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Abstract 

This study seeks to shed new light on the complex relationship between patents 
and innovations that has remained extremely elusive thus far. The objective of 
the present study is to contribute to our understanding of which innovations are 
patented – and which are not – by analyzing the patenting decision for circa 800 
Finnish innovations. With the help of econometric methods, the study seeks to 
shed new light on the question of how the propensity to patent an innovation is 
affected by the characteristics of the innovation, the market, and the innovating 
firm. 

For empirical purposes, the propensity to patent is defined as the fraction of 
innovations for which at least one patent application is filed, while an innovation 
is defined as an invention that has been commercialized on the market by a 
business firm or an equivalent. The innovation-level model for the propensity to 
patent is derived in the spirit of random utility models. The emerging probit 
model is estimated on a sample of 791 Finnish innovations using a quasi-
maximum likelihood estimator called the partial maximum likelihood estimator, 
which allows for within-firm correlation in the data. 

The data sample of 791 Finnish innovations used in the study is drawn from the 
Sfinno database compiled at VTT Innovation Studies (formerly VTT Group for 
Technology Studies). In an effort to compile the Sfinno database, a systematic 
review of 18 carefully selected trade and technical journals from the period 
1985–1998 has been complemented with a review of annual reports of large 
firms from the same period as well as with expert opinion-based identification of 
innovations. Since the Sfinno approach heavily relies on public sources in the 
identification of innovations, it is clearly more conducive to studying product 
than process innovations. Hence innovations only developed for the firm’s 
internal use are not included in the Sfinno database. 
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The results from the econometric analysis indicate that various characteristics of 
the innovation, the market, and the innovating firm have a significant effect on 
the propensity to patent. First, the estimation results suggest that larger, i.e. more 
novel and significant, innovations are patented more frequently than smaller 
ones. Second, technologically very complex innovations appear to be patented 
less often than others, while the fragmentation of intellectual property rights to 
cumulatively developing technology seems to entail high propensities to patent. 
Third, the results indicate that the propensity to patent varies across technology 
classes and declines with product market competition. Fourth, collaboration with 
scientific institutions appears to have a positive impact on the propensity to 
patent, while the estimations fail to produce evidence that public R&D support 
or collaboration with other types of partners would affect the propensity to 
patent. Finally, there appears to be a U-shaped relationship between firm size 
and the propensity to patent, which can be attributed to a relatively large extent 
to economies of scale in the patenting activity as well as to the relatively 
important role of patenting in start-up ventures. 
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1. Introduction 

The patent system is one of the main instruments of public policy that can be 
used to affect the allocation of resources for innovative activities and the 
diffusion of the results of those activities. As the role of innovation and 
technological change in economic development and growth has received 
increasing attention among economists since the seminal contributions of Joseph 
Schumpeter (1912, 1942) and Robert Solow (1956, 1957)1, economists have also 
become more and more interested in the implications of the patent system for 
innovation and technological change. 

As Nelson (1959) and Arrow (1962) point out, the distinctive characteristics of 
knowledge as an economic good, such as its public-good properties, can severely 
limit the innovators’ ability to appropriate the social value of their innovations in 
a competitive economy, thus leading to underinvestment in R&D2. When the 
social value of an innovation spills over to other economic agents as enabling 
information or consumer surplus, the private incentives to innovate are diluted. 
The patent system provides a possible – though imperfect – means for mitigating 
this market failure (see, e.g., Wright 1983; Gallini and Scotchmer 2001; and 
Scotchmer 2004 for discussions on the relative merits of patents vis-à-vis other 
solutions to the appropriability problem). The traditional reward theory of 
                                                        

1 Growth accounting (e.g., Abramovitz 1956; Solow 1957), the new growth theory (e.g., 
Romer 1986; Lucas 1988), and evolutionary economics (e.g., Nelson and Winter 1982) 
have all identified technological development as the primary driver of economic growth. 
Moreover, economic historians such as Landes (1969), Rosenberg (1982), and Mokyr 
(1990) have emphasized the role of technological change in the processes of economic 
development and growth. 
2 The theoretical literature on R&D under rivalry implies that when firms race to be the 
first to develop a given innovation in winner-take-most or winner-take-all settings or 
when new innovations cannibalize the profits of rivals in a process of Schumpeterian 
creative destruction, private firms may have an incentive to over-invest in R&D relative 
to the social optimum (e.g., Scherer 1967; Barzel 1968; Kamien and Schwartz 1972; 
Loury 1979; Lee and Wilde 1980; Dasgupta and Stiglitz 1980a, 1980b; Fudenberg et al. 
1983; Tandon 1983; see also Tirole 1988; and Reinganum 1989 for surveys of this 
literature). However, empirical investigations into the private and social rates of return to 
R&D lend support for the underinvestment argument and show that the social rate of 
return generally exceeds the private one (e.g., Mansfield et al. 1977; Bernstein and 
Nadiri 1988, 1989; Jones and Williams 1998, 2000; see also Griliches 1992, 1995, 1998; 
and Hall 1996 for surveys of the relevant literature). 
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patents holds that patents are needed to encourage investment in innovative 
activities. The patent system rewards innovators by granting temporary 
monopolies in the form of legal rights to exclude others from commercially 
exploiting the patented inventions3. This function of the patent system has 
dominated much of the economic literature on patents, but other rationales for 
patent protection have also been proposed4 (see, e.g., Mazzoleni and Nelson 
1998a, 1998b; Gallini 2002; and Langinier and Moschini 2002 for reviews of the 
economic rationale for patent protection). 

1.1 Patenting decision and the propensity to patent 

To patent or not to patent: that is the question innovators face when they succeed 
in developing novel products or processes. The innovators need to contemplate 
whether it is better to seek patent protection or strive to appropriate returns to 
innovation through other means such as secrecy, first mover advantages, and 
complementary capabilities. In the theoretical economic literature on patents, 
this dilemma is modeled as a profit-maximizing choice between patenting and 
not patenting5,6 (e.g., Horstmann et al. 1985; Choi 1990; Scotchmer and Green 

                                                        

3 The maximum duration of a patent is generally twenty years from the filing of the 
application, and in order to maintain the right for the maximum period, the patent owner 
must also pay the renewal fees. For more information on intellectual property law, see 
e.g. WIPO (2004). 
4 The patent system can, for instance, facilitate the diffusion of new technologies by 
reducing transaction costs in the markets for technology (e.g., Ordover 1991; Arora et al. 
2001), help to avoid socially wasteful innovation races by providing broad property 
rights for initial inventions that open up possibilities for further innovations (e.g., Kitch 
1977), and encourage dissemination of innovative knowledge by rewarding disclosure 
with legal monopoly (e.g., Denicolò and Franzoni 2003). 
5 Firms may also find it optimal to randomize on the patenting decision (see, e.g., 
Horstmann et al. 1985 and Langinier 2005). 
6 Much of the theoretical work on patents leaves the decision to patent unmodeled and 
assumes that all (patentable) innovations are patented. This approach is adopted, e.g., in 
Nordhaus (1969, 1972); Scherer (1972); Kamien and Schwartz (1974); Tandon (1982); 
Gilbert and Shapiro (1990); Klemperer (1990); Denicolò (1996, 1999); Wright (1999); 
and Takalo (2001), who study patents in the context of one-time innovation, and in 
Chang (1995); Green and Scotchmer (1995); Matutes et al. (1996); Scotchmer (1996); 
Van Dijk (1996); O´Donoghue et al. (1998); Denicolò (2000); and Denicolò and 
Zanchettin (2002), who study patents in the context of cumulative innovation. 
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1990; Waterson 1990; Gallini 1992; Harter 1994; Saarenheimo 1994; Takalo 
1998; Denicolò and Franzoni 2003, 2004; Anton and Yao 2004; Langinier 2005; 
Kultti et al. 2007). As a result of such deliberate decision-making by innovators, 
some innovations are patented while others are not; thus the propensity to patent, 
i.e. the fraction of innovations that are patented, is positive but less than one. 

Various scholars have noted that the propensity to patent differs across 
industries, firms, and kinds of innovations (e.g., Comanor and Scherer 1969; 
Pavitt 1985; Basberg 1987; Griliches 1990; Patel and Pavitt 1995; Archibugi and 
Pianta 1996; Kleinknecht et al. 2002; Van der Panne and Kleinknecht 2005). 
However, precious little is known about the origins of such differences, 
especially at the level of innovations, and several issues remain ambiguous in 
both theoretical and empirical literature on the propensity to patent. 

Much of the theoretical work that incorporates the patenting decision is 
primarily concerned with the optimal design and welfare effects of the patent 
system on a very general level (e.g., Scotchmer and Green 1990; Waterson 1990; 
Gallini 1992; Takalo 1998; Denicolò and Franzoni 2003, 2004; Kultti et al. 
2007). Hence most theoretical models abstract from the heterogeneity of 
industries, firms, and innovations, and provide relatively little insight into the 
determinants of the differences in the propensity to patent. And when relevant 
predictions emerge from the theoretical work, they can be very sensitive to the 
assumptions of the specific models. The Anton and Yao (2004) model, for 
instance, implies that small innovations are patented while large innovations are 
kept secret, whereas the Horstmann et al. (1985) and the Denicolò and Franzoni 
(2003) models arrive at the opposite conclusion7. Consequently, empirical 
investigation of the decision to patent is warranted for testing such contradictory 
hypotheses and for shedding new light on the determinants of the propensity to 
patent. 

                                                        

7 Following the relevant theoretical literature (Denicolò and Franzoni 2003; Anton and 
Yao 2004), the term size (large vs. small) of an innovation is adopted in the present study 
instead of relatively synonymous alternatives such as the radicalness (radical vs. 
incremental) of an innovation. Issues related to the definition and measurement of the 
size of innovations will be discussed in Chapter 3. 
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Empirical investigations such as Scherer (1965, 1983), Schmookler (1966), 
Taylor and Silberston (1973), Bound et al. (1984), Mansfield (1986), König and 
Licht (1995), Arundel and Kabla (1998), Duguet and Kabla (1998), Licht and 
Zoz (1998), Brouwer and Kleinknecht (1999), Cohen et al. (2000), Hall and 
Ziedonis (2001), and Arora et al. (2003) are important contributions to our 
understanding of the variations in the propensity to patent. However, these 
studies have been confined to the use of industry and firm level data, and we 
have very little idea of how the propensity to patent varies across different 
innovations8. Moreover, due to different and sometimes problematic definitions 
of the propensity to patent in these studies, the results are not readily 
comparable, and when comparisons are attempted, contradictory conclusions 
seem to emerge. The results of Schmookler (1966), Taylor and Silberston 
(1973), and Bound et al. (1984), for instance, suggest that the propensity to 
patent decreases with the scale of activities, while Mansfield (1986), Arundel 
and Kabla (1998), Duguet and Kabla (1998), and Arora et al. (2003) find support 
for the opposite conclusion. Hence further empirical research is required to 
broaden and deepen our understanding of the variations in the propensity to 
patent. 

De Melto et al. (1980), Saarinen (2005), and Van der Panne and Kleinknecht 
(2005) are exceptions in that they provide information on the variations in the 
propensity to patent across innovations. These studies, however, do not take the 
analysis of the propensity to patent very far. De Melto et al. (1980) and Saarinen 
(2005) address differences in the propensity to patent in the context of Canadian 
and Finnish innovations, respectively, by cross-tabulating the percentage of 
innovations patented against other variables of interest. Van der Panne and 
Kleinknecht (2005) seek to take the analysis a step further by analyzing a sample 
of Dutch innovations. However, their logit analysis of factors affecting the 
propensity to patent an innovation is confined by a limited number of 
observations (N = 216) and explanatory variables. The findings emerging from 
the empirical literature on the propensity to patent will be reviewed in Chapter 2. 

                                                        

8 Arundel and Kabla (1998) and Cohen et al. (2000) are exceptions in that they 
differentiate between product and process innovations. 
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The variations in the propensity to patent are not a trivial matter, but they do 
have important implications for researchers and policy makers with an interest in 
innovation policy. To begin with, a more thorough understanding of the 
differences in the propensity to patent across industries, firms, and kinds of 
innovations should be of great value to researchers, policy makers, and others 
who depend on patent data in drawing conclusions about innovation and 
technological change. The fact that not all innovations are patented is often 
pointed out as a major limitation to the use of patent statistics as an economic 
indicator of innovative activities (see, e.g., Acs and Audretsch 1989; Griliches 
1990; Archibugi and Pianta 1996; Hall et al. 2001; Jaffe and Trajtenberg 2002; 
Kleinknecht et al. 2002), and new information on the variations in the propensity 
to patent could clearly advance our understanding of what patent statistics really 
measure. Whether small innovations are patented while large ones are kept 
secret, as suggested by Anton and Yao (2004), or vice versa, as suggested by 
Horstmann et al. (1985) and Denicolò and Franzoni (2003), should have major 
implications for the utilization of patent data in economic research. Moreover, 
understanding the relationship between firm size and the propensity to patent is 
essential in interpreting empirical studies on the Schumpeterian hypotheses9 that 
use patents as a measure of innovation (see Kamien and Schwartz 1982; Cohen 
and Levin 1989; and Cohen 1995 for surveys of the empirical work on the 
Schumpeterian hypotheses). 

Furthermore, an innovation-level investigation of the propensity to patent could 
provide information about the extent to which the patent system is utilized by 
different firms to appropriate returns to different innovations. The variations in 
the propensity to patent are interesting, for instance, in the context of the 
contract theory of patents, which holds that the purpose of the patent system is to 
encourage dissemination of innovative knowledge by rewarding disclosure with 
legal monopoly. Denicolò and Franzoni (2003) find that the disclosure rationale 
alone suffices to justify the existence of the patent system. Scotchmer and Green 
(1990), Denicolò and Franzoni (2004), and Kultti et al. (2007) suggest that, in 
general, patenting is socially preferable to secrecy, whilst the survey results of 

                                                        

9 Two famous hypotheses associated with Schumpeter (1942) claim that (1) innovation 
increases more than proportionally with firm size and (2) there is a positive relationship 
between innovation and market concentration. 
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Cohen et al. (2000) imply that secrecy has become more heavily employed as an 
appropriability mechanism since the early 1980s (cf. Levin et al. 1987). Hence it 
might be socially desirable to encourage patenting when the propensity to patent 
is low and innovators have a tendency to resort to secrecy. Information on the 
propensity to patent should prove useful to policy makers, for instance, in 
designing and targeting policies for encouraging diffusion of innovative 
knowledge through patent documents (cf. Arundel and Kabla 1998). When the 
propensity to patent is high, encouraging the use of patent data can enhance 
diffusion, but when the propensity to patent is low, diffusion of knowledge 
through patent documents also requires policy measures for encouraging the 
patenting of innovations. 

1.2 Objective and method 

As Hall et al. (2001:4) point out: “Unfortunately, we have very little idea of the 
extent to which patents are representative of the wider universe of inventions, 
since there is no systematic data about inventions that are not patented. This is 
an important, wide-open area for future research.” The objective of the present 
study is to contribute to our understanding of which innovations are patented – 
and which are not – by analyzing the patenting decision for circa 800 Finnish 
innovations contained in a unique innovation database compiled at VTT 
Innovation Studies (formerly VTT Group for Technology Studies). With the 
help of econometric methods, this study aims to shed new light on the following 
question: How is the propensity to patent an innovation affected by the 
characteristics of the innovation, the market, and the innovating firm? 

Arundel and Kabla (1998) use firm-level data to study the propensity to patent in 
Europe’s largest industrial firms, but in a footnote to their article they suggest 
that: “Another method for determining patent propensity rates is to identify all 
major innovations, for example, by using new product announcements in trade 
and technical journals. One could then determine the percentage of these that 
were patented.” The Sfinno database compiled at VTT Innovation Studies 
enables such an approach. At VTT Innovation Studies a systematic review of 18 
carefully selected trade and technical journals from the period 1985–1998 has 
been complemented with a review of annual reports of large firms from the same 
period as well as with expert opinion-based identification of innovations in an 
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effort to compile a rich database of Finnish innovations (see Palmberg et al. 
1999, 2000; and Saarinen 2005 for details). Because the Sfinno approach heavily 
relies on public sources in the identification of innovations, it is more conducive 
to studying product than process innovations. Hence innovations only developed 
for the firm’s internal use are not included in the Sfinno database. In line with 
the Schumpeterian definitions (Schumpeter 1912) and drawing loosely upon the 
Oslo Manual (OECD 1992, 1997, 2005), an innovation is defined as an 
invention that has been commercialized on the market by a business firm or an 
equivalent, and the inclusion of an innovation in the database has required that 
the innovation is a technologically new or significantly enhanced product 
compared to the firm’s previous products (Palmberg et al. 2000). This study 
draws upon the survey portion of the Sfinno data that contains detailed 
information on the characteristics of some 800 Finnish innovations as well as the 
innovating firms. 

Because in reality an innovation can be protected by a number of patents, a 
single patent can cover numerous innovations, and not all patents relate to 
innovations, a complete investigation of the extent to which patents are 
representative of different innovations is beyond the scope of this study. The 
present study contributes to our understanding of the relationship between 
innovations and patents by analyzing how various factors affect the innovator’s 
decision of whether or not to file at least one patent application for a given 
product innovation. For empirical purposes, the propensity to patent is defined as 
the fraction of innovations for which at least one patent application is filed, and 
an innovation-level model for the propensity to patent is derived in the spirit of 
random utility models (RUMs). The resulting probit model is estimated using a 
quasi-maximum likelihood estimator that Wooldridge (2002) calls the partial 
maximum likelihood estimator (PMLE). 

1.3 Main findings 

The results from the econometric analysis indicate that various characteristics of 
the innovation, the market, and the innovating firm have a significant effect on 
the propensity to patent. First, the estimation results suggest that larger – that is, 
more novel and significant – innovations are patented more frequently than 
smaller ones. Second, technologically very complex innovations appear to be 
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patented less often than others, while the fragmentation of intellectual property 
rights to cumulatively developing technology seems to entail high propensities 
to patent. Third, the results indicate that the propensity to patent varies across 
technology classes and declines with product market competition. Fourth, 
collaboration with scientific institutions appears to have a positive impact on the 
propensity to patent, while the estimations fail to produce evidence that public 
R&D support or collaboration with other types of partners would affect the 
propensity to patent. Finally, there appears to be a U-shaped relationship 
between firm size and the propensity to patent, which can be attributed to a 
relatively large extent to economies of scale in the patenting activity as well as 
to the relatively important role of patenting in start-up ventures. 

1.4 Structure of the study 

This study is structured as follows. Chapter 2 presents the background to the 
empirical study by reviewing the existing empirical literature on the propensity 
to patent and outlining the hypotheses to be tested in the empirical investigation. 
Chapter 3 briefly introduces the Sfinno methodology and data. Chapter 4 
presents the econometric modeling, the methods for estimation and testing, and 
the estimation results. Chapter 5 concludes. 
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2. Propensity to patent – background to the 
empirical study 

This chapter lays out the background to the empirical study. Section 2.1 reviews 
the existing empirical literature on the propensity to patent, and Section 2.2 
presents the hypotheses on the determinants of the propensity to patent. 

2.1 Empirical literature on the propensity to patent 

The relationships between ideas, innovations, and patents are not as clear and 
simple as they appear in the theoretical literature. Ideally, a firm encounters an 
idea or investment opportunity and decides whether it is worthwhile investing in 
developing it into an innovation. And if the firm is successful in developing the 
idea into an innovation, it then decides whether or not the innovation should be 
patented. (See, e.g., Gallini 1992; Takalo 1998, 1999; Kultti et al. 2007.) In such 
a stylized context the definition of the propensity to patent as the fraction of 
innovations that are patented is straightforward and unambiguously defines the 
relationship between innovations and patents. In reality, however, it is possible 
that inventions that are not commercialized and thus do not qualify as 
innovations10 are nevertheless patented. On the other hand, not all inventions are 
patentable11 and patent protection might not be available even though the 
invention is successfully introduced to the market. It can even happen that the 
innovator decides to patent but the patent examiner deems the innovation 
unpatentable and denies the application. Figure 1 illustrates the relationship 
between ideas, inventions, innovations, and patents. Furthermore, even when 
innovations are protected by patents, a clear-cut one-to-one mapping between 

                                                        

10 This study follows the Sfinno-project in defining an innovation as an invention that 
has been commercialized on the market by a business firm or an equivalent (Palmberg et 
al. 1999:38, 2000:10; Saarinen 2005:19–20). This definition draws upon the Oslo 
Manual (OECD 1992, 1997, 2005) and is in line with the Schumpeterian definitions 
(Schumpeter 1912). 
11 In order to be patentable, an invention has to be industrially applicable and of 
patentable subject matter (cf. Patents Act of Finland: Section 1), and it needs to satisfy 
the requirements of novelty and non-obviousness (cf. Patents Act of Finland: Section 2). 
For more information on intellectual property law, see e.g. WIPO (2004). 
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them is not possible because a single innovation can be protected by a myriad of 
patents, while one patent can protect a set of innovations. The complexity in the 
relationships between innovations and patents, together with problems related to 
the definition and measurement of innovation, give rise to a number of different 
definitions of the propensity to patent in the empirical literature. 

 

Figure 1. Ideas, inventions, innovations, and patents12. 

The following three subsections introduce three different approaches to 
empirically studying the propensity to patent. The first approach builds upon 
estimation of the patent production function, the second seeks to tackle the issue 
of patenting propensity through firm-level surveys, and the third investigates 
whether specific innovations have been patented. 

2.1.1 Patents, R&D, and the patent production function 

Scherer (1965) uses the number of patents received per thousand R&D 
employees to measure the differences in the propensity to patent, even though he 
acknowledges this to be a crude measure of the patented proportion of the 

                                                        

12 Figure 1 is a refined version of the figure in Basberg (1987:133). 
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innovation output. Scherer finds that the propensity to patent varies across 
industries and that government R&D support correlates negatively with the 
propensity to patent at the industry level. Moreover, he discovers that patenting 
is generally less concentrated among the largest firms than R&D employment, 
except that the industry leaders usually exhibit high propensities to patent. 
Taylor and Silberston (1973) and Scherer (1983) take a relatively similar 
approach and define the propensity to patent in terms of patents obtained per unit 
of R&D expenditure. In accordance with Scherer’s (1965) earlier findings, 
Taylor and Silberston detect inter-industry variation in the propensity to patent 
and find a negative relationship between the propensity to patent and the scale of 
R&D activities. Scherer (1983) also discovers inter-industry variation in the 
propensity to patent, but finds a proportional relationship between patents and 
R&D in most industries. The extensive empirical literature on the relationship 
between patents and R&D sheds some light on the propensity to patent, when 
interpreted in this manner (e.g., Schmookler 1966; Bound et al. 1984; Hausman 
et al. 1984; Pakes and Griliches 1984; Hall et al. 1986; Acs and Audretsch 1989; 
König and Licht 1995; Cincera 1997; Crépon and Duguet 1997a, 1997b; Licht 
and Zoz 1998; Hall and Ziedonis 2001; Suzuki et al. 2006). On the basis of the 
extensive literature, Cohen and Klepper (1996:930) conclude that the number of 
patents per unit of R&D expenditure decreases with firm size and/or the scale of 
R&D activities, even though the evidence is not completely unambiguous (see 
also Cohen 1995). 

