
V
TT P

U
B

LIC
A

TIO
N

S 680
 D

om
ain-specific m

odelling language and code generator for developing... Sanna Sivonen

ESPOO 2008ESPOO 2008ESPOO 2008ESPOO 2008ESPOO 2008 VTT PUBLICATIONS 680

Sanna Sivonen

Domain-specific modelling language
and code generator for developing
repository-based Eclipse plug-ins

VTT PUBLICATIONS

660 Sihvonen, Markus. Adaptive personal service environment. 2007. 114 p. + app. 77 p.

661 Rautio, Jari. Development of rapid gene expression analysis and its application to
bioprocess monitoring. 2007. 123 p. + app. 83 p.

662 Karjalainen, Sami. The characteristics of usable room temperature control. 2007. 133 p. +
app. 71 p.

663 Välkkynen, Pasi. Physical Selection in Ubiquitous Computing. 2007. 97 p. + app.
96 p.

664 Paaso, Janne. Moisture depth profiling in paper using near-infrared spectroscopy.
2007. 193 p. + app. 6 p.

665 Ilmatieteen laitoksen palveluiden vaikuttavuus. Hyötyjen arviointi ja arvottaminen eri
hyödyntäjätoimialoilla. Hautala, Raine & Leviäkangas, Pekka (toim.). 2007. 205 s.
+ liitt. 73 s.

666 Prunnila, Mika. Single and many-band effects in electron transport and energy
relaxation in semiconductors. 2007. 68 p. + app. 49 p.

667 Ahlqvist, Toni, Uotila, Tuomo & Harmaakorpi, Vesa. Kohti alueellisesti juurrutettua
teknologiaennakointia. Päijät-Hämeen klusteristrategiaan sovitettu ennakointi-
prosessi. 2007. 107 s. + liitt. 7 s.

668 Ranta-Maunus, Alpo. Strength of Finnish grown timber. 2007. 60 p. + app. 3 p.

669 Aarnisalo, Kaarina. Equipment hygiene and risk assessment measures as tools in the
prevention of Listeria monocytogenes -contamination in food processes. 2007. 101 p.
+ app. 65 p.

670 Kolari, Kai. Fabrication of silicon and glass devices for microfluidic bioanalytical
applications. 2007. 100 p. + app. 72 p.

671 Helaakoski, Heli. Adopting agent technology in information sharing and networking.
2007. 102 p. + app. 97 p.

672 Järnström, Helena. Reference values for building material emissions and indoor air
quality in residential buildings. 2007. 73 p. + app. 63 p.

673 Alkio, Martti. Purification of pharmaceuticals and nutraceutical compounds by sub-
and supercritical chromatography and extraction. 2008. 84 p. + app. 42 p.

674 Mäkelä, Tapio. Towards printed electronic devices. Large-scale processing methods
for conducting polyaniline. 2008. 61 p. + app. 28 p.

675 Amundsen, Lotta K. Use of non-specific and specific interactions in the analysis of
testosterone and related compounds by capillary electromigration techniques. 2008.
109 p. + app. 56 p.

677 Hanhijärvi, Antti & Kevarinmäki, Ari. Timber failure mechanisms in high-capacity
dowelled connections of timber to steel. Experimental results and design. 2008.
53 p. + app. 37 p.

680 Sivonen, Sanna. Domain-specific modelling language and code generator for
developing repository-based Eclipse plug-ins. 2008. 89 p.

ISBN 978-951-38-7094-2 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI-02044 VTT, Finland
Puh. 020 722 4520 Tel. 020 722 4520 Phone internat. + 358 20 722 4520

http://www.vtt.fi http://www.vtt.fi http://www.vtt.fi

VTT PUBLICATIONS 680

Domain-specific modelling language
and code generator for developing
repository-based Eclipse plug-ins

Sanna Sivonen

ISBN 978-951-38-7094-2 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT 2008

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 3, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvägen 3, PB 1000, 02044 VTT
tel. växel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 3, P.O. Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax +358 20 722 4374

VTT, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde 020 722 111, faksi 020 722 2320

VTT, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel 020 722 111, fax 020 722 2320

VTT Technical Research Centre of Finland, Kaitoväylä 1, P.O. Box 1100, FI-90571 OULU, Finland
phone internat. +358 20 722 111, fax +358 20 722 2320

Text preparing Tarja Haapalainen

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

3

Sivonen, Sanna. Domain-specific modelling language and code generator for developing repository-
based Eclipse plug-ins [Sovellusaluekohtainen mallinnuskieli ja koodigeneraattori tietokanta-
pohjaisten Eclipse-laajennusten kehittämiseen]. Espoo 2008. VTT Publications 680. 89 p.

Keywords model-driven development, software product family, variability

Abstract

Eclipse is an open source platform for tool integration which can be extended by
writing plug-ins that utilise the extension points provided by the Eclipse
platform. Eclipse plug-ins are written in the Java language and the plug-in
development work can be time consuming especially if multiple plug-ins are
developed for the same application domain. Model-driven development is about
focusing on models rather than computer programs in software development.
Domain-specific modelling follows the principles of model-driven development
by promoting the use of domain-specific modelling languages (instead of
general-purpose modelling languages).

The aim of this research is to develop a prototype graphical domain-specific
modelling language (DSML) and a code generator for creating repository-based
plug-ins for Eclipse. The purpose of DSML is to raise the level of abstraction
and thus speed up the development process of several similar Eclipse plug-ins
compared to hand writing the plug-ins in Java language. Also people not familiar
with Java (i.e. end users) could build their own extensions with the language
defined in this work.

Developed DSML is demonstrated by generating the source code of an existing
repository-based Eclipse plug-in. The plug-in that is used in the demonstration is
an open source software architecture knowledge management tool called Stylebase
for Eclipse, which has been developed at VTT Technical Research Centre of
Finland. The Stylebase for Eclipse is a software product family, which has a
number of variation points. Since the Stylebase for Eclipse tool is already developed
once with the traditional code-centred approach, it is possible to compare the
model-driven approach with the code-centred approach in this particular case.

