
V
TT P

U
B

LIC
A

TIO
N

S 651 D
ynam

ic con
text m

on
itorin

g for adaptive an
d contex

t­aw
are application

s
Laitakari

ESPOO 2007 VTT PUBLICATIONS 651

Juhani Laitakari

Dynamic context monitoring for
adaptive and context­aware
applications

VTT PUBLICATIONS

633 Oedewald, Pia & Reiman, Teemu. Special characteristics of safety critical organiza­
tions. Work psychological perspective. 2007. 114 p. + app. 9 p.

634 Tammi, Kari. Active control of radial rotor vibrations. Identification, feedback, feed­
forward, and repetitive control methods. 2007. 151 p. + app. 5 p.

635 Intelligent Products and Systems. Technology theme – Final report. Ventä, Olli (ed.).
2007. 304 p.

636 Evesti, Antti. Quality­oriented software architecture development. 2007. 79 p.

637 Paananen, Arja. On the interactions and interfacial behaviour of biopolymers. An
AFM study. 2007. 107 p. + app. 66 p.

638 Alakomi, Hanna­Leena. Weakening of the Gram­negative bacterial outer membrane.
A tool for increasing microbiological safety. 2007. 95 p. + app. 37 p.

639 Kotiluoto, Petri. Adaptive tree multigrids and simplified spherical harmonics ap­
proximation in deterministic neutral and charged particle transport. 2007. 106 p.
+ app. 46 p.

640 Leppänen, Jaakko. Development of a New Monte Carlo Reactor Physics Code. 2007.
228 p. + app. 8 p.

641 Toivari, Mervi. Engineering the pentose phosphate pathway of Saccharomyces cer­
evisiae for production of ethanol and xylitol. 2007. 74 p. + app. 69 p.

642 Lantto, Raija. Protein cross­linking with oxidative enzymes and transglutaminase.
Effects in meat protein systems. 2007. 114 p. + app. 49 p.

643 Trends and Indicators for Monitoring the EU Thematic Strategy on Sustainable
Development of Urban Environment. Final report summary and recommendations.
Häkkinen, Tarja (ed.). 2007. 240 p. + app. 50 p.

644 Saijets, Jan. MOSFET RF Characterization Using Bulk and SOI CMOS Technologies.
2007. 171 p. + app. 4 p.

645 Laitila, Arja. Microbes in the tailoring of barley malt properties. 2007. 107 p. + app.
79 p.

646 Mäkinen, Iiro. To patent or not to patent? An innovation­level investigation of the
propensity to patent. 2007. 95 p. + app. 13 p.

647 Mutanen, Teemu. Consumer Data and Privacy in Ubiquitous Computing. 2007. 82 p.
+ app. 3 p.

648 Vesikari, Erkki. Service life management system of concrete structures in nuclear
power plants. 2007. 73 p.

649 Niskanen, Ilkka. An interactive ontology visualization approach for the domain of
networked home environments. 2007. 112 p. + app. 19 p.

650 Wessberg, Nina. Teollisuuden häiriöpäästöjen hallinnan kehittämishaasteet. 2007.
195 s. + liitt. 4 s.

651 Laitakari, Juhani. Dynamic context monitoring for adaptive and context­aware ap­
plications. 2007. 111 p. + app. 8 p.

ISBN 978­951­38­7036­2 (soft back ed.) ISBN 978­951­38­7037­9 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1235­0621 (soft back ed.) ISSN 1455­0849 (URL: http://www.vtt.fi/publications/index.jsp)

Julkaisu on saatavana Publikationen distribueras av This publication is available from

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI­02044 VTT, Finland
Puh. 020 722 4404 Tel. 020 722 4404 Phone internat. + 358 20 722 4404
Faksi 020 722 4374 Fax 020 722 4374 Fax + 358 20 722 4374

Communication protocols

Remote sensors Local sensors

UPnP discovery OSGi discovery

Semantic context model

Query service Listener service

Applications

O
S
G
i

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

VTT PUBLICATIONS 651

Dynamic context monitoring for
adaptive and context-aware

applications

Juhani Laitakari

ISBN 978-951-38-7036-2 (soft back ed.)
ISSN 1235-0621 (soft back ed.)

ISBN 978-951-38-7037-9 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT Technical Research Centre of Finland 2007

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 3, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvägen 3, PB 1000, 02044 VTT
tel. växel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 3, P.O. Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax +358 20 722 4374

VTT, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde 020 722 111, faksi 020 722 2320

VTT, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel 020 722 111, fax 020 722 2320

VTT Technical Research Centre of Finland, Kaitoväylä 1, P.O. Box 1100, FI-90571 OULU, Finland
phone internat. +358 20 722 111, fax +358 20 722 2320

Text preparing Tarja Haapalainen

Edita Prima Oy, Helsinki 2007

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

3

Laitakari, Juhani. Dynamic context monitoring for adaptive and context-aware applications
[Dynaaminen kontekstin monitorointipalvelu adaptiivisille ja kontekstitietoisille sovelluksille].
Espoo 2007. VTT Publications 651. 111 p. + app. 8 p.

Keywords service architecture, context acquisition, Open Services Gateway initiative,
Universal Plug and Play

Abstract

The field of ubiquitous computing has recently proliferated with a view to
providing applications and services that are able to adapt to the rapidly changing
situations in dynamic environments and act accordingly. The seamless
adaptation to contexts and the alterations to behaviour require the applications to
implement mechanisms for acquiring the context information. The required
context information is usually diverse and scattered throughout the environment.
On account of this, the processing of the context information and its compilation
from separate sources is a requirement for the applications to reach adequate
context-awareness for successful adaptation. To facilitate the development of
context-aware applications, service-oriented architectures for supporting the
context-awareness have emerged.

In this work the research problem was to find a solution for dynamic acquisition
and representation of distributed context information and its efficient provisioning
for ubiquitous applications. As a solution to the research problem this work
provides a service architecture called Context Monitoring Service (CMS), which
utilizes a dynamically evolving semantic model of context information that the
applications can access. A requirement analysis for such architecture was carried
out by a literature review in the field of context-awareness. The architecture of
the CMS was designed according to the identified requirements and a prototype
implementation was created for validation purposes. The prototype implementation
successfully validated the architecture�s functionality and also opened issues for
future research and development in this field.

4

Laitakari, Juhani. Dynamic context monitoring for adaptive and context-aware applications
[Dynaaminen kontekstin monitorointipalvelu adaptiivisille ja kontekstitietoisille sovelluksille].
Espoo 2007. VTT Publications 651. 111 s. + liitt. 8 s.

Avainsanat service architecture, context acquisition, Open Services Gateway initiative,
Universal Plug and Play

Tiivistelmä

Kaikkialla läsnä olevan tietotekniikan aihealue on hiljattain kasvanut räjähdys-
mäisesti, näkemyksenään tuottaa sovelluksia ja palveluita, jotka pystyvät mu-
kautumaan nopeasti muuttuviin olosuhteisiin ja toimimaan niiden mukaisesti.
Saumaton mukautuminen olosuhteisiin ja käyttäytymisen muokkaaminen vaati-
vat sovelluksilta mekanismeja kontekstitiedon keräämiseen ja prosessoimiseen.
Vaadittu kontekstitieto on yleensä monimuotoista ja hajallaan ympäristössä,
minkä vuoksi sovelluksilta vaaditaan tiedon prosessointia ja kokoamista useista
lähteistä, jotta onnistunut mukautuminen saavutetaan. Helpottaakseen konteksti-
tietoisten sovellusten kehittämistä kehityssuuntana ovat olleet palvelulähtöiset
arkkitehtuurit kontekstitietoisuuden tukemiseen.

Tässä työssä tutkimusongelmana on ollut löytää ratkaisu hajautetun konteks-
titiedon dynaamiseen keräämiseen ja sen kuvaamiseen sekä tiedon tehokkaaseen
välittämiseen mukautuville ja kontekstitietoisille sovelluksille. Tämä työ esittelee
ratkaisuna tutkimusongelmaan palveluarkkitehtuurin nimeltään Context Monitoring
Service (CMS). CMS hyödyntää dynaamisesti kehittyvää semanttista mallia
kontekstitiedosta, joka tarjotaan sovellusten käyttöön palvelun kautta. Tällaisen
arkkitehtuurin vaatimusmäärittely suoritettiin laajalla katsauksella kirjallisuuteen
kontekstitietoisuuden saralla. CMS-arkkitehtuuri suunniteltiin vaatimusmäärittelyn
mukaisesti ja arkkitehtuurista toteutettiin prototyyppi toiminnallisuuden vahvista-
mista varten. Prototyyppi vahvisti arkkitehtuurin toimivuuden onnistuneesti ja
avasi myös uusia tutkimusaiheita tällä aihealueella.

5

Preface

This thesis was completed in the Software Architectures team of the Software
Architectures and Platforms research center at VTT Technical Research Centre
of Finland. The research work for the thesis is part of the research done in the
ITEA ANSO (Autonomic Networks for SOHO users) project.

First of all, I would like to thank all the co-workers that have shared their
expertise and contributed to this work. Secondly, my deepest gratitude goes to
Mr. Daniel Pakkala for guiding me through this work by providing valuable
reviews, discussions and support during the work. I would also like to thank my
supervisor at the university, Professor Tapio Seppänen, and the work�s 2nd
reviewer, Professor Jukka Riekki, for the comments and guidance.

Finally, I thank all the people that have supported and encouraged me during the
research and writing process of this thesis.

Oulu, November 17, 2006

Juhani Laitakari

6

Contents

Abstract ... 3

Tiivistelmä .. 4

Preface .. 5

Abbreviations.. 9

1. Introduction... 12

2. Related research and technologies .. 14
2.1 Introduction to context-awareness... 14

2.1.1 Context information .. 15
2.1.2 Representation of context and ontologies 16
2.1.3 Context-awareness .. 17
2.1.4 Context monitoring service ... 18

2.2 Technologies.. 19
2.2.1 Extensible Mark-up Language .. 20
2.2.2 XML Schema .. 21
2.2.3 Resource Description Framework... 22
2.2.4 RDF Schema ... 23
2.2.5 Web Ontology Language .. 24
2.2.6 RDF Data Query Language... 25
2.2.7 Jena Semantic Web Framework.. 25
2.2.8 Open Services Gateway Initiative ... 26
2.2.9 Universal Plug and Play .. 28

2.3 Architectures of existing context monitoring services 31
2.3.1 CoBrA ... 31
2.3.2 Semantic Space ... 33

2.4 Terminology .. 34

3. Design of Context Monitoring Service ... 36
3.1 Introduction to service ... 36
3.2 Requirements scenario for the design.. 38

3.2.1 Deployment environment.. 39
3.2.2 Communications ... 40

7

3.2.3 Functionality ... 40
3.2.4 Identified requirements ... 41

3.3 Context model ... 43
3.4 Ontologies ... 45

3.4.1 Upper-level ontology .. 45
3.4.2 Lower-level ontologies.. 47

3.5 Reasoner .. 49
3.5.1 Rules for Reasoner .. 50

3.6 Querying of the context model .. 51
3.7 Conditional eventing ... 52
3.8 Model updater devices... 54
3.9 Dynamic discovery and advertisement of model updater devices....... 56

3.9.1 Local model updater sensors ... 56
3.9.2 Remote model updater devices ... 56

3.10 OSGi bundle configuration.. 58

4. Architectural design.. 59
4.1 Solution architecture.. 59

4.1.1 Service layer.. 61
4.1.2 Model updater device advertisement and discovery layer 62
4.1.3 Model updater sensor layer ... 64

4.2 Architecture of the service... 65
4.2.1 Local service interfaces... 67
4.2.2 Remote service interfaces ... 71
4.2.3 Local management interfaces.. 74
4.2.4 Remote management interfaces .. 75
4.2.5 Local control interfaces... 76
4.2.6 Remote control interfaces ... 78

5. Prototype implementation and testing .. 79
5.1 Prototype implementation ... 79
5.2 Configuration... 80

5.2.1 Hardware ... 81
5.2.2 Software .. 82
5.2.3 Overall view.. 84

5.3 Validation scenario and use cases ... 85
5.3.1 Scenario overview... 86

8

5.3.2 Dynamic discovery and advertisement 87
5.3.3 Context model querying.. 88
5.3.4 Conditional eventing ... 90

5.4 Evaluation of prototype ... 93
5.4.1 Service layer.. 93
5.4.2 Model updater device advertisement and discovery layer 94
5.4.3 Model updater sensor layer ... 94

6. Discussion... 96
6.1 Comparison with existing architectures .. 96
6.2 Strengths and weaknesses.. 98

6.2.1 Single component.. 98
6.2.2 System as a whole ... 99

6.3 Development targets .. 101

7. Conclusion .. 103

References... 105

Appendices

Appendix 1: Example of a model updater device UPnP device description
Appendix 2: Example of a model updater device UPnP service description
Appendix 3: UML sequence diagram of the conditional rule listener functionality
Appendix 4: UML sequence diagram of the instance listener functionality
Appendix 5: UML sequence diagram of the context model query utilization
Appendix 6: UML activity diagrams of dynamic discovery and advertisement
Appendix 7: UML activity diagram of context model query
Appendix 8: UML activity diagram of conditional eventing

9

Abbreviations

API Application Programming Interface, interface to existing applications

C-CMS Central Context Monitoring Service, component of the context
monitoring service that contains the context information of the
environment�s overall structure

CDC Connected Device Configuration, a framework for building J2ME
applications

CLDC Connected Limited Device Configuration, defines the base set of
application programming interfaces and a virtual machine for
resource-constrained devices

CMS Context Monitoring Service, the service developed in this thesis.

CoBrA Context Broker Architecture, architecture for supporting context-
aware applications

DCP Device Control Protocol, UPnP specification standardized by the
UPnP forum

DHCP Dynamic Host Control Protocol, a client-server networking protocol
used for allocating IP addresses to hosts

GENA General Event Notification Architecture, HTTP notification architecture
developed by Microsoft

GSE Generic Service Element, architectural concept for middleware
services

GUI Graphical User Interface, graphical interface for the user to interact
with a computing system

10

HTML Hypertext Mark-up Language, a mark-up language for representing
data, such as web pages

HTTP Hypertext Transport Protocol, application layer protocol

IP Internet Protocol, network protocol

J2ME Java 2 Micro Edition, collection of Java APIs for the development
of software for resource-constrained devices

J2SE Java 2 Standard Edition, collection Java APIs for most Java programs

JAR Java Archive, file format used to package Java applications

JVM Java Virtual Machine, a virtual machine that executes Java byte code

MIDP Mobile Information Device Profile, profile of J2ME for connected
limited device configuration

MOM Message-Oriented Middleware, client/server architecture that supports
asynchronous calls between the client and server applications

OSGi Open Services Gateway initiative (nowadays OSGI Alliance),
corporation comprised of technology innovators and developers
focused on developing open service gateway technology

OWL Web Ontology Language, a language for defining machine
interpretable vocabularies specified by W3C

PC Personal Computer, a term for a computer that is suitable for
personal use

RDF Resource Description Framework, W3C specification for a metadata
model

RDF-S RDF Schema, a language to structure RDF resources

11

RDQL RDF Data Query Language, a query language for RDF

RF Radio Frequency, portion of the electromagnetic spectrum in which
electromagnetic waves can be generated

S-CMS Specific Context Monitoring Service, component of the context
monitoring service that contains more detailed context information
on the deployment environment than C-CMS

SOAP Simple Object Access Protocol, application layer protocol specified
by W3C

SPARQL SPARQL Protocol and RDF Query Language, a query language for
RDF

SSDP Simple Service Discovery Protocol, basis discovery protocol of UPnP

ULCO Upper-Level Context Ontology, existing ontology for more abstract
context information

UML Unified Modelling Language, object-based modelling technology

UPnP Universal Plug and Play, a set of protocols that allows devices to
seamlessly connect to each other

URI Uniform Resource Identifier, unique identifier for resources,
particularly in WWW

URL Uniform Resource Locator, identifier for resource locations

W3C World Wide Web Consortium, standardization organization for web
technologies

WWW World Wide Web, application layer protocol widely used for the
Internet

XML Extensible Mark-up Language, information representation technology

12

1. Introduction

The motivation for this work derives from the concept of ubiquitous computing
[1] in which the computational resources are graciously integrated with the
human users so that their services are present everywhere and the required
human intervention in providing their functionality is minimal. For an efficient
implementation of this concept the services need to adapt to the changing
conditions of the surrounding environment [2]. This requirement for the
adaptation is also a key issue in other fields, such as nomadic computing [3].
Nomadic computing is defined as providing anyplace Internet access by exploiting
the surrounding information for the adaptation.

Context-awareness establishes a base for the adaptation, which can only be
achieved with appropriate acquisition of the related context information.
However, the constitution of the context information required to support the
adaptation might need a compilation of information from separate sources in
different physical locations. The mechanisms for acquiring and processing the
distributed context information are switching from the application side to the
middleware. The trend in facilitating the development of context-aware
applications is towards service-oriented solutions, which removes the restraint of
supporting context-awareness from the application [4]. The fundamental
research problem of this thesis derives from this development facilitation trend
along with the requirement for context-awareness support in different fields of
computing. The problem is to find a solution for dynamic acquisition and
representation of distributed context information and its efficient provisioning
for the applications in order to enhance their adaptivity and context-awareness.

To solve the research problem, the goal is to identify the requirements and
functionalities for a service architecture that enables context-awareness by
compiling the distributed context information from separate sources and
providing the applications with access to it. The only way to find a solution to
this is a wide literature review of the state-of-the-art research and technologies
regarding context-awareness, service provisioning and closely related
architectures for supporting context-awareness. In particular, the goal is to
develop and validate a novel service architecture that supports context-
awareness and whose design is based on the state-of-the-art technologies in the

13

field of ubiquitous computing. The architecture�s novelity value derives from the
concept of a dynamically evolving semantic model of context information that it
utilizes to provide a solution for the research problem.

The domain of the work, related technologies and research, including a couple of
architecture solutions for supporting context-awareness, are presented in the
literature review in Chapter 2. The requirements are summarized and the design
of such a service is presented in Chapter 3. According to the design, an
architecture for the service and its internal components is contemplated and
presented in Chapter 4. The prototype implementation of the service architecture
itself and an application requiring context-awareness support are created to
validate the design. The architecture validation is presented in Chapter 5.

Once the design and validation are presented, the outcome of this work is
discussed in Chapter 6, which covers the comparison with existing architecture
solutions and dissertation of the architecture�s strength and weaknesses. Chapter
6 covers discussion of the development targets that are derived from the
architecture�s dissertation. Finally, the conclusions from the work are presented
in Chapter 7.

14

2. Related research and technologies

The results of the research related to this thesis are presented in this chapter. The
research focused on the field of context-awareness and the technologies related
to enabling context-awareness. Context and context-awareness are discussed at
the beginning of the chapter and then the related enabling technologies are
presented. Existing systems that provide the applications services for enabling
their context-awareness are also presented at the end of this chapter to give
insight into the previous research done in the field of context-awareness.

2.1 Introduction to context-awareness

Ubiquitous computing was introduced in 1991 by M. Weiser [1] and set forth a
vision of people and an environment augmented together with computational
resources that provide services everywhere. To achieve the essence of the vision,
in which the computing environment is gracefully integrated with human users,
ubiquitous systems need to be context-aware [2]. As the computational resources
augment the people and environment together, both of which can change their
context rapidly, the services must adapt to new situations in order to be able to
provide services that are suitable for the current situation. This is where context-
awareness becomes the key requirement for the ubiquitous computing systems [5].

In addition to ubiquitous computing, other similar fields of computing, such as
pervasive and nomadic computing [3], have also identified context-awareness as
a requirement for the systems belonging to the field. Pervasive computing is
stated in [5] to be just a new term for ubiquitous computing, but it is recognized
and used in the literature as a field of computing on its own. Nomadic computing
defines a concept of providing Internet access for the user anyplace and anytime
by utilizing portable computing devices in conjunction with communications
technologies. But, common to all computing fields, the successful achievement
of their concepts requires the systems to be context-aware.

