
V
TT PU

B
LIC

A
TIO

N
S 659 System

-level design and configuration m
anagem

ent for run-tim
e reconfigurable devices

ESPOO 2007ESPOO 2007ESPOO 2007ESPOO 2007ESPOO 2007 VTT PUBLICATIONS 659

Yang Qu

System-level design and configuration
management for run-time
reconfigurable devices

Reconfigurability is becoming an important issue in System-on-Chip (SoC)
design because of the increasing demands of silicon reuse, product
upgrade after shipment and bug-fixing ability. Using dynamically
reconfigurable hardware (DRHW), higher performance can be achieved
than in a software implementation and more flexibility than in a fixed-
hardware implementation. However, run-time reconfiguration results in
latency and power consumption, which can largely degrade the system
performance. This brings challenges to using DRHW in SoC design. In
addition, new design methods and tools are needed.

In this thesis, system-level design supports and tools for DRHW are
presented. The main idea is to help designers in the early design phase to
evaluate the benefit of moving some components from fixed hardware
implementation to DRHW without going into implementation details. To
efficiently utilize DRHW, different static and run-time task scheduling
approaches are developed. In addition, two novel techniques to reduce the
negative impact of run-time reconfiguration have been proposed and
evaluated.

ISBN 978-951-38-7053-9 (soft back ed.) ISBN 978-951-38-7054-6 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1235-0621 (soft back ed.) ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Julkaisu on saatavana Publikationen distribueras av This publication is available from

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI-02044 VTT, Finland
Puh. 020 722 4520 Tel. 020 722 4520 Phone internat. + 358 20 722 4520

http://www.vtt.fi http://www.vtt.fi http://www.vtt.fi

Image Sharpening

DCT

 IIR

FFT

Encryption

Run-time Reconfigurable
Hardware

FIR

VTT PUBLICATIONS 659

System-level design and
configuration management for

run-time reconfigurable devices

Yang Qu

Academic dissertation to be presented with the assent of the Department
of Information Technology, Tampere University of Technology, for public

discussion on November 30th, 2007 at 12 noon in room TB222
of Tietotalo building, Korkeakoulunkatu 1, Tampere.

ISBN 978-951-38-7053-9 (soft back ed.)
ISSN 1235-0621 (soft back ed.)

ISBN 978-951-38-7054-6 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT 2007

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 3, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvägen 3, PB 1000, 02044 VTT
tel. växel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 3, P.O. Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax + 358 20 722 4374

VTT, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde 020 722 111, faksi 020 722 2320

VTT, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel 020 722 111, fax 020 722 2320

VTT Technical Research Centre of Finland, Kaitoväylä 1, P.O. Box 1100, FI-90571 OULU, Finland
phone internat. +358 20 722 111, fax +358 20 722 2320

Technical editing Leena Ukskoski

Edita Prima Oy, Helsinki 2007

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

3

Qu, Yang. System-level design and configuration management for run-time reconfigurable devices.
Espoo 2007. VTT Publications 659. 133 p.

Keywords dynamically reconfigurable hardware, run-time reconfiguration, system-level
design, task scheduling, configuration locking, configuration parallelism

Abstract
Dynamically reconfigurable hardware (DRHW) not only has high silicon
reusability, but it can also deliver high performance for computation-intensive
tasks. Advanced features such as run-time reconfiguration (RTR) allow multiple
tasks to be mapped onto the same device either simultaneously or multiplexed in
time domain. This new type of computing element also brings new challenges in
the design process. Design supports at the system level are needed. In addition,
the configuration latency and the configuration energy involved in each
reconfiguration process can largely degrade the system performance.
Approaches to efficiently manage the configuration processes are needed in
order to effectively reduce its negative impacts. In this thesis, system-level
supports for design of DRHW and various configuration management
approaches for reducing the impact of configuration overhead are presented.

Our system-level design supports are based on the SystemC environment. An
estimation technique for system partitioning and a DRHW modeling technique are
developed. The main idea is to help designers in the early design phase to evaluate
the benefit of moving some components from fixed hardware implementation to
DRHW. The supports have been applied in a WCDMA case study. In order to
efficiently apply the multi-tasking feature of DRHW, we have developed three static
task scheduling techniques and a run-time scheduling technique. The static schedulers
include a list-based heuristic approach, an optimal approach based on constraint
programming and a guided random search approach using a genetic algorithm.
They are evaluated using both random tasks and real applications. The run-time
scheduling uses a novel configuration locking technique. The idea is to dynamically
track the task status and lock the most frequently used tasks on DRHW in order to
reduce the number of reconfigurations. In addition, we present two novel techniques
to reduce the configuration overhead. The first is configuration parallelism. Its idea is
to enable tasks to be loaded in parallel in order to better exploit their parallelism.
The second is dynamic voltage scaling. The idea is to apply low supply voltage
in reconfiguration process when possible in order to reduce the configuration energy.

4

Preface

The research was carried out at the Technical Research Centre of Finland (VTT)
from 2004 to 2007. Most of the work presented in this thesis was conducted in
the ADRIATIC (Advanced methodology for designing reconfigurable SoC and
application-targeted IP-entities in wireless communications) project, funded by
the European Commissions�s �IST� initiative, and the MARTES (Model-based
approach to real-time embedded systems development) project, funded by Tekes.
I would like to thank the funding organizations and all the people who have been
involved in these projects. Especially, I have to thank Mr. Kari Tiensyrjä for
setting up and managing the projects so that I could have the opportunity to
complete my thesis work.

I owe thanks to lots of people for their help during this work. I would like to
thank Dr. Juha-Pekka Soininen for leading me into the research field and guiding
me in the various research stages. His constant inspiration has led to the
completion of this thesis. I wish to express my sincere gratitude to my advisor,
Professor Jari Nurmi, for his continuous support and his total confidence in my
work. I would also like to express my appreciation to Dr. Juan José Noguera
Serra for his comments and help with my research. I wish to thank the reviewers
of the thesis, Professor Johan Lilius and Professor Peeter Ellervee, for their
insightful comments.

I would like to thank my VTT colleagues, Mr. Jari Kreku, Mr. Tapio Rautio, Mr.
Jussi Roivainen, Mr. HuaGeng Chi, Mrs. Yan Zhang and Dr. Martti Forsell, for
all the lively discussions throughout this work. I wish to thank Mr. Antti
Pelkonen, Mr. Konstantinos Masselos and Mr. Marko Pettissalo for their help in
the ADRIATIC project. I also extend my gratitude to my colleagues in the
Tampere University of Technology, Mr. Xin Wang, Mr. Bin Hong and Dr.
Tapani Ahonen, for their help. VTT has provided an excellent working
environment and research facilities. I would like to thank the management team,
the publishing team and all the VTT people for helping me to complete this
thesis. I want to thank Nokia Foundation and the Jenny ja Antti Wihurin Rahasto
for their motivation and financial support.

5

I owe lots of thanks to my friends ShuFeng Zheng and HongLei Miao for their
constant encouragement and all the unforgettable moments that we share
together. I wish to thank Mikko Alatossava, Attaphongse Taparugssanagorn and
the rest of my football team for helping me to refresh myself.

More importantly, I want to thank my wife, Jing Chai, for her sincere love,
encouragement and understanding. I would not be able to complete my doctoral
studies without her. I wish to thank my mother and my parents-in-law for their
ever-present care and faith in me. I want to thank my brother, my sister-in-law,
my nephew and all my other family members for supporting me when my father
passed away. I owe my father too much, and this thesis is in memory of him,
with my deepest sorrow.

Yang Qu

October 6, 2007

6

Contents

Abstract ... 3

Preface .. 4

List of symbols.. 8

1. Introduction... 13
1.1 Run-time reconfigurable systems .. 15

1.1.1 Benefits of using run-time reconfigurable systems................. 15
1.1.2 Challenges of using run-time reconfigurable systems 16

1.2 Key contributions of the work ... 18
1.2.1 System-level design flow and support tools............................ 18
1.2.2 Scheduling techniques to manage the configuration process .. 19
1.2.3 Techniques to reduce the configuration overhead................... 19

1.3 Introduction to the most important papers... 20
1.4 Organization of the thesis .. 21

2. Background and related work ... 22
2.1 Run-time reconfigurable computing.. 22

2.1.1 Configuration models.. 22
2.1.2 Coupling techniques.. 24
2.1.3 Example systems... 25

2.2 System-level design techniques... 26
2.3 Configuration management techniques ... 27

2.3.1 Reducing the configuration data ... 27
2.3.2 Reducing the number of required configurations.................... 29
2.3.3 Managing reconfigurations in the task scheduling process..... 30

3. System-level design supports for run-time reconfigurable systems 33
3.1 System-level design flow and our supports ... 34

3.1.1 Definition of terms .. 36
3.1.2 Estimation approach to support system analysis..................... 37
3.1.3 Modeling of DRHW and the supporting transformation tool . 41
3.1.4 Link to low-level design.. 46

3.2 A WCDMA detector case study .. 46
3.2.1 System description .. 47
3.2.2 System-level design .. 49

7

3.2.3 Detailed design and implementation 51
3.2.4 Comparison with other implementation alternatives............... 56

3.3 Analysis and discussion... 57

4. Task scheduling approaches for run-time reconfigurable devices................ 59
4.1 Introduction ... 59
4.2 Target models .. 60

4.2.1 Device model .. 60
4.2.2 Task model .. 61

4.3 Static scheduling approaches... 63
4.3.1 The list-based scheduler .. 64
4.3.2 The constraint programming approach 66
4.3.3 The genetic algorithm ... 69

4.4 The run-time scheduling technique ... 78
4.4.1 Configuration locking technique... 79

4.5 Case studies ... 82
4.5.1 Evaluation of the static scheduling approaches....................... 83
4.5.2 Evaluation of the configuration locking technique 89

4.6 Discussion ... 92

5. Novel techniques to reduce the configuration overhead............................... 94
5.1 Configuration parallelism.. 94

5.1.1 Motivation... 94
5.1.2 The parallel reconfiguration model ... 95
5.1.3 Evaluation of configuration parallelism.................................. 97

5.2 Using dynamic voltage scaling to reduce the configuration energy.. 102
5.2.1 Motivation... 102
5.2.2 Device model and evaluation technique................................ 103
5.2.3 Case studies... 106

5.3 Discussion ... 109

6. Conclusions... 111
6.1 Summary of contributions ... 111
6.2 Future work ... 113

References... 115

8

List of symbols

1D One-Dimension

2D Two-Dimension

B&B Branch and Bound

BRAM Block RAM

AEP Abstract Execution Platform

ALAP As Late As Possible

ANSI-C the standard published by the American National Standards Institute
for the C programming language

ASAP As Soon As Possible

ASIC Application Specific Integrated Circuit

C-string Controller String

CAD Computer-Aided Design

CDFG Control/Data Flow Graph

CF Compact Flash

CFG Control Flow Graph

CL Configuration Latency

CPICH Common Pilot Channel

CPU Central Processing Unit

9

CP Constraint Programming

CS Configuration Scheduler

CSP Constraint Satisfaction Problem

DAG Directed Acyclic Graph

DC Direct Current

DCS Dynamic Circuit Switching

DFG Data Flow Graph

DRCF Dynamically Reconfigurable Fabric

DRHW Dynamically Reconfigurable Hardware

DSM Deep Sub-Micro

DSP Digital Signal Processor

DVS Dynamic Voltage Scaling

EDF Earliest Deadline First

EDK Embedded Development Kit

EEPROM Electrically Erasable Programmable Read-Only Memory

EPROM Erasable Programmable Read-Only Memory

FDS Force-Directed Scheduling

FeRAM Ferroelectric Random Access Memory

FIFO First In First Out

10

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

FPSLIC Field Programmable System Level Integration Circuits

GA Genetic Algorithm

GPP General Purpose Processor

GSM Global System for Mobile communications

HDL Hardware Description Language

HW Hardware

IMC Interface Method Call

I/O Input/Output

IP Intellectual Property

IS Input Splitter

ISS Instruction-Set Simulator

ITRS International Technology Roadmap for Semiconductors

JPEG Joint Photographic Experts Group

LE Logic Element

LUT LookUp Table

LZW Lempel-Ziv-Welch

MPEG Moving Picture Experts Group

11

MRAM Magnetic Random Access Memory

MUX Multiplexer

NoC Network-on-Chip

NRE Non-Recurring Engineering

OCP the Open Core Protocol

OS Operating System

PAE Processing Array Element

PLB Processor Local Bus

PRM Partially Reconfigurable Module

RAM Random Access Memory

RC Reconfigurable Cell

RISC Reduced Instruction-Set Computer

RISP Reconfigurable Instruction-Set Processor

RSoC Reconfigurable System-on-Chip

RTL Register Transfer Level

RTOS Real-Time OS

RTR Run-Time Reconfiguration

s-graph Schedule Graph

SAT Satisfiability

12

SoC System-on-Chip

SRAM Static Random Access Memory

SW Software

T-string Task String

TGFF Task Graphs For Free

TLM Transaction-Level Modeling

UML Unified Modeling Language

VCD Value Change Dump

VHDL Very High Speed Integrated Circuit Hardware Description Language

VLIW Very Long Instruction Word

vN von Neumann

WCDMA Wideband Code Division Multiple Access

WiMAX World Interoperability for Microwave Access

WLAN Wireless Local Area Network

13

1. Introduction

In April of 1965, Intel co-founder Gordon Moore published an article in Electronics
Magazine. In the article, he stated that the logic density of integrated circuits has
closely followed the relationship that the number of transistors per chip doubles every
12 months, which was revised to a slower period of 18 months in the late 1970s [1].
This prediction is honored as �Moore�s Law� that has been verified for the past four
decades. The 2005 edition of international technology roadmap for semiconductors
(ITRS) [2] forecasted that advanced technologies would keep Moore�s law to be valid
until 2020, at which time 14nm technology will be commercially used. Currently, a
single chip that contains more than 1.3 billion transistors [3] has been manufactured
on 65nm technology, and it has been commercially sold on a vast scale.

On the other hand, new applications and algorithms are growing rapidly as well.
Traditionally, they are implemented in general purpose processors (GPPs), which
employ an instruction-stream-based von Neumann (vN) paradigm [4]. Applications
are described in software and compiled into a sequence of instructions, which guide
the microprocessor central processing unit (CPU) to perform operations step by step.
However, as applications become more complex and algorithms become more
computation-intensive, the vN-type processing cannot deliver the required
performance. Additional supports are required. One solution is to couple the host
processor with dedicated hardware accelerators. A straightforward example is that
most personal computers (PCs) nowadays need a graphics processing unit (GPU) to
drive the display.

Usually, hardware accelerators are implemented as application specific integrated
circuits (ASICs). For a known and well-defined application, an optimized design can
achieve high speed, high throughput as well as low power consumption and small
chip area. However, the higher performance achieved over software implementation
on GPPs is mainly due to the high Non-recurring engineering (NRE) cost and the
sacrifice of flexibility. The challenges in deep sub-micro (DSM) technology, e.g.,
noise and transient errors [5, 6], and the increasing complexity of algorithms have
increased the design gap and driven the design cost higher and lengthened the design
time, which is unfavorable to electronics industry that suffers from shrinking time-to-
market and decreasing product life cycles.

14

In addition, ASICs have very low silicon reusability, because they have a fixed
hardware structure. When the implemented design becomes outdated or new
requirement is needed, ASIC chips cannot re-shape themselves. One processing
element that can provide both high performance and flexibility is a digital signal
processor (DSP), which is usually implemented as a very long instruction word
(VLIW) processor that has multiple function units and thus can exploit a certain
degree of parallelism. However, DSPs fail to deliver the required performance for
many modern applications that consist of very high computation-intensive algorithms,
e.g., H.264 video codec [7]. In addition, DSPs are extremely power inefficient when
compared to ASIC solutions.

Another alternative is reconfigurable systems, which usually appear in the form of
field programmable gate array (FPGA). The FPGA is an array of gate-level
configurable logic elements (LEs) embedded in a reconfigurable interconnect fabric.
Both LEs and interconnect are programmable. They can implement any combinational
logic as well as sequential circuit. In addition, customized blocks, such as hardwired
multipliers and memories [8], can be embedded to support various kinds of DSP
applications. Modern FPGA platforms also embed one or more than one hardwired
processor. Such structure makes it possible to implement a rather complex system in
such platforms. Because FPGAs are pre-fabricated chips with guaranteed
performance, design cost and design time are much smaller when compared to ASIC
implementation. FPGAs have been widely used in different applications, including
image processing [9], SAT solvers [10], and cryptograph processors [11].

Based on the technology used in the manufacture, FPGAs can be divided into two
groups: one-time configurable devices and reconfigurable devices [12]. A one-time
configurable FPGA is mainly manufactured using fuse or anti-fuse technology. As its
name indicates, this type of FPGA can be programmed only once, and the device will
remain configured even when it powers off. On the reconfigurable side, static random
access memory (SRAM), erasable programmable read-only memory (EPROM), and
electrically erasable programmable read-only memory (EEPROM) are state-of-the-art
technologies. Magnetic random access memory (MRAM) [13, 14] and ferroelectric
random access memory (FeRAM) [15] have also emerged as interesting alternatives.
In SRAM-based reconfigurable systems, configuration data is stored in external non-
volatile memories, such as FLASH memories, and transferred into the SRAM during
either boot-up or execution. Recently, single chip solutions for tightly integrating
reconfigurable logic and FLASH memories have also been applied [16, 17, 18].

15

For SRAM-based technology, these devices consist of the circuit and the
configuration-SRAM whose outputs are connected to the circuit and whose values
continuously control the circuit. Reconfiguration is realized by altering the contents
of the configuration-SRAM. This allows the circuit or a part of it to be reconfigured
while the rest of the system is running [19]. Such a feature is referred to as run-time
reconfiguration (RTR), and devices with such a feature are usually referred to as
dynamically reconfigurable hardware (DRHW).

1.1 Run-time reconfigurable systems

Reconfigurability is becoming an important issue in the design of System-on-Chip
(SoC) because of the increasing demands of silicon reuse, product upgrade after
shipment and bug-fixing ability. There are many ways to realize reconfiguration, such
as modifying software services [20] or changing the system structure [21] in a distributed
environment. In the following context, we refer to run-time reconfigurable systems as
those systems that include DRHW and achieve reconfiguration by modifying the
design on DRHW at run-time.

1.1.1 Benefits of using run-time reconfigurable systems

Using DRHW has many advantages. DRHW can be used to improve the system
performance. In many applications, the input data or the operating environment is
varying all the time, which however cannot be decided at design time. Therefore, the
ability to optimally or near-optimally adapt the system itself in order to gain higher
speed and better performance according to the environment is highly favorable. For
example, in a software-oriented application, a monitor can be set in the system to
identify the currently most frequently used task, and then an equivalent hardware
function can be dynamically generated and loaded onto DRHW to speed up the
system [22, 23]. We can also use RTR to partially evaluate the system and replace
generic circuits by more specialized circuits based on the run-time data [24]. It is also
possible to reduce the power consumption by RTR. Some input data may require only
a limited part of the circuit. Therefore, by eliminating the unnecessary circuit, the
power dissipation can be significantly reduced [25].

16

Another advantage is that silicon reusability can be increased. As today�s applications
become more and more complex, the implementation needs more hardware resources.
It means that either larger chips or more chips are needed, which might not be suitable
for many products, such as portable devices that are required to have a limited
dimension. With RTR, tasks that are non-overlapping either in time domain or in
space domain can be mapped onto the same DRHW. Tasks that are required initially
can be configured in the beginning. When another task is required, the configuration
to load it can then be triggered. For example, in a typical software-defined radio (SDR)
environment, different wireless technologies, such as GSM, WCDMA, WLAN and
WiMax in the future, have to be supported. However, in most situations, these
wireless technologies will be used at the same time. Therefore, it is possible to put
them into a single DRHW and dynamically load the one that is needed.

In fact, SDR is a good environment for applying DRHW technology. Recent
development of communication technology has brought huge challenges in the design
of mobile devices. A demand for high data-rate services over wireless mobile devices
has emerged, which requires such devices to have high processing capability. In
addition, such devices also have to be able to handle the large amount of applications,
such as audio/video streaming, teleconference and data encryption. On the other hand,
mobile devices also require supporting multi-mode and multi-band. Additionally, new
standards are being proposed for fast data-rate services, and mobile devices need to be
flexible to accommodate them. Recently, the design cycle for mobile devices has been
reduced to one year, or even less, which makes it infeasible to have a complete fixed-
HW solution. DSP is also not a favorable solution, since it lacks enough processing
capability and it is power-inefficient as well. Considering all these factors, DRHW is
a reasonable technology alternative for SDR, since it can provide a combined benefit
of flexibility and performance.

1.1.2 Challenges of using run-time reconfigurable systems

Current reconfiguration technologies have certain limitations, which result in some
challenges when using RTR systems. One of the challenges is the configuration
overhead related to each configuration process. It includes both configuration latency
and configuration energy. A task needs to be loaded onto DRHW before it can be used.
This is similar to the SW loading time in a pure SW system. The loading/configuration
process takes time and energy, which can largely degrade the system performance.

17

Considering the commercial MPEG-4 simple profile decoder [26] that is implemented
in Xilinx XC2V1500 FPGA [27], under the assumption that the configuration speed is
200 Mb/s the configuration latency is about 26 ms, which is considerably large since
the decoding time per frame should be under 33 ms. It should be noted that such
challenge exists only when DRHWs are used frequently. For example, if DRHW is
reconfigured once a week, the configuration overhead can be ignored, because it is
relatively very small compared to the task execution time.

In Figure 1, we compare several computing technologies (software on GPPs, hardware
on ASICs, configurable computing on FPGAs, and RTR on DRHW) in terms of
flexibility and performance. It can be seen that FPGAs have the advantage of
simultaneous flexibility and performance. When considering the benefits of using
RTR as presented in section 1.1.1, it is likely that DRHWs can be placed in the top-
right corner, as shown in Figure 1, where additional flexibility and performance can
be achieved over FPGAs. However, DRHWs also suffer from the configuration
overhead, which might overrun the benefit and cause DRHWs to become a less
competitive and less interesting technology, the one moving to the left represented by
dotted cycle. Therefore, techniques to reduce the configuration overhead or configuration
management approaches to reduce the effect of the configuration overhead are needed.

fle
xi

bi
lit

y

Figure 1. Comparison of different computing technologies in terms of performance
and flexibility.

18

Another challenge of using RTR is the lack of supporting methodologies and tools at
each abstraction level in the design phase. DRHW is a new type of computing
element. At the system level, how to support and make system partitioning for not
only software and hardware, but also for DRHW, and how to take the reconfiguration
process into account during the design space exploration phase need to be studied. At
the implementation level, approaches to handle the communication between DRHW
and the rest of the system are needed and debugging techniques to validate the
configuration process are missing.

1.2 Key contributions of the work

I have worked from different directions to meet the challenges of using RTR systems.
From the design flow�s point of view, I focus on system level design. Because any
decision made at the system level might have significant impact on the final
performance, providing useful supports at this level can help to eliminate unnecessary
re-designs and therefore reduce the total design time. The ultimate goal is not to
develop a fully automatic system partitioning approach, which I believe will not
succeed. This is because applications and platforms nowadays are becoming so
complex that it is not possible to quantitatively characterize them precisely in the
early design phase so that complex mathematical formulas can be applied to fully
partition the design in such a way that optimal solutions can be guaranteed. However,
providing support to designers at this phase can help to prune the design space and
possibly avoid re-designs. In my work, approaches to support system partitioning and
DRHW modeling for fast design space exploration are provided. Considering the
main bottleneck of using RTR systems, the configuration overhead, I have developed
different static/run-time task scheduling techniques that can either reduce the effect of
reconfiguration or reduce the amount of required reconfigurations. In addition, I also
propose different techniques to physically reduce the configuration overhead.

1.2.1 System-level design flow and support tools

In the approach [28, 29], I focus on the type of RTR systems in which DRHW is
frequently used as a coprocessor to accelerate computation-intensive tasks. The goal
of the approach is to help designers in the early phase of the design process to easily
evaluate the effect of moving some tasks, which are traditionally implemented in

19

fixed hardware, to DRHW. The supports that I provide are an estimation approach [30]
and a modeling technique [31] for DRHW. The estimation approach starts from function
blocks represented in ANSI-C language, and it produces hardware execution time and
resource utilization estimates for each function block by applying a set of high-level
synthesis algorithms. In the DRHW modeling, the real reconfiguration process is not
modeled. Instead, its behavior is modeled, and then its effect (the configuration
overhead) can be reviewed during simulation. A number of parameters are provided
in DRHW models. Designers can tune them to target a particular type of reconfiguration
technology. In addition, a tool to automatically generate DRHW models is created in
order to reduce the coding effort.

1.2.2 Scheduling techniques to manage the configuration process

The configuration overhead is a bottleneck that might largely degrade the performance
of RTR systems. In this work, I present several task scheduling techniques to
minimize its effect. They are grouped into a quasi-static scheduling framework. It is
divided into design-time scheduling and run-time scheduling. Tasks with known
dependencies are scheduled at design time. The goal is to reduce the total schedule
length while taking the reconfiguration processes into account. Three static
scheduling algorithms, using different problem-solving strategies, are developed and
quantitatively evaluated [32]. The first is a list-based scheduler [33], which uses a
heuristic approach. The second explores the entire domain for searching optimal
solutions [34]. The last uses a guided random search strategy [35] that tries to balance
accuracy and efficiency. At run-time, the focus of the scheduler is to maximally reuse
loaded tasks with a locking technique [36] similar to cache-locking. The idea is to
monitor the tasks� execution status at run-time and always lock the most frequently
used tasks on DRHW in order to reduce the total number of required reconfigurations.

1.2.3 Techniques to reduce the configuration overhead

Directly reducing the configuration overhead would be a more straightforward
mechanism to increase the efficiency of RTR systems. In this work, I also present two
separate novel approaches for reducing the overhead, one for configuration latency
[33, 37] and another for configuration energy [38]. In fact, in the first approach
configuration latency is not physically reduced, but its effect is reduced by

20

performing several configurations in parallel. The technique is referred to as
configuration parallelism. The idea is to divide the entire configuration-SRAM into
several individual segments and allow them to be accessed simultaneously. Therefore,
configurations can be performed in parallel, which allows task parallelism to be better
exploited. In the second approach, configuration energy is reduced by applying the
dynamic voltage scaling (DVS) technique. The idea is to apply low supply voltage on
the reconfiguration process when possible in order to reduce the configuration energy
but without increasing the overall schedule length.

1.3 Introduction to the most important papers

This thesis is based on one international scientific journal and 10 international scientific
conference papers. I am the first author of all these scientific publications and the key
contributor behind all these works.

Papers [28, 29] describe the system-level design flow and an instantiation using a
practical case study. I have contributed to defining the overall design flow, and I
carried out the implementation work of the case study. More importantly, I have
developed the HW estimators and the SystemC code transformer. They are described
in detail in [30, 31].

Papers [32, 34, 35] describe the different static DRHW task scheduling algorithms,
their implementation and the evaluation results. My contribution was defining,
developing and evaluating all these algorithms. Paper [36] describes the configuration
locking technique for improving the system performance. My contribution was
inventing the idea, implementing the run-time scheduler and the locking algorithm,
and evaluating the results.

Papers [33, 37] describe the parallel configuration model for reducing the impact of
the configuration latency. I invented the idea and the evaluation approach, and I also
implemented the algorithms and evaluated the results. Paper [38] describes the
technique to reduce the configuration energy. The idea is to apply dynamic voltage
scaling on the configuration processes as long as it does not harm the schedule length.
My contribution was inventing the idea and implementing the evaluation approach.

21

1.4 Organization of the thesis

The thesis is organized as follows. Background and a review of related works are
presented in Chapter 2. The system-level design supports are presented in Chapter 3.
The three static scheduling techniques and the run-time scheduling technique are
presented in Chapter 4, and the two novel techniques for reducing the configuration
overhead are presented in Chapter 5. Finally, conclusions and discussions of future
work are presented in Chapter 6.

22

2. Background and related work

In this chapter, we briefly introduce the fundamentals of reconfigurable computing as
well as some state-of-the-art technologies and reconfigurable systems. Instead of
providing a complete survey of reconfigurable computing, we concentrate only on the
research related to our work. Exhaustive surveys can be found in [19, 39, 40, 41, 42].

2.1 Run-time reconfigurable computing

In this section, we first introduce how reconfigurable systems can be categorized. In
fact, there are various ways to categorize them based on different criteria, such as
configuration granularity, configuration style and coupling techniques. Then, some
existing typical RTR systems will be described.

2.1.1 Configuration models

The principle to achieve RTR is by dynamically altering the design on DRHW.
According to the granularity of the processing element, DRHW can be classified as
fine-grained or coarse-grained.

