
V
TT PU

B
LICA

TIO
N

S 658
Technique for dynam

ic com
position of content and context-sensitive m

obile...
M

arko Palviainen

ESPOO 2007ESPOO 2007ESPOO 2007ESPOO 2007ESPOO 2007 VTT PUBLICATIONS 658

Marko Palviainen

Technique for dynamic composition of
content and context-sensitive mobile
applications

Adaptive mobile browsers
as a case study

This dissertation discusses a task-based composition technique that helps
developers to construct adaptive applications for mobile devices and
makes the dynamic composition of content and context-sensitive
applications more fluent. The task-based composition technique is based
on the content adaptation model of the World Wide Web Consortium
(W3C). Like the requestor-adaptor element of the W3C model, a task is an
adaptation element that can provide additional context information,
request other tasks, adapt their responses, and deliver new or refreshed
responses for the requestors. Tasks can prepare content and context-
sensitive application instances for current and predicted contexts in many
phases and finally compose an application of the prepared instances. This
dissertation focuses on adaptive browsers that are constructed for mobile
devices and discusses how the task-based composition technique can
support client-side dynamic composition of content and context-sensitive
applications and improve performance when UIs are adapted for rapidly
changing contexts and services available on the Web.

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012

ISBN 978-951-38-7051-5 (soft back ed.) ISBN 978-951-38-7052-2 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1235-0621 (soft back ed.) ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Julkaisu on saatavana Publikationen distribueras av This publication is available from

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI-02044 VTT, Finland
Puh. 020 722 4520 Tel. 020 722 4520 Phone internat. + 358 20 722 4520

http://www.vtt.fi http://www.vtt.fi http://www.vtt.fi

VTT PUBLICATIONS 658

Technique for dynamic composition
of content and context-sensitive

mobile applications
Adaptive mobile browsers as a case study

Marko Palviainen

Thesis for the degree of Doctor of Technology
to be presented with due permission for public examination

and criticism in Tietotalo Building, Auditorium TB109
at Tampere University of Technology,

on the 23th of November 2007 at 12 o´clock noon

ISBN 978-951-38-7051-5 (soft back ed.)
ISSN 1235-0621 (soft back ed.)

ISBN 978-951-38-7052-2 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT Technical Research Centre of Finland 2007

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 3, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvägen 3, PB 1000, 02044 VTT
tel. växel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 3, P.O.Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax + 358 20 722 4374

VTT, Tekniikankatu 1, PL 1300, 33101 TAMPERE
puh. vaihde 020 722 111, faksi 020 722 3365

VTT, Teknikvägen 1, PB 1300, 33101 TAMMERFORS
tel. växel 020 722 111, fax 020 722 3365

VTT Technical Research Centre of Finland, Tekniikankatu 1, P.O. Box 1300, FI-33101 TAMPERE, Finland
phone internat. +358 20 722 111, fax +358 20 722 3365

Technical editing Leena Ukskoski

Edita Prima Oy, Helsinki 2007

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

 3

Palviainen. Marko. Technique for dynamic composition of content and context-sensitive mobile
applications. Adaptive mobile browsers as a case study. Espoo 2007. VTT Publications 658. 233 p.

Keywords dynamic composition, task-based composition, mobile application development,
adaptive application, adaptive browser, content and context-sensitive application

Abstract
The mobile environment brings new challenges for applications. Mobile usage is
spontaneous and applications should be fast to install, start, and use in mobile
devices and wireless networks. The wireless network connections offer typically
less bandwidth than fixed line connections and may cause costs for the user. In
addition, the input and output capabilities and memory and processing power
resources of mobile devices are typically limited in comparison to desktop
computers. This all sets requirements for adaptation methods that could provide
more usable and efficient applications for specific users, contexts, and services
available on the Web.

Implementation of adaptive applications requires methods for context-sensing
and adaptation. The context can change rapidly when a user is moving in a
physical environment. Hence, methods that can fast adapt an application for a
rapidly changing context are needed. An adaptive application should learn about
user behaviour, sense the activity of the user, and use the idle time of the
application for speculative adaptation that prepares application parts for
potential future contexts in the background. In addition, errors may arise while
an adaptive application is being composed for a new context. For example, if a
mobile device is disconnected, it is not possible to fetch contents from the Web.

In this dissertation it is argued that the task-based composition technique helps
developers to construct adaptive applications for mobile devices and makes the
dynamic composition of content and context-sensitive applications more fluent.
The task-based composition technique is based on the model of the World Wide
Web Consortium (W3C) that provides a requestor-adaptor structure for content
adaptation. Like the requestor-adaptor element of the W3C model, a task is an
adaptation element that can provide additional context information, request other
tasks, adapt their responses, and deliver new or refreshed responses for the

 4

requestors. Tasks can prepare content and context-sensitive application instances
for current and predicted contexts in many phases and finally compose an
application of the prepared instances. The task-based composition technique
extends the W3C model with task factories that construct tasks for adaptation
requests and specific contexts. Tasks are defined with an XML-based language
that enables developers to describe tasks and context-sensitive adaptation actions
and their settings. Both context-sensitive tasks and application instances can be
cached, which can speed up the adaptation of applications. This dissertation
focuses on adaptive browsers that are constructed for mobile devices and
discusses how the task-based composition technique can support client-side
dynamic composition of content and context-sensitive applications and improve
performance when UIs are adapted for rapidly changing contexts and for
services available on the Web.

 5

Preface
The work reported in this dissertation was carried out in the SW tools team at
VTT Technical Research Centre of Finland during 2001�2007. One of the initial
aims of this work has been to support other mobile Internet research projects at
VTT by providing a research and development environment for new mobile
applications. The work described in this thesis has been done within the contexts
of �ALLLAS�, "WAPproxy", "WAP Multimedia", �AUTOSPACE�, and
�COSI� projects. I am grateful for the financial support provided by VTT and
Tekes and for various Finnish industrial companies that participated in the
projects. Additional support was received from the Ulla Tuominen Foundation,
which awarded a scholarship for the work in 2005. Many individuals contributed
to this research.

At first, I want to warmly thank, Professor Kai Koskimies from Tampere
University of Technology for supervising my work. Thank you for guidance,
valuable comments, and encouragement during my work. Many thanks also to
Professors Tarja Systä, Tommi Mikkonen, and Ilkka Haikala from Tampere
University of Technology for inspiring discussions and comments and
suggestions on this work. In addition, I want to thank Professor Keijo Ruohonen
for help in some calculations that are presented in this thesis.

I was honoured to have Professor Jari Porras from the Lappeenranta University
of Technology and Professor Ivica Crnkovic from Mälardalen University as the
pre-examiners of my dissertation. I am grateful for their expert comments which
led to remarkable improvements in the thesis. Their insightful and constructive
comments helped in clarifying the focus of this thesis and in recognising
deficiencies in the argumentation. Also, I want to thank Timo Laakko, who was
the project manager in the projects studying mobile Internet. I wish to thank him
for the invaluable advice, assistance, and support that helped me to carry out this
thesis.

This work has benefited from the help and advice of several people from VTT
and people attended the above mentioned projects. I would like to thank them
all. I want to also thank the members of the SW tools team for their support for
this thesis. In addition, I want to thank the Technology Managers Jari Ahola and
Jukka Perälä and Technology Director Pekka Silvennoinen from VTT for their

 6

kind support and the possibility to get a leave of absence from VTT to finalise
the dissertation.

I also want to thank Mark Woods who checked the language of this thesis.

Last but not least, I would like to express my warm and deep gratitude to my
parents, sister, all friends, and especially Sara for great support, encouragement,
and good moments. Your support has been invaluable.

Tampere, September 2007

Marko Palviainen

 7

Contents

Abstract ... 3

Preface .. 5

List of abbreviations ... 12

1. Introduction... 15
1.1 Background.. 17

1.1.1 Mobile environment and adaptive mobile applications 17
1.1.2 Adaptive user agents and browsers ... 20
1.1.3 Dynamic component-based composition 25

1.2 Problem statement ... 27
1.2.1 Supporting active and passive context-awareness in dynamic

composition ... 29
1.2.2 Context-sensitive handling of errors appeared in dynamic

composition ... 30
1.2.3 Supporting speculative adaptation in dynamic composition... 30
1.2.4 Dynamic client-side composition of adaptive mobile

browsers .. 32
1.2.5 General quality goals... 33

1.3 Approach: Task-based composition of adaptive applications 34
1.4 Contributions ... 37

2. Adaptation of context-aware applications .. 39
2.1 Context and context-aware computing .. 39
2.2 Classifications for adaptation .. 40

2.2.1 Static and dynamic adaptation... 41
2.2.2 Laissez-faire, application-aware, and application-transparent

adaptation .. 42
2.2.3 Reactive and proactive adaptation... 43
2.2.4 Speculative adaptation .. 44

2.3 Key techniques for dynamic adaptation .. 45
2.3.1 Separation of concerns .. 46
2.3.2 Compositional reflection ... 47
2.3.3 Component-based adaptation .. 49

 8

2.3.4 Middleware-centric adaptation.. 50

3. Dynamic component-based composition of adaptive applications............... 53
3.1 Introduction ... 53
3.2 Techniques for solving computational mismatches............................. 55

3.2.1 Glue-code-based solutions .. 56
3.2.2 Architectural solutions .. 56

3.3 Architectures and frameworks for component-based adaptive
applications.. 57
3.3.1 Lipto .. 58
3.3.2 Multitel.. 58
3.3.3 LEAD++.. 59
3.3.4 Fractal.. 59
3.3.5 One.world.. 60

3.4 High-level programming techniques supporting dynamic
composition of component-based and adaptive applications 61
3.4.1 MMLite ... 63
3.4.2 THINK .. 64
3.4.3 OpenCOM... 65
3.4.4 BALBOA .. 66
3.4.5 LuaCorba... 66
3.4.6 CASA .. 67
3.4.7 Component Configurators ... 68
3.4.8 Plasma ... 68

3.5 Solutions supporting dynamic adaptation of distributed component-
based applications.. 69
3.5.1 Sparkle architecture... 69
3.5.2 WebCODS .. 70
3.5.3 Hadas... 70
3.5.4 AMPROS .. 72
3.5.5 Kinesthetics eXtreme .. 72
3.5.6 SOCAM .. 73
3.5.7 Other solutions for component-based deployment.................. 74

3.6 Client-side solutions for adaptive content and context-sensitive
applications.. 75

3.7 Task-based composition technique for adaptive content and
context-sensitive applications.. 77

 9

4. Solution: A task-based composition technique for adaptive content and
context-sensitive applications ... 81
4.1 Introduction ... 81
4.2 Task-based adaptation using factories ... 82

4.2.1 Problem ... 82
4.2.2 Solution ... 82
4.2.3 Summary of the solution ... 85
4.2.4 Example .. 86

4.3 Selecting the most suitable context-sensitive elements for adaptive
applications.. 86
4.3.1 Problem ... 86
4.3.2 Solution ... 87
4.3.3 Summary of the solution ... 89
4.3.4 Example .. 89

4.4 An environment for fine-grained and reusable adaptation actions 90
4.4.1 Problem ... 90
4.4.2 Solution ... 91
4.4.3 Summary of the solution ... 92
4.4.4 Example .. 93

4.5 Caching of context-sensitive tasks and application instances 94
4.5.1 Problem ... 94
4.5.2 Solution ... 95
4.5.3 Summary of the solution ... 96
4.5.4 Example .. 96

4.6 A language for specifying task-based adaptive applications............... 98
4.6.1 Problem ... 98
4.6.2 Solution ... 98
4.6.3 Summary of the solution ... 103
4.6.4 Example .. 103

4.7 Task-based speculative adaptation .. 111
4.7.1 Problem ... 111
4.7.2 Solution ... 113
4.7.3 Summary of the solution ... 114
4.7.4 Example .. 114

4.8 The utilisation of the task-based composition technique................... 115
4.9 Usage scenarios for the task-based composition technique............... 118

 10

4.9.1 Task-based dynamic composition of content and context-
sensitive user interfaces... 119

4.9.2 Task-based dynamic composition of context-sensitive user
interfaces of physical environments 125

4.9.3 Task-based speculative adaptation .. 130

5. Implementation issues... 137
5.1 Execution of adaptation tasks .. 137
5.2 A generic structure for different data types 141

6. TaskCAD: An implementation for the task-based composition technique ... 145
6.1 An XML-based language for composition schemas.......................... 145
6.2 Task factory and composition schemas ... 146
6.3 Execution structures for actions .. 149
6.4 An application environment and components for a task and

application instance caching.. 154
6.5 An XML editor for task-based composition schemas 155

7. Case studies � Utilizing the task-based composition technique for
adaptive mobile browsers.. 157
7.1 Introduction ... 157
7.2 A framework for adaptive browsers .. 158
7.3 Implementing a content and context-sensitive browser with tasks.... 160

7.3.1 Application.. 160
7.3.2 Experiment setup... 167
7.3.3 Performance benefits... 168
7.3.4 Implementation benefits.. 170
7.3.5 Summary ... 173

7.4 Task-based composition of UIs of physical environments................ 174
7.4.1 Application.. 174
7.4.2 Experiment setup... 178
7.4.3 Performance benefits... 178
7.4.4 Implementation benefits.. 180
7.4.5 Summary ... 183

7.5 Using speculative adaptation tasks to shorten the disconnection
 time in browsing of local services .. 184

7.5.1 Application.. 184
7.5.2 Experiment setup... 186

 11

7.5.3 Performance benefits... 187
7.5.4 Implementation benefits.. 190
7.5.5 Summary ... 190

8. Comparisons to related work .. 191
8.1 Introduction ... 191
8.2 Architectures, frameworks, and structures for component-based

adaptive applications ... 192
8.3 High-level programming techniques for context-sensitive

component-based composition and adaptation.................................. 194
8.4 Client-side solutions for adaptive content and context-sensitive

applications.. 194
8.5 Summary of main contributions with respect to existing solutions... 195

9. Conclusion .. 197
9.1 Task-based composition technique as a platform of adaptive

applications.. 197
9.2 Summary of contributions ... 203
9.3 Future work ... 205
9.4 Concluding remarks... 207

References... 208

 12

List of abbreviations
ADL Architecture Description Language
Ajax Asynchronous JavaScript and XML
AOP Aspect-Oriented Programming
AP Access Point
API Application Programming Interface
COM Component Object Model
CORBA Common Object Request Broker Architecture
DCCI Delivery Context Client Interface
CSD Content Source Description
CSE Context-Sensitive Element
DOM Document Object Model
DSL Domain Specific Language
DTD Document Type Definition
GPRS General Packet Radio Service
GUI Graphical User Interface
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IDL Interface Definition Language
IRef Instance Reference
J2SE Java 2 Standard Edition
JVM Java Virtual Machine
MIDP Mobile Information Device Profile
MMS Multimedia Messaging Service
MOP Meta-Object Protocol
MVC Model View Controller
OOP Object-Oriented Programming
OS Operating System
PC Processing Context
PDA Personal Digital Assistant
POD Physical Object Description
RMI Remote Method Invocation
RPC Remote Procedure Call
RSS Really Simple Syndication
SFC Suitability For Context

 13

SI Service Indication
SL Service Load
SMIL Synchronized Multimedia Integration Language
SMS Short Message Service
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
SVG Scalable Vector Graphics
UDDI Universal Discovery, Description, and Integration
UI User Interface
UML Uniform Modeling Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
UMTS Universal Mobile Telecommunications System
WAP Wireless Application Protocol
WLAN Wireless Local Area Network
WML Wireless Markup Language
WSDL Web Services Description Language
WWW World Wide Web
W3C World Wide Web Consortium
XML eXtensible Markup Language
XHTML eXtensible HyperText Markup Language
XSLT eXtensible Stylesheet Language Transformation

 15

1. Introduction

Ubiquitous computing [Wei91, Wei93], also called pervasive computing, is a
revolution driving adaptive computing systems [MSKC04]. It aims to make
many computers available throughout the physical environment effectively
invisible to the user by dissolving traditional boundaries for how, when, and
where humans and computers interact [MSKC04]. Improving computer access
to context increases the richness of communication in human-computer
interaction and makes it possible to produce more useful computational services
[Dey01]. This requires applications that respond to the requirements of the
context at runtime and utilise current or predicted context information in
dynamic adaptation.

Mobility brings a new dimension to the concept of context and context-
awareness [DeA99]. Mobile and pervasive computing environments are
heterogeneous and dynamic: everything from devices used, resources available,
network bandwidths, to user context, can change drastically at runtime
[BWL03]. Thus it is imperative for software systems and applications to be able
to adapt to different computing environments and runtime changes appropriately
[BWL03]. For example, the information about the mobile device and user
activity, environment, other devices, location, and time can be utilised in
different situations to enhance the interaction between the user and device
[Kor05].

Mobile usage is spontaneous and applications should be fast to install, start, and
use in mobile devices and wireless networks. The input and output capabilities
and memory and processing power resources of mobile devices are typically
limited in comparison to desktop computers. In addition, the wireless network
connections offer typically less bandwidth than fixed line connections and may
cause costs for the user. This all sets requirements for client and server-side
adaptation methods that can provide more usable and efficient applications for
specific users, contexts, and services available on the Web.

Browsers are a very generic way to implement User Interfaces (UIs) for various
kinds of Internet services. However, many of the wired Internet services are
difficult to use directly with standard browsers of mobile devices. For example,

 16

the small display and keyboard of a mobile device set limitations for UIs and
presentation of content. As well as the browsed contents, user agents and
browsers should also be adapted for specific users, contexts, and services to
provide a reasonable user experience.

This dissertation describes a task-based composition technique that is based on
the content adaptation model of the World Wide Web Consortium (W3C)
[Gim02] and discusses how tasks can be used in the dynamic composition of
adaptive applications. The technique supports both automatic and user-directed
adaptation and speculative adaptation in which the application parts are prepared
for potential future contexts in the background. Tasks can dynamically prepare
application instances for certain settings and contents coming from various
sources and finally compose adaptive applications of the prepared instances.

Current dynamic adaptation techniques do adaptation primarily from scratch and
do not take advantage of the performance gains, which can be achieved when re-
using already adapted application elements [KPRS03]. The task-based
composition technique facilitates the reuse of already adapted application
elements and started adaptation tasks. In this dissertation it is argued that the
task-based composition technique helps developers to construct adaptive
applications for mobile devices and makes the dynamic composition of content
and context-sensitive applications more fluent. This dissertation focuses on
adaptive browsers and discusses how the task-based composition technique can
support client-side dynamic composition of content and context-sensitive
applications and improve performance when UIs are adapted for rapidly
changing contexts and services available on the Web.

We respond to the following questions. How can the task-based composition
technique be used? What are the true benefits and problems of the technique?
How does it support dynamic composition of content and context-sensitive
browsing applications? How does it support automatic, user-directed, or
speculative adaptation in dynamic composition? How does it handle errors
raised while a context-sensitive application is composed? These, and related
questions are discussed in this dissertation.

This chapter is organized as follows. Dynamic composition techniques and
adaptive applications and browsers are discussed briefly in Section 1.1. Then,

 17

the problem statement of this dissertation is given in Section 1.2. The task-based
composition technique approach is discussed briefly in Section 1.3. Finally, the
main contributions of this dissertation are listed in Section 1.4.

1.1 Background

The background of this dissertation is introduced in more detail in the following
subsections:

• Mobile environment and adaptive applications. The mobile environment
sets various kinds of requirements for applications. Subsection 1.1.1.

• Adaptive browsers. Context-aware hypermedia can enable context-
aware browsing, search, annotations, and linking applications
[BCFH03]. Subsection 1.1.2.

• Dynamic component-based composition. The advantage of dynamic
composition over static composition is that the behaviour of a new
system will depend on object relationships being defined at runtime,
instead of being defined and hard-coded in the files [DSGO02].
Subsection 1.1.3.

1.1.1 Mobile environment and adaptive mobile applications

In this dissertation a mobile application means a program executed in a mobile
device that may possible utilize network connections.

The mobile environment poses great challenges for the development of
applications (Figure 1). Applications are used any time and anywhere, and, thus,
usage environment is different (e.g. more distractions) compared to a desktop
PC. In contrast to desktop computers, mobile devices have typically limited
input and output capabilities [KHL02], and restricted memory and processing
power. In addition, wireless network connections typically offer less bandwidth
than wired connections.

 18

HSCSD

Tailored services
Te

rm
in

al
s

Local services and service
makers

Converted wired network
services (e.g WWW-pages)

GPRS UMTS BluetoothWLANGSM ...

N
et

w
or

ks
U

se
rs

S
er

vi
ce

s

DVB-H

Figure 1. The number of applications and services is rising rapidly in the
mobile environment. At the same time, the diversity of mobile users,
terminals, and networks is increasing.

Mobile users are not accustomed to crashing devices and bugs are not
considered acceptable. For example, correct memory handling is important,
because mobile devices are typically turned on for long times (weeks or even
months). To prevent memory leaks, the allocated memory should always be
released after use.

The diversity of mobile devices and networks is increasing. Mobile devices will
have multiple network connections and the available bandwidth may vary a great
deal. In particular, applications must cope with the dynamics of the network and
quality of service management, which is challenging due to the resource
constraints of wireless devices and varying bandwidth [ITLS04].

To provide a reasonable user experience, applications should respond to the
requirements of different kinds of users, contexts of use, networks, and services
as well as be light, reusable, and transferable to various kinds of environments.
At the same time, applications should demonstrate high quality and adaptability

 19

to different kinds of environments. For example, adaptive and context-aware
applications can support [SAW94]:

• Proximate selection, where the objects located nearby are emphasized in
the user interface or otherwise made easier to choose.

• Automatic contextual reconfiguration, so that the component
configuration and connections between these are changed if the context
is changed.

• Contextual information and commands, which can produce different
results according to the context in which they are issued.

• Context-triggered actions, so that simple IF-THEN rules specify how
the context-aware system should adapt.

This dissertation uses terms defined by W3C [Lew05]. A server is a role adopted
by an application when it is supplying a resource and a client is a role adopted
by an application when it is retrieving resources. A resource is a network data
object or service that can be identified by a Uniform Resource Identifier (URI)
and may be available in multiple representations (e.g. multiple languages, data
formats, size, and resolutions). The delivery context is a set of attributes
characterizing the capabilities of the access mechanism and the preferences of
the user [Lew03]. Delivery context can include information about the user (user
profile and preferences), user agent, device, network, and the service itself. For
example, Composite Capabilities/Preference Profiles (CC/PP) is a description of
device capabilities and user preferences that is often referred to as a device's
delivery context [Kis07]. Parts of the delivery context can be located in the Web.
For example, to enable nomadic users to migrate seamlessly from one access
device to another, user profile, and the state of the session should be stored in the
network. Delivery Context Client Interfaces (DCCIs) are language neutral
programming interfaces that provide Web applications access to a hierarchy of
dynamic properties representing device capabilities, configurations, user
preferences, and environmental conditions [WHR+07].

W3C has defined adaptation as a process of selection, generation, or
modification producing one or more perceivable units in response to a requested
Uniform Resource Identifier (URI) in a given delivery context [Lew05]. A
requestor and an adaptor may act together as an element in the delivery path

 20

providing a specific part of the adaptation [Gim02] (Figure 2). The requestor can
modify the request and provide context information required for adapting the
response appropriately.

adaptoradaptor response

content
selectioncontext-n

requestorrequest

adaptor

context-2

requestor

adaptor

context-1

requestor

response

request

response

serverclient

pr
es

en
ta

tio
n

request
intermediaries

�

Figure 2. Adapting contents for different contexts [Gim02].

In this dissertation, an adaptive application is defined as a composite of co-
operating components that are composed for a certain context. In addition, a
content and context-sensitive application is understood to be an adaptive
application that utilizes contents and may perform both selection and
transformation actions for contents in different contexts. An adaptive mobile
application means an adaptive application that is executed in a mobile device.
Furthermore, resource-aware applications are adaptive applications that can
reduce the quality of operation and thus consume fewer resources in order to
provide an acceptable level of service despite the scarcity of resources
[PSGS04].

1.1.2 Adaptive user agents and browsers

User Agent is a client within a device converting perceivable units into physical
effects that the user can perceive and with which the user may be able to interact
[Lew05]. A browser is an example of a user agent allowing the user to perceive
and interact with information on the Web. User agents and mark-up languages
are an easy way to transmit various kinds of information for the end-users.
eXtensible Markup Language (XML) [BPS00] is a simple and very flexible text
format for information exchange. XML is used in various kinds of Web
applications and many mark-up languages (e.g. a Wireless Markup Language
(WML), eXtensible HyperText Markup Language (XHTML), Synchronized
Multimedia Integration Language (SMIL), Scalable Vector Graphics (SVG)

 21

language, and Voice eXtensible Markup Language (VoiceXML) used in the
mobile environment are based on XML.

In this dissertation pull browsing is defined as user initiated browsing, in which
the client-side sends a request for the server-side that delivers the content in the
response whereas in push browsing, the server-side can initiate the content
delivery and notify the user about changes in the information (Figure 3).

Client

Request

Server

Response

User Initiated
Content Fetch

Client

Request

Server

Response

2. Content Fetch

1. Service Load /
Service Indication Message

Pull Browsing Push Browsing

Figure 3. Browser-based user interfaces can be delivered to the user with
pull and push browsing mechanisms.

For example, monitoring, remote control [HSH+01], and home automation
applications have continuously changing information. This requires methods that
update the changed information to the client-side. One solution is to do a
periodical refresh for the changing information. For example, the cache-control
header of HyperText Transfer Protocol (HTTP) and the meta (e.g. <meta http-
equiv="refresh" content="10"/">) element of HyperText Markup Language
(HTML) can be used for periodical refresh. Really Simple Syndication (RSS)
technology [Win05] enables the owners of the Web sites to feed information
about changes in the Web sites for users who have subscribed to these RSS
feeds. As a result, a program known as a feed reader or aggregator can check
RSS-enabled Web pages on behalf of a user and display any updated articles that
it finds. The RSS formats provide Web content or summaries of the Web content
together with links to the full versions of the content, and other meta-data. This
information is delivered as an XML file, called an RSS feed.

 22

However, the periodical refresh or information polling is an inappropriate
mechanism for rapidly and irregularly changing information, because the user is
not immediately notified of the changes. In addition, many unnecessary requests
are made to the network. Highly interactive and real-time [SKK098] applications
require more effective refresh methods. Combining the push mechanism and
instant messaging [RHBK04] services into the browser can solve this problem
(Figure 3). Push is a very powerful concept. It typically refers either to the
mechanism or ability to receive and act on information asynchronously, as
information becomes available, instead of forcing the application to use
synchronous polling techniques that increase resource use or latency [Ort03].

Wireless Application Protocol (WAP) Push [WAPP01] allows content to be
pushed to the mobile handset with Service Load (SL) and Service Indication (SI)
type of messages. A WAP Push message can be delivered over WAP or Short
Message Service (SMS) bearer. On receiving a WAP Push message, a WAP
enabled handset will automatically enable the user to access the content referred
in the message. The referred content can be illustrated with a user agent. For
example, Multimedia Messaging Service (MMS) uses WAP push functionality
to notify and deliver multimedia messages to the mobile device.

In general, the characteristics of the mobile environment set requirements for
contents, browsers, and visualization. Browsing services designed for wired
Internet are often hard to use directly with a standard browser in a mobile
device. For example, tables or frames are difficult to present in the small screen
of a mobile device. These usability problems can be partially solved by adapting
contents on the client and server-side. Content adaptation can include both
content selection and transformation actions. In addition, style sheets [BLLJ98]
can redefine the presentation of the browsing content. The existing XML-based
technologies enable context-aware wireless Internet services to adapt their
content to a user�s situation [PKP03]. For example, W3C has published a
markup [LMF07] for general purpose content selection and filtering. The W3C�s
Document Object Model (DOM) Application Programming Interface (API)
provides an XML tree-like document structure whereas eXtensible Stylesheet
Language Transformations (XSLT) are able to generate e.g. WML or XHTML
documents for display to the mobile user.

 23

Contents can be adapted in the client, server, in one or more intermediate proxies
or in all of these. A big part of content adaptation approaches focuses on server-
side adaptation. For example, an approach that adapts HTML pages for mobile
devices is proposed [KAK+00, LaH05]. Content items on a Web page can be
transcoded into multiple resolution and modality versions so that they can be
rendered on different devices [MSL99]. These content versions can be stored to
InfoPyramid that enables a customizer to select the best versions of content
items to optimally match the resources and capabilities of diverse client devices
[MSL99]. In addition, a content adaptation system that takes into account the
entire computing context and decides the best strategy for generating the optimal
content version is proposed [LuL02]. The annotation semantic transcoding
technique [NSS01] enables humans to associate external XML-based linguistic,
commentary, and multimedia annotations with any element of any HTML
document to facilitate machines to understand document contents and to make
better transcodings for contents.

However, these previously described content adaptation approaches focus more
on server-side content adaptation. The wireless connections typically offer less
bandwidth than fixed line connections. In addition, the data transmission over
wireless connections typically cost the end-user more. Browser-based Web
applications typically require the user to submit a request to the server, wait for
the server to process the request and generate a response, and then wait for the
browser to update the UI with the results. This request-wait-response-wait
pattern is extremely disruptive and lowers productivity [Smi06]. This all sets
requirements for the client-side adaptation methods that can improve the
usability, reduce costs, and lead to more intelligent and context-sensitive
applications. We believe that the client and server-side adaptation methods
together can provide the best user experience. However, this dissertation focuses
on the client-side adaptation techniques and so for example, the server-side
content adaptation techniques are not discussed in more detail.

It is not enough that only the browsed contents are adapted. In order to improve
the usability, applications should be adaptable for specific contexts of use, users,
devices, and services to include the required features only. Because the memory
and processing capabilities of mobile devices are typically limited in comparison
to desktop computers, the applications should be adapted to include only
features needed in the browsing task in question. The ready-for-use time and

 24

memory consumption is smaller, while the browser can be adapted to utilize
device dependent APIs and external devices.

Adaptive browsers can offer specialised and context-sensitive controls and UIs
for contents (e.g. for time tables) and services available on the Web. For
example, a service requiring a good deal of textual input can be very laborious to
use with the small keyboard of a mobile device. In order to minimize the use of
the keyboard, the browser should offer e.g. textual templates (e.g. of contact
information) for filling forms in a service available on the Web. In addition, a
browser should be adaptable for attached external input (e.g. microphone or tag
reader) and output (e.g. headset) devices during browsing. For example, if an
external headset is attached, the browser could present the content vocally.

In this dissertation, browsers that can adapt for specific users, contexts, and
services according to the delivery context [HeI01, Gim06], are called adaptive
browsers (Figure 4). Furthermore, adaptive browsers that are used in a mobile
device are called adaptive mobile browsers.

Component
Sources

Settings
Content
Sources

Adaptive Browser

Figure 4. An adaptive browser.

 25

An adaptive browser can be dynamically composed of components that are
initialised for certain settings and contents coming from various sources. The
correct components, settings, and contents are selected for the delivery context.

1.1.3 Dynamic component-based composition

The component-based techniques are widely used in software engineering. They
promote a high level of abstraction in software design, implementation,
deployment, and management. In addition, they facilitate flexible configuration
(and, potentially, runtime reconfiguration), and foster third-party software reuse
[CBG+04]. A substantial component-based software engineering community
exists [Emm02] and numerous technologies support both standalone and
distributed component-based application development [CBG+04]. For example,
browser plug-ins [Moz01], Enterprise JavaBeans [Sun02], and the Common
Object Request Broker Architecture (CORBA) Component Model [OMG02]
support the development of component-based applications.

In software engineering, objects are runtime entities that are configured to
achieve a certain end [NiM94]. Objects have identity, state, and behaviour, and
are always runtime entities [Nie95]. Whether or not objects have their own
internal threads, or may be otherwise considered �active,� each object can be
viewed as a kind of server, or process [NiM94].

Objects encapsulate services, whereas components are software abstractions that
can be used in the construction of object-oriented systems [Nie95]. Components
may also be runtime entities to which applications may connect [NiM94].
However, more generally, components must be composed and initialised before
they are a part of a running application [NiM94]. This dissertation considers a
component as an entity which cannot be directly modified.

With component frameworks [JoF88] the amount of programming effort and
bugs can be significantly reduced. A component framework embodies policies
and constraints that make sense in a particular functional domain [CBG+04].
Frameworks can offer interfaces and skeletons enabling developers to implement
applications in a modular way so that certain points of the application can be
replaced with solutions suitable for the usage environment. At the same time,
existing and well-tested solutions can be reused in various kinds of

 26

configurations. The modular structure is easier to understand, the development
work (e.g. analysis, design, implementation, and testing) can be organized better,
and developers can become acquainted with the application by studying well-
defined interfaces and components. However, the modular structure can cause
computational overhead. Interfaces require memory and individual components
may contain methods and code not needed in all configurations.

The configuration � or composition � itself need not correspond precisely to the
object-level view, since both more fine-grained and more coarsely grained
components may come into play [NiM94]. Modules, packages, frameworks, and
even generic configurations or architectures are also good candidates for more
coarsely-grained components [Bra92].

Component-based composition requires components conforming to architectural
styles [ShG96] that determine the plugs each component may have (i.e.,
exported and imported services), the connectors that may be used to compose
them, and the rules governing their composition [AcN01]. The components can
have various kinds of dependencies to other components, which can complicate
component-based composition. The composition of component-based
applications can be facilitated with frameworks, which may offer skeletons,
interfaces, and ready-made components for the applications of a specific
domain.

A virtually unlimited set of functionalities and services can be composed of a set
of basic service components [Men00]. Components can be selected for the
context, fetched from the Web, and composed into various configurations
resulting in a highly tailored application that can, for example, include
alternative UIs, controls, resources, and services. However, in contrast to static
composition, dynamic composition requires an infrastructure and may increase
complexity and overhead. Methods that can find components and then select the
most suitable components for the application are needed. Also, remote
components and resources should be possible to use in composition. Then,
methods that can construct application instances of the components configured
for the context are needed. Finally, methods that are capable of composing the
actual component-based application of the prepared instances are required.

 27

Component reconfiguration and dynamic re-composition are commonly used
application-transparent adaptations in component-oriented applications. The
components may provide special interfaces allowing certain parameters of the
components to be changed. The dynamic re-composition of application
components may involve addition, removal and/or replacement of the
components at runtime [MuG05]. In the case of a dynamic replacement the state
of an expendable component must be transferred to its successor. In addition, the
integrity of the interactions ongoing at the time of dynamic re-composition must
be maintained in order to ensure the consistency of the application [MuG05].

1.2 Problem statement

The collection and analysis of context information, decision of the adaptation
actions, and triggering for the decided adaptation are needed in order to adapt an
application for the context [ATB04]. Interacting with a variety of sensors to
capture the context, interpreting the measured values to the desired format, and
using them in a meaningful way may cause a large development overhead
[ChK00]. Thus it is important to separate the application from the actual context
sensing part. As a result, it may be possible to utilize the same context-sensing
system in various context-aware applications.

Mobile usage is spontaneous and applications should be fast to install, start, and
use in devices with limited memory and processing power. In addition, wireless
network connections offer typically less bandwidth than fixed line connections
and may cause costs for the user. The context can change rapidly when the user
is moving in the physical environment. This all requires methods that can make
the dynamic composition of adaptive applications more fluent.

The focus of this dissertation is on the execution of triggered adaptation actions.
More precisely, this dissertation discusses how it is possible to help developers
to construct adaptive applications for mobile devices and to make the dynamic
composition of content and context-sensitive applications more fluent.

More fluent composition requires a composition technique that can speed up and
reduce adaptation costs and enable end-users to control the adaptation. The
composition technique should help developers to implement adaptive

 28

applications that are able utilise previously-started adaptation actions and
prepared content and context-sensitive application instances in adaptations.
Errors may arise while an adaptive application is composed for new contexts.
Thus context-sensitive methods are needed for error handling. New kinds of
requirements may emerge for an adaptive application. Thus it is important that
the composition technique does not provide only a fixed set of methods
supporting adaptation but that it should also be possible to extend the technique
with new adaptation methods. In addition, it should be possible to change the
adaptation strategies at runtime.

This dissertation addresses the following problems related to the dynamic
composition of adaptive mobile applications:

• Supporting active and passive context-awareness in dynamic
composition of adaptive applications. How to support active and passive
context-awareness in dynamic composition? Subsection 1.2.1.

• Context-sensitive handling of errors appeared in dynamic composition
of adaptive applications. How to handle errors raised while an adaptive
application is composed? Subsection 1.2.2.

• Supporting speculative adaptation in dynamic composition. How to compose
an application for possible forthcoming contexts? Subsection 1.2.3.

• Supporting client-side dynamic composition of adaptive mobile
browsers. What are the requirements for adaptive mobile browsers?
Subsection 1.2.4.

• General quality goals. What are the general quality goals of a dynamic
composition technique supporting composition of adaptive mobile
applications? Subsection 1.2.5.

This dissertation focuses on utilisation of the current and predicted context
information in the dynamic composition of adaptive applications. The context
acquiring, processing, and predicting methods are not directly in the scope of
this dissertation and so are not discussed in detail. Instead, this dissertation
assumes that the current or predicted context information is available for an
application. One of the main goals of this dissertation is to describe how

 29

dynamic composition can be used in content and context-sensitive applications
and how the composition process can be improved on the client-side.

1.2.1 Supporting active and passive context-awareness in
dynamic composition

The key to context-awareness is in doing it behind the scenes [AAH+97]. The
application can perform internal adaptations, in which the context and
knowledge about the task of the user may guide application adaptation [RBH04].
Parts of an application that are not needed at the time can be removed, which
saves resources. Optional components, for example, can be initialised only when
a user is in a resource-rich environment. However, it is important that context-
aware applications do not cause embarrassing or dangerous situations for the
users and are predictable and understandable to use. For example, it should be
easy to set user preferences.

Context-aware computing can be active or passive [ChK00]. Active context
awareness means that an application automatically adapts to discovered context,
by changing the behaviour of the application [ChK00]. Active context-aware
computing can help to eliminate unnecessary user cooperation and make
technology as �calm� as possible [ChK00]. Passive context awareness means
that an application presents the new or updated context to an interested user or
makes the context persistent for the user to later retrieve [ChK00]. Active
context influences the behaviour of an application, while the passive context can
be relevant but not critical for the application. For example, an automatic call
forwarding system can use the location information of the user actively, while
the Active Map application [Wei93] can utilize it passively [ChK00].

Active context-aware information push may cause usability problems [CMD01].
If the user is currently engaged in reading, it may become overwritten. The
problem can be solved with a back button that enables the user to return to the
previous context in the application or with a hold feature, which enables
displayed information to remain on the screen despite any changes in the context
[CMD01].

Users are tolerant of frequent changes between fidelities with small perceptual
differences, but are intolerant of frequent, perceptually large changes [Nob00].

 30

This sets requirements for techniques that enable developers to compose fine-
grained adaptations for applications.

The composition technique should support both active and passive context-
awareness in the composition of adaptive applications. For example, it should
enable end-users to control the adaptation. In addition, it should offer feedback
for end-users about the progress of the adaptation.

1.2.2 Context-sensitive handling of errors appeared in dynamic
composition

It is useful for programming on a large scale and for application testing, if a
language has features to explicitly cope with errors and exceptions [Sch99].
Errors may arise while an adaptive application is composed and all the needed
adaptations cannot be always necessarily successfully executed. For example, if
a mobile device is disconnected, it is not possible to fetch contents from the
Web. To prevent deadlocks, it should be possible to define time-outs for
adaptations and recovery mechanisms for fault situations.

An adaptive application requires context-sensitive methods for error handling.
For example, context-sensitive error messages and UIs can be displayed to
enable the user to direct adaptation in fault situations.

The dynamic composition technique should enable developers to define fault
tolerant adaptations for applications and context-sensitive methods for both
automatic and user-directed error handling.

1.2.3 Supporting speculative adaptation in dynamic composition

Adaptive systems must accommodate high-dimensional sensory data, continue
to learn from new experience, and take advantage of new adaptations as they
become available [MSKC04]. For example, contextual information can be
captured for identifying which locations the user has visited [AAH+97].
Unfortunately, even if context history is generally believed to be useful, it is
rarely utilized in context-aware applications [ChK00].

 31

A context-aware application should learn about user behaviour in order to
improve the context awareness [LKAA96]. Users may have certain behavioural
routines. For example, they may often do same tasks at the same time of the day
and use the same routes for moving inside buildings. In order to make adaptation
more fluent, an adaptive application should learn user behaviour, sense the
activity of the user, and use the idle time of the application for speculative
adaptation that prepares application parts for potential future contexts in the
background.

For example, the user interfaces of a home automation system can be prepared in
the background for the different locations. As a result, they can be fast provided
for the user moving at home. Web pages the user may visit in the near future can
be prefetched [FiS03]. For example, a browsed document can provide a set of
pre-fetching hints enabling the browser to prefetch and store specified
documents in its cache in the background. Furthermore, the referenced pages
from hyperlinks embedded in a browsed object can be prefetched to the cache
[ChY97, Duc99]. Later, when needed, prefetched documents can be fast
illustrated for the user. Speculative adaptation can also be used to automated
hoarding [JHE99] in which non-local files are pre-fetched to the client cache
prior to disconnection.

In addition, pre-resolving, pre-connecting, and pre-warming techniques can
decrease network latencies [CoK02]. Pre-resolving can perform the DNS query
prior to the user requests and eliminate the long query time from the user
perceived latency whereas pre-connecting can establish a TCP connection prior
to the user request. Finally, in pre-warming the client can send dummy HTTP
requests prior to an actual request and so the server is in a warm state and e.g.
the results of a reverse-DNS query are cached to the server.

The dynamic composition technique should help developers to implement
speculative adaptations for content and context-sensitive applications. Firstly, it
should facilitate utilisation of various kinds of methods that can predict potential
future contexts. Secondly, it should make it easier to start speculative
adaptations for predicted contexts, to utilise previously started adaptation actions
and prepared content and context-sensitive application instances in speculative
adaptations, and to recognize and stop those started adaptation actions that are
not suitable for the current or predicted contexts.

 32

1.2.4 Dynamic client-side composition of adaptive mobile
browsers

In a mobile device, it can be difficult to navigate between separate applications.
Browsing services are needed in many applications. For example, contact
information (e.g. for a phone number) that is available on the Web may be
needed in an application running on a mobile device. Browsers embedded in
adaptive mobile applications offering Internet services directly and fast available
for the user could substantially improve usability. For example, it would be
useful if a Web browser could be integrated into a context-aware tourist guide
application [AAH+97].

A user agent or browser should respond to the requirements of the mobile
environment. The generic requirements collected from different sources
identified for browsers are enumerated below. Firstly, the mobile browser should
offer navigation operations as commonly found in browsers of the wired Web,
e.g. navigate a new page, navigate in history (back, forward), refresh browsed
content (reload) and abort the navigation (stop) [LNR96]. At the same time, it
should support different kinds of communication protocols, connections, and
authentication methods. In addition, the use of the wireless network should be
optimized. For example, this can be made with caching and by adding
concurrency [Wat94].

New and emerging applications such as push and instant messaging (where the
content delivery is initiated outside of the browser) and context-aware services
(in general) bring new challenges how to support browsing within the
application or when using a separate browser. Much information and many
services are relevant only in a limited context [HSP+03]. In order to improve
usability, new user interfaces, navigation, content visualization, contextual
sensing, resource discovery, and augmentation methods for interaction with the
environment [LaH05, Gri04, KSKB02] are needed. Particularly, an adaptive
browser should support:

• specialized, adaptive user interfaces [HeI01],

• combining various kinds of content types to work together [KSKB02,
PaL05b],

 33

• the client-side adaptation, and the delivery of the context information for
the server-side adaptation [BGGW02],

• modal and non-modal controls in browsing [KSKB02],

• utilizing various resources (i.e., user agent profile, stylesheets, and user
preferences) and services in illustrating the browsed content in a specific
way [LaH05], and

• extensibility with new browser components [Men00].

Composing an adaptive browser from scratch requires a lot of effort and
knowledge. Techniques that facilitate the dynamic composition of adaptive
mobile browsers that can be embedded in context-aware applications are needed.
This dissertation focuses on adaptive mobile browsers and discusses how the
task-based composition technique can support client-side composition of content
and context-sensitive applications and improve performance when UIs are
adapted for rapidly changing contexts and services available on the Web.