To enable context-awareness the system needs to process and represent the
context information it gathers from the environment. Context information, its
methods of representation and the concept of context-awareness are discussed in

15

the following sections; the definition of a context monitoring service is
explained at the end of this section.

2.1.1 Context information

Context information is important for applications that need to adapt to situations
in which the user�s context is rapidly changing [6]. It is gathered from the
environment surrounding the system to be utilized for enabling better
adaptability of the applications. But in order to utilize context information
efficiently we need to understand what the context is and how it can be used.

Researchers have come up with several different definitions for the term
�context�, but most of them are synonyms for the word or the term is explained
by examples. In the work of Schilit and Theimer [7] the definition of context is
given by an example where the context is referred to as location, identities of
nearby people and objects, and changes to these objects. This definition does not
explain whether a type of information, which is not listed in the definition, is
context or not. Other definitions that provide synonyms for the context are
difficult to apply in practice. Examples of the synonym definitions in [8] and [9]
refer to context as the environment or situation.

In [6] Dey et al. state that the context definitions created by Schilit et al. [10],
Dey et al. [11] and Pascoe [12] are closest to the spirit they desire, but are too
specific and cannot be used. The more comprehensive definition for the context
is presented as �Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place or object that is considered
relevant to the interaction between a used and an application, including the user
and applications themselves.� [6]. For the primary context types, Dey et al.
identify location, identity, time and activity that characterize the situation of a
particular entity. These context types act as indices for other sources of context
information and answer the questions of who, what, when and where [6].

16

2.1.2 Representation of context and ontologies

A uniform representation of the context is required to enable understanding of
context information between different computational units and applications. To
address this, ontologies have been studied to provide the sharing and
understanding of the context. In one definition the ontology has been described
as an explicit specification of conceptualization, which was further elaborated
into a formal, explicit specification of a shared conceptualization. The
conceptualization is meant to refer to an abstract model of some phenomenon in
the world that identifies the relevant concepts of that phenomenon. In this
definition the types of concepts and the constraints they use should be explicitly
defined. The ontology should also be machine-readable and capture consensual
knowledge. These features, respectively, refer to formal and shared in the
definition [13], [14].

Different domains of context information require specific ontologies for
modelling the relevant concepts. However, it is an enormous task, if not
impossible, to develop a comprehensive ontology that covers all the context
information that can exist. The criteria for ontology development that have
proven useful are summarized in [15]. The criteria and their explanations are
provided below.

• Clarity and Objectivity, the ontology should provide objective
definitions and natural language documentation to bring meaning to the
defined terms.

• Completeness, a definition expressed in terms of necessary and
sufficient conditions is preferable to a partial definition.

• Coherence, to allow consistent inferences with the definitions.

• Maximum monotonic extendibility, introduction of new terms to an
existing ontology should not require revision of the existing definitions.

• Minimal ontological commitments, to make a minimal number of claims
on the world being modelled, giving the freedom to specialize and
instantiate the ontology as required.

• Ontological Distinction Principle, the classes in the ontology should be
disjointed.

17

• Diversification of hierarchies, increase in the efficiency of multiple
inheritance mechanisms.

• Modularity, different modules should have the minimum number of
relationships to each other.

• Minimization of the semantic distance between sibling concepts, similar
concepts should be grouped and represented using the same primitives.

• Standardization of names whenever possible.

Ontologies can be used as a mediator in communication between people and
systems. They also support the design and development of knowledge-based
software systems such as the Context Monitoring Service introduced in this
work. The context information that the CMS acquires and processes can
efficiently be represented with ontologies and shared further with other entities
without losing any knowledge [16].

2.1.3 Context-awareness

Context-awareness is an ability of a computing system to utilize the relevant
context information in the execution environment in order to alter its behaviour
and act as expected in the current situation. There are several existing definitions
of the concept of context-awareness that define the term from different points of
view. However, Dey and Abowd have introduced a general definition in [6],
which is informed by all existing definitions; �A system is context-aware if it
uses context to provide relevant information and/or service to the user, where
relevancy depends on the user�s task.� [6].

In [6], context-aware applications have been divided into four different
categories according to the purpose for which they utilize the context-awareness:
proximate selection, automatic contextual reconfiguration, contextual command
and context-triggered action applications.

• Proximate selection applications use context information for
emphasizing the items that are relevant to the user�s context. For
example, the nearest printers are shown first or emphasized in the printer
selection list.

18

• Automatic contextual reconfiguration applications retrieve information
for the user based on the available context. This system-level technique
creates automatic binding to the available resource based on the current
context. An example could be a museum tour guide application that
shows additional information on the user�s PDA for items the user is
assumed to be looking at.

• Contextual command applications are executable services that are made
available or their execution is modified due to the user�s current context.

• Context-triggered actions applications are services that are executed
automatically when the current state of the context matches the defined
conditions.

Deployment of a context monitoring service that facilitates the development of
applications comprising all the context-aware application categories is presented
in this work. The context information and context-awareness is provided by the
service but the decision on what to do with the information is left for the
application developers. The Context Monitoring Service architecture is designed
for utilization by applications belonging to all the context-aware application
categories.

2.1.4 Context monitoring service

A definition of the context monitoring service is a service that doesn�t utilize the
context information it gathers and maintains to execute any tasks or processes
but provides an interface for accessing the information to enable its utilization
by applications. The applications that are context-aware utilize the context
information of the surrounding environment to adapt their behaviour according
to the current situation. The applications might also require the context
information to provide relevant information or services to a human user or to
another computing entity, where relevancy depends on the current task [6]. To
achieve this, the application requires functionalities for gathering, processing
and maintaining the context information. Deploying a context monitoring
service that is responsible for the gathering and management of the context
information helps the application to focus on other more important tasks. The
context monitoring service can also provide the knowledge to several

19

applications at the same time, thus enabling the adaptability of all applications
that desire to be context-aware.

The context monitoring service should be deployed in such a way that it can
provide the services to multiple clients. To address this, the context monitoring
service needs to be deployed on a platform that holds the applications and the
service. A promising platform for the deployment could be the MidGate [17]
middleware service platform, which is described as �a service platform that
provides communications middleware, a set of generic service elements and a
dynamically re-configurable service framework that can be applied in the
development and deployment of any application for a distributed service
gateway based environment.� [17].

The MidGate architecture introduces a Generic Service Element (GSE) [18]
called the Environment Monitoring GSE, which provides services for
monitoring changes in the computing environment. The Environment
Monitoring GSE is explained as hosting �a retrievable environment profile,
which can be thought of as a snapshot of the dynamically changing context taken
at the time of retrieval.� [17]. The context information is provided to the
applications deployed in the MidGate by providing a service that allows listener
registration for monitoring changes in the context.

2.2 Technologies

This section reviews the technologies related to context representation, context-
awareness and the context monitoring service designed in this thesis. Firstly,
technologies used for representing the context information as standardised
formats are discussed. The context information representation utilizes several
mark-up languages to enable the human and machine interpretation of the
information. Mark-up languages extend or utilize other existing mark-up
language to provide a more informative description of the context. As the
context can be represented in a descriptive way for humans and machines, a
system needs to be created to hold and process the information. The mark-up
languages presented in the subsections are recommendations by the World Wide
Web Consortium (W3C) [19] and some are part of the Semantic Web
technologies [20]. Semantic Web is a project that intends to create a universal

20

medium for information exchange by creating computer-processable mark-up
languages for documents on the World Wide Web (WWW). The Semantic Web
technologies offer an approach to processes and information management, the
fundamental principle of which is the creation and use of semantic metadata [21].

This section also reviews the technologies that provide frameworks to establish
the services that provide the context information further to be used for adaptivity
and context-awareness. The Jena Semantic Web Framework (Jena) is a feasible
technology to be utilized for deploying the context information storage and
processing capabilities. Furthermore, to provide the service interfaces to access
the context information, service framework technologies like the Open Services
Gateway Initiative (OSGi) are needed. Finally, the UPnP technology is
presented, which can be seen as a key enabler for the dynamic acquisition of the
distributed context information.

2.2.1 Extensible Mark-up Language

Extensible Mark-up Language (XML) [22] is a simple and flexible text format
that was originally designed for large-scale electronic publishing. XML is
widely used on the WWW as a data exchange format, and its role is growing
larger all the time. The advantages of XML are that it is independent of
platform, software and hardware configurations, and it is self-descriptive and
interpretable by both humans and the machine. A simple example XML
document is provided in Figure 1.

Figure 1. Personal information stored in XML format.

21

The example document contains personal information such as name, occupation
and city of a person stored in the XML format. From the example one can see
that XML is a self-descriptive format and the machine can interpret the content
using the tags marked as <tag>. The tags, however, are not specified by XML
but by the author of the XML document.

2.2.2 XML Schema

XML Schemas are used to define the structure, context and semantics of an
XML document [23]. The purpose of XML Schema is to define the class of
XML documents that have the same semantics as those defined by the Schema
[24]. XML Schema specifies typed definitions and element declarations under a
particular namespace and can be seen as a vocabulary for XML documents of a
similar class. XML documents that conform to a particular XML Schema are
often called instance documents of the Schema [24]. The namespaces in XML
Schema documents are used to distinguish the different type definitions and
element declarations from each other. An XML Schema document for the XML
instance document shown in Figure 1 is illustrated in Figure 2.

Figure 2. An example XML Schema document.

22

The first part of the XML Schema document is the section that defines the
namespaces used in the schema. The XML instance document must also define
the same namespace and have a reference to the Schema document. The type of
�person� element is complex because it contains other elements like, in this
example, the other complex element �name� and the simple elements
�occupation� and �city�. In this example a built-in data type �string� is defined
for all the simple elements, meaning that the values of these elements are
represented as strings.

2.2.3 Resource Description Framework

Resource Description Framework (RDF) is a language designed to describe the
information on resources in WWW [25]. However, RDF can used to represent
things that aren�t even retrievable from the Web, such as physical objects or the
context in general. RDF is based on an idea of identifying the resources by
Uniform Resource Identifiers (URI) and describing the resources in terms of
properties and property values. A unique URI is defined for identification of
each resource or property. Properties represent the attributes of the resource and
are expressed as values, such as numeric or string value. Resources, properties
and their values are represented as triples, similar to the subject, verb and object
of a simple sentence.

RDF uses a special RDF/XML format to record or exchange the resources with
properties and values that enable machine processing of the RDF documents. An
example of an RDF/XML format document is provided in Figure 3.

Figure 3. Example of RDF/XML formatted RDF document.

23

The example shows the same details of a person in RDF. In the example the upper
part of the figure is the namespace definitions for the RDF document and the lower
part shows the resources, properties and their values. The resource in the example is
a person who is identified by the URI �http://www.anso.vtt.fi/contact#jussi�.

RDF provides a common framework for describing the context data, thus the
data can be exchanged between applications without losing any data. RDF is a
feasible language for representing the context knowledge data in the context
monitoring services.

2.2.4 RDF Schema

RDF Schema (RDF-S) [26] is a language for describing RDF vocabularies that
define classes and properties to describe other resources and properties
expressed in RDF. As previously explained, RDF provides a way to express
statements on resources using named properties and values. The problem with
RDF is that it has no mechanisms for describing these properties, and the
relationships between RDF properties and resources cannot be expressed in
RDF. RDF Schema is used to establish relationships between the RDF resources,
which are categorized into the domains and ranges of the properties. The
properties have a domain that contains the possible classes of resources to which
the property can be applied. The range of the property defines the group of
values that can be assigned for a certain property.

A concrete example of domains and ranges of properties is a case where the
RDF schema classes �Car� and �Bicycle� have a property called �hasTire�. Now
the �hasTire� property has a domain of the classes �Car� and �Bicycle�, which
means that the �hasTire� property can be assigned to all RDF resources that
belong to these classes. The range of the property �hasTire� can, for example,
include the RDF Schema classes �BigTire� and �SmallTire�. Hence the RDF
instances of these classes can be assigned to the �hasTire� property.

RDF and RDF Schema together offer potential methods to describe the context
information in the context monitoring service. Some ontology languages such as
Web Ontology Language (OWL) are already based on RDF and RDF Schema
languages.

http://www.anso.vtt.fi/contact#jussi

24

2.2.5 Web Ontology Language

Web Ontology Language is a language for defining and instantiating formal
ontologies that provide greater machine interpretability of Web content than is
supported by XML, XML Schema, RDF and RDF Schema [27], [28]. The
difference between ontology and, for example, XML schema is that ontology is
knowledge representation, not a message format. Most industry-based Web
standards consist of message formats and protocol specifications that have given
operational semantics but no support for reasoning outside the transactional
context. An example from [28] illustrates the semantics of an industry-based
Web standard message: �Upon receipt of this PurchaseOrder message, transfer
Amount dollars from AccountFrom to AccountTo and ship Product.� The
difference with ontologies is that it cannot be concluded from this message that
if the Product type is Chardonnay, it must also be white wine.

OWL was developed as vocabulary extension of RDF and it also depends on the
constructs defined by RDF Schema and XML Schema data types. OWL
language is divided into three different sublanguages � OWL Lite, OWL DL and
OWL Full � which provide increasingly expressiveness respectively. OWL Lite
is intended for lightweight implementations and provides limited expressiveness
compared with the other two. OWL DL guarantees computational completeness
and is designed to support the existing description logic business segment OWL
DL is named after. OWL Full does not guarantee any computational
requirements but it does provide the maximum expressiveness and syntactic
freedom of RDF. However, it is very unlikely that any reasoning software will
be able to support every feature of OWL Full. [28]

OWL is one of the potential languages with which to represent knowledge and
context information in context-aware systems. Designing an expressive ontology
from scratch is a challenging effort and building a reasoning tool to support the
ontology creation is even more complex. Research has revealed that several
tools for developing ontologies that support different sublanguages of OWL can
be found. Ontology editor tools include, for example, Protégé [29], TopBraid
Composer [30] and SWOOP [31]. Protégé is seen as a potential ontology editor
and is selected for use because it is an open-source software tool. Protégé can be
utilized for developing new ontologies or extending existing ones for the context
monitoring service described in this work.

25

2.2.6 RDF Data Query Language

RDF Data Query Language (RDQL) [32] is an SQL-like language for querying
data models that are expressed in RDF. RDQL has evolved from several other
RDF query languages, such as SquishQL [33], and includes the ideas presented
in [34]. An RDF model is a graph that is often expressed as subject, predicate,
object triples, and the RDQL query consists of a graph pattern as a list of these
triples. The triples in the graph pattern are comprised of named variables and
RDF values as URIs or literals. An RDQL query can contain constraints for the
values in the query pattern and a list of variables that are returned in the result
set of the query. Results for the RDQL queries are searched from both the
predefined triples in the knowledge base and the virtual triples that are inferred
from known triples. A simple example of an RDQL query is shown in Figure 4.

Figure 4. A simple example of an RDQL query pattern.

In the example the pattern �?var� is the variable into which the results are
stored. The pattern can comprise several variables that are returned in the result
set. Here the variable is set as a subject of the triple pattern, and the predicate
and object are defined for conditions. This query returns all the triples that
contain a subject having the predicate and object defined in the query pattern.

RDQL enables expressive queries to the context information model and can be
either very detailed or comprise a wide range of information. RDQL can be seen
as a feasible technology to provide access to context information presented as an
RDF model.

2.2.7 Jena Semantic Web Framework

Jena Semantic Web Framework [35], or Jena, is a framework for creating
Semantic Web applications. Jena is an open-source framework written in Java

26

and provides a programmatic environment to develop semantic knowledge bases
using the RDF, RDF Schema and OWL languages. The Jena framework also
includes a rule-based inference engine that can be used to deduce new
information from the predefined information in the knowledge base.

The Jena Semantic Web Framework consists of two versions of the implementation,
Jena 1 and Jena 2. Jena 1 provides a rich Application Programming Interface
(API) for manipulating RDF graphs and several tools are included around the
API for support. The tools include modules for parsing and writing RDF/XML
formatted ontology documents, and a query language support. The API also
provides functions to store the RDF graphs to a persistent storage or in the
memory [36].

The upgrade of Jena 1 to Jena 2 improved the framework by bringing additional
functionality that supports RDF Schema and OWL, and new APIs were created
for the developers to be able to access the ontologies and process the
vocabularies. Jena 2 provides an extension point that allows development of new
sources of data triples, which are dynamically created. The triple sources can be,
for example, an inference engine that produces virtual triples of inferred
information. The inference engine supports the semantics of RDF and OWL, and
the engine can be extended with self-created inference rules [36].

The second version of the Jena Semantic Web Framework is a very feasible
technology for creating the knowledge base for the context information the
context monitoring service is designed to contain. Jena 2 provides support for
reading and writing RDF/XML ontologies defined with the OWL language,
which enables easy utilization of developed ontologies for the context
monitoring service. The context information in the knowledge base can be
accessed through the support for the RDF query languages. Jena also includes
inference engines for RDF and OWL semantics and can be further extended with
special inference rules.

2.2.8 Open Services Gateway Initiative

The Open Service Gateway Initiative [37] is an alliance forum focused on the
interoperability of applications and services based on its component integration

27

platform. The OSGi alliance has defined a framework and service platform
specification for an open service gateway. The specification defines standardized
APIs for designing the interfaces between the components of the service
gateway. The components include the services, the OSGi framework, access to
devices and service management. The specification does not define any API for
the interface design between the services and applications that utilize them. The
design of the service interfaces towards the applications is left open for the
service developers. Currently, the OSGI Service Platform specification is in
release 4 [38].

The OSGi technology provides a possibility to install updates or remove
software components on the fly without having to interrupt the operation of the
device [39]. These software components can be applications or libraries to be
utilized by the other applications, and the components can be dynamically
discovered inside the OSGI framework. The software components, or bundles,
are Java Archive (JAR) packets that include the control interface, service code
and service interfaces for the applications. The core component of the
specification is the OSGi framework that provides the standardized environment
for the software bundles. The OSGi framework is divided into four different
layers, around which are the software bundles. The layered division of the OSGi
framework is illustrated in Figure 5 from [39].

Lif
e C

yc
le Modules

Bun
dle

s
Service Registry

Execution
environment

Figure 5. The layer division of the OSGi framework.

The execution environment specifies the Java environment. Valid execution
environments include, for example, Java 2 Standard Edition (J2SE) and different

28

Java 2 Micro Edition (J2ME) configurations and profiles such as Connected
Device Configuration (CDC), Connected Limited Device Configuration (CLDC)
and Mobile Information Device Profile (MIDP). More information on the Java
platform can be found in [40].

The modules layer defines the class loading policies by specifying the software
bundle�s private classes and the classes that are shared with other bundles. The
Life Cycle module provides the functionalities to dynamically install, start, stop
and uninstall the bundles. The module also keeps track of the dependencies
between the operating bundles so that a bundle isn�t run before the required
library bundles are installed. The last module, the Service Registry module,
provides the cooperation model for the software bundles. The Service Registry
provides the bundle�s service interfaces to other bundles and also notifies new
registrations or removals of bundles with a number of defined events. [39]

2.2.9 Universal Plug and Play

Universal Plug and Play (UPnP) is an architecture for pervasive peer-to-peer
network connectivity of different networked devices. Microsoft initiated the
UPnP standard to extend the existing Microsoft Plug-and-Play peripheral model.
The goal of the UPnP technology is to enable the advertisement, discovery and
control of networked devices and consumer electronics [41]. UPnP enables the
device to dynamically join a network, obtain an Internet Protocol (IP) address,
present its own services and discover other devices in the network. Furthermore,
UPnP is not only a technology but also a cross-industry initiative, which is
embodied in the UPnP Forum [42] that develops Device Control Protocols
(DCP) for standardized device interaction [43].

