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Abstract

A new deterministic three-dimensional neutral and charged particle transport
code, MultiTrans, has been developed. In the novel approach, the adaptive tree
multigrid technique is used in conjunction with simplified spherical harmonics
approximation of the Boltzmann transport equation.

The development of the new radiation transport code started in the framework of
the Finnish boron neutron capture therapy (BNCT) project. Since the application
of the MultiTrans code to BNCT dose planning problems, the testing and
development of the MultiTrans code has continued in conventional radiotherapy
and reactor physics applications.

In this thesis, an overview of different numerical radiation transport methods is
first given. Special features of the simplified spherical harmonics method and
the adaptive tree multigrid technique are then reviewed. The usefulness of the
new MultiTrans code has been indicated by verifying and validating the code
performance for different types of neutral and charged particle transport
problems, reported in separate publications.
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Scalar flux

Angular flux

Position vector
Energy

Direction vector
Nabla operator

Total cross section
Scattering cross section

Source term
Fission spectrum

Number of neutrons emitted per fission

Fission cross section

Multiplication eigenvalue
Fraction of fission neutrons born delayed
Index for Legendre order

Maximum Legendre order in the Legendre expansion or
tree multigrid subdivision level

Incident angle
Legendre polynomial

Energy group index
Maximum energy group number

Group angular flux

Group total cross section
Group-to-group scattering cross section
Group source term

Effective group source term

Fission source

Group value for the fission spectrum

Index used for discrete direction or for indexing spherical
harmonics
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4
Gal

Maximum number of discrete directions
Set of discrete directions

Set of quadrature weights

Direction cosine

Direction cosine

Direction cosine

General direction cosine set

Constant

Spatial index
Spatial index
Spatial index

Total group cross section in discrete ordinates formalism
Angular flux in discrete ordinates formalism

Source term in discrete ordinates formalism

Cell volume

Cell face area
Cell face area
Cell face area
Cell face area
Cell face area
Cell face area

Polar angle
Azimuthal angle

Associated Legendre polynomial

Angular flux expansion coefficient in spherical harmonics
Angular flux expansion coefficient in spherical harmonics
Source expansion coefficient in spherical harmonics

Source expansion coefficient in spherical harmonics

Group transport cross section
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Hg Sobolev space

w(r ,ﬁ) Arbitrary angular flux belonging to Sobolev space
( f, g) Inner product

< 7, g> Inner product at boundary

Ko Collision operator

Sh Finite element subspace

v (7,Q) Local basis function

A Matrix

¥ Flux solution vector

S Source vector

X Spatial co-ordinate

Y7 Angular direction cosine

v, (x) Spatial one dimensional basis function
v (1) Angular one dimensional basis function
v, (x, 1) Direct product of spatial and angular basis functions
s Distance

C Random number

uf ik Cell in octree
Xoin Minimum x co-ordinate of the root cell
Yoin Minimum y co-ordinate of the root cell
Zomin Minimum z co-ordinate of the root cell
Xomin Minimum x co-ordinate of an octree cell
Vimin Minimum y co-ordinate of an octree cell
Zomin Minimum z co-ordinate of an octree cell
Xmax Maximum x co-ordinate of an octree cell
Vimax Maximum y co-ordinate of an octree cell
Zmas Maximum z co-ordinate of an octree cell
A Side length of the root cell

Ao Minimum cell side length of an octree

u Column vector

h Mesh size

S, Discretised source vector

u, Approximate solution of the discretised system
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Exact solution of the discretised system
Error of the solution

Approximate error of the solution
Residual

Mesh size on a coarser grid

Restriction operator

Prolongation operator

Number of two-grid iterations

Angular flux in slab geometry

Kronecker delta

One-dimensional angular flux expansion coefficient in
Legendre order /

Three-dimensional angular flux expansion coefficient in
Legendre order /

One-dimensional source expansion coefficient in
Legendre order /

Three-dimensional source expansion coefficient in
Legendre order /

Variable defined relative to scalar flux and second
moment term of the angular flux

A diffusion coefficient

A diffusion coefficient

Order / moment terms of the source

Order / moment terms of the effective group source
Scalar effective group source

A modified group source term

A modified group source term
Normal vector of a surface

Uncollided angular flux

Uncollided angular flux spherical harmonics expansion
coefficient
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3D
BFP
BNCT
BNCT rtpe
BUGLE
CAD
CEPXS

c.p.e.
CSD
CSDA
CT
DORT

EGS

EGS4
EGSnrc
EMERALD
ENDF

FBR

Uncollided angular flux spherical harmonics expansion
coefficient

Uncollided angular flux Legendre expansion coefficient

Delta function in angle
Source point

Number of mean-free-paths

Average total group cross section along the path
Cell surface element

Fission source after » iterations

Multiplication eigenvalue after » iterations

Variable used for criticality convergence criterion
Variable used for fission source convergence criterion

One-dimensional

Two-dimensional

Three-dimensional

Boltzmann-Fokker-Planck

Boron neutron capture therapy

A Monte Carlo simulation code, predecessor of SERA
Coupled neutron and gamma-ray cross section library
Computer-aided design

A multigroup coupled electron-photon cross section
generating code

Charged particle equilibrium

Continuous slowing down

Continuous slowing down approximation

Computed tomography

A two-dimensional discrete ordinates (deterministic)
transport code

“Electron Gamma Shower”, a Monte Carlo simulation
system

A Monte Carlo code from the EGS system

A Monte Carlo code from the EGS system

Past project of the SAFIR research programme at VT T
Evaluated nuclear data file

Fast breeder reactor
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FEM

FiR 1
Fluental™
GEANT4

ICRU

IMRT
INL
IRDF
KUCA
LET
LWR
MCNP
Mesh2d

MIT

MOX

MRI

MSU
MultiTrans

NCT_Plan
NEA
NMF
OECD

P,
P;
PMMA
Py

PSG

PTV
PWR
SAFIR

Finite element method
Nuclear research reactor located in Otaniemi, Espoo
Neutron moderator material developed at VIT

A toolkit for the simulation of the passage of particles
through matter

International Commission on Radiation Units and
Measurements

Intensity modulated radiotherapy

Idaho National Laboratory

International reactor dosimetry file

Kioto University Critical Assembly

Linear energy transfer

Light-water reactor

General Monte Carlo N-Particle Transport Code

An adaptive two-dimensional unstructured mesh
generator

Massachusetts Institute of Technology
Mixed-oxide

Magnetic resonance imaging

Montana State University

A three-dimensional simplified spherical harmonics
(deterministic) transport code

A Monte Carlo simulation code based on MCNP
Nuclear Energy Agency

Nuclear metrology file

Organisation for Economic Co-operation and
Development

Spherical harmonics approximation of Legendre order
one, congruent with diffusion theory approximation
Spherical harmonics approximation of Legendre order
three

Polymethyl-methacrylate

Spherical harmonics approximation of Legendre order N

“Probabilistic Scattering Game”, a Monte Carlo transport

code developed at VTT
Planning target volume
Pressurised water reactor

Finnish Research Programme on Nuclear Power Plant
Safety
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Sx

SP,

SP,
SPy
SSx
STL
Tekes

TLD
TORT

TPS
TRIGA

VENUS

VENUS-2
VENUS-3

VTT
X333

A fine multigroup structure of neutron cross sections
A simulation environment for radiotherapy applications
Discrete ordinates approximation

Simplified spherical harmonics approximation of
Legendre order one, congruent with diffusion theory
approximation

Simplified spherical harmonics approximation of
Legendre order three

Simplified spherical harmonics approximation of
Legendre order N

Simplified discrete ordinates approximation
Stereolitography file format

Finnish Funding Agency for Technology and Innovation
Thermoluminescent dosimeter

A three-dimensional discrete ordinates (deterministic)
transport code

Treatment planning system

“Training, Research, Isotopes, General Atomics”, a
research reactor type

“Vulcain Experimental Nuclear Study”, zero power
critical reactor located in Mol, Belgium

VENUS reactor with mixed-oxide fuel, a NEA benchmark

VENUS reactor fuelled with partial length shielded
assemblies, a NEA benchmark

Technical Research Centre of Finland
A utility program for multigroup data condensation
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1. Introduction

Ionising radiation is radiation in which an individual particle carries enough
energy to ionise an atom or molecule by completely removing an electron from
its orbit. Ionising radiation can cause DNA damage and mutations, and is
therefore potentially dangerous to human health.

There are both natural and artificial radiation sources, which are identical in their
nature and their effect. Despite the potential dangers, sometimes the benefits in
the utilisation of radiation sources outweigh the drawbacks. Ionising radiation
can be used, for instance, in medicine to kill cancerous cells. Nuclear fission is
used as an efficient source of power production to benefit all mankind, but as a
harmful by-product also direct ionising radiation as well as long-term
radioactive waste is produced.

In many areas dealing with ionising radiation, it is important to be able to
calculate the particle transport through matter. In radiotherapy applications it is
required to estimate the radiation dose to the patient in order to ensure the safety
and success of the therapy. In reactor physics one is interested in criticality
safety, radiation shielding issues, activity inventories, and radiation damage
induced to materials and components important for safety.

Neutral and charged particle transport — referred hereinafter less strictly also as
radiation transport — is a complicated problem especially in 3D, and generally
requires the use of sophisticated computer codes. A variety of such computer
codes exists, based on the development work of many person-years. These codes
are used, for instance, in radiotherapy treatment planning and nuclear
engineering, where the computational accuracy can be vital for safety.
Therefore, many of these codes are carefully validated and verified for the
purpose they are intended.

Why should a new radiation transport code be developed, especially if it requires
many years of development and validation work? Much of the answer depends
on how well the current codes perform in different applications, and whether
there are some new techniques that might supplement the computational
radiation transport field. Naturally, the research and development process itself
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has an educational aspect, and can give a much deeper insight into the already
existing codes and their usage.

The transport solution method described in this thesis is based on the tree
multigrid technique, not utilised before in radiation transport.

The development of the new radiation transport code started in the framework of
the Finnish boron neutron capture therapy (BNCT) project. Patients suffering,
e.g. from malignant brain tumours or head and neck cancer, are treated with
epithermal neutrons obtained from FiR 1 TRIGA research reactor [1-5]. The
radiation damage is chemically intensified in tumour cells by a boron carrier
agent that accumulates into cancer tissue. The incident epithermal neutrons slow
down to thermal energy range (E < 0.5 eV) in tissue, and have a high probability
to be captured by the 19B isotope, producing short, cell range high-LET radiation
(a-particle and 7Li recoil nucleus, see Figure 1) [6]. In addition to the chemical
targeting of the dose, it is important to direct the epithermal beam (usually two
fields have been used from two different directions) in an optimal way to
produce a good thermal neutron field in the planning target volume (PTV) and to
minimise the radiation risk to sensitive organs. To make an anatomical model of
the patient with PTV, tomographic data of the patient is required. In BNCT,
treatment plans are made individually for each patient based on computed
tomography (CT) or magnetic resonance imaging (MRI), and detailed radiation
transport modelling [7-10].

For treatment planning in Finland, the SERA code and its previous version
BNCT rtpe have been used [8, 9]. Both codes are based on the Monte Carlo
method, and they have been developed by Idaho National Laboratory (INL) and
Montana State University (MSU).
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Figure 1. Nuclear reaction utilised in BNCT. A "B nucleus absorbs a thermal
neutron and promptly emits a *He (alpha) particle. Together with the recoil "Li
nucleus, the resulting particles have a combined average kinetic energy of 2.33
MeV and limited path lengths in tissue (59 pm) similar to cell dimensions [6].

The BNCT rtpe code that was initially used in BNCT treatment planning was
rather time consuming: each field calculation took about 7 hours, and the whole
optimisation procedure for two field irradiation setup for each patient took about
one week [11]. Since then (BNCT trials in Finland started May 1999) the SERA
code has experienced a speed up due to some BNCT-specific algorithm changes
and the general performance improvement of computers. To be more detailed,
the SERA code uses integer arithmetic in the particle tracking method through
uniform volume elements (univels), which has accelerated the transport
calculations notably [9]. However, at that time when the first clinical protocols
in Finland were about to start, there seemed to be an urgent need for a fast
deterministic radiation transport code that could be used in BNCT to shorten the
production time of treatment plans.

There was some previous in-house experience (by Pawel Simbierowicz, a former
research scientist at VTT) in solving elliptic differential equations (for instance
diffusion equations) by using the novel tree multigrid technique [12, 13, 14]. It
was soon realised that this technique might also be used for radiation transport
problems.
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During 1998-2001 a research and development project financed by VIT and
Tekes, the Finnish Funding Agency for Technology and Innovation, was
conducted. The aim of the project was to demonstrate the applicability of the
tree multigrid technique to radiation transport modelling, especially in varying
phantom geometries used in BNCT dosimetry.

Radiation transport theory for neutral and charged particles [15, 16, 17] is
discussed later in this thesis, but it is worth noting that, in practice, the basic
transport equation is too ill-formed for a direct numerical deterministic solution
and needs to be approximated. Therefore, full spherical harmonics approximation
(Py) was first studied [18, 19], but the resulting equations were still found to be
very complicated in 3D, and a simpler but somewhat more restricted, simplified
spherical harmonics approximation (SP;) was adopted instead [20-25].

For treatment planning purposes, an algorithm for construction of the
computation grid (tree multigrid) directly from segmented CT images was
implemented.

As a result of the project, a new code called MultiTrans was developed, capable
of solving 3D radiation transport problems with the efficient tree multigrid
technique, as reported in Publications I and II. The application of the new code
to BNCT dose planning was also studied further in the BNCT dosimetry project
co-ordinated by the University of Helsinki and funded by the Finnish Academy.

It should be noted that 5 % accuracy of the patient dose is recommended by
ICRU for external radiotherapy [26]. This is because the therapeutic window for
the patient dose is usually quite narrow: often the adverse effects start to appear
in the healthy tissue before the complete tumour control (Figure 2). Thus, the
accuracy requirement for any new dose planning code is very strict, and careful
verification of the code performance is needed.
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Figure 2. An example of the effect of radiotherapy on the tumour and healthy
tissue. The effect (cell kill) is a sigmoidal function of radiation dose. For a
therapeutic dose, there is often only a narrow window before adverse effects in
healthy tissue start to appear (this figure is freely modified from the book by
Perez and Brady [27]).

Obviously, MultiTrans as a 3D radiation transport code is not restricted to any
specific BNCT problem, but is far more generic in nature. Algorithms for
generating a 3D octree grid from stereolitography (STL) files already existed.
These STL files can be exported from practically all computer-aided design
(CAD) systems. The ability to generate octree grids directly from CAD models
offers a flexible state-of-the-art interface for construction and upgrading of the
calculation geometry.

Since the first application of the MultiTrans code to a BNCT dosimetry planning
problem, the applicability of the MultiTrans code in coupled photon-electron
transport problems encountered in conventional radiation therapy planning was
studied (Publication V). This work was financed by Varian Medical Systems
Finland Oy.

Lately, the MultiTrans code has also been applied to reactor physics problems,
where the radiation transport codes are most commonly used. This has been
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done within the EMERALD project of SAFIR, the Finnish Research Programme
on Nuclear Power Plant Safety. For instance, a multiplication eigenvalue search
algorithm has been implemented (Publication III). It should be noted that the
accuracy requirement of computer codes is high in reactor physics as well. Some
well-known 3D neutron transport benchmarks have therefore been conducted,
such as the VENUS-3 reactor dosimetry benchmark (Publication V).

This thesis first provides the reader with a short introduction to the
computational methods of radiation transport. After that, the basis of the new
MultiTrans code — the tree multigrid technique and the simplified spherical
harmonics approximation — are reviewed. The objective is to give a somewhat
more general overview of radiation transport, in order to be able to piece
together the special features of the new method. Finally, the applications of the
new radiation transport code to various transport problems are reviewed, and
both the benefits and the drawbacks of the new method are discussed.
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2. Aims of the study

The study aimed to develop and test a new 3D deterministic radiation transport
code. The specific aims were:

1. To study radiation transport theory in order to find a suitable
deterministic 3D transport approximation to be used in conjunction with
the tree multigrid technique. (Theoretical overview presented in this
thesis)

2. To apply the tree multigrid technique for the first time in 3D neutron
transport modelling. (Publication I)

3. To test the applicability of the new code in BNCT neutron and photon
dose-planning problems. (Publication II)

4. To extend the applicability of the new code to rector physics problems
with multiplicative systems. (Publication III)

5. To verify the accuracy of the code in reactor physics problems by
calculating dosimetric responses for a real nuclear reactor. (Publication
V)

6. To extend the applicability of the new code to coupled photon-electron

transport problems and to test the code in conventional radiotherapy
dose planning. (Publication V)
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3. Overview of radiation transport theory

The term “transport theory” is commonly used to refer to the mathematical
description of the transport of particles through a host medium [15]. Transport
theory arises in a wide variety of disciplines. The foundation of transport theory
lies in the kinetic theory of gases developed by Austrian physicist Ludwig
Boltzmann (1844—1906). In fact, there are at least three equations named after
Boltzmann: a famous equation for entropy, an equation concerning particles in a
gravitational field, and an equation for particle transport. The latter one is often
called the Boltzmann transport equation.

When time-dependence is suppressed, the Boltzmann transport equation for
neutral particles — such as neutrons and photons — has a static form

V- Q¥ E,.Q)+0" (F, E,Q)W¥(#,E,Q) =
O, E, Q)+Has(?,E,E’,f),ﬁ’)\P(F,E’,f)’)dﬁ'a’E’ . 3.

where Y(7, E, Q) is angular flux (function of position 7 , energy £ and angle
Q), o' (F,E,Q) is total cross section, o (7, E,E',f),f)') is scattering cross
section, and Q(7, E ,Q) is a source term. The direction vector € is illustrated
in Figure 3 in the Cartesian co-ordinate system. The fundamental equation (3.1)
can also be seen as an expression of the equation of continuity:

losses + leakage = production. (3.2)

The Boltzmann equation is an integro-differential equation, which means that
the integral scattering source term on the right-hand side depends on the solution
itself. It is said that, in this form, the Boltzmann equation is almost impossible to
handle [28]. Exact analytical solutions exist only for some very special cases,
such as for point, line or plane source in an infinite homogeneous medium or for
the so-called Milne problem (for an infinite homogeneous half-space) [16]. The
complexity of the equation usually forces one to implement numerical (i.e.,
computer-based) methods of solution. For this purpose it is practically necessary
to do mathematical approximations, which are always compromises between
physical accuracy and feasibility.
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Figure 3. Direction vector Q illustrated in Cartesian co-ordinate system.

Numerical methods in radiation transport can be divided into deterministic and
stochastic methods. In the deterministic methods, the radiation transport of
neutral particles is described by solving the Boltzmann equation numerically. In
stochastic methods, i.e. the Monte Carlo method, individual particle trajectories
are followed through the geometry, until particle escape or absorption. The latter
method does not use the Boltzmann equation at all: instead it uses simple
probabilistic laws for each emission, scattering and absorption event that the
particles undergo in their history. Thus, the stochastic nature, the random walk in
which particles stream in reality, is imitated by statistical computer simulation.
As the Boltzmann equation represents the collective behaviour of the particles,
simulating a large number of particle trajectories will lead to statistical flux
density that will be the solution of the Boltzmann equation within the obtained
statistical uncertainty.

Neutrons and photons deposit their energy into matter indirectly through
creation of secondary charged particles. The Boltzmann equation (3.1) holds for
neutral particles. If charged particles are concerned, the situation is more
complicated. Charged particles, such as electrons, interact with the matter
through the long-range Coulomb force. Charged particle transport is in general
described by the Boltzmann-Fokker-Planck (BFP) equation.

Electrons are often those secondary particles which actually deposit the energy
into material, e.g. induce the primary dose to the tissue in radiotherapy. If a
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sufficient local secondary charged particle equilibrium (c.p.e.) condition exists,
one can use mass-energy absorption coefficients (for photons) or kerma factors
(for neutrons) to directly convert the calculated fluence rate to dose rate [29]. In
other words, under the c.p.e. condition, the dose is equal to collision kerma
(kinetic energy released in material subtracted by bremsstrahlung fraction).
However, if the c.p.e. condition is not met, the transport of electrons might have
a vital effect on the dose distribution, e.g. in a case with strong tissue
heterogeneities [30, 31].

One approximative form of the BFP-equation is the Boltzmann-CSD
(continuous-slowing-down) equation. It is possible to include the CSD-term into
electron “pseudo” cross sections and the Boltzmann equation for neutral
particles can be applied for electrons as well [32]. The deterministic solution of
the electron transport can then be based on essentially the same concepts as the
neutral particle transport.

Also statistical simulation can be used to solve the charged particle transport. It
should be noted that the stochastic Monte Carlo method is often very time
consuming. The reason is that in order to get results — fluence or dose values for
instance — with sufficiently low statistical uncertainty, usually a huge number of
particle tracks have to be simulated. Especially the tracking of electrons is tedious,
as the long-range Coulomb force results in a large number of scattering events.

Whereas electron transport is sometimes important in radiotherapy, in reactor
physics one is often dealing with fissionable material. This leads to a new class
of problems, where instead of solving flux values for a certain fixed source
distribution, the principal target is to solve the criticality eigenvalue for the
multiplicative system of fission neutrons. This eigenvalue problem can be
formulated with the Boltzmann transport equation by just adding a fission
production term on the right-hand side:

V- Q¥ E.Q)+0" (F, E,Q)W¥(#,E,Q) =
O(F,E,Q)+ j j oS (7,E,E' Q.Y (7, E,Q)dVdE'

+M.”'V(f;’Ev)o.f(’j:,E!)T(F,E!’Q')dﬁ'dE' . (33)

ko
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In equation (3.3), y(¥,E)is the fission spectrum, v(7,E) is the number of
neutrons emitted per fission, o’ (7, E)is the fission cross section, and ke is the
multiplication eigenvalue. The k. parameter is introduced in order to bring the
equation to a stable solution: physically the k. value can be interpreted as a ratio
of the production rate of neutrons due to fission to the loss rate due to absorption
and leakage.

The system (e.g. a nuclear reactor or a nuclear fuel transportation cask) is said to
be sub-critical when k. < 1. In this case, the fission power, i.e. the total energy
released by fission events, and amount of neutrons are decreasing to zero, unless
the system has already reached the zero power level. If k. = 1, the system is
critical and maintains a constant chain reaction at a constant power level. In
order to make the fission power increasing, e.g. to raise the power of a nuclear
reactor, the k. value has to be > 1, where the system is called overcritical.

Here one can make a general remark, not related to transport theory, but to
reactor kinetics: a certain fraction £ of fission neutrons is born delayed, in
contrast to prompt neutrons which are released immediately in the fission event.
For °U, f=0.65%. These delayed neutrons make it possible to control a
nuclear reactor, as they slow down the exponential time behaviour of the number
of neutrons, and give control systems sufficient time to react to the changing
power level. If all the fission neutrons were born promptly, a controlled chain
reaction and the production of electricity in nuclear power plants would be
impossible.

Naturally, the radiation transport problems related to reactor physics are not only
restricted to criticality problems, but there are many other types of problems as
well. For example, calculated neutron flux is important for estimation of the
embrittlement of reactor materials, such as the pressure vessel. The integrity of
the pressure vessel is vital for nuclear safety. Or, as another example, calculated
neutron flux distribution might be required for estimation of induced
radioactivity of different reactor internals after an irradiation period. In these
kinds of problems, a fixed source distribution (core power distribution) is
usually used as a source term, without doing any criticality eigenvalue search.

Criticality and other issues of nuclear safety naturally require reliable and well
benchmarked computational systems with known accuracy in order to be able to
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use large enough safety margins. It has already been mentioned that 5 %
accuracy in dose determination is also recommended for radiotherapy in order to
ensure the safety and the success of the therapy [26]. Thus, in almost every
application of radiation transport, the computational methods used have a high
accuracy requirement.

3.1 Deterministic methods

The numerical solution of the Boltzmann transport equation (3.1) in realistic
heterogeneous 3D problems always requires some approximations. There are a
few approximations which are common for all deterministic methods, such as
the Legendre expansion and the multigroup approximation of the cross sections.

With an assumption that scattering depends only on incident angle, an expansion
of anisotropic scattering cross section can be made with the use of Legendre
polynomials up to order L

S [aYa Y 20 +1 S ’
o’ (F,E,E',Q,Q) ~ ?B(,uo)o; (F,E,E") (3.4)

1=0

where the incident angle is
1 =Q-Q' . (3.5)

Another approximation that is always used in deterministic methods, also related
to cross sections, is called the multigroup approximation. As the Boltzmann
transport equation is energy-dependent, there has to be some way to reduce the
problem involving scattering from one energy to another into a manageable form
for numerical solution. In the multigroup approximation (Figure 4), the
continuous (point-wise) cross sections are condensed into some energy group
structure, in which each group has different energy width. The group flux
denoted with index g becomes
E,
PE(7,Q) = j ¥, E,Q)dE (3.6)

EH
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and the group total cross section, for instance, will be

Eg
[o" 7.E.Q)@(F, E)dE
of (F) ="

j (7, E)dE

; (3.7)
where

O(7,E) = j ¥ (7, E,Q)dQ (3.8)
4z

is the scalar flux.

Similarly, the group scattering cross section becomes

Egy  Eg,
[dE [0} (7, E,END(F, E')dE'
O_i;—)g(;:)z Eg' Eg -

Tq:(?, E)dE
E

8

(3.9)

It is worth noticing that, in equations (3.7) and (3.9), the scalar flux is used to
weight the group cross section in order to define the exact and equivalent
multigroup representation of the original transport equation. That is to say, to
obtain the solution, ®(7,E), one needs the solution, ®(7,E). In practice, a
certain approximative weighting spectrum has to be used in order to estimate the
average group constants correctly. These weighting spectra are case-specific, i.e.
they should represent a typical flux spectrum in the material and in the problem
for which they are to be used. For instance, a very different weighting spectrum
is used for the reactor core than for the concrete of the biological shield far from
the core. The basic nuclear data also varies, some cross sections having strong
resonance peaks within very small energy width. The multigroup approximation
therefore always introduces some source of error, depending on how fine or
broad the energy group widths are, and how accurately the used weighting
spectrum represents the actual flux.
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Figure 4. Division of the energy domain into G energy groups.