The results on the relationship between patents and R&D are very complex to 
interpret, however, because they can be affected either by the productivity of 
R&D or the propensity to patent the results of that R&D13. In fact, much of the 
research on the patents-R&D relationship is primarily concerned with the 
productivity of R&D, while variations in the propensity to patent are only 
discussed because they can compromise the interpretability of the results 
obtained. For instance, it is a matter of speculation whether the negative 
relationship between the ratio of patents to R&D and the scale of R&D activities 
or firm size – observed in a number of studies – arises as a result of declining 
                                                        

13 The results may also be biased due to the shortcomings of R&D expenditure as an 
indicator of innovation inputs; formal R&D is only one of the innovation inputs and 
standard innovation surveys tend to underestimate the R&D activities of small firms 
(see, e.g., Patel and Pavitt 1995; Kleinknecht et al. 2002). 
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R&D productivity, decreasing propensity to patent, or something else (see, e.g., 
Scherer 1965, 1983; Schmookler 1966; Taylor and Silberston 1973; Bound et al. 
1984; Pavitt 1985; Griliches 1990). 

König and Licht (1995) and Licht and Zoz (1998) acknowledge that various 
factors affecting the propensity to patent intervene in the relationship between 
patents and R&D. Hence they specify the patent production function as a 
product of a function that represents the propensity to patent and the invention 
production function. The patent production function is estimated using a hurdle 
model for count data, and the key estimation results are the following. First, 
R&D expenditure, the key input in the invention production function, is found to 
be positively related to R&D, and the elasticity of patents with respect to R&D 
appears to increase with R&D in such a manner that it only exceeds unity for the 
large R&D spenders. Second, firms that consider scientific institutions as major 
sources of information are found to generate more patents than others. This is 
interpreted as an indication of higher R&D productivity in firms that benefit 
from public scientific infrastructure. Third, the number of patents is found to 
increase with firm size and the scale of exporting activities, and this is primarily 
construed as a sign of a positive relationship between these factors and the 
propensity to patent. However, the results of König and Licht (1995) and Licht 
and Zoz (1998) still suffer from the possibility that many of their explanatory 
variables can have an impact on both the productivity of R&D and the 
propensity to patent. 

In order to distinguish the propensity-to-patent effect from the productivity 
effects, Brouwer and Kleinknecht (1999) seek to control for the innovation 
output rather than the innovation inputs by including the sales of innovative 
products as a control variable in their patent production function. Brouwer and 
Kleinknecht arrive at the following results by estimating a hurdle model for 
count data. First, there is a clear positive relationship between patents and the 
sales of innovative products as expected. Second, there is inter-industry variation 
in the propensity to patent with high technological opportunity sectors 
experiencing higher patenting propensities than low opportunity sectors. Third, 
firms that engage in R&D collaboration exhibit higher patenting propensities 
than others. Fourth, the probability of having applied for at least one patent 
increases more than proportionately with firm size, while the number of 
applications increases less than proportionately with firm size among patenting 
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firms. Fifth, R&D intensity has a positive impact on the probability that the firm 
seeks patent protection, but it fails to have a statistically significant impact on 
the number of patent applications. 

2.1.2 Surveys on the patenting behavior of firms 

Instead of seeking to make inferences about the propensity to patent by 
estimating the patent production function, several innovation surveys have 
directly asked the firms about the fraction of innovations they generally patent. 
Such surveys include Mansfield’s (1986) survey of 100 US manufacturing firms, 
the PACE Survey of Europe’s largest industrial firms (Arundel et al. 1995; 
Arundel and Kabla 1998), the French survey of appropriation (EFAT) (Duguet 
and Kabla 1998), and the Carnegie Mellon Survey of R&D labs in the US 
manufacturing sector (Cohen et al. 2000; Arora et al. 2003). The survey 
approach allows for construction of a direct measure of the propensity to patent 
that is closely in line with the theoretical definition of the propensity to patent as 
the fraction of innovations that are patented. Mansfield (1986) defines the 
propensity to patent as the percentage of patentable inventions that are patented. 
The PACE, EFAT, and Carnegie Mellon surveys employ a modified version of 
Mansfield’s definition and define the propensity to patent as the percentage of 
innovations for which a patent application is filed14. When operationalized in 
such a manner, the propensity to patent can be viewed as a direct result of the 
innovation-specific decisions to patent. 

The key findings related to the propensity to patent emerging from the analysis 
of the above mentioned survey data include the following. First, the propensity 
to patent varies across industries as expected (Mansfield 1986; Arundel et al. 
1995; Arundel and Kabla 1998; Duguet and Kabla 1998; Cohen et al. 2000; 
Arora et al. 2003). Second, the propensity to patent increases with the scale of 

                                                        

14 Using the percentage of innovations, rather than inventions, overcomes the drawback 
– inherent in Mansfield’s definition – that many inventions are never commercialized 
and hence have little economic significance. Moreover, the innovations of interest 
should not be limited to patentable innovations because the propensity to patent figures 
are of interest as an indicator of the extent to which patents represent the whole 
population of innovations. (Arundel and Kabla 1998.) 
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activities – that is, with firm size or R&D expenditure (Mansfield 1986; Arundel 
and Kabla 1998; Duguet and Kabla 1998; Arora et al. 2003). Third, firms that 
also sell products in foreign markets exhibit a higher propensity to patent 
(Arundel and Kabla 1998). Fourth, firms that consider the compulsory disclosure 
of technical information associated with patenting as an important obstacle to 
patenting patent a smaller fraction of their innovations than others (Duguet and 
Kabla 1998); such firms probably seek to appropriate returns to innovation 
through secrecy instead. Fifth, the propensity to patent increases with the 
importance of patents for appropriating returns to innovation (Arundel and 
Kabla 1998; Cohen et al. 2000; Arora et al. 2003), but decreases with the 
importance of secrecy in the context of product innovations (Arundel and Kabla 
1998); the importance of secrecy appears to have the opposite effect, or no effect 
at all, for process innovations (Ibid).  

The ability of an innovator to bar potential competitors from entering the market 
for the newly introduced innovation has major implications for the innovator’s 
ability to profit from her innovation. Consequently, the effectiveness of patents 
and other appropriability mechanisms in protecting innovations and 
appropriating returns to innovative activities has received considerable attention 
among scholars of innovation. Since the effectiveness of different 
appropriability mechanisms is a significant driver of the value of patent 
protection, it should be a major consideration in the patenting decision and thus 
an important determinant of the propensity to patent. Hence the finding that the 
propensity to patent increases with the importance of patents for appropriating 
returns to innovation seems rather evident and not very interesting as such. In 
order to provide information on the underlying factors that affect the 
effectiveness of patent protection and thus the propensity to patent, the key 
results from several appropriability surveys are summarized below. 

A number of innovation surveys have collected data on the perceived 
effectiveness of different appropriability mechanisms in securing returns to 
innovation. The Yale Survey (Levin et al. 1987) and the Carnegie Mellon 
Survey (Cohen et al. 2000) have provided data for the United States, whereas the 
PACE Survey (Arundel et al. 1995), the French survey of appropriation (Combe 
and Pfister 1999), and the Community Innovation Surveys (e.g., König and Licht 
1995; Brouwer and Kleinknecht 1999; Arundel 2001; Sattler 2002; Barros 2004) 
have collected data for several European countries. In addition, separate 
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appropriability surveys have been carried out, for instance in Switzerland 
(Harabi 1995), Japan (Cohen et al. 2002), and Germany (Blind et al. 2006). 

Table 1. The relative importance of different appropriability mechanisms*. 

* The appropriability mechanisms are ranked from the most important (1) to the least important (4). 

Despite various problems in constructing measures of effectiveness of different 
appropriability mechanisms from survey responses, several conclusions emerge 
from the survey data. First, the survey results demonstrate that patents are 
neither the only nor the most important means for appropriating returns to 
innovation in many cases. Appropriability mechanisms such as secrecy, lead 
time advantages, learning-curve effects, and superior sales and service 
capabilities are often perceived as more effective than patenting in protecting the 
competitive advantages of innovations (cf. Table 1). Second, the importance of 
patents and other appropriability mechanisms varies across industries, as 
suggested by earlier empirical investigations of the patent system (e.g., Taylor 
and Silberston 1973; Mansfield et al. 1981; Mansfield 1986); patents are 
generally perceived to be effective means of appropriation, for instance, in 
pharmaceuticals and other chemicals. Third, the relative effectiveness of 
different appropriability mechanisms varies between product and process 
innovations; patents, for instance, are regarded as being more effective in 
protecting product than process innovations, while the opposite appears to hold 
for secrecy (cf. Table 1). Fourth, there appears to be a positive relationship 
between firm size and the effectiveness of patent protection (e.g., Arundel et al. 
1995; Cohen et al. 2000; Combe and Pfister 2000; Sattler 2002; Barros 2004). 
Fifth, the importance of patents tends to increase with the R&D intensity of the 
firm (Combe and Pfister 2000; Sattler 2002; Barros 2004) and with participation 
in R&D collaboration (Sattler 2002; Barros 2004). 

Product Process Product Process Product Process Product Process Product Process Product Process Product Process

Patents 3 4 4 4 2 3 4 4 2 3 2 4 4 4
Secrecy 4 3 2 1 4 1 3 3 3 1 4 1 2 3
Lead Time 2 1 1 2 1 2 2 1 1 4 1 3 1 1
Sales & Service 1 2 3 3 3 4 1 2 - - - - - -
Complexity - - - - - - - - 4 2 3 2 3 2

1987 2000 2002 1995
Levin et al. Cohen et al. Harabi Arundel et al. Combe & Pfister ArundelCohen et al.

EuropeJapan France
1995 1999 2001

US US

N=650 N=1118/1087 N=721 N=2849N=567/522

Switzerland

N=358 N=840

7 European 
countries
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Further analyses of the survey data can also reveal interesting insights into the 
factors that affect the effectiveness of different appropriability mechanisms. 
Arundel (2001) uses data from the 1993 European Community Innovation 
Survey (CIS) to study the relative effectiveness of patents and secrecy for 
appropriation. The question of the relative effectiveness of patents and secrecy is 
of particular interest because those two appropriability mechanisms are often 
considered mutually exclusive since patenting entails public disclosure of the 
technical details of the innovation. Arundel finds that the probability that a firm 
views patenting as being more effective than secrecy increases with firm size in 
the context of product innovations. Moreover, he finds (weak) evidence that 
firms engaged in R&D collaboration tend to value patenting more relative to 
secrecy than others in protecting product innovations. 

2.1.3 Propensity to patent at the innovation level 

Confined to the use of industry and firm level data, empirical research on the 
propensity to patent has primarily concentrated on studying the effects of the 
scale of activities, market structure, and appropriability conditions on patenting. 
De Melto et al. (1980), Saarinen (2005), and Van der Panne and Kleinknecht 
(2005) are exceptions in that they provide information on the variations in the 
propensity to patent at the innovation level. The key findings of these studies are 
outlined below. 

De Melto et al. (1980) surveyed 170 firms from five Canadian industries15 in an 
effort to collect data on their major innovations developed during the 1960–1979 
period. The survey produced data on approximately 300 innovations. Cross-
tabulations of the propensity to patent against various variables of interest point 
towards the following results. First, new innovations are patented more 
frequently than incremental improvements, and the propensity to patent is higher 
for original than for imitative innovations. Second, the propensity to patent 
increases with the development costs of the innovation. Third, innovations based 

                                                        

15 The industries were Telecommunications Equipment and Components, Electrical 
Industrial Equipment, Plastics Compounds and Synthetic Resins, Nonferrous Smelting 
and Refining, and Crude Petroleum Production. 
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on externally acquired technology are patented more often than innovations 
developed in-house. Fourth, large firms appear to patent a larger fraction of their 
innovations than smaller ones.  Fifth, the propensity to patent varies over time. 

In a major effort to investigate industrial renewal in Finland during the period 
1945–1998 from the perspective of innovations, Saarinen (2005) complemented 
the Sfinno database compiled at VTT Innovation Studies by collecting data for 
the period 1945–1984. Taken together, Sfinno and Saarinen’s H-inno contain 
data on over 3000 Finnish innovations. Cross-tabulations of the propensity to 
patent against the firm size and age for the period 1985–1998 suggest that the 
propensity to patent decreases with firm age, while there appears to be a 
U-shaped relationship between firm size and the propensity to patent. However, 
Saarinen’s data indicates that these relationships have not been stable over time. 
For the period 1967–1984, for instance, the propensity to patent appears to 
increase with both firm size and age. Such findings highlight the need for a more 
detailed investigation of the propensity to patent at the innovation level that 
simultaneously considers the relevant factors that affect the propensity to patent. 

Van der Panne and Kleinknecht (2005) seek to take the innovation-level analysis 
of the propensity to patent a step further by performing a multivariate analysis of 
factors affecting the propensity to patent on a sample of Dutch innovations. 
Their logit analysis, however, is confined by a limited number of observations 
(N = 216) and explanatory variables (5). Van der Panne and Kleinknecht’s 
results suggest that the propensity to patent declines with firm age or size and 
increases with the number of partners in R&D collaboration. Moreover, they 
find that innovators with products that are radically new – rather than incremental 
improvements – and new to the market – rather than only to the firm – tend to 
have a higher propensity to patent. 

Before turning to the empirical analysis of the propensity to patent in Chapter 4, 
the main hypotheses on the determinants of the propensity to patent are outlined 
in Section 2.2 and the Sfinno methodology and data presented in Chapter 3. 
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2.2 Hypotheses on the determinants of the 
propensity to patent 

The equilibrium search model of innovation developed by Kultti et al. (2007) 
implies that for intermediate levels of patent strength there exists a mixed 
equilibrium in which identical innovations are patented by some firms and kept 
secret by others. Notwithstanding the possibility of observing an equilibrium 
propensity to patent between zero and one in the context of homogeneous 
innovations and innovators, in reality the empirically observed propensities to 
patent are likely to be shaped to a great extent by the heterogeneity of 
innovations, markets, and innovators. To the extent that the characteristics of 
innovations, markets, and innovators influence the costs and benefits of 
patenting, they also affect the propensity to patent. Hence it should be possible 
to identify several attributes of the firm, the market, and the innovation that are 
of interest in a model for the propensity to patent. The purpose of this section is 
to outline the main hypotheses on the determinants of the propensity to patent 
emerging from both empirical and theoretical literature. The first subsection 
addresses hypotheses related to the characteristics of the innovating firm, while 
the second discusses those related to the characteristics of the innovation and the 
market. 

2.2.1 Characteristics of the firm 

The relationship between firm size and the propensity to patent has been a 
subject of interest for quite some time (see, e.g., Scherer 1965, 1983; 
Schmookler 1966; Taylor and Silberston 1973; Bound et al. 1984; Mansfield 
1986; König and Licht 1995; Arundel and Kabla 1998; Duguet and Kabla 1998; 
Licht and Zoz 1998; Brouwer and Kleinknecht 1999; Arora et al. 2003), but the 
evidence remains inconclusive. Even though recent research suggests a positive 
relationship between firm size and patenting propensity (Arundel and Kabla 
1998; Duguet and Kabla 1998; Arora et al. 2003), there are reasons to believe 
that the relationship might not be as clear-cut as it seems at first sight. For one 
thing, the smallest firms are missing from most of the firm-level studies, while 
the innovation-level studies of Saarinen (2005) and Van der Panne and 
Kleinknecht (2005) suggest that very small (young) firms can exhibit high 
propensities to patent. On the other hand, firm size might not be independent of 
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the characteristics of innovations developed in the firm. Reinganum (1983) and 
Henderson (1993), for instance, demonstrate that entrants have greater incentives 
to invest in “sufficiently radical innovations”. Similarly, Holmström (1989) 
shows that internal organization problems and capital market pressures can 
handicap large firms in inherently risky innovation activities, while it is 
generally acknowledged that radical innovation is more uncertain than 
incremental innovation (e.g., Kline and Rosenberg 1986; Reinganum 1983; 
Henderson 1993). In accordance with these suggestions, Tanayama’s (2002) 
analysis of the Sfinno data indicates that firm size has a negative impact on the 
probability of an innovation being radical. Conversely, different arguments have 
also arisen. Schmookler (1966:35) argues that “one cannot doubt that the largest-
scale inventions are usually attempted in large firms”, and Duguet and Kabla 
(1998) suggest that the research effort of a firm might be correlated with the 
magnitude of its innovations. 

All in all, it seems clear that the differences in the observed propensities to 
patent in the firm-level investigations might also reflect differences in the 
characteristics of innovations, not only some inherent firm size-related patenting 
propensities. Hence it is of great importance to control for the characteristics of 
innovations when investigating the impact of firm-level factors on the propensity 
to patent, and vice versa. This will be attempted in the empirical investigation in 
Chapter 4. 

A natural explanation for the positive relationship between firm size and the 
propensity to patent is that economies of scale exist in patenting due to the fixed 
cost of maintaining a legal department dealing with intellectual property rights 
(e.g., Scherer 1965; Comanor and Scherer 1969; Lerner 1995; Arundel and 
Kabla 1998; Duguet and Kabla 1998; Licht and Zoz 1998; Cohen et al. 2000; 
Hall and Ziedonis 2001). There may also be potential for learning curve benefits 
in the patenting process. Lerner (1995), for instance, suggests that firms learn to 
manage internal and external counsel more efficiently when they accumulate 
experience of litigation. This gives rise to a significant learning curve in the 
patent litigation process. Moreover, it has been argued that small firms cannot 
utilize the patent system as efficiently as larger firms because obtaining and 
enforcing patents might be prohibitively costly for many small firms with 
minimal patent portfolios (e.g., Kitching and Blackburn 1999; Cohen et al. 2000; 
Lanjouw and Schankerman 2004). Lanjouw and Schankerman (2004), for 
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instance, find that the litigation risk declines with the size of the patent portfolio. 
These considerations give rise to the following hypothesis: 

Hypothesis 1: Patenting activity is subject to economies of scale. 

Despite the problems that a small firm might experience in obtaining and 
enforcing patents, there are several reasons why small firms might patent more 
intensively than others. Levin et al. (1987:797), for instance, argue that “for 
small, start-up ventures, patents may be a relatively effective means of 
appropriating R&D returns, in part because some other means, such as 
investment in complementary sales and service efforts, may not be feasible”. 
Similarly, Griliches (1990:1676–1677) suggests that for small firms 

“… patents may represent their major hope for ultimate success and hence 
would lead them to pursue them with more vigor. A well-established 
major firm does not depend as much on current patenting for its viability 
or the survival of its market position. Thus, even at an equal underlying 
inventiveness rates, the propensity to patent may be lower for large firms, 
at least relative to the successful new entrants in their field.” 

Small start-ups may often be unable to commercialize their innovations 
efficiently in embodied form (Cohen and Klepper 1996), and they thus seek to 
exploit their innovative technologies through licensing or through a complete 
transfer of intellectual property. In such situations patents are important for 
reducing transaction costs and facilitating trade in immaterial property (Arora et 
al. 2001). Hall and Ziedonis (2001), for instance, find that in the US 
semiconductor industry specialized design firms entering the industry since 1982 
– when the “pro-patent” Court of Appeals for the Federal Circuit was established 
in the US – patent more intensively than the older market incumbents. 
Moreover, patents can play an important role as signals of attributes of the firm 
and the innovations that are deemed positive by outsiders such as venture 
capitalists and potential collaborators (e.g., Cohen et al. 2000; Kortum and 
Lerner 2000; Long 2002; Hall 2005). The need for external funding in start-up 
ventures can also encourage patenting because in order to attract funding the 
innovator must usually disclose the details of the innovation (Kortum and Lerner 
2000). This can render secrecy a problematic means for appropriation, making 
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formal property rights such as patents an attractive alternative. Hence the 
following hypothesis is proposed: 

Hypothesis 2: Start-up ventures exhibit a high propensity to patent. 

The above discussion implies that the relationship between firm size and the 
propensity to patent may well be non-monotonic. Disentangling of the different 
size-related effects proposed in Hypotheses 1 and 2 is attempted in the empirical 
part of this study. 

Furthermore, the above discussion suggests that small start-up ventures are more 
dependent on patent protection than larger firms while experiencing a 
disadvantage in obtaining and enforcing patents. If such an imbalance in the 
value and cost of patent protection across different firms exists in reality, it 
should have important implications for the optimal design of the patent system. 
The ideas model of innovation (Green and Scotchmer 1995; O’Donoghue et al. 
1998; Scotchmer 2004) highlights the importance of also providing small start-
ups with sufficient incentives to innovate. The ideas model assumes that ideas 
for innovation are scarce and exogenous, while the materialization of an 
innovation requires both an idea as well as an investment in it. In this context it 
is highly probable that not all valuable ideas originate in the research labs of 
large corporations, and thus also small entities need to be provided with 
sufficient incentives for developing their ideas into innovations. 