A UPnP network consists of devices, services and control points. A UPnP device
is a container for different services the device provides; the device can also
contain other nested devices. For example, a multifunctional printer can contain
the printer and a scanner in the same device. Each UPnP device has an XML
formatted device description that contains the details of the device. The device
description also contains a pointer to the descriptions of the service the device
provides. This service description is also in XML format and defines the details
of the device�s service. Each service the device contains has its own service

29

description document. The service can include different actions to query or
manipulate the state of the service. The state of the service is expressed as state
variables, which are located in the state table of the service. Each service can
contain several state variables representing different states of the service. In
addition to the state table, a UPnP service also consists of a control server and an
event server. The control server is used for receiving action requests from the
controllers and executing them. The event server of the UPnP service notifies the
interested parties of changes in the service state. An example of a UPnP network
and its components is presented in Figure 6 [44, p. 10].

Figure 6. UPnP control points, devices and services.

UPnP control points operate as controllers of the UPnP network and are capable
of discovering and controlling the services. A control point retrieves the device�s
device description document and the associated service descriptions. After this,
the control point can control the device by invoking the actions introduced in the
service description documents. Control points need to register to the service�s
event source in order to get the state change notifications [44].

30

The interaction of the UPnP network is divided into six different steps:
addressing, discovery, description, control, eventing and presentation. Each of
these steps, and the associated protocols, are now briefly described.

Addressing

Addressing is used to obtain the IP address for the devices from the DHCP
(Dynamic Host Control Protocol) [45] server using a client that each device
contains.

Discovery

The discovery step advertises the device�s services by using the UPnP discovery
Protocol, which is based on the Simple Service Discovery Protocol (SSDP) [46].
The device sends a discovery message to a standard multicast address to
advertise its services and embedded devices. The control point listens to the
address and receives the information on the devices. A newly joined control
point also sends discovery messages to locate the interesting devices and
messages.

Description

The control point uses the Uniform Resource Locator (URL) presented in the
discovery message to retrieve the device�s device description and service
descriptions. The descriptions are retrieved by issuing a Hyper Text Transfer
Protocol (HTTP) GET message to the device URL.

Control

The control point invokes service actions by sending XML formatted control
messages to the device�s URL. The required arguments and a return value of a
service action are defined in the service description document. The protocol
utilized for the device controlling purposes is the Simple Object Access Protocol
(SOAP) [47].

31

Eventing

Through eventing the control point receives notifications on state changes to the
service. The control point needs to subscribe to listen to the state changes of a
state variable. The subscription must be renewed over a period defined in the
subscription message. Events messages are General Event Notification
Architecture (GENA) [48] NOTIFY messages that are sent using HTTP.

Presentation

In addition to controlling and eventing mechanisms, UPnP devices may also
provide a web interface for controlling the services. The interface is a normal,
public Hypertext Mark-up Language (HTML) page that the control point can
present to a user. Access to the interface is enabled by delivering a hyperlink to
the interface�s web page in the device description document. The UPnP
specification presents no strict requirements for the page except that the page
needs to be written in HTML v.3.0 or later [49].

2.3 Architectures of existing context monitoring services

A lot of research has been done in the area of context-awareness and several
services that enable context-awareness have evolved during the research. To
provide insight for the reader, a couple of these context monitoring services have
been chosen to be presented in this section. The selection criteria were that the
existing systems provide architectural and functional solutions that conform to
the requirements of the context monitoring service designed in this work.

2.3.1 CoBrA

Context Broker Architecture (CoBrA) [50] is an architecture for supporting
context-aware systems in smart spaces. Central to the architecture is a broker
that maintains the shared model of the context for all computing entities in the
space. In addition to maintaining the model, the broker also is responsible for
acquiring the context information from the sources that are unreachable by

32

resource-limited devices, reasoning new context information from the acquired
information, preserve the consistency of the knowledge in the model and
protecting the user�s privacy by controlling the sharing of the context
information [51]. The design of the context broker is illustrated in Figure 7 from
[51].

Figure 7. The design of the context broker in CoBrA.

The context broker in CoBrA contains four different functional components:
context knowledge base, context reasoning engine, context acquisition module
and policy management module [51]. The context knowledge base is a persistent
storage of the contextual knowledge that provides an API with access to the
information in the base. It also contains the ontologies of a specific smart space
and some heuristic information associated with the space. The context reasoning
engine is a reactive inference engine that reasons over the context information in
the context knowledge base. The reasoning engine deduces new context
information from the existing by using the ontologies. The inference engine also
detects and resolves inconsistent information in the knowledge base by using
heuristic knowledge. The context acquisition module is responsible for
providing a middleware abstraction for the context acquisition. It shields each
sensor�s specific implementation for information acquisition from the high-level

33

applications. The last functional component is the policy management module,
which is a set of inference rules to deduce instructions for deciding on
permissions for the shared context information and receiving notifications of
context changes.

2.3.2 Semantic Space

Semantic Space is described by its developers as �a pervasive computing
infrastructure for smart spaces that exploits Semantic Web technologies to
support explicit representation, expressive querying and flexible reasoning of
context in smart spaces� [52]. The Semantic Space infrastructure is focused on
the explicit representation of context, context querying and context reasoning.
To address these issues the infrastructure is designed to consist of different
collaborating components that provide the required functionalities for context
representation, querying and reasoning. These components, presented in Figure 8
from [52], are: context knowledge base, context query engine, context reasoner,
context aggregator and different context wrappers.

Figure 8. The Semantic Space context infrastructure.

34

The context knowledge base contains the context information represented as a
context model, which is defined with different ontologies. To support different
kinds of context information in the same context model, the Semantic Space
developers have developed an Upper-Level Context Ontology (ULCO), which
can be extended with more specific ontologies. The ULCO provides classes of
real-world objects that link together to form a skeleton of a contextual
environment for the context model. Access to the context model is enabled by
the context query engine, which provides an abstract interface for the
applications. The context model is queried with the RDQL query language,
which supports expressive queries to the context information. The context
reasoner infers abstract higher-level context from the information produced by
the sensors. Semantic Space allows application-specific inference rules to be
used in deducing new context information. Each application can add rules to the
inference engine to receive the desired high-level context information. This can
generate conflicting results, but the reasoner doesn�t assert the information in the
context knowledge base, thus avoiding conflict in a model. Context wrappers
obtain the raw context data from the sensors and transform it to context mark-
ups. The wrappers provide the abstraction of the data that different sensors
produce and hence provide the unified interface for acquiring the data from all
the sensors. The wrappers are implemented as UPnP services to enable dynamic
joining to a Smart Space. The last component is the context aggregator, which
discovers the context wrappers and gathers the context information from them.
As the context wrappers are implemented as UPnP services, it is natural that the
aggregator is deployed as a UPnP control point. The context aggregator can
dynamically discover all the joining context wrappers and subscribe to receive
the context data from them.

2.4 Terminology

For the convenience of the reader, the terms used in Chapter 2 and throughout
this work are gathered and summarized in Table 1.

35

Table 1. The terminology used in this work.

Context-awareness An entity�s ability to be aware of the surrounding
context information and use the information to adapt its
behaviour according the current context.

Context monitoring service A system or process that provides the means for other
entities to access the context information it possesses,
thus enhancing their context-awareness.

Context information Information on the circumstances and conditions
surrounding an entity; represents the state of the
entity�s surrounding environment.

Context model A model of the context information where the semantic
relations between the entities of the context
information are modelled using some method of
representation.

Inference engine /
Reasoning engine /
Reasoner

An engine that deduces new implicit context
information from existing explicit context information
according to the given inference or reasoning rules.

Knowledge Base A database for knowledge management; provides the
means for computerized collection and organization of
knowledge.

Ontology A language or vocabulary used to model the
relationships and entities of context information to a
context model.

36

3. Design of Context Monitoring Service

A context monitoring service that monitors the deployment environment�s
different context information and is also dynamic by its nature requires several
different functionalities. These functional requirements and the design of the
implemented Context Monitoring Service are covered in this chapter. The
functionality of the CMS is decomposed into separate components and the
structure of this chapter is organized accordingly. The first section provides an
introduction to the service�s functionalities and the following sections explain
the service�s different components and their deployment in detail.

3.1 Introduction to service

Context Monitoring Service is a service that acquires context information from
its deployment environment and provides it for the applications to enable
context-awareness. Acquisition of the context information is done by the
different types of sensors that sense the conditions in the environment. Context
information is stored to the semantic context model, which binds the information
to a form defined by an ontology. To enable improved context awareness, a
reasoning engine is assigned to the context model to deduce new information
from the semantic relations of the information. A service interface to the model
is needed to provide the data in the semantic context model for applications.
This interface provides the mechanisms to make queries to the information in the
model and register listeners with conditions that are triggers for notification
events. The CMS is deployed into an OSGi framework, which provides
reconfigurability by allowing addition and removal of software bundles in the
framework in run-time. Thus applications can be installed and run without
shutting the CMS down. The CMS is illustrated as a block diagram in Figure 9.

37

Figure 9. Illustration of the CMS as a block diagram.

Context information is dynamic by its nature, thus the service�s context model
must be updated after every state change. The context model receives context
information from the sensors, which can be located in the same or a different
remote computational unit. Locally connected sensors are discovered by the
CMS via the OSGi service discovery and remote sensors are discovered via the
UPnP device discovery. Remotely discoverable sensors are enabled by
deploying the local sensors as UPnP devices. UPnP sensor devices have a
special UPnP service that is used to receive the data from the sensors. The data
the sensors provide is in raw form and needs to be manipulated to be suitable for
adding to the context model. Sensor data is converted to the semantic statements
that are suitable for altering the information in the context model.

The Context Monitoring Service can be decoupled into the different functional
components that are needed to provide the functionalities described above. The
functional components of the Context Monitoring Service are listed in Table 2.

38

Table 2. Functional components of the Context Monitoring Service.

Component Description

Context model A knowledge base that contains the contextual entities and
their relationships defined with ontologies.

Reasoner An engine that deduces new information from the
information in the context model.

Model querying
service

Handles the queries to the context model and returns the
results of the query.

Conditional eventing
service

Manages the notification of listeners when a condition given
in listener registration triggers the notification.

Model updater
devices

Devices that provide new context information for the
Context Monitoring Service.

Model updater device
advertisement and
discovery

Responsible for finding local and remote model updater
devices and advertising the local model updater devices in
the network as remote model updater devices. The data from
the discovered model updater devices is provided further for
context model updating.

3.2 Requirements scenario for the design

This section explains the scenario on which the design of the whole service is
based. The requirements for the design are identified from this scenario. First,
the structure of the scenario, the communications in it and the overall
functionality are explained first, and the identified requirements for the design
and their solutions are presented at the end of the section. Figure 10 shows the
scenario�s deployment environment in which the service is located and also
illustrates the deployment aspects of the service.

39

Figure 10. Deployment environment of the Context Monitoring Service.

3.2.1 Deployment environment

A building containing several different sized rooms is the deployment environment
for the Context Monitoring Service in this scenario. The CMS can be deployed as
two separate components, which have slight differences in their configuration. The
functionalities are exactly the same but the start-up setups of the components differ.
The components of the CMS are the Central Context Monitoring Service (C-CMS)
and the Specific Context Monitoring Service (S-CMS). The idea is that the C-CMS
has a context model containing all the explicit and static information that cannot be
sensed with the given sensors and needs to be configured manually. An example of
this kind of information is the room configuration of the building and the
information on the employee working in it. The context models of the S-CMS
components only need to be configured with the room-specific explicit information
the C-CMS does not yet contain. All the other information is received from the
C-CMS or from the other S-CMS components. Thus the extension of the whole
system is easy as possible. The deployment environment for the CMS components
in the scenario is a building containing three different rooms. A mainframe inside
the building is running a C-CMS component and three S-CMS components are
deployed to rooms in the building.

Every room can have its own OSGi framework running the S-CMS. An S-CMS
located in a room contains all the room�s static context information, such as
sensors deployed in the room, and the room�s own information. Room

40

information is used to map the room to the C-CMS�s semantic model. The OSGi
framework in the room can also be running room-specific controlling or
maintenance applications that use the data from the S-CMS in the same OSGi
framework. Sensors that are needed in the room are connected to the room�s
OSGi framework and controlling software bundles are installed in the OSGi
framework. If the room is remarkably large and has different districts, special
OSGi frameworks for controlling only the sensors can be deployed separately.
The OSGi frameworks used for these sensors do not need any of the CMS
components to be installed. Therefore, the sensors are called stand-alone sensors.

3.2.2 Communications

All the CMS components communicate with each other via UPnP. The sensors
in the rooms can be connected direct to the computer running the OSGi
framework with CMS or they can be deployed as stand-alone sensors. Directly
connected sensors use their own communication protocols and the controlling
software bundles must be installed in order to receive the sensor data. Stand-
alone sensors consist of the OSGi framework, the sensor�s software bundle, a
possible driver for the sensor and a sensor physically connected to the computer.
Stand-alone sensor devices communicate with other CMS components using the
UPnP protocol.

The UPnP protocol enables the dynamic discovery of the connected devices in
the whole system. In this scenario it means that the C-CMS and the S-CMS
components automatically discover the newly connected S-CMS components
and newly connected stand-alone sensors.

3.2.3 Functionality

If a new S-CMS is assigned to a room, it is discovered by the other CMS
components. All the CMS components receive the base semantic model of the
S-CMS, not the dynamic model compiled from other models of the CMS
components. After receiving the model, the S-CMS starts listen to the changes in
it. Before the assignment, the other CMS components only had information that
the building contains a room, but had no information about the context of the

41

room. Now, after the assignment and receipt of the S-CMS�s semantic model, all
the CMS components know about the room�s detailed context information.

The received knowledge also depends on the sensors that have been deployed in
the room, but now the other CMS components are aware of the contextual
changes in the new room. For example, if a new directly connected sensor is
deployed to the room, the room�s S-CMS discovers it and starts to listen to it.
Then the other CMS components listening to the S-CMS in the room become
aware of the newly added sensor and receive the information it produces. The
stand-alone sensors are discovered by all the CMS components in a similar way
to new CMS components deployed to the environment.

When the new S-CMS is deployed, in addition to advertising its context model,
it receives the semantic models of all the CMS components in the deployment
environment. The deployed S-CMS extends its context model with the received
models and starts listening to the changes in them. Thus the room�s S-CMS
becomes aware of context information on other rooms in the building. By
listening to all the CMS components and stand-alone sensors, the room�s own
S-CMS notices all the changes occurring in the deployment environment.

3.2.4 Identified requirements

The scenario presented in Figure 10 was used to gather the requirements for the
Context Monitoring Service. These requirements are taken into account when
the CMS is designed and the solution should fulfil these requirements. The
requirements are categorized to non-functional and functional requirements,
where non-functional requirements apply when the system is not run and
functional requirements cover the run-time of the system.

The requirements are derived from several quality attributes that are presented in
[53]. Not all of the attributes are taken into account for the requirement analysis
of the CMS, but the attributes that are seen as important for the design are
selected. The derived requirements are presented along with the quality
attributes that determine the requirement. The identified requirement descriptions
and the design solutions to control the fulfilment of the requirements are listed in
Table 3 and Table 4.

42

Table 3. Non-functional requirements for the design and their solutions.

Non-functional requirement description Solution

Maintainability:
As the each deployment environment is
different to the other, the CMS should be
able to easily modify or adapt to changing
environments.

The utilization of ontologies provides a
way to easily expand the deployment
environment the CMS should cover. A
new ontology to cover the environment
can be designed and used to extend the
existing ontologies.

Portability:
The hardware can also vary between the
deployment environments, thus the CMS
should be easily run under different
computing systems.

The CMS is designed to be run on the
Java 2 platform, which can be easily
ported to other computing systems.

Integrability:
The separately developed applications
should work together correctly.

Utilization of OSGi as a framework for
the CMS and applications provides a
standard way to collaborate with other
components.

Table 4. Functional requirements for the design and their solutions.

Functional requirement description Solution

Adaptability:
As the deployment environment might
expand during the system�s run-time, the
CMS should be able to easily and with
minimum effort extend to cover the new
environment.

Utilization of UPnP technology provides
a way to expand the CMS with new CMS
deployment components in run-time.

Interoperability:
The CMS components and the stand-alone
sensors of the CMS should use a way of
communication that is understood by
every component.

The use of UPnP technology in company
with the ontologies as a message format
provides a common way for deployment
components to communicate with each
other.

Availability:
The CMS should be up and running as
much as possible to preserve the context-
awareness and the adaptability of the
applications.

Utilization of the OSGi framework allows
the installation of new components and
applications without shutting the whole
system down.

43

3.3 Context model

Context information enables the applications to adapt their behaviour according
the current state in the context of the deployment environment. To be able to
provide the context information for the applications the service must contain a
model of the current state. This context model contains semantic representations
of the context information that are different contextual entities and the
relationships between them. A contextual entity can be, for example, a room of a
house or a mobile phone in the room. The relationships between the entities
could be that the room contains the phone and the phone is located in the room.
A small example of entities and their relationships is illustrated in Figure 11.

Figure 11. Example of contextual entities and the relationships between them.

The rectangular boxes in Figure 11 describe the contextual entities and the
arrows between them are the relationships to each other. Starting from the entity
Bob, it has relationships to the Mobile phone and Building entities, which
defines that Bob is the owner of the Mobile phone and the Building. These two
relationships define that the Mobile phone and Building entities also have
relationships to Bob. If Bob owns an entity, the same entity is then owned by
Bob. Relationships that have this kind of dependency on other relationships are
called inverse relationships. Thus the �owns� relationship is the inverse relation

44

of the �is owned by� relationship. In this example the Room entity also has
inverse relationships to both the Building and the Mobile Phone entities. Room
is a room in the Building and, inversely, the Building contains the Room. In the
same manner, a room can contain devices � in this case the Mobile phone � and
devices can be located in the room.

The context model is compounded of these entities and their relationships to
each other. Entities and relationships are modelled in the context model as
statements and all the data in the model is represented as RDF statements. A
statement is an expression of the entity�s relationship to other entity in the form
of subject, predicate and object. The syntax of the example statement expression
could be <Room, containsDevice, Mobilephone> meaning that a room can
contain a device, which in this case is a mobile phone.

The Jena Semantic Web Framework [35] is selected for the deployment of the
context model for the service. As previously described, Jena is an open source
Java-based framework for building Semantic Web applications and provides an
RDF API with the possibility to read and write RDF in RDF/XML. An API is
also provided for handling OWL-based graphs, which is the reason for selecting
Jena to be used as a framework for the context model. Other features of the Jena
framework are rule-based inference engine, query engine, and in-memory and
persistent storage for the model. Persistent storing of data in the model is
provided by an API to store and manage the data in a database. However, the
current design is to keep the context model in the memory because it reduces the
latency of changes done in the context model.

The rule-based inference engine of the framework is used as a reasoner to
deduce new information from the model. Dynamic context information is
received from discovered sensors and from the reasoner. The query engine of the
Jena is used to provide applications with a possibility to query the data in the
model. Jena provides a query engine for the RDQL query language, which is
selected for utilization in the Context Monitoring Service.

45

3.4 Ontologies

Ontologies are needed to define the vocabulary for semantic representation of
the context. Different domain-specific ontologies are designed for the context
information in the service�s deployment domain. The designed ontologies are
divided into two categories: upper and lower-level ontologies. The upper-level
ontology defines the more abstracted model, which is extended with more
specific models defined with lower-level ontologies. The purpose of the abstract
model is to define how the lower-level models extending the abstract model are
related to each other.

Several separate ontologies need to be designed for the requirements of the
Context Monitoring Service. First, the service needs an upper-level ontology to
provide a base for the context model and define how the specific models are
bound to the context model. Lower-level ontologies are needed to define the
specific models that extend the abstract model. Lower-level ontologies are
needed for each sensor to model the context information that the sensor is able to
sense from the deployment environment.

In this work the OWL Web Ontology Language was chosen for the vocabulary
to define the required ontologies. The reason for the selection is that OWL
facilitates great machine interpretability and provides sufficient expressiveness
for deducing new information. OWL DL was chosen from the OWL sublanguages
of OWL Lite, OWL DL and OWL Full because OWL DL provides good
computational properties while still retaining sufficient expressiveness.

