami and Kamiya (1997)
Representative volume element

Wing crack damage model
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1. Introduction

One of the greatest challenges in material failure analysis is the modelling of
brittle failure in continuum mechanics. Rock, concrete and ceramics are well
known and widely used examples of brittle materials. Formation and unstable
growth of (micro)cracks due to the material inhomogeneities and external force
is considered to be the mechanism of brittle failure (Nemat-Nasser and Horii,
1984).

The finite element method (FEM) is a widely used tool in structural analysis.
The elements used in the FE analysis of structures are based on the theory of
continuum mechanics. FEM is therefore not well suited to crack propagation
analysis, as crack propagation induces geometrical discontinuity in the medium.
Despite the contradiction, tools for brittle failure analysis are needed in FEM.

The effects of discontinuities have been modelled in FEM using e.g. higher
order shape functions or enrichment functions. In elemental enrichment
methods, additional internal discontinuous degrees of freedom are applied at the
element level. Implementation in commercial FE software would therefore
require programming of new elements, whereas classical continuum mechanics
based approaches (e.g. damage mechanics, smeared cracking) can be
implemented without element-level modifications.

1.1 Objectives

Axial splitting is known to be the most likely failure mode under uniaxial
compression of brittle materials. Despite its generality, commercial FE software
does not provide proper tools for splitting failure analysis. Murakami and
Kamiya (1997) have proposed a method for the modelling of brittle failure. The
method is based on continuum damage mechanics (CDM) and has proved to be
promising in axial splitting analysis as shown by Skrzypek and Kuna-Ciskal
(2003). The method also takes into account the crack activation-deactivation
process due to crack closure and opening.

18



This work focused on the modelling of brittle failure based on the continuum
damage mechanics approach. The two fundamental objectives (A and B) were:

A. To enhance applicability of the damage mechanics approach proposed
by Murakami and Kamiya (1997) for modelling brittle failure in 3D
space as follows:

1. Implement a 3D version of the Murakami and Kamiya model
(MK model) in the ABAQUS/Standard FE software.

2. Identify the weaknesses and strengths of the MK model and
amend potential weaknesses.

3. Study whether the MK model could be modified for analysis of
transversely isotropic materials.

B. To introduce a new wing crack damage (WCD) model for modelling
pre-existing crack evolution under shear and tension and to implement
the model in the ABAQUS/Standard FE software as follows:

1. Damage evolution simulates wing crack growth.
2. Damaging introduces anisotropy.

3. Distribution, size and orientation of pre-existing defects can be
modelled.

4. The model can be applied in uniaxial splitting and tensile failure
mode analysis (see Fig 3.2 ¢, e).

5. Initially transversely isotropic materials can be analysed.
6. The upper limit of the damage variable is well defined.

7. Damage activation/deactivation corresponding to open and closed
microcracks is taken into account.

8. Constitutive equations are derived independently of the direction
of principal strain.

C. To implement the rate-dependent strength model in the wing crack
damage model.

19



1.2 Scope

This work concentrated on the modelling of axial splitting and tensile failure of
brittle material. Because of the extensive nature of the subject, only a limited
scope of applications was covered.

The failure was assumed to be brittle, i.e. plastic dissipation was assumed to be
negligible. Shear and crushing failure were outside the scope of this work.

Although crack initiation, propagation and wing crack formation are the
mechanisms behind axial splitting failure, the model in this study was not based
on micromechanics. The approach was phenomenological, although it was
motivated by micromechanical mechanisms.

Material dependent parameters that define rate dependency are needed for
practical applications. These material parameter studies were outside the scope
of this work. The rate-dependent model was applied to reduce mesh sensitivity.

The effect of rate-dependent softening on the mesh sensitivity was studied using
numerical examples with coarse and fine mesh. More detailed studies were
outside the scope of this work.

Crack activation and deactivation due to the opening and closing crack were
taken into account in this study. However, frictional sliding of crack surfaces
was not studied.

Material damaging is known to affect the apparent Poisson’s ratio and induce
volume change in the material. The phenomenon was neglected in this study.

The size, distribution and orientation of initial flaws such as voids and cracks

etc. are known to affect the strength of specimens. However, the flaw
distribution studies were outside the scope of this study.
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2. Mathematical notation
2.1 Tensor notation
Vectors are denoted in bold type. The vector u has the following representation:
u = wi + Uiy + ugis (2.1)
where the vectors i;, i, and i are unit base vectors of the rectangular Cartesian

basis shown in Fig. 2.1. Using summation convention the vector in Eg. (2.1) can
be written as

)
L
11 ;1;1
> |
/1/3
Ly

Figure 2.1. Rectangular Cartesian coordinate axes.

Index notation is used throughout this study. Thus e.g. the inner product of the
vectors u and v is written as

u-v = uu, (2.3)

The summation indexes are subscripted. Summation over superscripted letters is
not done. Superscript is used to represent tensor features, e.g. the total strain
tensor is ¢; while the total elastic strain is f;. Not all the subscripted letters are
summation indexes. Only lowercase letters are considered as summation
indexes. Some parameters like compressive strength o, are subscripted with
lowercase letters.
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All vectors and tensors refer to the same basis unless stated otherwise; therefore
only components are written in this text. The components of tensors are called
tensors. Similarly, components of vectors are called vectors. Both index (e.g.
u, ) and boldface notation (u) is used to represent vectors.

Similarly to Eq. (2.3), the inner product M, of the two tensors ¢; and A; is
written as

My, = oy, (2.4)
which, written with the base vectors, reads

Mknlkln = Ol - Amnlmln

= O-klAlnlkln

(2.5)

2.2 Matrix notation

Index notation of stress tensors o;; and strain tensors ¢;; is used throughout this
study. Because the finite element applications require the use of matrix notation,
the notation is also used in this study. The column matrix of elastic strains &j;
reads

{86} = {gfla 5527 5§3725f2725f372553 }T
(2.6)

_ e e e e e _e\T
_{51752753754755a€6}

where the order of the shear strains is the same as used in ABAQUS/Standard
(ABAQUS, 2003) FE software. Although row and column matrices are not real
vectors, also row and column matrices are called vectors in this text.

The stress vector is given in the following form:

{o} = {011702270'3370'1270'1370'23}T
2.7)

_ T
= {017027037(747(75a06}
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Hooke’s law defining the relation between stresses and strains is
oy = Cimen (2.8)

where C7; is the constitutive tensor. Eq. (2.8) in matrix notation is given in the
following form:

{o} = [C[{&"} (2.9)

where [C°] is the constitutive matrix.

The second order, symmetric damage tensor D,; and the thermodynamic force
Y;; corresponding to the damage tensor have a vector notation similar to Eq.

(2.6) and (2.7):

{D} = {Dn; Dyy, D33,2D;9,2D,3,2 D3 }T

, (2.10)
{Y} = {)/'11’}/'227y337}/12’Yi3’}/'23}
Thus the inner product of {D} and {Y} is
{D}T{Y} = DY (2.11)

where {D}” is the transpose of {D}.
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3. Literature review
3.1 Brittle failure and axial splitting

Fracture of metals is often characterised by some amount of plastic hardening,
whereas in the fracture of brittle materials like rock, concrete and many other
materials, “plastic flow is next to nonexistent” (Bazant, 2002). The definition of
ductile and brittle failure is usually based on the amount of plastic strain; “The
damage is called brittle when a crack is initiated at the mesoscale without a large
amount of plastic strain” (Lemaitre, 1992, p. 4). The order of magnitude given
by Lemaitre (1992) is:

cb

— <1 (3.1)
e

where e? is the uniaxial plastic strain and £ is the elastic strain. Ductile and
brittle behaviour are illustrated in Fig. 3.1. Brittle type behaviour is often divided
into the following two subclasses:

a) Quasi-brittle behaviour
b) Brittle behaviour.

According to Bazant et al. (2004), quasi-brittle materials “(1) are incapable of
purely plastic deformations, and (2) in normal use have a fracture process zone
(FPZ) which is not negligible compared to structure size D. For a large enough
D, every quasi-brittle structure becomes brittle.” This means that the definition
quasi-brittle cannot be considered as a pure material property but depends on the
specimen size; e.g. a concrete beam may be quasi-brittle whereas a large bridge
made of the same material may be brittle.

Uniaxial compression and tension tests are the most common test setup in the
definition of material strength parameters. The failure mode (or mechanism)
information is as important as the strength values obtained from the test. The
failure mode is needed in the verification of material models. Kendall (1978)
classifies compression failure modes into three categories (see Fig 3.2): yielding,
cone failure and axial splitting. The notion of compressive strength is useful only
in the case of yielding (ibid). An example of a tensile strength test using
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compressive force is the Brazilian test (Fig 3.2d). Although the external load is
compression, the test itself is considered an indirect tensile test.

Ductile l F Brittle

AF AF

»

Axial displacement T = Axial displacement

»

Figure 3.1. Illustration of ductile (left) and brittle (right) response under
uniaxial compression.

! ! l l !
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Figure 3.2. Compressive and tensile failure modes: a) plastic yielding, b) cone
failure, c) axial splitting, d) disk or Brazilian, e) uniaxial tensile failure (a—c
redrawn from Kendall (1978)).

The axial splitting shown in Fig. 3.2c characterises the macroscopic compressive
failure mode of many brittle materials like concrete, rock, ceramics and sea ice.
(Nemat-Nasser and Horii, 1984; Kuehn et al., 1992; Espinosa and Brar, 1995;
Weiss and Schulson, 1995; Bhattacharya et al., 1998; Chen and Ravichandran,
2000; Sarva and Nemat-Nasser, 2001; Gupta and Bergstrom, 2002). The axial
splitting failure mode is sometimes called slabbing (Ashby and Hallam, 1986).
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Axial splitting is a complex failure mechanism. The splitting does not cause a
global energy release, although energy is needed to form and propagate the
splitting crack. As stated by Bazant and Planas (1998, p. 299), a splitting crack
does not change the macroscopic stress field, whereas a transverse tensile crack
causes a change in the macroscopic stress field as shown in Fig. 3.3. The axial
splitting failure mechanism does not have a size effect because of the absence of
a global energy release (ibid.).

T T l l
. 7 7 7

— I T

777777022 T vz
l !

a) b) c) d)

Figure 3.3. a) Tensile crack, b) macroscopic tensile stress field, ¢) axial splitting
crack, d) macroscopic compressive stress field (redrawn from Bazant and
Planas (1998, p. 299)).

3.2 Wing crack model

The failure mechanism of brittle materials under compression has been studied
for decades. There are several models describing the mechanisms behind axial
splitting; wing cracks are commonly accepted to be the one of the mechanisms.
(Nemat-Nasser and Horii, 1984; Ashby and Hallam, 1986; Cannon et al., 1990).
The notion “wing crack” was introduced in 1963 by Brace and Bombolakis
(Nemat-Nasser and Horii, 1984; Renshaw and Schulson, 2001).

Axial splitting failure begins when a primary crack undergoes sliding, creating

wing cracks at the tips of the primary crack (Fig 3.4). The failure occurs when
series of wing cracks extend and finally link together and split the material. The
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final failure mode consists of a series of longitudinal splits (Sanderson, 1988;
Renshaw and Schulson, 2001).

e Secondary

crack
—> <«

T

Figure 3.4. Wing crack formation; redrawn from (Renshaw and Schulson, 2001).

Primary
crack

3.2.1 Wing crack initiation

Consider stresses near the tip of a crack in a homogeneous and isotropic plate.
Radial o,, circumferential o, and shear 7,4 stresses near the tip of the crack
shown in Fig. 3.5a can be solved based on the theory of linear elasticity (for
further details see e.g. Hellan (1984)). In the theory of fracture mechanics the
stresses are given as a function of the stress intensity factors (SIFs) K,, K, the
radius ~ and the angle 6 as follows (Hellan, 1984, p.10,13):

1 ; 0 0 0 30
o, =1 2777’(50082 cos2)+ ( 5sm2+381n2 }
1 0 30 0 30
% =7 2WT(3cos§+co ?) 3sin— —|—38m7” (3.2)
_N K (030 KH 0 3_9)]
T = 1 2wr(5m2+sm ) s COS2+3COS 5

where the stress intensity factors K, and K, are functions of loading, the state
of stress and the geometry of the crack.

27



Rt

02l —» —» —» —»>

\/VO-’:/ (oS
2N\
//O X

«— — — —

LT

@) (b)

Figure 3.5. Stresses near the tip of a crack (a) and the initiation of a new branch
under tensile and shear loading (b).

When SIF exceeds the fracture toughness ( K- in pure mode I) a crack starts to
initiate. In 1963 Erdogan and Sih (Hellan, 1984, p. 158) investigated both the
direction of growth and the initiation of growth under mixed mode loading. They
proposed the following equations:

o, — Bic
o (3.3)
Trog = O

where Eg. (3.3), indicates the direction of growth. Substituting Eq. (3.2) in (3.3)
the following equations are obtained:

K[(?)cosg + cos%e) — K1[(3Sing+ 38i1132—0) = 4K

(3.4)

K; (sing—k sin%) + K[](cosg—l— 3C0832—9) =0

The kinking angle 6. shown in Fig. 3.5b and the relationship between K, and
Ky in mixed mode can be solved from (3.4). Under pure shear loading
(K; = 0) the kinking angle 6, ~ 70.6°. Determination of the kinking angle for
anisotropic material is a more demanding task and outside the scope of this work.
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3.2.2 Modelling wing cracks under compression

Brittle materials like rocks and ice are assumed to contain small sized cracks that
propagate under compression. As described earlier, the wing crack mechanism is
a model describing the propagation of these cracks. A stress intensity factor (SIF)
is required to estimate the initiation of wing crack growth. The frictional sliding of
a primary crack has been found to be important in these models, therefore the
coefficient of friction ;. is taken into account in the determination of SIF.

The sliding crack approach has been widely analysed in the literature (e.g.
Cotterell and Rice, 1980; Nemat-Nasser and Horii, 1982; Steif, 1984; Ashby and
Hallam, 1986; Horii and Nemat-Nasser, 1986). Lehner and Kachanov (1996)
have summarised differences among the proposed models. The models are based
on the theory of fracture mechanics. The basic idea in these models is that a
wing crack (or a “branched crack”) is loaded by “splitting” forces induced by
frictional sliding of the primary crack. Stress intensity factors K, and K, are
derived for the crack based on orientation, length, loading etc. When the stress
intensity factors K, and K, are known, the propagation of the crack can be
analysed similar to the theory of fracture mechanics. In a pure mode |
propagation starts when K, = K ..

A representative crack of Nemat-Nasser and Horii (Nemat-Nasser and Horii,
1984; Horii and Nemat-Nasser, 1986) is shown in Fig. 3.6b. In their model the
stress intensity factors are defined as follows (ibid.):

Ky = Fsnto)
Koo —F cos(¢) (39
I — m

where the force is defined as follows:

F = —a[(oy; — 099)sin(27) (3.6)
=27, + poyy + 099 — (011 — 092) cos(27)]]

where 7, is the cohesive stress, i is the coefficient of friction and ~ is the
inclination angle of the primary crack.
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Figure 3.6. a) Idealised wing crack; b) representative tension crack of Horii and
Nemat-Nasser (1986) and c) the model of Ashby and Hallam (1986).

In the model of Ashby and Hallam (1986) a wing crack is assumed to grow
parallel to the axial loading as shown in Fig. 3.6c. The SIF applied in the
analysis of crack growth is the following (Ashby and Hallam, 1986, Eq. (A36)):

N 2 1
K =—— | = (0, + oy, +2.50L} 04L + ————| (3.7
1 (1 + L)3/2 /—3( Y K ) 2 (1 + L)1/2 ( )

where o, and o, are the stresses in local coordinate system shown in Fig.
3.6¢ (o,, is positive under compression) and L = [/a is the undimensional
length.

3.3 Continuum mechanics based brittle failure analysis

There are two practical requirements which material failure models have to
meet. Firstly, the model must be able to predict correct macroscopic stress and
strain state at failure (e.g. in uniaxial compression test simulation, the model
should give a similar force displacement diagram to that obtained in the tests).
Secondly, the predicted failure mechanism must fit the mechanism found in the
experiments. In practice, mathematical failure models seldom wholly fulfil both
criteria.
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One of the objectives of this work was to introduce material models capable of
predicting the axial split failure mode along the loading direction under
compression and tensile cracking perpendicular to the loading direction under
tension (see Fig. 3.2). The second requirement was that the model should be able
to take into account damage activation and deactivation corresponding to open
and closed microcracks (the activation/deactivation process is often called the
unilateral effect).

3.3.1 Discontinuity models and FEA

Although various methods have been introduced in modelling discontinuities in
FEA, only a brief review of the classical (continuum) discontinuity models is
given in this section.

The concepts used in FEA for modelling discontinuities due to material failure
can be divided into the following two branches (Oliver and Huespe, 2004):

e Discrete approaches, which are based on the modelling of cohesive
surfaces between continuum elements. The cohesive surface is ruled by
the traction-separation law.

e Continuum approaches based on the classical continuum mechanics (e.g.
smeared cracking, damage mechanics) or enriched continuum (e.g.
gradient enrichment, non-local models).

In 1958, Kachanov introduced the concept of effective stress (Lemaitre and
Chaboche, 1990). It can be considered as a starting point for new types of
approaches like the smeared crack and the damage mechanics concept.

In the damage mechanics concept, loss of stiffness can be considered to be a
consequence of randomly distributed microcracks. The loss can be
macroscopically measured and characterised by a single damage variable.
Depending on the type of damage, scalar D, vector D or tensor (D;;, Dy )
variables can be used. Damage vectors and tensors have been introduced to take

into account anisotropic stiffness degradation.
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The basic phenomenological difference between the theory of plasticity and
continuum damage mechanics (CDM) is that in the theory of plasticity inelastic
deformation induces irreversible strains, while in CDM, material damaging
reduces the elastic stiffness as illustrated in Fig. 3.7. The distinction between the
mechanisms could be simplified as follows: In plasticity theory the irreversible
strains are created by dislocation movement, while in CDM the damage is
caused by breaking of atomic bonds or debonding because of crack initiation.

ot a) Plasticity model 4 b) Damage model

[
|

& &

Figure 3.7. Stress-strain response of strain softening material; a) plasticity
model, b) damage model.

The smeared crack and discrete crack concepts were introduced in the 1960s
(Rots and Blaauwendraad, 1989). Both concepts have been specially developed
for brittle failure analysis in FEM.

In the early days of the discrete crack approach, the crack was modelled by
separating element edges when the separation criterion was fulfilled. Before the
separation, element edges were tied together with interface elements. The crack
propagation path was determined beforehand.

The smeared crack approach has been implemented in several commercial FE
software applications. Physically the smeared crack concept can be considered
as a representation of series of microcracks. In the smeared crack approach, the
direction of crack formation is usually defined by the maximum tensile principal
stress. The crack is formed along the plane normal to the stress. When the crack
is formed, a local coordinate system is fixed to the crack such that one of the
coordinates points in the direction normal to the crack surface. An orthotropic
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stress-strain law is then fixed to the local coordinate system, usually with a
strain-softening feature. Three versions of the smeared crack approach exist:

a) Fixed crack
b) Multiple fixed crack
¢) Rotating crack.

In the fixed crack approach the crack growth direction does not change with the
varying loading direction, whereas in the rotating crack approach the crack
orientation follows the principal tensile stress. The fixed crack approach tends to
give an “overly stiff response” (Guzina et al., 1995). In the multiple crack
approach a new crack is formed when the principal stress rotation increment
exceeds a threshold value (Ohmenhauser et al., 1999).

In 1976 Hillerborg pioneered the fictitious crack model (Hillerborg et al., 1976;
Bazant and Planas, 1998; Cotterell, 2002; Elices et al., 2002). When the
fictitious crack approach is used to model a pre-existing crack, the mathematical
formalism is identical to that for the cohesive crack approach (Bazant and
Planas, 1998, p. 158). In the fictitious crack model the cohesive stress o, is
given as a function of the crack opening w (Fig 3.8). The function ogog(w) is
called the softening function, which is a material property, and it can be related
to the fracture energy Gy as follows:

Gr = j:) “ocon (w)dw (3.8)

where w, is the critical crack opening. Based on the fracture energy and tensile
strength the so-called characteristic length [, can be derived (Elices et al.,
2002) as follows:

L = o (3.9)
ch — .

L (Ut)2

where E is Young’s modulus and o, is the tensile strength. The characteristic
length is an inverse measure of the material brittleness: the smaller [, is, the
more brittle the material (Elices et al., 2002). Although the fictitious crack
approach is attractive, the drawback is that usually the cracking zone has to be
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modelled using cohesive elements, i.e. the crack propagation path has to be
defined in advance. Recently the fictitious crack model has been implemented in
FE programs (Ruiz et al., 2001; Li and Siegmund, 2002; Planas et al., 2003; Shi,
2004).

A OCOH

v =

Figure 3.8. Fictitious crack approach.

The X-FEM approach has been developed based on the enrichment approach
(Belytschko and Black, 1999; Sukumar et al., 2000). In this approach,
discontinuous enrichment functions are added to the FE approximation to
account for the presence of the crack. Work has recently been done to develop a
strong discontinuity approach (SDA) (Oliver et al., 2002; Chaves, 2003) and a
continuum strong discontinuity approach (CSDA) (Oliver and Huespe, 2004). In
the CSDA, discontinuous kinematics and strain-softening constitutive laws are
introduced into the continuum model, which “allows one to bridge both
continuum and discrete approaches to material failure” (ibid.).

3.3.2 Plasticity theory

The theory of plasticity has been used in analysis of brittle failure. Although
plastic deformations are negligible in brittle failure, plasticity theory can be
applied from the phenomenological point of view. The phenomenological
modelling of brittle failure requires the use of a strain-softening approach. As
shown in Fig. 3.9, the sudden drop after peak stress can be modelled using the
theory of plasticity (Kolari et al., 2002; Kolari et al., 2003). In conventional
plasticity theory, the unilateral behaviour cannot be modelled.
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Figure 3.9. Failure mechanism and force-displacement diagram in a
compression test simulation using a Perzyna-type strain-softening approach
with von Mises-type plasticity model (Kolari et al., 2003; Kolari et al., 2004).

3.3.3 Axial splitting analysis in continuum mechanics

As discussed in the previous section, axial splitting failure is a result of crack
formation and propagation processes. In nature, crack initiation starts from a
material inhomogeneity or fault (Fig. 3.10a, b). When the specimen is modelled
using continuum mechanics, the material is usually assumed to be homogeneous
without any faults or discontinuities. Therefore, in the classical continuum
models there are no voids or disturbances to initiate crack formation or growth.
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a) Stress state b) Tensile crack c) Stress state, ideal material

Figure 3.10. Stress state under axial compression. a-b) circular material fault
inducing axial crack, c) stress state of undamaged and homogeneous material.
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a) Strain state b) Strain state, ideal material

Figure 3.11. Strain state under axial compression: a) strain on the lower edge of
the circular hole, b) strain state of undamaged and homogeneous material. v is
Poisson’s ratio.

Failure criteria in continuum mechanics are often based on dissipation potentials
(also called failure surface or yield surface). The evolution direction of failure is
defined by the derivative of the potential with respect to the stress or strain
tensor. The dissipation potential is a function of either stresses or strains. Stress-
based dissipation potentials are commonly used, although stress-based
dissipation potentials cannot be used when modelling axial splitting.

The uniaxial compression test shown in Figs. 3.10 and 3.11 illustrates the
usefulness of the strain space-based formulation in axial splitting modelling. The
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direction of damage evolution in the stress-based formulation is controlled by
the stress state. It is common for the damage evolution of brittle materials to be
based on the direction of maximum principal tensile stress, i.e. crack surfaces are
assumed to be orthogonal to the direction of maximum principal tensile stress
(Elices and Planas, 1996; Ohmenhauser et al., 1999; Oliver et al., 2003;
Zolochevsky et al., 2005). However, there is no stress in the lateral direction, as
shown in Fig. 3.10c. Therefore (to the author’s knowledge), there are no stress-
based failure evolution equations that give a correct evolution direction both
under axial compression and under tension (see Figs 3.2c and 3.2e).

The direction of damage evolution in a strain-based formulation of brittle
materials is often based on the direction of maximum principal tensile strain, i.e.
crack surfaces are assumed to be orthogonal to the direction of maximum
principal tensile strain. As shown in Fig. 3.11b, the tensile strain points in the
lateral direction, thus the crack must be vertically oriented and modelling of
axial splitting is possible.

3.4 Transversely isotropic elasticity

Material models can be divided into two categories: isotropic models and
anisotropic models. A special class of anisotropy is transverse isotropy. A
material is transversely isotropic when it has identical properties in one plane
and different properties in the direction normal to the plane (see Fig. 3.12).
Wood, some rocks, columnar ice, some ceramics and piezoelectric materials are
examples of transversely isotropic materials (Zhu and Cescotto, 1995; Cazacu et
al., 1998; Renshaw and Schulson, 2001; Lu and Shao, 2002; Litewka and
Debinski, 2003).
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Figure 3.12. Material symmetry axis M for transversely isotropic material.

Elastic behaviour of transversely isotropic materials is described with five
independent elastic constants, whereas only two are needed for isotropic
materials. The most convenient way is to express the elastic strain energy using
four of the following five independent invariants (Rogers, 1990):

Ji = el

Jo = ehEh

J3 = eliEimEmk (3.10)
Jy = Myep

_ e _e
J5 - Mkmgmlglk

The initial material symmetry is characterised by the second order tensor M;;,
which is defined as follows:

where M, is the component of the unit vector M defining the material
symmetry axis direction shown in Fig. 3.12. The strain energy density W for
linear elastic transversely isotropic material is given as follows (Rogers, 1990):

1
W = §>\(J1)2 + prdy + adyy + 2py — pr)s + B(Jy) (3.12)
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where up and p; may be interpreted as shear moduli for simple shear, and X,
« and @ are material constants.

If the symmetry axis M is parallel to the Cartesian base vector i; shown in Fig
3.12, the material constants in Eq. (3.12) expressed using the conventional

engineering constants are

a—2Gp vy

)\ - 21/31 -1
2Gy {(E11(E33 — By vy +2G), (V31)2)) - 2E33G21]
a =
Ey <E33 + 4Gy, (v31)? ) — 4E33Gy
5= By [(Bs3)? + 4Gy (Gyy — 4Gy3) (v31)” — 4B35(Gi3 — Gyvg)] (3.13)
2By, (Es3 + 4Gy (v31)* ) — 833G
_ AEB3;Gy (Esz + Gy —4Gy3)
2E); (Es3 4 4Gy (v31)” ) — 8E33Gyy
Eyy
pu— G pu—
Hr 21 201+ 1)
pr = Gis

where vy, and vy, are Poisson’s ratios, G, and G5 are shear moduli, E;; and
E55 are Young’s moduli in the directions 1 and 3, respectively. Poisson’s ratios
are defined as follows:

Vinp = _w (no summ.) (3.14)

mm

where ¢,,, is the strain in direction m under uniaxial compression and ¢, is the
corresponding strain in direction p.