2.2.2 Characteristics of the innovation and the market 

The previous subsection discussed the characteristics of the firm that affect the 
propensity to patent, while this subsection outlines the hypotheses related to 
characteristics of the innovation and the market. Innovation and market 
characteristics are discussed together since they are highly interdependent. 
Innovations can redefine existing markets, change the market structure, or even 
create totally new markets. On the other hand, the value of innovations is 
determined to a great extent by the characteristics of the market, such as demand 
and competition. Furthermore, patents, as legal rights to exclude, naturally 
intervene in this relationship. 
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Theoretical economic literature suggests that the size16 of an innovation can have 
an effect on the propensity to patent the innovation. Denicolò and Franzoni 
(2003) assess the impact of the size of an innovation on the propensity to patent 
in the context of the contract theory of patents and find that under the 
assumption of a linear demand function, innovations are more likely to be 
patented if they are large. This is because the rival has a greater incentive to 
duplicate the innovation if it is large, while patenting can be used to block 
duplication and secure monopoly profit for the duration of the patent. Horstmann 
et al. (1985) arrive at a similar conclusion when studying patents as information 
transfer mechanisms. That is, they model a game of strategic patenting in which 
the rival can draw inferences about the innovator’s private information on the 
basis of the patenting decision. Their reasoning for the finding is, however, very 
different from that of Denicolò and Franzoni (2003). Horstmann et al. (1985) 
argue that, in the context of a cost-reducing innovation, a greater cost reduction 
raises the innovator’s output in the product market and thus makes imitation less 
attractive. Hence the decision to patent need not convey such a strong signal of 
unprofitability of imitation and patenting can be allowed to occur more often. 
Anton and Yao (2004), on the other hand, arrive at the opposite conclusion on 
the basis of their model of cost-reducing innovation. In the Anton and Yao 
model patents offer limited protection while entailing disclosure of enabling 
knowledge to rivals as well as providing a signal of the total knowledge of the 
innovator. Anton and Yao (Ibid:3) argue that “… weak property rights imply 
disclosure incentives that are relatively stronger for smaller innovations, and as a 
result, larger innovations are protected more through secrecy as a response to the 
problem of imitation”. 

Protection from imitation – rather than signaling of cost-efficiency to 
competitors, which plays a central role in the Anton and Yao (2004) model – is 
constantly reported as the primary motive for patenting in innovation surveys 
(e.g., Arundel et al. 1995; Duguet and Kabla 1998; Combe and Pfister 1999; 
Cohen et al. 2000, 2002; Blind et al. 2006). Hence the hypothesis about the 

                                                        

16 Following the relevant theoretical literature (Denicolò and Franzoni 2003; Anton and 
Yao 2004), the term size (large vs. small) of an innovation is adopted in the present study 
instead of relatively synonymous alternatives such as the radicalness (radical vs. 
incremental) of an innovation. Issues related to the definition and measurement of the 
size of innovations in the empirical context will be discussed in Chapter 3. 



 

 31 

relationship between the size of an innovation and the propensity to patent is 
based on the findings of Denicolò and Franzoni (2003) and Horstmann et al. 
(1985), which are also in line with the empirical investigations of De Melto et al. 
(1980) and Van der Panne and Kleinknecht (2005). This expectation is further 
buttressed when the assumption of the theoretical models that all innovations are 
patentable is relaxed. In order to be patentable, an invention has to be 
industrially applicable and of patentable subject matter (cf. Patents Act of 
Finland: Section 1), and it needs to satisfy the requirements of novelty and non-
obviousness (cf. Patents Act of Finland: Section 2). Consequently, firms are 
likely to expect that patents are granted for large innovations with a higher 
probability than for smaller ones, and this is probably taken into account when 
making the patenting decision. On the basis of these considerations, the 
following hypothesis is put forth: 

Hypothesis 3: Large innovations are patented more frequently than smaller 
ones. 

Another attribute of innovations that can affect the propensity to patent is the 
complexity of an innovation. Scherer (1983) and Levin et al. (1987), for 
instance, suggest that patenting of complex technological systems is more 
difficult than patenting of more discrete innovations. Levin et al. (1987) argue 
that the novelty of a discrete innovation can be relatively easily demonstrated in 
a patent application and infringement is relatively easy to verify when 
innovations are discrete. This is clearly more difficult to do for complex 
systems. Moreover, technological complexity can make innovations more 
difficult to imitate, thus reducing the need for patent protection. Scherer (1983) 
finds empirical evidence that innovations described as systems or subsystems 
yield fewer patents per unit of R&D expenditure than others. These arguments 
give rise to the following hypothesis: 

Hypothesis 4: Very complex innovations are patented less often than others. 

The reasoning that led to Hypothesis 4 drew upon the impact of the 
technological and physical character of an innovation on the effectiveness and 
attractiveness of patents as a means for appropriating returns to innovation. On 
the other hand, complex technologies that are developed cumulatively may be 
subject to a high-degree of technological interdependence between competing 
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firms (e.g., Cohen et al. 2000; Hall and Ziedonis 2001). In such environments 
firms can be highly dependent on cross-licensing for developing and marketing 
their innovative products as the intellectual property rights required to market a 
certain product get fragmented to a number of players. This is because such 
technological environments give rise to what Shapiro (2000:1–2) calls a patent 
thicket – that is, “a dense web of overlapping intellectual property rights that a 
company must hack its way through in order to actually commercialize new 
technology”. Thus firms may enter into patent portfolio races in order to 
improve their bargaining positions relative to others, leading them to patent 
inventions that would otherwise be left unpatented (Hall and Ziedonis 2001). 
Cohen et al. (2000) find that firms in complex product industries are more likely 
to obtain patents for using them in cross-licensing negotiations than firms in 
discrete product industries. Such behavior is likely to lead to higher propensities 
to patent; hence the following hypothesis is suggested: 

Hypothesis 5: Cumulative technologies entail high propensities to patent. 

Disentangling of the different complexity-related effects discussed in relation to 
Hypotheses 4 and 5 is attempted in the empirical part of this study. 

One of the most robust findings emerging from the empirical literature reviewed 
in Section 2.1 is that the propensity to patent varies across industrial sectors. The 
origins of such differences are not entirely clear, however, since the variations 
can arise, for instance, as a result of the technological nature of the innovations 
or the characteristics of the markets such as the degree of competition. The 
software industry, for instance, probably experiences low propensities to patent 
because of issues related to the patentability of software rather than because of 
other attributes of the industry such as concentration. On the other hand, 
Denicolò and Franzoni (2003) argue that tight competition in the product market 
discourages duplication by the rival and thus makes patenting less attractive 
relative to secrecy for the innovator. Hence the degree of competition also affects 
the propensity to patent. These considerations lead to the following hypotheses: 

Hypothesis 6: The propensity to patent varies across technology classes. 

Hypothesis 7: The propensity to patent declines with product market 
competition. 
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The results of Brouwer and Kleinknecht (1999), Arundel (2001), Van der Panne 
and Kleinknecht (2005), and Peeters and Van Pottelsberghe de la Potterie (2006) 
indicate that firms that engage in R&D collaboration exhibit higher propensities 
to patent than others. It is argued that this is due to the need to protect 
proprietary knowledge in the face of collaborative knowledge sharing and to 
clarify issues of ownership over co-developed innovations (e.g., Brouwer and 
Kleinknecht 1999; Peeters and Van Pottelsberghe de la Potterie 2006). 
Moreover, collaboration with scientific institutions may result in high 
propensities to patent as the researchers’ incentives to publish the underlying 
findings can render secrecy an unattainable means for appropriation. This gives 
rise to the following hypothesis: 

Hypothesis 8: Innovations developed in collaboration with external 
partners are patented more often than others. 

Scherer (1965, 1983) found that the more government R&D support an industry 
received, the less patents it obtained per unit of R&D. According to Scherer 
(1965:1099), this was “… no doubt because exclusive rights cannot be retained 
for patents received in connection with government contacts”. In Scherer’s 
studies government R&D support meant to a large extent public procurement of 
defense and space applications. In the context of the present study, on the other 
hand, public R&D support mainly takes the form of R&D subsidies that do not 
pose obstacles for obtaining property rights on the inventions. Quite the contrary 
in fact: public R&D support can often be complemented with immaterial support 
such as legal advice on intellectual property protection, which can lower the 
costs of obtaining patent protection. Moreover, since the reporting requirements 
associated with public R&D support imply some disclosure of the innovators 
activities, public funding can encourage patenting. Patenting of the underlying 
invention may also be used to signal the novelty of the invention and the 
capability of the innovator when applying for public support. Hence the 
following hypothesis is proposed: 

Hypothesis 9: Innovations developed with the help of public R&D support 
are patented more frequently than others. 
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The following chapter will present the data that is used to empirically test the 
hypotheses outlined in this section. The hypotheses are summarized below in 
Table 2. 

Table 2. Summary of the hypotheses. 

Hypotheses to be tested empirically 

Hypothesis 1: Patenting activity is subject to economies of scale. 

Hypothesis 2: Start-up ventures exhibit a high propensity to patent. 

Hypothesis 3: Large innovations are patented more frequently than smaller ones. 

Hypothesis 4: Very complex innovations are patented less often than others. 

Hypothesis 5: Cumulative technologies entail high propensities to patent. 

Hypothesis 6: The propensity to patent varies across technology classes. 

Hypothesis 7: The propensity to patent declines with product market competition. 

Hypothesis 8: Innovations developed in collaboration with external partners are 
patented more often than others. 

Hypothesis 9: Innovations developed with the help of public R&D support are 
patented more frequently than others.  
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3. Sfinno methodology and data 

As evidenced by the literature review in Section 2.1, patenting has thus far been 
studied primarily at the level of industries and firms. However, the failure to 
control for innovation-level factors in these studies makes interpretation of the 
empirical results subject to speculation. Moreover, the absence of innovation-
level variables has rendered innovation-related hypotheses emerging from the 
theoretical literature untestable in the industry and firm level studies. Hence 
innovation-level data is needed to advance our understanding of the variations in 
the propensity to patent across firms, industries, and innovations. The Sfinno 
database compiled at VTT Innovation Studies (formerly VTT Group for 
Technology Studies) contains approximately 1600 Finnish innovations and 
provides detailed information on roughly 800 of these combined with data on the 
corresponding firms responsible for bringing the innovations to market. The 
Sfinno approach and data are discussed in detail, for instance, in Palmberg et al. 
(1999, 2000), Tanayama (2002), and Saarinen (2005). This chapter briefly 
introduces the Sfinno approach (Section 3.1) and describes the variables of 
interest for the present study (Section 3.2).  

3.1 The Sfinno approach 

The Sfinno approach builds upon the object-based method of collecting data on 
innovative activities directly at the level of individual innovations. Pioneering 
endeavors in collecting innovation data using the object-based method include – 
but are not limited to – the compilation of extensive innovation databases at the 
Science Policy Research Unit (SPRU) at the University of Sussex in the UK 
(e.g., Pavitt 1983, 1984) and at the Furures Group in the US (e.g., Acs and 
Audretsch 1990, 1993). At SPRU the identification of innovations was based on 
the opinion of experts knowledgeable about innovative activities in their 
respective areas of expertise, while the Futures Group used the literature-based 
method and identified innovations from trade and technical journals. The 
literature-based approach has later been followed, for instance, in the 
Netherlands (Kleinknecht et al. 1993), Austria (Fleissner et al. 1993), Ireland 
(Cogan 1993), the UK (Steward 1993; Coombs et al. 1996), and Italy (Santarelli 
and Piergiovanni 1996). 
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The Sfinno methodology combines the literature-based method with the expert 
opinion method in order to produce a comprehensive dataset with a good 
coverage across different industries and firm size groups (Palmberg et al. 2000). 
A systematic review of 18 carefully selected trade and technical journals from 
the period 1985–1998 has been complemented with a review of annual reports of 
large firms from the same period as well as with expert opinion-based 
identification of innovations (see Palmberg et al. 1999, 2000; and Saarinen 2005 
for details). The review of trade and technical journals resulted in the 
identification of some 1100 innovations, while the review of annual reports and 
expert-opinion yielded about 500 additional innovations giving rise to a dataset 
of approximately 1600 innovations. In line with the Schumpeterian definitions 
(Schumpeter 1912) and drawing loosely upon the Oslo Manual (OECD 1992, 
1997, 2005), the Sfinno approach defines an innovation as an invention that has 
been commercialized on the market by a business firm or an equivalent, and the 
inclusion of an innovation in the database requires that the innovation is a 
technologically new or significantly enhanced product compared to the firm’s 
previous products (Palmberg et al. 1999, 2000). Moreover, since the Sfinno-
approach relies heavily on public sources in the identification of innovations, it 
is clearly more conducive to studying product than process innovations. Hence 
innovations only developed for the firm’s internal use are not included in the 
Sfinno database (Ibid). 

In order to collect additional data on the innovations and the development 
processes, a survey questionnaire was designed and sent to respondents 
knowledgeable about the specific innovations in question. Identification of an 
allegedly relevant respondent was possible for some 1300 innovations and 
around 800 questionnaires were returned, giving rise to a response rate of over 
60 percent (Tanayama 2002). Moreover, the survey data was complemented 
with firm-specific data from firm registers and patent databases. This study is 
based on a sample of the survey data for which the relevant variables are 
available. The sample contains 791 innovations from 555 firms. Figure 2 shows 
the number of firms in the sample with a given number of innovations in the 
sample. The fact that the data contains several innovations from certain firms 
suggests that the observations may be subject to within-firm correlation. This 
issue will be addressed in Chapter 4. 
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Figure 2. Firms in the sample with a given number of innovations. 

An important limitation to innovation-level data collection is that it cannot be 
based on standard statistical sampling since the underlying population of 
innovations is unknown (e.g., Palmberg et al. 1999, 2000; Leppälahti 2000; 
Palmberg 2001; Tanayama 2002; Kleinknecht et al. 2002). Hence, as Tanayama 
(2002) points out, there is clearly a trade-off between obtaining innovation-level 
data and collecting data with the desired statistical properties. According to 
Palmberg (2001:3), data collection in the spirit of the Sfinno approach could 
instead be described as “a designed census with the aim of identifying all 
possible products adhering to the specific definition used”. Furthermore, 
Palmberg (2001) argues that “the coverage of the [Sfinno] database in terms of 
industries and firm size groups is nonetheless relatively representative of 
innovative activity in Finnish industry” (cf. Leppälahti 2000; Palmberg et al. 
2000). All in all, it can be argued that the Sfinno database is relatively 
representative of significant Finnish product innovations and using it to test the 
hypotheses presented in the previous chapter should advance our understanding 
of factors affecting the propensity to patent. 
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3.2 Variables of interest 

Given the innovation-level nature of the data and the definition of the propensity 
to patent as the fraction of innovations for which at least one patent application 
is filed, the dependent variable for the econometric analysis of Chapter 4 takes 
the form of a binary variable (PATAPP) indicating whether or not at least one 
patent application was filed for the innovation of interest. It is already of 
considerable interest as such that patent protection was sought for less than 60 
percent of the 791 relatively significant product innovations contained in the 
data sample (see Table 3 at the end of this section). Patenting is clearly not a 
self-evident outcome of an innovation process that results in the commercialization 
of an innovation. In Chapter 2 various characteristics of the innovation, the 
market, and the innovating firm were hypothesized to have an effect on the 
propensity to patent. The purpose of this section is to introduce the variables 
designed to capture these characteristics. The variables are based on the data 
obtained from the Sfinno survey as well as on the complementary data available 
in the Sfinno database (see, e.g., Palmberg et al. 1999 for a description of the 
information included in the Sfinno database). 

In order to disentangle the different size-related effects proposed in Hypotheses 
1 and 2, a number of size-related variables need to be constructed. First, the 
number of employees in the innovating firm at the year the innovation was 
commercialized (EMP) is used as a measure of firm size17. Furthermore, the 
observations are classified into four categories on the basis of this measure. The 
categories of less than 10 employees, 10–99 employees, 100–999 employees, 
and 1000 or more employees give rise to four dummy variables (EMP1, EMP2, 
EMP3, and EMP4). Second, R&D intensity of the innovating firm is measured 
as the ratio of R&D to sales (R&DINT). Third, an innovating firm is defined as 
an innovative start-up if the idea for the innovation had arisen before or during 
the year in which the firm was established18. The start-up status is coded as a 

                                                        

17 If the data is missing for the commercialization year, data from the closest available 
year is used. 
18 The underlying logic behind this definition is that a firm is an innovative start-up if the 
idea for the innovation arose before the firm was established. However, since 
information is available only on the year in which the idea originated, it is not possible to 
specify whether the idea arose before or after the establishment of the firm for the 
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binary variable (STARTUP). Fourth, in order to address the presence of 
economies of scale in the patenting activity, a measure of the scale of patenting 
is needed. Unfortunately, construction of such a measure is problematic because 
the data does not contain information on the date a patent application was 
(possibly) filed for the innovation. Hence it is possible that the decision to patent 
affects the variable designed to measure the scale of prior patenting, causing 
simultaneous causality. Two measures of the scale of the patenting activity are 
constructed that should not be very sensitive to simultaneous causality. The 
decision of whether or not to file a patent application for the innovation of 
interest should not have much of an impact on whether the innovating firm had 
filed more than 60 patent applications during the six-year period leading to the 
commercialization of the innovation. Firms that had filed more than 60 
applications are considered to possess a large patent portfolio and the occurrence 
of such a portfolio is coded as a binary variable (LARGEPP). Similarly, the 
patenting decision of interest should not have much of an impact on the number 
of patent applications the firm filed the year before the development of the 
innovation began (PATENTS). The annual counts of patent applications used in 
constructing these variables are coded as the higher of the number of patent 
applications the firm filed with either the National Board of Patents and 
Registration of Finland or the European Patent Office during the given year. The 
problem of simultaneous causality related to these variables will be addressed in 
Chapter 4. 

Measurement of the size of innovations or classification of innovations with 
respect to their size is a problematic issue even from the theoretical perspective. 
The complex and multidimensional nature of technological change makes it 
difficult to distinguish between large and small innovations, especially as 
innovations can be large in some dimensions while being small in others, as 
demonstrated by Henderson (1993). The size – or radicalness – of an innovation 
can be defined, for instance, in terms of the technological novelty or magnitude 
of improvement and the socio-economic impact of the innovation (e.g., 
Schumpeter 1912; Freeman and Perez 1988), the magnitude of cost reduction 

                                                                                                                                         

observations that had the same year for the arousal of the idea and the establishment of 
the firm. Hence the firms established during the year in which the idea arose are also 
regarded as start-ups in the empirical investigation. 
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and the economic implications of the innovation on the market structure (e.g., 
Arrow 1962), or the effect the innovation has on the competencies of firms (see, 
e.g., Abernathy and Clark 1985; Tushman and Anderson 1986). 

Furthermore, even if a certain theoretical definition of the size of an innovation 
is adopted, empirical measurement of the size is hardly straightforward. In order 
to address Hypothesis 3, the present study seeks to measure the size of the 
innovations by introducing four binary variables that capture different 
dimensions of the novelty and significance of the innovations. The variable 
NOVFIRM is coded as one for innovations that were specified as entirely new 
rather than major or minor improvements relative to the innovating firm’s 
existing product by the survey respondent from the firm. Similarly, NOVMARK 
is coded as one if the innovation was specified to be new on the world market 
rather than just on the Finnish market. The variable SCIENCE seeks to proxy the 
technological novelty of the innovation. SCIENCE is coded as one if a new 
scientific breakthrough was specified as an important or very important (on a 
four-point Likert scale) factor for initiating the development of the innovation. 
Finally, the variable SIGNIF is introduced to pick out the truly significant 
innovations. This variable is based on a survey of experts drawn from industry, 
academia, and the public sector (see Hyvönen 2001 for details on the survey and 
the data). The experts were asked to evaluate the significance19 of the Sfinno 
innovations relating to their area of expertise on a four-point Likert scale (1–4). 
SIGNIF is coded as one if the mean score for the innovation is 3.5 or more. 

In order to disentangle the different complexity-related effects proposed in 
Hypotheses 4 and 5, two binary variables are constructed. First, the variable 
COMPLEX is designed to capture the technological and physical complexity of 
the innovations relevant for testing Hypothesis 4. COMPLEX is coded as one if 
the innovation was classified as highly complex in Hyvönen’s 4-category 
taxonomy (e.g., Tanayama 2002:56–57; Saarinen 2005:160–161) by the VTT 
researchers. Hyvönen’s definition of a highly complex innovation is identical to 
the corresponding definition by Kleinknecht (1993:44). Highly complex 

                                                        

19 The definition of a significant innovation adopted for the survey is that the innovation 
has to be economically and technologically significant and apart from economic success 
may have had significant impact on the industry (Hyvönen 2001:4). 
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innovations are defined as systems consisting of numerous parts or components 
originating from different disciplines. Second, the variable CUMULTECH is 
designed to proxy the technological interdependence resulting from 
fragmentation of intellectual property rights (IPR) to cumulatively developing 
technologies (cf. Hypothesis 5). CUMULTECH is coded as one if availability of 
a license was specified as an important or very important (on a four-point Likert 
scale) factor for initiating the development of the innovation. 

In Chapter 2 product market competition was hypothesized to have a negative 
impact on the propensity to patent (cf. Hypothesis 7). Unfortunately, empirical 
measurement of the degree of competition is a prevailing challenge in empirical 
industrial organization. Measures of market concentration such as the 
Herfindahl–Hirschman index and concentration ratios follow standard 
definitions and can be objectively measured once the markets of interest are 
identified. However, such data is usually only readily available for industrial 
sectors and on a given level of aggregation and thus does not necessarily 
correspond to the relevant markets of interest. Consequently, a rough proxy 
emerging from the Sfinno data is used to measure the degree of competition in 
this study, instead of measures such as concentration ratios20. The binary 
variable PRICOMP is coded as one if price competition was specified as an 
important or very important (on a four-point Likert scale) factor for initiating the 
development of the innovation. The usefulness of this variable as a proxy for the 
degree of product market competition hinges on the assumption that the ex post 
product market competition – that is, competition after the innovation is introduced 
to the market – correlates strongly enough with the ex ante competition – that is, 
competition before the market introduction of the innovation. 

The answers to the Sfinno survey questions on whether the development of the 
innovation had involved public funding or collaboration give rise to binary 
variables PUBFUND and COLLAB respectively. Moreover, collaboration in 
general is disaggregated into collaboration with customers, subcontractors, 

                                                        

20 Concentration ratios (e.g., CR3, CR5, CR10) based on the NACE classification 
(General Industrial Classification of Economic Activities within the European 
Communities) at the three-digit level were also tested as measures of product market 
competition but they failed to be statistically significant in any of the specifications by a 
wide margin. Hence the variable PRICOMP was adopted for the present study. 
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universities and research institutes, and competitors. The binary variables 
CUSTCOLLAB, SUBCONCOLLAB, RINSTCOLLAB, and COMPCOLLAB 
are coded as ones if collaboration with foreign or domestic customers, 
subcontractors, universities or research institutes, or competitors, respectively, 
was specified as important or very important (on a four-point Likert scale) for 
the development of the innovation. 