1.2.5 General quality goals

A dynamic composition technique must provide common services and
functionality for component-based composition. For example, it should enable
developers to define composition schemas that can configure application
components for a rapidly changing context. The following list summarizes the
general requirements for the dynamic composition technique. The task-based
composition technique itself is evaluated against these general quality goals in
Section 9.1:

• Generic. To be generally applicable, the technique should be generic so
as to be usable in the dynamic composition of a wide range of
applications.

• Extensible. As adaptation is needed in different kinds of applications
and environments, the technique must be extensible. The technique
cannot only provide a predetermined and fixed set of methods
supporting dynamic composition; instead it must allow the developers to
extend it with new kind of methods supporting dynamic composition of
various kinds of adaptive applications.

 34

• Policy independence. A general-purpose component-based systems
building technology should offer generic mechanisms; it should not
prescribe policies, constraints, services, or facilities that are specific to
particular application domains or deployment environments [CBG+04].

• Scalable. The technique should be scalable to support adaptation in very
different kinds of environments and devices offering processing and
memory capabilities of a different level. For example, the technique
should support both client and server-side adaptation. For making the
technique applicable also in mobile devices, the implementation of the
technique should have a small memory footprint and offer language and
policy-independent methods [CBG+04].

• Separation of concerns. The technique should promote a clear
separation of concerns between the application�s functional code and the
adaptation-specific code.

• Incremental. The technique should support the reuse of composition
schemas. For example, it should be possible to utilise other composition
schemas in a composition schema.

• High performance. The technique should not cause an inherent
performance cost and overhead that will significantly disturb the user of
an adaptive application.

1.3 Approach: Task-based composition of adaptive
applications

It is important to raise the abstraction level of component-based composition in
order to make it is easier for developers to implement adaptive applications for
mobile devices. If the dynamic composition concerns can be separated from the
rest of the application, it is easier to customize separate composition schemas to
satisfy the application requirements. In addition, it may be possible to reuse
separate composition schemas in different applications.

An interpreted task-based composition language enables composition strategies
to be changed at runtime. However, in the name of simplicity, aspect specific
languages do not typically offer all the structures and the conditional and

 35

iterative commands that the general-purpose languages like Java and C++
provide [LBS+98]. This lack of programming constructs can be compensated for
by allowing the programmer to use, for instance, Java or C++ code in the
composition schemas [LBS+98]. For example, an XML-based aspect language
for component composition can have parts invoking methods of plugins
implemented e.g. with Java or C++.

The content adaptation model of W3C is a solution where a requestor and an
adaptor can act together as an element in the delivery path providing a specific
part of the adaptation [Gim02]. The requestor can modify the request and
provide the context information required for adapting the response appropriately.
The task-based composition technique [Pal05, Pal07] is based on the content
adaptation model of W3C and supports dynamic composition of component-
based applications. Tasks can have various kinds of adaptation actions that can
compose application instances, request other tasks, adapt the received responses,
and deliver responses for the requestors of the task.

We believe that the task-based composition technique can help developers to
implement adaptive content and context-sensitive applications for mobile
devices. Tasks are configured to a task factory that composes tasks for
adaptation requests. The task configuration is defined with an XML-based
language that enables developers to describe tasks and context-sensitive
adaptation actions and settings elements for them. Settings elements configure
an action to work in various kinds of application environments. For example,
they can configure actions to fetch application instances from certain sources
and to add them to specific targets. In addition, settings elements can also define
context-sensitive parameters and content elements for adaptation actions. Tasks
can prepare content and context-sensitive application instances in many phases
and finally compose an application of these. Both context-sensitive tasks and
application instances can be cached, which can speed up adaptation of content
and context-sensitive applications.

Based on the gained experiences with the task-based composition technique and
different case studies, this dissertation outlines the characteristics of a generic
framework that supports dynamic composition of content and context-sensitive
applications. The framework separates composition concerns of the rest of the

 36

application and offers tasks and actions implementations that facilitate dynamic
composition of content and context-sensitive applications (Figure 5).

Components and ResourcesComponents and Resources

Execution of
Composition Actions

Execution of
Composition Actions

Task ConfigurationTask Configuration

Resource
Layer

Action Layer

Script Layer

Context
Sensing
Context
Sensing

<<integration>>
Task

Requestor

<<integration>>
Task

Requestor

Task-based Composition

Figure 5. Task-based composition of adaptive applications.

The task requestor works as an integration element that can observe the context
and request adaptation tasks to adapt the application for new contexts, if the
specific parts of the context are changed.

Different task configurations can be constructed to support the dynamic
composition of various kinds of applications. For example, we constructed a
small client-server application, in which both the client and server-side were
implemented with tasks [ImP07]. As a platform, the system provides a common
foundation to implement various kinds of adaptive applications that can be
composed with asynchronous and synchronous tasks and which enables the end-
user to control the adaptation process. In addition, the platform offers context-
sensitive handling for errors raised while an application is composed.

The MIMEFrame framework [PaL06] defines architecture for adaptive user
agents and browsers (see Chapter 7). However, although MIMEFrame and the
task-based composition technique facilitate implementation of adaptive
browsers, it may be a too difficult task for developers that do not have a lot of
programming experience to construct totally new adaptive browsers. However, if
a lot of ready-made browser components and composition schemas are available,
it is possible to implement new kinds of browsers without manual coding. Only
composition schemas have to be edited. This can be made with standard text or

 37

XML editors. In addition, the mPlaton editor (see Section 6.5) facilitates
implementation of the composition schemas.

1.4 Contributions

The main contributions of this dissertation are the following:

• A general task-based composition technique that facilitates dynamic
composition of adaptive mobile applications. The author has developed
the task-based composition technique that is based on the content-
adaptation model defined by W3C. It is an integrable and universal
approach that can be utilised in a wide range of adaptive applications
(Chapter 4).

• The MIMEFrame framework that defines architecture for adaptive user
agents and browsers. It helps developers to implement very extendable
user agents for mobile devices that can offer specialized user interfaces
for almost any kind of Web application and that can be embedded in
other applications. The author has made Java implementations for the
MIMEFrame framework (Chapter 7).

The task-based composition technique is evaluated with case studies. Related to
this, the author has carried out:

• The reference implementation of the task-based composition technique.
The author has made a reference Java implementation for the technique
and carried out the different case studies to analyse the technique
(Chapters 4, 5, 6, and 7).

• A tool for the task-based composition technique. We have previously
implemented a framework (called FEdXML) to facilitate implementation
of component-based XML editors [PaL05c]. The author has utilised
FEdXML and implemented a specialised XML editor helping developers
to implement task configurations (Section 6.5).

• The analysis of case studies that were implemented for mobile devices.
The task-based composition technique is evaluated in the domain of

 38

adaptive browsers. The author has implemented three case studies for
mobile devices and evaluated them (Chapter 7).

As a background, context-awareness and adaptation are discussed first in
Chapter 2. Then, dynamic component-based adaptation techniques are discussed
in Chapter 3. The task-based composition technique and abstract usage scenarios
for it are described in Chapter 4. The usage scenarios describe the main
functional requirements for case studies that utilise the task-based composition
technique in the domain of content and context-sensitive applications. The
mobile devices set requirements for the implementation of the task-based
composition technique. Implementation issues are discussed in Chapter 5. The
reference implementation of the task-based technique, called TaskCAD, is
discussed in Chapter 6. Then, Chapter 7 presents the case studies that discuss the
quality requirements of the task-based composition technique. The case studies
are based on the usage scenarios described in Chapter 4. Comparisons to related
work are given in Chapter 8. Finally, conclusions are drawn in Chapter 9.

The parts of this thesis are already discussed in the following publications:

1. The first version of the MIMEFrame framework was described in
publication [PaL03].

2. The first version of the task-based composition technique was discussed in
the paper [Pal05].

3. The paper [PaL05b] presents how modular and generative approaches and
the task-based composition technique can be used in the implementation of
adaptive mobile browsers.

4. The paper [PaL05c] discusses a FEdXML framework that facilitates
implementation of specialised XML editors.

5. The paper [PaL06] describes how tasks can dynamically compose adaptive
browsers of the MIMEFrame components.

6. The paper [Pal07] discusses task-based composition of the context-sensitive
UIs of physical environments.

7. In the paper [ImP07], a small client-server application that is implemented
with tasks is a test case for a new reliability testing approach.

 39

2. Adaptation of context-aware applications

The concepts of context and context-aware computing are central throughout
this dissertation. Before adaptation techniques can be discussed, it must be
understood what the concept of context and context-aware computing means. In
addition, adaptation of applications requires techniques and infrastructures that
are able to sense and process context information and to predict potential future
contexts. Finally, methods that are able to adapt the application for the sensed or
predicted context are needed. This chapter is organized as follows. The concepts
of context and context-aware computing are discussed briefly in Section 2.1.
Then, classifications for adaptation are given in Section 2.2. Finally, adaptation
techniques are discussed in Section 2.3.

2.1 Context and context-aware computing

Since Mark Weiser presented the idea of the computer of the 21st century
[Wei91], adaptive and context-aware applications have been researched a lot.
The concept of context is characterized in many sources. For example, context is
defined to be the identities of nearby people and objects, and changes of those
objects [ScT94]. Context can express relationships between people, places, and
things with predicates defining identity, location, activity, and time [KBM+02].
In other words, the important aspects of context are: where you are, who you are
with, and what resources are nearby [SAW94]. Context is also defined to be a
subset of physical and conceptual states of interest to a particular entity [Pas97].
This dissertation uses a more general context definition of [Dey01] defining that:

�Context is any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and
application themselves.�

In other words, if a piece of information can be used to characterize the situation
of a participant in an interaction, then that information is a context. Context can
be further divided into computing, user, and physical context categories
[SAW94]. Time can be the fourth context category [ChK00].

 40

High-level context can define the current activity of the user [ChK00]. It can be
recognized e.g. by using machine vision, or calendar directory to find out what
the user is supposed to do at a certain time, or by combining several simple low-
level sensors [SBG99]. For example, in the TEA project [SBG99] high-level
contexts were recognized with a neural network utilizing different kinds of
sensors.

Context-aware computing is the ability of applications to discover and react to
the changes in the environment in which, a mobile user is situated [ScT94].
More precisely, a system is context-aware if it uses context to provide relevant
information and/or services to the user, where relevancy depends on the task of
the user [Dey01].

Context-aware features can be classified into contextual sensing, adaptation,
resource discovery, and augmentation features [Pas98]. Contextual sensing
features are needed for adapting applications for the context whereas resource
discovery features enable a computer to discover other resources within the same
context as itself and exploit these resources while they remain in the same
context. Contextual augmentation features enable digital data to be associated
with a particular context that it is related to. The context sensing, resource
discovery, and augmentation features are not directly in the scope of this
dissertation and so are not discussed in greater detail.

2.2 Classifications for adaptation

Self-adaptive software modifies its own structure and behaviour in response to
changes in its operating environment [OGT+99].

Adaptation can be general or application-specific. In some cases the information
exchanged by components is adapted [FGC98, Nob00], rather than the
application components themselves [RoR05]. The client, server, or one or more
intermediate proxies, or all of these may do that kind of adaptation [BFK+00].

Adaptation of software can be carried out across a broad scale: at one extreme,
macro adaptation can be achieved only by extensively re-engineering the
system; at the other, micro-adaptation consists of fine-tuning of running

 41

software [VKK01]. No clear tendency with regards to the scope of adaptation
exist [RoR05]. Some approaches adapt the application as a whole [AzJ00,
FGC98, Nob00, BCA+00, CEM03, ChK00], while others include the ability to
adapt discrete application components [SeA00, GCB+00, BHL01, MUCR02,
SEK03, VZL+98, VTA04, MCR04]. The latter approach is more flexible since it
offers more adaptation options and finer granularity, but is more complex to
implement since it requires a more sophisticated implementation mechanism
[RoR05].

The adaptation techniques can be classified in many ways. A few of the major
classifications for adaptation techniques are introduced in the following
subsections.

2.2.1 Static and dynamic adaptation

Adaptation can be divided into static or dynamic adaptation (Figure 6) [SaM03].
Static adaptation is made before using the application while dynamic adaptation
is done at runtime. Dynamic adaptation can involve complex issues such as
managing adaptation of software components that are used simultaneously by
applications with different (and possibly conflicting) requirements, and
maintaining a consistent external view of a component, the behaviour of which
evolves over time [HIR01].

Development
Time

Compile
Time

Startup
Time

Run-time
Customizable Configurable Tunable Mutable

Adaptation

Static
Adaptation

Dynamic
Adaptation

Figure 6. Taxonomy for static and dynamic adaptations [SaM03].

Tunable software does not support the modification of the code of business logic
but supports fine-tuning of crosscutting concerns in response to changing
environmental conditions [MSKC04]. For example, AspectIX enables runtime
tuning of the distribution behaviour of Common Object Request Broker
Architecture (CORBA) [OMG06] applications.

 42

Mutable software enables a composer to change even the imperative function of
a program, enabling dynamic re-composition of a running program into one that
is functionally different. Languages like CLOS [ABB+89] and Python [Ros96]
provide direct support for dynamic re-composition. Existing languages (e.g. Java
and C++) can also be extended to support new keywords and constructs
enhancing the expressiveness of an adaptive code [MSKC04].

2.2.2 Laissez-faire, application-aware, and application-transparent
adaptation

The adaptation can be classified into laissez-faire, application-aware, and
application-transparent adaptations [JHE99].

In the laissez-faire adaptation, an application triggers and implements all
adaptations [JHE99]. Laissez-faire adaptation allows individual applications to
adapt precisely according to their own goals, and does not require any operating
system support [NoS99]. However, laissez-faire adaptation cannot support
concurrency [NoS99]. Concurrent applications that use laissez-faire adaptive
schemes will each adapt to the same set of environmental changes, and compete
for the same set of scarce resources [NoS99]. Without some central authority,
they are likely to interfere with one another and adapt at cross purposes.

In application-transparent adaptation, the burden of adaptation is entirely borne
by the system [NoS95]. Applications explicitly interact with middleware
services that both trigger and execute adaptations independently of the
application. This type of adaptation is the most appealing from the perspective of
the software developer, since the application can be implemented using
conventional techniques while still realising the potential benefits of adaptation
[RoR05]. In addition, this approach is completely backward-compatible and
existing applications continue to work even when mobile [NoS95].
Unfortunately, application-transparent adaptation is difficult to achieve in
practice [RoR05].

Application-aware adaptation [NoS95] may have features of both laissez-faire
and application-transparent adaptations. In application-aware adaptation,
applications can decide how to best adapt to the changing environment while the
system can provide support through the monitoring of resources and the
enforcing of resource allocation decisions [JHE99].

 43

2.2.3 Reactive and proactive adaptation

In reactive adaptation [Cap03], an application can specify what portion of
context it is interested in. As a result, it is notified when specific parts of context
are changed. Proactive adaptation refers to the ability of the application to
deliver the same service in different ways when requested in different contexts
and at different points in time [Cap03].

For example, in a publish-subscribe architecture [WeB98] applications can register
their interest in particular context changes, and then an event delivery mechanism
notifies registered applications of relevant changes happening in the environment.
The set of events that can be detected and delivered is extensible and can be
dynamically modified by the application. It is then entirely up to the application to
decide what to do (i.e., how to adapt) once it is notified about these changes.

Odyssey [Sat96] is a platform for mobile data access that extends the publish-
subscribe mechanism by enabling applications with primitives to register the
behaviours that the system should automatically invoke when specific context
configurations are entered. In Odyssey, applications can register an interest in
particular resources by defining the acceptable upper and lower bounds on the
availability of that resource, and by registering an `up-call procedure' that must
be invoked whenever the availability of the resource falls outside the window of
acceptance. A viceroy component monitors resource usage, uses the registered
up-calls, and notifies applications about significant changes. When an
application is notified of a change in resource availability, it must adapt its
access. Warden components implement the access methods on objects of their
type: they provide customised data access behaviour (e.g. different replication
policies) according to type-specific knowledge.

Gaia [RHC+02] offers a more general approach to reactive adaptation to context
changes, as it does not focus on one particular service (data access). In Gaia,
physical spaces and their ubiquitous computing devices are converted into active
spaces. Gaia adapts application requirements to the properties of its associated
active space, without the application having to explicitly deal with the particular
characteristics of every possible physical space where they can be executed. An
active space hides the complexities of dealing with heterogeneous devices and

 44

sensors, and provides a generic interface that allows application engineers to
interact with any physical space in a uniform way.

A common limitation of publish-subscribe, Odyssey, and Gaia approaches is the
lack of support for proactive adaptation to context changes [Cap03]. More
precisely, these techniques do not provide mechanisms that facilitate the
customisation of the services the application delivers to its user, based on context.

Carisma is a middleware for context-aware applications [Cap03]. It is based on
reflection and metadata and supports both reactive and proactive application
adaptation. Adaptation takes place by means of metadata, or application profiles,
that contain both reactive and proactive associations. Through reflection,
applications can dynamically alter meta-information, thus adapting their
behaviour to varying context conditions and user needs.

2.2.4 Speculative adaptation

An adaptive application can learn about user behaviour, sense the activity of the
user, and use the idle time of the application for speculative adaptation that
prepares application parts for the potential future contexts in the background.
Network connections can be opened, information can be pre-fetched, and
application instances can be prepared for the potential future contexts in the
background. As a result, it is faster to adapt an application for the new context if
the opened network connections and prepared parts can be utilised in adaptation.

Speculative adaptation requires methods that are capable of predicting potential
future contexts. For example, information pre-fetching requires models capable
of predicting which contents should be downloaded to the cache. The prediction
models can use information about the previous behaviour of the user and try to
predict what the user will possibly do next. If the prediction fails, the failing
must be recognized, the speculative adaptations withdrawn, and the prediction
model updated to improve future prediction accuracy [PBT+04].

Prediction methods are not directly in the scope of this dissertation and are
therefore not discussed in detail. Only a few of them are discussed briefly in the
following paragraphs.

 45

For example, Web logs mining is used for predicting the path of the Web surfer
[PiP99, SYLZ00, YZL01]. The neural networks [KrS93] are used in Adaptive
House project [Moz98] to predict the next location and activities of the user. A
method [AsS03] that is based on Markov models [Rev76] can predict the user�s
future movements. In addition, an approach [Kat02] applies Hidden Markov
Models [Rab89] and Bayesian Networks [Cha91] to predict people�s movement.

Mobile motion prediction algorithms (MMPs) [LiM96] to predict the next
location of a mobile user according to the user�s movement history are also
proposed. An MMP algorithm consists of regularity detection and motion
prediction algorithms. The motion prediction algorithm uses the database of
regular movement patterns and random probability information with
constitutional constraints to predict the next movement track of the mobile user.
The Movement Circle (MC) and Movement Track (MT) models extend the
Markov model for modelling the movement of mobile users. The MC algorithm
is based on the closed circuits-like model of user behaviours and is used for
predicting long-term regular movement whereas the MT algorithm is based on
the MT model and is able to predict the routine movement of the user. The
prediction accuracy ratio is over 50% if a user has 70% or less randomness in his
or her movement [LiM96]. If the user movement randomness is 30% or less, the
prediction accuracy ratio is more than 75%.

A prediction model can also base on evolutionary algorithms [BCS03]. For
example, the population of finite state machines (prediction machines) may
provide a prediction model for the next Web requests of the user at each session
[BCS03]. The best machine in the population is used to make predictions, and at
the end of each session a number of the machines are mutated, evaluated, and a
new population is computed, taking into account the information provided by the
last session. As a result, the proposed prediction system can react quickly to
changes in the user�s habits or in site structure.

2.3 Key techniques for dynamic adaptation

Dynamic adaptation requires programming paradigms supporting adaptation of
both functional and nonfunctional system properties [MSKC04]. For example,
object migration [GCB+00, BHL01], the selection of alternative methods [ChK00,

 46

VZL+98], the substitution of object implementations [SeA00, MUCR02,
MCR04], and middleware reconfiguration [AzJ00, BCA+00, CEM03, VTA04,
RoR05] mechanisms have been used in adaptation.

The dynamic adaptation techniques can be divided into parametric and
compositional adaptation techniques [MSKC04] (Figure 7). The parameter
adaptation modifies variables determining the behaviour of a program, while
compositional adaptation exchanges algorithmic or structural system components
with others adapting the program to better fit to its environment.

Parameter
Adaptation
Parameter
Adaptation

AdaptationAdaptation

Compositional
Adaptation

Compositional
Adaptation

Separation of
Concerns

Separation of
Concerns

Computational
Reflection

Computational
Reflection

Component-
based
Design

Component-
based
Design

MiddlewareMiddleware

Figure 7. Key techniques for adaptation [MSKC04].

Separation of concerns, computational reflection, component-based design, and
middleware solutions are the key techniques for reconfigurable software design
and compositional adaptation [MSKC04]. These are discussed briefly in the
following subsections.

2.3.1 Separation of concerns

Separation of concerns has become an important principle in software
engineering [CzE00]. Presently, the most widely used approach appears to be
Aspect-Oriented Programming (AOP) [Kic96, MSKC04]. AOP provides
abstraction techniques and language constructs to manage crosscutting concerns.
The code implementing these concerns, called aspects, is developed separately
from other parts of the system. In AOP, pointcuts are sets of locations in the
code where the developer can weave in aspects. A specialized compiler, called
an aspect weaver, can combine different aspects into functional code. For
example, separately developed adaptation behaviour can be woven into
applications.

 47

If an adaptive program is composed statically at development time, then any
adaptive behaviour is hardwired into the program and cannot be changed without
recoding and recompilation [MSKC04].

For example, AspectJ [KHH+01] and Compositional Filters [BeA01] can weave
adaptive behaviour into existing applications at compile time. In contrast,
TRAP/J [SMCS04] weaves generic interception hooks into application code
during compile time. Afterwards, the composer weaves new adaptive
components into application at runtime. Finally, a meta-object protocol uses
reflection to forward intercepted operations to the adaptive components.

2.3.2 Compositional reflection

The computational reflection [Smi82, Mae87] refers to the ability of a program
to reason about, and possibly alter its behaviour by enabling the system to reveal
selected details of its implementation without compromising portability
[MSKC04]. As a result of such introspective processing, a reflective system can
inspect and change itself during the course of its execution. The major
drawbacks of reflection are an increased performance overhead and the necessity
to maintain integrity of the system [BlC97].

In a computational reflection, an application is typically structured at a base-
level, which deals with application concerns, and a meta-level, which deals with
reflective computation [BIC97]. The base-level functionality of a program is
typically augmented with one or more meta-levels, each of which observes and
manipulates the base level [KMSS02].

Reflection can be divided into structural and behavioral reflection defined thus:

• Structural reflection. The ability of a language (or system) to provide a
complete reification of the program currently executing, for instance, in
terms of its methods and state. This enables the programmer to inspect
or change the functionality of the program and the way it models the
domain. For example, structural reflection can address issues related to
class hierarchy, object interconnection, and data types [MSKC04].

• Behavioural reflection focuses on the computational semantics of an
application [MSKC04]. It is the ability of a language (or system) to

 48

provide a complete representation of its own semantics, in terms of
internal aspects of its runtime environment [CEM03]. This enables the
programmer to inspect or change the way the underlying environment
processes the program, for example, with regard to non-functional
properties and resource management.

The meta-object and Meta-Object Protocol (MOP) interfaces enable
introspection and intercession of the base-level objects by supporting either
structural or behavioral reflection. Meta-object protocols are used in many
language-oriented techniques that support dynamic adaptation of application.
For example, MOP mechanism is used in Adaptive Java, ARCAD, TRAP/J,
Kava, and R-Java.

Adaptive Java [KMSS02] extends Java language with constructs supporting
computational reflection. It encapsulates application components inside their
meta-level objects with the wrapper pattern. As a result, an application can be
recomposed and new components can be introduced at runtime. In addition,
since Adaptive Java is based on standard Java, the applications composed with it
can be executed with a standard Java virtual machine. Unfortunately, Adaptive
Java is not an application transparent solution � rather its utilisation requires
changes to the source code of a Java program.

ARCAD enables compositional adaptation to be added to Java applications in
two steps [DLB01]. In the first step, generic interception hooks are woven into
an existing source codes during compile time with AspectJ. Next, the intercepted
operations are forwarded to the meta-level objects, which can be programmed at
runtime. The meta-object code is written in Java, while the code compositional
filters are written in high-level language that can be reused in programs written
with other languages such as C++, if a compiler is supported for that language.

TRAP/J provides a two-step approach for dynamic adaptation of Java applications
[SMCS04]. It can be used in the existing Java applications without modifying the
application source code and Java Virtual Machine (JVM). TRAP/J enables
developer to select during compile time a subset of classes in the existing program.
TRAP/J generates aspects and reflective classes associated with the selected
classes. The aspects are generic in that they simply provide hooks that intercept

 49

the program flow. The generic MOP makes it possible to introduce new code,
referred to as a delegate, to be executed upon such an interception.

Kava uses load-time byte-code rewriting to support dynamic adaptation of Java
programs [WeS00]. The Byte Code Engineering Library toolkit enables Kava to
incorporate its runtime meta-object protocol in a Java program. Kava allows
each class to be bound to a meta-level object, where behaviours such as method
invocation, method execution, and filed access can be modified dynamically.
The XML-like binding language of Kava can configure the transformation
process at load time. Traps inserted into class files at load time enable runtime
redirection of the execution to the meta-level object.

R-Java is a Java extension supporting a type of statically-typed meta-objects
called dynamic shells [Gui98]. R-Java is designed to minimize the overhead
when no adaptive behaviour is required. However, the cost is a new instruction,
added to the Java language that enables developers to explicitly change the class
of objects at runtime. Hence, the Java virtual machine requires this modification
and so R-Java is not transparent with respect to JVM.

2.3.3 Component-based adaptation

Component-based designs can support static and dynamic composition
[MSKC04]. In static composition, several components can be combined during
compile time to produce an application, while in dynamic composition
components can be added, removed, or reconfigured within an application at
runtime. Dynamic binding enables a component to call a service that another
component provides. Each plugin may expose the interfaces that it provides and
requires. By matching provisions to requirements, it is possible to identify
components that can be connected and to create dynamic bindings between them
[MDE+95].

Interposition is the addition of functionality in the midst of an existing interface
boundary [SNC00]. As a result, it is possible to modify or extend programs
without rebuilding them. Adaptive methods adapt the functional code of an
application to environment changes [RGL98]. Alternative implementations with
different properties can be offered for the same method. An associated selector
can choose the most effective implementation at runtime [RGL98].

 50

Design patterns [GHJV95] provide a way to reuse software designs practiced
successfully for several years [MSKC04b]. For example, wrappers, proxies, and
strategy pattern are used in adaptation. With wrappers objects can be sub-classed
or encapsulated, so that a wrapper can control method execution. For example,
the Dynamic Interposition Tools (DITOOLS) infrastructure [SNC00] uses
wrappers for dynamic interposition and allows users to load and interpose new
code between the call and the definition of the functions. Proxies can also
surrogate objects and redirect methods calls to different object implementations.
Strategy pattern [GHJV95] enables algorithm implementation replacements
transparently.

A virtual component pattern [CSKO02] can be used in distributed applications
that are executed in memory constrained embedded devices. It provides a small
middleware footprint including only a minimum core and a set of virtual
components, whose code can be dynamically loaded on demand [MSKC04b]. In
other words, it is a placeholder inserted into the object graph and replaced as
needed during program execution.

2.3.4 Middleware-centric adaptation

Instead of adapting applications, many researchers have taken a middleware-
centric perspective and have investigated principles, and designed mechanisms,
to achieve middleware adaptation to context [Cap03]. For example, the
middleware enables the intercept and redirect of method calls and responses
passed through middleware layers.

Reflective middleware may modify itself by means of inspection and/or
adaptation [Cap03]. Through inspection, the internal behaviour of the system is
exposed, so that it becomes straightforward to insert additional behaviour to
monitor the middleware implementation. The internal behaviour of the system
can be modified through adaptation.

The high abstraction level of components means that components do not reveal
more details of their internal implementations than are necessary for entities in
its environment to meaningfully interact with it [BCS02]. The abstraction level
of components can be raised by encapsulating components to interact with their
environment through well-defined interactions [BCS02]. Middleware solutions

 51

are a common solution for encapsulation. Middleware is connectivity software
encapsulating a set of services residing above the network operating system
layer and below the user application layer [MSKC04b]. Middleware can be
composed into four layers [Sch02] (Figure 8).

Domain-specific middleware services

Common middleware services

Distribution middleware

Applications

Host-infrastructure middleware

Operating systems and protocols

Hardware devices

Figure 8. The layers of middleware [Sch02].

Host-infrastructure middleware resides on the top of the operating system and
provides a high-level API hiding in the heterogeneity of hardware devices,
operating systems, and network protocols. Distribution middleware provides
a high-level programming abstraction, such as remote objects, enabling
developers to write distributed applications in a way similar to stand-alone
programs. For example, CORBA [OMG06], DCOM [Ses97], and Java Remote
Method Invocation (RMI) [Dow98] all fit in this layer. Common middleware
services contains higher-level domain-independent components that allow
developers to concentrate on programming application logic, without having to
write the �plumbing� code needed to develop distributed applications, instead
using lower-level middleware features directly [Sch02]. Common middleware
services include fault tolerance, security, persistence, and transactions involving
entities such as remote objects. Domain-specific middleware services can offer
services tailored for the particular class of applications.

The Linda model introduced tuple spaces for parallel programming [CaG89].
Tuple space exists outside of the black-box programs that do the computing.
Accordingly it can be used to pass information between black boxes in different
languages, between the user and system black boxes, and between the past and
future black boxes [CaG89]. Linda in a Mobile Environment (LIME)
middleware supports transient sharing of tuple spaces carried by each individual
mobile unit [MPR01]. In addition, LIME extends Linda tuple spaces with a

 52

notion of location and with the ability to react to the given state. Tuples On The
Air (TOTA) middleware facilitates access to distributed information, navigation
in complex networks, and achievement of complex coordination tasks in a fully
distributed and adaptive way [MaZ04].

The middleware approach can support application transparent adaptation but is
suitable only for programs that are written against a specific middleware
platform [MSKC04b]. A more general approach is to implement compositional
adaptation in the application program itself. The focus of this dissertation is on
techniques adapting the application itself. Hence, most of the middleware
solutions do not directly fall into the scope of this dissertation.

 53

3. Dynamic component-based composition
of adaptive applications

The focus of this dissertation is in adaptation that is based on dynamic
composition of components. This chapter discusses techniques that support
dynamic composition of component-based adaptive applications.

3.1 Introduction

Software deployment is a complex process including configuring, releasing,
installing, updating, reconfiguring and even de-installing activities of a software
system [HHHW97]. Context awareness plays a significant role in the
component-based deployment by permitting the automatic installation and
reconfiguration of a software system on the consumer site depending on the
users�s needs and preferences and environmental constraints [CTA+04]. This all
sets requirements for components and techniques that support dynamic
component-based composition.

The dynamic composition requires a notion of plug compatibility [NiP91,
NiT95] for selecting the correct components that may be successfully combined
in order to achieve a desired behaviour. Each component should have a well-
defined identity that unambiguously distinguishes one component from another
so that components can be accessed and manipulated specifically [BCS02].

An adaptive component-based system should support different forms and spans
of life-cycles of components, including bootstrapping, deployment, installation,
initialization, suspension, and termination [BCS02]. In addition, explicit
construction of activities taking place in a system, the manipulation of activities,
and possibly spanning or involving multiple components must also be supported
[BCS02].

It must be ensured that a system executes in an acceptable, or safe manner
during the adaptation process [MSKC04]. For verifying the correctness of an
adapted system, developers must certify the correctness of components with
respect to their specifications [BPR02]. Certification can include nonfunctional

 54

requirements, such as security and performance, as well as functional
parameters. It can be obtained by using already verified components or by
generating code automatically from specifications.

Various kinds of methods are needed to support dynamic composition of
components. The dynamic composition of components set requirements for:

• Methods that are able to solve computational mismatches. Over time,
research in software engineering and programming languages has
developed a number of techniques in order to overcome compositional
mismatches [Sch99]. A few of these are discussed briefly in Section 3.2.

• Architectures and frameworks supporting construction of component-based
adaptive applications. Many architectures and frameworks support dynamic
composition of component-based adaptive applications. Section 3.3.

• Techniques offering support for dynamic composition concerns of
adaptive applications. The abstraction level of component-based
composition can be raised in order to make it is easier for developers to
implement adaptive applications. In addition, if the composition
concerns are separated from the rest of the application it may be possible
to reuse composition schemas in different applications. Section 3.4.

• Solutions supporting dynamic adaptation of distributed component-
based applications. Many solutions support adaptation of distributed
component-based applications. Section 3.5.

• Solutions supporting dynamic adaptation of content and context-
sensitive applications on the client-side. Several solutions support client-
side adaptation of component-based content and context-sensitive
adaptive applications. Section 3.6.

• New adaptation techniques. Although a great deal of solutions
supporting component-based composition exist, new techniques that will
make the dynamic composition of content and context-sensitive
applications more fluent are still needed. Section 3.7.

 55

3.2 Techniques for solving computational mismatches

In an ideal component world, components are available for any task that an
application has to perform and these components can be simply plugged together
[Sch99]. However, it is a fact that developers are often constrained to use
(legacy) components that are not plug compatible with other components
[ALSN01]. This can cause compositional mismatches [Sam97].

Control flow and interface impediments can make composition difficult
[KMF01]. Control flow impediments relate to the ordering of execution of
components [GAO95]. For example, two components cannot be used together if
they have different assumptions about the sequencing of computation and
passing of control between them. Interface impediments occur when components
contain statically bound information about interfaces of other components, such
as method names, data types, orderings, and communication protocols.
However, this information will be invalid in different contexts, and will prevent
the component reusing in an arbitrary composition [KMF01].

The specification of a component should also include information about its
behaviour as well as its interface [Crn03]. Software components and services are
not despite the common conception, Lego-like building blocks, but rather more
like organs in the body, which are larger conglomerations of more minute
components and provide a distinct function and goal within a context [ACM04].

This dissertation focuses on dynamic composition, which is based on
components that are directly compatible or already adapted (e.g. with glue code)
to work together. Techniques that solve computational mismatches are not
directly in the scope of this dissertation and are therefore not discussed in detail.
Only a few of them are discussed briefly in the following subsections.

Compositional mismatches can be solved with black and white-box techniques.
White-box techniques focus on adapting a mismatched component by either
changing or overriding its internal specification (e.g. inheritance in object-
oriented languages) whereas black-box techniques only adapt interfaces [Bos99].
This dissertation considers a component as an entity which cannot be directly
modified and thus considers black-box techniques only.

 56

3.2.1 Glue-code-based solutions

Glue abstractions may bridge architectural styles and adapt components that
have not been designed to work together whereas coordination abstractions may
manage dependencies between concurrent and distributed components [AcN01].
Glue code can overcome compositional mismatches by adapting components to
the new environment they are used in [Sch99]. It may adapt interfaces, client and
server contracts, and bridge platform dependencies. Glue code may be ad hoc,
written to adapt a single component, or it may consist of generic abstractions to
bridge different component platforms [ALSN01].

Glue code can be attached to components with wrappers [GHJV95] that are an
often-used technique to overcome compositional mismatches. A wrapper implies
a form of encapsulation whereby a component is encased with an alternative
abstraction [Sch99]. A wrapper can pack the original component into a new one
with a suitable interface in order to enable the clients of the wrapped component
to access the services provided by the wrapper. However, it is important to note
that wrapping techniques cannot be always applied to overcome compositional
mismatches [YeS97].

3.2.2 Architectural solutions

Autonomous services can avoid control model mismatches by keeping their own
focus of control whereas interface impediments can be avoided by allowing
services to only name their own input and output ports [KMF01]. As a result,
autonomous services can be connected in a data flow network, where data is
passed from one component’s output port to another’s input port according to
the data flow description of the composition.

Intermediate forms focus on adapting all components of a system in a way that
they conform to some standard form [Sch99]. Whereas wrappers and other glue
techniques mainly focus on overcoming compositional mismatches, standard
forms try to avoid them (at least to a certain degree) by restricting the kind of
components which can be used in a system. Standard forms generally specify (1)
how interfaces for components have to be defined, (2) what kind of data entities
can be exchanged between components, (3) what kind of interaction
mechanisms, and (4) what kind of architectural style(s) can be used [Sch99].

 57

Applications based on intermediate forms tend to focus on specific application
domains or architectures [Sch99].

The Blackboard architecture enables a collection of independent programs to
work cooperatively on a common data structure [BMR+96]. A central control
component evaluates the current state of processing and coordinates the
specialized programs. This data-directed control regime is referred to as
opportunistic problem solving. It makes experimentation with different
algorithms possible, and allows experimentally-derived heuristics to control
processing. Unfortunately, the Blackboard architecture does not support
synchronization. A simple solution for synchronization problems is to save only
immutable objects to the Blackboard.

Software bus and middleware solutions are commonly used intermediate form
techniques. A software bus defines a standardized communication protocol for
exchanging data (i.e. a set of data types that can be used to exchange data and a
number of service invocation mechanisms), takes care of correct message
handling, and performs all necessary data conversions. A software bus can be
seen as a kind of intelligent blackboard. For example, Bart [Bea92] and Polylith
[Pur94] have used the software bus mechanism. Object Request Broker
middleware does not only define interface restrictions for components and
interaction protocols, but also offers additional services for event models,
transactions, and service traders [Sch99].

3.3 Architectures and frameworks for component-based
adaptive applications

The dynamic component-based adaptation requires architectures and
frameworks that help developers to implement application components and,
finally, to dynamically compose adaptive component-based applications. Several
adaptation techniques concentrate on the structure of component-based and
dynamically adaptive applications. This section discusses a few of the most
important solutions described in existing literature.

 58

3.3.1 Lipto

Lipto is an object-oriented architecture for portable and distributed operating
systems [DPH91]. It facilitates the dynamic composition of services and
applications from a set of building blocks or modules.

A service class defines a downcall and an upcall interface for each of the object
types which jointly provide a service in its class. A service class specifies how
two layers of objects interact: it defines the downcall operations that the server
objects provide and the upcall operations that the client objects must support. As
a result, a set of modules which participate in the implementation of a service
form a dependency graph. The module at the root presents the service to its
clients whereas the modules at the leaves do not depend on any lower-level
services.

The Lipto infrastructure is designed to benefit and match the needs of all parts of
the system. All complex and specialized functionality is implemented in the
form of subsystems consisting of a set of composable modules. For example, the
location-transparent object invocation mechanism of Lipto is composed
dynamically of modules. As a result, the communications services used to
implement location-transparent invocations can be composed at runtime and so
it is possible to take advantage of the most efficient transport protocol,
depending on the location of the server object with respect to the client object.

3.3.2 Multitel

Multitel is a compositional framework for collaborative whiteboard applications
supporting the coordination of users with heterogeneous multimedia and
network resources [FuT99]. The Multitel platform is structured in application
components and middleware platform kernel layers. Multitel composes and
connects the corresponding application components dynamically and adapts
them to customizable user profiles at runtime. The middleware platform kernel
provides common control services for multimedia data delivery. The core of the
system is the User-Service Part (USP), which represents the local service access
point. It encapsulates the application architecture, which in turn drives the
dynamic composition of the distributed components. The USP can also modify

 59

its internal structure in order to add external components, such as vendor plug-
and-play components.

3.3.3 LEAD++

The LEAD++ enables to the structuring of dynamically adaptive component-
based software systems as a direct graph of components [AmW99]. LEAD++
introduces a software model, called DAS, and a description language for
dynamic adaptation. In the DAS model, the dynamic adaptability is based on
adaptive procedures. An adaptive procedure is a variant of a generic procedure
(function) whose methods are selected depending on the state of its runtime
environment. In addition, control mechanisms and selection strategies of
adaptive procedures are realized with the user of adaptive procedures.

A LEAD++ application consists of a meta and base-level. The meta-level
describes control mechanisms for dynamic adaptability. The base-level consists
of primary subject domain codes in the software system. LEAD++ provides
syntax to describe adaptive behaviour, which can be translated into ordinary
methods in Java by the LEAD++ translator. The reflective adaptation
mechanism of LEAD++ is based on dispatch objects that control adaptive
procedures by using an object implementing adaptation strategies. As a result,
the adaptation mechanism can be customized in a dynamic way depending on
the states of runtime environments. In addition, the adaptation mechanism can be
changed uniformly at the meta-level using the same mechanism as the adaptive
procedures use at the base-level.

3.3.4 Fractal

The Fractal component model is a recursive model that allows components to be
nested (i.e. to appear in the content of enclosing components) at an arbitrary
level [BCS02]. A Fractal component is formed out of the controller and content
parts. The content consist of (a finite number of) components, which are under
the control of the controller of the enclosing component. Different components
may have overlapping contents, i.e. a component may be shared by several
distinct enclosing components. Fractal components can have a variable number
of client and server interfaces during their life-time. A server interface can
receive operation invocations whereas a client interface can emit operation

 60

invocations. A binding is a connection between two or more components. The
Fractal model comprises of primitive and composite bindings. A primitive
binding is a directed connection between a client and server interface. A
composite binding is a combination of primitive bindings and ordinary
components, i.e. composite bindings are themselves Fractal components.

A component controller embodies the control behaviour associated with a
particular component. It can intercept incoming and outgoing operation
invocations and operation returns targeting or originating from the component�s
content it controls; it can provide an explicit and causally connected
representation of the component�s forming the content it controls; and it can
superimpose a control behaviour to the behaviour of the components in its
content, including suspending and resuming activities of these components. Each
controller can thus be seen as implementing a particular composition operator
for the components in its content.

3.3.5 One.world

The location and execution context of an application changes constantly as
people move through the physical world, either carrying their own portable
devices or switching between devices. One.world helps developers to build
applications adapting automatically to an ever-changing computing environment
[Gri04]. The One.world architecture provides support for contextual change, ad
hoc composition, and facilitates information sharing between applications and
devices by introducing four foundation services for adaptive applications. The
foundation services are a virtual machine, tuples, asynchronous events, and
environments.

In order to make applications usable in various kinds of devices, all code in
One.world runs in a virtual machine � namely, in the Java virtual machine.
One.world represents all data as tuples, which define a common data model,
including a type system, for all applications and thus simplifies data sharing.
Tuples are records with named and optionally typed fields. Moreover, each tuple
is self-describing which enables an application to dynamically inspect its
structure and contents. One.world expresses all communication through
asynchronous events, which can notify applications of changes in their runtime
context. Finally, like traditional operating system processes, environments host

 61

running applications and isolate them from one another. They also serve as
containers for persistent data, providing associative tuple storage and thus make
it possible to group running applications with their persistent data. Furthermore,
these environments nest within one another, making it easy to extend and
compose applications. An outer environment has complete control over all
nested environments, including the ability to easily intercept and modify events
sent by inner environments to the kernel of One.world (which runs in a device�s
root environment) and to other devices. This interposition facility allows
developers and users to dynamically change the behaviour of an application
without changing the application itself. Moreover, it is particularly useful for
complex and reusable behaviours, such as replicating an application�s data or
deciding when to migrate an application.

One.world offers system services for discovery and migration. Discovery helps
in locating and connecting to services on other devices, and migration helps in
implementing applications following a user through the physical world.
Discovery locates resources � that is, event handlers � by their descriptions. It
leverages One.world�s uniform data model, in which all data, including events
and queries, are tuples. Discovery uses this data model and offers, for example,
early and late binding and anycast and multicast options.

Migration moves or copies an environment and all its contents to a different
device, thus simplifying the implementation of applications that follow a person
through the physical world. One.world moves the entire state between the
devices in one atomic operation. This avoids residual dependencies and requires
connectivity between the devices only during migration. As a result, many of the
complexities of traditional process migration can be avoided and migration
across the Internet becomes practical.

3.4 High-level programming techniques supporting
dynamic composition of component-based and

adaptive applications

Programming based component composition is tedious because many syntactical
details that are not necessary from an architect viewpoint must be resolved
[DSGO03]. Thus high-level methods are needed to facilitate the dynamic

 62

composition of components. For example, graphical integration is easy with
intuitive block diagrams as in HW/SW Codesing of an Engine Management
System (VCC), but it can be difficult to manage very large designs [DSGO03].
Component integration and object interpretability can also be specified with the
Uniform Modeling Language (UML) [MLG01]. Also scripts can be used in
dynamic component composition.

