
V
TT PU

BLICA
TIO

N
S 636 Q

uality-oriented softw
are architecture developm

ent
A

ntti Evesti

ESPOO 2007ESPOO 2007ESPOO 2007ESPOO 2007ESPOO 2007 VTT PUBLICATIONS 636

Antti Evesti

Quality-oriented software
architecture development

VTT PUBLICATIONS

620 Talja, Heli. Asiantuntijaorganisaatio muutoksessa. 2006. 250 s. + liitt. 37 s.

621 Kutila, Matti. Methods for Machine Vision Based Driver Monitoring Applications.
2006. 82 p. + app. 79 p.

622 Pesonen, Pekka. Innovaatiojohtaminen ja sen vaikutuksia metsäteollisuudessa.
2006. 110 s. + liitt. 15 s.

623 Hienonen, Risto & Lahtinen, Reima. Korroosio ja ilmastolliset vaikutukset
elektroniikassa. 2007. 243 s. + liitt. 172 s.

624 Leviäkangas, Pekka. Private finance of transport infrastructure projects. Value and
risk analysis of a Finnish shadow toll road project. 2007. 238 p. + app. 22 p.

625 Kynkäänniemi, Tanja. Product Roadmapping in Collaboration. 2007. 112 p. + app.
7 p.

626 Hienonen, Risto & Lahtinen, Reima. Corrosion and climatic effects in electronics.
2007. 242 p. + app. 173 p.

627 Reiman, Teemu. Assessing Organizational Culture in Complex Sociotechnical
Systems. Methodological Evidence from Studies in Nuclear Power Plant
Maintenance Organizations. 2007. 136 p. + app. 155 p.

628 Kolari, Kari. Damage mechanics model for brittle failure of transversely isotropic
solids. Finite element implementation. 2007. 195 p. + app. 7 p.

629 Communications Technologies. VTT's Research Programme 2002–2006. Final
Report. Ed. by Markku Sipilä. 2007. 354 p.

630 Solehmainen, Kimmo. Fabrication of microphotonic waveguide components on
silicon. 2007. 68 p. + app. 35 p.

631 Törrö, Maaretta. Global intellectual capital brokering. Facilitating the emergence
of innovations through network mediation. 106 p. + app. 2 p.

632 Lanne, Marinka. Yhteistyö yritysturvallisuuden hallinnassa. Tutkimus sisäisen
yhteistyön tarpeesta ja roolista suurten organisaatioiden turvallisuustoiminnassa.
2007. 118 s. + liitt. 81 s.

633 Oedewald, Pia & Reiman, Teemu. Special characteristics of safety critical
organizations. Work psychological perspective. 2007. 114 p. + app. 9 p.

634 Tammi, Kari. Active control of radial rotor vibrations. Identification, feedback,
feedforward, and repetitive control methods. Espoo 20076. 151 p. + app. 5 p.

636 Evesti, Antti. Quality-oriented software architecture development. 2007. 79 p.

ISBN 978-951-38-7011-9 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Julkaisu on saatavana Publikationen distribueras av This publication is available from

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI-02044 VTT, Finland
Puh. 020 722 4404 Tel. 020 722 4404 Phone internat. + 358 20 722 4404
Faksi 020 722 4374 Fax 020 722 4374 Fax + 358 20 722 4374

VTT PUBLICATIONS 636

Quality-oriented software
architecture development

Antti Evesti

ISBN 978-951-38-7011-9 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT Technical Research Centre of Finland 2007

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 3, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvägen 3, PB 1000, 02044 VTT
tel. växel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 3, P.O.Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax + 358 20 722 4374

VTT, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde 020 722 111, faksi 020 722 2320

VTT, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel 020 722 111, fax 020 722 2320

VTT Technical Research Centre of Finland, Kaitoväylä 1, P.O. Box 1100, FI-90571 OULU, Finland
phone internat. +358 20 722 111, fax +358 20 722 2320

Technical editing Anni Kääriäinen

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

 3

Evesti, Antti. Quality-oriented software architecture development [Laatuohjattu ohjelmisto-
arkkitehtuurisuunnittelu]. Espoo 2007. VTT Publications 636. 79 p.

Keywords quality-oriented software architecture, software development, quality requirements,
ontologies, quality meta-data management, quality modelling, quality evaluation,
Unified Modeling Language

Abstract
Producing software products of good quality requires that quality requirements
are taken into account as early as possible. In theory, the first place in which
quality requirements can be addressed is architectural models of software.
However, in practice, the software�s architecture is only used to describe the
functionality of the developed software. This means that the implemented
software may not fulfil its quality requirements and some parts of the
implementation process might be useless. The main research problem in this
work is how to define and connect quality requirements with the software
architecture in such a way that the requirements can vary between software
components and software family members.

An environment for defining and collecting software�s quality requirements was
designed and implemented in this work. The environment consists of three main
parts: quality meta-data management, quality modelling and quality evaluation.
The quality meta-data management provides a possibility to define each quality
attribute into an ontology form. These ontologies are utilized when quality
requirements are defined in order to define the requirements in a uniform way in
the quality modelling phase. Quality requirements are defined according to the
UML profile developed for that purpose, so that it would be possible to represent
these requirements in the architectural models. Finally, the architecture�s quality
is evaluated using evaluation tools. The purpose was to implement the whole
environment on the Eclipse platform using available open source components.
The Eclipse was selected because it is a widely used open source platform,
which makes it easier to distribute the software developed during this work. The
Eclipse tool evaluation confirmed that TOPCASED is the best available UML
tool for the Eclipse and the best Eclipse ontology tool is EODM. However,
EODM does not fulfil all the desired requirements of this work and this enforced
the use of the Protégé ontology tool.

 4

The implemented environment was tested using the defined test scenarios. The
tests proved that the implemented environment works as expected. In addition,
the developed quality profile offered an appropriate way to connect the defined
quality requirements to the architectural models. There are still many things that
need additional research and development before the environment and the
quality profile can be utilized in software design in industry.

 5

Evesti, Antti. Quality-oriented software architecture development [Laatuohjattu ohjelmisto-
arkkitehtuurisuunnittelu]. Espoo 2007. VTT Publications 636. 79 s.

Avainsanat quality-oriented software architecture, software development, quality requirements,
ontologies, quality meta-data management, quality modelling, quality evaluation,
Unified Modeling Language

Tiivistelmä
Laadukkaiden ohjelmistotuotteiden valmistaminen edellyttää, että laatu-
vaatimukset on huomioitu mahdollisimman aikaisessa vaiheessa. Teoriassa
ensimmäinen vaihe, jolloin laatuvaatimukset voidaan osoittaa, on ohjelmisto-
arkkitehtuuri. Käytännössä ohjelmistoarkkitehtuurilla kuvataan suunniteltavan
ohjelmiston toiminnallisuutta. Tämän vuoksi valmis ohjelmisto ei välttämättä
täytä asetettuja laatuvaatimuksia, joten osa toteutuksesta voi olla käyttö-
kelvotonta. Pääongelmana tässä työssä on se, kuinka määritellä ja liittää laatu-
vaatimuksia ohjelmistoarkkitehtuuriin siten, että vaatimukset voivat vaihdella
ohjelmistokomponenttien ja ohjelmistotuoteperheiden välillä.

Tässä työssä suunniteltiin ja toteutettiin ympäristö ohjelmiston laatu-
vaatimuksien määrittelyyn ja keräämiseen. Toteutettu ympäristö koostuu kol-
mesta osasta: laadun määrittelystä, laadun mallintamisesta ja laadun arvioinnista.
Laadun määrittelyssä jokainen laatuattribuutti määritellään ontologiamuotoon.
Ontologioiden avulla laatuvaatimukset määritellään yhtenäisellä tavalla laadun
mallintamisvaiheessa. Laatuvaatimukset määritellään tätä tarkoitusta varten
kehitetyn UML-profiilin mukaisesti, jotta vaatimukset voidaan esittää arkkiteh-
tuurimalleissa. Lopuksi arkkitehtuurin laatua arvioidaan arviointityökaluilla.
Tarkoituksena oli toteuttaa koko ympäristö Eclipse-alustalle hyödyntäen saata-
villa olevia avoimen lähdekoodin komponentteja. Eclipse valittiin, koska se on
laajasti käytetty avoimen lähdekoodin alusta, mikä mahdollistaa työssä kehitet-
tävän ohjelmiston helpon levittämisen. Toteutettu Eclipse-työkaluarviointi
osoitti, että TOPCASED on paras saatavilla oleva UML-työkalu Eclipselle ja
paras Eclipsen ontologiatyökalu on EODM. EODM ei kuitenkaan täyttänyt
kaikkia tämän työn vaatimuksia, joten jouduttiin käyttämään Protégé-onto-
logiatyökalua.

 6

Toteutettu ympäristö testattiin käyttäen määriteltyjä testitapauksia. Testit
osoittivat, että toteutettu ympäristö toimii oletetulla tavalla. Lisäksi kehitetty
laatuprofiili tarjosi tarkoituksenmukaisen tavan yhdistää määritetyt
laatuvaatimukset arkkitehtuurimalleihin. Tarvitaan kuitenkin lisää tutkimusta ja
tuotekehittelyä ennen kuin ympäristöä ja laatuprofiilia voidaan hyödyntää
ohjelmistosuunnitteluun teollisuudessa.

 7

Preface
This thesis was written at VTT Technical Research Centre of Finland, in the
Software Architectures and Platforms knowledge centre. The work was done as
part of the SVAMP project (Software Variability Modelling Paradigm), which is
a collaboration project between VTT and HUT (Helsinki University of
Technology). The project is being funded by Tekes � the Finnish Funding
Agency for Technology and Innovation and VTT.

I would like to thank Research Professor Eila Niemelä for her reviews and
support during this work. In addition, I give thanks to Professors Jukka Riekki
and Tapio Seppänen for instructions and reviewing this work.

Oulu, February 27, 2007

Antti Evesti

 8

Contents

Abstract ... 3

Tiivistelmä .. 5

Preface .. 7

Abbreviations.. 10

1. Introduction... 13

2. Related research and technologies .. 15
2.1 Quality ... 15

2.1.1 Quality attributes... 16
2.1.2 Quality-driven Architecture Design .. 19

2.2 Ontology.. 20
2.2.1 Resource Description Framework... 20
2.2.2 Web Ontology Language .. 21
2.2.3 Ontology tools... 23

2.3 Unified Modeling Language 2.0.. 23
2.3.1 UML superstructure .. 24
2.3.2 UML profiles... 25

2.4 Eclipse ... 26
2.4.1 Overview of the Eclipse Platform ... 28
2.4.2 UML tools for Eclipse... 30
2.4.3 Ontology tools for Eclipse .. 32
2.4.4 Quality evaluation tools for Eclipse .. 35

3. Quality-Oriented Architecting Environment .. 36
3.1 Overview ... 36
3.2 Requirements... 37

3.2.1 Quality ontology tool .. 39
3.2.2 Quality design tool .. 41
3.2.3 Quality evaluation ... 43

3.3 Architecture ... 43
3.3.1 Structure .. 44
3.3.2 Behaviour .. 45

 9

3.3.3 Ontologies and profiles ... 48
3.3.4 Structural view of the Profile editor.. 52
3.3.5 Structural view of the RAP tool .. 55

4. Implementation and testing... 56
4.1 Ontology under Protégé... 56
4.2 The Profile editor... 58
4.3 Quality profile and TOPCASED ... 61
4.4 RAP tool under Eclipse ... 63
4.5 Testing ... 66

5. Discussion... 69
5.1 Link-up to the related research .. 69
5.2 Implementation of the environment .. 70
5.3 Results ... 71
5.4 Future research and development .. 72

6. Conclusion .. 74

References... 76

 10

Abbreviations
API Application Programming Interface, interface to an existing

application

CBSP Component-Bus-System-Property, approach to reconcile software
requirements and architecture

CVS Concurrent Versions System, open source version controlling
system

EMF Eclipse Modeling Framework, an Eclipse plug-in for building tools
and applications based on a structured data model

EODM EMF Ontology Definition Metamodel, ontology tool for Eclipse

IEEE The Institute of Electrical and Electronics Engineering, an
international non-profit professional organization for the
advancement of technology related to electricity

IEE Integrability and Extensibility Evaluation, a method for evaluating
the quality of the software architecture

ISO International Organization for Standardization, the developer of
international standards

JDT Java Development Tools, an Eclipse plug-in for building software-
based Java language

JFace User interface framework, an Eclipse plug-in for building graphical
user interfaces

MVC Model View Controller, software architecture pattern

NFR Non-Functional Requirement, software quality requirement

OCL Object Constraint Language, one part of the UML specification

OMG Object Management Group, an international non-profit computer
industry consortium

OSGi Open Service Gateway initiative (nowadays OSGi Alliance),
corporation comprised of technology innovators and developers
focusing on developing open service gateway technology

 11

OWL Web Ontology Language, a language for defining machine
interpretable vocabularies specified by W3C

PDE Plug-in Development Environment, an Eclipse plug-in for
developing new Eclipse plug-ins

QADA Quality-driven Architecture Design and quality Analysis, a
methodology that provides a set of methods and techniques to
develop high-quality software architectures

QASAR Quality Attribute-oriented Software ARchitecture design method,
a method for selecting the requirements of software and defining
those requirements in the software architecture

QO-AE Quality-Oriented Architecting Environment, an environment
developed during this work

RAP Reliability and Availability Prediction, a method for evaluating the
quality of the software architecture

RDF Resource Description Language, W3C specification for a metadata
model

RDFS RDF Schema, a language to structure RDF resources

SDK Software Development Kit, a set of software development tools

SWeDE Semantic Web Development Environment, ontology tool for
Eclipse

SWT Standard Widget Toolkit, an Eclipse plug-in for building graphical
user interfaces

UI User Interface, interface for the user to interact with a computing
system

UML Unified Modeling Language, object-based modelling technology
specified by OMG

URI Uniform Resource Identifier, unique identifier for resources

W3C World Wide Web Consortium, standardization organization for web
technologies

XML Extensible Mark-up Language, information representation
technology

 13

1. Introduction
The software architecture design process usually concentrates on the functional
requirements of the developed software. Therefore, software architectures do not
contain information on the quality requirements of the software to be developed.
Dropping quality requirements out of the software architecture design process
may mean that a large amount of resources has been put into building a system
that does not meet its quality requirements [1]. This wastes time and money and
produces an architecture of poor quality.