The Legendre expansion coefficients of the microscopic scattering cross sections
are tabulated in multigroup format for different isotopes in the standard cross
section libraries, such as BUGLE-96 (with 47 neutron groups and 20 photon
groups) for instance [33]. The macroscopic cross sections can be calculated with
corresponding coefficients (atomic densities) for different material constituents.

For a multigroup structure having G energy groups, the Boltzmann transport
equation becomes

V-Q¥4(F,Q) + ot (F)PE(F, Q) =

G L o S
0.8+ 332 2] oo ()| B(G- G (7. 0)ASY
'=11=0

ZG: (r)vg (Fos (7) [ W (7, )dY

‘é

(3.10)

The terms W& (7,Q) and Qf(#,Q) above are actually components of 1xG
vector functions, where G is the total number of energy groups in the multigroup
approximation. The group-to-group scattering cross sections G‘i;ﬁg (F) are
components of GxG (possibly full) scattering matrix.

One can solve the multigroup equations successively as a sequence of effective
one-group problems [34] by treating the contribution from other groups as an
effective source term:

S¢(F,Q) = 0%(7.Q)

Iy e )| B(Q- Q)W (F,Q)deY | (3.11)

g'#gl=0 472-
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The fission source can be defined as
G ' ' ' — —
S 1 (F) = D vE (7)ot () j PE (7,0)dCY (3.12)
g'=1
It is important to note that the spatial dependence of the fission source is

identical in each group equation [34]. The “in group” transport equation
becomes

V- QW (F,Q) + of (F) V4 (F,Q) = S¢ (F,Q)

L o . - g (i
> 2 o (] P e + £ s ),
G o (3.13)

3.1.1 Discrete ordinates method

In the discrete ordinates method (also known as Sy method), the angular variable
is discretised into a small number of directions or rays [15, 16, 35, 36]. The
particle transport equation is written for each ray, including various coupling
terms describing ray-to-ray transfer. In the following sections, the Sy formalism
presented in the book by Duderstadt and Martin [15] is more or less quoted.

A set of M discrete directions {f)m} and corresponding quadrature weights
{wm} need to be chosen. The quadrature weights can be thought to represent an
area on the unit sphere of direction cosine triplets (x,,7,,&, ). The numerical
integration over angle in the Boltzmann transport equation can then be estimated
as a weighted sum.

The choice of discrete directions is not obvious in many cases — particularly in
multidimensional geometries. In the following, only 3D Cartesian co-ordinate

system is considered.

Since f)m is a unit vector, the directions cosine triplet (x,,,7,,&, ) must satisfy
equation

py+mn+En=1. (3.14)
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Furthermore, if no a priori information on the angular flux solution exists, a
symmetric distribution of direction cosines can be assumed. The angular
direction set should then be invariant under arbitrary 90° rotations about the co-
ordinate axes, and 180° reflections about the xy, xz, or yz planes. This means that
only one octant of the unit sphere needs to be considered. The direction cosine
sets have to be identical, i.e. { m} = { m} = {fm}, and lie on latitudes on the
unit sphere (Figure 5). Otherwise, the point arrangement would not be invariant
under rotation of one axis into the other. The reflection property implies that
each set {am} is symmetric about a=0. Therefore, one needs to choose only
terms oy, 0, ...,Qp.

The equation (3.14) means, for instance, that

2

2 2 2 2 2
a+a;+ap =1, o, +a;,+a; =1.

Subtracting these two equations and noting that 7, j, and & are arbitrary, one finds
that

2 2 2 2
a —a, =a;,—a; = C,
or

al =’ +(i-1)C. (3.15)

There is a direction flm corresponding to (ay,0n,Qy,), since there are M/2
points for &>0. This implies

al +al +a,,,, =1. (3.16)
Combining equations (3.15) and (3.16) gives
ay,=a;+(M/2-1)C=1-2a..
Now one can calculate the constant C to derive a recursive relation
o= g 20 3a})

T=a /. 3.17
i i-1 M—2 ( )
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This means that choosing ¢; will determine explicitly the direction cosine sets
{ m} = { m} = {fm } By choosing ¢, to be large or small, the points (Figure 5)
can be clustered close to =0 or near the poles a==*1.

From a practical point of view, a variety of quadrature sets is usually supplied
with the discrete ordinates transport computer codes. Actually, the sets can also
be “biased” or “asymmetric” in &, e.g., additional directions can be supplied
along the -Z direction in order to give fine detail to polar streaming.

Figure 5. Symmetric point arrangement on one octant of unit sphere.

In addition to the selection of suitable quadrature sets, the resulting transport
equations for each discrete direction have to be written as a set of algebraic
equations adequate for numeric solution by computers. The Sy equation in the
3D Cartesian co-ordinate system has the form

i+5,j ke m.g i—L.jk i—g,j,k,m,gJ

Hon Ai+%, ik N,

+n,1B. ... N, N. .,

l,j+%,k l,j+l2,k,m,g _Bi,j—%,k i,j—i,k,m,gJ

+&.1C. .. N,

ikt i ke bmg

C

i,j,k—gN i.jk—tm.g J

+o’ V.. N

i,jskg kT L)k m.g

=V, .S, (3.18)

i,j.km.g *
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Subscripts such as i+1/2 refer to the internal boundaries and N represents the
angular flux. The coefficients 4, B, and C are cell face areas perpendicular to the
axes from which the direction cosines g, 7, and & are measured, and o{j’k’ < 18

the total cross section. ¥, ; , is the cell volume and S is the source term.

i ijkom.g
Whereas the integro-differential form of the Boltzmann transport equation can
be converted to a set of algebraic Sy equations by treating the angular integration
with a weighted sum over discrete angular directions, this approach also causes
certain problems. The rotational invariance of the original transport equation no
longer holds for the Sy approach, due to angular discretisation. This sometimes
leads to so-called “ray effect”, i.e. non-physical artefacts in the flux solution by
the discrete ordinates method [37, 38].

Another problem with the Sy method is that also false negative flux values can
easily be generated. Non-physical negatives can cause wrong overall results and
thwart convergence [36]. There are different fix-up methods for preventing this
to happen. The easiest fix-up is to set all emerging negative flux values to zero,
but this will underestimate the true result. Additionally, if false negatives are
easily generated, it is apparent that inaccurate positive numbers can also be
generated, and these errors are much harder to detect. The prevention of negative
flux values is a characteristic problem for the Sy method. The undesired side
effects of this problem can be avoided or at least minimised with a proper
solution technique and by choosing suitable input parameters.

There are several numerical flux evaluation strategies for the Sy equations, such
as the linear or diamond difference model, step model, linear zero and weighted
difference model, as well as some semi-analytical methods like nodal and
characteristic methods [36]. Details of these methods are beyond the scope of
this review. However, the accuracy of the Sy approximation depends a lot on the
solution method used and all the input parameters, including the discrete
ordinates set. A user of the Sy codes should be aware of all the drawbacks and
benefits of the different solution methods in order to be able to use these codes
both efficiently and reliably in various transport problems.
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3.1.2 Spherical harmonics method

The angular flux can be expanded by using spherical harmonics. The
trigonometric form (instead of the imaginary exponential form) is used here to
obtain more practical real equations for the flux. The flux expansion can be
written as [18]

Y(7,E,0,p)

0 /
> > QI+DP" (cosO)y,, (7, E)cosmp+y,, (7, E)sin mep)
1=0 m=0 (3.19)

where B (cos®) is an associated Legendre polynomial [28]

m

d
B(x)=(1-x")"

T P (x) (3.20)

Polar angle 6 and azimuthal angle ¢ of the spherical co-ordinate system are
illustrated in Figure 6.

»
>

to]l!

Figure 6. Direction vector Q in spherical co-ordinate system with polar angle
6 and azimuthal angle ¢.

Substituting the flux expansion (3.19) into the Boltzmann transport equation (3.1),
multiplying it with an associated Legendre polynomial, and then integrating the
resulting equation over direction space, a set of Py transport equations can be
derived for each associated Legendre polynomial by using the orthogonality of the
base functions. For ¢-terms the orthogonality integrals [28] are
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2z

j sin(mg)sin(m'p)dgp = 75, .
0 s
2

I cos(me)cos(m' p)dp = 76, ,,
0

and
2r

J‘ sin(me) cos(m’ @)dep =0

0

and the orthogonality integral for the associated Legendre polynomials is [28]

fpm( 0) P (cos 0) si pag— > Lrm! s
) i cosd) P (cosf)sin Sl U—m) O

The resulting streaming terms

J‘dQP,,’"' (cos@)cosm'p QP,’" (cos@)cosmep

and

IdﬁP,’” (cos@)sinm'¢p QP,’" (cos@)sinme
are calculated by writing the direction vector in the form
Q =sinfcosp e, +sinfsinge, +cosbte,
and using the trigonometric identities
cosSm@cos @ = %[cos(m + 1)@ + cos(m — 1)(0] ,
cosmpsing =1 [sin(m +1)p —sin(m — 1)(p] ,
sinme@cos @ = %[sin(m —1)p —sin(m + 1)(0]
and

sinm@sin@ = %[cos(m —1)p —cos(m + 1)(0]
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and the recurrence relations [28] of the associated Legendre polynomials

cosd P = Z+mPlTl+Z—m+1 "
2/ +1 2/ +1

: m 1 m+ m+
sing ' = (P~ Ay

and

1+1

sin@ P" :ﬁ[(nm)(nm—l)g"ql —(I=m+ ) -m+2)P" ]
+ .

The scattering integral
[[o°F E B Q.00 E",Q)dCYdE"
is calculated with the use of the addition theorem [28]
P (uo> = P, (cos8)P, (cos )

z g: P’" (cos@)P" (cosO)cosm'(p— ')

and the trigonometric identity

cosm(p —@') =cosm@pcosme' +sinmesinme’ .

Separate equations are obtained for sine and cosine terms. The resulting Py
equations (derived by the author) are

% Ol
2(l+ m +1) l//l-*-l m + 2(l_m) Wl—l,m + l//l—l,m—l . @/l—l,m—l
P P o &
_ ﬁl/ylﬂ,m—l _ ﬁ}/Hl,m—l + (Z +m+ 2)(1 +m+ 1) ﬁl)yhl,mﬂ + ﬁ}/Hl,mH
25 24 O &
O
—(=m—-1)I - m)( Vit ma + @/l—l,mﬂ j
& ¥
+201+ 10"y, =220+ 1)y, + 21+ D[ o}y, dE 55
0
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and

2 %
2(1 +m + I)M + 2(1 _ m) a;/l—l,m + l//l—l,m—l n @/l—l,m—l
& x ¥ &
o o
| Y rma + Y 11 cd+m+2)A+m+1) — Vi mel N O 1t
& ox Y Y
7
—(-m1- m)(— Vs | P j

#2204 1)077, =200+ D5, + 200 +D[017,0dE 5

for each [ € [0, N] and m e [~1,1], with the constraints that
Wim=Vim=0for[<Oor/>N.

The explicit spatial and energy dependency of the terms has been removed from
the notation, for simplicity: e.g. the term o stands for the total cross section
o’ (#,E) . It should be noted that also the source has been expanded in spherical
harmonics

O(#,E,Q)

0 l
= 2(21 +1)P" (cos 6’)(q, (P E)cosmep+s,, (7, E)sin m(p)
120 m=0 ’ ’ (3.23)

Fletcher [18] has derived equations which are very similar to equations (3.21)
and (3.22), except that Fletcher’s equations do not take anisotropic source terms
into account. Similar (mathematically equivalent) Py equations have also been
derived for imaginary exponential form of the flux expansion [15], leading to a
somewhat simpler approximation from the mathematical point of view, but less
suitable for numerical solution (due to the resulting imaginary part).

It can be seen from equations (3.21) and (3.22) that a set of 15 coupled equations
for 15 unknowns is obtained for Legendre order 3 approximation (i.e. Pj
approximation). For numerical solution, the first-order equations (3.21) and
(3.22) are problematic, as the first-order derivatives will not be positive definite.
However, by substituting odd moment terms (with / odd) into the even order
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equations, it is possible to obtain equations in the second-order form, and also
reduce the number of equations and unknowns. For instance, in the second-order
multigroup P; approximation, “only” 6 coupled equations with 6 unknowns
result:

26500 — |02 +02+0? ]y/oo 2[5 +02 =20,
30 308

al

4 4 8
__gé’xé,zy/Z] - [Of)2 é) }/’22 y 0.7 __gé,xé’y}/ZZ =q6
O O Gai (3.24)

2 2 2
- 02 10> 202y |2 v 07 + 40y 0.0,
O-a] 3Gal O-a]

4 2 8 ,
+O__g[ax2 —55]%2 _G_gayé’z%l +O__gaxay7/22 +1005,1 5,

al al

12 6
7(7 +0; ]'/’20 ﬁ z 20_70_53 0.0y

12 6 24
52 > ﬂ 7 ——J70 =0
70 [ }sz 70 Vat 708, OV n (3.25)

- 30_51 x“z _Tflé)xé)zgyﬂ) _G_fl[é)x +é’z }/IZI
4 2 4 .
__gaxazl//zz __g§x5y7/21 __gé’yﬂﬂ/zz +100 5y,
al O-al O-al
2
O 241002 +1672
a3 a3
_ 0.0y~ ° =09~ 1255722=0
Toé *° 758 7 758 7 °
a3 a3 a3 (3.26)
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1 1 1
_3O_g1 [ﬁj_ﬁyz 00+ﬁ[0”x2_§j}y20_0__g10”x§zw21
2 o242 ynt—6,670 +1005ym + ——[07 37}y
0'a o 708,
3 16 5 ) 3
_70_53 0.0y, — 704, [O” +0; }/’22 —ié’ng"'Eé’yé’z]/zl =0
(3.27)
4 2 2 4
3Gg é)yﬂzl/lo() _3O_—g§yé)zl//20 _gaxé)yl//ﬂ +?§y0ﬂzl/l22
al al al al
2 [ 2 4 . 2
_?[ay +0, ]}/21 _G_iﬁxﬁz%z +100,7,, _anazl//20
6 12 1
oW 2 00 1062 +1667 +160 ]y,
a3 a3 a3
12 0.0y, =0
708 (3.28)
2 2 1 1
3 s —0 ﬁyl//oo 36¢ axéyV/ZO _G_gayazl/lzl _O__géxézyﬂ
al al al
22 or), 41008y, + -2 0.0 3 0
ot x y PV a2Vn Tt 764 wWao — 704 O W
3
— 0.0 v, — +160% +108% y,, =0
705} X z}/21 € X y z jb/22 (329)

The group transport cross sections are defined by subtraction of the
corresponding Legendre component of the group scattering cross section from
the group total cross section:

of=0f-0f7% . (3.30)

40



To the author’s knowledge, these second-order P; equations (3.24)—(3.29) have
not been explicitly published elsewhere. Fletcher has derived similar equations
by setting extra constraints for the transport cross sections, that is, all o, are set
equal except for o, [18].

It is worth noticing that only the scalar source term ¢, is taken into account in
the source expansion (3.23) in the above second-order P; approximation,
equations (3.24)—(3.29), for simplicity. The higher source moment terms can be
included, but they increase the complexity of the equations even more.

The Py approximation has been well established in transport theory [16].
However, for numerical solution it is rather ill suited. Py equations have been
used primarily for theoretical (i.e., analytical) investigations of solutions of the
transport equation [15]. Especially in 3D, the complexity of the equations makes
it very hard to construct a numerical algorithm. Despite these difficulties,
Fletcher introduced as early as in the 1970s a small computer programme to
derive second-order (odd) Py equations of different Legendre orders for slab
geometry, and also obtained numerical P; and P; multigroup solutions in XY and
XYZ geometries [18, 19].

There are certain features that make the application of the Py approximation for
radiation transport problems very tempting. With the spherical harmonics
approximation, the angular dependency of the flux actually becomes a property
of the pre-Hilbert space with spherical harmonics as base polynomials of the
vector function space. Thus, the resulting equations and unknowns depend only
on energy and spatial co-ordinates. This is mathematically an elegant way to get
rid of the problematic integro-differential form of the basic transport equation
which contains implicit angular dependency! In addition, by using a higher
Legendre order approximation, the solution will, in principle, approach the exact
solution of the transport equation. Furthermore, the spherical harmonics base
polynomials are rotationally invariant, so the rotational invariance of the original
Boltzmann transport equation is also preserved. Thus, ray effects — encountered
with the Sy method — will not emerge in the Py approximation.

One drawback of the Py approximation is that no exact vacuum boundary
condition can be defined [16]. At the vacuum (or free surface) boundary,
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particles escape from the geometry with no possibility to return. The problem is
that this vacuum boundary condition [15, 16]

Y(Q)=0 for Q-7i <0, (3.31)

where 7 is an outward normal to external surface, means that the flux is
discontinuous at Q-7 = 0, which cannot be exactly represented by the
continuous spherical harmonics base functions. Many approximative conditions
are possible, though. Mark or Marshak boundary conditions are the most well-
known [16, 39, 40, 41]. For instance, the Marshak vacuum boundary condition
[41] is defined as

j dQP" (V)Q - 7#W(Q) =0. (3.32)
Qi<

0

Concerning the second-order form of the Py equations, it is worth noticing, that
by solving all the unknowns, only even moment terms are actually solved.
Naturally, this includes the scalar flux (the ,term), which is probably the
most interesting quantity. However, if the angular flux has to be determined as
well, then the odd moment terms should be solved in addition. As a final remark,
it should be noted that spherical harmonics are sometimes used also with the
discrete ordinates method discussed in the previous section in order to store the
angular flux during the computation in a more compact manner. However, this
has nothing to do with the actual Py approximation of the transport equation.

3.1.3 Finite element method

The finite element method (FEM) is the name commonly applied to the
expansion of the solution to a set of partial differential equations in a set of local
basis functions [15, 17]. Finite element methods can be adapted to problems of
great complexity and unusual geometry.

In radiation transport, the finite element method can be applied to both first and
second-order forms of the transport equation. However, in the latter case, it is
extremely difficult to implement anisotropic scattering in multidimensional
geometries [15]. In the following, the theoretical background of the finite
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element method found from radiation transport literature is briefly reviewed. The
application of the method to second-order form of the transport equation will,
however, not be covered in this context any further. In addition, the first-order
form will only be covered superficially, just to give the reader a general idea of
how the finite element method works.

The finite element method is always applied to an integral formulation of the
original partial differential equation of interest. The Boltzmann radiation
transport equation can also be written in so-called integral law (or weak) form.
Multiplying the Boltzmann transport equation (3.1) with an arbitrary angular
flux belonging to Sobolev space W (7, Q)eH » and integrating over the phase
space, one can rewrite (considering for simplicity only one-speed form) the
transport equation (3.1) as [15]

(Q-VE,p) + (K. p) = (Q.9). (333)
Here, the real inner product has been defined as
(f>2) = ][ fF. Qe Ddrde
where f'and g are two elements of the Sobolev space
- A - A 2 2 —
H, = \y(7.©) s real y (7.5 such that [[ [ +|V v 1dFdSd < o]

which ensures that phase space integrals exist. In addition, a collision operator K
has been introduced

KOEJT(F)o—IaS(?,Q,Q')o .
If one assumes inhomogeneous boundary conditions

Y(F,Q) =¥, (7,Q), Q-i<0
and defines the inner product to characterise the boundary

(f.g)=][, fGF. Qe Q- i)dSd

43



divided further for incoming and outgoing directions Q-7i<0 and Q-7 >0 as

(1.8)=(f.8).-(/.8).

then (after some manipulation including integration by parts of the streaming
term) equation (3.33) can be rewritten in a form [15]

(F.Q-Vy)+(F.y), +(KY.p) = Q) +{¥w) . (B34
This is known as the integral law or weak form of the transport equation.

It is worth noticing that the boundary condition is included in the integral law
(3.34). This is an example of a so-called natural boundary condition, and is a
consequence of integration by parts.

In the finite element method one seeks the solution in a finite element subspace
S" c H,, i.e., a solution ‘I’h(F,f)) € S” such that equation (3.34) is satisfied
for all 1//”(7,52) e S". §" is a specially constructed subspace with local basis
functions l,y[h (r ,Q), i=1,2,...,N, where N is the dimension of §", typically the
number of nodes in the mesh. In other words, the solution is expanded as a series

P (F,Q) = ZN:‘P].;//J'? (7,Q) ,
=1
which is then inserted into equation (3.34), and a matrix system is obtained [15]
AY =S , (3.35)
where
A==l Q-Vyl)+(ylw!) +(Kylyl)
S, =)

¥ =col(¥,,¥,,...,' ) .

There are different ways to construct the finite element subspace S”. Just to
illustrate how the basis functions could be chosen, a 1D triangular mesh is

44



considered next as an example. It should be noted that for multidimensional
elements one can also formulate basis functions that are direct products of
simple 1D basis functions [15].

Let x be the spatial co-ordinate and g the angular direction cosine: a basis
function for global node 7 is then defined [15] as a direct product of 1D basis
functions for the spatial node i and angular node j

W, (1) =y (D (1) -

Continuous standard “tent” functions can be used as local basis functions (see

Figure 7):
X=X,
ELox,, <x<x,
X, =X
X, —X
w,(x)=—2—— x <x<x,
Xign =X
0, otherwise
and
H—H;
——, W, Susy
Hi—Hj
M —H
w ()=a—"——, u,<pu<pu,,
/'l_j+1 - /u_j
0, otherwise
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Figure 7. Standard “tent” basis functions of 1D triangular finite elements.

There are also other possibilities to construct the basis functions, such as using a
higher order polynomial over a general element such as a triangle, or using a
product of higher order 1D polynomials. For instance, in 1D one can introduce
an additional node and define quadratic basis functions instead of triangular.
However, higher order elements increase the coupling between the neighbour
elements. For cubic elements the interaction would extend over the three nearest
neighbours on either side. The increased coupling is undesirable, as it will also
increase the bandwidth of coefficient matrix 4 of the matrix system (3.35).

The advantages of the first-order FEM approach to radiation transport are the
ease of incorporating anisotropic scattering, mitigation of the ray effect, and
convenient treatment of boundary conditions as natural. The major disadvantage
is that the resulting asymmetric matrix system has to be solved by using direct
matrix inversion methods, which are time consuming and in large problems
severely limited by the memory requirements.

In the second-order FEM approach (not covered any further in this context) the
resulting matrices are symmetric and positive definite, which makes it possible
to use iterative solution techniques [15]. However, implementation of
anisotropic scattering in multidimensional geometries is far from trivial. In
addition, voids can present a problem because of the (o )" term [15]. Ray-
tracing has been used to overcome this problem [42].

The major advantage of FEM is the possibility to model complicated geometries
with a variably sized, unstructured mesh (Figure 8). For instance, an adaptive
tetrahedral finite element mesh can be used in 3D, providing gains in efficiency
that may not be realisable on uniformly defined grids. In many cases, also
dynamic mesh refinement can be used, based on local error estimate of the
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solution [43]. Thus, the mesh is locally refined, not only to adapt to the
geometry, but to ensure accuracy of the solution everywhere based on feedback
from the obtained error estimate.

Ry =
<3
vy,

Figure 8. An illustration of an unstructured triangular finite element mesh
(a Mesh2d example picture with permission from UCL Département de
mécanique http.//www.mema.ucl.ac.be/~wu/mesh2d/mesh2d.html).

There are also hybrid schemes where FEM has been combined with discrete
ordinates or spherical harmonics solutions [42, 44—46]. FEM has been applied to
reactor physics problems already for a long time [47-49]. FEM has been applied
also to radiotherapy calculations, including solution of the Boltzmann-Fokker-
Planck equation for charged particle transport [50, 51]. The applicability of the
FEM for inverse problems encountered, for instance, in intensity modulated
radiotherapy (IMRT) has also been studied lately [52, 53].

An interested reader can find in-depth studies, e.g. from the book by Ackroyd
[49], concerning the use of FEM in reactor and radiation physics. In general,
FEM is widely used in structural analysis, electromagnetics and computational
fluid dynamics.
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3.2 Statistical methods
3.2.1 Monte Carlo method

Monte Carlo methods [54, 55] and deterministic transport methods are
fundamentally very different. Deterministic methods solve the transport equation
for the average particle behaviour. By contrast, Monte Carlo does not solve an
explicit equation, but rather obtains answers by simulating individual particles
and recording some aspects of their average behaviour.

The Monte Carlo methods are based on statistical sampling techniques, and the
term “Monte Carlo” naturally refers to the games of chance. It was Nicholas
Metropolis who named this mathematical method during World War II at Los
Alamos, where the first nuclear weapons were developed. However, the idea of
random sampling to solve mathematical problems is much older: the method was
used as early as in 1772 by Compte de Buffon, and in 1786 Laplace suggested
that m could be evaluated by random sampling. Eventually, it was the
development of computers that really made the Monte Carlo method a
breakthrough.

The Monte Carlo method can be used to duplicate theoretically a statistical
process, such as the interaction of nuclear particles with materials. The
individual probabilistic events for each particle are simulated sequentially, in
order to produce a particle track through the problem geometry. The particles are
followed until escape or absorption, or some other terminal category. Probability
distributions are randomly sampled for each particle interaction. The probability
distribution for scattering angle, for instance, can be found from the primary
sources of nuclear data, such as the Evaluated Nuclear Data File (ENDF) system
[56].