A script specifies how components are plugged together [NTMS91]. Scripts can
be seen as a kind of mortar �gluing� bricks (i.e. components) together [Sch99].
The essence of a scripting language is to configure components, possibly defined
outside the language. Scripts commonly provide a higher level of programming
than assembly or system programming languages, much weaker typing than
system programming languages, and an interpreted development environment.
Scripting languages sacrifice execution efficiency to improve the speed of
development [Ous98].

A scripting language must provide (1) an encapsulation mechanism to define
scripts, (2) basic composition mechanisms to connect components, and (3)
abstractions to integrate components written outside the language (i.e. a foreign
code concept) [Sch99]. A script makes architectures explicit by exposing exactly
how the components are connected [ALSN01].

Domain-Specific Languages (DSLs) are programming or executable specification
languages that offer, through appropriate notations and abstractions, expressive
power focused on, and usually restricted to, a particular problem domain
[DKV00]. Domain-Specific Languages (DSLs), also known as �Little Languages�
[Ben86], have recently gained increasing attention [NFG06].

A composition language is a combination of the aspects of (1) Architecture
Description Languages (ADLs), allowing us to specify and reason about
component architectures, (2) scripting languages, allowing us to specify
applications as configurations of components according to a given architectural
style, (3) glue languages, allowing us to specify component adaptation, and (4)
coordination languages, allowing us to specify coordination mechanisms and
policies for concurrent and distributed components [ALSN01] (Figure 9).

 63

Scripting Languages configure
applications from components.
E.g., Perl, Python, Visual Basic

Coordination Languages configure
applications from distributed
computational agents.
E.g., Linda, Manifold

Architectural Description Languages
specify architectural styles in terms
of components, connectors, and
composition rules.
E.g., Wright, Rapide

Glue Languages adapt applications
and components to new requirements
and architectures.
E.g., C, Smalltalk

Composition Language

Figure 9. A conceptual framework for software composition [ALSN01].

A composition language should support the flexible construction and evolution
of applications by promoting systematic component-oriented development of
open systems [NiM94]. It should serve as a bridge between traditional
implementation languages and higher-level composition tools. A formal object
model is necessary to act as the �glue� between these layers. A composition
language would function at a higher level than a programming language by
allowing one to specify explicitly components, compositions, and component
frameworks.

Split-level programming refers to architectural system integration and
component programming on two different levels that are strongly connected by a
matching class hierarchy and methods [Ous98]. Split-level programming
relieves system engineers of programming artefacts and software engineering
concerns specific to component implementation, and lets them focus on system
architecture [DSGO03]. For example, a network simulator (NS) uses a split-
programming model to create a network simulation environment with two layers
of programming facilities: one for building objects and the other for composing
them [BEF+00].

3.4.1 MMLite

MMLite is a modular system architecture that provides a selection of object-based
components that are dynamically assembled into a full application system
[HeF98]. MMLite components contain code, static data, a stack, and a number of
dynamic objects. In MMLite, a component is a namespace, where components are
automatically loaded on demand. When a component is loaded into an address

 64

space it is instantiated. The instantiated component creates object instances that
communicate with other objects, potentially in other components.

MMLite objects are made available to other components by registering them in a
namespace. The objects expose their methods through Component Object Model
(COM) [Bro95] interfaces. A proxy is interposed for delegation, if the object
that is the target of a method is in a different machine or a different address
space. Instead of calling the actual object, the client will call the proxy that
marshals the parameters into a message and sends it for the machine where the
actual object is located.

An object consists of an interface, instance pointer, implementation, and state.
The interface is a list of methods. The instance pointers and interfaces are
exposed to other objects; the state and the implementation are not. Worker
threads execute implementation code that accesses and modifies the state. Once
an object instance has been created, the instance pointer, interface, and
implementation are traditionally immutable, only the state can be changed by
method calls. MMLite allows runtime changes to the ordinarily immutable part
of an object, even while the object is being used. For example, a method
implementation of an object can be changed. A mutator thread must translate the
state of the object from the representation expected by the old implementation to
the one expected by the new implementation. It must also coordinate with
worker threads and other mutators through suitable synchronization
mechanisms. Transition functions capture the translations that are applied to the
object state and to the execution state of the worker thread. Mutation enables a
number of mechanisms. Interposition is done via replacement of the object with
a filter object pointing to a clone of the original object. A dynamic software
upgrade would replace the incorrect implementation of a method with the
corrected one. Runtime code generation might use a stub implementation as a
trigger. Mutation can be used to replace generic code with a specialized version
that exploits partial evaluation by treating ordinarily non-constant state as
immutable.

3.4.2 THINK

The THINK software framework facilitates implementation of operating system
kernels and associated tools, including a library of commonly used kernel

 65

components from fine-grained components [FSLM02]. A system built using the
THINK software framework, is composed of a set of domains that correspond to
resource, protection, and isolation boundaries. A domain comprises of a set of
components interacting through bindings that connect their interfaces. In
THINK, components can use bindings that are themselves assemblies of
components implementing communication paths between one or more
components. A binding covers both language-level bindings (e.g. associations
between language symbols and memory addresses) as well as distributed system
bindings (e.g. Remote Procedure Call (RPC) or transactional bindings between
clients and possibly replicated servers). An interface in the THINK framework is
designated by a name. Names are context-dependent, i.e. they are relative to a
given naming context that encompasses a set of created names, a naming
convention, and a name allocation policy.

3.4.3 OpenCOM

The OpenCOM programming model supports dynamic runtime reconfiguration
of component-based systems (i.e. one can load, unload, bind, and rebind
components at runtime) [CBG+04]. It can be used in a wide range of
deployment environments (e.g. operating systems, Personal Digital Assistants
(PDAs), embedded devices, and network processors) and allows the
particularities of various deployment environments to be selectively hidden from
or made visible to the programmer without inherent performance overhead.

The OpenCOM programming model has primitives that load components into
units of scope and management called capsules and primitives that bind
component interfaces and receptacles. A component can be a composite of
internal sub-components and support number of interfaces and receptacles that
express a dependency on an interface provided by some other component.
Interface-to-receptacle binding is a third-party operation, i.e. code that binds a
receptacle on one component to an interface on another can reside in any
component within the capsule.

The OpenCOM programming model supports the notions of caplets, loaders,
and binders as first class entities. Caplets are nested �sub-scopes� within
capsules; loaders provide various ways of loading components into various types
of caplets; and binders provide various ways of binding interfaces and

 66

receptacles, both within and across different caplet types and instances. Caplets,
loaders, and binders are themselves implemented as components that are
�plugged-in� to hosting component frameworks.

3.4.4 BALBOA

The BALBOA component integration environment relies on smart wrappers that
contain information about the types and object models of the components, and
assemble them through an interpreted environment with a loose typing
[DSGO03]. It is composed of three parts: a script language interpreter, compiled
C++ components, and a set of split-level interfaces to link the interpreted
domain to the compiled domain.

BALBOA introduces an active code generation technique, and a three-layer
environment that keeps the C++ components intact for reuse. The BALBOA
composition environment has an architecture definition, intermediate wrapper,
and component definition layers. At the architecture definition layer, the type of
a component is abstracted and a type management system is used to infer and
instantiate the exact types required by the simulation model. Designs are
assembled from configured components by using the Component Integration
Language (CIL). The component definition layer is the bottom layer, which can
contain any compiled C++ object. The intermediate wrapper layer is the link
between the interpreted and compiled layer.

CIL interpreter can execute a number of commands to perform component
composition, simulation control, test bench creation, and event monitoring.
A type-inference system maps all weakly-typed CIL interfaces to strongly typed
C++ component implementations to produce an executable architectural model.
CIL can generate Split-Level Interface (SLI) wrappers around each C++
component and component libraries. SLIs can be used to select, adapt, and
validate the implementation types.

3.4.5 LuaCorba

LuaCorba facilitates the development, rapid prototyping, and testing of
distributed auto-adaptive applications by offering high-level programming
mechanisms to access the dynamic interfaces provided by CORBA [MUCR02].

 67

It allows developers to define adaptation strategies for distributed applications
that can dynamically select the components that best suit their requirements,
verify whether the system satisfies these requirements, and eventually react to
variations in the non-functional properties of the used services.

The adaptation strategies are encapsulated to smart proxies. A smart proxy
represents a service and dynamically selects the specific server that will actually
provide the service. The programmer can define in the smart proxy the
behaviour that best suits the application requirements. Examples of such
behaviours are: component substitution according to execution conditions,
choice of different components for different requested operations, use of
alternative methods, and management of control mechanisms.

To verify and guarantee the fulfilment of the requirements over time, the smart
proxy can observe and control the properties associated with these requirements.
The LuaMonitor mechanism informs the smart proxies about relevant changes in
the observed properties, and allows them to activate, when appropriate, the
programmed adaptation strategies.

The adaptation strategies are defined with an interpreted Lua language. As a
result, the reconfiguration facilities are transparent to the functional behaviour of
applications, i.e., the reconfiguration code is not mixed with the application
code. In addition, the reconfiguration solution can be updated dynamically and
applied in various applications and with components with different functional
interfaces.

3.4.6 CASA

CASA provides a runtime system that supports adaptation at various levels of an
application � from lower-level services to application code [MuG05]. The
CASA runtime system monitors the execution environment on behalf of the
running applications and carries out the adaptation of the affected applications.
The adaptation policy of every application is defined in a so-called application
contract, which is specified by using an XML-based language facilitating
modification, extension, and customization of the adaptation policy at runtime.
Thus, the adaptation concerns are separated from the business concerns of an

 68

application. In addition, the user or administrator has control over the adaptation
policy, although the adaptation is carried out in a user-transparent manner.

3.4.7 Component Configurators

The Component Configurator [KoC00, Kon00] defines a framework for
reconfiguring distributed applications [SEK03]. It simplifies requirement and
architectural analysis by defining a clear separation between the aspects related
to environment monitoring, detection of environmental changes, and dynamic
application reconfiguration. The framework is composed of a collection of
CORBA objects and services. The framework is implemented with Java and
uses JacORB as the CORBA ORB.

The Component Configurators coordinate reconfiguration actions between the
application components. Each application component has a corresponding
Component Configurator that keeps track of the dynamic dependencies between
the component and other system or application components. By maintaining an
explicit representation of those dependencies, it is possible to guarantee runtime
consistency.

Component Configurators disseminate events across inter-dependent
components. Examples of common events are the failure or migration of a
component, internal reconfiguration, or replacement of a component
implementation [SEK03]. Those events affect all the dependent components and
coordinate reconfiguration actions between the application components.

Programmers can insert the code to a Component Configurator to deal with
configuration-related events. The framework organizes the code that treats each
environment event as a set of strategies, using the Strategy Pattern [GHJV95].
This provides a clear separation of concerns between the application functional
code and the code supporting application reconfiguration [SEK03].

3.4.8 Plasma

The Plasma framework [LaH05b] is based on the Fractal component model
[BCS02] and supports building of self-adaptive component-based applications
and hierarchical composition of components. It provides a dynamic Architecture

 69

Description Language (ADL) that enables developers to describe the dynamic
behaviour of an application with respect to changes in the environment. The
middleware framework offers the required tools to match a specification with a
component assembly. Adaptive behaviour is executed by using probes, sensors,
and actuators. Probes and actuators sense the context whereas actuators perform
the actual adaptation actions. For example, functional, structural, and policy
reconfigurations can be made.

3.5 Solutions supporting dynamic adaptation of
distributed component-based applications

Dynamic adaptation of a complex distributed software system requires
considerable formal knowledge about the specifications of the system, ways to
express, reason about, and coordinate the adaptation of system components, and
computational mechanisms for interfacing to system components and modifying
their functionality on the fly [VKK01]. Many solutions support adaptation of
distributed component-based applications.

3.5.1 Sparkle architecture

The Sparkle architecture provides an Internet-enabled infrastructure for
pervasive computing and dynamic component composition [BWL03]. It consists
of client devices, facet servers, intelligent proxies, and execution surrogates.
Client devices provide a platform for the application to run whereas a facet
server is a place for the service providers to publish and release their designed
facets. Intelligent proxies receive requests from the client and return suitable
facets. Execution surrogates are resource rich machines responsible for carrying
out executions for the clients just in case the client devices do not have enough
resources.

A facet consists of the shadow and code segment parts. Shadow describes the
properties of the facet in XML format. For example, it can define the identifier,
vendor, and version of the facet. It can also define an identifier for the
functionality of the facet, resource requirements, and dependencies to other
facets. Code segment is the body of the executable code implementing the

 70

functionality. Facet dependencies are the functionalities that a particular facet
depends on.

A facet does not interact with the user and does not maintain any application
state. Data and execution state are stored in the container that provides an
application-like abstraction to the user. Sparkle makes the adaptation
mechanisms transparent for the programmer. A facet programmer needs to
provide different versions of facets and application programmers need to specify
functionalities making up an application. The adaptation policies are carried out
by the resource manager and the proxy server of Sparkle.

3.5.2 WebCODS

The WebCODS system facilitates dynamic component composition over the
Web [SPW02]. It supports dynamic component loading and unloading to
providers, clients, and the component broker, transferability of WebCODS
components, instantiation and execution of components, and dynamic
composition with other components.

WebCODS provides a set of connectors enabling precompiled Java components
to be linked together. In addition, these connectors can be rewritten using
reflection methods. Existing Java application components are converted into
WebCODS components with wrapper classes that characterize the interface of
the component, provide interaction points for connectors to communicate with
the component, and finally specify the execution sequence of the component.
Connectors link components dynamically by using the reflection methods of
Java. Adaptations may be needed when different components are involved. For
example, customization of the parameters of connectors and the generation of
component-specific glue-code to handle the connections can be needed.

3.5.3 Hadas

A Hadas programming model enables distributed applications to be adapted
dynamically to changing circumstances [BHL01]. It enables distributed
applications to be composed dynamically of independently developed and
autonomously maintained components, so that components can be changed
independently with no impact on the application [BHL01]. With it a deployed

 71

component can be tailored to the target application and environment without
necessarily knowing in advance the complete details of the environment. In
addition, with Hadas, deployment can be optimized based on fresh runtime
information [BHL01].

Hadas provides a set of programming and runtime tools, including a component
builder, a distributed component browser, and a graphical shell for Hadas-based
application execution [BHL01]. Hadas components are fully reflective and
support both dynamic introspection and evolution. Each component is split into
fixed and extensible sections. The fixed section is treated as conventional class-
based items that cannot be changed during the lifetime of the component. This
portion of the component can be used to store its fundamental state and
behaviour. The extensible aspect of Hadas comprises the mutable portion of the
component though which the structure and behaviour of the component can be
changed with meta-methods, and in which new items (data, objects, or methods)
can be added, removed, or changed on-the-fly. Since the items of the extensible
section cannot be counted to have specific semantics at any given time, they
cannot be reused in other instances.

The Hadas universe is structured as a collection of sites, each containing a
collection of components [BHL01]. The hierarchy defines a naming scheme for
components since they are uniquely identified by their site�s address, name, and
the path from the site to them. Sites are linked to each other with the site-level
Link protocol, which negotiates and establishes a mutually agreeable connection
and a channel of communication. The dynamic application is centred on the
notion of Ambassador, which is a representative of a component that gets
deployed to remote site upon successful completion of a connectivity protocol.
Ambassador serves as an adaptive remote reference and an interoperability
handler.

In Hadas, an Ambassador is a representative of a component that gets deployed
to a remote site upon successful completion of a connectivity protocol.
Ambassadors serve as an adaptive remote reference and as an interoperability
handler that can transform the input from an invoking component in the
Ambassador's deployed site into a format that is expected by the Ambassador's
home component. It then transforms the output from the home component into a
format that is expected by the remote invoking component.

 72

3.5.4 AMPROS

The AMPROS (Adaptive Middleware Platform for PROactive reconfigurable
Systems) architecture provides a distributed, just-in-time, and context-aware
deployment of component-based applications [ATB04]. The AMPROS
middleware platform aims to hide as much as possible the details of the
hardware, the operating system, and the telecommunication protocols from
application developers and users [CTA+04]. A context manager is associated
with a middleware manager coping with the collaboration between the users and
the other entities of the middleware. The users and middleware services rely on
context information: the former for expressing needs and behaviour, the latter
for being proactive. These middleware services include disconnection
management, fault management, and deployment services.

AMPROS allows the installation and reconfiguration of an application according
to the context by using a set of lightweight adaptive components that are able to
modify several deployment parameters such as the architecture of the application
and the placement and configuration of the components. In addition, the adaptive
components may be added to existing deployment tools without modifying the
tools themselves [ATB04].

3.5.5 Kinesthetics eXtreme

Kinesthetics eXtreme (KX) is a mobile agent-based infrastructure for runtime
monitoring and reconfiguration of component-based distributed systems
[VKK01]. The KX meta-architecture aims to handle global situations, perhaps
involving heterogeneous components obtained from multiple sources where it
would be difficult if not impossible to retrofit self-assurance. The occurrence of
significant conditions within the target system are detected and reported by the
monitoring part of the meta-architecture. The process engine is notified about
conditions and may dynamically instantiate, initialize, and finally dispatch one
or more software agents, called Worklets, to perform the adaptation operations.

Each Worklet can contain one or more mobile code snippets, called worklet
junctions, to actuate the required adaptation of the target system. The data
structures of a junction can be initialized with data, typically coming from the
task definition, process context, and information contained in the event(s) that

 73

represents the triggering condition. Furthermore, any process-related
configuration of Worklets is accounted for worklet jackets, which allow scripting
of certain aspects of Worklet behaviour in the course of its route.

The process engine requests junctions for the dynamic adaptation task at hand
from a Worklet Factory, which has access to a categorized semantic catalogue of
junction classes and instantiates them on its behalf. Interfaces exposed by
junctions in the catalogue must be matched to the kind of capabilities that are
necessary for the task and to descriptions of the target components subject to
dynamic adaptation. Once a Worklet gets to a target component, the interaction
between the junction(s) and the target component is mediated by a host adaptor,
which semantically resolves any impedance mismatch between the interface of a
junction and that of the component.

3.5.6 SOCAM

A service-oriented context-aware middleware (SOCAM) is an infrastructure for
building and prototyping context-aware applications in a smart-home
environment [GPZ04]. It is built on top of the service-oriented OSGi [OSGi03]
that is an open specification for a component model allowing networked services
to be deployed and managed. Adding an OSGi Service Platform to a networked
device adds the capability to manage the life cycle of the software components
in the device from anywhere in the network. Software components can be
installed, updated, or removed on the fly without having to disrupt the operation
of the device.

SOCAM components are independent Java-based service components that can
be distributed over various networks. Components can interact with each other
by using Java RMI that lets distributed objects invoke each other�s methods.
SOCAM offers a set of services for context discovery, acquisition, and
interpretation and provides an ontology-based context model that leverages the
Semantic Web technology and Web Ontology Language (OWL). OWL is an
ontology mark-up language that enables context sharing and reasoning.

SOCAM provides methods that are able to reason about various contexts and
derive high-level contexts from low-level ones and implicit contexts from
explicit ones. Thus the acquired contexts are converted into a semantic space

 74

where context-aware applications can share and access them. In SOCAM,
context providers abstract acquired contexts and convert them to OWL
representations so that other service components can share and reuse them. The
context interpreter provides logic reasoning services to process context
information. The service-locating service enables the users and applications to
locate context providers and interpreters. Application developers can predefine
rules and specify the methods to be invoked when a condition becomes true.
Rules are saved in a file and preloaded into context reasoners. These rules can
also be later updated dynamically.

3.5.7 Other solutions for component-based deployment

Several component-based deployment solutions such as the CORBA Component
Model component packaging and deployment model [OMG02], the EJB [Sun02]
and the .Net deployment solutions [Sco00], and the J2EE deployment API
[Sea02] exist. However, these deployment solutions do not consider the context
information.

A distributed system can be composed of a collection of interacting Web
services. A web service is a software application identified by a URI, whose
interfaces and binding are capable of being defined, described, and discovered
by XML artefacts and supports direct interactions with other software
applications using XML-based messages via Internet-based protocols
[ABFG04]. A Service-Oriented Architecture (SOA) defines the services of
which the system is composed, describes the interactions that occur among the
services to realize certain behaviour, and maps the services into one or more
implementations in specific technologies [BJK03]. In other words, it is a way of
designing a software system to provide services to either end-user applications
or other services through published and discoverable interfaces [BJK03]. Web
services use often Simple Object Access Protocol (SOAP) [BEK+00] for
interaction. The Web Services Description Language (WSDL) [CCMW01]
supports the description of Web services whereas the Universal Discovery,
Description, and Integration (UDDI) standard [CHRR04] is developed to
support the discovery of Web services.

The OMG has specified a data model for a deployment plans that can contain
information about artefacts that are part of the deployment, how to create

 75

component instances from artefacts, where to instantiate them, and information
about connections between them [OMG03]. The specification also presents a
data model for describing the domain into which applications may be deployed
as a set of interconnected nodes with bridges routing between interconnects.

3.6 Client-side solutions for adaptive content and
context-sensitive applications

Content adaptation has been the subject of much research. However, content
adaptation techniques (e.g. [MSL99, KAK+00, LaH05]) concentrate more on
server-side adaptation. This dissertation focuses on client-side adaptation and on
composition of adaptive content and context-sensitive applications of software
components. Thus the content adaptation techniques do not directly fall into the
scope of this dissertation and are not discussed in more detail.

Mobile browsers are developed in a software product line for reducing costs,
adding reusing, and improving quality [Jaa02]. An Extensible Browser
Architecture (EBA) [SCH+04] that can be extended with widgets is also
proposed. In addition, an adaptive browser [HeI01] that is based on the Grail
(http://grail.sourceforge.net/) browser and is able to adapt for display type,
bandwidth availability, and network connections is developed, too. CM4DG is
an XML-based visual component model for designing dynamic GUIs [XPJ03]. It
states relations among various visual components and composition rules. Multi-
User Publishing Environment (MUPE) (http://www.mupe.net/) is an open source
platform for creating mobile multi-user context-aware applications. The
application functionality and downloadable UI descriptions are programmed into
the MUPE server. As a result, the client implemented with Java MIDP is the
same for the different MUPE applications. Users can modify the virtual world of
MUPE with specific built-in tools. For example, end-users can create and
publish data into the system. The drawback of MUPE is the amount of
transferred data between the client and server.

Approaches are also proposed to support client-side processing in mobile
browsers. For example, mobile browsers can execute programs, called dynamic
documents [KPT94], and generate the actual information that is displayed to the
user. Dynamic documents can define actions that may access information local

http://grail.sourceforge.net/
http://www.mupe.net/

 76

to the client, fetch other documents, and finally generate an HTML document to
be displayed for the user.

Asynchronous JavaScript and XML (Ajax) [Gar05] is a standard-based
programming technique designed to make Web-based applications more
responsive, interactive, and customizable [Smi06]. Ajax is based on
asynchronous JavaScripts that can be embedded in an HTML page to make
server calls, retrieve new data, and simultaneously update the Web page without
having to reload all the contents, all while the user continues interacting with the
program [Pau05]. The Document Object Model (DOM) enables the interactive
user experience. Furthermore, XML and XSLT are used in data exchange and
transformations. JavaScript joins the components together whereas
asynchronous communication between the client and server is done via
XMLHttpRequests.

In addition to content browsers, adaptive client applications are developed to be
used in pervasive environments, too. Solutions that facilitate the construction of
adaptive applications of smart spaces are also proposed. For example,
dynamically generated workflows are used to coordinate services in pervasive
computing environments and to allow customized user-environment interaction
[RaM04]. Both context information and user preferences can be utilized in
workflow generation.

Rule-based languages are used in the definition of adaptive behaviour. For
example, the ECA rule specification language [ZhB04] that defines Event,
Condition, and Action parts for each adaptation rule is used in adaptive
applications. Furthermore, the proposed visual tools [ZhB04] enable end-users
with limited coding skils to program adaptation to better correspond to their needs.

A universal interactor approach allows the user to select objects from the list of
services and to control these objects with UIs presented in the client device
[HKSR97]. The semantics of the control interfaces of services are described
with an Interface Definition Language (IDL). The clients can first fetch the IDL
files for services. Then, the entire service Graphical User Interface (GUI) is
transferred to the client if a language implementation for a GUI that the client
can display is available. Finally, the GUI is augmented with an interface
description that starts with base data types and allows them to be executed

 77

dynamically. If a GUI is not available, a rough GUI is generated for the control
functions of a discovered object interface. The clients can prefetch the IDL files
for active services. Delays can be further minimised through mobility prediction
[LiM96], allowing pre-fetching in response to assumptions about user mobility
patterns. ICrafter [PLF+01] facilitates the creation of UIs for combinations of
services. In it, appropriate generic or customized UI generators are selected to
compose a UI for context and for appliance and service descriptions.

3.7 Task-based composition technique for adaptive
content and context-sensitive applications

Sections 3.3, 3.4, 3.5, and 3.6 discuss the methods supporting dynamic
composition of component-based adaptive applications. An overview of the
characteristics of these methods is presented in Figure 10.

Many infrastructures and solutions support sensing the context and dynamic
composition of component-based adaptive applications. For example, (e.g.
Lipto, Multitel, AMPROS, Component Configurators, Fractal, and One.world)
platforms and frameworks support dynamic composition of component-based
and adaptive context-aware applications. In addition, languages are defined for
the composition concerns of adaptive applications. For example, BALBOA and
LuaCorba offer languages enabling developers to define adaptation strategies for
component-based adaptive applications.

Although, a lot of solutions supporting dynamic component-based composition
exist, new techniques that will make the dynamic composition of content and
context-sensitive applications more fluent are still needed. For example, in a
comparison of ubiquitous Web application approaches [KPRS03] it was noted
that in most approaches adaptation is machine controlled. In addition, it was
noted that adaptation is done primarily from scratch. As a result, existing
approaches do not take advantage of the performance gains which could be
achieved when re-using already adapted application elements [KPRS03]. For
example, it should be possible to reuse adapted UI parts (e.g. XML-based UI
descriptions and icons) when the application is adapted for new contexts. This
can reduce the amount of network traffic and processing related to adaptation
and thus improve the performance of adaptation.

 78

Class Name Description

Ad
ap

ta
tio

n
Ty

pe

R
ea

ct
iv

e
Ad

ap
ta

tio
n

Pr
oa

ct
iv

e
Ad

ap
ta

tio
n

Sp
ec

ul
at

iv
e

Ad
ap

ta
tio

n

S
ep

ar
at

io
n

of
 d

at
a

an
d

fu
nc

tio
na

lit
y

S
cr

ip
tin

g
La

ng
ua

ge
 fo

r
Ad

ap
ta

tio
n

C
on

ce
rn

s

Ac
tiv

e
C

on
te

xt
-A

w
ar

en
es

s

Pa
ss

iv
e

C
on

te
xt

-A
w

ar
en

es
s

Fa
ul

t T
ol

er
an

ce

C
on

te
xt

-S
en

si
tiv

e
H

an
dl

in
g

fo
r F

ai
lu

re
s

C
ac

hi
ng

 o
f C

on
te

xt
-S

en
si

tiv
e

Ap
pl

ic
at

io
n

In
st

an
ce

s

C
ac

hi
ng

 o
f A

da
pt

at
io

n
Ta

sk
s

Lipto [DPH91] An object-oriented architecture for portable and
distributed operating systems C ! (!) ! (!) (!)

Multitel [FuT99] A compositional framework for
collaborative whiteboard applications C ! !

LEAD++ [AmW99] Structures an adaptive software system
as a direct graph of components R ! ! ! (!)

Fractal [BCS02] A recursive model for nested components C (!) (!)

One.world [Gri04] Architecture for adaptive applications
using shared data C ! ! ! !

MMLite [HeF98] Architecture for object-based components C ! !

THINK [FSLM02] Framework for OS kernels and associated tools R (!) (!)

OpenCOM [CBG+04] A component model for adaptive
software systems R ! !

Balboa [DSGO03] An integration environment for components R (!) !

LuaCorba [MUCR02] CORBA-based technique for distributed auto-
adaptive applications C ! ! ! ! (!) (!)

CASA [MuG05] A runtime system for adaptive applications C ! ! !

Component Configurators
[KoC00, Kon00]

A framework for distributed adaptive
applications R ! ! ! !

Plasma [LaH05B] A framework for self-adaptive applications C ! ! (!) ! !

Sparkle architecture [BWL03] Infrastructure for pervasive computing and
dynamic component composition C ! ! ! !

WebCODS [SPW02] Supports dynamic component composition over
the Web C (!) ! (!)

Hadas [BHL01] A programming model for adaptive distributed
applications C ! ! ! ! !

AMPROS [ATB04] A platform for proactive reconfigurable systems C ! ! ! ! ! !

Kinesthetics eXtreme (KX)
[VKK01]

A mobile agent-based infrastructure for
distributed and adaptive software systems C ! ! ! ! ! !

SOCAM [GPC04] An OSGi-based component model for deploying
and managing networked services C ! ! !

Service-Oriented Architecture
(SOA) [BJK03]

Architecture for composition of interacting
Web services C ! ! !

OMG's Deployment Plans
[OMG03] A data model for deployment plans R ! ! ! ! ! !

An Extensible Browser
Architecture (EBA) [SCH+04]

Architecture for browsers that can be
extended with widgets C (!)

Adaptive Web Browser [HeI01] An adaptive browser that provides context-aware
behaviours and UIs C ! ! ! ! !

CM4DG [XJP03] An XML-based visual component model for
designing dynamic GUIs C ! ! !

MUPE [http://www.mupe.net/] A Multi-User Publishing Environment (MUPE)
application platform C ! ! !

Dynamic Document [KPT94] A method that is able to generate HTML
documents to be displayed for the user C ! ! (!) ! ! ! (!) (!)

Ajax [Gar05] Asynchronous JavaScript and XML C ! ! (!) ! ! ! (!)
Dynamically generated

workflows [RaM04]
Models a user's interaction with the environment
based on workflows C ! ! ! ! ! !

ECA [ZhB04] A three-tier approach for context-aware
applications C ! ! !

Universal Interactor
[HKSR97]

Allows the user to select and to control
services with UIs presented in the client device C ! ! (!) ! ! !

ICrafter [PLF+01] Facilitates the creation of UIs for combinations
of services C ! ! !

TaskCAD [Pal05, Pal07] A composition technique for content and
context-sensitive applications. C ! ! ! ! ! ! ! ! ! ! !

C = Context-aware adaptation R = Resource-aware adaptation ! = Supported (!) = Partially Supported

C
lie

nt
-s

id
e

so
lu

tio
ns

 fo
r a

da
pt

iv
e

co
nt

en
t a

nd
 c

on
te

xt
-s

en
si

tiv
e

m
ob

ile

ap
pl

ic
at

io
ns

A
rc

hi
te

ct
ur

es
 a

nd

fra
m

ew
or

ks
 fo

r c
om

po
ne

nt
-

ba
se

d
an

d
co

nt
ex

t-a
w

ar
e

ad
ap

tiv
e

ap
pl

ic
at

io
ns

H
ig

h-
le

ve
l p

ro
gr

am
m

in
g

te
ch

ni
qu

es
 s

up
po

rti
ng

 d
yn

am
ic

co

m
po

si
tio

n
of

ad

ap
tiv

e
ap

pl
ic

at
io

ns

So
lu

tio
ns

 s
up

po
rti

ng
 d

yn
am

ic
 a

da
pt

at
io

n
of

di

st
rib

ut
ed

 c
om

po
ne

nt
-b

as
ed

ap
pl

ic
at

io
ns

Figure 10. Characteristics of the methods supporting dynamic
composition of component-based adaptive applications.

http://www.mupe.net/

 79

The mobile environment poses challenging requirements for adaptation
techniques. The mobile usage is spontaneous and thus it is important that
applications are adapted as fast as possible for rapidly changing contexts. For
example, a technique supporting speculative adaptation and both caching of
context-sensitive asynchronous adaptation tasks and application instances
prepared with tasks is needed. At the same time it should be possible to use
various kinds of adaptation components in adaptation.

More precisely, it should be possible to utilise various kinds of adaptation
actions that can modify and insert new context information to the adaptation
requests, compose application instances for them, and also adapt the prepared
application instances. Various kinds of adaptation actions may require different
kinds of execution structures. For example, sequential and concurrent executions
are needed for context-sensitive adaptation actions. Actions that enable the end-
user to control the adaptation process are also needed. In addition, context-
sensitive methods are required to handle the errors that are raised while an
application is adapted for a new context. It is not, however, possible to provide
ready-made executions for all kinds of adaptation actions. Thus methods that
enable developers to implement new kinds of executions for adaptation actions
and to utilise them in various kinds of adaptive applications are needed, too.

In order to solve the described problems, this dissertation introduces a task-
based composition technique for component-based and adaptive content and
context-sensitive applications. Particularly, as will be shown in this dissertation,
the task-based composition technique helps developers of adaptive applications
in the following tasks:

• The technique helps developers to define adaptation strategies where
applications are composed in many phases and where both application
instances and asynchronous adaptation tasks are cached. As a result, it
enables developers to implement speculative adaptations for
applications. In addition, the technique separates adaptation concerns
clearly from the business logic of an application. As a result, adaptation
strategies can be defined separately, changed at runtime, and may be
possibly reused in various applications.

 80

• The technique enables developers to utilise various kinds of context-
sensitive actions in adaptation and to configure them to work in different
application environments.

• The technique offers special executions for adaptation actions, enabling
the end-user of an adaptive application to control the adaptation process.
In addition, it offers structures that can define context-sensitive handling
for errors raised while an application is composed. Furthermore,
developers can extend the task-based composition technique with new
implementations that can introduce execution structures for the defined
adaptation actions. For example, new conditional executions that can
utilise data available in the application environment and control
execution of the defined adaptation actions can be implemented and
utilised in task-based adaptation.

 81

4. Solution: A task-based composition
technique for adaptive content and

context-sensitive applications

This chapter defines the refined requirements for the task-based composition
technique and gives a general insight of the technique. It is organized as follows.
A brief introduction is provided in Section 4.1. Task-based adaptation using
factories is discussed in Section 4.2. Then, Section 4.3 discusses how the most
suitable adaptation elements can be selected for context. An environment for
fine-grained and reusable adaptation actions is introduced in Section 4.4.
Caching of context-sensitive tasks and application instances is discussed in
Section 4.5. A language for specifying task-based adaptive applications is
introduced in Section 4.6. Task-based speculative adaptation is discussed in
Section 4.7. Then, the utilisation of the task-based composition technique is
discussed in Section 4.8. Finally, Section 4.9 gives few usage scenarios for the
task-based composition technique.

4.1 Introduction

Object and component-oriented technologies are the state of the art in general
purpose software technologies [RBH04]. Unfortunately, they lack, several assets
that are required fulfil the criteria of the ubiquitous computing paradigm: they
are not easily adaptable and not resource aware [RBH04].

The mobile environment poses many challenging requirements for dynamic
composition techniques (see Chapter 1). A proper technique supporting the
dynamic composition of context-aware applications (see Chapter 2) makes the
composition process more effective and easier. Although, a lot of solutions
supporting the dynamic component-based composition exist (see Chapter 3),
new techniques that will make the dynamic composition of content and context-
sensitive applications more fluent are still needed.

The task-based composition technique supports dynamic composition of adaptive
component-based applications. In the sequel, we will use the term �task-based� to
denote our approach for adaptive component-based composition.

 82

Design patterns [GHJV95] are generic solutions that are commonly utilised in
many applications. In general, a name, problem, solution, and consequences are
the essential elements of a pattern notation [GHJV95]. The problem describes
when to apply the pattern; the solution describes the elements that make up the
design, their relationships, responsibilities, and collaborations. Finally, the
consequences are the results and trade-offs of applying the pattern. This
dissertation uses a same kind of notation that is used in design patterns and
describes problem, solution, and summary of the solution for each part of the
task-based composition technique. In addition, an example is provided for each
part. The example solutions are later utilised in case studies. However, it must be
noted that although the task-based composition technique is a generic solution
that is utilised in different kinds of adaptive applications (see Chapter 7) it is not
a commonly utilised design pattern.

4.2 Task-based adaptation using factories

4.2.1 Problem

The nature of the heterogeneous mobile environment sets many requirements for
adaptive applications. For that reason, it can be difficult to compose adaptive
content and context-sensitive applications dynamically. Mobile usage is
spontaneous and requires efficient adaptation mechanisms. A technique that can
perform concurrent reactive and proactive adaptations and compose an
application in multiple phases for various contents and contexts is needed. In
addition, it must be possible to change the adaptation elements dynamically to
better fit to different kinds of usage environments and contexts.

4.2.2 Solution

We used the content adaptation model of W3C (see Section 1.1.1) as a base and
developed the task-based composition technique [Pal05, Pal07] to facilitate
dynamic composition of component-based applications that are adapted for
various kinds of contents and contexts (Figure 11).

 83

�
requestrequest

Task-1

adaptor

PC-1

requestor
Task-1

adaptor

PC-1

requestor

Task Factory

Co
nf

igu
ra

tio
n

PC-0

Ca
ch

e

response

Task-2

adaptor

PC-2

requestor
Task-2

adaptor

PC-2

requestor

Co
nfi

gu
ra

tio
n

PC-1

Ca
ch

e

response

requestrequest
Task-3

adaptor

PC-3

requestor
Task-3

adaptor

PC-3

requestor

Co
nf

igu
ra

tio
n

PC-2

Ca
ch

e

response

requestrequest
Task-n

Instance
Preparing

Co
nf

igu
ra

tio
n

PC-n

Ca
ch

e

response

Task Factory Task Factory Task Factory

requestrequest

Task-based Composition TechniqueTask-based Composition Technique

adaptoradaptor response

content
selectioncontext-n

requestorrequest

adaptor

context-2

requestor

adaptor

context-1

requestor

response

request

response

serverclient
pr

es
en

ta
tio

n
request

intermediaries

�

W3C Content Adaptation ModelW3C Content Adaptation Model

Figure 11. The task-based composition technique is based on the content
adaptation model of W3C.

Like the requestor-adaptor elements of the W3C model, a task is an adaptation
element that can provide additional context information, request other tasks,
adapt their responses, and finally deliver responses for the requestors. The
context can change constantly and so a snapshot of the context, called
Processing Context (PC) is needed to ensure that the context values used in the
adaptation are immutable. For example, part of the delivery context [Lew03]
attributes can be added to the PC. A request defines an identifier, data sources,
and PC for a task that composes application parts for requests and delivers them
in responses. A task can deliver multiple responses during its execution. For
example, it can deliver an error response for the requestors and then continue
execution. Tasks are executed simultaneously. The synchronous requestors can
wait for the response of the task or then wait until the task is completely
executed. In addition, the response of the task can be refreshed and delivered for
the requestors after the task is executed.

A task can be in an out of action, pending, suspended, ready, or failed state
(Figure 12). Before a task is executed, it is in an out of action state. During
execution, the task is in the pending state. Task execution can be suspended, too.
It will wait in the suspended state until it is activated to resume its execution.

 84

After execution, the task is set to the ready state. If errors are raised during
execution, the task is set to the failed state. Finally, in order to improve
performance, it is possible to reset a task instance that is not suitable for the
current or any potential future PC. It can be later reused and started to process a
new request.

Figure 12. The states of a task.

All requested tasks cannot be necessarily successfully executed. For example, if
a mobile device is disconnected, it is not possible to fetch contents from the
Web. In order to prevent deadlocks, a time-out can be defined for task requests.
As a result, if a task does not respond during the defined time-out, an error
response is passed for the requestor.

It must be possible to configure the adaptation elements for different kinds of
applications and contexts. Thus the task-based composition technique extends
the content adaptation model of W3C with task factories that can construct
various kinds of tasks for requests and specific processing contexts.

The task-based composition technique can be used in both reactive and
proactive adaptation [Cap03] (Figure 13). A requestor can observe the context
and request reactive adaptation tasks to adapt the application for new PCs, if the
specific parts of the context are changed. Proactive adaptation tasks deliver
refreshed responses composed for the processing context.

 85

Figure 13. Tasks support reactive and proactive adaptation.

4.2.3 Summary of the solution

A task is an adaptation element that is able to provide additional context
information, request other tasks, adapt their responses, and finally deliver the
following kinds of responds for the requestors:

• A task ready response is delivered after the task is executed.

• An update response is delivered when the response of the task is
refreshed.

• An error response is delivered if errors are raised during task execution.

• A task failed response is delivered if task execution is failed.

Concurrent tasks can do both reactive and proactive adaptations and compose
applications in multiple phases for new processing contexts. In addition,
adaptation strategies can be changed dynamically by replacing the task factories
with new ones.

 86

4.2.4 Example

An adaptive application can be divided into model, view, and controller parts
according to the Model-View-Controller (MVC) pattern, first introduced in the
Smalltalk-80 system [KrP88]. The application platform can observe the context
and request tasks to compose models, views, and controllers for the new context,
if the specific parts of the context are changed. Tasks compose these parts for the
request and PC and finally deliver them in responses (Figure 14).

request

Application
Platform

adaptor

PC-0

requestor

Controller
Task

adaptor

PC-1

requestor

Co
nf

igu
ra

tio
n

PC-0

Ca
ch

e

response

request

View
Task

adaptor

PC-2

requestor

Co
nf

igu
ra

tio
n

PC-1

Ca
ch

e

response

request

Model
Task

Model
Composition

Co
nf

igu
ra

tio
n

PC-2

Ca
ch

e
response

Task Factory Task Factory Task Factory

Task-based Composition of MVC partsTask-based Composition of MVC parts

Figure 14. Tasks can compose the model, controller, and view parts of an
adaptive application.

Tasks can also refresh MVC parts and deliver them for the requestors. For
example, the model task can perform proactive adaptation and deliver a
refreshed model for the task that composes views for the model and pass them
for the controller task that will attach controllers to the composed views. Finally,
the model-view-controller parts are delivered for the application platform that
will finally display the refreshed MVC parts for the user.

4.3 Selecting the most suitable context-sensitive
elements for adaptive applications

4.3.1 Problem

Various kinds of Context-Sensitive Elements (CSEs) (e.g. tasks and application
instances) are used in dynamic composition of adaptive applications. This

 87

requires methods that are capable of selecting the correct CSEs for various PCs.
It must be possible to define how suitable a CSE is for different PCs, to calculate
suitability values for alternative CSEs, and, finally, to select the most suitable
CSEs for PC.

4.3.2 Solution

A numerical Suitability For Context (SFC) value defines how suitable a CSE is
for a specific PC. SFC value is zero for elements that are suitable for all PCs,
positive for CSEs that are suitable for given PC, and negative for CSEs that are
not suitable for PC. Thus, if alternative CSEs are available, the CSE that has the
highest positive SFC value is selected.

Context elements define suitable PC values for a particular CSE. For example,
they can define (e.g. Boolean, literal, numeric, time, and location) attributes,
logical (e.g. AND, OR, XOR, and NOT) expressions, and references to other
context elements. In addition, new context element types can be added if new
kinds of PC values are needed in adaptation. The context elements are built into
a tree structure to form an overall presentation for suitable PC values. A weight
factor (default value is 1) defines the importance of a context element. The
context elements use the defined weight factors, calculate SFC values, and
together form the overall SFC value for the CSE and PC. The following rules are
used when SFC values are calculated for the context elements:

• Context attribute (e.g. Boolean, literal, numeric, time, and location)
elements. The SFC value is the defined weight factor if PC is suitable
for the context attribute. Otherwise the SFC value is the defined weight
factor multiplied with -1.

• Logical AND element. The SFC value is the sum of the weight factor of
the AND element and the SFC values of the child context elements if all
the child context elements are suitable for PC. Otherwise, the SFC value
is the weight factor of AND element multiplied with -1.

• Logical OR element. The SFC value is the sum of the weight factor of
the OR element and the maximum of the SFC values of the child context
elements if one or more child context elements are suitable for PC.

 88

Otherwise, the SFC value is the weight factor of OR element multiplied
with -1.

• Logical XOR element. The SFC value is the sum of the weight factor of
the XOR element and the maximum of the SFC values of the child
context elements if exactly one child context element is suitable for PC.
Otherwise, the SFC value is the weight factor of XOR element
multiplied with -1.

• Logical NOT element. The SFC value is the suitability value of the child
context element multiplied with -1, if the child context element is not
suitable for PC. Otherwise, the SFC value is the weight factor of the
NOT element multiplied with -1.

• INCLUDE element. The SFC value is the SFC value of the included
context element.

