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Qu, Yang. System-level design and configuration management for run-time reconfigurable devices.
Espoo 2007. VTT Publications 659. 133 p. 

Keywords dynamically reconfigurable hardware, run-time reconfiguration, system-level 
design, task scheduling, configuration locking, configuration parallelism 

Abstract 
Dynamically reconfigurable hardware (DRHW) not only has high silicon 
reusability, but it can also deliver high performance for computation-intensive 
tasks. Advanced features such as run-time reconfiguration (RTR) allow multiple 
tasks to be mapped onto the same device either simultaneously or multiplexed in 
time domain. This new type of computing element also brings new challenges in 
the design process. Design supports at the system level are needed. In addition, 
the configuration latency and the configuration energy involved in each 
reconfiguration process can largely degrade the system performance. 
Approaches to efficiently manage the configuration processes are needed in 
order to effectively reduce its negative impacts. In this thesis, system-level 
supports for design of DRHW and various configuration management 
approaches for reducing the impact of configuration overhead are presented. 

Our system-level design supports are based on the SystemC environment. An 
estimation technique for system partitioning and a DRHW modeling technique are 
developed. The main idea is to help designers in the early design phase to evaluate 
the benefit of moving some components from fixed hardware implementation to 
DRHW. The supports have been applied in a WCDMA case study. In order to 
efficiently apply the multi-tasking feature of DRHW, we have developed three static 
task scheduling techniques and a run-time scheduling technique. The static schedulers 
include a list-based heuristic approach, an optimal approach based on constraint 
programming and a guided random search approach using a genetic algorithm. 
They are evaluated using both random tasks and real applications. The run-time 
scheduling uses a novel configuration locking technique. The idea is to dynamically 
track the task status and lock the most frequently used tasks on DRHW in order to 
reduce the number of reconfigurations. In addition, we present two novel techniques 
to reduce the configuration overhead. The first is configuration parallelism. Its idea is 
to enable tasks to be loaded in parallel in order to better exploit their parallelism. 
The second is dynamic voltage scaling. The idea is to apply low supply voltage 
in reconfiguration process when possible in order to reduce the configuration energy. 
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1. Introduction 

In April of 1965, Intel co-founder Gordon Moore published an article in Electronics 
Magazine. In the article, he stated that the logic density of integrated circuits has 
closely followed the relationship that the number of transistors per chip doubles every 
12 months, which was revised to a slower period of 18 months in the late 1970s [1]. 
This prediction is honored as �Moore�s Law� that has been verified for the past four 
decades. The 2005 edition of international technology roadmap for semiconductors 
(ITRS) [2] forecasted that advanced technologies would keep Moore�s law to be valid 
until 2020, at which time 14nm technology will be commercially used. Currently, a 
single chip that contains more than 1.3 billion transistors [3] has been manufactured 
on 65nm technology, and it has been commercially sold on a vast scale. 

On the other hand, new applications and algorithms are growing rapidly as well. 
Traditionally, they are implemented in general purpose processors (GPPs), which 
employ an instruction-stream-based von Neumann (vN) paradigm [4]. Applications 
are described in software and compiled into a sequence of instructions, which guide 
the microprocessor central processing unit (CPU) to perform operations step by step. 
However, as applications become more complex and algorithms become more 
computation-intensive, the vN-type processing cannot deliver the required 
performance. Additional supports are required. One solution is to couple the host 
processor with dedicated hardware accelerators. A straightforward example is that 
most personal computers (PCs) nowadays need a graphics processing unit (GPU) to 
drive the display. 

Usually, hardware accelerators are implemented as application specific integrated 
circuits (ASICs). For a known and well-defined application, an optimized design can 
achieve high speed, high throughput as well as low power consumption and small 
chip area. However, the higher performance achieved over software implementation 
on GPPs is mainly due to the high Non-recurring engineering (NRE) cost and the 
sacrifice of flexibility. The challenges in deep sub-micro (DSM) technology, e.g., 
noise and transient errors [5, 6], and the increasing complexity of algorithms have 
increased the design gap and driven the design cost higher and lengthened the design 
time, which is unfavorable to electronics industry that suffers from shrinking time-to-
market and decreasing product life cycles. 
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In addition, ASICs have very low silicon reusability, because they have a fixed 
hardware structure. When the implemented design becomes outdated or new 
requirement is needed, ASIC chips cannot re-shape themselves. One processing 
element that can provide both high performance and flexibility is a digital signal 
processor (DSP), which is usually implemented as a very long instruction word 
(VLIW) processor that has multiple function units and thus can exploit a certain 
degree of parallelism. However, DSPs fail to deliver the required performance for 
many modern applications that consist of very high computation-intensive algorithms, 
e.g., H.264 video codec [7]. In addition, DSPs are extremely power inefficient when 
compared to ASIC solutions. 

Another alternative is reconfigurable systems, which usually appear in the form of 
field programmable gate array (FPGA). The FPGA is an array of gate-level 
configurable logic elements (LEs) embedded in a reconfigurable interconnect fabric. 
Both LEs and interconnect are programmable. They can implement any combinational 
logic as well as sequential circuit. In addition, customized blocks, such as hardwired 
multipliers and memories [8], can be embedded to support various kinds of DSP 
applications. Modern FPGA platforms also embed one or more than one hardwired 
processor. Such structure makes it possible to implement a rather complex system in 
such platforms. Because FPGAs are pre-fabricated chips with guaranteed 
performance, design cost and design time are much smaller when compared to ASIC 
implementation. FPGAs have been widely used in different applications, including 
image processing [9], SAT solvers [10], and cryptograph processors [11]. 

Based on the technology used in the manufacture, FPGAs can be divided into two 
groups: one-time configurable devices and reconfigurable devices [12]. A one-time 
configurable FPGA is mainly manufactured using fuse or anti-fuse technology. As its 
name indicates, this type of FPGA can be programmed only once, and the device will 
remain configured even when it powers off. On the reconfigurable side, static random 
access memory (SRAM), erasable programmable read-only memory (EPROM), and 
electrically erasable programmable read-only memory (EEPROM) are state-of-the-art 
technologies. Magnetic random access memory (MRAM) [13, 14] and ferroelectric 
random access memory (FeRAM) [15] have also emerged as interesting alternatives. 
In SRAM-based reconfigurable systems, configuration data is stored in external non-
volatile memories, such as FLASH memories, and transferred into the SRAM during 
either boot-up or execution. Recently, single chip solutions for tightly integrating 
reconfigurable logic and FLASH memories have also been applied [16, 17, 18]. 



 

15 

For SRAM-based technology, these devices consist of the circuit and the 
configuration-SRAM whose outputs are connected to the circuit and whose values 
continuously control the circuit.  Reconfiguration is realized by altering the contents 
of the configuration-SRAM. This allows the circuit or a part of it to be reconfigured 
while the rest of the system is running [19]. Such a feature is referred to as run-time 
reconfiguration (RTR), and devices with such a feature are usually referred to as 
dynamically reconfigurable hardware (DRHW). 

1.1 Run-time reconfigurable systems 

Reconfigurability is becoming an important issue in the design of System-on-Chip 
(SoC) because of the increasing demands of silicon reuse, product upgrade after 
shipment and bug-fixing ability. There are many ways to realize reconfiguration, such 
as modifying software services [20] or changing the system structure [21] in a distributed 
environment. In the following context, we refer to run-time reconfigurable systems as 
those systems that include DRHW and achieve reconfiguration by modifying the 
design on DRHW at run-time. 

1.1.1 Benefits of using run-time reconfigurable systems 

Using DRHW has many advantages. DRHW can be used to improve the system 
performance. In many applications, the input data or the operating environment is 
varying all the time, which however cannot be decided at design time. Therefore, the 
ability to optimally or near-optimally adapt the system itself in order to gain higher 
speed and better performance according to the environment is highly favorable. For 
example, in a software-oriented application, a monitor can be set in the system to 
identify the currently most frequently used task, and then an equivalent hardware 
function can be dynamically generated and loaded onto DRHW to speed up the 
system [22, 23]. We can also use RTR to partially evaluate the system and replace 
generic circuits by more specialized circuits based on the run-time data [24]. It is also 
possible to reduce the power consumption by RTR. Some input data may require only 
a limited part of the circuit. Therefore, by eliminating the unnecessary circuit, the 
power dissipation can be significantly reduced [25]. 
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Another advantage is that silicon reusability can be increased. As today�s applications 
become more and more complex, the implementation needs more hardware resources. 
It means that either larger chips or more chips are needed, which might not be suitable 
for many products, such as portable devices that are required to have a limited 
dimension. With RTR, tasks that are non-overlapping either in time domain or in 
space domain can be mapped onto the same DRHW. Tasks that are required initially 
can be configured in the beginning. When another task is required, the configuration 
to load it can then be triggered. For example, in a typical software-defined radio (SDR) 
environment, different wireless technologies, such as GSM, WCDMA, WLAN and 
WiMax in the future, have to be supported. However, in most situations, these 
wireless technologies will be used at the same time. Therefore, it is possible to put 
them into a single DRHW and dynamically load the one that is needed. 

In fact, SDR is a good environment for applying DRHW technology. Recent 
development of communication technology has brought huge challenges in the design 
of mobile devices. A demand for high data-rate services over wireless mobile devices 
has emerged, which requires such devices to have high processing capability. In 
addition, such devices also have to be able to handle the large amount of applications, 
such as audio/video streaming, teleconference and data encryption. On the other hand, 
mobile devices also require supporting multi-mode and multi-band. Additionally, new 
standards are being proposed for fast data-rate services, and mobile devices need to be 
flexible to accommodate them. Recently, the design cycle for mobile devices has been 
reduced to one year, or even less, which makes it infeasible to have a complete fixed-
HW solution. DSP is also not a favorable solution, since it lacks enough processing 
capability and it is power-inefficient as well. Considering all these factors, DRHW is 
a reasonable technology alternative for SDR, since it can provide a combined benefit 
of flexibility and performance. 

1.1.2 Challenges of using run-time reconfigurable systems 

Current reconfiguration technologies have certain limitations, which result in some 
challenges when using RTR systems. One of the challenges is the configuration 
overhead related to each configuration process. It includes both configuration latency 
and configuration energy. A task needs to be loaded onto DRHW before it can be used. 
This is similar to the SW loading time in a pure SW system. The loading/configuration 
process takes time and energy, which can largely degrade the system performance. 
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Considering the commercial MPEG-4 simple profile decoder [26] that is implemented 
in Xilinx XC2V1500 FPGA [27], under the assumption that the configuration speed is 
200 Mb/s the configuration latency is about 26 ms, which is considerably large since 
the decoding time per frame should be under 33 ms. It should be noted that such 
challenge exists only when DRHWs are used frequently. For example, if DRHW is 
reconfigured once a week, the configuration overhead can be ignored, because it is 
relatively very small compared to the task execution time. 

In Figure 1, we compare several computing technologies (software on GPPs, hardware 
on ASICs, configurable computing on FPGAs, and RTR on DRHW) in terms of 
flexibility and performance. It can be seen that FPGAs have the advantage of 
simultaneous flexibility and performance. When considering the benefits of using 
RTR as presented in section 1.1.1, it is likely that DRHWs can be placed in the top-
right corner, as shown in Figure 1, where additional flexibility and performance can 
be achieved over FPGAs. However, DRHWs also suffer from the configuration 
overhead, which might overrun the benefit and cause DRHWs to become a less 
competitive and less interesting technology, the one moving to the left represented by 
dotted cycle. Therefore, techniques to reduce the configuration overhead or configuration 
management approaches to reduce the effect of the configuration overhead are needed. 
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Figure 1. Comparison of different computing technologies in terms of performance 
and flexibility. 
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Another challenge of using RTR is the lack of supporting methodologies and tools at 
each abstraction level in the design phase. DRHW is a new type of computing 
element. At the system level, how to support and make system partitioning for not 
only software and hardware, but also for DRHW, and how to take the reconfiguration 
process into account during the design space exploration phase need to be studied. At 
the implementation level, approaches to handle the communication between DRHW 
and the rest of the system are needed and debugging techniques to validate the 
configuration process are missing. 

1.2 Key contributions of the work 

I have worked from different directions to meet the challenges of using RTR systems. 
From the design flow�s point of view, I focus on system level design. Because any 
decision made at the system level might have significant impact on the final 
performance, providing useful supports at this level can help to eliminate unnecessary 
re-designs and therefore reduce the total design time. The ultimate goal is not to 
develop a fully automatic system partitioning approach, which I believe will not 
succeed. This is because applications and platforms nowadays are becoming so 
complex that it is not possible to quantitatively characterize them precisely in the 
early design phase so that complex mathematical formulas can be applied to fully 
partition the design in such a way that optimal solutions can be guaranteed. However, 
providing support to designers at this phase can help to prune the design space and 
possibly avoid re-designs. In my work, approaches to support system partitioning and 
DRHW modeling for fast design space exploration are provided. Considering the 
main bottleneck of using RTR systems, the configuration overhead, I have developed 
different static/run-time task scheduling techniques that can either reduce the effect of 
reconfiguration or reduce the amount of required reconfigurations. In addition, I also 
propose different techniques to physically reduce the configuration overhead. 

1.2.1 System-level design flow and support tools 

In the approach [28, 29], I focus on the type of RTR systems in which DRHW is 
frequently used as a coprocessor to accelerate computation-intensive tasks. The goal 
of the approach is to help designers in the early phase of the design process to easily 
evaluate the effect of moving some tasks, which are traditionally implemented in 
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fixed hardware, to DRHW. The supports that I provide are an estimation approach [30] 
and a modeling technique [31] for DRHW. The estimation approach starts from function 
blocks represented in ANSI-C language, and it produces hardware execution time and 
resource utilization estimates for each function block by applying a set of high-level 
synthesis algorithms. In the DRHW modeling, the real reconfiguration process is not 
modeled. Instead, its behavior is modeled, and then its effect (the configuration 
overhead) can be reviewed during simulation. A number of parameters are provided 
in DRHW models. Designers can tune them to target a particular type of reconfiguration 
technology. In addition, a tool to automatically generate DRHW models is created in 
order to reduce the coding effort. 

1.2.2 Scheduling techniques to manage the configuration process 

The configuration overhead is a bottleneck that might largely degrade the performance 
of RTR systems. In this work, I present several task scheduling techniques to 
minimize its effect. They are grouped into a quasi-static scheduling framework. It is 
divided into design-time scheduling and run-time scheduling. Tasks with known 
dependencies are scheduled at design time. The goal is to reduce the total schedule 
length while taking the reconfiguration processes into account. Three static 
scheduling algorithms, using different problem-solving strategies, are developed and 
quantitatively evaluated [32]. The first is a list-based scheduler [33], which uses a 
heuristic approach. The second explores the entire domain for searching optimal 
solutions [34]. The last uses a guided random search strategy [35] that tries to balance 
accuracy and efficiency. At run-time, the focus of the scheduler is to maximally reuse 
loaded tasks with a locking technique [36] similar to cache-locking. The idea is to 
monitor the tasks� execution status at run-time and always lock the most frequently 
used tasks on DRHW in order to reduce the total number of required reconfigurations. 

1.2.3 Techniques to reduce the configuration overhead 

Directly reducing the configuration overhead would be a more straightforward 
mechanism to increase the efficiency of RTR systems. In this work, I also present two 
separate novel approaches for reducing the overhead, one for configuration latency 
[33, 37] and another for configuration energy [38]. In fact, in the first approach 
configuration latency is not physically reduced, but its effect is reduced by 
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performing several configurations in parallel. The technique is referred to as 
configuration parallelism. The idea is to divide the entire configuration-SRAM into 
several individual segments and allow them to be accessed simultaneously. Therefore, 
configurations can be performed in parallel, which allows task parallelism to be better 
exploited. In the second approach, configuration energy is reduced by applying the 
dynamic voltage scaling (DVS) technique. The idea is to apply low supply voltage on 
the reconfiguration process when possible in order to reduce the configuration energy 
but without increasing the overall schedule length. 

1.3 Introduction to the most important papers 

This thesis is based on one international scientific journal and 10 international scientific 
conference papers. I am the first author of all these scientific publications and the key 
contributor behind all these works. 

Papers [28, 29] describe the system-level design flow and an instantiation using a 
practical case study. I have contributed to defining the overall design flow, and I 
carried out the implementation work of the case study. More importantly, I have 
developed the HW estimators and the SystemC code transformer. They are described 
in detail in [30, 31]. 

Papers [32, 34, 35] describe the different static DRHW task scheduling algorithms, 
their implementation and the evaluation results. My contribution was defining, 
developing and evaluating all these algorithms. Paper [36] describes the configuration 
locking technique for improving the system performance. My contribution was 
inventing the idea, implementing the run-time scheduler and the locking algorithm, 
and evaluating the results. 

Papers [33, 37] describe the parallel configuration model for reducing the impact of 
the configuration latency. I invented the idea and the evaluation approach, and I also 
implemented the algorithms and evaluated the results. Paper [38] describes the 
technique to reduce the configuration energy. The idea is to apply dynamic voltage 
scaling on the configuration processes as long as it does not harm the schedule length. 
My contribution was inventing the idea and implementing the evaluation approach. 
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1.4 Organization of the thesis 

The thesis is organized as follows. Background and a review of related works are 
presented in Chapter 2. The system-level design supports are presented in Chapter 3. 
The three static scheduling techniques and the run-time scheduling technique are 
presented in Chapter 4, and the two novel techniques for reducing the configuration 
overhead are presented in Chapter 5. Finally, conclusions and discussions of future 
work are presented in Chapter 6. 
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2. Background and related work 

In this chapter, we briefly introduce the fundamentals of reconfigurable computing as 
well as some state-of-the-art technologies and reconfigurable systems. Instead of 
providing a complete survey of reconfigurable computing, we concentrate only on the 
research related to our work. Exhaustive surveys can be found in [19, 39, 40, 41, 42]. 

2.1 Run-time reconfigurable computing 

In this section, we first introduce how reconfigurable systems can be categorized. In 
fact, there are various ways to categorize them based on different criteria, such as 
configuration granularity, configuration style and coupling techniques. Then, some 
existing typical RTR systems will be described. 

2.1.1 Configuration models 

The principle to achieve RTR is by dynamically altering the design on DRHW. 
According to the granularity of the processing element, DRHW can be classified as 
fine-grained or coarse-grained. 

! Fine-grained DRHW: This type of DRHW is very similar to most of the 
traditional FPGAs, in which the basic configurable LE consists of a look-up table 
(LUT) and a flip-flop. The LUT usually have four input bits and one output bit, 
which can be implemented as any combinational logic of the four input bits. LEs 
are connected to each other also at bit level. Therefore, this type of granularity 
can be very suitable for bit-level computations but might not be efficient for 
computing word-width data. 

! Coarse-grained DRHW: In this type of DRHW, the basic computing element is 
optimally designed for large computations, and such DRHW is primarily 
intended for implementing tasks that are dominated by word-width operations, 
which can be more efficiently performed in terms of both area and time when 
compared to fine-grained DRHW that is constructed from much smaller 
computation elements. However, the structure of each processing element is 
static, which makes such architecture unable to leverage optimizations in the size 
of operands. Such a model has been widely adopted in various systems [43, 44, 45]. 
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The majority of DRHW devices are using SRAM-based technology. Such devices 
consist of the circuit and the configuration-SRAM whose values specify how the 
circuit is programmed. Reconfiguration is realized by altering the contents of the 
configuration-SRAM. Traditionally, configurations are operated in an off-line fashion. 
The configuration is performed only once when the system starts up, and the circuit 
remains unchanged until the system is powered off. Recently, techniques to modify 
the configuration-SRAM at run-time have been applied in commercial devices. This 
enables RTR, which can significantly improve the flexibility when compared to the 
traditional simple configuration approach. In terms of the reconfiguration methods 
DRHW can be divided into three main categories. 

M
U

X

 
Figure 2. Different configuration models. 

! Single-context DRHW: In this configuration model, as shown in Figure 2(a), the 
configuration-SRAM can be viewed as a large shift register, and the entire 
configuration-SRAM has to be written during one reconfiguration. This means 
that even if only a part of the chip needs to be changed, the entire chip needs to 
be reconfigured. Therefore, this model suffers from significant configuration 
overhead. Most modern FPGAs deploy this approach. 

! Multi-context DRHW: Such devices [46, 47] have multiple configuration planes 
and a multiplexer (MUX) controls which plane is used, as shown in Figure 2(b). 
Switching from one to another takes only one clock cycle, thus configuration 
latency is significantly reduced. However, such devices require as many times the 
configuration-SRAM needed in single context device as the number of contexts, 
and caching tasks on the contexts consumes a large amount of static energy. 
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! Partially reconfigurable DRHW [27]: They have a similar configuration model as 
in single-context devices, but the configuration-SRAM is constructed as RAM. 
Therefore, it can selectively change the content of a portion of the configuration-
SRAM. Thus, configuration of a task takes a much shorter time. 