4

The case example shows that DSML and the code generator defined in this work
can be used for generating repository-based Eclipse plug-ins. The code generator
generates a fully functional Eclipse plug-in so the generated code does not have
to be edited manually after its generation. Also variability in the software product
family can be handled in a more flexible way in the model-driven approach.

5

Sivonen, Sanna. Domain-specific modelling language and code generator for developing repository-
based Eclipse plug-ins [Sovellusaluekohtainen mallinnuskieli ja koodigeneraattori tietokanta-
pohjaisten Eclipse-laajennusten kehittämiseen]. Espoo 2008. VTT Publications 680. 89 s.

Avainsanat model-driven development, software product family, variability

Tiivistelmä

Eclipse on avoimen lähdekoodin alusta, jota käyttäjät voivat laajentaa hyödyntä-
mällä Eclipse-alustan tarjoamia laajennuspisteitä. Eclipse-laajennukset kehitetään
Java-ohjelmointikielellä ja kehitystyö voi olla haastavaa, erityisesti kehitettäessä
useita hieman toisistaan poikkeavia sovelluksia samalle sovellusalueelle. Malli-
ohjattu ohjelmistokehitys keskittyy ohjelmiston malleihin lähdekoodin sijasta.
Sovellusaluekohtainen mallintaminen on eräs tapa toteuttaa malliohjattua
ohjelmistokehitystä. Sovellusaluekohtaisessa mallintamisessa käytetään sovellusalue-
kohtaisia mallinnuskieliä yleiskäyttöisten mallinnuskielten asemesta.

Tämän tutkimuksen tavoitteena on määritellä sovellusaluekohtainen mallinnus-
kieli ja koodigeneraattori tietokantapohjaisten Eclipse-laajennusten kehittämiseen.
Mallinnuskielen ja koodigeneraattorin tarkoituksena on nostaa ohjelmistomallin
abstraktiotasoa ja siten nopeuttaa tietokantapohjaisten Eclipse-laajennusten kehittä-
mistä verrattuna laajennusten manuaaliseen ohjelmointiin. Myös käyttäjät, jotka
eivät hallitse Java-ohjelmointikieltä, voivat kehittää tietokantapohjaisia laajen-
nuksia Eclipseen tässä työssä kehitetyn mallinnuskielen avulla.

Työssä kehitetyn sovellusaluekohtaisen mallinnuskielen ja koodigeneraattorin
käyttöä havainnollistetaan generoimalla olemassa olevan tietokantapohjaisen
Eclipse-laajennuksen lähdekoodi. Laajennus, jota käytetään havaintoesimerkissä, on
arkkitehtuuritietämyksen hallintaan käytettävä Stylebase for Eclipse -työkalu,
joka on VTT:n kehittämä avoimen lähdekoodin työkalu. Stylebase for Eclipse on
tuoteperhe, jolla on useita varioituvuuspisteitä. Koska Stylebase for Eclipse on
aiemmin kehitetty koodikeskeisellä sovellusten kehittämistavalla, voidaan tässä
työssä vertailla mallikeskeistä tietokantapohjaisten Eclipse-laajennusten kehittä-
mistä koodikeskeiseen tapaan.

6

Havaintoesimerkki osoittaa, että työssä kehitettyä sovellusaluekohtaista mallinnus-
kieltä ja koodigeneraattoria voidaan käyttää Eclipse-laajennusten kehittämiseen.
Koodigeneraattori tuottaa toimivan Eclipse-laajennuksen, joten generoitua
koodia ei tarvitse editoida manuaalisesti generoinnin jälkeen. Mallikeskeisessä
kehitystyössä myös tuoteperheen varioituvuuden hallinta on joustavampaa.

7

Preface

This work was done in the Product Family Architectures team at VTT Technical
Research Centre of Finland during the year 2007. The work forms part of an
international joint research project called Model-driven development of highly
configurable embedded Software-intensive Systems (MoSiS). VTT�s objective
in MoSiS is to develop transformation techniques and supporting concepts to
support automated or semi-automated architecture model transformations.
Further, the project concentrates on modelling and visualisation of extra-
functional software properties.

I would like to thank my supervisor Mari Matinlassi from VTT for instructing
me with my work and all the co-workers at VTT for creating a fun and relaxed
atmosphere in which to work. I would also like to thank Juha Röning and Jukka
Riekki from the University of Oulu for their valuable comments during the
work. I would like to express my gratitude also to MetaCase staff for answering
my questions quickly. Last, but certainly not least, I would like to thank my
family and friends for their love and support, and especially my boyfriend
Tommi for listening to my worries and being the light of my days.

Oulu 18.2.2008

Sanna Sivonen

8

Contents

Abstract ... 3

Tiivistelmä .. 5

Preface .. 7

List of abbreviations ... 10

1. Introduction... 13

2. Model-driven development of software product families............................. 16
2.1 Non-MDD development .. 16
2.2 Model-driven development ... 17

2.2.1 MDD with Model-Driven Architecture approach 17
2.2.2 MDD with domain-specific modelling approach.................... 18
2.2.3 Comparison between MDA and DSM 20

2.3 Software product families.. 21

3. Tools and technologies ... 23
3.1 Eclipse ... 23
3.2 Metamodelling tools.. 26

3.2.1 DSL Tools for Visual Studio... 27
3.2.2 Generic Modelling Environment... 28
3.2.3 Generic Eclipse Modelling System... 29
3.2.4 MetaEdit+.. 29
3.2.5 Comparison of the tools .. 31

3.3 Relational databases .. 33

4. DSML for developing repository-based Eclipse plug-ins 36
4.1 Requirements for DSML ... 36
4.2 Approach for defining DSML ... 37
4.3 Domain analysis .. 37

4.3.1 Eclipse concepts .. 38
4.3.2 Stylebase for Eclipse concepts .. 39

4.4 Concepts in DSML.. 40

9

5. Implementation of DSML... 42
5.1 Workbench graph .. 44
5.2 Preference graph.. 46
5.3 Database graphs... 47
5.4 View graph .. 50
5.5 Dialog graph .. 53

6. Implementation of the code generator .. 59
6.1 Code style .. 60
6.2 The structure of the code ... 60
6.3 The structure of the code generator ... 62