In addition to the variables introduced above, sets of dummy variables are 
introduced to control for differences in the propensity to patent across 
technology classes and time periods. Furthermore, the technology class dummies 
allow for a test of Hypothesis 6. Ten technology class dummies are constructed 
on the basis of the technology classification presented in Appendix A. The 
dummies refer to the one-digit technology classes with the exception that the 
two-digit classes of ‘agrochemistry and foodchemistry’ and ‘environmental 
technology’ are picked out from their respective one-digit classes because the 
propensity to patent in these two-digit classes differs significantly from the 
propensity to patent in the rest of the one-digit class. Moreover, eleven time 
period dummies are constructed so that for the early years as well as for the most 
recent years the time periods contain more than one year. Such classification is 
used in order to have a sufficient number of observations in each time period 
class since the observations are not uniformly distributed in time, as shown in 
Figure 3. 
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Figure 3. Distribution of observations over time. 

The variables of interest introduced above are summarized in Table 3. In 
addition to listing the variables and their definitions, Table 3 also presents the 
means and standard deviations of all the variables. 
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Table 3. Summary of the variables of interest. 

Dependent variable Definition Type Mean St. Dev.

PATAPP Patent application was filed for the innovation (yes/no) 1/0 0.5740 0.4948

Explanatory variables

Firm characteristics

EMP Number of employees in the firm at the year of the commercialization # 1113.873 2495.891

EMP1 0-9 employees in the firm at the year of the commercialization (yes/no) 1/0 0.3552 0.4789

EMP2 10-99 employees in the firm at the year of the commercialization (yes/no) 1/0 0.2149 0.4110

EMP3 100-999 employees in the firm at the year of the commercialization (yes/no) 1/0 0.2048 0.4038

EMP4 1000 or more employees in the firm at the year of the commercialization (yes/no) 1/0 0.2250 0.4179

R&DINT Ratio of R&D expenditures to sales at the year of the commercialization # 0.1321 0.2006

STARTUP The firm was defined as a start-up developing an innovation (yes/no) 1/0 0.3603 0.4804

PATENTS Number of patent applications filed by the firm the year before the development of the innovation started # 3.4463 11.5744

LARGEPP The firm had a large patent portfolio at the year of the commercialization (yes/no) 1/0 0.0885 0.2842

SIGNIF The innovation was specified as very significant by experts (yes/no) 1/0 0.0518 0.2218

NOVFIRM The innovation was entirely new to the firm (yes/no) 1/0 0.6157 0.4867

NOVMARK The innovation was new to the world market (yes/no) 1/0 0.7206 0.4490

SCIENCE Scientific breakthrough was important for initiating the development of the innovation (yes/no) 1/0 0.1555 0.3626

COMPLEX The innovation was specified as very complex by experts (yes/no) 1/0 0.0291 0.1681

CUMULTECH Availability of a license was important for initiating the development of the innovation (yes/no) 1/0 0.0582 0.2342

PRICOMP Price competition was important for initiating the development of the innovation (yes/no) 1/0 0.2781 0.4484

PUBFUND Public funding was received for the development of the innovation (yes/no) 1/0 0.6498 0.4773

COLLAB Collaboration was associated with the development of the innovation (yes/no) 1/0 0.8698 0.3368

CUSTCOLLAB Collaboration with customers was important for the development of the innovation (yes/no) 1/0 0.6561 0.4753

SUBCONCOLLAB Collaboration with subcontractors was important for the development of the innovation (yes/no) 1/0 0.3578 0.4796

RINSTCOLLAB Collaboration with universities or research institutes was important for the development of the innovation (yes/no) 1/0 0.4513 0.4979

COMPCOLLAB Collaboration with competitors was important for the development of the innovation (yes/no) 1/0 0.0822 0.2748

Technology classes

CONSUM The innovation belongs to 1-digit technology class 60 'Consumption goods and equipment' (yes/no) 1/0 0.0329 0.1784

ELECTRO The innovation belongs to 1-digit technology class 10 'Electrotechnology' (yes/no) 1/0 0.0860 0.2805

INSTRU The innovation belongs to 1-digit technology class 20 'Instruments' (yes/no) 1/0 0.1416 0.3489

CHEM The innovation belongs to 1-digit technology class 30 'Chemistry, pharmaceutical technology' excluding 35 (yes/no) 1/0 0.0594 0.2366

AGRI&FOODCHEM The innovation belongs to 2-digit technology class 35 'Agrochemistry, foodchemistry' (yes/no) 1/0 0.0544 0.2269

PROCTECH The innovation belongs to 1-digit technology class 40 'Process technology, special equipment' exluding 48 (yes/no) 1/0 0.2579 0.4378

ENVIRO The innovation belongs to 2-digit technology class 48 'Environmental technology' (yes/no) 1/0 0.0253 0.1571

MACH The innovation belongs to 1-digit technology class 50 'Mechanical engineering, equipment' (yes/no) 1/0 0.1884 0.3913

EARTH&WATER The innovation belongs to 1-digit technology class 70 'Earth construction and hydraulic engineering, mining' (yes/no) 1/0 0.0367 0.1881

SOFT The innovation belongs to 1-digit technology class 80 'Software' (yes/no) 1/0 0.1176 0.3223

Time periods 

PRE1986 The innovation was commercialized before 1986 (yes/no) 1/0 0.1264 0.3325

YEARS86-87 The innovation was commercialized in 1986-87 (yes/no) 1/0 0.0645 0.2458

YEARS88-89 The innovation was commercialized in 1988-89 (yes/no) 1/0 0.0619 0.2412

YEARS90-91 The innovation was commercialized in 1990-91 (yes/no) 1/0 0.0809 0.2729

YEAR1992 The innovation was commercialized in 1992 (yes/no) 1/0 0.0683 0.2524

YEAR1993 The innovation was commercialized in 1993 (yes/no) 1/0 0.0872 0.2824

YEAR1994 The innovation was commercialized in 1994 (yes/no) 1/0 0.0885 0.2842

YEAR1995 The innovation was commercialized in 1995 (yes/no) 1/0 0.0910 0.2878

YEAR1996 The innovation was commercialized in 1996 (yes/no) 1/0 0.1113 0.3146

YEAR1997 The innovation was commercialized in 1997 (yes/no) 1/0 0.0999 0.3000

POST1997 The innovation was commercialized after 1997 (yes/no) 1/0 0.1201 0.3253

Innovation and market 
characteristics
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4. Econometric analysis 

This chapter first lays out the econometric model to be estimated (Section 4.1), 
then outlines the methods for estimation and testing (Section 4.2), and finally 
presents the results from estimation and testing of the econometric model 
(Section 4.3). 

4.1 Modeling the propensity to patent at the 
innovation level 

Formulation of a model for the propensity to patent at the level of innovations 
requires an innovation-level definition of the propensity to patent. Following the 
frequency interpretation of probability associated with probability theorists such 
as John Venn (1876), the probability of an event can be interpreted as the 
relative frequency of occurrences of the event within a reference class. Hence 
the definition of the propensity to patent as ‘the fraction of innovations for which 
at least one patent application is filed’ gives rise to a corresponding probability 
interpretation. The propensity to patent can be understood as the probability that 
at least one patent application is filed for an innovation belonging to a given 
reference class (cf. Arora et al. 2003:6). More formally, the propensity to patent 
an innovation can be defined as the conditional probability: 

! 

Pr y =1x[ ], 

where y =
1     if at least one patent application is filed, and

0     otherwise,                                                      

" 
# 
$ 

and x % x1 ,x2 ,...,xK( ) is a vector of K variables that determines

the reference class.

 

(1) 

Since the objective of the present study is to investigate how the propensity to 
patent is affected by the characteristics of the innovation, the market, and the 
innovating firm, the primary interest lies in how the propensity to patent changes 
in response to changing the reference class – that is, the primary interest lies in 
the estimation of the partial effects. The partial effect of a continuous variable xj 
is defined as the partial derivative 
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! 

"Pr y =1x[ ] "x j , (2) 

while the partial effect of a binary variable xj is defined as the difference in the 
propensities to patent 

! 

Pr y =1x" j ,x j =1[ ] " Pr y =1x" j ,x j = 0[ ],

where x" j # x1 ,x2 ,...,x j"1 ,x j+1 ,...,xK( ).
 

(3) 

In what follows, an econometric model is formulated that allows for the 
estimation of the partial effects of x on the propensity to patent. 

The probability definition of the propensity to patent allows for a formulation of 
a model for the propensity to patent in the spirit of random utility models 
(RUMs) pioneered by Marschak (1960). Following Train (2003:18–21), the 
model is specified as follows: 

i. An innovating firm files a patent application for its innovation if the 
(expected) utility from the innovation given the patent application, U1, is 
higher than the (expected) utility when no patent application is filed, U0. 

ii. U1 and U0 are known to the innovating firm, but not to the researcher. 
Instead, the researcher observes x, a vector of observable attributes of the 
innovation, the market, and the innovating firm. 

iii. Following the random utility formulation, the utilities are decomposed as 

  

! 

U1 =V1(x) +!1 ,

U0 =V0(x) +! 0 ,
 (4) 

where V1(x) and V0(x) are functions that relate the observed attributes, x, 
to the utilities U1 and U0, respectively, and e1 and e0 capture the 
differences between U1 and V1(x), and U0 and V0(x), respectively. Because 
e1 and e0 are not known to the researcher, they are treated as random 
variables. 

iv. The propensity to patent conditional on the observable attributes of the 
innovation, the market, and the innovating firm, x, can now be specified as 
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! 

Pr y =1x[ ] = Pr U1 >U0[ ]

= Pr V1(x) +!1 >V0(x) +! 0[ ]

= Pr ! 0 "!1 <V1(x) "V0(x)[ ]

= F V1(x) "V0(x)( ),

 

  

! 

where F is the cumulative distribution function of ! " ! 0 #!1 . 

(5) 

On the basis of this formulation of the propensity to patent it is possible to 
specify an econometric model that allows for inference on how the propensity to 
patent an innovation varies as a function of x. This requires the specification of 
V1(x) and V0(x) as well as the distribution of e1 and e0. Following the 
conventional econometric practice, V1(x) and V0(x) are assumed to be linear in 
parameters – that is, V1(x) = x´β1 and V0(x) = x´β0. A natural behavioural 
assumption for e1 and e0 is that they are normally distributed, which implies that 
e 

! 

" e0 – e1 is also normally distributed. Furthermore, an innocent normalization 
of the mean of e to zero and the variance to unity is possible as long as the model 
contains a constant term (e.g., Greene 2003:669). Under these assumptions, the 
model for the propensity to patent becomes the standard probit model for binary 
choice: 

! 

Pr y =1x[ ] = F V1(x) "V0(x)( )

= F # x $1 " $ 0( )( )
= F # x $( )

=% # x $( ),

 

! 

where " is the standard normal cumulative distribution 

function and # $ #1 % # 0 is the vector of parameters to be 

estimated.

 

(6) 

4.2 Methods for estimation and testing 

In order to draw statistical inferences on how the observable attributes of the 
innovation, the market, and the innovating firm affect the propensity to patent, 
the probit model formulated in the previous section (4.1) needs to be estimated 
on a sample of data. The maximum likelihood estimation (MLE) methods 
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pioneered by R. A. Fisher (1922, 1925) provide a means for estimating the 
parameters, but several properties of the data can cause complications for 
obtaining an unbiased and consistent estimator and a valid asymptotic variance 
matrix. First, owing to the object-based method of data collection, the Sfinno 
data contains multiple innovations from certain firms; thus the observations are 
potentially subject to within-firm correlation due to unobserved firm-specific 
effects. Hence the standard assumption of independency of observations fails 
and the cluster sample characteristics of the data must be accounted for when the 
model is estimated. Second, if exogeneity of the explanatory variables is 
compromised as a result of problems such as correlation with omitted variables, 
measurement error, and simultaneous causality, the probit estimator naturally 
becomes biased and inconsistent. Third, as Yatchew and Griliches (1985) point 
out, while complications such as heteroscedasticity of the error term and 
omission of variables that are independent of the included explanatory variables 
leave OLS estimates unbiased and consistent, they result in inconsistent parameter 
estimates in the context of probit models estimated with MLE methods. 

The following subsections will first present the methods for estimating the probit 
model in the context of unobserved firm effects (Subsections 4.2.1 and 4.2.2) 
and then discuss the problems of endogeneity and heteroscedasticity (Subsections 
4.2.3 and 4.2.4). 

4.2.1 Pooled estimation with unobserved effects 
and omitted heterogeneity 

This subsection demonstrates that as long as the unobserved firm effects and 
omitted heterogeneity are independent of the included explanatory variables, 
they do not pose serious problems for the econometric analysis. The subsection 
primarily draws upon the material in Wooldridge (2002) and Cameron and 
Trivedi (2005) that is relevant for estimation with data that suffers from within-
cluster correlation. Notation follows Wooldridge (2002). In what follows, i 
indexes the cluster, i.e. the firm, g indexes the unit, i.e. the innovation, and N is 
the total number of firms and Gi the total number of innovations by firm i in the 
data. The index i is suppressed to simplify notation when the interest lies in the 
properties of the underlying model rather than in the estimation of the model on 
a sample of data. 
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In order to account for the within-firm correlation that probably arises as a result 
of unobserved firm effects in the Sfinno data, firms are treated as clusters in the 
econometric analysis. Because of the within-cluster correlation, the standard 
assumption of independence of observations fails and specification of the joint 
distribution of yi 

! 

" (yi1,…,yiGi) conditional on xi 

! 

" (xi1,…,xiGi) for each cluster i 
becomes complicated. Hence the traditional maximum likelihood estimator 
(MLE) based on specification of f(yx;β), the full joint density of y given x, 
cannot be readily utilized. However, the pooled probit model 

! 

Pr yig =1x ig[ ] =" # x ig$( ),       g =1,...,Gi  (7) 

can be consistently estimated by a quasi-MLE, which Wooldridge (2002) calls 
the partial maximum likelihood estimator (PMLE), given that the univariate 
densities fg(ygxg;β) are correctly specified for each g. Consistency of the PMLE 
does not require that Πg fg(ygxg;β) is the density of y given some set of 
conditioning variables. However, dependence of y1,…,yGi results in a failure of 
the information matrix equality; thus cluster-robust asymptotic variance matrix 
and cluster-robust test statistics need to be computed instead of the usual ones. 

The partial maximum likelihood estimator and the corresponding asymptotic 
variance matrix can be obtained as follows. Let β0 denote the true value of β and 
define the partial log likelihood for each cluster i as li(β)

! 

" ∑g log fg(yigxig;β). 
Moreover, let the hat symbol refer to an estimate. The PMLE for the pooled 
probit model is obtained by solving the following maximization problem: 

! 

max
"

log fg yig x ig;"( )
g=1

Gi

#
i=1

N

# ,

where log fg yig x ig;"( ) = yig log$ % x ig"( )+ 1& yig( )log 1&$ % x ig"( )[ ].
 

(8) 

Following Wooldridge (2002:406), the asymptotic variance matrix for the 
PMLE can be defined as follows:  
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! 

V ˆ " [ ] = A0

#1
B0A0

#1
N , where

A0 = #E $"
2
l i (" 0)[ ] = # E $"

2
l ig(" 0)[ ]

g=1

Gi

% = E A ig(" 0)[ ]
g=1

Gi

% ,

B0 = E s i (" 0)s i (" 0 & ) [ ] = E s ig(" 0)

g=1

Gi

%
' 

( 
) 
) 

* 

+ 
, 
, 

s ig(" 0)

g=1

Gi

%
' 

( 
) 
) 

* 

+ 
, 
, 

&- 

. 
/ 

0 
/ 

1 

2 
/ 

3 
/ 
,

A ig(" 0) = #E $"
2
l ig(" 0) x ig[ ], and

s ig(" ) =$"l ig(" & ) .

 

(9) 

Since the information matrix equality cannot be expected to hold, B0 ≠ A0 and 
thus separate estimates are needed for A0 and B0. Hence the asymptotic variance 
matrix is estimated by the sandwich estimate 

! 

ˆ V [

! 

ˆ " ]

! 

= ˆ A 0
"1 ˆ B 0

ˆ A 0
"1

/N  – associated 
with Huber (1967) and White (1980, 1982) – that is generalized to account for 
dependence within clusters (e.g., Williams 2000; Wooldridge 2002:406–408). 
The cluster-robust estimator of the asymptotic variance matrix provides cluster-
robust standard errors for the estimated parameters and allows for computation 
of cluster-robust Wald tests. The cluster-robust Wald test statistic, W, for testing 
a null hypothesis with Q restrictions, H0: c(β0) = 0, can be computed as  

! 

W = c( ˆ " # ) ˆ C ̂  V ˆ " [ ] # ˆ C ( )
$1

c( ˆ " ),

where ˆ C %&" c(" )
"= ˆ " 

 and ˆ V ˆ " [ ] is the cluster - robust estimator

of the asymptotic variance matrix

 

(10) 

(e.g., Cameron and Trivedi 2005:226; Greene 2003:486–488; Wooldridge 
2002:362). This test statistic is asymptotically x2 distributed under the null 
hypothesis with Q degrees of freedom (Ibid). 

The parameter estimates that result from the estimation of the pooled model are 
generally referred to as population averaged since the cluster-specific effects are 
averaged out (Cameron and Trivedi 2005:787). For the sake of understanding 
the logic behind the population-averaged parameter estimates, it is useful to 
model the cluster-specific unobserved effects explicitly. In order to incorporate 
the unobserved firm effects into the model for the propensity to patent, the 
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decomposition of utilities from patenting and not patenting, shown in (4), should 
be modified as follows:  

! 

  

! 

U1 =V1(x) +c1 +!1 ,

U0 =V0(x) +c0 +! 0 ,

where c1 and c0 are unobserved firm-specific attributes.

 
(11) 

Just like e1 and e0, c1 and c0 are not known to the researcher and are thus treated 
as independent normally distributed random variables. Under these additional 
assumptions, the model for the propensity to patent becomes: 

    

! 

Pr y =1x,c[ ] = Pr U1 >U0[ ]

= Pr V1(x) +c1 +!1 >V0(x) +c0 +! 0[ ]

= Pr ! 0 "!1 <V1(x) +c1 "V0(x) "c0[ ]

=# V1(x) +c1 "V0(x) "c0( )

=# $ x %1 " % 0( )+c1 "c0( )
=# $ x % +c( ),

 

  

! 

where c " c1 #c0 ~ N 0, ! c

2[ ]. 

(12) 

The assumption that c has a zero mean can be made without loss of generality as 
long as x contains a constant term. 

Furthermore, it is assumed that once the unobserved effect of firm i, ci, is 
conditioned on, only xig appears in the response probability for the innovation g 
of firm i – that is, xig is strictly exogenous conditional on ci (Wooldridge 2002:483). 
Hence the unobserved effects model for the propensity to patent becomes: 

  

! 

Pr yig =1x i ,ci[ ] = Pr yig =1x ig ,ci[ ] =" # x ig$ +ci( ),   g =1,...,Gi ,   

where ci x i ~ N 0, ! c

2[ ].
 

(13) 

A comparison of models (7) and (13) demonstrates that estimation of the pooled 
probit model of (7) results in an omission of the variable c from the model. Since 
omission of variables renders the probit estimates inconsistent, even if the 
omitted variables are independent of the included explanatory variables (cf. 
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Yatchew and Griliches 1985), the parameters of the pooled probit model can be 
expected to differ from those of the unobserved effects model. In fact, it can be 
shown that 

  

! 

" c = " 1+! c

2 , where βc and β are the vectors of parameters of the 
pooled and the unobserved effects models respectively (Wooldridge 2002:470–
472, 483–486). 

Despite the fact that the pooled probit consistently estimates the population-
averaged parameters, βc, rather than β , estimation of the pooled model is 
sufficient as long as the interest lies in the signs of the parameters and in the 
average partial effects (APEs)21 rather than in the parameters as such. First, 
given that 

  

! 

1+! c

2  must be positive, one can obtain the signs of the parameters 
by estimating just the pooled model. Second, as Wooldridge (2002:472) points 
out, in order to obtain average partial effects, one can just estimate the model for 
Pr[y = 1x] since the partial effects of Pr[y = 1x] are always the average partial 
effects of Pr[y = 1x,c] across the distribution of c. For instance, for the 
unobserved effects model of (13), the average partial effect for a continuous 
variable xgj evaluated at the point 

! 

x g = x g
*  is 

! 

E "Pr y =1x g ,c[ ] "xgj xg=xg
*{ } = #cj$

! 

x g
*"# c

$ 

% 
& 

' 

( 
) , 

  

! 

where "
c
# " 1+!

c

2
,

! 

" is the standard normal density function, 
and the expectation is taken with respect to the distribution of c. 

(14) 

The corresponding average partial effect for a binary variable xgj is  

! 

E Pr y =1x g
1
,c[ ] " Pr y =1x g

0
,c[ ]{ } =# x g

1 $% c

& 

' 
( 

) 

* 
+ "# x g

0$% c

& 

' 
( 

) 

* 
+ , 

where 
  

! 

" c # " 1+! c

2 , the expectation is taken with respect to 
the distribution of c, and 

! 

x g
1  and 

! 

x g
0 denote vectors where xgj 

equals 1 and 0 respectively, while other variables are fixed at the 
values at which the average partial effect is to be estimated. 

(15) 

                                                        

21 Average partial effects (APEs) refer to the partial effects averaged across the 
population distribution of c (see, e.g., Wooldridge 2002:22–24, 470–472, 483–486). 
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The equations (14) and (15) clearly imply that consistent estimation of the 
population-averaged parameters is sufficient for consistently estimating the 
average partial effects of the unobserved effects model. 

The delta method for obtaining the asymptotic variance matrix of a nonlinear 
function of parameters can be used to compute standard errors for the average 
partial effects. Let c(β) be the nonlinear function of interest, such as the vector of 
average partial effects. The asymptotic variance matrix of 

! 

c( ˆ " )  can be written as 

! 

V c( ˆ " )[ ] =C0V
ˆ " [ ]C0

#,

where C0 $%" c(" ) "="0
 and V ˆ " [ ] is the asymptotic variance

matrix of ˆ " .

 

(16) 

The appropriate estimator of 

! 

V c( ˆ " )[ ]  is 

! 

ˆ V c( ˆ " )[ ] = ˆ C ̂  V ˆ " [ ] ˆ C #,

where ˆ C $%" c(" ) "= ˆ "  and ˆ V ˆ " [ ] is the appropriate estimator

of the asymptotic variance matrix of ˆ " .

 

(17) 

(See, e.g., Cameron and Trivedi 2005:231; and Wooldridge 2002:43–45 for details.) 

These results for the firm-specific unobserved effect c can be generalized to 
omission of any variables that are independent of the included explanatory 
variables. If the correct model is 

  

! 