3.5 Mesh sensitivity and strain softening
Mesh sensitivity and localisation are problems that arise in strain-softening

applications. Mesh sensitivity means that beyond a critical load level all further
deformations tend to localise in a small band. In finite element applications, the
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band width is a function of the element mesh; the denser the mesh the smaller
the band width. From the mathematical point of view, the localisation is caused
by “loss of ellipticity of the underlying differential equations” (Kang and
Willam, 2000). Mesh-independent solutions are difficult to obtain unless a
length scale is introduced (ibid.). The use of rate-dependent solution methods
like viscoplasticity introduces the length scale.

The mesh dependency can be illustrated with the simple tension spring example
shown in Figs. 3.13-3.15 (Bazant and Planas, 1998). The system of springs
consists of n springs having a total length of L. Each spring has an identical
softening curve illustrated in Fig. 3.13. The tension test is force controlled. It can
be assumed that one of the springs starts softening before the others. The
situation is similar to the numerical applications where, due to round-off errors
etc., the strains are not identical for all the springs. The displacement response is
illustrated in Fig. 3.15. As shown in the figure, the end displacement approaches
zero as the number of springs increases.
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End displacement 3u, u

Figure 3.13. Softening curve for a single spring.
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Figure 3.14. n-spring system.
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Figure 3.15. Load displacement diagram for softening the n-spring system
(redrawn from Bazant and Planas (1998, p. 216)).

3.6 Damage mechanics approach
3.6.1 Thermodynamic basis for material damage theory

A brief review of the formulation of constitutive equations based on continuum
thermodynamics is given in the following paragraphs, whereas more detailed
presentations are given by Lemaitre and Chaboche (1990), Lemaitre (1992),
Ristinmaa and Ottosen (1998), Santaoja (2001) and Olsson & Ristinmaa (2003).

According to Lemaitre and Chaboche (1990), the variables used in
thermomechanics can be divided into two classes: a) observable variables, and
b) internal variables. Common examples of observable state variables are the
total strain ¢; and the absolute temperature T, while the plastic strain e/; is an
example of an internal variable.

The assumption of small strains is made. This allows a decomposition of total

strain tensor ¢;; into the elastic part j; and inelastic part e/:

If damage and plasticity are assumed to be uncoupled, the Helmholtz free energy
per unit mass v is (Zhu and Cescotto, 1995):
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Y = (e — ef, Dy) + ¢F (o) + P (k) (3.16)
where ¢f, Dy, o and « are internal state variables, 1" («) is the free energy
due to plastic hardening and ¢ (k) is free energy due to damage hardening. The
Clausius-Duhem inequality takes the following form in isothermal conditions
(Olsson and Ristinmaa, 2003):

v =—p+ o€ >0 (3.17)

where ~ is the power of dissipation and a dot denotes rate with respect to time,
and p is the density. The thermodynamic conjugate forces corresponding to the
internal variables are

0 0
%'Zpa—lfy Yz‘j:—,Oag”
S i (3.18)
oY oY
B = p—L— — 5
Ok’ k P a

The sign convention in Eg. (3.18) is similar to the convention used by Murakami
and Kamiya (1997). With Egs. (3.16) and (3.18) we have the dissipation
inequality from Eq. (3.17):

= p——7(& — L) —p==—D; —
Y pa(eu — 65)(57,] SZ]) paDlj i paaa
oY . .
B pa_iﬁ o (3.19)
= —0y(¢y — }) + YyDy — Ré — Bf: + 0

= 0l + YDy — Ra — Bi > 0

The equation can be separated into two parts if dissipation due to damage and
plasticity are uncoupled (see Eq. (3.16)).

T=7"+7">0 (3.20)
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P =g el —Ra >0
K s - (3.21)
v =Y;D; —Bf >0

A condition that determines whether plastic and/or damage loading occur must
be defined. These conditions are known as the yield surface and damage surface.
The yield surface F? and damage surface F' are often given as a function of
state variable D;; and conjugate forces

0

F? = FP(0;,R)

Y (3.22)
F' = FY(Y;,B) =0
When
FP =0or F! =0 (3.23)

plastic or damage response is possible. The response is elastic if the following
condition is fulfilled:

F? <0and F' <0 (3.24)

The thermodynamic formulation gives the thermodynamic forces and the
dissipation inequality equation but does not give information about the evolution
laws for internal variables. The only restriction imposed by continuum
thermodynamics on the evolution laws is that the dissipation inequality of Eqg.
(3.21) must be fulfilled.

Evolution laws can be derived from the postulate of maximum dissipation using
the definitions in Egs. (3.22)—(3.24). The objective is to find stresses and forces
for given thermodynamic fluxes £}, a, Dij and £ such that the dissipation ~ in
Eg. (3.19) is maximised. The postulate of maximum dissipation leads to the
following evolution laws (Zhu and Cescotto, 1995; Ristinmaa and Ottosen,
2000; Olsson and Ristinmaa, 2003):
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In Eq. (3.25) the parameters AY >0 and A? >0 are called consistency
parameters. They are assumed to obey the Kuhn-Tucker consistency
requirements (Olsson and Ristinmaa, 2003):
AT >0, AP >0
Fl <o, F? <0 (3.26)
NFE =0, ANFP =0

In addition to condition (3.26), when A% >0 and A” > 0 the consistency
requirements must be satisfied (Olsson and Ristinmaa, 2003):

=, Fr — (3.27)

In non-associative formulation the functions F? and F? in Eq. (3.25) are
replaced by plastic potential function G and damage potential function G

G’ = G"(0y;, R)
ol — Gd(Yij,B) (3.28)
The evolution laws are then
oG d
)\d o )\d 3G
0%, -~ o8 3.29
0 1y OG? 5 0G” (3:29)
VN G TN R
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The non-associated formulation reduces to associated formulation when
F¢ =@G? and F? = G”. As stated by Ristinmaa and Ottosen (2000) and
Santaoja (2001), the associated formulation fulfils the dissipation inequality if
F is a convex function. When considering non-associated formulation it is more
difficult to show that the dissipation inequality is fulfilled.

Edelen (1972) introduced requirements for the non-associated potential function
such that the dissipation inequality is fulfilled. According to Lemaitre and
Chaboche (1990, p. 193), the dissipation inequality in non-associated formulation
is ensured if the potential function G “is convex and positive as soon as there is
plastic flow and includes the origin”.

3.6.2 Basis of damage mechanics

In models of continuum damage mechanics (CDM), damage can be considered
as a macroscopic state variable that affects the macromechanical properties
(stiffness degradation) of the material. Physically the loss of stiffness can be
considered a consequence of distributed microcracks and microvoids.

Continuum mechanics deals with mathematical quantities that represent
averages of a certain volume (Lemaitre, 1992, p. 3). The volume must be small
enough to avoid high gradient smoothing, “but large enough to represent an
average of the microprocesses” (ibid.). The volume is called “representative
volume element” (RVE). The size of the RVE depends on the material. Lemaitre
(1992, p. 3) gives the following scales for the RVE:

e metals and ceramics: (0.1 mm)?
e wood: (10 mm)®
e concrete: (100 mm)3.
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Figure 3.16. Definition of damage (Redrawn from Lemaitre (1992, p. 11)).

The concept of damage can be illustrated by considering the RVE at a point M
shown in Fig. 3.16, where n is the surface normal to the intersection, x is the
abscissa along the direction n, A is the surface area, and Aj is the area of all
microcracks and microcavities that lie on the intersection A. The value of the
damage D attached to the point M in the direction n is

D(M,z,n) = ADT(@ (3.30)

As shown in Eqg. (3.30), the damage D varies with x. A continuous variable over
the RVE for its deterioration to failure is defined considering the plane that is
most damaged:

Dmmn:M%%ﬂﬂ (3.31)

Thus the value of the scalar damage variable depends on the point and direction
considered. The value is in the range

0<D<1 (3.32)

where the value of 0 corresponds to undamaged RVE material and the value of 1
to fully broken material.

In CDM, formulation of the constitutive equations is based one of the following
two approaches:

e Strain equivalence principle approach
e  Stress equivalence principle approach.

46



In the strain equivalence principle shown in Fig. 3.17, “any strain constitutive
equation for damaged material may be derived in the same way as for a virgin
material, except that the usual stress is replaced by the effective stress”
(Lemaitre, 1992, p. 13). In the stress equivalence principle, the stress associated
with the damaged state is the same as the stress obtained in the undamaged state
under effective strain (fig. 3.18).

As stated by Simo and Ju (1987), the strain equivalence principle is naturally
associated with a strain-based formulation of the constitutive equations while the
stress equivalence principle corresponds to a stress-based formulation. In the
strain-based formulation the elastic energy density is written as a function of
strains, while in the stress-based formulation the complementary form is used.

The damage effect tensor M;;; defines the relation between the effective and
nominal counterparts as follows (Voyiadjis and Park, 1997; Carol et al., 2001):

O—Z]ff = Mz'jklakh aij = Mtjkllali{f (3 33)
agff = Mihen, gy = M@y’kﬁgf

where Mg;}l is the inverse of M;;,. Depending on the form of the damage effect
tensor M, it is possible that the effective stress in Eg. (3.33) is non-
symmetric. By contrast, the energy equivalence principle automatically induces
symmetry in the secant stiffness tensor.

o ol
— —>
— —
— —>
— —
1 € 1 €
Physical space Effective space

Figure 3.17. Effective stress concept and the hypothesis of strain equivalence
(redrawn from Simo and Ju (1987)).
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Figure 3.18. Effective strain concept and the hypothesis of stress equivalence
(redrawn from Simo and Ju (1987)).

3.6.2.1 Effective stress concept
The effective stress approach was introduced by Rabotnov 1968 (Lemaitre,

1992, p. 12). Consider the RVE shown in Fig. 3.19 loaded by a force F. The
uniaxial stress due to the force is

o — % (3.34)

If the force is divided by the area that effectively resists the load (A — Ap), the
result is the effective stress o*/:

o = 1 _F pp (3.35)

Using the definition of damage given in Egs. (3.30) and (3.31), Eq. (3.35) gives

ol — - fD (3.36)
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Figure 3.19. Damaged element (Redrawn from Lemaitre (1992, p. 12)).

The definition given in Eq. (3.35) is for the RVE under tension. Under
compression the effective area resisting the load may be larger due to the closing
defects. If all the defects close under compression, the effective stress is the
same as the stress in the undamaged RVE.

3.6.2.2 Isotropic damage

The damage variable D introduced in Eg. (3.31) depends on the location and
orientation of the RVE. If the damage is assumed to be isotropic, it has the same
value in all directions and the scalar damage variable completely characterises
the three-dimensional damage state:

p=“D (3.37)

The Hooke’s law defining the relation between stresses and strains is

JZJ

= Cimen (3.38)
According to the effective stress concept introduced in Section 3.6.2, the stress
in Eq. (3.38) can be replaced by the effective stress of Eq. (3.36):

(o)

1 _JD = Ciueh (3.39)
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from which the following stress-strain relation for isotropic damage is obtained:

0y = (1= D)Clju eiy (3.40)

3.6.2.3 Geometric second order damage tensor

When damage is anisotropic, the damage vector or tensor must be used instead
of a scalar damage variable. Second, fourth and higher than fourth order tensors
have been used to represent damage, but the physical meaning of higher than
second order tensors may be difficult to understand. The effective stress concept
in anisotropic damage is straightforward when a second order damage tensor is
used. The second order damage tensor can be obtained from purely geometric
analysis as shown in this section. The tensorial nature of damage has been
widely studied (Leckie and Onat, 1981; Betten, 1983; Voyiadjis and Deliktas,
2000; Carol et al., 2001).

Undamaged configuration Damaged configuration
Strain equivalent

Figure 3.20. Damaged and undamaged surface area (Redrawn from Lemaitre
(1992, p. 61)).

Second order damage tensor D;; can be derived from the surface area analogy as
in Eg. (3.31). Let dA represent the surface area of the material in its current
configuration, and n; a unit normal to the area element as shown in Fig. 3.20,
while dA represents the strain-equivalent undamaged area and n; its normal,
respectively. The relation between the damaged and undamaged and area

elements is the following (Murakami, 1990; Lemaitre, 1992):

ii;dA = (85, — Dy )npdA (3.41)
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The principal values Dy;, of the damage tensor D;; correspond to the reduction
of the area of the tetrahedron as shown in Fig. 3.21.

djzlg = (1 - D(3))dA3

Z

d(zlg - (1 - D(Q) )dAQ
d(zll - (1 - D(l))dAl

Figure 3.21. Damaged and strain equivalent undamaged configuration in
principal coordinates of the damage tensor. (Redrawn from Lemaitre (1992, p. 61).

The force acting on the area is
o' dA = oynydA (3.42)

Using the definition in Eq. (3.41), Eq. (3.42) is written in the following form:

(5jk - Djk) = O (3.43)

The tensor ¢, = &; — Dy; is the continuity tensor, also called the integrity
tensor (Valanis, 1990; Carol et al., 2001). Tensors ¢, and D,; share their
principal axes and principal values and the principal values vary between 0 and 1

(Carol et al., 2001). Their principal values are related according to

Dy =1- ¢(7;) (3.44)

where Dy;) are the principal values of D;; and gb(i) are the principal values of ¢y;.
The effective stress tensor given in Eq. (3.43) could be defined by

O'gff = 00y, (3.45)
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where q; is the inverse of (6;, — D) i.e. (64 — Diy)ay; = 0y
Similar to Eq. (3.33), also Eq. (3.45) leads to a non-symmetric effective stress

tensor. A number of symmetrisation forms have been proposed by researchers.
Betten (1983) has proposed the following sum-type symmetrisation form:

1
Uf}ff = 5[0%%‘ + ijaki] (3.46)

The following product-type symmetrisation method has been proposed by
Cordebois and Sidoroff at 1982 (Voyiadjis and Park, 1997; Voyiadjis and
Deliktas, 2000):

o fjff = byopbj (3.47)

where b;;, defined in principal damage coordinate system is:

L 0 0
1-— D(l)
1
b, = 0 —_— 0 3.48
ik 1— D(2) ( )
1
0 0 —_—
1-— D(g)

Using the symmetrisation method of Eq. (3.47), the following form of the
damage effect tensor M,;, in Eq. (3.33) can be obtained (Voyiadjis and
Deliktas, 2000):

M = byby (3.49)

To illustrate the damage effect tensor 1, the tensor is written in matrix form.
The inverse of the tensor written on the principal axis of the integrity tensor is
(Carol et al., 2001)
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¢y O 0O 0 0 0
0 @2 O 0 0 0
0 0 o 0 0 0
[Mrl = 0 0 0 ¢(1)¢(2) 0 0 (3-50)
0 0 0 0 Pa)P3) 0
0 0 0 0 0 \/m

3.6.2.4 Phenomenological damage models

In the previous chapter, the derived second order damage tensor D;; was based
on the effective stress approach and the physical meaning of the tensor was
based purely on the geometric analysis. The principal values D; of the damage
tensor D;; based on the effective stress concept are in the range 0 < Dj;) < 1
(Carol et al., 2001).

There are number of models in which the damage tensor can be considered
(only) as an internal state variable (Murakami and Kamiya, 1997; Halm and
Dragon, 1998; Hayakawa et al., 1998; Challamel et al., 2005). These models are
called “phenomenological damage models” in this study. In the
phenomenological approach, a model formulation may be based on micro-
mechanically motivated mechanisms, or the damage tensor may be considered
only as an internal state variable affecting the stress-strain response without a
micromechanical background. Therefore the physical meaning of the damage
tensor might be difficult to understand. Also, the allowable range of principal
values of the damage tensor may be indeterminate.

In the “phenomenological approach” the Helmholtz free energy (e, D;;) is
often written using invariants based on the use of the damage tensor. For
example, a combination of the basic invariants of elastic strain tensor &f; and
damage tensor D;; can be used (Murakami and Kamiya, 1997):

e e [N € €
ERKELL> ERER> U Dmm (3.51)

e _e e _e e e
EkkEmI D ml» D kmEmiIElk ERIEK D mm
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where only the invariants that are linear in D;; are given. Using the invariants in
Eg. (3.51) the Helmholtz free energy can be written as follows (Murakami and
Kamiya, 1997):

e 1 e e e e
pYe = 5)\(51;%)2 + pepef; + m Di(ef)* + meDietmeim

ot = S

where 52 is the modified strain describing the crack closure effect, n,,...,n, and
h are material constants, p is the density and « is “internal scalar variable
prescribing the development of damage.”

3.7 Rate-dependent brittle damaging

The behaviour of most materials is known to be strain rate-dependent. Concrete
and natural ice are examples of strain rate-dependent brittle materials (Lambert
and Ross, 2000; Schulson, 2001). The rate dependency is verified experimentally
using either the displacement-rate or force-rate controlled methods. In the
experimental evaluation of strain-rate dependency, the effects of inertia forces
should be carefully taken into account in order to avoid misleading results.

The strain rate is known to affect the material strength of viscoplastic materials.
There are also results which indicate that the strength of brittle materials is
strain-rate dependent, e.g. the strength of concrete and ceramics has been found
to be higher when the strain rate is increased (Chen and Ravichandran, 2000;
Koh et al., 2001; Georgin and Reynouard, 2003). In their studies of strength
increase due to strain rate increase, Nard and Bailly (2000) suggested that the
apparent compressive strength increase was a result of “inertial confinement”. In
numerical simulations, they remarked that introducing rate-dependent strength
into the constitutive model was not necessary in order to take into account an
experimental compressive strength increase. According to Georgin and
Reynouard (2003), at strain rates below 1 s™ the rate effect of concrete material
is assumed to result from free water, while for rates over 10 s it is assumed to
result from the inertial confinement.
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Although the mechanisms behind the strain rate dependency in brittle failure are
not known, the rate dependency has been considered in this study. As discussed
in Section 1.1, the objective concerning the rate effect was to implement the
rate-dependent strength model in the wing crack damage model.

Rate-dependent solution methods introduce the length scale into the numerical
model. The length scale eliminates the mesh sensitivity, which is known to be a
problem in strain-softening material models.

3.7.1 Perzyna model

The commonly used Perzyna-type rate-dependent approach has been applied
also in damage mechanics; e.g. Dube et al. (1996) proposed a model for
isotropic rate-dependent damage of concrete using the Perzyna method.
Challamel et al. (2005) have also proposed a Perzyna-type time-dependent
equation for damage evolution. Challamel et al. have neither applied the rate
dependency nor given any examples of rate-dependent damage. The Perzyna-
type rate-dependent method is an example of an “overstress model”. In the
Perzyna method, material strength increases with increasing rate.

In the Perzyna (1966) model the evolution law for plastic strains &/ is given in
the following form:

el = A'g—F
T (3.53)

i = x2F

- " 0B

where the consistency parameter is defined as non-negative function ¢ of a
static yield function F' and viscosity parameter n as follows:

X = @) (3.54)

=T

where ¢ » are McCauley brackets:

55



(xy = %(m— 1z1) (3.55)

In 1995, Ponthot introduced “continuous” viscoplastic formulation (Carosio et
al., 2000). In the formulation, Eq. (3.54) is transformed into the format of a rate-
dependent yield condition:

F(Uij7)\’);) = F(Uij7)‘) - ¢_1(77)") =0 (3.56)

where ¢~!(n)) is inverse function of ¢(F) in Eq.(3.54).

The viscoplastic consistency condition is then

or 967 (1A)
oA oA

or' .

—1 \
X—8¢ @”X:o (3.57)
X

3.7.2 Consistent viscoplasticity

Wang (Wang et al., 1997; Wang, 1997) proposed a so-called consistency
viscoplastic formulation where the rate-dependent yield surface was introduced
in such way that Kuhn-Tucker conditions remain valid. In addition to time-
dependent solutions, Wang’s formulation can be used to introduce a length scale
into the model. In the approach, the proposed rate of state variables is included
as an independent variable into the yield criteria:

F = F(oy,k ) =0 (3.58)

The corresponding consistency condition is then

where the yield surface gradient n,;, the hardening modulus % and the viscosity

parameter £ are defined as follows:
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oF b oF oF

" =50, " o YT ek

(3.60)

In the consistency approach, the yield surface can expand and shrink due to both
the hardening and hardening rate effects.

As shown by Carosio et al. (2000) and Heeres et al. (2002), the consistency
approach of Eq. (3.59) reduces to the Perzyna formulation of Eg. (3.57) when

¢ = 20~ 0n)
oA (3.61)
f=A
3.7.2.1 Consistent viscoplasticity in damage mechanics

The damage surface is given as a function of the total elastic strain ¢f,
hardening variable « and hardening variable rate

F = F(efj,k,k) = 0 (3.62)
The consistency condition is

F=r—0éi+—Fk+-oK= (3.63)
X K K

In finite element formulation, stresses and internal state variables are updated in
integration points. The update starts from time t with the known variables:

afj,sff,nt. In the update process the corresponding values at time ¢ + At are
calculated: ol 4!, /A kAL

There are no plastic deformations in this approach, therefore the elastic strain
tensor efj’”m is known. The hardening variable x is solved iteratively from the
discretised consistency condition of the damage surface following the same
procedure as Wang et al. (1997). The Newton-Raphson iteration process is used to
solve the hardening variable «. The consistency condition at iteration step i is:
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OF (. OF OF
oo 0ely + S8k S8R = 0 (3.64)

F(ef, k, k) =~ Fli
ij

where 65;;’]- is the iterative strain increment, 6« is the iterative hardening variable
increment, 6k is the increment of the iterative hardening variable rate and
FO = F(ef", 59, ) is the ith residual of the damage function F at iteration
step i. The variable « is integrated by the Euler backward algorithm:

S\ = 8k At

K0 = 37 65

(3.65)

where At is the time increment and Ax(") is the hardening variable increment.
The updated hardening variable increment Ax when F) =~ 0 is

KITAL = k! 4+ Ak (3.66)

Using Egs. (3.64) and (3.65) the consistency condition can be rewritten as

y _ OF OF OF 1
_p) —
! 886U+[3 +8/£At]6 (3.67)
from which 6« is obtained as follows:
_(OF  OF 1 . OF
= (@) e
o r T OR At] [F N 5%] (3.68)

During local iteration the iterative strain increment éef; in Eq. (3.68) vanishes.

In incremental solution of equilibrium equations, the stress-strain relation must
be formulated into incremental form. Assuming that the stress is a function of
damage and elastic strain as follows:

o = 04(&y; D) (3.69)

]

the incremental form is obtained from Eqg. (3.69) is

58



doj; do;
==Yt + ——U 8D 7
60—1] 85,2’:1 6€k1 (3_Dkl 1) Kl (3 0)

In this study the hardening parameter equals the multiplier
K=\ (3.71)

Thus also 6k = 6\ . The damage increment is obtained from (3.29), as follows:

6\ = AAL (3.72)
G
D,. g
6Dy = 86X oY,

Substituting Equations (3.71) and (3.72) into Eq. (3.70), the following for the
stress increment is obtained:

00j; 00j;
60’17 = ﬂ&é‘zl + O-U 8G

Defy Dy 0 Yy o (3.73)

Substitution of (3.68) into Eqg. (3.73) gives the material Jacobian when the
residual F*) vanishes:

90 1 do;; 0G OF
Kt — 9% _ - '74
W= ey OF _OF 1 OD,, 0Y,, O (3.74)
Ok 0Ok At

3.8 Murakami Kamiya damage model
3.8.1 Objectives
In the continuum damage model of Murakami and Kamiya (1997) the damage
evolution induces anisotropic stiffness degradation of initially isotropic material.

Under uniaxial compression, the damage tensor evolution is mainly determined
by the directions of principal tensile strain. Thus the approach enables modelling
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of the axial splitting failure mode under compression. The model also produces
the correct tensile failure mode (see Fig. 3.2e).

Besides the Murakami and Kamiya (1997) model there are several other models
suitable for unilateral behaviour modelling (Florez-Lopez, 1995; Fremond and
Nedjar, 1995; Papa, 1996; Vinet and Priou, 1997; Voyiadjis and Zolochevsky,
1998; Comi and Perego, 2001; Pensee et al., 2002; Gambarotta, 2004). As
discussed in Section 3.3.3, stress-based failure surfaces are generally not suitable
for modelling the axial splitting and tensile failure, because it is difficult to
formulate a dissipation potential function whose derivative gives a correct
damage evolution both under uniaxial compression and tension. Halm and
Dragon (Halm and Dragon, 1998; Dragon et al., 2000; Halm et al., 2002) have
introduced a damage model suitable for modelling the axial splitting and tensile
failure, but as pointed out by Cormery and Welemane (2002) their method leads
to non-uniqueness of free energy.

The Murakami and Kamiya (MK) model has promising features for modelling of
quasi-brittle material. The model was recently studied by Skrzypek and Kuna-
Ciskal (2003), and Kuna-Ciskal and Skrzypek (2004). They implemented the
MK model in ABAQUS FE software but only for 2D problems. Challamel et al.
(2005) introduced a modified MK model by changing the function controlling
unilateral behaviour and simplifying the Helmholtz free energy equation.

The MK model was chosen as a basis for the brittle failure model development
because of both its capability and simplicity. The MK model has the basic
features needed: a unilateral feature and a splitting feature. The simplicity
enables FE implementation. The experience of Skrzypek and Kuna-Ciskal
(2003) with the MK model also encourages its choice.

As described in Section 1.1, the objective concerning the MK model was:

A. To enhance applicability of the damage mechanics approach proposed by
Murakami and Kamiya (1997) for modelling brittle failure in 3D space as
follows:

1. Implement a 3D version of the Murakami and Kamiya model (MK model)
in the ABAQUS/Standard FE software.
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2. ldentify the weaknesses and strengths of the MK model and amend
potential weaknesses.

3. Study whether the MK model could be modified for analysis of transversely
isotropic materials.

3.8.2 Murakami-Kamiya model
3.8.2.1 Helmholtz free energy

In the MK model the Helmholtz free energy per unit mass is expressed in the
following form:

pY = pi + pipt

1
Py = 5)\(51§k)2 + wegef + m Dy(ef)* + moDpenneim
. (3.75)
+77351§k€f}mD nm + 774€klglmD mk

Pt = S h?

where < is the elastic strain tensor, e; is modified strain describing the crack
closure effect, A and p are lame constants, 7;, 1., 73 and n, are scalar material
constants describing the damage surface, h is a material parameter, and ~ is the
scalar damage variable.