Basically, the partial reconfiguration model can be further divided into one-dimension 
(1D) model and two-dimension (2D) model. In both cases, the device is represented 
by a rectangular area of dynamically reconfigurable elements. The 1D model describes 
a device as a number of columns. The height of a column is fixed and equal to the 
height of the device area. The width of a column can either be fixed or dependent on 
task sizes. I/O mechanism and communications are usually implemented in the 
top/bottom of columns. The sides of column can also be used if necessary. A typical 
system that instantiates such a 1D model is the Erlangen Slot Machine [48, 49, 50]. 
One particular type of 1D partial reconfiguration is pipeline reconfiguration [51, 52], 
which is suitable for implementing pipelined applications. In this model, devices 
consist of a number of hardware stripes connected in a pipeline fashion, and the basic 
reconfiguration unit is a stripe. In the idea case, one stripe can implement one pipeline 
stage of the application. PipeRench [53, 54, 55, 56] is a typical striped DRHW. The 2D 
model allows tasks to be placed anywhere. Shapes of tasks can be either rectangular 
or irregular, which imply higher device utilization if fragmentation can be properly 
handled. Fragmentation on DRHW means that there are quantitatively enough free 
resources for a ready task, but the task cannot be placed because either the free 
resources are not continuous or they do not match the shape of the task. In the 2D 
model, communication is an unsolved problem, because interconnections between 
tasks are difficult to be re-established when tasks can be freely relocated. On-chip 
just-in-time routing techniques have been proposed [57, 58] which can solve the 
connection problem, but the overhead is in the range of seconds to minutes. 

2.1.2 Coupling techniques 

In most of the RTR systems developed nowadays, DRHW is used in association with 
a host processor in a way that computation-intensive operations are mapped onto it, 
and operations being relatively rarely executed are mapped onto the host processor. 
Depending on how closely DRHW and the microprocessor work together, there are 
several ways to make the coupling. 
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! The closest coupling is to integrate DRHW into the host processor as a special function 
unit to execute custom instructions in order to boost performance. DRHW behaves 
just as other function units residing inside the processors and is triggered when 
custom instructions are found during the instruction decoding phase. Such devices 
are referred to as reconfigurable instruction-set processors (RISPs) [59]. This 
coupling technique has been used in various systems [60, 61, 62, 63]. 

! DRHW can be used as a co-processing unit [64, 65, 66, 67], which runs independently 
of the host processor. Usually, the co-processing unit and the host processor are 
put onto the same die, and the memory caches are shared between both. 
Compared to the RISP, which performs only one custom instruction at a time and 
has to communicate with the host processor whenever a custom instruction is 
used, the reconfigurable logic in this type of coupling may perform relatively a 
larger amount of computation at a time and communicate with the host processor 
less frequently. 

! The most loosely coupled form is to use reconfigurable units as attached 
processing units or standalone-processing units [68]. They behave as either an 
additional processor or a network-connected workstation. 

2.1.3 Example systems 

FPGAs are the most widely used reconfiguration technologies due to the more than 
30 years of continuous improvement they have undergone. Technology advances 
keep increasing the densities of logic and embedded memory of FPGAs. In addition, 
various fixed logic modules, such as hardwired multipliers and high speed 
transceivers, as well as microprocessors have also been integrated. This makes it 
possible to implement a very complex system into a single FPGA. The most advanced 
FPGA platforms are Xilinx Virtex-5 [69] and Altera Stratix-III [70]. Both are manufactured 
as 65nm technology and able to run designs at 500 MHz. Although there are a few 
embedded DSP blocks for word-width operations, such FPGA platforms are still 
referred to as fine-grained devices, since LUTs and connecting switches are still the 
main configurable elements. 

PACT XPP coprocessors [71] can typically represent coarse-grained technologies. 
The heart of the XPP is an array of configurable processing array elements (PAEs), 
which can perform most of the typical DSP functions, such as multiplication, addition, 
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shift and comparison, within one clock cycle. The communication network allows 
both point-to-point and point-to-multipoint connections. Only the opcodes of PAEs 
and the routing channels need to be configured, thus such devices do not suffer from 
the configuration overhead. In addition, each PAE can be individually reconfigured, 
thus partial reconfiguration is also supported. 

The MorphoSys architecture [72, 73] is an integrated coarse-grain multi-context RTR 
system, in which an 8x8 Reconfigurable Cell (RC) array is closely coupled to a host 
processor. When a context is being used, configuration can be loaded to another 
context simultaneously. The communication between the host processor and the RC 
array is realized through a frame buffer, which consists of two sets (two banks in each 
set). The RC array can simultaneously access both of the two banks in one set, and at 
the same time the data can be moved from external memories to the other set. Data 
movement and reconfigurations are controlled by the host processor. 

The Atmel�s Field Programmable System Level Integrated Circuits (FPSLIC) family 
[74] is another typical reconfigurable system, which consists of a host processor and a 
fine-grained FPGA that are closely coupled. The FPGA shares the data memory with 
the host processor (protection mechanism is needed if data sharing is used), and it is 
treated as a normal 8-bit peripheral from the processor point of view. The FPGA can 
be divided into a dynamically reconfigurable region and a static region that is 
required to implement certain system functions. 

2.2 System-level design techniques 

System-level design covers various issues, such as partitioning, task scheduling and 
synthesis. Including DRHW in the design requires the traditional HW/SW co-design 
flow to be extended. In [75, 76], a co-design framework and a HW/SW partitioning 
approach are presented. The approach uses a list-based algorithm to create an initial 
partition then gradually moves a task from SW to DRHW in an iterative way. In [77], 
a survey of various SW/HW partitioning algorithms is presented, and a new approach 
to map loops into reconfigurable hardware is proposed. In [78], a co-design environment 
for DSPs/FPGAs-based reconfigurable platforms is presented. Both applications and 
architectures are modeled as graphs, and an academic system-level CAD tool is used. 
In [79], a macro-based compilation framework to replace logic synthesis and technology 
mapping is presented. In [80], a synthesis approach based on list-scheduling is presented. 
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The target system is a single application that can be divided into a number of 
dependent tasks. The approach considers HW/SW partitioning, temporal partitioning 
as well as context scheduling. In [81, 82], a HW/SW co-synthesis framework for a 
real-time embedded reconfigurable system is presented. Each application consists of a 
number of dependent tasks and has its own period. A task can be mapped either onto 
a host processor or DRHW. Applications are statically scheduled over a hyper-period, 
which is the least common multiple of the different application periods. Design 
frameworks that start from high abstraction level models have also been proposed. An 
approach to automatically perform the mapping of the platform independent models 
presented in UML onto reconfigurable system models is developed in the MOCCA 
design environment (Model Compiler for Configurable Architectures) [83]. In [84], 
researchers presented their AEP (Abstract Execution Platform) virtual machine, which 
executes the binary UML representation and implements the design onto a reconfigurable 
platform. 

2.3 Configuration management techniques 

The configuration overhead is the main drawback of RTR systems. Various research 
projects have tried to solve the problem. These efforts can be divided into three 
groups. The first group of these techniques is to reduce the amount of required 
configuration data in each reconfiguration process. The second group is to reduce the 
number of required configurations. This is suitable for those applications which 
require running some tasks repetitively. The last group is to take the configuration 
process into account during the task scheduling in order to reduce its effect. All of 
these techniques mainly focus on reducing configuration latency. However, for the 
second group, reducing the number of required configurations can also result in less 
dynamic configuration energy. 

2.3.1 Reducing the configuration data 

Depending on the configuration types of DRHW, configuration latency has different 
impacts. For single context devices, because each reconfiguration requires re-writing 
the entire configuration-SRAM at one time, configuration latency is simply related to 
the device size. For partially reconfigurable devices, configuration latency is directly 
proportional to the occupied area of applications. Therefore, less configuration 



 

28 

latency is needed. In [85], a case study of a 3-tap filter on a real platform shows that 
using partial reconfiguration can reduce 50% of configuration latency. However, as 
applications become more complex and designs become much larger, configuration 
latency is becoming larger as well and both types of DRHW will suffer from the long 
configuration latency. For multi-context devices, configuration latency can be as short 
as one clock cycle if the required context is already loaded. However, it is not 
efficient to implement a device with a large number of context memories, which 
require large space and consume significant amount of static power. Some existing 
multi-context devices hold only four contexts [86], and loading configuration data 
from external memories still has an unignorable impact. 

A straightforward approach to reducing configuration latency is to compress the 
amount of configuration data to be transferred. In fact, a lot of redundant information 
and regularities exist in the configuration bitstream. Thus, lossless compression 
techniques can take advantage of these and remove the unnecessary bits. In [87], a 
technique that uses entropy, inspired by information theory, is proposed to evaluate 
configuration compression performance. The entropies of some benchmark circuits 
are calculated to provide estimates of the possible reduction of configuration data 
sizes. In [88, 89], various compression techniques, such as Huffman coding, Arithmetic 
coding and LZW compression, are applied on configuration compression. Other 
approaches, such as using a genetic algorithm [90] or using runlength coding [91], 
have also been proposed. All these approaches require the development of specific 
hardware in the device side to decompress the data. In [92], an approach that exploits 
the existing embedded decompression hardware in a specific type of FPGA is 
proposed to reduce the amount of configuration data. In addition, there are some 
approaches that try to exploit the similarities between successive configurations [93, 
94, 95]. The idea is that if the same components are used in successive configuration, then 
placing them in the same location can avoid loading redundant configuration data. 

Another approach to reducing configuration data is by fundamentally preventing 
configuration data from being large. The reason that fine-grained DRHW, such as 
FPGA, suffers from large configuration data is because such devices are programmed 
at bit level. Each LUT and each route need to be programmed, which require lots of 
bits for recording such detailed configuration information. In contrast, coarse-grained 
devices are based on word-level units, which are implemented in a fixed style but 
support limited programmability with fewer control bits. Therefore, using coarse-
grained devices can impose less configuration latency [96]. 
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2.3.2 Reducing the number of required configurations 

In a practical scenario, it is likely that some tasks need to run repetitively. Therefore, 
retaining the configurations of these tasks on DRHW can reduce the amount of 
configuration data to be transferred. This technique is referred to as configuration 
caching [97], which is similar to data caching and instruction caching in a general 
memory.  In [98], different caching algorithms targeting various device models, such 
as single-context DRHW and multi-context DRHW, are studied. The principle is as 
follows. For an RTR system, a design can be divided into a number of small blocks 
with a known execution sequence. Blocks are put together into groups, and each 
group can fit in the available hardware. Reconfiguration is then corresponding to the 
transition from one block to another when the two blocks do not belong to the same 
group. Therefore, by optimally grouping the blocks, the number of required 
reconfigurations can be minimized and thus the total configuration latency is reduced. 
In [99], the grouping approach is extended for supporting multiple tasks that are from 
a single application but have a non-deterministic execution order. 

Configuration relocation and defragmentation [100, 101] can also help to reduce the 
number of required reconfigurations. This is suitable for only partially reconfigurable 
devices, and usually the 2D reconfiguration model is the target because fragmentation 
is the main concern in such a model. The main idea of this technique is as follows. 
When fragmentation happens, placing a task on the device will cause another task or a 
part of it to be evicted, which requires the evicted task to be reconfigured in the future 
when it is needed. By dynamically relocating valid configurations into new locations, 
free area can be consolidated and then used for new tasks. This defragmentation 
technique can result in more efficient use of DRHW and fewer reconfigurations. In 
[100, 101], an architecture that supports run-time relocation and defragmentation is 
proposed, in which shapes of tasks do not need to be rectangular. Resource 
compaction is realized by transforming tasks through a series of techniques, such as 
rotation, flipping and offsetting. In [102, 103], heuristic approaches for run-time repacking 
are studied. The procedure is divided into two steps. The first step identifies how to 
rearrange the loaded tasks in order to free sufficient space for a waiting task, and the 
second step focuses on how to move the tasks in order to allocate the waiting task as 
quickly as possible. In [104], an efficient run-time compaction technique for the 1D 
model is presented. The technique allows multiple columns of different tasks to be 
shifted in parallel, and thus the run-time overhead can be independent of the current 
device size. 
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Various other defragmentation techniques or related issues have also been proposed 
or discussed. Optimal solutions using a branch-and-bound technique [105] and heuristic 
approaches [106, 107, 108] for defragmentation are studied. In [109, 110, 111], 
implementation techniques for task relocation are presented. The idea is to replicate 
the corresponding configurable elements and routing resources. In [112], a technique 
to study the impact of defragmentation on system performance is presented. It 
proposes to use a fragmentation metric as the basis to guide the defragmentation 
process. In [113, 114], explicit defragmentation is not performed, but different 
fragmentation metrics are used in the task allocation phase to choose the more 
suitable locations for coming tasks. 

2.3.3 Managing reconfigurations in the task scheduling process 

When taking configuration into account in the task scheduling process, the effect of 
configuration latency can be effectively minimized if the scheduling can be done 
properly. One effective technique that has been widely used in RTR system 
scheduling is configuration prefetching [115]. The basic idea is to load tasks before 
they are needed. Therefore, by overlapping configurations with execution of other 
useful tasks, the effect of configuration latency can be reduced. Different prefetch 
techniques for single thread applications have been proposed. Hauck presents a 
prefetch scheduler [115] that can properly insert prefetch instructions into software 
applications to hide the configuration of single-context reconfigurable coprocessors. 
Targeting a partial reconfiguration model, three different configuration prefetching 
algorithms are studied [116]. The first is static prefetching, extended from their earlier 
work [115] to support loading multiple blocks. The second is dynamic scheduling, 
which models the system state as a Markov process and uses it to predict the next 
configuration to prefetch. The last one is a hybrid prefetching approach, which uses 
the recent execution history to make accurate predictions within a loop and uses the 
global history to make accurate predictions between loops. 

For systems that consist of multiple independent tasks, configuration prefetching 
techniques have also been applied. In [117, 118, 119], Resano et al. consider that each 
task can be further divided into a number of dependent subtasks, and prefetch 
scheduling is performed dynamically at the subtask level. Although drastic reduction 
of the total configuration latency can be achieved, the run-time overhead of the 
approach prevents it from being used on a large scale. In [120, 121], Resano et al. 



 

31 

extend their run-time scheduler by dividing computation into design time and run-
time. At design time, the objective is to calculate weights of subtasks. The higher the 
weight value of a subtask, the more negative impact its configuration has on the 
system performance. At run-time, the scheduler initially loads subtasks based on their 
weight values and dynamically makes other reconfiguration decisions based on the 
current status. 

There are compiler-driven task schedulers. In [122, 123], based on the Molen programming 
paradigm [124, 125, 126], Panainte and co-workers present an instruction scheduler that 
can reduce the number of required configurations by moving the configuration 
instruction out of the loop. Therefore, the task inside a loop needs only one 
configuration, if it is mapped onto DRHW. In [127], an improved instruction scheduler 
is presented, which can further reduce the number of required reconfigurations by 
caching the most frequently reconfigured tasks on DRHW. The decision is made at 
design time with help of profiling the applications. In [128, 129, 130], a compilation 
framework for MorphoSys is described. The core is a kernel scheduler that considers 
task scheduling, multi-context scheduling, allocation and data transfer simultaneously 
with the goal to minimize the reconfiguration impact. 

In [81, 82], a scheduler for a real-time embedded system is presented. Each application 
consists of a number of dependent tasks and has its own period. A task can be mapped 
either onto a host processor or DRHW. Instead of performing the scheduling at run-
time, it statically schedules the applications over a hyper-period, which is the least 
common multiple of the different application periods. The 1D model is used for 
DRHW. During run-time, each tile has its own value that represents the 
reconfiguration frequency of the task mapped onto this tile. The frequency is equal to 
the number of times that task is executed in a hyper-period. When a new 
reconfiguration for a task of m tiles needs to flush some already loaded tasks, the m 
continuously connected tiles that have the minimum sum of the reconfiguration 
frequencies are selected. The idea is to leave the most frequently reconfigured tiles 
intact because they might be reused soon. 

Different techniques for static task scheduling have also been discussed. In [131], an 
optimal placer for mapping tasks onto 2D DRHW is presented. A task is treated as a 
three dimensional box in space and time. The problem is then converted into a box 
packing problem. Configuration overhead is treated as a constant and added to the 
execution time. Since configurations are not separately treated, the approach does not 
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consider prefetching or the reconfiguration constraints. (There is a limited number of 
allowed simultaneous reconfigurations for different regions.) Although the approach 
requires a relatively short computer run-time, its simplified model significantly 
reduces the liability of the approach. Approaches derived from Model-checking [132] 
and Petri Net [133] for static task scheduling have also been proposed. 

Different run-time scheduling techniques have been proposed to manage tasks whose 
precedence dependence is not known at design time. In [103, 134], Dissel et al. take 
into account the resource fragmentation problem. Different techniques for repacking 
and replacing loaded modules are proposed. In [113, 135], the online task scheduling 
for 2D DRHW is modeled as a bin-packing problem, and different algorithms 
working with efficient data structures are proposed for solving the NP-hard problem. 
Techniques to find free area in 2D DRHW for task placement have also been 
presented [136, 137]. In [138], operating system services for scheduling real-time tasks 
on DRHW are presented. The difference from other approaches is that an incoming 
task is either accepted with a guarantee of meeting its deadline or rejected. In [139, 
140], an online scheduling algorithm, which adapts the well-known single processor 
earliest-deadline first (EDF) policy, is presented. However, the configuration process 
is not individually considered, as in [131]. Therefore, practical applications will not 
be able to achieve the reported scheduling performance. 
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3. System-level design supports for run-time 
reconfigurable systems 

As presented in earlier chapters, reconfigurable logic is a promising alternative to 
deliver both flexibility and performance at the same time. New reconfigurable 
technologies and technology-dependent tools have been developed, but a system-level 
design method to support system analysis and fast design space exploration is missing. 
In this chapter, we present a system-level design method and supporting tools for the 
design of reconfigurable SoC (RSoC). An instantiation of the design flow is applied 
in a real case study. At the implementation level, commercial technology-dependent 
tools are used. At the system level, one of our supporting tools is a high-level 
synthesis-based HW estimator. It can generate HW estimates directly from ANSI-C 
code and thus help designers to make reasonable partitioning decisions. Another 
supporting tool is a SystemC code transformer, which can automatically generate a 
SystemC model of DRHW from existing SystemC code of the functions that are to be 
mapped onto the DRHW. Therefore, designers can generate different versions of 
reconfigurable systems without rewriting the code, which is slow and error-prone. 
The main advantage of the approach is that it can be easily embedded into an SoC 
design flow to allow fast design space exploration for different reconfiguration 
alternatives without going into implementation details. 
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Figure 3. A generic system-level design flow. 
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3.1 System-level design flow and our supports 

A generic view of the system-level design flow is depicted in Figure 3 [141]. The 
following new features are identified in each phase when reconfigurability is taken 
into account: 

! System Requirements and Specification Capture needs to identify requirements 
and goals of reconfigurability (e.g., flexibility for specification changes and 
performance scalability). 

! Architecture Definition needs to model the reconfigurable technologies of 
different types and vendors at an abstract level and include them in the 
architecture models. 

! System Partitioning needs to analyze and estimate the functions of the application 
for SW, fixed HW and DRHW. The parts of the targeted system that will be 
realized on DRHW must be identified. There are some rules of thumb that can be 
applied. If an application has hardware accelerators of roughly the same size 
which are not used at the same time, these accelerators can be implemented onto 
DRHW. If an application has some parts in which specification changes are 
foreseeable or there are foreseeable plans for new generations of the applications, 
it may be beneficial to implement it onto DRHW. 

! Mapping needs to map functions allocated to DRHW onto the respective 
architecture model. The special concerns at this step are the temporal allocation 
and the scheduling problem. Allocation and scheduling algorithms need to be 
made either online or offline. 

! System-Level Simulation needs to observe the performance impacts of architecture 
and reconfigurable resources for a particular system function. The effect of 
configuration overhead should be highlighted in order to support designers to 
perform system analysis or design space exploration. 

It should be noted that reconfigurability does not appear as an isolated phenomenon, 
but as a tightly connected part of the overall SoC design flow. Our approach is 
therefore not intended to be a universal solution to support the design of any 
reconfigurability. Instead, we focus on a case where the reconfigurable components 
are mainly used as co-processors in SoCs. 
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SystemC language version 2.0 [142] is selected as the backbone of the approach since 
it is a standard language that provides designers with basic mechanisms like channels, 
interfaces and events to model various kinds of communication and synchronization 
styles in system designs. More sophisticated mechanisms for the system-level design 
can be built on top of the basic constructs. More specifically, our system-level models 
operate on the transaction level of abstraction. The performance simulation is based 
on the estimates of computational complexity of each block, estimates of communication 
and storage capacity requirements, and characteristics of the architecture and mapped 
workload. In fact, our design approach is not limited to SystemC. It can also be applied 
to other promising design languages, e.g., SystemVerilog [143] and SpecC [144]. 