A task knows the processing context in which it is executed. Thus it is possible
to compare given and cached PCs. A simple solution is to accept only processing
contexts identical with PC of the cached task. However, this may cause
processing overhead if only a small number of PC attributes affect task
execution. Context elements are capable of identifying equivalent processing
contexts. Thus the utilisation of cached tasks can be increased, if the PC values
that affect task execution are defined precisely for the task. Now, according to
context elements, PC1 and PC2 are equivalent:

1. If the same attributes are defined in PC1 and PC2 and

2. PC1 and PC2 give equivalent suitability for context (SFC) values for the
context elements that are related to the task.

However, it is not always possible to define beforehand the PC values that will
affect task execution. For example, the task can request other tasks
asynchronously and the user can control task execution. As a result, the context
dependencies of a task can change at runtime. For example, an XHTML page
may have several references to other contents, which can be downloaded
asynchronously with context-sensitive tasks. In addition, tasks can add
information (e.g. time attribute) to PC before requesting other tasks. As a result,
although related context definitions are known, it is not possible to compare the
given PC to the PC of the task correctly because the given PC may not have all

 89

the context attributes that affect execution of the task. A simple way to avoid this
problem is to prevent the caching of that kind of task. Unfortunately, this will
cause overhead because tasks may be constructed and started in vain. However,
it must be recognized that a task started for a new PC may possibly utilize part
of the cached application instances that the previously started tasks have
prepared. In addition, context-sensitive tasks can be divided into smaller
subtasks in order to improve performance. As a result, part of these subtasks
may not be context-sensitive and so it may be possible to utilise part of their
responses in different contexts.

4.3.3 Summary of the solution

The context elements are built into a tree structure that describes suitable PC
values for a particular context-sensitive element (CSE). As a result, it is possible
to define suitable PC values for alternative CSEs, calculate SFC values for them,
and to select the most suitable CSEs for PC when an adaptive application is
composed. Context elements are also able to identify equivalent processing
contexts and can thus improve the utilisation of cached tasks.

4.3.4 Example

For example, the end-user can use an adaptive application at home in the
evening. Thus it must be possible to select the correct adaptation elements and to
adapt the application for this PC. The following kinds of context elements can
define suitable PC values for the �Home in the evening� context (Figure 15).

ANDAND

INCLUDEINCLUDE

Logical Expression Context=�Home in the evening�
Weight=1

ATTRIBUTEATTRIBUTE

Time=18:00-21:00
Weight=20OROR

ATTRIBUTEATTRIBUTE ATTRIBUTEATTRIBUTE ATTRIBUTEATTRIBUTE

Context Attribute

Location=�hall�
Weight=5

Location=�sauna�
Weight=3

Location=�living room�
Weight=4

Context=�Home�
Weight=10

Context ElementContext Element

Figure 15. Context elements that define that a CSE is suitable for
a �Home in the evening� context.

 90

For example, there can be the following kinds of PCs:
 PC1={location=�living room� and time=10:00}
 PC2={location=�living room� and time=19:00}
 PC3={location=�living room� and time=19:30}
 PC4={location=�sauna� and time=20:00}

As a result, the SFC value is for PC1, PC2, PC3, and PC4 is:
 SFC(PC1)=-1
 SFC(PC2)=1+10+4+20=35
 SFC(PC3)=1+10+4+20=35
 SFC(PC4)=1+10+3+20=34

Context elements are able to identify equivalent PCs:
 ISEQUIVALENT(PC1,PC2)=false
 ISEQUIVALENT(PC2,PC3)=true
 ISEQUIVALENT(PC2,PC4)=false

PC2 and PC3 are equivalent because all context elements give same SFC values
for PC2 and PC3.

4.4 An environment for fine-grained and reusable
adaptation actions

4.4.1 Problem

Making a request, starting a thread for a task, and finally composing a response
for the request all cause processing overhead. Multiple adaptations can be done
in a single task and thus it is possible to reduce processing overhead related to
execution of tasks. However, it is difficult to reuse extensive tasks in various
applications.

It must be possible to compose tasks of smaller adaptation components and to
reuse these in various kinds of tasks. This sets requirements for methods that
enable these adaptation components to compose content and context-sensitive
application instances in different environments.

 91

4.4.2 Solution

A task can be composed of smaller context-sensitive adaptation elements, called
actions that can fetch application instances from various sources and compose
new ones to different targets. Thus actions can utilize existing application
instances and possibly make composites of them. Adaptation actions can use the
reflection [Mae87] methods for dynamic component-based composition. For
example, these methods enable actions to load application components and to
construct instances for them at runtime. Construction of component instances
can be simplified by composing an application of components offering empty
constructors and named methods for configuring the constructed instances. For
example, this approach is used in Java Beans [DeK05].

A task request is handled in the following phases:

1. A task factory constructs a task for the request and PC.

2. The task is then started and it will call its actions that are suitable for PC to
process the request. An action name and event is passed for the called action
that executes the requested processing and returns a result or throws an
exception if its execution fails. The action event offers access to the task
factory and thus enables the action to request other tasks, too.

3. Finally, after the actions are executed, the response of the task is delivered
for the requestors.

It must be possible to reuse action implementations in various applications. An
Instance Reference (IRef) is an identifier for an application instance and its
environment. It can also define URI for the content that is related to the instance.
Input and output mappings support reuse of adaptation actions and enable an
environment adaptor to replace IRefs used by an action with IRefs used in the
application and thus configure an action to fetch application instances from
certain sources and to add them to specific targets.

Input mappings can also configure an action to utilise context-sensitive settings
that define alternative configuration parameters for various PCs. The most
suitable parameters are selected for PC and passed for adaptation action. Thus it
is possible to adapt the behaviour of actions for various contexts.

 92

Many existing solutions support hierarchical composition. For example, Fractal
[BCS02] and One.world [Gri04] introduce architectures for application component
composites and offer support for making these application composites to co-
operate. Similarly, as is the case in One.world, application instances can be
composed to nested data storages, called environments (Figure 16).

Figure 16. The actions of a task can compose application instances to
various environments.

For example, the application environment contains instances that are used
actively in the application. Temporary instances, that are needed only when the
task is executed, are saved to the task execution environment. Instances that may
be needed in the future are added to the cache environment.

4.4.3 Summary of the solution

A task is composed of smaller context-sensitive adaptation elements, called
actions that can utilize existing application instances and possibly compose
composites of them. Context-sensitive settings configure an action to work in
various kinds of application environments. For example, the input and output
mappings configure actions to fetch application instances from certain sources
and to add them to specific targets.

Actions can utilise the application instances of the task execution, cache, and
application environments and the application instances defined in the request
and add application instances to the response of the task. As a result, the actions
can easily utilise previously constructed instances and so do not prepare new

 93

ones in vain. In addition, input mappings can also configure an action to utilise
context-sensitive parameters in adaptation.

4.4.4 Example

For example, context-sensitive settings can be defined for an action that
composes visualisation elements (glyphs, see Section 4.9.1) for content elements
and adds the presentation (glyphframe) to the response of the task (Figure 17).

The input elements enable the action to fetch frameName and frameURI from
the request and a glyphDefinition that describes visualization elements and
parameters for them (e.g. font, color, and position parameters) from the settings
(Figure 18). Finally, the output element defines a target IRef that makes the
action to compose the glyphFrame instance to the response of the task.

Figure 17. An action that composes visualization elements for content
elements.

 94

�
<action name="composeGlyphFrame" plugin="fi.vtt.tte.ccpresentation.GlyphComposer">

<settings>
<input fetch="fetch_best_for_IRef_and_PC"

name="frameName"
sourcePath="request#POD.type"/>

<input fetch="fetch_best_for_IRef_and_PC"
name="frameURI"
sourcePath="request#POD.objectURI"/>

<input fetch="fetch_best_for_IRef_and_PC"
name="glyphdefinition"
sourcePath="settings#content#GlyphDescription"/>

<output insertStyle="replace"
name="glyphframe"
targetPath="response#podui"/>

</settings>
</action>
�

A definition for an
adaptation action.

Settings define
input and output
data sources for
the action.

Figure 18. A definition for an action that composes visualization elements
for content elements.

4.5 Caching of context-sensitive tasks and application
instances

4.5.1 Problem

Dynamic composition can offer applications that fit better to the context.
However, it can be difficult to compose adaptive applications dynamically for
possibly rapidly changing contexts. This sets requirements for methods that
facilitate:

Tasks caching. Many parts of the application can request the same adaptation
tasks. Thus the caching of tasks can speed up the adaptation process. As a result,
new tasks are not started in vain but rather previously started tasks are utilised in
adaptation. However, it is not trivial to manage the cache of context-sensitive
tasks which can have dependencies on other tasks, too. The challenge is to
identify when a task is suitable for a specific request and PC. Part of the cached
tasks may be expired, too. This all sets requirements for methods that can control
caching of context-sensitive tasks, select the most suitable tasks for PC, and
finally enable the application to utilise them in adaptation.

 95

Application instance caching. The caching of application instances enable
adaptation tasks to utilise the already prepared application instances and thus
speed up adaptation. Different application instances may need various kinds of
caching schemas. For example, some application instances may be only valid at
a certain time. In addition, in order to enable fetching of context-sensitive
instances from the cache, it must be possible to define which kinds of contexts
an application instance is suitable for. Thus methods are needed to control
caching of context-sensitive applications instances and to enable applications to
fetch the most suitable application instances from the cache.

Reducing the number of cached tasks and application instances. In order to
minimize the usage of the limited memory of a mobile device, it must be
possible to reduce the number of cached tasks and application instances. For
example, the tasks and application instances that are not suitable for current or
potential future PCs must be removed from the cache.

4.5.2 Solution

The task factory constructs a new task only if a task suitable for the request and
PC is not found from the cache. Tasks are searched in three phases from the
cache:

1. The tasks having a correct name are searched from the cache.

2. The tasks that are suitable for the request are selected from the found tasks.
A task is suitable for the given request only if its request and the given
request have identical parameters.

3. The most suitable task is selected for PC. If a cached task is not found, a task
configured for the identifier and PC is constructed and added to the cache.

Separate RequestAcceptors implementations can introduce specialised caching
schemas for tasks and will thus improve caching. They can utilise the context
elements that are defined for the task and decide for what kind of requests and
PCs a specific task is suitable.

Similarly, context comparators can control the caching of context-sensitive
application instances, utilize the context elements, and define how suitable an

 96

application instance is for various PCs. For example, an application instance is
removed from the cache if a context comparator defines that the instance is
expired. Output mappings can define context comparators and thus introduce
specialised caching schemas for the application instances added to the defined
targets.

A maximum size can be defined for the task and application instance caches to
reduce the usage of the limited memory of a mobile device. The number of
cached tasks and application instances can be reduced in the following steps:

1. If the size of the caches is too big, tasks and application instances that are
not suitable for the current or possible forthcoming PCs can removed from
the caches first.

2. If the size of the caches is still too big, the tasks and application instances
that are not suitable for the current or the most probable possible
forthcoming PCs can be removed from the caches, too. If more memory is
still needed, the rest of cached tasks and application instances that are not
suitable for the current PC can also be removed.

3. Finally, if the size of the caches is still too big, the rest of cached tasks and
application instances can be removed, too.

The cache can be refreshed at different points. For example, one solution is to
refresh the cache always when new tasks are requested or when the current PC
or possible forthcoming PCs change. In addition, the application can request
cache refresh if there is not enough free memory available.

4.5.3 Summary of the solution

Different kinds of application instances and tasks may need various kinds of
caching schemas. RequestAcceptors and ContextComparators can introduce
specialised caching schemas for context-sensitive tasks and applications
instances and thus improve their caching.

4.5.4 Example

For example, the implementation for the task-based composition technique (see
Chapter 6) offers RequestAcceptors that are able to control caching of:

 97

• Not context-sensitive tasks. This RequestAcceptor checks only that the
given request equals the request of the task. As a result, the task is
suitable for all PCs.

• Context-sensitive tasks utilising only part of the PC values. This
RequestAcceptor works as the previous one but it will check only those
attributes of PC that affect execution of the task. The composition
schema can define the named context elements related to the task. As a
result, the RequestAcceptor will accept the request if the given PC and
PC of the task are equivalent.

• Tasks that are suitable for specific PC only. This RequestAcceptor
checks that the given request equals the request of the task. In addition,
it will check that given PC and PC of the task are identical.

In addition to these, developers can improve the usage of the cached tasks and
decrease the memory consumption with new RequestAcceptor implementations
that are able to identify more precisely for which kinds of requests and PCs a
certain task is suited and to request a task to be removed from the cache, when
the response of the task has expired.

The implementation for the task-based composition technique (see Chapter 6)
offers ready-made ContextComparators for:

• Not context-sensitive instances. This context comparator is used for
application instances that are suitable for all contexts.

• Instances that are suitable for defined PC values only. This context
comparator uses the named context elements and calculates the
suitability value for given PC. The suitability value is the sum of
suitability values calculated for named context elements and PC. The
context-sensitive instance that has the highest suitability for context
(SFC) value is selected.

• Instances that are suitable for specific PC only. This context comparator
compares given PC to PC of the instance. The instance is suitable only if
PC and PC of the instance are identical.

 98

In addition to these, developers can improve the usage of the cached application
instances and decrease the memory consumption with new ContextComparator
implementations that are able to identify more precisely for which kinds PCs a
certain application instance is suitable or when the instance has expired and must
be removed from the cache.

4.6 A language for specifying task-based adaptive
applications

4.6.1 Problem

It must be easy for developers to utilise composition tasks in various kinds of
applications. In addition, new requirements may emerge for an adaptive
application. Thus it must be possible to change both the components and
adaptation policies of an adaptive application so that the application will better
correspond to the new requirements.

Rather than defining composition tasks inside the application logic, an
interpretable Domain Specific Language (DSL) [DKV00] can be defined to offer
ready-made structures and notations for task-based composition. As a result, the
adaptation concerns are clearly separated from the business logic of the
application. In addition, it is possible to change the adaptation policies at
runtime.

Adaptive applications set many requirements for the task-based composition
language. Firstly, it must offer basic notations for adaptation tasks and actions.
Secondly, it must be possible to describe context-sensitive settings for reusable
adaptation actions that will configure those actions to work in different
execution environments and processing contexts. This requires notations that
enable developers to describe the acceptable PC values for adaptation actions,
settings elements, and application instances that actions prepare.

4.6.2 Solution

The task-based composition language enables developers to define composition
schemas that describe tasks and context-sensitive actions and settings for
composition of adaptive applications. Figure 19 presents a meta-model that

 99

defines the structure and basic elements for the language that enable developers
to use various kinds of components in task-based composition.

Some of the most important elements and attributes of the language are
discussed in the following paragraphs. In addition, the language can be extended
with new action, context, and content elements.

Figure 19. A meta-model for task-based composition language.

Task element

The Task element defines a name and caching attributes for a task. The task is
saved to the cache if the cacheable attribute has a value �yes�. If the
contextSensitivity attribute has a value:

• �full�, the task is suitable if the given PC and the PC of the task are
identical.

 100

• �partial�, the task is suitable only if given PC and PC of the task are
equivalent (see Section 4.3). The suitablePCs attribute defines the
context elements describing the PC values that affect task execution.

• �none�, the task is suitable for all PCs.

In addition, the requestAcceptor attribute defines plugins to control caching of
the task.

Action elements

An Action element enables developers to use various kinds of action plugins in
tasks. It has actionName, plugin, canTaskBeStoppedBefore, suitablePCs,
requestAcceptors, debug, and id attributes. Plugin defines a class path for the
action plugin. The actionName attribute value is passed for the plugin when it is
called to execute a certain kind of action. The task can be stopped before the
action is executed if the canTaskStoppedBefore attribute has a value �yes�. The
action can provide debug information for the developer if the debug attribute has
a value �yes�. The infoMessages attribute enables developers to define messages
to inform the end-user about the progress of the adaptation. The defined
messages are passed for the users of the task factory before the action is
executed. In addition, the messages can also be delivered in the responses for the
requestors of the task. The id attribute defines a unique identifier for an action.
Thus a requestor of a task can refer to the action and define settings for it. The
suitablePCs attribute defines the named context elements that calculate a SFC
value for given PC and for the action. The action is executed only, if it is
suitable for given PC and the request acceptors of the action accept the request.

Various applications require different kinds of executions for adaptation actions.
However, it must be noted that it is not possible to provide ready-made
executions for all kinds of adaptation actions. Thus the language offers the
ActionComposite element that is able to introduce new kinds of executions for
adaptation actions. Developers can use the element and define a plugin that
implements a new execution structure for the actions of the action composite.

Input and Output elements

The Input and Output elements define mappings for the Instance References
(IRefs) used by an action and thus enable it to fetch application instances from

 101

different sources and to add them to various targets. Input elements can also
define textual parameter values or to refer to context-sensitive ContentElements
and thus configure the behaviour of the action.

The name, environment, and URI attributes of the Input and Output elements
specify for which IRefs the defined mappings are used. An Input element defines
sourcePath, sourceURI, and fetchstyle attributes for an application instance that
an action tries to fetch. The sourcePath attribute defines where the instance is
fetched. It is formatted as follows:

 Variable = $[sourcePath]$
 InstanceName=#[Identifier][Variable]
 ParameterName=.[Identifier][Variable]
 DataRef = [InstanceName]ParameterName][DataRef]
 EnvironmentName = [Identifier][Variable]/[EnvironmentName]
 sourcePath = [EnvironmentName][DataRef][Variable].

The collection of all instances that are found for IRef is returned if the fetchstyle
attribute has a value �fetch_all_for_IRef�. The collection of instances that are
found for the IRef and are suitable for PC is returned if the fetchstyle attribute
has a value �fetch_all_for_IRef_and_PC�. Finally, only the most suitable
instance for IRef and PC is returned if the fetchstyle attribute has a value
�fetch_best_for_IRef_and_PC�.

The Output element defines mappings for IRef when an action composes an
application instance to a specific target. If the insertStyle attribute has a value
�replace_existing_instances�, the instances stored for the IRef are removed
before the new one is added. The targetPath attribute defines the place where
the instance is composed. It is formatted as follows:

 targetPath = [EnvironmentName][DataRef][Variable].

The contextSensitivity, suitablePCs, and contextComparators attributes of the
output element can define various kinds of caching schemas for the application
instances that are composed to various targets. The suitablePCs attribute defines
the named context elements that calculate a SFC value for given PC. If the
contextSensitivity attribute has a value:

 102

• �full�, the application instance is suitable if given PC and PC of the
application instance are identical.

• �partial�, the named context elements or context comparators define
how suitable the application instance is for PC.

• �none�, the application instance is suitable for all PCs.

Context elements

The ContextElement elements describe acceptable PC values for context-
sensitive elements that are utilised in the adaptation. A context element describes
a suitable PC value and a context comparator for it. It can also define a relational
operation attribute that has a value (e.g. equal, unequal, lower than, lower than
or equal, greater than, greater than or equal) that defines how the defined PC
value is compared to the specific value of PC. The ContextElementComposite
element defines a context comparator that is capable of calculating an SFC value
for PC and for the context elements that it contains.

Content elements

The ContentElement element defines context-sensitive contents for adaptation
actions. The suitablePCs attribute defines the named context elements that
calculate a SFC value for given PC. In addition, the contextComparators
attribute can define the plugins that are able to calculate a SFC value for PC and
for the content element.

The ContentElementComposite element can contain alternative content elements
that are configured for various PCs. As a result, it is possible to select the most
suitable content elements for various PCs. The selectStyle attribute defines how
the elements are selected. More precisely, if the selectStyle attribute has a value:

• �all�, all the content elements that are suitable for PC are selected.

• �first�, the first suitable content element for PC is selected only.

• �best�, the most suitable content element for PC is selected.

 103

4.6.3 Summary of the solution

The task-based composition language makes it easier for developers to use the
task-based composition technique in various kinds of applications. Developers
can use the language and define composition schemas that describe adaptation
tasks and context-sensitive actions and settings for them and configure task
factories to compose adaptation tasks for various kinds of component-based
adaptive applications. As a result, it is possible to implement application-
transparent adaptations in which the adaptation logic of an application is
developed separately and clearly extracted from the application logic. In
addition, it is possible to download new composition schemas at runtime and to
change the adaptation strategies dynamically.

4.6.4 Example

We have used the meta-model as the basis for a language to specify task-based
composition schemas. Figure 20 depicts a refined meta-model for this language.

A few of the most important elements and attributes of the refined meta-model
of the language are introduced in the following paragraphs.

Context elements

Logical And, Or, Xor, and Not and Include context element composites and
Boolean, Number, NumberRange, Literal, Time, TimeRange, Date, DateRange,
and Location context attribute elements enable developers to define suitable PC
values for context-sensitive adaptation elements. The Include element is able to
attach other context elements to a context element composite.

 104

Figure 20. A refined meta-model for the task-based composition
language.

Content elements

ContentElements define context-sensitive parameters and contents for actions.
The Parameter element defines a name and value for a context-sensitive
parameter. An Import element can include other content elements to the content
definition. Developers can also implement context comparators to calculate
suitability for context (SFC) values for new kind of PC values and use them in
composition schemas.

Execution structures for actions

In order to facilitate the task-based composition of adaptive applications, the
task-based composition language offers communication, control, and interactive
structures for actions. These are discussed in the following paragraphs.

 105

Structures for communication actions

Task-based composition requires communication structures that enable
developers to define:

• Requests for tasks and adaptors for the received responses. The
language must offer a structure that enables developers to define tasks
that are able to request other tasks, modify requests, and adapt the
received responses. In addition, in order to prevent deadlocks, it must be
possible to define time-outs for task requests. As a result, an exception is
thrown if a response is not delivered during the defined time-out.
Furthermore, developers do not necessarily know how the application
should be composed for various contexts in the development time. Thus
the language must offer structures that make it possible to update
adaptation strategies at runtime.

• Respond to requestors. A task can deliver multiple responses during its
execution. Actions that can pass unfinished responses for the requestors
or respond and stop task execution are needed. Actions that can pass
error responses for the requestors are needed, too.

• Refresh the response of the task. Part of the adaptation tasks can require
post-processing. For example, the response of a task that downloads
information from the Web may expire. The language must offer
structures that enable developers to define post-processing actions for
the tasks.

Thus the language offers communication elements that enable tasks to request
other tasks (Request element), to deliver responses for the requestors (Response
element), and to refresh the response of the task (Refresh element).

The Request element defines a name for the requested task and a time-out for the
request. By default, the request is passed for the task factory that has composed
the task of the request action. In addition, the composition schema can have
actions that first download composition schemas and then initialise new task
factories for them. In this case, the request action is configured to pass a request
for the initialized task factory. If a reprocess attribute is set to a request, a new

 106

task is constructed and started although a cached task is available for the request
and PC. At the same time, the old task is replaced with the new one.

By default, the input attributes of the request of the task are included in the new
request. The request can contain actions that will modify the request before it is
passed for the task factory and adaptor actions that are later notified about the
responses that the requested task delivers. The request action can contain various
kinds of adaptor action composites that will handle all the responses or only
certain kinds of responses. The adaptorType attribute defines which kinds of
responses will be passed for the actions of the adaptor action composite. More
precisely, if the adaptorType attribute has a value:

• �all�, all the responses will be passed for the actions.

• �ready�, only task ready responses will be passed for the actions.

• �update�, only the task update responses will be passed for the actions.

• �failed�, only the task failed responses will be passed for the actions.

The adaptors can handle the responds and possibly modify the response of the
owner task. As a result, the requestors of the owner task are also notified about
the updated response.

The respond element defines an action that delivers the response of the task for
the requestors. The refresh element defines adaptation actions to do post-
processing related to the task. The refreshTime, refreshDelay, and repeatCount
attributes define when, how often, and how many times the defined refresh
actions are executed. In addition, the refreshController attribute can define a
plugin that sets the refresh attributes at runtime.

Control structures for actions

Different applications require different kinds of executions for adaptation
actions. To be usable, the language must offer ready-made control structures for:

• Sequential execution. In order to enable a task to execute multiple
adaptation actions, action composites that can execute action sequences
are needed.

 107

• Exclusive execution. It must be possible to configure alternative actions
for various contexts and to execute them exclusively so that only the
most suitable action for the request and PC is executed.

• Context-sensitive error handling. Errors can be raised while an
application is adapted for a new context. The language must enable
developers to define context-sensitive handling for errors raised while
adaptation actions are executed.

The Sequence element can contain multiple actions that are executed one after
the other. The Exclusive element can contain multiple actions. However, if the
selectStyle attribute has a value �first�, only the first suitable action for PC is
executed. If the selectStyle attribute has a value �best�, the most suitable action
for PC is executed.

The If element can define a condition, multiple if and else-actions, and a plugin
that decides whether the if or else-actions are executed.

The Try element enables developers to define context-sensitive adaptation
actions for exceptions. The thrown exception is passed for the first catch action
composite that is suitable for PC.

The Enumerate element offers a control structure that repeats the defined actions
for all the child objects of a named data object.

Structures for interactive actions

The dynamic composition may take a long time (e.g. more than ten seconds), if a
part of the resources used in composition are located in the Web. Thus it is
important to give feedback for the user about the progress of adaptation. In
addition, it must be possible for the user to control and to select between
alternative adaptation actions. To be usable, the task-based composition
language must offer ready-made structures for interactive actions that provide:

• Feedback messages. The user must be informed about the progress of
the adaptation. Thus the language must offer structures enabling
developers to define context-sensitive feedback messages to the actions
of the tasks. As a result, it is possible to display these messages for the
user when he or she is using the adaptive application.

 108

• User controls. The language must offer action structures that enable the
user to control the adaptation process. For example, it must be possible
for the user to accept or select between alternative adaptation actions. In
order to decrease the coding effort, UIs and info messages can be
described with common mark-up languages (e.g. XHTML) and
presented in a specific way for the user of an adaptive application.

The Accept element enables developers to define a structure that has an acceptor
action that can display user interfaces and thus enables the user to control the
adaptation. After the user has made a selection, either the accepted or rejected
actions are executed. The user may not be concentrated on using the application
forever. In this case, a time-out can be defined for accept. As a result, the accept
actions are executed if the user does not reject the actions during the defined
time-out.

The Select element can define a structure that enables the end-users to control
adaptation. The selector actions can present a user interface enabling the user to
select between alternative adaptation actions. After the user has selected, the
actions of the selected option are executed. The default actions are executed if
the user does not select any option during the defined time-out.

Summary of the elements of meta-models

We have used the meta-model as the basis for a language to specify task-based
composition schemas. It defines the core elements for the task-based
composition (Figure 21). The refined meta-model introduces new elements for
the task-based composition (Figure 22). For example, it offers new structures for
communication, control, and interactive actions and elements for content and
context descriptions.

 109

Element Attribute Description Type
Composition

Schema Describes task, content, and context elements. Element

Task Defines a task and adaptation actions for it. Element
name Defines a name for the task. Literal
cacheable Controls task caching. The task is cached if the attribute has a value �yes�. yes | no
contextSensitivity Defines the context-sensitivity of the task. full | partial | none
[suitablePCs] Defines the context elements that affect task execution. Context1, Context2,�

[requestAcceptors] Defines request acceptors to control the task caching. Plugin Description List

Action Defines an action that is used in task-based composition. Element
actionName Defines a name for the action. Literal
plugin Defines a plugin implementation for the action. PluginDescription

canTaskBeStopped If the attribute has a value "yes", the task can be stopped before the action is
executed. yes | no

[id] Defines a unique identifier for an action Literal
[debug] If the attribute has a value "yes", the action can provide debug information. yes | no

[suitablePCs] Defines the context elements that calculate a SFC value for the action and PC. Context1, Context2,�

[requestAcceptors] The action is executed only, if the defined request acceptors accept the request. Plugin Description List

[infoMessage] Defines a message that informs the end-user about the progress of the
adaptation. Literal

Action
Composite Defines a new execution structure for the child actions. Element

Input Defines an IRef mapping that enables the action to fetch application instances
from different sources. Element

fetch Defines how the applications instance is fetched for IRef.
fetch_all_for_Iref |
fetch_all_for_IRef_and_PC |
fetch_best_for_IRef_and_PC

name Defines a name for the needed application instance. Literal
[environment] Defines an environment for the needed application instance. Literal
[uri] Defines URI for the content that relates to the application instance. URI

sourcePath Defines a source for the application instance. IRef
[sourceURI] Defines URI for the content that relates to the source application instance. URI

[inputValue] Defines a textual input value for the action. Literal

Output Defines an IRef mapping that enable the action to add application instances to
various targets. Element

insertStyle Defines how the application instance is added to the defined target. Add |
Replace_Existing_Instances

name Defines a name for the application instance. Literal
[environment] Defines an environment for the application instance. Literal
[uri] Defines URI for the content that relates to the application instance. URI
targetPath Defines the target for the application instance. IRef
[targetURI] Defines URI for the content that relates to the target application instance. URI
[contextSensitivity] Defines the context-sensitivity of the application instance. full | partial | none
[suitablePCs] Defines the context elements that calculate a SFC value for PC. Context1, Context2,�
[contextComparators] Defines context comparators that calculate how suitable the instance is for PC. Plugin Description List

Content
Element Define context-sensitive content for actions. Element

id Defines a name for the content element. Literal
[suitablePCs] Defines the context elements that calculate a SFC value for PC. Context1, Context2,�
[contextComparators] Defines context comparators that calculate how suitable this element is for PC. Plugin Description List

ContentElement
Composite Defines a composite of context-sensitive content elements. Element

selectStyle Defines how the elements are selected for PCs. all | first | best

ContextElement Describes a suitable PC value and a context comparator for it. Element

id Defines a name for the context element. Literal
type Defines a type for the context element. Literal
suitablePCValue Describes what kind of PC values are suitable for this context element. Literal

[relationOperation] Defines how the suitablePCValue is compared to the given PC value.

e.g. equal, unequal, lower
than, lower than or equal,
greater than, greater than or
equal.

[contextComparator] Defines context comparator plugin to calculate a SFC value for a specific PC
value and for the context element. Plugin Description

ContextElement
Composite

Defines context elements and a context comparator to calculate a SFC value for
PC and for the defined context elements. Element

[AttributeName] = optional attribute

C
on

te
nt

 E
le

m
en

ts
C

on
te

xt
 E

le
m

en
ts

Ta
sk

 D
es

cr
ip

tio
n

Figure 21. The core elements of the task-based composition language.

 110

Element Attribute Description Type
Parameter Defines a context-sensitive parameter. Element

name Defines a name for the parameter. Literal
value Defines a value for the parameter. Literal

Import Include other content elements to the content definition. Element
contentReference Defines a content source that is imported to the content definition. Literal

Boolean Defines a boolean value. Element
Number Defines a number value. Element
Literal Defines a literal value. Element
Time Defines a time value. Element
And A composite for context elements. Element
Or A composite for context elements. Element
Xor A composite for context elements. Element
Not A composite for context elements. Element
Include Includes other context elements to the context definition. Element

contextElementId Defines a context element that is included to the context definition. Literal
Request Defines an action that requests a task. Element

taskId Defines id for the task that is requested. Literal
[requestTimeOut] Defines a time-out for the request. Number
[reprocess] If has a value "true", a new task is started for the request. Boolean
[taskFactory] Defines a task factory for the request. Literal

Modifier Modifies the request before it is passed for the task factory. Element

Adaptor Adaptor actions are notified about the responses of the requested
task. Element

adaptorType Defines the response type that the adaptor action will handle. all | ready | update | failed

Respond Delivers the response of the task for the requestors. Element

responseType Defines response type.

task_ready_response |
response_updated |
error_response |
task_failed_response

Refresh Defines adaptation actions to do postprocessing related to the task. Element
[refreshController] Define a plugin that sets the refresh attributes at runtime. PluginDescription

refreshTime Defines when the defined refresh actions are executed. Number

refreshDelay Defines how often the defined refresh actions are executed. Number

repeatCount Defines how many times the defined refresh actions are executed. Number
Sequence Defines a sequential execution for child actions. Element
Exclusive Defines an exclusive execution for child actions. Element

selectStyle Defines how the child action is selected to be executed. first | best
Enumerate Repeats the defined actions for all the child objects of a data object. Element

collection Defines a name for the data that is enumerated. Literal

If Define a condition, multiple if and else-actions, and a plugin that
decides are the if or else-actions executed. Element

condition Defines a condition for the if-else structure. Literal

Try Define adaptation actions for exceptions. The exception is passed for
the first catch action composite that is suitable for PC. Element

Accept
Defines a structure that enables the user to control the adaptation.
After the user has selected, either the accepted or rejected actions
are executed.

Element

acceptor Defines an action to display UIs that enable the user to control the
adaptation. PluginDescription

[acceptTimeout] If defined, the accept actions are executed if the user does not reject
the actions during the defined time-out. Number

Select
Defines a structure that enables the end-users to select between
alternative adaptation actions. After the user has selected, the actions
of the selected option are executed.

Element

selectorAction Defines an action that can present UIs enabling the user to select
between alternative adaptation actions. PluginDescription

[selectTimeout] If defined, the default actions are executed if the user does not select
any option during the defined time-out. Number

[AttributeName] = optional attribute

In
te

ra
ct

iv
e

A
ct

io
ns

C
on

te
nt

El

em
en

ts
C

on
te

xt
 E

le
m

en
ts

C
om

m
un

ic
at

io
n

A
ct

io
ns

C
on

tr
ol

 A
ct

io
ns

Figure 22. The refined meta-model introduces new action, content, and
context elements for task-based composition.

 111

4.7 Task-based speculative adaptation

4.7.1 Problem

Mobile usage is spontaneous and requires efficient adaptation methods that are
capable of preparing applications parts for possible forthcoming processing
contexts. Methods are needed to support predictive and speculative composition
of adaptive applications. At the same time, it is important that the speculative
adaptation is executed without disturbing the user of the application. For
example, the response times of an application can increase if a lot of tasks are
doing speculative adaptation in the background while the user is actively using
it. This can be avoided by using the idle time of the application for speculative
adaptations. The following states can be defined for an adaptive application
utilising idle time for speculative adaptations (Figure 23):

• Not active state. The application is not yet started.

• Adaptation state. The application is adapted for the current PC.

• Active state. The application is displayed for the user and is ready for
use.

• Speculative adaptation state. Speculative adaptation tasks are executed
in this state. Prediction models can be updated, possible forthcoming
PCs can be predicted, and application instances can be prepared for the
predicted PCs.

• Idle state. The application is not actively used in this state and
speculative adaptations are not made.

• Stopped state. The application is stopped in this state.

 112

Figure 23. The states of an adaptive application.

In addition, there are the following kinds of transitions between the states:

• Start. The adaptive application is started and adapted before use.

• Display. The adapted application is displayed for the user.

• Activation. The activation is made when the user starts to use the
application or when the PC changes. The running speculative
adaptations are suspended while the user is using the application.

• Wait. Speculative adaptations are made while the application is not used.

• Ready. Application is an idle state after speculative adaptations are
ready.

• Adaptation Request. If needed, adaptations are requested when the PC
changes.

• Stop. The application is stopped after a use.

The speculative adaptation requires:

• Actions that utilise prediction models and control speculative adaptation.
Actions are needed to activate new speculative adaptations and to stop
the previously started adaptations that are no longer needed.

• Methods that support of utilisation of application instances that are
prepared for possible forthcoming processing contexts.

• Actions that update the prediction models and thus enable them to learn
about user behaviour.

 113

4.7.2 Solution

The task-based composition technique supports caching of context-sensitive task
and application instances (see Section 4.5). Concurrent tasks can perform
speculative adaptations in the background. For example, these tasks can fetch
composition schemas, initialize task factories for these, and finally request new
tasks to compose application instances for any possible forthcoming processing
contexts. The initialized task factories and composed application instances are
stored to the cache. As a result, the cached application instances can be utilised
when the application is composed for a new PC. In addition, the cached task
factories can be later used when application instances are composed for
forthcoming PCs.

The prediction models can learn about the made adaptation requests. For
example, these models can learn about user behaviour by recording request
sequences during the usage of the application and predict adaptation requests
that will be possibly made in the future. In order to make a speculative
adaptation request better correspond to potential future contexts, the predicted
request can define part of the PC values. In this case, new PC is constructed
before the speculative adaptation task is requested. The new processing context
is a clone of the PC, which is then modified with the context values defined in
the predicted request.

The speculative adaptation actions can utilise the prediction models stored to the
application environment, to update them, and thus enable them to learn about
user behaviour. In addition, the composition schemas can define context-
sensitive settings and speculative adaptation actions that will configure these
prediction models to work better in various PCs.

If the context is changed, a lot of concurrent tasks may prepare application parts
that are not suitable for current or possible forthcoming PCs. In order to
minimise processing and to make adaptation for new contexts faster the
unfinished tasks that are not suitable for the current or possible forthcoming PCs
must be stopped and removed from the task cache. An unfinished task is stopped
by preventing it from delivering new responses for the requestors. However, it
must be noted that it is not always safe to stop task execution. For example, data
might be corrupted if the task manipulating it is stopped at the wrong moment.

 114

Actions can define specific points where it is safe to stop a task that is not
suitable for the current or possible forthcoming PCs. As a result, it is possible to
stop task execution before all the actions of the task are executed.

4.7.3 Summary of the solution

The task-based composition technique supports speculative adaptation and
caching of context-sensitive tasks and application instances. Concurrent tasks can
perform speculative adaptation and prepare application instances for the possible
forthcoming PCs. Adaptation actions can define specific points where it is safe to
stop a task that is not suitable for the current or possible forthcoming PCs.

4.7.4 Example

It is easy to extend or replace tasks with new ones. Figure 24 shows how a
composition schema can be extended with a speculative adaptation task. The
original �Prepare Application� task is renamed �Original Prepare Application�
in the schema. The new �Prepare Application� task will request the original
prepare application task first. The speculative adaptation actions of the task can
be configured for different contexts. As a result, only speculative adaptation
actions that are suitable for the processing context are executed. Learning
actions can mutate prediction models. In order to keep the prediction models
valid, the prepare application task is not cached but is executed always when
requested.

 115

Figure 24. An extended composition schema for a task performing
context-sensitive speculative adaptation.

4.8 The utilisation of the task-based composition
technique

The task-based composition constitutes a foundation that provides a common
mechanism to create and use tasks in dynamic component-based composition. It
enables developers to define contexts-sensitive adaptation tasks that can prepare
application instances for various contexts. Each task can have multiple actions
and it can request other tasks, too. Thus the technique enables an application to

 116

be adapted in many phases. To be practical and truly useful, tool support for the
technique is needed. Such a tool could utilise the task-based composition
methods and offer a useful set of tools helping developers to define composition
schemas for various kinds of adaptive applications. A tool that facilitates
implementation of XML-based composition schemas is discussed in Section 6.5.

The task-based composition technique enables developers to construct adaptive
applications in the following phases:

1. Developers can implement composition schemas that define tasks and
context-sensitive actions and their settings.

2. Executable adaptation code is attached to the composition schema by
implementing various kinds of action plugins for tasks.

3. Developers can generate or implement test sequences requesting tasks for
various contexts and run the adaptive applications composed with tasks in
the simulator or in the actual runtime environment.

The task-based composition technique has four kinds of users shown in the
UML use case diagram in Figure 25.

Component
Developer

Component
Developer

Application
Developer

Application
Developer

End-userEnd-user

Test
Application Composition
in Target Environments

Test
Application Composition
in Target Environments

Define Composition
Schemas

Define Composition
Schemas

Control
Composition at Runtime

Control
Composition at Runtime

Create Application
Components

Create Application
Components

Task-based composition technique

Figure 25. Use and the users of the task-based composition technique.

A component developer creates components for an adaptive application. An
application developer defines task-based composition schemas and tests how the

 117

composed adaptive application works in the target runtime environments.
Finally, the user can control the composition at runtime.

To illustrate the use and advantages of the task-based composition technique,
consider composition that is inside the application logic. This leads to a situation
where the dynamic composition process has to be decided during the time when
application components are developed. By composing an adaptive application
with tasks, it is possible to clearly separate composition concerns from the
application. It enables a separate developer to compose applications of
components that other developers have implemented. The dynamic composition
process can be improved afterwards and may be modified even at runtime. In
addition, it may be possible to reuse composition schemas in different
applications.

The task-based composition technique can be used in different application
platforms. A context-aware application can have a part for sensing the context
and adaptation requestors. For example, as proposed in Context Toolkit
[DSA01], aggregators can collect context information coming from separate
sources. A requestor can work as an aggregator that utilizes various kinds of
context-sensing services and platforms, sense the changed processing context,
and finally request a task to perform the adaptation actions. The actions of the
task can prepare and compose application instances to the application and cache
environments and so adapt the application for new PCs.

However, the context acquiring, processing, and predicting methods are not
directly in the scope of this thesis and are therefore not discussed in detail. In
this thesis it is assumed that the available requestors may request adaptation
tasks for both the current and predicted processing contexts.

The task-based composition technique offers an empty skeleton for adaptive
applications. It has only an application activator that requests an initialise task
that may have various kinds of actions initialising the application environment
when the adaptive application is started (Figure 26).

 118

Figure 26. A composition schema for a task that constructs task
requestors that may utilize separate context-sensing platforms.

The developers can modify composition schemas in order to make an adaptive
application to better utilise the available (e.g. context-sensing) services and
platforms. For example, new actions can be added to the initialise task that
composes requestors to control the adaptation. For example, a requestor can
invoke a task to perform adaptation actions if a context-sensing platform notifies
it about the changed context.

4.9 Usage scenarios for the task-based composition
technique

This section presents three usage scenarios for the task-based composition
technique. Tasks can compose context-sensitive UIs for various contents and
physical environments (Subsections 4.9.1 and 4.9.2) and perform speculative
adaptation in order to make the usage of an adaptive application more fluent
(Subsection 4.9.3). A short description, problem analysis, and task-based
solution are provided for each usage scenario.

 119

4.9.1 Task-based dynamic composition of content and context-
sensitive user interfaces

Usage scenario

The small display of a mobile device set limitations for user interfaces and
content presentations. For example, it may be difficult to present tables (e.g.
timetables) and frames of the Web pages in the small display. Context-sensitive
layouts and style sheets can improve the usability of Web pages. For example,
content elements can be emphasized, hidden, and arranged in a specific way
when the user is in a certain context.

Problem analysis

Wireless network connections are not typically as reliable as the fixed line
connections. In addition, the data transmission rates are typically slower and the
costs are often higher in the wireless networks. Thus it is important to minimize
the usage of wireless networks.

The browsed documents can be cached to the local storage media. As a result, it
may be possible to utilise these local copies of documents later, which can
improve performance, reduce latency, and save network bandwidth and be
cheaper for the users. However, it must be ensured that the cache does not have
an outdated version of the document. HTTP/1.1 offers the means for ensuring
that the cached documents are up-to-date [Luo98]. For example, it offers headers
for performing conditional requests. The GET method uses the Last-Modified
header that was received when the document was retrieved and stored to the
cache. This value is sent in the If-Modified-Since request header. If the document
is not changed, the server will return a not modified response status code and
will not send the document content.

However, it is difficult to utilise a cached document if it is adapted for many
(e.g. time, location, and user agent profile) context attributes. If the context is
changed, the cached document is not necessarily suitable for the new context. In
this case the needed document elements that are suitable for the new context
must be fetched from the Web. Unfortunately, the data transmission is often
chargeable in wireless networks. Furthermore, the network requests take time

 120

and will delay the usage of the context-sensitive application. Thus it would be
useful if a part of the adaptation could be made on the client-side. For example,
documents may contain content elements for various contexts. As a result, the
client-side can compose a presentation for the context by using the context-
sensitive elements of the cached documents.

For example, in many cities (e.g. in Tampere) timetables for local busses are
provided as HTML pages. However, it may be difficult to read these timetables
from the small display of the mobile device. A content and context-sensitive user
interface that presents only the departure times for the next busses that the user
takes often can improve the usability significantly.

An XHTML document can contain meta-information that defines for which
contexts the document and its particular elements are suitable. The meta element
can define properties for the XHTML document whereas the span element offers
a generic mechanism for adding structure to the document [DENW06]. The span
element does not impose presentational idioms on the content but it can
associate attributes with the content. The content attribute can associate metadata
with the content of the span element. For example, span elements can define
valid weekdays and times for the elements of a bus timetable (Figure 27).