! Fine-grained DRHW: This type of DRHW is very similar to most of the
traditional FPGAs, in which the basic configurable LE consists of a look-up table
(LUT) and a flip-flop. The LUT usually have four input bits and one output bit,
which can be implemented as any combinational logic of the four input bits. LEs
are connected to each other also at bit level. Therefore, this type of granularity
can be very suitable for bit-level computations but might not be efficient for
computing word-width data.

! Coarse-grained DRHW: In this type of DRHW, the basic computing element is
optimally designed for large computations, and such DRHW is primarily
intended for implementing tasks that are dominated by word-width operations,
which can be more efficiently performed in terms of both area and time when
compared to fine-grained DRHW that is constructed from much smaller
computation elements. However, the structure of each processing element is
static, which makes such architecture unable to leverage optimizations in the size
of operands. Such a model has been widely adopted in various systems [43, 44, 45].

23

The majority of DRHW devices are using SRAM-based technology. Such devices
consist of the circuit and the configuration-SRAM whose values specify how the
circuit is programmed. Reconfiguration is realized by altering the contents of the
configuration-SRAM. Traditionally, configurations are operated in an off-line fashion.
The configuration is performed only once when the system starts up, and the circuit
remains unchanged until the system is powered off. Recently, techniques to modify
the configuration-SRAM at run-time have been applied in commercial devices. This
enables RTR, which can significantly improve the flexibility when compared to the
traditional simple configuration approach. In terms of the reconfiguration methods
DRHW can be divided into three main categories.

M
U

X

Figure 2. Different configuration models.

! Single-context DRHW: In this configuration model, as shown in Figure 2(a), the
configuration-SRAM can be viewed as a large shift register, and the entire
configuration-SRAM has to be written during one reconfiguration. This means
that even if only a part of the chip needs to be changed, the entire chip needs to
be reconfigured. Therefore, this model suffers from significant configuration
overhead. Most modern FPGAs deploy this approach.

! Multi-context DRHW: Such devices [46, 47] have multiple configuration planes
and a multiplexer (MUX) controls which plane is used, as shown in Figure 2(b).
Switching from one to another takes only one clock cycle, thus configuration
latency is significantly reduced. However, such devices require as many times the
configuration-SRAM needed in single context device as the number of contexts,
and caching tasks on the contexts consumes a large amount of static energy.

24

! Partially reconfigurable DRHW [27]: They have a similar configuration model as
in single-context devices, but the configuration-SRAM is constructed as RAM.
Therefore, it can selectively change the content of a portion of the configuration-
SRAM. Thus, configuration of a task takes a much shorter time.

Basically, the partial reconfiguration model can be further divided into one-dimension
(1D) model and two-dimension (2D) model. In both cases, the device is represented
by a rectangular area of dynamically reconfigurable elements. The 1D model describes
a device as a number of columns. The height of a column is fixed and equal to the
height of the device area. The width of a column can either be fixed or dependent on
task sizes. I/O mechanism and communications are usually implemented in the
top/bottom of columns. The sides of column can also be used if necessary. A typical
system that instantiates such a 1D model is the Erlangen Slot Machine [48, 49, 50].
One particular type of 1D partial reconfiguration is pipeline reconfiguration [51, 52],
which is suitable for implementing pipelined applications. In this model, devices
consist of a number of hardware stripes connected in a pipeline fashion, and the basic
reconfiguration unit is a stripe. In the idea case, one stripe can implement one pipeline
stage of the application. PipeRench [53, 54, 55, 56] is a typical striped DRHW. The 2D
model allows tasks to be placed anywhere. Shapes of tasks can be either rectangular
or irregular, which imply higher device utilization if fragmentation can be properly
handled. Fragmentation on DRHW means that there are quantitatively enough free
resources for a ready task, but the task cannot be placed because either the free
resources are not continuous or they do not match the shape of the task. In the 2D
model, communication is an unsolved problem, because interconnections between
tasks are difficult to be re-established when tasks can be freely relocated. On-chip
just-in-time routing techniques have been proposed [57, 58] which can solve the
connection problem, but the overhead is in the range of seconds to minutes.

2.1.2 Coupling techniques

In most of the RTR systems developed nowadays, DRHW is used in association with
a host processor in a way that computation-intensive operations are mapped onto it,
and operations being relatively rarely executed are mapped onto the host processor.
Depending on how closely DRHW and the microprocessor work together, there are
several ways to make the coupling.

25

! The closest coupling is to integrate DRHW into the host processor as a special function
unit to execute custom instructions in order to boost performance. DRHW behaves
just as other function units residing inside the processors and is triggered when
custom instructions are found during the instruction decoding phase. Such devices
are referred to as reconfigurable instruction-set processors (RISPs) [59]. This
coupling technique has been used in various systems [60, 61, 62, 63].

! DRHW can be used as a co-processing unit [64, 65, 66, 67], which runs independently
of the host processor. Usually, the co-processing unit and the host processor are
put onto the same die, and the memory caches are shared between both.
Compared to the RISP, which performs only one custom instruction at a time and
has to communicate with the host processor whenever a custom instruction is
used, the reconfigurable logic in this type of coupling may perform relatively a
larger amount of computation at a time and communicate with the host processor
less frequently.

! The most loosely coupled form is to use reconfigurable units as attached
processing units or standalone-processing units [68]. They behave as either an
additional processor or a network-connected workstation.

2.1.3 Example systems

FPGAs are the most widely used reconfiguration technologies due to the more than
30 years of continuous improvement they have undergone. Technology advances
keep increasing the densities of logic and embedded memory of FPGAs. In addition,
various fixed logic modules, such as hardwired multipliers and high speed
transceivers, as well as microprocessors have also been integrated. This makes it
possible to implement a very complex system into a single FPGA. The most advanced
FPGA platforms are Xilinx Virtex-5 [69] and Altera Stratix-III [70]. Both are manufactured
as 65nm technology and able to run designs at 500 MHz. Although there are a few
embedded DSP blocks for word-width operations, such FPGA platforms are still
referred to as fine-grained devices, since LUTs and connecting switches are still the
main configurable elements.

PACT XPP coprocessors [71] can typically represent coarse-grained technologies.
The heart of the XPP is an array of configurable processing array elements (PAEs),
which can perform most of the typical DSP functions, such as multiplication, addition,

26

shift and comparison, within one clock cycle. The communication network allows
both point-to-point and point-to-multipoint connections. Only the opcodes of PAEs
and the routing channels need to be configured, thus such devices do not suffer from
the configuration overhead. In addition, each PAE can be individually reconfigured,
thus partial reconfiguration is also supported.

The MorphoSys architecture [72, 73] is an integrated coarse-grain multi-context RTR
system, in which an 8x8 Reconfigurable Cell (RC) array is closely coupled to a host
processor. When a context is being used, configuration can be loaded to another
context simultaneously. The communication between the host processor and the RC
array is realized through a frame buffer, which consists of two sets (two banks in each
set). The RC array can simultaneously access both of the two banks in one set, and at
the same time the data can be moved from external memories to the other set. Data
movement and reconfigurations are controlled by the host processor.

The Atmel�s Field Programmable System Level Integrated Circuits (FPSLIC) family
[74] is another typical reconfigurable system, which consists of a host processor and a
fine-grained FPGA that are closely coupled. The FPGA shares the data memory with
the host processor (protection mechanism is needed if data sharing is used), and it is
treated as a normal 8-bit peripheral from the processor point of view. The FPGA can
be divided into a dynamically reconfigurable region and a static region that is
required to implement certain system functions.

2.2 System-level design techniques

System-level design covers various issues, such as partitioning, task scheduling and
synthesis. Including DRHW in the design requires the traditional HW/SW co-design
flow to be extended. In [75, 76], a co-design framework and a HW/SW partitioning
approach are presented. The approach uses a list-based algorithm to create an initial
partition then gradually moves a task from SW to DRHW in an iterative way. In [77],
a survey of various SW/HW partitioning algorithms is presented, and a new approach
to map loops into reconfigurable hardware is proposed. In [78], a co-design environment
for DSPs/FPGAs-based reconfigurable platforms is presented. Both applications and
architectures are modeled as graphs, and an academic system-level CAD tool is used.
In [79], a macro-based compilation framework to replace logic synthesis and technology
mapping is presented. In [80], a synthesis approach based on list-scheduling is presented.

27

The target system is a single application that can be divided into a number of
dependent tasks. The approach considers HW/SW partitioning, temporal partitioning
as well as context scheduling. In [81, 82], a HW/SW co-synthesis framework for a
real-time embedded reconfigurable system is presented. Each application consists of a
number of dependent tasks and has its own period. A task can be mapped either onto
a host processor or DRHW. Applications are statically scheduled over a hyper-period,
which is the least common multiple of the different application periods. Design
frameworks that start from high abstraction level models have also been proposed. An
approach to automatically perform the mapping of the platform independent models
presented in UML onto reconfigurable system models is developed in the MOCCA
design environment (Model Compiler for Configurable Architectures) [83]. In [84],
researchers presented their AEP (Abstract Execution Platform) virtual machine, which
executes the binary UML representation and implements the design onto a reconfigurable
platform.

2.3 Configuration management techniques

The configuration overhead is the main drawback of RTR systems. Various research
projects have tried to solve the problem. These efforts can be divided into three
groups. The first group of these techniques is to reduce the amount of required
configuration data in each reconfiguration process. The second group is to reduce the
number of required configurations. This is suitable for those applications which
require running some tasks repetitively. The last group is to take the configuration
process into account during the task scheduling in order to reduce its effect. All of
these techniques mainly focus on reducing configuration latency. However, for the
second group, reducing the number of required configurations can also result in less
dynamic configuration energy.

2.3.1 Reducing the configuration data

Depending on the configuration types of DRHW, configuration latency has different
impacts. For single context devices, because each reconfiguration requires re-writing
the entire configuration-SRAM at one time, configuration latency is simply related to
the device size. For partially reconfigurable devices, configuration latency is directly
proportional to the occupied area of applications. Therefore, less configuration

28

latency is needed. In [85], a case study of a 3-tap filter on a real platform shows that
using partial reconfiguration can reduce 50% of configuration latency. However, as
applications become more complex and designs become much larger, configuration
latency is becoming larger as well and both types of DRHW will suffer from the long
configuration latency. For multi-context devices, configuration latency can be as short
as one clock cycle if the required context is already loaded. However, it is not
efficient to implement a device with a large number of context memories, which
require large space and consume significant amount of static power. Some existing
multi-context devices hold only four contexts [86], and loading configuration data
from external memories still has an unignorable impact.

A straightforward approach to reducing configuration latency is to compress the
amount of configuration data to be transferred. In fact, a lot of redundant information
and regularities exist in the configuration bitstream. Thus, lossless compression
techniques can take advantage of these and remove the unnecessary bits. In [87], a
technique that uses entropy, inspired by information theory, is proposed to evaluate
configuration compression performance. The entropies of some benchmark circuits
are calculated to provide estimates of the possible reduction of configuration data
sizes. In [88, 89], various compression techniques, such as Huffman coding, Arithmetic
coding and LZW compression, are applied on configuration compression. Other
approaches, such as using a genetic algorithm [90] or using runlength coding [91],
have also been proposed. All these approaches require the development of specific
hardware in the device side to decompress the data. In [92], an approach that exploits
the existing embedded decompression hardware in a specific type of FPGA is
proposed to reduce the amount of configuration data. In addition, there are some
approaches that try to exploit the similarities between successive configurations [93,
94, 95]. The idea is that if the same components are used in successive configuration, then
placing them in the same location can avoid loading redundant configuration data.

Another approach to reducing configuration data is by fundamentally preventing
configuration data from being large. The reason that fine-grained DRHW, such as
FPGA, suffers from large configuration data is because such devices are programmed
at bit level. Each LUT and each route need to be programmed, which require lots of
bits for recording such detailed configuration information. In contrast, coarse-grained
devices are based on word-level units, which are implemented in a fixed style but
support limited programmability with fewer control bits. Therefore, using coarse-
grained devices can impose less configuration latency [96].

29

2.3.2 Reducing the number of required configurations

In a practical scenario, it is likely that some tasks need to run repetitively. Therefore,
retaining the configurations of these tasks on DRHW can reduce the amount of
configuration data to be transferred. This technique is referred to as configuration
caching [97], which is similar to data caching and instruction caching in a general
memory. In [98], different caching algorithms targeting various device models, such
as single-context DRHW and multi-context DRHW, are studied. The principle is as
follows. For an RTR system, a design can be divided into a number of small blocks
with a known execution sequence. Blocks are put together into groups, and each
group can fit in the available hardware. Reconfiguration is then corresponding to the
transition from one block to another when the two blocks do not belong to the same
group. Therefore, by optimally grouping the blocks, the number of required
reconfigurations can be minimized and thus the total configuration latency is reduced.
In [99], the grouping approach is extended for supporting multiple tasks that are from
a single application but have a non-deterministic execution order.

Configuration relocation and defragmentation [100, 101] can also help to reduce the
number of required reconfigurations. This is suitable for only partially reconfigurable
devices, and usually the 2D reconfiguration model is the target because fragmentation
is the main concern in such a model. The main idea of this technique is as follows.
When fragmentation happens, placing a task on the device will cause another task or a
part of it to be evicted, which requires the evicted task to be reconfigured in the future
when it is needed. By dynamically relocating valid configurations into new locations,
free area can be consolidated and then used for new tasks. This defragmentation
technique can result in more efficient use of DRHW and fewer reconfigurations. In
[100, 101], an architecture that supports run-time relocation and defragmentation is
proposed, in which shapes of tasks do not need to be rectangular. Resource
compaction is realized by transforming tasks through a series of techniques, such as
rotation, flipping and offsetting. In [102, 103], heuristic approaches for run-time repacking
are studied. The procedure is divided into two steps. The first step identifies how to
rearrange the loaded tasks in order to free sufficient space for a waiting task, and the
second step focuses on how to move the tasks in order to allocate the waiting task as
quickly as possible. In [104], an efficient run-time compaction technique for the 1D
model is presented. The technique allows multiple columns of different tasks to be
shifted in parallel, and thus the run-time overhead can be independent of the current
device size.

30

Various other defragmentation techniques or related issues have also been proposed
or discussed. Optimal solutions using a branch-and-bound technique [105] and heuristic
approaches [106, 107, 108] for defragmentation are studied. In [109, 110, 111],
implementation techniques for task relocation are presented. The idea is to replicate
the corresponding configurable elements and routing resources. In [112], a technique
to study the impact of defragmentation on system performance is presented. It
proposes to use a fragmentation metric as the basis to guide the defragmentation
process. In [113, 114], explicit defragmentation is not performed, but different
fragmentation metrics are used in the task allocation phase to choose the more
suitable locations for coming tasks.

2.3.3 Managing reconfigurations in the task scheduling process

When taking configuration into account in the task scheduling process, the effect of
configuration latency can be effectively minimized if the scheduling can be done
properly. One effective technique that has been widely used in RTR system
scheduling is configuration prefetching [115]. The basic idea is to load tasks before
they are needed. Therefore, by overlapping configurations with execution of other
useful tasks, the effect of configuration latency can be reduced. Different prefetch
techniques for single thread applications have been proposed. Hauck presents a
prefetch scheduler [115] that can properly insert prefetch instructions into software
applications to hide the configuration of single-context reconfigurable coprocessors.
Targeting a partial reconfiguration model, three different configuration prefetching
algorithms are studied [116]. The first is static prefetching, extended from their earlier
work [115] to support loading multiple blocks. The second is dynamic scheduling,
which models the system state as a Markov process and uses it to predict the next
configuration to prefetch. The last one is a hybrid prefetching approach, which uses
the recent execution history to make accurate predictions within a loop and uses the
global history to make accurate predictions between loops.

For systems that consist of multiple independent tasks, configuration prefetching
techniques have also been applied. In [117, 118, 119], Resano et al. consider that each
task can be further divided into a number of dependent subtasks, and prefetch
scheduling is performed dynamically at the subtask level. Although drastic reduction
of the total configuration latency can be achieved, the run-time overhead of the
approach prevents it from being used on a large scale. In [120, 121], Resano et al.

31

extend their run-time scheduler by dividing computation into design time and run-
time. At design time, the objective is to calculate weights of subtasks. The higher the
weight value of a subtask, the more negative impact its configuration has on the
system performance. At run-time, the scheduler initially loads subtasks based on their
weight values and dynamically makes other reconfiguration decisions based on the
current status.

There are compiler-driven task schedulers. In [122, 123], based on the Molen programming
paradigm [124, 125, 126], Panainte and co-workers present an instruction scheduler that
can reduce the number of required configurations by moving the configuration
instruction out of the loop. Therefore, the task inside a loop needs only one
configuration, if it is mapped onto DRHW. In [127], an improved instruction scheduler
is presented, which can further reduce the number of required reconfigurations by
caching the most frequently reconfigured tasks on DRHW. The decision is made at
design time with help of profiling the applications. In [128, 129, 130], a compilation
framework for MorphoSys is described. The core is a kernel scheduler that considers
task scheduling, multi-context scheduling, allocation and data transfer simultaneously
with the goal to minimize the reconfiguration impact.

In [81, 82], a scheduler for a real-time embedded system is presented. Each application
consists of a number of dependent tasks and has its own period. A task can be mapped
either onto a host processor or DRHW. Instead of performing the scheduling at run-
time, it statically schedules the applications over a hyper-period, which is the least
common multiple of the different application periods. The 1D model is used for
DRHW. During run-time, each tile has its own value that represents the
reconfiguration frequency of the task mapped onto this tile. The frequency is equal to
the number of times that task is executed in a hyper-period. When a new
reconfiguration for a task of m tiles needs to flush some already loaded tasks, the m
continuously connected tiles that have the minimum sum of the reconfiguration
frequencies are selected. The idea is to leave the most frequently reconfigured tiles
intact because they might be reused soon.

Different techniques for static task scheduling have also been discussed. In [131], an
optimal placer for mapping tasks onto 2D DRHW is presented. A task is treated as a
three dimensional box in space and time. The problem is then converted into a box
packing problem. Configuration overhead is treated as a constant and added to the
execution time. Since configurations are not separately treated, the approach does not

32

consider prefetching or the reconfiguration constraints. (There is a limited number of
allowed simultaneous reconfigurations for different regions.) Although the approach
requires a relatively short computer run-time, its simplified model significantly
reduces the liability of the approach. Approaches derived from Model-checking [132]
and Petri Net [133] for static task scheduling have also been proposed.

Different run-time scheduling techniques have been proposed to manage tasks whose
precedence dependence is not known at design time. In [103, 134], Dissel et al. take
into account the resource fragmentation problem. Different techniques for repacking
and replacing loaded modules are proposed. In [113, 135], the online task scheduling
for 2D DRHW is modeled as a bin-packing problem, and different algorithms
working with efficient data structures are proposed for solving the NP-hard problem.
Techniques to find free area in 2D DRHW for task placement have also been
presented [136, 137]. In [138], operating system services for scheduling real-time tasks
on DRHW are presented. The difference from other approaches is that an incoming
task is either accepted with a guarantee of meeting its deadline or rejected. In [139,
140], an online scheduling algorithm, which adapts the well-known single processor
earliest-deadline first (EDF) policy, is presented. However, the configuration process
is not individually considered, as in [131]. Therefore, practical applications will not
be able to achieve the reported scheduling performance.

33

3. System-level design supports for run-time
reconfigurable systems

As presented in earlier chapters, reconfigurable logic is a promising alternative to
deliver both flexibility and performance at the same time. New reconfigurable
technologies and technology-dependent tools have been developed, but a system-level
design method to support system analysis and fast design space exploration is missing.
In this chapter, we present a system-level design method and supporting tools for the
design of reconfigurable SoC (RSoC). An instantiation of the design flow is applied
in a real case study. At the implementation level, commercial technology-dependent
tools are used. At the system level, one of our supporting tools is a high-level
synthesis-based HW estimator. It can generate HW estimates directly from ANSI-C
code and thus help designers to make reasonable partitioning decisions. Another
supporting tool is a SystemC code transformer, which can automatically generate a
SystemC model of DRHW from existing SystemC code of the functions that are to be
mapped onto the DRHW. Therefore, designers can generate different versions of
reconfigurable systems without rewriting the code, which is slow and error-prone.
The main advantage of the approach is that it can be easily embedded into an SoC
design flow to allow fast design space exploration for different reconfiguration
alternatives without going into implementation details.

System-Level
Design

System
Requirements/
Specification

Capture

Architecture
Definition

System
Partitioning

Mapping

System-Level
Simulation

Architecture
Template

System-Level
IP

Figure 3. A generic system-level design flow.

34

3.1 System-level design flow and our supports

A generic view of the system-level design flow is depicted in Figure 3 [141]. The
following new features are identified in each phase when reconfigurability is taken
into account:

! System Requirements and Specification Capture needs to identify requirements
and goals of reconfigurability (e.g., flexibility for specification changes and
performance scalability).

! Architecture Definition needs to model the reconfigurable technologies of
different types and vendors at an abstract level and include them in the
architecture models.

! System Partitioning needs to analyze and estimate the functions of the application
for SW, fixed HW and DRHW. The parts of the targeted system that will be
realized on DRHW must be identified. There are some rules of thumb that can be
applied. If an application has hardware accelerators of roughly the same size
which are not used at the same time, these accelerators can be implemented onto
DRHW. If an application has some parts in which specification changes are
foreseeable or there are foreseeable plans for new generations of the applications,
it may be beneficial to implement it onto DRHW.

! Mapping needs to map functions allocated to DRHW onto the respective
architecture model. The special concerns at this step are the temporal allocation
and the scheduling problem. Allocation and scheduling algorithms need to be
made either online or offline.

! System-Level Simulation needs to observe the performance impacts of architecture
and reconfigurable resources for a particular system function. The effect of
configuration overhead should be highlighted in order to support designers to
perform system analysis or design space exploration.

It should be noted that reconfigurability does not appear as an isolated phenomenon,
but as a tightly connected part of the overall SoC design flow. Our approach is
therefore not intended to be a universal solution to support the design of any
reconfigurability. Instead, we focus on a case where the reconfigurable components
are mainly used as co-processors in SoCs.

35

SystemC language version 2.0 [142] is selected as the backbone of the approach since
it is a standard language that provides designers with basic mechanisms like channels,
interfaces and events to model various kinds of communication and synchronization
styles in system designs. More sophisticated mechanisms for the system-level design
can be built on top of the basic constructs. More specifically, our system-level models
operate on the transaction level of abstraction. The performance simulation is based
on the estimates of computational complexity of each block, estimates of communication
and storage capacity requirements, and characteristics of the architecture and mapped
workload. In fact, our design approach is not limited to SystemC. It can also be applied
to other promising design languages, e.g., SystemVerilog [143] and SpecC [144].

In the SystemC-based approach, we assume that the design does not start from scratch,
but it is a more advanced version of an existing device. The new architecture is
defined partly based on the existing architecture and partly using the system
specification as input. The initial architecture is often dependent on many things not
directly resulted from the requirements of the application. The company may have
experience and tools for certain processor core or semiconductor technology, which
restricts the design space and may produce an initial HW/SW partition. Therefore, the
initial architecture and the HW/SW partition are often given at the beginning of
system-level design. The SystemC extension is designed to work with a SystemC
model of the existing device to suit the design considering RTR hardware.

(a) An initial fixed SoC architecture (b) a modified architecture using
reconfigurable hardware

SW
functions

MEM HW
Accelerator

HW
Accelerator

SW
functions

SW
functions

CPU DMA

HW
Accelerator
functionality

SW
functions

SW
functions

CPU DMA

HW
Accelerator
functionality

Reconfigurable
hardware

MEM

Figure 4. Creating reconfigurable SoC from fixed platform.

36

The way that the SystemC-based approach incorporates dynamically reconfigurable
parts into architecture is to replace SystemC models of some hardware accelerators,
as shown in Figure 4(a), with a single SystemC model of a reconfigurable block, as
shown in Figure 4(b). In addition, functions that are mapped onto fixed HW
accelerators are modeled in the same way as in DRHW. Therefore, it allows designers
to easily test the effects of implementing some components in DRHW. Referring to
the system-level design flow, as shown in Figure 3, we provide estimation support for
system partitioning, scheduling support for mapping and modeling support for
system-level simulation. These three steps are the most critical steps in the system-
level design, because they produce the direct inputs to the low-level implementation.
Their accuracy and efficiency in design space exploration have a strong impact on the
overall design efficiency and time-to-market. The scheduling support is described in
detail in the next chapter. Others, as in the list below, are described in the following
sections.

! Estimation and analysis support for design space exploration and system
partitioning [30].

! Reconfigurability modeling using standard mechanisms of SystemC and a
transformation tool to automatically generate SystemC models of the
reconfigurable hardware [31].

3.1.1 Definition of terms

The terms and concepts specific to the SystemC-based approach used in the rest of the
paper are defined as follows:

! Candidate Components: Candidate components denote those application functions
that are considered to gain benefits from their implementation on a reconfigurable
hardware resource. The decision whether a task should be a candidate component
is clearly application dependent. The criterion is that the task should have two
features in combination: flexibility (that would exclude an ASIC implementation)
and high computational complexity (that would exclude a software implementation).
Flexibility may come either from the point that the task will be upgraded in the
future or in view of hardware resource sharing with other tasks with non-
overlapping lifetimes for global area optimization.

37

! Dynamically reconfigurable fabric (DRCF): The dynamically reconfigurable
fabric is a system-level concept that represents a set of candidate components and
the required reconfiguration support functions, which later on in the design
process will be implemented on DRHW.

! DRCF component: The DRCF component is a transaction-level SystemC module
of the DRCF. It consists of functions which mimic the reconfiguration process,
and the instances of SystemC modules of the candidate components to present
their functionality during system-level simulation. It can automatically detect
reconfiguration requests and trigger the reconfiguration process when necessary.

! DRCF template: The DRCF template is an incomplete SystemC module, from
which the DRCF component is created.

3.1.2 Estimation approach to support system analysis

System analysis is mainly the phase to make HW/SW partitioning and the initial
architecture decision. In the design of reconfigurable SoC, system analysis also needs
to focus on studying the trade-off of performance and flexibility. The estimation
approach is developed to support system analysis to identify candidate components
that are to be implemented on DRHW. In addition, the approach produces SW/HW
performance estimates, so it can also be used for supporting SW/HW partitioning.

The estimation approach focuses on a reconfigurable architecture in which there is a
reduced instruction-set computer (RISC) processor and an FPGA-type DRHW,
connected by a communication channel, a system bus. The current FPGA-type
DRHW is assumed to be a Virtex2-like FPGA [27] in which the main resources are
LookUp-Tables (LUTs) and multipliers. The estimation approach starts from function
blocks represented using C language, and it can produce the following estimates for
each function block: software execution time in terms of running the function on the
RISC core, mappability of the function and the RISC core [145], execution time in
terms of running the function on DRHW, and resource utilization of DRHW. The
framework of the estimation approach is shown in Figure 5. The starting point is the
functional description given in ANSI-C language. The designer decides the
granularity of partitioning by decomposing the algorithm down to function blocks. A
single function block may then be assigned to SW, DRHW or a fixed accelerator.

38

Each of the function blocks will be individually studied and the set of estimation
information will be fed into the system-level partitioning phase.

E
st

im
at

io
n

Fr
am

ew
or

k

Figure 5. The estimation framework.

3.1.2.1 Creation of control-data flow graph from C code

We first transform C code into control-data flow graph (CDFG), which is a combined
representation of data flow graphs (DFGs) and a control flow graph (CFG). The
DFGs expose the data dependence of algorithms, and the CFG captures the control
relation of a group of DFGs. In the estimator, we extend the SUIF front-end C
compiler environment [146] to extract CDFG from the C code. The first step is to
dismantle all high-level loops (e.g., while loop and for loop) into low-level jump
statements. The produced code is restructured to minimize the number of jumps. Then,
basic blocks are extracted. A basic block contains only sequential statements without
any jump in between. Data dependence inside each basic block is analyzed, and a
DFG is generated for each basic block. After the creation of all DFGs, the control
dependence between these DFGs is extracted from the jump statements to construct
the CDFG. Finally, profiling results, which are derived using gcov [147], are inserted
into the CDFG as attributes. In later steps, these profiling results are used to produce
the timing estimates.

39

3.1.2.2 High-level synthesis-based hardware estimation

Embedded
FPGA modelCDFG

ASAP & ALAP

Modified FDS

Allocation

Resource
utiliztion

HW
execution time

Figure 6. High-level synthesis-based hardware estimation.