In the SystemC-based approach, we assume that the design does not start from scratch, 
but it is a more advanced version of an existing device. The new architecture is 
defined partly based on the existing architecture and partly using the system 
specification as input. The initial architecture is often dependent on many things not 
directly resulted from the requirements of the application. The company may have 
experience and tools for certain processor core or semiconductor technology, which 
restricts the design space and may produce an initial HW/SW partition. Therefore, the 
initial architecture and the HW/SW partition are often given at the beginning of 
system-level design. The SystemC extension is designed to work with a SystemC 
model of the existing device to suit the design considering RTR hardware. 

(a) An initial fixed SoC architecture (b) a modified architecture using 
reconfigurable hardware
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Figure 4. Creating reconfigurable SoC from fixed platform. 
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The way that the SystemC-based approach incorporates dynamically reconfigurable 
parts into architecture is to replace SystemC models of some hardware accelerators, 
as shown in Figure 4(a), with a single SystemC model of a reconfigurable block, as 
shown in Figure 4(b). In addition, functions that are mapped onto fixed HW 
accelerators are modeled in the same way as in DRHW. Therefore, it allows designers 
to easily test the effects of implementing some components in DRHW. Referring to 
the system-level design flow, as shown in Figure 3, we provide estimation support for 
system partitioning, scheduling support for mapping and modeling support for 
system-level simulation. These three steps are the most critical steps in the system-
level design, because they produce the direct inputs to the low-level implementation. 
Their accuracy and efficiency in design space exploration have a strong impact on the 
overall design efficiency and time-to-market. The scheduling support is described in 
detail in the next chapter. Others, as in the list below, are described in the following 
sections. 

! Estimation and analysis support for design space exploration and system 
partitioning [30]. 

! Reconfigurability modeling using standard mechanisms of SystemC and a 
transformation tool to automatically generate SystemC models of the 
reconfigurable hardware [31]. 

3.1.1 Definition of terms 

The terms and concepts specific to the SystemC-based approach used in the rest of the 
paper are defined as follows: 

! Candidate Components: Candidate components denote those application functions 
that are considered to gain benefits from their implementation on a reconfigurable 
hardware resource. The decision whether a task should be a candidate component 
is clearly application dependent. The criterion is that the task should have two 
features in combination: flexibility (that would exclude an ASIC implementation) 
and high computational complexity (that would exclude a software implementation). 
Flexibility may come either from the point that the task will be upgraded in the 
future or in view of hardware resource sharing with other tasks with non-
overlapping lifetimes for global area optimization. 
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! Dynamically reconfigurable fabric (DRCF): The dynamically reconfigurable 
fabric is a system-level concept that represents a set of candidate components and 
the required reconfiguration support functions, which later on in the design 
process will be implemented on DRHW. 

! DRCF component: The DRCF component is a transaction-level SystemC module 
of the DRCF. It consists of functions which mimic the reconfiguration process, 
and the instances of SystemC modules of the candidate components to present 
their functionality during system-level simulation. It can automatically detect 
reconfiguration requests and trigger the reconfiguration process when necessary. 

! DRCF template: The DRCF template is an incomplete SystemC module, from 
which the DRCF component is created. 

3.1.2 Estimation approach to support system analysis 

System analysis is mainly the phase to make HW/SW partitioning and the initial 
architecture decision. In the design of reconfigurable SoC, system analysis also needs 
to focus on studying the trade-off of performance and flexibility. The estimation 
approach is developed to support system analysis to identify candidate components 
that are to be implemented on DRHW. In addition, the approach produces SW/HW 
performance estimates, so it can also be used for supporting SW/HW partitioning. 

The estimation approach focuses on a reconfigurable architecture in which there is a 
reduced instruction-set computer (RISC) processor and an FPGA-type DRHW, 
connected by a communication channel, a system bus. The current FPGA-type 
DRHW is assumed to be a Virtex2-like FPGA [27] in which the main resources are 
LookUp-Tables (LUTs) and multipliers. The estimation approach starts from function 
blocks represented using C language, and it can produce the following estimates for 
each function block: software execution time in terms of running the function on the 
RISC core, mappability of the function and the RISC core [145], execution time in 
terms of running the function on DRHW, and resource utilization of DRHW. The 
framework of the estimation approach is shown in Figure 5. The starting point is the 
functional description given in ANSI-C language. The designer decides the 
granularity of partitioning by decomposing the algorithm down to function blocks. A 
single function block may then be assigned to SW, DRHW or a fixed accelerator. 
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Each of the function blocks will be individually studied and the set of estimation 
information will be fed into the system-level partitioning phase. 
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Figure 5. The estimation framework. 

3.1.2.1 Creation of control-data flow graph from C code 

We first transform C code into control-data flow graph (CDFG), which is a combined 
representation of data flow graphs (DFGs) and a control flow graph (CFG). The 
DFGs expose the data dependence of algorithms, and the CFG captures the control 
relation of a group of DFGs. In the estimator, we extend the SUIF front-end C 
compiler environment [146] to extract CDFG from the C code. The first step is to 
dismantle all high-level loops (e.g., while loop and for loop) into low-level jump 
statements. The produced code is restructured to minimize the number of jumps. Then, 
basic blocks are extracted. A basic block contains only sequential statements without 
any jump in between. Data dependence inside each basic block is analyzed, and a 
DFG is generated for each basic block. After the creation of all DFGs, the control 
dependence between these DFGs is extracted from the jump statements to construct 
the CDFG. Finally, profiling results, which are derived using gcov [147], are inserted 
into the CDFG as attributes. In later steps, these profiling results are used to produce 
the timing estimates. 
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3.1.2.2 High-level synthesis-based hardware estimation 
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Figure 6. High-level synthesis-based hardware estimation. 

A graphical view of the hardware estimation is shown in Figure 6. Taking the CDFG 
with the corresponding profiling information and a model of embedded FPGA as 
inputs, the hardware estimator carries out a high-level synthesis-based approach to 
produce the estimates. The main tasks performed in the hardware estimator as well as 
in a real high-level synthesis tool are scheduling and allocation. Scheduling is the process 
in which each operator is scheduled in a certain control step, which is usually a single 
clock cycle, or in several control steps if it is a multi-cycle operator. Allocation is the 
process in which each representative in the CDFG is mapped to a physical unit, such 
as variables to registers, and the interconnection of physical units is established. 

The embedded FPGA is viewed as a co-processing unit, which can independently 
perform a large amount of computation without constant supervision of the RISC 
processor. The basic construction units of the embedded FPGA are static random access 
memory (SRAM)-based look-up tables (LUT) and certain types of specialized function 
units, e.g., custom-designed multiplier. Routing resources and their capacity are not 
taken into account. The embedded FPGA model is actually a mapping table. The index 
of the table is the type of operators, e.g., addition. The value mapped to each index is 
hardware resources in terms of the number of LUTs and the number of specialized units, 
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such as hardwired multipliers. In addition, the execution time of an operator is also an 
attribute. This table is generated by synthesizing each type of operation onto the target 
FPGA. The timing information of each function unit is used during the scheduling 
step, and the resource information is used when generating the resource estimates. 

As-soon-as-possible (ASAP) scheduling and as-late-as-possible (ALAP) scheduling 
[148] determine the critical paths of the DFGs, which together with the control relation 
of the CFGs are used to produce the estimate of hardware execution time. For each 
operator, the ASAP and ALAP scheduling processes also set the range of clock cycles 
within which it could be legally scheduled without delaying the critical path. These 
results are required in the next scheduling process, a modified version of force-
directed-scheduling (FDS) [149], which intends to reduce the number of function units, 
registers and buses required by balancing the concurrency of the operations assigned 
to them without lengthening the total execution time. The modified FDS is used to 
estimate the hardware resources required for function units. 

Finally, allocation is used to estimate the hardware resources required for 
interconnection of function units. The work of allocation is divided into three parts: 
register allocation, operation assignment and interconnection binding. In register 
allocation, each variable is assigned to a certain register. In operation assignment, 
each operator is assigned to a certain function unit. Both are solved using the 
weighted-bipartite algorithm, and the common objective is that each assignment 
should introduce the least number of interconnection units that will be determined in 
the last phase, the interconnection binding. In this approach, multiplexer is assumed 
to be the only type of interconnection unit. The number and type of multiplexers can 
be easily determined by simply counting the number of different inputs to each 
register and each function unit. After allocation, the clock frequency is determined by 
searching for the longest path between two registers. Because routing resources are 
not modeled, the delay takes into account only the function units and the multiplexers. 

We assume that all variables have the same size, since our goal is to quickly produce 
estimates with pure ANSI-C code instead of generating optimal synthesizable RTL 
code, which often uses some kinds of subset C code and applies special meanings to 
variables. Our estimation framework also supports exploring parallelism for loops. 
This is done at the SUIF-level, where we provide a module that allows designers to 
perform loop unrolling (loops must have a fixed number of iterations) and loop 
merging (loops must have the same number of iterations). 
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3.1.2.3 Estimating SW execution time 

The software estimator uses a profile-directed operation-counting based static 
technique to estimate software execution time. The architecture of the target processor 
core is not taken into account in the timing analysis. The main idea of estimating the 
software execution time is as following. Firstly, the number of operations of each type 
is counted from the CDFG. Then, each type of operation node in the CDFG is 
mapped to one or a set of instructions of the target processor in a pre-defined manner. 
Then the total number of instructions is calculated by summing up the number of 
estimated instructions of each type. Finally, with the assumption that these instructions 
are performed with an ideal pipeline, the software execution time is the multiplication 
result of the total number of instructions and the period of the clock cycle. 

3.1.2.4 Candidate component selection 

The ultimate goal of the estimation approach is to make candidate component 
selection, which is an application-dependent procedure. In current design framework, 
the selection is carried out manually based on designers� experience and design 
constraints. A rule of thumb is to group tasks into contexts with the goal that both the 
number of contexts and the dependence edges crossing the contexts are minimized. 
For larger applications, the scheduling approach [75] and the grouping approach [97] 
could be applied. When global resource saving is an issue, the resource estimates are 
important inputs. However, to make justified decisions, other information, such as 
power consumption, should be included as inputs. More importantly, control/data 
dependence between candidate components should be analyzed. Obviously, there 
should be control dependence between candidate components that are mapped to 
different contexts. The current approach does not include automated tools to support 
the analysis. Other tools and manual analysis are the solutions for now. 

3.1.3 Modeling of DRHW and the supporting transformation tool 

The modeling of reconfiguration overhead is divided into two steps. In the first step, 
different technology-dependent features are mapped onto a set of parameters, which 
are the size of the configuration data, the clock speed of configuration process and the 
extra delays apart from loading of the configuration data. In the second step, a 
parameterized SystemC module that models the behavior of the run-time 
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reconfiguration process is created. It has the ability to automatically capture the 
reconfiguration request and present the reconfiguration overhead during performance 
simulation. Thus, designers can easily evaluate the trade-offs between different 
technologies by tuning the parameters. 

3.1.3.1 Parameterized DRCF template 

The performance impact of using DRHW is dependent on the underlying 
reconfigurable technology. Products from different companies or different product 
families from the same company have very different characteristics, e.g., size of 
reconfigurable logic and granularity of reconfigurable logic. Different features 
associated with the reconfigurable technology are not directly modeled in the DRCF 
component. Instead, the DRCF component contains the functions that describe the 
behavior of the reconfiguration process and relates the performance impact of the 
reconfiguration process to a set of parameters. Thus, by tuning the parameters, 
designers can easily evaluate the trade-offs between different technologies without 
going into implementation details. 

In the SystemC extension, a parameterized DRCF template is used. At the moment, 
the following parameters are available for designers: 

! The memory address, where the context is allocated in the external memory that 
holds the configuration data 

! The length of the required memory space, which represents the size of 
configuration data 

! Delays associated with the reconfiguration process in addition to delays of 
memory transfers. 

3.1.3.2 DRCF component and Reconfigurable SoC modeling 

The DRCF component is a model that can automatically capture the reconfiguration 
request and trigger the reconfiguration. In addition, a tool to automate the process that 
replaces candidate components by a DRCF component is developed, so system 
designers can easily perform the test-and-try and speedup the design space 
exploration process. In order to let the DRCF component be able to capture and 
understand incoming messages, the SystemC modules of the candidate components 
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must implement the read(), write(), get_low_addr()  and get_high_addr()  interface 
methods showed in the code below. The DRCF component implements the same 
interface methods and conditionally calls the interface methods of target modules. 
With the forthcoming SystemC TLM 2.0 standard [150], new interface methods could 
be defined to comply with the TLM 2.0. Equivalently, OCP standard transaction lever 
interfaces [151] can be used. 

class bus_slv_if: public virtual sc_interface{ 

  public: 

     virtual sc_uint<ADDW> get_low_addr() =0; 

     virtual sc_uint<ADDW> get_high_addr() =0; 

     virtual bool read(...) =0; 

     virtual bool write(...) =0; 

}; 

A generic model of RSoC is shown in Figure 7. The left hand side depicts the 
architecture of the RSoC. The right hand side shows the internal structure of the 
DRCF component. The DRCF component is a single hierarchical SystemC module, 
which implements the same bus interfaces as other HW/SW modules do. A 
configuration memory is modeled, which could be an on-chip or off-chip memory 
that holds the configuration data. Each candidate component (F1 to Fn) is an 
individual SystemC module that implements the top-level bus interfaces with separate 
system address space. The Input Splitter (IS) is an address decoder and it manages all 
incoming Interface-Method-Calls (IMCs). The Configuration Scheduler (CS) 
monitors the operation states of the candidate components and controls the 
reconfiguration process. Each candidate component instantiates a DONE signal to the 
CS. This signal is activated when the connected candidate component finishes its 
execution. 
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Figure 7. A generic model of RSoC. 

The DRCF component works as follows. When the IS captures an IMC to a candidate 
component, it will hold the IMC and pass the control to the CS, which decides if 
reconfiguration is needed. If so, the CS will call a reconfiguration procedure that uses 
the parameters specified in the first step to generate the memory traffic and the 
associated delays to mimic the reconfiguration latency. If the CS detects the RTR 
hardware is loaded with another module, a request to reconfigure the target module 
will be put into a FIFO queue and the reconfiguration will be started after the RTR 
hardware has no running module. After the CS finishes the reconfiguration loading, 
the IS will dispatch the IMC to the target module. 

The context switching with pre-emption is a common approach in operating systems, 
the implementation of which does not introduce too much overhead because of the 
regularity of the register organization in GPP. In the DRCF component, the pre-
emption technique is not supported because of the very high implementation costs of 
context switching. In the modeling approach, designers can use different CS models 
when candidate components are mapped to different types of reconfigurable devices, 
such as partial reconfiguration and single-context devices. 

There is a state diagram common to each of the candidate components. Based on the 
state information, the CS makes reconfiguration decisions for all incoming IMCs and 
DONE signals. A state diagram of partial reconfiguration is presented in Figure 8. For 
single context and multi-context reconfigurable resources, similar state diagrams can 
be used in the model. The main advantage of the modeling method is that the rest of 
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the system and the candidate components need not be changed between a static 
system and a run-time reconfigurable system, which makes this method very useful in 
making fast design space exploration. 
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Figure 8. State diagram of candidate components. 

3.1.3.3 An automatic code transformer for DRCF component 

In order to reduce the coding effort, we have developed a tool that can automatically 
transform SystemC modules of the candidate components, which however must 
follow a pre-defined coding pattern (using the predefined bus_slv_if methods, as 
shown in section 3.1.3.2), into a DRCF component. The inputs are SystemC files of a 
static architecture and a script file, which specifies the names of the candidate 
components and the associated design parameters, such as configuration latency. The 
tool contains a hard-coded DRCF template. It first parses the input SystemC code to 
locate the declarations of the candidate components (The C++ parser is based on 
Opencxx [152]). Then the tool creates a DRCF component by filling the DRCF 
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template with the declarations and making the appropriate connections. Finally, in the 
top-level structure, the candidate components are replaced with the generated DRCF 
component. During simulation, data related to reconfiguration latency will be 
automatically captured and saved in a text file for analysis. A VCD (Value Change 
Dump) file will also be produced to visualize the reconfiguration effects. 

3.1.4 Link to low-level design 

The low-level design is divided into detailed design and implementation design. The 
output of the detailed design is the intermediate representation of the system, in which 
SW is represented as C or assembly code and HW is represented as RTL-HDL code. 
The implementation is the phase where binary code for SW, bitstream for RTR HW 
and layout for ASICs are generated. 

In our approach, automatic code generation for low-level design is not provided and 
designers should manually or using other tools transform the SystemC representation 
of the reconfigurable system to low-level code, such as C code for SW implementation 
and VHDL code for HW implementation. The implementation of the reconfiguration 
is technology-dependent and is outside the scope of the design method. 

In our work, we used the Dynamic Circuit Switching (DCS)-based technique [153] to 
carry out the cycle-accurate co-simulation between the functions mapped onto the 
RTR hardware and the functions mapped onto the static part of the system. A VHDL 
module for each of the functions mapped onto the RTR hardware is manually created. 
Multiplexers and selectors are inserted after the outputs of the modules and before the 
inputs of the modules. They are automatically switched on or off according to the 
configuration status. In the cycle-accurate simulation model, the reconfiguration is 
modeled as pure delay. 

3.2 A WCDMA detector case study 

We selected a WCDMA detector [154] design case to validate the SystemC-based 
approach. We targeted on an RTR-type of implementation and the implementation 
platform was the VP20FF1152 development board from Memec Design group [155], 
which contains one Virtex2P XC2VP20 FPGA [156]. 
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3.2.1 System description 
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Figure 9. The WCDMA base-band receiver system. 

The whole WCDMA base-band receiver system is depicted in Figure 9. The case 
study focuses on the detector portion (the shaded area in Figure 9) of the receiver and 
a limited set of the full features were taken into account. The detector case used a 384 
kbits/s user data rate without handover. The detector contains an adaptive filter, a 
channel estimator, a multi-path combiner and a correlator bank. The adaptive filter is 
performing the signal whitening and part of the matched filtering traditionally 
implemented with the RAKE receiver. The channel estimator module calculates the 
phase references. In the combiner part, the different multi-path chip samples are phase 
rotated according to the reference samples and combined. Finally, the received signal 
is de-spread in the correlator bank. 

When compared to traditional RAKE-based receiver concepts, this WCDMA detector 
achieves 1�4 dB better performance in vehicular and pedestrian channels. The detector 
thus provides performance benefits in more challenging channel conditions. As the 
traditional RAKE concepts contain several correlators for tracking the multi-path 
components, this detector contains a single channel equalizer for performing multi-
path correction. This results in improved scalability, since increasing multipaths or 
data rates would mean increasing the amount of early/on-time/late correlators in the 
traditional RAKE-based concepts. 

3.2.1.1 Adaptive filter 

Regardless of the data rates or channel configurations required by the specification, 
the adaptive filter block is unchanged as it simply processes chip samples before the 
de-spreading takes place. Extendibility aspects are also not a problem as no changes 
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are required to support other demands. The adaptive filter is implemented by using 
basic FIR filtering structures with a delay line and taps for extracting complex sample 
values to be multiplied with the tap coefficients. The implementation is fully parallel, 
so the number of multiplier units for coefficient multiplication in both I and Q 
branches and the units needed for calculating new coefficients equal the number of 
taps in the filter. 

3.2.1.2 Channel estimator 

The function of the estimator is to de-spread the CPICH (Common Pilot Channel) 
chips on different multi-paths with correctly timed spreading and channelization 
codes. Then the received and de-spread CPICH symbols are multiplied with the complex 
conjugates of the CPICH pilot pattern. The output is channel estimates for different 
multi-paths, which are used in the combiner to rotate received chips in different multi-
paths before combining, in order to match their phases and amplitudes. The channel 
estimator receives timing information from the searcher block. This includes the delay 
information about multi-paths at a specified delay spread. The channel can therefore 
be thought of as an FIR filter with a number of taps and with most taps zero-valued. 
The task of the channel estimator is to find the tap values for those taps that the 
searcher determines to be non-zero. The CPICH channel estimate over one slot is 
formed by integrating over the number of symbols and then it is scaled. It is used for 
actual phase correction of the received chips. The CPICH estimates are used as 
channel references for every data channel. 

3.2.1.3 Combiner 

As the base station transmits the pilot symbols through the channel, the terminal 
receives the directly propagated symbols and the delayed multi-paths. As the pilot 
symbols are known beforehand, the channel tap coefficients for each multi-path can 
be calculated. The different multi-path chip samples are first phase compensated 
according to the channel tap estimates. This is done by multiplying the chip sample 
with the complex conjugate of the corresponding multi-path channel tap coefficient. 
Finally all the phase compensated chip samples are added together to form an 
equalized chip sample. 
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3.2.1.4 Correlator 

The function of the correlator bank is to create de-spread symbols from the output of 
the multi-path combiner. Combined chips are de-spread by spreading code, which is 
formed from scrambling and channelization codes. After de-spreading, chips are 
integrated over the symbol period in an integrator and the result is scaled. 