7. Case example: Stylebase for Eclipse .. 65
7.1 Case description... 65
7.2 Modelling the Stylebase for Eclipse tool... 67

7.2.1 HSQL database graph ... 68
7.2.2 MySQL database graph... 69
7.2.3 Preference graph.. 70
7.2.4 View graph .. 70
7.2.5 Dialog graph.. 71

7.3 Generating the source code ... 73
7.4 Comparison of the MDD approach to the code-centred approach 74

8. Discussion... 76
8.1 Experiences on DSML design ... 76
8.2 Experiences in DSML implementation ... 77
8.3 Evaluation of DSML ... 79

9. Conclusion .. 83

References... 84

10

List of abbreviations

BAT File extension for Microsoft Windows batch file

BNF Backus-Naur Form, DSL for expressing context free grammars

CIM Computation Independent Model, a model of a system that contains
no information of the structure of systems

COM Component Object Model, Microsoft�s object-oriented programming
model

DSL Domain-Specific Language, a language that is specific to a certain
application domain

DSM Domain-Specific Modelling, a modelling paradigm that uses
DSMLs

DSML Domain-Specific Modelling Language, graphical DSL

EMF Eclipse Modelling Framework, modelling and code generation
framework in Eclipse

FAQ Frequently Asked Questions

FCO First Class Object, a first class entity in the GME metamodelling tool

GEF Graphical Editing Framework, a framework for creating graphical
editing plug-ins for Eclipse

GEMS Generic Eclipse Modeling System, a metamodelling tool for Eclipse

GIF Graphics Interchange Format, an image file format

GME Generic Modelling Environment, a metamodelling tool

GMF Graphical Modelling Framework, a framework for developing graphical
editors for Eclipse based on EMF and GEF

11

GMT Generative Modelling Technologies, an Eclipse project which aims
at producing a set of prototypes for model-driven engineering

GOPPRR Graph-Object-Property-Port-Role-Relationship, a metamodelling
language used in the MetaEdit+ metamodelling tool

HSQL Hypersonic SQL, a project that has been used as the basis for HSQLDB

HSQLDB A relational database management system implemented entirely in Java

HTML HyperText Mark-up Language, a DSL for creating Web pages

IDE Integrated Development Environment, a GUI workbench that
combines the necessary tools for application development

IP Internet Protocol, protocol that is used in the Internet to route packages

JAR Java Archive, a tool for compressing files

JDT Java Development Tools, a tool set in Eclipse for Java development

JPEG Joint Photographic Experts Group, an image file format

MDA Model Driven Architecture, OMGs initiative to provide a framework
for MDD

MDD Model-Driven Development, a software development approach
where the focus is on models rather than code

MERL MetaEdit+ Reporting Language, a language that is used for defining
the code generator in the MetaEdit+ metamodelling tool

MOF Meta-Object Facility, a standard defined by OMG for defining
metamodels

MoSiS Model-driven development of highly configurable embedded
Software-intensive Systems, an ITEA 2 project

MVC Model-View-Controller, an architectural pattern

MySQL An open source relational database management system

12

OCL Object Constraint Language, a language for defining constraints

OMG Object Management Group, computer industry consortium that develops
standards

PDE Plug-in Development Environment, a tool set in Eclipse for developing
Eclipse plug-ins

PIM Platform Independent Model, a model of a system that contains no
information specific to the implementation platform

PNG Portable Network Graphics, an image file format

PSM Platform Specific Model, a model of a system that contains information
about the specific technology that is used in the implementation

RDBMS Relational DataBase Management System, a database management
system that is based on the relational model

SQL Structured Query Language, DSL for performing relational database
queries

SWT Standard Widget Toolkit, widget toolkit for Java

TIFF Tagged Image File Format, an image file format

UI User Interface, point of communication between the computer and
the user

UML Unified Modelling Language, a general-purpose modelling language
defined by OMG

XMI XML Metadata Interchange, an OMG standard for serialising objects
into XML

XML eXtensible Mark-up Language, an open standard for exchanging
structured data

13

1. Introduction

Modern-day software systems are constantly becoming more complex, which
entails challenges to software development projects. Software needs to be
developed at low cost but it also needs to be of high quality. To solve this
paradox, new, more efficient, software development approaches need to be
adopted. Traditionally, general-purpose modelling languages such as the Unified
Modelling Language (UML) are used at some phase of the software
development life cycle, but the full benefits of modelling are usually not
achieved, since 100 percent code generation from general-purpose models is
usually not possible [1 p. 117, 2]. Model-driven development (MDD) is about
focusing on models rather than computer programs and automating the model-
to-code transformation [3]. Domain-specific modelling is well suited to the
MDD paradigm. Instead of using a modelling language that can model anything,
domain-specific modelling is about using a domain-specific modelling language
(DSML) that is restricted to a certain application domain. DSML uses domain
concepts rather than programming language concepts for representing software
models. Using DSML, full code generation from the models is possible, and the
generated code typically has fewer errors than manually written code [2, 4].

Eclipse is an open source platform, which users can extend by writing plug-ins
[5 p. 5]. Eclipse plug-ins are developed with the Java language by using extension
points defined in the Eclipse platform. Although there are several wizards in
Eclipse that help in the plug-in development process, building an Eclipse plug-in
requires a lot of work, especially from a person not familiar with Eclipse technology
or Java language. This is particularly so if several variant applications are
developed for the same application domain with manual coding taking up a lot
of development time. There are also several rules that should be obeyed while
developing Eclipse plug-ins, and mastering all those rules may be difficult for
the inexperienced plug-in developer [5 p. 15].