The research problem in this work is how to connect and represent variable
quality requirements in the software architecture and software components. The
architecture is the first place in which software quality requirements can be
addressed [2], which is why this work focuses on the tools that make it possible
to connect quality requirements to the architectural models.

Quality is not an exact concept because everyone looks at quality from their own
viewpoint [3]. Thus it is necessary to represent quality in a uniform way.
Ontologies are utilized for this purpose in this work. The goal is that every
quality attribute, e.g. reliability and security, is represented in its own ontology.
However, these ontologies are not defined in this work.

Unified Modeling Language (UML) is used to represent the software
architecture in this work. UML is a de facto standard for depicting software
structures. Added to that, it offers mechanisms to extend its metamodel using
UML profiles [4]. These profiles are a natural way to connect the defined quality
requirements to the architectural models.

The purpose of this work is to design and implement an environment that makes
it possible to define quality requirements of software and connect these
requirements to architectural models. The primary requirements for the
environment are, it should be based on a standard or widely accepted technology
and it should be easy to share with architects from different companies. That is
why the Eclipse platform was selected. The Eclipse platform is an open and
extensible environment, both for building software and for application
frameworks upon which software can be built [5]. Moreover, there are many

 14

open source tools and plug-ins available for the Eclipse platform. This work
utilizes these tools whenever possible.

The implemented environment is named the Quality-Oriented Architecting
Environment, with the acronym QO-AE. The environment should offer the
possibility to go through the whole quality aware architecture design procedure,
from the quality attribute definition to the architecture design and finally to the
quality evaluation of the designed architecture. Each of these phases needs a
tool. Thus, the idea is to find a suitable tool for each phase and extend these
tools in an appropriate manner. As mentioned earlier, all of these tools should
run under the Eclipse platform and be available as an open source licence.

After the introduction, this thesis is structured as follows: Chapter 2 presents
related research and technologies, as well as the performed tool evaluations. The
environment to be developed is presented in Chapter 3. Chapter 4 discusses the
implementation and test process of the environment. Finally, the results of thesis
are analyzed in Chapter 5, and the work ends with the conclusions in Chapter 6.

 15

2. Related research and technologies
This chapter first describes quality on a general level. Second, quality attributes
are illustrated using different quality models. Thereafter, ontology and ontology
languages are investigated. In addition, there is a brief introduction to UML 2.0.
The last part of this chapter describes the Eclipse platform and available Eclipse
plug-ins for UML 2.0 modelling, ontology modelling and quality evaluation.

2.1 Quality

Quality is not an exact concept because everyone looks at quality from their own
viewpoint. Evans and Lindsay define quality from five perspectives [3]:

− Q1 is judgmental criteria. This defines quality as the goodness of a
product. This definition is referred to as a prevalent definition of quality.
The definition means that quality is absolute and universal. This kind of
quality cannot be defined exactly; you just know it when you see it. This
kind definition has little practical value for managers; it does not provide
a way to measure or assess quality.

− Q2 is product-based criteria. This defines quality as a function of a
specific, measurable variable that differs in quantity with some product
attributes.

− Q3 is user-based criteria. This defines fitness for intended use, or how
well the product performs its intended function. This quality definition is
based on the presumption that quality is determined by what a customer
wants.

− Q4 is value-based criteria. As the name says, it is based on value � that
is, the relationship between usefulness and satisfaction with price. This
means that the product is of good quality when it offers the same
usefulness as the competitor�s product, but at a lower price, or it offers
better usefulness at the same price.

− Q5 is manufacturing-based criteria. This defines quality as a desirable
outcome of design and manufacturing practice or conformance to the
specification.

 16

The International Organization for Standardization (ISO) defines quality in the
ISO 9000 definition [6]. This definition says that quality is a characteristic that a
product or service must have. For example, a product must be reliable and a
service must be efficient. However, not all qualities are equal, some are more
important than others. The qualities the user wants are of the most importance;
these are qualities the product and service must have. Therefore, the quality of a
product or service is the one that meets the wants and expectations of the user.

2.1.1 Quality attributes

The standard of the Institute of Electrical and Electronics Engineering (IEEE)
[7] defines software quality as the degree to which software possesses a desired
combination of quality attributes. The standard defines a quality attribute as a
characteristic of software, or a generic term applied to quality factors, quality
subfactors, or metric values. The terms quality attribute and quality
characteristic are interchangeable [2].

Chung et al. have defined the i* framework and the non-functional requirements
(NFR) framework [8]. The i* framework that is introduced first facilitates
detecting where the quality requirements originate and what kind of negotiations
should be taking place. The NFR framework refines the i* framework. In the
NFR framework, quality requirements are called soft-goals. These soft-goals are
got from the needs of stakeholders. Soft-goals help a developer to refine the
quality requirements, to consider different design alternatives, to perform trade-
off analyses and to evaluate the degree to which the requirements are met.

Component-Bus-System-Property (CBSP) [9] is an approach that aims at
reconciling the software requirements and the architecture. It is a five-part
iterative process for defining the initial architecture from the requirements. The
fundamental idea of the CBSP is that every software requirement may contain
information relevant to the software system�s architecture. Thus each
requirement is assessed for its relevance to the system architecture�s
components, connectors (buses), the topology of the system or a particular
subsystem, and their properties. The CBSP provides an intermediate model
reducing the semantic gap between high-level requirements and architectural
description.

 17

ISO/IEC standard 9126-1�s quality model [10] defines quality with six
categories of quality characteristics. These categories are functionality,
reliability, usability, efficiency, maintainability and portability. Each of these
characteristics is divided into sub-characteristics, as shown in Table 1.

Table 1. The ISO 9126-1 quality model.

Attribute Sub-characteristic

Functionality Accuracy, suitability, interoperability, compliance and security.

Reliability Maturity, fault tolerance and recoverability.

Usability Understandability, learnability and operability.

Efficiency Time behaviour, resource and utilization.

Maintainability Analysability, changeability, stability and testability.

Portability Adaptability, installability, conformance and replaceability.

Further, ISO/IEC�s technical reports 9126-2 [11] and 9126-3 [12] define
intended external and internal quality metrics for measuring these quality
characteristics. Internal metrics measure the software itself and external metrics
measure the behaviour of the computer-based system that includes the software.
These ISO/IEC reports define the metrics, the purpose of the metrics, the
measurement formulas, interpretation of the measured values, etc.

Quality attributes may also be divided into two categories; execution and
evolution quality attributes. Execution qualities are observable during the run
time as the behaviour of the system. In other words, they constitute functional
quality. Execution quality attributes are depicted in Table 2. [13]

 18

Table 2. Execution quality attributes.

Attribute Description

Performance Responsiveness of the system, which means the time required to respond to
stimuli (events) or the number of events processed in some interval of the
time.

Security The system’s ability to resist unauthorized attempts at usage and denial of
service while still providing its service to legitimate users.

Availability Availability measures the proportion of time the system is up and running.

Usability The system’s learnability, efficiency, memorability, error avoidance, error
handling and satisfaction concerning users’ actions.

Scalability The ease with which a system or component can be modified to fit
a problem area.

Reliability The ability of the system or component to keep operating over the time or to
perform its required functions under stated conditions for a specific period of
time.

Interoperability The ability of a group of parts to exchange information and use the
information exchanged.

Adaptability The ability of software to adapt its functionality according to the current
environment or user.

Evolution qualities are observable during a system�s life cycle; they stay in the
static structures of the system. In other words, they constitute non-functional
qualities. Evolution attributes are depicted in Table 3. [13]

Table 3. Evolution quality attributes.

Attribute Description

Maintainability The ease with which a software system or component can be modified or
adapts to a changed environment.

Flexibility The ease with which a software system or component can be modified for
use in applications or an environment other than those for which it was
specifically designed.

Modifiability The ability to make changes quickly and cost-effectively.

Extensibility The system’s ability to acquire new components.

Portability The ability of the system to run under different computing systems:
hardware, software or combination of the two.

Reusability The system’s structure or some of its components can be reused in future
applications.

Integrability The ability to make the separately developed components of the system
work correctly together.

Testability The ease with which software can be made to demonstrate its faults.

 19

2.1.2 Quality-driven Architecture Design

Software architecture is described as a structure or structures of the system.
Structures consist of the software components and their externally visible
properties, and the relationships between them. [2]

Quality-driven Architecture Design and quality Analysis (QADA®1) uses quality
requirements as a driving force when selecting software structures. It contributes
to software family engineering by providing a method to select an appropriate
family architecture approach, a method to capture and map requirements to the
family architecture, a method to evaluate the maturity and quality of the family
architecture, and a technique to represent variation points in the family
architecture. QADA describes architecture on two abstraction levels: conceptual
and concrete. Both levels are divided into four viewpoints: structural,
behavioural, deployment and development. [14][15]

The QADA methodology contains several quality evaluation methods, e.g.
Integrability and Extensibility Evaluation (IEE) [15] and Reliability and
Availability Prediction (RAP) [16]. The IEE method includes three phases:
quality goals and criteria definition, modelling system family architecture for
integrability and extensibility evaluation, and evaluating integrability and
extensibility from architectural models. The RAP method assists in evaluating
software reliability and availability from the architectural models. The RAP
method contains three similar phases: a quality requirements definition,
representing quality requirements in architectural models and evaluating quality
against defined quality criteria.

The Quality Attribute-oriented Software ARchitecture design method (QASAR)
[1] consists of two iterative processes. The inner iteration contains three parts:
functionality-based architecture design, assessment and transformation to quality
requirements. The outer iteration refers to a requirement selection process. In
this process some subset of requirements is selected and this subset is used
within the inner iteration. As can be seen in this method, quality requirements
are not the driving force in architecture development they are in the QADA
method.

1 ® Registered trademark of VTT Technical Research Centre of Finland,
http://virtual.vtt.fi/qada/.

http://virtual.vtt.fi/qada/

 20

2.2 Ontology

Ontology is an explicit specification of a conceptualization [17]. Ontology is a
term borrowed from philosophy that refers to the science of describing the kinds
of entities in the world and how they are related [22]. Ontology is a way to
define the terms used to describe and represent an area of knowledge. People,
databases and applications use ontologies when domain information is required
to be shared. A domain means a specific subject area or area of knowledge, like
medicine or food. Ontologies can define concepts and the relationships between
them in a way that computers can use them. [18] There are some languages that
should be used for defining ontologies in a computer readable format. These
languages are presented in the next sections.

2.2.1 Resource Description Framework

The World Wide Web Consortium (W3C) defines the Resource Description
Framework (RDF), a language for representing information in the World Wide
Web. It is intended for representing web resources� metadata, like an author or a
title of a web page. RDF also makes it possible to represent information on
resources that can be identified on the Web, like items available from an online
store. RDF is not intended for humans; instead, it is intended for computers and
applications that process and exchange information between each other. [19]

An abstract syntax of RDF is a collection of triples, and this collection is called
the RDF graph. These RDF triples are also called statements. The RDF triple
consists of three parts: a subject, a predicate and an object. The subject is the
identified thing, the predicate is also called the property of the triple, and the
object is the value of a property. RDF uses a Uniform Resource Identifier (URI)
for identifying the components of the triple. One way to represent RDF in a
computer processable way is by using RDF/XML, which is an eXtensible
Markup Language (XML)-based representation of RDF. [19]

For example, in the statement �The author of http://www.w3schools.com/RDF is
Jan Egil Refsnes�, the subject is http://www.w3schools.com/RDF, the predicate
is author and the object is Jan Egil Refsnes. Using the RDF/XML syntax, this
statement looks as in Figure 1. [21]

http://www.w3schools.com/RDF
http://www.w3schools.com/RDF

 21

Figure 1. Sample statement in the RDF/XML format.

Using the RDF Validation Service of the W3C [20], this statement is represented
in a graph format in Figure 2. The subject is represented by the ellipse, the arrow
represents the predicate and the rectangle depicts the object.

Figure 2. Sample statement in the RDF graph.

RDF Schema (RDFS) is an extension to define application-specific classes and
properties in the RDF representation. It does not include application-specific
classes, but it enables the framework to define these kinds of classes. The classes
in RDFS are similar to the classes in object-oriented programming languages.
Thus RDFS allows defining instances of classes and subclasses of classes. [21]

2.2.2 Web Ontology Language

Web Ontology Language (OWL) is a language defined by W3C. OWL is an
extension for RDF, thus it can be described using XML. OWL is intended to
provide a language that is used to describe the classes and relationships between
these classes. [22]

OWL is not only one language. In fact, it contains three different specifications:
OWL Lite, OWL DL and OWL Full. All these languages can be derived from
each other as OWL Lite is a subset of OWL DL and OWL DL is a subset of
OWL Full. [24]

 22

OWL Lite is the most simplified OWL language; it provides a classification
hierarchy and simple constraint features. OWL Lite contains cardinality
constraints, but it only allows the use of cardinality values of zero or one. Tool
support for OWL Lite is easier to implement, unlike its more sophisticated
versions. [22]

OWL DL offers maximum expressiveness without losing the computational
completeness and decidability of a reasoning system. Computational
completeness means that all entailments are guaranteed to be computed and
decidability means that all computations are finished in finite time. OWL DL
includes all OWL language constructs, but with some restrictions � such as type
separation, which says that a class cannot also be an individual or property and a
property for one cannot also be an individual or class. [22]

Figure 3 depicts some sample ontology that is using OWL DL [23]. This
ontology defines the terms �Pizza�, �PizzaBase� and �PizzaTopping�. Each pizza
has a base and the type of base is a PizzaBase. In addition, the ontology defines
disjoints; when the class type is PizzaBase, it cannot be the PizzaTopping class
or Pizza class and similar disjoints to the PizzaTopping class.

Figure 3. Sample ontology.

OWL Full offers maximum expressiveness and the syntactic freedom of RDF
without computational guarantees. OWL Full allows an ontology to augment the
meaning of the pre-defined (RDF or OWL) vocabulary. It is unlikely that any
reasoning software will be able to support every feature of OWL Full. [22]

 23

2.2.3 Ontology tools

Making ontologies by hand would be hard work, especially making them in a
computer readable format. Thus there are tools available to facilitate this
process. The ontology editor survey by Michel Denny [25][26] identified over
50 ontology tools. The survey was updated in 2004, but because this area is
evolving at every turn, the survey is only used for suggestive purposes.