3.2.2 System-level design 

The design started from the C-representation of the system. It contained a main 
control function and the four computational tasks, which lead to a simple system 
partition that the control function was mapped onto SW and the rest onto RTR 
hardware. The estimation tool was used first to produce the resource estimates. The 
results are listed in Table 1, where LUT stands for look-up table and register refers to 
word-wide storages. The multiplexer refers to the hardwired 18 x 18 bits multipliers 
embedded in the target FPGA. 

Table 1. Estimates of FPGA resources required by the function blocks. 

Functions LUT Multiplier Register 
Adaptive filter 1078 8 91 

Channel estimator 1387 0 84 
Combiner 463 4 32 
Correlator 287 0 17 

Total 3215 12 224 
 

Based on the resource estimates, the dynamic context partitioning was done as 
following. The channel estimator was assigned to one context (1387 LUTs), and the 
other three processing blocks were assigned to a second context (1078 + 463 + 287 = 
1828 LUTs). This partition resulted in both balanced resource utilization and less 
interface complexity compared to other alternatives. 

A SystemC model of a fixed system was then created, which had two purposes in the 
design. The first was to use its simulation results as reference data, so the data 
collected from the reconfigurable system could be evaluated. The second purpose was to 
automatically generate the reconfigurable system model from it via the transformation tool. 



 

50 

        DRCF Component

context2
Channel
Estimator

Simulation
 Data Files

Input
Splitter

RISC
Processor

MEM

I/O
control

unit

Bus

Context
Scheduler

C
onfiguration
M

em
ory

Data
Memory

context1
Channel
Estimator

 

Figure 10. Reconfigurable system model of the WCDMA detector. 

In the fixed system, each of the four detector functions was mapped to an individual 
hardware accelerator, and pipelined processing was used to increase the performance. 
A small system bus was modeled to connect all of the processing units and storage 
elements. The channel data used in the simulation was recorded in text files, and the 
processor drove a slave I/O module to read the data from the file. The SystemC 
models were described at the transaction level, in which the workload was derived 
based on the estimation results but with manual adjustment. The results showed that 
1.12 ms was required for decoding all 2560 chips of a slot when the system was 
running at 100 MHz. 

The transformation tool was used to automatically generate the reconfigurable system 
model, which is depicted in Figure 10, from the fixed model. The reconfiguration 
latency of the two dynamic contexts was derived based on the assumption that the 
size of the configuration data was proportional to the resource utilization, the number 
of LUTs required. The total available LUTs and the size of the full bitstream were 
taken from the Xilinx XC2VP20 datasheet. Some accurate approaches can be used to 
derive the reconfiguration latency. For example, the latency is related only to the region 
allocated to the dynamic contexts. In the current work, these have not been studied. 
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Figure 11. Simulation waveform shows the reconfiguration latency. 

The performance simulation showed that the system required two reconfigurations per 
processing each slot of data. This is presented by the cxt0_cfg and cxt1_cfg in Figure 
11. When the configuration clock was running at 33 MHz and the configuration bit-
width was 16, the reconfiguration latency was 2.73 ms and the solution was capable 
of processing 3 slots of data in a frame. 

3.2.3 Detailed design and implementation 

In the low-level design phase, the RISC processor model was mapped onto the 
hardwired PowerPC core, and the data memories were mapped onto the embedded 
block memories. Other components were mapped onto Xilinx IP cores, if 
corresponding matches could be found, e.g., the bus model to the Xilinx Processor 
Local Bus (PLB) IP core. In addition to the basic functionality, we added a few 
peripherals for debugging and visualization. The implementation architecture is 
shown in Figure 12. Vendor-specific tools were used in the system refinement and 
implementation phases. Other than the traditional design steps for HW/SW 
implementation, additional steps for interface refinement, configuration design and 
partially reconfigurable module (PRM) design were needed. The PRM is referred to 
as the partial area of the target FPGA onto which the two contexts are mapped. 
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Figure 12. Implementation architecture of the WCDMA detector on the target Virtex 
II Pro FPGA. 

3.2.3.1 Interface refinement 

The number of signals crossing the dynamic region and the static region must be fixed, 
since the dynamic region cannot adapt itself for changing the number of wires. In this 
work, the step to define the common set of boundary signals shared between the 
PRMs is referred to as interface refinement. In Xilinx FPGAs, the boundary signals 
are implemented as bus macros [157], which are pre-routed hard macros used to 
specify the exact routing channels and will not change when modules are 
reconfigured. Because each bus macro is defined to hold 4 signals and there are only a 
limited number of bus macros, the boundary signals cannot be over-sized. Therefore, 
it is more beneficial to minimize the number of signals crossing the dynamic region 
and the static region, which can also relax the constraint during placement and routing. 
In this case study, the number of boundary signals was reduced to 82, which 
corresponded to the signals connected to the two 16-bit dual-port data memories and 
the PLB bus adapter. The implementation then required 21 bus macros. 
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3.2.3.2 Configuration design 

This step is to define when and how to trigger the reconfiguration. The behavior of 
the DRCF component at the system-level modeling is to automatically capture the 
reconfiguration request and generate reconfiguration overhead when needed. In [158], 
we describe a technique that can realize this configuration transparence in low-level 
implementation. The technique requires a customized bus adapter and a customized 
OS kernel. The basic procedure is as follows. All reconfigurable modules are 
controlled by SW tasks via memory accesses. When the bus adapter notifies a 
memory access to a module, which is not loaded, it will trigger an interrupt and cause 
the OS to switch on another SW task. The current SW task that triggers the memory 
access (calling the unloaded module) is then blocked, and a reconfiguration request to 
load the called module is scheduled. When the reconfiguration is finished, another 
interrupt will be triggered, which causes the OS to release the blocked SW task. 
Therefore, reconfiguration becomes transparent to SW tasks, and all reconfiguration 
requests are automatically handled. 

In this WCDMA case study, there was only a single SW task, which was used to 
control the four accelerators. It was much easier and cost-efficient to embed the 
reconfiguration requests into the SW task instead of using the customized bus adapter 
and the customized OS kernel, which would generate unnecessary overhead. The 
reconfiguration was implemented using the SystemACE Compact Flash (CF) solution 
and the configuration data was stored in a CF card. A simple device driver to control 
the SystemACE module was developed and the reconfiguration request was implemented 
as function calls to the SystemACE device driver. 

3.2.3.3 Partial reconfigurable module design 

RTL-VHDL code of the functions mapped onto PRMs was manually generated from 
the top-level C code. Synthesis results of the four functions are listed in Table 2. 
When considering the estimation, the results are over-estimated at about 55% on 
average. The main reasons for this derivation are that: 1) the estimator assumes fixed-
length computation for all variables but in implementation some variables  require 
only bit-level operations, 2) the estimator maps all multiplexers directly to LUTs but 
real synthesis tools usually utilize the internal multiplexers in individual logic 
elements [30]. Although there is a certain amount of deviation of the estimates, we 
can already use the results to make reasonable partitioning decisions. For the PRM, 
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the Xilinx module-based partial reconfiguration design flow [157] was used. First, 
each of the four detector functions was implemented as a single block. Then a context 
wrapper that matched the boundary signals was used to wrap the channel estimator as 
one module and the other three as another module. The static part was assigned to the 
right side of the FPGA (SLICE_X44Y111:SLICE_X91Y0), because 33 out of the 36 
IO pads used are on the right side of the FPGA. The dynamic region was on the left 
side of the FPGA (SLICE_X0Y111:SLICE_X43Y0). The three IO pads that were on 
the left side were routed to the right side via a bus macro. The resource utilization of 
the placed and routed modules is presented in Table 3. The size of the configuration 
data is 279 KB for context 1 and 280 KB for context 2. The reconfiguration latency is 
about 4.3 ms. There are two contexts, and thus the total configuration latency for 
processing one slot of data is 8.6 ms. Including the data processing time, the total time 
spent on one slot of data is 9.66 ms. 

Table 2. HW synthesis results. 

Functions LUT Multiplier Register (bits) 
Adaptive filter 553 8 1457 

Channel estimator 920 0 2078 
Combiner 364 4 346 
Correlator 239 0 92 

 

Routed PRMs on the dynamic region are shown in Figure 13. Context 1, which 
contains the channel estimator, is shown in Figure 13(a), and context 2, which 
contains the other three modules, is shown in Figure 13(b). In addition, a routed 
design after module assembly is shown in Figure 14. The assembled design is the 
integration of context 2 and the static part. The bus macros that are used for providing 
reliable connections for the boundary signals are marked by the block in the middle. 

Table 3. Resource utilization in Xilinx XC2VP20. 

 LUT BRAM MUL Reg/bit PPC 
Static 1199 41 0 1422 1 

Context 1 941 4 0 2083 0 
Context 2 1534 6 12 1855 0 
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(a) context: channel estimator (b) context: adaptive filter, combiner, 
correlerator

bus macros bus macros

 

Figure 13. Routed design of PRM on the dynamic region. 
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Figure 14. The assembly of context 2 and the static part. 
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3.2.3.4 Co-verification and execution 

The EDK design suite [159] was used to create the simulation files for the complete 
system. However, the tool set did not provide the support to integrate the two 
dynamic contexts and the static context into a single simulation environment. A DCS-
based VHDL wrapper [153] was manually created to enable the integration of the two 
dynamic contexts for simulation. Reconfiguration latency was estimated according to 
the SystemACE datasheet. Modelsim [160] was used as the simulation environment. 
In the SW side, SW code was compiled and stored as data into Block RAM. A 
PowerPC instruction-set simulator (ISS) was linked to Modelsim using the SWIFT 
interface [160] to perform HW/SW co-simulation. 

The iMPACT [161] tool was used to transform the configuration files into SystemACE 
file format, and these configuration files were stored in a 128 MB CF card. During 
execution, a complete system (integration of the static part and context 1) was initially 
downloaded to the FPGA using the iMPACT, and then the partial bitstreams were 
automatically loaded by the SystemACE module when necessary. 

3.2.4 Comparison with other implementation alternatives 

In addition to the implementation of the dynamic reconfiguration approach, a fixed 
hardware implementation and a pure software implementation were made as reference 
designs. In the fixed-hardware implementation, the processing blocks were statically 
mapped onto the FPGA as accelerators and the scheduling task was mapped onto SW 
that ran on the PowerPC core. The resource requirements were 4632 LUTs (24% of 
available resources), 55 Block RAMs (62%) and 12 Block Multipliers (13%). The 
system was running at 100 MHz. The execution time for processing one slot of data 
was 1.06 ms. For our dynamically reconfigurable system, the required resources are 
calculated by summing up the required resources of the static parts and the largest 
ones of the two contexts. Considering LUTs, which are the main elements in FPGA, 
the dynamically reconfigurable system requires 2733 LUTs (1199 LUTs for the static 
part and 1534 LUTs for context 2), as shown in Table 3. Compared to the fixed reference 
system, the dynamic approach achieved a resource reduction of more than 40% in 
terms of the number of LUTs, but at the cost of eight times longer processing time. 
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For the full software implementation, the design was done as a standalone approach 
and no operating system was involved. Everything was running in a single PowerPC 
core and data were entirely stored in internal BRAMs. For the same clock frequency, 
the processing time of one slot of data was 294.6 ms, which was over 30 times of the 
processing time in run-time reconfiguration case, 9.66 ms as shown in section 3.2.3.3. 
This did not fulfill the real-time requirements. 

3.3 Analysis and discussion 

The main advantage of the SystemC-based approach is that it can be easily embedded into 
an SoC design flow to allow fast design space exploration for different reconfiguration 
alternatives without going into implementation. This is achieved by our system-level 
supporting tools and the modeling method of DRHW. We developed a high-level 
synthesis-based HW estimator, which can produce HW resource estimates for 
algorithms that are represented in ANSI-C code. This helps designers in the early 
phase of the design to make reasonable partitioning decisions without going into the 
implementation details, and therefore reduce the design time. In our DRHW modeling 
technique, the components that are mapped onto fixed HW accelerators and the 
DRHW are modeled using the same interface. Therefore, a component can be easily 
moved in to and out from DRHW when exploring the design space. This also helps to 
reduce the coding effort and thus makes the design space exploration process fast. In 
addition, to further reduce the coding effort, we have developed a SystemC code 
transformer that can automatically generate SystemC code of DRHW from existing 
SystemC code. Considering the design at a detailed level and implementation level is 
time consuming and can take from weeks to months, the SystemC-based approach 
can help to avoid re-design in the early design phase. 

Comparing our design method and others is not feasible, because adopting a new 
design method and flow requires a large amount of economic as well as human effort. 
In addition, quantitatively evaluating the design flow is not practical, since most 
design-related attributes, such as design time and number of lines of target code, are 
in fact very dependent on designers and their experiences. In this work, the feasibility 
of the design method is studied by applying it to a real design case. Through the 
design case, the estimation approach and the DRHW modeling approach have shown 
their usefulness by providing reasonably accurate results without going into low-level 
implementation. The HW resource estimates were used to guide the context partitioning 
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process, which resulted in a balanced partitioning decision. The performance impact 
of reconfiguration overhead was quickly revealed through performance simulation, 
where the DHRW modeling technique was applied. 

The potential benefit of using the run-time reconfiguration approach is obviously the 
significant reduction of reconfigurable resources. Compared to a completely fixed 
implementation, the reduction of LUTs is more than 40%. Compared to a full 
software implementation, the run-time reconfiguration approach is over 30 times 
faster. The commercial off-the-shelf FPGA platform caused limitations on the 
implementation of run-time reconfiguration. Although the selected approach used 
partial reconfiguration, the required configuration time significantly affected the 
performance in the data-flow type WCDMA detector design case. The ratio of 
computing to configuration time is about 1/8 in this design case. This value shows 
that configuration overhead must be effectively managed in order to gain benefit of 
using DRHW. In the following chapters, we will present several techniques to reduce 
the negative impact of the reconfiguration overhead. 
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4. Task scheduling approaches for run-time 
reconfigurable devices 

4.1 Introduction 

As presented earlier, the flexibility of DRHW allows such devices to be shared by 
tasks in a time-multiplexing manner. With the multitasking feature, DRHW tasks can 
be managed similarly to those in multiprocessor systems. However, one challenging 
issue in using DRHW is how to manage configuration. The RTR that enables the 
multitasking feature results in the configuration overhead. There are different 
approaches [97] to hiding or reducing configuration latency, such as configuration 
prefetching and configuration caching. At the design level, the concern is how to 
apply these techniques in the task scheduling process in order to effectively and 
efficiently hide configuration latency. 

Another difference from multiprocessor scheduling is that task allocation needs to be 
carefully managed in order to efficiently utilize the DRHW. In multiprocessor 
scheduling, the target system usually consists of a number of homogeneous 
processors, and a task can be mapped onto any processor without much difference 
from a scheduling point of view. However, in DRHW scheduling, allocating a task to 
an inappropriate area can cause fragmentation of the reconfigurable logic and 
therefore prevent new tasks from being loaded. All these RTR-specific features make 
DRHW scheduling more complicated than the scheduling in a multiprocessor 
environment. In this chapter, we present techniques that optimally or near optimally 
schedule tasks onto DRHW. 

As presented in section 1.2.2, various task scheduling techniques for DRHW have 
been proposed. Similar to multiprocessor scheduling, there are in principle three 
different scheduling approaches. The first is static scheduling, in which execution 
orders are decided at design time. It is suitable when tasks have known dependencies. 
The second is dynamic scheduling, in which all decisions are made at run-time. 
However, there is a stringent time-limit to make decisions, and thus only simple 
scheduling algorithms can be applied. The third is quasi-static scheduling, in which 
the execution orders are determined partially at design time and partially at run-time. 
This approach is interesting as it can make decisions based on the current run-time 
status but does not need to carry out all the calculations at run-time. 
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Because quasi-static scheduling has the advantage of balanced efficiency and 
performance, we use it as the basic framework in our approach. Our quasi-static task 
scheduling is divided into two parts: design-time scheduling and run-time scheduling. 
At design time, scheduling is preformed for tasks of each individual application, and 
the main focus is to use configuration prefetching to hide configuration latency. For 
each individual application the design-time scheduler produces a number of possible 
options. Each option corresponds to an optimal or near-optimal scheduling under the 
setting of the number of tiles on the device. We mark each option as a pareto point, 
and the scheduling result contained in it is called a pareto profile. During execution, 
when an application is ready the run-time scheduler selects a suitable profile based on 
the current device status. In fact, our quasi-static scheduling approach shares an idea 
similar to the one in [121]. However, the main difference is how the configurations 
are managed. Our contributions are highlighted as follows. 

! The focus in design-time scheduling is to provide optimal scheduling solutions 
for a group of tasks whose dependence is known at design time. Three 
scheduling techniques with different problem-solving strategies are developed 
and quantitatively evaluated in our work. 

! For the run-time scheduling, we propose a novel technique called configuration 
locking. The main idea is to dynamically monitor the running tasks and always 
lock the configurations of a number of the most frequently executed tasks on the 
device in a way that the resources occupied by these locked tasks cannot be 
evicted by any ready task. (A ready task means that the task is ready to be executed.) 
This is similar to the cache locking technique [162] in a general memory system. 

4.2 Target models 

4.2.1 Device model 

We use a generic configuration model as the device model. It consists of a number of 
continuously connected homogeneous tiles and each tile consists of the circuit and its 
own configuration-SRAM that controls the circuit, as described in Figure 15. A task 
that requires m tiles of resources can use any set of m continuously connected tiles. A 
crossbar connection is used to connect the configuration SRAMs of the tiles to a 
number of parallel configuration controllers. The crossbar ensures that any configuration 
SRAM can be accessed by any configuration controller, but only one at a time. Data 
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transfers among tiles and between tiles and the rest of the SoC are all through the 
communication network. A thorough discussion of the parallel configuration model is 
presented in Chapter 5. 

The model can be described using the following parameters: 1) Ntile, the number of 
tiles; 2) Nctrl, the number of configuration controllers; 3) SIZE, the size of a single tile; 
and 4) CL, the configuration latency of a single tile. To present the generality of the 
model, we provide two simple examples for setting these parameters. If we set 
parameter Nctrl to 1, the model then describes a partial reconfigurable device, such as 
Virtex devices [27]. If we set the SIZE to a very high value such that a single tile is 
large enough to hold a task, the model can then be used to describe a number of 
individual tiles on a network-on-chip (NoC) platform. 
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Figure 15. A generic parallel reconfiguration model. 

4.2.2 Task model 

Most applications of an embedded system are independent from each other, although 
occasionally they are linked together by users to achieve a particular purpose. For 
example, when a user wants to use a mobile device to send an edited picture from a 
live music concert, first he uses the device to capture the wanted view and uses an 
editing application for inserting text, and then he sends it through as a multimedia 
message. In this scenario, applications for image encoding, image processing and 
communication are called in sequential order. However, this dependence is forced by 
users, and it is not explicit during the application development stage. 
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In our approach, such user-level dependence is not considered, and each application is 
treated as an independent unit. However, each application might consist of a number 
of closely dependent tasks, which can be modeled as a directed-acyclic graph (DAG). 
In the DAGs, nodes represent tasks and edges represent dependencies of the tasks. 
Dependencies crossing different applications are not modeled and task reuse for 
different applications is not applied, as we consider that such situations rarely happen 
in real cases. Applications can be non-periodic or periodic with soft deadlines. A soft 
deadline means that a process should but need not necessarily finish its execution by 
the deadline. For a periodic application, tasks from the current period cannot start 
before all tasks from the previous period have finished. At run-time, applications are 
triggered either periodically or sparsely without pre-defined orders. 

Dependent tasks of an individual application are modeled as a DAG, G(V,E), where 
V = {j1,j2,�, jn} is a set of nodes that represent the tasks and E is a set of edges that 
represent the dependence of the tasks. A task is ready to run when all of its 
predecessors have finished. There are two attributes for a task i, execution time, RTi, 
and the number of required tiles, Ri. However, normal DAG representation is not 
enough as configurations are explicit processes but do not explicitly appear in the 
DAG. For our purpose, we use an extended DAG G+(V+,E+). Extra configuration 
nodes V´ are added with a single node representing the configuration of one tile. Extra 
edges E´ are constructed from V´ to V, because configurations have to precede 
execution. Mathematically, the relationship between the normal DAG and the 
extended DAG is VVV ′=+ U  and NNN ′=+ U . As an example, Figure 16(a) shows 
a normal DAG of 4 tasks and Figure 16(b) shows the extended DAG where C<i,j> 
represents the configuration of the jth section of task i. 
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Figure 16. DAG  and  extended DAG. 

4.3 Static scheduling approaches 

The scheduling problem at the design-time phase is defined as searching for a valid 
task schedule that minimizes the overall execution time of a set of dependent tasks 
over a given DRHW model. This scheduling problem is very similar to multiprocessor 
scheduling, in which the objective is to map a set of dependent tasks onto a number of 
processors with the goal of minimizing the overall execution time. However, our 
scheduling problem for run-time reconfiguration is more complicated, because the 
task allocation, configuration prefetching, task dependence and configuration-task 
dependence all need to be managed together under the constraints that both the 
number of computation resources and the number of configuration resources are limited. 