Previously, a few tools have been developed that are able to generate Eclipse
plug-ins semi-automatically, such as the Generic Eclipse Modelling System
(GEMS) [6], which is a tool for Eclipse that allows for the rapid development of
graphical modelling plug-ins. GEMS enables the developers to specify the rules
for DSML using a metamodel and the tool generates a graphical modelling plug-

14

in that enforces the rules from the metamodel. However, the structure of the
generated plug-in is always similar and only the metamodel can change. It is not
possible to add for example, one�s own dialog boxes to the generated plug-in.
Another tool that can generate graphical modelling Eclipse plug-ins is the Merlin
Generator [7]. The Merlin Generator is an Eclipse plug-in, which is based on the
Eclipse Modelling Framework (EMF) project [8]. The Merlin generator provides
code generation and model transformation tools as well as a Graphical Editing
Framework (GEF) [9] generator that can generate GEF plug-ins from a UML
model. In GEMS and the Merlin Generator the main goal is not to automate
Eclipse plug-in development and they do not address the generation of general
Eclipse plug-in concepts, such as preference pages, dialog boxes and views. [6, 7]

Since there are already existing tools that help in the development of Eclipse
plug-ins in the graphical modelling domain, in this work a slightly different
approach and domain has been selected. The objective of this work is to develop
prototype DSML and a code generator for developing several varying
repository-based Eclipse plug-ins. In this work, a repository-based Eclipse plug-
in means an Eclipse plug-in that utilises a database in a way that the end user
does not have to know the physical structure of the database. Repository-based
Eclipse plug-ins form a product family with several variation points:

1. Database type
2. Database content (tables, columns, column data types)
3. Operations to the database
4. How the information in the database is represented to the user.

The work includes the following steps:

1. Selecting a suitable metamodelling tool. A tool comparison is performed
and a suitable tool is selected to support the construction of DSML and
the code generator.

2. Defining the scope of the domain. The scope of the domain should be
restricted to repository concepts and a small set of Eclipse UI concepts.
The scope is influenced by the existing source code of the Stylebase for
Eclipse plug-in, since the code generator has to be able to generate the
source code of the tool.

15

3. Developing DSML (i.e. defining the syntax of DSML).

a. Defining the domain concepts. This includes defining objects,
their properties, and the relationships between the objects.

b. Defining the constraints for the language.
c. Defining symbols for the concepts.

4. Developing the code generator (i.e. defining the semantics of DSML).
The code generator is defined by specifying which kind of source code
corresponds to which concepts in the language. The development of the
code generator is similar to the development of a compiler for a 3rd
generation programming language.

5. Case example. The case example that is used is the Stylebase for Eclipse
architectural knowledge management open source tool developed at VTT
[10, 11]. DSML and the code generator are used for generating the source
code of the Stylebase for Eclipse plug-in. The variability binding times in
the model-driven approach are compared with the traditional approach.

6. Publishing DSML and the code generator under an open source licence.

a. Selecting a suitable open source licence.
b. Applying the licence to the metamodel and the code generator.
c. Publishing DSML and the code generator in the existing Stylebase

for Eclipse open source community [11].

Defining DSML is done iteratively, that is steps 2�5 are repeated several times
to build up the modelling language to its full strength.

The benefits of DSML and the code generator defined in this work are the raised
level of abstraction and reduced development time for a repository-based Eclipse
plug-in. DSML can be used to generate a large number of different repository-
based plug-ins. DSML can also be extended in the future, if new features are
needed.

16

2. Model-driven development of software
product families

The software development process is a complex and challenging process to
manage. Every stakeholder of a software product has specific requirements and
expectations. Most software projects fail to deliver what has been promised on
time and according to budget [1 p. 3]. New software development paradigms are
emerging that aim to speed up the traditional code-centric software development
process. Model-driven development (MDD) is such an approach that emphasises
the importance of models in software development. MDD can be realised in
many ways, in this chapter, the Model Driven Architecture (MDA) initiative and
domain-specific modelling (DSM) are presented as a means to support MDD.
Domain-specific modelling is particularly suited for a software product family
situation, where similar applications are being built on the same problem domain.

2.1 Non-MDD development

Traditional code-centric software development often follows the well-known
waterfall model, which was originally presented by Royce in [12] as a bad
model for software development. The nature of the waterfall model is sequential,
and the main phases of the model are requirements definition, design, coding,
and testing. This approach usually includes the construction of some kind of
models (e.g. UML) of the software in the design phase. Unfortunately, these
models are not always utilised properly when the implementation starts and the
final implementation may not even follow the original model of the system.
Even if some code is automatically generated from the models, it is often just
skeleton code, which needs to be completed manually. Of course it is useful to
have the models as documentation of the software, but the models become easily
outdated when changes are made to the code. Maintaining the models in synch
with the code can be very time consuming and use up expensive resources in a
software project.

17

2.2 Model-driven development

The key idea in model-driven development is to focus on models in software
development (rather than computer programs). Fully automated MDD enables
the generation of complete programs from models, which means that the models
take the role of implementation languages. For MDD to be successful, the
models must be abstract, understandable, accurate, predictive, and inexpensive.
Abstraction helps in understanding a complex system by removing or hiding
irrelevant details. The model that is left after removing the details must be easy
to understand. Accuracy is also essential: the model must be a correct
representation of the modelled problem. Predictiveness means that the model
should predict the modelled system�s interesting properties either through
experimentation or through some type of formal analysis. The final property,
inexpensiveness, is important because it makes no sense to construct models if
the modelling costs more than the building of the modelled system. [3]

2.2.1 MDD with Model-Driven Architecture approach

Model-Driven Architecture is an Object Management Group (OMG) initiative,
offering a conceptual framework to support MDD. The first definition document
of MDA was released in 2001. The current version is 1.0.1 which is described in [13].
The foundations of MDA consist of three ideas: direct representation, automation,
and open standards. Direct representation means shifting the focus of software
development away from the technology domain towards the concepts of the
problem domain. MDA defines the concept of platform as a set of subsystems
and technologies that provide a coherent set of functionality through interfaces
and specified usage patterns, which any application supported by that platform
can use without concern for the details of how the functionality provided by the
platform is implemented [13]. MDA provides an approach for specifying a
system independently of the platform with the Platform Independent Model
(PIM), specifying platforms, choosing a particular platform for the system using
the Platform Specific Model (PSM), and transforming the system specification
into one for a particular platform (PIM to PSM transformation). [13, 14]

The aim in MDA is to automate the transformations between the different
models of the system. Automation means using tools to mechanise software