The probability of a first collision for a particle between s and s+ ds along its
line of flight is given by

p(s)ds=e o'ds (3.36)
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where o’ is the macroscopic total cross section of the medium and is
interpreted as the probability per unit length of a collision. The distance to the
next collision can then be calculated from the expression

L _In©)
¢

where ¢ is a random number uniformly distributed between 0 and 1.

(3.37)

After a collision occurs, the collision nuclide is identified, based on probability
proportional to weight fractions of each material constituent. Then the collision
type (absorption, elastic scattering, inelastic scattering, etc.) is sampled based on
cross sections (i.e. probabilities for different events) taken from the material
cross section library. In the case of the elastic scattering, for instance, the
scattering angle is further sampled from the probability tables. The velocity of
the scattered particle is then dictated by two-body kinematics, and the particle
track can be continued.

Monte Carlo methods are very time consuming: in order to get results with
sufficiently low statistical uncertainty for some tally volume, generally a huge
number of source particles and particle tracks have to be simulated. Especially
the tracking of electrons is tedious, as electron transport is dominated by the
long-range Coulomb force, resulting in large numbers of scattering events.
Additionally, Monte Carlo methods very seldom provide comprehensive data on
flux details, but merely give answers in some user-specified points or geometry
volumes. On the other hand, Monte Carlo methods can be considered very
reliable when sufficiently low statistical uncertainty is achieved.

MCNP is the well-known successor of the early Monte Carlo codes developed at
Los Alamos [57]. Among the radiation transport codes used in nuclear
engineering, it has almost obtained the status of a standard, but there are also
many other transport codes using the Monte Carlo method. In the medical
physics community, Electron Gamma Shower (EGS) codes (e.g., EGS4 and
EGSnrc) are widely used for photon and electron transport problems [58, 59, 60].
In electron transport problems, for example, in simulation of ionisation chamber
responses in cases where c.p.e. condition is not met, EGSnrc seems to produce
the most accurate results [60]. MCNP is capable for electron transport as well,
but uses somewhat different algorithms from EGS codes, and can produce quite
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inaccurate electron dose results with default options [60, 61]. This poses some
extra difficulties for ionisation chamber modelling in BNCT beams, as EGS
codes are not capable for neutron transport, and therefore MCNP is in practice
the only viable option for coupled neutron-photon-electron simulations.
However, it seems that with suitable input parameter options, also MCNP can
produce good results for electron dose, and is also widely used in radiation
dosimetry applications [62]. For high-energy physics, on the other hand, a
special Monte Carlo code GEANT4 exists, having unique capabilities to
simulate all kinds of particle interactions and heavy particle transport [63]. Quite
recently the capacity of GEANT4 to simulate neutron transport in the thermal
energy region has also been tested [64].

A new Monte Carlo code has been recently developed also at VTT. It is called
PSG (named after Probabilistic Scattering Game), and it uses a modification of a
fast Woodcock tracking method [65, 66]. The Woodcock tracking method is
based on introducing virtual collisions in such a way that the effective total cross
section (majorant cross section) can be set equal in all material regions.
Therefore, when simulating particle tracks, it is not necessary to calculate the
shortest optical distance to the material boundaries each time the path length is
sampled, which makes the code performance more effective. PSG is used for
calculation of multiplication eigenvalues, group constants, reactor kinetic
parameters, pin-wise nuclear fuel power distributions, discontinuity factors and
other parameters needed for nodal diffusion calculations and nuclear reactor
analysis [34, 67, 68]. It is also planned to be used for burnup calculations. For
many applications, the new PSG code is considerably faster than MCNP, for
instance. The PSG code is, however, still at an early stage and needs further
development.

In BNCT treatment planning, the Monte Carlo code SERA and its predecessor
BNCT rtpe have been used in Finland [7-10]. In SERA, uniform volume
element (univel) reconstruction of the patient geometry is used, allowing integer
arithmetics to be utilised in calculation of the distance to boundary, in order to
speed up the particle tracking. In addition, SERA uses multigroup cross sections
to improve efficiency even further.

The NCT Plan system [69] has also been used by the BNCT community.
NCT _Plan has been developed in connection with the clinical research
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programme centred at Harvard and MIT. NCT _Plan has algorithms for creating
voxelised patient geometry and uses customised radiation transport routines of
MCNP, with a significant increase in the execution speed of the calculations [70]
compared to the standard version of MCNP.

The Monte Carlo method has become more and more important over the years,

due to increased computer capacity. Particle tracking by Monte Carlo method is
also well suited for parallel computing.
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4. Tree multigrids and simplified spherical
harmonics approximation

4.1 Tree multigrid technique
4.1.1 Construction of the spatial tree structured domain

The simplest way to discretise a spatial domain is naturally to divide it into
uniform, equidistant mesh. However, a very fine mesh might be required in
problems which are large but contain small geometrical details. This will both
affect the memory allocation required for the data storage of the unknowns, as
well as the total amount of required arithmetical operations in order to solve the
original numerical problem. Especially when using uniform mesh in complicated
3D problems, the required computational work and the overall dimension of the
problem might become too demanding even for modern computers.

In the majority of practical problems there are sub-domains which require fine
discretisation, but there may be other sub-domains that allow a considerably
coarser grid. For instance, a fine grid is required near the borders and material
interfaces, but a coarse grid can be used elsewhere. In such a case, the traditional
finite difference methods, which introduce the simplest discretisation process
and equations, can lead to an unnecessarily large discrete system.

There are methods in which the computational domain is divided into finite
elements [15, 42-53], as already discussed in Section 3.1.3. These finite elements
are often made triangular or polygonal. As the finite element method offers an
elegant way to represent the geometry, the numerical algorithm for radiation
transport is far from trivial, especially with anisotropic scattering in
multidimensional geometry [15]. Also the generation of a suitable finite element
mesh is more or less a difficult and time-consuming task, even though several
algorithms and freeware codes exist.

The method discussed here is somewhat different from the FEM approach. In
this method, the resulting tree structured grid is called quadtree or octree,
depending on whether one is focused on a 2D or 3D method, respectively [71].
The basic mesh elements are quadratic or cubic. The idea is to use a conditional
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subdivision procedure to generate a nested non-equidistant, non-uniform cell
system through adaptive meshing [13]. Here we concentrate on the 3D octree
method. One starts from a cube (called a root cell) which embodies the original
geometry. This is then conditionally divided into eight sub-cubes. The sub-cubes
are called children of the parent cell. Each child-cube can become a parent and
have their own children. The subdivision procedure is continued until a pre-
defined subdivision level is reached. The subdivision criteria can be based on
some static geometrical features, such as number of points in a cell, or some
dynamic features such as error estimate or flux gradient of some partial
differential equation. The adaptive meshing is illustrated in Figure 9.

L=0 L=1 L=2

L=3 L=4
I
|
|
|

L=7 L=8

Figure 9. Adaptive meshing. L = subdivision level.

In 3D the octree cell structure can be indexed by spatial indexes i, j, and & and
subdivision level L. Thus, if u is a cell in octree, it is indexed as uf}.’ .- Eight
children cells of this octree cell would be indexed as

L+1
Upinjok
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L+1
Upii12)2k

L+1
Up;izii,2k

L+1
Usii1,2)41,2k

L+1
Upinjok+

L+1
Upii12),2k+1

L+1
Uy 2 j41,2k41

L+1
Upjn1241,2k41

The parent of each cell can be found simply by subtracting 1 from the
subdivision level L and by dividing each i, j, and k integer index by 2 (and
forgetting the modulus). A 1D example of the discretisation of the spatial
domain is shown in Figures 10 and 11, as an additional illustration of the
subdivision and cell indexing.

When the minimum co-ordinates X, Ymin, and Z,,;, of the root cell are known,
.o . . L
the minimum and maximum co-ordinates of any octree cell u; ; , are

X, =X, +iA-27"

Yo=Y+ jA-27"

z,. =27 +kA-27"
X, =X, +@E+D)A-27"
y =Y +(j+DA-27"
z,.=Z +(k+D)A-27"

where A is the side length of the root cube.
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L+1 L+1 L+1 L+1
Uy, Ui Uyin Uiz

Figure 10. Division of the spatial domain in ID.

3 3 3 3
uO ul u4 u5 u6 u7
N/ \ 2/ N/
uo ul u2 u3
1 / \ 1 /

U U
\ O/

Figure 11. Tree structure of the spatial domain as a 1D example. Each cell
division forms a branch, and the leaf cells are the cells which are not divided
any further (e.g. ug and ”12 are both leaf cells).

In principle, the recursive subdivision of octree cells can be continued
unlimitedly. In practice, the computer memory and the numerical efficiency of
the iterative solution set constraints on the maximal subdivision level L. Usually
a subdivision level L=7 or L=8 already gives a very fine mesh. The minimum

cell side length A . is relative to the overall dimension of the geometry

n

Amin =A- 27L
where A is the side length of the root cube (which embodies the original
geometry). For instance, for a human head geometry (Figure 9), the minimum
cell side length is 1.55 mm for subdivision level L=7 and 0.77 mm for L=8.

The octree structure makes it possible to easily find parent or children cells and

to build recursive functions for data handling on nested grids with different grid
size (coarseness).
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Self-adaptive quadtree or octree meshing is often used also as an intermediate
stage in generation of the finite element mesh. However, this theme will not be
covered in more detail here.

The advantage of the octree grid compared to more sophisticated finite element
mesh is that, as the resulting cell system can be made regular, it is much easier to
construct straightforward difference schemes, which will also have lower
computational cost [13]. It is also worth noticing, that the octree grid algorithm
automatically produces all the coarser grids at the same time (as illustrated in
Figure 9), which enables the utilisation of fast multigrid acceleration methods in
the numerical iteration [13].

4.1.2 Multigrid acceleration methods

Practical multigrid methods [72, 73] were first introduced by Brandt [74] in the
1970s. These methods can solve partial differential equations discretised on N
grid points in O(N) operations. For example Gauss-elimination would require
O(N*) operations, and even “rapid” direct elliptic solvers require O(NlogN)
operations for solving elliptic equations. Thus, the multigrid method is very
efficient for large problems (number of grid points N being large).

The efficiency of the multigrid methods is based on discretisation of the original
problem on coarser and finer grids, i.e. with different mesh sizes. A multigrid is
formed by nested grids with refined mesh size. On a coarse grid, much less
iterations are required to obtain a converged solution. These coarse solutions can
be interpolated into finer grids, and thus be used to accelerate the iteration
process of the fine-grid solutions. In the multigrid methods, data is transferred
both from coarser grids to finer grids, and backwards, in so-called multigrid
cycles.

If we consider a linear elliptic problem

Aii =8 (4.1)

where A4 is the matrix of the corresponding linear elliptic operator, u is the
column vector, and S is the column source vector. If this problem is discretised
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on a uniform grid with mesh size 4, it can be written in a set of linear algebraic
equations as

A, =S, . (4.2)

Let u, denote some approximate solution of the equation, and let u, be the
exact solution. Then the error of the approximate solution is

v, =u, —Uu, (4.3)
A quantity called residual can be defined as
r, =S, —Au, (4.4)
As A is assumed to be linear, also the error satisfies the equation
A4v, =r, (4.5)
This residual equation can be approximated on a coarser grid with mesh size H
Ay, =71, (4.6)
where H=2h, for instance. Since this equation has a smaller dimension, it will be
much easier to solve. To define the residual on the coarser grid, some restriction
operator ‘R is needed:
r, =Rr, 4.7)

Once the equation (4.6) is solved on a coarse grid, the error can be interpolated
to the finer grid by a proper prolongation operator

Both R and ¢ are chosen to be linear operators. Finally, the approximation #,
can be updated:

~new ~ ~
u,” =u,+v, (4.9)
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Thus, a solution on a next coarser grid can be used to accelerate the solution on a
finer grid. By constructing a sequence of nested grids (fine and coarse grids),
one can define the multigrid cycle, which recursively leads the discrete problem
from finest grid to coarser grids and back to finest grid again. The exact structure
of the cycle depends on the number of two-grid iterations y at each intermediate
stage. If y=1 the structure is called V-cycle, and if y=2, W-cycle (Figure 12).

Figure 12. Structure of V and W multigrid cycles. S denotes smoothing while E
denotes exact solution on the coarsest grid (the root cell). Leaf cells are at the
top level of each diagram. Each descending line corresponds to restriction, and
each ascending line to prolongation.

4.2 Simplified spherical harmonics approximation
4.21 Theory
Spherical harmonics Py approximation has been already discussed in Section

3.1.2. Now, if only one-dimensional slab geometry is considered, the angular
flux expansion can be made by Legendre polynomials

W(x.0)= i%@, (x)P(cos 6)

1=0

(4.10)
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Inserting this into a 1D Boltzmann transport equation, whose directional
derivative becomes now

V-Q¥(F,Q) = cos@di‘{’(xﬁ) ;
X

multiplying the resulting equation by Legendre polynomial and integrating over
the angle, one can derive the corresponding Py equations in 1D slab geometry.
The recurrence relation

I+1 /
cos@P(cos@)=——P,_  (cos@)+——P_(cos@ 4.11
1(cos 0) Y 7 ( ) 71 7 ( ) (4.11)

and the orthogonality integral

n . 2
! P(c0sO)F, (cos O)sin 0 =— =3, (4.12)

are needed. The Py equations in one-dimensional planar geometry simply
become
d

I+1 d /
il g Y@ R () + o ® (1) =¢f () 1=0,..,N -] (4.13)

where the group transport cross sections are defined by equation (3.30) as
before. Also the source on the right-hand side of equation (4.13) has been
expanded as a Legendre series.

Now, solving the odd moment terms and inserting them into even-order
equations, the second-order equations can be derived in a similar manner as
explained in Section 3.1.2 for the full Py approximation. Furthermore, by
replacing the 1D derivative in a formal manner with a 3D nabla operator V, as
suggested by Gelbard [20-22], the simplified spherical harmonics 3D
approximation is obtained (in a general form derived by the author):
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I(1-1)

- V2L (F
Q-1 +1)o%,, (")
_ (l+1)2 + lz VZ(Dg(’j;)
QI+D(Q21+3)cf,,  (I-DQ2I+)o?,, :
(+D(+2) . ;g =
T D130 V2OF,(F) + 05D (F)
O-a,l+1
_ I ~ (I +1) _
=¢(F)-——V -~V
%( ) (21+1)Uf,171 ‘IH(’”) (2l+1)0'(i[+1 QHI(V) @14

for each [ = 0,2,... up to arbitrary (odd) Legendre order N with constraints that
®,(F)=¢q,(F)=0 for /<0 or />N .

To the author’s knowledge, such general second-order SPy approximation for
arbitrary (odd) Legendre order N, equation (4.14), has not been published
elsewhere. From equation (4.14) one can derive also the SP; approximation,
which has been used in the MultiTrans code as an approximation to Boltzmann’s
transport equation. SP; approximation is the lowest odd-order approximation
after the diffusion theory. It is worth noticing that diffusion P, and SP; equations
are congruent. In matrix form, the SP; equations are

-D,V’ +0,, -20,, o @, (F) "
_%O-ao _Dzvz +0, +%O-a0 D, ()
NG

1 =3D,V 0 0 1"ls,¢)

-2 0 1 -IDV| |5()
S5 (r) . (4.15)

The variable (i)O(F ) is defined as

D, (7) = D, (F) + 2D, (F) . (4.16)
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The diffusion coefficients are defined by the transport cross sections as

- 1
Dy* = e
30, (4.17)

and

i,g __ 9

P 3500 (4.18)
The effective source moment terms are

i, ST - I
NG I AGIS o fOF(F)

S| _|a@) " | ol TEer ()
;| “lo®| T Z N H )
S5(r) 0,(r) oL TEDE (7) (4.19)

where also anisotropic group-to-group scattering is taken into account through
the sum terms. Actually, anisotropic source terms or anisotropic group-to-group
scattering are usually not taken into account. Second-order SP; approximation
including only scalar source terms and anisotropic in-group scattering would
reduce to form

Lgra~ . b8
~DV:+o,, ~20,, } [d)o(r)} =S"’g(F){ 1}

2 2 4 = _2
—%50,4 -D,V +0,+50, D, (r) 5

(4.20)

The approximation (4.20) has been used in MultiTrans for most of the cases.
However, in some cases it is useful to take the anisotropy of the source and the
anisotropic group-to-group scattering into account. The first-order derivatives on
the right-hand side of the equation (4.15) are in this form problematic for the
numeric solution, as they distort the positive definite nature of the second-order
SP; approximation. In Publication V, a solution to this problem has been
suggested. By using the first-order equations (4.13) for the odd-moment terms
(with V operator),
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¥ () = DE BSE (F) - VD (7)) (4.21)

and

g
@1 (7) =

(S§(7) ——VCDg 7)) , (4.22)

it is possible to transform the equation (4.15) into the form

Lgr~ L8
-D,V’ +0,, -20,, ONG
_%O-ao _Dzvz +0, +%O-aO @, ()

S, (7]
_{1 3D, 0 OT S (F)
-2 0 1 D,| |S5:()
S,(F) . (4.23)

This matrix equation we have called in Publication V “the extended SP;
approximation”. The group source terms S;*(7) and S;*(7) containing
group-to-group scattering are now

§()=-vor )+ Yot [y +357 )] @
g'=l.g'#g

and

S’g(r)———VQég( )+— ZG’g >gD’g[V2CD;’g(17)+S3"’g’(?)] (4.25)
g'=lg'#g
where these odd-order source moment terms depend on the second-order
derivatives of the even flux moment terms, and are much easier to solve
numerically.

To further clarify equations (4. 24) and (4. 25) one can remark that these
equations are not recursive: the S #(r) and S #(7) terms on the right-hand
side of the equations are to take into account group-to-group scattering, i.e. with
different energy group index g (inside sum terms) as on the left-hand side of the
equations.
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In addition to the ability to treat anisotropic group-to-group scattering, also
anisotropies of any internal source terms can be treated by the variables
O/4(F), 0% (F), and Qy¢(F): in this case, however, a first-order derivative is
still encountered in source terms equations (4.24) and (4.25). Such anisotropic
internal source terms emerge from first collision source algorithms, for instance.
However, if an analytical solution exists for the uncollided flux in calculation of
the first collision source, the derivatives can be calculated directly without problems.
Also, if the uncollided flux is monotonically decreasing (which is true for an
external beam source for instance), these source terms will always be positive.

Brantley and Larsen have derived material interface conditions and Marshak-like
boundary conditions for second-order SP; approximation from the variational
principle [25]. The material interface conditions for SP; approximation are:

b (7) = b)), 7 e OV (420
Dy (i, VYD (F) = D (i, - VDG (F) , FedV, ,  (4.27)
L (F) = Dy(F) , 7 edV, (4.28)

and
D2 (i, - V)DL (F) = DI*® (n; V)DLE(F) , Fe ov, . (429
The Marshak-like boundary conditions suggested by Brantley and Larsen [25] are:

SO+ D G VD )

3 i - 270 ~
and = g(Dig (r)+ sz|ﬂ|V/b(V7ﬂa @)dudg (4.30)
0-1
2L i (7) + D3 G, V)0 (7)
40
3 o 3 270 .
ey 1 47 = e
=B+ j I 28w (7, 11, 0)dpidgp @31)

where '’ (7, 1, ) is the incident flux at boundary.
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In the above, odd-SPy approximations (SP;, SPs, etc.) have been examined. It is
also possible to solve even moment terms and insert them into odd-order
equations, obtaining even-SPy approximations (SP,, SP,, etc.). The SP,
approximation, for instance, consists of one diffusion-like equation instead of
two, and would therefore have even lower computational cost compared to SP;.
The problem is that, in even-SPy approximations, the flux will be discontinuous
at material interfaces, which poses some extra problems for numerical solution.
Brantley has suggested quite recently an approach where diffusion and SP,
approximations are combined to solve these discontinuity problems [75, 76].
This mixed P;—SP, synthetic method has given quite comparable results with
SP; approximation for some cases. A similar approach using mixed P,—DP,
diffusion theory has also been suggested [77].

The original “derivation” of the SPy equations by Gelbard by simply replacing
the 1D derivative operator in slab equations with a 3D operator has been viewed
with suspicion [23, 25]. That is, the theoretical basis of the SPy approximation
has historically been weak, though the numerical results obtained by the
approximation have appeared promising. However, the theoretical basis of the
SPy approximation has evolved. An asymptotic derivation of the SPy equations
in the case of an inhomogeneous medium with multiple energy groups and
anisotropic scattering was first provided by Larsen, Morel, and McGhee [23].
Pomraning has shown that SPy equations with odd N are a variational
approximation to the transport equation in an infinite homogeneous medium
with one-group isotropic scattering [24]. Neither Pomraning’s variational
approximation nor the asymptotic derivation mentioned above produce outer
boundary conditions. Only recently has it been shown by Brantley and Larsen that
SP; equations with Marshak-like boundary conditions can be derived from
variational principle for an inhomogeneous medium with multigroup anisotropic
scattering [25]. These boundary and material interface conditions, equations (4.26)—
(4.31), have been utilised for SP; equations in MultiTrans code, as explained earlier.

It should be noted that in a very similar manner compared to derivation of the
second-order SPy approximation, one can also derive simplified discrete
ordinates SSy approximation. Once again, one starts from the 1D slab equations,
now written as a second-order Sy approximation, which are then generalised to
3D. Such Even-Parity SSy approximation, for instance, has been studied by
Longoni et al. [78-81].

64



There are certain limitations for the applicability of the SP; approximation. Both
the particle absorption probability and the particle escape probability from the
system should be <0.5, and the mean scattering cosine should not be too close to
unity [23]. Also, when the system is heterogeneous, the transport solution should
have only weak tangential derivatives at material interfaces [23]. For problems
that have strong multidimensional transport effects, the SP; approximation is
less accurate [23]. It is also well-known that with the spherical harmonics
method in general, no exact vacuum boundary condition can be determined [15],
and therefore the utilised Marshak-like boundary conditions are also
approximative. For the above reasons, it has been necessary to test MultiTrans
on various computational problems, in order to be able to see the applicability
range of the SP; approximation in practice.

4.2.2 First collision source method

The first collision source method has been used in MultiTrans to process an
external beam source into a distributed fixed source. The reason is that the
collided flux emerging from a highly anisotropic (even monodirectional) beam
source will become at least to some extent more isotropic when treated in this
manner, and can be better approximated with a low-order spherical harmonics
approximation. Similar first collision source methods have been applied earlier
as a source processing option also in other codes [82, 83].

In the first collision source method, the uncollided flux (the flux of photons that
have undergone zero collisions) is solved analytically. This uncollided flux is
then used to generate the distributed fixed source terms for the collided flux. The
collided flux can be solved by the SP; approximation with vacuum boundary
conditions [25]. Total flux is then calculated as a sum of the collided and
uncollided flux for each energy group.

The spherical harmonics Py expansion of the uncollided flux in trigonometric
form would be

Y7, E,Q)=¥Y" (F,E,0,0)

N I
~ > Q+1)P" (cosﬁ)(y/},;’)(?,E)cosm¢)+ 7 (F,E)sin mgp)
=0 m=0 (4.32)
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where the expansion coefficients of the uncollided flux can be calculated (using
orthogonality of the base functions) from integrals

2w
p(0e = J.j(l m) Pm(cosé’)cosm(p‘P(”)g(r 0,p)sin0dO dp

(4.33)

and

e T” (I—m)!
T =g > (1 +m)!

P"(cos@)sinme P4 (7,0,9)sin 0 d6 do

(4.34)
where P"(cos@) are associated Legendre polynomials.

In the case of the simplified spherical harmonics SPy approximation, the
azimuthal dependency of the angular flux is suppressed:

— N
¥ (F,EQ) =Y (F,E0) ~ Y (2 +1)P(cos)®" (F,E) . (435)

1=0

In this sense, the SPyn approximation is more restricted than full Py
approximation. Therefore, in the SPy approximation, the moment terms of the
uncollided flux can only be calculated when the uncollided flux has no
azimuthal dependency:

O"% (7) = [ P (cos )% “* (7.0)sin 6 dO) - (4.36)
0

Here P, (cosf) are the Legendre polynomials. It can be easily seen, that this
equation also results in setting m=0 in equations (4.33) and (4.34).

The first collision source moment terms are
O (F) = o [ (F) (4.37)
where o¢ is the Legendre expansion coefficient of the order / of the within-

group scattering cross section and ® """ (¥) is the corresponding moment term
of the distributed uncollided flux.
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For an isotropic point source the uncollided flux is
— . . 6718(?9’_’;)
WO (7,0) = 6(Q-Q)g* (R)
4nli -7,

(4.38)

where ¢*(7,) is the point source strength in energy group g, 5(Q —Qr) isa
delta function in angle, and S(7,r,) is the number of mean-free-paths between
the source point 7, and point 7 .

As an azimuthal dependency exists, only the scalar term can be calculated from
the integral equation (4.36). Thus, for an isotropic point source the first collision

) ) e‘ﬂ(?ai‘;)
0 (r)=0iq°(r)——
47z|r 7,

source is

(4.39)

and the higher moment terms cannot be taken into account. In other words, the
SP; approximation cannot treat the anisotropy of the uncollided flux emerging
from a point source, as the angular representation of the flux in the SP;
approximation is in a sense one-dimensional. In a homogeneous case, a problem
with an isotropic point source would naturally reduce to a one-dimensional
problem in spherical geometry: the intention is, however, to develop
deterministic transport methods for true three-dimensional heterogeneous
problems, without limiting the applicability to some special cases.

Here we can remark that the underlying SP; equations are rotationally
symmetric. For a point source one could rotate the base functions locally to
eliminate the azimuthal terms, but this cannot be accomplished in the entire

domain in a uniform manner.