A graphical view of the hardware estimation is shown in Figure 6. Taking the CDFG
with the corresponding profiling information and a model of embedded FPGA as
inputs, the hardware estimator carries out a high-level synthesis-based approach to
produce the estimates. The main tasks performed in the hardware estimator as well as
in a real high-level synthesis tool are scheduling and allocation. Scheduling is the process
in which each operator is scheduled in a certain control step, which is usually a single
clock cycle, or in several control steps if it is a multi-cycle operator. Allocation is the
process in which each representative in the CDFG is mapped to a physical unit, such
as variables to registers, and the interconnection of physical units is established.

The embedded FPGA is viewed as a co-processing unit, which can independently
perform a large amount of computation without constant supervision of the RISC
processor. The basic construction units of the embedded FPGA are static random access
memory (SRAM)-based look-up tables (LUT) and certain types of specialized function
units, e.g., custom-designed multiplier. Routing resources and their capacity are not
taken into account. The embedded FPGA model is actually a mapping table. The index
of the table is the type of operators, e.g., addition. The value mapped to each index is
hardware resources in terms of the number of LUTs and the number of specialized units,

40

such as hardwired multipliers. In addition, the execution time of an operator is also an
attribute. This table is generated by synthesizing each type of operation onto the target
FPGA. The timing information of each function unit is used during the scheduling
step, and the resource information is used when generating the resource estimates.

As-soon-as-possible (ASAP) scheduling and as-late-as-possible (ALAP) scheduling
[148] determine the critical paths of the DFGs, which together with the control relation
of the CFGs are used to produce the estimate of hardware execution time. For each
operator, the ASAP and ALAP scheduling processes also set the range of clock cycles
within which it could be legally scheduled without delaying the critical path. These
results are required in the next scheduling process, a modified version of force-
directed-scheduling (FDS) [149], which intends to reduce the number of function units,
registers and buses required by balancing the concurrency of the operations assigned
to them without lengthening the total execution time. The modified FDS is used to
estimate the hardware resources required for function units.

Finally, allocation is used to estimate the hardware resources required for
interconnection of function units. The work of allocation is divided into three parts:
register allocation, operation assignment and interconnection binding. In register
allocation, each variable is assigned to a certain register. In operation assignment,
each operator is assigned to a certain function unit. Both are solved using the
weighted-bipartite algorithm, and the common objective is that each assignment
should introduce the least number of interconnection units that will be determined in
the last phase, the interconnection binding. In this approach, multiplexer is assumed
to be the only type of interconnection unit. The number and type of multiplexers can
be easily determined by simply counting the number of different inputs to each
register and each function unit. After allocation, the clock frequency is determined by
searching for the longest path between two registers. Because routing resources are
not modeled, the delay takes into account only the function units and the multiplexers.

We assume that all variables have the same size, since our goal is to quickly produce
estimates with pure ANSI-C code instead of generating optimal synthesizable RTL
code, which often uses some kinds of subset C code and applies special meanings to
variables. Our estimation framework also supports exploring parallelism for loops.
This is done at the SUIF-level, where we provide a module that allows designers to
perform loop unrolling (loops must have a fixed number of iterations) and loop
merging (loops must have the same number of iterations).

41

3.1.2.3 Estimating SW execution time

The software estimator uses a profile-directed operation-counting based static
technique to estimate software execution time. The architecture of the target processor
core is not taken into account in the timing analysis. The main idea of estimating the
software execution time is as following. Firstly, the number of operations of each type
is counted from the CDFG. Then, each type of operation node in the CDFG is
mapped to one or a set of instructions of the target processor in a pre-defined manner.
Then the total number of instructions is calculated by summing up the number of
estimated instructions of each type. Finally, with the assumption that these instructions
are performed with an ideal pipeline, the software execution time is the multiplication
result of the total number of instructions and the period of the clock cycle.

3.1.2.4 Candidate component selection

The ultimate goal of the estimation approach is to make candidate component
selection, which is an application-dependent procedure. In current design framework,
the selection is carried out manually based on designers� experience and design
constraints. A rule of thumb is to group tasks into contexts with the goal that both the
number of contexts and the dependence edges crossing the contexts are minimized.
For larger applications, the scheduling approach [75] and the grouping approach [97]
could be applied. When global resource saving is an issue, the resource estimates are
important inputs. However, to make justified decisions, other information, such as
power consumption, should be included as inputs. More importantly, control/data
dependence between candidate components should be analyzed. Obviously, there
should be control dependence between candidate components that are mapped to
different contexts. The current approach does not include automated tools to support
the analysis. Other tools and manual analysis are the solutions for now.

3.1.3 Modeling of DRHW and the supporting transformation tool

The modeling of reconfiguration overhead is divided into two steps. In the first step,
different technology-dependent features are mapped onto a set of parameters, which
are the size of the configuration data, the clock speed of configuration process and the
extra delays apart from loading of the configuration data. In the second step, a
parameterized SystemC module that models the behavior of the run-time

42

reconfiguration process is created. It has the ability to automatically capture the
reconfiguration request and present the reconfiguration overhead during performance
simulation. Thus, designers can easily evaluate the trade-offs between different
technologies by tuning the parameters.

3.1.3.1 Parameterized DRCF template

The performance impact of using DRHW is dependent on the underlying
reconfigurable technology. Products from different companies or different product
families from the same company have very different characteristics, e.g., size of
reconfigurable logic and granularity of reconfigurable logic. Different features
associated with the reconfigurable technology are not directly modeled in the DRCF
component. Instead, the DRCF component contains the functions that describe the
behavior of the reconfiguration process and relates the performance impact of the
reconfiguration process to a set of parameters. Thus, by tuning the parameters,
designers can easily evaluate the trade-offs between different technologies without
going into implementation details.

In the SystemC extension, a parameterized DRCF template is used. At the moment,
the following parameters are available for designers:

! The memory address, where the context is allocated in the external memory that
holds the configuration data

! The length of the required memory space, which represents the size of
configuration data

! Delays associated with the reconfiguration process in addition to delays of
memory transfers.

3.1.3.2 DRCF component and Reconfigurable SoC modeling

The DRCF component is a model that can automatically capture the reconfiguration
request and trigger the reconfiguration. In addition, a tool to automate the process that
replaces candidate components by a DRCF component is developed, so system
designers can easily perform the test-and-try and speedup the design space
exploration process. In order to let the DRCF component be able to capture and
understand incoming messages, the SystemC modules of the candidate components

43

must implement the read(), write(), get_low_addr() and get_high_addr() interface
methods showed in the code below. The DRCF component implements the same
interface methods and conditionally calls the interface methods of target modules.
With the forthcoming SystemC TLM 2.0 standard [150], new interface methods could
be defined to comply with the TLM 2.0. Equivalently, OCP standard transaction lever
interfaces [151] can be used.

class bus_slv_if: public virtual sc_interface{

 public:

 virtual sc_uint<ADDW> get_low_addr() =0;

 virtual sc_uint<ADDW> get_high_addr() =0;

 virtual bool read(...) =0;

 virtual bool write(...) =0;

};

A generic model of RSoC is shown in Figure 7. The left hand side depicts the
architecture of the RSoC. The right hand side shows the internal structure of the
DRCF component. The DRCF component is a single hierarchical SystemC module,
which implements the same bus interfaces as other HW/SW modules do. A
configuration memory is modeled, which could be an on-chip or off-chip memory
that holds the configuration data. Each candidate component (F1 to Fn) is an
individual SystemC module that implements the top-level bus interfaces with separate
system address space. The Input Splitter (IS) is an address decoder and it manages all
incoming Interface-Method-Calls (IMCs). The Configuration Scheduler (CS)
monitors the operation states of the candidate components and controls the
reconfiguration process. Each candidate component instantiates a DONE signal to the
CS. This signal is activated when the connected candidate component finishes its
execution.

44

Instruction
set

processor

HW
accelerator Reconfigurable

co-processor

Interconnection bus

shared
memory

configuration
memory

Input
splitter

configuration
scheduler

configuration
memory

F1 F2 Fn

shared
m

em
ory

inputclock reset

output

DRCF component

Figure 7. A generic model of RSoC.

The DRCF component works as follows. When the IS captures an IMC to a candidate
component, it will hold the IMC and pass the control to the CS, which decides if
reconfiguration is needed. If so, the CS will call a reconfiguration procedure that uses
the parameters specified in the first step to generate the memory traffic and the
associated delays to mimic the reconfiguration latency. If the CS detects the RTR
hardware is loaded with another module, a request to reconfigure the target module
will be put into a FIFO queue and the reconfiguration will be started after the RTR
hardware has no running module. After the CS finishes the reconfiguration loading,
the IS will dispatch the IMC to the target module.

The context switching with pre-emption is a common approach in operating systems,
the implementation of which does not introduce too much overhead because of the
regularity of the register organization in GPP. In the DRCF component, the pre-
emption technique is not supported because of the very high implementation costs of
context switching. In the modeling approach, designers can use different CS models
when candidate components are mapped to different types of reconfigurable devices,
such as partial reconfiguration and single-context devices.

There is a state diagram common to each of the candidate components. Based on the
state information, the CS makes reconfiguration decisions for all incoming IMCs and
DONE signals. A state diagram of partial reconfiguration is presented in Figure 8. For
single context and multi-context reconfigurable resources, similar state diagrams can
be used in the model. The main advantage of the modeling method is that the rest of

45

the system and the candidate components need not be changed between a static
system and a run-time reconfigurable system, which makes this method very useful in
making fast design space exploration.

1

5

5

6

4
3

NOT
LOADED LOADING

RUNNINGNOT
RUNNING

WAIT

2

1. IMC to the module occurs & not enough resources
2. IMC to the module occurs & enough resources
3. CS finishes the loading
4. Other modules finish & enough resources
5. IMC to the module occurs
6. Module finishes
7. CS flushes the module

7

module is only in the configuration memory
module is being loaded
module is waiting in a FIFO queue to be loaded
module is running
module is loaded, but not running

NOT LOADED:
LOADING:
WAIT:
RUNNING:
NOT RUNNING:

State Definitions:

State Transition Conditions:

Figure 8. State diagram of candidate components.

3.1.3.3 An automatic code transformer for DRCF component

In order to reduce the coding effort, we have developed a tool that can automatically
transform SystemC modules of the candidate components, which however must
follow a pre-defined coding pattern (using the predefined bus_slv_if methods, as
shown in section 3.1.3.2), into a DRCF component. The inputs are SystemC files of a
static architecture and a script file, which specifies the names of the candidate
components and the associated design parameters, such as configuration latency. The
tool contains a hard-coded DRCF template. It first parses the input SystemC code to
locate the declarations of the candidate components (The C++ parser is based on
Opencxx [152]). Then the tool creates a DRCF component by filling the DRCF

46

template with the declarations and making the appropriate connections. Finally, in the
top-level structure, the candidate components are replaced with the generated DRCF
component. During simulation, data related to reconfiguration latency will be
automatically captured and saved in a text file for analysis. A VCD (Value Change
Dump) file will also be produced to visualize the reconfiguration effects.

3.1.4 Link to low-level design

The low-level design is divided into detailed design and implementation design. The
output of the detailed design is the intermediate representation of the system, in which
SW is represented as C or assembly code and HW is represented as RTL-HDL code.
The implementation is the phase where binary code for SW, bitstream for RTR HW
and layout for ASICs are generated.

In our approach, automatic code generation for low-level design is not provided and
designers should manually or using other tools transform the SystemC representation
of the reconfigurable system to low-level code, such as C code for SW implementation
and VHDL code for HW implementation. The implementation of the reconfiguration
is technology-dependent and is outside the scope of the design method.

In our work, we used the Dynamic Circuit Switching (DCS)-based technique [153] to
carry out the cycle-accurate co-simulation between the functions mapped onto the
RTR hardware and the functions mapped onto the static part of the system. A VHDL
module for each of the functions mapped onto the RTR hardware is manually created.
Multiplexers and selectors are inserted after the outputs of the modules and before the
inputs of the modules. They are automatically switched on or off according to the
configuration status. In the cycle-accurate simulation model, the reconfiguration is
modeled as pure delay.

3.2 A WCDMA detector case study

We selected a WCDMA detector [154] design case to validate the SystemC-based
approach. We targeted on an RTR-type of implementation and the implementation
platform was the VP20FF1152 development board from Memec Design group [155],
which contains one Virtex2P XC2VP20 FPGA [156].

47

3.2.1 System description

Channel
estimator

Adaptive
FIR

Multipath
combining

Correlator
bank

Frame
& Slot

sync

De-
Interleaver

Detector
Channel
decoder

RF and
Pulse shaping

Searcher

Figure 9. The WCDMA base-band receiver system.

The whole WCDMA base-band receiver system is depicted in Figure 9. The case
study focuses on the detector portion (the shaded area in Figure 9) of the receiver and
a limited set of the full features were taken into account. The detector case used a 384
kbits/s user data rate without handover. The detector contains an adaptive filter, a
channel estimator, a multi-path combiner and a correlator bank. The adaptive filter is
performing the signal whitening and part of the matched filtering traditionally
implemented with the RAKE receiver. The channel estimator module calculates the
phase references. In the combiner part, the different multi-path chip samples are phase
rotated according to the reference samples and combined. Finally, the received signal
is de-spread in the correlator bank.

When compared to traditional RAKE-based receiver concepts, this WCDMA detector
achieves 1�4 dB better performance in vehicular and pedestrian channels. The detector
thus provides performance benefits in more challenging channel conditions. As the
traditional RAKE concepts contain several correlators for tracking the multi-path
components, this detector contains a single channel equalizer for performing multi-
path correction. This results in improved scalability, since increasing multipaths or
data rates would mean increasing the amount of early/on-time/late correlators in the
traditional RAKE-based concepts.

3.2.1.1 Adaptive filter

Regardless of the data rates or channel configurations required by the specification,
the adaptive filter block is unchanged as it simply processes chip samples before the
de-spreading takes place. Extendibility aspects are also not a problem as no changes

48

are required to support other demands. The adaptive filter is implemented by using
basic FIR filtering structures with a delay line and taps for extracting complex sample
values to be multiplied with the tap coefficients. The implementation is fully parallel,
so the number of multiplier units for coefficient multiplication in both I and Q
branches and the units needed for calculating new coefficients equal the number of
taps in the filter.

3.2.1.2 Channel estimator

The function of the estimator is to de-spread the CPICH (Common Pilot Channel)
chips on different multi-paths with correctly timed spreading and channelization
codes. Then the received and de-spread CPICH symbols are multiplied with the complex
conjugates of the CPICH pilot pattern. The output is channel estimates for different
multi-paths, which are used in the combiner to rotate received chips in different multi-
paths before combining, in order to match their phases and amplitudes. The channel
estimator receives timing information from the searcher block. This includes the delay
information about multi-paths at a specified delay spread. The channel can therefore
be thought of as an FIR filter with a number of taps and with most taps zero-valued.
The task of the channel estimator is to find the tap values for those taps that the
searcher determines to be non-zero. The CPICH channel estimate over one slot is
formed by integrating over the number of symbols and then it is scaled. It is used for
actual phase correction of the received chips. The CPICH estimates are used as
channel references for every data channel.

3.2.1.3 Combiner

As the base station transmits the pilot symbols through the channel, the terminal
receives the directly propagated symbols and the delayed multi-paths. As the pilot
symbols are known beforehand, the channel tap coefficients for each multi-path can
be calculated. The different multi-path chip samples are first phase compensated
according to the channel tap estimates. This is done by multiplying the chip sample
with the complex conjugate of the corresponding multi-path channel tap coefficient.
Finally all the phase compensated chip samples are added together to form an
equalized chip sample.

49

3.2.1.4 Correlator

The function of the correlator bank is to create de-spread symbols from the output of
the multi-path combiner. Combined chips are de-spread by spreading code, which is
formed from scrambling and channelization codes. After de-spreading, chips are
integrated over the symbol period in an integrator and the result is scaled.

3.2.2 System-level design

The design started from the C-representation of the system. It contained a main
control function and the four computational tasks, which lead to a simple system
partition that the control function was mapped onto SW and the rest onto RTR
hardware. The estimation tool was used first to produce the resource estimates. The
results are listed in Table 1, where LUT stands for look-up table and register refers to
word-wide storages. The multiplexer refers to the hardwired 18 x 18 bits multipliers
embedded in the target FPGA.

Table 1. Estimates of FPGA resources required by the function blocks.

Functions LUT Multiplier Register
Adaptive filter 1078 8 91

Channel estimator 1387 0 84
Combiner 463 4 32
Correlator 287 0 17

Total 3215 12 224

Based on the resource estimates, the dynamic context partitioning was done as
following. The channel estimator was assigned to one context (1387 LUTs), and the
other three processing blocks were assigned to a second context (1078 + 463 + 287 =
1828 LUTs). This partition resulted in both balanced resource utilization and less
interface complexity compared to other alternatives.

A SystemC model of a fixed system was then created, which had two purposes in the
design. The first was to use its simulation results as reference data, so the data
collected from the reconfigurable system could be evaluated. The second purpose was to
automatically generate the reconfigurable system model from it via the transformation tool.

50

 DRCF Component

context2
Channel
Estimator

Simulation
 Data Files

Input
Splitter

RISC
Processor

MEM

I/O
control

unit

Bus

Context
Scheduler

C
onfiguration
M

em
ory

Data
Memory

context1
Channel
Estimator

Figure 10. Reconfigurable system model of the WCDMA detector.

In the fixed system, each of the four detector functions was mapped to an individual
hardware accelerator, and pipelined processing was used to increase the performance.
A small system bus was modeled to connect all of the processing units and storage
elements. The channel data used in the simulation was recorded in text files, and the
processor drove a slave I/O module to read the data from the file. The SystemC
models were described at the transaction level, in which the workload was derived
based on the estimation results but with manual adjustment. The results showed that
1.12 ms was required for decoding all 2560 chips of a slot when the system was
running at 100 MHz.

The transformation tool was used to automatically generate the reconfigurable system
model, which is depicted in Figure 10, from the fixed model. The reconfiguration
latency of the two dynamic contexts was derived based on the assumption that the
size of the configuration data was proportional to the resource utilization, the number
of LUTs required. The total available LUTs and the size of the full bitstream were
taken from the Xilinx XC2VP20 datasheet. Some accurate approaches can be used to
derive the reconfiguration latency. For example, the latency is related only to the region
allocated to the dynamic contexts. In the current work, these have not been studied.

51

Figure 11. Simulation waveform shows the reconfiguration latency.

The performance simulation showed that the system required two reconfigurations per
processing each slot of data. This is presented by the cxt0_cfg and cxt1_cfg in Figure
11. When the configuration clock was running at 33 MHz and the configuration bit-
width was 16, the reconfiguration latency was 2.73 ms and the solution was capable
of processing 3 slots of data in a frame.

3.2.3 Detailed design and implementation

In the low-level design phase, the RISC processor model was mapped onto the
hardwired PowerPC core, and the data memories were mapped onto the embedded
block memories. Other components were mapped onto Xilinx IP cores, if
corresponding matches could be found, e.g., the bus model to the Xilinx Processor
Local Bus (PLB) IP core. In addition to the basic functionality, we added a few
peripherals for debugging and visualization. The implementation architecture is
shown in Figure 12. Vendor-specific tools were used in the system refinement and
implementation phases. Other than the traditional design steps for HW/SW
implementation, additional steps for interface refinement, configuration design and
partially reconfigurable module (PRM) design were needed. The PRM is referred to
as the partial area of the target FPGA onto which the two contexts are mapped.

52

bus m
acrobu

s
m

ac
ro

Figure 12. Implementation architecture of the WCDMA detector on the target Virtex
II Pro FPGA.

3.2.3.1 Interface refinement

The number of signals crossing the dynamic region and the static region must be fixed,
since the dynamic region cannot adapt itself for changing the number of wires. In this
work, the step to define the common set of boundary signals shared between the
PRMs is referred to as interface refinement. In Xilinx FPGAs, the boundary signals
are implemented as bus macros [157], which are pre-routed hard macros used to
specify the exact routing channels and will not change when modules are
reconfigured. Because each bus macro is defined to hold 4 signals and there are only a
limited number of bus macros, the boundary signals cannot be over-sized. Therefore,
it is more beneficial to minimize the number of signals crossing the dynamic region
and the static region, which can also relax the constraint during placement and routing.
In this case study, the number of boundary signals was reduced to 82, which
corresponded to the signals connected to the two 16-bit dual-port data memories and
the PLB bus adapter. The implementation then required 21 bus macros.

53

3.2.3.2 Configuration design

This step is to define when and how to trigger the reconfiguration. The behavior of
the DRCF component at the system-level modeling is to automatically capture the
reconfiguration request and generate reconfiguration overhead when needed. In [158],
we describe a technique that can realize this configuration transparence in low-level
implementation. The technique requires a customized bus adapter and a customized
OS kernel. The basic procedure is as follows. All reconfigurable modules are
controlled by SW tasks via memory accesses. When the bus adapter notifies a
memory access to a module, which is not loaded, it will trigger an interrupt and cause
the OS to switch on another SW task. The current SW task that triggers the memory
access (calling the unloaded module) is then blocked, and a reconfiguration request to
load the called module is scheduled. When the reconfiguration is finished, another
interrupt will be triggered, which causes the OS to release the blocked SW task.
Therefore, reconfiguration becomes transparent to SW tasks, and all reconfiguration
requests are automatically handled.

In this WCDMA case study, there was only a single SW task, which was used to
control the four accelerators. It was much easier and cost-efficient to embed the
reconfiguration requests into the SW task instead of using the customized bus adapter
and the customized OS kernel, which would generate unnecessary overhead. The
reconfiguration was implemented using the SystemACE Compact Flash (CF) solution
and the configuration data was stored in a CF card. A simple device driver to control
the SystemACE module was developed and the reconfiguration request was implemented
as function calls to the SystemACE device driver.

3.2.3.3 Partial reconfigurable module design

RTL-VHDL code of the functions mapped onto PRMs was manually generated from
the top-level C code. Synthesis results of the four functions are listed in Table 2.
When considering the estimation, the results are over-estimated at about 55% on
average. The main reasons for this derivation are that: 1) the estimator assumes fixed-
length computation for all variables but in implementation some variables require
only bit-level operations, 2) the estimator maps all multiplexers directly to LUTs but
real synthesis tools usually utilize the internal multiplexers in individual logic
elements [30]. Although there is a certain amount of deviation of the estimates, we
can already use the results to make reasonable partitioning decisions. For the PRM,

54

the Xilinx module-based partial reconfiguration design flow [157] was used. First,
each of the four detector functions was implemented as a single block. Then a context
wrapper that matched the boundary signals was used to wrap the channel estimator as
one module and the other three as another module. The static part was assigned to the
right side of the FPGA (SLICE_X44Y111:SLICE_X91Y0), because 33 out of the 36
IO pads used are on the right side of the FPGA. The dynamic region was on the left
side of the FPGA (SLICE_X0Y111:SLICE_X43Y0). The three IO pads that were on
the left side were routed to the right side via a bus macro. The resource utilization of
the placed and routed modules is presented in Table 3. The size of the configuration
data is 279 KB for context 1 and 280 KB for context 2. The reconfiguration latency is
about 4.3 ms. There are two contexts, and thus the total configuration latency for
processing one slot of data is 8.6 ms. Including the data processing time, the total time
spent on one slot of data is 9.66 ms.

Table 2. HW synthesis results.

Functions LUT Multiplier Register (bits)
Adaptive filter 553 8 1457

Channel estimator 920 0 2078
Combiner 364 4 346
Correlator 239 0 92

Routed PRMs on the dynamic region are shown in Figure 13. Context 1, which
contains the channel estimator, is shown in Figure 13(a), and context 2, which
contains the other three modules, is shown in Figure 13(b). In addition, a routed
design after module assembly is shown in Figure 14. The assembled design is the
integration of context 2 and the static part. The bus macros that are used for providing
reliable connections for the boundary signals are marked by the block in the middle.

Table 3. Resource utilization in Xilinx XC2VP20.

 LUT BRAM MUL Reg/bit PPC
Static 1199 41 0 1422 1

Context 1 941 4 0 2083 0
Context 2 1534 6 12 1855 0

55

(a) context: channel estimator (b) context: adaptive filter, combiner,
correlerator

bus macros bus macros

Figure 13. Routed design of PRM on the dynamic region.

Area for
Dynamic
Context Area for

Static Part

PPC
GPIO
SystemACE
UART
PLB
RAM Controller

bus macros

Figure 14. The assembly of context 2 and the static part.

56

3.2.3.4 Co-verification and execution

The EDK design suite [159] was used to create the simulation files for the complete
system. However, the tool set did not provide the support to integrate the two
dynamic contexts and the static context into a single simulation environment. A DCS-
based VHDL wrapper [153] was manually created to enable the integration of the two
dynamic contexts for simulation. Reconfiguration latency was estimated according to
the SystemACE datasheet. Modelsim [160] was used as the simulation environment.
In the SW side, SW code was compiled and stored as data into Block RAM. A
PowerPC instruction-set simulator (ISS) was linked to Modelsim using the SWIFT
interface [160] to perform HW/SW co-simulation.

The iMPACT [161] tool was used to transform the configuration files into SystemACE
file format, and these configuration files were stored in a 128 MB CF card. During
execution, a complete system (integration of the static part and context 1) was initially
downloaded to the FPGA using the iMPACT, and then the partial bitstreams were
automatically loaded by the SystemACE module when necessary.

3.2.4 Comparison with other implementation alternatives

In addition to the implementation of the dynamic reconfiguration approach, a fixed
hardware implementation and a pure software implementation were made as reference
designs. In the fixed-hardware implementation, the processing blocks were statically
mapped onto the FPGA as accelerators and the scheduling task was mapped onto SW
that ran on the PowerPC core. The resource requirements were 4632 LUTs (24% of
available resources), 55 Block RAMs (62%) and 12 Block Multipliers (13%). The
system was running at 100 MHz. The execution time for processing one slot of data
was 1.06 ms. For our dynamically reconfigurable system, the required resources are
calculated by summing up the required resources of the static parts and the largest
ones of the two contexts. Considering LUTs, which are the main elements in FPGA,
the dynamically reconfigurable system requires 2733 LUTs (1199 LUTs for the static
part and 1534 LUTs for context 2), as shown in Table 3. Compared to the fixed reference
system, the dynamic approach achieved a resource reduction of more than 40% in
terms of the number of LUTs, but at the cost of eight times longer processing time.

57

For the full software implementation, the design was done as a standalone approach
and no operating system was involved. Everything was running in a single PowerPC
core and data were entirely stored in internal BRAMs. For the same clock frequency,
the processing time of one slot of data was 294.6 ms, which was over 30 times of the
processing time in run-time reconfiguration case, 9.66 ms as shown in section 3.2.3.3.
This did not fulfill the real-time requirements.

3.3 Analysis and discussion

The main advantage of the SystemC-based approach is that it can be easily embedded into
an SoC design flow to allow fast design space exploration for different reconfiguration
alternatives without going into implementation. This is achieved by our system-level
supporting tools and the modeling method of DRHW. We developed a high-level
synthesis-based HW estimator, which can produce HW resource estimates for
algorithms that are represented in ANSI-C code. This helps designers in the early
phase of the design to make reasonable partitioning decisions without going into the
implementation details, and therefore reduce the design time. In our DRHW modeling
technique, the components that are mapped onto fixed HW accelerators and the
DRHW are modeled using the same interface. Therefore, a component can be easily
moved in to and out from DRHW when exploring the design space. This also helps to
reduce the coding effort and thus makes the design space exploration process fast. In
addition, to further reduce the coding effort, we have developed a SystemC code
transformer that can automatically generate SystemC code of DRHW from existing
SystemC code. Considering the design at a detailed level and implementation level is
time consuming and can take from weeks to months, the SystemC-based approach
can help to avoid re-design in the early design phase.

Comparing our design method and others is not feasible, because adopting a new
design method and flow requires a large amount of economic as well as human effort.
In addition, quantitatively evaluating the design flow is not practical, since most
design-related attributes, such as design time and number of lines of target code, are
in fact very dependent on designers and their experiences. In this work, the feasibility
of the design method is studied by applying it to a real design case. Through the
design case, the estimation approach and the DRHW modeling approach have shown
their usefulness by providing reasonably accurate results without going into low-level
implementation. The HW resource estimates were used to guide the context partitioning

58

process, which resulted in a balanced partitioning decision. The performance impact
of reconfiguration overhead was quickly revealed through performance simulation,
where the DHRW modeling technique was applied.