18

development tasks that do not depend on human intelligence. For instance, if a
model of the system is constructed and it needs to be translated manually to source
code, there is no increase in development time and cost. Instead, automating the
model-to-code transformation increases speed and reduces human error. [14]

Standards perform a key role in promoting automation. Open standards
encourage vendors to produce tools and eliminate diversity. MDA includes
several OMG standards that enable the model-driven approach, such as the
Unified Modelling Language (UML), the XML Metadata Interchange (XMI),
and the Meta-Object Facility (MOF). XMI facilitates interchange of models via
XML documents. MOF is a standard, which enables metadata management and
modelling language creation. It is commonly thought that UML is the basis of
MDA, but it is actually MOF compliance that is formally required for the �MDA
Compliant� label. However, in practice, UML is the key enabling technology for
MDA and the basis of most development projects. [13�15]

2.2.2 MDD with domain-specific modelling approach

A domain-specific language is a programming language or executable specification
language that offers, through appropriate notations and abstractions, expressive
power focused on, and usually restricted to, a particular problem domain [16].
DSL raises the level of abstraction by using concepts familiar to domain experts
[1 pp. 142�143]. There are countless numbers of popular DSLs such as BNF,
HTML, and SQL to name but a few. In this work the term domain-specific
modelling language (DSML) is used instead of domain-specific language (DSL).
Domain-specific modelling language is a domain-specific language that can be
used for constructing a graphical model of a software system. This definition
also emphasises the MDD approach by restricting itself to graphical models and
excluding programming languages.

Domain-specific modelling (DSM) is about using domain-specific modelling
languages to create models, and generating code from the models with a code
generator. The definition of DSML and the code generator should be done by a
domain expert, who is familiar with the domain and able to produce high quality
code for the domain. This process can be considered equal to the definition of a
compiler for a 3rd generation language. When DSML and the code generator are

19

defined by a true expert, DSM speeds up the software development work and
decreases the number of errors in software products. The DSM approach entails
the initial work of defining DSML and the code generator, thus if only one
application needs to be developed, it may be faster to use traditional methods.
However, if several applications are continuously being built in the same
problem domain (e.g. in a software product family), the benefits of DSM
become greater than the effort required to define DSML and the code generator.
This phenomenon is presented in Figure 1. This is the key issue to take into
account when the adoption of domain-specific modelling is considered. After the
initial effort of implementing DSML and the code generator, development of new
applications is said to be 5�10 times faster than with traditional methods. [4, 17]

Figure 1. Domain-specific modelling versus general-purpose modelling.

A domain-specific language can be constructed by using metamodels or by using
context-free grammar [18]. Usually graphical languages are developed by using
metamodels and textual languages are defined by their grammar [19]. Since in
this work, we aim to construct a graphical language, metamodelling is used.
Simply put, a metamodel is a model of models [13]. A metamodel including the
main domain concepts is first constructed to result in DSML and then DSML is
used to model the actual problem. There are several approaches identified for
defining the metamodel (i.e. DSML) [4]:

1. Domain expert�s or developer�s concepts. DSML is constructed from
the domain concepts, for example, insurance products. This approach raises
the level of abstraction far beyond programming language concepts.

20

2. Generation output. The design of DSML is driven by the required code
structure, for example XML. This approach does not raise the level of
abstraction very much and it is difficult to model behaviour.

3. Look and feel of the system built. If the design of the product can be
understood by seeing, touching, or hearing, the end-user product concepts
can be used as modelling constructs.

4. Variability space. If DSML is designed for modelling a product family,
DSML can be constructed by expressing variability. Languages for static
variability (configuration) are easy to define but behavioural variability
is more challenging.

The definition of DSML and the code generator needs proper tool support,
which is discussed in Section 3.2.

2.2.3 Comparison between MDA and DSM

Both MDA and DSM can be considered as a means for MDD and fundamentally
they both aim at the same thing: speeding up the software development process
and reducing the number of human-made errors. This is done by raising the level
of abstraction from the solution domain to the problem domain. The aim is to
have a model that is independent of the implementation platform.

MDA promotes more the use of open standards, whereas DSM tools often use
proprietary languages. Often, companies do not want to commit to a certain tool
vendor, so the open standards provided by the MDA approach may be more
appealing than proprietary DSM tools. However, the tool interoperability
promoted by MDA standards such as MOF and XMI is not fully achieved since
many MDA tools use their own dialects of the standards [20]. There are also
multiple versions of the standards, which creates even more diversity. Because
of the many standards that need to be followed, the transition to using the MDA
approach may be overwhelming. Adopting a proprietary DSM environment can
thus be more appealing but the risks of committing to a certain tool vendor need
to be accepted (e.g. tool vendor going out of business).

21

2.3 Software product families

As stated before, managing the complexity of modern software systems is a
difficult task. Developing software products from scratch each time is not a
feasible solution. Instead, reusing previously developed components should be
considered. The software product family approach is about reusing software in a
predefined way and thus making the software development process more
effective. The term software product line is an alternate term to software product
family. In this thesis, the term software product family is preferred. A software
product family is a set of software-intensive systems sharing a common,
managed set of features that satisfy the specific needs of a particular market
segment or mission and that are developed from a common set of core assets in a
prescribed way. It should be noted that software reuse as such does not form a
product family. In the software family approach, the software reuse is planned,
enabled, and enforced. The software product family approach can be divided in
two phases: domain engineering and application engineering. Domain engineering
means developing reusable core assets and application engineering means
building complete products from those core assets. These phases may occur in
either order: new products can be developed from existing core assets, or core
assets can be extracted from existing products. [21 pp. 5�15]

A central concept that relates to software product families is software variability.
Software variability is the ability of a software system or artefact to be
efficiently extended, changed, customised, or configured for use in a particular
context [22]. Variability can be expressed by using variation points. A variation
point identifies one or more locations at which the variation will occur [23 p. 99].
For example, if an application needs to be localised for a number of languages,
the language can be represented as a variation point and the applications in
different languages would then be called variants.