3.4.1 Upper-level ontology

The upper-level ontology should only represent abstract context entities and
their relationships to each other, thus providing an extendable base model for
specific ontologies. The upper-level ontology presented here is designed to be
extendable at least with the lower-ontologies needed in the Context Monitoring
Service�s deployment environment. The designed ontology�s classes and their
relationships are briefly explained in this section. The designed upper-level
ontology for the service is illustrated in Figure 12 as a Unified Modelling
Language (UML) class diagram.

46

Figure 12. UML diagram of the upper-level ontology.

UML class diagrams are very feasible for illustrating ontologies because the
ontologies consist of classes and the relationships between them. The UML class
diagram elements used in Figure 12 are class descriptions, inheritance
relationships between classes and dependency relationships between class
instances. Every class that has some relationship to another class also contains
attributes for the instances the relationship points to. An attribute can be defined
to hold only one instance or multiple instances, depending on the relationship.
Attributes that create the relationships between classes are left out to make the
diagrams easier to read.

In this ontology the highest level is the ContextEntity class that other defined
classes inherit directly or indirectly. The ContextEntity class is divided into two
subclasses: AbstractEntity and ConcreteEntity. AbstractEntity is the base class
for all entities that can be seen as abstract objects, such as Location, Activity and
Event classes. For example, the Activity class can be extended with specific
ontologies for scheduled activities or activities that a person might be involved
with. The Event and Listener classes represented here are used for conditional
eventing to represent triggered events and their listeners.

47

The ConcreteEntity class is base for all classes representing concrete contextual
objects. It has a relationhips � �LocatedAt� � to the Location class because it can
be assumed that concrete entities have a location in all circumstances. All classes
that inherit the ConcreteEntity class also inherit the �LocatedAt� relationship.
The Location class is assigned to have an inverse relationship �
�holdsConcreteEntity� � back to ConcreteEntity because if an entity has a location,
the same location obviously contains the entity. Other classes inheriting the
ConcreteEntity class have similar inverse relationships to each other.

The Device class has a relationhips � �isAttachedTo� � back to itself, which
represents the case if some instance inheriting the Device class is physically
attached to some other Device class inheriting the instance. Other classes also
have these kinds of relationships pointing back to themselves, like the Space and
Person classes for example. The �hasPathTo� relationship of the Space class
defines that a space can have a path that leads to another space, similar to the
Person class where a person can be a friend of another person. All of these
relationships are also inverse relationships, which means that if, for example, a
person called John is a friend of Jane�s, then Jane is also a friend of John�s. An
exception to this is the �leadsTo� relationship of the Activity class, which means
that an activity can take place after some other activity. However, an activity
can�t lead back to the previous one because the previous activity is a prerequisite
for the next one.

3.4.2 Lower-level ontologies

The lower-level ontologies designed for the Context Monitoring Service are
more specific ontologies with different attributes in the classes. Models defined
with these ontologies are intended to extend the base model defined with the
upper-level ontology. The designed ontologies are for different sensor devices
and constructional semantics of the service�s deployment environment that, for
example, describe a building with rooms and the area the building is standing on.
Figure 13 describes the building ontology that has been designed for the context
model�s base model.

48

Figure 13. UML class diagram of the building ontology.

The ClosedSpace and OpenSpace classes represented in Figure 13 can be seen as
an interface from where the building ontology binds to the upper-level ontology.
They inherit the Space class from the upper-level ontology, thus enabling
extendibility when the ontologies are combined. When a new model defined
with the building ontology is bound to the base model defined with the upper-
level ontology, all the relationships through the upper-level ontology to other
bound models are assigned in the context model.

Each sensor used to gather the context information from the environment to
update the context model has its own ontology. An example ontology designed
for three particular sensors is described in Figure 14. The sensor ontology is
extended as new sensors are introduced to the system. This sensor ontology�s
interface to the upper-level ontology is the Device class, which both ontologies
define. The classes in the ontology also have several attributes to describe the
data the sensors contain. Subclasses inherit all the attributes from the classes
they extend. For example, the X10MotionDetector class extends the
MotionDetector and X10Device classes, thus it contains both attributes typical
for X10 devices and motion detectors. Note that the sensor ontology can be
easily extended as new sensors are introduced to the system.

49

Figure 14. UML class diagram of the sensors ontology.

3.5 Reasoner

Reasoning over the context model semantic data is an important task for the
Context Monitoring Service as it provides all the new information that can be
deduced from the context model. Reasoning or inferring is done by the reasoning
engine that is assigned to the context model. To deduce the new information, the
reasoning engine uses predefined rules, which can be created by the user, or
specific reasoning rules of some ontology language. For example, the Jena
Semantic Web Framework contains specific reasoning engines that have
reasoning rules for the RDFS and OWL languages.

The Reasoner produces new statements to the context model according the rules
it has been given. The context model can only be held in the memory of the
computer, so all inferred data would be lost on shutdown. The memory
consumption could also be high when the context model grows extensively. If a
database is used to establish persistent data storage for the context model, the
inferred data will remain after shutdown and memory consumption will reduce.
However, utilization of a persistent database requires time consuming storage
and removal operations to the database.

50

The CMS is deployed in a dynamic environment where the changes occur
rapidly, thus the inferred data is held in the memory to keep the CPU
consumption to a minimum. The Reasoner monitors the context model and every
time some change occurs in the model it deduces all the inferred data to the in-
memory context model again.

3.5.1 Rules for Reasoner

The Jena Semantic Web Framework also provides a general-purpose rule engine
that can be used for inference with custom rules. The Context Monitoring
Service requires customized inference rules to enable improved context
awareness. The Jena general-purpose rule engine is given a rule set that is
designed to deduce new context information from the monitoring service�s
deployment environment. The created rule set is simple but provides insight for
the general-purpose rule engine. The defined rules are shown in Figure 15.

Figure 15. Customized rules for reasoning.

51

The first rule presented in Figure 15 is assigning a room�s state to �occupied� if
a motion detector located in the room observes motion. It sets the Reasoner to
first find all the instances that have a type of Room class. Then the Reasoner
seeks all instances in the model that have a containsDevice relationship to the
instances of Room class and are instances of the MotionDetector class. If an
instance of MotionDetector is located in the room, the room�s occupancy status
is set to the motion detector�s status. It should be noted that, as presented in
Figure 14 from Section 3.4.2, the MotionDetector class extends the Device class,
thus the instances of MotionDetector can have the containsDevice relationship.

The other three rules are for determining whether or not the whole house is
occupied. This is done by searching the occupancy statuses of all rooms and if
one of them is occupied, the whole house is also occupied. A rule is also needed
to assign the status back to �not occupied� if none of the rooms� motion
detectors have detected motion. The sast rule is for keeping the context model
consistent with the occupancy states.

3.6 Querying of the context model

One of the services that are provided for applications using the Context
Monitoring Service is the possibility to query data from the model. Queries are
made to the context model with RDQL language-defined query clauses. RDQL
enables extensive and specific queries to the context model�s data. The querying
process itself is allocated for a query engine that is assigned to the context
model. The Jena Semantic Web Framework provides an RDQL query engine
that can be used in conjunction with the context model.

An application wanting to query the CMS�s context model forms an RDQL
query clause and provides it to the query engine. The engine performs the query
over the context model�s RDF graphs including the new data deduced by the
Reasoner. As a result of the query, the application is given a result set that
contains the entities that matched the query clause. An example RDQL query
clause is illustrated in Figure 16.

52

Figure 16. An example of an RDQL query clause.

In this example the context model is queried for all rooms that have temperature
sensors having readings below 22.0 degrees. The variables after the SELECT
word are the entities that are wanted in the result set. In this case the results for
temperatures and rooms are received after the query. The conditions after the
WHERE word determine how the variables to be returned are selected and the
constraints for the variables are after the AND word.

3.7 Conditional eventing

If applications were always required to query the model in order to enable
context awareness, the performance would drop dramatically. Conditional
eventing enables the applications to focus on more important tasks instead of
regularly polling the context model. The Context Monitoring Service provides
the applications with the possibility to register two types of conditional listeners
to the model with arbitrary conditions. The first type of listener is a condition
rule listener, where a rule is given during the registration, which then triggers the
notification if the rule matches the state in the context model. The second type is
an instance addition and removal listener, which notifies the listeners when an
instance of a predefined ontology class is added to or removed from the CMS�s
context model.

Condition rule listener

The condition rule listener works in conjunction with the general-purpose rule
engine attached to the context model. An application wanting to receive events
registers a customized rule to the rule engine. Condition rules differ from the

53

predefined rule set presented in Section 3.5.1 that they don�t define any action
when the rule triggers. That is done by the conditional eventing component of
the CMS, which appends the triggering action to the end of the rule and thus
forms the triggering condition. A better insight into a form of triggering
condition and example condition rule with the added triggering action is given in
Figure 17. This condition sets the Context Monitoring Service to notify an
application when any of the room temperatures in a building is less than 22.0
degrees.

Figure 17. Example of a condition with condition rule and triggering action.

An instance of Listener class is created for the application when an application
registers a condition rule listener to the context model. The triggering action for
the condition rule is set to create a new instance of the MatchingEvent class to
the Reasoner and the application instance is assigned to a listener for the event.
Notification of the listening applications is done by querying all the instances of
the MatchingEvent class and their listeners in the model. All found listeners are
notified from all their matching conditions. Queries for the matching conditions
are done after every change that occurs in the model.

Instance addition and removal listener

The conditional eventing mentioned previously can only notify the listener when
the given rule matches the state of the context information, but a rule that
triggers a notification when a predefined type of data is appended to the context
model cannot be created. This is because the Jena generic rule engine only
matches the rules against the current information in the context model. Another
type of conditional eventing is needed to enable applications to listen to
information additions and removals to the context model.

54

Instance addition and removal listening is a service where the application can
specify a type of ontology class as a condition for the conditional eventing
registration. The Context Monitoring Service keeps a record of all semantic
instances that are added to or removed from the context model. If some of these
instances are a type of ontology class that is listened to, the listener is notified of
the addition or removal. The given ontology class condition is the URI of the
class. An example of a condition for an instance addition and removal listener
can be following: �http://anso.vtt.fi/context/ANSO-HouseOnt.owl#Device�. This
type of instance addition listener and removal condition triggers a notification
every time a new instance of the Device class is added to or removed from the
context model. This type of listener is useful when the application wants to listen
when a new Device is added to the CMS somewhere in the deployment environment.

3.8 Model updater devices

The model requires constant updating in order to deploy a dynamic context
model that is consistent with its deployment environment. The Context
Monitoring Service�s context model is updated with different model updater
devices that include sensors and other CMS components that provide the context
information in their context models by utilizing UPnP. The context model can be
updated with environmental information from the surroundings, such as a
person�s context information like health conditions or his current location.
Sensors that are used to update the model and keep it consistent will be referred
as model updater sensors from now on, to distinguish them from the CMS
components advertising their context information. The division of sensors and
CMS components under the different definitions introduced here is illustrated in
Figure 18.

Figure 18 shows that the CMS components are model updater devices because
their context models can be retrieved. Sensors are defined to be model updater
sensors after their raw data is converted to meaningful semantic statements. Both
the CMS component and the model updater sensor have the same functionality
to provide new context information, thus they are together called model updater
devices. The physical locations relative to each other define the model updater
devices as being either local or remote. Local model updater devices are
deployed in the same OSGi framework and discovered by utilizing OSGi

http://anso.vtt.fi/context/ANSO-HouseOnt.owl#Device

55

discovery. Remote model updater devices located in remote OSGi frameworks
are discovered by utilizing UPnP discovery. To be more specific, sensors are
distinguished from CMS components by referring to them as local or remote
model updater sensors. When there�s no practical need to distinguish them from
each other they are referred to as local or remote model updater devices.
However, in practice, CMS components are not deployed as local model updater
devices because they are not used locally to provide new context information for
other components of CMS.

Figure 18. Definitions for sensors and CMS components.

The difference between a CMS component and a model updater sensor is that
the sensor�s semantic data model isn�t as extensive as the context model. To
define the semantic model for sensors, the lower-level ontologies represented in
Section 3.4.2 are used for each type of sensor. A sensor-specific ontology
defines the attributes that are updated with data the sensor gathers from the
environment. When the CMS component registers to listen to the sensor it
receives its semantic model, which is added as a submodel to the base context
model. All changes that occur in the sensor�s model are seen in the CMS
component�s context model.

56

3.9 Dynamic discovery and advertisement of model
updater devices

As stated earlier, the model updater devices consist of the model updater sensors
that are used to update the context information and the CMS components that
advertise their context model for other CMS components via UPnP. This section
explains how the local and remote model updater sensors are discovered and
how the CMS components advertise their context model and discover the other
CMS components.

Model updater sensors can be located in the same computational unit as the
Context Monitoring Service or they can be used to update the model remotely.
Both types of sensors must be discovered in order to use them to update the
context model. To solve the discovery problem, the OSGi framework�s service
discovery was selected to find the locally connected updater sensors. For sensors
connected to remote computational units and for the CMS component�s context
model, advertising UPnP technology was the selection.

3.9.1 Local model updater sensors

Local model updater sensors are installed in the same OSGi framework as the
Context Monitoring Service and their controlling software is deployed in
different OSGi bundles. When the CMS is installed and started in the OSGi
framework all local sensors are discovered and registered to update the context
model. The Context Monitoring Service contains a sensor discovery process that
not only finds the sensors on start-up but also in run-time. If a new model
updater sensor registers a service interface to the OSGi framework, the CMS�s
discovery process automatically receives the service and subscribes to the
sensor�s model change events.

3.9.2 Remote model updater devices

The model updater sensors that are located in the remote computational units
and remote CMS components are discovered with UPnP technology. Remote
model updater devices are deployed as UPnP devices that provide a service to

57

receive the information from the device. The UPnP device�s service contains an
action to get the model updater device�s semantic model, which is a state
variable of the UPnP service. The model updater sensor�s semantic model and
the CMS component�s semantic context models are shared by the UPnP service.
The UPnP service also contains a possibility to subscribe to listening to the state
variables that represent the semantic model and the latest data value that has
changed in it. The semantic model�s data is sent as an RDF/XML encoded string
message and the most recently changed values are sent as string representations
of the data.

UPnP sensor devices are deployed with a special component that locates all the
sensors in the same OSGi framework and creates a UPnP device for each. Model
updater sensors, which register to the framework after the UPnP sensor enabler
component is run, are also discovered and UPnP devices are deployed for each.
The CMS components create their own UPnP devices that are assigned to listen
their context models. Both the model updater sensors and the CMS components
deploy exactly the same type of UPnP service to provide better interoperability.
Device descriptions can vary between the sensors and CMS components. For
more detailed information, an example of the used UPnP device description is
presented in Appendix 1 and its service description in Appendix 2.

The Context Monitoring Service contains a UPnP control point that is activated
during the start-up. The service�s UPnP control point discovers active remote
updater devices and automatically receives their semantic model and starts listen
to the changes in it. The semantic model of the UPnP devices is received by
sending a HTTP GET request to the device. After receiving the model, the CMS
adds it to the context model as a submodel and subscribes itself to listen to the
UPnP service of the device. All changes in the device�s data model are received
through the UPnP eventing.

For the UPnP control point and devices, the selected subarchitecture is
CyberLink for Java, which is an open source development package for UPnP
developers. CyberLink for Java uses the protocols in UPnP automatically, hiding
them from the programmer [54]. This provides the developers with a simple-to-
use package for quickly creating UPnP solutions. CyberLink for Java is written
in Java and, as it is an open source implementation, the source can be modified
to suit the purpose better.

58

3.10 OSGi bundle configuration

To provide the service interface for the applications, the OSGi service
framework is chosen for the platform on which the CMS is run. Due to its
dynamic nature, additional components of the CMS are easy to integrate to
extend and improve the CMS in run-time. The different deployment components
of the CMS are deployed as OSGi bundles. However, the OSGi bundle
configuration differs from the CMS�s functional component configuration
presented in Table 2. The differences are that the dynamic discovery and
advertisement of model updater devices are divided between the CMS and
UPNP model updater sensor device bundles.

The CMS�s bundle division is designed so that the bundle contains the C-CMS
or S-CMS component and its basic functionalities such as context model,
reasoning engine, model updater device discovery, the CMS component�s UPnP
device advertisement and the service interface for the applications. The model
updater sensors are each deployed in their own bundles and, if needed, are
accompanied by sensor-specific driver bundles. The purpose of the UPnP model
updater sensor device bundle is that it locates the model updater sensors from the
same OSGi framework and establishes UPnP devices for each of them. The
bundle configuration in the OSGi framework is illustrated in Figure 19.

Figure 19. Bundle configuration in the OSGi framework.

59

4. Architectural design

The Context Monitoring Service was decoupled into different functional components
in Chapter 3. This chapter provides one possible architectural composition of
these components that the Context Monitoring Service requires. The Context
Monitoring Service is also decomposed into the different interfaces that it
provides and uses in order to enable all the functionalities explained in Chapter
3. UML diagrams are used to give some insight to the interfaces of the service.
Some of the UML class diagrams are simplified by leaving out some irrelevant
methods and parameters to make them easier for the reader to understand.

4.1 Solution architecture

The solution architecture of the service describes one possible solution for how
the components are integrated and how they communicate together. In this
architectural design the different components are categorized into three different
layers: service layer, model updater device advertisement and discovery layer,
and model updater sensor layer. The layered architecture design of the whole
system is illustrated in Figure 20.

Model updating sensors

Context Monitoring Service

Local model updater
sensor OSGi bundle

Remote model updater
sensor OSGi bundle

OSGi service
advertising and

discovery

UPnP service
advertising and

discovery

Service layer

Model updater device
advertising and discovery

layer

Model updater sensor
layer

Application bundles

Context Monitoring Service
component OSGi bundle

Figure 20. Layered architecture of the service.

60

Layer division is done by including similar functionalities in the same layer. The
service layer contains all the components that are used to provide the querying
and conditional eventing service for the applications. The service layer receives
the context model update data from the advertisement and discovery layer and
updates the context model accordingly. The model updater device advertisement
and discovery layer is responsible for locating the local and remote model
updater devices and supplying their data to the service layer for updating the
context model. The advertisement and discovery layer also creates UPnP devices
from the model updater sensor�s and Context Monitoring Service�s semantic
models and advertises them in the network. The model updater sensor layer is
for all the model updater sensors, both local and remote.

The layered architecture presented in Figure 20 also shows how the layers
appear in the OSGi bundles represented in Figure 19. The bundles are: the main
bundle for the Context Monitoring Service deployment components, bundles for
local model updater sensors and a bundle that deploys local sensors as UpnP-
enabled sensors. Bundle division does not follow the layer division because the
deployed bundles are designed to be executable without the other bundles.

The shown bundle division for the model updater sensors overlaps the model
updater device advertisement and discovery layer. This is because the local and
remote model updater sensors advertise their services using OSGi and UPnP
technology respectively. The Context Monitoring Service uses the same layer for
discovering the provided services, OSGi discovery for local model updater
devices and UPnP discovery for remote updater devices. Furthermore, the CMS
component uses the layer for advertising its context model as a UPnP device to
enable context model discovery for other Context Monitoring Service
components, as was described in the scenario explained in Section 3.2.

The layers are categorized into their own sections and are explained by
describing the relationships between the components the layer contains. The first
explained layer is the service layer, followed by the model updater device
advertisement and discovery layer. The last of the layers is the model updater
layer. All the layers are explained in detail and illustrated with Gane-Sarson-type
data flow diagrams representing the interaction between the components.

61

4.1.1 Service layer

The service layer is responsible for providing the context model querying and
conditional eventing services for the applications. The context model component
defined with different ontologies is the main part of the layer. The RDQL query
engine and Reasoner work by communicating with the context model.
Conditional eventing works in conjunction with the Reasoner and query engine.
The components in the service layer and their communication with the other
components are shown as a Gane-Sarson data flow diagram in Figure 21.