For a monodirectional incident boundary surface flux, the uncollided flux is

PO () = (-0, g (7 )e P U (4.40)

where ¢*(7,) is the surface source strength in energy group g, and QS is the
direction vector of the source surface.
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Now the rotational symmetry of the SP; equations can be used to make the
incident monodirectional beam oriented to the z-direction. Then the equation
(4.40) becomes

PO ) = 50 (7 )e P (@41)

and the first collision source moment terms can be calculated to be
01 (7) = otq* () P G -F)le, - (4.42)

In a case of the extended SP; approximation, the first-order derivatives needed
for equations (4.24) and (4.25) are simply

~VQ*(F) = E,gaj;gqg(a)e‘ﬂ (7.7 (F-7)le, (4.43)

where & is the average total cross section along the path between the source
point 7, and point 7, parallel to z-axis.

Additionally, second-order derivatives of the uncollided flux are needed for the
even moments of the source terms (in order to consider the total flux in group-
to-group scattering, not only collided flux):

v (7) = (6 P gt 7)e PO Goryle . @an

The first collision source produced by several point sources is easily calculated
by superposition. In practice, the source is never exactly point-like, but will
instead occupy a certain source volume. The first collision source method for
point sources might therefore be more useful in computational exercises than in
practice. As noted above, the SP; approximation cannot treat the anisotropy of
the uncollided flux emerging from a point source, and the first collision source
method for (more mathematical than real) point sources in conjunction with the
SP; approximation is generally not so useful. Instead, small volumetric isotropic
sources could be directly inserted as scalar source terms.

With the beam geometry (an accelerator source for instance) the first collision

source method should be applicable also in practice. The methodology described
above has been restricted to monodirectional beams, albeit arbitrary shaped. For
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divergent beams, the azimuthal dependency cannot be defined by the first
collision source method: however, the source moment terms can, in principle, be
calculated in the direction of beam orientation. The calculation of the uncollided
flux would require some additional ray tracing technique in this case.

4.3 Numerical transport algorithm

For a numerical solution, it is necessary to discretise SP; equations into the
octree grid structure. The octree grid has been made regular, that is, the ratio of
the sizes of any adjacent cells is restricted to be at most 2, which facilitates the
discretisation of the equations. The tree structure still makes the grid non-
uniform, and some proper difference scheme must be used. In the MultiTrans
code, the so-called integrated difference scheme has been chosen.

Integrating the Laplacian of the function u over a cell C and applying Green’s
formula, one obtains

[Viuda= [(i-Vudr (4.45)
C oC

where 7 is the normal vector of the cell surface. This is the basis of the
integrated scheme. When the face neighbour cells are the same size, flux over
the side of the cell is approximated by using central difference

- 1
(n -V)u zZ(MN —uc) (4.46)

where /4 is the mesh size; u. and u, are the flux values in the cell and its
neighbour, respectively. Otherwise, the parent of the smaller cell is used:

1

(i -Vu~ 21h
—upyy —Ue ), neigbour N is smaller than C (4.47)

2h

(uN —Up(c ), neigbour N is bigger than C

where the value of the parent cells u,, and u,, is the average of their
children’s values. This averaging can also be seen as a special choice of the fine-
to-coarse restriction operation of the multigrid technique.
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The discretised standard SP; approximation solved by MultiTrans code in
iterative diagonal form is

[— D (ii-V)+ Ko, 0 }Téo}i’g’m

0 ~D,R(ii-V)+ ko, | |,

h h

3 2(1)2 e 3 i 1
=ho,l,. | +hSE
$0,-359, -3 (4.48)

h

where (ﬁ . V) denotes the central difference determined by equations (4.46) or
(4.47), depending on the local octree grid structure. Similarly, the discretised
extended SP; approximation is:

{_ D -V)+ Ko, 0 Hq»
0 -D,i*(ii-V)+h'o, | |@,]
So i.g
e el A
=h30'aoLq32(f)zicp } g +h3{_1; 310)0 (1) l()) } g ?
0,5, |, 3 ] |5
S, p o (4.49)

Now the multigrid acceleration technique from Section 4.1.2 can be utilised for
these discretised matrix equations.

Starting from an initial flux guess (usually set to zero) one first calculates the
residual at the leaf cell level from the right-hand side of equation (4.48) or
(4.49). Then the residual is restricted into coarser grids by simple averaging. The
error terms are smoothed by using the diagonal part of the matrix on the left-
hand side of the equations. The error terms are then prolongated to finer grids.
This is done in multigrid cycles: eight V-cycles have been used as a default in
MultiTrans, but this value can be modified by the user. At the leaf cells, the flux
terms are updated. The whole procedure is repeated until the total error at the
leaf cells is small enough, that is, below pre-specified convergence criteria.

The multigroup transport problem is solved by solving a nested sequence of one-
group problems, starting from the highest energy group. The down-scattering
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from higher energy to lower energy groups is taken into account through an
effective source term on each one-group problem, calculated with the use of
corresponding group-to-group scattering cross sections. However, if up-scattering
exists (at low thermal neutron energies this is the case), outer source iterations are
required. In other words, the sweep through the multigroups has to be restarted
from an energy level where up-scattering still has a contribution and repeated until
the source converges. A similar need for outer source iterations is encountered also
in the case of photon-electron calculation with full coupling, that is, when photons
create electrons, but electrons also create photons (e.g. bremsstrahlung), and
therefore “up-scattering” from electron groups to photon groups also exists.

The outer source iteration strategy is required also in the multiplication
eigenvalue search. The multiplication eigenvalue for criticality problems is
solved by the MultiTrans code with an algorithm similar to the standard source
iteration method for multigroup diffusion equations [34]. First, some initial
guess for the fission source and the multiplication eigenvalue are set. Next, the
multigroup SP; equations are solved iteratively with the tree multigrid technique,
by starting from the highest energy group and proceeding towards the lowest.
Having done so, a new fission source

G
)= " g g (D)=
SP(F) =D vEo 0V (F)
g'=1
and a new multiplication eigenvalue
[s9@dr

K0 =
k(lo)js;‘” (F)d’r

are calculated, and a new sweep for solving the multigroup SP; equations is
started. The whole procedure is repeated until the multiplication eigenvalue and
the fission source converge. The convergence criterion is defined as

k(n) _k(n—l) S;n) _S;n—l)
— <& and/or max————|<¢&,.
k(n) S(n) 2
S

The solution strategy for multigroup problems including outer source iterations
is shown on a general level in Figure 13.
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Figure 13. Flow chart of the iteration strategy in the MultiTrans code for

solving multigroup and outer source iteration problems (on a general level).
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5. Applicational scope of the new radiation
transport code

The new MultiTrans radiation transport code — having no especial geometrical
restrictions — could in principle be applied to any 3D radiation transport
problem. However, the applicability range of the used SP; approximation limits
the accuracy of MultiTrans, and therefore careful validation between different
computational methods and verification against measurements are required for
different applications. The validation and verification process has been the major
objective of the research work reported in Publications II-V. The main results
and some application specific issues are reviewed and discussed in the following
sections.

5.1 Dose planning in BNCT

BNCT patients can be different in their size and shape and have tumours in
different locations. Individual treatment planning is therefore required for
accurate absorbed dose delivery. The primary aim of the treatment planning is to
ensure a high enough tumour dose for meaningful and ethically acceptable
treatment, with sufficiently low radiation risk to sensitive organs and tissues
outside the planning target volume (PTV). The accuracy requirements of
radiation therapy have already been briefly discussed in the Introduction,
Section 1. It is worth repeating, that 5 % accuracy is recommended for absorbed
dose delivery in radiotherapy [26]. An important limiting factor is the
narrowness of the therapeutic window for the patient dose: often the adverse
effects start to appear in the healthy tissue at lower absorbed doses before the
complete tumour control (see Figure 2 in Section 1).

A treatment planning system (TPS) suitable for BNCT requires a verified beam
model, methods for handling the patient geometry — e.g. software to create a
voxelised geometry from computed tomography (CT) or magnetic resonance
imaging (MRI) —, and some radiation transport algorithm to calculate the dose to
various parts of the geometry [84]. The construction of an FiR 1 epithermal neutron
beam model and dose calculations for verification of TPS used at the Finnish BNCT
facility have been described in the academic dissertation of Tiina Seppald [10].
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In addition to treatment planning, computational methods are required for
dosimetrical purposes, e.g. for planning different measurement setups and
suitable irradiation times for detectors. Comparison of the dosimetrical results to
the dose planning calculations can supply important knowledge on the accuracy
of the computational method. This is vital for verification of the computational
system used for treatment planning.

The whole MultiTrans code development started from the intention to replace
the time-consuming Monte Carlo method in BNCT dose planning with a fast,
deterministic and accurate radiation transport method. The tree multigrid
technique was recognised as a promising tool for this purpose, as the self-
adaptive meshing could be used to model the complicated structure of organs
and tissues with great accuracy. As one of the first progresses, the self-adaptive
meshing was tested for segmented CT images of a human head. The cross
section of the resulting tree multigrid is shown in Figure 14.
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Figure 14. Segmented CT image (left) and a cross section of the corresponding
tree multigrid (right).

As a radiation transport approximation, second-order P; equations, Eqgs. (3.21)—
(3.26), were first considered. However, the implementation of these equations
into an iterative tree multigrid algorithm was found too complicated. Especially
the discretisation of the mixed derivatives (8x8y for example) in an effective
way on a regular but non-uniform 3D tree multigrid was far from trivial. For this
reason, it was decided to implement a simpler but less accurate SP; transport
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approximation. However, the implementation of full P; approximation with an
iterative tree multigrid solver should not be entirely excluded.

For BNCT dose planning purposes, it was necessary to be able to read the
boundary source, i.e. the FiR 1 treatment planning source plane, into MultiTrans
for dose-planning calculation. The treatment-planning source has been first
derived by 2D calculations with the discrete ordinates code DORT [85],
including the FiR 1 core model and subsequent transport calculation through the
moderator and collimator structures of the FiR 1 epithermal beam [10]. The
design of the Finnish BNCT facility is described elsewhere [4, 5, 10], but generally
speaking, the fast fission neutron spectrum of the reactor core has been moderated
into a more suitable energy range and collimated into a purpose-built treatment
room. Special moderator material, Fluental™, has been developed at VIT in
order to obtain a good epithermal neutron flux with high enough intensity and
low, fast neutron and gamma contamination, even with a small research reactor
such as FiR 1 TRIGA Mark II with 250 kW nominal power [4, 86].

Separate aperture plates of the FiR 1 BNCT collimator structure, made from
lithiated polyethylene, can be easily added or removed, giving beam diameter
options of 8, 11, 14, 17 and 20 cm. The 14 cm aperture has most often been used
in patient treatments. The treatment-planning source for a 14 cm diameter beam
aperture is situated 5 cm inwards of the beam direction into the collimator
structures. It has been first calculated by DORT and then further processed for
use in TPS by averaging the forward current over a 22 cm diameter circular area
for each BUGLE energy group (47 neutron groups and 20 gamma groups) of
DORT calculation [10]. Separate angular distributions by 10 cosine cut points in
the forward direction have been defined for each energy group.

The treatment planning source for a 14 cm aperture has been used in MultiTrans.
However, for some reason, using the source plane directly in the boundary
condition seemed to thwart the convergence with the tree multigrid technique.
This was perhaps just due to some mistake in the implementation of source
values on different grid levels. Yet, instead of defining the source as a boundary
condition, it was decided to use the first collision source method. The first
collision source method has already been discussed in Section 4.2.2. The
advantage of the first collision source in conjunction with the SP; approximation
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is that the collided flux is more isotropic than the uncollided one, and therefore
can be better approximated with a low-order spherical harmonics approximation.

As a suitable benchmark for validation and verification of the MultiTrans code, a
cylindrical polymethyl-methacrylate (PMMA) phantom situated in the FiR 1
epithermal neutron beam with a 14 cm aperture was chosen. The solid PMMA
phantom has a 20 cm diameter and 24 cm length, and PMMA is one of the tissue
substitutes used in radiation dosimetry [87]. The phantom has removable centre
pieces with 2 cm diameter and various shapes, e.g. to attach ionisation chambers,
thermoluminescent detectors (TLD’s) or small diluted manganese-aluminium
(Mn-Al) or gold-aluminium (Au-Al) foils at different depths at the central axis
of the phantom.

To be more specific, the above-mentioned Mn-Al and Au-Al foils are used for
neutron activation measurements: Mn and "’Au have a large probability to
capture neutrons and as a consequence to become activated. The activation
products emit gamma radiation with distinctive energies. These photo-peaks can
be measured after the irradiation with a gamma spectrometer, and taking the
decay and the geometry of the measurement setup into account, the specific
saturation activity of the foils can be defined [88]. The reason why Mn and Au
ingredients have been diluted in Al is to avoid self-shielding in the neutron field
due to strong neutron absorption, i.e. capture reaction.

The neutron activation measurements are a very accurate method to measure the
neutron field, and insensitive to other radiation qualities, which is usually not the
case with other measurement techniques. If the energy cross sections for neutron
capture reactions are known, it is possible to calculate the corresponding
responses from neutron energy spectra. Thus, it is possible to directly compare
the measured and calculated activation reaction rates. It is also possible to adjust
a calculated spectra based on measurements over a large set of different
reactions with different response energies: such a procedure has been applied for
the TPS source of the FiR 1 epithermal neutron beam, to further improve the
source model [10, 89-92].

An extensive number of measurements have been performed in the FiR 1 beam

with different phantom geometries and phantom materials, and multiplicity of
measurement techniques [89-102]. The cylindrical PMMA phantom has been
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perhaps most widely used. For instance, in each week having patient irradiation,
diluted Mn-Al (1 wt-% Mn) and Au-Al (1 wt-% Au) foils are irradiated in the
PMMA phantom at 2 cm depth, in order to check the neutron activation for
quality assurance of the beam monitors used to control irradiation [103].

In Publication II, MultiTrans calculations have been compared to measured and
calculated '”’Au(n,y) and *’Mn(n,y) reaction rates at the central axis of the
PMMA cylinder. The computational comparison included the discrete ordinates
(Sy) code DORT and the Monte Carlo codes MCNP and SERA, the SERA
calculations being made by Tiina Seppéld. Also different physical dose
components, such as fast neutron hydrogen proton recoil dose, proton dose from
nitrogen neutron capture reaction '*N(n,p), and the gamma dose (mainly from
hydrogen neutron capture), were compared to the values calculated by DORT.
The same BUGLE-80 cross section library with 47 neutron and 20 gamma
energy groups was used with both MultiTrans and DORT.

It was noted for instance, that '*’Au(n,y) and *Mn(n,y) reaction rates at 2 cm
depth in the phantom (at thermal maximum) calculated by MultiTrans
differed -3 % and +1 % from the measured values, respectively, and were within
the measurement uncertainty, approximated to be 5 %. The total neutron dose at
2 cm depth in the phantom calculated by MultiTrans differed -4 % compared to
the DORT result. The major disadvantage in the MultiTrans calculations was the
inability to calculate the neutron-induced gamma dose accurately enough. A
notable discrepancy was found in the gamma dose calculated by MultiTrans,
being -16 % at 2.5 cm depth (at gamma dose maximum) compared to the DORT
result. The shape of the depth curve of the gamma dose calculated by MultiTrans
was also different from that calculated by DORT. The reason for this
discrepancy was probably the long mean free paths of energetic 2.2 MeV
photons induced from the hydrogen neutron capture reaction: the transport
problem for energetic photons might not be optically thick enough for SP;
approximation to be valid.

The MultiTrans calculations took 14 minutes on a desktop PC with a 200 MHz
Pentium processor. The minimum octree cell side length was 0.38 cm. The
MCNP and SERA simulations were run on a Sun Ultra60 SPARC station. The
MCNP simulation was run for five days resulting in over 150 million particle
histories. The SERA calculations took one hour with 10 million particle histories
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and 1 cm’® voxel size. It should be noted, however, that in order to produce the
same statistical uncertainty with SERA having a 0.38 cm voxel side length
(0.055 cm’ volume) instead of 1 cm (I ¢cm’ volume), approximately 18 times
longer running time and amount of particle histories would have been required.
With the same resolution, MultiTrans would therefore be about 2 magnitudes
faster. However, this value is only speculative.

5.2 Radiation transport of photons and electrons in
conventional radiotherapy

Despite the difficulties encountered in calculation of the gamma dose in BNCT
by MultiTrans, it was decided to study further the applicability range of SP;
approximation in photon transport problems of conventional radiotherapy. In
addition, also transport of electrons as secondary charged particles was
considered. This work was done in collaboration with Varian Medical Systems
Finland Oy, and the main results have been reported in Publication V.

The idea was that, even though the photon transport seemed not to work so well
for high-energy photons such as 2.2 MeV gammas from hydrogen neutron
capture in BNCT, the SP; approximation might still work for low-energy photon
sources, used for instance in brachytherapy. The specific goal was to find out the
applicability range of the SP; approximation in coupled photon-electron
transport problems.

Brachytherapy, also known as sealed source radiotherapy or endocurietherapy, is
a form of radiotherapy where a radioactive source is placed inside or next to the
area requiring treatment [104]. Encapsulated '*I, "*'Cs, and '’Ir are currently
the most widely used sources in brachytherapy and are used to treat localised
malignancies in nearly every body site. However, the influence of tissue and
applicator heterogeneities on brachytherapy dose distributions is not well
understood, despite widespread use of shielded applicators in intracavitary
therapy [30, 31, 105-107].

Electrons induced in photon interactions are the secondary particles which

finally deposit the energy into tissue and after all cause the physical dose. It is
possible to estimate the dose from photon fluence by using mass-energy
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absorption coefficients [29]. However, for this estimation to be valid, a sufficient
local secondary charged particle equilibrium (c.p.e.) condition is required. By
calculating the electron transport in detail, and then converting the electron
fluence into deposited energy, the absorbed dose can be calculated more
accurately, without the requirement of the c.p.e. condition. This is an important
issue with strong material heterogeneities.

Electron transport is in general described by the Boltzmann-Fokker-Planck
equation, but using the continuous-slowing-down approximation (CSDA) and
defining electron “pseudo” cross sections, the Boltzmann equation for neutral
particles can be applied for electrons as well [32]. Thus, it was realised, that by
suitable modification of the cross sections, it was possible to solve also electron
transport by MultiTrans without any code changes, except for the library
routines for handling the coupled photon-electron cross sections. The
modification of the electron cross sections into “pseudo” cross sections was done
with the CEPXS code [108].

Calculations were performed for different coupled photon-electron transport
problems, which are described in detail in Publication V. These test problems
included monoenergetic photon point sources from 10 keV to 2 MeV in water
[109] representing a simplified brachytherapy source in homogeneous media,
and different dose-planning problems for monoenergetic monodirectional beam
sources, including also some heterogeneous test problems. Comparison
calculations were performed by Varian using the EGS4 Monte Carlo code
system [58, 110]. Both standard and what we have called “extended SP;
approximation” (Section 4.2.1 and Publication V) were used in the MultiTrans
calculations, the latter one taking also anisotropic group-to-group scattering into
account. For example, in the case with monoenergetic photon point source, the
dose calculated by MultiTrans agreed within 6 % compared to the EGS4 results
with 25, 35, 70 and 125 keV energies. However, with higher energies the results
were in larger disagreement, with maximal +18 % difference between
MultiTrans and EGS4 for 1.75 MeV source photons, at about 10 cm distance
from the point source. As another example, with a monodirectional 125 mm x
125 mm beam source of 7 MeV photons exposed to a large water cylinder, the
dose at 2, 5 and 10 cm depths along the beam centreline calculated by
MultiTrans differed -6 %, -6 % and -9 % with extended SP; approximation, and
+7 %, 0 % and -4 % with standard SP; approximation, respectively, compared to
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EGS4 results. Even though the extended SP; approximation disagreed more than
the standard approximation from the absolute value of the EGS4 solution, the
conclusion of the study was that the extended SP; approximation seemed to be
advantageous when compared to the standard formulation, as it better duplicated
the shape of the depth-dose curve, the position of the dose build-up maximum
and the profile shape of the off-axis ratios (Publication V). However, with high
photon energies both approximations failed to produce accurate results.
Therefore we further concluded that the method was not directly applicable for
treatment planning in conventional radiotherapy, where the uncertainty of the
dose to the patient should not exceed 5 % [26].

In the future, the accurate Monte Carlo method will probably be more and more
applied in clinical radiotherapy treatment planning. At the moment, computer
capacity limits the wider use of the Monte Carlo method, and semi-empirical
methods (utilising measured dose distributions in water) are still often used for
clinical dose planning. It is worth noting, that clinical treatment-planning
software using the Monte Carlo method do exist [111, 112]. Fast deterministic
transport methods such as MultiTrans would be advantageous compared to the
semi-empirical approach, especially in the case of strong tissue heterogeneities
that cannot be correctly taken into account with the traditional methods.
However, the accuracy of the SP; approximation used in MultiTrans seems not
to be good enough for treatment-planning purposes. This is especially the case
with the accuracy of the photon transport. For electron transport, the SP;
approximation might work much better, as for electrons one can expect the
system to be optically thicker. In Publication V we have suggested a hybrid
scheme where photon transport would be solved by Monte Carlo and subsequent
secondary particle (electron) transport by MultiTrans. This would use the best
sides of both methods, as the Monte Carlo method is capable for accurate photon
transport but handles electron transport very slowly due to Coulomb
interactions; this electron transport might be solved by MultiTrans in an accurate
and efficient way. Accuracy of the transport of secondary electrons with SP;
approximation in 3D, however, remains to be seen.
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5.3 Reactor physics

Radiation transport codes have been traditionally developed and applied in the
field of reactor physics. Typical radiation transport problems are, for instance,
criticality safety analysis, radiation protection calculations, determination of
various detector responses, and out-of-core neutron dose calculations.

Fission source and neutron transport calculations of the reactor core are often
handled by simplistic 1D or 3D nodal methods: the core is divided into
homogenised segments and only few-group (for instance 2-group) nodal
calculations are performed. Such simplistic but efficient methods for neutron
transport and fission source modelling are especially needed in transient and
accident analysis, where fission source and related power density and heat
generation is coupled with thermal hydraulics in order to model the overall
dynamic behaviour of the reactor core under different operating conditions.

In more detailed calculations, such as 3D modelling of (unhomogenised) fuel
bundles or modelling of the axial and radial leakage terms of the core, more
sophisticated radiation transport methods are required. Especially 3D out-of-core
calculations with streaming and deep penetration of the radiation are very
demanding. Such calculations are needed, for instance, to estimate the pressure
vessel steel embrittlement or in activity inventory calculations of a nuclear
power plant for decommissioning planning. It should also be noted that reactor
physics problems are not restricted to the reactor core, but often the problem is
to determine the criticality safety, radiation protection or heat generation in
transportation casks or fuel storage pools, etc. Such problems often require
detailed modelling of the criticality eigenvalue or source terms, sometimes
coupled with burn-up and depletion calculations in order to estimate the isotopic
concentration.

In the reactor physics field, the MultiTrans code was first applied to a simplistic
two-group pressurised water reactor (PWR) benchmark with a fixed source,
reported in Publication I. Since the demonstration of the applicability of the
MultiTrans code to various dose-planning problems in BNCT and conventional
radiotherapy, MultiTrans has increasingly been tested also in traditional reactor
physics problems. Implementation of an outer source iteration method for
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multiplication eigenvalue problems, for instance, has been described in
Publication III, and discussed in Section 4.3.

For testing the multiplication eigenvalue search algorithm, two problems were
chosen from the proposal of 3D neutron transport benchmarks by the Osaka
University to OECD Nuclear Energy Agency (NEA) Committee on Reactor
Physics [113, 114]. The first one is a small light-water reactor (LWR) with a
core model of Kyoto University Critical Assembly (KUCA), and the second one
is a small fast breeder reactor (FBR). The LWR and FBR geometries and the
cross sections of the corresponding octree grids are shown in Figures 15 and 16,
respectively.

The LWR benchmark was a 2-group problem, and the FBR benchmark a 4-
group problem. In both benchmarks, the objective was to calculate the control-
rod-worth. In the LWR benchmark the control rod was either inserted or
withdrawn, the control rod position being empty void in the latter case. In the
FBR benchmark the control rod was inserted or half inserted, the empty position
being replaced by sodium coolant. The control-rod-worth was defined to be the
value

1 1

eff rod in keﬂ .

rod out

For the FBR benchmark, the calculated multiplication eigenvalues and the
corresponding control-rod-worth agreed well with Monte Carlo results reported
by Takeda and lkeda [114]. For the case with the control rod half inserted, the
difference in MultiTrans results for k. was +0.37 %, and for the case with
control rod inserted +0.32 %, compared to the Monte Carlo results, respectively.
For calculated control-rod-worth, the difference between the MultiTrans and
Monte Carlo results was +3.4 %. Also for the LWR benchmark, the k¢ agreed in
the case when the control rod was inserted, with +0.24 % difference between the
MultiTrans and Monte Carlo results. However, in the LWR rod-out case with
void region, the MultiTrans value for k.; was inaccurate with -2.6 % difference
compared to the Monte Carlo result, which also led to negative control-rod-
worth. This inaccurate result for the rod-out case was concluded to happen due
to long neutron streaming paths in the void region, which is problematic for the
SP; approximation.
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Figure 15. CAD model of the KUCA LWR core benchmark (left) and cross
sections of the corresponding octree grid (right).
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Figure 16. CAD model of the FBR core benchmark (top left) and cross sections

of the corresponding octree grid.

The calculated LWR and FBR benchmarks demonstrated the applicability of the
new MultiTrans code to criticality problems for the first time. However, in order
to test more thoroughly the applicability of the MultiTrans code in reactor
dosimetry problems, two VENUS benchmarks were calculated.