The potential benefit of using the run-time reconfiguration approach is obviously the
significant reduction of reconfigurable resources. Compared to a completely fixed
implementation, the reduction of LUTs is more than 40%. Compared to a full
software implementation, the run-time reconfiguration approach is over 30 times
faster. The commercial off-the-shelf FPGA platform caused limitations on the
implementation of run-time reconfiguration. Although the selected approach used
partial reconfiguration, the required configuration time significantly affected the
performance in the data-flow type WCDMA detector design case. The ratio of
computing to configuration time is about 1/8 in this design case. This value shows
that configuration overhead must be effectively managed in order to gain benefit of
using DRHW. In the following chapters, we will present several techniques to reduce
the negative impact of the reconfiguration overhead.

59

4. Task scheduling approaches for run-time
reconfigurable devices

4.1 Introduction

As presented earlier, the flexibility of DRHW allows such devices to be shared by
tasks in a time-multiplexing manner. With the multitasking feature, DRHW tasks can
be managed similarly to those in multiprocessor systems. However, one challenging
issue in using DRHW is how to manage configuration. The RTR that enables the
multitasking feature results in the configuration overhead. There are different
approaches [97] to hiding or reducing configuration latency, such as configuration
prefetching and configuration caching. At the design level, the concern is how to
apply these techniques in the task scheduling process in order to effectively and
efficiently hide configuration latency.

Another difference from multiprocessor scheduling is that task allocation needs to be
carefully managed in order to efficiently utilize the DRHW. In multiprocessor
scheduling, the target system usually consists of a number of homogeneous
processors, and a task can be mapped onto any processor without much difference
from a scheduling point of view. However, in DRHW scheduling, allocating a task to
an inappropriate area can cause fragmentation of the reconfigurable logic and
therefore prevent new tasks from being loaded. All these RTR-specific features make
DRHW scheduling more complicated than the scheduling in a multiprocessor
environment. In this chapter, we present techniques that optimally or near optimally
schedule tasks onto DRHW.

As presented in section 1.2.2, various task scheduling techniques for DRHW have
been proposed. Similar to multiprocessor scheduling, there are in principle three
different scheduling approaches. The first is static scheduling, in which execution
orders are decided at design time. It is suitable when tasks have known dependencies.
The second is dynamic scheduling, in which all decisions are made at run-time.
However, there is a stringent time-limit to make decisions, and thus only simple
scheduling algorithms can be applied. The third is quasi-static scheduling, in which
the execution orders are determined partially at design time and partially at run-time.
This approach is interesting as it can make decisions based on the current run-time
status but does not need to carry out all the calculations at run-time.

60

Because quasi-static scheduling has the advantage of balanced efficiency and
performance, we use it as the basic framework in our approach. Our quasi-static task
scheduling is divided into two parts: design-time scheduling and run-time scheduling.
At design time, scheduling is preformed for tasks of each individual application, and
the main focus is to use configuration prefetching to hide configuration latency. For
each individual application the design-time scheduler produces a number of possible
options. Each option corresponds to an optimal or near-optimal scheduling under the
setting of the number of tiles on the device. We mark each option as a pareto point,
and the scheduling result contained in it is called a pareto profile. During execution,
when an application is ready the run-time scheduler selects a suitable profile based on
the current device status. In fact, our quasi-static scheduling approach shares an idea
similar to the one in [121]. However, the main difference is how the configurations
are managed. Our contributions are highlighted as follows.

! The focus in design-time scheduling is to provide optimal scheduling solutions
for a group of tasks whose dependence is known at design time. Three
scheduling techniques with different problem-solving strategies are developed
and quantitatively evaluated in our work.

! For the run-time scheduling, we propose a novel technique called configuration
locking. The main idea is to dynamically monitor the running tasks and always
lock the configurations of a number of the most frequently executed tasks on the
device in a way that the resources occupied by these locked tasks cannot be
evicted by any ready task. (A ready task means that the task is ready to be executed.)
This is similar to the cache locking technique [162] in a general memory system.

4.2 Target models

4.2.1 Device model

We use a generic configuration model as the device model. It consists of a number of
continuously connected homogeneous tiles and each tile consists of the circuit and its
own configuration-SRAM that controls the circuit, as described in Figure 15. A task
that requires m tiles of resources can use any set of m continuously connected tiles. A
crossbar connection is used to connect the configuration SRAMs of the tiles to a
number of parallel configuration controllers. The crossbar ensures that any configuration
SRAM can be accessed by any configuration controller, but only one at a time. Data

61

transfers among tiles and between tiles and the rest of the SoC are all through the
communication network. A thorough discussion of the parallel configuration model is
presented in Chapter 5.

The model can be described using the following parameters: 1) Ntile, the number of
tiles; 2) Nctrl, the number of configuration controllers; 3) SIZE, the size of a single tile;
and 4) CL, the configuration latency of a single tile. To present the generality of the
model, we provide two simple examples for setting these parameters. If we set
parameter Nctrl to 1, the model then describes a partial reconfigurable device, such as
Virtex devices [27]. If we set the SIZE to a very high value such that a single tile is
large enough to hold a task, the model can then be used to describe a number of
individual tiles on a network-on-chip (NoC) platform.

Tile 3

Tile M

Tile 4

crossbar
connection

configuration
controller 1

m
ultiple read-port

m
em

ory or m
em

ory
banks for

configuration data

Tile 1
Tile 2

configuration
controller 2

configuration
controller N

logic configuration SRAM
com

m
unication

netw
orks

Figure 15. A generic parallel reconfiguration model.

4.2.2 Task model

Most applications of an embedded system are independent from each other, although
occasionally they are linked together by users to achieve a particular purpose. For
example, when a user wants to use a mobile device to send an edited picture from a
live music concert, first he uses the device to capture the wanted view and uses an
editing application for inserting text, and then he sends it through as a multimedia
message. In this scenario, applications for image encoding, image processing and
communication are called in sequential order. However, this dependence is forced by
users, and it is not explicit during the application development stage.

62

In our approach, such user-level dependence is not considered, and each application is
treated as an independent unit. However, each application might consist of a number
of closely dependent tasks, which can be modeled as a directed-acyclic graph (DAG).
In the DAGs, nodes represent tasks and edges represent dependencies of the tasks.
Dependencies crossing different applications are not modeled and task reuse for
different applications is not applied, as we consider that such situations rarely happen
in real cases. Applications can be non-periodic or periodic with soft deadlines. A soft
deadline means that a process should but need not necessarily finish its execution by
the deadline. For a periodic application, tasks from the current period cannot start
before all tasks from the previous period have finished. At run-time, applications are
triggered either periodically or sparsely without pre-defined orders.

Dependent tasks of an individual application are modeled as a DAG, G(V,E), where
V = {j1,j2,�, jn} is a set of nodes that represent the tasks and E is a set of edges that
represent the dependence of the tasks. A task is ready to run when all of its
predecessors have finished. There are two attributes for a task i, execution time, RTi,
and the number of required tiles, Ri. However, normal DAG representation is not
enough as configurations are explicit processes but do not explicitly appear in the
DAG. For our purpose, we use an extended DAG G+(V+,E+). Extra configuration
nodes V´ are added with a single node representing the configuration of one tile. Extra
edges E´ are constructed from V´ to V, because configurations have to precede
execution. Mathematically, the relationship between the normal DAG and the
extended DAG is VVV ′=+ U and NNN ′=+ U . As an example, Figure 16(a) shows
a normal DAG of 4 tasks and Figure 16(b) shows the extended DAG where C<i,j>
represents the configuration of the jth section of task i.

63

task 1
3 tiles

task 2
2 tiles

task 3
1 tile

task 4
2 tiles

run time = 2

run time = 3 run time = 2

run time = 3

(a) DAG

task 2 task 3

task 4

(a) extended DAG

task 1

>< 1,1C >< 2,1C >< 3,1C

>< 1,2C >< 2,2C

>< 1,4C >< 2,4C

>< 1,3C

Figure 16. DAG and extended DAG.

4.3 Static scheduling approaches

The scheduling problem at the design-time phase is defined as searching for a valid
task schedule that minimizes the overall execution time of a set of dependent tasks
over a given DRHW model. This scheduling problem is very similar to multiprocessor
scheduling, in which the objective is to map a set of dependent tasks onto a number of
processors with the goal of minimizing the overall execution time. However, our
scheduling problem for run-time reconfiguration is more complicated, because the
task allocation, configuration prefetching, task dependence and configuration-task
dependence all need to be managed together under the constraints that both the
number of computation resources and the number of configuration resources are limited.

In this section, we present three task schedulers that are from different domains of
problem solving. The first is a heuristic approach developed from traditional list-
based schedulers [33]. The second is based on a full-domain search using constraint
programming (CP) [34]. The last is a guided random search implemented using a
genetic algorithm (GA) [35].

64

4.3.1 The list-based scheduler

List-based scheduling has been extensively used in task scheduling for single
processor or multiprocessor environments, high-level synthesis, or similar situations,
where the problem can be represented as a DAG. The basic idea is to sort the DAG
nodes based on their priorities and always schedule the highest priority node first. The
priority usually refers to the urgency of a node, and the nodes in the critical path have
higher priorities. In DRHW scheduling, issues such as task allocation, configuration
scheduling and configuration prefetching can also affect the scheduling results.
Therefore, a new technique to calculate the task priority is needed.

The principle of configuration prefetching is to load tasks whenever there are tiles and
configuration controllers available, instead of after the tasks become ready. In the list-
based scheduler, each task has a priority, which represents the urgency of the
configuration of the task. The task with the highest priority is scheduled first when
free resources are available. The priority function consists of three elements: the
mobility, the gap and the delay. The mobility shows the urgency of execution, and a
low mobility value means a high priority. The gap shows how much benefit a task can
get if its configuration immediately starts. A low gap value means a high priority. The
delay shows how many additional configurations have to be delayed if the
configuration of the task cannot start immediately. It is obvious that prefetching
successors prior to predecessors does not bring any benefits. Therefore, a task with
more successors has a high delay value, which means a high priority.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

Insert_T asks (V ,P Lis t);
s_ tim e = 1;
w hile(PL is t) do
 C a lcu la te_R TR _P rio rity (PLis t,s_tim e);
 w h ile(S earch_for_F ree_R es(s_ tim e) 0) do
 task = F irs t(PLis t);
 m = R equired_T iles(task);
 S earch_for_C and idate_T iles(tiles,m);
 S chedu le_C onfigura tion(tiles,task);
 run_tim e = C alcu la te_R eady_T im e(task);
 S chedu le_Task(tiles ,task,run_tim e);
 D e le te(PL ist, task);
 if(P L is t =) then
 b reak;
 end if;
 end w h ile ;
 s_ tim e = s_tim e +1;
end w h ile ;

≠ φ

≠

φ

Figure 17. List-based scheduler.

65

The pseudo code of the algorithm is shown in Figure 17. The algorithm iterates
starting from scheduling time (s-time) 1 and stops when all tasks have been scheduled,
as in (1)�(3). In each iteration, the priorities of all the unscheduled tasks are calculated,
as in (4). The algorithm searches the DRHW device for any pair of a free tile and a
free configuration controller. The scheduling of configurations and executions is
continuously performed as long as such a pair exists, as in (5)�(16). Upon scheduling,
candidate tiles are selected for the task and configuration of the task is then scheduled,
as in (7)�(9). Due to prefetching, a task might not be ready when its configuration has
finished. The ready time is then calculated, and execution of the task is scheduled
upon that time, as in (10)�(11). When a pair of a free tile and a free controller cannot
be found, the s-time is increased, as in (17). Then, free resources might be available at
the new s-time.

A brief explanation of the important functions is as follows. The function
Calculate_RTR_Priority calculates the priorities of the tasks and sorts them according
to the priority values. The value is calculated as a/mobility+b/gap+c*delay, where a,
b and c are weight values decided by the designers. The mobility is calculated as
(ALAP s-time) � (ASAP s-time) +1. The gap is calculated with the assumption that the
configuration of the task starts at s-time and the task can start to run at ASAP s-time.
Its value is equal to (ASAP s-time) � (configuration_end s-time). Offset values are
added to the gap values to make all of them positive. The delay value is equal to the
normalized value of the total number of successors of the task. The function
Search_for_Free_Res returns TRUE if a pair of a free tile and a free configuration
controller are found at s-time. The function Search_for_Candidate_Tiles(tiles, m)
returns the m continuously connected tiles on which the configuration can finish
within the shortest time. The function Schedule_Configuration uses a resource-
constraint ASAP scheduling approach to schedule the configuration of the task onto
the selected tiles. Its return value represents the configuration finish time. The function
Schedule_Task sets the task to run at run_time. The function Insert_Tasks(V,L) puts the
tasks in V into List L. The function First(L) returns the first task in L. The function
Delete(L, T) deletes element T from L. The function Required_Tiles(T) returns the
number of required tiles of task T. The function Calculate_Ready_Time returns the
earliest s-time at which both configuration of the task and executions of all its
predecessors can be finished.

66

4.3.2 The constraint programming approach

4.3.2.1 Introduction to constraint programming

Constraint programming represents one of the closest approaches computer science
has yet made to the Holy Grail of programming: the user states the problem, the
computer solves it [163]. CP consists of describing constraints and solving such
constraints. Programmers state the problem requirements, but do not need to specify
how to meet these requirements. Constraint solvers, constructed based on well-known
algorithms, such as branch & bound (B&B) [164], will find a solution that satisfies all
of the constraints.

Specifically, the problem that we are dealing with belongs to a finite domain. The
satisfaction of constraint problems over a finite domain is usually referred to as the
constraint satisfaction problem (CSP). In this paper, our goal is to find an optimal
schedule, and the B&B technique is used to solve it. Its basic idea is to keep tracking
the best solution and to try to improve it until the entire search tree has been explored.
Because B&B covers the complete search space, this method is proven to find a
global optimal solution.

4.3.2.2 Constraint models

In this section, the constraint models that characterize the DRHW task scheduling
problem are presented using implementation-independent mathematical formulas.
There are five constraints and one optimization goal.

A. Definition of terms

! iT : The start execution time of task i

! iRT : The duration of the execution time of task i

! iR : The number of required tiles by task i

! >< ni, : The nth segment of task i

! >< niTile , : The tile that is allocated to the nth segment of task i

! >< niC , : The start configuration time of the nth segment of task i, on the >< niTile , .

67

B. Task dependence modeling

This constraint states the task dependence. Basically, the start execution time of any
task has to be larger or equal to the end execution time of any of its predecessors.
Therefore, task dependence can be described using the following constraint:

jiiEji TRTT ≤+∀ ∈),((1)

C. Configuration dependence modeling

This constraint states the dependence between the execution of a task and the
configurations of the task. A task has to be loaded before its execution, thus the start
execution time of any task has to be larger or equal to the end of the configuration of
all assigned tiles. Mathematically, the constraint is:

iniEin TCLC ≤+∀ ><′∈ ,),((2)

D. Tile allocation modeling

The allocation constraint states that a task, which requires more than one tile, must be
assigned to continuously connected tiles. This is equivalent to setting the tile allocated
to the (n+1)th segment of task i incrementally to the next tile allocated to the nth
segment of the task i. Mathematically, the allocation constraint is represented as:

[] 1,1,,1)1,(, +=∀ ><>+<∈+∈ niniiRnnNi TileTile (3)

E. Resource constraint modeling � tile

Tiles are shared resources. A task starts to occupy a tile when the configuration of the
tile starts, and it releases the tile when it finishes executing. Therefore, if a tile is
allocated to two different tasks, the time frames during which they occupy the tile
cannot overlap. For example, Figure 18 shows a situation that two independent tasks i
and j, which require three and two tiles respectively, share tile number 3. Legal
schedules are that either >< 1,jC is scheduled after task i finishes execution, shown in
Figure 18(a), or >< 3,iC is scheduled after task j finishes execution, shown in Figure
18(b). When the two tasks are assigned to share different tiles, the constraints will
change correspondingly.

68

We construct two kinds of tile constraint models. The first is for tasks that do not
have predecessor-successor dependence. It is formulized as:

))(
))()((
))()(((

,,

,,,

,,,

><><

><><><

><><><

≠
∨≤+∧=
∨≤+∧=

njmi

mijjnjmi

njiinjmi

TileTile
CRTTTileTile
CRTTTileTile

[] []jRniRmNji ,1,,1,),(∈∈∈∀

(4)

The basic idea is to force the configurations of one task to be scheduled on shared
tiles after the end execution time of the other task. These are shown in the first two
lines of the expression. Certainly, if two tasks do not share tiles, such constraints do
not apply. This is shown in the last line.

The second constraint is for dependent tasks. If task i precedes task j, then the
constraints []iRmimi TCLC ,1, ∈>< ≤+ and iij RTTT +≥ can be propagated to

[]iRmmij CT ,1, ∈><≥ , which is contradictory to the constraint ><≤+ mijj CRTT , . In fact this
means that on shared tiles, configurations of successor tasks cannot start before those
of predecessor tasks. Therefore, we need to model only the case represented in Figure
18(a). The constraint can then be simplified as:

))(
))()(((

,,

,,,

><><

><><><

≠
∨≤+∧=

njmi

njiinjmi

TileTile
CRTTTileTile

[] []jRniRmNji ,1,,1,),(∈∈∈∀

(5)

schedule step1 2 3 4 5 6
7 8 9

tile 1

tile 2

tile 3

tile 4

(a)

>< 1,iC

>< 2,iC

>< 3,iC >< 1,jC

>< 2,jC

schedule step1 2 3 4 5
6 7 8

tile 1

tile 2

tile 3

tile 4

(b)

it

jt

>< 1,iC

>< 2,iC

>< 3,iC>< 1,jC

>< 2,jC

it

jt

Figure 18. Tile constraint modeling.

69

F. Resource constraint modeling � controller

Because there are a limited number of configuration controllers, they are also shared
resources. The number of tiles being configured at any given time cannot exceed this
limit. This can be mathematically modeled as:

[] [])),((,1, ,)max(,1 ∑ ∈∈ ><∈+∈ ≤∀ iRmNi miNiiRTiTt NCCtB , where

⎩
⎨
⎧ +<≤

= ><><
>< else

CLCtCif
CtB mimi

mi ,0
,1

),(,,
,

(6)

G. Optimization goal

The objective of the approach is to find a schedule that minimizes the overall
execution time. To achieve this goal, we minimize the maximum of end execution
times of all tasks in the labeling step:

minimize(max Niii RTT ∈+)() (7)

4.3.2.3 Constraint implementation

Both the constraints, described from B to E, and the optimization goal are
implemented as they are in the Prolog language [164]. The constraint F is
implemented using a complex constraint cumulative, which can be efficiently solved.
In fact, the constraints D and E can be jointly implemented using the complex
constraint diff with additional dependence constraints. However, because the
configurations are crossly stated both in E and F, this results in less efficient solving
in terms of the computer run-time in our experimentation.

4.3.3 The genetic algorithm

4.3.3.1 Introduction

The GA is a guided random search technique inspired by evolutionary biology and
natural genetics [165]. The basic idea is to iteratively improve the results (individuals)
through randomly combining (crossover) and modifying (mutation) the previous

70

results until some termination criteria are satisfied. In each generation, preferred
individuals survive, thus each generation tends to be better than the previous one. Its
implementation is usually based on a loop structure, as follows.

step 1: Create an initial population (a group of solutions).

step 2: Evaluate the fitness of all individuals in the current population. (Fitness is
a measurement of the quality of an individual.)

step 3: Select individuals to reproduce, and breed new offspring through
crossover with high probability and mutation with low probability.

step 4: Stop if termination criteria are satisfied, otherwise go back to step 2.

The chromosome (strings that represent solutions) and the evaluation process are
problem-specific. The genetic operators (crossover, mutation, evaluation and
selection that operate the chromosome to evolve into new offspring) control the
evolution process. We use the implementation in a multiprocessor scheduler [166] to
illustrate these basic ideas. In [166], a solution is represented with two-dimension
strings {S1, S2, �, Sn}. Each string Si represents the tasks scheduled on the processor
Pi and the order of appearance is the execution order of the tasks.

The crossover allows two parents, par1 and par2, to mate and generate two new
individuals, child1 and child2. The crossover can be seen as a way of achieving the
guided search, because new solutions are directly derived from the old ones. In [166],
a random task is first selected, and then the crossover site (a place to cut a string into
half) for each string Si is generated based on the height value [166] of the selected
task. The height values implicitly determine task precedence. Then, string Si of child1,
is generated by appending the right string (the partial string after the crossover site) of
the Si of par1 to the left string (the partial string before the crossover site) of the Si of
par2. The offspring, child2, is built in the same way after swapping the parents.

The mutation generates a new individual by randomly modifying the chromosome of
another individual. It is a technique to increase the randomness of the search to avoid
solutions being trapped in local optimal points, which is the ultimate result if only the
crossover is used. In [166], the mutation is performed by randomly changing the
positions of two tasks with the same height.

71

The evaluation measures the fitness of all individuals, so the worst results can be
eliminated in a later phase. In [166], the fitness of an individual i is calculated as
max_length � current_lengthi + 1, where max_length is the longest schedule length in
the current generation and current_lengthi is the schedule length of individual i.

The selection picks up some individuals to reproduce offspring. The natural rule is
that better ancestors tend to generate better offspring, because the �good� genes are
passed on. In [166] and other GA approaches, the roulette wheel is a common style of
implementing this GA operator. The basic procedure is to assign each individual with
a slot size in the roulette wheel that is proportional to its fitness value. Then a random
number is generated as an index to the roulette wheel, and the individual that covers
the index is selected to reproduce. Because an individual with a larger fitness value
covers a larger slot, it then has higher chance of being selected to reproduce. Towards
our problem, these problem-specific GA issues are described in the following subsections.

4.3.3.2 Coding of solutions

The coding style in multiprocessor scheduling cannot be applied to our problem,
because 1) a task might require multiple tiles, and 2) both tasks and their
configurations need to be scheduled. In our approach, we use a pair of two-dimension
strings to represent an individual. The first two-dimension strings {Tile1, Tile2, �,
Tilen} are the task strings (T-strings), similar to those in [166]. They represent the
scheduling results of tasks on the tiles. Each tile has a corresponding string, and a
string Tilei represents the tasks scheduled on the ith tile. The order of the tasks on
string Tilei is then the execution order of these tasks on the ith tile. This is similar to
the strings in multiprocessor scheduling. However, for a task that requires multiple
tiles, its instance appears on all of the tiles assigned to it.

The second two-dimension strings {Ctrl1, Ctrl2, �, Ctrln} are the controller strings
(C-strings). They represent the configuration scheduling results. Each controller has a
corresponding string, and a string Ctrli represents the configurations scheduled on the
ith controller. The same as in the task strings, the order of appearance on Ctrli is the
configuration order using the ith controller. An example of two-dimension strings and
the corresponding scheduling results of the extended DAG in Figure 16 are shown in
Figure 19.

72

tile 1: (task 1, task 4)
tile 2: (task 1, task 2, task 4)
tile 3: (task 1, task 2)
tile 4: (task 3)

ctrl 1: (C<1,1>,C<1,3>,C<2,1>)
ctrl 2: (C<1,2>,C<3,1>,C<2,2>,C<4,1>,C<4,2>)

t1 t2

t3

t4

schedule step1 2 3 4 5 6

7 8 9 10 11 12

tile 1

tile 2

tile 3

tile 4

>< 1,1C

>< 2,1C

>< 3,1C
>< 1,2C

>< 2,2C

>< 1,4C

>< 2,4C

>< 1,3C

T-strings

C-strings

schedule step1 2 3 4 5 6
7 8 9 10 11 12

ctrl 1

ctrl 2
>< 3,1C

>< 1,3C

>< 1,1C

>< 2,1C
>< 1,2C

>< 2,2C >< 1,4C >< 2,4C

Figure 19. Gene representation.

Based on the strings of an individual we can derive a new graph by inserting extra
edges for the scheduling dependence into the extended graph G+. We refer to this
graph as the schedule graph (s-graph), and each individual has its own s-graph. The s-
graph is constructed as follows. Firstly, for each two adjacent positions, j and j+1, on
the T-string Tilei, an edge from the task node at the jth position to the task node at the
(j+1)th position is inserted into G+. For example, on the strings as shown in Figure 19,
an edge from task 2 to task 4 is needed, because task 2 is scheduled before task 4 on
tile 2. Secondly, on each T-string Tilei, an edge from the task node at the jth position to
the configuration node, which configures the task at the (j+1)th position onto the ith
tile, is inserted into G+. For example, an edge from task 2 to the configuration node
C<4,2> is needed, because the configuration cannot start before task 2 has finished. In
fact, this edge can replace the first edge by propagating the dependence between the
nodes, but we keep the first one because it can result in an efficient implementation.
Finally, on each C-string Ctrli, an edge from the configuration node at the jth position
to the configuration node at the (j+1)th position is inserted into G+. For example, a
link from C<1,3> to C<2,1> is needed, because they are not allowed to run in parallel and
configuration C<1,3> should precede C<2,1>. So, with the additional links that show the
dependence due to allocation, a schedule graph explicitly presents the execution order
of tasks. The schedule graph for the chromosome given in Figure 19 is depicted in

73

Figure 20, in which the dotted lines with smaller arrows are the additional links that
show the allocation dependence.

>< 1,1C

>< 2,1C>< 3,1C

>< 1,2C

>< 2,2C

>< 1,4C

>< 2,4C

>< 1,3C

Figure 20. Schedule graph with additional links showing allocation dependence.

In our approach, each individual, including all offspring after crossover and mutation,
represents a feasible solution. An individual represents a feasible solution if and only
if it satisfies the precedence constraints and its s-graph is acyclic. This theorem has
been proven in [167] for multiprocessor scheduling (in multiprocessor scheduling, the
s-graph does not contain the configuration nodes and the associated edges). Since we
are dealing with the same type of task graphs (although configuration nodes are added,
they do not change the acyclic properties of the graph), this theorem also applies to
our problem. In our case, the first condition is met as we always maintain task
precedence in each string. The second condition is guaranteed in our genetic operators,
which are described in later subsections.

4.3.3.3 Initial population

The initial population is a group of initial solutions, from which the GA starts to evolve.
In our approach, the initial population is generated through a resource-constraint list

74

scheduling approach, but resources are randomly selected upon scheduling. The basic
procedure of creating an initial individual is as follows.

step 1: Select a ready task node. A task node is ready if all of its predecessor task
nodes are scheduled or if it has no predecessor task node.

step 2: Randomly select controllers for its configuration nodes, and randomly
select tiles for the task node. If it requires multiple tiles, randomly select
continuously connected tiles. Append the task node and its configuration
nodes to the end of the strings of the selected resources.

step 3: If there are unscheduled task nodes, go to step 1. Otherwise an initial
individual is created, and exit.

As nodes are placed based on their execution order, no cycle exists in the s-graph in
all initial solutions.

4.3.3.4 Crossover

The crossover mechanism for multiprocessor scheduling [166] can guarantee that
feasible solutions will be generated. However, a severe drawback is that the optimal
solutions might never be generated. Correa et al. [167] fixes the problem with an
improved crossover. In our work, we use this improved crossover and extend it for the
task scheduling problem of DRHW.

The basic idea to guarantee feasibility in [166, 167] is as follows. Task nodes in the
strings must be ordered based on their height values in order to satisfy precedence
constraints. During crossover, a graph is divided into two acyclic sub-graphs, GL and
GR, in such a way that there exist edges only from GL to GR, but not vice versa. The
basic graph G is used in [166], and the s-graph is used in [167]. Then, the crossover
sites are selected in such a way that all nodes in the left-strings belong to GL and all
nodes in the right-strings belong to GR. Therefore, no cycle will be generated when
swapping the right-strings between parents, and thus the offspring are feasible solutions.

In our approach, we use the s-graph of par1 and par2, to generate the two sub-graphs,
similar to [167], but configuration nodes are considered as well. The procedure is as
follows.

75

step 1: Start with a randomly selected task node. Move this node and its
configuration nodes into GL.

step 2: In the s-graph of par1, search for the task nodes that precede the selected
task node, and move these task nodes and their configuration nodes into GL.

step 3: In the s-graph of par2, search for the task nodes that precede the nodes
already in GL, and move these task nodes and their configuration nodes
into GL. Put the rest of the task nodes and their configuration nodes into GR.

The basic idea of crossover is to generate new solutions by combining the parents�
solutions, which in our approach means that part of the strings from par1 and part of
the strings from par2, are transformed into new individuals, child1 and child2. The
crossover is performed as follows, and an example is shown in Figure 21.

step 1: Randomly select a task node and generate the sub-graphs GL and GR from
the s-graphs of both parents.

step 2: Mark the crossover sites in the parents� strings. In each string, all nodes
(task nodes in T-strings, and configuration nodes in C-strings) that occur
before the crossover site must belong to GL.

step 3: Copy the left-strings of par1 to child1. Use par2�s allocation results to
perform ASAP scheduling for the nodes in GR, and convert the results
into the right-strings of child1. A similar process is done for child2.