Pr y =1x,z[ ] =" # x $ +!z( ),

where z is independent of x and z ~ N 0,"
2[ ],

 
(18) 

omitting z leads to the model 

  

! 

Pr y =1x[ ] =" # x $ !( ),

where !
2 %"

2
#

2 +1.

 
(19) 
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Hence, the model which omits z consistently estimates 
  

! 

" z = " !  rather than β . 
However, since s must be positive and the partial effects of Pr[y = 1x] are the 
average partial effects of Pr[y = 1x,z] across the population distribution of z, 
the signs of the parameters and the average partial effects can be estimated 
directly from the model that omits z. (Wooldridge 2002:470–472.) Hence, as 
Wooldridge (2002:470–472) concludes, omitted heterogeneity is not a problem 
in probit models as long as the heterogeneity is independent of x and there is no 
special reason to be interested in the magnitude of the parameters β as such. 

4.2.2 Random effects probit estimation 

Conditional maximum likelihood estimation of the unobserved effects model of 
(13), reproduced here as (20) 

  

! 

Pr yig =1x i ,ci[ ] = Pr yig =1x ig ,ci[ ] =" # x ig$ +ci( ),   g =1,...,Gi ,   

where ci x i ~ N 0, ! c

2[ ],
 

(20) 

is also possible if an additional assumption is imposed on the model. Further 
assuming that yi1,…,yiGi are independent conditional on (xi,ci) allows the density 
of yi 

! 

" (yi1,…,yiGi) conditional on (xi,ci) to be written as 

! 

f y i x i ,ci;"( ) = f yig x ig ,ci;"( )
g=1

Gi

# ,

where f yig x ig ,ci;"( ) =$ % x ig" +ci( )
yig

1&$ % x ig" +ci( )[ ]
1&yig

.

 

(21) 

Now ci can be eliminated from the likelihood function by integrating over its 
distribution: 

  

! 

f y i x i;" ,! c
2( ) = f y i x i ,ci;"( ) 1 ! c( )

#$

$

%
  

! 

" ci ! c( ) dci . 
(22) 

The integral can be approximated by Gauss–Hermite quadrature (see Butler and 
Moffitt 1982 for a detailed discussion in the context of the random effects probit 
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model), and 

! 

"  and 
  

! 

! c

2 can be consistently estimated by solving the following 
maximization problem: 

  

! 

max
" , !c

2
log f y i x i;" ,! c

2( )
i=1

N

# . (23) 

(See, e.g., Cameron and Trivedi 2005:785–786, 795–796; Greene 2003:690–
693; and Wooldridge 2002:483–486 for details.) 

Estimation of the random effects probit model enables the computation of partial 
effects at c = 0 as well as the computation of the average partial effects (APEs) 
presented in (14) and (15). Moreover, the relative contribution of the unobserved 
cluster effect to the total variance can be measured as 

  

! 

! =
" c

2

" c

2
+1

 (24) 

which is also the intracluster correlation between the composite latent error 

  

! 

ci +! ig across any two units g. The null hypothesis of no unobserved effect can 
be tested by examining the statistical significance of either 

  

! 

ˆ ! c  (Greene 
2003:693) or 

  

! 

ˆ !  (Wooldridge 2002:488). 

Unfortunately, the Sfinno data does not lend itself very well to random effects 
estimation. The data is extremely unbalanced and the majority of clusters only 
includes one observation and thus contains no information regarding the 
intracluster correlation (cf. Figure 2 in Chapter 3). Consequently, the pooled 
model constitutes the primary tool for analysis in the present study and the 
random effects model is estimated solely for comparison purposes and for 
formally testing for the presence of unobserved cluster effects. 

4.2.3 Possible endogeneity of the patenting-scale variable 

The problem with measuring the firms’ patenting activities prior to the patenting 
decision under investigation compromises the exogeneity of the variable 
designed to account for the scale of patenting activities. Because the data does 
not contain information on the date of the patent application, it is possible that 
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the decision to patent affects the variable designed to measure the scale of prior 
patenting, causing simultaneous causality. In order to mitigate this problem the 
scale of patenting is proxied by a binary variable (LARGEPP) indicating that the 
firm had acquired a large patent portfolio during the six-year period leading to 
the commercialization of the innovation. LARGEPP is coded as one if the firm 
obtained more than 60 patents during the six-year period that covered the 
commercialization year of the innovation and the five years prior to that. This 
measure of the scale of patenting activities should not be very sensitive to the 
patenting decision for the individual innovation, but it does not eliminate the 
potential for endogeneity completely. Hence the severity of this problem will be 
assessed by testing for the endogeneity of LARGEPP by a two-step procedure in 
the spirit of Smith and Blundell (1986) and Rivers and Vuong (1988). In 
practice, the test can be applied as follows (see Wooldridge 2002:472–478 for 
details). First, the potentially endogenous variable is regressed (using the 
standard OLS method) on the exogenous variables of the probit model and at 
least one additional instrument. Second, the probit model is estimated with the 
exogenous variables, the potentially endogenous variable, and the residuals of 
the first-stage regression as explanatory variables. Then the test of the null 
hypothesis of exogeneity can be based on the significance of the residual in the 
second-stage probit. Since the distribution of the first-stage error term plays no 
role under the null, such a test is valid without assuming normality or 
homoscedasticity of the first-stage error term and the test can be applied very 
broadly, even if the potentially endogenous variable is a binary variable 
(Wooldridge 2002:474).  

An alternative measure of the scale of patenting activities that should not be very 
sensitive to simultaneous causality is the number of patent applications the firm 
filed the year before the development of the innovation started (PATENTS). 
This is based on the assumption that some development work needs to be 
undertaken before the original idea can be translated into a patentable 
application. The results from using PATENTS will be compared to those 
obtained by using LARGEPP, and the endogeneity of PATENTS will also be 
tested in the manner outlined above. 
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4.2.4 Possible problem of heteroscedasticity 

Homoscedasticity is often a rather restrictive assumption in microeconometric 
applications such as the present investigation of the propensity to patent at the 
innovation level. It is clearly possible that the variance of the error term varies, 
for instance, across firm types, technology classes, and time periods. In the 
context of OLS estimation, the estimates are consistent under heteroscedasticity 
and one only needs to correct for the standard errors. Unfortunately, in the 
context of probit models heteroscedasticity implies inconsistency of the 
maximum likelihood estimates. Moreover, heteroscedasticity changes the 
functional form for Pr[y = 1x] and, as Wooldridge (2002:479) puts it, in many 
cases “… it makes little sense to care about consistent estimation of β when  
Pr[y = 1x] ≠ Φ(x´β)”. When heteroscedasticity is present, it is, for instance, 
possible that the coefficient and partial effect of a variable have opposite signs 
(Ibid). Hence heteroscedasticity clearly poses an important problem for 
estimation of probit models, even though the cluster-robust estimator of the 
asymptotic variance matrix is also robust to heteroscedasticity. 

In order to assess whether heteroscedasticity is a serious problem in the present 
study, the null hypothesis of homoscedasticity is tested against a more general 
alternative that allows for heteroscedasticity. In the alternative specification 
heteroscedasticity is modeled following the general formulation of Harvey 
(1976): 

  

! 

Var ![ ] = e
" z #( )

2

, 

where z is a vector of variables that are used to model the 
variance of the error term 

(25) 

(see, e.g., Greene 2003:680–681 for a discussion of the Harvey formulation in 
the context of the probit model). The null hypothesis 

! 

" = 0  is tested using the 
cluster-robust Wald test for z that includes the time period, technology class, and 
firm size dummies, as well as variables for the R&D intensity, the scale of 
patenting activities, and the start-up status of the firm.  
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4.3 Results from estimation and testing 

This section presents the results from estimation and testing of the econometric 
model. Subsection 4.3.1 lays out the estimation results from the pooled probit 
model, Subsection 4.3.2 presents the results from the tests for endogeneity and 
heteroscedasticity, and Subsection 4.3.3 compares the results with alternative 
models. 

4.3.1 Results from the pooled probit model 

This subsection presents the results from the estimation of the pooled probit 
model with a few different specifications. Tables 4 and 5 contain the partial 
maximum likelihood estimates for four different specifications. The estimates 
with respect to the dummy variables designed to control for differences in the 
propensity to patent across technology classes and time periods are 
predominantly suppressed from these tables and are, instead, presented in 
Appendix B. The coefficient estimates are accompanied by the corresponding 
cluster-robust standard errors and partial effects estimated at a point where firm 
size, technology class, and time period dummies are all zero and other variables 
are assigned their mean values. The partial effects are estimated at a point where 
variables belonging to a set of dummy variables are all zero in order to make the 
interpretation of the partial effects with respect to these variables meaningful. 
For comparison purposes, Appendix C presents the partial effects evaluated at 
the means of all the variables as well as the means of the partial effects 
computed over the observations. The partial effects are computed as partial 
derivatives for continuous variables and as discrete changes in the propensity to 
patent for binary variables. The significance level notation for the partial effects 
is based on standard errors computed using the delta method. As discussed in the 
previous section, the partial effects estimated from the pooled model can be 
interpreted as the average partial effects (APEs) – that is, as partial effects 
averaged across the population distribution of the firm-specific heterogeneity. 
Moreover, Tables 4 and 5 present the results from computation of cluster-robust 
Wald tests of several joint hypotheses as well as a number of measures relating 
to the goodness of fit of the models. 
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Table 4 presents the estimates for two specifications of the pooled probit model 
that do not contain other innovation or market-level variables than the 
technology class dummies. The purpose of this endeavor is to check whether the 
findings emerging from the Sfinno sample are consistent with the previous firm-
level studies if the innovation-level characteristics are ignored. Moreover, 
estimation of these models provides a point of reference for examining how the 
results change when innovation-level characteristics are accounted for. 

Table 4. Estimation results for Pooled Probit 1 and 2. 

Dependent variable: PATAPP 

Independent variables Robust Partial Robust Partial

Coef. Std. Err. effect Coef. Std. Err. effect

Firm size classes 

(ref. EMP1)

EMP2 -0.2660** 0.1341 -0.1041** -0.1248 0.1455 -0.0477

EMP3 -0.4331*** 0.1468 -0.1706*** -0.3173** 0.1600 -0.1237**

EMP4 -0.1807 0.2327 -0.0702 -0.1945 0.2182 -0.0749

Other firm characteristics

R&DINT 0.6027** 0.2947 0.2288** 0.5534* 0.3054 0.2073*

STARTUP 0.4151*** 0.1256 0.1512***

LARGEPP 0.6186* 0.3359 0.2029**

Technology classes

(ref. CONSUM)

ELECTRO -0.2360 0.3100 -0.0921 -0.3256 0.3109 -0.1270

INSTRU -0.1678 0.2931 -0.0651 -0.2683 0.3001 -0.1042

CHEM 0.1314 0.3731 0.0487 0.0421 0.3742 0.0156

AGRI&FOODCHEM -0.5822* 0.3499 -0.2290* -0.5706* 0.3437 -0.2241*

PROCTECH 0.0523 0.2921 0.0197 -0.0131 0.2915 -0.0049

ENVIRO 1.0368** 0.4648 0.2883** 0.9239** 0.4654 0.2608**

MACH 0.1663 0.2878 0.0613 0.1134 0.2920 0.0415

EARTH&WATER -0.0425 0.3445 -0.0162 -0.1578 0.3504 -0.0605

SOFT -1.6392*** 0.4030 -0.5308*** -1.7864*** 0.3834 -0.5626***

Time periods (10 dummies)

Constant 0.2349 0.3008 0.0777 0.3081

Robust Wald tests for joint hypotheses !
2 (df) p-value !

2 (df) p-value

H0: All coefs zero (exc. constant) 83.85 (23) 0.0000 133.14 (25) 0.0000

H0: All firm size class coefs zero 9.54 (3) 0.0229 3.96 (3) 0.2663

H0: All tech. class coefs zero 48.89 (9) 0.0000 54.64 (9) 0.0000

H0: All time period coefs zero 21.24 (10) 0.0195 21.10 (10) 0.0204

Number of observations 791 791

Log pseudolikelihood -462.56144 -452.20421

McFadden's pseudo R2 0.143 0.162

Efron's pseudo R2 0.183 0.203

McKelvey and Zavoina's pseudo R2 0.284 0.319

Percent correctly predicted

for observations with PATAPP=1 88.11 85.46

for observations with PATAPP=0 42.14 50.45

for all observations 68.52 70.54

See Appendix B for the estimates See Appendix B for the estimates

Pooled Probit 1 Pooled Probit 2

 
Significance level notation: *** 1%, ** 5%, * 10%. 
The partial effects are estimated at a point where firm size, technology class, and time period dummies are all 
zero and other variables are assigned their mean values. For comparison purposes, Appendix C presents the 
partial effects evaluated at the means of all the variables as well as the means of the partial effects computed 
over the observations. The partial effects are computed as partial derivatives for continuous variables and as 
discrete changes in the propensity to patent for binary variables. The significance level notation for the partial 
effects is based on standard errors computed using the delta method. 



 

 60 

The estimation results in Table 4 show a nonlinear U-shaped relationship 
between firm size and the propensity to patent that can be captured to a 
relatively large extent by the binary variables for start-up ventures (STARTUP) 
and firms with large patent portfolios (LARGEPP). When STARTUP and 
LARGEPP are included in the model, the null hypothesis of the coefficients of 
the firm size dummies all being zero can no longer be rejected at any meaningful 
level of significance. The coefficients of both STARTUP and LARGEPP can be 
judged to be different from zero at least at the 10 percent significance level, 
while the estimated partial effects lend even stronger support for their positive 
impact on the propensity to patent. The results can be argued to be in accordance 
with the survey evidence of the positive relationship between firm size and the 
propensity to patent (e.g., Arundel and Kabla 1998; Duguet and Kabla 1998; 
Arora et al. 2003) since the firm-level surveys have ignored the small start-up 
ventures. The estimation results for Pooled Probit 1 (see Table 4) suggest that 
among the relatively large firms the propensity to patent increases with firm size. 
While being ignored in the firm-level studies, small start-ups are well 
represented in the Sfinno sample and Table 4 provides significant evidence of 
relatively high propensities to patent in start-up ventures. 

Firm size is modeled using a set of dummy variables in order to allow flexibility 
in the relationship between firm size and the propensity to patent. An alternative 
approach is to use nonlinear transformations of the number of employees (EMP) 
to model the relationship. Appendix D presents the estimation results for 
specifications that are similar to those of Table 4, except that the set of firm size 
dummies is replaced by the logarithm of the number of employees (LNEMP) 
and the second power of the logarithm (LNEMP2)22. Figure 4 shows the 
relationship between the propensity to patent and firm size based on the 
estimation results of Appendix D, with technology class and time period 
dummies all fixed to zero and other variables (R&DINT in both specifications 
and STARTUP and LARGEPP in Pooled Probit 2b) to their means. Using 
continuous variables instead of the dummies does not significantly change any 
of the results nor does it improve the fit of the model. The firm size dummies are 

                                                        

22 Various specifications with the number of employees (EMP) and its powers as well as 
the logarithm of EMP and its powers were tested, but none of them significantly 
improved upon the model presented in Appendix D. 
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used in the following models in order to allow for functional flexibility in the 
relationship between firm size and the propensity to patent. 

Figure 4. Firm size and the propensity to patent. 

In accordance with the findings of Brouwer and Kleinknecht (1999), Combe and 
Pfister (2000), Sattler (2002), and Barros (2004), the results of Table 4 suggest 
that the propensity to patent increases with the R&D intensity of the firm. The 
evidence, however, is relatively weak since the coefficient of R&DINT can be 
judged to be different from zero only at the 10 percent significance level once 
STARTUP and LARGEPP appear in the model.  

The results of Table 4 also lend significant support to the assumption that the 
propensity to patent varies across technologies. As expected, there seems to be a 
relatively high tendency to patent machinery (MACH) and chemicals and 
pharmaceuticals (CHEM), and a relatively low propensity to patent software 
(SOFT). Interestingly, environmental technology (ENVIRO) seems to experience 
a very high patenting propensity. This may well be because the rising concerns 
about sustainable development and global warming are making environmental 
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technology increasingly important, and the early innovators in this growing field 
might seek to secure a share of returns to the later-generation innovations in the 
course of cumulative development of the technology in the future. 

The estimation results presented in Table 4 lend support to Hypotheses 1, 2, and 
6, which propose that patenting activity is subject to economies of scale, start-up 
ventures exhibit a high propensity to patent, and the propensity to patent varies 
across technology classes, respectively. In what follows the objective is to 
investigate how innovation and market-level characteristics affect the propensity 
to patent, and whether or not the conclusions emerging from the results of Table 
4 change when innovation and market-level characteristics are controlled for. 

Table 5 presents the estimation results for two specifications that extend upon 
the specifications of Table 4 by incorporating various innovation and market-
level variables in the model. Pooled Probit 4 differs from Pooled Probit 3 in that 
it seeks to disaggregate collaboration in general into collaboration with specific 
types of partners. 
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Table 5. Estimation results for Pooled Probit 3 and 4. 

Dependent variable: PATAPP 

Independent variables Robust Partial Robust Partial

Coef. Std. Err. effect Coef. Std. Err. effect

Innovation and market characteristics

SIGNIF 0.6389** 0.2944 0.2359** 0.5415* 0.3009 0.2043**

NOVFIRM 0.4397*** 0.1275 0.1740*** 0.4345*** 0.1281 0.1720***

NOVMARK 0.8429*** 0.1116 0.3244*** 0.8096*** 0.1131 0.3122***

SCIENCE 0.3008** 0.1432 0.1178** 0.2638* 0.1465 0.1038*

COMPLEX -0.6263** 0.2505 -0.2398*** -0.6275** 0.2554 -0.2396***

CUMULTECH 0.5557** 0.2305 0.2087** 0.5217** 0.2304 0.1977**

PRICOMP -0.2439* 0.1306 -0.0970* -0.2640** 0.1344 -0.1050**

PUBFUND 0.2706** 0.1288 0.1076** 0.1870 0.1215 0.0745

COLLAB -0.1342 0.1498 -0.0531

CUSTCOLLAB -0.1401 0.1309 -0.0557

SUBCONCOLLAB 0.0313 0.1122 0.0125

RINSTCOLLAB 0.3265** 0.1311 0.1293**

COMPCOLLAB 0.1310 0.2168 0.0519

Firm size classes 

(ref. EMP1)

EMP2 -0.0180 0.1570 -0.0072 -0.0178 0.1607 -0.0071

EMP3 -0.1858 0.1753 -0.0740 -0.2081 0.1824 -0.0828

EMP4 -0.1945 0.2173 -0.0774 -0.2197 0.2198 -0.0873

Other firm characteristics

R&DINT 0.0126 0.3054 0.0050 -0.0471 0.3044 -0.0188

STARTUP 0.2768* 0.1421 0.1094** 0.2854** 0.1446 0.1129**

LARGEPP 0.5885* 0.3563 0.2209* 0.6441* 0.3459 0.2403**

Technology classes (9 dummies)

Time periods (10 dummies)

Constant -1.0490*** 0.3715 -1.1547*** 0.3698

Robust Wald tests for joint hypotheses !
2 (df) p-value !

2 (df) p-value

H0: All coefs zero (exc. constant) 208.52 (34) 0.0000 203.34 (37) 0.0000

H0: All firm size class coefs zero 1.76 (3) 0.6236 2.16 (3) 0.5396

H0: All tech. class coefs zero 50.67 (9) 0.0000 47.96 (9) 0.0000

H0: All time period coefs zero 21.75 (10) 0.0164 20.54 (10) 0.0245

H0: PUBFUND=CUSTCOLLAB= 

SUBCONCOLLAB=COMPCOLLAB=0
- - 3.87 (4) 0.4246

Number of observations 791 791

Log pseudolikelihood -392.08695 -387.64693

McFadden's pseudo R2 0.273 0.282

Efron's pseudo R2 0.340 0.349

McKelvey and Zavoina's pseudo R2 0.475 0.488

Percent correctly predicted

for observations with PATAPP=1 85.68 85.46

for observations with PATAPP=0 68.25 67.06

for all observations 78.26 77.62

Pooled Probit 3 Pooled Probit 4

See Appendix B for the estimates

See Appendix B for the estimates

See Appendix B for the estimates

See Appendix B for the estimates

Significance level notation: *** 1%, ** 5%, * 10%. 
The partial effects are estimated at a point where firm size, technology class, and time period dummies are all 
zero and other variables are assigned their mean values. For comparison purposes, Appendix C presents the 
partial effects evaluated at the means of all the variables as well as the means of the partial effects computed 
over the observations. The partial effects are computed as partial derivatives for continuous variables and as 
discrete changes in the propensity to patent for binary variables. The significance level notation for the partial 
effects is based on standard errors computed using the delta method. 

The estimation results presented in Table 5 provide support for Hypothesis 3, 
which proposes that large innovations are patented more often than others. All 
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variables designed to capture different dimensions of the size of the innovation 
(SIGNIF, NOVFIRM, NOVMARK, SCIENCE) display positive coefficients 
and sizeable positive partial effects (see also partial effects computed at means 
of all the variables and the means of partial effects computed over the 
observations presented in Appendix C). Variables for innovations entirely new 
to the firm (NOVFIRM) and new to the world market (NOVMARK) have 
coefficients and partial effects that can be concluded to differ from zero even at 
the 1 percent significance level. Moreover, the variables for very significant 
innovations (SIGNIF) and innovations triggered by scientific breakthroughs 
(SCIENCE) also display coefficients and partial effects that can be judged to 
differ from zero at least at the 10 percent significance level. 

Furthermore, the estimation results presented above lend support to the 
hypotheses related to the effect of the complexity of innovations on the 
propensity to patent. The variables designed to capture the technological 
complexity of the innovations (COMPLEX) and the fragmentation of intellectual 
property rights (IPR) to cumulatively developing technology (CUMULTECH) 
help to disentangle the opposite complexity-related effects on the propensity to 
patent discussed in Section 2.2. First, the coefficient and partial effect of 
COMPLEX are negative and statistically different from zero (at least at the 5 
percent significance level), suggesting that very complex innovations are 
patented less often than others – as proposed in Hypothesis 4. Second, the 
coefficient and partial effect of CUMULTECH are positive and statistically 
different from zero (at least at the 5 percent significance level). The finding that 
dependence on the availability of a license in the development of an innovation 
increases the propensity to patent indicates that fragmentation of IPR encourages 
patenting and supports the proposition of Hypothesis 5 that cumulative 
technologies entail high propensities to patent. 