<html xmlns="http://www.w3.org/2002/06/xhtml2/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:dcterms=�http://purl.org/dc/terms/">
 <head>
 �
 </head>
 <body>
 <p>
 �

 Bus 23 to City

 <str>10</str> 20 40 55

 <str>11</str> 20 30 52

 �

 �
 </p>
 </body>
</html>

Figure 27. Meta and span elements can attach meta-information to an
XHTML document.

http://www.w3.org/2002/06/xhtml2/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/terms/

 121

An XHTML document can be browsed with standard browsers that may ignore
this meta-information or with specialised user agents that can utilise meta-
information attached to content elements. For example, the user agent can
display either all the contents of the XHTML document or then it can display
only the information needed in the context.

The problems related to the described usage scenario are special cases of
problems that the task-based composition technique helps to solve. Firstly, it
must be possible to compose UIs in multiple phases for various content sources
and contexts (relates to Sections 4.2 and 4.4) and to change the adaptation
policies at runtime (relates to Section 4.6). Secondly, in order to improve the
performance, methods are needed to improve the caching of content and context-
sensitive instances (relates to Sections 4.3 and 4.5). Thirdly, it must be possible
to fetch documents that are possibly needed in the future (relates to Section 4.7).

Task-based solution

Content and context-sensitive user interfaces can be composed with tasks. The
server-side can provide a composition schema that defines adaptation actions
that first download referred documents, later find correct content elements for
PC, and finally compose an overall UI for the context and for the selected
content elements. Content selection and UI composition actions can be
configured with context-sensitive parameters that can define which kinds of
content elements should be selected in various contexts and also configure the
visual appearance of the composed UI elements.

The task-based composition technique supports both caching of tasks and
application instances. As a result, applications can be composed in multiple
phases where the already prepared application instances and responses of the
previously executed adaptation tasks can be utilised in dynamic composition.
Tasks can first download the document sources and then store parsed document
sources to the cache. Tasks can later compose various kinds of context-sensitive
user interfaces for the cached contents on the client-side without using the
wireless network and without parsing document sources again. This all can make
browsing more fluent in the mobile environment.

Tasks can compose user interfaces and content presentations of glyphs. A glyph
is a flyweight component that can e.g. be a graphic or textual primitive or

 122

a composite of objects [CaL90]. The Glyph base class defines a protocol for
drawing; subclasses define specific appearances such as graphic primitives (lines
and circles), textual primitives (characters and spaces), and composite objects
(tilings and overlays). As a result, hierarchies of glyphs can define an
appearance for an application.

The glyph protocol consists of request, allocate, and draw operations [CaL90].
Request defines the preferred screen space allocation of the glyph. Composite
glyphs calculate their own requests from the requests of their components.
Allocate tell the glyph how much space it actually got. Composite glyphs
apportion their allocation among their components according to the requests of
the components. Draw specifies the appearance of the glyph. Composite glyphs
draw their components recursively.

A frame glyph can offer access to the root glyph and to the named glyphs of the
presentation. As a result, separate glyph-based user interfaces can be composed
to these named glyph composites. Figure 28 shows a frame glyph that defines
glyph composites for time and bus timetable glyphs. Furthermore, it defines a
default glyph composite for glyphs that are composed for other content types.

NextBusses "Time"

"CompositeForNextBusses"

IconGlyph
Row

Composite
Row

CompositeIconGlyph

LeftToRight
Composite

CharacterGlyph

Row
Composite

Column
Composite

Frame Glyph for Overall PresentationFrame Glyph for Overall Presentation

Bus 23 to Hervanta

Column
Composite

Row
Composite

10.10, 10.40, 11.10

Bus 23 to City

10.20, 10.30, 11.20

Border
Composite

Glyph Presentation for Bus 23 TimetableGlyph Presentation for Bus 23 Timetable

Column
Composite

Row
Composite

Border
Composite

Bus 30 to Hervanta

10.15, 10.45, 11.15

Bus 30 to City

10.25, 10.35, 11.25

Glyph Presentation for Bus 30 TimetableGlyph Presentation for Bus 30 Timetable

NextBusses 10:01

Bus 23 to Hervanta

10.10, 10.40, 11.10

Bus 23 to City

10.20, 10.30, 11.20

Bus 30 to Hervanta

10.15, 10.45, 11.15

Bus 30 to City

10.25, 10.35, 11.25

Overall Presentation for Bus Timetables

NextBusses 10:01

Bus 23 to Hervanta

10.10, 10.40, 11.10

Bus 23 to City

10.20, 10.30, 11.20

Bus 30 to Hervanta

10.15, 10.45, 11.15

Bus 30 to City

10.25, 10.35, 11.25

Overall Presentation for Bus TimetablesOverall Presentation for Bus Timetables

10:01

Row
Composite

Glyph Presentation for TimeGlyph Presentation for Time

"DefaultComposite"

Figure 28. A content and context-sensitive UI for bus timetables.

 123

A content and context-sensitive user interface is composed of glyphs in the
following phases.

1. Selection of content sources and composition schemas. The user may
have a list of Content Source Descriptions (CSDs) that can describe contents
available on the Web. CSD can define a source, type, and composition
schema for a content document. The source defines a Web address for the
document source whereas composition schema defines a task that is able to
compose context-sensitive UIs for the content elements of the document.
The user can select interesting contents to be displayed in overall UI.
Furthermore, he or she can select specialised composition schemas for
content sources and for overall UI.

2. Fetching of contents and composition schemas to the cache. Contents are
fetched and stored to the cache. At the same time, new task factories are
initialised with the fetched composition schemas and stored to the cache.
The cached task factories are later requested to execute tasks that will
compose context-sensitive UIs for the selected contents.

The context comparators control the caching of the contents. For example,
they can use the meta-elements of a parsed XHTML document, which can
define when the document has expired or for which contexts the document is
suitable. If the document has expired, it is removed and a new one is fetched
from the Web and stored to the cache.

3. Composition of a frame glyph for overall UI. A task composes a frame
glyph for overall UI. The frame glyph can have named glyph composites for
glyphs that are composed for certain content types. Furthermore, it may
define a default composite for glyphs that are composed for content types
that are not directly supported by the frame glyph. The task delivers a frame
glyph for the overall presentation in its response. As a result, actions of
another task can compose the glyphs of other content types to the overall UI.

4. Composition of UIs for CSDs. The cache has a task factory for each
composition schema. A task factory initialised with a correct composition
schema is called to execute a task that will compose a glyph-based context-
sensitive UI for the content source defined in CSD. The task will deliver the UI
in its response, which is later composed to the frame glyph of the overall UI.

 124

For example, a bus timetable can be an XHTML document, which may
provide various kinds of meta-information and context-sensitive content
elements. Meta-information can be attached to the elements of the bus
timetable with span elements. The content attribute of a span element
defines direction (to the city or away from the city), time, and weekday for
the content elements of the timetable. As a result, the actions of a UI
composition task can use this meta-information and search the most suitable
content elements for PC. Actions can later compose glyph-presentations for
the selected elements.

5. Refresh for overall UI. The tasks can be requested to prepare new UI if the
context is changed. Furthermore, refresh actions can utilise the metadata of
the document source and update composed UI periodically. For example, if
the fetched contents are expired, the refresh actions can fetch a new content
document to the cache, compose UI for it, and replace old glyph-based UI of
the expired content with the new one in overall UI.

The refresh action may utilise the metadata defined in the (e.g. XHTML)
document source. It can fetch a new document if the cached document has
expired and compose a new presentation for it. The time is shown in the bus
timetable example UI. The refresh action can update the UI once in a minute
and so ensure that the correct time is displayed for the user.

A task that will compose overall UIs for various content elements is presented in
Figure 29.

The task that will compose a frame glyph for the overall presentation is
requested first. Then, a task is requested to compose glyph-based UIs for CSDs.
Finally, the adapt actions of the request compose UIs of CSDs to the named
glyph composites or to the default composite, if a named glyph composite is not
found for the UI of CSD. The adapt actions can replace the old glyph with a new
one if the UI of CSD is updated. The composed UI will be refreshed
periodically. For example, the UI can be recomposed if the contents composed
to the UI have expired.

 125

<<component>>
OverallPresentation

Request <OverallPresentationUI> responseName="response#OverallUI" taskfactory="external"

Enumerate collection="request#CSDList"
enumeratedItemName="CSD"

Request <UIForCSD> taskfactory="external"
responsename="ContentPresentation"

Adapt

ReplaceGlyph

Input name="SourceGlyph"
sourceName="ContentPresentation.Glyph"

Input name="TargetGlyph"
sourceName="OverallUI.FrameGlyph.$CSD.Type$"

Input name="CSD"
sourceName="ContentPresentation.CSD"

Set name="CSD.glyph" value="ContentPresentation.Glyph"

Input name="OldGlyph"
sourceName="CSD.Glyph"

Input name="task factory"
source="cache#taskfactory"
uri=$CSD.UISchema$

Input name="task factory"
source="cache#taskfactory"
uri=$request.OverallUISchema$

Refresh
doDuringTaskExecution=�yes�
refreshDelay=�60 s�

Requestor

Task

Requestor

Task

Figure 29. A task that composes an overall UI for various contents.

4.9.2 Task-based dynamic composition of context-sensitive user
interfaces of physical environments

Usage scenario

In the future there will be more and more physical devices and objects that are
connected to the Web. Many kinds of devices and objects (e.g. TV, radio, video,
desktop computers, or other appliances) may be controlled through (e.g.
Bluetooth) Access Points (APs) and with UIs that are made for these different
physical objects (Figure 30).

User AgentUser Agent

AP1AP1
AP2AP2

AP3AP3

AP4AP4 AP5AP5

AP7AP7

AP6AP6

��

The range
of a local
network

Figure 30. A physical environment can offer access points for various
kinds of objects that can be observed and controlled with Web UIs.

 126

As a result, a physical environment can have a lot of objects that can be
controlled through access points and with separate UIs that are made for
different physical objects. The user may be interested in observing and
controlling only specific physical objects that are inside the range of a local
network. It should be possible for the user to select certain objects from a
physical environment and to use these nearby objects with a single UI.

Problem analysis

Mobile devices have typically only limited input and output capabilities. It is
important to adapt UI to contain only information and controls that are needed in
the physical environment and context. For example, if the light switches are
hidden during the day time in overall UI, it is easier for the user to control the
other home appliances with the UI running on a mobile device. This all sets
requirements for a technique that can compose UIs of physical objects into a
single UI that is adapted for the context.

The task-based composition technique helps developers to solve the problems
related to the described usage scenario [Pal07]. Firstly, it must be possible to
compose context-sensitive UIs for a physical environment and its objects in
multiple phases (relates to Sections 4.2 and 4.4) and to change the adaptation
policies at runtime (relates to Section 4.6). Secondly, in order to improve the
performance, methods are needed to improve the caching of application
instances that are needed in UIs (relates to Sections 4.3 and 4.5). Thirdly, it must
be possible to compose UIs that are possibly needed in the future (relates to
Section 4.7). Tasks support dynamic composition of UIs for combinations of
services and improve performance when UIs are adapted for new contexts and
physical environments.

Task-based solution

Figure 31 shows a frame glyph that defines glyph composites for glyphs related
to time, location, lights, and TVs and a default glyph composite for glyphs that
are composed for other contents or physical object types.

 127

"Light"

Icon
Glyph

Row
Composite

LeftToRight
Composite

Character
Glyph

Row
Composite

Column
Composite

A Frame Glyph for an Overall UIA Frame Glyph for an Overall UI

Icon
Glyph

"Time"

A Frame Glyph for TimeA Frame Glyph for Time

"Light Name"

A Frame Glyph for LightsA Frame Glyph for Lights

"TV"
"DefaultComposite"

"Temperature"

A Frame Glyph for TemperatureA Frame Glyph for Temperature

An UI for physical objects
at living room

An UI for physical objects
at living room

TV at Livingroom

Ch+Ch+ Ch-Ch- Vol+Vol+ Vol-Vol-

Living Room 10:01

Roof
Light

Standard
Lamp

+19.7 Degrees

"Light Status"
Selectable

Glyph

Selectable Glyph

Left-to-Right
Composite

A Frame Glyph for TVsA Frame Glyph for TVs

"TV Name"

Ch+Ch+ Ch-Ch- Vol+Vol+ Vol-Vol-

"TV State"

"Location" "Time"

Figure 31. UIs of a physical environment can be composed of glyphs.

Tasks can compose a glyph-based UI for a physical environment in the
following phases (Figure 32).

1. The Physical UI (PUI) task requests a task to compose a frame glyph for
the overall UI. A frame glyph defines a layout for the overall UI. It offers
access to the root glyph and to the named glyphs of the presentation. As a
result, separate glyph-based UIs can be composed to these named glyph
composites.

2. The PUI task requests a task to fetch the Physical Object Descriptions
(PODs) from access points (APs). A POD defines a name, type, attributes
for a physical object and an address for a service (ObjectURI) that enables
the user to control and observe the object. It can also define a source for a
composition schema (UISchema) that describes a task that is capable of
composing a UI for the POD.

3. Composition of UIs for the Physical Object Descriptions (PODs). The
PUI task will fetch the UISchemas for found PODs, initialise task factories
for them, and finally request their tasks to compose UIs for PODs that are
finally composed to the named glyphs of the overall UI.

 128

<<component>>
PUI

Sequence

Enumerate
<PODList>

Request
<OverallUI>

Request
<PODList>

Adapt

Request
<PODUI>

Compose
To

OverallUI

InitialiseTaskFactory
"POD"

Adapt

2. The request calls the adapt actions
to compose UIs when a new or
refreshed POD list is available.

3. The request calls the adapt actions
to compose POD UIs to overall UI when
a new or refreshed POD UI is available.

Adapt

1. The request calls the adapt actions
to compose POD UIs to overall UI if a
new or refreshed overall UI is delivered.

Requestor

Task

Figure 32. A task that composes an overall UI for physical objects in
multiple phases and performs reactive and proactive adaptations for it.

4. Reactive and proactive adaptations for the UI. The context and physical
environment can change rapidly. The refresh action, request-adapt structure,
and caching of tasks and content and context-sensitive instances provide an
efficient way to make adaptations in the UI. Firstly, reactive adaptation tasks
compose UIs for new requests and contexts. This is made efficiently because
the cached application instances are utilized in dynamic composition.
Secondly, tasks can do multilevel proactive adaptations. The refresh actions
can update the response of a task when the physical environment or context
is changed or update the response periodically. For example, the refresh
actions can update the overall UI, POD list, or only a UI of a single physical
object.

The following steps are made if the overall UI is updated (Figure 32). (1)
The notified adapt actions request a task to deliver a POD list first. It will
fetch new PODs from the available APs only if a valid POD list is not
available in the cache. (2) The adapt actions will request tasks to compose
UIs for PODs. Tasks will compose new UIs only if suitable UIs are not
available in the cache. (3) Finally, the adapt actions will compose the UIs to

 129

the overall UI. Only steps 2 and 3 are made, if a POD list is updated and
only step 3 is made, if a UI of a single physical object is updated.

However, usability problems may arise and the inputted information can be
lost if a UI is replaced with a new one while the user is actively using it. The
requestors and refresh actions can observe the activity of the user and use the
idle time for adaptations. As a result, the UI can be adapted without
disturbing the user.

5. Speculative adaptation tasks can prepare new task factories and compose
UIs for the next locations to which the user will possibly go next. The task
factories and UIs are cached. As a result, cached UIs are fast displayed for
the user when he or she arrives in a specific physical environment. In
addition, the cached task factories can be later utilized when UIs are
composed for new PCs.

Composition schemas can describe tasks to compose default UIs for PODs to
enable the user to use the standard features of certain kinds of physical objects.
Task factories can be initialized for these default composition schemas and
cached. As a result, default UIs can be fast composed and displayed for the user.

Tasks that are capable of composing UIs for specific physical objects or
environments can be provided, too. Specialized UIs can improve the usability
and enable the user to utilize features available in specific appliance (e.g. in
video recorder) models only. The background tasks can download composition
schemas for specialized UIs, initialize task factories for them, and request tasks
to compose specialized UIs for PODs when the user is using the default UIs.
However, usability problems may arise if UI is replaced with a new one when
the user is actively using it. The user-directed adaptation can solve this problem.
A default UI can offer a control (e.g. a button) that enables the user to request a
task that will replace the default UI with a specialized one.

The task-based composition technique facilitates the dynamic composition of
UIs of physical environments and supports client and server-side adaptation. A
composition schema defines tasks and context-sensitive adaptation actions,
parameters, and contents for them. As a result, it is possible to compose context-
sensitive UIs for both physical objects and environments.

 130

A physical environment and its objects may change constantly. This requires
dynamically changing UIs that are adapted for the physical environment in
question. Unlike many mark-up languages, a composition schema does not
necessarily directly define UI or content elements but describes how a UI should
be composed for physical environments, objects, or contents in various contexts.
For example, if a room has five light switches, UIs of different switches can be
composed on the client-side by using a single composition schema and without
downloading separate UIs for various light switches. The composition schemas
can be downloaded either from the Web or from the local cache. For example, if
the context is changed, the UI can be adapted for the new context on the client-
side. In the best case, if the needed resources are in the cache, the UI can be
composed without causing network traffic at all. Only, the list of PODs of the
objects of the physical environment needs to be acquired.

If needed, the XML-based composition schemas can be modified or replaced
with new ones. For example, the user may fetch a new composition schema from
the Web that can compose better UIs for certain kinds of physical environments.
In addition, it can introduce a new layout and overall UI for physical
environments or replace default UIs of the physical objects with new ones. For
example, it can use a composition schema that will make specialised UI for a
certain video recorder model. As a result, the user may utilise the features that
are available in that specific video recorder model only.

4.9.3 Task-based speculative adaptation

Usage scenario

If an application is composed of local components, the composition time can be
relatively short and may not have such a great effect on the usability. The
composition time is typically longer (e.g. more than ten seconds) if non-local
resources and components are used in adaptation. In order to enable seamless
adaptation, the tasks can be requested to prepare application instances for
potential future contexts in the background. For example, tasks can prepare
application instances related to locations at home and save them to the cache in
the background. As a result, the application can be fast composed of the
prepared instances when the user comes to a certain location at home.

 131

Problem analysis

A physical environment may offer various kinds of networks for mobile users.
For example, in the office the user may use a Wireless Local Area Network
(WLAN) connection, whereas while travelling there can be only a General
Packet Radio Service (GPRS) connection available. In addition, the user may
have a home automation system that can be used through Bluetooth access
points. The characteristics of these wireless networks vary a lot (Figure 33). For
example, pricing, bandwidth, and coverage are very different in various
networks. Thus in order to make the usage of Web applications more fluent and
cheaper for nomadic users, an application should adapt to use the network that is
most appropriate for the context.

Figure 33. A summary of the connectivity technologies [AAH05].

The following example shows how the task-based composition technique can be
utilised in the applications using network connections. Consider a situation
where the user downloads a Word document to the mobile device at work. Then,
the user may need a map service and driving instructions on a work trip that
helps him or her to find specific locations in the countryside. Finally, after the

 132

user comes home, he or she can download the user interfaces of the home
automation system and use the available services with the mobile device. The
sizes of the downloaded files used in the usage scenario are given in Figure 34.

Web Resource Size [kByte]
Word Document 1000

Map Service 500
Home Automation UIs 300

Figure 34. The sizes of the files used in the case study.

For example, the user may use networks A, B, and C (Figure 35).

Network Speed [kByte/s] Cost [Euros/Mbyte] Coverage
A 50 0,1 Office
B 4 1,5 Everywhere
C 30 0 Home

Figure 35. The characteristics of networks A, B, and C.

Network A can be available at the office, network C at home, and B everywhere.
The simplest solution is to make the application to always use network B, when
the total download time is 450 seconds and costs are 2.7 euros (Figures 36 and
37). The download time is 36 seconds and costs are 18 cents if all the resources
could be downloaded over the network A. Network C does not cause any costs
for the user but it takes more time (233.3 seconds) to download the resources
over the network C. Unfortunately, networks A and C can only be used in
certain locations.

In order to make it more fluent and cheaper to use services available on the Web,
the combination of these three network technologies can be used. The Word
document can be downloaded by using the network A at the office, maps can be
downloaded by using the network B during travel, and finally the user interfaces
of the home automation system can be downloaded by using the network C. As a
result, the download time is 155 seconds and costs are 85 cents, if these
resources are downloaded over networks A, B, and C.

 133

A+B+C
155

A
36

B
450

C
233,3

0

50

100

150

200

250

300

350

400

450

500

D
ow

nl
oa

d
Ti

m
e

[s
ec

on
ds

]

A+B+C
A
B
C

Figure 36. Download time for the resources transmitted over networks A,
B, and C.

A+B+C
0,85

B
2,7

0

0,5

1

1,5

2

2,5

3

C
os

t w
he

n
tr

av
el

lin
g

[e
ur

os
]

A+B+C
B

Figure 37. Costs for the resources transmitted over networks A, B, and C
and over network B.

Speculative adaptation can be used to improve performance and reduce costs.
For example, the application can use the calendar information and so it can
know that the user will have a business trip. As a result, the application can
conclude that the user may possibly need a map for finding the locations en
route. In addition, the user may need the user interfaces of the home automation
system after she or he arrives at home in the evening. Thus the application can

 134

download these files by using network A when the user is at the office and is not
actively using the mobile device. As a result, the download time is 36 seconds
and costs are 18 cents if the resources are downloaded over network A.

In the previous usage scenario it is assumed that a prediction method exists that
is able to predict the required speculative adaptations perfectly. Unfortunately,
the prediction accuracy is typically less than 100% in the real world (see Section
2.2.4). This will cause vain speculative adaptation. The speculative adaptation is
a reasonable solution only if it benefits the user of an adaptive application. Thus
it is required that:

 costspec<costnormal

where

, costspec is the cost of correct and vain speculative adaptation.

, costnormal is the cost without speculative adaptation.

In the usage scenario there are calculated download times and prices when
various contents were downloaded over different networks. The following kinds
of equations can be written for the usage scenario and for costspec and costnormal:

costspec = S*CS + (1-µ)*N*CN

costnormal = N*CN

where

, µ is the prediction accuracy.

, S unit cost in the network where the speculative adaptation is made.

, CS= Size of the content downloaded in the speculative adaptation.

, N unit cost in the network where the normal adaptation is made.

, CN= Size of the content downloaded in the normal adaptation.

 135

By using these equations, we can calculate the minimum requirement for the
prediction accuracy µ (1µ0 ≤≤):

 costspec<costnormal

 ⇒S*CS + (1-µ)*N*CN<N*CN

 ⇒
N

S

C*N
C*S

 µ >

The equation will look like this if we assume that the size of the content
downloaded is the same in the normal and speculative adaptation (CS=CN).

N
S

 µ >

We can use this equation and calculate the required prediction accuracy µ for the
networks used in the usage scenario (Figure 38). For example, the speculative
adaptation will decrease the download time if the prediction accuracy is more
than 8% and make the content download cheaper if the prediction accuracy is
more than 6.7% when the user moves from network A to B.

Network at Begin Network at End Required Prediction Accuracy (Speed) Required Prediction Accuracy (Price)
Network A Network B 8,0 % 6,7 %
Network A Network C 60,0 % -
Network B Network A - -
Network B Network C - -
Network C Network A - 0,0 %
Network C Network B 13,3 % 0,0 %

Figure 38. Required prediction accuracy µ when the user moves between
networks A, B, and C.

It must be noted that also other issues than prediction accuracy affect the costs of
speculative adaptation. For example, the size of available memory can reduce
content caching. In addition, the contents that are not needed must be later
removed from the cache. This causes additional processing and can increase
delays related to speculative adaptation. These issues were not considered in the
previous calculations.

 136

The task-based composition technique helps developers to solve problems
related to speculative adaptation. Firstly, it must be possible to open connections
and to fetch contents in various contexts (relates to Sections 4.2 and 4.4) and to
change the adaptation policies at runtime (relates to Section 4.6). Secondly, in
order to improve performance, methods are needed to improve the caching of
context-sensitive documents (relates to Sections 4.3 and 4.5). Thirdly, it must be
possible to prefetch contents that are possibly needed in the future (relates to
Section 4.7).

Task-based solution

Tasks can perform speculative adaptation and thus improve performance and
reduce costs. Different kinds of speculative adaptations may be needed in
various contexts. For example, sometimes it may be possible to use prediction
methods whereas sometimes it is only possible to request speculative adaptations
randomly for possible forthcoming processing contexts. The task-based
composition technique enables developers to attach various kinds of speculative
adaptation mechanisms to the existing composition schemas of adaptive
applications. The composition schemas can be extended with context-sensitive
actions performing speculative adaptations. As a result, the most appropriate
speculative adaptation actions can be executed in different contexts.

 137

5. Implementation issues
Mobile usage is spontaneous and applications should be fast to install, start, and
use in the devices with limited memory and processing power and in the wireless
networks offering typically less bandwidth than wired connections. This all sets
requirements for implementations that support task-based dynamic composition
of adaptive applications. Firstly, it is important that using the task-based
composition technique does not considerably increase the size of the installation
package of an adaptive application. Secondly, it is important that the usage of
the technique does not considerable increase the ready-for-use time of an
adaptive application. Thirdly, in order to be usable in various kinds of mobile
devices, it is important that using tasks does not cause a considerable processing
overhead. These issues are discussed in Sections 5.1 and 5.2.

5.1 Execution of adaptation tasks

Concurrent composition is needed in many adaptive applications. For example,
asynchronous content fetch is a commonly used technique to improve the
efficiency of browsing applications. An HTML page can have several references
to image, text, and video resources. The loading time for a single browsed
resource is the total time spent on connection opening, request sending, and
response receiving (Figure 39).

topen connection tsend request treceive response

topen connection tsend request treceive response

topen connection tsend request treceive response

topen connection tsend request treceive response

...

Total loading time for n resources

1

2

3

n

Figure 39. Total loading time for n resources loaded asynchronously over
multiple connections.

In asynchronous content fetch separate threads can open multiple connections
and fetch resources simultaneously, when the perceived load time is the

 138

maximum of the load times of the resources [Luo98]. In addition, because
content fetch is done in separate threads, it does not block the usage of the
browser [CDK00].

The parts of an application can be replaced with new ones for adapting it for new
contexts. For enabling fine-grained adaptations, the application can be composed
of small parts. As a result, it may be easier to utilise the previously prepared
parts when the application is adapted for new contexts. However, it must be
noted that those actions modifying instances of the adaptive application will lock
those instances and so may possibly block the use of the application. Thus it may
be better if the actions of tasks do not modify the instances used currently in the
application. Instead, actions can utilise instances when they are building new
instances for possible forthcoming PCs. New instances can be saved to the cache
and may be possibly composed to the application in the future.

Computer configurations typically only have a single CPU. The illusion of
concurrency can be made by executing multiple threads on a single CPU. The
scheduling defines the execution order for the threads. For enabling concurrent
execution for tasks, a task is executed in its own thread if an asynchronous
request is made. Unfortunately, constructing and starting new threads can cause
overhead. It can be minimized by using a pool for the processing threads
[Goe02].

Especially, in those situations where the context is changing very rapidly, a lot
of tasks may be started to prepare application instances for various PCs. This
may decrease the usability of the adaptive application. The application can be
slower to use and the memory consumption can increase, if many concurrent
tasks requiring a lot of processing are executed in the background.

In order to be usable in various kinds of mobile devices, it is important that
using the task-based composition technique does not cause a considerable
processing overhead. We made the following test preparation and measurements
with the Java Mobile Information Device Profile (MIDP) enabled Nokia 6630
mobile phone in order to evaluate the amount of processing overhead in a case
where multiple tasks participate in processing. The Java Virtual Machine (JVM)
implementation, thread scheduling model, thread priorities, and processes
running in the background may have a great effect on the processing time of

 139

a single thread. Thus it must be noted that these results cannot be directly
generalized for all runtime environments.

In order to measure the processing overhead related to tasks, we executed same
calculation loops with threads and tasks. We implemented a composition schema
(Figure 40) that forms a chain of tasks (like in Figure 11) in which each task
(except the last one) modifies a request and later adapt the response of the
requested task. The request modifier adds the value of a request index parameter
by 1 first and attaches it to the new request. A new calculation task will be
requested until the request index value has exceeded the defined value. As a
result, only a defined number of tasks will be executed. The request action has
an adapt action that takes the result of the received response as an input,
performs a calculation loop, and finally saves the result of the calculation loop to
the request.

<<component>>
CalculationTaskIf

InsertRequestIndexToRequestAction

RequestModify

Conditions CheckRequestIndexAction

Request <CalculationTask>

Adaptor

CalculateLoopAction

Requestor

Task

Requestor

Task

Figure 40. A composition schema for the chain of calculation tasks
example.

The Java implementation of the task-based composition technique, called
TaskCAD, (described in Chapter 6) was used in the measurements that were
made in the Nokia 6630 device. One million calculations were made in a single
calculation loop. In both cases a thread pool that had 100 Java threads was used.
In the thread-based measurement, n number of threads processed the same
calculation loop sequentially. The tasks were not cached in the calculation task

 140

measurement. As can be seen in Figure 41, a linear dependency exists in both
cases between the number of calculation loops and execution time.

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80 90 100
Number of Calculation Loops

Ex
ec

ut
io

n
Ti

m
e

[m
s]

Tasks
Threads

Figure 41. A processing time for calculation loops.

However, although more instances (e.g. task requests, responses, and action
events) are composed in the task-based processing, the execution times are not
considerably longer. However, it must be noted that the proportion of the
processing overhead will increase if tasks are used for very small processing
actions. For example, if a single calculation is made with a task, a calculation
loop will make 1 million task requests. As a result, a huge number of requests
and responses will be made that can increase the processing time drastically.

A mobile device may offer only a limited number of threads for an adaptive
application. In this case the synchronization can be difficult if concurrent tasks
are modifying shared objects. For example, the discussed chain of calculation
tasks example does not work if threads are not available for all tasks. Tasks
make synchronized task requests and then wait that a thread executes the
requested task. If new threads are not available, the task will not be executed. As
a result, execution will be blocked until the request time-out is expired. It should
be noted that it is the concern of a requestor to define a long enough time-out

 141

value to the task request. If the time-out is too short, the requestor (e.g. a task)
will continue its execution before the requested task has delivered its response.

5.2 A generic structure for different data types

Mobile usage is spontaneous. Thus it is important that starting of an application
does not take too much time. The ready-for-use time is longer for a Java MIDP
application, if a lot of Java classes are loaded while the application is started. We
make measurements in order to evaluate how much does the number of Java
classes affect the ready-use-time in Nokia 6670 and Nokia 6630 mobile phones
(Figure 42).

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Number of Java Classes

R
ea

dy
-f

or
-U

se
 T

im
e

[m
s]

Nokia 6670
Nokia 6630

Figure 42. The ready-for-use time in Nokia 6670 and 6630 mobile phones
for an application having various number of Java classes.

The installation package contained a total 200 generated Java classes. We
implemented a Java MIDlet that shows a form first and then downloads a
defined number of empty Java classes. Finally, the time that took to load those
classes was shown in the form. As can be seen in Figure 42, the number of
classes has a great effect on the ready-for-use time. The delay is over 10 seconds
in the Nokia 6670 device when the number of loaded classes was 100 or more.

 142

The task-based composition technique supports lazy initialisation. The classes
defined in the composition schema are not loaded and application instances are
not initialised before they are needed. This shortens the ready-for-use time of an
application. However, it must be noted that the implementation of the task-based
composition technique may increase the number of Java classes and interfaces,
which may in turn extend the ready-for-use time. Thus in order to ensure that the
ready-for-use time would not be too long, it is important that the implementation
of the task-based composition technique does not contain too many Java
interfaces and classes.

In order to minimise the number of required Java classes and interfaces, we
followed the principles of the reflection architectural pattern [BMR+96] and
implemented a generic structure for various kinds of data that is used in task-
based composition (Figure 43).

Figure 43. A generic structure for data used in task-based composition.

The data object structure is based on the Composite pattern [GHJV95] and offers
implementations for three kinds of data objects. A data object can be a leaf,

 143

a composite of data objects, or a reference to other data object. It can define
parameters and a composite data object can contain child objects, too.

Adaptation actions can use data objects for information exchange. They can
compose both parameters and child objects to data objects and utilize existing
data objects in adaptation. It is possible to refer to parameters and child objects
with a data reference formatted as follows:

 DataRef = [#InstanceName][.ParameterName][DataRef].

For example, this enables the input and output mappings defined in a
composition schema to refer to specific parameters and named child objects of
the data object instances available at the runtime environment.

TaskCAD relies strongly on data objects. For example, the data related to
composition schemas, requests, PCs, and responses and also events passed for
adaptation actions are presented as data objects. This decreases the size of the
installation package, because separate interface and class implementations are
needed only for the functionality of the task-based composition technique.
Currently, the Java implementation of the task-based composition technique
contains 13 interfaces and 25 classes. For example, loading of these interfaces
and classes took 5900 ms in the Nokia 6670 device and 2100 ms in the Nokia
6630 device.

The ready-for-use time can be shortened if a lot of functionality can be packed in
a single class. In order to demonstrate this, we generated 100 action plugin
classes that have only a single method. The load and initialisation of these
classes took 10500 ms in the Nokia 6670 device and 4500 ms in the Nokia 6630
device. Then, we implemented an action that has 100 adaptation methods and a
method that will select the correct adaptation method for a name and then will
call it to perform the required adaptations. The load and initialisation of that
class took only 350 ms in the Nokia 6630 device and 1100 ms in the Nokia 6670
device. The task-based composition technique makes it possible to combine
several adaptation actions in a single action plugin. The composition schema can
define the name for the adaptation action. As a result, it is possible to direct the
request for the correct adaptation method when an action plugin is called to
handle an action event.

 144

Compared to a pure Java implementation, the usage of the task-based
composition technique can increase the size of the application installation
package. Firstly, interface and class implementations are required for the
technique. The compiled size of the interfaces and classes of TaskCAD is
currently 120 Kbytes. Secondly, an XML parser is needed because the
composition schemas are defined with XML, which may also increase the size of
the installation package. However, it must be noted that an XML parser is
needed anyway in many applications in the mobile environment. Especially Web
applications and standards based often on XML. A kXML 2 parser was used in
XML parsing. Its compiled size is 31 Kbytes.

 145

6. TaskCAD: An implementation for the
task-based composition technique

The Java reference implementation of the task-based composition technique,
called TaskCAD, offers core interfaces and classes that are capable of executing
adaptation tasks with threads. Furthermore, it offers an interpretable Domain
Specific Language (DSL) [DKV00] for composition schemas that enables
developers to define tasks and context-sensitive actions, parameters, and content
elements.

The TaskCAD provides an XML-based language for composition schemas
which is discussed briefly in Section 6.1. The core implementations of TaskCAD
are able to execute composition scripts and to use Java-based actions in
composition. The core implementations of TaskCAD are discussed in Section
6.2. TaskCAD provides execution structures for adaptation actions and
implementations to support caching of context-sensitive tasks and instances.
These are discussed in Sections 6.3 and 6.4. Furthermore, an XML-editor is
provided to facilitate construction of composition schemas which is discussed
briefly in Section 6.5.

6.1 An XML-based language for composition schemas

The task-based composition language offers elements that enable developers to
describe composition strategies for adaptive applications, to use various kinds of
components in task-based composition, and to define new execution structures
for adaptation actions. The XML-based language for composition schemas is
based on the meta-model of the task-based composition language that was
discussed in Section 4.6. The Document Type Definition (DTD) defines
elements, attributes, and structure for the language. For example, XML editors
can use the DTD and ensure that the required elements and attributes are defined
in edited composition schemas.

The XML-based language of TaskCAD enables an application developer to
create a composition schema that will generate a composition script that will
finally configure the task factory (Figure 44).

 146

XML-based Composition
Schema

Composition Schema

Application
Developer
Application
Developer

Composition
Script

Task
Factory

Uses

Instance of

Generates

Configures

Java-Based
Action Plugin

Action

Instance of
Uses

Component
Developer

Component
Developer

Creates

XML-editor

Creates

Figure 44. TaskCAD facilitates application and component developers to
implement Java-based adaptive applications.

6.2 Task factory and composition schemas

TaskCAD offers ready-made Java implementations for a task, task factory, and
composition schemas. The task factory composes tasks for requests and executes
them with threads. In order to minimise the overhead related to constructing and
starting threads, the task factory has a pool for execution threads. The size of the
thread pool is set dynamically. A defined amount of threads is started at the
beginning. If needed, more threads are started later to do the processing.

Composition schemas have an important role in task-based composition. They
are used in task-based composition with the following steps:

1. Composition of a data object presentation for the textual composition
schema. The reference Java implementation uses a kXML 2 parser in order
to compose a data object tree for the composition schema described with
XML. The tree can contain leaf, composite, and reference data objects.

2. Attaching context comparators to the context-sensitive parts of
a composition schema. It is possible to attach functionality to the data
objects. For example, context comparators are constructed and attached to

 147

the context-sensitive elements of the composition schema and thus it is
possible to filter correct data objects for certain PC. The source data object
tree is traversed and suitable data objects are selected for PC by using the
context comparators. If a context comparator is defined, it is called to
calculate the Suitability For Context (SFC) value for the data object and PC.
Finally, the data objects that are suitable for PC are selected and composed
to a data object tree that contains correct data objects for certain PC. For
example, this feature is used when the context-sensitive settings and content
elements are fetched when an adaptation action is executed for certain PC.

The named context elements of a composition schema can specify
acceptable PC values for the context-sensitive elements of the schema.
TaskCAD presents context elements as a data object tree that defines a data
object for each context element and can also contain data object references
that will include other named context elements to the tree. TaskCAD offers
a ready-made context comparator that is able to calculate the suitability
value for PC and for the data objects that describe logical context
expressions and Boolean, literal, numeric, time, and location context
attribute elements. This context comparator is attached to these basic context
elements. The named context elements can be attached to context-sensitive
elements of a composition schema to calculate SFC values for PCs.

3. Composition of task schemas. A task schema is a data object that defines
a task and its actions. A task schema composer takes the composition
schema as an input and composes task schemas for various tasks. Finally,
the task schemas are added to the task factory that is able to compose tasks
for requests by using the task schemas as its base.

4. Execution of a task. The task factory composes a task for a request if
a suitable task is not found from the task cache. It calls a thread to execute
the task and its actions. Finally, the response of the task is delivered for the
requestors.

Composition schemas define tasks and context-sensitive actions and their
settings. Thus they will configure the components that are marked with a white
colour in Figure 45.

 148

Figure 45. An implementation for the task-based composition technique.

TaskCAD offers implementations that are able to execute the action structures
defined in composition schemas. In addition, it offers an action executor that
calls the action plugins to execute the named actions of tasks (Figure 46).

An action is executed in the following steps. Firstly, it is checked that the action
is suitable for the request and PC. If not, the action is not executed. Secondly,
the settings elements are selected for PC and an environment adaptor is
constructed for the defined Input and Output elements. Thirdly, the environment
adaptor is passed in the event that the action plugin is called to perform a named
action.

 149

Figure 46. An action executor that calls the action plugin to perform a
named action.

6.3 Execution structures for actions

The task-based composition language offers elements that can define various
kinds of execution structures for adaptation actions. TaskCAD provides Java
implementations for these elements. These are discussed in the following
paragraphs.

The request action structure enables a task to request other tasks (Figure 47).

Figure 47. A request structure can have multiple actions modifying the
request and adapting the received responses.

 150

A request can contain actions that modify the request and adapt the received
responses. A requestor can use an action reference and refer to the named action
of the requested task and define settings for it in the request. The action
reference is formatted as follows:

 actionpath =actionname/[actionpath]
 taskpath=taskname://[actionpath][taskpath]
 actionreference=[taskpath]actioname.

For example, an action reference can have the form:

objectpull://openconnectionaction/requestplayer/prepareplayer://xhtmlplayer

As a result, the requestor can define settings for the referred xhtmlplayer action of
the prepareplayer task that the requestplayer action of the objectpull task requests.

A request can also be cancelled. For example, if a refresh is made, a previously
executed request is cancelled before a new request is made. A respond action
delivers various kinds of responses for the requestors. If needed, it can also stop
task execution after the response is delivered for the requestors.

A refresh action can contain actions that do post-processing related to a task and
update its response (Figure 48). As a result, the requestors of the task are
notified about the changed response. If the task is stopped, execution of refresh
actions is stopped at the same time.

Figure 48. Refresh actions can do post-processing and update the
response of the task.

objectpull://openconnectionaction/requestplayer/
prepareplayer://xhtmlplayer

 151

An action sequence can contain multiple actions that are executed one after the
other (Figure 49).

Figure 49. An implementation for an action sequence.

An exclusive action composite can contain multiple actions. It will execute only
the first action that is suitable for PC or the action that is most suitable for PC
(Figure 50).

Figure 50. An implementation for an exclusive action composite.

An if-else action structure can contain conditional actions (Figure 51).

Figure 51. An implementation for an if-else action structure.

 152

TaskCAD offers a ready-made condition that checks if an instance that is
suitable for PC exists in the specified source. This can be used in an if-else
structure that defines actions that need to be executed only if the instance does or
does not exist in the specified source.

A try-catch action structure defines context-sensitive handling of exceptions that
adaptation actions may throw (Figure 52).

Figure 52. An implementation for a try-catch action composite.

The try-catch action composite throws an exception, if a suitable catch action
composite is not found for PC. The action event offers a method that enables
actions to stop execution of the task. The method throws a stop execution
exception. The run method of the task catches the exception and finally stops
execution of the task. It must be noted that the stop execution exception is a
special exception, and thus, for example, the try-catch action structure does not
handle this exception type.

An enumerate action structure repeats the defined actions for all the child
objects of a named data object (Figure 53). The enumerated child object is stored
to the execution environment of the task. As a result, the actions of an enumerate
action can use the enumerated child object during execution.

 153

Figure 53. An implementation for an enumerate action.

An accept action structure enables the user to control the adaptation (Figure 54).
Acceptor action can display user interfaces that enable the user to control the
adaptation. At the same time, the execution thread of the accept action is set to
the wait state. After the user has made a selection, the thread of the accept action
is activated and either the accepted or rejected actions are executed.

Figure 54. An accept action structure enables the user to accept, reject,
or skip actions.

A select action structure enables the user to select between optional actions
(Figure 55). The selector actions can present a user interface first enabling the
end-user to select between alternative adaptation actions. At the same time, the
thread of the select action is set to the wait state. It is activated after the end-user

 154

selects an option. As a result, the actions that the selected option contains are
executed. The default option is used if the user does not select any option during
the defined time-out.

Figure 55. An implementation for the select action structure.

An ActionComposite structure can contain various kinds of actions and define a
plugin that introduces a new execution structure for the defined actions.

6.4 An application environment and components for a
task and application instance caching

TaskCAD offers ready-made implementations for the execution, cache, and
application environments. The environments can have alternative instances
prepared for various contexts. As a result, multiple application instances can be
found for an Instance Reference (IRef). In this case, the most suitable one is
selected for PC.

A context-sensitive application instance is stored to the environment as a data
object that contains an original instance, context comparators (Figure 56), and
PC for it.

 155

Figure 56. ContextComparator and RequestAcceptor interfaces.

TaskCAD offers ready-made context comparators for instances that are suitable
for a specific PC only, for instances that are suitable for certain PC values only,
and for instances that are suitable for all contexts (see Section 4.5.4).

RequestAcceptor provides three methods that are able to control caching of tasks
(Figure 56). The first method defines if a task is suitable for a request whereas
the second one calculates how suitable the task is for the processing context. The
isValid method returns true if the task is suitable for given PC. TaskCAD offers
ready-made RequestAcceptors (see Section 4.5.4) for tasks that do not use PC
values, for tasks that utilise only part of the PC values, and for tasks that utilise
all the PC values.

6.5 An XML editor for task-based composition schemas

It can be difficult to read and edit a composition schema if a lot of task, action,
and context definitions are specified within it. A framework (called FEdXML
[PaL05c]) facilitates implementation of component-based XML editors. We
used FEdXML and implemented a specialised XML editor to help creation of
composition schemas (Figure 57). It gives a visual presentation for the
composition schemas and thus helps developers to see the tasks and actions of
the composition schemas.

 156

Figure 57. An XML editor for task-based composition schemas.