Appreciable ontology tools are Protégé [27], SWOOP [28] and TopBraid [29].
TopBraid is a commercial tool and is also available for the Eclipse platform.
SWOOP and Protégé are open source applications. When comparing these tools
it seems that Protégé is more popular than SWOOP. There are many plug-in
tools available for Protégé as well, which makes it possible to extend its
functionality.

Jena is a Java framework that provides a programmatic environment for RDF,
RDFS and OWL. Jena is open source and has grown out of work with the HP
Lab�s Semantic Web Programme. [30] From the perspective of this work, the
interesting features of Jena are an RDF API and an OWL API.

2.3 Unified Modeling Language 2.0

Unified Modeling Language (UML) is a specification from the Object
Management Group (OMG) [31]. UML is a language for visualizing, specifying,
constructing and documenting the artefacts of software systems. In addition,
UML is suitable for modelling business process and data structures. The current
official version of UML is 2.0. The specification is divided into four parts:
superstructure, infrastructure, Object Constrain Language (OCL) and diagram
interchange. The superstructure is already completed, but the other three parts
are not yet finalized. [31]

The UML 2.0 infrastructure defines base classes for UML 2.0 superstructure and
Meta Data Facility (MOF) 2.0. OCL allows describing pre- and post-conditions,
invariant and other conditions. UML 2.0 diagram interchange extends the UML
metamodel with a package for graph-oriented information, allowing models to
be exchanged and then displayed as they were originally. [31] The next section

 24

describes the UML superstructure and some essential diagrams from the
perspective of this work.

2.3.1 UML superstructure

The superstructure of UML 2.0 defines 13 diagrams [4], six structure diagrams,
three behaviour diagrams and four interaction diagrams [31]. These diagrams
and their relationships are illustrated in Figure 4 [4].

A component diagram defines the components used in the developed software
system. A component is a modular unit with well-defined interfaces that is
replaceable within its environment. The component concept addresses the area
of component-based development and component-based system structuring. A
component is an autonomous unit within a system and has one or more provided
and/or required interfaces. Thus a component�s internal structure is hidden and
only accessible by the provided interfaces. [4]

A composite structure diagram is a diagram that depicts the internal structure of
a classifier, as well as the use of collaboration. The composite structure diagram
represents run-time instances collaborating over communication links to achieve
some common objectives. [4]

Figure 4. UML diagrams and their relationships.

 25

A state machine diagram can be utilized to express the behaviour of a part of a
system. There are concepts for modelling discrete behaviour through finite state
transition systems. A sequence diagram is the most common variant of
interaction diagrams. The sequence diagram depicts message interchange
between participants in the interaction. [4]

2.3.2 UML profiles

UML profiles offer a way to extend the existing UML metamodel. The profile
mechanism has been specifically defined to provide a lightweight extension
mechanism to the UML standard. Lightweight means that the existing
metamodel is not modified, only new constraints or supplemental-definitions are
added to the metamodel, nothing is taken away. The intention of profiles is to
give a mechanism for adapting the existing metamodel with constructs that are
specific to a particular domain, platform or method. [4]

A profile includes stereotypes and constraints. When design work is based on
this kind of profile, a designer has a set of concepts related to the current domain
and the OCL constraints advise how these concepts should be used [32].
Metaclasses that are extended by a stereotype show up in a similar way as
before, but above the name is the mark <<nameOfStereotype>> [4].

In the literature, profiles seem to be a convenient way to extend UML models,
but in practice it has been seen that UML profiles are very tool-dependent.
Without profile support from a UML tool, they cannot be utilized. Figure 5
presents one solution to connect stereotypes to the model element [4].

Figure 5. Stereotypes and their values.

The model element in Figure 5 contains two stereotypes: creator and clock. The
content of these stereotypes is shown in a separate note in this case. Some UML

 26

tools add the stereotype�s values in the properties menu of the UML tool, thus
the values are not shown in graphics.

2.4 Eclipse

IBM/OTI began developing Eclipse in 1999 and version 1.0 was published in
2001. In the same year, IBM donated the source base of Eclipse and eclipse.org
was opened. Nowadays Eclipse is an open source community whose projects are
managed by the Eclipse foundation. Projects under Eclipse are focusing on
providing a vendor-neutral open development platform and application
frameworks for building software. [33]

The Eclipse platform is an open and extensible environment, both for building
software and for application frameworks upon which software can be built [5].
Usually, when speaking about Eclipse, it means the Eclipse Software
Development Kit (SDK), which consists of the Eclipse platform, Java
Development tools (JDT) and Plug-in Development Environment (PDE) [35]
represented in Figure 6 [34]. In other words, developing Java applications can be
started by means of Eclipse SDK. JDT, PDE and the Eclipse platform will be
presented later on.

Figure 6. The three layers of Eclipse.

The smallest part of the Eclipse platform that can be developed and delivered
separately is a plug-in. All the functionality the Eclipse system provides comes
from plug-ins. Small tools are made up as one plug-in, but bigger tools consist of
many plug-ins working together. [35] In this work, Eclipse means the whole
Eclipse system � in other words, the Eclipse platform and some set of unnamed
plug-ins.

 27

JDT provides a set of plug-ins that add the capabilities of a full-featured Java
Integrated Development Environment (IDE) to the Eclipse platform, supporting
the development of any Java applications, including Eclipse plug-ins. JDT
includes many useful features for the Java developer, such as syntax
highlighting, setting break points and versatile search capabilities. [33]

PDE makes it possible to build products based on the Eclipse platform by
extending the Eclipse�s JDT. PDE creates a Java project that has a plug-in�s
nature. It offers a wizard that facilitates the creation of a skeleton of a plug-in,
which might be tedious work by hand [34]. Figure 7 depicts a plug-in project�s
structure made by PDE.

Figure 7. Plug-in project�s structure.

Through PDE, treating the content of plugin.xml, build.properties and META-
INF/MANIFEST.MF files is easier because there is a graphic editor available
and the user does not need to write xml by hand. These files are also called the
plug-in�s manifests, which contain information on the plug-in�s appearance,
structure and source code. The provided editor is called manifest editor. Added
to this, PDE provides an easy way to run the developed plug-in, so the developer
does not need to install the plug-in before making a test run. [33][34]

There are many reasons why Eclipse is selected as the used platform for this
work. As mentioned earlier, Eclipse is open source software, thus everyone can
download it and use it for free, which makes it easier to distribute a software
developed during this work. Secondly, Eclipse offers a well-standardized
environment in which to develop software. Therefore, software that runs under
the Eclipse platform will work on a number of hardware platforms and operating
systems.

 28

2.4.1 Overview of the Eclipse Platform

The Eclipse Platform is a subsystem of the whole Eclipse system. It is built on
top of a runtime engine. Figure 8 [35] depicts the Eclipse Platform architecture
and its main components. Each of these components is implemented by using
design patterns, which makes them well behaved and easy to use. For example,
several components use a composite design pattern [34].

The base of the Eclipse Platform is a runtime component. It is the only part of
Eclipse that is not a plug-in. The runtime component defines the plug-in model
and extension points; it dynamically searches plug-ins and sustains their
information and extension points. [36] The extension point is a place where
things can plug into the Eclipse; likewise, extensions are things that are plugged
into the Eclipse [34].

The runtime component is implemented using the Open Services Gateway
initiative (OSGi) framework, especially the OSGi service model. Using the
OSGi framework saves memory because the installed plug-ins are not loaded
before the plug-in is needed [36]. In addition, OSGi makes it possible to restart
Eclipse in the same state as it was shut down. Furthermore, the configuration can
be changed while Eclipse is not running [37].

A workspace is a certain kind of resource management plug-in. It offers API for
creating and managing projects, files and folders produced by other plug-ins or
standalone programs and stored in the file system. [35][36] In Eclipse, the
workspace is mapped directly to the file system, so there is no intermediate
repository between Eclipse and the file system. This offers the user a possibility
to change a resource on the file system directly or under Eclipse. [34]

 29

Figure 8. Eclipse Platform architecture.

A workbench is synonymous with the Eclipse Platform User Interface (UI),
which a user sees when the platform is running. The workbench defines
extension points for adding user interface components like menus and buttons.
The workbench consists of Standard Widget Toolkit (SWT) and user interface
framework (JFace), which are used to build UIs. Although Swing is a widely
utilized library when developing graphical user interfaces in Java, it is not used
in Eclipse. [35][36]

SWT�s homepage [38] defines SWT as follows: The SWT component is
designed to provide efficient, portable access to the user-interface facilities of
the operating systems on which it is implemented. This is implemented by
adding a thin layer on top of the operating system�s native widgets. SWT
provides a common set of widgets to a Java developer as buttons, menus, trees
and tables, added to that it provides a layout and an event handling functionality.
SWT is extended by JFace, which offers higher-level application support, like
filtering and sorting tables. [34][35][38]

 30

The Help plug-in allows tools to provide documentation in an online book
format, like API documentation and user guide. The Team plug-in allows the use
of versioning tools like Concurrent Versions System (CVS). [35]

In Figure 8, these three �New tool� rectangles depict the extra functionality that
is added to Eclipse by using plug-ins.

2.4.2 UML tools for Eclipse

The Eclipse project has a UML2 sub-project. The project provides the
metamodel of UML 2.x for the Eclipse Platform. The UML2 metamodel is
based on Eclipse Modeling Framework (EMF) implementation and is only a
metamodel, not a graphical representation for UML diagrams. Figure 9 depicts a
simple component diagram made using the Eclipse UML2 metamodel.

Figure 9. Eclipse UML2 model.

The model in Figure 9 contains two components, Component A and Component
B, and an interface between them. The interface is used in such way that
Component B should call Component A. Although the model is represented
using a tree structure, using the metamodel is not a user-friendly way to modify
UML diagrams. Thus Eclipse�s UML2 project cannot be utilized directly.
However, there are many UML2 tools for Eclipse that also contain a graphical
representation of UML diagrams. Some of these tools piggyback Eclipse�s
UML2 metamodel, whereas others make everything in their own way.

 31

Before making a survey of UML2 tools for Eclipse, the following base criteria
were set for the charted UML tools:

− open source,
− open API or XML-based diagrams,
− possibility to exchange diagrams,
− profiles, and
− composite diagram elements.

Most of the evaluated UML tools were found from the web page of Eclipse-
Plugins.info [39] in June 2006. The most promising tools were re-evaluated in
October 2006. The tool supply increased during these four months. For example,
the TOPCASED UML tool was published. In addition, new features were added
to the existing tools, like support for the new Eclipse version 3.2, and an
installation operation was facilitated. Table 4 contains the results of the tool
survey. Because the majority of the tools only contain a class diagram, they were
discarded and are not shown in the summary. In addition, some commercial
tools were discarded due to their high price.

The survey proved that most of the tools are only toys, offering only the class
diagram or storing diagrams using coordinates. When looking at the criteria and
the results of the survey, it can be noticed that Poseidon does not fulfil any of
these criteria and Magic Draw only fulfils one. UMLet does not use the UML
metamodel, it only store diagrams in coordinates, which is an extraordinary way
and makes import and export operations very difficult.

Therefore, the best UML tools available from these criteria are TOPCASED and
Omondo. The remarkable thing is that TOPCASED was not available last June
when the tool survey was made the first time.

 32

Table 4. Summary of the UML2 tools for Eclipse.

Tool Pros Cons

Omondo
EclipseUML

Stores diagrams in the XML
format.

Composite

A commercial tool (a free version is
available).

No open API in the free version.

No profiles in the free version.

Exchanging diagrams is prevented in
the free version.

UMLet Open source.

Easy to use.

Does not make any checks on the
model.

Stores diagrams using coordinates.

Small project.

TOPCASED Open source.

Uses the UML2 project in Eclipse.

Support for UML profiles.

Composite

Incomplete, version number 1.0 will be
ready in the middle of 2007.

Poseidon None. Commercial tool.

Eclipse integration is only available in
the professional version.

Magic Draw Support for UML profiles. Commercial tool (a free version is
available).

No open API.

Not a pure Eclipse tool; integration is
difficult.

However, UML2 support for Eclipse is high-spirited and is growing all the time.
Thus the results of this survey might only be valid for a few months. Both
commercial and open source developers integrate their UML tools into Eclipse �
apparently, software developers believe in the potential of Eclipse. This can be
noticed when looking at the features of large UML tool vendors like Borland and
Telelogic; they both offer Eclipse integration in their UML tools, but are beyond
the scope in this work due to costs.

2.4.3 Ontology tools for Eclipse

As said in Chapter 2.2.3, there are many ontology tools available. Most of these
tools are standalone programs, but this work required an ontology tool working
under Eclipse, which reduced the number of tools available. An ontology tool
survey was needed because there was no information on Eclipse�s ontology tools

 33

available and because existing tool survey [26] was not applicable to the scope
of this work.

Before surveying the ontology tools for Eclipse, the following base criteria were
set for the charted ontology tools:

− open source, and
− stores ontologies in the OWL or RDF format.

The survey of Eclipse ontology tools was done in September 2006. The survey
was realized using the Internet and news groups related to Eclipse. This survey
proved that there are only a few projects trying to develop an ontology tool for
Eclipse, in contrast to UML2 projects.

Table 5 presents the results of this survey. The X mark denotes that the tool has
a desired feature. Note that IBM�s toolkit includes the EMF Ontology Definition
Metamodel (EODM) and tries to extend its functionality. Thus the toolkit is not
an open source but does contain useful documentation when using EODM.

Table 5. Ontology tools for Eclipse.

Tool OWL RDF Graphical Documentation
is available

Open
source

Active
project

IBM Integrated
Ontology
Development Toolkit
(IODT)

X X X

Semantic Web
Development
Environment
(SWeDE)

X X X X

DL-workbench X X

EODM X X X

TopBraid X X X X

Open source tools were installed and evaluated using the author�s own
experience, whereas the commercial tools were evaluated using the information
available on the manufacturer�s web pages. When evaluating the activity of a
project, the density of updates to the software, and project�s web pages and
number of news groups� posts were utilized as an indicator. TopBraid is the only
project that is truly active. It seems that development of the DL-workbench and

 34

SWeDE has completely finished. IODT and EODM were both updated in 2006,
but cannot be considered active projects.

Documentation means installation instructions, a user manual or some kind of
tutorial. IODT and SWeDE contain tutorials that might help with getting started,
but this is not enough when thinking about efficient use. The same kind of
tutorial is available for TopBraid too. Immediately after the tool survey, initial
documentation was made available for EODM.

In Table 5, graphical means a tree structure or a graph � in other words, a list of
ontology classes does not mean a graphical representation.