Incorporation of firm and market-level variables into the model does not change 
the result that the propensity to patent varies across technology classes as 
proposed in Hypothesis 6. Environmental technology (ENVIRO) remains to 
experience a significantly high propensity to patent, while software (SOFT) 
appears to be patented relatively rarely as expected (see Appendix B). 

Table 5 shows a negative coefficient for the variable designed as a proxy for the 
degree of competition in the product market. The coefficient and partial effect 
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appear to differ from zero at least at the 10 percent significance level, lending 
some support to Hypothesis 7, which proposes that the propensity to patent 
declines with competition in the product market. However, this result needs to 
be taken with a grain of salt since price competition in the product market might 
be expected to trigger product differentiation and incremental change rather than 
development of large innovations (cf. Tanayama 2002). If the variables designed 
to measure the size of the innovation fail to capture the effect of the size on the 
propensity to patent in its entirety, it is possible that price competition is 
negatively associated with the propensity to patent because it affects the type of 
innovative activity rather than the propensity to patent directly. 

Assessment of Hypotheses 8 and 9 is somewhat problematic because public 
R&D support and collaboration, especially with universities and other research 
institutes, are associated with each other as well as with the size of the 
innovation. Tekes (Finnish Funding Agency for Technology and Innovation), the 
main public funding organization for R&D in Finland, for instance, favors 
projects that include collaboration with other firms or universities and research 
institutes23. Public funding and collaboration with universities and research 
institutes, on the other hand, are probably associated with relatively large 
innovations (cf. Tanayama 2002). Pooled Probit 3 seems to lend support to 
Hypothesis 9 on the positive effect of public R&D support (PUBFUND) on the 
propensity to patent, while it fails to generate evidence that collaboration 
(COLLAB) would affect the propensity to patent (cf. Hypothesis 8). Pooled 
Probit 4, on the other hand, suggests that collaboration with universities and 
other research institutes (RINSTCOLLAB) has a positive effect on the 
propensity to patent, while it fails to produce evidence that public support 
(PUBFUND) or collaboration with partners of other types (CUSTCOLLAB, 
SUBCONCOLLAB, COMPCOLLAB) would affect the propensity to patent in 
one direction or the other. 

The observation that the coefficient of PUBFUND fails to differ from zero in a 
statistically significant manner when collaboration in general is disaggregated 
into collaboration with specific types of partners suggests that public R&D 

                                                        

23See http://www.tekes.fi/eng/tekes/rd/evaluation_criteria.htm for the evaluation criteria 
Tekes uses in its R&D funding decisions. 

http://www.tekes.fi/eng/tekes/rd/evaluation_criteria.htm
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support may correlate with factors that affect the propensity to patent, such as 
collaboration with universities and other research institutes, rather than strongly 
affecting it directly. In the discussion leading to Hypothesis 8, it was argued that 
the need to protect proprietary knowledge in the face of collaborative knowledge 
sharing and to clarify issues of ownership over co-developed innovations 
increases the propensity to patent in firms that engage in R&D collaboration. 
Peeters and Van Pottelsberghe de la Potterie (2006) refer to this as the ‘need’ 
effect and argue that this should be of particular importance in collaboration 
with competitors. Furthermore, they argue that the ‘novelty’ effect – that is, the 
tendency of R&D collaboration to lead to the generation of more ‘fundamental 
and breakthrough knowledge’ than in-house R&D – would dominate in 
partnerships with scientific institutions. The finding that collaboration with 
universities and other research institutes (RINSTCOLLAB) has a positive effect 
on the propensity to patent, while collaboration with competitors 
(COMPCOLLAB) does not appear to affect the propensity to patent, suggests 
that it is the ‘novelty’ effect rather than the ‘need’ effect which has a significant 
effect on the propensity to patent (cf. Peeters and Van Pottelsberghe de la 
Potterie 2006). This indicates that the finding of a positive relationship between 
R&D collaboration and the propensity to patent in studies such as Brouwer and 
Kleinknecht (1999) might be due to the ‘novelty’ effect rather than the ‘need’ 
effect. An alternative explanation for the significant impact of collaboration with 
universities and other research institutes on the propensity to patent is that 
collaboration with scientific institutions may result in high propensities to patent 
because the researchers’ incentives to publish the underlying findings can render 
secrecy an unattainable means for appropriation. 

The findings with regard to Hypotheses 1 and 2, which propose that patenting 
activity is subject to economies of scale and start-up ventures exhibit a high 
propensity to patent, remain consistent with those obtained from estimating the 
model without innovation and market-level variables. The coefficients of both 
STARTUP and LARGEPP are judged to be different from zero at least at the 10 
percent significance level, while the estimated partial effects of Pooled Probit 4 
provide somewhat stronger support for their positive impact on the propensity to 
patent. In contrast to the results obtained from estimation without innovation and 
market-level variables, R&D intensity (R&DINT) no longer appears to have a 
positive impact on the propensity to patent in the specifications of Table 5. This 
finding suggests that the positive impact of R&D intensity on the propensity to 
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patent observed in studies such as Brouwer and Kleinknecht (1999) may be due 
to the effect R&D intensity has on the size of innovations rather than directly 
affecting the propensity to patent. Similarly, the positive relationship between 
exporting activities and the propensity to patent observed, for instance, in Licht 
and Zoz (1998) and Arundel and Kabla (1998) may result from exporting firms 
developing larger innovations – or better yet, firm’s with larger innovations 
choosing to export them – rather than having an inherently higher propensity to 
patent (see Appendix E for some evidence). 

As discussed in Subsection 4.2.3, the variable designed to account for the scale 
of patenting activities may be subject to simultaneous causality. Such 
endogeneity can compromise the validity of the result that patenting activity is 
subject to economies of scale. However, it is somewhat reassuring that if 
LARGEPP is excluded from the model, the coefficient of EMP4 increases as 
expected. An alternative measure of the scale of patenting activities to 
LARGEPP that should not be very sensitive to simultaneous causality is the 
number of patent applications the firm filed the year before the development of 
the innovation started (PATENTS). The results obtained by using either 
PATENTS or LARGEPP are very similar (see Appendix F for results of 
specifications with PATENTS), while using PATENTS provides somewhat 
stronger support for the economies of scale hypothesis. The endogeneity of 
LARGEPP is tested for in the following subsection. 

The null hypothesis that the coefficients of all the time period dummies are zero 
can be rejected in all of the specifications of Tables 4 and 5. Somewhat 
surprisingly, the estimated coefficients of all the time period dummies (see 
Appendix B) are positive, suggesting that the propensity to patent has been the 
lowest during the most recent period (after 1997), even though the number of 
patent applications filed in Finland by domestic applicants has been growing 
relatively steadily from 1980 to 2000 (cf. Figure 5). However, cluster-robust 
Wald tests of the null hypothesis that the coefficients of all the time period 
dummies, except the one for the pre-1986 period (PRE1986), are zero yields p-
values of 0.1498 and 0.1444 for Pooled Probit 3 and 4 respectively. Hence such 
a hypothesis cannot be rejected, even at the 10 percent significance level. The 
relatively high propensity to patent in the pre-1986 period, on the other hand, 
might reflect the size of the innovations that made it to the Sfinno sample, 
despite the fact that they were commercialized prior to the period covered by the 
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journals reviewed in collecting the Sfinno data (1985–1998). Nevertheless, there 
appears to be no evidence that the increase in the number of patent applications 
would be due to a general increase in the propensity to patent significant product 
innovations (cf. the explanations for the recent surge in patenting in the US 
presented, e.g., in Kortum and Lerner 1999; Hall and Ziedonis 2001; and Hall 
2005). 

Figure 5. The number of patent applications filed in Finland by domestic 
applicants 24. 

4.3.2 Testing for endogeneity and heteroscedasticity 

The endogeneity of the patenting-scale variable LARGEPP is formally tested in 
the spirit of Smith and Blundell (1986) and Rivers and Vuong (1988) as 
described in Subsection 4.2.3. In practice, this means that first LARGEPP is 

                                                        

24 Data source: National Board of Patents and Registration of Finland. 
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regressed on the exogenous explanatory variables of the probit model and at 
least one additional instrument, and then the probit model is estimated with the 
residual of the first-stage regression as an additional explanatory variable. 

Identification of the second-stage probit requires that at least one of the 
explanatory variables of the first-stage regression be excluded from the probit 
model. The firm size dummies as well as the R&D intensity variable are natural 
candidates for instruments to be excluded from the probit model since they are 
important determinants of the scale of patenting (cf. Subsection 2.1.1) but are 
not expected to affect the propensity to patent directly. The size-related 
hypotheses of Chapter 2 propose that the start-up status and the scale of 
patenting are responsible for the association between size and scale and the 
propensity to patent, while the null hypotheses that firm size and R&D intensity 
can be excluded from the innovation-level model for the propensity to patent 
cannot be rejected once these factors are controlled for (cf. Table 5). 
Furthermore, firm size and R&D intensity should not be subject to simultaneous 
causality that threatens the patenting-scale variable since the decision of whether 
or not to patent an innovation hardly affects the size or R&D intensity of the 
innovating firm.   

Table 6 presents the results for three specifications of the test for endogeneity. 
The first excludes the set of firm size dummies, the second the R&D intensity 
variable, and the third both of them from the probit model (cf. Pooled Probit 4 in 
Table 5). Table 6 reports the cluster-robust asymptotic t-statistics and the 
corresponding p-values for the null hypothesis that the first-stage residuals have 
no explanatory power in the second-stage probit model. The test results indicate 
that the null hypothesis of exogeneity of LARGEPP cannot be rejected at 
meaningful levels of significance (p-values range from 0.380 to 0.877). The 
findings with regard to the endogeneity of the variable PATENTS are very 
similar to those obtained here for LARGEPP as shown in Appendix F. The 
validity of these tests naturally hinges on the assumption that the instruments for 
the potentially endogenous variable are themselves exogenous. 
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Table 6. Testing for endogeneity of LARGEPP. 

 

Dependent variable in the probit model: PATAPP

Test 1 Test 2 Test 3

Explanatory variables in the probit model

Potentially endogenous variable LARGEPP LARGEPP LARGEPP

Exogenous variables SIGNIF SIGNIF SIGNIF

NOVFIRM NOVFIRM NOVFIRM

NOVMARK NOVMARK NOVMARK

SCIENCE SCIENCE SCIENCE

COMPLEX COMPLEX COMPLEX

CUMULTECH CUMULTECH CUMULTECH

PRICOMP PRICOMP PRICOMP

PUBFUND PUBFUND PUBFUND

CUSTCOLLAB CUSTCOLLAB CUSTCOLLAB

SUBCONCOLLAB SUBCONCOLLAB SUBCONCOLLAB

RINSTCOLLAB RINSTCOLLAB RINSTCOLLAB

COMPCOLLAB COMPCOLLAB COMPCOLLAB

STARTUP STARTUP STARTUP

R&DINT

Firm size dummies (3)

Technology class dummies (9) Technology class dummies (9) Technology class dummies (9)

Time period dummies (10) Time period dummies (10) Time period dummies (10)

Instruments excluded from the probit model

Firm size dummies (3) R&DINT R&DINT

Firm size dummies (3)

Test of exogeneity of LARGEPP

H0: Coef of the OLS residual zero in the 

probit model

Robust asymptotic t-statistic 0.88 0.15 0.88

p-value 0.380 0.877 0.380  

 

The null hypothesis of homoscedasticity of the error term is tested here against a 
more general alternative, which allows for heteroscedasticity modeled in the 
spirit of Harvey (1976), as discussed in Subsection 4.2.4. Table 7 presents the 
results for such a test with regard to the probit models of Table 5. The cluster-
robust Wald tests of the null hypothesis that all the coefficients of the variables 
in the variance function are zero do not provide significant evidence against the 
null (p-values range from 0.4422 to 0.8741). Hence the hypothesis of 
homoscedasticity cannot be rejected in the light of this evidence. 
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Table 7. Testing for heteroscedasticity. 

Specification under H0 Pooled Probit 3 Pooled Probit 4

Variables in the variance function (vector z)

R&DINT R&DINT

STARTUP STARTUP

LARGEPP LARGEPP

Firm size dummies (3) Firm size dummies (3)

Technology class dummies (9) Technology class dummies (9)

Time period dummies (10) Time period dummies (10)

Robust Wald test for heteroscedasticity

H0: All coefs in the variance function zero

!
2 (df) 25.36 (25) 17.21 (25)

p-value 0.4422 0.8741  

4.3.3 Comparison of results with alternative models 

As discussed in Subsection 4.2.2, the unobserved effects model for the 
propensity to patent can also be estimated using the random effects formulation, 
given that certain additional assumptions hold (see Subsection 4.2.2). However, 
the Sfinno data does not lend itself very well to random effects estimation since 
the data is extremely unbalanced and the majority of clusters only includes one 
observation and thus contains no information about the intracluster correlation. 
Hence the random effects probit is estimated solely for comparison purposes and 
for testing for the presence of unobserved firm effects. 

Table 8 presents the results from the estimation of a pooled probit model and a 
corresponding random effects model. The explanatory variable specification in 
the estimated models is a restricted version of Pooled Probit 4 of Table 5. The 
variables for public funding and for collaboration with partners other than 
universities and research institutes are excluded as they fail to be statistically 
significant (both individually and jointly) in Pooled Probit 4. The restricted 
model is also preferred to both Pooled Probit 3 and 4 on the basis of Akaike and 
Bayesian information criteria. Moreover, a comparison of Pooled Probit 4 with 
the restricted model, labeled Pooled Probit 5 in Table 8, shows that the exclusion 
of these variables has very little impact on the estimation results with regard to 
the other variables. The findings emerging from the estimation of the random 
effects model are very similar to those obtained from the pooled models. As 
expected on the basis of the mathematical relationship between the population-
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averaged parameters, which can be estimated from the pooled model, and the 
true parameters, which can be estimated from the random effects model, the 
population-averaged parameters are generally lower in absolute value terms (cf. 
Section 4.2). However, once the average partial effects (APEs) – which, in 
theory, are equivalent to the partial effects estimated from the pooled model – 
are used for the comparison, the results appear very similar. More or less the 
only meaningful difference is that the random effects model assigns a lower 
impact for SIGNIF and a higher impact for RINSTCOLLAB in affecting the 
propensity to patent. This is not very surprising, however, since both of these 
variables are expected to capture the effect of the size of the innovation on the 
propensity to patent and are thus probably somewhat collinear. Appendix G 
shows that once RINSTCOLLAB is excluded from the random effects model the 
estimated effect of the other variables designed to proxy the size of the 
innovation increases.  

The primary reason for estimating the random effects model is that it allows for 
a formal test of the presence of unobserved firm effects, as discussed in 
Subsection 4.2.2. The results presented in Table 8 provide significant evidence 
against the null hypothesis of no unobserved effects. For instance, the likelihood 
ratio (LR) test of the null hypothesis that the relative importance of the 
unobserved effect, r, is zero yields significant evidence against the null (p-value 
is 0.000). This evidence of the presence of the unobserved effects highlights the 
importance of computing cluster-robust standard errors as well as cluster-robust 
test statistics in the pooled estimations. 

 

 

 

 

 

 



 

 73 

Table 8. Estimation results for Pooled Probit 5 and Random Effects Probit. 

Dependent variable: PATAPP 

Independent variables Robust Partial Partial

Coef. Std. Err. effect Coef. Std. Err. effect APE

Innovation and market characteristics

SIGNIF 0.5619* 0.3030 0.2101** 0.4991 0.3327 0.1851 0.1513

NOVFIRM 0.4472*** 0.1264 0.1769*** 0.5708*** 0.1464 0.2242*** 0.1794***

NOVMARK 0.8330*** 0.1124 0.3211*** 1.0256*** 0.1603 0.3904*** 0.3160***

SCIENCE 0.2494* 0.1482 0.0980* 0.2807 0.1964 0.1087 0.0875

COMPLEX -0.6429** 0.2556 -0.2458*** -0.8477** 0.3738 -0.3176*** -0.2585**

CUMULTECH 0.5418** 0.2259 0.2036** 0.6426** 0.3112 0.2317** 0.1912**

PRICOMP -0.2548* 0.1313 -0.1013* -0.3469** 0.1513 -0.1375** -0.1097**

RINSTCOLLAB 0.3456*** 0.1297 0.1366*** 0.5157*** 0.1455 0.2010*** 0.1613***

Firm size classes 

(ref. EMP1)

EMP2 -0.0462 0.1574 -0.0184 -0.1226 0.1978 -0.0488 -0.0389

EMP3 -0.2421 0.1790 -0.0962 -0.3232 0.2129 -0.1283 -0.1023

EMP4 -0.2598 0.2255 -0.1032 -0.3760 0.2518 -0.1489 -0.1188

Other firm characteristics

R&DINT -0.0286 0.3098 -0.0114 -0.0480 0.3805 -0.0190 -0.0152

STARTUP 0.3049** 0.1436 0.1203** 0.3046* 0.1595 0.1192* 0.0955*

LARGEPP 0.6251* 0.3503 0.2328** 0.7220** 0.3342 0.2580** 0.2136**

Technology classes

Time periods (10 dummies)

Constant -1.1294*** 0.3622 -1.3429*** 0.4477

!c - 0.7608*** 0.1457
" - 0.3666*** 0.0889

LR test for unobserved effects      (df) p-value

H0: "=0 23.29 (01) 0.000

Wald tests for joint hypotheses #
2 (df) p-value #

2 (df) p-value

H0: All coefs zero (exc. constant) 198.83 (33) 0.0000 110.97 (33) 0.0000

H0: All firm size class coefs zero 2.57 (3) 0.4623 3.27 (3) 0.3515

H0: All tech. class coefs zero 48.88 (9) 0.0000 63.23 (9) 0.0000

H0: All time period coefs zero 20.26 (10) 0.0269 14.65 (10) 0.1454

Number of observations 791 791

Log likelihood - -377.99857

Log pseudolikelihood -

Percent correctly predicted

for observations with PATAPP=1 84.58 86.12

for observations with PATAPP=0 67.36 66.17

for all observations 77.24 77.62

See Appendix B for the estimates See Appendix B for the estimates

See Appendix B for the estimates See Appendix B for the estimates

Pooled Probit 5 Random Effects Probit

  

! 

# 
2

 

Significance level notation: *** 1%, ** 5%, * 10%. 

The partial effects and APEs are estimated at a point where firm size, technology class, and time period 
dummies are all zero and other variables are assigned their mean values. For comparison purposes, Appendix C 
presents the partial effects evaluated at the means of all the variables as well as the means of the partial effects 
computed over the observations. The partial effects and APEs are computed as partial derivatives for 
continuous variables and as discrete changes in the propensity to patent for binary variables. The significance 
level notation for the partial effects and APEs is based on standard errors computed using the delta method. 

The expression for the propensity to patent took the form of a probit model as 
the random components of utility (e0 and e1) were assumed to be normally 
distributed. If, instead, e0 and e1 were assumed to be independent type 1 extreme 
value distributed, the logit model would have arisen instead of the probit model 
(see, e.g., Cameron and Trivedi 2005:476–478). However, in empirical 
investigations such as the present study the choice between the probit and logit 
formulations usually has very little impact on the findings (e.g., Cameron and 
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Trivedi 2005:471–473; Wooldridge 2002:479). The results from the pooled logit 
model presented in Table 9 appear very similar to those from the corresponding 
probit model (cf. Pooled Probit 5 in Table 8). Moreover, Table 9 presents the 
estimation results for a pooled linear probability model (LPM) estimated using 
ordinary least squares (OLS). Even though the linear probability model produces 
smaller estimates of the partial effects than the probit and logit models25, the 
qualitative findings remain robust under the LPM. 

                                                        

25 Note that in the context of the probit and logit models the magnitude of the partial 
effects depends on the point at which they are estimated, while for the LMP they are 
simply equal to the coefficients. 
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Table 9. Estimation results for Pooled Logit and Pooled LPM. 

Significance level notation: *** 1%, ** 5%, * 10%. 

The partial effects are estimated at a point where firm size, technology class, and time period dummies are all 
zero and other variables are assigned their mean values. For comparison purposes, Appendix C presents the 
partial effects evaluated at the means of all the variables as well as the means of the partial effects computed 
over the observations. The partial effects are computed as partial derivatives for continuous variables and as 
discrete changes in the propensity to patent for binary variables. The significance level notation for the partial 
effects is based on standard errors computed using the delta method. 
 

Dependent variable: PATAPP 

Independent variables Robust Partial Robust

Coef. Std. Err. effect Coef. Std. Err.

Innovation and market characteristics

SIGNIF 1.0942* 0.6055 0.2428** 0.1595** 0.0702

NOVFIRM 0.7520*** 0.2208 0.1856*** 0.1276*** 0.0378

NOVMARK 1.4322*** 0.1983 0.3415*** 0.2631*** 0.0353

SCIENCE 0.4229 0.2631 0.1031* 0.0653 0.0409

COMPLEX -1.1060** 0.4344 -0.2613*** -0.1859** 0.0870

CUMULTECH 0.9368** 0.3951 0.2134** 0.1471*** 0.0552

PRICOMP -0.4506** 0.2242 -0.1121** -0.0846** 0.0396

RINSTCOLLAB 0.5905*** 0.2268 0.1454*** 0.0974** 0.0382

Firm size classes 

(ref. EMP1)

EMP2 -0.0680 0.2707 -0.0169 -0.0159 0.0463

EMP3 -0.3959 0.3097 -0.0986 -0.0688 0.0526

EMP4 -0.4628 0.4007 -0.1150 -0.0885 0.0695

Other firm characteristics

R&DINT -0.0243 0.5348 -0.0060 -0.0218 0.0862

STARTUP 0.4894* 0.2568 0.1203* 0.0770* 0.0432

LARGEPP 1.0716 0.6919 0.2413* 0.1819* 0.0996

Technology classes (9 dummies)

Time periods (10 dummies)

Constant -1.8965*** 0.6150 0.1903* 0.1104

Robust Wald tests for joint hypotheses !
2 (df) p-value F (df1,df2) p-value

H0: All coefs zero (exc. constant) 162.65 (33) 0.0000 17.82 (33,554) 0.0000

H0: All firm size class coefs zero 2.46 (3) 0.4827 0.89 (3,554) 0.4465

H0: All tech. class coefs zero 41.49 (9) 0.0000 9.31 (9,554) 0.0000

H0: All time period coefs zero 20.53 (10) 0.0246 1.95 (10,554) 0.0368

Number of observations 791

Log pseudolikelihood -388.3252

R2

McFadden's pseudo R2 0.280

Efron's pseudo R2 0.348

McKelvey and Zavoina's pseudo R2 0.462

Percent correctly predicted

for observations with PATAPP=1 84.36

for observations with PATAPP=0 67.66

for all observations 77.24

Pooled Logit Pooled LPM (OLS)

65.88

791

-

0.324

-

77.75

See Appendix B for the estimates

See Appendix B for the estimates

See Appendix B for the estimates

See Appendix B for the estimates

-

-

86.56



 

 76 

5. Conclusion 

Thus far most of the empirical investigations into the propensity to patent have 
been confined to the use of industry and firm-level data, and the failure to 
control for innovation-level factors has made the interpretation of the results 
somewhat problematic. The observed variations in the propensity to patent 
across industries and firms might reflect differences in the characteristics of 
innovations developed in these industries and firms rather than some inherent 
differences in the propensity to patent. Moreover, the absence of innovation-
level variables has rendered innovation-related hypotheses emerging from the 
theoretical literature untestable in the industry and firm-level studies. This study 
seeks to shed new light on the propensity to patent at the innovation level, while 
also contributing to the long tradition of research on the relationship between 
firm size and the propensity to patent. By taking the analysis to the innovation 
level, this study also brings the empirics closer to the theoretical work on the 
propensity to patent. 