The modified strain in the principal strain coordinate system 5;; can be
represented using the following (Skrzypek and Kuna-Ciskal, 2003):
&n = k) &), no summ, (3.76)

where é(@) is the principal strain and the function &, describes the crack closure

i

effect as follows:

kay = H(E) + CH(=E) (3.77)
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where H is the Heaviside step function and ¢ is a material constant describing
the crack closure effect. When ¢ = 1 the crack closure effect is neglected. The
rotation of the strain tensor into principal coordinates can be expressed using the
rotation tensor @);; as follows:

éfg = Qkﬁl?l@lj

. re (3.78)
Ejj = Qz‘kglejl
where the rotation tensor has the following feature:
6 = QuQy (3.79)
The expression of Eq. (3.76) can be written in the following form
&, = ky & (3.80)
where
kj =0, when 4= j
&; =0, when i = j
(3.81)
ki = k@), (no summ.)
& = (), (nosumm.)

Using Eqgs. (3.78) and (3.80) the modified strain tensor may be given as follows:

52*1 = Qipé;err
= Qip (kmekmgliler)er (382)

_ e
= Dijjri€ki

where By, is the projection tensor.
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3.8.2.2 Constitutive equations and damage evolution

Using the Helmholtz free energy per unit mass ¢ in Eq. (3.75) the relation
between stress and strain is obtained from (3.18);:

oY

Oijj = p(?_af}
= )\8]%61']' + 2,&6’; + [2771-Dkk€5 + 7]3€]§[le}6ij + 2772Dkk€f7' (383)

* * 88*

+773€/ik'Dji + M4 [ElmDmk + Dlmgmk ]glzl

ij

Substituting Eq. (3.82) into Eqg. (3.83) the following formula is obtained:

O = Dy €l (3.84)
where K;; is the constitutive (secant stiffness) tensor as follows:
Kijiy = Nopby + 20665 + 201Dy, 6350 + 1363 Dy,
+2772Dmm67?k6jl + nBDji(skl + N4 [Brmlemq + Drmqukl ] qulj (3 85)

= (A + 20Dy )6i50m + 2(p0 + 12Dy )04i0 1
+n3(5ilek + Dji(skl) + 1y [B7‘7nlemq + Drmqukl]qu'j

Using the matrix notation for stress and strain, Eq. (3.84) can be written in the
following form:

{o} = [K|{e"} (3.86)
where [K] is the secant stiffness matrix.

The associated variable (thermodynamic conjugate force) for damage is obtained
from Eq. (3.18),:

a¢ e e e e _e * ¥
=Y, = P oD = [m (e )? + maehieh. |6 + macinei + macies (3.87)
ij
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The force Y;; represents energy release due to the development of damage at
constant stress: do; = 0 (Lemaitre, 1992, p. 43; Murakami and Kamiya, 1997).
Respectively, the associated variable for « is obtained from (3.18);

B— pg_ﬁ — e (3.88)

For the damage evolution equations, a proper expression for the dissipation
potential is needed. Murakami and Kamiya (1997) have expressed the
dissipation potential (Damage Surface) as a function of thermodynamic
conjugate forces B and Y;; as follows:

F=Y“_—(By+B)=0 (3.89)

where

1
Yo = \GYULWYM (3.90)

The fourth order tensor L, called a damage characteristic tensor (Zhu and
Cescotto, 1995), is used to represent the anisotropic nature of damage growth. In
general, the tensor L;;, can depend on the internal state variables and material
orientation. According to Murakami and Kamiya (1997) the damage
characteristic tensor for isotropic material is:

1
Ly = 5(%@1 + 66 ) (3.91)

In Eq. (3.89) B, is a constant representing the initial threshold of damage
evolution (in plasticity theory B, corresponds to the yield stress). Substituting
Eqg. (3.91) into Eq. (3.90), the following form is obtained:

1
Yo = \/Z (VY + YyYy) (3.92)

Evolution equations for damage tensor D;; and damage variable x are based on
the normality rule. From Egs. (3.25);,, (3.89) and (3.92) after some
manipulation the following is obtained:
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g OF (YY)

D, = = \¢
! A oY A 4y
5P (3.93)
- yd _ yd
K ==X\ i A

where A’ is a multiplier which can be determined from the consistency
condition given in Eq. (3.27):

oF oF -
5y Yo+ gpB =0 (3.94)

The multiplier A% can be solved using Egs. (3.88), (3.89) and (3.94):

1 9F
~ 9F 0B OF oy,

0B 0k OB
3.95
1 Yy +Y5) (399
OF OBOF 4ye U

0B 0k OB

7,

)'\d

The Y;; is a function of strain. Thus from Eq. (3.95); we have

\d _ 1 OF 0Yj .,
N = oForoF oY, ogfy " (3.96)
OB 9 0B

3.8.2.3 Material Jacobian

Eqg. (3.83) gives the stress tensor as a function of the strain and the damage
tensor. The tensor Bj;, is a function of strains, therefore the equation is
nonlinear in the strain and linear in the damage tensor. In numerical solution of
nonlinear problems, a structural response is solved using incremental iterative
methods like the Newton-Raphson method. The material Jacobian tensor (tangent

stiffness at equilibrium) is needed in the global solution of state equations.

Using the relations given in Egs. (3.18); and (3.18), the rate form for the stress
tensor can be written as
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00j; ooy -
) - %)
E]il + _Dkl

Uij - 8€kl 8Dkl
ooy 8Yle (3.97)
Oel EH dej M

Substituting Eq. (3.93) and Eqg. (3.95) into Eq. (3.97) and noting that Y; is
symmetric, the stress rate can be written as

. 801] 802} " d (Ykl + Yvkl)
o= A
%5 = oef Erl €kl 8Dkl 4Y*
(3.98)
o 80'” + Yle 1 80’ 8 Y e
K Emn 4(y )2 87F 873 aj aDkl 85mn "
0B 0k OB

Using the matrix notation described in Section 2.2, Eq. (3.98) can be written in
the following form:

{6} = [K'(D,&")]{&"} (3.99)

where [K'(D,€)] is the material Jacobian. The stress tensor derivatives in Eq.
(3.98) are obtained from Eqg. (3.83) as follows:

8Ui' e e e
aD] = [277160])811 + 77380]7]6@7' + 277260p€i7'
? \ (3.100)
\ . 10¢en
+ 773€l§k6jo§ip + M [Eloépk + 6ol€pk] et
)
00 ;i

Oe CZ] = A0, 67] + 2/‘1’6026]]9 + [277le1<6 + 773Dpo]6ij
+2772Dkk60i67'p + n360iji

Eim e
+1y [816 Dmk + Dlm 8 ]Bkhj (3101)

* * 8Bk-l"
+ <€lmDmk + Dlmgmk ) 886 =
op
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All derivatives are straightforward to calculate in numerical application, apart
from the derivatives of 5;; and Bj;; which are cumbersome also according to
Skrzypek and Kuna-Ciskal (2003).

3.8.3 Damage in tension-compression cycles

Due to the axial splitting feature of the MK model, the stiffness degradation in
the compression direction is small compared to the perpendicular direction. The
degree of degradation depends on the constant ¢ in Eq. (3.77). A higher value of
¢ results in increasing damage in the compression strain direction. The response
is illustrated in Fig. 3.22 for uniaxial loading cases. Under compression, major
damage evolution occurs perpendicular to the direction of compression stress.
The perpendicular damage evolution introduces the splitting failure mode. If
compression is continued after rupture, the stress-strain response follows path
No. 2) in Fig. 3.22.

The tension-compression cycle is illustrated in Fig. 3.23. The stiffhess
degradation in the tension direction coincides with the loading direction. The
degree of degradation is limited by the secant matrix positive definiteness
condition. If the material is “fully damaged” (ruptured) under tension as
illustrated in Fig. 3.23, it will not suffer further damage in the compression cycle
(path No. 4 in Fig. 3.23). If tension of the fully damaged material is continued
after tensile rupture, the stress-strain response follows path No. 3) shown in Fig.
3.23. The coefficient K in Fig. 3.23 illustrates the residual stiffness of
ruptured material.

Ruptured material behaves like softened elastic material, having different
stiffness under compression and tension. Thus if a material is ruptured in a
cyclic loading case, it is questionable whether the response is in a reliable range.
Therefore, the MK damage model is not recommended for cyclic (compression-
tension) loading cases where the material is considerably damaged. The
behaviour in cyclic loading should be studied more carefully and modified
before it can be reliably used in cyclic loading simulations.

Axial stiffness is recovered when the loading direction is changed from tension
to compression.
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displacement-controlled loading. K is the residual stiffness.
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3.9 Conclusions of the literature review — remarks on the
Murakami-Kamiya model

Axial splitting under compression and tensile cracking under tension are the
failure modes studied in this work. One of the mechanisms behind the axial
splitting failure mode is known as the wing crack mechanism.

Continuum damage models have been successfully applied in the analysis of
brittle failure of materials. In these models, damage initiation is based on the use
of the damage surface (cf. yield surface in the theory of plasticity). In order to
model axial splitting, the surface is formulated based either on the strains or on
the thermodynamic conjugate force corresponding to the damage tensor.

Due to damaging, the stiffness of the material is degraded. In continuum damage
models the degradation is described by the strain softening approach. The strain
softening applications are subject to mesh sensitivity and localisation problems.
Rate-dependent solution methods can be applied to avoid mesh sensitivity
problems, therefore the Perzyna and the consistency models have been
introduced in Section 3.7. The consistency model was further formulated and an
equation for the material Jacobian was introduced.

The approaches where the physical meaning of the damage tensor is
indeterminate are called phenomenological approaches in this study (see
3.6.2.4). In the phenomenological approaches the upper limit of the damage
tensor Dj; is often undefined. To ensure the positive definiteness of the strain
energy density, the upper limit of damage must be well defined.

Many natural materials like ice, many rocks and ceramics are transversely
isotropic. A strain energy equation for modelling the elastic behaviour of
transversely isotropic materials was discussed in Section 3.4.

The unsymmetrical behaviour of cracked materials under tension and
compression due to the opening and closure of cracks is called unilateral
behaviour. Many continuum damage models for analysis of brittle damage take
into account the unilateral behaviour. Either stress or strain-based methods are
generally used.
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Various continuum damage models capable of analysing axial splitting have
been presented in the literature, but few of them have been verified by
implementing them in FE software. The MK model was chosen as a starting
point of this work due to its promising features and the encouraging results
obtained by Skrzypek and Kuna-Ciskal (2003). They have implemented the MK
model in ABAQUS/Standard FE software as a plane stress version.

Remarks on the Murakami-Kamiya model

The constitutive equations of the MK model are based on the theory of
continuum thermodynamics. The damage evolution equations are derived
similarly to the theory of plasticity. Because of the thermodynamic approach, the
equations are well formed and theoretically consistent. As discussed in Section
1.1, one of the objectives was to implement a 3D version of the MK model in
ABAQUS/Standard FE software. The following conclusions can be made
concerning the applicability of the MK model:

1. The model is formulated in such way that it can be implemented in FE
software.

2. The method for carrying out the derivative of the modified strain 5,’; must
be introduced before successful 3D FE implementation.

3. A more general damage surface should be introduced to extend the model
applicability to various materials.

4. A method to ensure positive definiteness of the secant stiffness during
damage evolution must be introduced.

5. The derivative of the modified strain 5,’; is needed in the incremental
formulation of FE applications. Skrzypek and Kuna-Ciskal (2003)
proposed a simplified method which can be used in plane stress problems
(2D). A new formulation is required for 3D applications.

6. The dissipation potential (damage/failure surface) given by Murakami and
Kamiya (1997) is given as a function of the thermodynamic conjugate force
Y;;. The material constants were determined for concrete material in such
way that the response in a uniaxial compression test can be simulated. The
initial damage surface in the strain space is shown in Fig. 3.24. The original
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damage surface of the MK model must be modified before the model can be
used for various materials.

7. As described in Section 1.1, one of the objectives was to study whether
the MK model could be modified for the analysis of transversely isotropic
materials. Due to the shortcomings described above, it was decided that
the MK model would not be modified for this purpose.

Uniaxial €
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(0,0, 8.25) tension

N / (9.6,9.6, 9.6)
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] \
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Figure 3.24. Damage surface of Murakami and Kamiya (1997) in principal
strain space, when &;; = gy. The numbers in parentheses refer to the
corresponding stress state in MPa.

The MK model takes into account damage-induced anisotropy using the second
order damage tensor D;;. In the MK model the damage tensor is considered an
internal state variable. As described in Section 3.6.2.4, the upper limit of the
principal values of the damage tensor is not explicitly defined in these
phenomenological approaches. If the upper limit is exceeded, the positive
definiteness of the secant stiffness matrix is lost. Therefore, a method to
determine the upper limit is needed.

In the MK model the crack opening closure criterion is based on the modified

strain sZ} although the criterion is not universally valid as described in Section
4.2. The opening criterion can be reliably applied only in uniaxial loading.
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4. Formulation of the wing crack
damage model

This work tested the hypothesis that the brittle failure phenomenon can be
represented by a model, namely the wing crack damage model (WCD model),
which has the following main features:

Damage evolution simulates axial splitting under uniaxial compression
as well as tensile cracking under tension

The effect of orientation and size distribution of pre-existing cracks can
be taken into account

Initially transversely isotropic materials can be modelled as well, and

the model can be implemented in ABAQUS/Standard FE software.

4.1 Introduction to wing crack model formulation

Formulation of the wing crack damage model consists of the following Sections:

Discussion of strain- and stress-based activation criteria, arriving at a
conclusion on applying the stress-based criterion throughout the model
formulation.

Enhancement of phenomenological damage models such as the MK
model.

Detailed presentation of the principles of the new WCD model proposed
in this work.

Detailed presentation of the thermodynamic formulation of the proposed
damage model.

Directions for determination of material parameters.

Condensed presentation of the main features of the proposed method
and its applications.
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4.2 Criticism of strain-based damage activation criteria

Due to the directionality of defects, damage is anisotropic in nature. In many
brittle failure models, the stiffness normal to the crack surface direction is
assumed to recover when the crack is fully closed (unilateral effect), while the
stiffness is assumed to be considerably less than the undamaged material when
the crack is open.

Damage is “activated” when the crack is open and “deactivated” (or passive)
when the crack is closed. In this study, the expression “active/passive crack” is
used as a synonym for “active/passive damage”.

The crack opening-closure criterion is called the unilateral condition. The
condition defines whether the damage is active or passive. The closure criteria
are based on either the stress or strain state. Different versions of strain-based
criteria are used in damage mechanics, although the criteria considered here do
not hold true in all loading conditions.

Chaboche (1993) has proposed both strain-based and stress-based methods for
activation/deactivation criteria. According to the criterion, “the damage can be
considered as fully active if the normal strain e = n,.e,n, associated to that
direction® is positive” (ibid). The strain ¢V is the strain in the direction of the
normal vector n;. Thus the strain-based damage deactivation criterion of
Chaboche is written as

eV <0

(4.2)
eV = NEEKMTY

where n,, is the unit normal parallel to the principal direction of the damage
tensor D;. When Eq. (4.1) holds, damage is inactivated and stiffness is
recovered in the direction of vector n;. The criterion of Eq. (4.1) holds true
under the uniaxial compression and tension shown in Figs. 4.1a and 4.1b, where
the crack plane is perpendicular to the loading.

! Chaboche refers to the principal direction of the damage tensor.
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The stress-based crack closure criterion can be written using normal traction o.
The closure criterion reads:

oV = oy <0 (4.2)

For isotropic material the traction in Eq. (4.2) can be written as a function of
strains:

UN = nk()‘gmmékl + 2/M:kl)nl

(4.3)
= ey + 2ue™

The contradiction in the strain-based criterion is that the normal strain ¢V given
in Eq. (4.1) does not include information about the stress state, unless the stress
state is uniaxial. Positive normal strain ¢ may occur due to either the tensile
stress or the Poisson effect. Therefore, normal strain may be positive although
the normal stress is negative.

To illustrate the contradiction, let us consider the case shown in Fig. 4.1c. After
closure of the crack (Il in Fig. 4.1b), the confined compression stress oy; is
increased while o4, is constant. Damage in the state Il shown in Fig. 4.1b is
inactivated (both ¢V and oV are negative) i.e. stiffness parallel to i, is
recovered. The vector n = (0,1,0) represents the unit normal vector of the crack
plane. Assuming that the material is homogeneous and isotropic, the Lamé
constants A\ and p determine the material behaviour. It can be shown that the
strain ey, IS

2(A + p)ogy — oy A

E99 = 4.4
2 23X +2p)p (44)
where tensile stresses are positive. The strain ey, is positive if
2(A + p)
g11 < T 099 (45)

When the confined compressive stress o, is increased, the normal strain ¢V

becomes positive (Il in Fig. 4.1c). According to Eq. (4.1) the damage should be
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activated when ¢V > 0 i.e. the stiffness parallel to i, should be degraded.
However, the compressive stress o,, shown in Fig. 4.1c is closing the crack.
Therefore the stiffness should remain unchanged and the damage deactivated. If
the damage were activated, the stiffness into the direction of o9 would be
degraded. Therefore the activation of damage due to positive strain ¢ under
increasing confining stress would lead to an erroneous result.

In the example shown in Fig. 4.1c, the stress-based criterion of Eq. (4.2) gives
O'N = NOpMy = 099 < O

(4.6)

Therefore the damage remains deactivated.
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Figure 4.1. Sequential loading of a damaged sample.

The strain-based damage activation criterion given in Eq. (4.1) should be used
only in uniaxial load cases, because it may lead to an erroneous result even in
the simple biaxial load case illustrated in Fig. 4.1c. The stress-based criterion
given in Eq. (4.2) should be used instead.
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Another criterion for damage activation is based on the sign of principal strain
(Murakami and Kamiya, 1997; Challamel et al., 2005). In the MK model
described in Section 3.8, the “modified elastic strain tensor” was introduced to
“represent the unilateral response of a damaged material” (Murakami and
Kamiya, 1997). The idea in the method is that the damage is activated in the
direction where the principal strain is positive. Nor does this criterion hold true
in the confined compression test illustrated in Fig. 4.1c.

4.3 Enhancements for phenomenological
damage models

Due to its undesirable features, the MK model was not developed further (see
Section 3.9). The modifications proposed in Sections 4.3.2 and 4.3.3 are
applicable both to the MK model and to most of the “phenomenological damage
models” described in Section 3.6.2.4.

4.3.1 Introduction and objectives

Murakami and Kamiya (1997) introduced a continuum damage model based on
the modified strain tensor ;. The modified strain is the feature that makes the
MK model attractive compared to other continuum damage models. The
principal directions of the modified strain tensor determine the damage evolution
“direction” and enable the axial splitting failure mode under uniaxial
compression, as well as the tensile failure mode under uniaxial tension. In
addition to the features described above, the crack opening/closure criterion is
based on the modified strain tensor.

Despite these desirable features, the modified strain tensor ef] creates difficulties
in the numerical implementation of the model. Firstly, the derivative of the
modified strain tensor cannot be expressed explicitly; secondly, the opening/
closure criterion can be applied reliably only in the analysis of uniaxial loading.

The MK model is based on the use of a combination of invariants of the damage
tensor D;; and the elastic strain tensor ¢, as well as the modified strain tensor
5; (see Section 3.8.2.1). As described in Section 3.6.2.4, the rupture criterion
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(upper limit of damage) in “phenomenological damage models” is undetermined
and often neglected. The criterion is needed to ensure positive definiteness of the
secant stiffness matrix.

The following subjects were studied:

e To ensure positive definiteness of the secant stiffness, a criterion for the
upper limit of the damage tensor was introduced.

e Non-associated formulation with a strain-based failure surface was
introduced to extend the applicability to various materials.

e A numerical derivative of the modified strain tensor 5;; was introduced.

4.3.2 Rupture criterion
When damage is considered as isotropic, the effective stress agff is defined as
described in Section 3.6.2.2:

—_ 4.7)

where D must be in the range

0<D<1 (4.8)

When damage tensor D,; is used instead of a scalar damage variable, it is not
obvious what the admissible state is for D;;. Murakami and Kamiya (1997)
imply that the “magnitude” of the damage variable might be limited to unity: “...
[the] final fracture usually occurs before the magnitude of the damage variable
D] attains to the unity”. They do not determine how the magnitude is obtained
for the second order tensor. In their numerical analyses, they have observed that
a practical value for the rupture criterion of a damaged material could be the
following:

Dy ~ 0.4,  (nosumm.) (4.9)
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The numerical value of the rupture criterion defined in Eq. (4.9) depends on the
material parameters 7, 15, 73 and n,. Kuna-Ciskal and Skrzypek (2004) have
formulated a general criterion for rupture: ”Loss of the positive definiteness of
the tangent stiffness matrix is used as a failure criterion”.

In the numerical application, Kuna-Ciskal and Skrzypek (2004) have degraded
the stiffness of the failed element to zero when the failure criterion is fulfilled.
They have also released the failed element from stress. Unfortunately there are
drawbacks in the criterion itself and in the actions carried out for the failed
element:

1. The actions (stiffness degradation to zero and release of integration point
stress) might yield to ill-conditioning in the numerical model and to
severe convergence problems.

2. By degrading the stiffness to zero the original idea of anisotropic
unilateral damage in the MK model is lost.

The elastic strain energy density function W must be positive definite (Malvern,
1969, p. 292). The requirement is fulfilled when the secant stiffness matrix [K]
is positive definite, i.e. all eigenvalues are positive. Therefore it is evident that
the loss of the positive definiteness of the secant stiffness matrix can be used as a
rupture criterion as proposed by Van (Van, 2001; Van and Vasarhelyi, 2001) in a
more general context. The restrictions for material constants can be derived from
the positive definiteness requirement as follows:

det[K]>0 (4.10)

A procedure to determine the allowable damage increment {AD} is given here.
In FE application damage at time ¢ + At is obtained as follows:

{D'*A1Y = (D'} 4 {AD} (4.11)

where {D'} is the damage vector before update and {AD} is the damage
increment obtained from the evolution equation (3.25);.
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The admissible damage increment could be solved easily if the secant stiffness
tensor were independent of strain, but it is not. An approximate solution to the
problem can be found if the tensor B,j; in Eq. (3.85) is replaced by 6;,6;;, which
means that the unilateral feature of the model is neglected. When B, is
replaced by 6,6, the secant stiffness matrix [K(D)] of Eq. (3.86) becomes a
linear function of the damage tensor as follows:

[K(6D)] = S[K(D)] (4.12)

where ( is a scalar variable. In view of Egs. (4.11) and (4.12), the secant
stiffness at time ¢ + A¢ can be written as

[K(D™2)] = [K(D')] + SIAK(AD)] (4.13)
where [K(D")] is the secant stiffness matrix before damage vector update and
[AK(AD)] is the damage-induced part of the secant stiffness matrix which is a
function of the damage increment {AD} and § is a scalar multiplier.

Using Egs. (4.10) and (4.13) the following rupture criterion is obtained:

det ([K(D')] + S[AK(AD)])= 0 (4.14)

Eq. (4.14) is similar to the solution of the generalised eigenproblem:

[KMD){o}r = —4:[AK(AD)[{@};, no summ. (4.15)

where —g,, is the eigenvalue corresponding to the k:th eigenvector {o},. If 5
(Br < Bri1) is less than 1.0, the damage increment AD is inadmissible. The
admissible increment is then

{AD} = 8, {AD} (4.16)

In the specific case when only D;; = 0 and when the material parameters are
the same as given by Murakami and Kamiya (1997), the critical value of 0.436 is
obtained for D;; from Eq. (4.14). The obtained value is close to that of 0.4
proposed by Murakami and Kamiya.
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A material is considered fully damaged when 3, ~ 0, which means that damage
evolution is not admissible: {AD} = {0}. When the material is fully damaged
the damage tensor remains constant and the last term in the material Jacobian in
Eqg. (3.97) becomes

80'7]
aDkl

dD,; =0 (4.17)

Thus the material Jacobian equals the constitutive matrix of Eq. (3.85) when the
material is fully damaged.

4.3.3 Damage surface

In damage mechanics models the damage surface is usually given as a function
of thermodynamic conjugate forces, i.e. as a function of o;; or Y;;. In the MK
model the surface is based on the conjugate force Y;;. Damage surfaces based on
the force Y;; are widely used and very often the surface is formulated in the
following way (Zhu and Cescotto, 1995; Murakami and Kamiya, 1997; Halm
and Dragon, 1998; Luo et al., 2003; Alliche, 2004; Challamel et al., 2005):

F = JY;LijYuy — B(k) =0 (4.18)

where the coefficient tensor L, is often taken as a symmetric unit tensor and
B(r) defines the size of the damage surface.

The use of the conjugate force Y;; is complex in the formation of a more general
damage surface. Thus a non-associative formulation was proposed in this work.
The damage surface is given as a function of the elastic strain ¢;; and damage
rate D,

F = Fy(e§) — f(D*) — B(k) = 0

The rate dependency was not implemented into the MK model. Damage tensor
evolution is obtained using a potential function G that is similar to the MK model:

(4.19)
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b, =328
! oYy (4.20)

G = YyLyjuYuy — B(k) = 0

The strain-based damage surface is commonly applied in damage mechanics (e.g.
Fonseka and Krajcinovic, 1981; Simo and Ju, 1987). The proposed approach is
non-associated because the damage surface F and the potential function G do not
coincide. Therefore special attention must be paid to the dissipation inequality
condition, which is not necessarily fulfilled as described in Section 3.6.1.

4.3.4 Derivative of modified elastic strain of the MK model

As described earlier, Skrzypek and Kuna-Ciskal (2003) and Kuna-Ciskal and
Skrzypek (2004) have implemented a plane-stress version of the MK model in
ABAQUS FE software. In their numerical examples they successfully analysed
macrocrack propagation under tensile and compressive stress in the plane stress
condition. To overcome the cumbersome derivatives in Egs. (3.100) and (3.101),
they introduced simplified equations for describing the modified elastic strain
dependence of the elastic strain: 52} = f(ef;)- The simplified equations are
applicable only in the state of plane stress.