Figure 10 depicts the differences between graphical representations of Protégé
and EODM. As can be seen in

Figure 10, Protégé visualizes the ontology classes in the tree structure. In
addition, there are extra visualizers for Protégé. Here, the OWLViz plug-in is
utilised, which draws a graph structure from the ontology. EODM only shows a
list of the ontology�s classes, and sub-classes are shown in the separate
properties view.

Figure 10. Protégé versus EODM.

 35

The survey proved that open source ontology tool support for Eclipse is quite
poor. The greatest weakness of these tools is project activity and lack of a
graphical representation. SWeDE and TopBraid fulfil four of these hoped-for
features, see Table 5, but the development of SWeDE has ended, so it is not a
possible choice. Therefore, TopBraid is the best selection. However, while
weighing the requirement that the tool should be open source software, EODM
is the best available ontology tool for Eclipse.

2.4.4 Quality evaluation tools for Eclipse

The quality evaluation tool support for Eclipse is not as wide as the UML tool
support; it is even more abridged than the ontology tool support. This can be
seen when looking at the Eclipse-plugins.info web site [39]. Most of the offered
quality evaluation tools are oriented towards evaluating the performance aspects.
In addition, these tools always analyse a source code, not an architectural model.

While looking at the available tools it can be noticed that evaluation tools for
evaluating reliability or security characteristics are not available for Eclipse at
the moment. This enforces a search for quality evaluation tools that are running
out of Eclipse, and then porting these tools to Eclipse.

The RAP tool [40] is this kind of standalone program. It is a tool for evaluating
the software�s reliability from architectural models. The tool is implemented to
realize the RAP methodology [16]. In the RAP methodology, reliability and
availability requirements are connected to the UML model using UML profiles
and tagged values. This method makes it possible to connect the requirement�s
dimension and value to the model. The RAP method uses two separate profiles,
the required profile and the provided profile; the first contains the desired quality
and the other contains the quality the system will offer. The RAP method
calculates the fault probability for each software component. Using these
probabilities, a simulation model and input messages defined by the software
architect the fault probability for each execution path as well as the whole
system can be calculated.

The RAP tool is implemented using C# and it uses the Enterprise Architect
UML tool [41]. The RAP tool seems to be a suitable evaluation tool thus it will
be ported to the Eclipse platform during this work.

 36

3. Quality-Oriented Architecting
Environment

Quality-Oriented Architecting Environment (QO-AE) is aimed to facilitate the
design and analysis process of quality-aware architectures. This chapter first
gives an overview of the environment and then the requirements of the
environment are defined. Finally, this chapter depicts the architectural design of
the whole environment.

3.1 Overview

QO-AE consists of the three tools: quality meta-data management, quality
modelling and quality evaluation components. These components must be
integrated smoothly and co-operate perfectly, which especially means
information exchanging. However, each of these components are independent
and can be used separately. Figure 11 represents an overview of QO-AE.

Figure 11. Quality-Oriented Architecting Environment.

The quality meta-data management component is a place where quality
ontologies are defined and stored in the repository. These quality ontologies are
quite stable after the defining process, but updates and enhancements are always
possible. Each quality ontology defines its own quality attribute, in this case

 37

security and reliability. The quality ontology contains metrics, unit of
measurements and quantitative ranges. The metrics are the manner in which the
quality level can be gauged. The unit of measurement is e.g. time, mean value or
percentage. The quantitative range sets a uniform way to represent the quality
values; this range is usually between zero and one. Added to this there should be
a mark that shows the best value of each metric, e.g. when measuring a mean
time between failures, bigger values are better, whereas when measuring a
number of failures, small values are better.

The quality modelling component is a place where the quality requirements for
the software to be developed are defined and mapped to the architecture. The
contribution of this work is the quality profiles, which are defined using quality
ontologies. Thus it is necessary to extend the quality modelling component so
that the quality profiles can be constructed.

The quality evaluation component may include many evaluation tools that are
used to measure the quality of the designed architecture. An example of these
evaluation tools is the RAP tool. In the future, there will be tools to evaluate
other quality attributes, like security and performance. The results from the
evaluation tools are utilized when checking that the architecture is reaching the
required quality level.

3.2 Requirements

The requirements for the QO-AE are divided into two categories: functional and
quality. These requirements concern the whole environment. In addition, each
separate tool has some specific requirements; these tool-specific requirements
are depicted in Chapters 3.2.2, 3.2.3 and 3.2.1. Table 6 and Table 7 include the
main functional and quality requirements of the QO-AE. The functional
requirements mostly appear in the used techniques and desired operations. The
quality requirements try to ensure that modifications and additions can easily be
done in the future.

 38

Table 6. Functional requirements for the QO-AE.

No. Requirement Description

F1 Eclipse plug-in Environment is implemented and running under
Eclipse

F2 Creating quality ontologies Descriptions of the quality attributes are stored in
the ontologies

F3 Reading quality ontologies Descriptions of the quality attributes are stored in
the ontologies

F4 Reading UML diagrams Architectural models are stored using UML
diagrams

F5 Storing quality-aware architecture
in a uniform way

When quality requirements are added to the model,
it is still formal UML

F6 Ability to create quality profiles A software architect can select a quality ontology
and create a profile based on that ontology

F7 Ability to enter quality requirements A software architect can add quality requirements to
the quality profile

F8 Requirements content is checked The content of the entered requirements should
correspond to the selected ontology

Defined requirements are numbered � the F letter in front of the number means
the requirement is a functional requirement. The requirement to utilize Eclipse is
the baseline because Eclipse is a widely used open source platform, which
makes it easier to distribute the developed environment. Requirements F2, F3
and F4 relate directly to the utilized techniques, because quality knowledge is
stored in the ontology form and architecture design in the UML form.
Requirement F5 is needed so that every software architect can open and read the
UML models that contain the quality information without special additions to
their UML tool. F6 is required so that the UML models can be extended without
a need to modify the existing UML metamodel. Requirements F7 and F8 ensure
that the software architect can add quality requirements to the UML models and
these added requirements are not against the rules defined in the quality
ontology.

 39

Table 7. Quality requirements of the QO-AE.

No. Attribute Requirement Implementation

Q1 Extensibility It must be possible to add new
components and features to the
environment

Extension points are
anticipated

Q2 Integrability Each plug-in follows Eclipse’s
interfaces

Eclipse’s PDE carries
out this requirement

Q3 Interoperability Plug-ins are able to exchange data Data is stored in a
uniform way

Q4 Modifiability Ability to make changes quickly Modularity and the use
of design patterns

Defined requirements are numbered, the Q letter in front of the number means
that the requirement is a quality requirement. At this moment there are no
performance and usability requirements for the software because the purpose is
to implement the first prototype of the environment. Instead, it is important that
modifications and additions can be made easily. Requirements Q1 and Q4 are
directed to facilitating development work in the future. Q2 ensures that the
developed environment will work with coming Eclipse versions and Eclipse
plug-ins, assuming the coming versions will utilise common Eclipse standards.
Requirement Q3 is needed in order to separate the parts of the QO-AE that are
able to co-operate and exchange data.

3.2.1 Quality ontology tool

The ontology tool is needed to develop the quality ontologies. These quality
ontologies are not made by the software architect because ontology development
requires a deep understanding of the domain area. Therefore, a quality engineer
defines and stores ontologies in the repository. These quality ontologies are not
modified at every turn, but sometimes they need updates. Quality ontologies
include a lot of knowledge, which cannot be managed by hand. Thus a program
that facilitates the quality engineer�s work is needed.

It is therefore necessary to select an ontology tool for use in this work. The
quality meta-data management component in Figure 11 depicts an ontology tool.
The requirements for the selected ontology tool are as follows:

 40

− open source,
− Eclipse plug-in,
− represents ontologies in a graphical way,
− instructions available, and
− stores ontologies in the OWL format or offers an open API.

As this work tries to use open source tools, so the same wish is set for the
ontology tool. In addition, there should be an active development group behind
the tool; this ensures that software updates are available when needed. Because
the purpose is to use QO-AE under the Eclipse platform, the selected ontology
tool should also be an Eclipse plug-in. As an ontology tool works under Eclipse,
it ensures that the ontology tool is available for each operating system and
integrating the ontology tool and self-made plug-ins will be easy.

The knowledge engineer of a domain area develops the ontology. Because the
knowledge engineer might not have deep expertise with ontology tools, starting
to use the ontology tool should be easy and simple. Therefore, the ontology tool
should represent ontologies in a graphical way, like a tree structure or a graph.
Added to this, some kind of instruction is also needed.

The requirement that ontologies are stored in the OWL format or the ontology
tool has to offer an open API is needed because the developed ontology will be
used as an input to the quality design tool. Consequently, the selected ontology
tool has to store ontologies in a uniform way, i.e. in the OWL format that can be
read by other design tools. Another way to import ontologies into the quality
design tool is by using an open API of an ontology tool. However, because this
complicates replacing the selected ontology tool in the future, this is the last
option.

When comparing these requirements with the results from the ontology tool
survey in Chapter 2.4.3 and Table 5, it can be seen that there is no ontology tool
that fulfils all the nominated requirements. Because the tool survey proved that
ontology tool support for Eclipse is poor, the only option is to relinquish the
Eclipse plug-in requirement. Several standalone ontology tools are available, as
mentioned in Chapter 2.2.3. Protégé is a standalone tool that fulfils all the
remaining requirements. In addition, Protégé is a broadly used ontology tool.
Therefore, it is utilized for developing the quality ontologies in this work.

 41

3.2.2 Quality design tool

The quality design tool is a tool a software architect uses to describe the
software quality requirements in the architecture, i.e. the quality modelling
component in Figure 11. In other words, it is a UML tool, which is extended in
an appropriate way in order to construct the quality profiles. A software architect
is the user of this tool.

Thus it is necessary to select a UML tool for use in this work. The requirements
for the UML tool are as follows:

− open source,
− Eclipse plug-in,
− open API or XML-based diagrams,
− possibility to exchange diagrams,
− support for profiles,
− UML version 2.0, and
− composite diagram elements.

The UML tool should be open source software, because that will cut costs and
offer the possibility to modify an existing code. A further requirement is that it
should be an active project, so that new a version would be available when
needed. The requirement that the selected tool should be an Eclipse plug-in has
the same justification as the ontology tool.

Because UML diagrams are to be used as input and output for self-developed
plug-ins, it is necessary that the UML tool obeys the UML metamodel and
provides an open API or stores diagrams in the XML format. In addition,
exchanging diagrams should be possible because different users may use the
same diagrams, like the user of the modelling tool and a user of the evaluation
tools.

Normally, UML diagrams only contain a representation of a system�s
functionality. In this case the diagrams need to be extended to contain the quality
requirements as well. The most obvious extension mechanism is UML profiles,
which offer a lightweight way of extending UML diagrams and components
with the required quality attributes. Although the official version of UML is 2.0,

 42

there are still many tools that use an older specification of UML. So it is
necessary to add a requirement to support the specification of UML 2.0.

Added to this, the UML tool should support compositing elements in the UML
diagram in order to depict software components inside another component.
Composite elements are specified in the UML 2.0 specification [4], although not
all UML tools that support UML 2.0 include composition characteristics.

Looking these requirements for the UML tool and the results of the UML tool
survey presented in Chapter 2.4.2, only the TOPCASED UML tool offers all the
required functionality and features. The Omondo EclipseUML is another
alternative but it does not offer model extensions, like profiles. In addition,
diagram exchanging is prevented in the free version of Omondo.

Therefore, the only possible UML tool is TOPCASED. This tool is still under
construction, but the current version offers all the required functionality.
TOPCASED also uses Eclipse�s UML2 project, and this makes import and
export operations easier because instructions are available on the Eclipse web
sites. Figure 12 represents a simple model made using the TOPCASED UML
tool. This model is the same as that shown in Figure 9, but in a more readable
format. However, TOPCASED was not available when the first part of this work
started, so Omondo is also used in some parts of this work.

Figure 12. TOPCASED UML model.

 43

TOPCASED stores UML diagrams by using two files per each diagram. One
contains graphical information on the diagram, and the other includes diagram
information in the pure Eclipse UML2 format. It is also possible to import
diagrams to TOPCASED using just the latter; in that case the user can drag-and-
drop all elements to a graphical editor and the program ensures that all
relationships between the elements survive.

3.2.3 Quality evaluation

As mentioned in Chapter 2.4.4, there was no quality evaluation tool available for
Eclipse. Without an applicable quality evaluation tool, QO-AE will only be an
environment in which to collect and connect quality requirements to the UML
models. Thus porting the RAP tool to Eclipse is a reasonable choice.

The functional requirements for Eclipse�s RAP tool are quite similar to the
former RAP tool because the purpose is to make the same evaluation possibility
available to Eclipse. These requirements are as follows:

− Read the UML state diagram, sequence diagram and activity diagram.
− Calculate the fault probabilities for components, execution paths and the

whole system.

The quality requirements for Eclipse�s RAP tool contain the same quality
requirements as for the whole QO-AE. These requirements are listed in Table 7.
The following requirement is also defined:

− easy to port to different UML tools.

The first version of the RAP tool had the same quality requirement. The
possibility of changing the UML tool is important because in the future there
might be features the selected UML tool does not fulfil or a new UML tool that
fulfils the desired requirements better than the first tool may be found.

3.3 Architecture

This section represents the architectural design of the QO-AE. The structural
view of the whole environment is represented at first and thereafter the

 44

behavioural view of the environment. After that, the structure of the quality
ontology and the quality profile is represented. Readymade software is mostly
utilised. However, some components require their own design and
implementation. Therefore, the design of these components is also represented
here, i.e. a structural view of the profile editor and the RAP tool.

3.3.1 Structure

The structure of the whole QO-AE system is depicted in Figure 13. The
rectangles depict independent software components and the ellipses depict
transmitted data, i.e. the content and file format. Protégé is represented outside
the rounded rectangle because it is not running under Eclipse and the purpose is
that QO-AE can be used under the Eclipse Platform.

Figure 13. Phases of the Quality-Oriented Architecting Environment.

Figure 13 shows that whole process consists of four phases. When compared
with Figure 11, it is remarkable that the quality design component is divided into
two parts: Profile editor and UML tool. This is because it will better depict the
use of the quality design component. The first phase is quality ontology
definition; each quality attribute is defined in its own ontology and stored in the
repository in the OWL format. The second phase is defining a quality profile
using the previously defined quality ontology. In the third phase this quality
profile is connected to the architectural model and, finally, in the fourth phase
the architecture�s quality is evaluated using the evaluation tool and the results of
the evaluation process are also stored in the architectural models. A detailed
description of each phase is given in Chapter 3.3.2.