The VENUS Ceritical Facility is a zero power reactor located in Mol, Belgium,
used to study LWR core designs. Measured data exists for verification of the
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computational results, and benchmarks have been calculated with several
different codes, offering a good resource for experimental and computational
data to test a new transport code.

Many commercial power plants in Europe and Japan use reprocessed mixed
oxide (MOX) uranium and plutonium fuel (UO,-PuO,) in addition to the
uranium oxide (UO,) fuel. The use of MOX fuel in LWRs presents different
neutron characteristics, and therefore the VENUS-2 MOX-fuelled reactor
dosimetry benchmark [115] was launched by OECD NEA in 2004 to test the
current state-of-the-art computation methods of calculating neutron flux to
reactor components against the measured data of the VENUS-2 MOX-fuelled
critical experiments.

Twelve groups worldwide participated in the VENUS-2 blind benchmark
providing 15 different solutions [116]. VTT attended with 3 different codes:
MultiTrans, TORT and MCNP [116, 117]. The task was to calculate **Ni(n,p),
BIn(n,n’), "“Rh(n,n’), “Zn(n,p), *'Np(n,f), and *’Al(n,a) reaction rates and the
corresponding equivalent fission fluxes measured on the core mid-plane at
specific positions outside the core of the VENUS-2 MOX-fuelled reactor. The
benchmark geometry is shown in Figure 17. In the MultiTrans calculations, all
material regions were modelled in detail, except that the fuel pin, fuel cladding,
and water regions were homogenised over each fuel zone. The external regions
outside the jacket inner wall (air, jacket outer wall, reactor vessel, water, and
reactor room) were omitted from the model, as they can be assumed to have no
significant effect on the responses at the measurement points.

The BUGLE-96 cross section library with 47 neutron groups was used in the
transport calculations by MultiTrans. *°U and **’Pu fission spectra were taken
also from the BUGLE-96 library, weighted by the relative portions of the main
fissile isotopes in the VENUS-2 core. The International Reactor Dosimetry File
(IRDF) was used in calculation of the dosimetry responses. IRDF-90 version 2
dosimetry cross sections for reactions >*Ni(n,p), '"“In(nn’), '“Rh(nn’),
%7Zn(n,p), *’'Np(n,f), and *’Al(n,a) were condensed into the BUGLE energy
group structure from the SAND-II energy group structure (640 groups) by using
X333 utility program from the neutron metrology file NMF-90 [118]. The
combined Maxwell, 1/E, and fission weighting spectrum was used. The
MultiTrans criticality calculation with 2,530,817 mesh cells took 16.0 hours on a
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desktop PC with a 3.0 GHz Pentium4 processor [117]. TORT criticality
calculation with 648,270 mesh cells took 18.7 hours on an AlphaServer ES45
workstation with four EV6.8CB 1.0 GHz processors [117].

¥ [mm]

Figure 17. CAD model of the VENUS-2 MOX-fuelled reactor dosimetry
benchmark (left) and a cross section of the corresponding octree grid at core
mid-plane (right).

The results obtained by MultiTrans were fairly comparable to other reported
results of the VENUS-2 benchmark [116]. For instance, equivalent fission fluxes
calculated in 32 **Ni(n,p) detector positions by MultiTrans were all within
+20 %, and most of them within £10 %, compared to measured values. The
equivalent fission flux values calculated by MultiTrans for the '“In(n,n’)
detector positions, on the other hand, showed about £20 % of scatter band in
stainless steel zones and about +£30 % in water zones [116]. Especially,
discrepancies were noted in the MultiTrans results in the detector positions
where the solution starts to behave more transport-like and the applicability of
the SP; approximation becomes more limited.

In Publication IV, application of the MultiTrans code to VENUS-3 benchmark
has been reported. The core loading in VENUS-3 is completely different from
the VENUS-2 benchmark described above. VENUS-3 is a LWR pressure vessel
steel benchmark with partial length shielded assemblies [119], and the results of
the computational benchmark have been published by NEA [120]. The well-
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documented experimental and computational data has been a good resource to
test the performance of the MultiTrans code.

The VENUS-3 benchmark geometry is shown in Figure 18. Again, the material
regions were modelled in detail, except that the fuel pin, fuel cladding, and water
regions were homogenised over each fuel zone and external regions outside the
jacket inner wall were left out of the model, as their effect is negligible.

Figure 18. CAD model of the VENUS-3 LWR pressure vessel steel benchmark
with partial length shielded assemblies (left) and a cross section of the
corresponding octree grid at 10 cm below the core mid-plane (vight).

The partial length shielded assemblies make the VENUS-3 benchmark
especially a 3D radiation transport exercise. The task was to calculate **Ni(n,p),
"In(n,n’), and *’Al(n,a) reaction rates in specific in-core and out-of-core
detector positions distributed also axially: a total of 244 detector positions were
defined for nickel, 104 detector positions for indium, and 38 positions for
aluminium. The reaction rates calculated by MultiTrans agreed well with the
experimental values: the majority of the values were within 5 % for Ni and Al,
and within 7 % for In. The deviation was larger than 20 % only in 2 detector
positions of Ni in the uppermost region of the partial length shielded assemblies,
and in one detector position of In and Al in the core barrel near the corner of the
partial length shielded assemblies. In these positions, the solution behaves
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probably more transport-like and the SP; approximation is, once again, less
valid. In this VENUS-3 benchmark, the results obtained by MultiTrans are very
comparable to the reported results obtained by other computational methods
[120]. The MultiTrans calculations for 47 BUGLE neutron groups took 70
minutes on a desktop PC with a 3.0 GHz Pentium4 processor.

For the VENUS-3 benchmark, a fixed source from venus3.src file from NEA-
1517/69 SINBAD-VENUS-3 distribution CD was used. This required
implementation of a new source routine that could read the source file and
distribute the source into the octree cell structure with correct weighting. That is,
the average source in each octree cell is calculated from an arbitrary source
distribution given in an external file, with no need that this source distribution
data should match the boundaries of the octree cells. The use of this source
routine is not restricted to the VENUS core, but can be used to describe the
power distribution of any reactor in a very general format.

In addition to the distributed source routine, a special interpolation algorithm
was developed and implemented into MultiTrans for both VENUS benchmarks.
In order to be able to define the reaction rate in the precise detector position, the
cell averaged values had to be interpolated correctly. Interpolation would be
rather straightforward in an equidistant mesh, but in a non-uniform octree mesh
the interpolation becomes more complicated. A kind of 2-step linear
interpolation method was implemented, where one first interpolates the vertex
values of the cubic voxel containing the specific point, and then uses these
vertex values for the final linear interpolation inside the cell.

An attempt to use MultiTrans code in the calculation of the C5G7 MOX
benchmark extension has also been made [121, 122]. However, in this particular
benchmark, no results could be obtained due to memory limitations. In the C5G7
benchmark geometry the fuel assemblies are non-homogenised, that is, each fuel
rod is included in the model, see Figure 19. With cubic elements the required
number of octree cells becomes extremely high if one tries to distinguish the
heterogeneous fuel and moderator material regions, resulting in an inevitable
computer memory overflow.
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Figure 19. CAD model of the NEA C5G7 MOX benchmark extension, excluding
the moderator region. In the picture the different fuel pins of the core are shown,
as well as the control rods and the fission chambers extending above the core
into the upper axial reflector.

The cubic cells are problematic in the C5G7 benchmark, as the axial meshing
becomes oversized for heterogeneous fuel bundles. It might be possible, with
some modifications to use a different axial length for the octree cells. The octree
cells could perhaps be made rectangular in the axial dimension. In this way, the
required number of octree cells for modelling a non-homogenised fuel bundle
could be greatly reduced and the application of the MultiTrans code to such
problems might become feasible. This would require further studying, however.

In general, the applicability of the MultiTrans code to reactor physics problems

has been demonstrated. The VENUS-2 and VENUS-3 benchmarks show that the
calculated results by MultiTrans are fairly comparable to the results obtained by
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other methods. Void regions are problematic for the SP; approximation, though,
as shown by the KUCA LWR rod-out case. At the moment, the ability of
MultiTrans to model heterogeneous fuel assemblies is also restricted due to large
memory requirement encountered in such cases: application of a deterministic
code to such heterogeneous 3D problems would represent the real state-of-the-art.
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6. Summary and conclusions

Neutral and charged particle transport theory in conjunction with the tree
multigrid technique has been studied. A new deterministic radiation transport
method, based on the tree multigrid technique and simplified spherical
harmonics SP; approximation, has been developed and applied to 3D neutron
transport modelling (Publication I) and to BNCT neutron and photon dose
planning (Publication II). The applicability of the novel MultiTrans radiation
transport code has been further extended to multiplicative systems (Publication
IIT) and to coupled photon-electron transport problems (Publication V). In order
to validate and verify the code performance, MultiTrans has been tested for a
wide variety of different types of neutral and charged particle transport problems
encountered both in radiotherapy and in reactor physics (Publications [-V).

The results obtained with the new MultiTrans code are somewhat twofold: in
some cases the results are pretty good and promising, but in some other cases
obviously inaccurate. For instance, in BNCT dose-planning problems, the
neutron dose and related dosimetric responses seem to be modelled rather
accurately, but the calculated photon dose is in disagreement with other
computational methods and measurements. The problems have been related to
the used SP; approximation of the transport equation. Especially geometrical
areas with low density — or low optical thickness for the radiation quality, to be
more specific — have been problematic for the simplified spherical harmonics
approximation. For air inhomogeneities, some ray-tracing technique might
overcome this problem [42].

Sometimes combining different methods can lead to the best results [123]. For
example, deterministic radiation transport methods (even quite approximative)
can be used to solve the adjoint flux and thereby determine the optimal
importance distribution for Monte Carlo variance reduction [124, 125]. Then the
accurate Monte Carlo method can be used in an effective manner to solve the
actual forward problem. Another combination of different methods is to use an
approximative solution (such as diffusion solution) as a preconditioner for some
more accurate deterministic method. In other words, the problem is first solved
with one method, and the solution is then used as an initial guess to accelerate
the iterative solution by the more accurate method. Recently, Even-Parity SSy
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approximation (very similar to SPy) has been used as such a preconditioner for
Sy method with great success [78—81]. The multigrid acceleration can also be
seen as sort of preconditioner.

In Publication V we have suggested a combination of Monte Carlo method and
deterministic solution of SP; approximation with the tree multigrid technique.
The idea would be to solve the photon flux by the accurate Monte Carlo method,
and then do the subsequent electron transport calculation by MultiTrans. The
electron transport calculations are handled very slowly by the Monte Carlo
technique, while MultiTrans might produce the solution both fast and accurately.
The combined performance of the methods might prove to be both fast and
accurate, and could be useful in radiotherapy dose planning, especially in the
cases with strong material heterogeneities.

As a conclusion, it seems that SP; approximation is best suited for radiation
transport problems which are diffusion-like and have low void fraction, such as
homogenised PWR core calculations. In that kind of transport or criticality
problems the SP; approximation should produce much better results than simple
diffusion theory. For out-of-core calculations SP; approximation is less suited,
especially if there is streaming or deep penetration of radiation, that is, if the
solution behaves very transport-like. For such cases, more accurate methods
exist and should be applied. In radiotherapy applications some hybrid methods
would be required to meet the required accuracy. Such methods might be worth
further study.

The tree multigrid technique has proved to be efficient. The CAD interface
makes MultiTrans a flexible design tool. The CT interface enables radiotherapy
applications. The usefulness of the new MultiTrans code has been indicated by
verifying and validating the code performance for different types of neutral and
charged particle transport problems, reported in separate publications
(Publications I-V).
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Abstract —Calculation of neutron flux in three-dimensions is a complex problem. A novel approach for
solving complicated neutron transport problems is presented, based on the tree multigrid technique and
the Simplified B (SR;) approximation. Discretization of the second-order elliptic;®guations is per-
formed for a regular three-dimensional octree grid by using an integrated scheme. The octree grid is
generated directly from STL files, which can be exported from practically all computer-aided design-
systems. Marshak-like boundary conditions are utilized. Iterative algorithms are constructed ffor SP
approximation with simple coarse-to-fine prolongation and fine-to-coarse restriction operations of the
tree multigrid technique. Numerical results are presented for a simple cylindrical homogeneous one-group
test case and for a simplistic two-group pressurized water reactor pressure vessel fluence calculation
benchmark. In the former homogeneous test case, a very good agreement with 1.6% maximal deviation
compared with DORT results was obtained. In the latter test case, however, notable discrepancies were
observed. These comparisons show that the tree multigrid technique is capable of solving three-
dimensional neutron transport problems with a very low computational cost, but that gepfRxima-

tion itself is not satisfactory for all problems. However, the tree multigrid technique is a very promising
new method for neutron transport.

I. INTRODUCTION harmonics(or into the vector function space, i.e., Hil-
bert’s spacg and second-order elliptic differential equa-

Computer programs for radiation transport are baseglons for the spatial part of the moment flux can be
either on deterministic solution of the Boltzmann transoptained. The first two terms in the expansion are the
port equation or on stochastic simulatidne., Monte  scalar flux and current, and further terms are of smaller
Carlo methogdl The Monte Carlo method is extremely magnitude. Th&, equations in multidimensional geom-
time consuming and often cannot present all radiatiortries, however, form a very complicated set of equa-
distribution details. Conventional deterministic pro-tions that involve both coupling of the angular moments
grams, on the other hand, are mainly based on the dignd their mixed derivatives. Gelb&rd proposed in the
crete ordinatesSy) method.Sy methods have their own early 1960s a simplification to this scheme, the Simpli-
problems, e.g., ray effects, which arise from the discretied P, (SPy) approximation. The By equations were
representation of directional fluxes that does not pre«derived” by simply replacing the second derivatives in
serve rotational invariance, and the problem of preventhe one-dimensional planar geomeRy equations with
tion of negative flux values. general three-dimensional Laplacian operators.

An alternative solution is the well-establish&y The theoretical basis of theP§ approximation has
approximatiort, which is obtained by expanding the flux historically been weak, although the numerical results
in spherical harmonics up to ordbr+ 1 and using the obtained by the approximation have always appeared
orthogonality of these base functions. Thus, the angulasromising. However, since 1991 a theoretical basis of
dependency of the flux can be separated into sphericghe S approximation has developed. Asymptotic deri-
vation of the P\ equations in the case of an inhomo-
*E-mail: Petri.Kotiluoto@vtt.fi geneous medium with multiple energy groups and
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anisotropic scattering was first provided by Larsen, Morelsuperscripg is the energy group, is the material zone,

and McGheé. Pomraning showed that 8By equations andl is the iteration index

with odd N are a variational approximation to the trans- g4 g (+1) g aig(+1)

port equation in an infinite homogeneous medium with —Dg" Vg (F) + 0ap P (r)

one-group isotropic scattering. Neither Pomraning’s vari- = 2009059V (F) + Sh9(F) ()

ational approximation nor the asymptotic derivation men- a0 =2

tioned earlier produce outer boundary conditions. Onlyand

recently has it been shown by Brantley and Larstat 10w i g (141) g aivg (141)

SP; equations with Marshak-like boundary conditions P2V ¥z (F) + 02z @3 (F)

can be derived from the variational principle for inhomo- = 20590 Hhe Dy — 2ph @M (p)] — Sho(f

geneous medium with multigroup anisotropic scattering. sloao’[ b ") U
In this paper, the theoretical basis dPsequations (3)

lies on the developments of Brantley and Larsand on

the improved iteration strated§ based on “explicit" for- where the group removal or transport cross sections are

defined by subtraction of the corresponding Legendre

mulation of %5 equations. Attention is paid to direct ., onent of the scattering cross section from the total
application of advanced multigiidmethods. cross section:

SP; equations form a coupled set of two second- . A .
order elliptic differential equations. In the explicit form, ol =0{9-04879,n=0 . (4)
o Dest conuergence s expected for ese 4 Th difusion coefiiets are defined by ransportcross
liptic differential equations is the tree multigrid technique. SECIONSTa1” andoaz” as

To apply the efficient tree multigrid technique tdP$ g 1
approximation, it is first necessary to discretize the equa- Do~ = 300 (5)
tions into tree-structured, nonuniform, nonequidistant a1
grids?0 and
In the multigrid solution technique, the iteration pro- : 9
cedure is accelerated by first solving the problem on a D; 9 = 35009 (6)
coarser grid and then transferring data to finer grids, and Ta3
vice versa. In the tree multigrid technique, an adaptiverhe group source is
subdivision procedure enables refinement of the cal- G
culation grid on material surfaces or by computational s =3 o9 9pY (1)

demand. The tree structure enables the modeling of com- o =19’ g

plicated geometries and surfaces accurately with only a R

limited number of mesh cells. The tree multigrid itera- X~ NN

tion technique offers a way to solve elliptic second-order * v @ e (N + QYN (7)
differential equations with a minimum number of itera- ) , )
tions required. Thus, the tree multigrid technique apysing standard multigroup neutronics notation.
plied to S, approximation makes the deterministic _ The Marshak-like boundary conditions forP$
solution of the radiation transport possible in compli-[Eds.(2) and(3)] are’

cated three-dimensional geometries with decent running Si g D) i e

times, and it forms the basis of the radiation transport, ¢~ (F) + Dg o(Ry-V) &g &' (F)

method outlined in this paper.

g'=1

3 . 0 2 0
= - d397(r) +f f 2| | (F, ., @) dude
0 -1

8
II. SP; APPROXIMATION ®
8
The derivation of the B; approximation from the and
variational principle can be found from Brantley and Lar- 21
sen! Let us here just restate the “explicit” iterative multi- == g9+ (p) 4 pL9H .v)pL @+ (7)
group formulation of $; approximation in the case ofa 40
finite, piecewise-homogeneous medium with aniso- 3
tropic scattering. = — P§o+I(p)
If one defines the unknown, 40
A 27 (0
Go(1) = Po(F) +205(T) (1) + g f J 2P5(| )P (F, w, @) dude ,  (9)
0 -1

where®y(F) is the scalar flux and,(r) is the P, mo-
ment term, the explicit B; equations are given Bywhere  wherey°(7, u, ¢) is the incident flux at boundary.
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It should be noted, that depending on the detailed )
structure of the underlying functional, different varia- JV udQ = f (A-Vjudr, (10
tional boundary conditions may occur. The boundary con- c oc
ditions in Eqgs.(8) and (9) are termed Marshak-like wheref is the normal vector of the cell surface. This is
because they reduce to the traditional Marshak boundatjie basis of the integrated scheti&/hen the face neigh-
conditions in one-dimensional geometries. bor cells are the same size, flux over the side of the cell
is approximated by using the central difference

lIl. INTEGRATED DIFFERENCE SCHEME (A-V)u~ % (Uy —Uc) (11
FOR $; EQUATIONS
whereh is the mesh size, and: and uy are the flux
To apply the multigrid technique to thePsapprox-  values in the cell and its neighbor, respectively. Other-
imation, one has to define a sequence of nested gridiise, the parent of the smaller cell is used:

(fine and coarse gridsdiscretize the B; equations on (1
each grid, and define intergrid transfer operatoestric- — (Uy — Upg))
tion and prolongation 2h
In the tree multigrid technique, the calculation grid neighborN is bigger than C
is formed by a recursive subdivision procedure, which ifA-V)u~ 1 12
three dimensions is often referred to as an octree algo- — (Up(ny) — Uc)
rithm 1! After a subdivision, the eight obtained subcubes 2h
are called the children of the parent cell. The resulting \ neighborN is smaller than C ,

cell system has a tree structure, in which the subdivi- here the value of the parent ceils. andu is the
sions form the branches and the leaves are the Ch”dreWVera e of their childrgn’s valueg(c')l'his as/(gr)a ing can
which are not divided further. Each cell can thus have irf 9 ' ging

three dimensions eight children cells, which can havé”‘ISO be seen as a special choice of the fine-to-coarse

their own children, and so on, depending on computa[es'[ricuo.n operation of the multigrid technique.
tional or geometric requirements. One important rule is The integrated difference scheme introduced is sym-

however, applied to the subdivision procedure: All themetric' which makes it relatively easy to apply in a reg-

face neighbor cells of each cell must be either same sizéIlar octree-grid structure. Only face neighbors are used,

half the size, or twice the size of the cell. In otherwords,whICh also makes application of the scheme easier. The

the ratio of the sizes of any adjacent cells is at most jntegrated scheme is inconsistent with the Laplacian in

and the resulting cell systeftoctree grid is said to be the Taylor series sen3& However, it can be proved to

. . . e convergent and stable for a Laplace-Poisson equation
regular. In this manner, the amount of possible nelghbotsPupplieol with Dirichlet boundary conditions by the

23:L(t:i?)r:]fl\/%ﬁlri[l:)g]Zéorrng?ghstcaetlllgwll be reduced, and theBramble-HiIbert lemma?® The proof is based on a spe-
' F_ific linear functional that is bounded in34Q) and van-

Because the tree structure makes the grid nonun hes for every polynomial of at most first order. Details
form, some proper difference scheme must be used. 19 y poly :

be efficient and useful, this difference scheme should b&'e omitted. This proof might be applicable also f6t;S

as simple as possible. There are several approaches fo?apromma_tlon, bUt.'t should be strongly pointed out that
Laplace operatd® no theoretical studies have yet been made, and thus no

Integrating the Laplacian of the functiamover a such proof exists. . _
cell C agd apglying Gr%en's formula, one obtains The S5 Eqgs.(2) and(3) form a linear elliptic problem

Lu=f, (13

wherelL is the matrix of the corresponding linear elliptic operatois the column vector, anfiis the column source

vector. Explicitly, Eq.(13) becomes
"o " g9 !
o,| = e (14

Equation(14) now has to be discretized into the regular octree grid. Integrating over a volume of an octree cell with
cell sizeh, and using Eq(10), one obtains

_DQV2 + Ta0 _20-60
—20q0 —DoV? + 040 + 200

i.g ci)o i,g

_Dohz(ﬁ'V)+h30'ao _2h30'a0
®,

_?2)h30.a0 _Dzhz(ﬁ'V)+h30'a2+ §h30'a0

= h332,9l 12] , (15)

h h 5

NUCLEAR SCIENCE AND ENGINEERING VOL. 138 JULY 2001

1/3



272 KOTILUOTO

where(i-V) denotes the central difference determined by(Ed) or (12), depending on the octree structure, i.e., the
size of the face neighbor cells. Thus, E#5) represents the resulting set of discretized linear algebraic equations

Laup =y, (16)
which can be transformed to iterative diagonal form:
—Doh?(7i-V) + hie; 0 "9y |iol+t 1 20, o
i " ' ] L S LR P (17)
0 —D,h2(A-V) + h300 |, | P2, —E §Po— 5Pz |,

Now, let Gy, denote some approximate solution togrid, a tree multigrid algorithm can be constructed. First,
Eq. (16), and letu;,, be the exact solution of Eq16). the residual of the leaf cells is calculated using EG%)
Then the error is and(19). Then the residual is restricted into coarser grids
by Eq.(22). The error terms are smoothed by using the

on = Un = On (18) diagonal part of the elliptic operator E@.7) in Eq.(20),
and the residual can be defined as and then prolongated toward the finer grids. This is all
done by performing a prespecified number of multigrid
dh = —LnOp +fy . (19 cycles. At the leaf cells, the scalar flux and the second

moment term of the solution are updated by Ef)). If
the total error at the leaf cells is small enough, conver-
Lhon, = dy . (200  genceis concluded. The problem converges to an asymp-

. _ . _totic solution when the number of multigrid cycles is
The next step toward a tree multigrid algorithm is tolarge enougHi.e., the iteration error is smaland the

“coarsify” the L, operator to a coarser grid with mesh egh at |eaf level is small enoughe., the truncation

sizeH = 2h: error is small. The sufficient number of multigrid cycles
Lyvy = dy . (21) and tree subdivision levels can be determined empiri-
cally. This asymptotic solution obtained by the tree multi-
Becausé  has a smaller dimension, EQ1) is easierto  grid technique is assumed to be the converged solution
solve than Eq(20). As a restriction operator, of the SP; approximation, although no theoretical proof
exists.
O = Rdh (22 The coding of the tree multigrid algorithm just de-
simple averaging is used. Cross sections are also avegeribed has been performed in the-€ language. This
aged into coarser grids. The error, on the other hand, ®oding has been partly based on previous work of Pawel
prolongatedinterpolated to finer grids by a prolonga- Simbierowicz at VTT Chemical Technology in Finland
tion operator, for some specific diffusion applications, although the
source code kernel was totally rewritten for the multi-

Becausd., is linear, the error satisfies

On = Pou (23 group solution and the 5 approximation. The octree
whered,, is an iterative solution to Eq20), and at the generating procedure used so far in radiation transport is
leaf cell, approximatiori, can be updated: static; |.e.,_the octree grid is generqted once from_the

geometry files and not changed during the calculation.
apsv = 0y, + oy, . (24)  In other applications—e.g., in collision detection algo-

. _ . . rithms used in robotics—dynamic grid generating pro-

_ At the coarse-to-fine prolongation, a simple pieCéeqyres have been used. Plans are being made to connect
wise constant prolongation can be performed; i.e., all thgyg octree grid refining and coarsening to the transport
children’s values can be taken directly from the pareng | tion dynamically so that the mesh would automati-

cell. Another way to construct the prolongation is acq)\y adapt to the solution and thus ensure the desired
weighting techniquéa straightforward generalization of |o,a| of accuracy.

the two-dimensional scheme presented by Gaspar and ¢ js known that multigrid methods can solve partial