In this section, we present three task schedulers that are from different domains of 
problem solving. The first is a heuristic approach developed from traditional list-
based schedulers [33]. The second is based on a full-domain search using constraint 
programming (CP) [34]. The last is a guided random search implemented using a 
genetic algorithm (GA) [35]. 
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4.3.1 The list-based scheduler 

List-based scheduling has been extensively used in task scheduling for single 
processor or multiprocessor environments, high-level synthesis, or similar situations, 
where the problem can be represented as a DAG. The basic idea is to sort the DAG 
nodes based on their priorities and always schedule the highest priority node first. The 
priority usually refers to the urgency of a node, and the nodes in the critical path have 
higher priorities. In DRHW scheduling, issues such as task allocation, configuration 
scheduling and configuration prefetching can also affect the scheduling results. 
Therefore, a new technique to calculate the task priority is needed. 

The principle of configuration prefetching is to load tasks whenever there are tiles and 
configuration controllers available, instead of after the tasks become ready. In the list-
based scheduler, each task has a priority, which represents the urgency of the 
configuration of the task. The task with the highest priority is scheduled first when 
free resources are available. The priority function consists of three elements: the 
mobility, the gap and the delay. The mobility shows the urgency of execution, and a 
low mobility value means a high priority. The gap shows how much benefit a task can 
get if its configuration immediately starts. A low gap value means a high priority. The 
delay shows how many additional configurations have to be delayed if the 
configuration of the task cannot start immediately. It is obvious that prefetching 
successors prior to predecessors does not bring any benefits. Therefore, a task with 
more successors has a high delay value, which means a high priority. 
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Insert_T asks (V ,P Lis t);
s_ tim e =  1;
w hile(PL is t         ) do
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  w h ile(S earch_for_F ree_R es(s_ tim e)     0 ) do
    task  =  F irs t(PLis t);
    m  =  R equired_T iles(task);
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    D e le te(PL ist, task);
    if(P L is t =     ) then
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end w h ile ;
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Figure 17. List-based scheduler. 
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The pseudo code of the algorithm is shown in Figure 17. The algorithm iterates 
starting from scheduling time (s-time) 1 and stops when all tasks have been scheduled, 
as in (1)�(3). In each iteration, the priorities of all the unscheduled tasks are calculated, 
as in (4). The algorithm searches the DRHW device for any pair of a free tile and a 
free configuration controller. The scheduling of configurations and executions is 
continuously performed as long as such a pair exists, as in (5)�(16). Upon scheduling, 
candidate tiles are selected for the task and configuration of the task is then scheduled, 
as in (7)�(9). Due to prefetching, a task might not be ready when its configuration has 
finished. The ready time is then calculated, and execution of the task is scheduled 
upon that time, as in (10)�(11). When a pair of a free tile and a free controller cannot 
be found, the s-time is increased, as in (17). Then, free resources might be available at 
the new s-time. 

A brief explanation of the important functions is as follows. The function 
Calculate_RTR_Priority calculates the priorities of the tasks and sorts them according 
to the priority values. The value is calculated as a/mobility+b/gap+c*delay, where a, 
b and c are weight values decided by the designers. The mobility is calculated as 
(ALAP s-time) � (ASAP s-time) +1. The gap is calculated with the assumption that the 
configuration of the task starts at s-time and the task can start to run at ASAP s-time. 
Its value is equal to (ASAP s-time) � (configuration_end s-time). Offset values are 
added to the gap values to make all of them positive. The delay value is equal to the 
normalized value of the total number of successors of the task. The function 
Search_for_Free_Res returns TRUE if a pair of a free tile and a free configuration 
controller are found at s-time. The function Search_for_Candidate_Tiles(tiles, m) 
returns the m continuously connected tiles on which the configuration can finish 
within the shortest time. The function Schedule_Configuration uses a resource-
constraint ASAP scheduling approach to schedule the configuration of the task onto 
the selected tiles. Its return value represents the configuration finish time. The function 
Schedule_Task sets the task to run at run_time. The function Insert_Tasks(V,L) puts the 
tasks in V into List L. The function First(L) returns the first task in L. The function 
Delete(L, T) deletes element T from L. The function Required_Tiles(T) returns the 
number of required tiles of task T. The function Calculate_Ready_Time returns the 
earliest s-time at which both configuration of the task and executions of all its 
predecessors can be finished. 
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4.3.2 The constraint programming approach 

4.3.2.1 Introduction to constraint programming 

Constraint programming represents one of the closest approaches computer science 
has yet made to the Holy Grail of programming: the user states the problem, the 
computer solves it [163]. CP consists of describing constraints and solving such 
constraints. Programmers state the problem requirements, but do not need to specify 
how to meet these requirements. Constraint solvers, constructed based on well-known 
algorithms, such as branch & bound (B&B) [164], will find a solution that satisfies all 
of the constraints. 

Specifically, the problem that we are dealing with belongs to a finite domain. The 
satisfaction of constraint problems over a finite domain is usually referred to as the 
constraint satisfaction problem (CSP). In this paper, our goal is to find an optimal 
schedule, and the B&B technique is used to solve it. Its basic idea is to keep tracking 
the best solution and to try to improve it until the entire search tree has been explored. 
Because B&B covers the complete search space, this method is proven to find a 
global optimal solution. 

4.3.2.2 Constraint models 

In this section, the constraint models that characterize the DRHW task scheduling 
problem are presented using implementation-independent mathematical formulas. 
There are five constraints and one optimization goal. 

A. Definition of terms 

! iT : The start execution time of task i 

! iRT : The duration of the execution time of task i 

! iR : The number of required tiles by task i 

! >< ni, : The nth segment of task i 

! >< niTile , : The tile that is allocated to the nth segment of task i 

! >< niC , : The start configuration time of the nth segment of task i, on the >< niTile , . 
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B. Task dependence modeling 

This constraint states the task dependence. Basically, the start execution time of any 
task has to be larger or equal to the end execution time of any of its predecessors. 
Therefore, task dependence can be described using the following constraint: 

jiiEji TRTT ≤+∀ ∈),(  (1) 

C. Configuration dependence modeling 

This constraint states the dependence between the execution of a task and the 
configurations of the task. A task has to be loaded before its execution, thus the start 
execution time of any task has to be larger or equal to the end of the configuration of 
all assigned tiles. Mathematically, the constraint is: 

iniEin TCLC ≤+∀ ><′∈ ,),(  (2) 

D. Tile allocation modeling 

The allocation constraint states that a task, which requires more than one tile, must be 
assigned to continuously connected tiles. This is equivalent to setting the tile allocated 
to the (n+1)th segment of task i incrementally to the next tile allocated to the nth 
segment of the task i. Mathematically, the allocation constraint is represented as: 

[ ] 1,1,,1)1,(, +=∀ ><>+<∈+∈ niniiRnnNi TileTile  (3) 

E. Resource constraint modeling � tile 

Tiles are shared resources. A task starts to occupy a tile when the configuration of the 
tile starts, and it releases the tile when it finishes executing. Therefore, if a tile is 
allocated to two different tasks, the time frames during which they occupy the tile 
cannot overlap. For example, Figure 18 shows a situation that two independent tasks i 
and j, which require three and two tiles respectively, share tile number 3. Legal 
schedules are that either >< 1,jC  is scheduled after task i finishes execution, shown in 
Figure 18(a), or >< 3,iC  is scheduled after task j finishes execution, shown in Figure 
18(b). When the two tasks are assigned to share different tiles, the constraints will 
change correspondingly. 
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We construct two kinds of tile constraint models. The first is for tasks that do not 
have predecessor-successor dependence. It is formulized as: 
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(4) 

The basic idea is to force the configurations of one task to be scheduled on shared 
tiles after the end execution time of the other task. These are shown in the first two 
lines of the expression. Certainly, if two tasks do not share tiles, such constraints do 
not apply. This is shown in the last line. 

The second constraint is for dependent tasks. If task i precedes task j, then the 
constraints [ ]iRmimi TCLC ,1, ∈>< ≤+   and iij RTTT +≥  can be propagated to 

[ ]iRmmij CT ,1, ∈><≥ , which is contradictory to the constraint ><≤+ mijj CRTT , . In fact this 
means that on shared tiles, configurations of successor tasks cannot start before those 
of predecessor tasks. Therefore, we need to model only the case represented in Figure 
18(a). The constraint can then be simplified as: 
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Figure 18. Tile constraint modeling. 
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F. Resource constraint modeling � controller 

Because there are a limited number of configuration controllers, they are also shared 
resources. The number of tiles being configured at any given time cannot exceed this 
limit. This can be mathematically modeled as: 

[ ] [ ] )),(( ,1, ,)max(,1 ∑ ∈∈ ><∈+∈ ≤∀ iRmNi miNiiRTiTt NCCtB , where 
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G. Optimization goal 

The objective of the approach is to find a schedule that minimizes the overall 
execution time. To achieve this goal, we minimize the maximum of end execution 
times of all tasks in the labeling step: 

minimize(max Niii RTT ∈+ )( ) (7) 

4.3.2.3 Constraint implementation 

Both the constraints, described from B to E, and the optimization goal are 
implemented as they are in the Prolog language [164]. The constraint F is 
implemented using a complex constraint cumulative, which can be efficiently solved. 
In fact, the constraints D and E can be jointly implemented using the complex 
constraint diff with additional dependence constraints. However, because the 
configurations are crossly stated both in E and F, this results in less efficient solving 
in terms of the computer run-time in our experimentation. 

4.3.3 The genetic algorithm 

4.3.3.1 Introduction 

The GA is a guided random search technique inspired by evolutionary biology and 
natural genetics [165]. The basic idea is to iteratively improve the results (individuals) 
through randomly combining (crossover) and modifying (mutation) the previous 
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results until some termination criteria are satisfied. In each generation, preferred 
individuals survive, thus each generation tends to be better than the previous one. Its 
implementation is usually based on a loop structure, as follows. 

step 1: Create an initial population (a group of solutions). 

step 2: Evaluate the fitness of all individuals in the current population. (Fitness is 
a measurement of the quality of an individual.) 

step 3: Select individuals to reproduce, and breed new offspring through 
crossover with high probability and mutation with low probability. 

step 4: Stop if termination criteria are satisfied, otherwise go back to step 2. 

The chromosome (strings that represent solutions) and the evaluation process are 
problem-specific. The genetic operators (crossover, mutation, evaluation and 
selection that operate the chromosome to evolve into new offspring) control the 
evolution process. We use the implementation in a multiprocessor scheduler [166] to 
illustrate these basic ideas. In [166], a solution is represented with two-dimension 
strings {S1, S2, �, Sn}. Each string Si represents the tasks scheduled on the processor 
Pi and the order of appearance is the execution order of the tasks. 

The crossover allows two parents, par1 and par2, to mate and generate two new 
individuals, child1 and child2. The crossover can be seen as a way of achieving the 
guided search, because new solutions are directly derived from the old ones. In [166], 
a random task is first selected, and then the crossover site (a place to cut a string into 
half) for each string Si is generated based on the height value [166] of the selected 
task. The height values implicitly determine task precedence. Then, string Si of child1, 
is generated by appending the right string (the partial string after the crossover site) of 
the Si of par1 to the left string (the partial string before the crossover site) of the Si of 
par2. The offspring, child2, is built in the same way after swapping the parents. 

The mutation generates a new individual by randomly modifying the chromosome of 
another individual. It is a technique to increase the randomness of the search to avoid 
solutions being trapped in local optimal points, which is the ultimate result if only the 
crossover is used. In [166], the mutation is performed by randomly changing the 
positions of two tasks with the same height. 
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The evaluation measures the fitness of all individuals, so the worst results can be 
eliminated in a later phase. In [166], the fitness of an individual i is calculated as 
max_length � current_lengthi + 1, where max_length is the longest schedule length in 
the current generation and current_lengthi is the schedule length of individual i. 

The selection picks up some individuals to reproduce offspring. The natural rule is 
that better ancestors tend to generate better offspring, because the �good� genes are 
passed on. In [166] and other GA approaches, the roulette wheel is a common style of 
implementing this GA operator. The basic procedure is to assign each individual with 
a slot size in the roulette wheel that is proportional to its fitness value. Then a random 
number is generated as an index to the roulette wheel, and the individual that covers 
the index is selected to reproduce. Because an individual with a larger fitness value 
covers a larger slot, it then has higher chance of being selected to reproduce. Towards 
our problem, these problem-specific GA issues are described in the following subsections. 

4.3.3.2 Coding of solutions 

The coding style in multiprocessor scheduling cannot be applied to our problem, 
because 1) a task might require multiple tiles, and 2) both tasks and their 
configurations need to be scheduled. In our approach, we use a pair of two-dimension 
strings to represent an individual. The first two-dimension strings {Tile1, Tile2, �, 
Tilen} are the task strings (T-strings), similar to those in [166]. They represent the 
scheduling results of tasks on the tiles. Each tile has a corresponding string, and a 
string Tilei represents the tasks scheduled on the ith tile. The order of the tasks on 
string Tilei is then the execution order of these tasks on the ith tile. This is similar to 
the strings in multiprocessor scheduling. However, for a task that requires multiple 
tiles, its instance appears on all of the tiles assigned to it. 

The second two-dimension strings {Ctrl1, Ctrl2, �, Ctrln} are the controller strings 
(C-strings). They represent the configuration scheduling results. Each controller has a 
corresponding string, and a string Ctrli represents the configurations scheduled on the 
ith controller. The same as in the task strings, the order of appearance on Ctrli is the 
configuration order using the ith controller. An example of two-dimension strings and 
the corresponding scheduling results of the extended DAG in Figure 16 are shown in 
Figure 19. 
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tile 1: (task 1, task 4)
tile 2: (task 1, task 2, task 4)
tile 3: (task 1, task 2)
tile 4: (task 3)

ctrl 1: (C<1,1>,C<1,3>,C<2,1>)
ctrl 2: (C<1,2>,C<3,1>,C<2,2>,C<4,1>,C<4,2>)

t1 t2

t3

t4

schedule step1 2 3 4 5 6

7 8 9 10 11 12

tile 1

tile 2

tile 3

tile 4

>< 1,1C

>< 2,1C

>< 3,1C
>< 1,2C

>< 2,2C

>< 1,4C

>< 2,4C

>< 1,3C

T-strings

C-strings

schedule step1 2 3 4 5 6
7 8 9 10 11 12

ctrl 1

ctrl 2
>< 3,1C

>< 1,3C

>< 1,1C

>< 2,1C
>< 1,2C

>< 2,2C >< 1,4C >< 2,4C

 

Figure 19. Gene representation. 

Based on the strings of an individual we can derive a new graph by inserting extra 
edges for the scheduling dependence into the extended graph G+. We refer to this 
graph as the schedule graph (s-graph), and each individual has its own s-graph. The s-
graph is constructed as follows. Firstly, for each two adjacent positions, j and j+1, on 
the T-string Tilei, an edge from the task node at the jth position to the task node at the 
(j+1)th position is inserted into G+. For example, on the strings as shown in Figure 19, 
an edge from task 2 to task 4 is needed, because task 2 is scheduled before task 4 on 
tile 2. Secondly, on each T-string Tilei, an edge from the task node at the jth position to 
the configuration node, which configures the task at the (j+1)th position onto the ith 
tile, is inserted into G+. For example, an edge from task 2 to the configuration node 
C<4,2> is needed, because the configuration cannot start before task 2 has finished. In 
fact, this edge can replace the first edge by propagating the dependence between the 
nodes, but we keep the first one because it can result in an efficient implementation. 
Finally, on each C-string Ctrli, an edge from the configuration node at the jth position 
to the configuration node at the (j+1)th position is inserted into G+. For example, a 
link from C<1,3> to C<2,1> is needed, because they are not allowed to run in parallel and 
configuration C<1,3> should precede C<2,1>. So, with the additional links that show the 
dependence due to allocation, a schedule graph explicitly presents the execution order 
of tasks. The schedule graph for the chromosome given in Figure 19 is depicted in 
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Figure 20, in which the dotted lines with smaller arrows are the additional links that 
show the allocation dependence. 

>< 1,1C

>< 2,1C>< 3,1C

>< 1,2C

>< 2,2C

>< 1,4C

>< 2,4C

>< 1,3C

 

Figure 20. Schedule graph with additional links showing allocation dependence. 

In our approach, each individual, including all offspring after crossover and mutation, 
represents a feasible solution. An individual represents a feasible solution if and only 
if it satisfies the precedence constraints and its s-graph is acyclic. This theorem has 
been proven in [167] for multiprocessor scheduling (in multiprocessor scheduling, the 
s-graph does not contain the configuration nodes and the associated edges). Since we 
are dealing with the same type of task graphs (although configuration nodes are added, 
they do not change the acyclic properties of the graph), this theorem also applies to 
our problem. In our case, the first condition is met as we always maintain task 
precedence in each string. The second condition is guaranteed in our genetic operators, 
which are described in later subsections. 

4.3.3.3 Initial population 

The initial population is a group of initial solutions, from which the GA starts to evolve. 
In our approach, the initial population is generated through a resource-constraint list 
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scheduling approach, but resources are randomly selected upon scheduling. The basic 
procedure of creating an initial individual is as follows. 

step 1: Select a ready task node. A task node is ready if all of its predecessor task 
nodes are scheduled or if it has no predecessor task node. 

step 2: Randomly select controllers for its configuration nodes, and randomly 
select tiles for the task node. If it requires multiple tiles, randomly select 
continuously connected tiles. Append the task node and its configuration 
nodes to the end of the strings of the selected resources. 

step 3: If there are unscheduled task nodes, go to step 1. Otherwise an initial 
individual is created, and exit. 

As nodes are placed based on their execution order, no cycle exists in the s-graph in 
all initial solutions. 

4.3.3.4 Crossover 

The crossover mechanism for multiprocessor scheduling [166] can guarantee  that 
feasible solutions will be generated. However, a severe drawback is that the optimal 
solutions might never be generated. Correa et al. [167] fixes the problem with an 
improved crossover. In our work, we use this improved crossover and extend it for the 
task scheduling problem of DRHW. 

The basic idea to guarantee feasibility in [166, 167] is as follows. Task nodes in the 
strings must be ordered based on their height values in order to satisfy precedence 
constraints. During crossover, a graph is divided into two acyclic sub-graphs, GL and 
GR, in such a way that there exist edges only from GL to GR, but not vice versa. The 
basic graph G is used in [166], and the s-graph is used in [167]. Then, the crossover 
sites are selected in such a way that all nodes in the left-strings belong to GL and all 
nodes in the right-strings belong to GR. Therefore, no cycle will be generated when 
swapping the right-strings between parents, and thus the offspring are feasible solutions. 

In our approach, we use the s-graph of par1 and par2, to generate the two sub-graphs, 
similar to [167], but configuration nodes are considered as well. The procedure is as 
follows. 
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step 1: Start with a randomly selected task node. Move this node and its 
configuration nodes into GL. 

step 2: In the s-graph of par1, search for the task nodes that precede the selected 
task node, and move these task nodes and their configuration nodes into GL. 

step 3: In the s-graph of par2, search for the task nodes that precede the nodes 
already in GL, and move these task nodes and their configuration nodes 
into GL. Put the rest of the task nodes and their configuration nodes into GR. 

The basic idea of crossover is to generate new solutions by combining the parents� 
solutions, which in our approach means that part of the strings from par1 and part of 
the strings from par2, are transformed into new individuals, child1 and child2. The 
crossover is performed as follows, and an example is shown in Figure 21. 

step 1: Randomly select a task node and generate the sub-graphs GL and GR from 
the s-graphs of both parents. 

step 2: Mark the crossover sites in the parents� strings. In each string, all nodes 
(task nodes in T-strings, and configuration nodes in C-strings) that occur 
before the crossover site must belong to GL. 

step 3: Copy the left-strings of par1 to child1. Use par2�s allocation results to 
perform ASAP scheduling for the nodes in GR, and convert the results 
into the right-strings of child1. A similar process is done for child2. 

(task 1,   task 4)
(task 1, task 2,   task 4)
(task 1, task 2 )
(task 3 )
(C<1,1>,C<1,3>,C<2,1> )
(C<1,2>,C<3,1>,C<2,2>,  C<4,1>,C<4,2>)

par 1

(task 1, task 2 )
(task 1, task 2 )
(task 1,   task 4)
(task 3,   task 4)

par 2

(C<1,1>,C<1,3>,C<2,1>,  C<4,1>,C<4,2>)
(C<1,2>,C<3,1>,C<2,2> )

(crossover sites are marked with   )

(task 1)
(task 1, task 2)
(task 1, task 2, task 4)
(task 3, task 4)
(C<1,1>,C<1,3>,C<2,1>,C<4,1>,C<4,2>)
(C<1,2>,C<3,1>,C<2,2>)

child 1

crossover

(task 1, task 2, task 4)
(task 1, task 2, task 4)
(task 1)
(task 3)

child 2

(C<1,1>,C<1,3>,C<2,1>)
(C<1,2>,C<3,1>,C<2,2>,C<4,1>,C<4,2>)

 

Figure 21. Crossover. 
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4.3.3.5 Mutation 

In our case, we can separately mutate task nodes and configuration nodes, because 
they are two different kinds of nodes. We have totally created three different 
mutations and they are used together in the mutation phase. 