(task 1, task 4)
(task 1, task 2, task 4)
(task 1, task 2)
(task 3)
(C<1,1>,C<1,3>,C<2,1>)
(C<1,2>,C<3,1>,C<2,2>, C<4,1>,C<4,2>)

par 1

(task 1, task 2)
(task 1, task 2)
(task 1, task 4)
(task 3, task 4)

par 2

(C<1,1>,C<1,3>,C<2,1>, C<4,1>,C<4,2>)
(C<1,2>,C<3,1>,C<2,2>)

(crossover sites are marked with)

(task 1)
(task 1, task 2)
(task 1, task 2, task 4)
(task 3, task 4)
(C<1,1>,C<1,3>,C<2,1>,C<4,1>,C<4,2>)
(C<1,2>,C<3,1>,C<2,2>)

child 1

crossover

(task 1, task 2, task 4)
(task 1, task 2, task 4)
(task 1)
(task 3)

child 2

(C<1,1>,C<1,3>,C<2,1>)
(C<1,2>,C<3,1>,C<2,2>,C<4,1>,C<4,2>)

Figure 21. Crossover.

76

4.3.3.5 Mutation

In our case, we can separately mutate task nodes and configuration nodes, because
they are two different kinds of nodes. We have totally created three different
mutations and they are used together in the mutation phase.

In the first mutation, only the T-strings are mutated. A task node is randomly selected
and moved to a new location. If the task requires multiple tiles, it will then be inserted
into each of the T-strings that correspond to the selected tiles. Let�s use height(Vi) to
represent the height value of node Vi. Then the place in the new T-string to insert the
task node must satisfy the condition that height(the node before Vi) < height(Vi) <=
height(the node after Vi). The height value of a task node is calculated based on the s-
graph as follows.

(8)

In the second mutation, only the C-strings are mutated. We randomly select a
configuration node and inserted it into a new controller�s equivalent C-string. The
insertion place is selected in a similar way to the previous task mutation technique,
but the height values of configuration nodes are calculated differently. We define the
height value of a configuration node to be equal to the height value of the task node
that it configures.

The last mutation is to rotate the controller assignment for the configuration nodes of
a task. This is done as follows. A task node Ti is randomly selected. If it has N
configuration nodes (N tiles are needed for the task). Then in the C-strings, node
C<i,1> is replaced by C<i,2>, C<i,2> is replaced by C<i,3>, and finally C<i,N> is replaced by
C<i,1>. This mutation is applied only for the task that requires multiple tiles.

Each of the three mutations has its own probability to run in the mutation phase. This
is arranged as shown in pseudo code in Figure 22. In the chromosome, we always
guarantee that the task nodes in T-strings are ordered based on their height values, but
this is not true for the C-strings and there might exist height-inverse in the C-strings
(a node with a higher height is placed before a node with a lower height). When the
scheduling dependences in the s-graphs are randomly modified in mutation, such
height-inverse might cause cycles in the new s-graphs. Therefore, we must sort the

77

C-strings based on their new height values at the end of the mutation phase to ensure
the feasibility of new individuals.

if (random_number() > T-strings mutation probability)
mutate T-strings;

else
rotated = false;
if (the selected task node needs more than 1 tile)

if (random_number() > C-strings rotation probability)
rotate C-strings; rotated = true;

end if
end if
if (not rotated)

mutate C-strings;
end if

end if
update heights and sort C-strings;

if(random_number() > mutation probability)

end if

Figure 22. Arrangement of the three mutation operators.

4.3.3.6 Evaluation and selection

The GA selection is implemented using the roulette wheel style, and fitness is measured
in the same way as in [166]. In our case, because an s-graph deterministically defines
the scheduling order and allocation results, the length of the critical path of the s-
graph is then the schedule length. For example, in the chromosome shown in Figure
19, the schedule length can be derived from the critical path in Figure 20, C<1,1> =>
C<1,3> => t1 => C<2,2> => t2 => C<4,2> => t4.

4.3.3.7 Evolution strategy

We use a fixed population size during evolution. In each generation, new offspring
(80% of the original size in our case) are generated and inserted into the old
population, and then the worst individuals are removed in order to return the
population to its original size.

To decrease the chance that solutions are trapped at a local optimal point, we
dynamically modify the mutation probability. In each generation, if the average
fitness of the current population is equal to the best fitness of the current population,

78

the mutation probability of the next generation is increased by 10% unless it reaches
the upper boundary, 1.0. Otherwise, the mutation probability is decreased by 10%
unless it reaches the lower boundary, the initial mutation probability. The basic idea is
to increase the mutation probability when all of the solutions have converged into a
single point. Therefore, more offspring will be mutated and there will be higher
chances of some offspring being in the region near to globally optimal solutions.

4.4 The run-time scheduling technique

The run-time scheduling is divided into two levels: application level and task level.
When a process is ready, the application-level module selects a suitable pareto profile
for the process based on the current number of free tiles. Therefore, when
interferences with other processes are not considered, the selected profile can
guarantee that the free tiles can be optimally or near-optimally utilized. When there is
no free tile, the ready process is put into a pending queue. Processes in the pending
queue are sorted according to their ready time. The task with the earliest ready time is
put in the front of the pending queue. When free tiles become available, the first task
in the pending queue is selected, and a suitable pareto profile is then used. The
following tasks in the pending queue will be selected until there is no free tile left.

In the task-level scheduling, tasks of all the running processes are managed. For each
individual running process, because the execution order of its tasks is specified in the
selected profile, there is no run-time overhead to schedule the tasks from the same
process. In addition, because each process owns different tiles from others and all the
tasks of the same process are assigned to the tiles the process owns, tasks from
different processes do not overlap on the same tile. So, at any given time, tasks
assigned to the same tile are all from one process and their execution order is
determined at design time. Therefore, there is no need to perform cross-process task
scheduling at run-time as well.

However, current DRHW has only limited configuration resources. In fact, current
commercially available devices have only one configuration port and one
configuration controller. This means that multiple configurations cannot be performed
in parallel. It implies that although tasks from different processes do not interfere with
each other, their configurations might, and their orders affect the scheduling results.
For example, Figure 23 shows two running scenarios of two concurrent processes on

79

a device with four tiles and one configuration controller. In the first scenario, as
shown in Figure 23(b), configurations of application 2 are all scheduled after that of
application 1. In the second scenario, as shown in Figure 23(c), configurations are
performed interleaved. The difference is obvious that in the first scenario the device is
not fully utilized and application 2 suffers from long and unnecessary waiting time
due to an inappropriate scheduling decision for the configurations.

In our approach, the configuration order is dynamically determined for concurrent
processes in order to avoid inefficient utilization of resources as shown in Figure
23(b). The configuration scheduling is done as follows. For tasks from the same
process, their configuration order is defined at design time and the run-time scheduler
simply follows it. For tasks from different processes, if their configurations overlap,
the task that has the earliest start time will be loaded first. The current run-time
scheduler does not deal with the case that a task might occupy more than one tile,
although at design time our schedulers take it into account. This problem can be
solved with run-time task allocation algorithms, which will be studied in the future.

1

2 3

4

5

c1 1 c2 2
c3 3

c4 4
c5 5

Tile 1:
Tile 2:

Tile 1':
Tile 2':

Ctrl: c1 c3 c2 Ctrl: c4 c5

(a) selected profiles of two running applications

c1 1 c2 2
c3 3

c4 4
c5 5

Tile 1:
Tile 2:
Tile 3:
Tile 4:

(b) schedule configurations
at application level

c1 1 c2 2
c3 3

c4 4
c5 5

Tile 1:
Tile 2:
Tile 3:
Tile 4:

Ctrl: c1 c3 c2 c4 c5 Ctrl: c1 c3 c4 c5 c2

Application 1 Application 2

(c) schedule configurations
at task level

Figure 23. Two scheduling scenarios.

4.4.1 Configuration locking technique

The main goal of our configuration locking technique is to improve the efficiency of
configuration caching. Intuitively, caching the most frequently used tasks has better

80

opportunities to reduce the total number of reconfigurations and thus reduce the
configuration overhead. This is shown in a motivation example in Figure 24. We
assume that application 1 and application 2 are two independent periodic applications,
as shown in Figure 24(a). When they are mapped onto a device containing four tiles,
no reconfiguration is needed except the initial ones, as shown in Figure 24(b).
However, when they are mapped onto a resource-limited device that contains only
three tiles, how to reuse loaded tasks can result in significant difference. Figure 24(c)
shows that an inappropriate scheduling causes application 1 to miss its deadline. At
step 12, task 4 is required. Because both tile 1 and tile 3 are being used, tile 2 is
selected and task 2 is evicted for loading task 4, which causes an additional
configuration of task 2 and thus the deadline of application 1 is missed. If we allow
the scheduler to always keep the two most frequently used tasks (in this case task 1
and task 2) on the device, task 2 will not be evicted, and task 4 will be allocated to tile
3 and later loaded at step 13. The result is that both applications can meet their
deadlines, as shown in Figure 24(d).

1

2

3

4
Application 1

period = 4
Application 2

period = 7

Tile 1:
Tile 2:
Tile 3:
Tile 4:

c1 1
c2 2

c3 3
c4 4

1
2

1
2

1
2

1

3
4

Tile 1:
Tile 2:
Tile 3:

c1 1
c2 2

c3 3
c4 4

1
2

1 c2 2

Tile 1:
Tile 2:
Tile 3:

c1 1
c2 2

c3 3 c4 4

1
2

1
2

1
2

1
2

c3 3 c4 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

(a) two periodic applications

(b) scheduling scenario on a device with 4 tiles

(c) on a device with 3 tiles, without preserving resource

(d) on a device with 3 tiles, with preserving resource

deadline of application 1
is missed (the rest of the
schedule is not shown)

2

Figure 24. A motivation example of preserving resources in configuration caching.

81

The motivation example shows the benefit of locking the most frequently used tasks.
However, it is usually infeasible to decide at design time which tasks are the most
frequently used. For example, when using a smartphone, a user might make a phone
call for 10 minutes and then watch movies for the next 30 minutes. Therefore, some
wireless communication tasks will be intensively used in the beginning, but video
decoding tasks for the following 30 minutes. The situation will change if a video call
is started later on. To solve this problem, in our locking technique the run-time
scheduler dynamically counts the times that tasks are executed (when an application
is finished, the counts of its tasks are reset to zero). A number of frequently used tasks
are always locked to avoid being evicted by any ready task. The number of tasks to
preserve (Ntp) is decided by designers at design time. Because one task is locked on
one tile, Ntp also means the number of tiles that are used to preserve the most
frequently used tasks. The number must be less than the total number of tiles, Ntp <
Ntile. Otherwise no tile can be assigned to any ready task.

In the run-time scheduler, a reuse module dynamically checks if any previously
loaded task can be reused for any task of running or pending processes. Only if a task
is cached and ready to run (all its predecessors have finished) is it dispatched. This is
done at task-level scheduling before configurations are scheduled. It should be noted
that when the scheduler checks which task can be reused, it goes through all the tiles,
not only the preserved tiles. The intention of using preserved tiles is to increase the
cache-hit rate by locking the most frequently used tasks on the device, and this does
not prevent us from reusing other tiles.

preserved

runningfree

configuration of a taski is started

the running taski is finished &
order(taski) > Ntp

the running taski is finished &
order(taski) < Ntp

a running taskk is finished on another tile &
order(taskk) < Ntp < order(taski) &
taski is running

(1)

(2)

(3)
(5)

(1)

(2)

(3)

(4)
(4)

a running taskk is finished on another tile &
order(taskk) < Ntp < order(taski)
taski is not running

(5)

Figure 25. Tile state transition diagram.

82

Each tile has its own state, which is maintained by the run-time scheduler and used
during the scheduling process. There are three states: free, preserved and running.
The state free means that any task can be assigned to the tile. The state running means
that a task is assigned to this tile and this task is being loaded, or loaded but not
running, or running. The state preserved means that a task has finished on this tile and
in the future only this task can be assigned to this tile. The state transition diagram is
shown in Figure 25. The function order(taski) returns the position of taski in a list,
which is sorted with decreasing order using the times that tasks are executed. Thus,
order(taski) ≤ Ntp means that taski is now one of the Ntp most frequently used tasks.
The run-time scheduler manages the states of the tiles and makes scheduling decisions
based on these states. When a task is finished, the run-time scheduler updates the
execution counts, sorts the list and decides which tiles are now in the state preserved.
For example, when a task is finished and it is now one of the most frequently used
tasks, the tile on which the task is assigned will be put into preserved, as in transition
(3), otherwise the tile becomes free, as in transition (2). Transitions (4) and (5) mean
that another task, taskk, assigned to a different tile has became more frequently used
and the task, taski, on this tile is not one of the Ntp most frequently used tasks.

4.5 Case studies

The case studies are divided into two parts. The first part concentrates on evaluating
the three static scheduling techniques that have been described in section 4.3. Both
randomly generated cases and task models derived from practical applications are
used. Although configuration prefetching is the main technique used in these
approaches to hide configuration latency, the purpose of this case study is not to
evaluate the benefit of using configuration prefetching, as it has been done in others�
work [115, 116]. Our main focus is to quantitatively study the scheduling efficiency
of these algorithms. This is done by comparing the computer run-time and the
deviation from optimal solutions. A quantitative comparison of our scheduling techniques
with the existing static DRHW scheduling techniques, which are summarized in
section 2.3.3, is not practical, because all these techniques more or less focus on
different problems. The scheduling algorithm in [82] is designed for a HW/SW
partitioning approach, where tasks can also be mapped onto processors. The goal of
the static DRHW scheduling in [120] is to identify the configurations that have the
most negative impact on the system performance. In [98], a list-based approach is

83

used, but it is for task grouping. The genetic algorithm in [134] is designed to solve
the resource fragmentation problem.

In the second part, the configuration locking technique is evaluated with practical
applications and compared with the results where configuration caching is used but no
locking effort is applied. Although our locking technique is embedded into a run-time
task scheduling, comparison with other run-time schedulers is not available. The
reason is that most of such schedulers focus on how to efficiently solve the task allocation
problem in 2D DRHW devices, which however suffer from a very critical problem,
e.g., run-time routing. In addition, some run-time schedulers assume that DRHW
tasks are preemptive, which however results in substantially high switching overhead.

4.5.1 Evaluation of the static scheduling approaches

The list-based heuristic scheduler and the GA-based scheduler are implemented in
C++, and they are included in our design space exploration toolset for DRHW [33].
The toolset can also automatically generate the constraint models for given task
graphs. The constraint models are solved using a third-party tool, SICSTUS finite
domain solver [168]. The computing environment is a workstation equipped with two
AMD Opteron 252 processors, but only one processor actually contributes to the
performance results, because no parallel programming is used in the implementation.

4.5.1.1 Computation effort of the CP-based approach

We used 10 randomly generated task graphs with each graph containing 10 tasks.
These graphs had different levels of depth and different tree structures, so they could
be seen as representations of widely different applications. The number of required
tiles of an individual task was randomly generated with uniform distribution in the
range of [1, 3], and the total nodes of these graphs are in the range of [28, 32].
Different device models were used by setting the number of tiles, Ntile, to iterate from
4 to 7 and the number of controllers, Nctrl, to iterate from 1 to 3. The average ratio of
the task configuration time to the average of the task execution time was set to 0.2.
Therefore, in total we had 120 test cases.

The results in terms of computer run-time are shown in Figure 26. It can be seen that
the consumed computer run-times are widely distributed, from 21 ms in the fastest

84

run to nearly 8 hours in the slowest run. On average, each CP-based scheduling took
8.4 minutes. The averaged computer run-time of each device is marked with the
connected triangle points. It can be seen that for devices of more tiles and more
controllers the required effort to find the optimal solutions decreases. This is because
with more tiles and more controllers, fewer conflicts are generated and therefore the
amount of backtracking is reduced, which helps to reduce the searching effort. The
results also show that for a single task, the required computer run-time may vary
significantly. For example, the two points marked with arrows are from the same task
but on different devices, (4,1) and (7,1). The former is the slowest run, but the latter
shows that the optimal result can be found within 35 ms.

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

(4,1) (4,2) (4,3) (5,1) (5,2) (5,3) (6,1) (6,2) (6,3) (7,1) (7,2) (7,3)
devices

co
m

pu
te

r
ru

nt
im

e
(s

ec
on

d)

averaged computer runtime on device
computer runtime of a single run

Figure 26. The consumed computer run-time of the CP approach.

To study the scalability of the approach, we selected the task graph that had the fastest
run, and gradually added more nodes and applied the CP-based approach to them.
When we slightly increased the number of tasks to 16 and the total number of nodes
to 51, the required computer run-time exceeds 20 hours. Therefore, the CP-based
approach is less favorable in practical applications because of its unpredictable
computer run-time. However, with the guarantee to produce optimal solutions, it can
be used as a reference to evaluate other approaches.

85

4.5.1.2 Accuracy and performance of the sub-optimal approaches

The list-based scheduler and the GA scheduler are sub-optimal approaches. The
purpose of this case study is to evaluate how close their results are when compared to
optimal ones. Because the optimal solutions of the randomly generated task graphs
have already been found using the CP approach, as presented in the previous
subsections, we used the same task graphs and settings. For the GA-based scheduling
approach, the parameters used in the test are as follows:

! initial mutation probability: 0.1

! crossover probability: 0.95

! number of individuals in one generation: 100

! number of generations (evolving steps): 100.

Table 4. Comparisons of the GA with other approaches.

Scheduling Deviations Average Computer Run-time

GA-CP
CP

(%)

List-CP
CP

(%)

GA List CP

DAG1 2.59 8.38 0.93 sec 4.49 ms 8.45 min
DAG2 1.61 3.10 0.98 sec 4.83 ms 23.35 min
DAG3 1.58 1.84 0.79 sec 3.16 ms 0.20 min
DAG4 0.11 1.32 0.94 sec 5.07 ms 0.11 min
DAG5 0.31 2.19 0.95 sec 4.86 ms 0.02 min
DAG6 0.36 3.19 0.86 sec 5.35 ms 0.01 min
DAG7 0.12 11.11 0.97 sec 4.72 ms 6.15 min
DAG8 0.36 5.02 0.87 sec 5.56 ms 41.59 min
DAG9 0.28 0.98 0.91 sec 3.88 ms 4.18 min
DAG10 0.10 0.62 0.88 sec 6.21 ms 0.01 min
Average 0.85 3.78 0.91 sec 4.81 ms 8.41 min

The scheduling deviations are averaged for each individual task graph and presented
in Table 4. For GA, 10 runs are performed for each case, and the smallest schedule
length of the 10 runs is used in calculating the scheduling deviations. It can be seen
that the results of the GA approach are significantly better than the results of the list-

86

based approach, as the average deviation in the former case is less than 1%, but the
average deviation in the latter case is about 5%.

For the 10 GA runs on each setting, we calculate the coefficient of variation (the
standard deviation divided by the mean) to study the repeatability of our GA approach.
The results are shown in Figure 27. It can be seen that in all cases, the coefficients of
variation are below 2.5%. In fact, the majority are in the range of [0.5%, 1.5%]. This
shows that our GA approach has rather good convergence.

The average computer run-times are also presented in Table 4. When comparing the
accuracy, it can be seen that the GA-based approach is consistently better than the
list-based approach. The average deviation in the former case is 0.85%, but 3.78% in
the latter case. Considering the computer run-time, the list-based approach is the most
efficient, requiring less than 5 ms on average. On average, a single GA run took less
than 1 second, but a single CP-based scheduling took more than 8.4 minutes.
Although the list-based approach takes a significantly shorter time, in the range of
milliseconds, we consider using the GA approach to be much more beneficial,
because of its higher accuracy and very tolerable computer run-time. In addition, the
GA approach offers the flexibility of choosing between accuracy and computer run-
time. If more generations are evolved, more accurate results are likely to be achieved.

convergence of the GA in test cases

0

0.005

0.01

0.015

0.02

0.025

0.03

1 20 39 58 77 96 115
settings

th
e

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

Figure 27. The coefficients of variation of the GA in test cases.

87

4.5.1.3 Scalability of the sub-optimal approaches

The sub-optimal approaches have also been tested with larger task graphs to study
their scalability. The test task graphs were generated using TGFF [169], but they had
different sizes. The same TGFF settings were used so that they had similar dependences
and parallelisms. The task execution times were randomly generated and the average
configuration time was set to about half the average task execution time. In addition,
tasks were set to require two tiles on average. The device model with seven tiles and
two controllers was used.

Some GA parameters were set differently from the previous test. Due to the fact that
these task graphs had different sizes, instead of using a fixed population size we set the
population size to be about 50% of the total number of nodes. To ensure that the results
were at least suboptimal, the termination criterion was so that the GA stops when all of
the results converge into a single point for five continuous generations (the average
fitness is equal to the best fitness of five continuous generations). In all of these graphs,
the CP-based approach could not find the optimal solutions within two days. Therefore,
we used the GA results generated from evolving 1500 generations as the reference values.

The GA approach was performed 10 times for each task graph. The best GA results
out of 10 runs and the list-based results are compared in Table 5. It can be seen that
the GA results are consistently better than the list-based approach, 8.6% better on
average. For each GA run, we have also collected the number of generations that have
evolved until the convergence criterion is met. These numbers are averaged and also
shown in Table 5. It can be seen that more generations are required to converge the
GA for larger task graphs and this effort is approaching the linear property, about 40
additional generations are needed for every 20 additional nodes.

Table 5. Scalability results.

Task set Total
nodes

Num.
tasks Ref

RefGA − (%)
Ref

RefList − (%) Avg. stop
generation

1 49 15 6.42 13.49 96
2 64 20 3.9 18.32 137
3 80 25 5.56 22 199
4 87 30 3.9 6.78 150
5 105 35 3.37 11.29 231
6 123 40 2.73 5.4 280

88

4.5.1.4 Experiments with practical applications

We have also tested the three different schedulers with five practical applications.
Each application is divided into a number of dependent tasks. VHDL codes for these
tasks are manually generated. The required resources and the execution time are
derived from the synthesis results and the simulation results. The brief explanations of
these applications are as follows.

! Sobel: Image sharpening application using sobel masking. The execution time is
based on processing 256 x 256 pixels. There are six tasks in this application.

! Sobel & Noise: Image sharpening (sobel masking) and noise reduction
application (noise reduction is performed separately in each color domain). The
execution time is based on processing 256 x 256 pixels. There are 17 tasks.

! JPEG Encoder: A JPEG Encoder. The compression is performed in parallel for
the luminance and the two chrominance spaces. The execution time is based on
processing 256 x 256 pixels. There are 11 tasks.

! MPEG Encoder: The core functions of MPEG2 encoding. The execution time is
based on encoding a frame of a CIF picture (352 x 288 pixels). There are seven tasks.

! WCDMA detector: Part of a Wideband CDMA decoder. The execution time is
based on processing four slots of data (Each slot contains 2560 chips). There are
four functions, including an adaptive filter, a channel estimator, a multi-path
combiner and a correlerator.

Table 6. Practical applications for testing static scheduling techniques.

Schedule length (us) Computer run-time
Task set Total

nodes
Num.
tasks CP List GA CP List GA

Average
GA stop

generations
Sobel 14 6 12750 12750 12750 20 ms 1.3 ms 20 ms 10

Sobel&Noise 39 17 17480 18088 17480 30 h 15.3 ms 1038 ms 80
JPEG encoder 26 11 11248 11552 11248 25 h 6.1 ms 448 ms 62
MPEG encoder 17 7 8626 8721 8626 17.3 s 13.2 ms 155 ms 37

WCDMA 8 4 5408 5408 5408 9.5 ms 400 us 10 ms 6

89

The results are presented in Table 6. For GA runs, the shortest schedule length of 10
runs is used. It can be seen from Table 6 that in all these cases the GA scheduler is
able to find optimal solutions. In addition, the computation effort of using GA is
considerably less than that of using CP, in which two of the five cases require more
than 24 hours to solve. Similarly as in the randomly generated task graphs, the list-
based scheduler is the most efficient but produces the least accurate solutions.

4.5.2 Evaluation of the configuration locking technique

We used four real applications to validate the configuration locking technique. These
four applications are the same as used in the previous case study, as presented in
section 4.5.1.4. The �sobel & noise� image sharpening application was not used, because
its functionality was similar to that of the �sobel� image sharpening application. In a
real case, only one of these two would be applied, and we selected the simpler one for
testing. The GA-based static scheduler was used to generate the profiles. For each
application, we generated the first profile using the setting of one tile, and then more
profiles by gradually increasing the number of tiles. We stopped when the
configuration latency could not be reduced with more tiles. We assumed that each tile
had an equal amount of resources as in Xilinx XC2V250 FPGA [27]. (Some tasks
were too big to fit into smaller devices.) A brief explanation of the settings for the
four applications is shown in Table 7.

The run-time scheduler is also implemented in C++. Pareto profiles, application
DAGs and device settings are given in text files. The scheduler reads these inputs and
simulates a pre-defined simulation period. Different statistic results are automatically
collected during simulation and saved in a text file at the end of simulation. The
communication overhead was ignored during simulation. We assumed that all these
applications were running periodically. Devices ranging from 6 tiles to 14 tiles were
explored. In addition, we tried to use a different number of preserved tiles. The value
Ntp was set to sweep from 0 to Ntile � 1. Therefore, the setting, Ntp = 0, means that
configuration locking is not applied. In total, there were 90 different device settings.
In the following context, we use the notation (Ntile, Ntp) to represent the device with
Ntile tiles and Ntp preserved tiles.

For each setting, we randomly generated the starting time of each application and
performed 10 simulations with a different initial seed each time. Each simulation ran

90

for 106 simulation cycles. Results of the 10 simulations are averaged and shown in
Figure 28. It can be seen that when more tiles are available more processes can finish
before deadline. However, the improvements without using our locking technique are
very limited. For example, at (10,0), about 17 processes can finish before deadline,
but by preserving four tiles about 96 processes can finish before deadline. This is
mainly because more tasks are reused, 430 compared to 325. In addition, the result at
(10,4) is much better than that at (14,0), which shows that simply using more
computation resources is not as efficient as preserving resources for dedicated purpose.

Table 7. Practical applications for testing the configuration locking technique.

Pareto profiles
Application num of

profiles
profile

ID
schedule length

(us)
Periodicity

1 25056

2 16896 Sobel 3

3 15612

processing two
pictures with size of
1024 x 768 in every

second
period = 41667 us

1 38806

2 23851 JPEG encoder 3

3 22567

processing two
pictures with size of
1024 x 768 in every

second
period = 41667 us

1 26011

2 16486 MPEG encoder 3

3 14958

processing CIF video
encoding

period = 33333 us

1 13636

2 8616 WCDMA 3

3 8072

processing 15 slots of
data in 10 ms

period = 10000 us

It is obvious that using more tiles to preserve tasks is not always beneficial. This is
because when only a smaller amount of tiles are available for free allocation, ready
tasks have to be put into pending. For example, after (14,6) using more preserved tiles

91

can still increase the number of reused tasks, but the number of processes that can
finish before deadline also starts to decrease. In addition, at a certain point the system
performance starts to drop sharply, because many ready tasks are competing for small
amount of free tiles. This is more visible when reviewing the average waiting time as
shown in Figure 29. The waiting time is defined as the difference between the time a
process starts to run and the time the process is ready to run. The execution time is
defined as the difference between the time a process finishes its execution and the
time the process starts to run. It can be seen from Figure 29 that the average waiting
time is decreasing initially when more resources are reserved for locking tasks.
However, at the point when the amount of tiles that are allowed to be shared becomes
too small, processes need to spend more time waiting for the tiles to become available.

It is not surprising to see that when resources are too limited, Ntile < 7, our locking
technique is not effective. This is because the ready tasks already have to compete for
the small amount of free tiles, using some tiles to preserve loaded subtasks can make
the situation only worse. On the other hand, when there are too many resources, Ntile >13,
our locking technique tends to be less effective. This is because less swapping will
happen, and thus trying to avoid swapping is not effective. The case study shows that
our locking technique is not effective when resources are too limited or too
prosperous. However, in other cases, using the proper amount of tiles to preserve
loaded subtasks can significantly improve the system performance.

0

30

60

90

120

150

0

120

240

360

480

600

processes finished before deadline
number of cache reuse

number of cache reuseprocesses finished before deadline

(6,0) � (6,5) (7,0) � (7,6) (8,0) � (8,7) (9,0) � (9,8) (10,0) � (10,9) (11,0) � (11,10) (12,0) � (12,11) (13,0) � (13,12) (14,0) � (14,13) device
setting

Figure 28. Scheduling results of real applications (average over 10 simulations of
using different seeds).

92

0

50000

100000

150000

200000

250000

300000

350000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

average waiting time
average execution time

Figure 29. Average waiting and execution time of real applications (average over 10
simulations of using different seeds).