The modified strain s;; is obtained as follows (see Eq. (3.77)):

1. Define the principal strains &7

2. Multiply those principal strains that have a negative sign by factor ¢ to
obtain modified strains é(*k) in the principal coordinate system defined
by elastic strain tensor

3. Rotate the modified principal strains back to the spatial coordinate
system to obtain the modified strain «;;.

In the incremental formulation the following derivatives related to the modified
strain are needed (see Eq. (3.101)):

O m 0 Biju
and 4.21
Oegp Oegy (4.21)

81



The derivatives cannot be explicitly formulated; therefore the derivatives are
obtained numerically starting from the definition of the derivative:

of .. flz+ Az)— f(z)
dr Alolgrgo Az (422)

Using the definition we can write the approximation for the derivatives at the
beginning of the current time increment (¢ + At):

Ot el + D) = e, (e5)

~

Oegp Ac® (4.23)
OBy By(esy + Ac®) — Byu(es;)
Oegp Ac’

where €5/ is the elastic strain at the beginning of the increment and Ac® is the
strain increment. Eq. (4.23) gives a numerical approximation of the derivative at
the beginning of the increment, although the derivative at the end of the

increment was needed.

The proposed method was implemented in ABAQUS/Standard software as a
user material subroutine. The strain increment size Az® needed in the derivative
evaluation is based on experience with numerical application of the MK method:

Ae® = max(Aej;) /10 (4.24)

4.4 Wing crack damage model for transversely
iIsotropic solids

In this study a new continuum damage model for analysis of brittle transversely
isotropic solids was proposed. Damaging was assumed to induce anisotropy.
Although the approach is phenomenological, the model was motivated by the
growth mechanism of wing cracks. Special attention was paid to the axial
splitting failure mode under uniaxial compression and transverse tensile cracking
under uniaxial tension.
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4.4.1 Objectives and scope

Several damage models for brittle failure and anisotropic damaging have been
proposed (e.g. Betten, 1986; Murakami, 1990; Chaboche, 1993; Murakami and
Kamiya, 1997; Halm et al., 2002), but few of them have been implemented in
FE software. Often the numerical examples given are simple and based on the
numerical application of the constitutive equation in a uniaxial case. However,
applicability of methods is best revealed using examples where the sample is
under multiaxial stress and is modelled with several elements.

In anisotropic continuum damage models, often the second or fourth order tensor
represents the damage, and the damage evolution is determined by the derivative
of the damage potential surface. It is not known how to formulate the evolution
equation for second and fourth order tensors such that the evolution of brittle
failure modes is captured.

In brittle damage models, the direction of damage evolution is often based on the
sign of principal stresses or strains (Simo and Ju, 1987; Chaboche, 1993;
Murakami and Kamiya, 1997; Halm and Dragon, 1998). The principal values
and directions may also be needed in the formulation of the Helmholtz free
energy equation (Murakami and Kamiya, 1997; Halm and Dragon, 1998). An
approach based on directions of principal tensile strain may introduce a
projection tensor into the constitutive equations (see B, in Section 3.8.2.1).
The use of the projection tensor may lead to cumbersome derivatives in
incremental formulation of the stress-strain relation as stated in Section 3.9 and
by Skrzypek and Kuna-Ciskal (2003).

In the model of Murakami and Kamiya (1997), principal directions and values of
the strain tensor are used in the derivation of the “modified strain tensor” 52
The tensor was introduced to take into account the unilateral condition of
damage due to the opening and closure of microcracks. As shown in Section 4.2,
the method based on the modified strain tensor approach cannot give correct
information about the opening and closure of a crack in biaxial loading

conditions. Therefore a new approach was introduced.

Due to the requirement for positive definite strain energy density discussed in
Section 4.3.2, the constitutive stiffness matrix must be a positive definite in all
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strain and damage states. Therefore a condition for the upper limit of the damage
tensor should be well defined to ensure the positive definiteness. In the
phenomenological approaches described in Section 3.6.2.4, the condition for
positive definiteness is difficult to formulate explicitly and usually the condition
is disregarded in these models.

It is well known that the mechanical strength and response of the solid are
dependent on the orientation, distribution, size and type of the defects in its
structure (Ashby and Hallam, 1986; Krajcinovic, 1989).

At this point, besides the items described above this work focused on the derivation
of a new damage model having the following features (as described in Section 1.1):

Damage evolution simulates wing crack growth.
Damaging introduces anisotropy.

Distribution, size and orientation of pre-existing defects can be modelled.

A W poE

The model can be applied in uniaxial splitting and tensile failure mode
analysis (see Fig 3.2 ¢, e).

o

Initially transversely isotropic materials can be analysed.
6. The upper limit of the damage variable is well defined.

7. Damage activation/deactivation corresponding to open and closed
microcracks is taken into account.

8. Constitutive equations are derived independently of the direction of
principal strain.

The approach described in the following Sections (4.4.2—-4.4.6) was based on the
assumption of pre-existing cracks. As stated in Section 1.2, the flaw distribution
studies were outside the scope of this study.

4.4.2 Presumptions

In the model formulation, special attention was paid to the axial splitting failure
mode. The proposed “wing crack model” is based on the following presumptions:
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1. Axial splitting occurs when a series of wing cracks link together to form
an axial splitting crack (see Fig. 4.2).

2. A wing crack and a series of wing cracks can be approximated by a
single plane crack.

3. Damage vector D, represents the orientation and relative size of the
plane crack (see Fig. 4.3).

4. Material rupture is taking place when the damage vector length equals 1

(x/Dka - ].)

Wing Crack profile —\ /7 Splitting Crack

Figure 4.2. Schematic drawing of the proposed failure model (dashed line).

A number of damage vector-based models have been proposed (Davison and
Stevens, 1973; Krajcinovic and Fonseka, 1981; Mikkola and Piila, 1984; Van,
2001), although the use of a second order damage tensor is more general. The
damage vector D, can be interpreted to represent an averaged normal direction
of a series of microcracks (Van, 2001).

As shown by Leckie and Onat (1981), a damage vector is not appropriate for the
representation of the distribution of voids (or cracks), while the use of a second
order damage tensor enables representation of the crack distribution in the three
orthogonal directions. In this study it is assumed that the element considered is
small enough to contain very few plane cracks, and that the average orientation
of the plane cracks is well defined by the damage vector.
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A, (damaged area)

A (undamaged area)

Figure 4.3. Global and local coordinate systems. The Local coordinate system is
defined by the vectors D and M. Vector M defines the material symmetry axis
for a transversely isotropic material, while D is the damage vector.

In the proposed model, the damage vector D; represents both damage
orientation and the relative size of the damage. The vector orientation is normal
to the crack plane as shown in Fig. 4.3. The damaged area Ap and the damage
vector are defined as follows:

ADni = A Di
(4.25)

D’i = ATDTLi

where A is the undamaged area and n; is the unit normal vector of the crack plane.

A single vector represents satisfactorily one plane crack or a series of parallel
plane cracks. A kinked crack can be replaced by a representative straight crack
as done by e.g. Basista and Gross (1989). When the straight crack is used to
represent a wing crack, the result can only be a rough estimate of the real wing
crack. In the proposed model it is assumed that the crack is formed of parallel
plane surfaces and that the ratio of crack surface area projections shown in Fig.
4.4 is small:

p

< 1 (4.26)
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Crack area —2 x1 X!
A D
Projection A1 » L
=54
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crack

Projection Azp\

Figure 4.4. Actual wing crack and representative crack.

4.4.3 Basic concepts in the WCD approach

The basic idea in the WCD approach is to describe the behaviour of a cracked
material with constitutive relation. The equations describing the relation are
based on the known anisotropic material models.

To illustrate the WCD concept, the behaviour of initially isotropic, cracked
material was considered in the damage coordinate system shown in Fig. 4.3.
Consider a case when specimen rupture has taken place i.e. /DD, =1 as
described earlier. The crack is idealised as a plane surface. The vector n in Fig.
4.5b is the unit normal of the crack surface.

F
T —Q — Q —Q
T n
~—] 2¢);
\ X:[
Xp
> -«— -« -«
| Q Q Q
F
a) Tensile crack b) Idealised crack  c) Sliding d) Idealised sliding e) Model

Figure 4.5. Behaviour of idealised crack model.
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Shear behaviour

Assume there is no friction. The crack surfaces are then free of shear stresses
(o3 = o3 = 0) during sliding of the surfaces as illustrated in Figs 4.5d and
4.6. In this study the stiffness corresponding to the nonzero stresses
(039, 043,043 ) was assumed to remain unchanged.

/
n I T
——— Cracksurface™ &% %X =

O:

/ RiL /
021 . o33
, , 023 03 f—»
Zy Ty /

!
0%

(713(: 0’;) =0

/

Figure 4.6. Sliding of the crack surfaces and stresses on the crack surface
expressed in the damage coordinate system (see Fig. 4.3).

In the model, shear strains {5 and <[5 represent sliding (see Fig 4.5e). When
sliding is frictionless the shear strains ({5,<15) must not induce stresses.
Therefore the constitutive relation of ruptured material must be such that the
nonzero stresses are independent of the shear strains (e/5,(%). In isotropic
material model the condition is fulfilled when the shear modulus pup
corresponding to the shear stresses o{, and o{; equals zero (puz = 0).

Active crack

The crack surface of an open crack was assumed to be free of normal stress;
o, = 0, therefore the nonzero stresses are: o4,,04; and o4s. The stress state
corresponds to the plane state of stress. In the model the stiffness corresponding
to the stress o{, was assumed to be zero. The strain /¢ represents opening of

the crack. Therefore the following conditions must be fulfilled:

1. Normal and shear stresses (oy;, 012,015 ) vanish on the crack surface.
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2. Normal and shear strains (¢, /5,15 ) do not affect the stress state.

3. The stresses in plane x5 — x4 (049,043,053, See Fig. 4.6) are determined
as in the plane stress state.

4. The stiffness in the direction of the nonzero stresses (o4, 055,0%3)
remains unchanged.

Passive crack

When a crack is closed due to compressive stress the stiffness corresponding to
the stress o, was assumed to be the same as for virgin material. The following
conditions must be fulfilled for a passive crack:

1. Shear stresses (o715, 0715 ) vanish on the crack surface.
2. Shear strains ({5, <15) do not affect the stress state.

3. The stiffness in the direction of the nonzero stresses (oyy, 049,053, 0%3)
remains unchanged.

As stated above, normal and shear stresses vanish on the crack surface when the
crack is open. The condition of vanishing shear and axial stress has also been
applied e.g. by Valanis (1990). The condition can be expressed using the shear
traction ol and the normal tractions o (shown in Fig 4.7) related to the
damage orientation. The tractions are obtained as follows (Kachanov, 1982):

O'N = Npopny = 0

(4.27)
O'}l = opn; - O'Nnk =0

where n, is the unit vector component in the direction of the damage vector
defined as follows:

D,

et 4.28
\Y D’/Tle ( )

ne =
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Figure 4.7. Crack orientation given by the damage vector (a). Normal and shear
tractions (b).

The WCD model

The features described above were attained by applying the constitutive relation
of transversely isotropic material described in Section 3.4. Vector n represents
material symmetry axis. Based on Eq. (3.12) the following expression for the
strain energy density was introduced:

1
Wp = 5/\€1§k€ﬁ + pegey + N DpDyy, [/\D‘Eiik‘fﬁ + UpMETEGE

+ apnpmeye; + 50(%”15131)2] (4.29)
D.

(]

JDiD;

n;, =

where the four unknown parameters (Ap, up,ap, Bp) can be solved for active
and passive crack using the conditions described in this section. Lamé constants
(A, i) describe the behaviour of isotropic material.

The stress tensor is obtained from the following equation:

/ 0 WD
;i = TR (430)
T Oef

where ¢ is the strain tensor in the damage coordinate system.
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The parameters for an active crack, when rupture has taken place ( /D, D, = 1),
can be solved from Egs. (4.29) and (4.30). When the conditions described earlier
in this section are fulfilled, the following parameters are obtained:

ap = _ 2 8y = 2pA + 1)
A+2 A+2

N a s (4.31)

Ap = — =2
D Xt 24 1209) K
For a passive crack (oy; = 0) the parameters are respectively:

ap =0 Bp = 2u 4.32)
Ap =0 pup=-2pu '

Stiffness matrices for both active and passive cracks are shown in Figs. 4.8a and
4.8b.

a) Passive crack c) Transversal damage; 0 < ¢ <1

A+2u A A 00O A+2u A A 000
A+2u A 00O A+2u A 000
Ly v L
symm. 00 = symm. 00
u H
b) Active crack
[0 0 0 0 0 0] (o 0 0 0 )
Ap(A+ ) 24u 0 Ap(A+p) 22u
A+2u A+2u A+2u A+2u
4u(A+ 4u(A+
[K']= % 00 0| = [K]=¢ %2:) 00
00O 0
symm. 00 symm.
L M L |

Figure 4.8. Stiffness matrix of ruptured material in the damage coordinate
system (n || i;). Parameter £ describes the effect of transversal damage.
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Transversal damaging

The idea in the proposed approach is that damaging degrades the shear stiffness
in the crack plane and the “normal stiffness” when the crack is active. It means
that the stiffness of the split specimen in the direction of the axial load shown in
Fig. 4.9 is the same as the stiffhess of the undamaged specimen. If in addition to
splitting other failure mechanisms are present, the stiffness in the loading
direction (i.e. transversal to the vector n) is degraded as well. The “transversal
damage factor” &, (0 < & < 1) illustrated in Figs. 4.8¢c and 4.9c was introduced
to take into account the stiffness degradation in the transversal direction.

The transversal damage factor £ has a similar effect on stiffness as the material
parameter ¢ in Eq. (3.77) of the MK model.

F §

by b ] e
4
, I & L n
4
¢
I
F=ku F=ku F=¢kuy 0<E<1
a) Undamaged b) Splitted ¢) Transversal damage

Figure 4.9. Axial stiffness of undamaged (a) and split (b) specimen is the same.
Illustration of the transversal damage factor (c).

4.4.4 Anisotropic stiffness degradation of transversely
isotropic materials

The conditions describing active and passive crack behaviour introduced in
Section 4.4.3 are valid for transversely isotropic material as well. An additional
feature was introduced to improve the numerical behaviour of the proposed
model:
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1. Instead of vanishing shear stresses on the crack surface, a residual shear
stiffness was introduced to avoid numerical problems.

e the residual shear stiffness for an active crack is pp 7.
e the residual shear stiffness for a passive crack is jip ¢

4.4.4.1 Damage-induced anisotropy

The proposed method is based on the equations derived for materials having two
‘preferred’ directions. The damage vector D is considered as a new preferred
direction besides the preferred direction M of the transversely isotropic material
as illustrated in Fig. 4.10. Therefore the resulting material is anisotropic. The
concept of the proposed method was described in Section 4.4.3.

Figure 4.10. Material with two preferred directions. M defines the direction of
the undamaged transversely isotropic material. The unit vector n defines the
second preferred direction (n || D).

The elastic strain energy Wy density for a material with two preferred directions

is based on the equation given by Rogers (1990). He gives the stress-strain
relation in the following form:
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0y = 2uef; + 2 (Miyep; + €M) + 2p0(Bigel; + €5:.Byj)
+ 2p0 (Al + € Ayj)
+ (Nl + anMpei + aoByej, + asApeir )0y
+ (cuely + BiMyei, + BsBuch, + BiAncih )My
+ (weiy + BsMyeh + BoBuch + BsAuci)By;
+ (agepy, + BaMyeir + BsByeir )4

(4.33)

where the 13 material parameters are: A, p, t, to, 3, 0q, Qo, a3, By, o, s,
B, and Gs. The tensors related to the material direction are defined by the
components of the vectors A, and Dj:

My = M;M;

nkMk
Aj 5 (niM; + n;M;) (4.34)
Bij = ninj

n; = D; /\/Dka

Based on Egs. (3.12) and (4.33) the following form of elastic strain energy
density Wp was introduced:

Wi = 2 chiet + purelaciy + 2pus — ) Muehuch + B(Muh
+aMyeiEmm
DDy [Apefuehi + prpeiiehs + 2(pp — prp ) Myghnein (4.35)
+Bp(Myeiy? + apMyehemm + Bo(nymef )
+(pameny + pr3Ai)eimemr + (ompny + asAy) EliEmm

+(BsMymn,n, + ByMyA,, + BsAun,n, ) €ucm |

where the material parameters pup, pz, A, « and (G determine the elastic
behaviour of a transversely isotropic material as described in Section 3.4. The

remaining 13 parameters (Ap, firp, finps Bpr Qp, QG 3y floy s, By B3 B 5s)
depend on the damage vector orientation and the sign of the normal traction o”.

The parameters are determined such that the features described in Sections 4.4.3
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and 4.4.4 are attained. The parameters have to be derived both for active
(o™ > 0)and passive (¢ < 0) cracks.

As discussed earlier and shown in Egs. (4.35) and (4.34), the damage vector
orientation determines the second preferred direction of the material, while the
damage vector length /D, D, determines the “intensity” of the anisotropy. The
elastic strain energy density of Eq. (4.35) reduces to the energy equation of the
transversely isotropic material (Eq. (3.12)) when /D, D, = 0. The anisotropy
of the material increases with increasing length of the damage vector.

When solving the 13 material parameters in Eq. (4.35), the strain energy is
expressed in a local rectangular coordinate system, the orientation of which is
defined by the damage vector D, and the material symmetry vector M, (see
Fig. 4.3). In the local coordinate system the z{ -axis is parallel to the damage
vector. The 23 -axis direction is chosen such that the material symmetry vector
M, is located in the plane z; — 3.

The strain energy of the fully damaged material in the local coordinate system is
obtained by inserting M, = M/ and n, = n/ into Eq. (4.35), where:

I _
My = My My = 1= (My?  Mj=0 (4.36)
My = Myny
Dka — 1

The use of Eq. (4.36) simplifies the strain energy equation.

The solution of the unknown material parameters is based on the use of a
(undamaged) constitutive matrix and fully damaged material stiffness matrices.
The constitutive tensor for undamaged transversely isotropic material C/y; in
the local coordinate system is obtained from Eq. (4.35) as follows:

0*Wy

/

Iy =——2L_ where D, =0 V k (4.37)
Y Oelf Oeif
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where ¢/f is the elastic strain tensor in the local coordinate system. The
corresponding matrix form is:

O*Wp

= wesy

where {D} = {0} (4.38)

where {&'°} is the elastic strain vector in the local coordinate system. The secant
stiffness tensor and matrix for fully damaged material obtained from Eqg. (4.35)
and (4.36) are

O*W,
i = Wagﬁu where DDy =1 (4.39)
0*W,

The secant stiffness and constitutive matrices in the damage coordinate system
obtained from equations (4.37) and (4.39) are denoted by [K’'| and [C']. The
matrices are given in Appendix A. The shape of the constitutive matrix [C'] is
shown in Fig. 4.11a. Solution of the 13 unknown components in Eq. (4.35) is
based on the components of matrices [K'] and [C’]. The procedure is illustrated
in Fig. 4.11.
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€, C, C; C, 0 0 Transversal isotropic constitutive
c, Cj, C, 0 O (a) matrix in damage coordinate
C3'3 C:;4 0 0 system
c, 0 0
symm. Cis; Ci
] Cs |
0 O, 0, 00 0 Plane stress part of fully damaged
&GP 4G 00 0 (b)  transversal isotropic stiffness matrix in
&y 00 0 damage coordinate system. C;° refers
00 O to the plane stress state. & is the
symm. 0 0 transversal damage factor.
I e |
[0 0 0 0 0 0 ] ©) Active crack. Stiffness matrix for
" " fully damaged transversal isotropic
Gy <G, 0 0 0 ial i i
o material in damage coordinate
¢Cy 0 0 0 system
ey O 0 g+ is residual shear modulus for
symm. gy 0 active crack
L &Cy
[(C &Cf &C 0 0 0 ] (d)  Passive crack Stiffness matrix for
£l 0 0 0 fully damaged transversal isotropic
2 2§ material in damage coordinate
¢; 0 0 0 system
Ure O 0 g ¢ 1s residual shear modulus for
symm. Uge O passive crack. &£ is the transversal
i &Cy | damage factor.

Figure 4.11. Derivation of stiffness matrix coefficients in the damage coordinate
system (z, =5, z5) shown in Fig. 4.3.
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4.4.4.2 Parameter derivation for an active crack
Consider the case in which material is fully damaged (||D| = 1) and a crack is
open. Therefore the stresses of;,01,,0(5 are assumed to vanish on the crack
surface as described in Section 4.4.3. The corresponding stress-strain relation
can be written in the local coordinate system as follows:
0]

09
=10 (4.41)
0

!/
06

where the notation described in Section 2.2 is used for the stress and strain
components. [C'] is the stiffness matrix for undamaged (virgin) material as
described in Eq. (4.38) and {&’“} is the corresponding strain vector. Eq. (4.41)
corresponds to the state of plane stress. Eliminating the strain components &/,
e1® and ¢ Eq. (4.41) can be written as:

O'é 6‘; Clllp Cl,zp 0
ol =[C"’} et where [C"’]z symm. CJf 0 (4.42)
o} P Cas

where [C'?] is the stiffness matrix for the state of plane stress, given in Eq.
(A.3) of Appendix A. Since the stiffness corresponding to the stresses
011,012,013 was assumed to be zero, the stiffness matrix [IA('“‘] for fully
damaged material is:

[0 0 0 00 O
CrP CP 00 O
~ C,hy 00 O
K™ | = # 4.43
[ ] 00 O (4.43)
symm. 0 O
j c |
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The shear stiffness pup - was introduced to improve numerical behaviour as
follows:

0 0 0 0 0 0
cy Cy O 0 0
p
[r(ract ] _ Cz quT 8 8 (4.44)
symm. ey 0O
i Css |

As described in Section 4.4.3, besides anisotropic damaging the transversal
damage factor ¢ (0 < & <1) was introduced to degrade stiffness in the
transversal direction. The stiffness matrix [K’“Ct} for fully damaged material is:

[Klact] — f[K/act

(4.45)

Using Egs. (4.40) and (4.45) the 13 unknown parameters in Eq. (4.35) can be
solved from the following equation:

[K'] = ¢[K"™] (4.46)
The matrices [K'] and [K'*’| are given in Appendix A. The explicit solution
of the equations is not given here (see Appendix B). The solution was carried out
using Mathematica (2003) software. When the material orientation is
perpendicular to the damage vector orientation (My = 0 in Eq. (4.36)), the
non-zero parameters are
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28 pp(A + pr)
By = 2ppp + —F——

)\+2MT
(6]
ﬂ3=25[MT—ML—ﬁ]
2 2
QQZQf[ML—QMT—)\f—;uT]
to = prr — &L
1 co? (4.47)
o =T o
28
ap = = o+ 28(pp — pir)
A+2MT
prp = § ML — B
4 2
Ap =§[4MT—2uL—Af—§MT]—

4.4.4.3 Parameter derivation for a passive crack

The derivation of the 13 unknown material parameters is similar to the approach
used in the previous section. When compressive stress is closing the crack, the
crack (damage) is deactivated and the stiffness in the direction of oV is
recovered. As mentioned in Section 1.2, frictional sliding is outside the scope of
this work, therefore the sliding was assumed to be frictionless. The shear strain
~ shown in Fig. 4.12b represents sliding in the model. To avoid numerical
problems the shear stiffness i corresponding to the shear strain ~ was
introduced.
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Y=Vst7e

a) True cracked material behaviour b) Model behaviour
o' =o' (", friction) o' = ttpe v, Where ppe = pipe (0V)

Figure 4.12. Modelling of passive crack behaviour. g represents sliding and
~g Shear deformation.

Due to the frictionless sliding, the shear stresses (o}, of ) are assumed to vanish
on the crack surface as described in Section 4.4.3. The corresponding stress-
strain relation can be written in the local coordinate system as follows:

!/

01
09
/
=) (4.48)
0
o

Eliminating the strain components ¢ and ¢ Eq. (4.41) can be written as:

4 re c rc c
Gl gl Cll ClZ C13
! re 1c 1c
o £ C C 0
sr=[Cf]472 . where [C = 2 e (4.49)
re rc
o & synm. C; O
! e rc
Os & Cu
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where the stiffness matrix [C’°] is given in Eq. (A.4) of Appendix A. Since the
stiffness corresponding to the stresses o, and o5 was assumed to be zero, the
stiffness matrix | K'7*** | for fully damaged material is:

fce cf ¢t 0o 0 0]
Ck Cf 0 0 O
(K™= Cs 0 00 (4.50)
Hrc 0 0
symm. Hre 0
L Cu

where pp, o is the residual shear modulus introduced for a passive crack. Similar
to the active crack, the 13 unknown parameters in Eq. (4.35) can be solved from
the following equation:

[K'] = ¢[K»] (4.51)

The matrices [K'] and [K'**"] are given in Appendix A. The material
parameters obtained from Eq. (4.51) are given in Appendix B. When the
material orientation is perpendicular to the damage vector orientation (My = 0
in Eq. (4.36)), the non-zero parameters are:

ap = (§ = Da + 2(up — pr)
oy = 28(pp — pr)

By = Epur — 2pR 0

By = 28(ur — pr)

Bp =(€—-1)8

Ho = pgo — &h

pp = SpL — pr

Ap = (&= DA+ 28(ur — pr)
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4.4.5 Damage vector evolution

A model of a growing, pre-existing crack was introduced to simulate damage
evolution and failure modes of brittle materials both under compression and
tension. Formation of new cracks was not considered. The damage evolution
equation was motivated by the formation mechanism of wing cracks. A damage
vector determines the orientation of anisotropic damage of an initially
transversely isotropic material.

As briefly discussed in Section 3.2, the wing crack formation under compressive
stress is considered to start with sliding along the primary crack (Nemat-Nasser
and Deng, 1994; Renshaw and Schulson, 2001). The sliding generates stress
concentration at the tips of the primary crack and initiates wing cracks as
illustrated in Fig. 4.13. The wing cracks propagate parallel to the direction of
compressive stress.

— Primary
crack
A
w R N
A S
w .
wing crack

|

Figure 4.13. Wing crack formation under biaxial compression when the primary
crack is inclined at 45 °to the compressive stress o,.

Numerical models motivated by the wing crack growth mechanism and the
splitting failure mode are of considerable current interest (Chen and
Ravichandran, 2000; Huang et al., 2002; Mitaim and Detournay, 2004; Tang et
al., 2005). Huang et al. (2002) introduced an isotropic damage model with a
single damage parameter D. The model takes account of e.g. the effects of
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friction and flaw distribution on failure strength. Swoboda and Yang (1999a;
1999b) introduced a model capable of simulating kinking of pre-existing cracks.
The model based on three damage vectors (or a second order tensor) is capable
of predicting anisotropic damaging of an isotropic material.