As said earlier, the context model is the main component of the service layer.
The context model is defined with the ontologies that form the semantic
representation of the context information. It is updated with the sensor data
received from the model updater device advertisement and discovery layer. The
model updater is part of the Context Model and its purpose is to handle all the
updates to the context model. The model updater device advertising and
discovery layer receives the context model data through the interface for
advertising the context model with a UPnP service.

Figure 21. Architecture of the service layer.

62

The Reasoner and RDQL query engine both operate in parallel with the context
model by using its information for the operations they provide. The Reasoner
uses the semantic data the context model contains and deduces new context data,
which is stored back to the context model. The Reasoner listens to the context
model and triggers the reasoning process when a change occurs in the model.
The Reasoner also provides the functionality for the conditional eventing
process to reason when the conditional events registered in the service match the
current context. The RDQL query engine provides the model querying service
for the applications. It processes the query clause against the context model
statements and returns the result set of the query to the application. The Query
engine is also used by the conditional eventing component, which queries the
context model for all triggered events.

The listener registration and event notification component has dependencies on
the RDQL query engine and the Reasoner and doesn�t need a direct access to the
context model. The application registers either a condition rule listener or an
instance addition and removal listener through the application interface. The
Reasoner is given the eventing rules, which it processes and infers whether the
listener matches or not. Statements for matching listeners are appended to the
context model, which is then queried for the matching events with the RDQL
query engine. The listener registration and event notification component is
responsible for handling the registrations of listeners and the listener
notifications. It also keeps track of matching conditions in order to notify the
applications when a listener�s state changes.

4.1.2 Model updater device advertisement and discovery layer

The model updater device advertisement and discovery layer contains the
components for discovering the local and remote model updater devices and
supplying the update data as a semantic representation for updating the context
model of the CMS component. The layer also provides functions for creating the
UPnP devices for the model updater devices and advertises them in the network.
The model updater device advertisement and discovery component presented in
Section 3.9 is located in this layer and is decomposed here into the different
processes. The architecture of the model updater device advertisement and
discovery layer is presented as a Gane-Sarson data flow diagram in Figure 22.

63

Figure 22. Architecture of the model updater device advertisement and
discovery layer.

Local sensors that are registered in the same OSGi framework are discovered
from the OSGi service registry, and semantic models are created for each.
Semantic models for the sensors are defined with a specific lower-level ontology
for each sensor. The process that creates the semantic model for the sensors
registers to listen to the data events from the sensors and updates the model
accordingly. The sensor data is received through the model updater sensor
interface represented as a model and provided to the service layer through the
interface for updating the CMS component�s context model.

The same model updater sensors are used to provide the semantic data for the
remote model updater sensors. UPnP devices are created for the model updater
sensors and by setting the UPnP device to listen to the changes in the model
updater sensor�s semantic model. Changes occurring in the model are updated to
the UPnP service�s state variables. If the same OSGi framework contains a local
sensor and a remote model updater sensor created from the local sensor, separate
semantic models are created for both sensors. This enables creating stand-alone
UPnP sensors without having to register a Context Monitoring Service component
to the OSGi framework.

64

The remote model updater device for the CMS component�s context model is
also created in this layer. UPnP device deployment for the context model is the
same as with the model updater sensors, but the semantic data is received from
the service layer through the interface. The UPnP device for the context model
registers to listen to the changes in the context model and updates the state
variables accordingly.

The model updater device advertisement and discovery layer contains a UPnP
control point for discovering all remote model updater devices in the network.
The control point listens to the network for remote model updater device
discoveries. The context information from the remote updater devices is
forwarded to the service layer for context model update.

4.1.3 Model updater sensor layer

The last layer, the model updater sensor layer, contains the sensor configuration
that is used to update the CMS component�s context model. The required
elements for a model updater sensor are presented as a Gane-Sarson data flow
diagram in Figure 23.

Figure 23. Architecture of the model updater sensor layer.

65

The architecture for the model updater sensors contains a driver for each type of
sensor, the sensor�s raw data refinement and sensor data listener registration, and
an event notification manager.

Different sensors have specific communication protocols, so a driver is needed
for each type of sensor. The sensor�s driver uses the sensor-specific protocol to
receive the raw data from the sensors. The raw data the sensor produces then
needs to be converted to an understandable form, and a data refinement process
should be designed for this purpose. For example, the data a sensor produces can
be pure numerical values, so the data refiner converts the values to meaningful
states. These states are used to represent the sensor data with ontologies as a
model in the model updater device discovery and advertising layer.

The data event listener management and eventing process handles the registrations
of listeners for sensor data events. A listener can listen to all sensors of a similar
type or only some of them. The data events from the sensors are forwarded to
the listeners that are interested in them.

Because the sensors are deployed in their own OSGi bundles they should
provide an interface for applications to receive their data. In this solution the
designed interface for sensors is the listener registration and notification interface.
Interfaces to access the sensor data are registered to the OSGi service registry,
from where the applications can retrieve it. The model updater device discovery
and advertisement layer registers a listener to each sensor discovered in the
OSGi service registry. The data from the sensors is received through the
interface the sensors provide and is appended to the context model.

4.2 Architecture of the service

In this section the architecture of the Context Monitoring Service is explained in
detail. It is categorized by dividing the service into different interfaces, which
are further divided into local and remote interfaces. UML class diagrams are
used to describe the design of the interfaces and their functionality. In addition,
the main interface, the CMS�s service interface, is explained in detail by
providing a UML sequence diagram of how the application utilizes it. Brief

66

descriptions of the identified interfaces and their deployment technologies are
organized by interface types, local or remote, in Table 5.

The Context Monitoring Service contains two service interfaces, from which one
provides the access to the monitoring service�s context model and the other is
the service interface of the model updater sensors. The Context Monitoring
Service�s service interface is used by the applications that are querying the
context model or registering listeners for context information change notifications.
The interface also includes the advertisement of the CMS component�s UPnP
device that allows other CMS components to receive the context model data and
listen to the changes in it. The interface the model updater sensors provide is for
listener registration to receive sensor data event notifications. The service
interface of the model updater sensors is also provided locally and remotely.

The management interface of the Context Monitoring Service is used to update
the service�s context model with local and remote model updater sensors. The
data received from the remote CMS component�s UPnP devices is also appended
to the CMS�s own context model using this interface. In general, the local
management interface provides the functionality to update the CMS�s context
model with the model updater sensor data. The remote management interface
provides the functionality to discover and listen to the remote model updater
sensors and Context Monitoring Service components. Model updater sensors do
not provide a management interface for applications but their different drivers
for the communication with the hardware could be seen as a management
interface.

67

Table 5. Descriptions of the local and remote interfaces of the service.

Interface type
Interface

Local Remote

Service
interface

OSGi:
− CMS�s context model

querying and conditional
eventing.

− Listener registration for
model updater sensor data
event notifications.

UPnP:
− Context model advertisement in

the network and listening between
two Context Monitoring Service
components.

− Model updater sensor�s UPnP
device advertisement.

Management
interface

OSGi:
− Local sensor discovery and

CMS�s context model
updating according to local
sensor data events.

UPnP:
− Remote sensor and Context

Monitoring Service component
discovery.

− CMS�s context model updating
according to remote sensor and
CMS component data.

Control
interface

OSGi:
− Local registration and start-

up of the software bundles.

HTTP:
− Remote registration and start-up

of the software bundles.

The control interface provides the functionality for the user to install and execute
the CMS component and model updater sensor software bundles, which
compose the whole system. The designed deployment environment can contain
several OSGi frameworks running the CMS�s software components. If some of
the framework�s bundle configuration needs to be modified, for example
shutting a sensor down, the modification can be done through the control
interface either locally or remotely.

4.2.1 Local service interfaces

The local interfaces the Context Monitoring Service and the model updater
sensors provide is used through the OSGi service discovery. Applications
wanting to use the services discover the specific service from the OSGi service
registry, where the service interfaces are registered. After receiving the interface
the services can easily be used to register conditional listeners, query the context
model or register listeners for the model updater sensor data.

68

Context Monitoring Service

The local service interface provided by the Context Monitoring Service is used
by the applications installed in the same OSGi framework. As mentioned, the
Context Monitoring Service provides services for conditional eventing and
querying the context model. The conditional eventing consists of two types of
listener services. The first service notifies the registered listeners when the given
rule matches the state of the context model. The second listener service notifies
the registered listeners when new ontology class instances of the type the
application has defined are added to the context model. The architecture of the
Context Monitoring Service�s service interface is provided as a UML diagram in
Figure 24.

Figure 24. UML class diagram of the CMS�s local service interface.

The ContextMonitoringServiceInterface interface class is the interface that
provides all the service�s functionalities and is registered to the OSGi
framework. It is implemented by the ContextMonitoringService component that
contains the underlying implementation for all the service functionalities.

An application using the conditional eventing should implement the
ContextMatchListener class to receive the events of matching conditions and

69

new ontology class instance additions to the model. To receive notification of
the different states of the context model, applications create instances of the
ContextComparisonCondition class where the rule for the matching condition is
registered. An instance of the ContextComparisonCondition class should be
created for each condition and registered with the reference of the application
implementing the ContextMatchListener interface. To listen to new ontology
class instance additions and removals in the context model, the applications
create instances of the ContextInstance class that contains the class type
definition. Instances of the ContextInstance class are registered to the service in
a similar way as the ContextComparisonCondition instances.

The registered listening conditions and application references are received by the
eventing manager, which creates a separate notification process for each listener.
All conditions and instance listeners that the application registers are stored to
the notification process. The rule that indicates the context state of when to
notify the listener is registered to the Reasoning engine�s rule base. The
Reasoner uses the rules in the reasoning process to create events of context state
matches. The functionalities of the condition rule listener and the instance
addition and removal listener are illustrated in more detail in Appendix 3 and
Appendix 4 as UML sequence diagrams.

The event manager and notification processes are executed in their own threads
and each application has its own notification process that is responsible for
notifying the application of matching conditions. When the notification process
is run in its own thread, it does not prevent other notifications from receiving
notifications, even if a notified application goes into deadlock. The event
manager is also run in a thread that blocks until a change in the Context
Monitoring Service�s context model occurs. The event process listens to the
context model through a listening interface that is provided by the Jena semantic
framework [35].

An application wanting to query the monitoring service�s context model
provides an RDQL query clause through the ContextMonitoringServiceInterface
interface for the Context Monitoring Service. The query string is executed over
the context model�s semantic data and a result set of the query is returned. The
result set is received as a table of ContextQueryResultItem class instances that

70

contains each query result. Detailed information on querying the context model
is presented in Appendix 5 as a UML sequence diagram.

Model updater sensors

Model updater sensors provide a local service interface for the Context
Monitoring Service to enable context model updating with the sensor data. This
type of service is listener registration for data event notifications. The architecture
of the model updater sensors� service interface is shown in Figure 25.

Figure 25. UML class diagram of a sensor�s local service interface.

The local service interface of the sensors is the SensorService interface class,
which the SensorManager class implements. The SensorManager class provides
the functionalities for listener registration to receive data events from all sensors
or just one of them, and for removal of the listeners. An application wanting to
receive sensor events should implement the SensorListener interface class in
order to be able to register its reference to the SensorManager. The SensorManager
class also contains the instances for the sensors in the system. The
SensorManager can handle several similar types of sensors if there�s a

71

possibility to connect them to the computer more than once. An instance of the
SensorSubject class is created for each sensor to hold the received sensor data.

When different types of sensors are connected to the system, each type of sensor
should extend the SensorManager, SensorSubject, SensorListener and
SensorService interfaces and classes. By extending them, every new sensor
service provides a similar interface for the applications. This sensor specialization
is shown in Figure 25 by showing the inheritances of the used sensors.

4.2.2 Remote service interfaces

The remote service interfaces of the Context Monitoring Service and the model
updater sensors enable context model updating with remotely located context
information. The interfaces are deployed as UPnP devices that have specific
services for receiving the data as semantic models and statements. The UPnP
device and service descriptions of the Context Monitoring Service and model
updater sensors are exactly similar, except for each device�s universal device
name. For more detailed information, an example UPnP device description is
shown in Appendix 1 and an example UPnP service description is shown in
Appendix 2.

Context Monitoring Service

The Context Monitoring Service deploys a UPnP device that provides a service
for the other CMS components to receive the context information in its context
model as described in Section 3.2. The architecture of the UPnP device
deployment is shown in Figure 26.

The main class of the service, the EMC class, contains the EMCUpnpDevice
class, which is the implementation of the UPnP device. The EMCUpnpDevice
class extends the Device class provided by CyberLink UPnP for the Java [54]
development package. The Device class contains all the required functionalities
for UPnP device deployment. The UPnP device contains the state variables
model and statement, which are for the semantic model that can be requested and
for the last changed statement in the model respectively. Applications can
subscribe to receive events for changes in the statement state variable.

72

The EMCUpnpDevice class listens to the Context Monitoring Service�s context
model through the ModelChangedListener, which is a listener interface from the
Jena Semantic Framework package. When a change occurs in the context model
the EMCUpnpDEvice receives the changed statement, stores it to the state
variable and sends a change event to the network.

Figure 26. UML class diagram of the CMS�s remote service interface.

Model updater sensors

The remote service interface for the model updater sensor works in a similar
way. All local sensors are discovered from the same OSGi framework and UPnP
devices are created for each found sensor. This interface is deployed as its own
software bundle that can be executed anytime. It can also find all new sensors
that are activated in the OSGi framework during the running of the interface
bundle. The designed architecture for the remote service interface for sensors is
presented in Figure 27.

73

Figure 27. UML class diagram of sensors� remote service interface.

Local sensors in the OSGi framework are found and their data events are
registered to listen through the SensorService interface that the sensor service
interfaces extend, as explained in Section 4.2.1. A special updater instance that
extends the LocalUpdaterSensor class is created for each sensor. These instances
contain a semantic model to hold the sensor data and a process to update the
model according to the sensor data events.

A remote service interface is deployed for each sensor by creating an instance of
the ModelUpdaterUpnpDevice class that listens to the semantic model of the
sensor through the ModelChangedListener interface class. As changes occur in
the model, the state variables similar to the UPnP device variables of the Context
Monitoring Service are updated accordingly. Instances of the
ModelUpdaterUpnpDevice class are created and held in the
UPnPModelUpdaterActivator class, which is also the main class of the software
OSGi bundle.

74

4.2.3 Local management interfaces

As stated in Section 4.2, the model updater sensors� management interface can
be seen as their communication drivers for the hardware, and they are not
explained in this section.

However, the Context Monitoring Service requires a management interface to
enable updating of its context model with data provided by the local model
updater sensors. The CMS�s management interface receives the context
information from the local sensors and updates the model accordingly. The
architecture that is designed for the sensor discovery and context model updating
is presented in Figure 28.

Figure 28. UML class diagram of the CMS�s local management interface.

The Context Monitoring Service�s main class, EMC, contains the ModelUpdater
class, which is responsible for updating the context model in the ContextModel
class. Local sensors registered to the OSGi framework are discovered by the
EMC class, which provides their service interfaces to the ModelUpdater class.
The sensors registered to the OSGi framework during the running of the Context
Monitoring Service are also discovered. OSGi provides listener interfaces to
discover new service bundles that are registered to the OSGi framework.

75

An instance of their specific updater component class is created for each type of
discovered sensor. The updater component classes are classes that extend the
LocalUpdaterSensor class in order to create a specific updater component for
each type of sensor. Each of these LocalUpdaterSensor extending classes listen
to their specific type of sensor by implementing the sensor-specific extension
class of SensorListener. Sensor-specific updater components update the context
model in the ContextModel class according to the data event they receive from
the sensors.

4.2.4 Remote management interfaces

The remote management interface is for discovering the remote sensors and
Context Monitoring Service components in order to receive additional context
information from other locations. An essential part of the interface is the UPnP
control point used to discover the UPnP devices from the network and to provide
functionalities to operate the devices.

The model updater sensors do not implement any kind of interface for remote
management, thus the focus in this section is on the Context Monitoring Service.
The Context Monitoring Service�s architecture for remote context model
updating is shown in Figure 29.

Figure 29. UML class diagram of the CMS�s remote management interface.

76

The ModelUpdater class is used to update the remotely received data to the
context model. The ModelUpdater class contains an instance of the ControlPoint
class, which is provided by the CyberLink for Java development package. The
UPnP control point of the ModelUpdater class discovers new UPnP devices in
the network and receives their device and service descriptions. If the
descriptions point to a device that is proper for model updating, it automatically
requests the service�s state variable containing the semantic model as XML.
After that it subscribes to listen to a device�s state variable for changed
statements. The DeviceChangeListener interface class is used by the ModelUpdater
class to receive new device descriptions in the network and the EventListener
interface class is for listening to the received events of state variable changes.

4.2.5 Local control interfaces

Every software bundle in the whole service has a local control interface. The
interface is used to start or stop the software bundles in the OSGi framework.
The Context Monitoring Service component, local model updater sensor and
remote model updater sensor deployment bundles� control interfaces are exactly
the same as each other because they are defined by the OSGi Service Platform
Release 3 Specification [55]. Figure 30 shows the control interfaces of the
bundles the whole Context Monitoring Service contains.

77

Figure 30. UML class diagram of the local control interfaces.

In order to be able to register the service to the OSGi framework the bundle must
contain an activator class that implements the BundleActivator interface class.
The BundleActivator interface is provided by the OSGi framework and defines
the methods for starting and stopping the bundle. The control interfaces of all
bundles in the Context Monitoring Service are shown in Figure 30, and they all
implement the BundleActivator interface.

The EMC and UPnPModelUpdaterActivator classes also implement the
ServiceListener interface class. Through the ServiceListener interface, the
classes are able to listen to new bundles that are installed, or to the OSGi
framework, and operate accordingly. The removal of bundles is also listened for
through the ServiceListener interface.

78

4.2.6 Remote control interfaces

Remotely starting and stopping the software bundles of the Context Monitoring
Service system can be done over the network with the HTTP protocol. The
OSGi framework provides an HTTP server bundle and a service for remote
bundle handling over the HTTP protocol. These two bundles together can be
seen as the remote control interfaces of the software bundles. The user can easily
alter the OSGi frameworks� bundle configurations with an Internet browser.
Access to the controlling software is password protected, so it can be safely
taken advantage of for modifying the OSGi framework�s bundle configurations
in the deployment environment.

79

5. Prototype implementation and testing

The requirements and design of the Context Monitoring Service that evolves
dynamically were brought up in Chapter 3 and the architecture for such a service
was presented in Chapter 4. This chapter now provides a description of the
developed CMS�s prototype implementation and describes a demonstration
application using the CMS. The implemented CMS with hardware and software
configurations is presented first, followed by the developed test application to
demonstrate, validate and test the designed service�s proper functionality. The
chapter also provides use cases of the demonstration scenario and an evaluation
of the whole prototype system.

5.1 Prototype implementation

The purpose of the implemented prototype for a Context Monitoring Service was
to validate the design and architecture presented in this thesis. To validate all
aspects of the design, the prototype contains all the required functionalities
presented in Chapter 3. The Context Monitoring Service has a context model
with reasoning capabilities, which is defined with the designed ontologies.
Dynamic discovery of the Context Monitoring Services and the model updater
sensors is enabled by using the UPnP protocol. The Context Monitoring Service
also provides conditional eventing and context model querying services for the
applications.

The implementation was done by developing one OSGi bundle at a time
following the designed bundle configuration presented in Figure 19. The bundles
of the Context Monitoring Service prototype implementation were tested in
many phases alongside the development process. The implementation was
started by creating the sensor data analyzer software on top of each sensor
communication driver. Data analyzers first convert the raw sensor data into
different predefined states and then to semantic statements that can be added to
the context model. The sensor bundles were deployed without the data
conversion to semantic states to allow the data to be used by non-semantic
applications as well. This also removed the need to include the Jena Semantic
Framework in each bundle. The sensor bundles were tested by building a special

80

application to use their service interfaces. The testing application was a simple
GUI that showed the data the sensors produce on a screen.