The present study set out to cast new light on the question of how the propensity 
to patent an innovation is affected by the characteristics of the innovation, the 
market, and the innovating firm. For empirical purposes, the propensity to patent 
was defined as the fraction of innovations for which at least one patent 
application is filed, while an innovation was defined as an invention that has 
been commercialized on the market by a business firm or an equivalent. The 
innovation-level model for the propensity to patent was derived in the spirit of 
random utility models. The emerging probit model was estimated on a sample of 
791 Finnish innovations using a quasi-maximum likelihood estimator called the 
partial maximum likelihood estimator, which allows for within-firm correlation 
in the data. 

The data sample of 791 Finnish innovations used in this study was drawn from 
the Sfinno database compiled at VTT Innovation Studies (formerly VTT Group 
for Technology Studies). In an effort to compile the Sfinno database, a 
systematic review of 18 carefully selected trade and technical journals from the 
period 1985–1998 has been complemented with a review of annual reports of 
large firms from the same period as well as with expert opinion-based 
identification of innovations. Since the Sfinno approach heavily relies on public 
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sources in the identification of innovations, it is clearly more conducive to 
studying product than process innovations. Hence innovations only developed 
for the firm’s internal use are not included in the Sfinno database. The inclusion 
of an innovation in the database has required that the innovation is a 
technologically new or significantly enhanced product compared to the firm’s 
previous products. Despite the important limitation to collecting innovation-level 
data that standard statistical sampling is not possible since the underlying 
population of innovations is unknown, the Sfinno database has been argued to be 
relatively representative of significant Finnish product innovations. Hence, even 
though the estimation results cannot be directly generalized to the population of 
innovations, the application of the Sfinno data to test hypotheses on the 
determinants of the propensity to patent emerging from the literature can clearly 
contribute to our understanding of factors affecting the propensity to patent. 

The empirical investigation of the propensity to patent at the innovation level 
produced a number of important findings. To begin with, it is already of 
considerable interest as such that patent protection was sought for less than 60 
percent of the 791 relatively significant product innovations contained in the 
data sample. Patenting is clearly not a self-evident outcome of an innovation 
process that results in the commercialization of an innovation. Moreover, the 
results from the econometric analysis indicate that various characteristics of the 
innovation, the market, and the innovating firm have a significant effect on the 
propensity to patent. First, the estimation results suggest that larger – that is, 
more novel and significant – innovations are patented more frequently than 
smaller ones. Second, technologically very complex innovations appear to be 
patented less often than others, while the fragmentation of intellectual property 
rights to cumulatively developing technology seems to entail high propensities 
to patent. Third, the results indicate that the propensity to patent varies across 
technology classes and declines with product market competition. The evidence 
on the effect of competition on the propensity to patent needs to be taken with a 
grain of salt, however, since intense price competition in the product market 
might indirectly affect the propensity to patent by affecting the size of the 
innovations rather than by having a direct impact on the propensity to patent. 
Fourth, collaboration with scientific institutions appears to have a positive 
impact on the propensity to patent, while the estimations fail to produce 
evidence that public R&D support or collaboration with other types of partners 
would affect the propensity to patent. The collaboration with scientific 
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institutions can also be expected to have an indirect impact on the propensity to 
patent as it is probably associated with the technological novelty of the 
innovation. Finally, there appears to be a U-shaped relationship between firm 
size and the propensity to patent, which, to a relatively large extent, can be 
attributed to economies of scale in the patenting activity as well as to the 
relatively important role of patenting in start-up ventures. 

The results from the empirical investigation can be interpreted as being in 
accordance with the survey evidence of the positive relationship between firm 
size and the propensity to patent since the firm-level surveys have generally 
ignored the small start-up ventures. The estimation results suggest that among 
the relatively large firms the propensity to patent increases with firm size as firm 
size is positively correlated with the scale of patenting. While being ignored in 
the firm-level studies, small start-ups are well represented in the Sfinno sample 
and the estimation results provide significant evidence of relatively high 
propensities to patent in start-up ventures. Moreover, the finding of significant 
variation in the propensity to patent across technology classes is well in line with 
the previous research. On the other hand, certain factors – such as R&D intensity 
– that have appeared to have an impact on the propensity to patent in the firm-
level studies fail to have a statistically significant effect when the innovation-
level factors are controlled for. This might be indicative of such variables having 
only an indirect effect on the propensity to patent since they may well be 
associated with the size of the innovations rather than affecting the propensity to 
patent directly. While this study seeks to capture different dimensions of the size 
of innovations with some success using a number of qualitative variables, 
development of more accurate measures of the size of innovations should make 
it easier to disentangle the direct effects on the propensity to patent from the 
indirect effects that influence patenting through the size of the innovations. 

The results outlined above should be of obvious interest to those who depend on 
patent data in drawing conclusions about innovation and technological change. 
The finding that larger product innovations are patented more frequently than 
smaller ones should be comforting news from the perspective of using patents as 
an economic indicator of innovation since it implies that large innovations enter 
the patent indicator at a relatively high probability. However, the study also 
points to the weaknesses of patent data by demonstrating that the propensity to 
patent varies significantly across firms and technologies. For instance, the 
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evidence in favor of the hypotheses on the presence of economies of scale in the 
patenting activity and on the relatively high propensities to patent in start-up 
ventures suggests that patents are a rather problematic measure of innovations in 
the context of testing the Schumpeterian hypotheses. 

Moreover, the size-related hypotheses suggest that small start-up ventures are 
more dependent on patent protection than larger firms while experiencing a 
disadvantage in obtaining and enforcing patents. This should have important 
implications for the optimal design of the patent system since it is highly 
probable that not all valuable ideas originate in the large corporations and thus 
also small entities need to be provided with sufficient incentives for developing 
their ideas into innovations. Harnessing the innovative capacity of small firms is 
clearly an important challenge for any economy. 

Because in reality an innovation can be protected by a number of patents, a 
single patent can cover numerous innovations, and not all patents relate to 
innovations, a complete investigation of the extent to which patents are 
representative of different innovations is beyond the scope of this study. 
Furthermore, the nature of the data used in this study does not allow for 
consideration of process innovations only developed for the firms’ internal use. 
Clearly, further research is needed to paint a clear picture of the relationship 
between innovations and patents and to answer the question of the extent to 
which patents are representative of the wider universe of innovations. All in all, 
the study provides a rather encouraging perspective of the potential of 
innovation-level investigations in contributing to our understanding of the 
features and patterns of technological activities. This study is just a small step in 
trying to shed light on the complex relationship between patents and innovations 
that has been remained extremely elusive thus far. Nevertheless, the results 
indicate that this line of research can prove a very valuable complement to 
different industry and firm-level investigations. 
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A1 

Appendix A: Technology classification 

Table A1. Technology classification, VTT Innovation Studies. 

Technology class IPC-class 

10 Electrotechnology  
11 Electrical machinery and 

equipment, electric energy 
F21; G05F; H01B,C,F,G,H,J,K,M, R,T; 
H02; H05B,C,F,K 

12 Audiovisual technology G09F,G; G11B; H03F,G,J; H04N-003,-
005,-009,-013,015,-017,R,S 

13 Telecommunications G08C; H01P,Q; H03B,C,D,H,K, L,M; 
H04B,H,J,K,L,M,N-001,-007,-011,Q 

14 Information technology G06; G11C; G10L 
15 Semiconductors H01L 
  
20 Instruments  
21 Optics G02; G03B,C,D,F,G,H; H01S 
22 Analysis, measurement, and 

control technology  
G01B,C,D,F,G,H,J,K,L,M,N,P,R,S,V,W; 
G04; G05B,D; G07; G08B,G; G09B,C,D; 
G12 

23 Healthcare technology A61B,C,D,F,G,H,J,L,M,N 
24 Nuclear technology G01T; G21; H05G,H 
  
30 Chemistry, pharmaceutical 

technology 
 

31 Organic chemistry C07C,D,F,H,J,K 
32 Macromolecule chemistry, 

polymer chemistry 
C08B,F,G,H,K,L; C09D,J; C13L 

33 Pharmaceutical technology, 
cosmetics 

A61K 

34 Biotechnology C07G; C12M,N,P,Q,R,S 
35 Agrochemistry, 

foodchemistry 
A01H; A21D; A23B,C,D,F,G,J, K,L; 
C12C,F,G,H,J; C13D,F,J,K 

36 Petrochemistry, basic 
material chemistry 

C09B,C,F,G,H,K; C10B,C,F,G,H,J, K,L,M; 
C11B,C,D 
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40 Process technology, special 

equipment 
 

41 Chemical process technology B01B,D (pl.-046 - -053),F,J,L; B02C; B03; 
B04; B05B; B06; B07; B08; F25J; F26 

42 Surface material technology, 
coatings 

B05C,D; B32; C23; C25; C30 

43 Material technology, 
metallurgy 

C01; C03C; C04; C21; C22; B22 

44 Processing of materials, 
textiles (*)  

A41H; A43D; A46D; B28; B29; B31; 
C03B; C08J; C14; D01; D02; D03; 
D04B,C,G,H; D05; D06B,C,G,H,J,L,M,P,Q 

45 Pulp and paper (*) D21 
46 Printing technology, 

packaging material  
B25J; B41; B65B,C,D,F,G,H; B66; B67 

47 Agricultural produce and 
food technology, machinery 
and equipment 

A01B,C,D,F,G,J,K,L,M; A21B,C; A22; 
A23N,P; B02B; C12L; C13C,G,H 

48 Environmental technology A62D; B01D-046 - -053; B09; C02; F01N; 
F23G,J 

50 Mechanical engineering, 
equipment 

 

51 Machine tools B21; B23; B24; B26D,F; B27; B30 
52 Engines, pumps, turbines F01B,C,D,K,L,M,P; F02; F03; F04; F23R 
53 Thermal engineering, 

processes and equipment  
F22; F23B,C,D,H,K,L,M,N,Q; F24; 
F25B,C; F27; F28 

54 Mechanical components F15; F16; F17; G05G 
55 Transport equipment B60; B61; B62; B63B,C,H,J; B64B,C,D,F 
56 Space technology, weapons 

technology 
B63G; B64G; C06; F41; F42 

   
60 Consumption goods and 

equipment 
A24; A41B,C,D,F,G; A42; A43B, C; A44; 
A45; A46B; A47; A62B,C; A63; 
B25B,C,D,F,G,H; B26B; B42; B43; B44; 
B68; D04D; D06F, N; D07; F25D; 
G10B,C,D,F,G,H,K 
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70 Earth construction and 

hydraulic engineering, 
mining 

E01; E02; E03; E04; E05; E06; E21 

  
80 Software (not IPC-class compatible) 
81 Applications software   
82 Artificial intelligence  
83 Databases  
84 Data processing   
85 Security technology  
86 Data management systems  
87 Network software, network 

management 
 

88 Programming and 
programming languages 

 

  
90 'Problems'  
91 Ambiguous case  
92 Classification not applicable 

(service etc.) 
 

99 No information  
 
Sources: 
10–70 Fraunhofer ISI / Jan 17, 1997 (* = own classification) 
80 Vereinigung der Technologiezentren Österreichs: 
http://www.tcs.co.at/vtoe/firmen/tcc/tcc.htm 
IPC-classification: http://www.wipo.int/eng/clssfctn/ipc/ipc6en/index.htm 
 

http://www.tcs.co.at/vtoe/firmen/tcc/tcc.htm
http://www.wipo.int/eng/clssfctn/ipc/ipc6en/index.htm
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Appendix B: Estimation results for the 
technology class and time period dummies 

Table B1. Results for time periods in Pooled Probit 1 and 2. 

Robust Partial Robust Partial

Coef. Std. Err. effect Coef. Std. Err. effect

Time periods 

(ref. POST1997)

PRE1986 0.6518*** 0.2029 0.2096*** 0.6283*** 0.2018 0.1985***

YEARS86-87 0.1826 0.2511 0.0670 0.0821 0.2511 0.0303

YEARS88-89 0.3520 0.2235 0.1240 0.3393 0.2339 0.1175

YEARS90-91 0.1177 0.2220 0.0438 0.0691 0.2325 0.0255

YEAR1992 0.4188* 0.2224 0.1449* 0.4541* 0.2387 0.1521*

YEAR1993 0.3597* 0.2109 0.1265* 0.3710* 0.2076 0.1274*

YEAR1994 0.4336* 0.2274 0.1494* 0.4263* 0.2280 0.1440*

YEAR1995 0.1529 0.1959 0.0565 0.1570 0.1983 0.0570

YEAR1996 0.0375 0.2032 0.0141 0.0449 0.2069 0.0167

YEAR1997 0.0694 0.1998 0.0260 0.0761 0.2051 0.0281

Pooled Probit 1 Pooled Probit 2

  

 

Table B2. Results for time periods and technology classes in Pooled Probit 3 
and 4. 

 
 

Robust Partial Robust Partial

Coef. Std. Err. effect Coef. Std. Err. effect

Technology classes

(ref. CONSUM)

ELECTRO -0.1878 0.3351 -0.0748 -0.1551 0.3412 -0.0618

INSTRU -0.1344 0.3186 -0.0536 -0.0885 0.3243 -0.0353

CHEM 0.0004 0.3970 0.0001 -0.0041 0.4041 -0.0016

AGRI&FOODCHEM -0.3425 0.3573 -0.1352 -0.2810 0.3665 -0.1114

PROCTECH 0.3024 0.3143 0.1174 0.3398 0.3180 0.1315

ENVIRO 1.0744** 0.5397 0.3463** 1.1169** 0.5468 0.3572**

MACH 0.4527 0.3181 0.1716 0.4741 0.3230 0.1796

EARTH&WATER 0.0553 0.3601 0.0220 0.0919 0.3687 0.0365

SOFT -1.4486*** 0.4019 -0.4434*** -1.4454*** 0.4201 -0.4401***

Time periods 

(ref. POST1997)

PRE1986 0.6267*** 0.2078 0.2293*** 0.6063*** 0.2139 0.2237***

YEARS86-87 0.1083 0.2580 0.0429 0.0494 0.2589 0.0196

YEARS88-89 0.3835 0.2617 0.1471 0.3727 0.2602 0.1436

YEARS90-91 0.1377 0.2432 0.0544 0.1508 0.2425 0.0596

YEAR1992 0.5801** 0.2434 0.2145** 0.6042** 0.2474 0.2231**

YEAR1993 0.4411** 0.2106 0.1675** 0.4603** 0.2187 0.1748**

YEAR1994 0.4522* 0.2474 0.1714* 0.4400* 0.2497 0.1677*

YEAR1995 0.1884 0.2181 0.0741 0.1690 0.2135 0.0667

YEAR1996 0.0180 0.2044 0.0072 0.0459 0.2021 0.0182

YEAR1997 0.0831 0.2196 0.0329 0.0521 0.2181 0.0207

Pooled Probit 3 Pooled Probit 4
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Table B3. Results for time periods and technology classes in Pooled Probit 5 
and Random Effects Probit. 

Robust Partial Partial

Coef. Std. Err. effect Coef. Std. Err. effect APE

Technology classes

(ref. CONSUM)

ELECTRO -0.1025 0.3390 -0.0409 -0.1917 0.4130 -0.0763 -0.0608

INSTRU -0.0554 0.3255 -0.0221 -0.0403 0.3922 -0.0160 -0.0127

CHEM 0.0663 0.4044 0.0263 0.1670 0.4579 0.0650 0.0522

AGRI&FOODCHEM -0.2664 0.3596 -0.1058 -0.3726 0.4659 -0.1476 -0.1178

PROCTECH 0.3474 0.3181 0.1338 0.4494 0.3843 0.1669 0.1363

ENVIRO 1.1743** 0.5436 0.3647** 1.5065** 0.6512 0.3964** 0.3618***

MACH 0.5239 0.3238 0.1956 0.5780 0.3880 0.2085 0.1721

EARTH&WATER 0.0524 0.3725 0.0208 0.0487 0.4865 0.0192 0.0153

SOFT -1.4187*** 0.4090 -0.4400*** -2.0136*** 0.4621 -0.5230*** -0.4750***

Time periods 

(ref. POST1997)

PRE1986 0.5729*** 0.2090 0.2117*** 0.6923** 0.2780 0.2424** 0.2022**

YEARS86-87 0.0022 0.2545 0.0009 0.0229 0.3183 0.0090 0.0072

YEARS88-89 0.3475 0.2576 0.1338 0.4407 0.3251 0.1640 0.1339

YEARS90-91 0.1137 0.2370 0.0450 0.2742 0.2969 0.1052 0.0849

YEAR1992 0.5874** 0.2455 0.2164** 0.6415** 0.3127 0.2277** 0.1890**

YEAR1993 0.4140* 0.2136 0.1577* 0.4962* 0.2850 0.1825* 0.1496*

YEAR1994 0.4358* 0.2456 0.1655* 0.5642* 0.2912 0.2042* 0.1683**

YEAR1995 0.1196 0.2123 0.0473 0.1803 0.2764 0.0701 0.0563

YEAR1996 0.0237 0.2019 0.0094 0.0513 0.2609 0.0202 0.0162

YEAR1997 0.0508 0.2175 0.0202 0.0343 0.2728 0.0135 0.0108

Pooled Probit 5 Random Effects Probit

 

Table B4. Results for time periods and technology classes in Pooled Logit and 
Pooled LPM. 

 

Robust Partial Robust

Coef. Std. Err. effect Coef. Std. Err.

Technology classes

(ref. CONSUM)

ELECTRO -0.2218 0.5714 -0.0554 -0.0458 0.1057

INSTRU -0.1634 0.5572 -0.0408 -0.0276 0.1002

CHEM 0.0970 0.7014 0.0240 0.0169 0.1194

AGRI&FOODCHEM -0.5587 0.6001 -0.1382 -0.1112 0.1045

PROCTECH 0.5244 0.5409 0.1250 0.0847 0.0966

ENVIRO 2.0449* 1.0699 0.3620** 0.2565** 0.1187

MACH 0.8266 0.5516 0.1889 0.1355 0.0982

EARTH&WATER 0.0028 0.6283 0.0007 0.0082 0.1159

SOFT -2.5676*** 0.7721 -0.4560*** -0.4286*** 0.1065

Time periods 

(ref. POST1997)

PRE1986 1.0309*** 0.3738 0.2275*** 0.1703*** 0.0609

YEARS86-87 0.0337 0.4358 0.0084 0.0223 0.0814

YEARS88-89 0.7137 0.4457 0.1659* 0.1218* 0.0714

YEARS90-91 0.2423 0.4083 0.0594 0.0506 0.0701

YEAR1992 1.0684** 0.4177 0.2342*** 0.1863*** 0.0708

YEAR1993 0.6965* 0.3571 0.1623* 0.1151* 0.0656

YEAR1994 0.8193* 0.4297 0.1874* 0.1397* 0.0724

YEAR1995 0.2108 0.3577 0.0518 0.0450 0.0654

YEAR1996 0.0752 0.3463 0.0186 0.0161 0.0634

YEAR1997 0.0808 0.3792 0.0200 0.0343 0.0660

Pooled Logit Pooled LPM (OLS)
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Appendix C: Partial effects at means 
and means of partial effects 

Table C1. Partial effects at means and means of partial effects for Pooled Probit 
1 and 2. 

Dependent variable: PATAPP 

Independent variables Partial effect Mean of Partial effect Mean of

at means partial effect at means partial effect

Firm size classes 

(ref. EMP1)

EMP2 -0.1052** -0.0893* -0.0492 -0.0407

EMP3 -0.1711*** -0.1473*** -0.1255** -0.1051*

EMP4 -0.0713 -0.0605 -0.0768 -0.0635

Other firm characteristics

R&DINT 0.2363** 0.2121** 0.2168* 0.1717*

STARTUP 0.1595*** 0.1343***

LARGEPP 0.2207** 0.1846**

Technology classes

(ref. CONSUM)

ELECTRO -0.0936 -0.0798 -0.1291 -0.1075

INSTRU -0.0664 -0.0563 -0.1062 -0.0879

CHEM 0.0509 0.0432 0.0164 0.0136

AGRI&FOODCHEM -0.2284* -0.2005* -0.2241* -0.1915*

PROCTECH 0.0204 0.0174 -0.0051 -0.0043

ENVIRO 0.3209*** 0.2805*** 0.2961*** 0.2533***

MACH 0.0644 0.0550 0.0441 0.0367

EARTH&WATER -0.0167 -0.0142 -0.0625 -0.0518

SOFT -0.5437*** 0.5200*** -0.5726*** -0.5399***

Time periods 

(ref. POST1997)

PRE1986 0.2338*** 0.2010*** 0.2260*** 0.1905***

YEARS86-87 0.0703 0.0594 0.0319 0.0264

YEARS88-89 0.1320* 0.1119* 0.1273 0.1055

YEARS90-91 0.0457 0.0387 0.0269 0.0223

YEAR1992 0.1552** 0.1315** 0.1669** 0.1385**

YEAR1993 0.1351* 0.1147* 0.1389* 0.1154*

YEAR1994 0.1608** 0.1366** 0.1581** 0.1314**

YEAR1995 0.0591 0.0500 0.0606 0.0501

YEAR1996 0.0146 0.0124 0.0175 0.0145

YEAR1997 0.0270 0.0229 0.0296 0.0245

Pooled Probit 1 Pooled Probit 2

 
Significance level notation: *** 1%, ** 5%, * 10%. 