 45

The QO-AE is dependent on the exchanged data transmitted via a file system, as
shown in Figure 13. Using the existing file system ensures that data can be
transmitted using standard and commonly used techniques like OWL files and
the UML project files of Eclipse. Because the majority of the available ontology
tools store ontologies in OWL files, in the future it is possible to replace Protégé
with another tool, for example EODM, without a need to change other parts of
the QO-AE. The same thing applies to the UML tool; apart from TOPCASED,
most UML tools for Eclipse use Eclipse�s UML files. Thus this implementation
technique makes it possible to change the ontology tool or UML tool in the
future if necessary.

The content and format of the data is also depicted in Figure 13 using ellipses.
Arrows show how the data can be moved and modified. Thus the profile editor
can only read the ontology and the TOPCASED UML tool can only read a
profile. They cannot exchange this data, as the one-sided arrow shows. Vice
versa, a dual-headed arrow depicts that the data can be read and modified. A
notable thing is that evaluation tools cannot modify the architecture design, but
they can add the results of the evaluation to the architecture model.

As mentioned earlier, the Protégé ontology tool and the TOPCASE UML tool
are ready to use. The parts that need to be implemented are the profile editor and
the RAP tool, i.e. porting the existing RAP tool to Eclipse.

3.3.2 Behaviour

Figure 14 contains the activity diagram of the QO-AE. Each swim-lane
represents one stakeholder in the system and the rounded rectangles depict an
activity that should be taken in the current stage. The white boxes mean input
information on an activity or output information that should be got from the
activity. The system�s execution starts from the black circle in the upper corner
and ends at the black circle with a ring in the bottom corner.

 46

Q
ua

lit
y

en
gi

ne
er

S
of

tw
ar

e
fa

m
ily

 a
rc

hi
te

ct
Pr

od
uc

t a
rc

hi
te

ct
Ar

ch
ite

ct
ur

e
an

al
ys

er

Figure 14. Activity diagram of the QO-AE.

The stakeholders in the whole process are quality engineers, software family
architects, architecture analysers and product architects. The dual-headed arrow
between the Defining architecture of software family and Analyse software
architecture actions means that the process is iterative, so the family architecture
requires enhancements if the desired quality levels are not met.

 47

In this work the purpose is to address the tools of a quality engineer, a family
architect and an architect analyser. The role of a product architect is beyond the
scope of this work. Because of this there is fork-join element in the product
derivation in the swim-lane of the architecture analyser. Going further from the
fork-join element requires that the family architecture is analysed and the desired
quality levels are met.

The action series of the quality engineer while defining a quality ontology is as
follows:

1. The quality engineer defines concepts of the knowledge area.
2. The quality engineer gives units and ranges for quality measurements.
3. The quality engineer stores the defined ontology in the OWL format.

The action series of the software family architect while defining a quality profile
is as follows:

1. The software family architect opens a quality ontology file.
2. The software family architect defines the quality requirements for the

software family.
3. The software family architect gives an importance level to each quality

requirement.
4. The software family architect gives a desired quality value to each

quality requirement.
5. The software family architect maps each quality requirement to some

metric from the opened ontology.
6. The software family architect selects the profiles that will affect the new

profile, i.e. dependencies between profiles.
7. The software family architect gives a command to validate and store the

profile.

The action series of the software family architect while designing a family
architecture is as follows:

1. The software family architect designs the software family architecture.
2. The software family architect applies the previously defined quality

profiles to the architecture.
3. The software family architect selects the components to which a

stereotype from the profile is connected.

 48

4. The software family architect can modify the importance level and
quality values of each quality requirement, as well as other profile
variables.

5. The software family architect saves the finished family architecture.

The action series of the architecture analyser is as follows:

1. The architecture analyser opens the architecture model.
2. The architecture analyser gives input information and analyses the

system.

The action series of the product architect is as follows:

1. The product architect selects a family architecture.
2. The product architect makes the variants required for the product; some

specific components may be added.
3. The product architect defines the product-specific quality requirements

and maps them to the architecture. These requirements are some kind of
enhancements to the quality requirements for the family architecture.

3.3.3 Ontologies and profiles

Figure 15 [42] depicts part of the architecture-based reliability ontology, which
describes the reliability attribute. This kind of description is needed for each
quality attribute.

 49

Figure 15. Part of the reliability ontology.

The ontology in Figure 15 specifies the primitive concepts of the software
architecture�s reliability. Most of the information is beyond the scope of this
work because the purpose is to connect the quality requirements to the
architectural models, thus the Model and Architecture design classes are not
addressed here. But the Metrics class under the specification class is interesting.
The Metrics class contains classes that can have specialized software quality
metrics, such as are represented in Table 8. The reliability metrics presented in
Table 8 are defined in the IEC report [11].

Table 8 represents six ways of measuring software reliability. The first column
contains the name of the metric, which is also called a measurement unit in this
work. The purpose of the metric is presented in the second column in a question
format. The third column includes a measurement formula for the metric and an

 50

explanation of the data elements. Added to this third column shows the range
and preferred values of the metric. The range of the Mean time between failures
and Mean down time is between zero and infinity. So it is necessary to normalise
these values to the range zero to one in order to facilitate a comparison process.

Table 8. Reliability metrics and purposes.

Metric name Purpose of the metric Formula and value range

Fault density How many faults were detected
during the defined trial period?

X = A / B

A = number of detected faults.

B = product size

X ≥ 0, 0 is the best value

Mean time between
failures

How frequently does the software
fail in operation?

X = T / A

T = operation time.

A = total number of actually detected
failures.

X > 0, bigger values are better.

Breakdown
avoidance

How often does the software
product cause the breakdown of
the total production environment?

X = 1 – A / B

A = number of breakdowns

B = number of failures.

0 ≤ X ≤ 1, 1 is the best value

Mean down time What is the average time the
system stays unavailable when a
failure occurs before gradual start-
up?

X = T / N

T = total down time.

N = number of observed breakdowns.

X > 0, bigger values are better.

Restartability How often can the system restart
providing service to users within a
required time?

X = A / B

A = number of restarts which met the
required time during testing or user
operation support.

B = total number of restarts during
testing or user operation support.

0 ≤ X ≤ 1, 1 is the best value

Restorability How capable is the product in
restoring itself after an abnormal
event or on request?

X = A / B

A = number of restoration cases
successfully done.

B = Number of restoration cases
tested as per requirements.

0 ≤ X ≤ 1, 1 is the best value

Quality profiles are the contribution of this work. These profiles make it possible
to connect quality requirements to the architectural models, i.e. UML diagrams.
The quality profiles are constructed using the profile editor, a quality ontology
and the quality requirements for the developed system.

 51

The quality profile consists of stereotypes, and each stereotype describes one
quality requirement. Each stereotype contains the requirement�s name, description
and metric, and scope, importance and dependencies field. The name field
contains the requirement�s identification name, e.g. R1 means the first reliability
requirement. The name will also be the name of the stereotype, which is shown
when the requirement is connected to some UML element in the architecture.
Because the requirement name is only an abbreviation, there is a separate
description field that contains a detailed description of the requirement, e.g.
�System is able to restart�. The metric field tells which metric should be used when
measuring that requirement. The metric is got from the quality ontology and its
value can vary within the range set in the ontology, e.g. if R1 is using the
Restartability metric, it can get values between zero and one, as shown in Table 8.
The rest of the quality profile�s fields, i.e. scope, importance and dependencies, are
got from the Quality variability ontology presented in Figure 16 [44].

<<Enumerate>>
Scope

<<Enumerate>>
Importance

 Family

Product

Service

Component

Quality Variation High

Medium

Low

<<Enumerate>>
BindingTime

Design

Assembly

Start-up

Run-time

<<<Map>>
Dependency

<<Q-onto>>
QaualityAttribute

Figure 16. Quality variability ontology.

As the quality variability ontology shows in Figure 16, the Importance and
Scope fields can get predetermined values. The possible values of importance
are high, medium or low, and values for the Scope are family, product, service

 52

or component. The stereotype�s dependencies field describes the dependencies
on other profiles, thus it contains a list of names of profiles. Every stereotype in
a profile has the same content in the dependencies field, because the field
contains dependencies between profiles not dependencies between stereotypes.
For example, quality profiles availability and security can have dependency
because increasing security may decrease the availability.

The quality profile should be represented in the format of Eclipse�s UML project
because the TOPCASED UML tool can exploit this format. TOPCASED and
Eclipse�s UML project stores diagrams in the XML format. To produce a UML
profile by writing XML statements would be laborious and error prone;
therefore, Eclipse�s UML project offers code libraries that can be utilised when
constructing profiles.

3.3.4 Structural view of the Profile editor

The purpose of the Profile editor is to construct the quality profile as described
in Chapter 3.3.3. The list below represents the actions the Profile editor takes
when constructing a quality profile:

1. The user opens a quality ontology.
2. The Profile editor creates a list of available quality metrics based on the

opened ontology. Each item has a range and the best value of
measurement.

3. The user enters all the quality requirements for the system to be
developed by the Profile editor.
a. Finally, the Profile editor contains a list of all the quality

requirements.
b. The user selects a metric for each quality requirement; these metrics

are got from the ontology.
4. The user defines the dependencies between the new profile and the

previously defined profiles.
5. The Profile editor validates the profile.

a. Check that requirement�s value belongs to the valid range of the
selected metric.

b. Check that the requirement�s name is unique.
6. The Profile editor stores the valid profile.

 53

There are two alternative architectural patterns that could be used when
designing the architecture of the Profile editor: Blackboard and Model View
Controller (MVC) [43].

The Blackboard is useful for problems for which deterministic solution
strategies are not known. In Blackboard, several specialized subsystems
assemble their knowledge to build a possibly partial or approximate solution.
MVC divides an interactive application into three components: model, view and
controller. The model contains data and functionality. Views display information
to the user. User inputs are handled by controllers. Views and controllers
together comprise the user interface and a change-propagation mechanism
ensures consistency between the model and the user interface. [43]

When analysing these architectural patterns it seems the MVC pattern is better
suited to the Profile editor. The argument for this selection is that the function of
the Profile editor is strongly dependent on user inputs and these inputs are got
from the user interface, i.e. from the view. Thus MVC is selected for the Profile
editor. Figure 17 represents the component diagram of the Profile editor using
the MVC pattern.

In Figure 17, the controller and model components are named as the MVC
pattern assumes, but the view component is named to the GUI. The first
implementation of the Profile editor can be realized using one view controller
pair, although MVC gives the possibility of using several view controller pairs.

 54

GUI

Define
requirements

OWL handler

Define profile

Requirements
mapping

Defining
dependencies

Controller

addRequirement

open

identifiedUserCommand

mapToOntology

defineDependencies

Model
(temporary
repository)

userCommand

<<fileSystem>>
Ontolgy repository

<<fileSystem>>
Profile repository

storeProfile

getOntology

getDefinedProfiles

update

Figure 17. Component diagram of the Profile editor.

Figure 17 shows that user commands are passed to the model via the controller
component. In the MVC architecture the controller component takes user inputs,
and the interface between the GUI and the controller illustrates that the user uses
the GUI by entering inputs. Depending on the command, the model component
calls the appropriate functional component. The OWL handler component gets
the ontology from the Ontology repository, which is implemented as a file
system. A similar repository is used to store the quality profiles, called the
Profile repository. Defining dependencies and Define profile components use
that repository. Whenever the content of the model component is changed, it will
call the GUI�s update method in order to show the view�s state.

 55

3.3.5 Structural view of the RAP tool

The RAP tool is designed to use the Blackboard architectural pattern rather than
the MVC model. The reason for this selection is that the RAP tool�s operation is
mostly data-centric, like reading information from the existing UML diagrams
and calculating the results from this information. Thus the input from the user is
insignificant. Another reason for the selection is that the first version of the RAP
tool was implemented using the Blackboard architectural pattern, and that was
found to be a good selection. Figure 18 depicts the architecture of the RAP tool
using a component diagram.

In Figure 18 the common elements of the Blackboard pattern are depicted on the
left and right side, i.e. the controller and Blackboard components. The
independent execution units, which are called by the controller component, are
presented in the middle of the Figure. The Blackboard component does not know
anything about the other components as it only stores data; the other components
inspect and update this data.

Controller Blackboard

MarkovAnalysis

Analyses

Simulation

GUI

UMLReader

execAction
inspect
update

Figure 18. Component diagram of the RAP tool.

 56

4. Implementation and testing
This chapter presents the implementation and testing of the QO-AE. The
purpose is to present some of the utilised design patterns that are important for
the implementation, not to describe detailed implementation like code or class
diagrams. In addition, examples will clarify the whole QO-AE process.

4.1 Ontology under Protégé

The reliability ontology depicted in Figure 15 is not applicable as such because it
does not contain measurable reliability metrics, as shown in Table 8. Thus it is
necessary to combine the information from Figure 15 and Table 8. As stated in
Chapter 3.3.3, the Metrics class is the right place to add reliability metrics. A
parent class for each metric is selected by looking at the purpose of the metric
and negotiating with the developer of the reliability ontology. Table 9 shows the
same metrics as Table 8 and the selected parent classes.

Table 9. Reliability metrics and their parent classes.

Metric name Parent class

Fault density FailureData

Mean time between failures TimeBased

Breakdown avoidance FailureBased

Mean down time TimeBased

Restartability FaultTolerance

Restorability FaultTolerance

This classification is not absolute and there are other possibilities when selecting
parent classes. However, this solution is used as a starting point.

Each metric in the ontology has to include a value range and a mark that denotes
a direction when the value is getting better. Properties are natural way to connect
these kinds of things to the ontology. Connecting numerical properties to the
ontology requires that the subject is defined as an instance, thus each metric is
described using instances called individuals in Protégé. Each metric instance has
the properties minValue and maxValue, which are used to describe the value

 57

range of the metric. Added to this, the metric has the property targetValue,
which denotes the metric�s best value. Every value range is normalised between
zero and one because some metrics may get values to infinity. Therefore, the
selected properties are applicable to every metric.

It is also possible to add comments to the ontology elements. This possibility is
utilised in entering the purpose of the metrics in the reliability ontology.
Consequently, the comment on each metric contains the same description as in
Table 8�s column Purpose of the metric. This facilitates further development of
the reliability ontology.