After the sensor bundles were tested the context monitoring was implemented to
use the sensor data. The functionalities to convert the sensor data to semantic
statements were implemented into the Context Monitoring Service component
bundle with the Jena framework. The context model and the Reasoner also use
the same Jena framework as the data conversion processes. To provide the
access to context model for the applications, the conditional eventing and model
querying service were implemented. The sensor data converters and the service
were tested simultaneously with a testing application that used both services.

UPnP advertisement and dynamic discovery were integrated into the system
after the sensors and the Context Monitoring Service were tested properly so that
they function together as expected. For the sensors, the UPnP device creator
bundle was created and tested with generic UPnP control point software
provided by the CyberLink UPnP package developers. The implemented bundle
creates a UPnP device with a sensor-specific semantic model for each sensor.
The UPnP sensor device bundle also needs the Jena Semantic Framework
package for the semantic models of each sensor. However, in this way the
bundle size is smaller than if each sensor had its own semantic models. The
UPnP control point was implemented in the Context Monitoring Service to
discover the UPnP devices. A UPnP device for the CMS was also implemented
to enable discovery of other CMS components. All of these were also tested with
the generic UPnP control point.

Finally, all the components of the system were integrated and tested with
different bundle configurations and network topologies. The whole system was
tested with the prototype application that exploits all the defined functionalities
of the CMS system to see that it functioned properly. More detailed information
on the prototype application is presented later on in this chapter

5.2 Configuration

The prototype implementation included different hardware and software entities
to create a valid demonstration environment for the Context Monitoring Service.

81

The configuration was designed so that a minimal number of use cases were
needed to cover the validation of all the CMS functionality. The used hardware
and software configuration descriptions are presented in the following
subsections, and both configurations are brought together in an overall view of
the configuration.

5.2.1 Hardware

The hardware configuration of the prototype implementation includes four
computational units used to run the OSGi frameworks, a VTT SoapBox
(Sensing, Operating and Activating Peripheral Box) [56] for context sensing, a
temperature sensor and X.10-enabled devices. This section introduces the
sensors used in the prototype implementation. The computational units used are
plain commercial computers and are not further described in this section.

The VTT SoapBox is a light matchbox-sized module with a processor, different
sensors and wireless and wired communications. It has been developed by VTT
to be utilized in prototype systems. The sensors of the SoapBox include 3-axis
acceleration sensors, an illumination sensor and a proximity sensor. The
Soapbox was utilized in this prototype to produce position data with the
acceleration sensors. The data from the acceleration sensors was divided into six
different positions states: front side up, back side up, left side up, right side up,
nose up and bottom up. Wireless communication was not used in these
prototypes and the SoapBox was connected to one of the computational units via
a serial port [56].

X.10 [57] is a technology that allows different devices to communicate and
control each other over electric wiring. The X.10 devices used in the prototype
were an X.10 motion detector, an X.10 Radio Frequency (RF) receiver and an
X.10 Programming Interface. The motion detector sends the detection data
wirelessly to the RF receiver, which then forwards it to the electric network. The
X.10 Programming Interface listens to the network and receives the motion
detection data, forwarding it to the computational unit using serial communication.
Controlling commands can also be sent to the X.10 network via the X.10
Programming Interface. The X.10 motion detector was used in the prototype
system to receive information on inhabited spaces in the deployment environment.

82

The temperature sensor in the prototype system didn�t include any hardware but
the implementation was designed so that any type of temperature could only be
utilized by changing the driver for each type of sensor. Sensor data analyzing
ewas implemented as a generic interface to which sensors can easily be
connected. The implemented sensor was an Internet weather station that received
its data from a specific web page [58]. The web page for the weather station was
developed in co-operation with VTT and Vaisala Oyj.

5.2.2 Software

The software configuration of the implemented prototype is divided to three
different categories, as presented in Section 3.2.1: Central Context Monitoring
Service component, Specific Context Monitoring Service component and stand-
alone sensors. Computers running the Central Context Monitoring Service
component contain the software OSGi bundle of the Context Monitoring Service
in which the start-up setup loads the ontologies containing all the manually
defined static information. In the prototype implementation the C-CMS is loaded
with the static information on the environment such, as the room configurations
and employee information.

The other category is the computers that are running the Specific Context
Monitoring Service OSGi bundle that discovers the local model updater sensors
connected to it. The purpose of the S-CMS components is to expand the whole
system. The deployed S-CMS components are loaded at start-up with ontologies
that define more specific information about the location in which they are
deployed. By deploying the new S-CMS components the whole system�s
knowledge of environment expands after each deployment.

The last category is the stand-alone sensors that have an OSGi framework that
only contains the software bundles for the model updater sensors and the
software bundle that creates the UPnP devices for each model updater sensor.
Both Context Monitoring Service components can also be directly connected to
sensors, but deployment of the UPnP sensor device bundles in them is not
encouraged because the data from the locally connected sensors can be acquired
by other CMS components using the CMS component�s model updater device

83

discovery. The three different software configurations in their fullest extent and
the possible communication paths between them are illustrated in Figure 31.

The previously introduced OSGi technology and its OSGi framework were
utilized in the prototype implementation. The OSGi framework was used as an
application execution framework for the components of the implementation.
Every component is encapsulated in one service interface that is registered to the
OSGi framework. The OSGi framework provides a controllable service
execution framework and the service interfaces are easily deployed to the
framework. Some of the services that OSGi provides � the HTTP server service
and the service that allow remotes controlling of the bundle execution � were
used in the implementation for controlling. The used implementation of the
OSGi framework was the open source project OSCAR [59], which is compliant
with a large portion of the OSGi service platform specification release 3 [55].

Figure 31. The different software configurations of the prototype.

Both the Context Monitoring Service components and the UPnP sensor devices
that contain the previously introduced Jena Semantic Web Framework [35] were
utilized for the semantic models. The reasoning capabilities and query engine of
the Jena framework were also used in the context models of both CMS
components. The used version of the Jena was 2.3, which was the newest
version available during the implementation process.

84

5.2.3 Overall view

In this section the hardware and software configurations are combined to create
an overall view of the implemented prototype configuration. The distribution of
the software bundles to the different computational units and the communication
between them are explained. The overall view of the configuration is shown as a
UML deployment diagram in Figure 32.

The deployment of the prototype consists of 5 different computers that have
different CMS component OSGi bundle configurations. The solid line connections
between the computers represent the UPnP communication between each of
them. The blue solid line is bidirectional communication between two computers,
meaning that both ends have a UPnP control point and both advertise a UPnP
service in the network. The red lines represent unidirectional UPnP communication
between the computers, which means that the other computer advertises the
UPnP service and the other contains the UPnP control point to discover the
service. Solid red lines between the OSGi bundles represent the one-way data
flow from the sensors to the CMS components and the dashed line between two
computers declares a dependency between them.

Figure 32. UML deployment diagram of the overall prototype configuration.

85

One of the computers is the mainframe containing only the Central Context
Monitoring Service OSGi bundle, which contains the manually configured
information on the deployment environment. Three other computers all have the
Specific Context Monitoring Service for the specific information on the different
districts in the deployment environment, which, in this case, are the different
rooms of the building. These three computers also contain software bundles for
different locally connected sensors. One of the computers is for the stand-alone
temperature sensor and only contains the temperature software bundle and the
UPnP device deployment bundle for the sensor. The prototype application that
utilizes the CMS can be deployed to any of the computers because all the CMS
components hold the same context information after the installation and context
model synchronizations. In the prototype the application is installed in the
computer in Office K103, as seen in Figure 32.

The computers that have the CMS software bundles installed communicate in
both directions to receive the context information from each other. An exception
is the UPnP-enabled temperature sensors, which only produce the context
information for other CMS components. The declared dependency between the
two components is that the stand-alone temperature sensor�s semantic data
model has a mapping that it is located in the same district as the other computer.
The mapping is a location reference to the room in which the computer
containing the S-CMS is located.

5.3 Validation scenario and use cases

This section provides a scenario that validates the functionality of the
implemented prototype. The design of the scenario enables use cases that take all
the functionalities of the designed CMS system into account. The use cases have
two different purposes from the validation point of view: to validate the
architecture of the service and to validate the dynamic discovery of the CMS
components and sensors. The architecture validation provides use cases for
utilizing the service interface in the context model of the CMS. Dynamic
discovery of the components is validated by designing the scenario so that the
dynamic discovery is crucial for its functionality.

86

The overview of the whole scenario is provided to explain how the prototype is
utilized. The execution of the scenario is divided into three separate use cases
that validate the different functionalities of the prototype, and it is described as a
short story divided according to the use cases. A test application was created to
utilize the implemented CMS prototype and use the services it provides.
Screenshots of the application�s User Interface (UI) and UML activity diagrams
are provided in each use case description to illustrate the explained functionality.

5.3.1 Scenario overview

The scenario designed to validate the functionality of the prototype utilizes the
configuration described in Section 5.2.3. The scenario is built around a
monitoring application that uses the Context Monitoring Service to decide when
and how to trigger the alarm procedures. The deployment environment is a
building complex of a company that contains offices and one warehouse. The
warehouse is a large freezer used to preserve the company�s highly temperature-
sensitive products. The warehouse has a lever gear door, which must be kept
closed in order to maintain a stable temperature. The warehouse door is
equipped with a SoapBox sensor device to receive its position information,
whether it is closed or open. The warehouse also contains a temperature sensor
and an X.10 motion detector. The temperature sensor is used to monitor that the
temperature inside the warehouse is below the maximum value and the X.10
motion detector determines whether or not the warehouse is occupied. Some of
the offices in the building are also equipped with X.10 motion detectors to detect
if there�s an employee present in the room. The fact that not all the offices are
equipped with motion detectors at the start of the scenario creates the need for
dynamic discovery of different components of the CMS.

In the scenario prototype the Central Context Monitoring Service component
system holds the static information on the building complex and receives the
data from the deployed model updater sensors and additional S-CMS components.
The C-CMS component is run on a server and each room, including the
warehouse, contains an S-CMS component. The warehouse door�s Soapbox and
X.10 motion detector are directly connected to the computer running the S-CMS,
but the temperature sensor is deployed as a stand-alone sensor.

87

The monitoring application is installed in the OSGi framework in the
warehouse�s computer. The application monitors the state of the door, the
presence of employees and the temperature in the warehouse. If the door is left
open and there�s no one present in the warehouse, the application checks to see
if any of the employees are in their office rooms. The presence information for
the application is provided by the X.10 motion detectors connected to the S-
CMS components located in the offices. If a person is detected in an office
room, the application queries the CMS�s context model to receive information
on the person. The room information is used to query the context model for the
person located in that room and for his phone number. The application calls the
person present in the building complex to go and close the door. If no one is
present in the building complex, the application calls the security company for
assistance. The same alarm process is executed if the temperature of the
warehouse rises above the maximum value.

When a new room with a motion detector is discovered by the Context
Monitoring Service component or an existing room is equipped with a motion
detector the application adapts to the new situation and includes the rooms in the
alarm process.

5.3.2 Dynamic discovery and advertisement

Dynamic discovery and advertisement of the Context Monitoring Service is
utilized to extend the CMS system with additional CMS components or model
updater sensors that provide new context information to be exploited by the
applications. The new context information propagates through the CMS system
using dynamic discovery and advertisement, and synchronizes the context
models of the CMS components to be consistent with the information in the
deployment environment. The progress of the dynamic discovery and
advertisement when the CMS system is expanded is illustrated as a UML
activity diagram in Appendix 6. Both progressions, utilizing the UPnP and the
OSGi, are covered in the illustration.

The prototype application utilizes the CMS�s dynamic discovery and advertisement
of new CMS components to include more office rooms in its alerting process.
Dynamic discovery of new X.10 sensor is illustrated in Figure 33.

88

Figure 33. Discovery of a new X.10 motion detector.

If an office gains a motion detector, it can be used to detect whether a person is
in the room and a call requesting a check of the warehouse can be made. The
screenshot shows the application operation when a new S-CMS software bundle
is deployed to an existing office along with an X.10 motion detector. Note that
the application receives the notification about the addition by utilizing the
instance addition and removal listener service that is covered in Section 5.3.4.

5.3.3 Context model querying

The monitoring application utilizes the Context Monitoring Service prototype�s
context model querying service for discovering all the required information
during its start-up. The required information includes the offices and warehouse
of the building and their sensor configurations. The query service is also utilized
when the alarm processes are triggered to receive the occupancy statuses of the
rooms and information on the employees occupying the rooms. An example of
the employee information is the phone numbers that are used to call the
employees to check the warehouse freezer. The effects of the context model

89

querying and the received context information during the start-up are illustrated
with a screenshot of the application GUI during the start-up in Figure 34.

Figure 34. Querying the context model for context information during the start-up.

When the monitoring application is installed and started in the OSGi framework
it invokes a context model querying the CMS component installed in the same
framework. At this stage all the CMS components in the deployment
environment have synchronized their context models and all the CMS
components contain the same context information. This enables the application
to receive all the possible context information on the deployment environment
by just querying the context model of the CMS component running in the same
OSGi framework. The query is done by providing an RDQL query clause that
defines what context information the application wants to receive as a result of
the query. By invoking the queries the application receives the current state of
the deployment environment�s context and can start monitoring the changes in it.

90

To illustrate in detail how the context model querying is utilized by the
application and how it progress from the application side to the CMS side, a
UML activity diagram is provided in Appendix 7.

5.3.4 Conditional eventing

The monitoring application receives the context information changes through the
conditional eventing service the Context Monitoring Service is providing. The
conditional eventing includes the conditional rule listener and the instance
addition and removal listener explained in Section 3.7. Both types of conditional
eventing service are utilized by the application to validate their functionality.

The condition rule listener is used by the application to listen to the events of
changes in the existing information in the context model and receive the new
information to update its current state. Receipt of the changed temperature
values, occupancy states in the rooms and door status in the warehouse is based
on the conditional rule listener. However, utilization of the instance addition and
removal listener is required because the office and sensor configurations can
change due to the dynamic discoveries and advertisements of the CMS
components. The application�s correct and efficient functionality is dependent
on the up-to-date information on these configurations. The application�s room
and sensor configuration information is preserved consistent by triggering the
queries for new configuration information with instance addition and removal
listener notification events. When the application receives the notification of a
dynamic addition or removal of CMS components, the context model is queried
for full information. More detailed information on the progression of both types
of conditional eventing processes is illustrated as UML activity diagrams in
Appendix 8.

The monitoring application determining when to trigger the alarm and call for
assistance is based on a specific condition rule registered with the listener. The
rule enables notification events to the application every time the warehouse is
open, and whether the warehouse is or is not occupied, or the temperature is
above the maximum value. An example of the condition rule that triggers the
event when the warehouse door is left open and it is unoccupied is shown in
Figure 35.

91

The rule in Figure 35 sets the Reasoner in the CMS�s context model to find all
instances of the ontology class type Warehouse. The found warehouse is then
searched for the Soapbox device and the current value for its position is checked.
If the Soapbox�s position value is not �doorClosed�, which means that the door
is closed, the warehouse is searched for motion detectors, and if the presence
state of the found motion detector is �false�, the alarm is triggered. The rule for
the temperature rise event is similar but the Soapbox sensor check is replaced
with the temperature sensor. The temperature sensor�s current value is compared
with the defined maximum value for the warehouse and the alarm is triggered if
it is greater.

Figure 35. Condition rule used to trigger the alarm process.

The application starts the alarm process when it receives notification from the S-
CMS that the condition for the alarm matches. As described in the overview of
the scenario in Section 5.3.1, if occupied office rooms are found, their owner is
queried from the context model and a call for each is made until someone
answers. If no employee is found in the office rooms, the application calls the
security company for assistance. These cases are illustrated as application UI
screenshots in Figure 36, where the alarm is triggered by the warehouse door
that is left open and the rise in temperature is the triggering condition.

92

a) Alarm process when one of the rooms is occupied.

b) Alarm process when none of the rooms are occupied.

Figure 36. Alarm processes triggered by conditional eventing.

93

5.4 Evaluation of prototype

The prototype implementation was created to validate and test the functional and
architectural design of the service presented in Chapters 3 and 4 respectively.
This section merely focuses on the evaluation of the implementation, not the
design aspects. The functional and architectural designs are discussed in Chapter 6.

The prototype consisted of the Context Monitoring Service components and a
test application that used the service to support its functionalities. The test
application was based on a scenario that was designed to utilize all the
functionalities that were identified for the Context Monitoring Service in Chapter
3. The evaluation of the utilized functionalities is discussed in the following
subsections. The functionality division in the subsections is made according to
the layered model of the system presented Section 4.1.

5.4.1 Service layer

The service layer contained the context model, the ontologies, the Reasoner, and
the two services for the applications: context model querying and conditional
eventing. In the prototype implementation the information in the context model
was presented with ontologies identified from the design scenario. Use of the
created ontologies provided the necessary semantic representation of the context
information in the context model, enabling efficient deduction of new information
with the Reasoner. However, the designed ontologies were simple and not
comprehensive enough to be used in large-scale context-awareness systems.

The service interface the Context Monitoring Service provided for the
applications functioned properly in the implementation. The queries to the
context model were efficient enough and didn�t stall the system, even when the
efficiency was tested with several applications simultaneously querying the
context model. Conditional eventing in the prototype also provided the designed
functionality. Although some improvements in efficiency could have been made
for both functionalities, the scope of the prototype was too wide to focus on
small details. The Jena Semantic Framework was used for the context model,
Reasoner and query engine implementation, and the current version of the
framework was sufficient for the prototype.

94

5.4.2 Model updater device advertisement and discovery layer

The model updater device advertisement and discovery layer consisted of
discovering the local sensors from the OSGi framework and the remote sensors
via the UPnP protocol. The layer also contained the mechanism for the CMS
components to discover each other.

Local sensor discovery proved to work fluently through the OSGi framework
service discovery. Previously installed sensors were discovered during the start-
ups of the Context Monitoring Service components bundle and the UPnP sensor
device bundle, and during run-time the installed sensors were discovered and
utilized by both bundles as soon as they were activated.

The implementation of the remote sensor discovery was enabled by deploying a
UPnP control point to the Context Monitoring Service. The control point also
automatically requested the context model from the remote model updater
sensors and CMS components, and subscribed to listen to the changes. The
CyberLink UPnP developer package was found to be very feasible for
implementing the UPnP control point, although the delay parameters for
updating the control point status had to be changed to guarantee efficient
functioning of the prototype.

5.4.3 Model updater sensor layer

The local and remote sensors are located in the model updater sensor layer,
together with the Context Monitoring Service�s context model distribution using
the UPnP protocol. In the prototype the utilized sensors were motion detector,
SoapBox sensor device and temperature sensor. However, an actual physical
temperature sensor was not used and the sensor was implemented as software
that downloaded the data from the Internet.

The software for the sensors was designed so that the same software can be
utilized with minimum changes for all different types of sensors. The
implementation worked as expected with the three different sensors used in the
prototype system. All the sensors have different driver components but the
updater software is the same apart from small differences in data analyzing. The

95

sensor software is same for the local and remote sensors, although the remote
sensors are deployed by creating UPnP devices for each local sensor using a
UPnP device software bundle.

The Central and Specific Context Monitoring Service components can be seen as
model updater UPnP devices, as are the remote sensors. The UPnP device and
service descriptions are exactly the same for both. To prevent the context
information being multiplied in the context models by the CMS component
discoveries, the received context models are appended to the context model as
submodels. This allows the CMS components to extract the base model and send
its unique information to other CMS components.

96

6. Discussion

The review of the literature on previous research and existing technologies in the
domain area of this thesis was carried out in Chapter 2. This chapter draws
together the implemented prototype of the Context Monitoring Service to
compare its design and functionalities with the existing systems found in the
literature review. Further in this chapter the prototype is dissected closely to
reveal its strengths and weaknesses. The exposed weaknesses constitute the need
for prototype�s further development, and these development targets are discussed
at the end of the chapter.