Simbierowicz?): differential equations discretized digrid points inO(N)
(Pv)c = £-(3-vpc) + v + v+ vR) , (25  operations. Thus, multigrid methods are even more ef-
ficient than the rapid direct elliptic solvers that can solve
wherevg, v3, andvg are the error terms in the three special kinds of elliptic equations i@(NlogN) opera-
nearest face neighbors of the parent cell. Because of thi®ns. With a tree structure, the number of cells and grid
regularity of the octree grid, these neighbors always expoints is significantly reduced, and the tree multigrid
ist (except at boundajy method requires a much lesser computational cost even
Now, by starting with an initial guedset to zerpat compared with the traditional multigrid methods work-
the finest multigrid level, i.e., the leaf cells of an octreeing on uniform grids. When getting the most out of the

NUCLEAR SCIENCE AND ENGINEERING VOL. 138 JULY 2001

1/4



FAST TREE MULTIGRID TRANSPORT APPLICATION FOR THE SIMPLIFIEP; APPROXIMATION 273

— 300 Jomm
250
200
€
150 | @
§ £ i
% 5 < 40.0cm i
_S 100 J i
& 60.0 cm /
Fig. 1. Geometry of the three-dimensional calculational 50 -
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tree multigrid technique, a simple difference scheme such

as the integrated scheme introduced earlier, play an im-

portant role. Fig. 2. Cross section of an octree grid for the three-
If the size of the resulting linear system is to bedimensional calculational benchmarks.

estimated, the number of cells in a regular octree grid

roughly behaves likec 4-, wherelL is the subdivision

level. The eventual amount of the cells naturally de-yctree grid has been generated directly from STL files
pends on the underlying geometry of the problem. If &yfering a computer-aided desigEAD) interface.
uniform grid were used, the r)umber of_ cells would be  The first benchmark is a simple one-group problem
comparable tax 8", resulting in a considerably larger yith homogeneous material all over and a fixed uniform
linear system. volume sourcg1l n/cmd) in the inner cylinder. Cross
sections are presented in Table I. Cross sections are cho-
sen to represent radiation transport in a medium with a
relatively small absorption cross section and a short mean
free path(1 cm) in order to ensure the validity of thePs

Two simple benchmarks have been performed fompproximatiorP.
initial verification of the new transport code. Both bench- ~ The second benchmark is a simplistic two-group pres-
marks have the same geometry but different materiadurized water reactdPWR) pressure vessel benchmark
specifications. The cylindrical benchmark geometry is(suggested by Bojan Petrovic at hitfgracie.nuce.psu.
shown in Fig. 1. Cylinder symmetry enables easy comedu/~Petrovi¢3Dbenchcyll.html), with a fixed uni-
parison calculations with DOR{Ref. 12. form volume source in the inner cylinder representing

The geometry consists of an inner cylinder that has éuel; the outer cylinder water acts as a reflector. Source
20-cm radius and is 60 cm lorgxtending axially from spectrum is given in Table Il. Only the first two groups
—30to+30 cm), and an outer cylinder that has a 30-cmof the 47-group structure are used. Cross sections for
radius and is 80 cm lon@xtending axially from—40to  these two groups are presented in Tables Ill and IV.
+40 cm. For the 5 calculation, however, only one A different number of multigrid cycles and maxi-
octant of the geometry needs to be modeled for symmenum octree subdivision levels were tested to ensure the
try reasons, and reflective boundary conditions have beetonvergence. This study is summarized in Table V. As a
utilized on theX-Y, Y-Z, and X-Z planes(Fig. 2. The stopping criterion, an errer10 *was used. From Table V

IV. NUMERICAL RESULTS

TABLE |

Macroscopic Cross Sectioiis/cm) for the First Benchmark Problem

Total Cross Po Scattering P, Scattering P, Scattering P3 Scattering
Section,oy Cross Sectiongsg Cross Sectiongg; Cross Sectiongs, Cross Sectiongss
1.0 0.9 0.7 0.5 0.2
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TABLE 1l
Fixed Source Spectrum for the Second Benchmark Problem
Group Group

Energy Upper Bound Lower Bound Fixed Source
Group (eV) (eV) (n/cmd)

1 1.73300E-072 1.41910E-07 4.25838E-05

2 1.41910B-07 1.221408-07 1.84253E- 04

aRead as 1.73308 107.

TABLE 11l
Macroscopic Within-Group Cross Sectiofigcm) for the Second Benchmark Problem
Energy | Total Cross Py Scattering P, Scattering P, Scattering Ps Scattering
Material | Group Section,oy Cross Sectiongsg | Cross Sectiongs; | Cross Sectiongs, | Cross Sectionggs
Fuel 1 1.21840E 012 5.09136E-02 4.50458E-02 3.82193E-02 3.19044E-02
Fuel 2 1.22186E01 5.03877E-02 4.37986E-02 3.65188E-02 3.00574E-02
Water 1 7.34132E02 1.91451E-02 1.68160E-02 1.36171E02 1.07626E-02
Water 2 7.63243E02 1.94962E-02 1.70019E-02 1.35168E-02 1.05149E-02
3Read as 1.21848 10 L
TABLE IV

Macroscopic Group-to-Group Cross Sectighscm) for the Second Benchmark Problem, with No Upscatter

Py Scattering

P, Scattering

P, Scattering

P; Scattering

Material Cross Sectiong>? Cross Sectiong 32 Cross Sectiong3>2 Cross Sectiong%>2
Fuel 1.04403E 022 5.14301E-03 2.21054E-03 1.60152E-03
Water 1.05554E 02 6.32764E-03 3.54165E-03 2.70906E-03
aRead as 1.04408 1072
TABLE V
Convergence Study
Octree Memory Maximal Difference Compared
Multigrid Subdivision Usage with (y = 6, L = 7) Solution
Cycles,y Level, L (K) CPU Time (%)
4 6 4936 19s 1.69
5 6 4936 22's 1.65
6 6 4936 23s 1.43
7 6 4936 26's 1.43
5 7 19240 1min4ls 0.04
6 7 19240 1min57s 0.00
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Scalar Flux when results of the calculations with different maximum
400 numbers of the octree subdivision levels are compared,
some interpolation error also has consequence. How-
ever, the truncation error was assumed to be small enough
and the final $; calculations reported in this paper for
the described cylinder-in-cylinder benchmarks were per-
formed with five multigrid cycles and a maximum octree
subdivision level of seven, resulting in minimum cell
250
200
cance on results whatsoever. Scalar flux values for the
150 - N 1.0 selected set of data points were approximated by linear
40 interpolation. In the second benchmark, isotropic down-
6.0 scattering was assumeanly theP, term was used from
Table IV). Because no upscattering nor fission was present
in these fixed source problems, no source iterations needed

—05

350 -

300

size of 3.16 mm. Both the simple piecewise constant
prolongation and the weighting technig(&ec. I1l) were

tested, but in the final implementation, the piecewise
constant prolongation was preferred; the more compli-
cated weighting technique seemed to have no signifi-

Z (mm)

100 A

50 - 9.0 to be performed.
0:5 Comparison calculations in cylindrical two-dimen-
sional geometry with DORT were performed with a 260
0 5 o 0 A 00 250 00 200 mesh, resulting in a cell size of 2 mm. Full symmet-
R (mm) ric s quadraturg48 discrete directionavas used with

directional theta weightindgs; calculations were carried
out for both benchmark problems, but comparison of the
SP; results of the second benchmark was performed
against the DORT,¢4 directional theta weighted results
given by Petrovic.S and Sig results had a maximum
difference(in the given set of data pointef 6.1% for
one can see that the iteration error due to a differengroup 1 and 5.8% for group 2 &= 325 mm andR =
number of multigrid cycles is rather small and that five275 mm.

multigrid cycles are sufficient with a maximum octree Scalar flux results of the % octree calculation for
subdivision level of seven. It should be noted that som¢he first benchmark are presented in Fig. 3. The DORT
truncation error might still exist. This could be tested bycomparison of results is presented in Table VI. The max-
the dynamic refinement of the octree grid discussed immum difference betweenFs and DORTS; results is
Sec. Il or partly by higher octree subdivision levels.only 1.6% among the chosen data points, showing good
However, calculations with a higher subdivision levelaccuracy of 5 octree approximation in this simple ho-
than seven were not performed because of run time memogeneous case.

ory requirementfa desktop personal comput&C) with Scalar flux results of the I% octree calculation for

a 128-Mb memory was usédlt should be noted that the second benchmark are presented in Figs. 4 and 5.

Fig. 3. R-Z plot of the S5 scalar flux results of the first
benchmark.

TABLE VI
Difference between B and DORTS; Results for the First Benchmark
Z (cm)

R
(cm) 2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5

2.5 0.0% 0.0% 0.0% 0.0% —0.1% -0.4% —-1.2% -0.1%

7.5 0.1 0.0 0.0 0.0 0.0 -0.3 -0.8 -0.3
12.5 0.1 0.1 0.1 0.1 0.1 —-0.2 —-0.6 -04
175 -0.1 -0.1 0.0 0.0 0.0 -0.2 -0.7 -0.8
22.5 -0.8 -0.5 -0.4 -0.3 -0.3 -0.6 -1.3 -1.5
27.5 —-0.2 0.2 0.3 0.5 0.4 -0.1 —-1.2 -1.6
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Scalar Flux Scalar Flux
group #1, mid-energy = 1.5760E+01 (MeV) group #2, mid-energy = 1.3202E+01 (MeV)
400 — 400
0.00005

3/0 ] 7T —————— 0.00003 350
0.00010 T 00005
: 0.0002

T ———0.00015 T ——————0.0007
300 | ————————0.00020 300 { ———— 90010

————————0.00030

———0.0015
250 1 —_0.00040 250 1__ 50018
200 0.00005 200 J
\ \ 0.0003

150 4 . 0.00010 150 -

3 3
E E
N N
0.00045 0.0020 0.0005
.00015 0.0007
0.00020 0.0010
100 100
0.00030
0.0015
50 | 0.00040 50 0.0018
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0 50 100 150 200 250 300 0 50 100 150 200 250 300
R (mm) R (mm)
Fig. 4. R-Z plot of the 5 scalar flux results of the sec- Fig. 5. R-Z plot of the 5 scalar flux results of the sec-
ond benchmark, group 1. ond benchmark, group 2.

The DORTS,;s comparison is provided in Tables VII and SP; octree calculations were performed on a PC with
VIII, showing a maximum difference of 18% between a 200-MHz Pentium processor and 128 Mb of memory.
SP;andS,gin the chosen set of data points. In this benchA fully three-dimensional two-group problem with five
mark case of fast neutror(@ the 12.2- to 17.3-MeV multigrid cycles and an octree subdivision level of seven
energy rangewith mean free paths up to 13.6 cm in thetook 1 min 41 s CPU time. With four multigrid cycles
outer cylinder, the validity of the B approximation it- and with an octree subdivision level of six, quite good
self is questionable. TheRs octree calculation seems to results(within 2% compared with the former caseere
produce a much smoother solution th&p. However, obtained in 19 s CPU tim€Table V). The program was
SP; approximation does not suffer from the ray effectsexecuted in debug mode, however, and no optimization
illustrated in Figs. 6 and 7 by a radial profile plot oP$S has yet been done for a code or compilation procedure.
andSg results near the vacuum boundaryat 395 mm.  Thus, fully three-dimensional problems can effectively

TABLE VII
SP3 Results for Group 1 Compared with DOFS[g Results
Z (cm)

R
(cm) 2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5

2.5 0% 0% 0% —-1% —2% —10% 5% 8%

7.5 -1 0 -1 -1 -3 -10 5 8
12.5 -2 -2 -2 -3 -4 -12 4 8
17.5 -9 -10 -10 —-10 -12 —-18 3 8
22.5 6 7 7 7 6 6 6 6
27.5 9 9 10 11 10 10 5 4
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TABLE VI
SP3 Results for Group 2 Compared with DORS[¢ Results
Z (cm)
R
(cm) 2.5 7.5 12.5 17.5 225 275 325 375
2.5 0% 0% 0% 0% —2% —9% 6% 7%
7.5 0 0 0 -1 -2 -9 5 7
12.5 -2 -2 -2 -2 —4 —-11 5 7
17.5 -9 -9 -9 -9 —-11 —-17 4 7
22.5 7 7 7 7 7 6 6 5
27.5 8 8 9 9 9 9 4 1
Z =395 mm Z =395 mm
group #1, mid-energy = 1.5760E+01 (MeV) group #2, mid-energy = 1.3202E+01 (MeV)
7e-5 0.00030
6e-5 000025 { ...,
—__sP3
R p ...... DORT S8
:rn 505 & 0.00020
£ 5
% 4e-5 E’ 0.00015
Z Z
g 365 % 0.00010 -
@ @
25 | 0.00005
15-5 .. - 000000 T T T T T T T
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
R (mm) R (mm)
Fig. 6. SPzandSgscalar flux radial profiles & = 395 mm Fig. 7. SPzandSscalar flux radial profiles & = 395 mm
for the second benchmark, energy group 1. Mild ray effectdor the second benchmark, energy group 2. Mild ray effects
can be seen in th&; solution. can be seen in th& solution.

be solved by the tree multigrid technique with run-table discrepancies in some mesh points. Many of these

ning times comparable to two-dimensional DORTdiscrepancies are deduced to originate from tRe &p-

performance. proximation itself, not from the tree multigrid technique
applied. Larsen, Morel, and McGheést three condi-
tions that a problem should meet in order to have a valid

V. DISCUSSION SP; approximation:

1. The physical system should be several mean free

In this paper the tree multigrid application of the paths thick so that the probability for neutrons to
SP; approximation was described. The regular three- leak out is sufficiently small<0.5).
dimensional octree grid used in calculations has been 2. The probability of absorption should not be too
generated from STL files that can be exported from prac- high (<0.5).

tically all CAD systems. Calculations show that effi-
ciency of this novel method is competitive, even though
the full optimization of the code has not yet been carried
out. Comparison of numerical results with DORT in theFor the two fast neutron groups of the illustrated simple
simple one-group benchmark shows good accuracy ®@WR benchmark, the physical system is not optically
the method in the validity range of thePSapproxima- thick enough to meet these criteria. For thermal neutron
tion. The illustrated simple PWR benchmark shows noenergies, one might expect much better accuracy. Thus,

3. The mean scattering cosine should not be too close
to unity.
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the overall suitability of the B; tree multigrid technique 5. E. W. LARSEN, J. E. MOREL, and J. M. McGHEE,

for reactor core calculationée.g., criticality calcula- “Asymptotic Derivation of the Multigroug®, and Simplified

tions) might still be adequate. The test case nevertheleddy Equations with Anisotropic ScatteringNucl. Sci. Eng.

emphasizes that thePg approximation is not satisfac- 123 328(1996.

tory for all problems. However, the tree multigrid tech-

nique is considered to be a very promising new method6. G. C. POMRANING, “Asymptotic and Variational Deri-

for neutron transport. vations of the SimplifiedPy Equations,”Ann. Nucl. Energy
20, 623(1993.
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Dose planning in boron neutron capture therédBXCT) is a complex problem and requires so-
phisticated numerical methods. In the framework of the Finnish BNCT project, new deterministic
three-dimensional radiation transport code MultiTrang B& been developed at VTT Chemical
Technology, based on a novel application of the tree multigrid technique. To test the applicability of
this new code in a realistic BNCT dose planning problem, cylindrical PMIalymethyl-
methacrylatg phantom was chosen as a benchmark case. It is a convenient benchmark, as it has
been modeled by several different codes, including well-kn@@RT and MCNP. Extensive mea-

sured data also exist. In this paper, a comparison of the new MultiTrapc@&i® with other
methods is presented for the PMMA phantom case. Results show that the total neutron dose rate to
ICRU adult brain calculated by the MultiTrans sS€ode differs less than 4% in 2 cm depth in
phantom(in thermal maximum from the DORT calculation. Results also show that the calculated
197Au(n, y) and®*Mn(n,y) reaction rates in 2 cm depth in phantom differ less than 4% and 1%
from the measured values, respectively. However, the photon dose calculated by the Multifrans SP
code seems to be incorrect in this PMMA phantom case, which requires further studying. As
expected, the deterministic MultiTrans s$3#®de is over an order of magnitude faster than stochastic
Monte Carlo codeswith similar resolution, thus providing a very efficient tool for BNCT dose
planning. © 2001 American Association of Physicists in Medicid®Ol: 10.1118/1.1397716

Key words: BNCT, dose planning, radiation transport

[. INTRODUCTION carrier that selectively accumulates into cancer cells, the ra-
diation damage caused by boron neutron capture can thus in
principle be chemically targeted almost entirely to the tumor

cells>*

Boron neutron capture therapBNCT) has been mainly ap-
plied as a radiotherapy of malignant brain tumbgsjch as
glioblastoma multiform€GBM). In recent years, clinical hu- ) ) .
man trials utilizing epithermal neutron beams produced by " Practice the total do_sleo in BNCT consists of several
nuclear reactors have been ongoing both in the USA andifférent dose compo_nen?s. For instance, in the boron
Europe. These ongoing trials can still be described as experfl€Utron capture reaction gamma radiation with 478 keV en-
mental, as recovering of patients from the GBM has not yefrdy is also released. Also hydrogen and nitrogen, that are
been achieved. At present the treatment response of tHural compounds both in soft and brain tissue, capture
BNCT to the GBM seems to be as gotat insufficien} as neutrons—hydrogen with 2.2 MeV gamma radiation release
with conventional radiotherapy, or with any other therapiesand nitrogen with 0.6 MeV proton release. It should also be
under development, but in many aspects BNCT can be exdoted that whenever a nuclear reactor is used as a neutron
pected to be a useful treatment modality in the futute. source, the energy spectrum of neutrons is not purely epith-
In BNCT the treatment effect is based on boron neutroremal: some thermal and fast neutron radiationucing the
capture phenomena in cancer cells. When epithermal neddroton recoil dose from hydroggnand in fact also gamma
trons in an energy range of 0.414-10 keV penetrate througfadiation, always exist in the primary beam. The so called
the skull, they are moderated by the brain tissue to thermagpithermal beams produced by nuclear reactors, like FiR 1 in
energies below 0.414 keV. When a thermal neutron hits boFinland!**?are actually mixed beams.
ron isotopel®B, there is always a certain probability for a ~ Radiation transport and dose distribution calculations in
neutron capture. In the neutron capture Y@ isotope splits BNCT are much more complicated than in conventional ra-
in two smaller nuclei in a nuclear reaction, namelylinand  diotherapy, where rather simple convolution methods with
an a-particle. These relatively heavy particles have a nomisneasured pencil beam kernels can be utilize@ihe calcu-
nal distance of flight of about a feywm, in which they re- lation of neutron and photon flux in BNCT is a complex
lease all there kinetic energy of about 2.5 MeV. These highproblem and requires sophisticated deterministic or stochas-
LET particles cause very much biological damage in thetic simulation methods.
range of one or two cells. By having some appropriate boron In BNCT treatment planning stochastic Monte Carlo

1905 Med. Phys. 28 (9), September 2001 0094-2405 /2001/28(9)/1905/6/$18.00 © 2001 Am. Assoc. Phys. Med. 1905
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methods are most common. Monte Carlo methods can be
considered to be very dependable, but are often also very
time-consuming. In the framework of the Finnish BNCT
project, a novel MultiTrans SPadiation transport code has
been developed at VTT Chemical Technology, based on the
efficient deterministic tree multigrid techniqtfé.

In this paper, a first comparison of the MultiTrans;SP
code to other methods is reported for a realistic BNCT dose
planning problem.

T BT

TRy

[I. MATERIALS AND METHODS

Diffusion (P,) theory is a well-known approximation for :
radiation transport, but is unsatisfactory in many cases. The e AL LR
so called Simplified P (SP,) approximatioh*'® produces
much more transport-like solutions with only slightly higher Fic. 1. Cross section of an octree grid representing a human head.
computational costs over diffusion theory. Simplified ap-
proximation is based on expanding flux in spherical harmon-
ics in one-dimensional planar geometry and then generalizgenerating procedure. That is: the mesh is refined only when
ing the resulting transport equations to higher-dimensionstequired from computational or geometric reasons, e.g., at
The approximation was first proposed by Gelbard in thethe interface of different materials—otherwise a much
early 1960s° The theoretical basis of the §Rpproxima- coarser mesh is used. This approach leads to nonuniform,
tions (N being the order of the expansion in spherical har-nonequidistant mesh and makes the discretizing of the prob-
monic9 have been historically weak. Only recently it haslem more complicated. However, it enables the number of
been shown by Brantley and Larserthat SR equations grid points to be modest even for large three-dimensional
with boundary conditions can be derived from the variationalproblems, and among the multigrid acceleration forms the
principle for an inhomogeneous medium with multi-group basis for the extremely efficient solver of the ;SBdiation
anisotropic scattering. transport equations'

In the novel MultiTrans SP code developed at VTT In the MultiTrans SK code, the so called octree grid is
Chemical Technology, SRransport approximation has been generated by a recursive subdivision procedure with a con-
combined with the extremely efficient numerical tree multi- ditional subdivision of each cell into eight children cells. The
grid techniqué?* This new method enables a high-speed it-ratio of sizes of any adjacent cells is restricted to be at most
erative solution of complicated three-dimensional radiatior2, which makes the grid regular. The regular octree grid can
transport problems with normal desktop computers. be generated directly from stereolitograpfig@TL) files,

Practical multigrid” methods were first introduced by which can be exported from practically all CAD-systems.
Brandt® in the 1970s. These methods can solve partial dif-The geometry input is thus very easy. The octree-grid can
ferential equations discretized dhgrid points inO(N) op-  also be easily generated from segmented CT or MRI images
erations. For example Gauss-elimination would requirgFig. 1). This enables the application of the tree multigrid
O(N?) operations, and even “rapid” direct elliptic solvers technique to BNCT treatment planning.
requireO(N log N) operations for solving elliptic equations. The new MultiTrans SPcode requires naturally thorough
Thus, the multigrid method is very efficient for large prob- testing. To test the applicability of the MultiTrans $S¢ode
lems (the number of grid pointdl being large. to BNCT dose planning, a cylindrical PMM#&polymethyl-

The efficiency of the multigrid methods is based on dis-methacrylatg phantom with 20 cm diameter and 24 cm
cretizing the original problem on coarser and finer grids, i.e.Jength was chosen as a benchmark. This phantom has served
with different mesh sizes. The multigrid is formed by nestedas a reference phantom in the dosimetric campaign for char-
grids with a refined mesh size. On a coarse grid, much lesacterization of the FiR 1 epithermal bedAf’ The 14 cm
iterations are required to obtain a converged solution. Theseeam aperture diametéfrom 8, 11, 14, 17 and 20 cm op-
coarse solutions can be interpolated into finer grids, and thusons) was chosen for the source plane definition, as this
be used to accelerate the iteration process of the fine-gridperture size has most often been utilized in patient irradia-
solutions. In the multigrid methods data is transferred botHions at FiR 1.
from coarser grids to finer grids, and backwards, in so called The source plane used in treatment planning for the 14 cm
multigrid cycles'*’ beam aperture is situated 5 cm inwards the beam direction

In the traditional multigrid method, uniform mesh size is into FiR 1 collimator structures. The averaged group inten-
used on all grid levels. The number of grid points can be-sity and group angular dependency of the flux have been
come huge for large three-dimensional problems, and thdefined in 47 neutron and 20 gamma groups of the BUGLE
amount of required computer work can still be very demandbroad energy group structut&?>The source is homogenized
ing. In the tree multigrid technique the iteration procedure isand has an 11 cm radius. Source calculations have been per-
further accelerated by using self-adaptive features of the griebormed by Tiina Sepfa?>?* using theporT?® code with a

CCHARH

ERRE T

B T T

Medical Physics, Vol. 28, No. 9, September 2001

/2



1907 Kotiluoto, Hiisma “ki, and Savolainen: The new MultiTrans SP 5 radiation transport code 1907

forward-biased quadrature setdg and a BUGLE-80 cross the phantom. This thermal flux has been characterized by
section librany? Calculations include models of the FiR 1 using activation foil detectors, for instance. Gold and man-
reactor core, Fluental™ moderat¢Al +AlF; composite, ganese have been the main activation elements in diluted
and the collimator structures with a water phantom situate@uminum foils(with 1 wt.%'*’Au or >*Mn isotopg used for
into the beam(in order to consider back-scattering effects phantom measurements. After an irradiation the activated
correctly. foils are measured with a spectrometer in order to count the

For the MultiTrans SP code, the first collision source gold and manganese saturation activities. TA&u(n, )
method was used in source processing. In the first collisio®nd>Mn(n, y) reaction rates can also be evaluated from the
source method the intrinsic uncollided fl(the flux of neu-  calculated group fluxes using corresponding response cross
trons that have undergone zero collisipisssolved from the  sections. This allows a direct comparison of the neutron
incident boundary flux analytically. This uncollided flux is transport calculations to the foil activation measurements.
then used to generate the intrinsic source terms for the col- A multiTrans SR code can read both BUGLE-80 and
lided flux. The collided flux can be solved by the tree mul-BUGLE-96 cross section librari€$:??In the calculations re-
tigrid technique with vacuum boundary conditions. Total flux ported in this paper, the older BUGLE-80 library was used
is then calculated as a sum of the collided and uncollidedthough the newer version BUGLE-96 is recommended
flux for each energy group. The reason for this procedure i9rder to enable a pure computational comparison of the cal-
that the collided flux is much more isotropic than the uncol-culations by the MultiTrans SRode with the former calcu-
lided flux, and can thus be better approximated by a lowlations byDoRT. Thus the macroscopic transport cross sec-
order spherical harmonics expansion. tions for the PMMA were generated from the BUGLE-80