Figure 19 depicts the reliability ontology in Protégé. The window consists of
three vertical direction areas; a class browser on the left side, an instance
browser in the middle and an individual editor on the right side. These views
give a possibility to add a new content to the ontology and edit the existing one.

Figure 19. Reliability ontology in Protégé.

 58

In Figure 19 the class browser contains the classes of the reliability ontology as a
tree structure. The number behind the class name tells how many instances that
class has, i.e. how many metrics that class has. The middle part of the Figure
contains instances of the selected class, and instances represent metrics in this
case. Thus the TimeBased class has the metrics MeanDownTime and
MeanTimeBetweenFailures, as defined in Table 9. The part on the right side
depicts the content of the selected metric. The content of the metric is similar to
that described in Table 8, but the value range is normalised so that the minValue
is zero and the maxValue is one.

When the quality engineer has defined the quality ontology in Protégé, the
ontology is stored in the file system in the OWL format, as shown in Figure 13.

4.2 The Profile editor

The Profile editor works like an Eclipse plug-in, thus it is implemented using
Java language and Eclipse�s plug-in development environment, which was
presented in Chapter 2.4. In Chapter 3.3.4 the Model View Controller was
selected for the architecture of the Profile editor. The MVC uses a change-
propagation mechanism to ensure that the model and views stay in a consistent
state. In [43] the change-propagation mechanism is implemented using an
observer design pattern. The observer design pattern implements a one-to-many
dependency between participant objects. The observer is constituted of four
classes: Subject, ConcreteSubject, Observer and ConcreteObserver [45]. Figure
20 represents the observer design pattern applied to the MVC architecture.

 59

AddObserver(Observer)
NotifyObservers()

Observable

Update()

Observer

ModelState

GetState()
SetState()

Model

Observer

ModelState

Update()

GUI
ConcreteObserverConcreteSubject

Subject Observer

observers

model

Figure 20. Observer design pattern adapted to the MVC architecture.

As Figure 20 shows, the Model extends the Observable class and the GUI
extends the Observer class. The Model class corresponds to ConcreteSubject and
the GUI class corresponds to ConcreteObserver. The AddObserver method
offers a way to add an observer to the Model and the NotifyObservers method
informs observers � i.e. the GUI class � when the Model is changed. The update
method is used when the Model is changed to update the ModelState attribute in
the GUI class.

Sun�s Java library offers complete classes for implementing the observer pattern,
i.e. Observable and Observer classes. Thus this ready-made part is utilised in the
Profile editor implementation. The final GUI of the Profile editor is presented in
Figure 21.

 60

Figure 21. GUI of the Profile editor.

The Profile editor�s GUI includes four main groups: New Requirement,
Dependencies to Other Profiles, Identified requirements and Quality Metric
Browser. Added to this, the GUI contains a menu bar and a Define Profile
button.

The user can open a quality ontology by using a file menu on the menu bar. The
Open ontology operation is implemented in the OWL handler component using
the Jena library [30], i.e. the Profile editor reads the OWL file that Protégé
stored. The content of the opened ontology is displayed in a drop-down menu of
the Quality Metric Browser group. The edit menu offers a possibility to select a
folder of quality profiles; the content of that folder is displayed in a list of the
Dependencies to Other Profiles group. This list gives a possibility to select
profiles, which will affect the new profile.

The user can add new quality requirements using the New Requirement group.
This group collects all information on the requirement apart from the used
metric. All added requirements are listed in a drop-down menu of the Identified

 61

Requirements group. The user connects a defined requirement to the metric in
the ontology as follows:

1. The user selects a requirement from the drop-down menu of the
Identified Requirements group.

2. The user selects a metric from the drop-down menu of the Quality
Metric Browser group.

3. The user presses the Connect to metric button.

When the selected requirement is connected to a metric, the Profile editor checks
that the requirement�s value is included in the range of the selected metric. The
Define Profile button starts a profile definition using the information the user has
entered. Profile creation is implemented using code libraries, which are included
in Eclipse�s UML project. The profile is assembled from stereotypes, as
described in Chapter 2.3.2, and each stereotype represents one defined quality
requirement, as mentioned in Chapter 3.3.3. First, the program asks the name of
the new profile and thereafter the profile is stored in the selected profile folder,
i.e. in the existing file system in the UML format, as shown in Figure 13.

4.3 Quality profile and TOPCASED

When the quality profile is defined and stored in the profile folder it can be
connected to the UML model, which is stored in Eclipse�s UML format. The
Profile editor defines the profile�s stereotypes so that the stereotypes can be
connected to the component elements in the UML diagram. Figure 22 depicts a
component diagram that is opened under Eclipse with the TOPCASED UML
tool. Figure 22 also shows the situation after the software architect has
connected the previously defined reliability profile to the components of the
model.

The files of the UML design project are on the left side of Figure 22. The list
also contains the profiles folder, and under the folder is the previously defined
reliability profile, i.e. the profile named ownReliability.profile that was defined
in Chapter 4.2. This profile is applied to the component diagram called
DiagramSample, which is intended to show how to connect the quality
requirements to the architecture model. The software architect has connected the

 62

stereotypes from the reliability profile to elements of the diagram so that the
SystemServiceUserInterface component contains all three stereotypes R1, R2
and R3, whereas the SystemServiceProvider component contains stereotypes R2
and R3 and the CommunicationServices component only contains stereotype R1.
Each of these stereotypes represents one quality requirement, as stated in
Chapter 3.3.3. Connecting quality requirements to the UML model can be done
using the normal operations the UML tool offers because the quality
requirements are defined using stereotypes that are supported by the
TOPCASED UML tool.

Figure 22. Architecture with quality capabilities in TOPCASED.

The properties view at the bottom of Figure 22 shows the stereotypes� content,
i.e. the requirements� content, of the selected component. Therefore, the
properties view shows the content of requirements R1 and R3. This view makes
it possible to vary the requirement�s values, i.e. the metric�s value, scope and
importance. Variability is implemented using features the UML tool offers, like

 63

drop-down menus as shown in Figure 22. The requirement�s description and
dependencies fields are not modifiable with the UML tool, so there is no
possibility of variation. There is also a field called Binding time, which has the
alternatives design, assembly, start-up and run-time. The value for the Binding
time field is selected in the architectural design phase because the correct value
is not clear in the quality profile definition phase.

When the software architect has defined the software architecture and the quality
requirements are connected to the defined architecture, i.e. to the defined UML
model, the UML model can be stored in the file system as shown in Figure 13.
The next phase is evaluating the quality of the stored architecture.

4.4 RAP tool under Eclipse

As mentioned in Chapter 2.4.4, it is necessary to port the RAP tool to Eclipse
because there is no quality evaluation tool available. Java language and Eclipse�s
Plug-in Development Environment are only possible implementation techniques
when porting the RAP tool to Eclipse. In Chapter 3.3.5 the Blackboard
architectural pattern was selected as the architecture for the new RAP tool. The
controller component is running in a loop in the Blackboard architecture and
monitors the content of the Blackboard component. The controller schedules
other component execution using the content of the Blackboard.

The functionality of the MarkovAnalysis, Analyses and Simulation components
is similar to that in the first version of the RAP tool, but the GUI and
UMLReader components differ when comparing the first implementation. The
biggest difference is in the UMLReader component because the UML tool�s
open API was used earlier, but now the UML diagrams are read from the XML
formatted files. The differences in the GUI component are not so widespread and
mostly come from the difference between a standalone program and an Eclipse
plug-in.

When porting the RAP tool to Eclipse was started, the TOPCASED UML tool
was not available and the Omondo UML tool was selected instead. Because
Omondo did not fulfil all the desired requirements, it should offer the possibility
to change the UML tool at a later date. The Factory method design pattern offers

 64

a solution for this kind of problem. The Factory method pattern defines how a
new object is created, but gives subclasses to select which class is used when the
object is created [45]. Figure 23 depicts the implementation of the UMLReader
component in which the Factory method pattern is used.

Figure 23. The Factory method applied to the UMLReader component.

As Figure 23 shows, the OmondoParser class extends the UMLTool class. Thus
the UMLToolSpecificMain and UMLToolCreator classes use an interface of the
UMLTool class and the OmondoParser class can be changed if needed, and the
modification does not affect the other classes.

Figure 24 depicts the ported RAP tool running under the Eclipse platform. As
can be seen, it is using the Omondo UML tool instead of TOPCASED.

In Figure 24 the upper part shows the simulation model of the analysed system.
At the bottom is the RAP tool view, which contains the results of the analysis
presented in Chapter 2.4.4. That view is divided into three parts: Message
Contents, Components and Results. The Message Contents part contains a drop-
down menu that contains all input messages. When the user selects a message,
the message content is shown and the execution path that will be executed in that
message is shown in the Components area. The Results area contains a table that
shows all the components of the analysed system and their access times and fault
probabilities. Finally, the fault probability for the whole system is shown in a
bottom corner of the view.

 65

Figure 24. RAP tool under Eclipse.

As shown in Figure 14, the architecture analyser uses evaluation tools, i.e. the
RAP tool in this case. The architecture analyser opens the previously defined
software architecture with the RAP tool and builds a simulation model of the
analysed architecture. The RAP tool utilises the defined simulation model and
opened architecture to calculate the system�s fault probabilities. The architecture
analyser and software architect compare these calculated results with the desired
software quality, and the software architect can enhance the architecture if the
desired quality is not met.

 66

4.5 Testing

The purpose of the testing process is to verify that the implemented environment
contains the required functionality and meets the desired quality requirements.
Therefore, the requirements that are set in Chapter 3.2, especially in Table 6 and
Table 7, construct a framework for the testing process. Testing is performed in
two parts: component testing and integration testing. Component testing tests
each sub-system of the QO-AE separately, i.e. Protégé, Profile editor,
TOPCASED UML tool and RAP tool, and integration testing tests that these
parts are able to co-operate and exchange information.

The components of the Profile editor and the RAP tool are tested using the black
box method; these components are depicted in Figure 17 and Figure 18. When
each component is working properly, the components are connected and the
programs are tested as a whole. The purpose of this procedure is to reduce
programming errors and check that the programs handle the data properly.

The first requirement of the QO-AE is the requirement F1, i.e. the Eclipse plug-
in. The implementation phase proved that this requirement is not met. The
reason for this is that there was no suitable ontology tool available for Eclipse.
However, the ontology handling process was implemented in such a way that it
is possible to change the used ontology tool because it is enough that the
ontology is stored in the OWL format.

The requirement F2 of the QO-AE can be directed to the ontology tool, i.e.
Protégé. Protégé stores ontologies in the OWL format. The consistency of these
OWL files is tested by saving the ontology in Protégé and then opening the
saved OWL file in another ontology editor. The same operation is also
performed vice versa. Opening the ontology outside of Protégé succeeded as
well as the same process in the reverse order. Thus requirement F2 is met. This
ensures that Protégé stores ontologies in a standard way, which is needed by the
quality ontologies. Naturally, this testing method is not watertight but it is
enough in this case.

Requirement F3 from Table 6 can be directed to the Profile editor. This
requirement was tested using the reliability ontology. When the ontology was
opened the Profile editor found all metrics that were stored in the ontology.

 67

Unfortunately, other quality ontologies are not available, so the test case is quite
restricted. The reliability ontology was changed a few times during the testing in
order to ensure that the OWL handler was working as universally as possible.
Each time the ontology was changed and then opened, the Profile editor opened
it as desired. These test cases proved that requirement F3 is met.

Requirement F4 relates to the RAP tool. F4 was tested by constructing several
models using the Omondo UML tool and after that opening these diagrams with
the RAP tool. The RAP tool was able to open each model as desired, hence
requirement F4 is reached.

The TOPCASED UML tool has to realize requirement F5. Eclipse�s UML
project and the TOPCASED UML tool can read the same UML diagrams, thus a
diagram saved in TOPCASED should also open in Eclipse�s UML project. This
method was used to ensure that the UML diagrams are uniform after adding the
quality profile. Different quality profiles were made using the Profile editor and
these profiles were connected to the architecture models in TOPCASED.
Because Eclipse�s UML project was able to open these architectures with the
quality requirements stored in TOPCASE, it is assumed that requirement F5 is
achieved. This test also gave certainty that the UML profiles the Profile editor
produced were made properly. The defined profiles contained the same
information as was entered in the Profile editor and TOPCASED was able to
read that information. Thus requirement F6 is also met.

The Profile editor has to implement requirements F7 and F8. These requirements
were tested by entering quality requirements in the Profile editor. Some of the
entered requirements contained information that was against the selected
ontology. The tests proved that the Profile editor only allows requirements that
correspond to the ontology. If the requirement�s value is out of the metric�s
range, the Profile editor asks the user to give a new value or select some other
metric. Consequently, requirements F7 and F8 are also reached.

The performed tests proved that all the functional requirements presented in
Table 6 are achieved except for F1. The quality requirements for the QO-AE are
represented in Table 7. The used design and implementation techniques ensure
that the requirements Q2 integrability, Q3 interoperability and Q4 modifiability
are met. Analysing whether the Q1 extensibility requirement really met is tricky

 68

because it is impossible to define coming extension needs. However, the used
interfaces were defined exactly and the existing standards were used widely.
These two things should make extensions easier in the future.

Added to the requirements shown in Table 6 and Table 7 there are also the tool-
specific requirements depicted in Chapters 3.2.1 and 3.2.2. When the ontology
tool and the UML tool were selected, the requirements for these tools were
tested. Protégé fulfils all the desired requirements but it is not an Eclipse plug-in,
as mentioned earlier. The selected UML tool, i.e. TOPCASED, fulfils all the
requirements, as mentioned in Chapter 3.2.2.

Chapter 3.2.3 contains the tool-specific requirements for the ported RAP tool.
As mentioned earlier, the RAP tool is able to open UML diagrams made with the
Omondo UML tool, i.e. requirement F4. The requirement that the calculated
results are correct was tested using the same input data as in the RAP tool�s first
implementation. The RAP tool�s new version gave the same result as the
previously implemented version, so it is possible to assume that the program�s
logic is working correctly. In addition, the test proved that the RAP tool
calculates the fault probabilities for components, execution paths and the whole
system as desired. The requirement that the RAP tool is easy to port to different
UML tools was not tested in practice, but the utilised design pattern promises
that this will be easy.