6.1 Comparison with existing architectures

Two interesting existing architectures that support context-awareness were
presented in Chapter 2: the Semantic Space infrastructure and the CoBrA
context broker architecture. In this section the Context Monitoring Service�s
architecture designed in this thesis is compared with both of these existing
architectures and the features that are identical to each other, and the differences
between the architectures are discussed.

There are several similarities in the functionalities and technologies used in these
architectures and the Context Monitoring Service. The similarities consist of
utilizing the Semantic Web technologies to create ontologies for representing the
context information as a context model, using a Reasoning engine to infer high-
level information from the sensed context, and providing a mechanism to make
queries to the context information in a context model. However, these
similarities are prevailing in systems that process semantic representations of
context information to enable context-awareness. Despite the similarities
between the architectures, CoBrA includes additional mechanisms for detecting
and repairing inconsistencies in the context model, and policies for protecting the
privacy of the users. These features are in the list of future research for the CMS.

The service interface towards applications in the CMS architecture aggregates
the features of the service interfaces of the existing architectures. Both
implement a querying service for context information which is based on
utilization of the RDQL query language, but only CoBrA implements an event

97

notification service to notify certain states within the context of the environment.
A similar functionality to the CMS�s event notification service can be seen in the
Semantic Space architecture�s high-level context information reception service,
which provides the applications with a possibility to receive high-level context
information by adding reasoning rules to the reasoning engine. However, the
reception of the inferred information is based on the context querying service,
thus the notification mechanism isn�t included in the service.

All the architectures provide a mechanism to dynamically discover and advertise
the devices that acquire new context information from different sources. Both
CMS and Semantic Space utilize UPnP technology to provide a uniform
interface for devices with different communication protocols, whereas CoBrA
presents an approach that utilizes the proxy design pattern to create a proxy
agent between the device and the CoBrA. However, this solution requires
implementation of a proxy agent for every device utilizing a new communication
protocol, but the UPnP technology is independent of the underlying physical
media and transport so the interface is the same for all of the devices.

The CMS architecture exploits the use of UPnP even further. As the discovery
and advertisement are only used in Semantic Space and CoBrA to discover and
advertise the sensors that acquire new context information, CMS utilizes it to
discover and advertise not only the sensors but new CMS components as well.
New CMS components can be deployed to different locations and will
dynamically share their information with each other. Context model synchronization
with other CMS components facilitates deployment of context-aware applications
in new physical locations. Further, if the CMS�s service interface is extended to
expose the context model for modification, the applications could produce new
context information for the whole CMS system. Data produced by a single
application would spread through the middleware to be utilized by all the
applications in the CMS deployment environment.

Compared with Semantic Space and CoBrA, the utilization of the OSGi service
framework is an advantage for the CMS architecture when using the integrability
and reusability that OSGi provides as a point of view. The fact that all of the
architectures utilize the Jena Semantic Framework � which has only been
implemented in Java � heavily binds the implementation to being done in Java.
The difference between the architectures is that instead of starting the Java

98

Virtual Machine (JVM) for every additional component installed in the same
computational entity, the CMS architecture utilizes the OSGi service framework
to allow the components to be started in the same JVM in run-time. This allows
the CMS architecture to be more efficiently decoupled into separate independent
components, which can be used to extend the system in run-time. In addition, as
each component registers its own service interface to the OSGi service registry,
the components can also be utilized by other applications and services not
belonging to the Context Monitoring Service. For example, the Soapbox
sensor�s data can be received in its raw form by directly utilizing the service
interface it has registered to OSGi.

6.2 Strengths and weaknesses

The designed architecture is dissected in this section in order to discuss the
beneficial features and functionalities along with the restrictions that are in need
of future development. The benefits that come from the ontology-driven
processing of context information, such as reasoning over the context information
and providing the ability to query the information with query languages, which
are common to all context monitoring services, are only discussed briefly. First
the Context Monitoring Service is dissected from a single CMS component�s
point of view, after which the dissertation focuses on the CMS system as a whole.

6.2.1 Single component

As stated previously, the architecture provides the common benefits of a
context-awareness system that utilizes Semantic Web technologies to process the
context information. Using ontologies to represent the context information
enables better machine interpretation and a mutual understanding of the shared
knowledge between different systems. These advantages are also exploited in the
design of the CMS architecture.

The reasoning over the context information using logic that is provided by the
ontology or some user-defined rules enables the deduction of new context
information from the existing data. The Reasoning engine also provided a
possibility to design a generic event notification service for the applications. The

99

utilization of the forward-chaining rules with the Reasoning engine enables a
simple interface to the application side, which provides an extensive possibility
to define when to receive the notifications. Another exploited feature is the
semantic relationships the ontology defines between the context information
instances, which allows querying the information with conditional query clauses.
The querying of the context model is utilized in the CMS architecture to provide
the applications with a mechanism to receive the context information they
desire. The querying service interface can also be designed to be simple but
efficient, and extensive for receiving the context information.

Utilization of the ontologies also has disadvantages, which were found in the
prototype. This is because the performance is always a problem in systems that
utilize the semantic representation technologies for describing the context
information. The problem particularly arises when the context model is
substantially large. The processing of the context information represented with
ontologies, such as the queries to the context information and the reasoning of
the implicit information, are highly CPU consuming tasks. If the system
produces a considerable number of context information change events, the
Reasoning engine has to infer the context model several times in a small amount
of time. Furthermore, if a number of applications are invoking several queries to
the same context model at the same time, the querying engine requires a high
amount of CPU time, which reduces the overall performance. High computing
requirements create a challenge for the service architecture design to extend the
CMS system to mobile terminals in the future.

6.2.2 System as a whole

The strength of the prototyped CMS architecture is that it utilizes the OSGi
framework as a platform on which the components of the CMS are run.
Utilization of the OSGi framework provides the benefit of being able to
reconfigure the overall configuration in run-time. For example, if a new sensor is
brought to the space and the model updater sensor software bundle for it is
installed in the same OSGi framework, this can all be done without shutting
down the existing software bundles running in the OSGi. Using the OSGi
framework as platform prevents the configuration changes causing any harmful
effects on the whole CMS system.

100

The feature enabling the CMS system to be extended by utilizing the UPnP
advertisement and discovery to add new remote CMS components after the
initial C-CMS component is deployed provides several benefits. Firstly, the
ontologies that are to be used in the system do not need to be known before the
system is deployed. The CMS system can be provided with context information
represented by completely new ontologies in run-time. Any type of model
updater device that senses and produces context information can easily be
deployed without modifications to the system as long as its context information
is presented with ontologies. As the CMS components use the same UPnP
service interface for communication, the expansion of the CMS system�s
deployment environment with new districts containing new types of context
information is also a trivial task.

The distributed CMS components also increase the performance of the whole
CMS system and provide more efficient inferring of high-level context
information with less expense of performance. As the context information is
synchronized between all the CMS components, the context information is the
same in every context model of each CMS component. The applications utilizing
the information can be distributed to different computational units that have the
CMS component installed with no loss in their context-awareness.

Inferring implicit high-level context information by utilizing the user-defined
reasoning rules and semantic relationships of the ontologies is a demanding task
for the computer. More efficient inferring is achieved by deploying the CMS
system in several separate components and providing different rule sets for each
CMS�s Reasoning engine instead of a full rule set for all. This is particularly
beneficial when the given reasoning rule set is extensive.

However, regardless of all the presented advantages of utilization of UPnP in the
designed architecture, it also poses a security risk in the system. The different
components in a CMS system use UPnP for the communication, which does not
specify sufficient security mechanisms. This means that the context information
of the deployment environment is available for other parties that should not
receive the information. The context information can be, for example, the
occupancy status of the house, which can be exploited for criminal purposes.

101

6.3 Development targets

The prototype has proven this kind of architecture to be very useful as the need
for deployment of larger-scale context monitoring services arises. However, it is
clear that further development is required if implementation of this architecture
should be made available commercially. This section discusses possible
solutions for the identified weaknesses and restraining features of the
architecture and its future development.

The current implementation of the UPnP protocol in the prototype is not fully
secure and security measures should be developed. One possible solution that
can be applied to develop the system further is the secure UPnP platform [60]
that is being developed at VTT Technical Research Centre of Finland. It
provides authentication of hosts, data confidentiality and integrity, as well as key
management, by employing well-known and proven security components, in
particular the Secure Sockets Layer (SSL) and X.509 certificates [60].

It would be interesting to extend the Context Monitoring Service system to
mobile terminals if the processing of semantic context information did not have
high computing requirements. Using OWL Lite, the stripped-down version of
OWL, could enable the deployment of the CMS to a mobile terminal, but it
would require performance tests in the future. One possibility is to maintain the
processing of semantic information in stationary units that have more computing
power and deploy a lightweight application that provides the service interface of
CMS to applications in a mobile terminal. Communication between full CMS
and lightweight CMS clients could be arranged by extending the CMS
architecture to correspond with the Message-Oriented Middleware (MOM)
principle. The MOM architecture would utilize asynchronous message passing
for communication between the two nodes. Another way could be that all the
method invocations are mediated from the mobile terminal to a stationary unit
using Java Remote Method Invocation (RMI).

The mobile terminal could also define its own lightweight context model as an
RDF/XML coded text representation. The context model could contain its
hardware attributes represented with an ontology that can be sent further to other
CMS components. The limitations to this type of configuration are that the
mobile terminal could not perform any operations in its context model without a

102

loss in performance. Thus updating the context information, much less inferring
new information from it, wouldn�t be reasonable.

The service interface provided for the applications can be also seen as a target
for future development. The current design does not provide a possibility to alter
the context information in the context model. A service interface that allows
additions to and removals of semantic statements � or even a whole semantic
model � from the context model would provide applications with a mechanism
to configure the context model. The service interface could also provide a way to
insert new reasoning rules in the Reasoner. However, if the modification of the
context model information and Reasoner rules is enabled for the applications, an
authorization system is required to separate reliable applications from unreliable.
The system would only give the modification privileges to applications that are
expected to modify the information without causing harm. This type of trusted
application could be a tool for creating the static context information instances
of the deployment environment, such as the building with room configuration
and employee information.

In normal circumstances the sensors produce reliable data to the context model,
but the Reasoner can be set to produce information that might not be consistent
with the real situation. Another source of inconsistent information would be the
service interface for applications that allows the modification of context
information. Further development could be done by developing a mechanism for
maintaining the consistency of the context model. For example, special
consistency checking rules could be created for the Reasoner that would reason
the context information isn�t consistent and would try to repair it or even send a
notification about the inconsistent state.

The designed ontologies were minimal and were only developed to cover the
scenario on which the design of the architecture is based. Research can be done
to extend the ontologies to represent more detailed features and cover a wider
area of context information. Extending the ontology to cover a more detailed
representation of the user�s actions and preferences would be beneficial for the
applications because in the end the applications are created to serve the user.

103

7. Conclusion

In this thesis the fundamental research problem was to find a solution for the
dynamic acquisition and representation of distributed context information and its
efficient provision for applications. To address this problem the research focused
on a service architecture that enables the context-aware applications by
compiling the context information from separate sources and providing the
applications with access to it in a service-oriented manner. The problems and the
motivation that led to the development of this kind of service architecture were
introduced first. The goals for the work were also set and an approach to solve
the research problem was presented. Preliminary research of possible solutions
for the problem was done in the form of a literature review, which was presented
to give an insight to the domain of the work. Through the literature review the
best available technologies and the methods for solving the problems of such an
architecture were selected.

The design of a dynamic context monitoring service was presented by first
examining its requirements and operation principles from an example scenario in
which such an architecture would be useful. The resulting design was
decomposed into different features that provided the identified functionalities
and formed the structure of the architecture. The deployment aspects of the
features as OSGi software bundles to the OSGi framework were also presented.

Having gathered the requirements for a dynamic context monitoring service and
identified the functional features to fulfil the requirements, an actual architecture
was designed. The solution architecture, which integrated the functional features
together, was presented by dividing the features into different functional layers.
Each layer�s internal operation was presented with Gane-Sarson data flow
diagrams. The solution architecture for the internal functionalities was
encapsulated with a service architecture that provides interfaces for the
utilization and control of the service. The service architecture was presented as a
division into service, management and control interfaces that were further
divided into local and remote interfaces. The structure of these interfaces was
illustrated with UML models.

104

The validation of the designed architecture was done by developing a prototype
implementation and an example application that utilized the provided services.
The application was designed to be dependable in all functions the context
monitoring service was designed to provide.

To conclude, the research and work carried out in this thesis contributed a novel
solution for a context monitoring service that is dynamically and easily
extendable, and efficiently provides applications with the distributed context
information to enhance their context-awareness. The novelty value derives from
the utilization of a dynamically evolving semantic context model, which the
context monitoring service provides for applications requiring context-
awareness.

105

References

[1] Weiser, M. (1991). The Computer for the 21st Century. Scientific
American, September, Vol. 26, Issue 3, pp. 94�104.

[2] Abowd, G. D. & Mynatt, E. D. (2000). Charting Past, Present and Future
Research in Ubiquitous computing. ACM Transactions on Computer-
Human Interaction, Vol. 7, pp. 29�58.

[3] Bagrodia, R., Chu, W. W., Kleinrock, L. & Popek, G. (1995). Vision,
Issues and Architecture for Nomadic Computing. IEEE Personal
Communications, Vol. 2, pp. 14�27.

[4] Gu, T., Pung, H. K. & Zhang, D. Q. (2004). Toward an OSGi-Based
Infrastrcture for Context-Aware Applications. IEEE pervasive computing,
Vol. 3, Issue 4, pp. 66�74.

[5] Satyanarayanan, M. (2001). Pervasive Computing: Vision and Challenges.
IEEE Personal Communications, Vol. 8, pp. 10�17.

[6] Dey, A. K. & Abowd, G. D. (2000). Towards a Better Understanding of
Context and Context-awareness. In: Proceedings of Computer-Human
Interaction 2000 (CHI 2000), Workshop on The What, Who, Where,
When and How of Context-Awareness, April 3, Hague, Netherlands. 12 p.

[7] Schilit, B. & Theimer, M. (1994). Disseminating Active Map Information
to Mobile Hosts. IEEE Network, Vol. 8, Issue 5, pp. 22�32.

[8] Ward, A., Jones, A. & Hopper, A. (1997). A New Location Technique for the
Active Office. IEEE Personal Communications, Vol. 4, Issue 5, pp. 42�47.

[9] Salber, D., Dey, A. K. & Abowd, G. D. (1999). The Context Toolkit:
Aiding the Development of Context-Enabled Applications. In: Proceedings
of Computer-Human Interaction 1999 (CHI 1999). Pp. 434�441.

106

[10] Schilit, B., Adams, N. & Want, R. (1994). Context-aware Computing
Applications. In: International Workshop on Mobile Computing Systems
and Applications. Pp. 85�90.

[11] Dey, A. K., Abowd, G. D. & Wood, A. (1998). Cyberdesk: A Framework
for Providing Self-Integrating Context-Aware Service. In: Proceedings of
Intelligent user interfaces, San Francisco, California, USA. Pp. 47�54.

[12] Pascoe, J. (1998). Adding Generic Contextual Capabilities to Wearable
Computing. In: Proceedings of 2nd International Symposium on Wearable
Computers. Pp. 146�153.

[13] Gruber, T. R. (1993). A Translation Approach to Portable Ontology
Specifications. Knowledge Acquisition, Vol. 5, Issue 2, pp. 199�220.

[14] Studer, R., Benjamins, V. & Fensel, D. (1998). Knowledge Engineer:
Principle and Methods. IEEE Transaction in Data and Knowledge
Engineering, Vol. 25, Issue 1 & 2, pp. 161�197.

[15] Perez, A. G. & Benjamins, V. (1999). Overview of Knowledge Sharing
and Reuse Components. Ontologies and Problem-Solving Methods. In:
Proceedings of the IJCAI-99 Workshop on Ontologies and Problem-
Solving Methods (KRR5), August 2, Stockholm, Sweden. Pp. 1�15.

[16] Uschold, M. (1996). Building Ontologies: Towards a unified methodology.
In: 16th Annual Conference of the British Computer Society Specialist
Group on Expert Systems, December 16�18, Cambridge, United Kingdom.

[17] Pakkala, D., Koivukoski, A. & Latvakoski, J. (2005). MidGate: Middleware
Platform for Service Gateway Based Distributed Systems. In: The 11th
International Conference on Parallel and Distributed systems (ICPADS
2005), Fukuoka, Japan, July 20�22. 7 p.

[18] Pakkala, D. & Latvakoski, J. (2004). Distributed Service Platform for
Adaptive Mobile Services. In: Proceedings of International Conference on
Pervasive Computing and Communications (PCC-04), Las Vegas, USA.
Pp. 771�777.

107

[19] World Wide Web Consortium. (25.7.2006). Home Page, URL:
http://www.w3.org/.

[20] World Wide Web Consortium. (25.7.2006). W3C Semantic Web Activity,
URL: http://www.w3.org/2001/sw/.

[21] Davies, J., Studer, R. & Warren, P. (2006). Semantic Web Techologies:
Trend and Research in Ontology-based Systems. John Wiley & Sons, Ltd,
Chichester. 312 p.

[22] World Wide Web Consortium. (26.7.2006). Extensible Mark-up
Language, URL: http://www.w3.org/XML/.

[23] World Wide Web Consortium. (26.7.2006). XML Schema, URL:
http://www.w3.org/XML/Schema.

[24] Fallside, D. (ed.) (2001). XML Schema Part 0: Primer, 2 May 2001, URL:
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/.

[25] Manola, F. & Miller, E. (eds.) (2004). RDF Primer, W3C Proposed
Recommendation 10, February 2004, URL: http://www.w3.org/TR/rdf-
primer/.

[26] Brickley, D. & Guha, R. V. (eds.) (2004). RDF Vocabulary Description
Language 1.0: RDF Schema, W3C Proposed Recommendation 10
February 2004. URL: http://www.w3.org/TR/rdf-schema/.

[27] McGuiness, D. & Harmelen, F. (eds.) (2004). OWL Web Ontology
Language Overview, W3C Proposed Recommendation 10 February 2004.
URL: http://www.w3.org/TR/owl-features/.

[28] Smith, M. K., Welty, C. & McGuinness, D. L. (eds.) (2003). OWL Web
Ontology Language guide, W3C Proposed Recommendation 15
December 2003. URL: http://www.w3.org/TR/2003/PR-owl-guide-
20031215.

http://www.w3.org/
http://www.w3.org/2001/sw/
http://www.w3.org/XML/
http://www.w3.org/XML/Schema
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/2003/PR-owl-guide-

108

[29] The Protégé Ontology Editor and Knowledge Acquisition System.
(26.7.2006). Home Page, URL: http://protege.stanford.edu/.

[30] TopBraid Composer � The Complete Semantic Modelling Toolset.
(22.9.2006). Home Page, URL: http://www.topbraidcomposer.com/.

[31] SWOOP � A Hypermedia-based Featherweight OWL Ontology Editor.
(22.9.2006). Home Page, URL: http://www.mindswap.org/2004/SWOOP/.

[32] Seanborne, A. (ed.) (2004). RDQL � A Query Language for RDF, W3C
Member Submission 9 January 2004,
URL: http://www.w3.org/Submission/RDQL/.

[33] Miller, L., Seanborne, A. & Reggiori, A. (2002). Three Implementations
of SquishQL, A Simple RDF Query Language. In: Proceedings of 1st
International Semantic Web Conference, June 9�12, Sardinia, Italy.
Pp. 423�426.

[34] Guva, R. H., Lassila, O., Miller, E. & Brickley, D. (26.7.2006). Enabling
Inference, URL: http://www.w3.org/TandS/QL/QL98/pp/enabling.html.

[35] Jena Semantic Web Framework. (27.7.2006). Home Page, URL:
http://jena.sourceforge.net/.