As stated in Section 4.4.1, the proposed model is based on the assumption of a
pre-existing crack. A pre-existing damage vector DY represents the orientation
and size of the pre-existing crack as described in Section 4.4.2. The damage
vector evolution initiates when the damage criterion is fulfilled, i.e. ' = 0.

In order to simulate both wing crack and tensile crack propagation mechanisms,
the direction of damage vector evolution is based on the shear traction 59 and

normal traction /. The tractions are determined as follows (Carol et al., 1991;
Bazant and Zi, 2003):

€' = mepn
el =&V, (4.52)

el =ebny, —eVn,

where the direction of the unit normal vector n,, is parallel to that of the damage
vector as defined in Eq. (4.28).

The shear traction ey is considered the driving “force” in the wing crack
initiation mechanism. The traction direction with respect to the damage vector
determines the wing crack evolution direction (kinking angle) as shown in Fig.
4.14a.

SR N ¢
a) b)

Figure 4.14. Crack propagation determined by the shear traction g (a) and the
normal traction &V (b).
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As shown in Fig. 4.14b, the normal traction ¢ is assumed to activate crack

growth in the direction of the damage vector normal. This corresponds to the
fracture mode | in Irwin’s notation. When the normal traction is “compressive”
the traction does not activate the “mode I evolution”.

Crack increment Damage vector increment

\ &N
N oo
AD
| — ;..
Initial crack
\

Figure 4.15. Direction of damage vector evolution determined by the shear
traction ¢! and normal traction &”.

o AD

As discussed above, the normal traction ¢/ and shear traction ap are considered
driving forces in crack propagation. It is therefore logical to use tractions to
construct an equation for damage vector evolution. The evolution direction
depends on the traction directions as shown in Fig. 4.15. The following equation
was proposed:

(4.53)
Q = mH(EY)eNn; + 77251:‘

where the positive material parameters 7, and 7, determine the kinking angle.
The Heaviside function H(c") either activates or deactivates the tensile crack
growth mechanism (fracture mode 1) as follows:

H(EY) =1, when ¢V >0
(4.54)
H(EY) =0, when ¢V <0

As shown in Eq. (4.53), tensile crack growth is activated when the tensile strain
is positive with respect to the damage vector orientation despite the stress state.
As shown in Section 4.2, the strain ¢V does not give information about the
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corresponding normal stress o”. Therefore the normal stress may be either
positive or negative.

As proposed by Van (2001), it was assumed that damage can only grow,
therefore Van introduced the following essential condition for damage vector
evolution:

DD, >0 (4.55)

Evolution equation (4.53) fulfils the condition of Eqg. (4.55). In numerical
computation it was found that the condition given in Eq. (4.55) enables limitless
crack rotation. The condition does not guarantee that the Clausius-Duhem
inequality equation is fulfilled. The rotation may induce stiffness recovery of
already degraded stiffness as illustrated in numerical verification tests (Section
5.2). Therefore a new condition based on the Clausius-Duhem inequality
equation Eq. (3.21), was introduced. The inequality equation is:

vt =V.D, — Bk >0 (3.21),

Inserting Egs. (4.53) and (3.71) into Eq. (3.21), the following expression is
obtained:

7 =NV —B) >0 (4.56)
From which the following condition is obtained:

Y, > B (4.57)
A conservative solution is obtained if B is replaced by B™*, which is the
maximum value that B can have. The value of B™** depends on the material
parameters. In the upcoming numerical examples B™* < 1.0-107%, but the
conservative value of 0.01 was used. In the numerical examples the condition of

(4.57) was applied as follows:

1) Damage increment direction €2, is calculated from Eg. (4.53).
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2) The condition of Eq. (4.57) is checked. If the condition is not fulfilled
the damage increment vector is modified such that the condition will be
fulfilled as illustrated in Fig. 4.16.

Q 7 Q
\\
—> ‘\
\\ Y
\
7 <0 7 =0

Figure 4.16. Illustration of calculation of the allowable direction of the damage
increment Q) according to Eq. (4.57) when B = 0.

The evolution according to Eq. (4.53) is illustrated in Fig. 4.17. The evolution
equation is cost-effective in numerical applications. The evolution direction
takes into account the two axial failure modes such that both the axial splitting
failure mode (Fig 3.2c) and the tensile failure mode (Fig 3.2e) can be simulated.

lF

Figure 4.17. lllustration of damage vector evolution under uniaxial compression
when the primary (initial) crack is inclined at 45 °to the compressive force F.
D’ is the initial damage vector, AD" is the damage increment obtained from
Eq. (4.53) and DV is the damage at the end of analysis.

Because this approach is not based on the use of the normality rule described in
Section 3.6.1, the dissipation inequality of Eq. (3.21) must be verified either
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analytically or numerically. The inequality has been studied numerically in FE
implementation (see Section 5.2).

4.4.6 Evolution of anisotropic damage

It is known that the material orientation ( A; ) affects the kinking angle of a pre-
existing crack. The maximum energy-release-rate criterion of the theory of
fracture mechanics can be employed in predicting the kink angle of anisotropic
materials (Obata et al., 1989; Azhdari and Nemat-Nasser, 1996).

The damage evolution Eq. (4.53) introduced in Section 4.4.5 is based on the
strain state and the damage vector orientation and is independent of material
orientation information. The material orientation effect is taken into account
indirectly through strains, because strains depend on the material orientation.

In CDM models the damage growth direction of anisotropic materials is often
based on the use of the damage characteristic tensor L;;; as described in Eq.
(3.91). A brief review of various damage characteristic tensors has been
introduced by Zhu and Cescotto (1995). In the associative approach of the MK
model the evolution equation has the following form when L, is used (see
Section 3.8.2.2):

- \ Ll'kl

. 1
Yo = \[§mjLz‘jszkz

As discussed in Section 3.8.2.2, the damage characteristic tensor L;;, can be a
function of internal state variables and material orientation. The evolution Eq.
(4.53) can be modified in anisotropic form similar to Eq. (4.58) as follows:

(4.58)

D; = LD, (4.59)

where D; is the damage rate for anisotropic material, L, is the second order
damage characteristic tensor and D, is the damage rate given in Eq. (4.53). The
damage characteristic tensor can be defined experimentally as described by
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Chow and Lu (1989). The tensor was assumed to equal the unit tensor in the
upcoming numerical examples as follows:

Ly, = by, (4.60)

4.5 Application of the wing crack approach

The equations needed in the FE implementation of the proposed wing crack
model were introduced in Sections (4.5.3-4.5.2). Most of the derivatives were
solved using Mathematica (2003) software. The explicit expressions of
derivatives were not given.

The introduced wing crack model is based on the assumption of vanishing shear
and normal tractions on the crack surface (see Section 4.4). The surface
orientation and size are determined by the damage vector D, normal to the
crack surface. Damaging introduces anisotropy in the initially transversely
isotropic material. Eq. (4.35) determining the elastic strain energy of the
damaged material consists of 13 unknown parameters, which can be solved from
the conditions given in sections 4.4.4.2 and 4.4.4.3. Only three parameters must
be defined by the user: residual shear moduli for the active and passive crack
KrrT, Hrce and the transversal damage factor . In addition, parameters
defining the initial damage surface and softening as well as the pre-existing
damage vector size and orientation are also needed. The determination of
material parameters is considered in Section 4.5.5.
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4.5.1 Helmholtz free energy

The Helmholtz free energy per unit mass «» for a damaged transversely isotropic
material is:

pY = %)\EﬁkSﬁ + prefiely + 2, — pr)Myeheny, + B(Mypef )
+aMyeiEmm
DDy [ Apeiweii + prpeiehy + 2(ppp — trp ) Myghinei
+8p(Myeh)? + apMyeieqm + Bo(mymef)? (4.61)
+(pameny + p3 A )ememk + (omemy + asAy) €fiEmm
+ (BsMympny, + BiMyg A, + Bs Aunmny, ) €l |

h

(K/ (nh+1)
ny +1

where the damaged and elastic part are obtained from Eq. (4.35). h and n,, are
material parameters to be defined by the user.  is an internal variable related to
the material softening. Although the 13 parameters (Ap, prp, trp, Bp, Op, Qo
as, Mo, M3, Bay Bz, Ba, Bs) are functions of the damage vector D, and traction
oV the parameters were assumed to be constants in the derivation of the
material Jacobian of Eq. (4.64). The last term represents the free energy induced
due to the damage development. The term corresponds to pi»? in the MK model
(see Eq. (3.75)).

It can be assumed that the material softening parameters in the direction of the
material orientation axis M, are not the same as in the transversal direction. The
anisotropic softening parameters were not available for the materials in the
numerical examples (Chapter 5). Therefore in subsequent applications it was
assumed that softening is isotropic.

The thermodynamic conjugate forces are obtained substituting Eq. (4.61) into
Egs. (3.18);_3 as described in Section 3.6.1.:
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04 = p@sfj

B — pg_f (4.62)
)

= ag-

The secant stiffness is obtained from Eq. (4.62) as follows:
(4.63)

The material Jacobian derivation was prescribed in Section 3.7.2.1. Noting that
% = X (see Eq. (4.67)), the Jacobian obtained from Eq. (3.74) is written as:

0o 1 do; 0G OF
| Z— Yo i
K =5, ~aF _oF 1 oD, oV, o= 459
N o\ At

where the damage surface F' is given in Eq. (4.69) and the damage potential G
in Eq. (4.65).

4.5.2 Evolution equation
To follow the procedure and formalism of continuum thermodynamics (Section
3.6.1), the evolution equation was reformulated in potential form although it was

not compulsory. The following damage potential function was introduced:

G=QY,—B (4.65)
where Y}, is obtained from Eq. (4.62) and €2, is based on the evolution Eqg. (4.53):
Q = mH(E")e"n; + el (4.66)

N

The normal strain ¢ and the tractions (&, 59) are obtained from (4.52).

Substituting Eq. (4.65) into Eq. (3.29), the following relation is obtained:
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K=\ (4.67)

The damage vector evolution equation is obtained from Eq. (3.29):

D= A5y (4.68)

Substituting Eq. (4.65) into Eqg. (4.68) gives the evolution equation derived in
Section 4.4.5.

4.5.3 Damage surface for transversal isotropy

Consistent viscoplasticity formulation as described in Section 3.7.2 was applied.
The following strain-based dynamic damage surface was applied:

F = Fy(ef;) - c[l —emD™ ) _p

(4.69)
B = hr™

where ¢ is the material parameter for damage rate dependency and % is a hardening
parameter. Parameters n;, and m, are related to the shape of the rate-dependent
hardening diagram. Fj(ef;) is the initial damage surface defined in Eq. (4.71). With
the evolution law of Eq. (3.29) the equivalent damage rate is defined as

Dekv — ,Dka

_ |96 0G
= Nav, oy,

(4.70)

Q
D

As described earlier, in damage models the damage surface is often written as a
function of the conjugate force Y;; corresponding to the damage tensor D;;. In
this study, a strain-based damage surface was proposed. A four-parameter

damage surface used in the upcoming examples is written as follows:

Fy(ef) = 220(Ly — Lig + 20) + 1y + (a® = Iy

471
+Zo(20 "‘2(1]12)—R2 ( )
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where

I = ey
Ly = Myej 4.72)
Iy = epen .

_— e e
Iy = Mygimemi

c
11

v

t

/836

< £

Figure 4.18. Four-parameter transverse isotropic damage surface in the plane
strain space when M || is.

The damage surface is illustrated in Fig. 4.18. The material parameters
(xg, 29, a, R) in EQ. (4.71) can be given as a function of failure strains shown
in Fig. 4.18. The failure strains (e.,&y,3.,€3,) are considered as positive
quantities. The coefficients are defined in the strain space when M || i3 as follows:

tp = L cp = = (4.73)
€1t €le
2 _ Llifer 2 _ 73 2
R = +2|(e1e)” — 2618 + |2+ (1) (4.74)
nieE P
e (4.75)
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2 = CRE1c — tREIt — (CRglc - tRelt)a’ (476)

QVCRtR 2

7y = et (4.77)

4.5.4 Pre-existing damage distribution

As discussed in Section 1.2, crack distribution studies are outside the scope of
this work. To illustrate the usefulness of the proposed method, pre-existing
damage size and orientation were assumed to be normally distributed. The Pre-
existing damage vector components are defined as follows:

1. To define the orientation of pre-existing cracks, each component k
(k = 1,2,3) of damage vector D is obtained from the normal distribution
based on the given mean value mp, and standard deviation sp.

2. After determining the components, the damage vector length D] is
set based on the lognormal distribution with the given mean value
mypoy and the standard deviation s, . Therefore the distribution
parameters mp; and sp, do not represent the real distribution of the
components of pre-existing damage. The parameters sp;, and mp, are
relative; they determine the orientation but not the size.

The orientation and size distribution of the pre-existing cracks was not known.
In the upcoming examples the orientation of pre-existing damage was assumed
to depend on the orientation of the material symmetry axis M when a
transversely isotropic material was considered. Otherwise pre-existing cracks
were assumed to be randomly oriented.
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4.5.5 Determination of material parameters
4.5.5.1 Elastic properties

A total of five material parameters given in Egs. (3.12) and (3.13) are needed to
define the elastic behaviour of a transversely isotropic material. In addition to
the material properties, the material orientation axis M shown in Fig. 3.12 has to
be defined. Usually the above-mentioned material parameters are available for
common transversely isotropic materials.

4.5.5.2 Damaged material parameters

To define the damaged material stiffness, four material parameters given in Egs.
(4.35) and (4.44) must be defined:

e Shear modules for active and passive crack: jiz ¢, pip 7

e Threshold stress o’® for damage deactivation

o Transversal damage factor &

o Upper limit of damage to retain positive definiteness of the stiffness matrix.

In this work, the residual shear modulus p, was assumed to be a function of the
normal compressive traction o obtained from Eq. (4.27) as illustrated in Figs.
4.19 and 4.20:

N

o TR N

MR = M7 + UTR(MR,C — BRT); ot <o’ <0

MR = KRC> oV <otk (4.78)
MR = HRT; N >0

where o™ is the threshold compressive stress value. There are two reasons for

using the approach described in Eq. (4.78): firstly, numerical difficulties occur if
there is a jump in material parameters when an open crack is closed; secondly,
the approach simulates both degradation of shear stiffness due to damage and
apparent dependence of shear stiffness on compressive stress. Therefore in the
numerical implementation of the WCD model both p ;- in Eq. (4.44) and pp ¢
in Eq. (4.50)were replaced by up given in Eq. (4.78).
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Figure 4.19. Residual shear modulus as a function of normal traction o".

Residual shear modulus for active crack pp

The residual shear modulus .z for an active crack was introduced to retain
positive definiteness of the secant stiffness matrix. Therefore i, is not
considered a physical material parameter but numerical. In the following
numerical examples, the value of .z was set to about 2% of the undamaged
shear modulus. To avoid numerical difficulties the residual shear modulus up
was given as a function of compressive traction as described in Eq. (4.78).

Residual shear modulus for passive crack and threshold stress p, ¢, ol

The shear stress of damaged material in the direction of the crack surface is
often assumed to be a function of the compressive stress that is closing the crack
(Fig. 4.20). The relation between shear and normal stresses could be modelled
using e.g. the classical Coulomb friction law or the thermodynamic approach of
Halm and Dragon (Halm and Dragon, 1998). However, as mentioned in Section
1.2, modelling of frictional sliding was outside the scope of this work.

Figure 4.20. Normal and shear tractions.
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Neither the residual shear modulus under compression iz nor the threshold
stress o'% is a known material parameter, but they could be defined
experimentally. In the numerical examples the threshold stress o’® was 30% of
the tensile strength. The residual shear modulus under compression iz » was
assumed to be about 40% of the undamaged shear modulus.

Parameters i - and o™ do not significantly affect the results of the numerical
examples (see Chapter 5) because crack deactivation does not take place in the
examples, except for Example 5.2.1, which illustrates the efficiency of the
method in crack activation-deactivation cycles.

If the proposed method is applied in cyclic loading cases, the parameters sz ¢
and o™" must be experimentally verified.

Transversal damage factor &

The transversal damage factor £ enables modelling of “transversal” stiffness
degradation as described in Section 4.4.3 and in the numerical examples (see
Fig. 5.9). Factor ¢ reduces stiffness in the direction perpendicular to the damage
vector. Without factor ¢ the stiffness is not degraded in pure uniaxial
compression where the failure mode is splitting, because the splitting crack does
not affect the stiffness in the load direction. The effect is illustrated in Fig. 4.21.
Factor £ can be considered to take account of the effects of other failure modes
besides the splitting mode. Before using the transversal damage factor ¢ it
should be experimentally verified. The use of the factor is illustrated in the
numerical example of Section 5.2.1. In the other numerical examples the effect
of the factor has been neglected: ¢ = 1.

A A

F £=1 lF 0<é&<1

—
T

Axial displ. Axial displ.

Figure 4.21. Effect of the reduction factor £ on axial stiffness degradation
under uniaxial compression.
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Parameter treatment for active and passive cracks

As described in Sections 4.4.4.2 and 4.4.4.3, the material parameters which need
not be explicitly defined (Ap, prp, prp, Bp, ap, @9, a3, po, w3, Bay B3, Buy
05 ) are different for active and passive cracks. When an open crack is closed,
there is an abrupt change in stiffness, i.e. an abrupt change in material
parameters. To avoid numerical difficulties the material parameters were
assumed to be a function of the normal compressive traction o and the
threshold stress o’# similar to the residual shear modulus described in Eq.
(4.78).

Upper limit of damage

Although material rupture has taken place when the damage vector length equals
one as described earlier, the damage vector upper limit was set at 0.9999995 in
numerical examples to retain positive definiteness of the stiffness matrix.

4.5.5.3 Damage evolution parameters

The ratio of the parameters 7, and 7, in the damage evolution Eq. (4.66)
defines the wing crack “kinking angle” « shown in Fig. 4.22b. The angle
depends both on the stress state and on the material considered. The parameter
ratios 7, /n, =1 and n; /n, = 1/2 were studied numerically under uniaxial
compression when the angle of the inclined pre-existing damage was 45°. The
numerical studies showed that when the pre-existing damage is small the
difference is negligible. In practice the ratio 7, /7, has an effect on the time
needed to form a splitting crack as illustrated in Fig. 4.22a.
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Figure 4.22. a) Effect of the ratio 7, /7, on splitting crack evolution under
uniaxial compression (material parameters are the same as in the numerical
example of Section 5.2.1: 7, = 1.0 - 10*). b) Wing crack kinking angle o

4.5.5.4 Damage surface and softening parameters
The following parameters must be defined:

e The initial damage surface is based on compressive end tensile strengths
in the two directions as described in Eq. (4.73). Parameters R, z,, z, and
a must be defined.

o Softening parameters h and n; as described in Eq. (4.69) must be defined.

e Damage rate-dependent parameters ¢ and m, (see Eg. (4.69)) must be
defined.

The above-mentioned parameters could be determined from tensile and
compression tests as a function of the strain rate. Because the material parameters
were not available, the procedure described below was applied in this work.

Although tensile and compressive strengths for various materials are available,

the complete stress-strain curve which defines the damage initiation stress and
the shape of the curve are not generally available. Quasi-brittle material
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damaging initiates at stress level o, which is lower than the ultimate stress o,
as illustrated in Fig. 4.23.

A

»
»

Eu £

Figure 4.23. Stress-strain diagram for materials having the same ¢, and o, but
a different shape of the softening diagram.

Because the ratio of the damage initiation stress and ultimate stress (o / o,) is
not known, damage was assumed to initiate at a stress level 20% lower than the
tensile strength. Based on this assumption the initial damage surface parameters
can be defined (R, =z, 2z, and a) when uniaxial compressive and tensile
strengths are known.

Although the proposed approach resembles modelling of creep brittle materials,
the damage rate-dependent approach was introduced into the proposed model to
avoid localisation of deformations. With the damage rate-dependent approach,
material strength is a function of strain rate. Therefore all the material
parameters affecting material strength must be defined at a known strain rate.
Because the strain rate was not known, it was assumed in the numerical
examples that tensile and compressive strength are obtained when the strain rate
is 107 1/s.

Softening parameters (h and ny, ) were adjusted assuming that the uniaxial tensile
strength at ¢ = 0 is 5% lower than the ultimate tensile strength at ¢ = 107357,
If the fracture energy G is known, softening parameters could be adjusted such

that the absorbed energy is the same as the fracture energy G as described in the
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upcoming example in Section 5.1. Because the softening diagram shape is
unknown, it is assumed that the softening is linear, i.e. n, = 1.

Damage rate-dependent parameters (¢ and m,) were determined such that the
known uniaxial tensile strength was attained with a strain rate of 10° 1/s. The
procedure is illustrated in Figs. 4.24 and 4.25. In the determination it was
assumed that ¢ = 0.05 R, where R is the radius of the initial damage surface as
described in Eq. (4.73).

0—71 . —
Agl“ N E=10"71/s
0‘0 A 4
£=0
: A9 _ 99
Tension o,
A% _ .05
(oF

Damage surface

Ao, =0, — 0,

Failure stress surface

Figure 4.25. Determination damage surface in the stress space.
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4.6 Conclusions of the model formulation
As described in section 1.1, the objective was to introduce a continuum damage
model capable of simulating compressive and tensile failure modes in brittle

failure of transversely isotropic materials.

Unilateral condition

It was shown in Section 4.2 that the strain-based crack opening/closure criteria
cannot be reliably applied when the stress state is two- or three-dimensional, but
a stress based criterion should be used instead.

The main reasons for finding another solution method instead of developing the
MK model were: a) The invalid opening/closure criterion of the MK model and

b) the need to calculate an eigensystem at each increment.

Upper limit of damage

A method based on the positive definiteness of the secant stiffness matrix for
determining the upper limit of the damage tensor was introduced in Section
4.3.2. As discussed in the previous sections, the upper limit of damage tensor
D;; is generally undefined in the phenomenological damage models described in
Section 3.6.2.4.

Wing crack damage (WCD) model

A new wing crack damage model was introduced for modelling of transversely
isotropic materials. The method is capable of simulating both the axial splitting
failure mode due to the wing crack growth mechanism under compression, and
the tensile cracking failure mode under tension.

In the proposed model, damage vector D, is used to represent the size and
orientation of the plane crack. The derived strain energy equations are based on
the equations derived for materials having two preferred directions. The damage
vector and the axis of the material symmetry of virgin transversely isotropic
material define the two directions.
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The evolution equation of damage vector D), is based on the wing crack growth
mechanism. The evolution direction is determined by the normal and shear strain
tractions on the crack surface. The approach is non-associative; therefore it must
be verified either analytically or numerically whether the Clausius-Duhem
inequality equation is fulfilled. In this work it is verified numerically.

The rupture criterion of the material is the same as the upper limit of the
damage. The limit is reached when the length of the damage vector equals unity.

Damage surface of the WCD model

Damage initiation in the WCD model is based on the damage surface given in
the strain space. A four-parameter surface was introduced. It enables definition
of the damage surface when tensile and compressive strengths are known both in
the direction of the material symmetry axis and the transverse direction. A more
detailed surface can be easily applied if necessary.

Stiffness degradation in the WCD model due to damaging is based on the strain
softening approach. The softening function was assumed to be linear and
isotropic, although more precise anisotropic functions can be applied if material
parameters are known. Softening was assumed to be a function of the damage
rate. The rate dependency was applied only to avoid mesh sensitivity and
localisation problems.

Pre-existing cracks

The proposed method is based on the assumption of pre-existing cracks. A pre-
existing damage vector represents a crack. If the pre-existing damage vectors are
small enough they do not affect damage initiations stress. Increasing the length
of pre-existing damage vectors makes it possible to study the effect of size and
orientation distribution of pre-existing cracks on strength and failure modes.
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5. Numerical results and verification of
wing crack and MK damage models

The damage model described in the previous Sections has been implemented in
ABAQUS/Standard FE software as a user material subroutine (UMAT).

As described in Section 3.9, the model of Murakami and Kamiya (1997) (MK
model), was not further enhanced. Therefore this work concentrated on the
development of the proposed wing crack damage model only.

In the upcoming paragraphs the validity of the wing crack damage model was
verified by testing it against five basic structures composed of known natural
materials (ice, marble and concrete). Only one verification test, using concrete as
the test material, was executed using the modified MK model.

Not all the material parameters were available for verification. Therefore, the
missing parameters were defined following the procedure described in Section
45.5. The parameters were not fitted to obtain equivalent results with
experiments, although a better correspondence would have been achieved.

All of the following examples were analysed with ABAQUS/Standard software
using a dynamic analysis method with implicit time integration, except in
Section 5.2 where static loading was applied.

5.1 Model verification test 1

5.1.1 Mesh sensitivity analysis
The objective of this example was to show that the proposed model is not mesh
sensitive. As shown in the following pages, the damage rate-dependent failure
surface proved to be an efficient tool for avoiding mesh-dependent solutions. To

illustrate the effectiveness of the proposed method, models without the damage
rate-dependent failure surface were studied as well.
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In addition to the load-displacement diagram, the energy dissipated in each of
the models was studied. If due to softening the deformations localise into a
single element, the dissipated energy within the loading-unloading cycle
decreases with decreasing element size.

In the mesh sensitivity study, the tensile test of the tapered bar shown in Fig. 5.1
was simulated. The specimen end velocity was 0.1 mm/s, which would
correspond to the average strain rate of 0.001/s if the bar were not tapered. After
tension of 20 um the bar end was returned to the original position. The tensile
phase time was 0.2s.

0.01m
'y 0.01m
0.011 m . I

L2 S — Z001m

A

0.1m
< >
Symmetry plane ‘ N\
0.1 mm/s :
4—

Symmetry plane

Figure 5.1. Tapered bar geometry and boundary conditions.

Because of the brittle-like softening, the specimen response is dynamic after
material failure at the narrow end. An implicit time integration method was used.
The sample was modelled with linear brick elements (C3D8) with various mesh
densities. The mesh densities studied were 10, 100 and 200. The element mesh
was denser at the narrow end such that the ratio of the smallest and the largest
element length (/y /4 in Fig. 5.2) was 100 for the 10-element model and 1000
for the 100 and 200-element models respectively.
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Figure 5.2. Finite element mesh of 10 elements, [y /4 = 100.