In the first mutation, only the T-strings are mutated. A task node is randomly selected 
and moved to a new location. If the task requires multiple tiles, it will then be inserted 
into each of the T-strings that correspond to the selected tiles. Let�s use height(Vi) to 
represent the height value of node Vi. Then the place in the new T-string to insert the 
task node must satisfy the condition that height(the node before Vi) < height(Vi) <= 
height(the node after Vi). The height value of a task node is calculated based on the s-
graph as follows. 

 

 
(8) 

In the second mutation, only the C-strings are mutated. We randomly select a 
configuration node and inserted it into a new controller�s equivalent C-string. The 
insertion place is selected in a similar way to the previous task mutation technique, 
but the height values of configuration nodes are calculated differently. We define the 
height value of a configuration node to be equal to the height value of the task node 
that it configures. 

The last mutation is to rotate the controller assignment for the configuration nodes of 
a task. This is done as follows. A task node Ti is randomly selected. If it has N 
configuration nodes (N tiles are needed for the task). Then in the C-strings, node 
C<i,1> is replaced by C<i,2>, C<i,2> is replaced by C<i,3>, and finally C<i,N> is replaced by 
C<i,1>. This mutation is applied only for the task that requires multiple tiles. 

Each of the three mutations has its own probability to run in the mutation phase. This 
is arranged as shown in pseudo code in Figure 22. In the chromosome, we always 
guarantee that the task nodes in T-strings are ordered based on their height values, but 
this is not true for the C-strings and there might exist height-inverse in the C-strings 
(a node with a higher height is placed before a node with a lower height). When the 
scheduling dependences in the s-graphs are randomly modified in mutation, such 
height-inverse might cause cycles in the new s-graphs. Therefore, we must sort the 
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C-strings based on their new height values at the end of the mutation phase to ensure 
the feasibility of new individuals. 

if (random_number() > T-strings mutation probability)
mutate T-strings;

else
rotated = false;
if (the selected task node needs more than 1 tile)

if (random_number() > C-strings rotation probability)
rotate C-strings; rotated = true;

end if
end if
if (not rotated)

mutate C-strings;
end if

end if
update heights and sort C-strings;

if(random_number() > mutation probability)

end if  

Figure 22. Arrangement of the three mutation operators. 

4.3.3.6 Evaluation and selection 

The GA selection is implemented using the roulette wheel style, and fitness is measured 
in the same way as in [166]. In our case, because an s-graph deterministically defines 
the scheduling order and allocation results, the length of the critical path of the s-
graph is then the schedule length. For example, in the chromosome shown in Figure 
19, the schedule length can be derived from the critical path in Figure 20, C<1,1> => 
C<1,3> => t1 => C<2,2> => t2 => C<4,2> => t4. 

4.3.3.7 Evolution strategy 

We use a fixed population size during evolution. In each generation, new offspring 
(80% of the original size in our case) are generated and inserted into the old 
population, and then the worst individuals are removed in order to return the 
population to its original size. 

To decrease the chance that solutions are trapped at a local optimal point, we 
dynamically modify the mutation probability. In each generation, if the average 
fitness of the current population is equal to the best fitness of the current population, 
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the mutation probability of the next generation is increased by 10% unless it reaches 
the upper boundary, 1.0. Otherwise, the mutation probability is decreased by 10% 
unless it reaches the lower boundary, the initial mutation probability. The basic idea is 
to increase the mutation probability when all of the solutions have converged into a 
single point. Therefore, more offspring will be mutated and there will be higher 
chances of some offspring being in the region near to globally optimal solutions. 

4.4 The run-time scheduling technique 

The run-time scheduling is divided into two levels: application level and task level. 
When a process is ready, the application-level module selects a suitable pareto profile 
for the process based on the current number of free tiles. Therefore, when 
interferences with other processes are not considered, the selected profile can 
guarantee that the free tiles can be optimally or near-optimally utilized. When there is 
no free tile, the ready process is put into a pending queue. Processes in the pending 
queue are sorted according to their ready time. The task with the earliest ready time is 
put in the front of the pending queue. When free tiles become available, the first task 
in the pending queue is selected, and a suitable pareto profile is then used. The 
following tasks in the pending queue will be selected until there is no free tile left. 

In the task-level scheduling, tasks of all the running processes are managed. For each 
individual running process, because the execution order of its tasks is specified in the 
selected profile, there is no run-time overhead to schedule the tasks from the same 
process. In addition, because each process owns different tiles from others and all the 
tasks of the same process are assigned to the tiles the process owns, tasks from 
different processes do not overlap on the same tile. So, at any given time, tasks 
assigned to the same tile are all from one process and their execution order is 
determined at design time. Therefore, there is no need to perform cross-process task 
scheduling at run-time as well. 

However, current DRHW has only limited configuration resources. In fact, current 
commercially available devices have only one configuration port and one 
configuration controller. This means that multiple configurations cannot be performed 
in parallel. It implies that although tasks from different processes do not interfere with 
each other, their configurations might, and their orders affect the scheduling results. 
For example, Figure 23 shows two running scenarios of two concurrent processes on 
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a device with four tiles and one configuration controller. In the first scenario, as 
shown in Figure 23(b), configurations of application 2 are all scheduled after that of 
application 1. In the second scenario, as shown in Figure 23(c), configurations are 
performed interleaved. The difference is obvious that in the first scenario the device is 
not fully utilized and application 2 suffers from long and unnecessary waiting time 
due to an inappropriate scheduling decision for the configurations. 

In our approach, the configuration order is dynamically determined for concurrent 
processes in order to avoid inefficient utilization of resources as shown in Figure 
23(b). The configuration scheduling is done as follows. For tasks from the same 
process, their configuration order is defined at design time and the run-time scheduler 
simply follows it. For tasks from different processes, if their configurations overlap, 
the task that has the earliest start time will be loaded first. The current run-time 
scheduler does not deal with the case that a task might occupy more than one tile, 
although at design time our schedulers take it into account. This problem can be 
solved with run-time task allocation algorithms, which will be studied in the future. 

1

2 3

4

5

c1 1 c2 2
c3 3

c4 4
c5 5

Tile 1:
Tile 2:

Tile 1':
Tile 2':

Ctrl: c1 c3 c2 Ctrl: c4 c5

(a) selected profiles of two running applications

c1 1 c2 2
c3 3

c4 4
c5 5

Tile 1:
Tile 2:
Tile 3:
Tile 4:

(b) schedule configurations 
at application level

c1 1 c2 2
c3 3

c4 4
c5 5

Tile 1:
Tile 2:
Tile 3:
Tile 4:

Ctrl: c1 c3 c2 c4 c5 Ctrl: c1 c3 c4 c5 c2

Application 1 Application 2

(c) schedule configurations 
at task level  

Figure 23. Two scheduling scenarios. 

4.4.1 Configuration locking technique 

The main goal of our configuration locking technique is to improve the efficiency of 
configuration caching. Intuitively, caching the most frequently used tasks has better 
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opportunities to reduce the total number of reconfigurations and thus reduce the 
configuration overhead. This is shown in a motivation example in Figure 24. We 
assume that application 1 and application 2 are two independent periodic applications, 
as shown in Figure 24(a). When they are mapped onto a device containing four tiles, 
no reconfiguration is needed except the initial ones, as shown in Figure 24(b). 
However, when they are mapped onto a resource-limited device that contains only 
three tiles, how to reuse loaded tasks can result in significant difference. Figure 24(c) 
shows that an inappropriate scheduling causes application 1 to miss its deadline. At 
step 12, task 4 is required. Because both tile 1 and tile 3 are being used, tile 2 is 
selected and task 2 is evicted for loading task 4, which causes an additional 
configuration of task 2 and thus the deadline of application 1 is missed. If we allow 
the scheduler to always keep the two most frequently used tasks (in this case task 1 
and task 2) on the device, task 2 will not be evicted, and task 4 will be allocated to tile 
3 and later loaded at step 13. The result is that both applications can meet their 
deadlines, as shown in Figure 24(d). 

1

2

3

4
Application 1

period = 4
Application 2

period = 7

Tile 1:
Tile 2:
Tile 3:
Tile 4:

c1 1
c2 2

c3 3
c4 4

1
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1
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1
2
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3
4
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Tile 2:
Tile 3:

c1 1
c2 2

c3 3
c4 4

1
2

1 c2 2

Tile 1:
Tile 2:
Tile 3:

c1 1
c2 2

c3 3 c4 4

1
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1
2

1
2

1
2

c3 3 c4 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

(a) two periodic applications

(b) scheduling scenario on a device with 4 tiles

(c) on a device with 3 tiles, without preserving resource

(d) on a device with 3 tiles, with preserving resource

deadline of application 1
is missed (the rest of the 
schedule is not shown)

2

 

Figure 24. A motivation example of preserving resources in configuration caching. 
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The motivation example shows the benefit of locking the most frequently used tasks. 
However, it is usually infeasible to decide at design time which tasks are the most 
frequently used. For example, when using a smartphone, a user might make a phone 
call for 10 minutes and then watch movies for the next 30 minutes. Therefore, some 
wireless communication tasks will be intensively used in the beginning, but video 
decoding tasks for the following 30 minutes. The situation will change if a video call 
is started later on. To solve this problem, in our locking technique the run-time 
scheduler dynamically counts the times that tasks are executed (when an application 
is finished, the counts of its tasks are reset to zero). A number of frequently used tasks 
are always locked to avoid being evicted by any ready task. The number of tasks to 
preserve (Ntp) is decided by designers at design time. Because one task is locked on 
one tile, Ntp also means the number of tiles that are used to preserve the most 
frequently used tasks. The number must be less than the total number of tiles, Ntp < 
Ntile. Otherwise no tile can be assigned to any ready task. 

In the run-time scheduler, a reuse module dynamically checks if any previously 
loaded task can be reused for any task of running or pending processes. Only if a task 
is cached and ready to run (all its predecessors have finished) is it dispatched. This is 
done at task-level scheduling before configurations are scheduled. It should be noted 
that when the scheduler checks which task can be reused, it goes through all the tiles, 
not only the preserved tiles. The intention of using preserved tiles is to increase the 
cache-hit rate by locking the most frequently used tasks on the device, and this does 
not prevent us from reusing other tiles. 

preserved

runningfree

configuration of a taski is started

the running taski is finished & 
order(taski) > Ntp

the running taski is finished & 
order(taski) < Ntp

a running taskk is finished on another tile & 
order(taskk) < Ntp < order(taski) &
taski is running

(1)

(2)

(3)
(5)

(1)

(2)

(3)

(4)
(4)

a running taskk is finished on another tile & 
order(taskk) < Ntp < order(taski)
taski  is not running

(5)

 

Figure 25. Tile state transition diagram. 
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Each tile has its own state, which is maintained by the run-time scheduler and used 
during the scheduling process. There are three states: free, preserved and running. 
The state free means that any task can be assigned to the tile. The state running means 
that a task is assigned to this tile and this task is being loaded, or loaded but not 
running, or running. The state preserved means that a task has finished on this tile and 
in the future only this task can be assigned to this tile. The state transition diagram is 
shown in Figure 25. The function order(taski) returns the position of taski in a list, 
which is sorted with decreasing order using the times that tasks are executed. Thus, 
order(taski) ≤ Ntp means that taski is now one of the Ntp most frequently used tasks. 
The run-time scheduler manages the states of the tiles and makes scheduling decisions 
based on these states. When a task is finished, the run-time scheduler updates the 
execution counts, sorts the list and decides which tiles are now in the state preserved. 
For example, when a task is finished and it is now one of the most frequently used 
tasks, the tile on which the task is assigned will be put into preserved, as in transition 
(3), otherwise the tile becomes free, as in transition (2). Transitions (4) and (5) mean 
that another task, taskk, assigned to a different tile has became more frequently used 
and the task, taski, on this tile is not one of the Ntp most frequently used tasks. 

4.5 Case studies 

The case studies are divided into two parts. The first part concentrates on evaluating 
the three static scheduling techniques that have been described in section 4.3. Both 
randomly generated cases and task models derived from practical applications are 
used. Although configuration prefetching is the main technique used in these 
approaches to hide configuration latency, the purpose of this case study is not to 
evaluate the benefit of using configuration prefetching, as it has been done in others� 
work [115, 116]. Our main focus is to quantitatively study the scheduling efficiency 
of these algorithms. This is done by comparing the computer run-time and the 
deviation from optimal solutions. A quantitative comparison of our scheduling techniques 
with the existing static DRHW scheduling techniques, which are summarized in 
section 2.3.3, is not practical, because all these techniques more or less focus on 
different problems. The scheduling algorithm in [82] is designed for a HW/SW 
partitioning approach, where tasks can also be mapped onto processors. The goal of 
the static DRHW scheduling in [120] is to identify the configurations that have the 
most negative impact on the system performance. In [98], a list-based approach is 
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used, but it is for task grouping. The genetic algorithm in [134] is designed to solve 
the resource fragmentation problem. 

In the second part, the configuration locking technique is evaluated with practical 
applications and compared with the results where configuration caching is used but no 
locking effort is applied. Although our locking technique is embedded into a run-time 
task scheduling, comparison with other run-time schedulers is not available. The 
reason is that most of such schedulers focus on how to efficiently solve the task allocation 
problem in 2D DRHW devices, which however suffer from a very critical problem, 
e.g., run-time routing. In addition, some run-time schedulers assume that DRHW 
tasks are preemptive, which however results in substantially high switching overhead. 

4.5.1 Evaluation of the static scheduling approaches 

The list-based heuristic scheduler and the GA-based scheduler are implemented in 
C++, and they are included in our design space exploration toolset for DRHW [33]. 
The toolset can also automatically generate the constraint models for given task 
graphs. The constraint models are solved using a third-party tool, SICSTUS finite 
domain solver [168]. The computing environment is a workstation equipped with two 
AMD Opteron 252 processors, but only one processor actually contributes to the 
performance results, because no parallel programming is used in the implementation. 

4.5.1.1 Computation effort of the CP-based approach 

We used 10 randomly generated task graphs with each graph containing 10 tasks. 
These graphs had different levels of depth and different tree structures, so they could 
be seen as representations of widely different applications. The number of required 
tiles of an individual task was randomly generated with uniform distribution in the 
range of [1, 3], and the total nodes of these graphs are in the range of [28, 32]. 
Different device models were used by setting the number of tiles, Ntile, to iterate from 
4 to 7 and the number of controllers, Nctrl, to iterate from 1 to 3. The average ratio of 
the task configuration time to the average of the task execution time was set to 0.2. 
Therefore, in total we had 120 test cases. 

The results in terms of computer run-time are shown in Figure 26. It can be seen that 
the consumed computer run-times are widely distributed, from 21 ms in the fastest 



 

84 

run to nearly 8 hours in the slowest run. On average, each CP-based scheduling took 
8.4 minutes. The averaged computer run-time of each device is marked with the 
connected triangle points. It can be seen that for devices of more tiles and more 
controllers the required effort to find the optimal solutions decreases. This is because 
with more tiles and more controllers, fewer conflicts are generated and therefore the 
amount of backtracking is reduced, which helps to reduce the searching effort. The 
results also show that for a single task, the required computer run-time may vary 
significantly. For example, the two points marked with arrows are from the same task 
but on different devices, (4,1) and (7,1). The former is the slowest run, but the latter 
shows that the optimal result can be found within 35 ms. 
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Figure 26. The consumed computer run-time of the CP approach. 

To study the scalability of the approach, we selected the task graph that had the fastest 
run, and gradually added more nodes and applied the CP-based approach to them. 
When we slightly increased the number of tasks to 16 and the total number of nodes 
to 51, the required computer run-time exceeds 20 hours. Therefore, the CP-based 
approach is less favorable in practical applications because of its unpredictable 
computer run-time. However, with the guarantee to produce optimal solutions, it can 
be used as a reference to evaluate other approaches. 
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4.5.1.2 Accuracy and performance of the sub-optimal approaches 

The list-based scheduler and the GA scheduler are sub-optimal approaches. The 
purpose of this case study is to evaluate how close their results are when compared to 
optimal ones. Because the optimal solutions of the randomly generated task graphs 
have already been found using the CP approach, as presented in the previous 
subsections, we used the same task graphs and settings. For the GA-based scheduling 
approach, the parameters used in the test are as follows: 

! initial mutation probability: 0.1 

! crossover probability: 0.95 

! number of individuals in one generation: 100 

! number of generations (evolving steps): 100. 

Table 4. Comparisons of the GA with other approaches. 

Scheduling Deviations Average Computer Run-time 
 

GA-CP
CP

(%)
 

List-CP
CP

(%)
 

GA  List  CP 

DAG1 2.59 8.38 0.93 sec 4.49 ms 8.45 min 
DAG2 1.61 3.10 0.98 sec 4.83 ms 23.35 min 
DAG3 1.58 1.84 0.79 sec 3.16 ms 0.20 min 
DAG4 0.11 1.32 0.94 sec 5.07 ms 0.11 min 
DAG5 0.31 2.19 0.95 sec 4.86 ms 0.02 min 
DAG6 0.36 3.19 0.86 sec 5.35 ms 0.01 min 
DAG7 0.12 11.11 0.97 sec 4.72 ms 6.15 min 
DAG8 0.36 5.02 0.87 sec 5.56 ms 41.59 min 
DAG9 0.28 0.98 0.91 sec 3.88 ms 4.18 min 
DAG10 0.10 0.62 0.88 sec 6.21 ms 0.01 min 
Average 0.85 3.78 0.91 sec 4.81 ms 8.41 min 

 

The scheduling deviations are averaged for each individual task graph and presented 
in Table 4. For GA, 10 runs are performed for each case, and the smallest schedule 
length of the 10 runs is used in calculating the scheduling deviations. It can be seen 
that the results of the GA approach are significantly better than the results of the list-
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based approach, as the average deviation in the former case is less than 1%, but the 
average deviation in the latter case is about 5%. 

For the 10 GA runs on each setting, we calculate the coefficient of variation (the 
standard deviation divided by the mean) to study the repeatability of our GA approach. 
The results are shown in Figure 27. It can be seen that in all cases, the coefficients of 
variation are below 2.5%. In fact, the majority are in the range of [0.5%, 1.5%]. This 
shows that our GA approach has rather good convergence. 

The average computer run-times are also presented in Table 4. When comparing the 
accuracy, it can be seen that the GA-based approach is consistently better than the 
list-based approach. The average deviation in the former case is 0.85%, but 3.78% in 
the latter case. Considering the computer run-time, the list-based approach is the most 
efficient, requiring less than 5 ms on average. On average, a single GA run took less 
than 1 second, but a single CP-based scheduling took more than 8.4 minutes. 
Although the list-based approach takes a significantly shorter time, in the range of 
milliseconds, we consider using the GA approach to be much more beneficial, 
because of its higher accuracy and very tolerable computer run-time. In addition, the 
GA approach offers the flexibility of choosing between accuracy and computer run-
time. If more generations are evolved, more accurate results are likely to be achieved. 
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Figure 27. The coefficients of variation of the GA in test cases. 
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4.5.1.3 Scalability of the sub-optimal approaches 

The sub-optimal approaches have also been tested with larger task graphs to study 
their scalability. The test task graphs were generated using TGFF [169], but they had 
different sizes. The same TGFF settings were used so that they had similar dependences 
and parallelisms. The task execution times were randomly generated and the average 
configuration time was set to about half the average task execution time. In addition, 
tasks were set to require two tiles on average. The device model with seven tiles and 
two controllers was used. 

Some GA parameters were set differently from the previous test. Due to the fact that 
these task graphs had different sizes, instead of using a fixed population size we set the 
population size to be about 50% of the total number of nodes. To ensure that the results 
were at least suboptimal, the termination criterion was so that the GA stops when all of 
the results converge into a single point for five continuous generations (the average 
fitness is equal to the best fitness of five continuous generations). In all of these graphs, 
the CP-based approach could not find the optimal solutions within two days. Therefore, 
we used the GA results generated from evolving 1500 generations as the reference values. 

The GA approach was performed 10 times for each task graph. The best GA results 
out of 10 runs and the list-based results are compared in Table 5. It can be seen that 
the GA results are consistently better than the list-based approach, 8.6% better on 
average. For each GA run, we have also collected the number of generations that have 
evolved until the convergence criterion is met. These numbers are averaged and also 
shown in Table 5. It can be seen that more generations are required to converge the 
GA for larger task graphs and this effort is approaching the linear property, about 40 
additional generations are needed for every 20 additional nodes. 

Table 5. Scalability results. 

Task set Total 
nodes 

Num. 
tasks Ref

RefGA − (%) 
Ref

RefList − (%) Avg. stop 
generation 

1 49 15 6.42 13.49 96 
2 64 20 3.9 18.32 137 
3 80 25 5.56 22 199 
4 87 30 3.9 6.78 150 
5 105 35 3.37 11.29 231 
6 123 40 2.73 5.4 280 
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4.5.1.4 Experiments with practical applications 

We have also tested the three different schedulers with five practical applications. 
Each application is divided into a number of dependent tasks. VHDL codes for these 
tasks are manually generated. The required resources and the execution time are 
derived from the synthesis results and the simulation results. The brief explanations of 
these applications are as follows. 