The editor offers basic editing methods (e.g. XML elements can be added,
removed, or replaced) and undo and redo operations for XML editing. In
addition, XML-based templates can be used in construction of composition
schemas. For example, ready-made templates are provided for adaptation actions
(e.g. for glyph composition actions). Furthermore, new templates can be added
to the editor environment. For example, if the developer implements a new
action, he or she can make a new template that defines an action element and
default settings elements for the action and finally attach the template to the
editor environment. As a result, it is faster to utilise the action plugin later in the
composition schemas.

The editor also provides a tool that generates an empty action plugin for an
action element defined in the composition schema. The Input and Output
elements of the Action element define names for instances that the plugin may
fetch from defined sources or add to specific targets. The tool generates an
empty method to the plugin and then adds comment lines that contain a source
code for these fetch and add operations. The developer can use a generated
action plugin as a base and write code lines that will implement the actual
functionality of the action.

 157

7. Case studies � Utilizing the task-based
composition technique for adaptive

mobile browsers

The goal of the task-based composition technique is to make the dynamic
composition of content and context-sensitive applications more fluent and to
help developers to implement adaptive applications for mobile devices. The
task-based composition technique supports dynamic composition of various
kinds of component-based adaptive applications. This dissertation uses adaptive
mobile browsers as the basis for a case study. The case studies discussed in
Sections 7.3, 7.4, and 7.5 are based on the usage scenarios presented in Chapter
4. Case studies are described, implemented, and finally evaluated with
measurements. Both performance and implementation benefits are discussed in
subsections. Finally, summaries are provided for all the case studies.

7.1 Introduction

Mobile usage is spontaneous and requires applications that can fluently adapt for
new contexts. The performance of adaptation must be optimized. At the same
time, it is important that the implementation of an adaptive application for a
mobile device does not require too much effort. TaskCAD has many features
that promote implementation of applications that can fluently adapt for new
contexts. Firstly, the used adaptation policies (composition schemas) and actions
can be replaced with new ones at runtime. Secondly, it facilitates the caching of
both adaptation tasks and application instances. Thirdly, it supports speculative
adaptation, context-sensitive handling of errors, and utilisation of new execution
structures in adaptation and provides structures that enable the user to control the
adaptation.

Browsers are a very generic way to implement UIs for various kinds of Internet
services. Specialised browsers can offer UIs for almost any kind of applications.
In addition, they can be embedded in adaptive applications to enable the end-
users to use Internet services directly in applications that are executed in a
mobile device. The local network capabilities and services available for a
nomadic user may change constantly. In addition, the heterogeneity of mobile

 158

devices is high. A mobile browser should be highly configurable and it should
be possible to configure and replace the components of the browser in order to
adapt it for various contexts, wireless network connections, and for specific
services available on the Web.

We implemented a framework, called MIMEFrame, to facilitate composition of
component-based mobile user agents and browsers [PaL03, PaL06] and to
provide ready-made interfaces and components for different kinds of user agent
and browser implementations (Section 7.2). Tasks can compose content and
context-sensitive mobile browsers of MIMEFrame components (Section 7.3),
context-sensitive UIs for physical environments (Section 7.4), and improve the
utilisation of the services of Bluetooth access points (Section 7.5).

The case studies discussed in Sections 7.3, 7.4, and 7.5 evaluate both the
performance and implementation benefits of the task-based composition
technique. The performance benefits are evaluated by measuring the execution
times of the applications that were implemented in the case studies. The
implementation effort is evaluated by measuring the implementation time and by
calculating the total amounts of code lines that these application
implementations required. However, it is important to notice that the given
evaluations do not compare TaskCAD to other available adaptation methods but
only show what kind of implementation and performance benefits it provided in
the described adaptive browser implementations. Thus future research and
experiments are still needed to provide numerical measurement information
about alternative adaptation methods. For example, more information about the
performance and implementation benefits of available adaptation methods is still
needed.

7.2 A framework for adaptive browsers

In MIMEFrame, a browser is divided into user agent (model), player (view) and
controls (controller) parts according to the Model-View-Controller pattern
[KrP88] (Figure 58). The user agent is an abstract model for the client device
and the user. The player performs the client-side adaptation and presents the
browsed content. Finally, controls provide the way in which the browser is used.

 159

A dapter1A dapter1 A dapter2A dapter2 A dapter3A dapter3 ...

C ontro ls

K eyboard
M ouse

V o ice Loca tion and
tim e based

even ts
N on-m odal

even ts
E ventH and ler1
E ventH and ler2
E ventH and ler3

A dapters and
H and le rs fo r

M oda l and N on-
m oda l E vents

...
U serA gent

M ed iaC ontro ls
E ventL is teners

R enderers

M ed ia

C oreB rowser
U serIn te rface

S erv ices
R esources

P layer

P layer
0� nC onnections

C onten tTypes
C ache
H isto ry

0� n

P layer
P lug ins

C ore B row ser
P lug ins

U ser A gent
P lug ins

Contro ller

Model V iew

Figure 58. The basic parts of a browser.

The UserAgent offers core methods and various kinds of resources, services and
UIs to be used in browsing. It can offer access to the methods of the actual UI
component and methods that are capable of handling errors raised during
browsing. The UserAgent�s synchronous and asynchronous services can prepare
resources (e.g. a delivery context) for browsing.

The CoreBrowser offers asynchronous content fetching and pull (the user
initiated) and push (externally invoked) browsing methods. It can attach delivery
context to the Web requests in order to enable server-side adaptation. It offers
methods for both content caching and navigating in the browsing history.

Player corresponds to e.g. a text, image, audio, and video or the container (e.g.
WML, XHTML, and SMIL) content type plugin of a traditional browser. It can
perform the client-side adaptation, illustrate contents, and use other players in
illustrations. A player follows the glyph protocol [CaL90]. It can request screen
space and render the content in the allocated space. As a result, players can be
formed into composites that create an overall presentation for contents. By
selecting players based on the content and context it is possible to compose
content-driven and context-sensitive presentations.

 160

In MIMEFrame, the plugin approach is extended so that players can both offer
and utilize resources and services. For example, an XHTML player can register
variables to the resources and can so enable the forms on the XHTML page to
be filled with dialogs illustrated with a VoiceXML player. A player can offer
synthesized speech, audio icons, and screen-based modal output services and
media controls for specific content presentations. Animated contents are
presented by repainting rendering components with a specified frequency. If a
player is no longer used, the related memory resources are freed with a close
method.

A browser can be controlled with modal and non-modal events. Modal events
(keyboard, touch screen or voice controller) are raised by the user whereas non-
modal events occur indirectly, e.g. push and instant messaging services, time and
location-based events, server-side, and other mobile users may possibly control
browsing. An event handler can be registered to Controls either for all or named
events only. Adapters can modify, combine, and pass modal and non-modal
events to Controls that can put them into a queue in temporal order and later
notify the event handlers about them. Adapters can also reject events.

The MIMEFrame reference Java implementation offers user agent, player, and
controls interfaces and classes to be used in various kinds of browsers. Ready-
made players can present text, image, WML, XHTML MP, SVG, VoiceXML,
audio, and video contents. An object browser, called AGB [PaL03], implements
the methods of the CoreBrowser.

7.3 Implementing a content and context-sensitive
browser with tasks

7.3.1 Application

Browsers typically support user initiated browsing. For example, navigate a new
page, navigate in history (backwards, forward), and abort the navigation
commands are available in common Web browsers [LNR96]. User initiated
browsing commands can be executed with an object pull task (Figure 59).

 161

Figure 59. An object pull task can be requested to prepare a player for
the contents available in the Web.

The browsing request defines source for the content to be browsed and may
possibly define attributes for the network connections that are used in content
fetches. An object pull task can fetch the content from the Web and prepare a
player for it and finally deliver the player in its response. If errors are raised
during execution, the object pull task delivers an error response that can be
displayed for the user of the browser.

The browsed content can be reloaded in the following phases. A reprocess
attribute can be set to the browsing request. As a result, the old object pull task is
removed from the cache before a new object pull task is started for the request.
If the player presents a container content type, the object pull task can be
requested to prepare players for the referred contents (e.g. for the images of an
XHTML page). The reprocess attribute can be set to these requests in order to
ensure that the referred contents are reloaded, too.

The object pull task can have various kinds of actions that prepare a player for
the browsed content in multiple phases (Figure 60). For example, it can have an
action that requests a connector task to open a connection first. The adaptor
action receives the response and can request a task to prepare a player for the
content available via the connection.

 162

Requestor

Task

Requestor

Task

<<component>>
ObjectPullSeq

Request
<ConnectorTask>

Refresh

Adaptor Request
<PlayerTask>

Request
<PlayerTask>

ReturnRespond

<<component>>
ConnectorTask

Exclusive

Request
<WLANConnector>

Adaptor ReturnRespond

Request
<BluetoothConnector>

Adaptor ReturnRespond

Request
<GPRSConnector>

Adaptor ReturnRespond

<<component>>
PlayerTaskSelect Acceptor

Request
<XHTMLPlayer> AdaptorOption

name="application/xhtml+xml"

Request
<SMILPlayer> AdaptorOption

name=" application/smil"

Request
<SVGPlayer> AdaptorOption

name="image/svg+xml"

Request
<JPEGPlayer> Adaptor ReturnRespondOption

name=" image/jpg,image/jpeg"

DownloadReferred
Contents

DownloadReferred
Contents

DownloadReferred
Contents

Requestor

Task

Requestor

Task

Requestor

Task

Requestor

Task

Figure 60. An object pull, connector, and player tasks.

The composition schema can define different tasks that can open various kinds
of network connections (e.g. WLAN, Bluetooth, and GPRS). The connector task
can request these network specific connection open tasks. Its request actions can
be configured for various contexts so that only a task that will open the most
appropriate network connection for PC is requested.

The player task can have a select action containing an acceptor plugin and
options for various content types. The acceptor plugin can select an appropriate
option for the content type. The request action of the selected option will request
a task to prepare a player for the content type. If needed, the request action can
have an adaptor action that requests object pull tasks to prepare players for the
contents referred in the container (e.g. XHTML, SMIL, and SVG) content type.
It receives the responses of the requested object pull tasks, composes the
prepared (or updated) players to the player of the container content type, and
notifies the requestors of the player task about the updated player.

The refresh actions can update a content presentation for the current PC in the
following phases:

 163

1. The refresh actions fetch content elements for the PC. If suitable content
elements are not in the cache, refresh actions can reload the contents from
the Web and store them in the cache. At the same time, the cached content
elements that are not suitable for those current or possible forthcoming PCs
can be removed from the cache. Context comparators are defined to control
caching of the contents. For example, HTTP/1.1 offers a cache-control
header to control caching both in proxy servers and clients [Luo98]. In
addition, a Web server can specify an explicit freshness lifetime for the
response by using the max-age directive. The context comparators can
follow the directives of the cache-control header and also utilise the meta-
information embedded in content elements and thus improve caching of
context-sensitive content elements.

2. Refresh actions compose new players for the contents and PC. The players
are delivered for the requestor of the object pull task that can update the
browser view and finally display the new content presentation to the end-user.

It is important from the point of view of usability that the user gets all the time
information about what the browser is currently doing. The ObjectPull task can
provide the user with feedback with the info messages defined in the
composition schema. For example, it can inform the user about opened
connections and composed players.

If needed, a connection task can request an authenticate task that can have an
accept action that stops execution of the task and displays authentication UI for
the user (Figure 61).

<<component>>
Authenticate

Select
timeOut="60 000 ms"

defaultOptionName="Cancel"

Option
name="Ok"

Authenticate
Connection

Option
name="Cancel"

UI Action

ErrorRespond
description="AuthenticationFailed"

Requestor

Task

Figure 61. A task that is able to authenticate connections.

 164

The user can input the required authentication information and accept the action.
The task execution will continue and finally the authenticated connection is
delivered for the requestors. If authentication is cancelled or failed, an error
response will be passed for the requestors.

Section 4.9.1 proposes how tasks can compose content and context-sensitive
UIs. TaskCAD enables developers to define specialised composition schemas
for various kinds of content elements. Like a style sheet, a composition schema
can describe how various content elements should be presented. However, style
sheets typically only offer limited ways for specialising presentations. A
composition schema can define tasks that are able to compose highly specialised
and context-sensitive UIs for content elements. Both the functionality and
appearance of UI can be adapted for the context.

The composition schema can be replaced dynamically with a new one that
describes tasks that will compose UIs to better fulfil the user needs. In addition,
it is easy to use tasks that can compose separate context-sensitive UIs for
contents coming from separate sources and which finally compose these separate
UIs to an overall UI. For example, actions can compose canteen menus only
during the day to an overall UI whereas information about the movies and
concerts can be displayed only on certain days of the week.

We implemented a browser prototype that can do client-side adaptation and
which is capable of composing context-sensitive UIs for selected contents.
Typically it is a lot faster to develop applications in a desktop computer than in a
mobile device. Before an application can be executed in a mobile device, it must
be compiled, transferred to, and started in the mobile device. This all requires
time. Thus the first version of the browser prototype was implemented in the
desktop environment with Java 2 Standard Edition (J2SE). The browser
prototype was later ported to work in Java MIDP-enabled mobile devices.

The browser prototype was used to present context-sensitive bus timetables and
restaurant menus. The browser displays a CSD list first and enables the user to
select contents that he or she is interested in using. It requests tasks to fetch the
selected contents and, finally, to compose an overall UI for them (Figure 62).

 165

Figure 62. A browser implementation that composes an overall UI for the
selected context-sensitive bus timetables and restaurant menus and
displays it for the user.

The character, line break, line, polygon, and image glyphs and selectable,
border, row, column, left-to-right, and table glyph composites of the
MIMEFrame framework [PaL03, PaL06] were all utilised in the browser. The
XML documents were parsed with a kXML 2 parser. The browser prototype was
implemented in the following phases.

Firstly, XHTML documents were constructed for bus timetables and restaurant
menus. The meta-information was attached to the content elements of these
documents with span elements as presented in Section 4.9.1. Secondly, we
constructed composition schemas that define tasks to compose a frame glyph for
the overall UI and presentation glyphs for bus timetables, restaurant menus, and
time.

Thirdly, we implemented actions to compose glyph-based UIs for content
elements. The PCModifier action was implemented to add time and location
context attributes to PC before the overall UI task was requested. The XMLImport
action was used to parse XML-based composition schemas and content
documents. It calls a PlatformService class to open a connection to defined
Uniform Resource Locator (URL), fetches the XML document source then from

 166

the Web, and finally parses a DataObject presentation for it. The TaskFactoryImpl
action is called to initialise task factories for the fetched composition schemas. The
XHTMLMetaToolkit is able to attach context comparators to the context-sensitive
content elements. As a result, the correct content elements can be selected when a
content presentation is composed for PC.

The content elements of composition schemas can be configured for various
contexts. For example, they can describe glyphs and their attributes, composition
conditions, and refer to (e.g. text and image) other content sources. The
composition schema can attach these content elements to actions that are able to
compose glyphs for these descriptions. For example, the frame glyph of overall
UI was described in the composition schema. Furthermore, we implemented a
GlyphDescriptionComposer action to compose glyph descriptions for content
elements. It selects content elements for PC, composes a glyph description for
the selected content elements, and finally adds it to the defined target (e.g. to the
response or to execution environment of the task). The GlyphComposer action
can be later called to compose presentation glyphs for the glyph descriptions, to
add new glyphs to glyph composites, to remove named glyphs from frame
glyphs, and to replace the named glyphs of frame glyphs with new ones. Finally,
the UIComposer action composes a glyph-based UI to the browser view that
displays it for the user.

The browser prototype was finally modified to work in Java MIDP-enabled
mobile devices (Figure 63).

 167

Figure 63. A Java MIDP implementation for the browser prototype.

7.3.2 Experiment setup

We made an experiment setup in order to evaluate task-based composition of
content and context-sensitive browser-based UIs. We tested the browser
prototype in a Nokia 6630 mobile phone and in a Universal Mobile
Telecommunications System (UMTS) network. The presented execution times

 168

were measured from the system clock. However, it must be noted that the data
transmission speed can fluctuate in the UMTS network and thus affect the
measurement results. In addition, the background processes that are running in
the mobile device may also affect the execution times of the processing threads.
We repeated the measurements three times in order to minimise the
measurement errors. Each presented measurement result is the average of the
three separate measurement values. A thread pool that had 100 Java threads was
used in the measurements.

7.3.3 Performance benefits

A standard mobile browser and Web pages

The simplest way to browse bus timetables and restaurant menus is just to
browse this information from separate Web pages. For example, it took a total of
11.5 seconds to fetch bus 23 and 30 timetables and restaurant menu and to
display these separate documents with a Series 60 browser available in the
Nokia 6630 mobile phone. However, it was difficult to read timetable
information from the small display. In addition, it requires effort to browse
separate Web pages.

Server-side adaptation

The server-side can compose overall context-sensitive presentation for content
elements and thus improve performance and usability. The client can pass a CSD
list and PC attributes in the request. The server-side can select and compose
correct content elements to a single XHTML document and deliver it for the
client that can finally display it for the user. For example, it took 4.3 seconds to
fetch and display an XHTML document that contains only the selected content
elements of bus timetables and restaurant menus. As can be seen, in this case it
was faster to browse a single XHTML page when it was adapted for the context
on the server-side. However, if the context changes, a new network request has
to be made that requests the server-side to compose a new Web page for PC and
to deliver it to the client. This causes delays and network traffic. Client-side
content caching can decrease these delays. The client does not need to reload a
Web page if it already has a Web page in its cache that is suitable for the new
context.

 169

Client-side task-based adaptation

Client-side adaptation can improve performance and usability and decrease
network traffic. We attached meta-information (e.g. span elements) to bus 23
and 30 timetables and restaurant menu documents in order to enable the client-
side to compose adapted content presentations for various contexts. The original
XHTML documents took a total of 5 Kbytes. Meta-information increased the
total size of these documents to 10.6 Kbytes. Thus the meta-information
increased the total size of the XHTML documents by 112 percent in this
example.

The content documents and composition schemas were fetched from the Web
(Figure 64).

XHTML Document Orginal Size
[Kbytes]

Size with
metainformation

[Kbytes]

Size
Increase

Download
Time [s]

XML
Parsing
Time [s]

Bus 23 timetable 1,9 4,5 137 % 1,4 0,2
Bus 30 timetable 1,9 4,5 137 % 1,4 0,2
Restaurant Menu 1,2 1,6 33 % 0,8 0,1

Total 5 Kbytes 10,6 Kbytes 112 % 3,6 seconds 0,5 s

Figure 64. The browsed XHTML documents.

It took 3.6 seconds to download the XHTML document sources over an UMTS
connection and a total of 0.5 seconds to parse them. The fetching and parsing of
composition schemas took a total of 7.7 seconds. Finally, it took 6.7 seconds to
compose context-sensitive presentation glyphs for the selected content elements.
Thus composition of a context-sensitive UI for content elements selected for PC
took total 18.5 seconds.

The parsed XHTML documents can be stored in the cache. The downloaded
XHTML document was suitable for all PCs. Thus a context comparator that
defines that an instance is suitable for all PCs was set to control caching of the
XHTML document. It is possible to implement new context comparators that are
able to identify more precisely for which kinds PCs a certain application
instance is suitable or when it has expired and must be removed from the cache.
For example, a context comparator implementation can utilise the meta-

 170

information embedded in XHTML documents and thus improve the caching of
XHTML documents.

The cached task factories can also be utilised when UIs are composed for
selected content elements. This will speed up the dynamic composition of
context-sensitive presentations. For example, it took 1.9 seconds to compose a
new context-sensitive presentation for the cached bus timetable and restaurant
menu documents.

For example, if the mobile device supports the push mechanism [Ort03], an
inbound network connection or a timer-based alarm can wake a Java MIDlet up,
configure it, and afterwards possibly close it if it seems that the user does not
need the application anymore. One of the common presentation styles of push-
type systems is a screen saver that enables the user to see information without
performing any operations [SKSK98]. For example, a timer can wake a browser
up to display bus timetables and restaurant menus at a certain time of the day.
Afterwards, it can close the browser if it seems that the user does not need it
anymore.

However, it must be noted that the user may incur a lot of unnecessary network
traffic and costs if a browser is used as a screen saver. The browser is running
continuously and so it can fetch a lot of contents from the Web. Caching can
reduce the usage of the wireless network. For example, the implemented browser
prototype does not make Web requests after updated bus timetables and
restaurant menus are downloaded to the local cache but will use the wireless
network only if the cached documents have expired.

7.3.4 Implementation benefits

The browser prototype required changes both on the client and server-side. The
server-side must provide documents that contain content elements for various
contexts. Furthermore, composition schemas for glyph-based UIs must be
provided. Equally, an implementation for the task-based composition technique
and actions that can perform the composition assignments defined in the
composition schemas must be installed to the client. The implementation of
these actions required coding effort but it may be possible to reuse these action

 171

implementations in the future. In addition, composition schemas can be reused in
new browser implementations, too.

We implemented the composition schemas of the browser prototype with the
mPlaton editor (see Section 6.5). The total size of the composition schemas was
21.4 Kbytes. The sizes of these composition schemas are listed in the following
table (Figure 65).

Composition
Schema Description Size

[Kbytes]
Download
Time [s]

XML
Parsing
Time [s]

RootTask

Attaches time and location
attributes to PC before
requests the
OverallPresentation task.

5,2 1,7 0,1

OverallPresentation

Fetches contents and requests
other tasks to compose a
presentation frame and
presentations for downloaded
contents.

6,7 1,8 0,1

PresentationFrame Composes a glyph frame for
the overall presentation. 3,0 1 0,1

BusSchema
Composes a glyph
presentation for a bus
timetable.

2,7 0,9 0,1

RestaurantSchema
Composes a glyph
presentation for a restaurant
menu.

2,7 0,9 0,1

TimePresentation Composes a glyph
presentation for time. 1,1 0,8 0,1

Total 21,4 Kbytes 7,1 s 0,6 s

Figure 65. The composition schemas used in the browser prototype.

The mPlaton editor facilitated implementation of composition schemas. It took
only 4 hours to implement the composition schemas.

We implemented an abstract PlatformService class and platform (J2SE and Java
MIPD) specific implementations for it to provide methods for connection
opening, class loading, and for floating point calculations. Furthermore, the
PlatformService class offers a service that composes the browser view (a frame
in J2SE and a canvas in Java MIDP environment) that displays the composed

 172

glyph-based UIs for the user. Thanks to the PlatformService class, all the action
implementations worked directly both in the J2SE and in the Java MIDP
environments. At the same time, it was much easier to update the browser
prototype because the same actions and composition schemas are used in both
environments.

The actions required total 779 lines of coding. Furthermore, classes for the
platform specific services required a total 492 of lines of coding (Figure 66).

Action Description Size [lines of code]

UIComposer An action that calls the PlatformService class to compose
the browser view that can display glyph-based UIs. 11

PCModifier Adds time and location information to PC. 78

XHTMLMetaToolkit
Offers methods that are able to parse the content attribute
value and compose context elements that define
acceptable PCs for a particular content element.

220

GlyphDescriptionComposer
Selects content elements for PC and composes glyph
descriptions for the selected content elements. In addition,
it is capable of composing a glyph description for time.

145

GlyphComposer Composes presentation glyphs for a glyph description. 325
Total 779 lines

Platform Specific
Implementation Description Size [lines of code]

J2SEPlatformService An implementation for the PlatformService class in the
J2SE environment. 208

JavaMIDPPlatformService An implementation for the PlatformService class in the
Java MIDP environment. 284

Total 492 lines

Reference Implementation Description Size [lines of code]

XMLImport
Opens a connection to defined URI, parses the fetched
XML document, and finally composes a data object
presentation for it.

145

TaskFactoryImpl An action that is able to initialise a task factory. 35
Sequence, Request,

Enumerate, Refresh, and If-
Else Actions

These action execution structures were used in the
composition schemas. 576

ContextElementComparator This component is used when the content elements are
selected for PC. 165

Total 921 lines

Figure 66. The action implementations used in the browser prototype.

TaskCAD provides execution structures for adaptation actions. The sequence,
request, enumerate, refresh, and if-else execution structures of TaskCAD were

 173

used in the browser prototype. Thus a total of 921 lines of code of TaskCAD
were used in composition of the browser prototype.

7.3.5 Summary

The size of the browser installation package was 126 Kbytes. Mobile usage is
spontaneous and for this reason it is important that applications are fast to use. It
took 4.2 seconds to start the task-based browser.

Figure 67 presents delays for alternative client and server-side content delivery
and presentation approaches. The delay was 11.5 seconds when the different
documents were downloaded with a standard browser. The server-side can
compose an overall context-sensitive presentation for content elements. It took
4.3 seconds to download and display an XHTML document that contained only
the selected content elements of bus timetables and restaurant menus. Tasks
were used in the client-side adaptation. It took 18.5 seconds to compose a
presentation on the client-side when the composition schemas and content
elements were downloaded from the Web. It took 6.0 seconds to download
contents and compose a presentation for them when the cached task factories
were utilised. Finally, it took 1.9 seconds to compose a context-sensitive
presentation when the cached contents and task factories were utilised in
dynamic composition.

1,9

6,0

18,5

4,3

11,5

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

20,0

No adaptation Server-side adaptation Client-side task-based
adaptation
[no cache]

Client-side task-based
adaptation

[cached task factories]

Client-side task-based
adaptation

[cached content
elements and task

factories]

D
el

ay
 [s

]

Figure 67. Delays for alternative content delivery and presentation
approaches.

 174

In this example the task-based composition technique reduced the total coding
effort by 48 percent in J2SE and by 46 percent in Java MIDP environment.
However, it must be noted that the implementation of the XML-based
composition schemas requires effort. It took only about 4 hours to implement the
composition schemas for the browser prototype with the mPlaton editor.

Although MIMEFrame and TaskCAD facilitate implementation of adaptive
browsers, it may be too difficult task for developers of limited programming
experience to construct totally new adaptive browsers. However, if a lot of
ready-made browser components and composition schemas are available, it is
possible to implement new kinds of browsers without manual coding. Only
composition schemas have to be edited. This can be made with standard text or
XML editors. In addition, the mPlaton editor facilitates implementation of the
composition schemas.

7.4 Task-based composition of UIs of physical
environments

7.4.1 Application

The physical environment can offer local services for nomadic users. For
example, a home automation system can provide various UIs for different
locations at home that enable the user to observe and control home appliances. A
push message can start the application, which can in turn compose context-
sensitive UI for the objects of the physical space in which the user is located.
These UIs can be composed with tasks as presented in Section 4.9.2.

A physical space and its objects may change constantly. This requires
dynamically changing UIs that are adapted for the physical space in question.
Unlike many mark-up languages, a composition schema does not necessarily
directly define UI or content elements but describes how UI should be composed
for physical spaces, objects, or contents in various contexts. For example, if a
room has five light switches, UIs of different switches can be composed on the
client-side by using a single composition schema and without downloading
separate UIs for various light switches.

 175

The task-based composition technique facilitates the composition of dynamic
UIs of physical spaces and supports client and server-side adaptation. Tasks can
compose UIs on the client-side and so it is possible to reduce the amount of
network traffic when UIs are adapted for new contexts.

If needed, the XML-based composition schemas can be modified or replaced
with new ones. For example, the user may fetch a new composition schema from
the Web that can compose better UIs for certain kinds of physical spaces.
Furthermore, it can introduce a new layout and overall UI for physical spaces or
replace the default UIs of the physical objects with new ones.

A composition schema can define very fine-grained adaptations to adapt both the
visual appearance and functionality of glyph-based UIs. For example, context-
sensitive (e.g. font, color, and position) parameters can be defined for glyphs.
Parameters can also define what kind of functionality is invoked when the user
clicks a selectable glyph in the UI. Of course, this requires a plugin that is
capable of executing the defined functionality. The content elements and
attributes can be configured for various contexts and attached to actions that can
compose context-sensitive and glyph-based UIs for content elements. For
example, the light switches can be hidden in the UI in the day time. An action
can also compose glyph presentations for the data objects referred to in the
composition schema. For example, it can compose character glyphs for a light
switch name (Figure 68).

Actions can also use the state attributes of physical objects in composition. For
example, an action can compose a glyph for a defined icon to display the status
of the light (on or off) and add it to the glyph presentation. The �light status�
glyph can be a selectable glyph that enables the user to select or click the glyph
and to invoke the specified functionality. For example, the �light status� glyph
can invoke an action that will send a request to an ObjectURI that is defined in a
Physical Object Description (POD). The server-side can handle the request and
turn the light on or off.

 176

<context id="daytime">
<and weight="1">

<number type="time" relationop="GreaterThan" value="10:00" weight="1"/>
<number type="time" relationop="LowerThan" value="18:00" weight="1"/>

</and>
</context>
�
<content name="GlyphDescription">

<cattr name="isVisible" value="false" context="daytime"/>
<cattr name="glyph" value="LeftToRightComposite"/>
<content>

<cattr name="glyph" value="ImageGlyph"/>
<cattr name="src" value="/LampOnIcon.jpg"/>
<cattr name="width" value="20"/>
<cattr name="height" value="20"/>
<content>

<cattr name="Variable" value="request#POD.name"/>
<cattr name="glyph" value="CharacterGlyph"/>

</content>
<content>

</content>
�
<action name="composeGlyphFrame" plugin="fi.vtt.tte.ccpresentation.GlyphComposer">

<settings>
<input name="frameName" sourcePath="request#POD.type"/>
<input name="frameURI" sourcePath="request#POD.objectURI"/>
<input fetch="fetch_best_for_IRef_and_PC"

name="glyphdefinition"
sourcePath="settings#content#GlyphDescription"/>

<output insertStyle="replace" name="glyphframe" targetPath="response#podui"/>
</settings>

</action>
�

A light switch is not visualised at daytime.
The context �daytime� is described in the
composition schema.

The POD is delivered in the
request. It defines a name for
the light switch. Character
glyphs are composed for it
and added to the left-to-right
glyph composite.

The settings define input and output data sources for the action that
composes glyphs for the physical object and glyph descriptions.

Contexts can be defined in
the composition schema.

Reference to content
elements that
describe visualisation
elements for a light
switch.

Figure 68. A composition schema can define context-sensitive glyphs for
Physical Object Descriptions (PODs).

We implemented a task-based browser prototype that displays context-sensitive
UIs for the user moving at home and enables the user to control and observe
home appliances through nearby Bluetooth access points (Figure 69).

Figure 69. A task-based browser prototype that composes context-sensitive
UI for the objects of a physical space and displays it for the user.

 177

The desktop version of the browser prototype was first implemented with Java 2
Standard Edition (J2SE). The character, line break, line, polygon, and image
glyphs and selectable, border, row, column, left-to-right, and table glyph
composites of the MIMEFrame framework were utilised in the browser. The
XML documents were parsed with a kXML 2 parser. The browser prototype was
implemented in the following phases.

Composition schemas were first implemented for overall UI and for various
kinds of physical object types (e.g. for TV, lights, time, and temperature). Then,
we implemented the actions that were used in composition schemas. A part of
the implementations used in the content and context-sensitive browser prototype
(see Section 7.3) was reused in the POD browser. For example, PCModifier,
XMLImport, GlyphComposer, and UIComposer actions and the PlatformService
class were utilised in it.

The browser prototype was finally modified to work in Java MIDP enabled
mobile devices (Figure 70).

Figure 70. A Java MIDP implementation for the browser prototype.

 178

Thanks to the PlatformService class, all the action implementations worked
directly both in the J2SE and in the Java MIDP environments.

Finally, we implemented composition schemas that defined tasks to compose
PODs for nearby physical objects. The J2SE version of the browser had local
composition schemas for the PODs tasks whereas the Java MIDP browser
acquired the composition schemas of PODs tasks from Bluetooth access points.

7.4.2 Experiment setup

We made an experiment setup in order to evaluate task-based dynamic
composition of content and context-sensitive browser-based UIs. We tested the
browser prototype in a Nokia N70 mobile phone and in UMTS and Bluetooth
networks. The presented execution times were measured from the system clock.
However, it must be noted that the connection opening time and data
transmission speed can fluctuate in the Bluetooth and UMTS networks and thus
affect the measurement results. In addition, the background processes that are
running on the mobile device may also affect the execution times of the
processing threads. We repeated the measurements three times in order to
minimise measurement errors. Each presented measurement result is the average
of the three separate measurement values. A thread pool that had 100 Java
threads was used in the measurements.

7.4.3 Performance benefits

The browser installation package took 123 Kbytes. Mobile usage is spontaneous
and so it is important that applications are fast to use. It took 4.5 seconds to start
the task-based browser. The content elements and composition schemas were
fetched from the Web. In addition, the following images were used in the
composed UI (Figure 71).

 179

Image Size
[Kbytes]

Download
Time [s]

TVIcon.jpg 1,4 1,1
TV_CHMIN_Icon.jpg 1,4 1
TV_CHPLUS_Icon.jpg 1,5 1,1
TV_VOLMIN_Icon.jpg 1,6 1,1
TV_VOLPLUS_Icon.jpg 1,6 1,1
HouseIcon.jpg 1,4 1,2
LampOffIcon.jpg 1,2 1,1
LampOnIcon.jpg 1,0 1,1
TimeIcon.jpg 1,0 1
TemperatureIcon.jpg 1,2 1,1

Total 13,4 Kbytes 10,9 seconds

Figure 71. The images that were downloaded from the Web.

Client-side adaptation

The average time to scan for services available via Bluetooth access points was
18.1 seconds in the Nokia N70 device. In addition, fetching a composition
schema for a PODs task (size was 7.2 Kbytes) and initialising a task factory for
it took total 4.8 seconds. The fetching and parsing of composition schemas took
total 8.9 seconds. Finally, it took 10.9 seconds to fetch content elements
(images) and 7.8 seconds to compose context-sensitive UI for PODs. Thus
composition of context-sensitive UI for PODs took a total of 50.5 seconds.

Caching of task factories and application instaces

In many cases this delay is far too long time for the spontaneous mobile usage.
Thus it is important to shorten this delay. Firstly, the time to scan for Bluetooth
access points took a lot of time. A speculative adaptation can decrease this delay
(see Section 7.5). Secondly, the caching of composition schemas and contents
can shorten this delay a lot. In the best case, if the needed resources are in the
cache, a UI can be composed for the new PC without causing network traffic at
all. Only, updated PODs need to be acquired. This can speed up adaptation. For
example, it took 21 seconds to scan for Bluetooth APs, fetch PODs from an
access point, and compose a UI for PODs when the cached task factories and

 180

content elements were utilised in dynamic composition. However, in many cases
this delay is far too long for spontaneous mobile usage.

Bluetooth AP scanning is unnecessary and a lot of time is saved if the addresses
of the nearby BT access points are made available in the client cache. For
example, acquiring a new PODs composition schema from a known Bluetooth
access point and composing the UI for it took only 2.9 seconds when the task
factories and images were stored in the local cache.

Speculative adaptation

Speculative adaptation tasks can be used to shorten composition delays. For
example, if the route of the user can be predicted, UIs for the locations to which
the user will possibly go next can be composed in the background. Speculative
adaptation tasks can fetch composition schemas, initialise task factories for
these, and finally request their tasks to compose UIs for the next locations in the
background. The initialised task factories and composed UIs can be stored in the
cache. As a result, these UIs can be fast displayed for the user when he or she
arrives at a specific physical space. In addition, it may be possible to utilise the
cached task factories in the future when UIs are composed for forthcoming PCs.

7.4.4 Implementation benefits

Task-based composition of UIs of physical spaces requires changes both on the
client and server-side. The server-side must provide physical object descriptions
for objects that can be controlled through the available servers. The
BluetoothConnector framework facilitated the implementation of the POD
server. It required only 300 lines of coding to implement a server that delivers a
composition schema that contains randomly generated physical object
descriptions. However, it must be noted that the described implementations are
prototypes only and they are not integrated into a real ubiquitous environment.
More effort is needed, if the server-side integration is desired in a real ubiquitous
environment.

Tasks to compose glyph-based UIs for physical spaces and for various kinds of
physical objects are needed, too. Finally, an implementation for the task-based

 181

composition technique and actions that can perform the composition
assignments defined in the composition schemas must be installed to the client.

It took about 3 hours to implement the composition schemas for the browser
prototype with the mPlaton editor. The same composition schemas were used in
the J2SE and Java MIDP browser implementations. The total size of the used
composition schemas was 24.8 Kbytes (Figure 72).

Composition Schema Description Size
[Kbytes]

Download
Time [s]

XML Parsing
Time [s]

PUICaseStudy.xml
Attaches time and location
attributes to PC before
requests the PUI task.

6,2 1,8 0,1

PUI.xml

Requests other tasks to
compose a glyph frame for
overall UI and glyph-based UIs
for PODs.

4,5 1,5 0,1

PUIFrame.xml Composes a glyph frame for
the physical user interface. 3,3 1,1 0,1

locationschema.xml Composes a glyph presentation
for a location information. 1,7 0.9 0,1

timeschema.xml Composes a glyph presentation
for time. 2,0 0,9 0,1

temperatureschema.xml Composes a glyph presentation
for temperature. 1,8 0,9 0,1

tvschema.xml Composes a glyph presentation
for the remote control of TV. 3,1 1,0 0,1

lightschema.xml Composes a glyph presentation
for light switches. 2,3 0,9 0,1

Total 24,8 Kbytes 8,1 seconds 0,8 seconds

Figure 72. The composition schemas used in the browser prototype.

The task-based composition of UIs of physical spaces requires actions that can
acquire PODs from available access points, fetch the necessary composition
schemas from the Web, and finally compose glyphs for overall UI and for found
PODs. The BluetoothConnector framework facilitated utilisation of Bluetooth
connections. Only the methods that call BluetoothConnector to scan for the
available Bluetooth access points, to open connections to the access points that
provide the POD service, and to acquire PODs were implemented. In addition,
plugins executing the functionalities related to selectable glyphs were

 182

implemented. The actions implementations required total 516 lines of coding.
Furthermore, classes for platform specific services required a total of 696 lines
of coding (Figure 73).

Action Description Size [lines of code]

UIComposer
An action that calls the PlatformService class
to compose the browser view that can display

glyph-based UIs.
11

PCModifier Adds time and location information to PC. 78

PODFunctionality

The POD functionality that is attached to a
selectable glyph will send a request for the
Bluetooth server that is controlling the physical
object in question.

102

GlyphComposer Composes presentation glyphs for a glyph
description. 325

Total 516 lines

Platform Specific Implementation Description Size [lines of code]

J2SEPlatformService An implementation for the PlatformService
class in the J2SE environment. 208

JavaMIDPPlatformService An implementation for the PlatformService
class in the Java MIDP environment. 284

BluetoothPODService
An implementation that fetches composition
schemas from Bluetooth access points in the

Java MIDP environment.
204

Total 696 lines

Reference Implementation Description Size [lines of code]

XMLImport
Opens a connection to defined URI, parses the
fetched XML document, and finally composes
a data object presentation for it.

145

TaskFactoryImpl An action that is able initialise a task factory. 35
Sequence, Request, Enumerate,

Refresh, and If-Else Actions
These action execution structures were used
in the composition schemas. 576

ContextElementComparator This component is used when the content
elements are selected for PC. 165

Total 921 lines

Figure 73. The action implementations used in the browser prototype.

The sequence, request, enumerate, refresh, and if-else execution structures of
TaskCAD were used in the browser prototype. Thus total 921 lines of code of
TaskCAD were used in composition of the browser prototype.

 183

7.4.5 Summary

The delays for UI composition tasks are presented in Figure 74.

32,4

2,9 2,9

18,1

18,1

2,9

50,5

21,0

0

5

10

15

20

25

30

35

40

45

50

55

Client-side task-based
adaptation
[no cache]

Client-side task-based
adaptation

[cached task factories and
icons]

Client-side task-based
adaptation

[cached task factories, icons,
and a known BT access point]

D
el

ay
 [s

]

Inquiry Time for
BT access
points

UI Composition
for found PODs

Figure 74. Caching of task factories and content elements made it faster
to compose UIs for PODs.

Firstly, it took a total of 50.5 seconds to scan for Bluetooth APs, fetch PODs
from an access point, and compose a UI for PODs when the required task
factories and contents were not available in the local cache. Secondly, it took 21
seconds to scan for Bluetooth APs, fetch PODs from an access point, and
compose a UI for PODs when the cached task factories and content elements
were utilised in dynamic composition. Thirdly, it took only 2.9 seconds to
acquire a new PODs composition schema from a known Bluetooth access point
and to compose a UI for it when the cached task factories and required contents
were stored to the local cache. As can be seen, the caching can significantly
decrease the composition delay. However, it takes a lot of time (over 15
seconds) to scan for available BT access points. Speculative adaptation methods
are needed to reduce the disconnection time in Bluetooth environments.

In this example the task-based composition technique reduced the total coding
effort by 56 percent in J2SE and by 47.8 percent in Java MIDP environment. In

 184

addition, it took about 3 hours to implement the composition schemas for the
browser prototype with the mPlaton editor.

7.5 Using speculative adaptation tasks to shorten the
disconnection time in browsing of local services

7.5.1 Application

In order to make use of local services fluent, there should be seamless
connectivity at network. However, it takes time to open connections to access
points. As a result, the mobile device may be disconnected from the network
when the user moves in a local service environment or between various service
environments.

For example, Bluetooth (BT) access points (APs) can provide local services for
mobile users. Connections are typically opened to BT access points in the
following phases. Firstly, available BT access points are scanned. Secondly, a
connection is opened to an access point that provides the needed service. The AP
inquiry time is typically more than ten seconds (e.g. 18.1 seconds in a Nokia
N70 device) and thus significantly increases the disconnection time. Speculative
adaptation can shorten the disconnection time when the user is moving in a
specific physical environment (e.g. inside a building). If the addresses of APs are
known, the AP inquiry is not needed but direct connection attempts can be made
to known APs that are available in the building.

The task-based composition technique supports speculative adaptation.
Composition schemas can be fetched from the Web, modified, or replaced with
new ones. Thus it is possible to change adaptation strategies at runtime. For
example, new composition schemas for speculative connection open tasks can be
fetched to optimise the usage of local services and to shorten the disconnection
time when the user is moving in a specific physical space (e.g. inside a building).
They can define the addresses for local access points and parameters that may
configure the prediction models and thus improve the prediction accuracy.

For example, if the route of the user can be predicted, an attempt can be made to
connect to access points that are available at the next locations. The floor plan of

 185

a building can set limitations on the routes available to the user. This
information can be delivered in composition schemas and utilised in prediction
models. The prediction model can take this floor plan as an input and compose a
directed graph of the possible routes of the user. If the current position of the
user is known, a speculative adaptation task can use this prediction model and
try to open connections to APs that are available in the next possible locations
first. This all can shorten the disconnection time when the user is moving inside
the building.

We implemented alternative tasks to open connections to BT access points.
Firstly, we implemented a task that scans for access points, opens a connection
to an AP that provides the needed service, and finally delivers the connection in
its response (Figure 75).

<<component>>
OpenBTConnection

Select BT Access Point
Inquiry

OpenBTConnectionOption "ServiceAvailable"

DefaultOption Respond
<ConnectionOpenFailed>Requestor

Task

Requestor

Task

Figure 75. A task that scans for access points and opens a connection to a
found access point.

Secondly, we implemented a speculative adaptation task that tries to open
connections to BT access points that are available in a specific environment
(Figure 76).

A composition schema defines the task and the addresses of known APs. It is
fetched (e.g. from a BT access point) at runtime, a task factory is initialised for
it, and finally a task is requested to open BT connections to the next known
access points when the user is moving in a specific physical space. The task
arranges the address list so that the addresses of the most used APs are at the
beginning of the list. Then, it tries to open connections to the addresses in the
list. It does not need to scan for APs (that requires typically more than ten
seconds) but it tries to open connections directly to the known APs. If a

 186

connection is successfully opened, the prediction model is updated and the
connection is delivered in the response of the task.

<<component>>
OpenBTConnectionToKnownAP

Sequence

Enumerate <AddressList>

ArrangeAddressList

Try

Catch UpdatePredictionModel

UpdatePredictionModel

OpenBTConnection

Return
"task#BTConnection"

Requestor

Task

Requestor

Task

Figure 76. A task that tries to open connections to the known BT access
points.

Thirdly, we implemented actions that were used in composition schemas. We
implemented a BTConnectionOpen action that can call the BluetoothConnector
framework to scan for BT access points and to open connections to known BT
access points. Furthermore, we implemented the AddressListArranger action to
arrange BT address lists so that the addresses of the most frequently used access
points are at the beginning of the list.