It should be noted, however, that the source terms emergf0ss section library using corresponding material coeffi-
ing from the intrinsic uncollided flux cannot be approxi- cients defined by ICR&?
mated by a simple isotropic source term: all moment terms In MCNP4B calculations the standard ENDF/B-VI cross
of the spherical harmonics expansion of the source ar&ection library® (distributed along thevcnP4g code pack-
needed instead. Normally these anisotropic source terms afge was UsedSERA uses its own condensed cross section
not used*® which applies well for fission sources, for in- data library (with 94 neutron groupsbased on Evaluated
stance. Also isotropic group-to-group scattering is a commomuclear Data FilesENDF/B) and other sources.
assumption in multi-group diffusion theory, but cannot be
applied in the BNCT case where the beam has an obviou
direction. Thus, the anisotropic source terms were added intﬁl' NUMERICAL RESULTS
SP; equations in order to take into account both the aniso- Group fluxes were calculated in the PMMA phantom with
tropic first collision source and the anisotropic group-to-a MultiTrans SR code. The first collision source was ana-
group scattering correctly. lytically calculated from the treatment planning source

The PMMA phantom is a very convenient benchmark, asplane®>?* Transport cross sections were derived from the
it has been modeled by several different codes, includindUGLE-80 cross section libraf}.A calculation of the group
DORT,”®> MCNP4B?® and the BNCT treatment planning fluxes in 47 neutron groups with a MultiTrans S®de took
system SERA (http://esus.cs.montana.edddnct/manual/ 14 minutes with a normal desktop PC with 200 MHz Pen-
sec00.html)?” In the PMMA phantom epithermal flux is tium processor and 128 Mb memory, with the minimum oc-
thermalized, thermal maximum being about 2 cm depth irtree cell side length being 0.38 cmCNP4B and SERA calcu-

3.0e-14
2.5¢-14
® MCNP
v SERA
— @ DORT
2 20e-14 |
=]
& & measured with
% 5% uncert.
S 15e-14 Fic. 2. Calculated and measured depth curves of the
g 55Mn(n, y) reaction rate in the central axis of the cylin-
o drical PMMA phantom, with a 14 cm FiR 1 epithermal
o d
S 10e14 ! beam.
3
5.0e-15

0.0 T T T T T T T T T T T

depth in central axis (cm)
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MultiTrans

4.0e-13

® MCNP
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- ® DORT
S 30613
£ < measured with
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= Fic. 3. Calculated and measured depth curves of the
2 2013 | 197Au(n, y) reaction rate in the central axis of the cy-
3 lindrical PMMA phantom, with a 14 cm FiR 1 epither-
Ed mal beam.
1.0e-13

0.0 T | T T T T T T T T

depth in central axis (cm)

lations were performed on Sun Ultra60 SPARC stationthan 1% from the measured value, as thenp and SERA
MCNP4B was run for five days, resulting in over 150 million calculations differ less than 1% and 5% from the measured
particle histories with reliable statistics. WisErA, 10 mil-  5Mn(n, y) reaction rate, respectively. The measurement un-
lion particle histories were simulated in about one hour CPWsertainty for both'®’Au(n,y) and®Mn(n,y) reaction rates
time. Normally in treatment planning witBerA, 2 million is approximated to be 5%.
particle histories are considered to produce sufficient statis- From the comparison codes|CNP can be considered
tics. The statistical uncertainty in Monte Carlo methdils  most dependable as it is based on well-established and gen-
cluding Sera) is directly proportional to tally sizeserauses  erally reliable stochastic simulation methods. When calcu-
1 cn? voxels for tallying. It should be noted thaEra cal-  lated results by MultiTrans SRand MCNP are compared, it
culations with resolution comparable to a minimum octreeseems that MultiTrans SPunderestimates the calculated
cell side length of 0.38 cm would require approximately 18'°’Au(n, y) reaction rate at depths 1-3 cm up to 8%, but is
times longer running time to produce similar statistics tharin fairly good agreement within 1% with t/8Mn(n,y) re-
calculations with 1 critally size. action rate at depths 2—3 cm calculatedvmnp. The results
The **Mn(n,y) and **’Au(n, y) reaction rates were cal- given by different comparison codes differ somewhat from
culated from the group fluxes by using IRDF-90 dosimetryeach other, which is most likely due to different radiation
cross section’8 condensed into the BUGLE group structure transport methods.
with the programrLxPRO from the LSL-M2 package’! The It should be noted, that at the surface of the phan(ior®
calculated®Mn(n,y) and ®/Au(n,y) reaction rates in the cm depth a discrepancy between calculations and measure-
central axis of the PMMA phantom with a comparison toments exist. This is especially true fotMn(n,y) reaction
measurements and calculated resultsMayP4s, SERA and
DORT are presented in Figs. 2 and 3. In thienp and the
SERA calculations, as well as in the calculations by the Mul-

tiTrans SR code, the same unscaled treatment planning ™y 10°

source has been used, i.e., the source has been derived di- T 108 ;

rectly from theDORT calculations. It should be noted that for o |_‘ e

the treatment planning procedure, source intensity has been  § 107 1 L

adjusted foiserA based on activation foil measurements. An £ 105 ] mi-—-L £

unscaled source has been used here only to enable a pure ) e

computational comparison, and therA results presented in £ 10° 4 — ?g";m

this paper do not necessarily correlate to the final accuracy of g 104 ] | 3cm

the treatment planning procedure at the Finnish BNCT facil- S 10° - ‘égnc]"‘

ity. This comparison shows, however, that tHéAu(n,y) g 3

reaction rate calculated by the MultiTrans;Sf@de in 2 cm o L I B B R R R
S 10410102101 109 10* 102 10° 104 105 105 107

depth in phantomiin thermal maximum differs from the
measured value 3%, as tieNP and SERA calculations dif- energy (eV)

o o . .
fer 5% and 2.3/0 fror%f-,he measured r.eactlon r.ate’ reSpeCtlve%G. 4. Neutron spectra calculated with a MultiTrans; $Bde at different
Correspondingly thé*Mn(n, y) reaction rate in the thermal depths in the central axis of the cylindrical PMMA phantom, with a 14 cm

maximum calculated by the MultiTrans $€ode differs less  FiR 1 epithermal beam.
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MultiTrans
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I

@ H proton recoil dose [ i T central axis of the cylindrical PMMA phantom, with a

O N(n,p) dose 14 cm FiR 1 epithermal beam.
w total neutron dose
v gamma dose \%

dose rate (Gy/h)

TR TR

depth in central axis (cm)

rate: a MultiTrans SpPcalculation differs 16%McNP calcu-  1ess than 14% in 10 cm depth. However, the gamma dose
lation 14%, andsERA calculation 25% compared to the mea- rate calculated by the MultiTrans $Rode has a notable
sured®>Mn(n, y) reaction rate at the surface of the phantom.discrepancy compared to tm®RT calculation. It should be

One reason whgERA overestimate the reaction rate at the hoted that the gamma dose distribution calculatecbbrT
void interface might be in 1 citally voxel size. Thus, the has been verified with ionization chamber measurem@énts.
value is an average over the volume at the interface, not #he MultiTrans SR code seems to produce a much too flat
value at a specific point. WithicnP, on the other hand, the gamma dose distribution, compared to the correct one.
first (0 cm depth tally with actual dimensions of the activa- ~ The main component of the gamma dose arises from 2.2
tion foil has been defined into the void ar&t the PMMA  MeV photons induced by hydrogen neutron capture. The
phantom surfage The reason whycnp underestimates the mean free path of such photons is approximately 19 cm: for
reaction rate might be for instance in the source plane desuch photons the transport problem might not be optically
scription, e.g., the incident thermal flux is somewhat higherthick enough for a valid SPapproximation, and this could
in reality. cause the discrepancy. Another possible explanation might be

In the MultiTrans SR calculation, no void area has been some mistake in the code performance, for example with the
defined, and the surfac® cm depth value can only be photon cross sections, or some problem with the boundary
interpolated from the values inside the phantom. This cargonditions(with photong. However, as the gamma dose is
cause the overestimation of the reaction rate at the surface, the major component of the overall BNCT dose distribution,
a similar fashion wittsErA Another possible explanation for this problem definitely requires further studying.
the overestimation of the reaction rate at the void surface is
in the Marshak-like vacuum boundary condition used with a
SP; approximationt**° It is a well-known fact that with a
spherical harmonics method in general, no exact free surfaqgy coNCLUSIONS
boundary condition can be determin&d.

In Fig. 4 the neutron spectra calculated by the MultiTrans The results show that in the chosen BNCT phantom
SP; code is presented at different depths in the PMMA phanbenchmark, the total neutron dose rate to the ICRU adult
tom. Using corresponding conversion factors, the hydrogebrain calculated by the MultiTrans $Bode differs less than
proton recoil dose rate, nitrogen N@) dose rate and total 4% in 2 cm depth in phantorin thermal maximum from
neutron dose rate have been calculated from the spectra ftre DORT calculation. Results also show that the calculated
the ICRU adult brairt® both with DorT and MultiTrans SP **’Au(n,y) and*Mn(n,y) reaction rates in thermal maxi-
codes. Also the gamma dose rate has been calculated by batium differ less than 4% and 1% from the measured values,
codes. A comparison of the different dose rate componentgespectively, and are within the measurement uncertainty. As
calculated byporT and MultiTrans SR codes in the central expected, the deterministic MultiTrans $S€ode is over an
axis of the PMMA phantom is presented in Fig. 5. Accordingorder of magnitude faster than Monte Carlo codesth
to ICRU Report 24, an accuracy df5% in the delivery of  similar resolution, thus providing a very efficient new tool
an absorbed dose to a target volume is requiféthe neu-  for BNCT dose planning. At present, however, the gamma
tron dose rate calculated IpoRT and MultiTrans SPagree  dose component calculated by the MultiTrans 86de is not
within 4% in 2 cm depth in thermal maximum, and differ satisfactory, and requires further studying.
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ABSTRACT

In the novel MultiTrans SP; radiation transport code the advanced tree multi-
grid technique is applied to the simplified P; (SP;) transport approximation.
The tree multigrid is generated directly from stereolitography (STL) files
exported by computer-aided design (CAD) systems, thus allowing an easy
interface for construction and upgrading of the geometry. The deterministic
MultiTrans code allows fast solution of complicated three-dimensional
transport problems in detail, offering a new tool for calculation of quantities
of dosimetric interest. In order to determine the feasibility of a new code,
computational benchmarks need to be carried out. In this paper, an application
of the MultiTrans code to criticality problem is for the first time reported.

1. Introduction

Computer simulated spectra and other calculated quantities are always required as a
complement to various dosimetric methods. Measurements are often restricted to specific
locations, whereas particular interest might be in an area that cannot be reached directly by
the detector (e.g., inside a pressure vessel). Also, in order to estimate the neutron energy-
spectrum, it is often necessary to combine measured data with calculations. Computer
programs for radiation transport are based either on deterministic solution of the Boltzmann
transport equation or on stochastic simulation (i.e., Monte Carlo method). The Monte Carlo
method is extremely time consuming and often cannot present all radiation distribution
details. Deterministic methods are more efficient for solving radiation transport problems, but
in practice they often require approximations.

The spherical harmonics Py approximation is well-established for the Boltzmann
radiation transport equation [1]. However, the three-dimensional Py equations are very
complicated. Gelbard proposed in 1960 a simplification for the Py equations [2]. These
simplified Py (SP,) equations have historically been viewed with suspicion, as the original
derivation of the equations by Gelbard was theoretically weak. Only recently have SPy
equations had asymptotic and variational derivations, thus giving them a solid theoretical
base [3,4].

In order to solve elliptic differential equations (such as SPy equations, which are
composed of a coupled set of diffusion like equations) efficiently in three-dimensions, fast
iterative methods are required. A new deterministic MultiTrans SP; radiation transport code
has been developed at VTT [5,6]. It is based on a combination of the advanced tree multigrid
technique and the simplified P; (SP;) transport approximation.
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The MultiTrans code has been applied, for instance, to a simplistic two-group PWR
benchmark with a fixed source [5], and to phantom dose calculations in the Finnish boron
neutron capture therapy (BNCT) project [6]. In the latter case, the BUGLE-96 cross section
library [7] was used in the calculation of the neutron and photon flux in a phantom. Also gold
and manganese activation reaction rates were calculated for direct comparison with
dosimetric measurements, showing good agreement [6]. MultiTrans can also read coupled
electron-photon cross sections created by the CEPXS code [8], and has a mixing capability
for creating compound material cross sections from either the BUGLE-96 library or from the
CEPXS generated cross sections.

Any new code requires thorough testing and benchmarking. Until now MultiTrans has
been tested only on problems with fixed source. Implementation of an outer source iteration
method for multiplication eigenvalue problems has been a distinct objective. Two test cases
were chosen from the proposal of 3-D neutron transport benchmarks by the Osaka University
to NEACRP [9,10]. The first one is a small LWR with a core model of Kyoto University
Critical Assembly (KUCA), and the second one is a small FBR.

2. Materials and Methods

2.1. Theoretical background

In the MultiTrans code the SP; radiation transport approximation is used. SP; equations
form a coupled set of two second-order elliptic differential equations [3,4]. If one defines the
unknown

by (F) = @y (F) + 20, (7) (1)

where @, (7) is the scalar flux and ®, (7) is the P, moment term, the SP; equations in

matrix form (with superscript i as a material and superscript g as an energy group index) are

DV +o, 20, o, |7l ! o
—%O'ao —D2V2+0'02+%0'“0 D, —% ,

where the transport cross sections are defined by subtraction of the corresponding Legendre
component of the scattering cross section from the total cross section:

bR >() . (3)

sn

ct=07%-0
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The diffusion coefficients are defined by transport cross sections as
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Dy¥ =—— 4)
T30y
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350.%
The group source in Eq. (2) is defined as
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using standard multi-group neutronics notation. The source includes group-to-group
scattering terms and the fission source

G
S,(F) =2 vFoFOF () . (7)
g'=1

In the multigrid solution technique, the iteration procedure is accelerated by first solving
the problem on a coarser grid and then transferring data to finer grids, and vice versa, in so-
called multigrid cycles [11]. In the tree multigrid technique, an adaptive subdivision
procedure enables refinement of the calculation grid on material surfaces (see Fig. 2 for
example) or by computational demand. The tree-structure enables the modelling of
complicated geometries and surfaces accurately with only a limited number of mesh cells.

The three-dimensional octree grid, utilised in the MultiTrans code, is generated directly
from stereolitography (STL) files which can be exported from practically all computer-aided
design (CAD) systems. The adaptive tree structure leads to non-equidistant meshes, and a
proper difference scheme for estimating the derivatives has to be applied. In the MultiTrans
code the tree multigrid technique has been used to solve the SP; approximation by estimating
the Laplace operators in Eq. (2) by an integrated difference scheme [5,12].

The multiplication eigenvalue for criticality problems is solved by the MultiTrans code
with an algorithm similar to the standard source iteration method for multigroup diffusion
equations. First, some initial guess for the fission source and the multiplication eigenvalue is
set. Next, all the moment terms of the multigroup SP; equations are solved iteratively with
the tree multigrid technique, by starting from the highest energy group and proceeding
towards the lowest. Having done so, a new fission source

G
SPFE) =D vEaF O (F) (8)
g'=1

and a new multiplication eigenvalue

[s®@ar
1
o)

k(l)

&)
s d*r

are calculated, and a new sweep for solving the multigroup SP; equations is started. The
whole procedure is repeated until the multiplication eigenvalue or the fission source
converge. It is assumed that there is no upscattering. The convergence criterion is defined as

() _ qn-1)
S/ =8

(n)
Sf

<¢g and/or max

JRONy A
|————-—— <&, . (10)

k(n)

After the group flux values have been solved, it is possible to calculate dosimetric
quantities of interest by simply multiplying the group flux values by corresponding dosimetry
cross sections, derived for instance from the IRDF-90 library [13]. The accuracy of the
method depends on the broad energy group structure, the accuracy of the calculated group
flux values, the weighting technique used for deriving broad energy group cross sections, and
the uncertainty of the basic transport and dosimetry cross sections.
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2.2. Numerical benchmarks

The first chosen benchmark (Fig. 1) is a small 2-group LWR, labelled as model 1. Two
cases have been considered: control rod position empty (case 1) and control rod inserted
(case 2). The second chosen benchmark (Fig. 3) is a small 4-group FBR, labelled as model 2.
Two cases have been considered also in this second benchmark, with control rod position
filled with Na (case 1) and with control rod half-inserted (case 2). The details of the problems
are not repeated here: an interested reader can find e.g. the multigroup cross sections either in
the proposal or in the compilation report of the NEACRP 3-D neutron transport benchmarks
[9,10]. The three-dimensional tree multigrid (octree grid) used in MultiTrans calculations is
generated directly from STL-files exported from a CAD-model. Horizontal and vertical cross
sections of the octree grids of the models are shown in Figs. 2 and 4.

In numerical calculations by the MultiTrans code, a convergence criterion for the ke

value Eq. (10) has been set to £, =1e-4.
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For both calculated benchmarks, control rod worth is defined [9,10] to be the value

1

1

(11

kcfli'

case2 df casel

In the calculation of the region-averaged fluxes, the total production of the whole reactor
is normalised to unity [9,10],

G
> [yiopoi@dr . (12)
g=l

3. Results

The multiplication eigenvalue k. calculated by MultiTrans is given for cases 1 and 2 of
the small LWR benchmark in Table 1, and for the small FBR benchmark in Table 2. Also the
calculated control rod worth from k. values is given for both benchmarks, as well as the
Exact Monte Carlo results taken from the report of Takeda and lkeda [10]. The k.
eigenvalues calculated by MultiTrans agree well with the Exact Monte Carlo results (within
0.4%) except for the rod-out case (case 1) of the LWR benchmark with 2.6% difference,
which leads to a negative control rod worth.

Table 1. Multiplication factor k. and control rod worth for LWR benchmark.

Method Casel _ Case2 Control Rod Worth
Exact Monte Carlo 0.9780 0.9624 1.66 x 102
MultiTrans SP; 0.9521 0.9647 137x102

Table 2. Multiplication factor k.g and control rod worth for FBR benchmark.

Method Casel Case2 Control Rod Worth
Exact Monte Carlo 0.9732 0.9594 1.47 x 102
MulitiTrans SP; 0.9768 0.9625 1.52 x 10-2

The region-averaged group flux values calculated by MultiTrans for the FBR benchmark
cases 1 and 2 are given in Tables 3 and 4, respectively. Comparing to the Exact Monte Carlo
results reported by Takeda and Ikeda [10] (which are not repeated here), these region-
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averaged group flux values can be seen to differ most in group number 4 in the region of the
axial blanket (Fig. 3). The maximal difference between the MultiTrans and the Exact Monte
Carlo results for the FBR benchmark is found to be 9% in case 1, and 8% in case 2. All the
region-averaged flux values calculated by MultiTrans for this FBR benchmark are somewhat
lower than the Exact Monte Carlo results. In the core region the difference in both cases is
2% in all groups.

Table 3. Region-averaged group flux values for FBR benchmark case 1.

Group Core Radial Blanket Axial Blanket Control Rod
Position
1 4.1907 x 10°5 3.2401 x 106 5.0348 x 1070 2.5206 x 10-5
2 2.3648 x 104 2.9707 x 10-5 4.4820 x 10-2 1.6222x 104
3 1.6125x 104 3.1415x 1075 4.4074 x 1073 1.2351x 104
4 6.0957 x 106 1.9521 x 10-6 3.4514% 106 6.8232x 10-6
Table 4. Region-averaged group flux values for FBR benchmark case 2.

G Core Radial Axial Blanket Control Rod Control Rod

T Blanket Position

(o]

u

P

1| 42540%x10°5 | 3.2230x10°6 | 5.0877x 106 | 2.5461x 1075 | 1.6315x 10-2

21 23742x 104 | 2.9262%x 105 | 4.4701 x 105 | 1.6190x 10-4 | 8.8444x 10-5

3] 15920x 104 | 3.0682x10°5 | 43344x 105 | 1.2075x 104 | 4.9829% 105

4| 59106x 100 | 1.8975x 100 | 3.3499x 100 | 6.5105x 106 | 1.0764 x 106
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4. Discussion and Conclusions

Benchmark model 1 (small LWR) is known to have a very strong transport effect: e.g.
the diffusion solution gives a negative control rod worth for the problem [10]. It is worth
noticing, that also the SP; approximation produces a negative control rod worth. This is due
to the inaccurate result for the rod-out case. The same result can be seen in the paper by
Larsen, Morel and McGhee [3]. They conclude that the reason of the inaccurate result for the
rod-out case is the void region with long neutron streaming paths. However, the results
obtained for the benchmark model 2 (small FBR) agree well with the Monte Carlo results. As
the k. for the rod-in case in benchmark model 1 is also in good agreement with the Monte
Carlo result, one can conclude that the MultiTrans SP; radiation transport code is suitable for
multiplication eigenvalue problems. Nevertheless, in problems with void regions the SP,
results are substantially incorrect.

So far only the standard source iteration method has been implemented for MultiTrans.
It might be possible to accelerate the convergence rate of the outer iterations with a source
extrapolation method. There is also an ongoing project to make the octree grid generating
procedure in MultiTrans dynamic. The octree grid would be further refined during the
calculation based on truncation error estimation. Such an automatic mesh refinement would
ensure the desired level of accuracy in every part of the problem.

The calculated simple 3-D benchmark problems have demonstrated the applicability of
the new MultiTrans code to criticality problems. After the group fluxes are solved, it is
straightforward to calculate dosimetric quantities of interest by simply multiplying the group
flux values by corresponding dosimetry cross sections. Thus, the new MultiTrans code is
applicable to dosimetry problems also. The CAD-interface allows easy upgrading of the
geometry, and makes MultiTrans a flexible design tool, e.g. for planning dosimetric
experiments in complicated geometries. In the future, more relevant benchmarks such as
VENUS-3 might be conducted.
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Benchmark Experiment

ABSTRACT: The MultiTrans software has been developed at VTT Technical Research Centre of Finland
for 3D radiation transport problems. Adaptive tree multigrid technique is used as a deterministic solution
method. This enables local refinement of the calculation grid combined with the use of effective multigrid
acceleration on tree-structured nested grids: starting from a fast solution on coarse grid, successive solu-
tions are obtained on finer and finer grids. In the MultiTrans code, simplified spherical harmonics (SP3)
radiation transport approximation is used. In order to test the applicability of the new MultiTrans code to
reactor dosimetry problems, light water reactor pressure vessel steel (LWR-PVS) benchmark experiment
VENUS-3 (with partial length shielded assemblies) was chosen. The results show good agreement to the
experimental reaction rates of the VENUS-3 benchmark, demonstrating the applicability of the new Multi-
Trans code in reactor dosimetry.

KEYWORDS: MultiTrans, radiation transport, reactor dosimetry, tree multigrids, VENUS-3
benchmark

Introduction

Advanced 3D radiation transport methods allow detailed calculation of neutron flux distributions and
related quantities for internal parts of nuclear reactors. For instance, DPA (displacement per atom) rates are
important for estimation of embrittlement of reactor materials.

In reactor dosimetry, computational methods of radiation transport give important complementary
information to measurements. For such positions where dosimeters simply cannot be placed, one is en-
forced to rely on calculated quantities. Furthermore, dosimeters usually respond to some reaction-specific
neutron energies and therefore will not give complete information about the whole neutron spectrum. On
the other hand, in deterministic solution of the radiation transport, some approximations usually have to be
made—not only for the radiation transport equation, but also for the geometry and for the transport cross
sections—before numerical solution of the problem becomes feasible. Measured values give valuable
information about the accuracy of the computational (approximative) method and some estimate of the
general uncertainty of the calculated values.

MultiTrans is a deterministic radiation transport software developed at VTT Technical Research Centre
of Finland [1-3]. Multigroup simplified spherical harmonics (SP;) approximation of the Boltzmann trans-
port equation has been used to describe the transport process of neutrons through a host medium [4,5].
Adaptive tree multigrid technique has been utilized as an efficient numerical method to solve these SP;
equations.

Obviously there is a strong need to verify that any new code is performing as expected and suitable for
the intended scope of application. In order to test the applicability of the MultiTrans code to reactor
dosimetry problems, light water reactor pressure vessel steel (LWR-PVS) benchmark experiment
VENUS-3 (with partial length shielded assemblies) was chosen [6]. Comparison between the calculated
and experimental *®Ni(n,p),*®In(n,n’) and #’Al(n,«) reaction rates for all the measured detector posi-
tions of the 3D VENUS-3 benchmark is presented in this paper.

Manuscript received June 20, 2005; accepted for publication September 29, 2005; published December 2005. Presented at ASTM
Symposium on Reactor Dosimetry, 12th Volume on 8-13 May 2005 in Gatlinburg, TN; D. W. Vehar, Guest Editor.
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Materials and Methods

Smplified P; Approximation

The spherical harmonics Py approximation is well established for the Boltzmann radiation transport
equation [7]. However, Py equations are very complicated in 3D. In 1960 simplified Py approximation was
introduced by Gelbard ad hoc [8], but did not gain much popularity due to lack of solid theoretical
background. At present, it has been shown that SPy equations can have asymptotic and variational deri-
vations [4,5], and therefore the SPy approximation has attracted growing attention.