! Sobel: Image sharpening application using sobel masking. The execution time is 
based on processing 256 x 256 pixels. There are six tasks in this application. 

! Sobel & Noise: Image sharpening (sobel masking) and noise reduction 
application (noise reduction is performed separately in each color domain). The 
execution time is based on processing 256 x 256 pixels. There are 17 tasks. 

! JPEG Encoder: A JPEG Encoder. The compression is performed in parallel for 
the luminance and the two chrominance spaces. The execution time is based on 
processing 256 x 256 pixels. There are 11 tasks. 

! MPEG Encoder: The core functions of MPEG2 encoding. The execution time is 
based on encoding a frame of a CIF picture (352 x 288 pixels). There are seven tasks. 

! WCDMA detector: Part of a Wideband CDMA decoder. The execution time is 
based on processing four slots of data (Each slot contains 2560 chips). There are 
four functions, including an adaptive filter, a channel estimator, a multi-path 
combiner and a correlerator. 

Table 6. Practical applications for testing static scheduling techniques. 

 

Schedule length (us) Computer run-time 
Task set Total 

nodes 
Num. 
tasks CP List GA CP List GA 

Average 
GA stop 

generations 
Sobel 14 6 12750 12750 12750 20 ms 1.3 ms 20 ms 10 

Sobel&Noise 39 17 17480 18088 17480 30 h 15.3 ms 1038 ms 80 
JPEG encoder 26 11 11248 11552 11248 25 h 6.1 ms 448 ms 62 
MPEG encoder 17 7 8626 8721 8626 17.3 s 13.2 ms 155 ms 37 

WCDMA 8 4 5408 5408 5408 9.5 ms 400 us 10 ms 6 
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The results are presented in Table 6. For GA runs, the shortest schedule length of 10 
runs is used. It can be seen from Table 6 that in all these cases the GA scheduler is 
able to find optimal solutions. In addition, the computation effort of using GA is 
considerably less than that of using CP, in which two of the five cases require more 
than 24 hours to solve. Similarly as in the randomly generated task graphs, the list-
based scheduler is the most efficient but produces the least accurate solutions. 

4.5.2 Evaluation of the configuration locking technique 

We used four real applications to validate the configuration locking technique. These 
four applications are the same as used in the previous case study, as presented in 
section 4.5.1.4. The �sobel & noise� image sharpening application was not used, because 
its functionality was similar to that of the �sobel� image sharpening application. In a 
real case, only one of these two would be applied, and we selected the simpler one for 
testing. The GA-based static scheduler was used to generate the profiles. For each 
application, we generated the first profile using the setting of one tile, and then more 
profiles by gradually increasing the number of tiles. We stopped when the 
configuration latency could not be reduced with more tiles. We assumed that each tile 
had an equal amount of resources as in Xilinx XC2V250 FPGA [27]. (Some tasks 
were too big to fit into smaller devices.) A brief explanation of the settings for the 
four applications is shown in Table 7. 

The run-time scheduler is also implemented in C++. Pareto profiles, application 
DAGs and device settings are given in text files. The scheduler reads these inputs and 
simulates a pre-defined simulation period. Different statistic results are automatically 
collected during simulation and saved in a text file at the end of simulation. The 
communication overhead was ignored during simulation. We assumed that all these 
applications were running periodically. Devices ranging from 6 tiles to 14 tiles were 
explored. In addition, we tried to use a different number of preserved tiles. The value 
Ntp was set to sweep from 0 to Ntile � 1. Therefore, the setting, Ntp = 0, means that 
configuration locking is not applied. In total, there were 90 different device settings. 
In the following context, we use the notation (Ntile, Ntp) to represent the device with 
Ntile tiles and Ntp preserved tiles. 

For each setting, we randomly generated the starting time of each application and 
performed 10 simulations with a different initial seed each time. Each simulation ran 
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for 106 simulation cycles. Results of the 10 simulations are averaged and shown in 
Figure 28. It can be seen that when more tiles are available more processes can finish 
before deadline. However, the improvements without using our locking technique are 
very limited. For example, at (10,0), about 17 processes can finish before deadline, 
but by preserving four tiles about 96 processes can finish before deadline. This is 
mainly because more tasks are reused, 430 compared to 325. In addition, the result at 
(10,4) is much better than that at (14,0), which shows that simply using more 
computation resources is not as efficient as preserving resources for dedicated purpose. 

Table 7. Practical applications for testing the configuration locking technique. 

Pareto profiles 
Application num of 

profiles 
profile 

ID 
schedule length 

(us) 
Periodicity 

1 25056 

2 16896 Sobel 3 

3 15612 

processing two 
pictures with size of 
1024 x 768 in every 

second 
period = 41667 us 

1 38806 

2 23851 JPEG encoder 3 

3 22567 

processing two 
pictures with size of 
1024 x 768 in every 

second 
period = 41667 us 

1 26011 

2 16486 MPEG encoder 3 

3 14958 

processing CIF video 
encoding 

 
period = 33333 us 

1 13636 

2 8616 WCDMA 3 

3 8072 

processing 15 slots of 
data in 10 ms 

 
period = 10000 us 

 

It is obvious that using more tiles to preserve tasks is not always beneficial. This is 
because when only a smaller amount of tiles are available for free allocation, ready 
tasks have to be put into pending. For example, after (14,6) using more preserved tiles 
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can still increase the number of reused tasks, but the number of processes that can 
finish before deadline also starts to decrease. In addition, at a certain point the system 
performance starts to drop sharply, because many ready tasks are competing for small 
amount of free tiles. This is more visible when reviewing the average waiting time as 
shown in Figure 29. The waiting time is defined as the difference between the time a 
process starts to run and the time the process is ready to run. The execution time is 
defined as the difference between the time a process finishes its execution and the 
time the process starts to run. It can be seen from Figure 29 that the average waiting 
time is decreasing initially when more resources are reserved for locking tasks. 
However, at the point when the amount of tiles that are allowed to be shared becomes 
too small, processes need to spend more time waiting for the tiles to become available. 

It is not surprising to see that when resources are too limited, Ntile < 7, our locking 
technique is not effective. This is because the ready tasks already have to compete for 
the small amount of free tiles, using some tiles to preserve loaded subtasks can make 
the situation only worse. On the other hand, when there are too many resources, Ntile >13, 
our locking technique tends to be less effective. This is because less swapping will 
happen, and thus trying to avoid swapping is not effective. The case study shows that 
our locking technique is not effective when resources are too limited or too 
prosperous. However, in other cases, using the proper amount of tiles to preserve 
loaded subtasks can significantly improve the system performance. 
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Figure 28. Scheduling results of real applications (average over 10 simulations of 
using different seeds). 
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Figure 29. Average waiting and execution time of real applications (average over 10 
simulations of using different seeds). 

4.6 Discussion 

A major benefit of using DRHW is that they have high silicon reusability. This allows 
multiple tasks to be running simultaneously in the same DRHW or multiplexed in 
time domain. With the multitasking feature, tasks should be carefully managed to 
efficiently utilize the device. The DRHW scheduling problem is similar to 
multiprocessor scheduling, but it is more complicated because both task allocation 
and the configurations have to be considered. 

In this work, a quasi-static task scheduling approach has been used as the basic 
scheduling framework. At design time, configuration prefetching is applied. The main 
focus is the development and evaluation of three approaches with different searching 
strategies. The first one is a heuristic approach based on a traditional list-based 
scheduler. The second one is based on a full-domain search. Constraint programming 
and a third-party solver are used. The last one is based on a guided random search. A 
set of customized GA operators are developed. 

Randomly generated task graphs and practical applications have been used in the case 
studies. The results show that the list-based approach is the most efficient but the least 
accurate. Although the CP-based approach can be guaranteed to generate optimal 
solutions, the required computer run-time depends on many things, including the 
device settings and the number of tasks, which makes it very unpredictable. For the 
CP-based approach, constructing a custom labeling algorithm taking into account the 
domain knowledge might considerably reduce the searching effort. However, 
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considering the problem itself is NP-hard, using a custom labeling algorithm cannot 
fundamentally change the characteristics of the CP-based approach. In comparison, 
the GA-based approach shows high accuracy and reasonable efficiency. In addition, 
the GA-based approach has shown good convergence and almost linear scalability in 
terms of the number of generations required to converge. 

At run-time, a novel configuration locking technique is applied. It can effectively 
reduce the configuration overhead by reducing the amount of required configurations. 
The idea is to always lock the most frequently used tasks on the device so that they 
have better chances to be reused. The most frequently used tasks are dynamically 
tracked, because the run-time status depends on users� behavior, which cannot be 
decided at design time. However, reserving too much space on DRHW (keeping too 
many of the most frequently executed tasks) will reduce the amount of resource that 
could be shared by the rest of the tasks. This might result in more reconfigurations 
and eventually degrade the system performance. The performance improvement of 
using configuration locking and the negative impact of resource over-reservation have 
been studied with a number of real applications. The results show that when resources 
are not too limited or too prosperous, preserving proper amount of tiles to lock the 
most frequently tasks can significantly improve the system performance. 
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5. Novel techniques to reduce the 
configuration overhead 

The main drawback of using DRHW is the configuration overhead related to each 
reconfiguration process. In Chapter 4, we presented different scheduling techniques 
that can reduce the effect of the configuration overhead. However, in some cases 
scheduling cannot effectively reduce the impact, and in addition the cost of each 
reconfiguration process remains unchanged (the same amount of energy and latency 
has to be paid). In this chapter, we present two novel techniques, one for reducing 
configuration latency and another for reducing configuration energy. 

5.1 Configuration parallelism 

We refer to the first technique as configuration parallelism [33, 37]. The principle is 
to divide the entire configuration-SRAM into several small segments and enable the 
configuration data to be written into the different segments simultaneously. The 
benefit is that more task parallelism can be exploited when such configuration parallelism 
is available. In addition, we demonstrate that combining configuration parallelism and 
configuration prefetching can more effectively hide configuration latency. 

5.1.1 Motivation 

We use a simple example (shown in Figure 30) to demonstrate how task parallelism 
can be better exploited with configuration parallelism and how additional 
improvements can be achieved together with configuration prefetching. Figure 30(a) 
shows three dependent tasks. We assume that computation time and configuration 
time are all equal in the three tasks. Current DRHW has only a single configuration 
controller, so multiple configurations can be performed only in sequence. Its effect is 
shown in Figure 30(c). The effect of configuration of task 2 can be eliminated by 
prefetching, but task 3 has to be delayed because its configuration cannot start earlier. 
However, if we could use two controllers to reconfigure different portions of the 
DRHW in parallel, execution of task 3 can start immediately after its predecessor, 
task 1, finishes, as depicted in Figure 30(d). When we assume that the execution time 
and the configuration time are equal, using two controllers can speed up the system 
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by 25% compared to using only one controller in the case. In this the following 
section, we present an implementable model to realize the configuration parallelism. 

task 1
1 tile

task 2
1 tile

task 3
1 tile

device has 3 tiles 
and 1 controllers

device has 3 tiles 
and 2 controllers

cfg task 1

task 2cfg
cfg

ideal case
task 1

task 2
task 3

overhead

(a)

(b)

(c)

(d)

task 3

cfg task 1

task 2cfg
cfg

overhead

task 3

 

Figure 30. A simple example to illustrate the benefits of configuration parallelism. 

5.1.2 The parallel reconfiguration model 

The basic idea of our parallel reconfiguration model is to divide the entire 
configuration-SRAM into separated individual segments and use multiple configuration 
controllers to control the multiple segments in parallel. The parallel reconfiguration 
model and the way to integrate it into a multi-core SoC platform are depicted in 
Figure 31. Different units are connected via the communication network. The in/out 
memory serves as the shared memory by which the reconfigurable logic 
communicates with other units. The local memories are attached to the reconfigurable 
logic through a memory crossbar. They are used as shared memories for the tasks that 
are mapped onto the DRHW. The configuration manager controls the tasks and their 
reconfiguration processes by sensing the status signals and sending the control signals. 
For different applications, the reconfiguration manager behaves as a run-time 
scheduler operating in a first-come-first-serve fashion. The configuration locking 
technique can be placed on it. For each individual application, because its tasks have 
static dependence, reconfiguration decisions of these tasks can be pre-computed at the 
design time and stored in a table, from which the reconfiguration manager needs only 
to fetch the next decision during the run-time. The DRHW is used to accelerate 
computation-intensive tasks. When an application, which usually consists of a number 
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of dependent tasks, needs to be accelerated, a processor dumps the data that is to be 
processed into the in/out memory, and then calls the configuration manager to start 
loading tasks and then executing the tasks. After the set of tasks have finished, the last 
task writes the results to the in/out memory, and the master or other modules can read 
the results for further processing. To avoid data hazard between different applications, 
the in/out memory can be made as a pair of separate input and output memories. 
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Figure 31. The parallel configuration model. 

The key characteristics of the parallel reconfiguration model are as follows. Firstly, 
the reconfigurable logic consists of a number of continuously connected 
homogeneous tiles, and each tile consists of the circuit and its own configuration-
SRAM that controls the circuit. A task that requires m tiles of resources can use any 
set of m-connected tiles. Each tile has its own control port and memory port. If a task 
requires more than one tile, only one pair of the ports is used. Secondly, a 
multiplexer-type memory crossbar is used to connect the tiles to the directly 
accessible local memories. Data transfers between tasks always go through the local 
memory banks instead of directly passing the data through the boundaries between 
tiles. Therefore, routing contention can be avoided when tasks are relocated. Thirdly, 
vertical lanes crossing the boundaries of tiles are used only for a task that is mapped 
onto the tiles. For tasks that are mapped onto adjacent tiles, the cross-boundary lanes 
are disabled by simply turning off the pass transistors that control these lanes, so 
possible glitches during reconfiguration will not affect any running task. Finally, a 
multiplexer-type configuration crossbar is used to connect the configuration-SRAMs 
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of the tiles to a number of parallel configuration controllers. The crossbar is 
controlled by the configuration manager, which can ensure that any configuration-
SRAM can be accessed by any controller but only one at a time. Thus, reconfigurations 
can be performed in parallel on different tiles. 

5.1.3 Evaluation of configuration parallelism 

We performed three different case studies. The first one focused on the benefits of 
combining configuration parallelism and configuration prefetching. The second one 
focused on studying the effects of using different number of tiles and different number 
of controllers. 10 randomly generated DAGs (each DAG contains 10 tasks) were used 
in these two evaluations. To avoid being misled by non-optimal values, the CP-based 
optimal scheduling approach was applied in these first two evaluations. The last one 
was an evaluation of different device settings using real applications. Due to the size of 
the applications, the CP-based approach could not produce the result of a single device 
setting within 48 hours. Therefore, the GA approach was applied in the last case study. 

For the randomly generated DAGs, they had different levels of depth and different 
tree structures, so they could be seen as representations of widely different 
applications. Tasks were set to have from 0 to 3 successors, but on average 1 
successor. Different devices were evaluated by setting the number of tiles, Ntile, to 
iterate from 3 to 7 and the number of controllers, Nctrl, to iterate from 1 to 3. Resource 
utilization of tasks was set as [ ]3,1/ ∈⎥⎥

⎤
⎢⎢
⎡ STjRR , and the average ratio was 2. Three 

settings of the configuration latency, CL, were used in the case studies. Corresponding 
to the three settings, the ratio of average configuration time to the average execution 
time, g, is 0.2, 0.5, and 1.0 respectively. The value of g is calculated as: 

⎡ ⎤[ ] gEXSTRRCLj jj =∑ =
10

1 )*10/()(*
 

(9) 

In the following context, we use (Ntile, Nctrl) to refer to the device with Ntile tiles and 
Nctrl configuration controllers. In addition, we use the term (Ntile, Nctrl, P) to refer to 
configuration prefetching, and (Ntile, Nctrl, NP) for non-prefetching. For non-
prefetching scheduling, the results were generated from the CP-based approach by 
extending the constraint model with an additional constraint that forces configurations 
of a task cannot start before all the predecessors of the task have finished. 
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5.1.3.1 Combining configuration parallelism and prefetching 

Scheduling results for the 10 DAGs are averaged and shown in Figure 32. The first 
three graphs present the results for different settings of the ratio of average 
configuration time to the average execution time, g. The values were set to be 0.2, 0.5 
and 1.0 separately. Results in these graphs are divided into four sections with each 
section representing one setting of the number of tiles, Ntile, and the values in each 
section represent the speedups when compared to the scheduling results with (Ntile, 1, 
NP). The left two columns represent the results of non-prefetch scheduling but with 
configuration parallelism, so these are the pure contribution of using only 
configuration parallelism. The columns in the middle represent the results of using 
only configuration prefetching, in which only a single configuration controller is used. 
The right two columns represent the achievable speedups of combining prefetching 
with different levels of configuration parallelism. Figure 32(d) presents the average 
configuration overheads of the test cases. The configuration overhead, as illustrated in 
Figure 30, is defined as the difference between a task schedule result and the optimal 
schedule result, in which the configuration latency is zero. The latten one can be 
generated in our scheduling approaches by setting the parameter CL to 0. 

The results shown in Figure 32 clearly indicate that the benefit of using configuration 
parallelism is not as linearly increased as the number of controllers. Experiments with 
four controllers have also been carried out, but no extra improvement can be achieved. 
This non-linear effect is mainly because of the limitation of the take parallelism and 
the intra-task parallelism of the randomly generated task graphs. In fact, this is 
common in most other systems. For example, in multi-processor environment, double 
the number of processors usually does not double the performance. In this case study, 
we set that each task, on average, required two tiles and had one successor. Therefore, 
the significant improvements appear with two controllers and most of such 
improvements saturate when three controllers are used. For applications that have 
more successors or require more tiles on average per task, increasing the number of 
controllers will then become useful. 
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Figure 32. Average results of the randomly generated task graphs. 

It is obvious that combining configuration parallelism and prefetching can always 
bring better results, because the two are orthogonal techniques and each one has a 
positive contribution. This is verified from the results shown in Figure 32. For 
example, results on (Ntile, 2, P) are always better than that on (Ntile, 1, P) and also 
better than that on (Ntile, 2, NP). Prefetching alone is already an effective approach. If 
we compare the (Ntile, 1, P) and the (Ntile, 1, NP) at g = 1, the reduction of overhead is 
about 37%. Furthermore, with 2 controllers, (Ntile, 2, NP), an additional 38.4% of 
overhead can be reduced (total reduction is 74.5%). In order to study how 
configuration parallelism can make prefetching more beneficial, we compare the 
speedups of the (Ntile, 3, P) with that of the (Ntile, 1, P). We refer to these differences 
as the additional speedups of using configuration parallelism. Because most speedups 
saturate when Nctrl = 3 in the case studies, as explained in the previous section, the 
differences between (Ntile, 3, P) and (Ntile, 1, P) can also be seen as the maximally 
achievable additional speedups for prefetching. It can be seen that when the average 
configuration latency is relatively large compared to the average computation time 
(g = 1.0), more additional speedup can be achieved when more tiles are used. This is 
because using more tiles makes it possible to exploit more task parallelism and thus 
configuration parallelism can be more useful. However, when the ratio, g, is relatively 
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small (g = 0.2), the additional speedup decreases as the number of tiles increases. This 
is because for a small value of g, a long task execution can effectively hide several 
short configurations even without using configuration parallelism. Using more tiles 
makes it more possible that executions and configurations of different tasks can be 
done in parallel, and thus reduces the effect of using configuration parallelism. 

5.1.3.2 Speedups of using more tiles and more controllers 

A common approach to improving performance is to include more computation 
resources to achieve high parallelism, either at the task level or at the operation level. 
In DRHW, using more tiles enables more tasks to run in parallel. However, if 
configurations of these tasks can be done only in sequence, it is not likely that such 
parallelism can be exploited even if more tiles are used. In this section, we study how 
configuration parallelism helps in such cases. Discussions are based on the prefetch 
scheduling results. Because using 4 tiles and 1 controller is the lowest setting in our 
cases, we use the results of (4, 1, P) as the reference values. The average results of the 
10 DAGs are shown in Figure 33. 
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Figure 33. Speedups of using more tiles and more controllers. 

Two extra types of results were generated. The first was for the cases that there was 
no resource limit on the number of tiles but also there was no configuration 
parallelism (using a single controller). So, these were the best possible speedups for 
increasing only the computation resources. The second was for the cases that there 
was no resource limit on both the number of tiles and the number of controllers. So, 
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these speedups presented the globally best speedups. Results are separated shown 
with the label (Ntile´, 1) and (Ntile, Nctrl) in Figure 33. It should be noted that we use 
Ntile´ and Ntile to mark that they might be different values. 