7.5.2 Experiment setup

We made an experiment setup in order to evaluate how speculative adaptation
tasks can improve the usage of BT access points in a real usage environment.
We used two Java MIDP enabled Nokia N70 mobile phones, which worked as
BT access points. Both mobile phones had running servers that provided
contents for the requestors. The presented execution times were measured from
the system clock. However, it must be noted that the connection opening time
and data transmission speed can fluctuate in a Bluetooth network and thus affect
the measurement results. In addition, it must be noted that BT connection
opening can fail although the access point is in the range of the BT device.
Furthermore, the BT device may not always find all the APs that are in the range
of the BT device. These issues are not considered in the presented calculations.

 187

The background processes that are running in the mobile device may also affect
execution times of the processing threads, too. We repeated the measurements
three times in order to minimise the measurement errors. Each presented
measurement result is the average of the three separate measurement values. A
thread pool that had 100 Java threads was used in the measurements.

7.5.3 Performance benefits

The average time to scan for services available via BT access points was 18.1
seconds in the Nokia N70 mobile phone. The opening of a BT connection took
0.8 seconds. Thus the total time to open a connection to a new BT access point
was 18.9 seconds. In many cases this delay is far too long for spontaneous
mobile usage. For example, this delay has a great effect on the usability of local
services (see Section 7.4).

Speculative adaptation can shorten the connection open delay. The composition
schema can define addresses for the access points and a task that tries to open
BT connections to known addresses without making a service inquiry. If the
access point is not in the range, connection cannot be opened.

The following usage scenario illustrates the benefits of speculative adaptation. A
building may offer BT access points for the visitors. For simplicity, it can be
defined that a single location in the building offers exactly one AP for the user.

Time to open a connection

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

The number of Bluetooth access points

Ti
m

e
[s

] Expected connection open time
when simultaneus threads open
connections to randomly selected
Bluetooth access points.

Expected connection open time
when connections are tried to open
sequentially to randomly selected
access points.

Figure 77. Time to execute multiple connection open threads.

 188

Different strategies can be used when connections are opened to APs. We
implemented first a test case in which multiple simultaneous threads were started
to open connections to APs so that only one thread succeeded in opening a
connection. As presented in Figure 77, the time to execute these threads
increases linearly when the number of APs increases. In addition, the memory
consumption rises as the number of threads increases.

Alternative solution is to try to open connections sequentially to randomly selected
BT access points. The probability that a connection open will the first time is:

n

nPfail
1−

=

where,

n = The number of BT access points.

As a result, the expected value of connection open time is:

cfailurecopen

n

i
cfailurecopen

n

i
cfailurecopen

n

i
cfailurecopen

cfailurecfailurecfailurecopen

tnt

t
n

int

t
nin

int

t
nin
innt

t
n
n

n
n

n
nt

n
n

n
nt

n
ntnt

 *
2

1

 *

 *
)!*-1-(
)!(

 *
!)!*-1-(
)!)!*(1(

...*
2
3*

1
2*1*

1
2*1*1)(

1

1

1

1

1

1

−
+=

−
+=

−
+=

−−
+=

−
−

−
−−

+
−
−−

+
−

+=

∑

∑

∑

−

=

−

=

−

=

where,

tcopen = Connection open time to an access point that is in the range of
 the mobile device.

tcfailure = Time to notice that the connection open to an access point that
is not in the range of the mobile device failed.

The average time to notice that a single connection open failed was 0.2 s in the
Nokia N70 device. Figure 77 shows the calculated expected values of

 189

connection open times for these measured values. As can been seen, the
expected value of a connection open time is shorter when BT connections are
opened sequentially. However, if the number of access points is more than 182,
it is faster to use the inquiry mechanism.

A mechanism that is capable of predicting the next access point that will be in
the range of the mobile device can make speculative adaptation faster for a
greater number of access points. For example, the user may use certain routes
inside the building. The application can learn the routes of the user and predict
the next BT access points, which will be in the range of the mobile device. If a
prediction mechanism is available, the expected value for the connection open
time can be calculated with the following formula:

 ∑
−

=

+=
1

1
cfailure

i
copen t*µ)-(1 tt(n)

n

i

where µ is the prediction accuracy (0.10 ≤≤ µ). Figure 78 shows how
prediction accuracy affects the expected value of the connection open time. With
100 access points the expected value of the connection open time is 1.4 seconds
when the prediction accuracy is 10 percent. When the prediction accuracy is 50
percent the expected value of the connection open time is reduced to 1.0 seconds.

0,0

1,0

2,0

3,0

4,0

5,0

6,0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Prediction Accuracy [%]

Ti
m

e
[s

]

5 Access Points
10 Access Points
25 Access Points
50 Access Points
100 Access Points

Figure 78. The expected value of the connection open time when the next
access point can be predicted (tcopen=0.8 s, tcfailure=0.2 s).

 190

7.5.4 Implementation benefits

The speculative task-based BT connection opening requires changes both on the
client and server-side. The server-side must provide the addresses of BT access
points that are available in a certain area. A task that tries to open connections to
known access points is needed, too. Finally, an implementation for the task-based
composition technique and actions that can perform the composition assignments
defined in the composition schemas must be installed to the client (Figure 79).

Action Description Size [lines of code]

AddressListArranger Composes an address list for Bluetooth access points. 50

BTConnectionOpen Scans for Bluetooth access points and opens
connections to the found access points. 120

Total 170 lines

Reference Implementation Description Size [lines of code]

XMLImport
Opens a connection to defined URI, parses the fetched
XML document, and finally composes a data object
presentation for it.

145

TaskFactoryImpl An action that is able to initialise a task factory. 35
Select, Sequence,

Enumerate, and Try-Catch
action structures

These action structures were used in the composition
schemas. 576

Total 756 lines

Figure 79. The action implementations used in the speculative adaptation
task.

The sequence, request, enumerate, refresh, and if-else execution structures of
TaskCAD were used in the connection open tasks. Thus a total 756 lines of code of
TaskCAD were used in the example. As can be seen, the task-based composition
technique reduced the total coding effort by 82 percent in this example.

7.5.5 Summary

As presented in this case study, a mechanism that offers good prediction
accuracy (see Section 2.2.4) can shorten the expected value of the BT
connection open time and improve the usability of local services. However, it
must be noted that it takes time to download a composition schema for a
speculative BT connection open task. For example, downloading a composition
schema that defined BT addresses for 10 access points (size was 3.1 Kbytes) and
initialising a task factory with it took total 1.5 seconds in the Nokia N70 device.

 191

8. Comparisons to related work

Chapter 3 gives an overview of methods supporting dynamic composition of
component-based adaptive applications. This chapter compares the task-based
composition technique to other methods supporting dynamic composition of
component-based adaptive applications. It is organized as follows. The
introduction is in Section 8.1. Examples of architectures and frameworks that
support adaptation of component-based applications are discussed in Section 8.2.
Techniques that provide languages for dynamic component-based composition
and adaptation are discussed in Section 8.3. Finally, the content and context-
sensitive applications are discussed briefly in Section 8.4.

8.1 Introduction

The goal of the task-based composition technique is to make the dynamic
composition of content and context-sensitive applications more fluent and to
help developers to implement adaptive applications for mobile devices. It
provides many features that promote implementation of applications that can
fluently adapt for new contexts. Firstly, the used adaptation policies
(composition schemas) and actions can be replaced with new ones at runtime.
Secondly, it facilitates the caching of both adaptation tasks and application
instances. Thirdly, it supports speculative adaptation, context-sensitive handling
of errors, utilisation of new execution structures in adaptation, and provides
structures that enable the user to control the adaptation.

A number of techniques have been developed for overcoming compositional
mismatches between components. For example, a lot of work has been carried
out related to formal models (e.g. [BPR02, Pah02, ITLS04, BBC05]), to
wrapping techniques (e.g. [GHJV95, YeS97, BCK98]), and to intermediate
forms (e.g. [Bea92, Pur94, OMG96, McA95, Rog97]). The task-based
composition technique does not focus on solving computational mismatches
between components but supports dynamic composition of content and context-
sensitive applications of components that are plug compatible [ALSN01] (see
Section 3.2) with other components.

 192

The context-aware features can be classified into contextual sensing, adaptation,
resource discovery, and augmentation features [Pas98] (see Section 2.1). The
task-based composition technique focuses on adaptation features. In addition, it
supports caching of content and context-sensitive application instances and can
in this manner facilitate the implementation of resource discovery features.

Adaptation can also be divided into static or dynamic adaptation [SaM03] (see
Section 2.2.1). The task-based composition technique supports dynamic
adaptation and fine-tuning of adaptive application. In addition, dynamic
adaptation techniques can be divided into parametric and compositional
adaptation techniques [MSKC04] (see Section 2.3). The task-based composition
technique supports both parametric and compositional adaptation of component-
based applications.

Task modelling and analysis is made in many sources [JJWS98, WaG00,
GPSS04]. However, this research typically focuses on the tasks of the user and
investigates what people do when they carry out one or more tasks and involves
collecting information about how people perform those tasks [JJWS98]. This
dissertation focuses on tasks, which are performed by computing devices. Thus
this work is not in the scope of this dissertation and is not discussed in more
detail.

8.2 Architectures, frameworks, and structures for
component-based adaptive applications

Many architectures and frameworks (e.g. [DPH91, FuT99, AmW99, BCS02,
Gri04]) are developed to provide solutions for component-based adaptive
applications (see Chapter 3). Unlike these solutions, the task-based composition
technique does not concentrate on the structure of the adaptive application but
aims to make the dynamic composition of adaptive content and context-sensitive
applications more fluent.

Middleware solutions for reactive (publish-subscribe, Odyssey, and Gaia) and
proactive adaptation (e.g. Carisma [Cap03]) exist. However, these solutions do
not offer support for speculative adaptation, where content and context-sensitive
application parts are composed in multiple phases for potential future contexts.

 193

The task-based composition technique enables developers to extend composition
schemas with new tasks and actions that can predict potential future contexts and
request tasks to perform speculative adaptation actions and to compose
application parts for the predicted contexts. The composed content and context-
sensitive parts can be cached and possibly utilised in the future.

Middleware solutions typically offer a set of services that support construction
of certain kinds of applications. The middleware approach can support
application transparent adaptation [BFK+00] but is suitable only for programs
that are written against a specific middleware platform [MSKC04b]. The focus
of this dissertation is on techniques adapting the application itself. Thus the
majority of the middleware solutions are not directly in the scope of this
dissertation and are not discussed in greater detail.

In a traditional Object-Oriented Programming (OOP) developers implement
objects that typically define data structures of data types and operations that can
be applied to data structures [BWL03]. As is the case in Facet-based
programming (FBP) [BWL03], in task-based composition functionality and data
are clearly separated. Adaptation actions do not contain any data but they fetch
application instances from the defined data sources and compose application
instances to the defined targets.

Several solutions (e.g. Linda [CaG89], LIME [MPR01], TOTA [MaZ04], and
One.world [Gri04]) offer a shared memory space that exploits localized data
structures in order to let processing components gather information, interact, and
coordinate with each other [MaZ04]. However, these solutions do not support
sharing of context-sensitive data. In other words, they do not provide methods
that enable processing components to fetch the most suitable data for the
context. The task-based composition technique promotes the sharing of context-
sensitive instances with context comparators that are capable of calculating how
suitable an instance is for a processing context. Various kinds of context
comparators can be defined for the instances saved to the shared memory
(environments). As a result, the most suitable data can be selected for the PC and
delivered for processing components.

 194

8.3 High-level programming techniques for context-
sensitive component-based composition and

adaptation

This section concentrates on the most important techniques, which enable high-
level programming for adaptation strategies and application components and
separate reconfiguration schemas from the application. These techniques are
discussed in more detail in Chapter 3.

In the same manner as these techniques, the task-based composition technique
also separates configuration concerns from the business logic of an application.
However, unlike the task-based composition technique, these discussed solutions
do not offer direct support for speculative adaptation. The task-based
composition technique enables an application to be composed in many phases
and supports caching of both content and context-sensitive instances and
adaptation tasks. Asynchronous speculative adaptation tasks can compose
application instances in the background without blocking the application.
Furthermore, unlike the described techniques, TaskCAD offers execution
structures for adaptation actions that enable developers to define context-
sensitive handling for errors raised while an application is composed, inform the
user about the progress of the adaptation, and enable the end-user to control the
adaptation. In addition, developers can extend the task-based composition
technique with implementations that can provide new execution structures for
adaptation actions.

8.4 Client-side solutions for adaptive content and
context-sensitive applications

Much research has been carried out in the domain of adaptive content and
context-sensitive applications (see Section 3.6). The task-based composition
technique supports adaptation, in which it is possible to combine information
coming from separate sources in a single context-sensitive UI on the client-side.
Unlike the task-based composition technique, the described approaches do not
offer direct support for speculative adaptation in which the previously composed
content and context-sensitive application instances can be utilised when an
application is composed for new contexts.

 195

The dynamic document [KPT94] and Ajax [Gar05] approaches support
information pre-fetching and background processing. However, unlike the task-
based composition technique, these solutions do not focus on component-based
composition but are rather designed for client-side content adaptation. ICrafter is
a server-side approach that does not support speculative adaptation or utilisation
of previously prepared application instances in adaptation. The universal
interactor solution uses information pre-fetching to speed up UI composition
[HKSR97]. The task-based composition technique does not introduce any fixed
speculative adaptation method (like information prefetching) but facilitates
utilisation of different kinds of adaptation actions and prediction models in
speculative adaptation and enables the adaptation policies and actions to be
changed, downloaded, and configured with context-sensitive parameters at
runtime. For example, a composition schema that defines a speculative
adaptation task for a building can be downloaded at runtime to minimise the
connection open times when local Bluetooth service access points are used, to do
information prefetching, and to compose UIs for local services in the
background. In addition, the composition schema can have structures that enable
the end-user to control adaptation and structures that define context-sensitive
handling for errors raised while the UIs are composed.

8.5 Summary of main contributions with respect to
existing solutions

The task-based composition technique supports both parametric and
compositional adaptation of component-based applications. Unlike the
middleware approaches, the task-based composition technique focuses on
adapting the application itself and supports dynamic composition of content and
context-sensitive applications of components that are plug compatible
[ALSN01] with other components. In addition, it does not concentrate on the
structure of the adaptive application but aims to make the dynamic composition
of adaptive content and context-sensitive applications more fluent.

Several solutions (e.g. Linda [CaG89], LIME [MPR01], TOTA [MaZ04], and
One.world [Gri04]) offer a shared memory space that exploits localized data
structures in order to let processing components gather information, interact, and
coordinate with each other [MaZ04]. However, these solutions do not support

 196

sharing of context-sensitive data and do not provide methods that enable
processing components to fetch the most suitable data for the context. The task-
based composition technique promotes the sharing of context-sensitive instances
with context comparators that are capable of calculating how suitable an
instance is for a processing context. Various kinds of context comparators can be
defined for the instances saved to the shared memory (environments). As a
result, the most suitable data is selected for the PC and delivered for the
processing components.

Several techniques provide languages for adaptation and thus separate
configuration concerns from the business logic of an application. However,
unlike the task-based composition technique, the discussed solutions do not offer
direct support for speculative adaptation. The task-based composition technique
does not introduce any fixed speculative adaptation method (like information
prefetching) but facilitates utilisation of different kinds of adaptation actions and
prediction models in speculative adaptation and enables the adaptation policies
and actions to be changed, downloaded, and configured at runtime.

The task-based composition technique enables an application to be composed in
many phases and supports caching of both content and context-sensitive
instances and adaptation tasks. As a result, the previously composed content and
context-sensitive application instances can be utilised when an application is
composed for new contexts. The asynchronous speculative adaptation tasks can
compose application instances in the background without blocking the
application. Furthermore, unlike the discussed language-based techniques,
TaskCAD offers execution structures for adaptation actions that enable
developers to define context-sensitive handling for errors raised while an
application is composed, inform the user about the progress of the adaptation,
and enable the end-user to control the adaptation. In addition, developers can
extend the task-based composition technique with new implementations
providing new execution structures for adaptation actions.

 197

9. Conclusion

This dissertation describes the task-based composition technique and presents
how it can be utilised in the domain of adaptive content and context-sensitive
applications. This chapter is organized as follows. Research problems and how
the set requirements (see Section 1.2.5) are materialized in the implementation
of the task-based composition technique are summarized first in Section 9.1.
Then, the contributions of this dissertation are reviewed in Section 9.2. Future
research directions are discussed in Section 9.3. Finally, concluding remarks are
given in Section 9.4.

9.1 Task-based composition technique as a platform of
adaptive applications

The concrete implementation of the task-based composition technique, called
TaskCAD, is discussed in Chapter 6. It is a universal and extendable solution
supporting both reactive and proactive adaptation and separating composition
concerns clearly from the business logic of an adaptive application. The XML-
based composition schemas can define tasks and context-sensitive actions and
their parameters and contents. This all makes it easier for the developers to
implement adaptive applications for mobile devices. In the best case, if ready-
made adaptation actions are available, implementation of an adaptive application
will require no coding effort at all but only the creation of new composition
schemas. In addition, it may be possible to reuse parts of the existing
composition schemas in new adaptive applications. Composition schemas can be
downloaded and modified at runtime without changing the code performing the
actual composition actions. As a result, it is possible to change the adaptation
strategy at runtime.

The task-based composition technique offers methods to make the dynamic
composition of content and context-sensitive applications more fluent. It offers
methods that support:

 198

1. Dynamic adaptation strategies. The adaptation policies (composition
schemas) and actions can be changed, downloaded, and configured at
runtime.

2. Speculative adaptation. The task-based composition technique does not
introduce any fixed speculative adaptation method (like information
prefetching) but facilitates utilisation of different kinds of adaptation actions
and prediction models in speculative adaptation.

3. Caching of adaptation tasks. Many parts of the application can request the
same adaptation tasks. Thus the caching of tasks can speed up the adaptation
process by increasing utilisation of previously started tasks. However, it is
not trivial to manage the cache of context-sensitive tasks which can have
dependencies on other tasks, too. The challenge is to identify when a task is
suitable for a specific request and Processing Context (PC). A part of the
cached tasks may have expired. In addition, in order to minimize the usage
of the limited memory of a mobile device, those tasks deemed not suitable
for the current or possible forthcoming PCs must be recognized, stopped,
and finally removed from the cache. The task-based composition technique
offers methods that facilitate caching of context-sensitive tasks and are able
to select the most suitable tasks for a request and PC, and finally enable the
application to utilise them in adaptation. Furthermore, it offers methods that
are able to recognize and stop those started adaptation tasks that are not
suitable for the current or predicted contexts.

4. Caching of context-sensitive application instances. The tasks can
compose applications in multiple phases and utilise cached application
instances. For example, in order to improve usability, alternative context-
sensitive presentations can be offered for a single Web page. A client-side
task can fetch a document source that contains content elements for various
contexts from the Web, parse it, and finally store the parsed document in the
cache. As a result, client-side tasks can compose new UIs for the context-
sensitive elements of the cached documents and display them for the end-
user. This all can be made without causing network traffic and without
parsing the document sources again. As a result, adaptation is faster and
does not cause costs for the end-user.

5. User-directed adaptation. The reference Java implementation of the task-
based composition technique offers ready-made executions for adaptation

 199

actions that enable the end-user to control adaptation. For example, the end-
user can accept or select between alternative adaptation actions. In addition,
the composition schemas can define context-sensitive feedback messages
and actions that will display them and notify the end-user about progress of
adaptation.

6. Context-sensitive handling of errors. A composition schema can define
context-sensitive handling for errors raised while the adaptation actions are
performed.

7. Utilisation of new execution structures in adaptation. Developers can
implement new execution structures for adaptation actions and use them in
composition schemas. For example, new conditional executions that utilise
data available in the application environment and control execution of the
defined adaptation actions can be implemented and utilised in task-based
adaptation.

The research problems were the following:

• How to support active and passive context-awareness in dynamic
composition of adaptive applications?

• How to support context-sensitive handling of errors appearing in the
dynamic composition of adaptive applications?

• How to support speculative adaptation in dynamic composition?

• How to support dynamic client-side composition of adaptive mobile
browsers?

The general quality goals of the technique were discussed in Section 1.2.5.
Based on the experiences gained from different use cases and examples, the
following compares the task-based composition technique to these goals:

• Generic. The core of the task-based composition technique is based on
the content adaptation model introduced by W3C. As shown in Section
4, the core of the technique describes a generic structure that supports
the dynamic component-based composition of adaptive applications
with context-sensitive adaptation tasks and actions. The core of the
generic model can be extended to support dynamic composition of

 200

various kinds of context-sensitive component-based applications. In
addition, it can be implemented with various kinds of object-oriented
programming languages, for example, with Java and C++.

• Extensible. As shown in Section 6, TaskCAD does not only provide a
predetermined and fixed set of methods supporting dynamic
composition; instead it allows developers to extend the technique with
new kind of actions, settings, and context description elements
supporting dynamic composition of different kinds of adaptive
applications. For example, as discussed in Section 4.6, developers can
extend the technique with implementations introducing new execution
structures for adaptation actions. Since the technique is highly
extendable, it can be specialised to support dynamic composition of a
wide range of adaptive applications.

• Policy independence. The task-based composition technique
concentrates on the composition concerns of component-based adaptive
applications. The core of the technique does not prescribe policies,
constraints, services, or facilities that are specific to particular
application domains, or deployment environments. Instead the core of
the technique describes generic mechanisms that support the dynamic
composition of various kinds of adaptive content and context-sensitive
applications of software components.

• Scalable. The task-based composition technique is designed to support
adaptation in very different kinds of environments and devices offering
processing and memory capabilities of a different level. The interfaces
and classes of the Java reference implementation implement the core
parts of the technique only. As a result, the core implementations have a
small memory footprint, which makes the technique applicable also in
mobile devices with a limited memory. TaskCAD offers the interfaces
and classes for the task-based composition technique. Its compiled size
is currently 120 Kbytes and it has been used in the Java 2 Standard
Edition and Java MIDP environments and in devices having hundreds of
Kbytes of memory for the Java technology stack.

• Separation of concerns. As discussed in Chapter 6, TaskCAD offers an
XML-based language for composition schemas. As a result, the
adaptation concerns are clearly separated from the business logic of the

 201

application. The composition schemas can be changed at runtime and
possibly reused in various applications. In addition, the XML-based
composition schemas can be downloaded from the Web and executed on
the new environments that support the execution of tasks.

• Incremental. The task-based composition technique enables developers
to utilise various kinds of adaptation components in the composition
schemas. In addition, composition schemas can utilise the tasks of other
composition schemas and so it is possible to make incremental
development for composition concerns of adaptive applications. As
discussed in Section 4.6, the actions of a composition schema can
dynamically download composition schemas, initialise task factories for
them, and finally request the initialised task factories to execute the
adaptation tasks.

• High performance. The task-based composition technique does not
cause considerable overhead for dynamic composition of component-
based adaptive applications. The results of the measurements (see
Section 5.1) indicate that using of the task-based composition technique
does not significantly disturb the end-user of an adaptive application. In
addition, because the technique makes it easier for developers to
implement component-based adaptive applications, they can concentrate
more on improving the performance and quality of the components of
adaptive applications.

MIMEFrame defines architecture for adaptive user agents and browsers (see
Section 7.2). The reference Java implementations of MIMEFrame enable
developers to compose separate user agents or browsers embedded in other
mobile applications of consistent and reusable components. As a result, instead
of implementing the whole browser from scratch, developers can put more effort
into improving the browser components. The task-based composition technique
enables browsers to be dynamically composed for different contexts.

The experiences gained from the discussed case studies suggest that the task-
based composition technique facilitates the implementation of content and
context-sensitive applications. Firstly, it decreases the coding effort. Secondly, it
supports the reuse of composition schemas and enables adaptation policies to be
modified or replaced at runtime to improve efficiency and usability. For

 202

example, as shown in Section 7.5, tasks can be used to minimize the
disconnection time when the services of Bluetooth access points are utilised. It is
easy to extend existing composition schemas with new adaptation actions and
tasks. In addition, the use cases proved that it facilitates dynamic composition of
applications that utilise data coming from various sources. Thirdly, the technique
supports caching of tasks and content and context-sensitive application instances
and speculative adaptation where application is composed in multiple phases for
rapidly changing contexts.

However, it must be noted that the task-based composition technique does set
requirements for the target mobile device. Firstly, the reference Java implementation
of the task-based composition technique can be used only in devices that support
thread-based processing and provide hundreds of kBytes of memory for the Java
technology stack. Secondly, implementations that are able to download and parse
the XML-based composition schemas and to execute the tasks of downloaded
composition schemas must be installed to the client device. Thirdly, plugin
implementations for the used actions must be installed to the client.

The adaptation tasks can do concurrent processing. This sets requirements for
adaptation action implementations. For example, synchronization problems may
arise if multiple tasks modify the same data. In order to avoid synchronization
problems, an adaptation action must lock the application instances that it
modifies. Furthermore, the execution order of the code can change in concurrent
task-based processing. As a result, it may be more difficult to test the code
performing the adaptation actions. Although the task-based composition
technique does not directly solve the difficulties related to concurrent
processing, it facilitates modification of composition schemas. As a result, it is
faster to do edit and test cycles for target applications. For example, a test task
can be defined to log the raised errors. It can have an action that will request
defined adaptation tasks randomly and a try-catch action structure that will log
the error responses of the requested tasks.

The reuse of adaptation actions requires well-documented action plugins. The
functionality of adaptation action components must be clearly described. In
addition, it must be defined what kind of application instances an action needs
and what kind of instances it will produce to the defined targets. The task-based
composition technique does not directly support testing of various kinds of

 203

component configurations. However, it helps developers to implement test beds
that can test reactive, proactive, and speculative adaptation of target applications.

In contrast to a standard browser and adapted content approach, the
implementation of content and context-sensitive mobile browsers requires more
effort. However, usability can be improved if the browser is optimised to offer
controls and views that are optimised for the specific contents and for services
available on the Web. Furthermore, it is possible to embed the browser to an
adaptive mobile application. The server-side can provide a composition schema
for a task that can compose optimised UIs for the provided services. The
composition schema can be downloaded to the client that can execute its tasks.
The tasks can combine a single UI for context-sensitive content elements. If the
content elements are available in the cache, tasks can compose and adapt UIs on
the client-side without causing network traffic and costs for the mobile user.

However, although MIMEFrame and the task-based composition technique
facilitate implementation of adaptive browsers, it may be too challenging for
developers lacking the necessary programming experience to construct totally
new adaptive browsers. However, if a lot of ready-made browser components
and composition schemas are available, it is possible to implement new kinds of
browsers without manual coding. Only composition schemas have to be edited.
This can be made with standard text or XML editors. In addition, the mPlaton
editor facilitates implementation of the composition schemas.

9.2 Summary of contributions

Contributions of this dissertation were enumerated in Section 1.4. The main
contributions are the following:

• The development of the task-based composition technique concept that
supports reactive, proactive, and speculative adaptation of content and
context-sensitive applications. As discussed in Chapter 4, and shown
with case studies, the task-based composition technique supports
dynamic composition of adaptive content and context-sensitive
applications. It offers structures that enable developers to define context-
sensitive handlings for errors raised during an application is adapted for

 204

a new context and enables end-users to control execution of adaptation
actions. In addition, TaskCAD enables developers to define context-
sensitive feedback messages that can inform the end-user of the progress
of adaptation. As discussed in Section 4.5, the task-based composition
technique supports both caching of asynchronous adaptation tasks and
context-sensitive application instances composed with tasks. As a result,
the task-based composition technique can be used in speculative
adaptation by requesting tasks to compose application instances for the
predicted processing contexts.

• The development of the MIMEFrame framework that defines
architecture for adaptive user agents and browsers. The MIMEFrame
framework offers interfaces and components for adaptive user agents
and browsers (see Section 7.2) that can be composed with tasks. The
author has made Java implementations for the MIMEFrame framework
(Chapter 7).

The task-based composition technique is evaluated with case studies.
Related to this, the author has carried out:

• The Java reference implementation for the task-based composition
technique, called TaskCAD, offers core interfaces and classes for
executing adaptation tasks with threads. Furthermore, it offers an
interpretable XML-based language for composition schemas. As a
result, both the components and adaptation policies can be changed
dynamically so that they could better correspond to possible emerging
new requirements. At the same time, the adaptation concerns are clearly
separated from the business logic of the application. TaskCAD offers
various kinds of executions for adaptation actions. For example, it offers
sequential and exclusive executions and request-adapt, try-catch, accept,
select, enumerate, and refresh structures for actions. In addition, it
enables developers to use specialized action composites in composition
schemas.

• A tool that facilitates implementation of XML-based composition
schemas. The implemented mPlaton editor (see Section 6.5) facilitates
implementation of XML-based composition schemas.

 205

• The analysis of case studies that were implemented for mobile devices.
As discussed in Chapter 4, and shown with case studies, the task-based
composition technique can be utilised in the domain of adaptive
browsers. Three case studies were implemented for mobile devices and
evaluated. The discussed case studies shown that the task-based
composition technique decreases the implementation effort and speeds
up adaptation (see Chapter 7).

9.3 Future work

The task-based composition technique provides a platform for experimenting
with adaptation of component-based applications. TaskCAD is a prototype for
the task-based composition platform and language. Here listed are some
directions for the future work:

More analysis and evaluation for the task-based composition technique. The
presented case studies show that the task-based composition technique facilitates
implementation of content and context-sensitive applications and evaluate both
performance and implementation benefits of the task-based composition
technique. However, more analysis and evaluation is still needed for the task-
based composition technique. It is important to notice that the given evaluations
do not compare TaskCAD to other available adaptation methods but only show
what kind of implementation and performance benefits it provided in the
adaptive browser implementations. Thus future research and experiments are
still needed to provide more numerical measurement information about the task-
based composition technique and alternative adaptation methods. For example,
more information about the performance and implementation benefits of various
adaptation methods is needed. In addition, it is important to notice that there are
many parameters that affect the performance of the task-based composition. For
example, the size of the thread pool and the size of the task and application
instance caches have an effect on the performance. New measurements are
needed to evaluate the effect of these parameters in various execution
environments.

New components and interfaces that can be used in various kinds of component
configurations. Dynamic component-based composition requires high quality

 206

components that can be used in various kinds of configurations and replaced on
the fly. Clear and uniform interfaces are required for component
implementations. In addition, techniques that help developers to ensure that
various component configurations will work correctly in different contexts are
needed.

Different tools supporting the construction of composition schemas. In order to
make utilisation of the task-based composition technique easier, new tools can
be implemented to enable also people without programming skills to modify
composition schemas. For example, tools like wizards can enable the end-users
to modify the composition schemas at runtime in a mobile device.

Different integrations. The core of the task-based composition technique is
implemented with Java. However, the technique can be implemented with other
object-oriented languages, like C++, too. New implementation can be provided
to enable developers to use the task-based composition technique in new
application environments.

New context prediction models and requestors for adaptation. The speculative
adaptation requires mechanisms predicting possible forthcoming processing
contexts. New prediction components that utilise the context history information
and improve prediction accuracy can improve the efficiency of speculative
adaptation. For example, fuzzy logic could be used in processing
multidimensional context history information.

Generative methods for integrating the adaptation schemas in the application
code. TaskCAD is applicable in Java enabled mobile devices that have hundreds
of Kbytes of memory for the Java technology stack. Generators that are capable
of integrating context-sensitive component composition schemas directly to the
code of an adaptive application can decrease memory requirements. Less classes
and interfaces are needed, which makes the installation package of an adaptive
application smaller. As a result, the task-based composition technique could be
used in devices having less memory for the Java technology stack. However, it
must be noted that if the adaptation strategies are integrated directly into
application components, it is difficult to change the adaptation strategies at
runtime.

 207

New case studies. The task-based composition technique has been mainly used
in the domain of adaptive content and context-sensitive applications. New case
studies with new kinds of adaptation actions are needed to test the applicability
of the technique in different application domains.

9.4 Concluding remarks

The task-based composition technique helps software developers to implement
adaptive content and context-sensitive applications for mobile devices. The
composition policies can be defined at a higher-level with the task-based
composition language. As a result, the composition concerns are clearly
separated from the application business logic. In addition, because it is an
interpretable language, it is possible to change composition schemas and
adaptation strategies at runtime. Furthermore, composition schemas can be
reused in new applications. To enable task-based composition, the presented
system provides a tool that supports construction of composition schemas and an
environment that is capable of running them.

 208

References

[AAH+97] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and
 M. Pinkerton, "Cyberguide: A mobile context-aware tour guide,"
 Wireless Networks, vol. 3, pp. 421�433, 1997.

[AAH05] P. Alahuhta, J. Ahola, and H. Hakala, "Mobilizing Business
 Applications � A survey about the opportunities and challenges of
 mobile business applications and services in Finland," TEKES
 Technology Review 167/2005, 2005.

[ABB+89] G. Attardi, C. Bonini, M. R. Boscotrecase, T. Flagella, and M.
 Gaspari, "Metalevel Programming in CLOS," Proceedings of
 European Conference on Object-Oriented Programming
(ECOOP�89), 1989.

[ABFG04] D. Austin, A. Barbir, C. Ferris, and S. Garg, "Web Services
 Architecture Requirements," W3C Working Group Note, 2004.

 [ACM04] A. Arsanjani, F. Curbera, and N. Mukhi, "Manners externalize
 semantics for on-demand composition of context-aware services,"
 Proceedings of IEEE International Conference on Web Services,
 pp. 583�590, San Diego, California, USA, 2004.

[AcN01] F. Achermann and O. Nierstrasz, Applications = Components +
 Scripts � A tour of Piccola: Kluwer, 2001.

[ALSN01] F. Achermann, M. Lumpe, J.-G. Schneider, and O. Nierstrasz,
 "PICCOLA � a Small Composition Language," Formal
 Methods for Distributed Processing: A Survey of Object-Oriented
 Approaches, H. Bowman and J. Derrick, Eds.: Cambridge
 University Press, pp. 403�426, New York, USA, 2001.

[AmW99] N. Amano and T. Watanabe, "LEAD++: An Object-Oriented
 Reflective Language for Dynamically Adaptable Software
 Model," IEICE TRANSACTIONS on Fundamentals of

 209

 Electronics, Communications and Computer Sciences, vol. 82,
 pp. 1009�1016, 1999.

[AsS03] D. Ashbrook and T. Starner, �Using GPS to learn significant
locations and predict movement across multiple users,� Personal
and Ubiquitous Computing, vol. 7, pp. 275�286, 2003.

[ATB04] D. Ayed, C. Taconet, and G. Bernard, "Deployment and
 Reconfiguration of Component-based Applications in AMPROS,"
 presented at Proactive computing workshop (PROW 2004),
 Finland, 2004.

[AzJ00] B. Aziz and C. Jensen, "Adaptability in CORBA: The Mobile
 Proxy Approach," Proceedings of the 2nd International
 Symposium on Distributed Objects and Applications (DOA '00),
 pp. 295�304, Antwerp, Belgium, 2000.

[BBC05] A. Bracciali, A. Brogi, and C. Canal, "A formal approach to
 component adaptation," The Journal of Systems & Software,
 vol. 74, pp. 45�54, 2005.

[BCA+00] G. S. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F.
 Costa, H. Duran, N. Parlavantzas, and K. Saikoski, "A Principled
 Approach to Supporting Adaptation in Distributed Mobile
 Environments," Proceedings of International Symposium on
 Software Engineering for Parallel and Distributed Systems
 (PDSE 2000), pp. 3�12, Limerick, Ireland, 2000.

[BCFH03] N. O. Bouvin, B. G. Christensen, K. G. Frank, and A. Hansen,
 "HyCon: a framework for context-aware mobile hypermedia,"
 New Review of Hypermedia and Multimedia, vol. 9, pp. 59�88,
 2003.

[BCK98] L. Bass, P. Clements, and R. Kazman, Software Architecture in
 Practice: Addison�Wesley, 1998.

 210

[BCS02] E. Bruneton, T. Coupaye, and J. B. Stefani, "Recursive and
 Dynamic Software Composition with Sharing," Proceedings of
 Seventh International Workshop on Component-Oriented
 Programming (WCOP), Malaga, Spain, 2002.

[BCS03] D. Bonino, F. Corno, and G. Squillero, �Dynamic prediction of
Web requests,� Proceedings of the IEEE Congress on
Evolutionary Computation, Canberra, Australia, 2003.

[Bea92] B. W. Beach, "Connecting Software Components with
 Declarative Glue," Proceedings of the International Conference
 on Software Engineering (ICSE �92), pp. 120�137, Melbourne,
 Australia, 1992.

[BeA01] L. Bergmans and M. Aksits, "Composing crosscutting concerns
 using composition filters," Communications of the ACM, vol. 44,
 pp. 51�57, 2001.

[BEF+00] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy,
 P. Huang, S. McCanne, K. Varadhan, X. Ya, and Y. Haobo,
 "Advances in network simulation," Computer, vol. 33, pp. 59�67,
 2000.

[BEK+00] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn,
 H. F. Nielsen, S. Thatte, and D. Winer, "Simple Object Access
 Protocol (SOAP) 1.1," W3C Note, 2000.

[Ben86] J. L. Bentley, "Programming pearls: Little languages,"
 Communications of the ACM, vol. 29, pp. 711�721, 1986.

[BFK+00] B. Badrinath, A. Fox, L. Kleinrock, G. Popek, P. Reiher, and M.
 Satyanarayanan, "A Conceptual Framework for Network and
 Client Adaptation," Mobile Networks and Applications, vol. 5,
 pp. 221�231, 2000.

 211

[BGGW02] M. Butler, F. Giannetti, R. Gimson, and T. Wiley, "Device
 Independence and the Web," IEEE Internet Computing, vol. 6,
 pp. 81�86, 2002.

[BHL01] I. Ben-Shaul, O. Holder, and B. Lavva, "Dynamic Adaptation and
 Deployment of Distributed Components in Hadas," IEEE
 Transactions on Software Engineering, vol. 27, 2001.

[BJK03] A. Brown, S. Johnston, and K. Kelly, "Using Service-Oriented
 Architecture and Component-Based Development to Build Web
 Service Applications," Rational-IBM White paper, 2003.

[BlC97] G. S. Blair and G. Coulson, "The case for reflective middleware,"
 Proceedings of 3rd Cabernet Plenary Workshop, Rennes, France,
 1997.

[BLLJ98] B. Bos, H. W. Lie, C. Lilley, and I. Jacobs, "Cascading Style
 Sheets, level 2 CSS2 Specification," W3C Recommendation,
 80 p., 1998.

[BMR+96] F. Buschmann, R. Meunier, Hans Rohnert, P. Sommerlad, and M.
 Stal, Pattern-Oriented Software Architecture: A System of
 Patterns: Wiley, 1996.

[Bos99] J. Bosch, "Superimposition: A component adaptation technique,"
 Information and Software Technology, vol. 41, 1999.

[BPR02] A. Brogi, E. Pimentel, and A. M. Roldán, "Compatibility of
 Linda-based Component Interfaces," Electronic Notes in
 Theoretical Computer Science (ENTCS), vol. 66, pp. 1�15, 2002.

[BPS00] T. Bray, J. Paoli, and C. M. Sperberg-McQueen, "Extensible
 Markup Language (XML) 1.0," W3C Recommendation, 2000.

[Bra92] G. Bracha, "The Programming Language Jigsaw: Mixins,
 Modularity and Multiple Inheritance," in Department of
 Computer Science: University of Utah, 1992.

 212

[Bro95] K. Brockschmidt, Inside OLE: Microsoft Press Redmond, WA,
 USA, 1995.

[BWL03] N. M. Belaramani, C.-L. Wang, and F. C. M. Lau, "Dynamic
 Component Composition for Functionality Adaptation in
 Pervasive Environments," Proceedings of the Ninth IEEE
 Workshop on Future Trends of Distributed Computing Systems
 (FTDCS2003), San Juan, Puerto Rico, USA, 2003.

[CaG89] N. Carriero and D. Gelernter, "Linda in context,"
 Communications of the ACM, vol. 32, pp. 444�458, 1989.

[CaL90] P. Calder and M. Linton, "Glyphs: Flyweight Objects for User
 Interfaces," Proceedings of the ACM Symposium on User
 Interface Software and Technology, pp. 92�101, Snowbird, Utah,
 USA, 1990.

[Cap03] L. Capra, "Reflective Mobile Middleware for Context-Aware
 Applications," in Department of Computer Science: University of
 London, 2003.

[CBG+04] G. Coulson, G. S. Blair, P. Grace, A. Joolia, K. Lee, and J.
 Ueyama, "A Component Model for Building Systems Software,"
 Proceedings of IASTED Software Engineering and Applications
 (SEA�04), Cambridge, MA, USA, 2004.

[CCMW01] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana,
 "Web Services Description Language (WSDL) 1.1," W3C Note,
 2001.

[CDK00] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed systems:
 concepts and design. Boston, MA, USA: Addison�Wesley, 2000.

[CEM03] L. Capra, W. Emmerich, and C. Mascolo, "CARISMA: Context-
 Aware Reflective Middleware System for Mobile Applications,"
 IEEE Transactions on Software Engineering, vol. 29, pp. 929�945,
 2003.

 213

[Cha91] E. Charniak, �Bayesian Networks without Tears,� AI Magazine,
vol. 12, pp. 50�63, 1991.

[ChK00] G. Chen and D. Kotz, "A Survey of Context-Aware Mobile
 Computing Research," Dartmouth Computer Science Technical
 Report TR2000-381, 2000.

[CHRR04] L. Clement, A. Hately, C. von Riegen, and T. Rogers, "UDDI
 Version 3.0.2," UDDI Specification Technical Committee Draft,
 2004.

[ChY97] K. Chinen and S. Yamaguchi, "An interactive prefetching proxy
 server for improvement of WWW latency," Proceedings of the
 Seventh Annual Conference of the Internet Society (INET '97),
 Kuala Lumpur, Malaysia, 1997.

[CMD01] K. Cheverst, K. Mitchell, and N. Davies, "Investigating context-
 aware information push vs. information pull to tourists,"
 Proceedings of the Third International Workshop on Human
 Computer Interaction with Mobile Devices (Mobile HCI '01),
 Lille, France, 2001.

[CoK02] E. Cohen and H. Kaplan, "Prefetching the means for document
 transfer: a new approach for reducing Web latency," Computer
 Networks, vol. 39, pp. 437�455, 2002.

 [Crn03] I. Crnkovic, "Component-based software engineering-new
 challenges in software development," Proceedings of the 25th
 International Conference on Information Technology Interfaces
 (ITI 2003), pp. 9�18, Cavtat, Croatia, 2003.

[CSKO02] A. Corsaro, D. C. Schmidt, R. Klefstad, and C. O�Ryan, "Virtual
 Component: a Design Pattern for Memory-Constrained
 Embedded Applications," Proceedings of the Ninth Conference
 on Pattern Language of Programs (PLoP 2002), Urbana, IL,
 USA, 2002.

 214

[CTA+04] D. Conan, C. Taconet, D. Ayed, L. Chateigner, N. Kouici, and G.
 Bernard, "A Pro-Active Middleware Platform for Mobile
 Environments," Proceedings of IASTED International Conference
 on Software Engineering, Innsbruck, Austria, 2004.

[CzE00] K. Czarnecki and U. Eisenecker, Generative Programming:
 Methods, Tools, and Applications: Addison�Wesley, 2000.

[DeA99] A. K. Dey and G. Abowd, "The Context-Toolkit: Aiding the
 Development of Context-Aware Applications," Proceedings of
 Human Factors in Computing Systems (CHI), pp. 434�441, New
 York, USA, 1999.

[DeK05] L. DeMichiel and M. Keith, "JSR 220: Enterprise JavaBeans,
 Version 3.0," 2005.

[DENW06] M. Dubinko, I. Expert, A. Navarro, and I. WebGeek, "XHTML�
 2.0," W3C Working Draft, 2006.

[Dey01] A. K. Dey, "Understanding and Using Context," Personal and
 Ubiquitous Computing Journal, vol. 5, pp. 4�7, 2001.

[DKV00] A. V. Deursen, P. Klint, and J. Visser, "Domain-Specific
 Languages: An Annotated Bibliography," ACM SIGPLAN
 Notices, vol. 35, pp. 26�36, 2000.

[DLB01] P. C. David, T. Ledoux, and N. M. N. Bouraqadi-Saadani, "Two-
 step weaving with reflection using AspectJ," Proceedings of
 OOPSLA 2001 Workshop on Advanced Separation of Concerns in
 Object-Oriented Systems, Tampa, Florida, 2001.