4.6 Discussion

A major benefit of using DRHW is that they have high silicon reusability. This allows
multiple tasks to be running simultaneously in the same DRHW or multiplexed in
time domain. With the multitasking feature, tasks should be carefully managed to
efficiently utilize the device. The DRHW scheduling problem is similar to
multiprocessor scheduling, but it is more complicated because both task allocation
and the configurations have to be considered.

In this work, a quasi-static task scheduling approach has been used as the basic
scheduling framework. At design time, configuration prefetching is applied. The main
focus is the development and evaluation of three approaches with different searching
strategies. The first one is a heuristic approach based on a traditional list-based
scheduler. The second one is based on a full-domain search. Constraint programming
and a third-party solver are used. The last one is based on a guided random search. A
set of customized GA operators are developed.

Randomly generated task graphs and practical applications have been used in the case
studies. The results show that the list-based approach is the most efficient but the least
accurate. Although the CP-based approach can be guaranteed to generate optimal
solutions, the required computer run-time depends on many things, including the
device settings and the number of tasks, which makes it very unpredictable. For the
CP-based approach, constructing a custom labeling algorithm taking into account the
domain knowledge might considerably reduce the searching effort. However,

93

considering the problem itself is NP-hard, using a custom labeling algorithm cannot
fundamentally change the characteristics of the CP-based approach. In comparison,
the GA-based approach shows high accuracy and reasonable efficiency. In addition,
the GA-based approach has shown good convergence and almost linear scalability in
terms of the number of generations required to converge.

At run-time, a novel configuration locking technique is applied. It can effectively
reduce the configuration overhead by reducing the amount of required configurations.
The idea is to always lock the most frequently used tasks on the device so that they
have better chances to be reused. The most frequently used tasks are dynamically
tracked, because the run-time status depends on users� behavior, which cannot be
decided at design time. However, reserving too much space on DRHW (keeping too
many of the most frequently executed tasks) will reduce the amount of resource that
could be shared by the rest of the tasks. This might result in more reconfigurations
and eventually degrade the system performance. The performance improvement of
using configuration locking and the negative impact of resource over-reservation have
been studied with a number of real applications. The results show that when resources
are not too limited or too prosperous, preserving proper amount of tiles to lock the
most frequently tasks can significantly improve the system performance.

94

5. Novel techniques to reduce the
configuration overhead

The main drawback of using DRHW is the configuration overhead related to each
reconfiguration process. In Chapter 4, we presented different scheduling techniques
that can reduce the effect of the configuration overhead. However, in some cases
scheduling cannot effectively reduce the impact, and in addition the cost of each
reconfiguration process remains unchanged (the same amount of energy and latency
has to be paid). In this chapter, we present two novel techniques, one for reducing
configuration latency and another for reducing configuration energy.

5.1 Configuration parallelism

We refer to the first technique as configuration parallelism [33, 37]. The principle is
to divide the entire configuration-SRAM into several small segments and enable the
configuration data to be written into the different segments simultaneously. The
benefit is that more task parallelism can be exploited when such configuration parallelism
is available. In addition, we demonstrate that combining configuration parallelism and
configuration prefetching can more effectively hide configuration latency.

5.1.1 Motivation

We use a simple example (shown in Figure 30) to demonstrate how task parallelism
can be better exploited with configuration parallelism and how additional
improvements can be achieved together with configuration prefetching. Figure 30(a)
shows three dependent tasks. We assume that computation time and configuration
time are all equal in the three tasks. Current DRHW has only a single configuration
controller, so multiple configurations can be performed only in sequence. Its effect is
shown in Figure 30(c). The effect of configuration of task 2 can be eliminated by
prefetching, but task 3 has to be delayed because its configuration cannot start earlier.
However, if we could use two controllers to reconfigure different portions of the
DRHW in parallel, execution of task 3 can start immediately after its predecessor,
task 1, finishes, as depicted in Figure 30(d). When we assume that the execution time
and the configuration time are equal, using two controllers can speed up the system

95

by 25% compared to using only one controller in the case. In this the following
section, we present an implementable model to realize the configuration parallelism.

task 1
1 tile

task 2
1 tile

task 3
1 tile

device has 3 tiles
and 1 controllers

device has 3 tiles
and 2 controllers

cfg task 1

task 2cfg
cfg

ideal case
task 1

task 2
task 3

overhead

(a)

(b)

(c)

(d)

task 3

cfg task 1

task 2cfg
cfg

overhead

task 3

Figure 30. A simple example to illustrate the benefits of configuration parallelism.

5.1.2 The parallel reconfiguration model

The basic idea of our parallel reconfiguration model is to divide the entire
configuration-SRAM into separated individual segments and use multiple configuration
controllers to control the multiple segments in parallel. The parallel reconfiguration
model and the way to integrate it into a multi-core SoC platform are depicted in
Figure 31. Different units are connected via the communication network. The in/out
memory serves as the shared memory by which the reconfigurable logic
communicates with other units. The local memories are attached to the reconfigurable
logic through a memory crossbar. They are used as shared memories for the tasks that
are mapped onto the DRHW. The configuration manager controls the tasks and their
reconfiguration processes by sensing the status signals and sending the control signals.
For different applications, the reconfiguration manager behaves as a run-time
scheduler operating in a first-come-first-serve fashion. The configuration locking
technique can be placed on it. For each individual application, because its tasks have
static dependence, reconfiguration decisions of these tasks can be pre-computed at the
design time and stored in a table, from which the reconfiguration manager needs only
to fetch the next decision during the run-time. The DRHW is used to accelerate
computation-intensive tasks. When an application, which usually consists of a number

96

of dependent tasks, needs to be accelerated, a processor dumps the data that is to be
processed into the in/out memory, and then calls the configuration manager to start
loading tasks and then executing the tasks. After the set of tasks have finished, the last
task writes the results to the in/out memory, and the master or other modules can read
the results for further processing. To avoid data hazard between different applications,
the in/out memory can be made as a pair of separate input and output memories.

Parallel reconfiguration
architecture

processors
processors

processor
accelerator

accelerator
accelerator

accelerator
accelerator

RAM

communication network

in/out
memory

local
memory

local
memory

tile 3
tile 4

tile M

configuration
controller 1

tile 1
tile 2

memory
crossbar

configuration
crossbar

configuration
controller N

configuration
manager

co
nf

ig
ur

at
io

n
po

rt
controlstatus

control controlcontrolstatus controlstatus

da
ta

m
em

or
y

logic configuration
SRAM

control
port

mem
port

control
status

data

Figure 31. The parallel configuration model.

The key characteristics of the parallel reconfiguration model are as follows. Firstly,
the reconfigurable logic consists of a number of continuously connected
homogeneous tiles, and each tile consists of the circuit and its own configuration-
SRAM that controls the circuit. A task that requires m tiles of resources can use any
set of m-connected tiles. Each tile has its own control port and memory port. If a task
requires more than one tile, only one pair of the ports is used. Secondly, a
multiplexer-type memory crossbar is used to connect the tiles to the directly
accessible local memories. Data transfers between tasks always go through the local
memory banks instead of directly passing the data through the boundaries between
tiles. Therefore, routing contention can be avoided when tasks are relocated. Thirdly,
vertical lanes crossing the boundaries of tiles are used only for a task that is mapped
onto the tiles. For tasks that are mapped onto adjacent tiles, the cross-boundary lanes
are disabled by simply turning off the pass transistors that control these lanes, so
possible glitches during reconfiguration will not affect any running task. Finally, a
multiplexer-type configuration crossbar is used to connect the configuration-SRAMs

97

of the tiles to a number of parallel configuration controllers. The crossbar is
controlled by the configuration manager, which can ensure that any configuration-
SRAM can be accessed by any controller but only one at a time. Thus, reconfigurations
can be performed in parallel on different tiles.

5.1.3 Evaluation of configuration parallelism

We performed three different case studies. The first one focused on the benefits of
combining configuration parallelism and configuration prefetching. The second one
focused on studying the effects of using different number of tiles and different number
of controllers. 10 randomly generated DAGs (each DAG contains 10 tasks) were used
in these two evaluations. To avoid being misled by non-optimal values, the CP-based
optimal scheduling approach was applied in these first two evaluations. The last one
was an evaluation of different device settings using real applications. Due to the size of
the applications, the CP-based approach could not produce the result of a single device
setting within 48 hours. Therefore, the GA approach was applied in the last case study.

For the randomly generated DAGs, they had different levels of depth and different
tree structures, so they could be seen as representations of widely different
applications. Tasks were set to have from 0 to 3 successors, but on average 1
successor. Different devices were evaluated by setting the number of tiles, Ntile, to
iterate from 3 to 7 and the number of controllers, Nctrl, to iterate from 1 to 3. Resource
utilization of tasks was set as []3,1/ ∈⎥⎥

⎤
⎢⎢
⎡ STjRR , and the average ratio was 2. Three

settings of the configuration latency, CL, were used in the case studies. Corresponding
to the three settings, the ratio of average configuration time to the average execution
time, g, is 0.2, 0.5, and 1.0 respectively. The value of g is calculated as:

⎡ ⎤[] gEXSTRRCLj jj =∑ =
10

1)*10/()(*

(9)

In the following context, we use (Ntile, Nctrl) to refer to the device with Ntile tiles and
Nctrl configuration controllers. In addition, we use the term (Ntile, Nctrl, P) to refer to
configuration prefetching, and (Ntile, Nctrl, NP) for non-prefetching. For non-
prefetching scheduling, the results were generated from the CP-based approach by
extending the constraint model with an additional constraint that forces configurations
of a task cannot start before all the predecessors of the task have finished.

98

5.1.3.1 Combining configuration parallelism and prefetching

Scheduling results for the 10 DAGs are averaged and shown in Figure 32. The first
three graphs present the results for different settings of the ratio of average
configuration time to the average execution time, g. The values were set to be 0.2, 0.5
and 1.0 separately. Results in these graphs are divided into four sections with each
section representing one setting of the number of tiles, Ntile, and the values in each
section represent the speedups when compared to the scheduling results with (Ntile, 1,
NP). The left two columns represent the results of non-prefetch scheduling but with
configuration parallelism, so these are the pure contribution of using only
configuration parallelism. The columns in the middle represent the results of using
only configuration prefetching, in which only a single configuration controller is used.
The right two columns represent the achievable speedups of combining prefetching
with different levels of configuration parallelism. Figure 32(d) presents the average
configuration overheads of the test cases. The configuration overhead, as illustrated in
Figure 30, is defined as the difference between a task schedule result and the optimal
schedule result, in which the configuration latency is zero. The latten one can be
generated in our scheduling approaches by setting the parameter CL to 0.

The results shown in Figure 32 clearly indicate that the benefit of using configuration
parallelism is not as linearly increased as the number of controllers. Experiments with
four controllers have also been carried out, but no extra improvement can be achieved.
This non-linear effect is mainly because of the limitation of the take parallelism and
the intra-task parallelism of the randomly generated task graphs. In fact, this is
common in most other systems. For example, in multi-processor environment, double
the number of processors usually does not double the performance. In this case study,
we set that each task, on average, required two tiles and had one successor. Therefore,
the significant improvements appear with two controllers and most of such
improvements saturate when three controllers are used. For applications that have
more successors or require more tiles on average per task, increasing the number of
controllers will then become useful.

99

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(4
,1

)
(4

,2
)

(4
,3

)
(5

,1
)

(5
,2

)
(5

,3
)

(6
,1

)
(6

,2
)

(6
,3

)
(7

,1
)

(7
,2

)
(7

,3
)

(4
,1

)
(4

,2
)

(4
,3

)
(5

,1
)

(5
,2

)
(5

,3
)

(6
,1

)
(6

,2
)

(6
,3

)
(7

,1
)

(7
,2

)
(7

,3
)

(4
,1

)
(4

,2
)

(4
,3

)
(5

,1
)

(5
,2

)
(5

,3
)

(6
,1

)
(6

,2
)

(6
,3

)
(7

,1
)

(7
,2

)
(7

,3
)

Devices

co
nf

ig
ur

at
io

n
ov

er
he

ad

non-prefetch

prefetch

(avg cfg)/(avg comp)=0.2

1

1.05

1.1

1.15

1.2

1.25

1.3

4 5 6 7 Tiles

A
ve

ra
ge

 s
pe

ed
up

non-prefetch, 2 controllers
non_prefetch, 3 controllers
prefetch, 1 controller
prefetch, 2 controllers
prefetch, 3 controllers

(avg cfg)/(avg comp)=0.5

1

1.1

1.2

1.3

1.4

1.5

1.6

4 5 6 7 Tiles

A
ve

ra
ge

 s
pe

ed
up

non-prefetch, 2 controllers
non_prefetch, 3 controllers
prefetch, 1 controller
prefetch, 2 controllers
prefetch, 3 controllers

(avg cfg)/(avg comp)=1.0

1

1.2

1.4

1.6

1.8

2

2.2

4 5 6 7 Tiles

A
ve

ra
ge

 s
pe

ed
up

non-prefetch, 2 controllers
non_prefetch, 3 controllers
prefetch, 1 controller
prefetch, 2 controllers
prefetch, 3 controllers

g=0.2

g=0.5

g=1.0

(a) (b)

(c) (d)

Figure 32. Average results of the randomly generated task graphs.

It is obvious that combining configuration parallelism and prefetching can always
bring better results, because the two are orthogonal techniques and each one has a
positive contribution. This is verified from the results shown in Figure 32. For
example, results on (Ntile, 2, P) are always better than that on (Ntile, 1, P) and also
better than that on (Ntile, 2, NP). Prefetching alone is already an effective approach. If
we compare the (Ntile, 1, P) and the (Ntile, 1, NP) at g = 1, the reduction of overhead is
about 37%. Furthermore, with 2 controllers, (Ntile, 2, NP), an additional 38.4% of
overhead can be reduced (total reduction is 74.5%). In order to study how
configuration parallelism can make prefetching more beneficial, we compare the
speedups of the (Ntile, 3, P) with that of the (Ntile, 1, P). We refer to these differences
as the additional speedups of using configuration parallelism. Because most speedups
saturate when Nctrl = 3 in the case studies, as explained in the previous section, the
differences between (Ntile, 3, P) and (Ntile, 1, P) can also be seen as the maximally
achievable additional speedups for prefetching. It can be seen that when the average
configuration latency is relatively large compared to the average computation time
(g = 1.0), more additional speedup can be achieved when more tiles are used. This is
because using more tiles makes it possible to exploit more task parallelism and thus
configuration parallelism can be more useful. However, when the ratio, g, is relatively

100

small (g = 0.2), the additional speedup decreases as the number of tiles increases. This
is because for a small value of g, a long task execution can effectively hide several
short configurations even without using configuration parallelism. Using more tiles
makes it more possible that executions and configurations of different tasks can be
done in parallel, and thus reduces the effect of using configuration parallelism.

5.1.3.2 Speedups of using more tiles and more controllers

A common approach to improving performance is to include more computation
resources to achieve high parallelism, either at the task level or at the operation level.
In DRHW, using more tiles enables more tasks to run in parallel. However, if
configurations of these tasks can be done only in sequence, it is not likely that such
parallelism can be exploited even if more tiles are used. In this section, we study how
configuration parallelism helps in such cases. Discussions are based on the prefetch
scheduling results. Because using 4 tiles and 1 controller is the lowest setting in our
cases, we use the results of (4, 1, P) as the reference values. The average results of the
10 DAGs are shown in Figure 33.

comparison to (4,1,P)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

(4
,1

)

(4
,2

)

(4
,3

)

(5
,1

)

(5
,2

)

(5
,3

)

(6
,1

)

(6
,2

)

(6
,3

)

(7
,1

)

(7
,2

)

(7
,3

)

(N
T

',1
)

(N
T

,N
C

)

Devices

A
ve

ra
ge

 s
pe

ed
up

(avg cfg time)/(avg comp time)=0.2
(avg cfg time)/(avg comp time)=0.5
(avg cfg time)/(avg comp time)=1.0

Figure 33. Speedups of using more tiles and more controllers.

Two extra types of results were generated. The first was for the cases that there was
no resource limit on the number of tiles but also there was no configuration
parallelism (using a single controller). So, these were the best possible speedups for
increasing only the computation resources. The second was for the cases that there
was no resource limit on both the number of tiles and the number of controllers. So,

101

these speedups presented the globally best speedups. Results are separated shown
with the label (Ntile´, 1) and (Ntile, Nctrl) in Figure 33. It should be noted that we use
Ntile´ and Ntile to mark that they might be different values.

It can be seen that without configuration parallelism, increasing tiles has only limited
capability for speedups, and using more controllers can always bring additional
improvements. This is especially obvious when we compare the results of (Ntile´, 1)
and the results of (Ntile, Nctrl). The first ones show that if we increase only tiles, the
best speedups are 1.26, 1.33, 1.1 for g = 0.2, 0.5 and 1.0 separately. However, with
configuration parallelism, the best possible speedups are 1.29, 1.48, and 1.87 for
g = 0.2, 0.5 and 1.0 separately, equivalent to additional speedups of 2.3%, 11.2% and
68.5%. It is clear that in all cases when no improvement can be achieved by using
more tiles, configuration parallelism can always help.

5.1.3.3 Evaluation of configuration parallelism using real applications

We have also carried out evaluation with real applications. The same four
applications as used in section 4.5.2 were used. To make a more complicated case, we
compiled the four applications into a large DAG. This was done by simply
instantiating each application in the large DAG, so the final DAG was actually a
composition of four individual DAGs, one for each application. Each tile in the target
DRHW was assumed to contain the same amount of resources as in the Xilinx
XC2V80 FPGA. Under this assumption, there were 37 configuration nodes and 28
task nodes in the DAG, and the ratio g was 0.4.

Different devices were evaluated by setting the number of tiles, Ntile, from 2 to 9, and
the number of configuration controllers, Nctrl, from 1 to 9. Because using more
controllers than tiles does not bring benefit, our tool can automatically ingore the
setting where Ntile < Nctrl. We use the device (2,1) as the reference device because this
setting is the minimum requirement to map these applications. The scheduling results
are extracted and shown in Figure 34. There are eight sections in the graph with each
section representing one setting of Ntile and each index within one section representing
one setting of Nctrl. In line with the evaluation results derived using the randomly
generated task graphs as presented in section 5.1.3.2, the results show that more
speedups could be achieved by using more tiles. It is clear from the results that using
more controlles can bring additional improvements. For example, the speedup at (8,1)
is 2.6, but the value is 3.2 at (8,2). This is because with one additional configuration

102

controller the configuration overhead drops to 11% from 36%. Although more
performance improvements can be achieved with additional controllers, we consider
that using more than 2 controllers is not practical from the implementation point of
view. However, reasonably good improvement can already be achieved with 2
controllers. For example, when Ntile > 4, using 2 controllers is always better than using
one additional tile.

0

0.5

1

1.5

2

2.5

3

3.5

4

(2
,1

)
(2

,2
)

(3
,1

)
(3

,2
)

(3
,3

)

(4
,1

)
(4

,2
)

(4
,3

)
(4

,4
)

(5
,1

)
(5

,2
)

(5
,3

)
(5

,4
)

(5
,5

)

(6
,1

)
(6

,2
)

(6
,3

)
(6

,4
)

(6
,5

)
(6

,6
)

(7
,1

)
(7

,2
)

(7
,3

)
(7

,4
)

(7
,5

)
(7

,6
)

(7
,7

)

(8
,1

)
(8

,2
)

(8
,3

)
(8

,4
)

(8
,5

)
(8

,6
)

(8
,7

)
(8

,8
)

(9
,1

)
(9

,2
)

(9
,3

)
(9

,4
)

(9
,5

)
(9

,6
)

(9
,7

)
(9

,8
)

(9
,9

)

device setting

speedup

0

5
10

15
20

25
30

35
40

45
overhead (%)speedup compared to (2,1)

configuration overhead

Figure 34. Evaluation of configuration parallelism with real applications.

5.2 Using dynamic voltage scaling to reduce
the configuration energy

The second technique is to apply dynamic voltage scaling technique (DVS) on the
reconfiguration process. The basic idea is to use configuration prefetching and
parallelism to create excessive system idle time and apply DVS on the configuration
process when such idle time can be utilized. Therefore, for configuration processes on
which lower supply voltage is applied, lower configuration energy is required.

5.2.1 Motivation

The dynamic power consumption of a circuit, Pdyn, satisfies the relation that Pdyn ∝
CV2f, where C is the capacitance of the circuit, V is the supply voltage and f is the
operation frequency. Because the supply voltage has a quadratic effect on the

103

dynamic power consumption, reducing the supply voltage is the most effective
approach to lower Pdyn, but low supply voltage will increase the configuration latency
and degrade the performance.

However, by using configuration prefetching and parallelism, we can create excessive
system idle time and thus benefit from using the DVS. Simple examples are shown in
Figure 35. Figure 35(a) shows the case where the idle time is created by prefetching.
Such idle time can then be utilized to lower the supply voltage of the configuration
process, as shown in Figure 35(c).Figure 35(b) shows the case that Task 2 needs two
configurations. If they can be performed in parallel, the idle time marked in Figure
35(b) can then be utilized to apply DVS, as in Figure 35(d).

task 1

task 2config
(HSV)

idle time
task 2

config
(HSV) idle time

task 1

config
(HSV)idle time

(a) (b)

task 1

task 2config (LSV)
task 2

config (LSV)

task 1

(c) (d)

config (LSV)

HSV: high supply voltage, LSV: low supply voltage

Figure 35. Using configuration prefetching and configuration parallelism to create
excessive idle time.

5.2.2 Device model and evaluation technique

The device model is based on the parallel configuration model described in Section
5.1. Because each tile has its own configuration-SRAM, this allows us to apply DVS
on the configuration-SRAM and the corresponding configuration controller for each
individual configuration process. However, applying low supply voltage on the
configuration-SRAM will degrade the circuit performance. Therefore, buffers are
needed at the output of the configuration-SRAM to boost the output voltage level to
the same level as used in the circuit. These buffers do not cause delays at run-time,
because the configuration-SRAM supply DC signals to the circuit. In this phase of the
work, our main objective is to reduce the configuration energy, therefore we do not
consider applying DVS on the circuit, as in [170].

104

The goal of using DVS is to reduce configuration energy. However, when lower
supply voltage is applied, configuration latency is increased, which might increase the
overall scheduling and decrease the system performance. Therefore, we need an
approach that can optimally assign the DVS states in such a way that the lowest
configuration energy is achieved without increasing the overall schedule length. This
requires a task scheduler that tries to reduce both schedule length and configuration
energy while considering task allocation, configuration prefetching, configuration
parallelism and DVS state assignments at the same time. To solve this multi-objective
NP-hard optimization problem, we extend the GA-based scheduler, which has been
described in Section 4.3.3.

To represent the DVS state, the chromosome of the GA-based scheduler is extended
to include a string of paired tokens to represent the DVS states of configurations, one
pair for one configuration process. The first token of a pair denotes the configuration,
and the second denotes the DVS state. For example, a complete chromosome
including the DVS tokens is shown in . Correspondingly, modifications of GA
operators are needed. When generating the initial population, the second token value
(supply voltage) is randomly selected from a predefined set of possible supply voltage
states. During crossover, the configuration nodes and the task nodes are swapped as
described in Section 4.3.3.4. DVS states of the configuration nodes of child1 in the
left graph remain the same as that in par1. The rest will use the DVS states as in par2.
During the mutation phase, an additional mutation scheme is added. It randomly
selects a configuration process and then changes its DVS state into another randomly
selected DVS state.

105

tile 1: (task 1, task 4)
tile 2: (task 1, task 2, task 4)
tile 3: (task 1, task 2)
tile 4: (task 3)

ctrl 1: (C<1,1>,C<1,3>,C<2,1>)
ctrl 2: (C<1,2>,C<3,1>,C<2,2>,C<4,1>,C<4,2>)

t1 t2

t3

t4

schedule step1 2 3 4 5 6
7 8 9 10 11 12

tile 1

tile 2

tile 3

tile 4

>< 1,1C

>< 2,1C

>< 3,1C
>< 1,2C

>< 2,2C

>< 1,4C

>< 2,4C

>< 1,3C

T-strings

C-strings

paired tokens for the configuration voltage state
(C<1,1>,1.5V), (C<1,2>,1.5V), (C<1,3>,1.5V), (C<2,1>,1.5V),
(C<2,2>,1.5V), (C<3,1>,1.2V), (C<4,1>,1.2V), (C<4,2>,1.5V)

1 2 3 4 5 6 7 8 9 10 11 12

ctrl 1

ctrl 2
>< 1,1C >< 3,1C >< 1,2C

>< 2,1C >< 1,3C >< 2,2C >< 1,4C >< 2,4C

schedule
step

Figure 36. A chromosome in DVS-enabled task scheduler

Considering the configuration energy, the fitness value is calculated as:

energycurrent
energyreferencea

lengthcurrent
lengthreferencefitness

_
_*

_
_

+=

where a = 0, if current_length > reference_length
 a = 1, if current_length <= reference_length

(10)

The reference_length and the reference_energy are derived from non-DVS scheduling.
In fact, we run the modified GA-based task scheduler twice for solving the multi-
objective optimization problem. In the first run, we do not consider DVS (all
configuration processes are assigned to the highest supply voltage) and try to find the
shortest schedule length. The evaluator and termination criteria as described in
Section 4.3.3.4 are used. In the second run, we take DVS state assignment into
account and use the shortest schedule length, derived from the first run, as the
reference_length. The reference_energy is the sum of configuration energy in the case
that all configuration processes use the highest supply voltage.

106

5.2.3 Case studies

5.2.3.1 Evaluation with pseudo tasks

We used 10 randomly generated task graphs with each graph containing 10 tasks.
These graphs had different levels of depth and different tree structures, so they could
be seen as representations of widely different applications. The number of required
tiles of an individual task was randomly generated with uniform distribution in the
range of [1, 3]. Different device models were used by setting the number of tiles, Ntile,
to iterate from 4 to 7 and the number of controllers, Nctrl, to iterate from 1 to 3. In the
following context, we use (Ntile, Nctrl) to refer to the device with Ntile tiles and Nctrl
controllers. The ratio of the average configuration time to the average computation
time, g, was set to be 0.2, 0.5, and 1.0 separately. Four supply voltages were used.
The power-delay profile of the configuration process is shown in Table 8. The 1.5 V
profile was estimated based on the XC2V80 FPGA datasheet [27], and others were
derived from the power-voltage relation (Pdyn ∝ CV2f). The following GA parameters
were used.

Table 8. Power-delay profile of the configuration process.

Supply voltage Delay Power
1.2 V 374 us 192 mw
1.3 V 346 us 225 mw
1.4 V 323 us 261 mw
1.5 V 304 us 300 mw

o mutation probability: 0.15

o crossover probability: 0.95

o replacement percentage in one generation: 80%

o number of individuals in one generation: 60.

In order to use DVS to minimize the configuration energy but without increasing the
schedule length when compared to no-DVS scheduling, we set that the GA
termination criteria should satisfy the following two conditions: 1) The average
schedule length in the current generation is equal to the no-DVS schedule length,

107

which can be derived by using only the highest supply voltage state in the scheduling
process; and 2) The difference between the average configuration energy and the
lowest configuration energy in the current generation is within 0.1% for 5 continuous
generations. We stopped the no-DVS scheduling after 1000 generations. The average
run-time was 6.5 seconds. For the scheduling including DVS, the average run-time
was 25 seconds under the above termination criteria. The best result out of 10 runs is
used in the following analysis.

The reduced configuration energy is extracted and averaged over the 10 DAGs. The
results are presented in Figure 36. When considering individual cases, the maximal
reduction of the configuration energy is 20.2%. When we average the results for each
setting of g, the average reduction of the configuration energy are 15.7%, 12.5%, and
6.9% separately for g = 0.2, 0.5, and 1.0. It can be seen that for a smaller configuration
latency (g = 0.2), using a single configuration controller (Ntile,1) can already significantly
reduce the configuration energy. This is because for smaller g using only prefetching
has already created enough idle time that can be utilized to apply DVS on the
configuration process, as shown in Figure 35(a, c). For larger configuration latency, it
can be seen that excessive idle time is created only when multiple controllers are
applied, as shown in Figure 35(b, d). The results of g = 0.5 on (5,Nctrl) show that using
3 controllers tends to be less effective than using 2 controllers. This is because the
additional controller is busy at configuring tasks (reducing the total schedule length is
also one of our objectives). Therefore, less excessive idle time is available.

conf iguration energy comparison
 (DVS V s. no DVS)

0
2
4
6
8

10
12
14
16
18
20

(4 ,1) (4 ,2) (4 ,3) (5,1) (5,2) (5,3) (6 ,1) (6 ,2) (6 ,3) (7,1) (7,2) (7,3)
dev ices

en
er

gy
 r

ed
uc

tio
n

(%

0.2
0.5
1

Figure 36. Comparison of energy reduction of using DVS and without using DVS.