In the MultiTrans code SP5 radiation transport approximation is used [1]. The angular flux in 1D
Boltzmann equation is expanded as a series of Legendre polynomials up to order 3, and the orthogonality
of the base functions (when integrating over the space) is used to get a coupled set of diffusion like
equations for the expansion coefficients. The within-group equations for these coefficients are given in Eqs
1-4.

d
&q)%(X) + 03 PI(x) = (%) (1)
1d 2d
gd—X@%(x) + gd—X‘D%(X) +05PI(x) =0 ()
2d 3d
gd—xq’?(x) + gd—X‘D%(X) +0LPJ(x) =0 &)
3 d g g g
;&‘Dz(X) +03P3(x) =0 (4)

S(x) in the above equations is scalar source term in energy group g, and ®¥(x) are the Legendre
expansion coefficients of the angular group flux. S(x) and ®J(x) are components of 1 X G vector func-
tions, where G is the total number of energy groups in multigroup approximation. The group transport
cross sections are defined by subtraction of the corresponding Legendre component of the group scattering
cross section from the group total cross section: these group transport cross sections are given in Eq 5.

ol =0t 0% ®)

Generalized 3D equations, with a formal substitution of the 1D derivative with V operator, can be
written in second order form by solving odd-moments from Eqs 2 and 4, and then by substituting these
odd-moments into Egs 1 and 3. If one defines the unknown by Eq 6

DY(F) = DY) + 20Y(F) (6)

where ®J(r) is the scalar flux and ®(r) is the P, moment term of the group flux, the within-group SP;
approximation in second-order matrix form (with superscript i as a material and superscript g as an energy
group index) is given by Eq 7.

—-DoV?+a - 20 9| ¢ o 1
0 ' a0 2 a0 ) ] [(PO(F) ] — S,Q(F)[ , } 7)
~50a0 —DVo+ ot 5040 D, () -5
The diffusion coefficients depend on transport cross sections and are given in Egs 8 and 9.
, 1
Dg%= — 8
. 9
D39= . 9
> 35019 ®)

The scalar group source including fixed source, group-to-group scattering and fission source term is
given by Eq 10.
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G H r ~ ! ! g G ’ H ’ !
SUN=QUN+ 3 of I (D) -20§ ]+ -3 v df (D) (10)
g'=1,0'#g g'=1

Standard multi-group neutronics notation has been used above.

Tree Multigrid Technique

In the adaptive tree multigrid technique used in MultiTrans software, tree structured nested grids of
different coarseness are generated from the computer-aided design (CAD) model. The grid adapts to the
surface triangulation of each solid part of the CAD model by recursive subdivision of cubic cells. Each
cubic cell is conditionally divided into eight sub-cubes, which become the children cells of the parent cell.
Every children cell can become a parent and have their own children cells. This procedure is continued
until the desired accuracy in the geometry description is achieved. As a result, finest grid is obtained at
material borders.

The resulting cell system has a tree structure, in which the subdivisions form the branches and the
leaves are the children, which are not divided further. Two cells are said to be neighbors if their boundaries
are not disjoint but none of them contains the other. Neighbor cells are called face neighbors if they share
a common surface, side neighbors if they share a common line, and corner neighbors if they have a
common corner only.

The created nested grid structure, which is called an octree grid, is nonuniform. Therefore it is
important to construct a proper difference scheme that works on this nonuniform grid structure but is also
as simple as possible for inexpensive numerical solution. In order to simplify the construction of the
difference scheme, an additional constraint has been used in octree grid subdivision procedure: the ratio of
the size of every face neighbor cells is restricted to be at most 2, which makes the grid regular. This adds
up to the amount of cells to some extent, depending on the geometry, and therefore increases the problem
size, but on the other hand might also reduce the truncation error farther away from the material borders.

For the SP; radiation transport approximation in MultiTrans, an integrated difference scheme is uti-
lized [1]. In the integrated difference scheme the flux derivatives are approximated over each side of a cell
C by applying the Green’s first identity, Eq 11.

Jc V odv = Lc (n-V)®dA (11)

In Eq 11 n is the normal vector of the cell surface. When the face neighbor cells are same size, flux over
side of the cell can be approximated by using central difference, Eq 12.

1
(- V)d ~ 7 (@n= D) (12)

In Eq 12 above, h is the mesh size and @ and Py are the flux values in cell and it’s neighbor, respectively.
Otherwise, parent of the smaller cell is used, and the difference is given by Eq 13.

1
%(QN - ®pc), neighbor N is bigger than C

(n-V)d = i (13)
on (@ey = D), neighbor Nis smaller than C

In Eq 13 the value of the parent cells ®p) and Pp(y, is the average of their children’s values. The
discretized within-group SP5; approximation solved by MultiTrans code in iterative diagonal form is then
finally given by Eq 14.

~ Dgh¥(1i- V) + hiog 0 ]ivg[cﬁo]"gv'*l - [ 20, }"g*'JrhSS.ng[l}
> = (0) ~ )
0 - D1 V) + oy | [ @, |, O 28, - o, |, -2
(14)

For a fixed source, multigroup flux solution is obtained by first solving the above equation by Multi-
Trans for the first energy group (with the highest energy), and then using the obtained solution to calculate

Copyright by ASTM Int'l (all rights reserved); Mon May 7 09:43:42 EDT 2007
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FIG. 1—VENUS-3 benchmark geometry: (a) CAD model (water regions transparent), (b) horizontal cross
section of the octree grid 10 cm below the core mid-plane (with PLSA).

the source on next lower energy group. This procedure is continued in one sweep through all the groups
from highest energy to the lowest, taking group-to-group down-scattering into account at every step. If
up-scattering exist, however, several sweeps are required in order to get the correct converged solution. It
is also possible to solve a problem with fissile material without defining any fixed source, but doing a
criticality eigenvalue search instead. This procedure has been outlined in an earlier paper [3].

The octree algorithm automatically produces all the coarser grids. The sequence of nested fine and
coarse grids enables the use of multigrid acceleration method [9]. In a multigrid cycle, the solution strategy
recursively leads the discrete problem back to a similar one defined on the next coarser grid. On the
coarser grid the solution requires less iteration. The coarse grid solution interpolated to the finer grid can
then be used to accelerate the fine grid solution. In the MultiTrans code, all grid levels from coarsest (the
root cube) to the finest (the leaf cell representation) are used in nested iteration, producing solution on all
grid levels. The multigrid method in connection with the SP; equations is described in more detail
elsewhere [1].

VENUS-3 Benchmark

The VENUS Critical Facility is a zero power reactor located at SCK@CEN, Mol, Belgium. It has been
used to study LWR core designs and to provide experimental data for nuclear code validation. LWR-PVS
benchmark experiment VENUS-3 (with partial length shielded assemblies) is a computational 3D radiation
transport exercise of the OECD NEA based on the measured data in the experimental program conducted
in 1988 [6]. Nuclear Science Committee (NSC) expert group launched the computational VENUS-3
benchmark in 1997: about 14 independent benchmark calculations were supplied by eight institutions. The
results of this benchmark have been published by NEA [10]. The well-documented experimental and
computational data with detailed material and geometry specifications offers a good resource to verify the
calculations with any new transport code, such as MultiTrans.

In order to be able to generate the octree grid for the MultiTrans code, the VENUS-3 benchmark
geometry was first constructed with commercially available CAD software based on benchmark specifi-
cations [6], see Fig. 1(a). All material regions were modeled in detail, except that fuel pin, fuel cladding,
and water regions were homogenized over each fuel zone. The external regions outside the jacket inner
wall (air, jacket outer wall, reactor vessel, water, and reactor room) were left away from the model, as they
can be assumed to have no significant effect to the responses at the measurement points.

The geometry of each material region of the model was exported from the CAD software as a
stereolitography (STL) file. A three-dimensional tree multigrid (octree grid) was generated directly from
these STL-files, resulting in over 2.46 million cells. A horizontal cross section of the generated octree grid
is illustrated in Fig. 1(b), showing also the partial length shielded assemblies (PLSA) fuel region below the
core mid-plane.

The venus3.src file from NEA-1517/69 SINBAD-VENUS-3 distribution CD was used to generate a
fixed-source for MultiTrans calculation. Fission spectrum for 25U was taken from BUGLE-96 library [11].
BUGLE-96 library (version without up-scattering) was also used in generation of the material transport
cross sections in 47 neutron groups by MultiTrans for 26 different elemental material compositions in-
volved.
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FIG. 2—Ratio of calculated and experimental *®Ni(n,p) reaction rate in 244 detector positions.

For calculation of the reaction rates, *®Ni(n,p),***In(n,n’), and ?’Al(n,a) cross sections were con-
densed into the 47 BUGLE groups from IRDF-90 version 2 dosimetry library in SAND Il energy group
structure by using X333 utility program from the neutron metrology file NMF-90 [12] with combined
Maxwell, 1/E, and fission weighting spectrum. Resulting fission spectrum averaged dosimetry cross
sections were 105.7, 186.3, and 0.726 mbarn for Ni, In, and Al, respectively.

Results

Comparison of calculated and experimental reaction rates for VENUS-3 detector positions is given in Figs.
2-4.

In general, reaction rates agree well with the experimental values: the majority of the values are within
5 % for Ni and Al and within 7 % for In. The deviation is larger than 20 % only in 2 detector positions of
Ni in uppermost PLSA region, and in one detector position of In and Al in core barrel near the corner of
the PLSA. According to the final NEA report of the VENUS-3 computational benchmark, a systematic
overestimation of measurements (more than 5 %) occurs at the extreme top and bottom locations of the
active core region [10]. This can partly explain the large deviation of the C/E values for the two Ni
detector positions (=22 % for position 153 and —21 % for position 167). However, the overestimation of
the calculated In and Al reaction rates near the corner of the PLSA is probably due to the SP; approxi-
mation, which does not produce accurate results when the solution behaves more transport-like.

115In(n,n’)
1.3
1.2 1
1.1 1
w
(\) 1,0 '
0.9 1
0.8 -

07

1 11 21 31 41 51 61 71 81 91 101
detector position number

FIG. 3—Ratio of calculated and experimental *°In(n,n’) reaction rate in 104 detector positions.
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FIG. 4—Ratio of calculated and experimental 2’Al(n,«) reaction rate in 38 detector positions.
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The MultiTrans calculations were performed on desktop PC running Windows XP with 3.0 GHz P4
CPU and with 3.62 GB of RAM. Calculation time was 70 min for 47 BUGLE neutron groups.

Conclusions

The MultiTrans results show good agreement to the experimental reaction rates of the VENUS-3 bench-
mark, demonstrating the applicability of the new MultiTrans code in reactor dosimetry.
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Abstract

Detailed modeling of photon and electron transport is advantageous in radiotherapy and dosimetry. MultiTrans
radiation transport code is based on tree multigrid technique and SP; approximation. The standard SP; approximation
has been extended into a form that takes into account anisotropic group-to-group scattering. A first collision source
method has been implemented. Applicability range of standard and extended SP; approximations in coupled
photon—electron transport problems is examined by comparing calculated doses with deterministic MultiTrans and

stochastic EGS4 radiation transport codes.
© 2006 Elsevier Ltd. All rights reserved.

Keywords: MultiTrans; EGS4; Photon—electron transport

1. Introduction

Application of the traditional dose calculation methods
in inhomogeneous medium may generate inaccurate
results. Algorithms based on equivalent tissue—air ratio
method or other purely analytic methods are often
sufficient for the primary radiation field, but fail to treat
higher order of scattered particles. Lateral electronic non-
equilibrium conditions can cause errors greater than 5%
for analytical systems (Wong and Purdy, 1990; Hunt
et al., 1997). Better results can be achieved by more
detailed modeling of photon and electron transport.

EGS4 Monte Carlo code has been applied to photon
and electron radiation transport problems (Nelson et al.,
1985; Luxton and Jozsef, 1999). However, stochastic
Monte Carlo methods are very time consuming in

*Corresponding author. Tel.: +358207226357;
fax: + 35820722 6390.
E-mail address: petri.kotiluoto@vtt.fi (P. Kotiluoto).

getting sufficient statistics. Especially tracking of elec-
trons is tedious, as electron transport is dominated by
the long-range Coulomb force, resulting in large
numbers of small interactions.

With deterministic methods it is possible to solve a
detailed flux distribution considerably faster than with
stochastic Monte Carlo methods. The price is that it is
often necessary to do some approximations to determi-
nistic transport equation: these simplifications affect the
accuracy of the computational results.

A novel MultiTrans radiation transport code has been
developed at VIT Technical Research Centre of Finland,
based on efficient deterministic tree multigrid technique
(Kotiluoto, 2001; Kotiluoto et al., 2001). In the tree
multigrid technique, the calculation mesh is refined only
when required from geometric or computational require-
ments, leading to tree structured nested grids with refined
mesh size, see Fig. 1. In multigrid cycles, the data are
transferred from coarser grids to finer grids and vice versa
(Wesseling, 1992). The multigrid acceleration enables

0969-806X/$ - see front matter © 2006 Elsevier Ltd. All rights reserved.
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Fig. 1. Triangularized segmented CT image (left) and the cross section of the corresponding octree grid (right). Human head is just an

example, the actual shape of the organs can be whatsoever.

high-speed solution of complicated three-dimensional
radiation transport problems.

Boltzmann transport equation for photons can be
approximated by a simplified low-order spherical
harmonics SP; approximation (Brantley and Larsen,
2000; Kotiluoto, 2001). Electron transport, on the other
hand, can be approximated by the Boltzmann-CSD
(continuous-slowing-down) equation. The CSD-term
can be further included into electron pseudo-cross
sections and the pure Boltzmann equation and its SPj
approximation applies (Josef and Morel, 1998).

The second-order form of the SP; approximation, which
is normally used and which we call the “standard”
approximation, has been mostly applied in the field of
nuclear physics to model neutron transport. This standard
approximation does take anisotropic scattering into account
within each energy group, but does not involve any
anisotropic source terms or anisotropic group-to-group
scattering. Therefore, we have extended the standard
formalism to also include these anisotropies to the model.

The SP; approximation is only valid for problems that
are optically thick, are scattering dominated, and have a
scattering process that is not extremely forward peaked
(Larsen et al., 1996). If there are low-density material
regions such as air cavities, the SP; approximation will not
be adequate. In addition, a low-order spherical harmonics
approximation is applicable only to problems in which the
angular flux is a weak function of angle. In medical physics
problems there is often a strong anisotropy in angular
photon flux (with an incident photon beam for instance)
which makes the direct application of the SP; approxima-
tion unjustified. However, by treating the uncollided flux
with the first collision source method, the resulting collided
flux will be (at least to some extent) weaker in angle and
the SP; approximation might become justified.

Aim of the present study has been to test MultiTrans
code in well-defined homogeneous and heterogeneous

V/2

photon—electron transport problems, in order to determine
more quantitatively the applicability range of the standard
and the extended SP; approximations. The results will show
that the SP; approximation has the expected limitations and
that the accuracy of the method is not enough e.g., for
clinical use in treatment planning. We will discuss
possibilities to improve the accuracy or to combine this
method in effective manner with Monte Carlo technique.

2. Materials and methods
2.1. The extended SP; transport approximation

The “standard” SP; approximation (Larsen et al., 1996;
Brantley and Larsen, 2000) includes anisotropic within-
group scattering (up to Legendre order 3), but can only deal
with isotropic (scalar) sources and with isotropic group-to-
group scattering. Therefore, an attempt is introduced herein
to include anisotropic sources and anisotropic group-to-
group scattering into the SP5 approximation. This is done in
a similar formal manner as the original derivation of the
standard equations by Gelbard: the only difference is that
also source terms are expanded as a Legendre series up to
order 3. The second-order within-group SP; equations then
becomes (with group index g):

—DyV? + 0,49 —2040 " ®(7) "
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The variable @y(F) is defined as

Po(7) = Do(F) + 2P2(7), )

where @y(7) is the scalar flux and @,(¥) the second-order
moment term of the angular flux Legendre expansion. The
group transport cross sections are defined by subtraction of
the corresponding Legendre component of the group
scattering cross section from the group total cross
section:

o =0ol -9 nx0. ©)
The diffusion coefficients are defined by the transport cross
sections as
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where Q,(F) are the group source Legendre expansion
terms, and anisotropic group-to-group scattering is taken
into account through the sum terms.

The first-order derivatives on the right-hand side of
Eq. (1) are in this form problematic for the numeric
solution, as they distort the positively definite nature of
the second-order SP; approximation. By using the first-
order transport equations for the odd-moment terms, it
is possible to transform Eq. (1) into form
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This equation is called hereinafter as an extended SP;

approximation. The group source terms Sl{g(ﬂ and
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where these odd order source moment terms depend on
the second-order derivatives of the even flux moment
terms, and are much easier to solve numerically. The
same material interface conditions as for the standard
approximation apply (Brantley and Larsen, 2000).

For spatial discretization of the transport equations
on the non-uniform but regular octree grid (see Fig. 1),
an integrated difference scheme has been used, described
in detail elsewhere (Kotiluoto, 2001).

2.2. The first collision source method

First collision source method has been used in source
processing. In the first collision source method the
uncollided flux (the flux of photons that have undergone
zero collisions) is solved analytically. This uncollided
flux is then used to generate the distributed fixed source
terms for the collided flux. The collided flux can be
solved by the SP3 approximation with vacuum boundary
conditions (Brantley and Larsen, 2000). Total flux is
then calculated as a sum of the collided and uncollided
flux for each energy group. The collided flux is more
isotropic than the uncollided flux, and can thus be better
approximated by a low-order spherical harmonics
expansion.

For an isotropic point source the first collision source
becomes

e PR
Qoq(_) = Uq()qj( s) (10)

I

where ¢7(7) is the point source strength in energy group
g and B(7,7;) is the number of mean-free-paths between
the source point 7 and point 7. In this case, the higher
moment terms cannot be taken into account with the
SP; approximation.

For a monodirectional incident boundary surface flux,
the first collision source moment terms are

0H(F) = o9,¢/(F)e P (7 —7y)le., (11)
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where ¢9(7y) is now the surface source strength in energy
group ¢g. The rotational symmetry of the SP; equations
has been used to make the incident monodirectional
beam oriented to z-direction.

2.3. Cross sections and energy deposition

The electron pseudo-cross sections used in MultiTrans
calculations were created by CEPXS program (Lorence
et al., 1989). Multigroup photon—electron cross sections
in 35 photon groups and 35 electron groups were output
for all elements with full coupling. The protons are
treated as electrons for simplicity as protons have
identical transport behavior (only the charge is not
conserved in this manner). In full coupling, not only
photons can create electrons and protons (down-scatter
from photon groups to electron groups), but also
electrons and protons can create photons (up-scatter
from electron groups to photon groups). Energy groups
ranged from 1keV to 20 MeV. The dose was calculated
by using group energy deposition cross section Xg,
(MeV cm™!) available from CEPXS library.

The models used in CEPXS are described in detail
elsewhere (Lorence et al.,, 1989). However, it is worth
noticing that CEPXS does take into account in electron
and positron interactions: the emission of bremmstrah-
lung, positron annihilation, energy-loss straggling (for
catastrophic collisions and radiative events), and knock-on
production (i.e., of going beyond the CSD approximation).
Also impact ionization and relaxation from K, L1, L2, L3,
and average M shells is considered. For photon interac-
tions, incoherent scattering, Compton electron production,
photoelectric absorption and production, and pair absorp-
tion and production are taken into account.

3. Numerical results
3.1. MultiTrans and EGS4 in homogeneous test cases

As a first homogeneous test case, a water sphere with
S50cm radius and with internal monoenergetic photon
point source in center of the sphere was chosen. Luxton
and Jozsef (1999) have published updated comparison
data for this case.

The dose to water was calculated by MultiTrans code
for 25-1750keV monoenergetic photon point sources
using standard SP; approximation. The calculated dose
is presented for different source energies up to 700 keV
in Fig. 2, with an EGS4 comparison. The dose has been
multiplied by a factor of distance from the point source
squared, in order to make the general behavior visible.
In EGS4 simulations the results of Luxton and Jozsef
(1999) were reproduced.

The MultiTrans results show that the dose agrees
rather well with 25, 35, 70 and 125keV energies, which
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Fig. 2. Radial dose distribution to water from monoenergetic
photon point sources.

have the maximal difference of 6% compared to EGS4
results. However, with higher energies the results start to
disagree more: the maximal difference between Multi-
Trans and EGS4 results is up to 18% with 1.75MeV
source energy, in about 10cm distance from the point
source.

As a second homogeneous test case, a water cylinder
exposed to an external monoenergetic monodirectional
photon beam (in + z-direction parallel to the cylinder
axis) was chosen. The diameter of the cylinder was 80 cm
and the length was 1 m. The external photon beam was
square shaped and had side length of 125 mm. The used
photon source energies were 0.25, 0.7, 2.5, 7, and
17.5MeV. We performed EGS4 Monte Carlo simula-
tions with a simple user code with the following
parameters: ECUT = 1.0MeV and PCUT = 0.1 MeV.
The MultiTrans calculations were done with both the
standard and the extended SP; approximations. Com-
parison with the results calculated by the MultiTrans
and the EGS4 is presented in Fig. 3 for depth profiles
along the beam center line for source energies 0.25, 0.7,
2.5, and 7MeV. In Fig. 4 also off-axis ratios in 10cm
depth with photon source energy of 2.5MeV are
compared.

The results start to disagree more at higher energies,
as expected. The extended SP; approximation seems to
disagree slightly more than the standard approximation
from the absolute value of EGS4 solution in greater
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depths at higher energies, but on the other hand, seems
to much better duplicate the shape of the depth—dose
curve and the position of the dose build-up maximum.
Also when comparing the off-axis ratios, the extended
SP; approximation seems to better reproduce the
correct profile shape and estimate the dose outside the
beam.

3.2. MultiTrans and EGS4 in a heterogeneous test case

In order to study the computational effect of
heterogeneity, a 2cm thick lead disc with 13cm radius
was placed into a water cylinder in 5-7cm depth. The
diameter of the water cylinder was 40 cm and the length
was 50cm. The cylinder was exposed to monoenergetic

2.0e-11

—»— SP, extended
—-— SP, standard

dose per source photon (Gy)

30 60

depth (cm)

40

Fig. 3. Depth dose distribution to water along the beam center
line (x = y = 0) from square shaped 0.25, 0.7, 2.5, and 7MeV
monoenergetic monodirectional photon beam sources with
125 mm length of side.

—— 8P, extended
SP, standard
EGS4

OAR (%)

6 7
off-axis distance (cm)

Fig. 4. Off-axis ratio (OAR) of dose distribution to water in

10cm depth from square shaped 2.5MeV monoenergetic

monodirectional photon beam source with 125mm length of
side.
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Fig. 5. Depth dose distribution from 0.25, 0.7, and 2.5MeV
monodirectional photon beam source with 5cm radius. Lead
disc as heterogeneity in 5-7cm depth in water cylinder.

monodirectional photon beam (in + z-direction parallel
to the cylinder axis) with 5cm radius.

When performing the Monte Carlo calculations for
this heterogeneous test case we used the DOSRZ user
code which is included in the EGS4 distribution. The
following transport parameters were used: ECUT =
0.521MeV and PCUT =0.001 MeV. The statistical
uncertainty in the doses was less than 1.5% (1 SD) in
all regions in the scoring geometry.

The results calculated by MultiTrans on symmetry
axis of the cylinder for 0.25, 0.7, and 2.5MeV circular
photon beams with 5Scm radius are presented in Fig. 5
for the standard and the extended SP; approximations,
with a comparison to results obtained by EGS4.

The results show good agreement at low energies. With
2.5MeV energy and above, the standard SP; approxima-
tion seems to overestimate the dose near the vacuum
surface. Also at higher energies, both the standard and
the extended approximation seem to have too smooth
dose curves at material interfaces, and especially miss the
reduction of dose right after the lead disc.

4. Discussion and conclusions

The SP; approximation of the radiation transport has
some well-known limitations, such as both the particle
absorption probability and the particle escape prob-
ability from the system should be <0.5, and the mean
scattering cosine should not be too close to unity
(Larsen et al., 1996). Also, when the system is
heterogeneous, the transport solution should have only
weak tangential derivatives at material interfaces (Lar-
sen et al, 1996). For problems that have strong
multidimensional transport effects the SP; approxima-
tion is less accurate (Larsen et al., 1996). It is also well
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known that with spherical harmonics method, in
general, no exact vacuum boundary condition can be
determined (Duderstadt and Martin, 1979).

In this paper we have extended the formulation of the
SP; approximation to better take into account the
anisotropic scattering and the first collision source
terms. From the presented results we conclude, that to
a certain degree, this extended SP; approximation seems
to be advantageous when compared to the standard
formulation. However, with high photon energies, the
accuracy of both standard and extended approximations
is rather poor, and the method is not applicable for
treatment planning in conventional radiotherapy, where
the uncertainty of the dose to the patient should not
exceed 5% (ICRU, 1976).

One possibility to improve the accuracy of the
MultiTrans code would be an implementation of a
better radiation transport approximation, such as (non-
simplified) Py approximation. It should also be advan-
tageous to use higher order SPy approximations for the
photon transport, such as SPs and SP; (on the other
hand, for the electrons, a simple diffusion theory might
be enough). Within the scope of this study we did not
consider any of these higher (or lower) order approx-
imations, but such an investigation should clearly be
done. The extended formulation we have presented in
this paper could be easily applied also to the higher
order SPy approximations. However, based on the SP;
results and the limitations of the SP, approximations, in
general, the use of such approximations alone in clinical
photon—electron treatment planning problems seems
unrealistic.

One possibility would be to combine deterministic
solution with the Monte Carlo method. Due to long-
range Coulomb force, electron transport is characterized
by large numbers of small interactions, which is the
reason why electron tracking is handled very slowly by
Monte Carlo method. However, the angular flux
distribution of secondary electrons should be in most
cases only smoothly dependent on angle, and could
therefore be better approximated by low-order spherical
harmonics expansion. Thus, Monte Carlo method could
be used for accurate photon transport and the SPj
approximation for the subsequent quick solution of
electron transport in detail. This combination of two
different methods could result in both fast and accurate
approach to problems with electronic non-equilibrium
conditions.
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three dimensions, and generally requires the use of sophisticated computer
codes.

In this work, a new deterministic radiation transport code, MultiTrans,
has been developed by using the adaptive tree multigrid technique and the
simplified spherical harmonics approximation. The usefulness of the new
code has been indicated by verifying and validating the code performance
for different types of radiation transport problems.
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