In the past variability in software systems has been represented implicitly. In a
modern-day software product family approach, an implicit representation of
variability is not enough. A system-independent method for representing and
normalising variability in the application engineering phase is presented in [24].
Variability is realised by a certain variability technique, e.g. makefiles or pre-
processor directives. Variability realisation techniques are characterised by their
introduction and binding phase in the software life cycle. A frame of reference is

22

presented, which uses variability sets for representing variability. Figure 2
presents the variability sets. A variability set relates to a certain combination of
an introduction and binding phase. A variability realisation technique is a
member of exactly one variability set and a variability set may consist of zero or
more variability realisation techniques. For example, makefiles can be used as a
variability realisation technique. If a variation point is introduced at the
requirements phase and makefiles are used as the variability realisation
technique, the variability is bound at the link phase so the corresponding
variability set is (1,5). Maximum variability occurs in the variability set (7,7)
which means that the variability is introduced and bound as late as possible. [24]

Binding phase

Introduction phase

Installation
Link

Compile
Implementation

Architecture
Requirements

R
un

-ti
m

e
In

st
al

la
tio

n
Li

nk
C

om
pi

le
Im

pl
em

en
ta

tio
n

1
2
3
4
5
6
7

1 2 3 4 5 6 7

Design

D
es

ig
n

Ar
ch

ite
ct

ur
e

Figure 2. Variability sets in the software life cycle.

23

3. Tools and technologies

This section presents the tools and technologies that are used in this work. First,
the Eclipse platform is presented. Second, metamodelling tools are introduced and
compared, and a suitable tool for implementing DSML and the code generator is
selected. Finally, a short introduction to relational database technology is provided.

3.1 Eclipse

Eclipse is an extensible platform for tool integration, and a set of basic tools
built on that platform. Eclipse is also an open source project which delivers the
Eclipse technology. The key word in Eclipse is interoperability, since nearly
everything is an extension to the platform. The Eclipse platform includes a
collection of extension points where the extensions can be plugged-in, which is
why Eclipse extensions are commonly called plug-ins. The Eclipse community
is large and it includes a wide range of people. The community can be thought of
as a pyramid, which is illustrated in

Figure 3 [5 p. 2]. The largest group of people in the Eclipse community are the
users, who use Eclipse as an integrated development environment (IDE).
Second, there are the configurers, who customise Eclipse for example, by
rearranging perspectives. Next, there are the extenders, who extend the functionality
of Eclipse by writing their own extensions. An extender can become a publisher
by publishing the extension to others. Enablers enable other people to extend
their own extensions by providing an extension point to others. At the top of the
Eclipse community are the committers, who take part in the development of the
global Eclipse release. [5 p. 2]

24

Figure 3. The Eclipse community.

The Eclipse environment is divided in three layers, which are presented in
Figure 4 [5 p. 3]. The bottom layer is called the platform, which defines the
common infrastructure of Eclipse. The middle layer, the Java Development
Tools (JDT) layer, adds a Java integrated development environment to Eclipse.
The Plug-in Development Environment (PDE) is the top layer and it extends
JDT by providing support for developing plug-ins to Eclipse. [5 p. 3]

Figure 4. The three layers of Eclipse architecture.

Figure 5 shows an overview of the architecture of the platform layer [5 p. 6].
The platform is decomposed into the Core and the User Interface (UI) layers.
The Core layer includes the Runtime component and the Workspace component.
The Runtime component is responsible for discovering all available plug-ins and
loading the plug-ins when needed. The Workspace manages the projects that the
user creates. The Workspace is mapped directly to the file system and there is no
intermediate repository. [5 p. 6, p. 295]

The UI layer consists of three components. The first component is the Standard
Widget Toolkit (SWT), which is designed to provide efficient, portable access to
the user interface facilities of the operating systems on which it is implemented
[25]. If a widget is not available on a particular platform, SWT implements the
widget in Java. SWT focuses on providing widgets, layouts, and event handling
functionality. SWT can be used to create either stand-alone Java applications or
Eclipse plug-ins [26 p. 130]. The second component is the JFace UI toolkit,

25

which provides higher level application support not provided by SWT. JFace
covers a set of smaller frameworks for viewers, actions, dialogs, and wizards,
among others. The third component in the UI layer is the Workbench, which
utilises both the SWT and the JFace components. The Workbench defines the
Eclipse UI paradigm, including views, editors, and perspectives. [5 pp. 325�345]

UI

Core

Workbench

JFace

Standard Widget Toolkit

Workspace

Runtime

uses

uses

Figure 5. The structure of the Eclipse platform.

When Eclipse plug-ins are developed by hand, PDE automates most of the plug-
in structure development. The main task of the plug-in developer is to write the
Java source code for the plug-in. Since in this work, the aim is to develop a code
generator able to generate an Eclipse plug-in, it is necessary to know the inner
structure of an Eclipse plug-in.

A plug-in is represented as a directory. Figure 6 presents an example of the
contents of a very simple plug-in directory. The compiled source code of the
plug-in is contained in the com directory. The name of the com directory comes
from the first part of the Java package name. The META-INF directory contains
the MANIFEST.MF file, which describes the runtime aspects of the plug-in
(such as identifier, version, and plug-in dependencies). The src directory is
optional and it includes the Java source code of the plug-in. Eclipse consists of a
very small kernel surrounded by hundreds of plug-ins. If the Java class files of
each plug-in would be loaded, it would take far too long for Eclipse to start. That
is why Eclipse applies the lazy loading rule, which means that plug-ins are only

26

loaded when needed. The plugin.xml file describes the extensions and extension
points of the plug-in. The plugin.xml file enables the implementation of the lazy
loading rule by providing the necessary information of the plug-in without
loading the whole plug-in. If a plug-in provides extension points for other plug-
ins, the plug-in directory contains a directory called schema, which contains
XML descriptions of the details of each extension point. The plug-in directory
can also contain resources (such as icons). The plug-in is installed to Eclipse by
placing the plug-in directory into the plugins directory under the Eclipse home
directory. The plug-in directory can be also compressed to a Java Archive (JAR)
file. [5 p. 17, 26 pp. 101�104]

Figure 6. The contents of a simple plug-in directory.