108

In Figure 37, we depict the voltage distribution on (7,Nctrl) to present more details of
the results. For small configuration latency, it can be seen that majority of the
configuration processes are assigned to the lowest supply voltage for a single
controller case. In addition, using configuration parallelism barely changes the
voltage distribution. In contrast, for a large configuration latency, using additional
controllers allows more high-voltage states to be replaced with low-voltage states.

0 %
1 0 %
2 0 %
3 0 %
4 0 %
5 0 %
6 0 %
7 0 %
8 0 %
9 0 %

1 0 0 %

(7 ,1) (7 , 2) (7 , 3) (7 , 1) (7 , 2) (7 ,3) (7 ,1) (7 ,2) (7 ,3)

vo
lta

ge
 d

is
tr

ib
ut

io
n

1 . 5 V 1 .4 V 1 . 3 V 1 . 2 V
0 .2 0 .5 1 .0

Figure 37. Voltage assignment distribution.

5.2.3.2 Evaluation with real applications

We also tested the approach with seven real applications, sobel (image sharpening
using sobel masking), unsharp (image sharpening with blur), laplacian (image
sharpening using laplacian filter), sobel & noise (image sharpening with noise
reduction), JPEG decoder, MPEG decoder and WCDMA detector (four core functions
for channel equalization). Each application was divided into a number of tasks, and
each task was manually coded in VHDL. The resources and the execution time were
derived from synthesis results and simulation results. We evaluated on devices that
contained from 4 tiles to 7 tiles with one configuration controller. We assumed that
each tile consisted of the same amount of resources and had the same configuration
overhead as in the XC2V80 FPGA. This gave us that the ratio g was in the range of
[0.18, 0.27] for these applications. The same GA settings as in the previous case were
used. On average, each GA run took 8.7 s. The results of configuration energy
reduction are depicted in Figure 38. On average, configuration energy could be
reduced by 15.4% without increasing the schedule length. In the best case, sobel &
noise on device (7,1), 19.3% was theoretically achievable.

109

results over real applications

0

4

8

12

16

20

laplacian sobel unsharp jpeg mpeg sobel &
noise

wcdma
application

co
nf

ig
ur

at
io

n
en

er
gy

 r
ed

uc
tio

n
(%

)
num of tiles = 4 num of tiles = 5
num of tiles = 6 num of tiles = 7

Figure 38. Configuration energy reduction of real applications.

5.3 Discussion

In this section, we have presented two techniques to reduce the impact of the
configuration overhead. Although different techniques have been proposed, as
summarized in section 2.3, these two techniques are novel because they tackle the
problem from different aspects. This also makes it infeasible to directly compare our
techniques from previous ones. To validate our techniques, we compare the difference
between applying them and not applying them on the same systems.

The first technique is referred to as configuration parallelism, which is supported by a
novel configuration model. The model consists of multiple homogeneous tiles and
each tile has its own configuration-SRAM that can be individually accessed. The
configuration-SRAMs are connected to multiple individual configuration controllers
by a crossbar, and tasks can be loaded in parallel. This allows more task parallelism to
be exploited. The configuration parallelism is an approach orthogonal to the configuration
prefetching and both can reduce the configuration overhead, so they should be applied
together if possible. Results of using the randomly generated task graphs as well as
using real applications show that system performance can be improved using more
tiles (computation resources), but without configuration parallelism such benefit is
limited.

110

The second technique is to apply DVS on the configuration process to reduce the
configuration energy. The idea is to use configuration prefetching and configuration
parallelism to create system idle time and then apply DVS on configuration processes
when such idle time can be utilized. The GA task scheduling approach, as presented
in section 4.3.3, has been extended to solve the multi-objective optimization problem,
e.g., task allocation, scheduling, configuration prefetching, and DVS state assignment.
A set of randomly generated tasks is used in evaluation. Considering the reduction of
configuration energy, the results show that using more tiles is more beneficial when
the configuration latency is relatively small and using more controllers is more
beneficial when the latency is relatively large. Evaluation with real applications
shows that up to a 19.3% reduction of configuration energy is achievable.

111

6. Conclusions

The increasing complexity of computation-intensive applications is driving the
development of high performance computation engines. In most cases, ASIC is the
main solution, because it has the ability to customize the design down to the silicon
level in order to achieve optimal performance. However, performance is usually not
the only goal of a design. Many systems are also in favor of flexibility in order to
enable post-fabrication upgrading of functionality and easier bug-fixing ability. In
addition, although the development of semiconductor technology has provided us
enough transistors in a single chip, it is inefficient to build a system that contains lots
of components that are not used simultaneously at run-time. One possible solution is
to build such systems based on processors, which have been pre-verified and have
lower design costs. Applications implemented on processors can be easily modified.
However, in many cases processor technology fails to deliver the required performance
because it sacrifices too much performance for flexibility.

One alterative is dynamically reconfigurable hardware (DRHW), which at run-time
enables us to modify the functions that are mapped onto it. This feature is similar to
software multi-tasking on processors. However, the design of DRHW uses a similar
flow as in ASIC design in the sense that application customization, such as
parallelism and pipeline, can be applied. Therefore, although a design is finally
implemented on pre-fabricated components, such as LUT, DRHW can still provide
significantly higher performance when compared to software implementation.
However, a main drawback of DRHW is the configuration overhead related to each
reconfiguration process. It can largely degrade the system performance. In addition,
design supports at the system level for systems including DRHW are missing.

6.1 Summary of contributions

In this thesis work, we have presented several approaches from different aspects to
tackle the design problems of DRHW, especially at the system level. They are
summarized as follows.

! We have presented system-level design supports for reconfigurable system-on-
chip in which DRHW is frequently used as a coprocessor to accelerate
computation-intensive tasks. Our approach can help designers to easily evaluate

112

the effect of moving some tasks, which are traditionally implemented in fixed
hardware, to DRHW. The supports that we provide are an estimation approach
and a SystemC modeling technique for DRHW. The estimation approach starts
from function blocks represented in ANSI-C language, and it produces hardware
execution time and resource utilization estimates for each function block by
applying a set of high-level synthesis algorithms. In DRHW modeling, behavior
of the reconfiguration process is modeled instead of the real reconfiguration
process. In addition, a number of related parameters are specified, which can be
tuned to target a particular configuration technology. To reduce the coding effort,
a tool to automatically generate DRHW SystemC models is created. The system-
level design approach has been applied on a WCDMA case study. The estimation
technique has been used at the system level to support us in partitioning
functions into two contexts, which in the implementation phase are mapped onto
the same region of a commercial FPGA that supports partial reconfiguration. The
effect of run-time reconfiguration has also been evaluated from simulation using
the modeling technique. When implementing the design on the demonstration
environment, the results showed that more than 40% of resource reduction in
terms of LUT can be achieved over a completely fixed implementation and 30
times speedup can be achieved over software implementation.

! We have also presented several static scheduling techniques to optimally or near-
optimally schedule tasks onto DRHW. Three static scheduling techniques
embedding configuration prefetching have been developed and quantitatively
evaluated. Different problem solving strategies are used. The first is a list-based
heuristic approach; the second is an optimal approach based on constraint
programming (CP); the last is a guided random search technique developed using
a genetic algorithm (GA). Randomly generated task graphs and practical
applications are used in the case studies. The list-based approach is the most
efficient but the least optimal approach. On the other hand, the CP-based
approach can be guaranteed to generate optimal solutions. However, the required
computer run-time is much longer and very unpredictable. For larger cases,
optimal solutions cannot be found within days. In comparison, the GA-based
approach shows high accuracy and reasonable efficiency. In addition, the GA-
based approach has shown good convergence and almost linear scalability in
terms of the number of generations required to converge.

! We have presented a run-time scheduling approach with a novel configuration
locking technique. The basic idea is to monitor at run-time the execution times of

113

tasks and always lock a number of the most frequently used tasks on DRHW. A
number of real applications are used to validate the approach. The results show
that when resources are not too limited or too prosperous, preserving the proper
amount of tiles to lock the most frequently used tasks can significantly improve
the system performance.

! To reduce the impact of configuration latency, we have presented a technique,
configuration parallelism. It is supported by a novel configuration model. The
model consists of multiple homogeneous tiles. Each tile has its own
configuration-SRAM that can be individually accessed, and the configuration-
SRAMs are connected to multiple individual configuration controllers by a
crossbar. Therefore, different configuration-SRAMs can be accessed simultaneously
and thus tasks can be loaded in parallel. Results of using the randomly generated
task graphs as well as using real applications show that system performance can
be improved using more tiles (computation resources), but without configuration
parallelism such benefit is limited.

! We have also presented a technique to reduce the configuration energy. The idea
is to use configuration prefetching and configuration parallelism to create system
idle time and then apply DVS on configuration processes when such idle time
can be utilized. The technique is evaluated using a GA-based task scheduler, the
goal of which is to first find minimal schedule length and then achieve minimal
configuration energy. A set of randomly generated tasks is used in evaluation.
Considering the reduction of configuration energy, the results show that using
more tiles is more beneficial when the configuration latency is relatively small
and using more controllers is more beneficial when the latency is relatively large.
Evaluation with real applications shows that up to 19.3% reduction of
configuration energy is achievable.

6.2 Future work

There are different ways to extend the research work that has been presented in this
thesis. For the SystemC-based design supports, it is necessary to improve it to form a
complete design approach for embedded systems. The current supports cannot
automatically generate synthesizable code for DRHW implementation. High-level
SystemC synthesis or C-based synthesis need to be studied. Our HW estimator can
also benefit from the study to be more accurate. In addition, the system performance

114

in terms of power consumption is not addressed in the current approach. Methods and
tools for power analysis will be of great interest in the near future.

The different static task scheduling techniques and the run-time scheduling technique
involving configuration locking are evaluated in a simulation environment. In the
future, a RTOS will be developed to implement these techniques in a practical manner.
The RTOS will be instantiated in a real demonstration environment, which can be
either a real physical hardware system or a virtual hardware platform. Considering the
static task scheduling techniques, we foresee that combining the list-based heuristic
approach and the GA-based approach will result in a more efficient task scheduling
technique. For the configuration locking technique, we have presented that the
number of tiles used to lock tasks has a significant impact on the performance. It is
necessary to study how to decide such number based on the run-time system status.
At the moment, the configuration parallelism technique and the DVS technique are
analyzed theoretically. The cost of additional hardware for implementing such
techniques is not considered. In the future, implementation cost will be taken into
account to thoroughly evaluate these techniques. The static power consumption is not
taken into account in the DVS approach. It will be included and system-level power
reduction techniques with applying DVS on the circuit itself will be studied in the
next step.

115

References

1. Moore, G.E. Progress in digital integrated electronics. IEEE International
Electron Devices Meeting Technical Digest. 1975. Pp. 11�13.

2. ITRS. The international technology roadmap for semiconductors (ITRS) 2005
edition. http://www.itrs.net/Links/2005ITRS/Home2005.htm. (May, 2007).

3. Intel Corporation. Dual-Core Intel® Xeon® Processor 7100 Series Product
Brief. http://download.intel.com/products/processor/xeon/7100_prodbrief.pdf.
(May, 2007).

4. Hennessy, J.L., and Patterson, D.A. Computer architecture: a quantitative
approach. Second edition. Morgan Kaufmann. 1995. 760 p.

5. Sylvester, D. and Keutzer, K. Getting to the bottom of deep submicron.
Proceedings of the IEEE/ACM International Conference on Computer�aided
design (ICCAD). 1998. Pp. 203�211.

6. Sylvester, D. and Keutzer, K. Getting to the bottom of deep submicron II: a
global wiring paradigm. Proceedings of the 1999 International Symposium on
Physical Design. 1999. Pp. 193�200.

7. Kalva, H. The H.264 video coding standard. IEEE Multimedia, 2006. Vol. 13,
No. 4, pp. 86�90.

8. Altera Corporation. White paper: FPGAs provide reconfigurable DSP solutions.
http://www.altera.com/literature/lit-wp.jsp. (May, 2007).

9. Fry, T.W. and Hauck, S. SPIHT image compression on FPGAs. IEEE Transactions
on Circuits and Systems for Video Technology, 2005. Vol. 15, No. 9,
pp. 1138�1147.

10. Skliarova, I. and Ferrari, A.B. Reconfigurable hardware SAT solvers: a survey of
systems. IEEE Transactions on Computers, 2004. Vol. 53, No. 11, pp. 1449�1461.

http://www.itrs.net/Links/2005ITRS/Home2005.htm
http://download.intel.com/products/processor/xeon/7100_prodbrief.pdf
http://www.altera.com/literature/lit-wp.jsp

116

11. Goodman, J. and Chandrakasan, A.P. An energy-efficient reconfigurable public-
key cryptograph processor. IEEE Journal of Solid-State Circuits, 2001. Vol. 36,
No. 11, pp. 1808�1820.

12. Brown, S. and Rose, J. FPGA and CPLD architectures: a tutorial. IEEE Design
& Test of Computers, 1996. Vol. 13, No. 2, pp. 42�57.

13. Black, W. and Das, B. Programmable logic using giant-magneto-resistance and
spin-dependent tunnelling devices. Journal of Applied Physics, 2000. Vol. 87,
pp. 6674�6679.

14. Bruchon, N., Torres, L., Sassatelli, G. and Cambon, G. New non-volatile FPGA
concept using magnetic tunnelling junction. Proceedings of the 2006 Emerging
VLSI Technologies and Architectures (ISVLSI). 2006. Pp. 269�276.

15. Masui, S., Ninomiya, T., Ouya, M., Yokozeki, W., Mukaida, K. and
Kawashima, S. A ferroelectric memory-based secure dynamically programmable
gate array. IEEE Journal of Solid-State Circuits, 2003. Vol. 38, No. 5, pp. 715�725.

16. Borgatti, M., Calì, L., De Sandre, G., Forêt, B., Iezzi, D., Lertora, F., Muzzi, G.,
Pasotti, M., Poles, M. and Rolandi, P.L. A reconfigurable signal processing IC
with embedded FPGA and multi-port Flash Memory. Proceedings of the
ACM/IEEE Design Automation Conference (DAC). 2003. Pp. 691�695.

17. Borgatti, M., Calì, L., De Sandre, G., Forêt, B., Iezzi, D., Lertora, F., Muzzi, G.,
Pasotti, M., Poles, M. and Rolandi, P.L. A 1GOPS reconfigurable signal
processing IC with embedded FPGA and 3-port 1.2GB/s Flash memory
subsystem. Proceedings of the IEEE International Solid-State Circuits
Conference (ISSCC). 2003.

18. Lattice Semiconductor Corporation. LatticeXP2 low-cost non-volatile FPGA
family handbook. http://www.latticesemi.com/products/fpga/xp2/. (May, 2007).

19. Compton, K. and Hauck, S. Reconfigurable Computing: A Survey of Systems
and Software. ACM Computing Surveys, 2002. Vol. 34, No. 2, pp. 171�210.

http://www.latticesemi.com/products/fpga/xp2/

117

20. Strunk, E.A. and Knight, J.C. Dependability through assured reconfiguration in
embedded system software. IEEE Transactions on Dependable and Secure
Computing, 2006. Vol. 3, No. 3, pp. 172�187.

21. Zhang, Y., Murata, M., Takagi, H. and Ji, Y. Traffic-based reconfiguration for
logical topologies in large-scale WDM optical networks. Journal of Lightwave
Technology, 2005. Vol. 23, No. 10, pp. 2854�2867.

22. Lysecky, R., Stitt, G. and Vahid, F. Warp processors. ACM Transactions on
Design Automation of Electronics Systems (TODAES), 2006. Vol. 11, No. 3,
pp. 659�681.

23. Lysecky, R. Low-Power warp processor for power efficient high-performance
embedded systems. IEEE Proceedings of the Design, Automation, and Test in
Europe Conference (DATE). 2007. Pp. 141�146.

24. McKay, N., Melham, T. and Susanto, K.W. Dynamic specialization of XC6200
FPGAs by partial evaluation. Proceedings of the IEEE Symposium on FPGAs
for Custom Computing Machines (FCCM). 1998. Pp. 308�309.

25. Laffely, A., Liang, J., Jain, P., Burleson, W. and Tessier, R. Adaptive systems
on a chip (aSoC) for low-power signal processing. Conference Record of the
35th Asilomar Conference on Signals, Systems and Computers, Vol. 2. 2001.
Pp. 1217�1221.

26. Barco. MPEG-4 simple profile decoder: BA132MPEG4D factsheet.
http://www.barco.com/subcontracting/Downloads/IPProducts/BA132MPEG4D
Factsheet.pdf. (May 2007).

27. Xilinx Incorporated. Virtex-II complete data sheet (all four modules).
http://direct.xilinx.com/bvdocs/publications/ds031.pdf. (May, 2007).

28. Qu, Y., Tiensyrjä, K., Soininen, J.-P. and Nurmi, J. SystemC-based Design
Methodology for Reconfigurable System-on-Chip. IEEE Proceedings of the 8th
Euromicro Symposium of Digital System Design (DSD). 2005. Pp. 364�371.

http://www.barco.com/subcontracting/Downloads/IPProducts/BA132MPEG4D
http://direct.xilinx.com/bvdocs/publications/ds031.pdf

118

29. Qu, Y., Tiensyrjä, K., Soininen, J.-P. and Nurmi, J. System-Level Design for
Partially Reconfigurable Hardware. IEEE International Symposium on Circuits
and Systems (ISCAS). 2007. Pp. 2738�2741.

30. Qu, Y. and Soininen, J.-P. Estimating the utilization of embedded FPGA co-
processor. IEEE Proceedings of the 6th Euromicro Symposium of Digital
System Design (DSD). 2003. Pp. 214 � 221.

31. Qu, Y., Tiensyrjä, K. and Masselos, K. System-level modeling of dynamically
reconfigurable co-processors. Proceedings of International Conference on Field
Programmable Logic and Applications (FPL). 2004. Pp. 881�885.

32. Qu, Y., Soininen, J.-P. and Nurmi, J. Static Scheduling Techniques for Dependent
Tasks onto Dynamically Reconfigurable Devices. Journal of Systems Architecture.
2007. Vol. 53, No. 11, pp. 861�876.

33. Qu, Y., Soininen, J.-P. and Nurmi, J. A parallel configuration model for reducing
the run-time reconfiguration overhead. IEEE Proceedings of the Design,
Automation, and Test in Europe Conference (DATE). 2006. Pp. 965�970.

34. Qu, Y., Soininen, J.-P. and Nurmi, J. Using constraint programming to achieve
optimal prefetch scheduling for dependent tasks on run-time reconfigurable
devices. IEEE International Symposium on System-on-Chip. 2006. Pp. 83�86.

35. Qu, Y., Soininen, J.-P. and Nurmi, J. A genetic algorithm for scheduling tasks
onto dynamically reconfigurable hardware. IEEE International Symposium on
Circuits and Systems (ISCAS). 2007. Pp. 161�164.

36. Qu, Y., Soininen, J.-P. and Nurmi, J. Improving the Efficiency of Run Time
Reconfigurable Devices by Configuration Locking. IEEE Proceedings of the
Design, Automation, and Test in Europe Conference (DATE). 2008. (In press).

37. Qu, Y., Soininen, J.-P. and Nurmi, J. Using multiple configuration controllers
to reduce the configuration overheads. IEEE Proceedings of the 23rd IEEE
Norchip Conference. 2005. Pp. 86�89.

119

38. Qu, Y., Soininen, J.-P. and Nurmi, J. Using dynamic voltage scaling to reduce
the configuration energy of run time reconfigurable devices. IEEE Proceedings
of the Design, Automation, and Test in Europe Conference (DATE). 2007.
Pp. 147�152.

39. Bondalapati, K. and Prasanna, V. Reconfigurable computing systems. Proceedings
of the IEEE, 2002. Vol. 90, No. 7, pp. 1201�1217.

40. Hartenstein, R. A decade of reconfigurable computing: a visionary retrospective.
IEEE Proceedings of the Design, Automation, and Test in Europe Conference
(DATE). 2001. Pp. 642�649.

41. Tessier, R. and Burleson, W. Reconfigurable computing for digital signal
processing: A survey. Journal of VLSI Signal Processing, 2001. Vol. 28, No. 1,
pp. 7�27.

42. Shoa, A. and Shirani, S. Run-time reconfigurable systems for digital signal
processing applications: a survey. Journal of VLSI Signal Processing System,
2005. Vol. 39, No. 3, pp. 213�235.

43. Alsolaim, A., Becker, J., Glesner, M. and Starzyk, J., Architecture and
application of a dynamically reconfigurable hardware array for future mobile
communication systems. Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM). 2000. Pp. 205�214.

44. Becker, J., Pionteck, T., Habermann, C. and Glesner, M. Design and implementation
of a coarse-grained dynamically reconfigurable hardware architecture. Proceedings
of the IEEE Computer Society Workshop on VLSI. 2001. Pp. 41�46.

45. Rath, K., Tangirala, S., Friel, P., Balsara, P., Flores, J. and Wadley, J.
Reconfigurable array media processor (RAMP). Proceedings of the IEEE
Symposium on Field-Programmable Custom Computing Machines (FCCM).
2000. Pp. 287�288.

120

46. Fujii, T., Furuta, K., Motomura, M., Nomura, M., Mizuno, M., Anjo, K.,
Wakabayashi, Hirota, K.Y., Nakazawa, Y., Ito, H. and Yamashina, M.
A dynamically reconfigurable logic engine with a multi-context/multi-mode
unified-cell architecture. Proceedings of the IEEE International Solid-State
Circuits Conference (ISSCC). 1999. Pp. 364�365.

47. Shibata, Y., Uno, M., Amano, H., Furuta, K., Fujii, T. and Motomura, M.
A virtual hardware system on a dynamically reconfigurable logic devices.
Proceedings of the IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM). 2000. Pp. 295�296.

48. Bobda, C., Majer, M., Ahmadinia, A., Haller, T., Linarth, A. and Teich, J.
Increasing the flexibility in FPGA-based reconfigurable platforms: the
Erlangen Slot Machine. Proceedings of the IEEE Conference on Field-
Programmable Technology (FPT). 2005. Pp. 37�42.

49. Bobda, C., Majer, M., Ahmadinia, A., Haller, T., Linarth, A., Teich, J., Fekete,
S.P. and van der Veen, J. The Erlangen Slot Machine: a highly flexible FPGA-
based reconfigurable platform. Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM). 2005. Pp. 319�320.

50. Majer, M., Teich, J., Ahmadinia, A. and Bobda, C. The Erlangen Slot Machine:
a dynamically reconfigurable FPGA-based computer. The Journal of VLSI
Signal Processing, 2007. Vol. 47, No. 1, pp. 15�31.

51. Schmit, H. Incremental reconfiguration for pipelined applications. Proceedings
of the IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM). 1997. Pp. 47�55.

52. Luk, W., Shirazi, N., Guo, S.R. and Cheung, P.Y.K. Pipeline morphing and
virtual pipelines. Proceedings of International Conference on Field Programmable
Logic and Applications (FPL). 1997. Pp. 111�120.

53. Cadambi, S., Weener, J., Goldstein, S.C., Schmit, H. and Thomas, D.E.
Managing pipeline-reconfigurable FPGAs. Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA). 1998.
Pp. 55�64.

121

54. Goldstein, S.C., Schmit, H., Budiu, M., Cadambi, S., Moe, M. and Taylor, R.R.
PipeRench: a reconfigurable architecture and compiler. Computer, 2000. Vol. 33.
No. 4, pp. 70�77.

55. Schmit, H, Whelihan, D., Moe, M., Levine, B. and Taylor, R. PipeRench: a
virtualized programmable datapath in 0.18 micron technology. Proceedings of
the 24th IEEE Custom Integrated Circuits Conference (CICC). 2002. Pp. 63�66.

56. Moe, M., Schmit, H. and Goldstein, S.C. Characterization and parameterization
of a pipeline reconfigurable FPGA. Proceedings of the IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM). 1998. Pp. 294�295.

57. Lysecky, R., Vahid, F. and Tan, S. Dynamic FPGA routing for just-in-time
FPGA compilation. IEEE Proceedings of the Design Automation Conference
(DAC). 2003. Pp. 334�337.

58. Lysecky, R., Vahid, F. and Tan, S. A study of the scalability of on-chip routing
for just-in-time FPGA compilation. Proceedings of the IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM). 2005. Pp. 57�62.

59. Barat, F., Lauwereins, R. and Deconinck, G. Reconfigurable instruction set
processors from a hardware/software perspective. IEEE Transactions on
Software Engineering, 2002. Vol. 28, No. 9, pp. 847�862.

60. Hauck, S., Fry, T.W., Hosler, M.W. and Kao, J.P. The chimaera reconfigurable
functional unit. Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM). 1997. Pp. 87�96.

61. Razdan, R. and Smith, M.D. A high-performance microarchitecture with
hardware-programmable functional units. Proceedings of the 27th Annual
International Symposium on Microarchitecture. 1994. Pp. 172�180.

62. Kastrup, B., Bink, A. and Hoogerbrugge, J. ConCISe: a compiler-driven
CPLD-based instruction set accelerator. Proceedings of the 7th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines (FCCM).
1999. Pp. 92�101.

122

63. Wittig, R. and Chow, P. OneChip: an FPGA processor with reconfigurable
logic. Proceedings of the IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM). 1996. Pp. 126�135.

64. Goldstein, S.C., Schmit, H., Moe, M., Budiu, M., Cadambi, S., Taylor, R.R.
and Laufer, R. PipeRench: a coprocessor for streaming multimedia acceleration.
Proceedings of the 26th Annual International Symposium on Computer
Architecture. 1999. Pp. 28�39.

65. Hauser, J.R., Wawrzynek, J. Garp: a MIPS processor with a reconfigurable
coprocessor. Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM). 1997. Pp. 12�21.

66. Becker, J., Thomas, A., Vorbach, M. and Baumgarte, V. An industrial/academic
configurable system-on-chip project (CSoC): coarse-grain XPP-/Leon-based
architecture integration. IEEE Proceedings of the Design, Automation and Test
in Europe Conference (DATE). 2003. Pp. 1120�1121.

67. Lu, G., Singh, H., Lee, M., Bagherzadeh, N., Kurdahi, F.J. and Filho, E.M.C.
MorphoSys: an integrated re-configurable architecture. Proceedings of the 5th
International Euro-Par Conference. 1999. Pp. 727�734.

68. Vuillemin, J., Bertin, P., Roncin, D., Shand, M., Touati, H. and Boucard, P.
Programmable Active Memories: Reconfigurable Systems Come of Age. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 1996. Vol. 4,
No. 1, pp. 56�69.

69. Xilinx Incorporated. Virtex-5 family overview � LX, LXT and SXT platforms.
http://direct.xilinx.com/bvdocs/publications/ds100.pdf. (May, 2007).

70. Altera Corporation. Stratix III device family � the lowest power high-performance
FPGAs. http://www.altera.com/products/devices/stratix3/st3-index.jsp. (May, 2007).

71. PACT XPP Technologies. XPP-III processor overview (white paper).
http://www.pactxpp.com/main/download/XPP-III_overview_WP.pdf. (May, 2007).

http://direct.xilinx.com/bvdocs/publications/ds100.pdf
http://www.altera.com/products/devices/stratix3/st3-index.jsp
http://www.pactxpp.com/main/download/XPP-III_overview_WP.pdf

123

72. Singh, H., Lu, G., Lee, M., Kurdahi, F.J., Bagherzadeh, N., Filho, E.M.C. and
Maestre, R. MorphoSys: case study of a reconfigurable computing system
targeting multimedia applications. IEEE Proceedings of the Design Automation
Conference (DAC). 2000. Pp. 573�578.

73. Singh, H., Lee, M., Lu, G., Kurdahi, F.J., Bagherzadeh, N. and Filho, E.M.C.
MorphoSys: an integrated reconfigurable systems for data-parallel and
computation-intensive applications. IEEE Transactions on Computers, 2000.
Vol. 49, No. 5, pp. 465�481.

74. Atmel Corporation. FPSLIC (field programmable system level integrated circuits)
product overview. http://www.atmel.com/products/FPSLIC/overview.asp. (May,
2007).

75. Noguera, J. and Badia, R.M. A HW/SW partitioning algorithm for dynamically
reconfigurable architectures. IEEE Proceedings of the Design, Automation and
Test in Europe Conference (DATE). 2001. Pp. 729�734.

76. Noguera, J. and Badia, R.M. HW/SW codesign techniques for dynamically
reconfigurable architectures. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2002. Vol. 10, No. 4, pp. 399�415.