The material properties are shown in Tables 5.1, 5.2 and 5.3. The properties are
the same as used for columnar ice in the upcoming example in Section 5.3.1.
The damage surface parameters (a, R?, z, and z,) shown in Table 5.3 were
obtained based on the following assumption (see Section 4.5.5.4):

e Damage initiation was assumed to start at the stress level 0.8 ¢, =0.28
MPa, where o, is the tensile strength in the transverse direction.
Therefore the damage initiation stress is 0.07 MPa less than the ultimate
stresses given in Table 5.1.

The hardening parameter ~ shown in Table 5.3 was determined such that the
tensile strength in the transverse direction is 0.95 o, =0.333 MPa when strain
rate equals zero: ¢ = 0. The hardening rate-dependent parameter m, was
determined such that the tensile strength equals the ultimate strength given in
Table 5.1 when é = 1073 1/s (o, =0.35 MPa).

After failure at the narrow end the elastic strain energy stored in the bar induces
a dynamic response in the bar. The solution was found to be sensitive to the
increment length such that the angle of the unloading path varied when the
increment length was large. In the automatic time incrementation procedure the
maximum time increment was set to 0.001s and the half step force residual
tolerance (HAFTOL) to 50N. The mass proportional damping coefficient was set
to o = 200E3. Artificial (numerical) damping of o = -0.1 was used.

Pre-existing small cracks were assumed to be perpendicular to the tension

direction. Therefore the damage vectors were set parallel to the tension direction.
The length of the damage vector was set to 1.0E-5.
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Table 5.1. Tensile (o) and compressive (o, ) stresses along and transverse to
the direction M.

Ultimate stress

Direction M Transverse direction
o, (MPa) o, (MPa) o, (MPa) o, (MPa)
11 6.0 0.35 3.0

Damage initiation stress

Direction M Transverse direction
o, (MPa) o, (MPa) o, (MPa) o, (MPa)
1.03 5.93 0.28 2.93

Table 5.2. Wing crack model: elastic material properties and material
orientation. Subscripts refer to the direction of material orientation axis M as
shown in Fig. 3.12 and Eg. (3.13).

Elastic material properties Material orientation

Ey1(GPa) | Es3(GPa) | Gi3(GPa) | vy | vy | p(Kg) M, | My | M3

6.0 8.5 3.2 0.3130.301] 1000 0 1 0
Residual Shear Damage evolution
pr,c (GPa) g7 (GPa) ¢ |o™ (MPa) m Uy
0.4(Gi3 + Gy;) [0.02(Gy3 + Gy1) | 1.0 0.1 1.0E+4 | 1.0E+4

127




Table 5.3. Wing crack model: material properties; m is the mean and s is the
standard deviation.

Damage surface F

R? a x 20 h ny, c m, (S)

1.627E-6 | 0.3409 | 4.683E-4 |1.0786E-3| 1.9E-5 |1 | 0.05R | 6.0E-4

Distribution of orientation and size of pre-existing damage

D Dy DJ DY

MYy Do S| Do mp1 Sp1 mpa Sp2 mp3 D3
1.0E-5 0.00 1.00 0.00 0.00 0.00 0.00 0.00

5.1.2 Results of verification

The displaced shapes in Fig. 5.3a and the distribution of the damage in Fig. 5.4a
show that instead of localising in a single element, the damage is distributed into
several. Also the force-displacement diagrams of Fig. 5.5 show that with mesh
densities of 10, 100 and 200 elements, the force displacement paths practically
coincide.

When the damage rate effect was neglected, the response was dependent on the
mesh density as shown in Figs. 5.3b, 5.4b and 5.7. As shown in Fig. 5.3b,
damaging and deformations localise in one element only, compared with several
when the rate effect is taken into account (Fig. 5.3a).
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Figure 5.3. Displacement shape and damage contour plot of the damage vector
length at the beam end. Displacement magnification factor = 400. Deformations
localise in one element only (b) if the damage rate effect is neglected.

Rate independent solution
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Figure 5.4. Distribution of damage /D, D, along the z;-coordinate of the bar. In
the rate-independent solution (right) damage is localised in a single element only.
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Figure 5.5. Force-displacement diagrams for loading-unloading cycle.
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Figure 5.6. Softening curve according to the fictitious crack approach.
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Figure 5.7. Force-displacement diagrams when the damage rate effect is neglected.

To compare the displacement response with softening diagrams of the fictitious
crack approach, the softening curve was drawn as shown in Fig. 5.6 following
the procedure given by Hillerborg (1983). In Hillerborg’s notation the
displacement w (Fig. 5.6) is considered as an “additional deformation due to the
fracture zone.” The area inside the o — w curve shown in Fig. 5.6 represents the
energy absorbed by the fictitious crack, which is considered to equal the fracture
energy G as briefly described in Section 3.3.1.

The absorbed energies per unit area shown in Table 5.4 were obtained as follows:
W, = L f Fdu (5.1)
D — A .

where A is the area of the narrow end of the bar, F is the tensile force and u is
the bar end displacement. The corresponding energy in the fictitious crack
approach is

1
Gp = Zdew (5.2)

where the “additional displacement” w is illustrated in Figure 5.6.
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Table 5.4. Energy absorbed per unit area during the loading-unloading cycle.

Energy absorbed per area, .J / m?

10 elem. 100 elem. 200 elem.
With D-rate effect*, Wp 1.3174 1.3205 1.3223
With D-rate effect’, Gg 1.2082 1.2312 1.2330
No D-rate effect*, Wp 0.9690 0.9656 0.9630
No D-rate effect”, G¢ 0.9511 0.9450 0.9391

+ According to the fictitious crack approach (see Eq. (5.2) and Fig. 5.6)

* see Eqg. (5.1)

5.2 Model verification test 2

5.2.1 Wing crack damage evolution — Clausius-Duhem inequality

In order to illustrate the behaviour of the proposed model under uniaxial
compression and tension, as well as the tension-compression cycle, the cube
shown in Fig. 5.8 was analysed. The example demonstrates both the response in
cyclic loading and evolution of the damage, and tests the fulfilment of the
Clausius-Duhem inequality when the evolution constraints of Eq. (4.55) are
applied instead of Eq. (4.57). The constraints were the following:

DyDy >0

Y&y, > B
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: N Ao
= t: | B
u Top view

Figure 5.8. Analysed cube of 0.1x0.1x0.1 m® and initial damage orientation.

The cube was modelled with a single C3D8R element which has only one
integration point. The hourglass stiffness was set to 90 MPa. The load was
displacement controlled such that in cyclic loading the tensile displacement was
13.2 um. After tension the cube was compressed to 75 um (from its initial position).

The initial damage vector was inclined at 45° to the axial loading as shown in
Fig. 5.8. The length of the initial damage vector was set to 0.1. The material
parameters are given in Tables 5.5 and 5.6. The material is isotropic. Damage is
initiated with a uniaxial tensile stress of 2.33 MPa and compressive stress of
12.12 MPa.

The value of the parameter £ describing “transversal” damaging was set to 0.85

(see Fig. 4.11 and Sections 4.4.4.2 and 4.4.4.3). Therefore material softening
takes place also in the direction transverse to the damage vector orientation.
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Table 5.5. Wing crack model: elastic material properties and material
orientation. Subscripts refer to the direction of material orientation axis M as
shown in Fig. 3.12 and Eg. (3.13).

Material properties

Material orientation

Ey1(GPa) | E33(GPa) | G13(GPa) | vy | w31 | p(kg) | My | My | M3
20 20 7.69 0.20(0.20| 2.5E3 1 0 0
Residual Shear Damage evolution
pr,c (GPa) prr (GPa) ¢ o' (MPa) Uil Uy
0.4-Gy3 0.02-Gy3 0.85 0.1 1.0E+4 | 1.0E+4

Table 5.6. Wing crack model: material properties; m is the mean and s is the
standard deviation.

Damage

surface F

R2
1.210E-6

a

1.00

Ty

7.413E-4

7.

20

413E-4

h
5.0E-6

oy

1

m (S)

3.5E-4

c

0.1E-6

Distribution of orientation and size of pre-existing damage

[D°]

Dy

Dy

Dy

™y poj|
0.1

$1Do]
0.00

mp1
1.00

S$p1
0.00

Mp2
1.00

Sp2
0.00

S$D3
0.00

Mp3
1.00
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5.2.2 Results of verification

The diagrams for the compression, tension and tension-compression cycles are
shown in Figs. 5.9-5.12, 5.16 and 5.17.

The Clausius-Duhem inequality (Eq. (3.21),) has the following form in the
WCD approach:

v =Y,D, — Bk >0 (5.3)
In order to test the fulfilment of the Clausius-Duhem inequality, the power of
dissipation +¢ was evaluated at the integration point of the element as shown in
Figs. 5.9-5.11.
Failure modes
Figs. 5.9 and 5.10 illustrate the damage evolution under pure compression and
tension. The failure modes were axial splitting under compression and transverse
cracking under tension.
Evolution of the splitting crack under compression is illustrated in Fig. 5.9. The
stiffness is degraded during splitting crack development due to the transversal

damage factor &.

The tension test simulation shown in Fig. 5.10 illustrates the stiffness recovery
when the crack is closed after tensile damage.
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Figure 5.9. Force-displacement diagram and power of dissipation v in the
compression tension cycle. The letters a, b,..., d show the time sequence. The
damage evolution constraint of Eq. (4.55) was applied. The Clausius-Duhem
inequality equation was not fulfilled.
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Figure 5.10. Force-displacement diagram and power of dissipation v in the
tension compression cycle. The damage evolution constraint of Eg. (4.55) was
applied. The Clausius-Duhem inequality equation was not fulfilled.
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In the cyclic loading case the tension phase was carried out such that the
material was only partly damaged under tension (see Fig. 5.11b). As shown in
Fig. 5.11, stiffness was recovered after the tension phase when the crack was
closed due to compression. Damage also occurred during the compression phase.
Although the material was being damaged during compression, there was no
significant stiffness degradation in the loading direction because the developed
crack was parallel to the loading direction. During damage evolution in the
compression phase, the crack rotated from the transverse to the axial orientation.
During rotation the stiffness was temporarily degraded (Fig. 5.11c) and then
recovered (Fig. 5.11d). When the orientation approached axial orientation, the
stiffness was degraded due to the transversal damage factor ¢ (Fig. 5.11e).

I !
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./ 40 ) Vs
2 n” 1 s -~ ‘
t | B | . 2 ‘[ B
\ | =~
“ 0
T 2 v \ 2 7
“\.\E/ \420 \\\\‘ \\\ L»l
ZN Ty / h e \
RCTAN / ‘=3---- | Crack closure.
d) < N ] I
@ g wopy P ]
2 g !
. £ w0 ! // ]
Sopl !
e) NV ~T7
'lzoi — Force i

-60 -50 -40 -30 -20 -10 0 10
2 End displacement, pm
' 1

Figure 5.11. Force-displacement diagram and power of dissipation v in the
tension compression cycle. The letters a, b,..., e show the time sequence. The
damage evolution constraint of Eq. (4.55) was applied. The Clausius-Duhem
inequality equation was not fulfilled.
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Clausius-Duhem inequality

In order to fulfil the Clausius-Duhem inequality of Eq. (5.3), % must be
positive. As shown in Figs. 5.9, 5.10 and 5.11, the inequality was not fulfilled
throughout the analysis when the constraint of Eq. (4.55) was applied.

The inequality was fulfilled when the constraint of Eq. (4.57) was applied. The
force displacement diagram obtained when Eq. (4.57) was applied is shown in
Figs. 5.12 and 5.17.

100
d
80 )
60 fyd
~ 40 tz 1
E 20 .
F Z b
ot {
)|
b) Z
40 l
8
£
2 \\ 80 a)
1
100 Evolution of the T Ve
T 1200 i axial splitting crack. 1 2 1
70 .60 -50 -40 30 20 -10 0
End displacement, pm T

Figure 5.12. Force-displacement diagram and power of dissipation v in the
compression tension cycle. The letters a, b,..., d show the time sequence. The
damage evolution constraint of Eq. (4.57) was applied. The Clausius-Duhem
inequality equation was fulfilled.

When the damage evolution is limited by the constraint of Eq. (4.55), material
stiffening due to the crack rotation may occur. The phenomenon is illustrated in
Figs. 5.13 and 5.16. Assuming that the virgin material stiffness in the loading
direction is F3,, the damage evolution acts as follows:

a) The pre-existing crack degrades the stiffness in the loading direction;
Ey, < E3)
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b) Due to damage development an axial splitting crack develops; therefore
the representative crack rotates such that the orientation of the
representative crack is parallel to the loading. Therefore the stiffness in
the loading direction equals the stiffness of the virgin material, i.e.
stiffness in the loading direction is recovered.

If the transversal damage is neglected (£ = 1) and displacement-controlled
loading is applied in the above-mentioned case, the reaction force is increased
during damage development due to the stiffness recovery as shown in Figs. 5.13
and 5.16. It also means that the strain energy density is increased due to the
damage evolution. Clearly the stiffness must not be recovered due to damage
evolution. When stiffness recovery takes place the Clausius-Duhem inequality
equation is not fulfilled, v < 0.

lF:O lF:F0 lF>F0
Evolution path

'\ // of the crack tip

? 7 { - Representative
1 [’ crack
L5 EY EO Et

22 22

By ESQ < Ej, Eth = E; > ESQ
F
F
Damage
Fo evolution
displ. u, displ. u,
0) virgin material a) b)

Figure 5.13. Stiffness recovery due to damage development when the damage
evolution constraint of Eq. (4.55) is applied. The transversal damage effect is
neglected (£ = 1).

Damage evolution and rotation of the representative crack under the constraint
of Eqg. (4.57) is illustrated in Figs. 5.14 and 5.17. When the constraint of Eq.
(4.57) is used, the stiffness recovery does not take place and the Clausius-
Duhem inequality is fulfilled ¢ > 0.
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evolution
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0) virgin material a) b)

Figure 5.14. Damage development when the damage evolution constraint of Eq.
(4.57) is applied. The transversal damage effect is neglected (£ = 1).
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Figure 5.15. Damage evolution paths under uniaxial compression; ¢ > 0
when constraint of Eq. (4.57) is applied. 7 < 0 when the constraint of Eq.
(4.55) is applied.
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Figure 5.16. Force-displacement diagram and power of dissipation ~¢ under
uniaxial compression when the transversal damage effect is neglected (£ = 1).
The damage evolution constraint of Eq. (4.55) was applied. The Clausius-
Duhem inequality equation was not fulfilled.
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Figure 5.17. Force-displacement diagram and power of dissipation ~¢ under
uniaxial compression when the transversal damage effect is neglected (¢ = 1).
The damage evolution constraint of Eq. (4.57) was applied. The Clausius-
Duhem inequality equation was fulfilled.
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5.3 Model verification test 3

5.3.1 Saline columnar ice

5.3.1.1 Ice material properties

Because of its anisotropic nature, columnar ice properties are different in the
horizontal and vertical directions. If the c-axes are randomly oriented in the
horizontal direction, the ice can be considered transversely isotropic. Therefore
five independent parameters are needed to model its elastic response. Although
ice strength has been measured and studied quite extensively, the elastic material
properties of columnar ice have not been widely examined. Numerical values of
Young’s modules in both the vertical (E,) and horizontal (£, ) direction are
available in the literature, but Poisson’s ratios and shear modulus (G) have not
received much attention in ice studies.

When the c-axes are oriented, the ratio F, / E; is 1.23 (Michel, 1978; Sinha,
1989). Theoretical elastic properties based on single crystal characteristics
deviate from the properties of polycrystalline columnar ice (S2) based on
laboratory tests. Theoretically, Young modulus for S2 ice in the vertical
direction is only a few percent higher than in the horizontal plane (Michel, 1978;
Sinha, 1989). The value of E has been found to vary significantly with porosity
(Cox and Weeks, 1983; Mellor, 1983; Takekuma et al., 1983; Cole, 1998).
Andersson (1958) demonstrated experimentally a decrease in E with increasing
porosity (Cox and Weeks, 1983).

Measured values of E depend on the test method used. Because of the
viscoelastic behaviour of ice, there is more variation in static measurements than
in high frequency vibrational methods (Cox and Weeks, 1983; Mellor, 1983).

Hausler (1981) obtained a value of 15.1 £2.9 GPa in the vertical direction, which
is significantly higher than the theoretical value for E, reported by Michel
(1978). The experimental and theoretical results shown in Table 5.7 indicate that
in nature the ratio between the vertical and horizontal Young’s modulus is
higher than the theoretical value proposed by Michel (1978).
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Table 5.7. Elastic properties of columnar polycrystalline ice.

Author Eh, Ev, Strain T, o
Type, (salinity, %o) Notes
GPa GPa rate 1/s °C
(Michel, 1978) 9.40 9.72 -10 S2, Theoretical, based
on single crystal
(Hausler, 1981) 4.56 15.1 i Saline, (10.6), .
+1.94 +2.9 02 10 columnar Lab ice
(Takekuma N _ -4..- ; .
etal., 1983) 0.9 2.5 0.036...90 20 Saline, columnar Seaice
(Varsta, 1983) 7.28 10.16 0.25 -6 | Saline, columnar Sea ice
(Kuehn et al., ) . Lab ice,
1988) 6.0 8.5 1.0 10 | Saline, columnar (4.3) Tension
(Kuehn et al., i ) - Sea ice,
1988) 8.0 1.0 10 | Saline, columnar (4.3) Tension
(Sinha, 1988) 4.0 - 0.0001 -20 | Fresh water Lab ice
(Sinha, 1988) 9.5 - 10.0 -20 | Fresh water Lab ice

5.3.1.2 Ice failure mechanisms

The brittle failure of columnar ice cubes was studied under uni- and biaxial
compression. As described in the previous section, columnar ice is transversely
isotropic. Its behaviour depends on the temperature, orientation and strain rate.

Although all material parameters were not available, this example illustrates the
wing crack model capability to capture the brittle failure modes under
compression and tension.

According to Schulson (2001), the dominant brittle failure mechanism under
axial compression is axial splitting. The split angle depends on the orientation of
the sample and the stress state. The mechanisms are illustrated in Fig 5.18. The
tensile failure mechanism is tensile cracking perpendicular to the loading
direction (Schulson, 1987; Kuehn et al., 1988).
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Figure 5.18. Compressive and tensile failure mechanisms (a—c redrawn from
Schulson (2001)).

Based on the tests of Gratz and Schulson (1997) the uniaxial compressive
strength along the columns was assumed to be 6.0 MPa, and 3.0 MPa across the
columns.

Kuehn et al. (1988) obtained a tensile strength of 1.1 MPa along the column
direction and 0.35 MPa in the direction perpendicular the columns. The Young
modulus along the columns was 8.5 GPa and 6.0 GPa across the column
direction (Kuehn et al., 1988). The shear modulus G,3 and the Poisson ratios
V19, V3 Were obtained from the equations given by Derradji-Aouat et al. (2000).
Thus the material properties in the coordinate system shown in Fig. 5.18 are:

Ell = 6.0 GPa 033, — 6.0 MPa
E33 = 8.5 GP& 033t — 1.1 MPa

G23 =32 GPa O11c = 3.0 MPa (54)
Vig = 0.313 o111t — 0.35 MPa
vy = 0.301 Pice = 915 kg/m?®
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where o, and o33, are compressive strengths in direction 1 and 3 respectively,
and oy, and o33, are the tensile strengths.
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Figure 5.19. Damage surface in plane stress space; units: MPa.

The material parameters were defined as described in Section 4.5.5. The
parameters are the same as in example 5.1, except for the size and orientation of
initial damage which are as shown in Table 5.8. The damage surface is shown in
Fig. 5.19. To study the effect of initial damage size on the ultimate stress,
analysis was carried out also using smaller damage, as shown in Table 5.9.

Brine pockets are formed during freezing when salt water is trapped in sea ice.
“The entrapped brine occurs in the form of fine pockets of fluid between
platelets of pure ice...” (Sanderson, 1988, p. 13). Although the real shape of
brine pockets is not known, the pockets were considered to be oriented
microcracks, as done by (Zhan et al., 1996).

The shape and orientation of brine pockets was assumed to be such that the
normal of the crack surface is perpendicular to the columns. Therefore the initial
damage vector components were assumed to be distributed such that major
components were in the transversal plane (X; — X,) and minor components
were parallel to the columns. The average length of the initial damage vector
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was set to 0.05 and the standard deviation to 0.01. The vector length is not based
on measured values.

Table 5.8. Orientation of initial damage; m is the mean and s is the standard
deviation.

Distribution of orientation and size of pre-existing damage

o] I I i

MYy Do S| Do Mpy Sp1 mp2 Sp2 mp3 Sp3
0.05 0.01 0.0 1.0 0.00 1.0 0.00 0.1

Table 5.9. Orientation of initial (small) damage; m is the mean and s is the
standard deviation.

Distribution of orientation and size of pre-existing damage

|D°] D} Dy DY

MYy Do S| Do mp1 Sp1 mpa Sp2 mp3 D3
1.0E-5 1.0E-5 0.0 1.0 0.00 1.0 0.00 0.1

5.3.1.3 Model of an ice cube

The side length of the cubic sample was the same as used by Gratz and Schulson
(1994): 159 mm. The number of linear brick elements (C3D8R) in the model
was 1872. The cube was loaded through perfectly stiff frictionless plates using
the contact feature of ABAQUS/Standard FE software. In the biaxial loading
case the load was pressure-controlled. The stress ratio o,y /0y = 1 was kept
constant during loading. The stress rate of o4, was set to 2.0 MPa/s.

Under tension, the displacements of the bottom face nodes in direction 2 were
restrained, while the topmost nodes were displacement rate-controlled. The
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loading rate with displacement-controlled loading was set to 10~ m/s in both
compression and tension loading cases.

Stiff, frictionles

plate
s e

0.159

s
0.159 &»{:ﬁ’ \

Figure 5.20. FE model dimensions under axial compression.

5.3.2 Results of verification

The ultimate stresses obtained from numerical simulations are given in Table
5.10. As described in the upcoming sections, the failure modes were the same as
illustrated in Fig. 5.18.

The definition of failure stress is not clear when the failure mode is splitting,
because splitting does not reduce stiffness in the loading direction. Therefore,
the value of ultimate compressive stress is the stress value (see Fig. 5.24)
obtained when the average length of the damage vector equals ~1.0.
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Table 5.10. Ultimate stresses obtained in numerical simulation, MPa.

O11c 011t 033t 011 = 022
Test 3.0 0.35 11 -
FEM, (|D°|, Table 5.8) 3.25% 0.30 1.03 6.16*
FEM, (small |D"|, Table5.9)  3.29* 0.35 1.05 6.20*

* Obtained when average length of the damage vector = 1.0

As described in Section 5.1 (see also Section 4.5.5.4), material parameters were
adjusted such that the tensile strength o,;, equals 0.35 MPa during tension of
the tapered bar shown in Fig. 5.1 when the strain rate ¢ = 10~ / 5. The strength
in the column direction (o33 ) is therefore affected by parameters based on ;.
This explains the lower value of o33, shown in Table 5.10. The ultimate tensile
stress for 0,7, equals 0.35 MPa when the initial damage is small.

The results shown in Table 5.10 illustrate the effect of initial damage size on
ultimate stress.

5.3.2.1 Tensile test simulations

The tensile failure modes obtained in numerical simulations were similar to the
modes obtained in tests as illustrated in Figs. 5.18. As shown in Figs. 5.21-5.23,
the failure mode was cracking perpendicular to loading.

Damage vector evolution as a function of displacement is illustrated in Figs.

5.22 and 5.23. As shown in Fig. 5.22, the direction of damage vector evolution is
correct despite the unfavourable initial direction.
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Figure 5.21. Contour plot of the length of the damage vector under tension
along (left) and across (right) the columns.
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Figure 5.22. Evolution of damage vector components and average stress.
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Figure 5.23. Evolution of damage vector components and average stress.

5.3.2.2 Compression test simulations

Although the direction of damage evolution is correct in compression test
simulations as shown in Figs. 5.24 and 5.25, the failure mode is not as visual as
in the tensile test simulations (see Fig. 5.26). Damage vector orientations at the
end of the analyses correspond to the splitting failure mode.

As shown in Figs. 5.24 and 5.25, there is no drop in the average stress curve
although the damage is fully developed. The drop does not take place because
the splitting crack (parallel to the loading) does not reduce the stiffness in the
loading direction. Therefore the load can be increased beyond the point where
the damage is fully developed.
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Figure 5.24. Evolution of damage vector components and average stress under
compression across columns.
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Figure 5.25. Evolution of damage vector components and average stress.
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Figure 5.26. Contour plot of evolution of length of damage vector under
compression across the columns (above) and under confined compression (below).
5.4 Model verification test 4
5.4.1 Hualien marble —the ring test simulation
Many rocks are anisotropic and brittle. This example illustrates the usefulness of

the proposed wing crack method in the analysis of transversely isotropic marble.
Numerical results are compared with the experimental results obtained from

Chen and Hsu (2001).
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Figure 5.27. Geometry of the ring split test by Chen and Hsu (2001). The vector
M represents the material symmetry axis orientation. Disk thickness t = 11.55 mm.

The objective of the numerical examples was to:

1. Compare failure modes based on FE analysis with the experimental
modes given by Chen and Hsu (2001).

2. Compare the numerical and experimental failure loads as a function of
material symmetry axis orientation.

5.4.1.1 Experimental tests and results

The objective of the ring tests of Chen and Hsu (2001) was to obtain the tensile
strength as a function of the material symmetry axis angle with respect to the
loading direction. Although the external load is compression, the ring test itself
can be considered an indirect tensile test.

The dimensions and elastic material properties of the disk shown in Fig. 5.27 are
given in Table 5.11. The material properties are expressed in the material
coordinate system shown in Fig. 5.28. The thickness t in Table 5.11 is the
average thickness of all ring tests.
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Figure 5.28. Coordinate system used in material property definition. Vector M
represents the material symmetry axis orientation. (E,, = E, Ej3 = E’,
Goy = G', vy = v, vy = v/, see Eq. (3.14)). The prime refers to the notation
of Chen and Hsu (2001).

Table 5.11. Geometrical and elastic material properties in the ring tests (Chen
and Hsu, 2001).

d d; t* Ey Ess Gos V12 V31 p
(mm) (mm) (mm) (GPa) (GPa) (GPa) (kg)
74.0 16.4 11.55 78.3 67.68 25.34 0.267 0.185 1691

12.8
4.8

* Average thickness of test specimens

Chen and Hsu (2001) studied the behaviour of Hualien marble both
experimentally and using the Boundary Element Method (BEM). The marble has
a visible black-and-white foliated structure, based on which Chen and Hsu
assumed it to be transversely isotropic. They carried out a total of 42 tests with
three hole diameters and seven material inclination angles. The failure mode was
splitting along the loading line.