[Dow98] T. B. Downing, Java RMI: Remote Method Invocation: IDG
 Books Worldwide, Inc. Foster City, California, USA, 1998.

[DPH91] P. Druschel, L. L. Peterson, and N. C. Hutchinson, "Service
 composition in Lipto," Proceedings of International Workshop on

 215

 Object Orientation in Operating Systems, pp. 108�111, Palo Alto,
 California, USA, 1991.

[DSA01] A. K. Dey, D. Salber, and G. D. Abowd, "A Conceptual
 Framework and a Toolkit for Supporting the Rapid Prototyping of
 Context-Aware Applications," Human-Computer Interaction
 (HCI) Journal, vol. 16, pp. 97�166, 2001.

[DSGO02] F. Doucet, S. Shukla, R. Gupta, and M. Otsuka, "An Environment
 for Dynamic Component Composition for Efficient Co-Design,"
 Proceedings of the Design, Automation and Test in Europe
 Conference and Exhibition 2002 (DATE '02), pp. 736�743, Paris,
 France, 2002.

[DSGO03] F. Doucet, S. Shukla, M. Otsuka, and R. Gupta, "BALBOA:
 A Component-Based Design Environment for System Models,"
 IEEE Transactions on Computer-Aided Design of Integrated
 Circuits and Systems, vol. 22, 2003.

[Duc99] D. Duchamp, "Prefetching hyperlinks," Proceedings of the
 Second USENIX Symposium on Internet Technologies and
 Systems (USITS '99), Boulder, CO, 1999.

[Emm02] W. Emmerich, "Distributed Component Technologies and their
 Software Engineering Implications," Proceedings of the 24th
 International Conference on Software Engineering, pp. 537�546,
 Orlando, Florida, USA, 2002.

[FGC98] A. Fox, S. D. Gribble, and Y. Chawathe, "Adapting to network
 and client variation using active proxies: Lessons and
 perspectives," IEEE Personal Communications, vol. 5, pp. 10�19,
 1998.

[FiS03] D. Fisher and G. Saksena, "Link prefetching in Mozilla: A server-
 driven approach," Proceedings of the 8th International Workshop
 on Web Content Caching and Distribution, New York, USA,
 2003.

 216

[FSLM02] J.-P. Fassino, J.-B. Stefani, J. Lawall, and G. Muller, "THINK:
 A Software Framework for Component-based Operating System
 Kernels," Proceedings of Usenix Annual Technical Conference,
 Monterey, USA, 2002.

[FuT99] L. Fuentes and J. M. Troya, "A Java Framework for Web-based
 Multimedia and Collaborative Applications," IEEE Internet
 Computing, vol. March�April, pp. 56�64, 1999.

[GAO95] D. Garlan, R. Allen, and J. Ockerbloom, "Architectural mismatch
 or why it�s hard to build systems out of existing parts,"
 Proceedings of International Conference on Software
 Engineering �95, Seattle, 1995.

[Gar05] J. Garrett, "Ajax: A New Approach to Web Applications," in
 www.adaptivepath.com/publications/essays/archives/000385.php,
 2005.

[GCB+00] D. Garti, S.-T. Cohen, A. Barak, A. Keren, and R. Szmit, "Object
 Mobility for Performance Improvements of Parallel Java
 Applications," Parallel and Distributed Computing, vol. 60,
 pp. 1311�1324, 2000.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
 Patterns: Addison�Wesley, 1995.

[Gim02] R. Gimson, "Delivery Context Overview for Device
 Independence," W3C Working Draft, 2002.

[Gim06] R. Gimson, R. Lewis, and S. Sathish, "Delivery Context
 Overview for Device Independence," W3C Working Group Note,
 2006.

[Goe02] B. Goetz, "Java theory and practice: Thread pools and work
 queues � Thread pools help achieve optimum resource
 utilization," IBM developerWorks, 2002.

 217

[GPSS04] D. Garlan, V. Poladian, B. Schmerl, and J. P. Sousa, "Task-based
 Self-adaptation," Proceedings of Workshop on Self-Managed
 Systems (WOSS'04), pp. 54�58, Newport Beach, California, USA,
2004.

[GPZ04] T. Gu, H.K. Pung, and D.Q. Zhang, �Toward an OSGi-based
 infrastructure for context-aware applications,� IEEE Pervasive
 Computing, vol. October�December, pp. 66�74, 2004.

[Gri04] R. Grimm, "One.world: Experiences with a Pervasive Computing
 Architecture," IEEE Pervasive Computing, July�September,
pp. 22�30, 2004.

[Gui98] J. de Oliveira Guimaraes, "Reflection for statically typed
 languages," Proceedings of 12th European Conference on
 European Conference on Object-Oriented Programming
 (ECOOP�98), pp. 440�461, Brussels, Belgium, 1998.

[HeF98] J. Helander and A. Forin, "MMLite: A Highly Componentized
 System Architecture," Proceedings of 8th ACM SIGOPSE
 Workshop, pp. 96�103, Sintra, Portugal, 1998.

[HeI01] K. Henricksen and J. Indulska, "Adapting the Web interface: an
 adaptive Web browser," Proceedings of Second Australasian
 User Interface Conference (AUIC 2001), pp. 21�28, Gold Coast,
 Australia, 2001.

[HHHW97] R. S. Hall, D. Heimbigner, A. van der Hoek, and A. L. Wolf, "An
 architecture for post-development configuration management in
 a wide-area network," Proceedings of 17th International
 Conference on Distributed Computing Systems, pp. 269�278,
 Baltimore, Maryland, 1997.

[HIR01] K. Henricksen, J. Indulska, and A. Rakotonirainy, "Infrastructure
 for Pervasive Computing: Challenges," Proceedings of Informatik
 2001: Workshop on Pervasive Computing, pp. 214�222, Vienna,
2001.

 218

[HKSR97] T. D. Hodes, R. H. Katz, E. Servan-Schreiber, and L. Rowe,
 "Composable ad-hoc mobile services for universal interaction,"
 Proceedings of the 3rd annual ACM/IEEE international
 conference on Mobile computing and networking, pp. 1�12,
 Budapest, Hungary, 1997.

[HSH+01] T. Haraikawa, T. Sakamoto, T. Hase, T. Mizuno, and A. Togashi,
 "µVNC: a proposal for Internet connectivity and interconnectivity
 of home appliances based on remote display framework," IEEE
 Transactions on Consumer Electronics, vol. 47, pp. 512�519,
 2001.

[HSP+03] T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger, J.
 Altmann, and W. Retschitzegger, "Context-awareness on mobile
 devices � the hydrogen approach," Proceedings of the 36th
Annual Hawaii International Conference on System Sciences,
pp. 292�301, Big Island, Hawaii, 2003.

[ImP07] A. Immonen and M. Palviainen, �Trustworthiness Evaluation and
 Testing of Open Source Components,� Proceedings of the 7th
 International Conference on Quality Software (QSIC 2007),
 Portland, Oregon, USA, 2007.

[ITLS04] V. Issarny, F. Tartanoglu, J. Liu, and F. Sailhan, "Software
 Architecture for Mobile Distributed Computing," Proceedings of
 the Fourth Working IEEE/IFIP Conference on Software
 Architecture (WICSA�04), Oslo, Norway, 2004.

[Jaa02] A. Jaaksi, "Developing Mobile Browsers in a Product Line,"
 IEEE Software, vol. January/August, 2002.

[JHE99] J. Jing, A. S. Helal, and A. Elmagarmid, "Client-Server
 Computing in Mobile Environments," ACM Computing Surveys,
 vol. 31, pp. 118�157, 1999.

[JJWS98] P. Johnson, H. Johnson, R. Waddington, and A. Shouls, "Task-
 related knowledge structures: analysis, modelling and

 219

 application," Proceedings of the Fourth Conference of the British
 Computer Society on People and computers IV, pp. 35�62,
 University of Manchester, UK, 1988.

[JoF88] R. E. Johnson and B. Foote, "Designing Reuseable Classes,"
 Journal of Object-Oriented Programming, vol. June/July, 1988.

[KAK+00] E. Kaasinen, M. Aaltonen, J. Kolari, S. Melakoski, and T.
 Laakko, "Two Approaches to bringing Internet services to WAP
 devices," Computer Networks, vol. 33, pp. 231�246, 2000.

[Kat02] E. Katsiri, �Principles of Context Inference,� Proceedings of
UbiComp�02, pp. 33�34, Göteborg, Sweden, 2002.

[KBM+02] T. Kindberg, J. Barton, J. Morgan, G. Becker, D. Caswell, P.
 Debaty, G. Gopal, M. Frid, V. Krishnan, and H. Morris, "People,
 Places, Things: Web Presence for the Real World," Mobile
 Networks and Applications, vol. 7, pp. 365�376, 2002.

[KHH+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W.
 G. Griswold, "An overview of AspectJ," Proceedings of the 15th
 European Conference on Object-Oriented Programming, pp.
327�353, Budapest, Hungary, 2001.

[KHL02] J. Kimmel, J. Hautanen, and T. Levola, "Display technologies for
 portable communication devices," Proceedings of the IEEE, vol.
 90, pp. 581�590, 2002.

[Kic96] G. Kiczales, "Aspect-oriented programming," ACM Computing
 Surveys (CSUR), vol. 28, 1996.

[Kis07] C. Kiss, �Composite Capability/Preference Profiles (CC/PP):
 Structure and Vocabularies 2.0,� W3C Working Draft, 2007.

[KMF01] E. Kiciman, L. Melloul, and A. Fox, "Towards Zero-Code Service
 Composition," Proceedings of the Eighth Workshop on Hot

 220

 Topics in Operating Systems (HotOS VIII), Elmau, Germany,
 2001.

[KMSS02] E. P. Kasten, P. K. McKinley, S. M. Sadjadi, and R. E. K.
 Stirewalt, "Separating introspection and intercession in
 metamorphic distributed systems," Proceedings of IEEE
 Workshop on Aspect-Oriented Programming for Distributed
 Computing (with ICDCS'02), Vienna, Austria, 2002.

[KoC00] F. Kon and R. H. Campbell, "Dependence Management in
 Component-Based Distributed Systems," IEEE Concurrency, vol.
 8, pp. 26�36, 2000.

[Kon00] F. Kon, "Automatic Configuration of Component-Based
 Distributed Systems," in Department of Computer Science.
 Urbana-Champaign: University of Illinois, 2000.

[Kor05] P. Korpipää, "Blackboard-based software framework and tool for
 mobile device context awareness," VTT Publications 579, 2005.

[KPRS03] G. Kappel, B. Pröll, W. Retschitzegger, and W. Schwinger,
 "Customisation for ubiquitous web applications: a comparison of
 approaches," International Journal of Web Engineering and
 Technology, vol. 1, 2003.

[KPT94] M. F. Kaashoek, T. Pinckney, and J. A. Tauber, "Dynamic
 documents: mobile wireless access to the WWW," Proceedings of
 Workshop on Mobile Computing Systems and Applications,
 pp. 179�184, Santa Cruz, California, USA, 1994.

[KrP88] G. E. Krasner and S. T. Pope, "A Description of the Model-View-
 Controller User Interface Paradigm in the Smalltalk-80 System,"
 Journal of Object-Oriented Programming, vol. 1, pp. 26�49,
 1988.

[KrS93] B. Kroesse and P. Van der Smagt, An Introduction to Neural
Networks: University Amsterdam Press, 1993.

 221

[KSKB02] J. Kleindienst, L. Seredi, P. Kapanen, and J. Bergman, "CATCH-
 2004 Multi-Modal Browser: Overview Description with Usability
 Analysis," Proceedings of the Fourth IEEE International
 Conference on Multimodal Interfaces (ICMI�02), pp. 442�447,
 Pittsburgh, Pennsylvania, USA, 2002.

[LaH05] T. Laakko and T. Hiltunen, "Adapting Web content to mobile
 user agents," IEEE Internet Computing, vol. 9, pp. 46�53, 2005.

[LaH05b] O. Layaida and D. Hagimont, "PLASMA: a component-based
 framework for building self-adaptive multimedia applications,"
 Proceedings of Electronic Imaging, pp. 185�196, San Jose,
California, USA, 2005.

[LBS+98] J. Loyall, D. Bakken, R. Schantz, J. Zinky, D. Karr, R. Vanegas,
 and K. Anderson, "QoS aspect languages and their runtime
 integration," Proceedings of the 4th Workshop on Languages,
 Compilers, and Run-time Systems for Scalable Computers, Berlin,
 Heidelberg, New York, Tokyo, 1998.

[Lew03] R. Lewis, "Authoring Challenges for Device Independence," W3C
 Working Group Note, 2003.

[Lew05] R. Lewis, "Glossary of Terms for Device Independence," W3C
 Working Draft, 2005.

[LiM96] G. Liu and G. Maguire, "A class of mobile motion prediction
 algorithms for wireless mobile computing and communications,"
 Mobile Networks and Applications, vol. 1, pp. 113�121, 1996.

[LKAA96] S. Long, R. Kooper, G. D. Abowd, and C. G. Atkeson, "Rapid
 Prototyping of Mobile Context-Aware Applications: The
 Cyberguide Case Study," Proceedings of the 2nd annual
 international conference on Mobile computing and networking
 (MOBICOM '96), pp. 96�107, Rye, New York, USA, 1996.

 222

[LMF07] R. Lewis, R. Merrick, and M. Froumentin, �Content Selection for
 Device Independence (DISelect) 1.0,� W3C Candidate
 Recommendation, 2007.

[LNR96] M. M. Larrondo-Petrie, K. R. Nair, and G. K. Raghavan,
 "A Domain Analysis of Web Browser Architectures, Languages
 and Features," presented at IEEE Southcon�96 Conference,
 Orlando, Florida, USA, 1996.

[LuL02] W. Y. Lum and F. C. M. Lau, "A Context-Aware Decision
 Engine for Content Adaptation," IEEE Pervasive Computing,
 vol. 1, pp. 41�49, 2002.

[Luo98] Luotonen, Web proxy servers: Prentice�Hall, Inc. Upper Saddle
 River, NJ, USA, 1998.

[Mae87] P. Maes, "Concepts and Experiments in Computational
 Reflection," Proceedings of Object-Oriented Programming
 Systems, Languages, and Applications (OOPSLA'87), pp. 147�
 155, Orlando, Florida, USA, 1987.

[MaZ04] M. Mamei and F. Zambonelli, "Programming pervasive and
 mobile computing applications with the TOTA middleware,"
 Proceedings of the Second IEEE Annual Conference on Pervasive
 Computing and Communications (PerCom 2004), pp. 263�273,
 Orlando, Florida, USA, 2004.

[McA95] J. McAffer, "Meta-level Programming with Coda," Proceedings
 of European Conference on Object-Oriented Programming
 (ECOOP �95), pp. 190�214, Åarhus, Denmark, 1995.

[MCR04] R. Maia, R. Cerqueira, and N. Rodriguez, "An Infrastructure for
 Development of Dynamically Adaptable Distributed
 Components," Proceedings of On the Move to Meaningful
 Internet Systems 2004: CoopIS, DOA, and ODBASE (OTM 2004),
 pp. 1285�1302, Agia Napa, Cyprus, 2004.

 223

[MDE+95] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, "Specifying
 Distributed Software Architectures," Proceedings of the 5th
 European Software Engineering Conference, pp. 137�153, Sitges,
 Spain, 1995.

[Men00] D. W. Mennie, "An Architecture to Support Dynamic
 Composition of Service Components and its Applicability to
 Internet Security," in Department of Systems and Computer
 Engineering. Ottawa: Carleton University, 248 p., 2000.

[MLG01] G. Martin, L. Lavagno, and J. Louis-Guerin, "Embedded UML:
 a merger of real-time UML and co-design," Proceedings of
 International Workshop on Hardware/Software Codesign
 (CODES 2001), Copenhagen, Denmark, 2001.

[Moz98] M.C. Mozer, �The neural network house: An environment that
adapts to its inhabitants,� Proceedings of the American
Association for Artificial Intelligence Spring Symposium on
Intelligent Environments, pp. 110�114, Menlo Park, California,
USA, 1998.

[Moz01] "XPCOM project," Mozilla Organization, 2001.

[MPR01] A. L. Murphy, G. P. Picco, and G. C. Roman, "Lime:
 A Middleware for Physical and Logical Mobility," Proceedings of
 the 21st International Conference on Distributed Computing
 Systems (ICDCS-21), pp. 524�533, Phoenix (Mesa), Arizona,
 USA, 2001.

[MSKC04] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng,
 "Composing Adaptive Software," IEEE Computer, July, pp. 56�
64, 2004.

[MSKC04b] P. K. McKinley, S. M. Sadjadi, E. P. Kasien, and H. C. C. Betty,
 "A Taxonomy of Compositional Adaptation," Michigan State
 University, Michigan, USA, 2004.

 224

[MSL99] R. Mohan, J. R. Smith, and C.-S. Li, "Adapting Multimedia
 Internet Content for Universal Access," IEEE Transactions on
 Multimedia, vol. 1, pp. 104�114, 1999.

[MUCR02] A. L. de Moura, C. Ururahy, R. Cerqueira, and N. Rodriguez,
 "Dynamic Support for Distributed Auto-Adaptive Applications,"
 Proceedings of Workshop on Aspect Oriented Programming for
 Distributed Computing Systems, pp. 451�456, Vienna, Austria,
 2002.

[MuG05] A. Mukhija and M. Glinz, "The CASA Approach to Autonomic
 Applications," Proceedings of the 5th IEEE Workshop on
 Applications and Services in Wireless Networks (ASWN 2005),
 pp. 173�182, Paris, France, 2005.

[NFG06] M. Nussbaumer, P. Freudenstein, and M. Gaedke, "Web
 Application Development Employing Domain-Specific
 Languages," Proceedings of IASTED International Multi-
 Conference Software Engineering, Innsbruck, Austria, 2006.

[Nie95] O. Nierstrasz, "Research Topics in Software Composition,"
 presented at Langages et Modéles á Objets, 1995.

[NiM94] O. Nierstrasz and T. D. Meijler, "Requirements for a Composition
 Language," Proceedings of the ECOOP 94 workshop on Models
 and Languages for Coordination of Parallelism and Distribution,
 pp. 147�161, Bologna, Italy, 1994.

[NiP91] O. Nierstrasz and M. Papathomas, "Towards a type theory for
 active objects," Proceedings of the workshop on Object-based
 concurrent programming, pp. 89�93, Ottawa, Canada, 1991.

[NiT95] O. M. Nierstrasz and D. C. Tsichritzis, Object-oriented software
 composition: Prentice Hall, 1995.

[Nob00] B. Noble, "System Support for Mobile, Adaptive Applications,"
 IEEE Personal Communications, vol. 7, pp. 44�49, 2000.

 225

[NoS95] B. D. Noble and M. Satyanarayanan, "A Research Status Report
 on Adaptation for Mobile Data Access," ACM SIGMOD Record,
vol. 24, 1995.

[NoS99] B. D. Noble and M. Satyanarayanan, "Experience with adaptive
 mobile applications in Odyssey," Mobile Networks and
 Applications, vol. 4, pp. 245�254, 1999.

[NSS01] K. Nagao, Y. Shirai, and K. Squire, "Semantic annotation and
 transcoding: making Web content more accessible," IEEE
 Multimedia, vol. 8, pp. 69�81, 2001.

[NTMS91] O. Nierstrasz, D. Tsichritzis, V. D. Mey, and M. Stadelman,
 "Objects + Scripts = Applications," presented at Esprit 1991
 Conference, Dordrecht, NL, 1991.

[OGT+99] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimhigner, G.
 Johnson, N. Medvidovic, A. Quilici, D. S. Rosenblum, and A. L.
 Wolf, "An architecture-based approach to self-adaptive software,"
 Intelligent Systems and Their Applications, vol. 14, pp. 54�62,
 1999.

[OMG96] OMG, "The Common Object Request Broker: Architecture and
 Specification," Object Management Group, July, 1996.

[OMG02] OMG, "CORBA Components Version 3.0," Object Management
 Group, June, 2002.

[OMG03] OMG, "Deployment and Configuration of Component-based
 Distributed Applications Specification," Draft Adopted Object
 Management Group Specification, 2003.

[OMG06] OMG, "CORBA Component Model Specification Version 4.0,"
 2006.

[Ort03] E. Ortiz, "The MIDP 2.0 Push Registry," January, 2003.

 226

[OSGi03] OSGi, "Open Services Gateway Initiative, OSGi services
 platform specification," Release 3, http://www.osgi.org, March
2003.

[Ous98] J. K. Ousterhout, "Scripting: Higher-Level Programming for the
 21st Century," IEEE Computer, vol. March, pp. 23�30, 1998.

[Pah02] C. Pahl, "A Formal Composition and Interaction Model for a Web
 Component Platform," Proceedings of ICALP'2002 Workshop on
 Formal Methods and Component Interaction, Malaga, Spain,
 2002.

[PaL03] M. Palviainen and T. Laakko, "mPlaton � Browsing and
 development platform of mobile applications," VTT Publications
 515, 2003.

[Pal05] M. Palviainen, "A compositional technique for adapting mobile
 applications," Proceedings of the IADIS International Conference
 WWW/Internet 2005, pp. 70�75, Lisbon, Portugal, 2005.

[PaL05b] M. Palviainen and T. Laakko, "Using modular and generative
 approaches for implementing adaptable mobile browser
 applications," Proceedings of the IADIS International Conference
 WWW/Internet 2005, pp. 101�109, Lisbon, Portugal, 2005.

[PaL05c] M. Palviainen and T. Laakko, �The construction and integration
 of XML editor into mobile browser,� Proceedings of the
 IS&T/SPIE Electronic Imaging 2005, vol. 5684, pp. 231�241,
 San Jose, California, USA, 2005.

[PaL06] M. Palviainen and T. Laakko, "MIMEFrame � A Framework for
 statically and dynamically composed adaptable mobile browsers,"
 Proceedings of the 2nd International Conference on Testbeds and
 Research Infrastructures for the Development of Networks and
 Communities (TridentCom), Barcelona, Spain, 2006.

http://www.osgi.org

 227

[Pal07] M. Palviainen, "Task-based composition of the context-sensitive
 UIs of physical environments," Proceedings of the Third
 International Conference on Autonomic and Autonomous
 Systems (ICAS 2007), Athens, Greece, 2007.

[Pas97] J. Pascoe, "The Stick-e Note Architecture: Extending the Interface
 Beyond the User," Proceedings of International Conference on
 Intelligent User Interfaces (IUI '97), Orlando, Florida, USA,
1997.

[Pas98] J. Pascoe, "Adding Generic Contextual Capabilities to Wearable
 Computers," Proceedings of the Second International Symposium
 on Wearable Computers, pp. 92�99, Pittsburgh, USA, 1998.

[Pau05] L. D. Paulson, "Building rich web applications with Ajax,"
 Computer, vol. 38, pp. 14�17, 2005.

[PBT+04] J. Petzold, F. Bagci, W. Trumler, T. Ungerer, and L. Vintan,
�Global State Context Prediction Techniques Applied to a Smart
Office Building,� Proceedings of the Communication Networks
and Distributed Systems Modeling and Simulation Conference,
San Diego, California, USA, 2004.

[PiP99] J. Pitkow and P. Pirolli, "Mining longest repeating subsequences
 to predict WWW surfing," Proceedings of the 1999 USENIX
 Annual Technical Conference, Monterey, California, USA, 1999.

[PKP03] A. Pashtan, S. Kollipara, and M. Pearce, "Adapting Content for
 Wireless Web Services," IEEE Internet Computing, vol. 7,
pp. 79�85, 2003.

[PLF+01] S. R. Ponnekanti, B. Lee, A. Fox, P. Hanrahan, and T. Winograd,
 "ICrafter: A Service Framework for Ubiquitous Computing
 Environments," Proceedings of International Conference on
 Ubiquitous Computing (UBICOMP 2001), pp. 56�75, Atlanta,
 Georgia, USA, 2001.

 228

[PSGS04] V. Poladian, J. P. Sousa, D. Garlan, and M. Shaw, �Dynamic
 configuration of resource-aware services,� Proceedings of the
 26th International Conference on Software Engineering (ICSE
 2004), pp. 604�613, Scotland, UK, 2004.

[Pur94] J. M. Purtilo, "The POLYLITH Software Bus," ACM
 Transactions on Programming Languages and Systems, vol. 16,
 pp. 151�174, 1994.

[Rab89] L.R. Rabiner, �A tutorial on hidden Markov models and selected
applications in speech recognition,� Proceedings of the IEEE, vol.
77, pp. 257�286, 1989.

[RaM04] A. Ranganathan and S. McFaddin, "Using workflows to
 coordinate Web services in pervasive computing environments,"
 Proceedings of IEEE International Conference on Web Services
 pp. 288�295, San Diego, California, USA, 2004.

[RBH04] P. Rigole, Y. Berbers, and T. Holvoet, "Component-Based
 Adaptive Tasks Guided by Resource Contracts," Proceedings of
 ECOOP Workshop on component-oriented approaches to
context-aware systems in conjunction with the 18th European
Conference on Object-Oriented Programming, Oslo, Norway,
2004.

[Rev76] D. Revuz, �Markov chains,� Bulletin of the American
Mathematical Society, vol. 82, pp. 700�702, 1976.

[RGL98] P.-G. Raverdy, H. L. V. Gong, and R. Lea, "DART: A Reflective
 Middleware for Adaptive Applications," University of Tsukuba,
 October, 1998.

[RHBK04] M. Rahnnan, B. Hu, J. Buford, and A. Kaplan, "Mobile
 multimedia instant messaging and presence services: the
 architecture and protocols," Proceedings of IEEE International
 Symposium on Consumer Electronics, pp. 208�213, Reading,
 United Kingdom, 2004.

 229

[RHC+02] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. H.
 Campbell, and K. Nahrstedt, "A Middleware Infrastructure for
 Active Spaces," IEEE Pervasive Computing, vol. October�
 December, pp. 74�83, 2002.

[Rog97] D. Rogerson, Inside COM: Microsoft�s Component Object
 Model: Microsoft Press, 1997.

[RoR05] P. Rossi and C. Ryan, "Empirical Evaluation of Dynamic Local
 Adaptation for Distributed Mobile Applications," Proceedings of
 the International Symposium on Distributed Objects and
 Applications (DOA 2005), pp. 537�546, Larnaca, Cyprus, 2005.

[Ros96] G. van Rossum, "Python Reference Manual," Corporation for
 National Research Initiatives (CNRI), October, 1996.

[Sam97] J. Sametinger, Software Engineering with Reusable Components:
 Springer, 1997.

[SaM03] S. M. Sadjadi and P. K. McKinley, "A Survey of Adaptive
 Middleware," East Lansing, Michigan, USA, December, 2003.

[Sat96] M. Satyanarayanan, "Accessing information on demand at any
 location � Mobile Information Access," IEEE Personal
 Communications, vol. 3, pp. 26�33, 1996.

[SAW94] B. N. Schilit, N. I. Adams, and R. Want, "Context-Aware
 Computing Applications," Proceedings of the Workshop on
 Mobile Computing Systems and Applications, pp. 85�90, Santa
 Cruz, California, USA, 1994.

[SBG99] A. Schmidt, M. Beigl, and H. W. Gellersen, "There is more to
 context than location," Computers & Graphics, vol. 23, pp. 893�901,
 1999.

[SCH+04] Y. Saida, H. Chishima, S. Hieda, N. Sato, and Y. Nakamoto, "An
 Extensible Browser Architecture for Mobile Terminals,"

 230

 Proceedings of the 24th International Conference on Distributed
 Computing Systems Workshops (ICDCSW�04), pp. 394�399,
 Tokyo, Japan, 2004.

[Sch99] J.-G. Schneider, "Components, Scripts, and Glue: A conceptual
 framework for software composition," 254 p., Bern University,
1999.

[Sch02] D. C. Schmidt, "Middleware for real-time and embedded
 systems," Communications of the ACM, vol. 45, pp. 43�48, 2002.

[Sco00] S. Scott, "Structuring a .NET Application for Easy Deployment,"
 MSDN Library, 2000.

[ScT94] B. N. Schilit and M. M. Theimer, "Disseminating Active Map
 Information to Mobile Hosts," IEEE Network, vol.
 September/October, pp. 22�32, 1994.

[SeA00] M.-T. Segarra and F. André, "A Framework for Dynamic
 Adaptation in Wireless Environments," Proceedings of 33th
 International IEEE Conference on Technology of Object-Oriented
 Languages and Systems (TOOLS-33), pp. 336�347, Mont Saint-
 Michel, France, 2000.

[Sea02] R. Searls, "Java 2 Enterprise Edition Deployment API 1.1," Sun
 Microsystems, 2002.

[SEK03] F. J. S. Silva, M. Endler, and F. Kon, "Developing Adaptive
 Distributed Applications: A Framework Overview and
 Experimental Results," Proceedings of the International
 Symposium on Distributed Objects and Applications (DOA 2003),
 Catania, Sicily, Italy, 2003.

[Ses97] R. Sessions, COM and DCOM: Microsoft's vision for distributed
 objects: John Wiley & Sons, Inc. New York, NY, USA, 1997.

 231

[ShG96] M. Shaw and D. Garlan, Software Architecture: Perspectives on
 an Emerging Discipline: Prentice�Hall, 1996.

[SKK098] T. Souya, M. Kobayashi, S. Kawase, and K. Ohshima, "Joint class
 experiments based on realtime Web-browser synchronization,"
 presented at 3rd Asia Pacific Computer Human Interaction,
Shonan Village Center, Japan, 1998.

[SKSK98] H. Sakagami, T. Kamba, A. Sugiura, and Y. Koseki, "Effective
 Personalization of Push-Type Systems � Visualizing Information
 Freshness," WWW7 / Computer Networks, vol. 30, pp. 53�63,
 1998.

[Smi82] B. Smith, "Procedural Reflection in Programming Languages," in
 Laboratory of Computer Science: MIT, 1982.

[Smi06] K. Smith, "Simplifying Ajax-Style Web Development," IEEE
 Computer, vol. 39, pp. 98�101, 2006.

[SMCS04] S. M. Sadjadi, P. K. McKinley, B. H. C. Cheng, and R. E. K.
 Stirewalt, "TRAP/J: Transparent generation of adaptable Java
 programs," Proceedings of the International Symposium on
 Distributed Objects and Applications (DOA�04), Larnaca,
 Cyprus, 2004.

[SNC00] A. Serra, N. Navarro, and T. Cortes, "DITools: Application-level
 Support for Dynamic Extension and Flexible Composition,"
 Proceedings of the USENIX Annual Technical Conference,
 pp. 225�238, San Diego, California, USA, 2000.

[SPW02] G. Succi, W.Pedrycz, and R. Wong, "Dynamic Composition of
 Components using Webcods," International Journal of
 Computers and Applications, vol. 24, 2002.

[Sun02] "Enterprise JavaBeans Specification 2.0," Sun Microsystems,
 2002.

 232

[SYLZ00] Z. Su, Q. Yang, Y. Lu, and H. Zhang, "What next: A prediction
 system for web requests using n-gram sequence models,"
 Proceedings of the First International Conference on Web
 Information System and Engineering Conference, pp. 200�207,
 Hong Kong, 2000.

 [VKK01] G. Valetto, G. Kaiser, and G. S. Kc, "A Mobile Agent Approach
 to Process-based Dynamic Adaptation of Complex Software
 Systems," Proceedings of 8th European Workshop on Software
 Process Technology, Vienna, Austria, 2001.

[VTA04] N. Venkatasubramanian, C. Talcott, and G. A. Agha, "A Formal
 Model for Reasoning about Adaptive QoS-Enabled Middleware,"
 ACM Transactions on Software Engineering and Methodology,
 vol. 13, pp. 86�147, 2004.

[VZL+98] R. Vanegas, J. A. Zinky, J. P. Loyall, D. Karr, R. E. Schantz, and
 D. E. Bakken, "QuO�s Runtime Support for Quality of Service in
 Distributed Objects," Proceedings of International Conference on
 Distributed Systems Platforms and Open Distributed Processing,
 The Lake District, England, 1998.

[WaG00] Z. Wang and D. Garlan, "Task-Driven Computing," Carnegie
 Mellon University CMU-CS-00-154, 2000.

[WAPP01] "WAP Push Architectural Overview," WAP Forum, 2001.

[Wat94] T. Watson, "Application Design for Wireless Computing,"
 Proceedings of Workshop on Mobile Computing Systems and
 Applications, pp. 91�94, Santa Cruz, California, USA, 1994.

[WeB98] G. Welling and B. R. Badrinath, "An architecture for exporting
 environment awareness to mobile computing applications," IEEE
 Transactions on Software Engineering, vol. 24, pp. 391�400, 1998.

[Wei91] M. Weiser, "The computer for the 21st century," Scientific
 American, pp. 94�104, 1991.

 233

[Wei93] M. Weiser, "Some computer science issues in ubiquitous
 computing," Communications of the ACM, vol. 36, pp. 75�84,
 1993.

[WeS00] I. Welch and R. J. Stroud, "Kava � A Reflective Java Based on
 Bytecode Rewriting," Reflection and Software Engineering, vol.
1826, pp. 157�169, 2000.

[WHR+07] K. Waters, R. A. Hosn, D. Raggett, S. Sathish, M. Womer, M.
 Froumentin, and R. Lewis, �Delivery Context: Client Interfaces
 (DCCI) 1.0 Accessing Static and Dynamic Delivery Context
 Properties,� W3C Working Draft, 2007.

[Win05] D. Winer, "RSS 2.0 Specification,"
 http://blogs.law.harvard.edu/tech/rss, 2005.

[XPJ03] X. Xiaoqin, X. Peng, L. Juanzi, and W. Kehong, "A Component
 Model for Designing Dynamic GUI," Proceedings of the Fourth
 International Conference on Parallel and Distributed Computing,
 Applications and Technologies (PDCAT'03), pp. 136�140,
 Chengdu, China, 2003.

[YeS97] D. M. Yellin and R. E. Strom, "Protocol Specifications and
 Component Adaptors," ACM Transactions on Programming
 Languages, vol. 19, pp. 292�333, 1997.

[YZL01] Y. Qiang, Z. Haining Henry, and L. Tianyi, "Mining web logs for
 prediction models in WWW caching and prefetching,"
 Proceedings of the 7th ACM SIGKDD international conference
 on Knowledge discovery and data mining, San Francisco,
California, USA, 2001.

[ZhB04] T. Zhang and B. Brügge, "Empowering the User to Build Smart
 Home Applications," Proceedings of 2nd International
 Conference on Smart homes and health Telematic (ICOST2004),
 Singapore, 2004.

http://blogs.law.harvard.edu/tech/rss

 Series title, number and
report code of publication

VTT Publications 658
VTT-PUBS-658

Author(s)
Palviainen, Marko
Title

Technique for dynamic composition of content and
context-sensitive mobile applications
Adaptive mobile browsers as a case study
Abstract
The mobile environment brings new challenges for applications. Mobile usage is spontaneous and applications should be
fast to install, start, and use in mobile devices and wireless networks. The wireless network connections offer typically less
bandwidth than fixed line connections and may cause costs for the user. In addition, the input and output capabilities and
memory and processing power resources of mobile devices are typically limited in comparison to desktop computers. This
all sets requirements for adaptation methods that could provide more usable and efficient applications for specific users,
contexts, and services available on the Web.

Implementation of adaptive applications requires methods for context-sensing and adaptation. The context can change
rapidly when a user is moving in a physical environment. Hence, methods that can fast adapt an application for a rapidly
changing context are needed. An adaptive application should learn about user behaviour, sense the activity of the user, and
use the idle time of the application for speculative adaptation that prepares application parts for potential future contexts in
the background. In addition, errors may arise while an adaptive application is being composed for a new context. For
example, if a mobile device is disconnected, it is not possible to fetch contents from the Web.

In this dissertation it is argued that the task-based composition technique helps developers to construct adaptive
applications for mobile devices and makes the dynamic composition of content and context-sensitive applications more
fluent. The task-based composition technique is based on the model of the World Wide Web Consortium (W3C) that
provides a requestor-adaptor structure for content adaptation. Like the requestor-adaptor element of the W3C model, a task
is an adaptation element that can provide additional context information, request other tasks, adapt their responses, and
deliver new or refreshed responses for the requestors. Tasks can prepare content and context-sensitive application instances
for current and predicted contexts in many phases and finally compose an application of the prepared instances. The task-
based composition technique extends the W3C model with task factories that construct tasks for adaptation requests and
specific contexts. Tasks are defined with an XML-based language that enables developers to describe tasks and context-
sensitive adaptation actions and their settings. Both context-sensitive tasks and application instances can be cached, which
can speed up the adaptation of applications. This dissertation focuses on adaptive browsers that are constructed for mobile
devices and discusses how the task-based composition technique can support client-side dynamic composition of content
and context-sensitive applications and improve performance when UIs are adapted for rapidly changing contexts and for
services available on the Web.

ISBN
978-951-38-7051-5 (soft back ed.)
978-951-38-7052-2 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number

VTT Publications
1235-0621 (soft back ed.)
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

17670

Date Language Pages
October 2007 English 233 p.

Name of project Commissioned by
ALLLAS, WAPproxy, WAP Multimedia,
AUTOSPACE, COSI

VTT, Finnish Funding Agency for Technology and
Innovation Tekes, Ulla Tuominen Foundation

Keywords Publisher
dynamic composition, task-based composition,
mobile application development, adaptive
application, adaptive browser, content and context-
sensitive application

VTT Technical Research Centre of Finland
P.O.Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4520
http://www.vtt.fi

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi

V
TT PU

B
LICA

TIO
N

S 658
Technique for dynam

ic com
position of content and context-sensitive m

obile...
M

arko Palviainen
ESPOO 2007ESPOO 2007ESPOO 2007ESPOO 2007ESPOO 2007 VTT PUBLICATIONS 658

Marko Palviainen

Technique for dynamic composition of
content and context-sensitive mobile
applications

Adaptive mobile browsers
as a case study

This dissertation discusses a task-based composition technique that helps
developers to construct adaptive applications for mobile devices and
makes the dynamic composition of content and context-sensitive
applications more fluent. The task-based composition technique is based
on the content adaptation model of the World Wide Web Consortium
(W3C). Like the requestor-adaptor element of the W3C model, a task is an
adaptation element that can provide additional context information,
request other tasks, adapt their responses, and deliver new or refreshed
responses for the requestors. Tasks can prepare content and context-
sensitive application instances for current and predicted contexts in many
phases and finally compose an application of the prepared instances. This
dissertation focuses on adaptive browsers that are constructed for mobile
devices and discusses how the task-based composition technique can
support client-side dynamic composition of content and context-sensitive
applications and improve performance when UIs are adapted for rapidly
changing contexts and services available on the Web.

12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012
12345678901234567890123456789012123456789012345678901234567890121234567890123456789012

ISBN 978-951-38-7051-5 (soft back ed.) ISBN 978-951-38-7052-2 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1235-0621 (soft back ed.) ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Julkaisu on saatavana Publikationen distribueras av This publication is available from

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI-02044 VTT, Finland
Puh. 020 722 4520 Tel. 020 722 4520 Phone internat. + 358 20 722 4520

http://www.vtt.fi http://www.vtt.fi http://www.vtt.fi

http://www.vtt.fi
http://www.vtt.fi
http://www.vtt.fi
http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	Abstract
	Preface
	Contents
	List of abbreviations
	1. Introduction
	1.1 Background
	1.1.1 Mobile environment and adaptive mobile applications
	1.1.2 Adaptive user agents and browsers
	1.1.3 Dynamic component-based composition

	1.2 Problem statement
	1.2.1 Supporting active and passive context-awareness in
	1.2.2 Context-sensitive handling of errors appeared in dynamic
	1.2.3 Supporting speculative adaptation in dynamic composition
	1.2.4 Dynamic client-side composition of adaptive mobile
	1.2.5 General quality goals

	1.3 Approach: Task-based composition of adaptive
	1.4 Contributions

	2. Adaptation of context-aware applications
	2.1 Context and context-aware computing
	2.2 Classifications for adaptation
	2.2.1 Static and dynamic adaptation
	2.2.2 Laissez-faire, application-aware, and application-transparent
	2.2.3 Reactive and proactive adaptation
	2.2.4 Speculative adaptation

	2.3 Key techniques for dynamic adaptation
	2.3.1 Separation of concerns
	2.3.2 Compositional reflection
	2.3.3 Component-based adaptation
	2.3.4 Middleware-centric adaptation

	3. Dynamic component-based composition
	3.1 Introduction
	3.2 Techniques for solving computational mismatches
	3.2.1 Glue-code-based solutions
	3.2.2 Architectural solutions

	3.3 Architectures and frameworks for component-based
	3.3.1 Lipto
	3.3.2 Multitel
	3.3.3 LEAD++
	3.3.4 Fractal
	3.3.5 One.world

	3.4 High-level programming techniques supporting
	3.4.1 MMLite
	3.4.2 THINK
	3.4.3 OpenCOM
	3.4.4 BALBOA
	3.4.5 LuaCorba
	3.4.6 CASA
	3.4.7 Component Configurators
	3.4.8 Plasma

	3.5 Solutions supporting dynamic adaptation of
	3.5.1 Sparkle architecture
	3.5.2 WebCODS
	3.5.3 Hadas
	3.5.4 AMPROS
	3.5.5 Kinesthetics eXtreme
	3.5.6 SOCAM
	3.5.7 Other solutions for component-based deployment

	3.6 Client-side solutions for adaptive content and
	3.7 Task-based composition technique for adaptive

	4. Solution: A task-based composition
	4.1 Introduction
	4.2 Task-based adaptation using factories
	4.2.1 Problem
	4.2.2 Solution
	4.2.3 Summary of the solution
	4.2.4 Example

	4.3 Selecting the most suitable context-sensitive
	4.3.1 Problem
	4.3.2 Solution
	4.3.3 Summary of the solution
	4.3.4 Example

	4.4 An environment for fine-grained and reusable
	4.4.1 Problem
	4.4.2 Solution
	4.4.3 Summary of the solution
	4.4.4 Example

	4.5 Caching of context-sensitive tasks and application
	4.5.1 Problem
	4.5.2 Solution
	4.5.3 Summary of the solution
	4.5.4 Example

	4.6 A language for specifying task-based adaptive
	4.6.1 Problem
	4.6.2 Solution
	4.6.3 Summary of the solution
	4.6.4 Example

	4.7 Task-based speculative adaptation
	4.7.1 Problem
	4.7.2 Solution
	4.7.3 Summary of the solution
	4.7.4 Example

	4.8 The utilisation of the task-based composition
	4.9 Usage scenarios for the task-based composition
	4.9.1 Task-based dynamic composition of content and contextsensitive
	4.9.2 Task-based dynamic composition of context-sensitive user
	4.9.3 Task-based speculative adaptation

	5. Implementation issues
	5.1 Execution of adaptation tasks
	5.2 A generic structure for different data types

	6. TaskCAD: An implementation for the
	6.1 An XML-based language for composition schemas
	6.2 Task factory and composition schemas
	6.3 Execution structures for actions
	6.4 An application environment and components for a
	6.5 An XML editor for task-based composition schemas

	7. Case studies Ł Utilizing the task-based
	7.1 Introduction
	7.2 A framework for adaptive browsers
	7.3 Implementing a content and context-sensitive
	7.3.1 Application
	7.3.2 Experiment setup
	7.3.3 Performance benefits
	7.3.4 Implementation benefits
	7.3.5 Summary

	7.4 Task-based composition of UIs of physical
	7.4.1 Application
	7.4.2 Experiment setup
	7.4.3 Performance benefits
	7.4.4 Implementation benefits
	7.4.5 Summary

	7.5 Using speculative adaptation tasks to shorten the
	7.5.1 Application
	7.5.2 Experiment setup
	7.5.3 Performance benefits
	7.5.4 Implementation benefits
	7.5.5 Summary

	8. Comparisons to related work
	8.1 Introduction
	8.2 Architectures, frameworks, and structures for
	8.3 High-level programming techniques for contextsensitive
	8.4 Client-side solutions for adaptive content and
	8.5 Summary of main contributions with respect to

	9. Conclusion
	9.1 Task-based composition technique as a platform of
	9.2 Summary of contributions
	9.3 Future work
	9.4 Concluding remarks

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