77. Harkin, J., McGinnity, T.M. and Maguire, L.P. Partitioning methodology for
dynamically reconfigurable embedded systems. IEE Proceedings of Computer
Digital Techniques, 2000. Vol. 47, No. 6, pp. 391�396.

78. Berthelot, F., Nouvel, F. and Houzet, D. Design methodology for runtime
reconfigurable FPGA: from high level specification down to implementation.
IEEE Workshop on Signal Processing Systems Design and Implementation.
2005. Pp. 497�502.

79. Handa, M., Radhakrishnan, R., Mukherjee, M. and Vemuri, R. A fast macro
based compilation methodology for partially reconfigurable FPGA designs.
Proceedings of the 16th International Conference on VLSI. 2003. Pp. 91�96.

http://www.atmel.com/products/FPSLIC/overview.asp

124

80. Chatta, K.S. and Vemuri, R. Hardware-software codesign for dynamically
reconfigurable architectures. Proceedings of International Conference on Field
Programmable Logic and Applications (FPL). 1999. Pp. 175�184.

81. Shang, L. and Jha, N.K. Hardware-software co-synthesis of low power real-
time distributed embedded systems with dynamically reconfigurable FPGAs.
IEEE Proceedings of the Asia South Pacific Design Automation Conference
(ASPDAC)/VLSI Design. 2002. Pp. 345�352.

82. Shang, L., Dick, R.P. and Jha, N.K. SLOPES: hardware-software cosynthesis
of low-power real-time distributed embedded systems with dynamically
reconfigurable FPGAs. IEEE Transactions on Computer-Aided Design (CAD)
of Integrated Circuits and Systems, 2007. Vol. 26, No. 3, pp. 508�526.

83. Fröhlich, D., Steinbach, B. and Beierlein, T. UML-Based Co-Design for Run-
Time Reconfigurable Architectures. Proceedings of Forum on Specification &
Design Languages (FDL). 2003. Pp. 285�296.

84. Schattkowsky, T., Mueller, W. and Rettberg, A. A Model-Based Approach for
Executable Specifications on Reconfigurable Hardware. IEEE Proceedings of
the Design, Automation and Test in Europe Conference (DATE). 2005.
Pp. 692�697.

85. Turner, R., Woods, R., Sezer, S. and Henon, J. A virtual hardware handler for
RTR systems. Proceedings of the 7th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM). 1999. Pp. 262�263.

86. IPFlex Incorporated. DAPDNA Specifications. http://www.ipflex.com/en/E1-
products/dd2Spec.html. (May, 2007).

87. Malik, U. and Diessel, O. The entropy of FPGA reconfiguration. IEEE
Proceedings of International Conference on Field Programmable Logic and
Applications (FPL). 2006. Pp. 1�6.

88. Li, Z. and Hauck, S. Configuration compression for Virtex FPGAs. Proceedings
of the 9th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM). 2001. Pp. 147�159.

http://www.ipflex.com/en/E1-

125

89. Dandalis, A. and Prasanna, V.K. Configuration compression for FPGA-based
embedded systems. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 2005. Vol. 13, No. 12, pp. 1394�1398.

90. Farshadjam, F., Fathy, M. and Dehghan, M. A new approach for configuration
compression in Virtex based RTR systems. Canadian Conference on Electrical
and Computer Engineering, Vol. 2. 2004. Pp. 1093�1096.

91. Hauck, S. and Wilson, W.D. Runlength compression techniques for FPGA
configurations. Proceedings of the 7th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM). 1999. Pp. 286�287.

92. Hauck, S., Li, Z. and Schwabe, E. Configuration compression of the Xilinx
XC6200 FPGA. IEEE Transactions on Computer-Aided Design (CAD) of
Integrated Circuits and Systems, 1999. Vol. 18, No. 8, pp. 1107�1113.

93. Luk, W., Shirazi, N. and Cheung, P.Y.K. Modeling and optimizing run-time
reconfigurable systems. Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM). 1996. Pp. 167�176.

94. Luk, W., Shirazi, N. and Cheung, P.Y.K. Compilation tools for run-time
reconfigurable designs. Proceedings of the 5th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM). 1997. Pp. 56�65.

95. Shirazi, N., Luk, W. and Cheung, P.Y.K. Automating production of run-time
reconfigurable designs. Proceedings of IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM). 1998. Pp. 147�156.

96. Marshall, A., Stansfield, T., Kostarniv, I., Vuillemin, J. and Hutchings, B.
A reconfigurable arithmetic array for multimedia applications. Proceedings of the
International Symposium on Field Programmable Gate Arrays. 1998. Pp. 65�74.

97. Li, Z. Configuration management techniques for reconfigurable computing.
PhD Thesis. Department of ECE, Northwestern University. 2002. ISBN 0-493-
65106-3.

126

98. Li, Z., Compton, K. and Hauck, S. Configuration caching management techniques
for reconfigurable computing. Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM). 2000. Pp. 22�36.

99. Taher, M. and El-Ghazawi, T. Exploiting processing locality through paging
configurations in multitasked reconfigurable systems. IEEE Reconfigurable
Workshop (RAW), Proceedings of the International Parallel and Distributed
Processing Symposium. 2006.

100. Compton, K., Cooley, J., Knol, S. and Hauck, S. Configuration relocation and
defragmentation for reconfigurable computing. Proceedings of the IEEE
Symposium of Field-Programmable Custom Computing Machines (FCCM).
2000. Pp. 279�280.

101. Compton, K., Li, Z., Cooley, J., Knol, S. and Hauck, S. Configuration
relocation and defragmentation for run-time reconfigurable computing. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2002. Vol. 10,
No. 3, pp. 209�220.

102. Diessel, O. and Elgindy, H. Partial FPGA rearrangement by local repacking.
Technical report 97-08. Department of Computer Science and Software
Engineering, The University of Newcastle. 1997.

103. Diessel, O. and Elgindy, H. Run-time compaction of FPGA designs. The 7th
International Workshop on Field-Programmable Logic and Applications (FPL).
1997. Pp. 131�140.

104. Brebner, G. and Diessel, O. Chip-based reconfigurable task management. The
11th International Conference on Field-Programmable Logic and Applications
(FPL). 2001. Pp. 182�191.

105. van der Veen, J., Fekete, S., Majer, M., Ahmadinia, A., Bobda, C., Hannig, F.
and Teich, J. Defragmenting the module layout of a partially reconfigurable
device. Proceedings of the International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA). 2005. Pp. 92�101.

127

106. Septien, J., Mecha, H., Mozos, D. and Tabero, J. 2D defragmentation heuristics
for hardware multitasking on reconfigurable devices. IEEE Reconfigurable
Workshop (RAW), Proceedings of the International Parallel and Distributed
Processing Symposium. 2006.

107. Tabero, J., Septien, J., Mecha, H. and Mozos, D. A low fragmentation
heuristics for task placement in 2D RTR HW management. Proceedings of the
International Conference on Field-Programmable Logic and Applications
(FPL). 2004. Pp. 241�250.

108. A.-El Farag, A., El-Boghdadi, H.M. and Shaheen, S.I. Improving Utilization of
Reconfigurable Resources Using Two-Dimensional Compaction. Proceedings
of the 10th Design, Automation and Test in Europe Conference (DATE). 2007.
Pp. 135�140.

109. Gericota, M.G., Alves, G.R., Silva, M.L. and Ferreira, J.M. Active replication:
towards a truly SRAM-based FPGA on-line concurrent testing. Proceedings of
the 8th IEEE International On-Line Testing Workshop. 2002. Pp. 165�169.

110. Gericota, M.G., Alves, G.R., Silva, M.L. and Ferreira, J.M. On-line
defragmentation for run-time partially reconfigurable FPGAs. Proceedings of
the 12th International Conference on Field Programmable Logic and
Applications (FPL). 2002. Pp. 302�311.

111. Gericota, M.G., Alves, G.R., Silva, M.L. and Ferreira, J.M. Run-time management
of logic resources on reconfigurable systems. Proceedings of Design,
Automation and Test in Europe Conference (DATE). 2003. Pp. 974�979.

112. Ejnioui, A. and DeMara, R.F. Area reclamation metrics for SRAM-based
reconfigurable devices. Proceedings of the International Conference on Engineering
of Reconfigurable Systems and Algorithms (ERSA). 2005. Pp. 196�202.

113. Walder, H. and Platzner, M. Non-preemptive multitasking on FPGAs: task
placement and footprint transform. Proceedings of the International Conference
on Engineering of Reconfigurable Systems and Algorithms (ERSA). 2002.
Pp. 24�30.

128

114. Handa, M. and Vemuri, R. Area fragmentation in reconfigurable operating
systems. Proceedings of the International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA). 2004.

115. Hauck, S. Configuration prefetching for single context reconfigurable coprocessor.
Proceedings of the International Symposium on Field-Programmable Gate
Arrays (FPGA). 1998. Pp. 65�74.

116. Li, Z. and Hauck, S. Configuration prefetching techniques for partial
reconfigurable coprocessors with relocation and defragmentation. Proceedings
of the 10th International Symposium on Field-Programmable Gate Arrays
(FPGA). 2002. Pp. 187�195.

117. Resano, J., Mozos, D., Verkest, D., Vernalde, S. and Catthoor, F. Run-time
minimization of reconfiguration overhead in dynamically reconfigurable
systems. Proceedings of the International Conference on Field Programmable
Logic and Applications (FPL). 2003. Pp. 585�594.

118. Resano, J., Verkest, D., Mozos, D., Vernalde, S. and Catthoor, F. A hybrid
design-time/run-time scheduling flow to minimize the reconfiguration overhead
of FPGAs. Journal of Microprocessors and Microarchitectures, 2004. Vol. 28,
No. 5�6, pp. 291�301.

119. Resano, J. and Mozos, D. Specific scheduling support to minimize the
reconfiguration overhead of dynamically reconfigurable hardware. Proceedings
of the Design Automation Conference (DAC). 2004. Pp. 119�124.

120. Resano, J., Mozos, D. and Catthoor, F. A hybrid prefetch scheduling heuristic
to minimize at run-time the reconfiguration overhead of dynamically
reconfigurable hardware. Proceedings of Design, Automation and Test in
Europe Conference (DATE). 2005. Pp. 106�111.

121. Resano, J., Mozos, D., Verkest, D. and Catthoor, F. A reconfiguration manager
for dynamically reconfigurable hardware. IEEE Design and Test of Computers,
2005. Vol. 22, No. 5, pp. 452�460.

129

122. Panainte, E.M., Bertels, K. and Vassiliadis, S. The PowerPC backend MOLEN
compiler. Proceedings of the International Conference on Field Programmable
Logic and Applications (FPL). 2003. Pp. 900�910.

123. Panainte, E.M., Bertels, K. and Vassiliadis, S. Instruction scheduling for
dynamic hardware configurations. Proceedings of Design, Automation and Test
in Europe Conference (DATE). 2005. Pp. 100�105.

124. Vassiliadis, S., Wong, S. and Coţofanǎ, S. The MOLEN ρµ-coded processor.
Proceedings of the International Conference on Field Programmable Logic and
Applications (FPL). 2001. Pp. 275�285.

125. Vassiliadis, S., Gaydadjiev, G., Bertels, K. and Panainte, E.M. The MOLEN
programming paradigm. Proceedings of the International Workshop on
Systems, Architectures, Modeling, and Simulation. 2003. Pp. 1�7.

126. Vassiliadis, S., Wong, S., Gaydadjiev, G., Bertels, K., Kuzmanov, G. and
Panainte, E.M. The MOLEN polymorphic processor. IEEE Transactions on
Computers, 2004. Vol. 53, No. 11, pp. 1363�1375.

127. Panainte, E.M., Bertels, K. and Vassiliadis, S. Compiler-driven FPGA-area
allocation for reconfigurable computing. Proceedings of Design, Automation
and Test in Europe Conference (DATE). 2006. Pp. 369�374.

128. Maestre, R., Kurdahi, F.J., Fernandez, M., Hermida, R., Bagherzadeh, N. and
Singh, H. Optimal vs. heuristic approaches to context scheduling for multi-
context reconfigurable architectures. Proceedings of the International
Conference on Computer Design (ICCD). 2000. Pp. 575�576.

129. Maestre, R., Kurdahi, F.J., Bagherzadeh, N., Singh, H., Hermida, R. and
Fernandez, M. Kernel scheduling in reconfigurable computing. Proceedings of
Design, Automation and Test in Europe Conference (DATE). 1999. Pp. 90�97.

130. Maestre, R., Kurdahi, F.J., Fernandez, M., Hermida, R., Bagherzadeh, N. and
Singh, H. A framework for reconfigurable computing: task scheduling and
context management. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 2001. Vol. 9, No. 6, pp. 858�873.

130

131. Fekete, S.P., Kohler, E. and Teich, J. Optimal FPGA module placement with
temporal precedence constraints. Proceedings of Design, Automation and Test
in Europe Conference (DATE). 2001. Pp. 658�665.

132. Gu, Z., Yuan, M. and He, X. Optimal static scheduling on reconfigurable
hardware devices using model-checking. Proceedings of the IEEE Real Time and
Embedded Technology and Applications Symposium (RTAS). 2007. Pp. 32�44.

133. Eskinazi, R., Lima, M.E., Maciel, P.R.M., Valderrama, C.A., Filho, A.G.S. and
Nascimento, P.S.B. A timed Petri Net approach for pre-runtime scheduling in
partial and dynamic reconfigurable systems. Proceedings of the IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 2005. Pp. 154a�.

134. Diessel, O., ElGindy, H., Middendorf, M., Schmeck, H. and Schmidt, B.
Dynamic scheduling of tasks on partially reconfigurable FPGAs. IEE Proceedings
of Computer Digital Techniques, 2000. Vol. 147, No. 3, pp. 181�188.

135. Bazargan, K., Kastner, R. and Sarrafzadeh, M. Fast template placement for
reconfigurable computing systems. IEEE Design & Test of Computers, 2000.
Vol. 17, No. 1, pp. 68�83.

136. Walder, H., Steiger, C. and Platzner, M. Fast online task placement on FPGAs:
free space partitioning and 2D-hashing. Proceedings of the IEEE International
Parallel and Distributed Processing Symposium (IPDPS). 2003. P. 178.2.

137. Cui, J., Deng, Q., He, X. and Gu, Z. An efficient algorithm for online
management of 2D area of partially reconfigurable FPGAs. Proceedings of
Design, Automation and Test in Europe Conference (DATE). 2007. Pp. 129�134.

138. Steiger, C., Walder, H. and Platzner, M. Operating systems for reconfigurable
embedded platforms: online scheduling of real-time tasks. IEEE Transactions
on Computers, 2004. Vol. 53, No. 11, pp. 1393�1407.

139. Danne, K. and Platzner, M. A heuristic approach to schedule periodic real-time
tasks on reconfigurable hardware. Proceedings of the International Conference
on Field Programmable Logic and Applications (FPL). 2005. Pp. 568�573.

131

140. Danne, K. and Platzner, M. An EDF schedulability test for periodic tasks on
reconfigurable hardware devices. Proceedings of the ACM Conferences on
Languages, Compilers, and Tools for Embedded Systems (LCTES). 2006.
Pp. 93�102.

141. Voros, N. S. and Masselos, K. System level design of reconfigurable systems-
on-chip. Springer Publisher, 2005. 231 p. ISBN 0-387-26103-6.

142. Grötker, T., Liao, S., Martin, G. and Swan, S. System design with SystemC,
Springer publisher, 2002. 240 p. ISBN 978-1-4020-7072-3.

143. IEEE 1800-2005. IEEE Standard for SystemVerilog � unified hardware design,
specification, and verification language. IEEE, 2005. 648 p.

144. Gajski, D.D., Zhu, J., Dömer, R., Gerstlauer, A. and Zhao, S. SpecC:
specification language and methodology. Springer publisher, 2000. 336 p.
ISBN 978-0-7923-7822-8.

145. Soininen, J.-P., Kreku, J., Qu, Y. and Forsell, M. Mappability estimation
approach for processor architecture evaluation. Proceeding of 20th IEEE
Norchip Conference. 2002. Pp. 171�176.

146. Wilson, R., French, R., Wilson, C., Amarasinghe, S., Anderson, J., Tjiang, S.,
Liao, S., Tseng, C., Hall, M., Lam, M. and Hennessy, J. SUIF: An Infrastructure
for Research on Parallelizing and Optimizing Compilers. Proceedings of the
7th ACM SIGPLAN symposium on Principles and practice of parallel pro
programming. 1994. Pp. 37�48.

147. GNU. gcov manual. http://gcc.gnu.org/onlinedocs/gcc/Gcov.html. (May, 2007).

148. Gajski, D.D., Dutt, N.D., Wu, A.C-H. and Lin, S.Y-L. High-level synthesis:
Introduction to chip and system design. Kluwer Academic Publishers. 1992.
376 p.

149. Paulin, P.G. and Knight, J.P. Force-Directed Scheduling for the Behavioral
Synthesis of ASICs. IEEE Transactions on CAD of Integrated Circuits and
Systems, 1989. Vol. 8, No. 6, pp. 661�679.

http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

132

150. The Open SystemC Initiative (OSCI). The SystemC TLM 2.0 documentation.
www.systemc.org. (May, 2007).

151. OCP-IP. OCP 2.2 specification. www.ocpip.org. (Feb, 2007).

152. Chiba, S. OpenC++ reference manual. opencxx.sourceforge.net. (May, 2007).

153. Lysaght, P. and Stockwood, J. A simulation tool for dynamically reconfigurable
field programmable gate arrays. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 1996. Vol. 4, No. 3, pp. 381�390.

154. Heikkilä, M.J. A novel blind adaptive algorithm for channel equalization in
WCDMA downlink. IEEE Symposium on the 12th personal, indoor and mobile
radio communication. 2001. Pp. 41�45.

155. Memec. Virtex-II Pro demonstration board datasheet. www.memec.com. 2003.

156. Xilinx Incorporated. Virtex-II Pro/Virtex-II Pro X complete data sheet (all four
modules). http://direct.xilinx.com/bvdocs/publications/ds083.pdf. (May, 2007).

157. Xilinx Incorporated. XPP290 two flows for partially reconfiguration module-
based or difference-based. direct.xilinx.com/bvdocs/appnotes/xapp290.pdf.
(May, 2007).

158. Qu, Y., Soininen, J.-P. and Nurmi, J. An efficient approach to hide the run-time
reconfiguration from SW applications. IEEE Proceedings of the 15th Field
Programmable Logic and Applications (FPL). 2005. Pp. 648�653.

159. Xilinx Incorporated. Platform studio and EDK design environment.
http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm. (May,
2007).

160. Mentor Graphics. ModelSim datasheet. www.model.com. (May, 2007).

161. Xilinx Incorporated. The iMPACT GUI configuration tool manual.
http://toolbox.xilinx.com/docsan/xilinx4/data/docs/pac/preface.html, (May. 2007).

http://direct.xilinx.com/bvdocs/publications/ds083.pdf
http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm
http://toolbox.xilinx.com/docsan/xilinx4/data/docs/pac/preface.html

133

162. Campoy, M., Ivars, A.P. and Busquets-Mataix, J.V. Static use of locking
caches in multitask preemptive real-time systems. IEEE/IEE Real-Time
Embedded Systems Workshop (Satellite of the IEEE Real-Time Systems
Symposium). 2001.

163. Freuder, E.C. In Pursuit of the Holy Grail. Constraints, 1997. Vol. 2, No. 1,
pp. 57�61.

164. Marriott, K. and Stuckey, P.J. Programming with constraints: an introduction.
The MIT Press. 1998. 483 p.

165. Holland, J. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. The
MIT Press (reprint edition), 1992. 211 p.

166. Hou, E., Ansari, N. and Ren, H. A genetic algorithm for multiprocessor
scheduling. IEEE Transactions on Parallel and Distributed Systems, Vol. 5, No. 2.
1994, pp. 113�120.

167. Correa, R., Ferreira, A. and Rebreyend, P. Scheduling multiprocessor tasks
with genetic algorithms. IEEE Transactions on Parallel and Distributed
Systems, 1999. Vol. 10, No. 8, pp. 825�837.

168. SICS AB. SICSTUS manual. www.sics.se/sicstus. (Jan, 2007).

169. Dick, R.P., Rhodes, D.L. and Wolf, W. TGFF: task graphs for free.
Proceedings of the International Workshop on HW/SW co-design. 1998.
Pp. 97�101.

170. Lin, Y., Li, F. and He, L. Circuits and architectures for FPGA with configurable
supply voltage. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 2005. Vol. 13, No. 9, pp. 1037�1047.

 Series title, number and
report code of publication

VTT Publications 659
VTT-PUBS-659

Author(s)
Qu, Yang
Title

System-level design and configuration management for
run-time reconfigurable devices
Abstract
Dynamically reconfigurable hardware (DRHW) not only has high silicon reusability, but it can also deliver
high performance for computation-intensive tasks. Advanced features such as run-time reconfiguration (RTR)
allow multiple tasks to be mapped onto the same device either simultaneously or multiplexed in time domain.
This new type of computing element also brings new challenges in the design process. Design supports at the
system level are needed. In addition, the configuration latency and the configuration energy involved in each
reconfiguration process can largely degrade the system performance. Approaches to efficiently manage the
configuration processes are needed in order to effectively reduce its negative impacts. In this thesis, system-
level supports for design of DRHW and various configuration management approaches for reducing the
impact of configuration overhead are presented.

Our system-level design supports are based on the SystemC environment. An estimation technique for system
partitioning and a DRHW modeling technique are developed. The main idea is to help designers in the early
design phase to evaluate the benefit of moving some components from fixed hardware implementation to
DRHW. The supports have been applied in a WCDMA case study. In order to efficiently apply the multi-
tasking feature of DRHW, we have developed three static task scheduling techniques and a run-time
scheduling technique. The static schedulers include a list-based heuristic approach, an optimal approach based
on constraint programming and a guided random search approach using a genetic algorithm. They are
evaluated using both random tasks and real applications. The run-time scheduling uses a novel configuration
locking technique. The idea is to dynamically track the task status and lock the most frequently used tasks on
DRHW in order to reduce the number of reconfigurations. In addition, we present two novel techniques to
reduce the configuration overhead. The first is configuration parallelism. Its idea is to enable tasks to be
loaded in parallel in order to better exploit their parallelism. The second is dynamic voltage scaling. The idea
is to apply low supply voltage in reconfiguration process when possible in order to reduce the configuration
energy.

ISBN
978-951-38-7053-9 (soft back ed.)
978-951-38-7054-6 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number

VTT Publications
1235-0621 (soft back ed.)
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

6769

Date Language Pages
November 2007 English 133 p.

Name of project Commissioned by
ADRIATIC, MARTES European Commission, Tekes

Keywords Publisher
dynamically reconfigurable hardware, run-time
reconfiguration, system-level design, task
scheduling, configuration locking,
configuration parallelism

VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4520
Fax +358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

V
TT PU

B
LIC

A
TIO

N
S 659 System

-level design and configuration m
anagem

ent for run-tim
e reconfigurable devices

ESPOO 2007ESPOO 2007ESPOO 2007ESPOO 2007ESPOO 2007 VTT PUBLICATIONS 659

Yang Qu

System-level design and configuration
management for run-time
reconfigurable devices

Reconfigurability is becoming an important issue in System-on-Chip (SoC)
design because of the increasing demands of silicon reuse, product
upgrade after shipment and bug-fixing ability. Using dynamically
reconfigurable hardware (DRHW), higher performance can be achieved
than in a software implementation and more flexibility than in a fixed-
hardware implementation. However, run-time reconfiguration results in
latency and power consumption, which can largely degrade the system
performance. This brings challenges to using DRHW in SoC design. In
addition, new design methods and tools are needed.

In this thesis, system-level design supports and tools for DRHW are
presented. The main idea is to help designers in the early design phase to
evaluate the benefit of moving some components from fixed hardware
implementation to DRHW without going into implementation details. To
efficiently utilize DRHW, different static and run-time task scheduling
approaches are developed. In addition, two novel techniques to reduce the
negative impact of run-time reconfiguration have been proposed and
evaluated.

ISBN 978-951-38-7053-9 (soft back ed.) ISBN 978-951-38-7054-6 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1235-0621 (soft back ed.) ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Julkaisu on saatavana Publikationen distribueras av This publication is available from

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI-02044 VTT, Finland
Puh. 020 722 4520 Tel. 020 722 4520 Phone internat. + 358 20 722 4520

http://www.vtt.fi http://www.vtt.fi http://www.vtt.fi

Image Sharpening

DCT

 IIR

FFT

Encryption

Run-time Reconfigurable
Hardware

FIR

http://www.vtt.fi
http://www.vtt.fi
http://www.vtt.fi
http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	Abstract
	Preface
	Contents
	List of symbols
	1. Introduction
	1.1 Run-time reconfigurable systems
	1.1.1 Benefits of using run-time reconfigurable systems
	1.1.2 Challenges of using run-time reconfigurable systems

	1.2 Key contributions of the work
	1.2.1 System-level design flow and support tools
	1.2.2 Scheduling techniques to manage the configuration process
	1.2.3 Techniques to reduce the configuration overhead

	1.3 Introduction to the most important papers
	1.4 Organization of the thesis

	2. Background and related work
	2.1 Run-time reconfigurable computing
	2.1.1 Configuration models
	2.1.2 Coupling techniques
	2.1.3 Example systems

	2.2 System-level design techniques
	2.3 Configuration management techniques
	2.3.1 Reducing the configuration data
	2.3.2 Reducing the number of required configurations
	2.3.3 Managing reconfigurations in the task scheduling process

	3. System-level design supports for run-time
	3.1 System-level design flow and our supports
	3.1.1 Definition of terms
	3.1.2 Estimation approach to support system analysis
	3.1.2.1 Creation of control-data flow graph from C code
	3.1.2.2 High-level synthesis-based hardware estimation
	3.1.2.3 Estimating SW execution time
	3.1.2.4 Candidate component selection

	3.1.3 Modeling of DRHW and the supporting transformation tool
	3.1.3.1 Parameterized DRCF template
	3.1.3.2 DRCF component and Reconfigurable SoC modeling
	3.1.3.3 An automatic code transformer for DRCF component

	3.1.4 Link to low-level design

	3.2 A WCDMA detector case study
	3.2.1 System description
	3.2.1.1 Adaptive filter
	3.2.1.2 Channel estimator
	3.2.1.3 Combiner
	3.2.1.4 Correlator

	3.2.2 System-level design
	3.2.3 Detailed design and implementation
	3.2.3.1 Interface refinement
	3.2.3.2 Configuration design
	3.2.3.3 Partial reconfigurable module design
	3.2.3.4 Co-verification and execution

	3.2.4 Comparison with other implementation alternatives

	3.3 Analysis and discussion

	4. Task scheduling approaches for run-time
	4.1 Introduction
	4.2 Target models
	4.2.1 Device model
	4.2.2 Task model

	4.3 Static scheduling approaches
	4.3.1 The list-based scheduler
	4.3.2 The constraint programming approach
	4.3.2.1 Introduction to constraint programming
	4.3.2.2 Constraint models
	4.3.2.3 Constraint implementation

	4.3.3 The genetic algorithm
	4.3.3.1 Introduction
	4.3.3.2 Coding of solutions
	4.3.3.3 Initial population
	4.3.3.4 Crossover
	4.3.3.5 Mutation
	4.3.3.6 Evaluation and selection
	4.3.3.7 Evolution strategy

	4.4 The run-time scheduling technique
	4.4.1 Configuration locking technique

	4.5 Case studies
	4.5.1 Evaluation of the static scheduling approaches
	4.5.1.1 Computation effort of the CP-based approach
	4.5.1.2 Accuracy and performance of the sub-optimal approaches
	4.5.1.3 Scalability of the sub-optimal approaches
	4.5.1.4 Experiments with practical applications

	4.5.2 Evaluation of the configuration locking technique

	4.6 Discussion

	5. Novel techniques to reduce the
	5.1 Configuration parallelism
	5.1.1 Motivation
	5.1.2 The parallel reconfiguration model
	5.1.3 Evaluation of configuration parallelism
	5.1.3.1 Combining configuration parallelism and prefetching
	5.1.3.2 Speedups of using more tiles and more controllers
	5.1.3.3 Evaluation of configuration parallelism using real applications

	5.2 Using dynamic voltage scaling to reduce
	5.2.1 Motivation
	5.2.2 Device model and evaluation technique
	5.2.3 Case studies
	5.2.3.1 Evaluation with pseudo tasks
	5.2.3.2 Evaluation with real applications

	5.3 Discussion

	6. Conclusions
	6.1 Summary of contributions
	6.2 Future work

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