The partial effects are computed as partial derivatives for continuous variables and as discrete changes in the 
propensity to patent for binary variables. The significance level notation for the partial effects is based on 
standard errors computed using the delta method. 
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Table C2. Partial effects at means and means of partial effects for Pooled Probit 
3 and 4. 

Dependent variable: PATAPP 

Independent variables Partial effect Mean of Partial effect Mean of

at means partial effect at means partial effect

Innovation and market characteristics

SIGNIF 0.2217*** 0.1672** 0.1923** 0.1424**

NOVFIRM 0.1717*** 0.1281*** 0.1696*** 0.1249***

NOVMARK 0.3264*** 0.2600*** 0.3141*** 0.2467***

SCIENCE 0.1136** 0.0832** 0.1000* 0.0724*

COMPLEX -0.2451*** -0.1798** -0.2456*** -0.1780**

CUMULTECH 0.1972*** 0.1473*** 0.1864** 0.1376**

PRICOMP -0.0958* -0.0696* -0.1037* -0.0745**

PUBFUND 0.1060** 0.0780** 0.0732 0.0529

COLLAB -0.0516 -0.0372

CUSTCOLLAB -0.0542 -0.0387

SUBCONCOLLAB 0.0122 0.0087

RINSTCOLLAB 0.1262** 0.0922***

COMPCOLLAB 0.0503 0.0359

Firm size classes 

(ref. EMP1)

EMP2 -0.0070 -0.0051 -0.0070 -0.0050

EMP3 -0.0730 -0.0529 -0.0819 -0.0586

EMP4 -0.0764 -0.0551 -0.0864 -0.0615

Other firm characteristics

R&DINT 0.0049 0.0002 -0.0183 -0.0021

STARTUP 0.1065** 0.0781** 0.1098** 0.0795**

LARGEPP 0.2089* 0.1550* 0.2256** 0.1667**

Technology classes

(ref. CONSUM)

ELECTRO -0.0741 -0.0534 -0.0611 -0.0435

INSTRU -0.0528 -0.0380 -0.0347 -0.0247

CHEM 0.0001 0.0001 -0.0016 -0.0011

AGRI&FOODCHEM -0.1357 -0.0989 -0.1113 -0.0799

PROCTECH 0.1153 0.0841 0.1290 0.0933

ENVIRO 0.3216*** 0.2554*** 0.3289*** 0.2608***

MACH 0.1681 0.1242 0.1754 0.1286

EARTH&WATER 0.0214 0.0155 0.0354 0.0253

SOFT -0.5065*** -0.4221*** -0.5060*** -0.4168***

Time periods 

(ref. POST1997)

PRE1986 0.2229*** 0.1664*** 0.2164*** 0.1598***

YEARS86-87 0.0417 0.0301 0.0191 0.0137

YEARS88-89 0.1413 0.1034 0.1375 0.0996

YEARS90-91 0.0529 0.0382 0.0578 0.0413

YEAR1992 0.2052*** 0.1520*** 0.2123*** 0.1562***

YEAR1993 0.1614** 0.1186** 0.1677** 0.1220**

YEAR1994 0.1651** 0.1214** 0.1609* 0.1170*

YEAR1995 0.0719 0.0521 0.0646 0.0463

YEAR1996 0.0070 0.0051 0.0178 0.0127

YEAR1997 0.0321 0.0232 0.0202 0.0144

Pooled Probit 3 Pooled Probit 4

 
Significance level notation: *** 1%, ** 5%, * 10%. 
The partial effects are computed as partial derivatives for continuous variables and as discrete changes in the 
propensity to patent for binary variables. The significance level notation for the partial effects is based on 
standard errors computed using the delta method. 
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Table C3. Partial effects at means and means of partial effects for Pooled Probit 
5, Random Effects Probit, and Pooled Logit. 

Significance level notation: *** 1%, ** 5%, * 10%. 

The partial effects are computed as partial derivatives for continuous variables and as discrete changes in the 
propensity to patent for binary variables. The significance level notation for the partial effects is based on 
standard errors computed using the delta method. 

 

Dependent variable: PATAPP 

Independent variables Partial effect Mean of Partial effect Mean of Partial effect Mean of

at means partial effect at means partial effect at means partial effect

Innovation and market characteristics

SIGNIF 0.1987** 0.1478** 0.1763* 0.1138 0.2261** 0.1637**

NOVFIRM 0.1745*** 0.1292*** 0.2209*** 0.1441*** 0.1824*** 0.1264***

NOVMARK 0.3228*** 0.2551*** 0.3918*** 0.2810*** 0.3433*** 0.2579***

SCIENCE 0.0948* 0.0688* 0.1051 0.0664 0.0988* 0.0675*

COMPLEX -0.2512*** -0.1833** -0.3250** -0.2127** -0.2681*** -0.1841**

CUMULTECH 0.1928*** 0.1431*** 0.2193** 0.1439** 0.1998*** 0.1426***

PRICOMP -0.1001* -0.0722* -0.1356** -0.0857** -0.1103** -0.0744**

RINSTCOLLAB 0.1335*** 0.0981*** 0.1960*** 0.1271*** 0.1411*** 0.0972***

Firm size classes 

(ref. EMP1)

EMP2 -0.0181 -0.0129 -0.0477 -0.0297 -0.0165 -0.0110

EMP3 -0.0953 -0.0686 -0.1268 -0.0797 -0.0972 -0.0652

EMP4 -0.1023 -0.0732 -0.1475 -0.0919 -0.1136 -0.0758

Other firm characteristics

R&DINT -0.0111 -0.0006 -0.0186 -0.0017 -0.0059 -0.0001

STARTUP 0.1171** 0.0853** 0.1159** 0.0734** 0.1163** 0.0794*

LARGEPP 0.2200** 0.1629** 0.2439*** 0.1602** 0.2257** 0.1611*

Technology classes

(ref. CONSUM)

ELECTRO -0.0402 -0.0288 -0.0752 -0.0469 -0.0544 -0.0363

INSTRU -0.0217 -0.0155 -0.0156 -0.0097 -0.0399 -0.0266

CHEM 0.0256 0.0184 0.0631 0.0396 0.0233 0.0156

AGRI&FOODCHEM -0.1055 -0.0760 -0.1473 -0.0931 -0.1383 -0.0932

PROCTECH 0.1318 0.0957 0.1667 0.1062 0.1229 0.0839

ENVIRO 0.3388*** 0.2714*** 0.3724*** 0.2817*** 0.3359*** 0.2697***

MACH 0.1925* 0.1418* 0.2076* 0.1338 0.1859* 0.1299

EARTH&WATER 0.0203 0.0146 0.0187 0.0117 0.0007 0.0005

SOFT -0.4992*** -0.4122*** -0.6240*** -0.5039*** -0.5308*** -0.4318***

Time periods 

(ref. POST1997)

PRE1986 0.2059*** 0.1521*** 0.2388*** 0.1558*** 0.2216*** 0.1571***

YEARS86-87 0.0009 0.0006 0.0088 0.0055 0.0081 0.0055

YEARS88-89 0.1289 0.0935 0.1582 0.1007 0.1583* 0.1098*

YEARS90-91 0.0438 0.0314 0.1020 0.0640 0.0573 0.0386

YEAR1992 0.2074*** 0.1527*** 0.2197** 0.1421** 0.2234*** 0.1592***

YEAR1993 0.1522** 0.1109** 0.1768* 0.1130* 0.1557** 0.1078**

YEAR1994 0.1596* 0.1164* 0.1981** 0.1275** 0.1799** 0.1258**

YEAR1995 0.0460 0.0330 0.0681 0.0427 0.0501 0.0337

YEAR1996 0.0092 0.0066 0.0197 0.0123 0.0181 0.0121

YEAR1997 0.0197 0.0141 0.0132 0.0082 0.0194 0.0130

Random Effects Probit Pooled LogitPooled Probit 5
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Appendix D: Pooled Probit 1 and 2 with 
continuous firm size variables 

Table D1. Estimation results for Pooled Probit 1b and 2b. 
Dependent variable: PATAPP 

Independent variables Robust Partial Robust Partial

Coef. Std. Err. effect Coef. Std. Err. effect

LNEMP -0.1508* 0.0799 -0.0722 0.0760

LNEMP2 0.0136 0.0106 0.0047 0.0094

R&DINT 0.6216** 0.2938 0.2480** 0.5631* 0.3055 0.2233*

STARTUP 0.4171*** 0.1246 0.1629***

LARGEPP 0.6465* 0.3327 0.2369**

Technology classes

(ref. CONSUM)

ELECTRO -0.1979 0.3113 -0.0784 -0.3043 0.3124 -0.1208

INSTRU -0.1289 0.2934 -0.0513 -0.2486 0.3013 -0.0989

CHEM 0.1811 0.3717 0.0719 0.0717 0.3727 0.0283

AGRI&FOODCHEM -0.5534 0.3453 -0.2094 -0.5652* 0.3409 -0.2193*

PROCTECH 0.0701 0.2929 0.0279 -0.0018 0.2918 -0.0007

ENVIRO 1.0631** 0.4614 0.3578** 0.9506** 0.4626 0.3120**

MACH 0.1916 0.2880 0.0760 0.1271 0.2930 0.0499

EARTH&WATER -0.0110 0.3460 -0.0044 -0.1336 0.3514 -0.0532

SOFT -1.6073*** 0.4018 -0.4431*** -1.7624*** 0.3839 -0.4942***

Time periods 

(ref. POST1997)

PRE1986 0.6401*** 0.2013 0.2397*** 0.6188*** 0.2009 0.2232***

YEARS86-87 0.1661 0.2523 0.0660 0.0673 0.2503 0.0266

YEARS88-89 0.3587 0.2264 0.1403 0.3443 0.2361 0.1314

YEARS90-91 0.1190 0.2212 0.0474 0.0755 0.2323 0.0298

YEAR1992 0.3998* 0.2212 0.1556* 0.4442* 0.2410 0.1665*

YEAR1993 0.3760* 0.2096 0.1468* 0.3846* 0.2065 0.1458*

YEAR1994 0.4208* 0.2276 0.1634* 0.4151* 0.2275 0.1565*

YEAR1995 0.1497 0.1950 0.0596 0.1552 0.1973 0.0608

YEAR1996 0.0131 0.2039 0.0052 0.0247 0.2062 0.0098

YEAR1997 0.0470 0.2002 0.0188 0.0641 0.2037 0.0253

Constant 0.2950 0.3121 0.1011 0.3190

Robust Wald tests for joint hypotheses !
2 (df) p-value !

2 (df) p-value

H0: All coefs zero (exc. constant) 86.66 (22) 0.0000 136.09 (24) 0.0000

H0: Coefs of LNEMP and LNEMP2 zero 6.45 (2) 0.0397 2.19 (2) 0.3343

H0: All tech. class coefs zero 51.24 (9) 0.0000 56.6 (9) 0.0000

H0: All time period coefs zero 22.43 (10) 0.0131 21.5 (10) 0.0179

Number of observations 791 791

Log pseudolikelihood -464.17879 -453.20337

McFadden's pseudo R2 0.140 0.160

Efron's pseudo R2 0.180 0.201

McKelvey and Zavoina's pseudo R2 0.279 0.315

Percent correctly predicted

for observations with PATAPP=1 88.33 85.68

for observations with PATAPP=0 42.73 48.07

for all observations 68.90 69.66

Pooled Probit 1b Pooled Probit 2b

0.0000145 -0.0000021

 
Significance level notation: *** 1%, ** 5%, * 10%. 

The partial effects are estimated at a point where technology class and time period dummies are all zero and 
other variables are assigned their mean values. The partial effects are computed as partial derivatives for 
continuous variables and as discrete changes in the propensity to patent for binary variables. The significance 
level notation for the partial effects is based on standard errors computed using the delta method. 

NOTE: Partial effects are calculated at the mean number of employees (EMP) rather than at the mean values of 
LNEMP and LNEMP2. Moreover, no separate partial effects are calculated for LNEMP and LNEMP2, but the 
partial effect is calculated with respect to EMP, the number of employees. 
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Appendix E: Pooled Probit 2 and 3 with 
the exporting status of the innovation 

The Sfinno survey asked the respondents from the innovating firms whether or 
not the innovations of interest had been introduced to foreign markets. Hence, it 
is possible to construct a binary variable INNOEXPORTED coded as one if the 
innovation had been exported. INNOEXPORTED has a mean of 0.6523 and a 
standard deviation of 0.4765. 

Table E1. Estimation results for Pooled Probit 2 and 3 with INNOEXPORTED. 

Dependent variable: PATAPP 

Independent variables Robust Partial Robust Partial

Coef. Std. Err. effect Coef. Std. Err. effect

Innovation and market characteristics

INNOEXPORTED 0.2279** 0.1119 0.0845** 0.0501 0.1163 0.0199

SIGNIF 0.6305** 0.2924 0.2321**

NOVFIRM 0.4432*** 0.1280 0.1753***

NOVMARK 0.8313*** 0.1158 0.3207***

SCIENCE 0.3031** 0.1434 0.1184**

COMPLEX -0.6321** 0.2506 -0.2424***

CUMULTECH 0.5528** 0.2304 0.2068**

PRICOMP -0.2447* 0.1305 -0.0974*

PUBFUND 0.2719** 0.1288 0.1081**

COLLAB -0.1433 0.1508 -0.0566

Firm size classes 

(ref. EMP1)

EMP2 -0.1494 0.1461 -0.0562 -0.0225 0.1581 -0.0090

EMP3 -0.3618** 0.1642 -0.1397** -0.1947 0.1780 -0.0775

EMP4 -0.2265 0.2242 -0.0862 -0.1987 0.2190 -0.0791

Other firm characteristics

R&DINT 0.5217* 0.3105 0.1911 0.0103 0.3069 0.0041

STARTUP 0.4016*** 0.1265 0.1427*** 0.2745* 0.1424 0.1084*

LARGEPP 0.6177** 0.3382 0.1954** 0.5887* 0.3562 0.2201*

Technology classes (9 dummies)

Time periods (10 dummies)

Constant -0.0030 0.3089 -1.0540*** 0.3714

Number of observations 791 791

Log pseudolikelihood -450.07056 -392.00572

McFadden's pseudo R2 0.166 0.274

Percent correctly predicted

for observations with PATAPP=1 85.90 85.24

for observations with PATAPP=0 50.45 68.55

for all observations 70.80 78.13

Pooled Probit 2 with INNOEXPORTED Pooled Probit 3 with INNOEXPORTED 

Estimates not reported Estimates not reported

Estimates not reported Estimates not reported

 
Significance level notation: *** 1%, ** 5%, * 10%. 

The partial effects are estimated at a point where firm size, technology class, and time period dummies are all 
zero and other variables are assigned their mean values. The partial effects are computed as partial derivatives 
for continuous variables and as discrete changes in the propensity to patent for binary variables. The 
significance level notation for the partial effects is based on standard errors computed using the delta method. 
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Appendix F: Pooled Probit 3 
and 4 with PATENTS 

Table F1. Estimation results for Pooled Probit 3b and 4b. 

Significance level notation: *** 1%, ** 5%, * 10%. 

The partial effects are estimated at a point where firm size, technology class, and time period dummies are all 
zero and other variables are assigned their mean values. The partial effects are computed as partial derivatives 
for continuous variables and as discrete changes in the propensity to patent for binary variables. The 
significance level notation for the partial effects is based on standard errors computed using the delta method. 

Dependent variable: PATAPP 

Independent variables Robust Partial Robust Partial

Coef. Std. Err. effect Coef. Std. Err. effect

Innovation and market characteristics

SIGNIF 0.6417** 0.2968 0.2145** 0.5396* 0.3009 0.2073**

NOVFIRM 0.4382*** 0.1316 0.1733*** 0.4344*** 0.1324 0.1716***

NOVMARK 0.8623*** 0.1121 0.3283*** 0.8281*** 0.1136 0.3155***

SCIENCE 0.2962** 0.1476 0.1171** 0.2584* 0.1498 0.1025*

COMPLEX -0.5631** 0.2688 -0.2145** -0.5599** 0.2675 -0.2125**

CUMULTECH 0.5335** 0.2301 0.2045** 0.5024** 0.2299 0.1941**

PRICOMP -0.2429* 0.1309 -0.0965* -0.2606* 0.1349 -0.1034*

PUBFUND 0.2715** 0.1289 0.1079** 0.1868 0.1206 0.0743

COLLAB -0.1465 0.1476 -0.0583

CUSTCOLLAB -0.1425 0.1354 -0.0568

SUBCONCOLLAB 0.0350 0.1126 0.0140

RINSTCOLLAB 0.3144** 0.1303 0.1249**

COMPCOLLAB 0.0840 0.2179 0.0335

Firm size classes 

(ref. EMP1)

EMP2 -0.0115 0.1584 -0.0046 -0.0114 0.1626 -0.0045

EMP3 -0.1926 0.1778 -0.0764 -0.2125 0.1849 -0.0840

EMP4 -0.1961 0.2452 -0.0778 -0.2125 0.2498 -0.0840

Other firm characteristics

R&DINT 0.0646 0.2905 0.0258 0.0138 0.2864 0.0055

STARTUP 0.2792** 0.1412 0.1109** 0.2836** 0.1436 0.1127**

PATENTS 0.0162** 0.0076 0.0065** 0.0169** 0.0068 0.0068**

Technology classes (9 dummies)

Time periods (10 dummies)

Constant -1.1270*** 0.3674 -1.2359*** 0.3671

Robust Wald tests for joint hypotheses !
2 (df) p-value !

2 (df) p-value

H0: All coefs zero (exc. constant) 191.68 (34) 0.0000 189.59 (37) 0.0000

H0: All firm size class coefs zero 1.77 (3) 0.6210 2.06 (3) 0.5593

H0: All tech. class coefs zero 45.79 (9) 0.0000 43.58 (9) 0.0000

H0: All time period coefs zero 24.51 (10) 0.0064 23.65 (10) 0.0086

Number of observations 791 791

Log pseudolikelihood -391.03733 -387.07203

McFadden's pseudo R2 0.275 0.2827

Efron's pseudo R2 0.342 0.351

McKelvey and Zavoina's pseudo R2 0.478 0.489

Percent correctly predicted

for observations with PATAPP=1 85.46 86.12

for observations with PATAPP=0 68.25 66.47

for all observations 78.13 77.75

Estimates not reported Estimates not reported

Pooled Probit 3b Pooled Probit 4b

Estimates not reported Estimates not reported
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Table F2. Testing for endogeneity of PATENTS. 

Dependent variable in the probit model: PATAPP

Test 1 Test 2 Test 3

Explanatory variables in the probit model

Potentially endogenous variable PATENTS PATENTS PATENTS

Exogenous variables SIGNIF SIGNIF SIGNIF

NOVFIRM NOVFIRM NOVFIRM

NOVMARK NOVMARK NOVMARK

SCIENCE SCIENCE SCIENCE

COMPLEX COMPLEX COMPLEX

CUMULTECH CUMULTECH CUMULTECH

PRICOMP PRICOMP PRICOMP

PUBFUND PUBFUND PUBFUND

CUSTCOLLAB CUSTCOLLAB CUSTCOLLAB

SUBCONCOLLAB SUBCONCOLLAB SUBCONCOLLAB

RINSTCOLLAB RINSTCOLLAB RINSTCOLLAB

COMPCOLLAB COMPCOLLAB COMPCOLLAB

STARTUP STARTUP STARTUP

R&DINT

Firm size dummies (3)

Technology class dummies (9) Technology class dummies (9) Technology class dummies (9)

Time period dummies (10) Time period dummies (10) Time period dummies (10)

Instruments

Firm size dummies (3) R&DINT R&DINT

Firm size dummies (3)

Test of exogeneity of PATENTS

H0: Coef of the OLS residual zero in the 

probit model

Robust asymptotic t-statistic 0.77 -0.05 0.77

p-value 0.441 0.962 0.440  

 



 

G1 

Appendix G: Random Effects Probit 
without RINSTCOLLAB 

Table G1. Estimation results for Random Effects Probit without RINSTCOLLAB. 

Dependent variable: PATAPP 

Independent variables Partial

Coef. Std. Err. effect APE

Innovation and market characteristics

SIGNIF 0.6273* 0.3238 0.2301** 0.1956**

NOVFIRM 0.5707*** 0.1409 0.2245*** 0.1868***

NOVMARK 1.0258*** 0.1532 0.3888*** 0.3271***

SCIENCE 0.3461* 0.1885 0.1344* 0.1122*

COMPLEX -0.8094** 0.3577 -0.3022*** -0.2554**

CUMULTECH 0.6578** 0.2999 0.2401** 0.2044**

PRICOMP -0.3065** 0.1440 -0.1217** -0.1010**

Firm size classes 

(ref. EMP1)

EMP2 -0.0934 0.1880 -0.0372 -0.0308

EMP3 -0.2923 0.2025 -0.1160 -0.0963

EMP4 -0.3228 0.2397 -0.1279 -0.1062

Other firm characteristics

R&DINT 0.1130 0.3624 0.0449 0.0372

STARTUP 0.3031** 0.1525 0.1194** 0.0993**

LARGEPP 0.6370** 0.3178 0.2351** 0.1995**

Technology classes (9 dummies)

Time periods (10 dummies)

Constant -1.1942 0.4225

!c 0.6766*** 0.1437
" 0.3140*** 0.0915

LR test for unobserved effects      (df) p-value

H0: " =0 19.22 (01) 0.000

Wald tests for joint hypotheses #
2 (df) p-value

H0: All coefs zero (exc. constant) 117.36 (32) 0.0000

H0: All firm size class coefs zero 2.89 (3) 0.4091

H0: All tech. class coefs zero 64.17 (9) 0.0000

H0: All time period coefs zero 15.10 (10) 0.1286

Number of observations 791

Log likelihood -385.02362

Percent correctly predicted

for observations with PATAPP=1 87.00

for observations with PATAPP=0 66.47

for all observations 78.26

Random Effects Probit without RINSTCOLLAB

Estimates not reported
Estimates not reported

  

! 

# 
2

  
Significance level notation: *** 1%, ** 5%, * 10%. 

The partial effects and APEs are estimated at a point where firm size, technology class, and time period 
dummies are all zero and other variables are assigned their mean values. The partial effects and APEs are 
computed as partial derivatives for continuous variables and as discrete changes in the propensity to patent for 
binary variables. The significance level notation for the partial effects and APEs is based on standard errors 
computed using the delta method. 
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