3.2 Metamodelling tools

The metamodelling tool is in an essential role in domain-specific modelling.
This section discusses some of the available tool support for defining DSML and
the code generator. The definition of the language means defining the syntax of
the language (i.e. what kind of constructs the language contains and what their
relations are). In the code generator, the domain model is interpreted and the
constructs in the model gain a meaning, so the code generator provides the
semantics for the language. The following things are considered when the tools
are evaluated:

1. Tool provider
2. Supported platforms
3. Licence
4. Documentation and support

• User�s guide for the tool
• Tutorials
• Instructions for the code generator definition

27

• E-mail support
5. Metamodelling language
6. Constraint definition possibilities
7. Code generation possibilities

• Generator definition language
• Generator output language.

The metamodelling tool should be available for the Windows platform, have the
required documentation and tutorials available, be easy-to-learn, be easy-to use
(easy to define the metamodel and the code generator), and be able to generate
Java code and all the other necessary structures of an Eclipse plug-in.

3.2.1 DSL Tools for Visual Studio

Microsoft�s Domain-Specific Language Tools are available as a plug-in to
Visual Studio 2005. Thus the DSL tools plug-in is a commercial tool and only
available for the Windows platform. The DSL tools toolkit contains the
metamodelling environment, modelling environment, as well as code generation
support. Documentation is available online at [27]. [28]

The definition of the metamodel includes three steps [29]:

1. Defining the domain model with a graphical designer. The domain
model notation represents the structure of the domain (i.e. the syntax of
DSML). The metamodelling paradigm is similar to object-oriented
programming, since there are classes with properties and the classes can
be connected by embedding, inheritance, and reference.

2. Defining the graphical domain constructs in XML. The domain constructs
are defined in an XML document. Managing XML documents takes a lot
of development time, and no supporting tools exist [28].

3. Defining the relationship between the domain model and the graphical
constructs.

There is also a DSL Designer wizard, which can be used for creating a fully
configured solution. The wizard provides templates for languages (e.g. task flow
diagrams and class diagrams). [29]

28

Constraints are expressed with the help of the Validation Framework and C#
coding is required for writing the constraints. Code generation is based on text
templates. The target languages for code generation are restricted to Visual
Basic and C#. [18, 28]

3.2.2 Generic Modelling Environment

The Generic Modelling Environment (GME) is a configurable framework for
creating DSM environments. GME has been developed at the Institute for
Software Integrated Systems at Vanderbilt University. GME is available only for
the Windows platform. GME is free and open source (licensed with the GME
licence [30]). GME had been designed for flexibility and customisability. A
user�s guide and tutorials (also code generator definition tutorials) are available
online at [31]. [32]

The metamodelling paradigm is based on UML. The main metamodelling
concepts used by GME are Folders, Models, Atoms, Sets, References,
Connections, Roles, Constraints, and Aspects. Models, Atoms, Sets, References,
and Connections are all First-Class Objects (FCOs). A relational database is used
for storing the metamodel. GME supports the visual drawing of the modelling
concepts with a COM component called decorator. Simple bitmaps can be used
as icons for the concepts but the default implementation of the decorator can be
replaced by writing a proprietary COM-based component. [32�34]

Constraints are defined using a predicate expression language based on the
Object Constraint Language (OCL). This language enables the representation of
complex relational constraints and also rules for the containment hierarchy and
the values of properties. The main focus in GME is the construction of a
graphical modelling tool and the model interpretation is not the concern of
GME. GME is component-based and the component model is COM, so the
primary languages for model interpretation are C++ and Visual Basic, but any
COM-enabled language can be used (e.g. Java and Python). There is also a
report language which provides simple reporting capabilities through the definition
captured in a simple text file. Output language is not restricted. [32, 34]

29

3.2.3 Generic Eclipse Modelling System

The Generic Eclipse Modelling System (GEMS) is a metamodelling tool for the
Eclipse environment. GEMS is an open source project, which is licensed under
the Eclipse Public License [35]. GEMS is a part of the Eclipse Generative
Modelling Technologies (GMT) project [36]. GEMS is implemented as an
Eclipse plug-in and it utilises several Eclipse projects, such as the Eclipse
Modelling Framework [8], Draw2D, and GEF [9]. GEMS is also transitioning to
utilise the Generic Modelling Framework (GMF) project [37]. Since GEMS is
an Eclipse plug-in, it is available on any Java-enabled platform.

The metamodelling language in GEMS includes the following concepts: entity,
attribute, connection, inheritance, and aspect. The metamodel is created
graphically by creating entities and connecting them to each other. The
modelling plug-in is created by invoking the DSML plug-in generator that is
provided by GEMS. [38]

Constraints can be written in Java, OCL, and Prolog. Similarly to GME, GEMS
is also mainly focused on creating the metamodel and the modelling plug-in.
However, GEMS provides extension points for writing code generators. The
generator is also implemented as an Eclipse plug-in so the generator definition
language is Java. [39]

3.2.4 MetaEdit+

MetaEdit+ is a repository-based tool for developing domain-specific modelling
languages and code generators. MetaEdit+ is a commercial tool and available for
all the major platforms including Windows, Linux, Mac OS X, HP-UX, and
Solaris [40]. Extensive documentation and tutorials are available online at [40].

MetaEdit+ employs the GOPPRR metamodelling language, which is an
extension to the GOPRR metamodelling language [41]. The name of the
language comes from the names of the metatypes: Graph, Object, Property, Port,
Relationship, and Role. The GOPPRR language adds the concept of port to the
GOPRR language. An object is a thing that exists on its own and it typically
appears as a shape in a diagram. Relationship is a connection between two or

30

more objects and it typically appears as a line between objects. Role defines how
an object participates in a relationship and it typically appears as the end point of
a relationship: for example, an arrowhead. Port is a specific point in an object to
which a role can connect, for example, an Amplifier object might have a port for
analog input and a port for digital input. Graph is a diagram consisting of objects
and their relationships (with specific roles). An object in a graph can be
decomposed into a new graph or linked to other graphs via the explosion structure.
An object can have zero or one decomposition graphs but several explosion
graphs. Decomposition and explosion structures enable the layering of DSML.
All five of the above mentioned metatypes can have properties and properties can
only be accessed as parts of the other metatypes. MetaEdit+ includes a tool for
each of the metatypes. In the object tool, for example, it is possible to create a
new object or edit the properties of an existing object. [40�42]