 69

5. Discussion
The software architecture that is described using UML models ordinarily
contains the software�s functional representation with no information on the
quality requirements. Dropping the quality requirements out of the software
architecture design process may mean that a large amount of resources have
been put into building a system that does not fulfil its quality requirements [1].
The Quality-Oriented Architecting Environment is an environment implemented
during this work that offers a way to manage and connect the quality
requirements to the software architecture and thus improve the quality of the
developed software.

5.1 Link-up to the related research

The NFR framework and the i* framework, which were described in Chapter 2
concentrates on detecting where the quality requirements originate from and
refining them. These methods do not define how to connect the quality
requirements to the architectural models or how to provide variability in the
quality requirements between software components or software family members.
The quality profile that was developed in this work makes it possible to connect
the quality requirements to the architectural models. In addition, the quality
profile offers a way to vary the defined requirements. The way in which these
quality requirements are initially collected does not affect the quality profile.

In the RAP method, presented in Chapter 2.4.4, the reliability and availability
requirements are connected to the UML model using UML profiles and tagged
values. This method makes it possible to connect the requirement�s dimension
and its value to the model. In this work the dimension was called the metric. The
RAP method contains separated profiles for the desired quality and the provided
quality. The quality profile developed in this work is not restricted to depicting
just the reliability and availability requirements. Instead, it makes it possible to
depict any quality requirements in a UML diagram. However, the remarkable
thing is that the current version of the quality profile only contains the desired
quality level, not the provided quality. Showing the provided quality in the
architecture is a practical matter, but this can be done using the quality profile

 70

developed in this work � it is only necessary to add a new field for the provided
quality to the quality profile.

The quality profile and the developed environment are discussed in a conference
paper that has been submitted to the Software Product Lines Conference 2007 [44].

5.2 Implementation of the environment

Since the design of the QO-AE was started it has been clear that the environment
should work under the Eclipse Platform. The second firm thing was that the
environment should use open source software components whenever possible,
rather than using commercial software components. This approach forced to
broadly work with other open source software, not only Eclipse.

During the work it was realised that it was not possible to implement the whole
system under the Eclipse platform as no appropriate ontology tool was available.
This forced the use of a standalone ontology tool. Protégé was selected because
it seemed to be the most commonly used ontology tool. However, the use of a
standalone tool will be easy to fix when a suitable ontology tool becomes
available for Eclipse because the implemented environment can transfer the
quality ontologies using the existing file system and OWL files. Of course,
problems will occur if a new ontology tool stores the ontologies using some
format other than OWL, but that looks improbable at the moment. Protégé was a
good selection as it offered an illustrative way to chart and develop the
ontologies. In addition, Protégé offered a good tutorial on ontology development
in general and by using Protégé.

The quality ontologies were read into the Profile editor using the Jena library.
Jena�s web pages offered many tutorials and code samples that showed how to
use Jena in Java programs. The use of Jena was difficult despite the available
instructions. Thus reading the ontology into the Profile editor took a great
amount of time, even though the number of code lines was insignificant. The
schedule for the Profile editor implementation was caught up with because
constructing a UML profile was easier than was first assumed. Eclipse�s UML
project offered clear code samples of how to make UML profiles using Java
code, and these samples were directly applicable to this case.

 71

TOPCASED was selected as the UML tool in the QO-AE, although it is a
newcomer and still needs product development. For example, not all UML 2.0
diagrams are included and the instructions are still lacking. However,
TOPCASED fulfilled all the requirements within the scope of this work. The test
runs proved that TOPCASED is able to open quality profiles made by the Profile
editor and it can also store UML diagrams in a uniform way, as was required. In
the future it will be possible to change to another UML tool, assuming the new
UML tool also uses Eclipse�s UML tool project.

Porting the RAP tool to the Eclipse platform was carried out as expected. The new
tool produced the correct results and read the required UML diagrams. RAP tool�s
Eclipse version was implemented before the TOPCASED UML tool arrived, so
the new RAP tool uses the Omondo UML tool. However, implementation was
done in such a way that changing the UML tool will be easy.

The biggest problem during the design and implementation of the QO-AE was
the lack of documentation on the open source software components. Comparing
the available open source components was challenging because the only way to
get accurate information on the evaluated component was to install it and use it.
Anyway, using open source components offered many advantages when
compared with commercial software components. For example, many open
source projects having active users answered questions via mailing lists or news
groups. The use of open source components also made it possible to implement
the QO-AE without a need to spend money on licences for the commercial
software components. These savings might be interesting in future software
development.

5.3 Results

The developed environment contains open source components, i.e. Protégé and
TOPCASED, and self-made Eclipse plug-ins, i.e. Profile editor and RAP tool.
The quality profile the Profile editor produces was also developed during this
work. The developed environment and quality profiles make it possible to take
quality requirements into account as early as the architecture development.
Therefore, the implemented software meets its quality requirements better,
which reduces re-design work and saves money. The variation in the

 72

requirements offered by the quality profile makes it possible to modify the
quality requirements between software components and software family
members.

Because the developed environment was implemented using open source
components, the software industry can freely utilise the environment in the
future and enhance their products. The experience with open source components
that was gained during this work can be utilised in many research and industry
projects in the future. Future research and development work on the developed
environment is discussed in the next section.

5.4 Future research and development

The environment that was implemented during this work is the first prototype to
manage quality attributes during the design of the software architecture. Thus
many things need further research and development work in the future. Small-
scale development relates to usability things, like the user interface of the Profile
editor and the possibility to modify the existing quality profiles using the Profile
editor.

At this time, the reliability ontology is the only available quality ontology and it
only contains a few metrics. This restricts the use of the QO-AE. For example,
the ISO�s quality model that was presented in Table 1 contains many useful
metrics that can be used a starting point for defining new quality ontologies. At
least, security and performance ontologies are desired, in order to use of the QO-
AE would be reasonable.

In the future, a reassessment of the form of the selected ontology would be
appropriate, i.e. should every quality attribute have its own ontology?
Alternatively, is it better to combine all the quality attributes in the same
ontology? This would facilitate dependency management but the number of
metrics in the Profile editor would explode. In any case, when new and wider
ontologies are available, the environment�s performance may cause problems
because the tested reliability ontology only contains a few classes and opening it
with Jena takes a few seconds. This is not critical for the utilisation of the
environment but it might reduce the usability.

 73

The first version of the designed quality profile has a dependencies field that
contains the dependencies between different quality profiles, like between
security and availability. This way of representing dependencies is not detailed
enough because not all the security requirements affect all the availability
requirements. Thus, use of the dependencies field needs enhancing in the future;
showing the dependencies between individual requirements would be an
appropriate way. As mentioned earlier, the quality profile does not contain
information on the provided quality, and a simple solution to this problem would
be to add a new field to the quality profile. When this field is added, the
evaluation tools can store the results of the evaluation in it.

The weak point of the developed environment is that the new RAP tool uses a
different UML tool to the other parts of the environment. This restricts efficient
use of the environment. Therefore, it is necessary to port the RAP tool to use the
TOPCASED UML tool as well. Using the RAP tool needs wide understanding
of the evaluated system because the analyzer has to construct a simulation model
of the system; automating this task in the future is necessary in order to hasten
the evaluation process. In the future the RAP tool will have to write the results
of the evaluation in the quality profile to enable a comparison between the
required and the provided quality. Added to this, the RAP tool only offers the
possibility to evaluate the architecture�s reliability, so new quality evaluation
tools are also needed for the future. The IEE method that was mentioned in
Chapter 2.1.2 could offer one possible evaluation method. In the ideal case there
would be many quality ontologies and quality evaluation tools. This would make
it possible to connect all the desired quality requirements to the architecture and
finally analyse whether the quality requirements were met or not.

The implemented environment was tested using a test scenario. To ensure that
the environment is working perfectly needs wider test cases. Searching for a
suitable test case from industry has been started because the purpose is
experiment with the developed environment in a real software development
situation. The QO-AE was implemented in the SVAMP project, which is a
collaboration project between VTT and HUS. At the same time as the QO-AE
was being implemented, HUS implemented a similar kind of environment for
functional requirements. The next step is to integrate these two environments.
Finally, the integrated environment will be tested using an industrial test case.

 74

6. Conclusion
The main research problem in this work was how to represent and connect the
quality requirements to the software architecture in such a way that the
requirements can vary between software components and software family
members. The purpose of this work was to design and implement an
environment on top of the Eclipse platform.

The Quality-Oriented Architecting Environment (QO-AE) was designed and
implemented during this work. This environment makes it possible to define the
quality requirements using a specific quality ontology. The major contribution of
this work was quality profiles, which make it possible to collect the quality
requirements in a uniform way and then connect the requirements to the
software architecture, i.e. UML models.

QO-AE was combined using freely available open source components and
homemade software components. The environment contains four main parts: an
ontology tool, a homemade Profile editor, a UML tool and a quality evaluation
tool. In this work the UML, ontology and quality evaluation tools for Eclipse
were evaluated. The result of the evaluation was that TOPCASED is the best
open source UML tool for Eclipse as suitable ontology and quality evaluation
tools are not currently available. Thus it was necessary to port the existing RAP
tool to Eclipse and use a standalone ontology tool, i.e. Protégé.

The tests proved that the implemented environment works as expected. It is
possible to define quality attributes to the ontology format using Protégé. These
quality ontologies are utilized for defining the quality profiles, which are used to
identify and define the quality requirements and represent them in the
architectural models. However, evaluating the quality of designed architecture is
possible after making the ported RAP tool and used architecture design tool
compatible.

The main goal of this work was achieved. The contributed quality profile makes
it possible to define the software�s quality requirements and connect these
requirements to the architectural models in a uniform way that offers varying
requirements between software components. The implemented Profile editor
facilitates defining these quality profiles and in the future the RAP tool�s Eclipse

 75

version will make it possible to evaluate the provided quality from the reliability
viewpoint. A conference paper that discusses the results of this work has been
submitted to the Software Product Lines Conference 2007.

QO-AE offers a good base for enhancing the quality of software architectures.
However, the designed environment needs additional development before the
software industry can utilise it.

 76

References
[1] Bosch J. (2000) Design & Use of Software Architectures � Adopting and

evolving a product-line approach. Addison Wesley, Harlow, 354 p.

[2] Bass L., Clements P. & Kazman R. (1998) Software Architecture in
Practice, second edition. Addison-Wesley, Massachusetts, 528 p.

[3] Evans J. R. & Lindsay W. M. (1999) The Management and Control of
Quality. South-Western College Publishing, Cincinnati, 785 p.

[4] OMG (2005) Unified Modeling Language: Superstructure version 2.0
formal/05-07-04, 694 p.

[5] Rubel D. (2006) The Heart of Eclipse. ACM Queue, Vol. 4, No. 8, pp.
36�44.

[6] Praxiom Research Group (25.10.2006) ISO 9000 DEFINITIONS. URL:
http://www.praxiom.com/iso-definition.htm.

[7] IEEE (1998) IEEE Standard for a Software Quality Metrics Methodology.
IEEE Std. 1061 � 1998.

[8] Chung L., Nixon B. A., Yu E. & Mylopoulus J. (2000) Non-Functional
Requirements. Kluwer Academic Publishers, Boston, 439 p.

[9] Grünbacher P., Egyed A. & Medvidovic N. (2001) Reconciling Software
Requirements and Architectures: The CBSP Approach. In: Requirements
Engineering, 2001. Proceedings. Fifth IEEE International Symposium,
August 27�31, Toronto, pp. 202�211.

[10] ISO/IEC (2001) ISO/IEC 9126-1 International Standard: Software
engineering � Product quality. Part 1: Quality model. 25 p.

[11] ISO/IEC (2003) ISO/IEC 9126-2 Technical Report: Software engineering
� Product quality. Part 2: External metrics. 86 p.

[12] ISO/IEC (2003) ISO/IEC 9126-3 Technical Report: Software engineering
� Product quality. Part 3: Internal metrics. 62 p.

[13] Matinlassi M. & Niemelä E. (2003) The Impact of Maintainability on
Component-based Software Systems. In: Euromicro conference,
September 1�6, Antalya, Turkey, Vol. 29, pp. 25�32.

http://www.praxiom.com/iso-definition.htm

 77

[14] Matinlassi M., Niemelä E. & Dobrica L. (2002) Quality-driven
architecture design and quality analysis method. A revolutionary initiation
approach to a product line architecture. VTT Publications 456, VTT
Technical Research Centre of Finland, Espoo, 129 p. + app. 10 p. URL:
http://virtual.vtt.fi/inf/pdf/publications/2002/P456.pdf.

[15] QADA brochure (19.1.2007) Quality-driven Development of Software
Family Architectures. URL:
http://virtual.vtt.fi/qada/images/qada_esite_final.pdf. 7 p.

[16] Immonen A. (2006) A method for predicting reliability and availability at
the architectural level. In: Käkölä T. & Duenas J. C. (eds.) Software
product lines: Research issues in engineering and management. Springer,
New York. Pp. 373�422.

[17] Gruber T. (1992) A Translation Approach to Portable Ontology
Specifications. Knowledge acquisition 5(2): 1993, pp. 199�220.

[18] W3C (27.10.2006) OWL Web Ontology Language: Use Cases and
Requirements. URL: http://www.w3.org/TR/webont-req/.

[19] W3C (27.10.2006) RDF Primer � W3C Recommendation 10 February
2004. URL: http://www.w3.org/TR/rdf-primer/.

[20] W3C (27.10.2006) RDF Validation Service. URL:
http://www.w3.org/RDF/Validator/.

[21] W3schools (7.11.2006) RDF Tutorial. URL:
http://www.w3schools.com/rdf/default.asp.

[22] W3C (27.10.2006) OWL Web Ontology Language: Guide � W3C
Recommendation 10 February 2004. URL:
http://www.w3.org/TR/owl-guide/.

[23] Horridge M., Knublauch H., Rector A., Stevens R. & Wroe C. (2004) A
Practical Guide to Building OWL Ontologies Using the Protégé-OWL
Plugin and CO-ODE Tools, Edition 1.0. University of Manchester. URL:
http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf.

[24] Davies J., Studer R. & Warren P. (2006) Semantic Web Technologies:
trends and research in ontology-based systems. John Wiley & Sons Ltd.,
Chichester, 312 p.

http://virtual.vtt.fi/inf/pdf/publications/2002/P456.pdf
http://virtual.vtt.fi/qada/images/qada_esite_final.pdf
http://www.w3.org/TR/webont-req/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/RDF/Validator/
http://www.w3schools.com/rdf/default.asp
http://www.w3.org/TR/owl-guide/
http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf

 78

[25] Denny M. (read 6.11.2006) Ontology building: A survey of editing tools.
URL: http://www.xml.com/pub/a/2002/11/06/ontologies.html.