Chen and Hsu (2001) used BEM to determine the relation between the
compressive force F and tensile strength o,. They also used it to determine the
stress distribution around the central hole. Then they assumed that disk rupture
takes place when the maximum tensile stress is attained at the intersection of the
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loading line and the hole as shown in Fig. 5.35. Based on these assumptions and
the test results shown in Table 5.12 and Fig. 5.29, they obtained the tensile
strength values given in Fig. 5.30. From their analysis they concluded that “...the
tensile strength of Hualien marble decreases with the increase in the hole
diameter...”(ibid).

Table 5.12. Average ultimate compressive force F obtained experimentally by
Chen and Hsu (2001).

B F(kN) F(kN) F(kN)
(degree) (di=4.8) (di=12.8)(di=16.4)

0 11.00 6.79 6.13
15 10.33 6.65 5.90
30 8.49 6.59 5.21
45 7.28 5.04 4.20
60 5.19 3.60 3.14
75 4.28 3.36 2.88
90 3.88 2.67 2.73

Ring Tests. failure load

[ —- cl.t = 4.8 mm
-O- cl.l =12.8 mm [
—p— dt =16.4 mm

Compressive Force F, kN

0 20 40 60 80

Figure 5.29. Experimental compressive force F by Chen and Hsu (2001).
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Ring Tests, tensile strength

[ - d =438 mm ‘
- d.l =128 mm |
— d.l = 16.4 mm

Average Tensile stress, MPa

10
0

2 40 60 80
B, degree
Figure 5.30. Tensile strength obtained from tests with BEM by Chen and Hsu

(2001). The circled tensile strength values were used to determine the damage
surface for FE analysis.

5.4.1.2 FE simulation of Hualien marble and its tests

Although Chen and Hsu (2001) concluded that tensile strength is a function of
the hole diameter, in this study the tensile strength was assumed to be
independent of the specimen geometry. The damage surface was determined
based on the tensile strengths obtained from tests with a hole diameter of
12.8mm (see Fig. 5.30), when the material inclination angle is 0° and 90°. The
compressive (o.;;) and tensile (o,;) strengths used in damage surface
determination are given in Table 5.13. The subscripts i and j refer to the
coordinates of the material orientation axis shown in Fig. 5.28.
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Table 5.13. Compressive and tensile strength based on marble tests (Chen and
Hsu, 2001).

Uqﬂﬂ Uc,33ﬂ UtJIT 0¢,33 *
(MPa) (MPa) (MPa) (MPa)
22.93 76.43 40.61 13.94

" Given by Chen and Hsu (2001)
" Average of ring tests when 3 = 0° and d; = 12.8mm (see Fig 5.31)
* Average of ring tests when 3 = 90° and d; = 12.8mm (see Fig 5.31)

Because the damage evolution parameters were not known, the material
parameters were obtained following the procedure described in Section 4.5.5:

e Damage initiation stress 0.8 - 0, 33 = 11.2 MPa
o Static tensile strength 0.95 - 0, 33 = 13.2 MPa

e Tensile strength o, 33 = 13.9 MPa when strain rate ¢ = 1073 /s

The material parameters are shown in Table 5.16 and the damage initiation
stresses in Table 5.15.

Due to the foliated structure of the material, flaws were assumed to be parallel to
the layers, i.e. the pre-existing damage vector D, was assumed to be nearly
parallel to the material orientation vector M as illustrated in Fig. 5.31. A small
deviation in the orientation of the pre-existing damage vector was assumed as
follows:

DM _ g (5.5)
Mp|\m

where sp |, is the standard deviation of the damage vector component that is
perpendicular to vector M (Dyy in Fig. 5.31); mp;, is the mean of the
damage vector component that is parallel to M (Dgy in Fig. 5.31). Dy m
was assumed to be normally distributed with a mean of 0. The effect of two
different pre-existing damage sizes shown in Table 5.14 was studied.
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Table 5.14. Mean myp, and standard deviation s, for the pre-existing
damage vector length (| Dy ) distribution.

Case My po| o]
a 0.01 0.001
b 0.075 0.005

Figure 5.31. a) FE model of marble ring, b) foliated structure and orientation of
pre-existing damage.

The samples were modelled using linear brick elements (C3D8). The FE model
is shown in Fig. 5.31. According to Chen et al. (1998), the contact angle « in
the tests (see Fig. 5.27) was always less than 15°. The value of 10° was used for
« in the FE simulation. The pressure loading rate was set to 1 MPa/150 s.
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Table 5.15. Tensile (o, ) and compressive (o, ) stresses along and transverse to
the direction M.

Ultimate stress

Direction M Transverse direction
o, (MPa) o, (MPa) o; (MPa) o, (MPa)
13.94 76.43 40.61 22.93
Damage initiation stress
Direction M Transverse direction
o, (MPa) o, (MPa) o, (MPa) o, (MPa)
11.2 73.6 37.8 20.1

Table 5.16. Material properties of Hualien marble; m is the mean and s is the
standard deviation.

Damage surface F

R? a T

20 h np, c me (S)

3.00E-7 0.834 | 7.495E-5 | 3.898E-4 | 6.5E-4 | 1 |0.05R | g 5E-2

Table 5.17. Elastic material properties of Hualien marble. Subscripts refer to
the direction of the material orientation axis M (see Fig. 5.28 and Eq. (3.13)).

Elastic material properties

Material orientation
E,;(GPa) | E33(GPa) | Gi5(GPa)

vor | var | p(kg) | M; | My | M;
78.3 67.68 25.34 |0.267/0.185| 1691 |Cos 3 |Sin 3
Residual Shear

0

Damage evolution

pr,c (GPa) tr,r (GPa) § [6TF(MPa) ™ Uz

0.4(Gyz + Goy)  |0.02(Giz + Go1) | 1.0 01 | 1L.OE+4 | 1.0E+4

159



5.4.2 Results of verification

A total of 42 FE analyses were done. Each of the three rings was analysed with
seven material orientation angles using two different pre-existing damage
distributions (see Table 5.14). In addition, the effect of the sampling variation on
the failure load was studied when the hole diameter d; was 12.8mm.

As shown in Figs. 5.32 and 5.33, failure loads obtained by numerical simulation
coincide well with the experimental results. The correspondence between
numerical and experimental results is best when the material orientation angle 3
is 90°. The failure mode was splitting in all analysed specimens.

Ring Tests & FEA
12 T ! ; |
&= di = 4.8 mm, Test |
1% Tests - d.l = 4.8 mm, FEA
o . -5 .= 16.4 mm, Test
L w H
1D NI — .= 16.4mm, FEA
) hY N ]
F 5 b S,
9 S % o ¢ I
A Y \\\
gl FEA L " —~ A M-

Compressive Force F, kN

0 20 40 60 80
B, degree

Figure 5.32. Comparison of test and FE analysis results with different mean
lengths of the pre-existing crack.

As discussed in the previous section, Chen and Hsu (2001) concluded that
tensile strength is a function of the hole diameter. Although numerical
simulation was based on strength values obtained from ring tests with an inner
diameter of 12.8mm, the proposed wing crack approach was able to predict quite
accurate failure loads for rings with hole diameters of 4.8mm and 16.4mm also.
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The difference between numerical simulation and test results was greatest when
material orientation axis M was inclined at 45° to the loading direction.

The damage surface used in this work (see Section 4.5.3) is based on uniaxial
tensile and compressive strengths obtained when the load is parallel (6 = 0)
and perpendicular (6 = 90°) to the material orientation axis M. Therefore, it is
obvious that the proposed method cannot predict the correct failure load when
the material orientation axis is inclined to the loading. A more detailed failure
surface can be derived to obtain more accurate results when 0 < 8 < 90°.

Ring Tests & FEA, di =12.8 mm

-9 Test
—— FEA

Compressive Foree F, kN
i

o— Mooy = 0010
Y = 0.075

m
\% 10O

0 20 40 60 80
B, degree

Figure 5.33. Comparison of test and FE analysis results.

The effect of pre-existing damage size was studied by analysing rings using two
different sizes and distributions as shown in Table 5.14. An increase of the pre-
existing damage size decreases the failure load as shown in Figs. 5.32 and 5.33.

Although the statistical parameters were the same, there is always a variation
between samples. To study the effect of sampling variation, five samples with
seven orientation directions were analysed. Although the number of analyses
was small, it appeared that the structure is sensitive to sampling variations when
the material orientation angle & > 60° as shown in Fig. 5.34.
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Effect of sampling variation, di =12.8 mm

Compressive Force F, kN

0 20 40 60 80
B, degree

Figure 5.34. Effect of sampling variation on the failure load, when the hole
diameter is 12.8 mm and my po; = 0.075 (case b in Table 5.14).

As discussed in the previous section, Chen and Hsu (2001) assumed in the
determination of tensile strength that failure initiates at the intersection of the
load line and hole as shown in Fig. 5.35. The numerical results based on the
proposed wing crack method showed that damage initiation takes place at the
intersection only when 6 = 0 or 8 = 90°. Otherwise damage initiation occurs
on the weaker side w as illustrated in Fig. 5.35.

Due to the foliated structure, the tensile strength in the circumferential direction
is higher on the right side than on the left of the upper part of the hole, as shown
in Fig. 5.35b, when ( = 45°. Also the circumferential stress is higher on the
right side as illustrated in Fig. 5.36. Therefore damage initiates on the left side as
shown in Fig. 5.37.

The damaged area is illustrated in Figs. 5.37 and 5.38. The damage evolution
path consists of several branches, which is common in brittle failure of
materials.
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\ X l j Assumed critical location \ X l j
of tensile stress by Chen

and Hsu (2001) BN

Location of damage

initiation obtained using the C

proposed wing crack model Z"L\

when g = 45° \&

g Sh m

a) b)

v

Figure 5.35. a) Assumed location of critical tensile stress by Chen and Hsu
(2001), b) location of damage initiation according to numerical analysis using
the proposed wing crack model. w is the weaker side of the upper part of the
hole.

, Max. Principal
45, 588et04

Figure 5.36. Maximum principal stress contour when d;=12.8mm, [ = 45°
and mypo; = 0.075 (case b in Table 5.14).
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Figure 5.37. Damaged area (dark) obtained in numerical simulation of ring
tests; d;=12.8mm and mypo = 0.075 (case b in Table 5.14); 3 = 45° (left)
and 3 = 90° (right).

Figure 5.38. Evolution of damage pattern obtained in numerical simulation of
ring tests when d;=12.8mm, 3 = 0° and mypo = 0.075 (case b in Table 5.14).
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5.5 Model verification test 5
5.5.1 Plate with 3-D defect

A plate with an inclined three-dimensional defect as shown in Fig. 5.39 was
analysed under compression and tension using both the modified Murakami-
Kamiya (MK) and the proposed wing crack models.

The objective of this example was to demonstrate splitting crack evolution under
compression, and kinking of the crack under tension when the stress state is
three-dimensional.

50.0
A A-A
./.
7
’ | ¢
o o
A T — 3
. S
S : ;
1.7
Y

Figure 5.39. Dimensions of the cracked plate (mm).

The damage surface, damage evolution and the elastic material properties were
the same as used in the example in Section 5.2.1. The hardening parameters
were different. The material parameters are shown in Tables 5.18 and 5.19. The
elastic material properties and the damage surface resemble concrete material
with a tensile strength of 4.4 MPa and compressive strength of 18.5 MPa.

In the wing crack model the pre-existing damage was assumed to be small and
randomly oriented. The rate-independent damage surface shown in Fig. 5.41 was

applied.

The material parameters 7, 15, 73 and n, used in the MK model were the
same as used by Murakami and Kamiya (1997) in their example for concrete.
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The hardening parameter was adjusted such that the tensile failure stress is the

same as in the wing crack model. The MK model is more ductile than the wing
crack model as shown in Fig. 5.40.

45 .
4 > — Wing crack model
4 rd AN === MK-model
!
3.5 /4
' \
< 3 L “
> %
5 A
Y5t ‘
£ Damage initiation T o
% 2r stress| 2.33 MPa
2 I
& 1.5+ '.
\
|
1 / .I To
0.5 :
IS SR
0
0 0.2 04 e ~

Strain

Figure 5.40. Stress-strain curves under uniaxial tension for the damage models
Tensile strength 4.4 MPa.

A
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Figure 5.41. Damage surface in plane stress space for both models. Units are in
MPa.
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Table 5.18. Material parameters for the modified MK model.

T

N4

h

-400E6 MPa

-900e6 MPa 100E6 MPa

-23.5E6 GPa 0.2 1.24E-6

Table 5.19. Material parameters for the wing crack damage model.

Distribution of orientation and size of pre-existing damage

[D°] Dy Hardening
™Mypo|  Spoj | Mp1 Mpy Mp3  Sp3 h
0.0001 0.0 0.0 0.0 0.0 0.1 6.5E-4

The plate was modelled using first-order tetrahedral elements (C3D4). Although
the first-order tetrahedral element is not the best choice for accurate stress
analysis, elements can be used to illustrate the failure modes of the structure
shown in Fig. 5.42. The loading was displacement-rate controlled with a rate of
0.01 mm/s. The top and bottom surfaces of the sample were assumed to remain
planar during loading.



I

oooooooooooo_,-$'\A

Figure 5.42. FE model of the plate.

5.5.2 Results of verification

The failure patterns under tension are similar, as shown in Fig. 5.44, although
the load displacement curves shown in Fig 5.43 are dissimilar. Due to the more
ductile-like stress-strain curve, the failure load of the MK model is higher under
tension than that of the wing crack model. The behaviour of the wing crack
model is clearly brittle-like.

Splitting is the compressive failure mode for both models as shown in Fig. 5.46.
As shown in Fig. 5.45 the force displacement curves are almost linear up to the
failure load, as is the case in uniaxial compression of brittle materials. The
material parameter ¢ of the MK model enables stiffness degradation in the
loading direction also. Therefore the failure load is lower for the MK model.
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Figure 5.43. Tensile force curve as a function of displacement.
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Figure 5.44. Failure modes under tension. The dark colour is the damaged area.
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Figure 5.45. Compressive force curve as a function of displacement.

a) Wing crack model b) MK model (backside view)

Figure 5.46. Failure modes under compression. The dark colour represents the
damaged area.
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5.6 Conclusions from the test results

The proposed WCD model proved to be efficient in modelling the behaviour of
isotropic and transversely isotropic materials. The correct brittle failure modes
were captured.

The validity of the proposed wing crack damage (WCD) model was verified by
numerical simulation of five specimens in various loading conditions. The
specimens were composed of known transversely isotropic materials like ice and
marble, as well as concrete that was considered an isotropic material.

The material parameters needed in the model were not all known. Where they
were not, they were determined following the procedure described in Section
4.5.5. The parameters were not fitted to obtain identical results with the
experiments.

Model verification test 1 — mesh sensitivity analysis

The verification analysis with a tapered bar under uniaxial tension showed that
due to the applied rate-dependent damaging feature, the proposed model is not
imposed on localisation of deformations in a single element layer, although the
strain softening approach was applied.

The analysis without rate dependency showed that deformations localise in one
element independently of element size.

Model verification test 2 — Clausius-Duhem inequality

It was numerically established that the condition of Eq. (4.55) alone does not
guarantee the fulfilment of the Clausius-Duhem inequality.

When the proposed condition of Eq. (4.57) was applied the Clausius-Duhem
inequality equation was fulfilled, as shown in the verification test.
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Model verification test 3 — Columnar ice

The behaviour of columnar ice cubes both under compression and under tension
were verified numerically using the WCD model. Columnar ice is known to be a
transversely isotropic material with different strength in the material symmetry
axis direction and transversal directions.

The capability of modelling oriented pre-existing cracks was applied in the
verification case. The normal of the crack surface was assumed to be normal to
the columns as in nature.

Under tension, both the failure modes and the failure loads were in line with the
test results. Although the damage vector evolution indicated correct failure
modes under uniaxial compression and confined compression simulations, the
failure modes were not as visual as under tension test simulations.

Model verification test 4 — marble ring test simulation

The numerical simulation of ring tests with Hualien marble revealed the
capability of the WCD model in modelling transversely isotropic materials. In
ring tests, the tensile strength of a specimen is determined indirectly from the
known compressive ultimate load. Because of the foliated structure of Hualien
marble, the tensile strength is a function of the material orientation angle with
respect to the loading direction. The strength was experimentally verified by
Chen and Hsu (2001).

The capability of modelling-oriented, pre-existing cracks was exploited also in
this verification test. Due to the foliated structure of the marble, pre-existing
cracks were assumed to be parallel to the foils. The effect of length of pre-
existing cracks on the failure load was studied based on two different means and
standard deviations. The effect of sampling variation was also studied.

The resemblance between the test results and the numerically obtained results
was good. The deviation was greatest when the angle between the material
orientation axis and the loading axis was about 45°. The deviation can be
explained by a fairly simple damage surface used in the WCD model. The
surface is based on the strength obtained with orientation angles of 0° and 90°. A
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more precise damage surface would give more accurate results when the angle is
between 0° and 90°.

Not only the pre-existing damage size but also sampling variation was found to
affect the failure load. Damage size, location and orientation have a significant
effect on failure load because damage initiation tends to start from the weakest
point, therefore sampling variation also affects the failure load.

Based on numerical simulation, it appeared that the location of crack initiation is
a function of the material orientation angle. When the angle was 0° the damage

evolution path was strongly branched.

Model verification test 4 — Plate with 3-D defect

The plate with an inclined three-dimensional defect was analysed to illustrate
both the MK and WCD models’ ability to predict the direction of crack
evolution also when the stress state is three-dimensional. The material
parameters were similar to those of concrete. Both models were able to predict
the formation of splitting and tensile cracks.
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6. Discussion of results and further
developments

As described in Section 1.1 the fundamental objectives of this work were:

a) To enhance the Murakami Kamiya (MK) model,

b) To introduce a new model, the wing crack damage (WCD) model, for
analysis of brittle transversely isotropic materials, and

¢) To implement both models in ABAQUS/Standard FE software.
In this work the hypothesis that the brittle failure phenomenon can be estimated
by a model, namely the wing crack damage model (WCD model), was tested. It

was shown that the proposed WCD model can be successfully applied in the
numerical analysis of brittle, transversely isotropic materials.

In order to verify the efficiency of the WCD model it was implemented in
ABAQUS/Standard FE software as a user material subroutine.

Murakami Kamiya (MK) model

Continuum damage models motivated by the axial splitting mechanism are of
considerable current interest. Most of the models are phenomenological, based
on neither the effective stress nor the effective strain concept. The Helmholtz
free energy equation is often formulated by the use of projection tensor. The
projection tensor is used to dismantle negative strains from the strain tensor.
Formulation of the projection tensor requires determination of principle strains.
The drawback is that the derivatives of the projection tensor needed in numerical
applications cannot be explicitly formulated. In this work the MK model was
enhanced by obtaining the derivatives numerically.

In the continuum damage models the associative approach is often used; the
damage surface (damage potential) is a function of the thermodynamic conjugate
force for damage. Although the Clausius-Duhem inequality equation is fulfilled
in the associative, convex approaches, the use of the conjugate force makes the
determination of general damage surface quite complicated. A strain-based
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damage surface was applied both for the MK and WCD models. Therefore
determination of the damage surface is straightforward for various materials.

The upper limit of damage is not well defined in the phenomenological models;
therefore further conditions are required to retain positive definiteness of the
strain energy density. In this work the MK model was enhanced by introducing a
condition based on the eigenvalues of the secant stiffness matrix, to define the
upper limit for MK model.

Unilateral behaviour

The unsymmetrical behaviour due to the opening and closure of cracks is called
unilateral behaviour. The unilateral feature is important in the analysis of brittle
failure, even though cyclic loading cases were not considered. In dynamic
analysis, the stress relief due to fast crack formation induces stress wave
propagation. Due to the stress wave propagation, reflection and interaction of the
waves, cracks already formed may close.

Studies on strain- and stress-based criteria described in Section 4.2 showed that
strain-based crack opening/closure criteria cannot be reliably applied when the
stress state is two- or three-dimensional. It was further shown that a stress-based
criterion should be used instead.

The invalid opening/closure criterion of the MK model and the need to calculate
the eigensystem at each increment were the main reasons to find another

solution method instead of further developing the MK model.

Wing crack damage model

The proposed method was introduced to overcome the difficulties discussed
above. Formulation of the Helmholtz free energy equation is based on the
concept where it is assumed that the surface of an open crack is free of stresses
and that the virgin material is transversely isotropic. The damage vector was
used to determine the orientation of the surface. The sign of normal traction
(based on the damage vector and stress tensor) was used to obtain information
about the crack state, whether it is open or closed. Material rupture takes place
when the damage vector length reaches unity.
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In the proposed WCD model the upper limit of the damage is well defined,
therefore the positive definiteness of the strain energy is retained.

The direction of the damage also represents the preferred material direction. A
transversely isotropic material has one preferred material direction; therefore the
second preferred direction due to damage introduces anisotropy. This fact was
taken into account in the proposed method because it is based on the equations
derived for materials having two preferred directions. All the material
parameters used to define the strain energy density of damaged material have a
clear physical background.

The proposed new method is well defined because it is motivated by an
experimentally and theoretically verified mechanism, namely the wing crack
formation mechanism. In this approach the direction of shear traction on the
crack surface determines the kinking direction of the developing wing crack.
Numerical studies showed that the method is capable of simulating wing crack
growth, the axial splitting failure mode, and tensile cracking. The approach was
based on the assumption of pre-existing cracks.

It is well known that all materials are prone to various defects like cracks.
Orientation, size and distribution of the defects affect the material response and
strength. The proposed new method based on the pre-existing damage makes it
possible to study the effect of size and orientation of these pre-existing defects
on the behaviour of materials.

Rate-dependent damaging

Stiffness degradation due to the damage evolution was modelled applying the
strain softening approach combined with the damage rate-dependent damage
surface. Therefore problems arising from the localisation of deformations were
avoided as shown in the numerical examples.

Verification of the WCD model by numerical simulation

Both the proposed WCD and MK models were implemented in ABAQUS/
Standard FE software as a user subroutine. The validity of the wing crack
damage model was verified by testing it against five basic structures composed
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of known natural materials (ice, marble and concrete). One of the tests was
executed using the modified MK model.

The verification tests revealed the capability of the proposed WCD model in the
analysis of brittle materials. The model can be used in the analysis of brittle
failure of materials; both axial splitting and tensile failure modes were captured.
Both the failure modes and failure loads obtained in the simulation corresponded
well with the reference results.

6.1 Need for further development

Although the proposed wing crack damage (WCD) model was found to be
efficient in analysing brittle materials, some further developments can be
suggested. The main needs are listed below.

1. Frictional sliding of crack surfaces and the effect of compressive force
on sliding could be taken into account.

2. The apparent Poisson ratio is known to change when a material is
undergoing damage. The effect could be included in the WCD model.

3. Structural failure is often associated with some amount of plastic flow
besides the damaging process. Therefore the combined damage and
plasticity model could be considered.

4, Nucleation of cracks could be included in the model.
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7. Conclusions

In this work a new continuum damage model, the wing crack damage (WCD)
model was introduced. The proposed method was found to be efficient in
analysing the brittle failure of transversely isotropic solids. The method can be
applied in the analysis of axial splitting and tensile cracking failure modes. The
model was implemented in ABAQUS/Standard FE software as a user material
subroutine.

In addition the model proposed by Murakami and Kamiya (1997) was enhanced
and implemented in ABAQUS/Standard FE software.

Wing crack damage model (WCD model)

A new wing crack damage model was introduced for modelling of transversely
isotropic materials. The method is capable of simulating the axial splitting
failure mode due to the wing crack growth mechanism under compression, as
well as the tensile cracking failure mode under tension.

The derived strain energy equations are based on the equations derived for
materials having two preferred directions.

The evolution equation of damage vector D), is based on the wing crack growth
mechanism. Because of the non-associative approach the Clausius-Duhem
inequality equation was verified numerically.

Unilateral condition

It was shown in Section 4.2 that the strain-based crack opening/closure criteria
cannot be reliably applied when the stress state is two- or three-dimensional, but
a stress-based criterion should be used instead.

The main reasons for finding another solution method instead of developing the
MK model were the invalid opening/closure condition and the need to calculate
the eigensystem at each increment.
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Upper limit of damage

A method based on the positive definiteness of a secant stiffness matrix for
determining the upper limit of the damage tensor was introduced in Section
4.3.2.

Rate-dependent damaging

Due to damaging, the stiffness of the material is degraded. In continuum damage
models the degradation is described by the strain softening approach. The strain
softening applications are subject to mesh sensitivity and localisation problems.
Rate-dependent solution methods can be applied to avoid mesh sensitivity
problems; therefore the rate-dependent “consistency model” was utilised in the
proposed WCD model. Problems arising from the localisation of deformations
were thus avoided, as shown in the numerical examples.

Damage surface

Damage initiation in the WCD model is based on the damage surface given in
the strain space. A four-parameter surface was introduced. It enables definition
of the damage surface when tensile and compressive strengths are known both in
the direction of the material symmetry axis and in the transverse direction. A
more detailed surface can be easily applied if material parameters were
available.

Pre-existing cracks

The proposed method is based on the assumption of pre-existing cracks. The
method makes it possible to study the effect of the size and orientation
distribution of pre-existing cracks on the strength and failure modes.

Numerical verification

The validity of the proposed wing crack damage (WCD) model was verified by
numerical simulation of five specimens in various loading conditions. The
specimens were composed of known transversely isotropic materials like ice and
marble, and concrete that was considered an isotropic material.
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The proposed WCD model proved to be efficient in modelling the behaviour of
isotropic and transversely isotropic materials. The correct brittle failure modes
were captured.
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Appendix A: Stiffness matrices in
damage coordinate system

In the derivation of material parameters stiffness matrices are needed in the local
“damage coordinate” system shown in Fig. 4.3. The matrices are given in this
appendix.