It can be seen that without configuration parallelism, increasing tiles has only limited 
capability for speedups, and using more controllers can always bring additional 
improvements. This is especially obvious when we compare the results of (Ntile´, 1) 
and the results of (Ntile, Nctrl). The first ones show that if we increase only tiles, the 
best speedups are 1.26, 1.33, 1.1 for g = 0.2, 0.5 and 1.0 separately. However, with 
configuration parallelism, the best possible speedups are 1.29, 1.48, and 1.87 for 
g = 0.2, 0.5 and 1.0 separately, equivalent to additional speedups of 2.3%, 11.2% and 
68.5%. It is clear that in all cases when no improvement can be achieved by using 
more tiles, configuration parallelism can always help. 

5.1.3.3 Evaluation of configuration parallelism using real applications 

We have also carried out evaluation with real applications. The same four 
applications as used in section 4.5.2 were used. To make a more complicated case, we 
compiled the four applications into a large DAG. This was done by simply 
instantiating each application in the large DAG, so the final DAG was actually a 
composition of four individual DAGs, one for each application. Each tile in the target 
DRHW was assumed to contain the same amount of resources as in the Xilinx 
XC2V80 FPGA. Under this assumption, there were 37 configuration nodes and 28 
task nodes in the DAG, and the ratio g was 0.4. 

Different devices were evaluated by setting the number of tiles, Ntile, from 2 to 9, and 
the number of configuration controllers, Nctrl, from 1 to 9. Because using more 
controllers than tiles does not bring benefit, our tool can automatically ingore the 
setting where Ntile < Nctrl. We use the device (2,1) as the reference device because this 
setting is the minimum requirement to map these applications. The scheduling results 
are extracted and shown in Figure 34. There are eight sections in the graph with each 
section representing one setting of Ntile and each index within one section representing 
one setting of Nctrl. In line with the evaluation results derived using the randomly 
generated task graphs as presented in section 5.1.3.2, the results show that more 
speedups could be achieved by using more tiles. It is clear from the results that using 
more controlles can bring additional improvements. For example, the speedup at (8,1) 
is 2.6, but the value is 3.2 at (8,2). This is because with one additional configuration 
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controller the configuration overhead drops to 11% from 36%. Although more 
performance improvements can be achieved with additional controllers, we consider 
that using more than 2 controllers is not practical from the implementation point of 
view. However, reasonably good improvement can already be achieved with 2 
controllers. For example, when Ntile > 4, using 2 controllers is always better than using 
one additional tile. 
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Figure 34. Evaluation of configuration parallelism with real applications. 

5.2 Using dynamic voltage scaling to reduce 
the configuration energy 

The second technique is to apply dynamic voltage scaling technique (DVS) on the 
reconfiguration process. The basic idea is to use configuration prefetching and 
parallelism to create excessive system idle time and apply DVS on the configuration 
process when such idle time can be utilized. Therefore, for configuration processes on 
which lower supply voltage is applied, lower configuration energy is required. 

5.2.1 Motivation 

The dynamic power consumption of a circuit, Pdyn, satisfies the relation that Pdyn ∝ 
CV2f, where C is the capacitance of the circuit, V is the supply voltage and f is the 
operation frequency. Because the supply voltage has a quadratic effect on the 
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dynamic power consumption, reducing the supply voltage is the most effective 
approach to lower Pdyn, but low supply voltage will increase the configuration latency 
and degrade the performance. 

However, by using configuration prefetching and parallelism, we can create excessive 
system idle time and thus benefit from using the DVS. Simple examples are shown in 
Figure 35. Figure 35(a) shows the case where the idle time is created by prefetching. 
Such idle time can then be utilized to lower the supply voltage of the configuration 
process, as shown in Figure 35(c).Figure 35(b) shows the case that Task 2 needs two 
configurations. If they can be performed in parallel, the idle time marked in Figure 
35(b) can then be utilized to apply DVS, as in Figure 35(d). 

task 1

task 2config 
(HSV)

idle time
task 2

config
(HSV) idle time

task 1

config
(HSV)idle time

(a) (b)

task 1

task 2config (LSV)
task 2

config (LSV)

task 1

(c) (d)

config (LSV)

HSV: high supply voltage,  LSV: low supply voltage

 
Figure 35. Using configuration prefetching and configuration parallelism to create 
excessive idle time. 

5.2.2 Device model and evaluation technique 

The device model is based on the parallel configuration model described in Section 
5.1. Because each tile has its own configuration-SRAM, this allows us to apply DVS 
on the configuration-SRAM and the corresponding configuration controller for each 
individual configuration process. However, applying low supply voltage on the 
configuration-SRAM will degrade the circuit performance. Therefore, buffers are 
needed at the output of the configuration-SRAM to boost the output voltage level to 
the same level as used in the circuit. These buffers do not cause delays at run-time, 
because the configuration-SRAM supply DC signals to the circuit. In this phase of the 
work, our main objective is to reduce the configuration energy, therefore we do not 
consider applying DVS on the circuit, as in [170]. 
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The goal of using DVS is to reduce configuration energy. However, when lower 
supply voltage is applied, configuration latency is increased, which might increase the 
overall scheduling and decrease the system performance. Therefore, we need an 
approach that can optimally assign the DVS states in such a way that the lowest 
configuration energy is achieved without increasing the overall schedule length. This 
requires a task scheduler that tries to reduce both schedule length and configuration 
energy while considering task allocation, configuration prefetching, configuration 
parallelism and DVS state assignments at the same time. To solve this multi-objective 
NP-hard optimization problem, we extend the GA-based scheduler, which has been 
described in Section 4.3.3. 

To represent the DVS state, the chromosome of the GA-based scheduler is extended 
to include a string of paired tokens to represent the DVS states of configurations, one 
pair for one configuration process. The first token of a pair denotes the configuration, 
and the second denotes the DVS state. For example, a complete chromosome 
including the DVS tokens is shown in . Correspondingly, modifications of GA 
operators are needed. When generating the initial population, the second token value 
(supply voltage) is randomly selected from a predefined set of possible supply voltage 
states. During crossover, the configuration nodes and the task nodes are swapped as 
described in Section 4.3.3.4. DVS states of the configuration nodes of child1 in the 
left graph remain the same as that in par1. The rest will use the DVS states as in par2. 
During the mutation phase, an additional mutation scheme is added. It randomly 
selects a configuration process and then changes its DVS state into another randomly 
selected DVS state. 
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tile 1: (task 1, task 4)
tile 2: (task 1, task 2, task 4)
tile 3: (task 1, task 2)
tile 4: (task 3)

ctrl 1: (C<1,1>,C<1,3>,C<2,1>)
ctrl 2: (C<1,2>,C<3,1>,C<2,2>,C<4,1>,C<4,2>)
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Figure 36. A chromosome in DVS-enabled task scheduler 

Considering the configuration energy, the fitness value is calculated as:  

energycurrent
energyreferencea

lengthcurrent
lengthreferencefitness

_
_*

_
_

+=  

where a = 0, if current_length > reference_length 
 a = 1, if current_length <= reference_length 

(10) 

The reference_length and the reference_energy are derived from non-DVS scheduling. 
In fact, we run the modified GA-based task scheduler twice for solving the multi-
objective optimization problem. In the first run, we do not consider DVS (all 
configuration processes are assigned to the highest supply voltage) and try to find the 
shortest schedule length. The evaluator and termination criteria as described in 
Section 4.3.3.4 are used. In the second run, we take DVS state assignment into 
account and use the shortest schedule length, derived from the first run, as the 
reference_length. The reference_energy is the sum of configuration energy in the case 
that all configuration processes use the highest supply voltage. 
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5.2.3 Case studies 

5.2.3.1 Evaluation with pseudo tasks 

We used 10 randomly generated task graphs with each graph containing 10 tasks. 
These graphs had different levels of depth and different tree structures, so they could 
be seen as representations of widely different applications. The number of required 
tiles of an individual task was randomly generated with uniform distribution in the 
range of [1, 3]. Different device models were used by setting the number of tiles, Ntile, 
to iterate from 4 to 7 and the number of controllers, Nctrl, to iterate from 1 to 3. In the 
following context, we use (Ntile, Nctrl) to refer to the device with Ntile tiles and Nctrl 
controllers. The ratio of the average configuration time to the average computation 
time, g, was set to be 0.2, 0.5, and 1.0 separately. Four supply voltages were used. 
The power-delay profile of the configuration process is shown in Table 8. The 1.5 V 
profile was estimated based on the XC2V80 FPGA datasheet [27], and others were 
derived from the power-voltage relation (Pdyn ∝ CV2f). The following GA parameters 
were used. 

Table 8. Power-delay profile of the configuration process. 

Supply voltage Delay Power 
1.2 V 374 us 192 mw 
1.3 V 346 us 225 mw 
1.4 V 323 us 261 mw 
1.5 V 304 us 300 mw 

 

o mutation probability: 0.15 

o crossover probability: 0.95 

o replacement percentage in one generation: 80% 

o number of individuals in one generation: 60. 

In order to use DVS to minimize the configuration energy but without increasing the 
schedule length when compared to no-DVS scheduling, we set that the GA 
termination criteria should satisfy the following two conditions: 1) The average 
schedule length in the current generation is equal to the no-DVS schedule length, 
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which can be derived by using only the highest supply voltage state in the scheduling 
process; and 2) The difference between the average configuration energy and the 
lowest configuration energy in the current generation is within 0.1% for 5 continuous 
generations. We stopped the no-DVS scheduling after 1000 generations. The average 
run-time was 6.5 seconds. For the scheduling including DVS, the average run-time 
was 25 seconds under the above termination criteria. The best result out of 10 runs is 
used in the following analysis. 

The reduced configuration energy is extracted and averaged over the 10 DAGs. The 
results are presented in Figure 36. When considering individual cases, the maximal 
reduction of the configuration energy is 20.2%. When we average the results for each 
setting of g, the average reduction of the configuration energy are 15.7%, 12.5%, and 
6.9% separately for g = 0.2, 0.5, and 1.0. It can be seen that for a smaller configuration 
latency (g = 0.2), using a single configuration controller (Ntile,1) can already significantly 
reduce the configuration energy. This is because for smaller g using only prefetching 
has already created enough idle time that can be utilized to apply DVS on the 
configuration process, as shown in Figure 35(a, c). For larger configuration latency, it 
can be seen that excessive idle time is created only when multiple controllers are 
applied, as shown in Figure 35(b, d). The results of g = 0.5 on (5,Nctrl) show that using 
3 controllers tends to be less effective than using 2 controllers. This is because the 
additional controller is busy at configuring tasks (reducing the total schedule length is 
also one of our objectives). Therefore, less excessive idle time is available. 

conf iguration energy  comparison
 (DVS V s. no DVS)

0
2
4
6
8

10
12
14
16
18
20

(4 ,1) (4 ,2 ) (4 ,3 ) (5,1) (5,2 ) (5,3 ) (6 ,1) (6 ,2 ) (6 ,3 ) (7,1) (7,2 ) (7,3 )
dev ices

en
er

gy
 r

ed
uc

tio
n 

(%

0.2
0.5
1

 

Figure 36. Comparison of energy reduction of using DVS and without using DVS. 
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In Figure 37, we depict the voltage distribution on (7,Nctrl) to present more details of 
the results. For small configuration latency, it can be seen that majority of the 
configuration processes are assigned to the lowest supply voltage for a single 
controller case. In addition, using configuration parallelism barely changes the 
voltage distribution. In contrast, for a large configuration latency, using additional 
controllers allows more high-voltage states to be replaced with low-voltage states. 
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Figure 37. Voltage assignment distribution. 

5.2.3.2 Evaluation with real applications 

We also tested the approach with seven real applications, sobel (image sharpening 
using sobel masking), unsharp (image sharpening with blur), laplacian (image 
sharpening using laplacian filter), sobel & noise (image sharpening with noise 
reduction), JPEG decoder, MPEG decoder and WCDMA detector (four core functions 
for channel equalization).  Each application was divided into a number of tasks, and 
each task was manually coded in VHDL. The resources and the execution time were 
derived from synthesis results and simulation results. We evaluated on devices that 
contained from 4 tiles to 7 tiles with one configuration controller. We assumed that 
each tile consisted of the same amount of resources and had the same configuration 
overhead as in the XC2V80 FPGA. This gave us that the ratio g was in the range of 
[0.18, 0.27] for these applications. The same GA settings as in the previous case were 
used. On average, each GA run took 8.7 s. The results of configuration energy 
reduction are depicted in Figure 38. On average, configuration energy could be 
reduced by 15.4% without increasing the schedule length. In the best case, sobel & 
noise on device (7,1), 19.3% was theoretically achievable. 
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Figure 38. Configuration energy reduction of real applications. 

5.3 Discussion 

In this section, we have presented two techniques to reduce the impact of the 
configuration overhead. Although different techniques have been proposed, as 
summarized in section 2.3, these two techniques are novel because they tackle the 
problem from different aspects. This also makes it infeasible to directly compare our 
techniques from previous ones. To validate our techniques, we compare the difference 
between applying them and not applying them on the same systems. 

The first technique is referred to as configuration parallelism, which is supported by a 
novel configuration model. The model consists of multiple homogeneous tiles and 
each tile has its own configuration-SRAM that can be individually accessed. The 
configuration-SRAMs are connected to multiple individual configuration controllers 
by a crossbar, and tasks can be loaded in parallel. This allows more task parallelism to 
be exploited. The configuration parallelism is an approach orthogonal to the configuration 
prefetching and both can reduce the configuration overhead, so they should be applied 
together if possible. Results of using the randomly generated task graphs as well as 
using real applications show that system performance can be improved using more 
tiles (computation resources), but without configuration parallelism such benefit is 
limited. 
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The second technique is to apply DVS on the configuration process to reduce the 
configuration energy. The idea is to use configuration prefetching and configuration 
parallelism to create system idle time and then apply DVS on configuration processes 
when such idle time can be utilized. The GA task scheduling approach, as presented 
in section 4.3.3, has been extended to solve the multi-objective optimization problem, 
e.g., task allocation, scheduling, configuration prefetching, and DVS state assignment. 
A set of randomly generated tasks is used in evaluation. Considering the reduction of 
configuration energy, the results show that using more tiles is more beneficial when 
the configuration latency is relatively small and using more controllers is more 
beneficial when the latency is relatively large. Evaluation with real applications 
shows that up to a 19.3% reduction of configuration energy is achievable. 
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6. Conclusions 

The increasing complexity of computation-intensive applications is driving the 
development of high performance computation engines. In most cases, ASIC is the 
main solution, because it has the ability to customize the design down to the silicon 
level in order to achieve optimal performance. However, performance is usually not 
the only goal of a design. Many systems are also in favor of flexibility in order to 
enable post-fabrication upgrading of functionality and easier bug-fixing ability. In 
addition, although the development of semiconductor technology has provided us 
enough transistors in a single chip, it is inefficient to build a system that contains lots 
of components that are not used simultaneously at run-time. One possible solution is 
to build such systems based on processors, which have been pre-verified and have 
lower design costs. Applications implemented on processors can be easily modified. 
However, in many cases processor technology fails to deliver the required performance 
because it sacrifices too much performance for flexibility. 

One alterative is dynamically reconfigurable hardware (DRHW), which at run-time 
enables us to modify the functions that are mapped onto it. This feature is similar to 
software multi-tasking on processors. However, the design of DRHW uses a similar 
flow as in ASIC design in the sense that application customization, such as 
parallelism and pipeline, can be applied. Therefore, although a design is finally 
implemented on pre-fabricated components, such as LUT, DRHW can still provide 
significantly higher performance when compared to software implementation. 
However, a main drawback of DRHW is the configuration overhead related to each 
reconfiguration process. It can largely degrade the system performance. In addition, 
design supports at the system level for systems including DRHW are missing. 

6.1 Summary of contributions 

In this thesis work, we have presented several approaches from different aspects to 
tackle the design problems of DRHW, especially at the system level. They are 
summarized as follows. 

! We have presented system-level design supports for reconfigurable system-on-
chip in which DRHW is frequently used as a coprocessor to accelerate 
computation-intensive tasks. Our approach can help designers to easily evaluate 
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the effect of moving some tasks, which are traditionally implemented in fixed 
hardware, to DRHW. The supports that we provide are an estimation approach 
and a SystemC modeling technique for DRHW. The estimation approach starts 
from function blocks represented in ANSI-C language, and it produces hardware 
execution time and resource utilization estimates for each function block by 
applying a set of high-level synthesis algorithms. In DRHW modeling, behavior 
of the reconfiguration process is modeled instead of the real reconfiguration 
process. In addition, a number of related parameters are specified, which can be 
tuned to target a particular configuration technology. To reduce the coding effort, 
a tool to automatically generate DRHW SystemC models is created. The system-
level design approach has been applied on a WCDMA case study. The estimation 
technique has been used at the system level to support us in partitioning 
functions into two contexts, which in the implementation phase are mapped onto 
the same region of a commercial FPGA that supports partial reconfiguration. The 
effect of run-time reconfiguration has also been evaluated from simulation using 
the modeling technique. When implementing the design on the demonstration 
environment, the results showed that more than 40% of resource reduction in 
terms of LUT can be achieved over a completely fixed implementation and 30 
times speedup can be achieved over software implementation. 

! We have also presented several static scheduling techniques to optimally or near-
optimally schedule tasks onto DRHW. Three static scheduling techniques 
embedding configuration prefetching have been developed and quantitatively 
evaluated. Different problem solving strategies are used. The first is a list-based 
heuristic approach; the second is an optimal approach based on constraint 
programming (CP); the last is a guided random search technique developed using 
a genetic algorithm (GA). Randomly generated task graphs and practical 
applications are used in the case studies. The list-based approach is the most 
efficient but the least optimal approach. On the other hand, the CP-based 
approach can be guaranteed to generate optimal solutions. However, the required 
computer run-time is much longer and very unpredictable. For larger cases, 
optimal solutions cannot be found within days. In comparison, the GA-based 
approach shows high accuracy and reasonable efficiency. In addition, the GA-
based approach has shown good convergence and almost linear scalability in 
terms of the number of generations required to converge. 

! We have presented a run-time scheduling approach with a novel configuration 
locking technique. The basic idea is to monitor at run-time the execution times of 



 

113 

tasks and always lock a number of the most frequently used tasks on DRHW. A 
number of real applications are used to validate the approach. The results show 
that when resources are not too limited or too prosperous, preserving the proper 
amount of tiles to lock the most frequently used tasks can significantly improve 
the system performance. 

! To reduce the impact of configuration latency, we have presented a technique, 
configuration parallelism. It is supported by a novel configuration model. The 
model consists of multiple homogeneous tiles. Each tile has its own 
configuration-SRAM that can be individually accessed, and the configuration-
SRAMs are connected to multiple individual configuration controllers by a 
crossbar. Therefore, different configuration-SRAMs can be accessed simultaneously 
and thus tasks can be loaded in parallel. Results of using the randomly generated 
task graphs as well as using real applications show that system performance can 
be improved using more tiles (computation resources), but without configuration 
parallelism such benefit is limited. 

! We have also presented a technique to reduce the configuration energy. The idea 
is to use configuration prefetching and configuration parallelism to create system 
idle time and then apply DVS on configuration processes when such idle time 
can be utilized. The technique is evaluated using a GA-based task scheduler, the 
goal of which is to first find minimal schedule length and then achieve minimal 
configuration energy. A set of randomly generated tasks is used in evaluation. 
Considering the reduction of configuration energy, the results show that using 
more tiles is more beneficial when the configuration latency is relatively small 
and using more controllers is more beneficial when the latency is relatively large. 
Evaluation with real applications shows that up to 19.3% reduction of 
configuration energy is achievable. 

6.2 Future work 

There are different ways to extend the research work that has been presented in this 
thesis. For the SystemC-based design supports, it is necessary to improve it to form a 
complete design approach for embedded systems. The current supports cannot 
automatically generate synthesizable code for DRHW implementation. High-level 
SystemC synthesis or C-based synthesis need to be studied. Our HW estimator can 
also benefit from the study to be more accurate. In addition, the system performance 
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in terms of power consumption is not addressed in the current approach. Methods and 
tools for power analysis will be of great interest in the near future. 

The different static task scheduling techniques and the run-time scheduling technique 
involving configuration locking are evaluated in a simulation environment. In the 
future, a RTOS will be developed to implement these techniques in a practical manner. 
The RTOS will be instantiated in a real demonstration environment, which can be 
either a real physical hardware system or a virtual hardware platform. Considering the 
static task scheduling techniques, we foresee that combining the list-based heuristic 
approach and the GA-based approach will result in a more efficient task scheduling 
technique. For the configuration locking technique, we have presented that the 
number of tiles used to lock tasks has a significant impact on the performance. It is 
necessary to study how to decide such number based on the run-time system status. 
At the moment, the configuration parallelism technique and the DVS technique are 
analyzed theoretically. The cost of additional hardware for implementing such 
techniques is not considered. In the future, implementation cost will be taken into 
account to thoroughly evaluate these techniques. The static power consumption is not 
taken into account in the DVS approach. It will be included and system-level power 
reduction techniques with applying DVS on the circuit itself will be studied in the 
next step. 
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