[26] Denny M. (read 6.11.2006) Ontology Tools Survey, Revisited. URL:
http://www.xml.com/pub/a/2004/07/14/onto.html.

[27] Protégé (6.11.2006) URL: http://protege.stanford.edu/.

[28] SWOOP (6.11.2006) URL: http://www.mindswap.org/2004/SWOOP/.
[29] TopBraid (6.11.2006) URL: http://www.topbraidcomposer.com/.

[30] Jena (6.11.2006) URL: http://jena.sourceforge.net/.

[31] OMG (1.11.2006) Object Management Group, URL:
http://www.omg.org/.

[32] Koskimies K., Koskinen J., Maunumaa M., Peltonen J., Selonen P.,
Siikarla M. & Systä T. (2004) UML Työvälineenä ja tutkimuskohteena.
Tietojenkäsittelytiede, No. 21, pp. 19�51.

[33] The Eclipse foundation (24.10.2006) Eclipse.org. URL:
http://www.eclipse.org/.

[34] Gamma E. & Beck K. (2004) Contributing to Eclipse: Principles, Patterns
and Plug-Ins. Addison-Wesley, Boston, 395 p.

[35] Eclipse Platform Technical Overview (24.10.2006) URL:
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-
whitepaper.pdf.

[36] The Eclipse Foundation (25.10.2006) Eclipse 3.2 Documentation URL:
http://help.eclipse.org/help32/index.jsp.

[37] Gruber O., Hargrave B. J., McAffer J., Rapicault P. & Watson T. (2005)
The Eclipse 3.0 Platform: Adopting OSGi technology. IBM Systems
journal, Vol. 44, No. 2, pp. 289�299.

[38] The Eclipse Foundation (25.10.2006) SWT: The Standard Widget Toolkit.
URL: http://www.eclipse.org/swt/.

[39] Eclipse-Plugins.info (10.6.2006) URL: http://eclipse-plugins.2y.net/.

[40] Niskanen A. (2005) Työkalu luotettavuuden mallipohjaiseen
analysointiin. Master thesis. University of Oulu, Electrical and
Information Engineering, Oulu.

http://www.xml.com/pub/a/2002/11/06/ontologies.html
http://www.xml.com/pub/a/2004/07/14/onto.html
http://protege.stanford.edu/
http://www.mindswap.org/2004/SWOOP/
http://www.topbraidcomposer.com/
http://jena.sourceforge.net/
http://www.omg.org/
http://www.eclipse.org/
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper
http://help.eclipse.org/help32/index.jsp
http://www.eclipse.org/swt/
http://eclipse-plugins.2y.net/

 79

[41] Sparx Systems Enterprise Architect URL: http://www.sparxsystems.com/.

[42] Zhou J. & Niemelä E. (2007) OntoArch Ontology and Ontology-based
Reliability-aware Architecture Design and Evaluation. Submitted to:
Journal of systems and software.

[43] Buschmann F., Meunier R., Rohnert H., Sommerland P. & Stal M. (1996)
Pattern-oriented Software Architecture: a System of Patterns. John Wiley,
Chichester, 457 p.

[44] Evesti A., Niemelä E. & Zhou J. (2007) Quality Variability in
Architecture Design. Submitted to the Software Product Line Conference
2007, 10 p.

[45] Gamma E., Helm R., Johnson R. & Vlissides J. (1994) Design Patterns �
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional Computing Series, Addison Wesley, 395 p.

http://www.sparxsystems.com/

 Series title, number and
report code of publication

VTT Publications 636
VTT-PUBS-636

Author(s)
Evesti, Antti
Title

Quality-oriented software architecture development

Abstract
Producing software products of good quality requires that quality requirements are taken into account as early
as possible. In theory, the first place in which quality requirements can be addressed is architectural models of
software. However, in practice, the software�s architecture is only used to describe the functionality of the
developed software. This means that the implemented software may not fulfil its quality requirements and
some parts of the implementation process might be useless. The main research problem in this work is how to
define and connect quality requirements with the software architecture in such a way that the requirements
can vary between software components and software family members.
An environment for defining and collecting software�s quality requirements was designed and implemented in
this work. The environment consists of three main parts: quality meta-data management, quality modelling
and quality evaluation. The quality meta-data management provides a possibility to define each quality
attribute into an ontology form. These ontologies are utilized when quality requirements are defined in order
to define the requirements in a uniform way in the quality modelling phase. Quality requirements are defined
according to the UML profile developed for that purpose, so that it would be possible to represent these
requirements in the architectural models. Finally, the architecture�s quality is evaluated using evaluation tools.
The purpose was to implement the whole environment on the Eclipse platform using available open source
components. The Eclipse was selected because it is a widely used open source platform, which makes it easier
to distribute the software developed during this work. The Eclipse tool evaluation confirmed that
TOPCASED is the best available UML tool for the Eclipse and the best Eclipse ontology tool is EODM.
However, EODM does not fulfil all the desired requirements of this work and this enforced the use of the
Protégé ontology tool.
The implemented environment was tested using the defined test scenarios. The tests proved that the
implemented environment works as expected. In addition, the developed quality profile offered an appropriate
way to connect the defined quality requirements to the architectural models. There are still many things that
need additional research and development before the environment and the quality profile can be utilized in
software design in industry.

ISBN
978-951-38-7011-9 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number

VTT Publications
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

562

Date Language Pages
April 2007 English, Finnish abstr. 79 p.

Name of project Commissioned by
SVAMP Tekes � the Finnish Funding Agency for Technology

and Innovation, VTT Technical Research Centre of
Finland

Keywords Publisher
quality-oriented software architecture, software
development, quality requirements, ontologies,
quality meta-data management, quality modelling,
quality evaluation, Unified Modeling Language

VTT Technical Research Centre of Finland
P.O.Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4404
Fax +358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

 Julkaisun sarja, numero ja
raporttikoodi

VTT Publications 636
VTT-PUBS-636

Tekijä(t)
Evesti, Antti
Nimeke

Laatuohjattu ohjelmistoarkkitehtuurisuunnittelu

Tiivistelmä
Laadukkaiden ohjelmistotuotteiden valmistaminen edellyttää, että laatuvaatimukset on huomioitu
mahdollisimman aikaisessa vaiheessa. Teoriassa ensimmäinen vaihe, jolloin laatuvaatimukset voidaan
osoittaa, on ohjelmistoarkkitehtuuri. Käytännössä ohjelmistoarkkitehtuurilla kuvataan suunniteltavan
ohjelmiston toiminnallisuutta. Tämän vuoksi valmis ohjelmisto ei välttämättä täytä asetettuja laatu-
vaatimuksia, joten osa toteutuksesta voi olla käyttökelvotonta. Pääongelmana tässä työssä on se, kuinka
määritellä ja liittää laatuvaatimuksia ohjelmistoarkkitehtuuriin siten, että vaatimukset voivat vaihdella
ohjelmistokomponenttien ja ohjelmistotuoteperheiden välillä.
Tässä työssä suunniteltiin ja toteutettiin ympäristö ohjelmiston laatuvaatimuksien määrittelyyn ja
keräämiseen. Toteutettu ympäristö koostuu kolmesta osasta: laadun määrittelystä, laadun mallintamisesta
ja laadun arvioinnista. Laadun määrittelyssä jokainen laatuattribuutti määritellään ontologiamuotoon.
Ontologioiden avulla laatuvaatimukset määritellään yhtenäisellä tavalla laadun mallintamisvaiheessa.
Laatuvaatimukset määritellään tätä tarkoitusta varten kehitetyn UML-profiilin mukaisesti, jotta
vaatimukset voidaan esittää arkkitehtuurimalleissa. Lopuksi arkkitehtuurin laatua arvioidaan arviointi-
työkaluilla. Tarkoituksena oli toteuttaa koko ympäristö Eclipse-alustalle hyödyntäen saatavilla olevia
avoimen lähdekoodin komponentteja. Eclipse valittiin, koska se on laajasti käytetty avoimen lähdekoodin
alusta, mikä mahdollistaa työssä kehitettävän ohjelmiston helpon levittämisen. Toteutettu Eclipse-
työkaluarviointi osoitti, että TOPCASED on paras saatavilla oleva UML-työkalu Eclipselle ja paras
Eclipsen ontologiatyökalu on EODM. EODM ei kuitenkaan täyttänyt kaikkia tämän työn vaatimuksia,
joten jouduttiin käyttämään Protégé-ontologiatyökalua.
Toteutettu ympäristö testattiin käyttäen määriteltyjä testitapauksia. Testit osoittivat, että toteutettu ympäristö
toimii oletetulla tavalla. Lisäksi kehitetty laatuprofiili tarjosi tarkoituksenmukaisen tavan yhdistää määritetyt
laatuvaatimukset arkkitehtuurimalleihin. Tarvitaan kuitenkin lisää tutkimusta ja tuotekehittelyä ennen kuin
ympäristöä ja laatuprofiilia voidaan hyödyntää ohjelmistosuunnitteluun teollisuudessa.

ISBN
978-951-38-7011-9 (URL: http://www.vtt.fi/publications/index.jsp)

Avainnimeke ja ISSN Projektinumero
VTT Publications
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

562

Julkaisuaika Kieli Sivuja
Huhtikuu 2007 Englanti, suom. abstr. 79 s.

Projektin nimi Toimeksiantaja(t)
SVAMP Tekes, VTT

Avainsanat Julkaisija

quality-oriented software architecture, software
development, quality requirements, ontologies,
quality meta-data management, quality modelling,
quality evaluation, Unified Modeling Language

VTT
PL 1000, 02044 VTT
Puh. 020 722 4404
Faksi 020 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

V
TT PU

BLICA
TIO

N
S 636 Q

uality-oriented softw
are architecture developm

ent
A

ntti Evesti

ESPOO 2007ESPOO 2007ESPOO 2007ESPOO 2007ESPOO 2007 VTT PUBLICATIONS 636

Antti Evesti

Quality-oriented software
architecture development

VTT PUBLICATIONS

620 Talja, Heli. Asiantuntijaorganisaatio muutoksessa. 2006. 250 s. + liitt. 37 s.

621 Kutila, Matti. Methods for Machine Vision Based Driver Monitoring Applications.
2006. 82 p. + app. 79 p.

622 Pesonen, Pekka. Innovaatiojohtaminen ja sen vaikutuksia metsäteollisuudessa.
2006. 110 s. + liitt. 15 s.

623 Hienonen, Risto & Lahtinen, Reima. Korroosio ja ilmastolliset vaikutukset
elektroniikassa. 2007. 243 s. + liitt. 172 s.

624 Leviäkangas, Pekka. Private finance of transport infrastructure projects. Value and
risk analysis of a Finnish shadow toll road project. 2007. 238 p. + app. 22 p.

625 Kynkäänniemi, Tanja. Product Roadmapping in Collaboration. 2007. 112 p. + app.
7 p.

626 Hienonen, Risto & Lahtinen, Reima. Corrosion and climatic effects in electronics.
2007. 242 p. + app. 173 p.

627 Reiman, Teemu. Assessing Organizational Culture in Complex Sociotechnical
Systems. Methodological Evidence from Studies in Nuclear Power Plant
Maintenance Organizations. 2007. 136 p. + app. 155 p.

628 Kolari, Kari. Damage mechanics model for brittle failure of transversely isotropic
solids. Finite element implementation. 2007. 195 p. + app. 7 p.

629 Communications Technologies. VTT's Research Programme 2002–2006. Final
Report. Ed. by Markku Sipilä. 2007. 354 p.

630 Solehmainen, Kimmo. Fabrication of microphotonic waveguide components on
silicon. 2007. 68 p. + app. 35 p.

631 Törrö, Maaretta. Global intellectual capital brokering. Facilitating the emergence
of innovations through network mediation. 106 p. + app. 2 p.

632 Lanne, Marinka. Yhteistyö yritysturvallisuuden hallinnassa. Tutkimus sisäisen
yhteistyön tarpeesta ja roolista suurten organisaatioiden turvallisuustoiminnassa.
2007. 118 s. + liitt. 81 s.

633 Oedewald, Pia & Reiman, Teemu. Special characteristics of safety critical
organizations. Work psychological perspective. 2007. 114 p. + app. 9 p.

634 Tammi, Kari. Active control of radial rotor vibrations. Identification, feedback,
feedforward, and repetitive control methods. Espoo 20076. 151 p. + app. 5 p.

636 Evesti, Antti. Quality-oriented software architecture development. 2007. 79 p.

ISBN 978-951-38-7011-9 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Julkaisu on saatavana Publikationen distribueras av This publication is available from

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI-02044 VTT, Finland
Puh. 020 722 4404 Tel. 020 722 4404 Phone internat. + 358 20 722 4404
Faksi 020 722 4374 Fax 020 722 4374 Fax + 358 20 722 4374

	Abstract
	Tiivistelmä
	Preface
	Contents
	Abbreviations
	1. Introduction
	2. Related research and technologies
	2.1 Quality
	2.1.1 Quality attributes
	2.1.2 Quality-driven Architecture Design

	2.2 Ontology
	2.2.1 Resource Description Framework
	2.2.2 Web Ontology Language
	2.2.3 Ontology tools

	2.3 Unified Modeling Language 2.0
	2.3.1 UML superstructure
	2.3.2 UML profiles

	2.4 Eclipse
	2.4.1 Overview of the Eclipse Platform
	2.4.2 UML tools for Eclipse
	2.4.3 Ontology tools for Eclipse
	2.4.4 Quality evaluation tools for Eclipse

	3. Quality-Oriented Architecting
	3.1 Overview
	3.2 Requirements
	3.2.1 Quality ontology tool
	3.2.2 Quality design tool
	3.2.3 Quality evaluation

	3.3 Architecture
	3.3.1 Structure
	3.3.2 Behaviour
	3.3.3 Ontologies and profiles
	3.3.4 Structural view of the Profile editor
	3.3.5 Structural view of the RAP tool

	4. Implementation and testing
	4.1 Ontology under Protégé
	4.2 The Profile editor
	4.3 Quality profile and TOPCASED
	4.4 RAP tool under Eclipse
	4.5 Testing

	5. Discussion
	5.1 Link-up to the related research
	5.2 Implementation of the environment
	5.3 Results
	5.4 Future research and development

	6. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