From (Eq. (4.38))

o*Wy,

[C'] = W’ where {D} = {0}

the following stiffness matrix for undamaged material is obtained (upper
triangle, nonzero terms):

Cli = X+ 2My (o + My + 2up, — 2ur) + 2u7

Cly = a = 2(=1 4 My)MyB + A

Cly = Mya + X

Cly = JMy(1— My)(a +2(MyB + py — pr))

Cyy = =2 (=1 + My)a +2(My — 18 + A
+app — AMypy, — 2pr + AMypr

Cis = (1 — My)a+A

Coy = My (1 — My)(a+2(8 — MySB+u, — pr)) (A1)
Cis = X+ 2up

Ciy = JMy(1— My)a
Cu = —2(My — )MyB + py
Css = My (py, — pr) + pir

Cie = NMyQ — My) (p, — pir)

Cés = pp, + My (pr — pr)

Al



From (Eq. (4.40)

0*Wy

K|=—"2— h D|=1
[ ] {88,6}{88,6}’ where ” ”

the following stiffness matrix for fully damaged material is obtained (upper
triangle, nonzero terms):

Kiy =20y + 20y + X+ Ap +2Q2u + pr + pirp)
F2My (o + a3 +ap + B3 + 85 + My (B + By + Bp)
+2(p3 + pp + ppp — pr — pirp)]

Ky =a+a +ap+ 085 +A+Xp
+My (g —2(My —1)8 — B3 — (My — 1)(B4 + 26p))

Kiy = ay + My(a +az +ap) + A+ Ap

1
= 5\/MN(1 — My)(Q2a + ag + 2ap + 4MypB + 263 + 3My By

+05 + 4MyBp + 2u3 + 4 + pop — Br — Hrp))
K3 =2ap +28 4 28p + X+ Ap + 4y, + 4purp
+2(a — Mya + My((My —2)8 — ap + MyfBp (A.2)
—2(Bp + pp + pirp — Hr — pirp))) — 2(kr + prp)
K2,3 :a—MNa+aD —MNOZD +)\+)\D
1
Ky = §x/MN(1 — My)@2a + ag +2ap —4(—1+ My)B + B4

—My(By +408p) +228p + pg + 2(ig, + prp — pr — Hrp)))
K33 = AAp+2(pr+porp)

1
Ké4 = E‘IMN(l — MN)(2a+043 + 206]:))

Kiy = po + My(—(=1+ My)(28 + 84 +28p) + p3) + p1r, + firp
Kis = pg + pr + My(pg + pr + pop — pir — prp) + prp

1
K = §VMN(1 — My )(ps + 2(p, + ppp — e — pirp))
Kgs = pp — Mypg + pop + My(—prp + pr + prp)

A2



The stiffness matrix [K'*] corresponding open crack is the following (see Egs.
(4.42) and (4.44), upper triangle, nonzero terms)

K3 = O = (C1*C3y — 2C15C14Csy + C15°Cly
+C1((C34* — C35CL))) /(CLs* — CLCly)

K33 = CfF = ((C1,2C33 - C14((C13C5; + C1aC4y)) + C1oC13CH
+C11((C34C34 - C3301)))) /(Cl4* = C11Cly)

K3 = Cf = (C1,2C33 — 2013C14C3 + C15°Cly
+C11((C547 — C33C1))) /(Cly* — C11Cly)

Riget = RIS = pupr
Riget = 03 = Ol — Oi? / Cls

(A.3)

where terms C{,- are given in Eq. (A.3).

The stiffness matrix [K’I’““”‘"’] corresponding closed crack is the following (see
Egs. (4.49) and (4.50), upper triangle, nonzero terms)

K1 = Cff = ¢, — C1,* | Cly
K3 = Cfs = Cly — C,03, | Ciy
f({??ass = Cf§ = Ci3 — C14C3 / Cly
f(zlgass = Cg5 = Oy — Oy /04114
KQI?{)W 35 = O35 — C34C3y [ Cly
f(:égabs = O35 = C33 — C3)? / Cl
K™ = K™ = e

-1 pass __ / /2 !
K™ = Clf = Cs — Cs” | O35

(A4)
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Appendix B: Material parameters in
Fortran form

The material parameters obtained from Eq. (4.46) for active damage / open crack
are the following:

muR = muRT
If(MN > 1.0E-3) Then
mu3 = (-2*xI*MN*(muT*muL*(alpha**2 - 2*beta*(2*muT + lambda)) + (muT - muL)*(
& -8*alpha*muT*(muT - muL) + alpha**2*(4*muT - muL) + 4*(muT
& - muL)**2*(2*muT + lambda) + beta*(-8*muT**2 + 4*muT*muL - 8*muT*lambda
& + 2*muL*lambda))*MN))/ ((muT*(-1 + MN) - muL*MN)*(muL*(2*muT + lambda) +
& (-alpha**2 + alpha*(4*muT - 2*muL) + 4*muT*(-muT + muL) + 2*beta*(2*muT
& + lambda))*MN + (alpha**2 - 4*alpha*(muT - muL) + 4*(muT - muL)**2 -
& 2*beta*(2*muT - muL + lambda))*MN**2))
mu2 = (MUR*(muT*(-1 + MN) - muL*MN)* (muL*(2*muT + lambda) + (-alpha**2
& + alpha*(4*muT - 2*muL) + 4*muT*(-muT + muL) + 2*beta*(2*muT
& + lambda))*MN + (alpha**2 - 4*alpha*(muT - muL) + 4*(muT - muL)**2 -
& 2*beta*(2*muT - muL + lambda))*MN**2) + Xi*(muT*muL**2*(2*muT + lambda)
& - 2*muT*muL*(2*muT*(muT - muL) + alpha*(-2*muT + muL))*MN + (alpha**2*(
& -2*muT + muL)**2 - 4*alpha*muT*(2*muT**2 - 3*muT*muL + muL**2) -
& 2*(beta*(-2*muT + muL)**2*(muT + lambda) - 2*(muT - muL)**2*(muT*(2*muT
& - muL) + (muT - muL)*lambda)))* MN**2))/ ((muT*(-1 + MN)
& - muL*MN)*(muL*(2*muT + lambda) + (-alpha**2 + alpha*(4*muT - 2*muL)
& + 4*muT*(-muT + muL) + 2*beta*(2*muT + lambda))*MN + (alpha**2
& - 4*alpha*(muT - muL) + 4*(muT - muL)**2 - 2*beta*(2*muT - muL
& + lambda))*MN**2))
alpha2 = (-2*xi*(muT*muL*(2*muT*(-muT + muL) + (-2*muT + muL)*lambda) +
& muT*(2*alpha**2*muT + alpha*(-4*muT**2 + 7*muT*muL - 2*muL**2) -
& 4*beta*muT*(muT + lambda) + (MuT - muL)*(4*muT*(muT - muL) + (2*muT
& + muL)*lambda))*MN + (muT - muL)*(alpha**2*(2*muT - muL) + alpha*muT*(
& -4*muT + 3*muL) + 2*(-(beta*(2*muT - muL)*(muT + lambda)) + (muT
& - muL)*(2*muT*(muT - muL) + (muT - 2*muL)*lambda)))*MN**2))/ (muT*(-1
& + MN) - muL*MN)*(muL*(2*muT + lambda) + (-alpha**2 + alpha*(4*muT
& - 2*muL) + 4*muT*(-muT + muL) + 2*beta*(2*muT + lambda))*MN + (alpha**2
& - 4*alpha*(muT - muL) + 4*(muT - muL)**2 - 2*beta*(2*muT - muL
& + lambda))*MN**2))
alpha3 = (2*xi*(2*muT*muL*(alpha*muT - (muT - muL)*(2*muT + lambda)) +
& muT*(alpha**2*(4*muT - muL) - 2*alpha*(4*muT**2 - 5*muT*muL + muL**2) +
& 4*(muT - muL)**2*(2*muT + lambda) + beta*(-8*muT**2 - 8*muT*lambda
& + 2*muL*lambda))*MN + (muT - muL)*(-8*alpha*muT*(muT - muL)
& + alpha**2*(4*muT - muL) + 4*(muT - muL)**2*(2*muT + lambda) + beta*(
& -8*muT**2 + 4*muT*muL - 8*muT*lambda + 2*muL*lambda))*MN**2))/ (muT*(-1
& + MN) - muL*MN)*(muL*(2*muT + lambda) + (-alpha**2 + alpha*(4*muT
& - 2*muL) + 4*muT*(-muT + muL) + 2*beta*(2*muT + lambda))*MN + (alpha**2
& - 4*alpha*(muT - muL) + 4*(muT - muL)**2 - 2*beta*(2*muT - muL
& + lambda))*MN**2))
beta5 = (-4*muT*xi*(muL*(alpha*muT - (mMuT - muL)*(2*muT + lambda)) +
& (alpha**2*(2*muT - muL) - alpha*(4*muT**2 - 5*muT*muL + muL**2) + 2%(
& -(beta*(2*muT - muL)*(muT + lambda)) + (muT - muL)**2*(2*muT
& + lambda)))*MN))/ ((mMuT*(-1 + MN) - muL*MN)*(muL*(2*muT + lambda) + (
& -alpha**2 + alpha*(4*muT - 2*muL) + 4*muT*(-muT + muL) + 2*beta*(2*muT
& + lambda))*MN + (alpha**2 - 4*alpha*(muT - muL) + 4*(muT - muL)**2 -
& 2*beta*(2*muT - muL + lambda))*MN**2))
betad = (-2*xi*(muT*muL*(alpha**2 - 2*beta*(2*muT + lambda)) + (muT - muL)*(
& -8*alpha*muT*(muT - muL) + alpha**2*(4*muT - muL) + 4*(muT

Bl



& - muL)**2*(2*muT + lambda) + beta*(-8*muT**2 + 4*muT*muL - 8*muT*lambda
& + 2*muL*lambda))*MN))/ ((muT*(-1 + MN) - muL*MN)*(muL*(2*muT + lambda) +
& (-alpha**2 + alpha*(4*muT - 2*muL) + 4*muT*(-muT + muL) + 2*beta*(2*muT

& + lambda))*MN + (alpha**2 - 4*alpha*(muT - muL) + 4*(muT - muL)**2 -

& 2*beta*(2*muT - muL + lambda))*MN**2))

beta3 = (2*xi*(muT*muL*(alpha*muT - (muT - muL)*(2*muT + lambda)) +

& muT*(2*alpha**2*muT - alpha*(4*muT**2 - 5*muT*muL + muL**2) + 2*(muT
& - muL)**2*(2*muT + lambda) - 2*beta*muT*(2*muT + muL + 2*lambda))*MN +
& (MuT - muL)*(-8*alpha*muT*(muT - muL) + alpha**2*(4*muT - muL) + 4*(muT
& - muL)**2*(2*muT + lambda) + beta*(-8*muT**2 + 4*muT*muL - 8*muT*lambda
& + 2*muL*lambda))*MN**2))/ (muT*(-1 + MN) - muL*MN)*(muL*(2*muT + lambda)
& + (-alpha**2 + alpha*(4*muT - 2*muL) + 4*muT*(-muT + muL) +

& 2*beta*(2*muT + lambda))*MN + (alpha**2 - 4*alpha*(muT - muL) + 4*(muT

& - muL)**2 - 2*beta*(2*muT - muL + lambda))*MN**2))

beta2 = (2*(muT**2*xi*(-(muL*(muT + lambda)) + (alpha**2 - 2*alpha*(muT

& - muL) - 2*beta*(muT + lambda) + (muT - muL)*(2*muT - muL + lambda))*MN)
& - muR*(muT*(-1 + MN) - muL*MN)* (muL*(2*muT + lambda) + (-alpha**2

& + alpha*(4*muT - 2*muL) + 4*muT*(-muT + muL) + 2*beta*(2*muT

& + lambda))*MN + (alpha**2 - 4*alpha*(muT - muL) + 4*(muT - muL)**2 -

& 2*beta*(2*muT - muL + lambda))*MN**2)))/ ((muT*(-1 + MN)

& - muL*MN)*(muL*(2*muT + lambda) + (-alpha**2 + alpha*(4*muT - 2*muL)

& + 4*muT*(-muT + muL) + 2*beta*(2*muT + lambda))*MN + (alpha**2

& - 4*alpha*(muT - muL) + 4*(muT - muL)**2 - 2*beta*(2*muT - muL

& + lambda))*MN**2))

lambdaD = (muT*muL*(4*muT*(-muT + muL)*xi + 2*(muT - 2*muT*xi

& + muL*xi)*lambda + lambda**2) + (alpha**2*muT*(4*muT*xi - lambda) +

& 2*alpha*muT*(2*muT - muL)*(-2*muT*xi + 2*muL*xi + lambda) + 2*beta*muT*(
& -4*muT**2*xi + muT*(2 - 4*xi)*lambda + lambda**2) + (muT

& - muL)*(8*muT**3*xi + 2*muT*muL*(-1 + 2*xi)*lambda - muL*lambda**2

& - 4*muT**2*(muL*xi + lambda - xi*lambda)))*MN + (alpha**2*(-5*muT*muL*xi
& + 2*muL**2*xi + 2*muT*lambda - muL*lambda) + 2*alpha*(muT

& - muL)*(2*muT*muL*xi - 4*muT*lambda + muL*lambda) + 2*(-4*(muT

& - muL)**2*(muT*muL*xi - muT*lambda + muL*xi*lambda) +

& beta*(muT**2*(6*muL*xi - 4*lambda) + muL*lambda*(-2*muL*xi + lambda) +

& muT*(-2*muL**2*xi + muL*(3 + 5*xi)*lambda - 2*lambda**2))))* MN**2 - (muT
& - muL)*(-4*alpha*(muT - muL)*(2*muT*xi + lambda) + alpha**2*(4*muT*xi

& - muL*xi + lambda) + 2*(2*(muT - muL)**2*(2*muT*xi + lambda + xi*lambda)

& + beta*(2*muT*(-2*muT + muL)*xi + (-2*muT + muL - 4*muT*xi

& + muL*xi)*lambda - lambda**2)))*MN**3 )/((muT*(-1 + MN) - muL*MN)*

& (4*muT**2*(-1 + MN)*MN + (alpha**2 - 2*beta*lambda)*(-1 + MN)*MN +

& 4*muL**2*MN**2 + muL*(lambda + 2*MN*(-alpha + 2*alpha*MN + beta*MN)) +
& muT*(-4*(alpha + beta)*(-1 + MN)*MN + muL*(2 + 4*MN - 8*MN**2))))

muLD = (xi*(-(muT*muL**2*(2*muT + lambda)) + muT*muL*(alpha**2 - 4*alpha*muT
& - 4*beta*muT + 4*muT**2 + 2*alpha*muL - 4*muT*muL - 2*beta*lambda)*MN -
& 2*muT*muL*(2*muT**2 - 2*alpha*(muT - muL) - 4*muT*muL + muL*(beta

& + 2*muL))*MN**2 + (muT - muL)*(-8*alpha*muT*(muT - muL)

& + alpha**2*(4*muT - muL) + 4*(muT - muL)**2*(2*muT + lambda) + beta*(

& -8*muT**2 + 4*muT*muL - 8*muT*lambda + 2*muL*lambda))*MN**3) - muL*(muT*(
& -1 + MN) - muL*MN)* (4*muT**2*(-1 + MN)*MN + (alpha**2 - 2*beta*lambda)*(
& -1+ MN)*MN + 4*muL**2*MN**2 + muL*(lambda + 2*MN*(-alpha + 2*alpha*MN
& + beta*MN)) + muT*(-4*(alpha + beta)*(-1 + MN)*MN + muL*(2 + 4*MN

& - 8*MN**2))))/ ((mMuT*(-1 + MN) - muL*MN)*(4*muT**2*(-1 + MN)*MN +

& (alpha**2 - 2*peta*lambda)*(-1 + MN)*MN + 4*muL**2*MN**2 + muL*(lambda
& + 2*MN*(-alpha + 2*alpha*MN + beta*MN)) + muT*(-4*(alpha + beta)*(-1

& + MN)*MN + muL*(2 + 4*MN - 8*MN**2))))

muTD = (MuT*muL*(muT - muL*xi)*(2*muT + lambda) + muT*(-(alpha**2*muT)
& + 2*alpha*(2*muT - muL)*(muT - muL*xi) + 2*beta*muT*(2*muT + lambda) -

& (MuT - muL)*(4*muT**2 + muT*muL*(2 - 4*xi) + muL*lambda))*MN +

& (2*alpha*muT*(muT - muL)*(mulL + 4*muT*(-1 + Xi) - 2*muL*xi) -

& alpha**2*(muL**2*xi + muT**2*(-2 + 4*xi) + muT*(muL - 5*mulL*xi)) + 2*(
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& -2*(muT - muL)**2*(2*muT**2*(-1 + xi) - muL*xi*lambda + muT*xi*(-muL

& + lambda)) + beta*(4*muT**3*(-1 + Xi) - muT**2*(-1 + 2*xi)*(3*muL

& - 2*lambda) + muL**2*xi*lambda + muT*muL*(muL*xi + lambda

& - 5*xi*lambda))))*MN**2 + (muT - muL)*(-4*alpha*muT*(muT - muL)*(-1

& + 2*xi) - alpha**2*(muT - 4*muT*xi + muL*xi) + 2*(2*(muT

& - muL)**2*(muT*(-1 + 2*xi) + xi*lambda) + beta*(-(MuT*(2*muT - muL)*(-1

& + 2*%xi)) + (muT - 4*muT*xi + muL*xi)*lambda)))*MN**3)/ (MuT*(-1 + MN)

& - mMuL*MN)*(4*muT**2*(-1 + MN)*MN + (alpha**2 - 2*beta*lambda)*(-1

& + MN)*MN + 4*muL**2*MN**2 + muL*(lambda + 2*MN*(-alpha + 2*alpha*MN
& + beta*MN)) + muT*(-4*(alpha + beta)*(-1 + MN)*MN + muL*(2 + 4*MN

& - 8*MN**2))))

betaD = (4*beta**2*MN*(muT*(-1 + MN) - muL*MN)* (2*muT*(-1 + MN) + lambda*(-1
& + MN) - muL*MN) + xi*(-8*alpha*muT*(muT - muL)**2*MN + 4*(muT

& - muL)**3*(2*muT + lambda)*MN + alpha**2*(4*muT**2*MN + muL**2*MN
& + muT*(muL - 5*muL*MN))) - 2*beta*(4*muT**3*(xi + (-1 + MN)**2)*MN +

& muL*MN*(-(alpha**2*(-1 + MN)*MN) - 4*muL**2*MN**2 + muL*((-1

& + xi)*lambda + 2*alpha*(1 - 2*MN)*MN)) - 2*muT**2*(2*(-(xi*lambda)

& +alpha*(-1 + MN)**2)*MN + muL*(1 + MN - 8*MN**2 + 6*MN**3 + xi*(-1

& + 3*MN))) + muT*(alpha**2*(-1 + MN)**2*MN + 2*muL**2*MN*(-1 + Xi - 4*MN
& + 6*MN**2) + muL*(lambda*(-1 + xi + MN - 5*xi*MN) + 2*alpha*MN*(1

& - 5*MN + 4*MN**2)))))/ (2.*(mMuT*(-1 + MN) - muL*MN)* (4*muT**2*(-1

& + MN)*MN + (alpha**2 - 2*beta*lambda)*(-1 + MN)*MN + 4*muL**2*MN**2
& + muL*(lambda + 2*MN*(-alpha + 2*alpha*MN + beta*MN)) + muT*(-4*(alpha
& + beta)*(-1 + MN)*MN + muL*(2 + 4*MN - 8*MN**2))))

alphaD = (muT*muL*(2*(muT - muL)*xi*(2*muT + lambda) + alpha*(-2*muT*(-1
& + xi) + lambda)) + (-(alpha**3*muT) + alpha**2*muT*(muL*(-2 + xi)

& - 4*muT*(-1 + xi)) + alpha*(2*beta*muT*(2*muT + lambda) + (muT - muL)*(

& -2*muT*mulL*(1 + xi) + muT**2*(-4 + 8*xi) - muL*lambda)) - 2*muT*xi*

& (2*(muT - muL)**2*(2*muT + lambda) + beta*(-4*muT**2 - 4*muT*lambda

& + muL*lambda)))*MN + (alpha**3*(2*muT - muL) - alpha**2*(4*muT**2

& - 5*muT*muL + muL**2)* (2 + xi) + 2*alpha*(4*muT*(muT - muL)**2*(1 + xi)
& + beta*(-4*muT**2 + 3*muT*muL - 2*muT*lambda + muL*lambda)) - 2*(muT
& - muL)*xi*(2*(muT - muL)**2*(2*muT + lambda) + beta*(2*muT*(-2*muT

& + muL) + (-4*muT + muL)*lambda)))*MN**2 - alpha*(muT - muL)*(alpha**2

& - 4*alpha*(muT - muL) + 4*(muT - muL)**2 - 2*beta*(2*muT - muL

& + lambda))*MN**3)/ (MuT*(-1 + MN) - muL*MN)*(4*muT**2*(-1 + MN)*MN +
& (alpha**2 - 2*beta*lambda)*(-1 + MN)*MN + 4*muL**2*MN**2 + muL*(lambda
& + 2*MN*(-alpha + 2*alpha*MN + beta*MN)) + muT*(-4*(alpha + beta)*(-1
& + MN)*MN + muL*(2 + 4*MN - 8*MN**2))))

Else

1

IMN=0

]

mu2 = muR - muL*xi

alpha2 = 2*xi*(-2*muT + muL + (2*muT**2)/(2*muT + lambda))

beta3 = 2*xi*(muT - muL - (alpha*muT)/(2*muT + lambda))

beta2 =-2*muR + (2*muT*xi*(muT + lambda))/(2*muT + lambda)
lambdaD = 4*muT*xi - 2*muL*xi - lambda - (4*muT**2*xi)/(2*muT + lambda)
muTD =-muT + muL*xi

betaD = beta*(-1 + xi) - (alpha**2*xi)/(2.*(2*muT + lambda))

alphaD = 2*(-muT + muL)*xi + alpha*(-1 + (2*muT*xi)/(2*muT + lambda))
EndIf
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The material parameters obtained from Eq. (4.51) for passive damage / closed
crack are the following:

muR = muRC

If(MN > 1.0E-3) Then

mu3 = (4*xi*MN*(beta*muT*muL - (muT - muL)*(2*(muT - muL)**2 + beta*(-4*muT
& + muL))*MN))/ ((muT - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN))

mu2 = -((-(MuR*(MuT - MuT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN)) + xi*(
& -(MUT*muL**2) + 2*(-2*(muT - muL)**3 + beta*(-2*muT + muL)**2)*

& MN**2))/((muT - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN)))

alpha2 = (-2*xi*(muT*muL*(-muT + muL) + (alpha - 2*beta)*muT**2*MN + (muT

& - muL)*(-(alpha*muT) + 4*(muT - muL)**2 + beta*(-6*muT + 2*muL))*

& MN**2))/((muT - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN))

alpha3 = (-2*xi*(muT*(-alpha + 2*muT - 2*muL)*muL + (4*beta*muT**2

& - alpha*(2*muT**2 - 3*muT*muL + muL**2))*MN + 2*(beta*(6*muT - 2*muL)

& + alpha*(muT - muL) - 4*(muT - muL)**2)* (muT - muL)*MN**2))/ ((muT

& - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN))

beta5 = (-4*muT*xi*(muL*(-muT + muL) + 2*((muT - muL)**2 + beta*(-2*muT

& + muL))*MN))/ ((muT - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN))
betad = (4*xi*(beta*muT*muL - (muT - muL)* (2*(muT - muL)**2 + beta*(-4*muT
& + muL))*MN))/ (MuT - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN))
beta3 = (-2*xi*(muT*(muT - muL)*muL - 2*muT*(-2*beta*muT + (MuT - muL)**2)*MN
& - 2*(muT - muL)*(2*(muT - muL)**2 + beta*(-4*muT + muL))*MN**2))/ (muT
& - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN))

beta2 = -2*muR - (2*muT**2*xi*(muL + (2*beta - muT + muL)*MN))/ ((muT - muT*MN
& + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN))

lambdaD = -((lambda*(muT - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN) +
& xi*(-8*muL**3*(-1 + MN)*MN**2 + muL*(-1 + MN)*(-(muT*(2*muT + lambda))
& + (alpha**2 + 16*beta*muT - 24*muT**2 - 2*beta*lambda)*MN**2) + muT*(-1
& + MN)*MN*(-((alpha**2 - 2*beta*lambda)*(-1 + MN)) + 8*muT**2*MN
& - 4*beta*muT*(1 + 3*MN)) + muL**2*(-2*muT + MN*(2*muT + lambda -
& 4*(beta - 6*muT)*(-1 + MN)*MN))))/ ((MuT - muT*MN + muL*MN)*(-muL
& + 2*beta*(-1 + MN)*MN)))

muLD = -((muL*(muT - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN) +
& Xi*(muT*muL**2 + 2*beta*muT*muL*MN - 2*(muT - muL)*(2*(muT - muL)**2
& + beta*(-4*muT + muL))*MN**3))/ ((MuT - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN)))
muTD = -((4*muL**3*xi*(-1 + MN)*MN**2 + muT*muL*(-1 + MN)*(muT + 2*(beta
& - 5*beta*xi + 6*muT*Xi)*MN**2) - 2*muT**2*(-1 + MN)*MN*(2*muT*xi*MN
& + beta*(-1 + MN - 4*xi*MN)) + muL**2*(-(mMuT*MN) + xi*(muT + 2*(beta
& - 6*muT)*(-1 + MN)*MN**2)))/ ((muT - muT*MN + muL*MN)*(-muL + 2*beta*(-1 + MN)*MN)))
betaD = (2*(muT - muL)**3*xi*MN + 2*beta**2*(-1 + MN)*MN*(muT*(-1 + MN)
& - muL*MN) - beta*(muL**2*(-1 + xi)*MN + 4*muT**2*xi*MN + muT*muL*(-1
& +xi + MN - 5*xi*MN)))/ ((muT*(-1 + MN) - muL*MN)*(muL - 2*beta*(-1 + MN)*MN))
alphaD = (alpha*(muT*(-1 + MN) - muL*MN)* (2*(muT*xi + beta*(-1 + MN))*MN
& + muL*(-1 + Xi - 2*xi*MN)) + 2*Xi*(-4*muT**3*MN**2 + 2*muL**2*(beta
& + 2*muL)*MN**2 - muT*muL*(muL + 8*beta*MN**2 + 12*muL*MN**2) +
& muT**2*(muL + 12*muL*MN**2 + 2*beta*MN*(1 + 3*MN))))/ (MuT*(-1 + MN)
& - muL*MN)*(muL - 2*beta*(-1 + MN)*MN))

Else

mu2= muR - muL*xi

alpha2 =2*(-muT + muL)*xi

beta3 =2*(muT - muL)*xi

beta2 =-2*muR + 2*muT*xi

lambdaD= 2*muT*xi - 2*muL*xi + (-1 + xi)*lambda

muTD =-muT + muL*xi

betaD = beta*(-1 + xi)

alphaD = alpha*(-1 + xi) + 2*(-muT + muL)*xi

EndIf
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