[36] Carroll, J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A. &
Wilkinson, K. (2003). Jena: Implementing the Semantic Web
recommendations, technical report HPL-2003-146, Hewlett Packard
Laboratories Bristol. URL: http://www.hpl.hp.com/techreports/2003/HPL-
2003-146.pdf.

[37] Open Services Gateway Initiative (OSGi). (27.7.2006). Home Page, URL:
http//www.osgi.org.

[38] Open Services Gateway Initiative (OSGi). (27.7.2006). OSGi Service
Platform Release 4 CORE Specification, URL: http://www.osgi.org/
resources/spec_download.asp.

http://protege.stanford.edu/
http://www.topbraidcomposer.com/
http://www.mindswap.org/2004/SWOOP/
http://www.w3.org/Submission/RDQL/
http://www.w3.org/TandS/QL/QL98/pp/enabling.html
http://jena.sourceforge.net/
http://www.hpl.hp.com/techreports/2003/HPL-
http://www.osgi.org/

109

[39] Open Services Gateway Initiative (OSGi). (27.7.2006). OSGi Technology.
URL: http://www.osgi.org/osgi_technology/index.asp?section=2.

[40] Flanagan, D. (2005). Java in a Nutshell: A Desktop Quick Reference, 5th
edition, O�Reilly Media, Sebastopol. 1224 p.

[41] Helai, S. (2002). Standards for Service Discovery and Delivery. Pervasive
Computing, IEEE, Vol. 1, Issue 3, pp. 95�100.

[42] UPnP Forum. (27.7.2006). Home Page, URL: http://www.upnp.org/.

[43] Miller, B. A., Nixon, T., Tai, C. & Wood, M. D. (2001). Home Networking
with Universal Plug and Play. Communications Magazine, IEEE, Vol. 39,
Issue 12, pp. 104�109.

[44] Understanding Universal Plug and Play: A White Paper. (27.7.2006).
URL: http://www.upnp.org/download/UPnPDA10_20000613.htm.

[45] Droms, R. (1997). Dynamic Host Control Protocol. IETF Network
Working Group, Request for comments (Standards Track) 2131. URL:
http://www.ietf.org/rfc/rfc2131.txt.

[46] Goland, Y. Y., Cai, T., Leach, P., Gu, Y. & Albright, S. (1999). Simple
Service Discovery Protocol, IETF Network Working Group, Draft. URL:
http://www.upnp.org/download/draft_cai_ssdp_v1_03.txt.

[47] Simple Object Access Protocol v. 1.2, W3C Recommendation (2003).
(28.7.2006). URL: http://www.w3.org/TR/soap12-part1/.

[48] Cohen, J. M., Aggarwal, S. & Goland, Y. Y. (2000). General Event
Notification Architecture Base: Client to Arbiter, IETF Working Group,
Draft. URL: http://www.upnp.org/download/draft-cohen-gena-client-01.txt.

[49] UPnP Device Architecture. (27.7.2006). URL: http://www.upnp.org/
download/UPnPDa10_20000613.htm.

http://www.osgi.org/osgi_technology/index.asp?section=2
http://www.upnp.org/
http://www.upnp.org/download/UPnPDA10_20000613.htm
http://www.ietf.org/rfc/rfc2131.txt
http://www.upnp.org/download/draft_cai_ssdp_v1_03.txt
http://www.w3.org/TR/soap12-part1/
http://www.upnp.org/download/draft-cohen-gena-client-01.txt
http://www.upnp.org/

110

[50] Chen, H., Tim, F. & Anupam, J. (2003). An Intelligent Broker for
Context-Aware Systems. In: Adjunct Proceedings of Ubicomp 2003,
Seattle, Washington, USA, October 12�15, 2003. Pp. 183�184.

[51] Chen, H., Finin, T. & Joshi, A. (2004). Semantic Web in the Context
Broker Architecture. In: Proceedings of PerCom 2004, Orlando, Florida,
USA, March 14�17, 2004. Pp. 277�286.

[52] Wang, X., Dong, J. S., Chin, C. Y., Hettiarachchi, S. R. & Zhang, A.
(2004). Semantic Space: An Infrastructure for Smart Spaces. IEEE
Pervasive Computing, Vol. 3, Issue 3, July�September, pp. 32�39.

[53] Matinlassi, M. & Niemelä, E. (2003). The Impact of Maintanability on
Component-based Software Systems. In: Proceedings of 29th EUROMICRO
Conference 2003, September 1�6, 2003. Pp. 25�32.

[54] CyberLink for Java. Development package for UPnP developers.
(15.7.2006). URL: http://www.cybergarage.org/net/upnp/java.

[55] Open Services Gateway Initiative (OSGi). (27.7.2006). OSGi Service
Platform Release 3 Specification, URL: http://www.osgi.org/resources/
spec_download.asp

[56] Tuulari, E. & Ylisaukko-oja, A. (2002). SoapBox: A Platform for
Ubiquitous Computing Research and Applications. In: Lecture Notes in
Computer Science 2414: Pervasive Computing. Zürich, CH, August 26�
28, Mattern, F. & NaghShineh, M. (eds.) Springer-Verlag. Pp. 125�138.

[57] Smarthome Inc. (10.7.2006). X.10 Overview, URL:
http://www.smarthome. com/aboutx10.html.

[58] VTT Technical Research Centre of Finland & Vaisala Oyj (27.6.2006).
Internet Weather Station, URL: http://weather.willab.fi/weather.html.en.

[59] OSCAR � An OSGi framework implementation (12.7.2006). Home Page,
URL: http://oscar.objectweb.org/.

http://www.cybergarage.org/net/upnp/java
http://www.osgi.org/resources/
http://www.smarthome
http://weather.willab.fi/weather.html.en
http://oscar.objectweb.org/

111

[60] Keinänen, K. & Pennanen, M. (2005). Secure UPnP and Networked
Healthcare. In: ERCIM News, No. 63, October 2005.
URL: http://www.ercim.org/ publication /Ercim_News/enw63/EN63.pdf.

http://www.ercim.org/

1/1

Appendix 1: Example of a model updater
device UPnP device description

<?xml version="1.0" ?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <device>
 <deviceType>urn:schemas-upnp-org:device:cms:1</deviceType>
 <friendlyName>ANSO Central CMS</friendlyName>
 <manufacturer>ANSO</manufacturer>
 <manufacturerURL>http://anso.vtt.fi</manufacturerURL>
 <modelDescription>ANSO model updater
device</modelDescription>
 <modelName>Model</modelName>
 <modelNumber>1.0</modelNumber>
 <modelURL>http://anso.vtt.fi</modelURL>
 <serialNumber>1234567890</serialNumber>
 <UDN>uuid:ANSOCentralContextMonitoringComponent_1</UDN>
 <UPC>123456789012</UPC>
 <iconList>
 <icon>
 <mimetype>image/gif</mimetype>
 <width>48</width>
 <height>32</height>
 <depth>8</depth>
 <url>icon.gif</url>
 </icon>
 </iconList>
 <serviceList>
 <service>
 <serviceType>
 urn:schemas-upnp-org:service:update:1
 </serviceType>
 <serviceId>
 urn:schemas-upnp-org:serviceId:update:1
 </serviceId>
 <SCPDURL>/service/update/description.xml</SCPDURL>
 <controlURL>/service/update/control</controlURL>
 <eventSubURL>/service/update/eventSub</eventSubURL>
 </service>
 </serviceList>
 <presentationURL>http://anso.vtt.fi</presentationURL>
 </device>
</root>

2/1

Appendix 2: Example of a model updater
device UPnP service description

<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0" >
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList>
 <action>
 <name>GetModel</name>
 <argumentList>
 <argument>
 <name>CurrentModel</name>
 <relatedStateVariable>Model</relatedStateVariable>
 <direction>out</direction>
 </argument>
 </argumentList>
 </action>
 </actionList>
 <serviceStateTable>
 <stateVariable sendEvents="yes">
 <name>Statement</name>
 <dataType>string</dataType>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>Model</name>
 <dataType>string</dataType>
 </stateVariable>
 </serviceStateTable>
</scpd>

3/1

Appendix 3: UML sequence diagram of the
conditional rule listener functionality

4/1

Appendix 4: UML sequence diagram of the
instance listener functionality

5/1

Appendix 5: UML sequence diagram of the
context model query utilization

6/1

Appendix 6: UML activity diagrams of
dynamic discovery and advertisement

7/1

Appendix 7: UML activity diagram of
context model query

8/1

Appendix 8: UML activity diagram of
conditional eventing

 Series title, number and
report code of publication

VTT Publications 651
VTT-PUBS-651

Author(s)
Laitakari, Juhani
Title

Dynamic context monitoring for adaptive and
context-aware applications

Abstract
The field of ubiquitous computing has recently proliferated with a view to providing
applications and services that are able to adapt to the rapidly changing situations in
dynamic environments and act accordingly. The seamless adaptation to contexts and the
alterations to behaviour require the applications to implement mechanisms for acquiring
the context information. The required context information is usually diverse and scattered
throughout the environment. On account of this, the processing of the context information
and its compilation from separate sources is a requirement for the applications to reach
adequate context-awareness for successful adaptation. To facilitate the development of
context-aware applications, service-oriented architectures for supporting the context-
awareness have emerged.

In this work the research problem was to find a solution for dynamic acquisition and
representation of distributed context information and its efficient provisioning for
ubiquitous applications. As a solution to the research problem this work provides a
service architecture called Context Monitoring Service (CMS), which utilizes a dynamically
evolving semantic model of context information that the applications can access. A
requirement analysis for such architecture was carried out by a literature review in the
field of context-awareness. The architecture of the CMS was designed according to the
identified requirements and a prototype implementation was created for validation purposes.
The prototype implementation successfully validated the architecture�s functionality and
also opened issues for future research and development in this field.

ISBN
978-951-38-7036-2 (soft back ed.)
978-951-38-7037-9 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number

VTT Publications
1235-0621 (soft back ed.)
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

10886

Date Language Pages
August 2007 English, Finnish abstr. 111 p. + app. 8 p.

Name of project Commissioned by

Keywords Publisher
service architecture, context acquisition, Open
Services Gateway initiative, Universal Plug and Play

VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4404
Fax +358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

 Julkaisun sarja, numero ja
raporttikoodi

VTT Publications 651
VTT-PUBS-651

Tekijä(t)
Laitakari, Juhani
Nimeke

Dynaaminen kontekstin monitorointipalvelu adaptiivisille
ja kontekstitietoisille sovelluksille

Tiivistelmä
Kaikkialla läsnä olevan tietotekniikan aihealue on hiljattain kasvanut räjähdysmäisesti,
näkemyksenään tuottaa sovelluksia ja palveluita, jotka pystyvät mukautumaan nopeasti
muuttuviin olosuhteisiin ja toimimaan niiden mukaisesti. Saumaton mukautuminen
olosuhteisiin ja käyttäytymisen muokkaaminen vaativat sovelluksilta mekanismeja
kontekstitiedon keräämiseen ja prosessoimiseen. Vaadittu kontekstitieto on yleensä
monimuotoista ja hajallaan ympäristössä, minkä vuoksi sovelluksilta vaaditaan tiedon
prosessointia ja kokoamista useista lähteistä, jotta onnistunut mukautuminen saavutetaan.
Helpottaakseen kontekstitietoisten sovellusten kehittämistä kehityssuuntana ovat olleet
palvelulähtöiset arkkitehtuurit kontekstitietoisuuden tukemiseen.

Tässä työssä tutkimusongelmana on ollut löytää ratkaisu hajautetun kontekstitiedon
dynaamiseen keräämiseen ja sen kuvaamiseen sekä tiedon tehokkaaseen välittämiseen
mukautuville ja kontekstitietoisille sovelluksille. Tämä työ esittelee ratkaisuna tutkimus-
ongelmaan palveluarkkitehtuurin nimeltään Context Monitoring Service (CMS). CMS
hyödyntää dynaamisesti kehittyvää semanttista mallia kontekstitiedosta, joka tarjotaan
sovellusten käyttöön palvelun kautta. Tällaisen arkkitehtuurin vaatimusmäärittely suori-
tettiin laajalla katsauksella kirjallisuuteen kontekstitietoisuuden saralla. CMS-arkkitehtuuri
suunniteltiin vaatimusmäärittelyn mukaisesti ja arkkitehtuurista toteutettiin prototyyppi
toiminnallisuuden vahvistamista varten. Prototyyppi vahvisti arkkitehtuurin toimivuuden
onnistuneesti ja avasi myös uusia tutkimusaiheita tällä aihealueella.

ISBN
978-951-38-7036-2 (nid.)
978-951-38-7037-9 (URL: http://www.vtt.fi/publications/index.jsp)

Avainnimeke ja ISSN Projektinumero
VTT Publications
1235-0621 (nid.)
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

10886

Julkaisuaika Kieli Sivuja
Elokuu 2007 Englanti, suom. tiiv. 111 s. + liitt. 8 s.

Projektin nimi Toimeksiantaja(t)

Avainsanat Julkaisija

service architecture, context acquisition, Open
Services Gateway initiative, Universal Plug and Play

VTT
PL 1000, 02044 VTT
Puh. 020 722 4404
Faksi 020 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

V
TT P

U
B

LIC
A

TIO
N

S 651 D
ynam

ic con
text m

on
itorin

g for adaptive an
d contex

t­aw
are application

s
Laitakari

ESPOO 2007 VTT PUBLICATIONS 651

Juhani Laitakari

Dynamic context monitoring for
adaptive and context­aware
applications

VTT PUBLICATIONS

633 Oedewald, Pia & Reiman, Teemu. Special characteristics of safety critical organiza­
tions. Work psychological perspective. 2007. 114 p. + app. 9 p.

634 Tammi, Kari. Active control of radial rotor vibrations. Identification, feedback, feed­
forward, and repetitive control methods. 2007. 151 p. + app. 5 p.

635 Intelligent Products and Systems. Technology theme – Final report. Ventä, Olli (ed.).
2007. 304 p.

636 Evesti, Antti. Quality­oriented software architecture development. 2007. 79 p.

637 Paananen, Arja. On the interactions and interfacial behaviour of biopolymers. An
AFM study. 2007. 107 p. + app. 66 p.

638 Alakomi, Hanna­Leena. Weakening of the Gram­negative bacterial outer membrane.
A tool for increasing microbiological safety. 2007. 95 p. + app. 37 p.

639 Kotiluoto, Petri. Adaptive tree multigrids and simplified spherical harmonics ap­
proximation in deterministic neutral and charged particle transport. 2007. 106 p.
+ app. 46 p.

640 Leppänen, Jaakko. Development of a New Monte Carlo Reactor Physics Code. 2007.
228 p. + app. 8 p.

641 Toivari, Mervi. Engineering the pentose phosphate pathway of Saccharomyces cer­
evisiae for production of ethanol and xylitol. 2007. 74 p. + app. 69 p.

642 Lantto, Raija. Protein cross­linking with oxidative enzymes and transglutaminase.
Effects in meat protein systems. 2007. 114 p. + app. 49 p.

643 Trends and Indicators for Monitoring the EU Thematic Strategy on Sustainable
Development of Urban Environment. Final report summary and recommendations.
Häkkinen, Tarja (ed.). 2007. 240 p. + app. 50 p.

644 Saijets, Jan. MOSFET RF Characterization Using Bulk and SOI CMOS Technologies.
2007. 171 p. + app. 4 p.

645 Laitila, Arja. Microbes in the tailoring of barley malt properties. 2007. 107 p. + app.
79 p.

646 Mäkinen, Iiro. To patent or not to patent? An innovation­level investigation of the
propensity to patent. 2007. 95 p. + app. 13 p.

647 Mutanen, Teemu. Consumer Data and Privacy in Ubiquitous Computing. 2007. 82 p.
+ app. 3 p.

648 Vesikari, Erkki. Service life management system of concrete structures in nuclear
power plants. 2007. 73 p.

649 Niskanen, Ilkka. An interactive ontology visualization approach for the domain of
networked home environments. 2007. 112 p. + app. 19 p.

650 Wessberg, Nina. Teollisuuden häiriöpäästöjen hallinnan kehittämishaasteet. 2007.
195 s. + liitt. 4 s.

651 Laitakari, Juhani. Dynamic context monitoring for adaptive and context­aware ap­
plications. 2007. 111 p. + app. 8 p.

ISBN 978­951­38­7036­2 (soft back ed.) ISBN 978­951­38­7037­9 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1235­0621 (soft back ed.) ISSN 1455­0849 (URL: http://www.vtt.fi/publications/index.jsp)

Julkaisu on saatavana Publikationen distribueras av This publication is available from

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI­02044 VTT, Finland
Puh. 020 722 4404 Tel. 020 722 4404 Phone internat. + 358 20 722 4404
Faksi 020 722 4374 Fax 020 722 4374 Fax + 358 20 722 4374

Communication protocols

Remote sensors Local sensors

UPnP discovery OSGi discovery

Semantic context model

Query service Listener service

Applications

O
S
G
i

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	Abstract
	Tiivistelmä
	Preface
	Contents
	Abbreviations
	1. Introduction
	2. Related research and technologies
	2.1 Introduction to context-awareness
	2.1.1 Context information
	2.1.2 Representation of context and ontologies
	2.1.3 Context-awareness
	2.1.4 Context monitoring service

	2.2 Technologies
	2.2.1 Extensible Mark-up Language
	2.2.2 XML Schema
	2.2.3 Resource Description Framework
	2.2.4 RDF Schema
	2.2.5 Web Ontology Language
	2.2.6 RDF Data Query Language
	2.2.7 Jena Semantic Web Framework
	2.2.8 Open Services Gateway Initiative
	2.2.9 Universal Plug and Play

	2.3 Architectures of existing context monitoring services
	2.3.1 CoBrA
	2.3.2 Semantic Space

	2.4 Terminology

	3. Design of Context Monitoring Service
	3.1 Introduction to service
	3.2 Requirements scenario for the design
	3.2.1 Deployment environment
	3.2.2 Communications
	3.2.3 Functionality
	3.2.4 Identified requirements

	3.3 Context model
	3.4 Ontologies
	3.4.1 Upper-level ontology
	3.4.2 Lower-level ontologies

	3.5 Reasoner
	3.5.1 Rules for Reasoner

	3.6 Querying of the context model
	3.7 Conditional eventing
	3.8 Model updater devices
	3.9 Dynamic discovery and advertisement of model
	3.9.1 Local model updater sensors
	3.9.2 Remote model updater devices

	3.10 OSGi bundle configuration

	4. Architectural design
	4.1 Solution architecture
	4.1.1 Service layer
	4.1.2 Model updater device advertisement and discovery layer
	4.1.3 Model updater sensor layer

	4.2 Architecture of the service
	4.2.1 Local service interfaces
	4.2.2 Remote service interfaces
	4.2.3 Local management interfaces
	4.2.4 Remote management interfaces
	4.2.5 Local control interfaces
	4.2.6 Remote control interfaces

	5. Prototype implementation and testing
	5.1 Prototype implementation
	5.2 Configuration
	5.2.1 Hardware
	5.2.2 Software
	5.2.3 Overall view

	5.3 Validation scenario and use cases
	5.3.1 Scenario overview
	5.3.2 Dynamic discovery and advertisement
	5.3.3 Context model querying
	5.3.4 Conditional eventing

	5.4 Evaluation of prototype
	5.4.1 Service layer
	5.4.2 Model updater device advertisement and discovery layer
	5.4.3 Model updater sensor layer

	6. Discussion
	6.1 Comparison with existing architectures
	6.2 Strengths and weaknesses
	6.2.1 Single component
	6.2.2 System as a whole

	6.3 Development targets

	7. Conclusion
	References
	Appendix 1: Example of a model updater
	Appendix 2: Example of a model updater
	Appendix 3: UML sequence diagram of the
	Appendix 4: UML sequence diagram of the
	Appendix 5: UML sequence diagram of the
	Appendix 6: UML activity diagrams of
	Appendix 7: UML activity diagram of
	Appendix 8: UML activity diagram of

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