MetaEdit+ provides two metamodelling possibilities: form-based metamodelling
and graphical metamodelling. A graphical metamodel is described as a diagram
using a visual notation for the GOPPRR language. Graphical metamodelling is
suitable only for simple languages. Form-based metamodelling uses the tools that
are defined for the metatypes for creating new types and defining connections
between them. Form-based metamodelling provides more precision and better
scalability. [42]

MetaEdit+ provides multiple constraint definition possibilities. When graphs are
defined with the Graph tool, relationship cardinalities can be defined in the
Graph Bindings tool. Additional constraints for graphs can be defined with the
Graph Constraints tool. MetaEdit+ enables the provision of many types of
constraints: connectivity constraints (how many times an object may participate
in a relationship), occurrence constraints (how many times an object may occur
in a graph), uniqueness constraints (objects of the same type must have a unique
value for a property) and ports property constraints (port properties must have
the same or a different value). Also, regular expressions can be used for
constraining user input. [40]

MetaEdit+ supports code generation from the domain-specific models with the
Generator Editor tool. Code generators are defined in the Generator Editor tool
using the proprietary MetaEdit+ Reporting Language (MERL). The MERL
language is a simple scripting language with commands for navigating through

31

design models, extracting information from design elements and outputting it to
a window or a file. [40]

3.2.5 Comparison of the tools

Table 1 presents a summary of the evaluated tools. All the tools are available for
the Windows environment, but only GEMS and MetaEdit+ are available for
several platforms. Consequently, the platform does not restrict the selection of
the metamodelling tool in any way, since the required platform is Windows.

The DSL tools environment has all the necessary documentation available. Yet,
the learning curve of DSL tools is said to be steep [43]. The output languages in
code generator are Visual Basic and C#, and Java is the required output language
in this work, which rules out the DSL tools environment.

GME is mostly aimed at the development of a DSML editor and code generation
support is not the main concern [34]. The UML-based metamodelling paradigm
is not very appealing. GME is said to be suitable for simple prototyping of
DSML editors [33]. In this work, a sophisticated and mature metamodelling tool
is required with good code generation support, so GME is also excluded.

The GEMS environment is an open source tool that has the necessary
documentation and tutorials available. However, there is not enough support for
code generation, since only extension points are provided for accessing the
models. That is why GEMS is not selected as the metamodelling tool either.

MetaEdit+ is a tool with a proprietary metamodelling paradigm and generator
definition language. Since MetaEdit+ tool is not tied to UML in any way, it
offers very flexible possibilities for DSML definition. The definition of DSML
does not require any manual coding and the code generation support is very
good. The output language of the generator is not restricted to any specific
language and there is also a generator debugger. The documentation and support
in MetaEdit+ is very good and the learning curve for the tool seems reasonable.
MetaEdit+ fits the requirements of this work, so MetaEdit+ is selected as the
metamodelling tool for this work.

32

Table 1. DSM tool comparison.

 DSL tools GME GEMS MetaEdit+

Provider Microsoft Vanderbilt
university

Eclipse GMT
project MetaCase

Platform Windows Windows Java-enabled
platforms

Windows,
Linux, Mac,
HP, Solaris

Licence Commercial GME
licence EPL Commercial

User�s guide Yes Yes Yes Yes

Tutorials Yes Yes Yes Yes

Instructions
for the code
generator
definition

Yes Yes Yes Yes

D
oc

um
en

ta
tio

n
an

d
su

pp
or

t

E-mail
support Yes Yes Yes Yes

Metamodelling
language

Object-
oriented

Based on
UML Ecore GOPPRR

Constraint definition
language C# OCL Many

languages

Restricted
set of
constraint
definition
possibilities

Generator
definition

Language

Templates
for
generating

C++ , Visual
Basic,

COM
enabled
languages

Java MERL
language

C
od

e
ge

ne
ra

tio
n

Output
language

Visual
Basic, C#

Any
language Any language Any

language

33

3.3 Relational databases

Database is a collection of related data [44 p. 2]. There are several database
models, such as the hierarchical, network and relational models. This work
utilises the relational database model. The most fundamental concept of a
relational database is the table, which consists of rows and columns. Each
column specifies a field, which has a data type, for example varchar or int. Rows
contain different values for the fields specified by columns. A database table
usually has a primary key, which consists of one or more columns. A primary
key is used to identify a row in the database, so in each row the primary key
must have a unique value. A table may also have a foreign key, which references
a column in another database table. [44 p. 6]

SQL is a domain-specific language, which is used to manage and interact with
data in a relational database. SQL is made up of a set of statements that define
the structure of a database, store and manage data within that structure, and
control access to the data. The most common SQL operations in a relational
database are insert, select, update, and delete. [44 p. 14]

The insert statement is used to insert data to a table. Presented below is an
example of an insert statement:

INSERT INTO table (column [,...]) VALUES (value [,...])

The update statement is used to update a value in the database. Presented below
is an example of an update statement:

UPDATE table SET column = new_value WHERE column operator

value

The where clause at the end of the update statement can be used to specify a condition
for the update operation. Only those rows fulfilling the condition are returned in
the result set. The condition of the where clause is formed by using operators;
some of the operators that can be used are presented in Table 2. [44 p. 278]

34

Table 2. Operators in the where clause.

Attribute Meaning

= Evaluates to true if both arguments are equal

<> Evaluates to true if both arguments are not equal

> Evaluates to true if the value of the first argument is greater than the
value of the second argument

< Evaluates to true if the value of the first argument is less than the
value of the second argument

>= Evaluates to true if the value of the first argument is greater than or
equal to the value of the second argument

<= Evaluates to true if the value of the first argument is less than or equal
to the value of the second argument

LIKE Searches for values similar to a specified value

The delete statement deletes all the rows in the database which fulfil the
condition given in the where-part of the statement. The syntax of the delete
statement is as follows:

DELETE FROM table WHERE column operator value

The update, insert, and delete statements do not return any data from the
database. For retrieving data from the database, the select statement is used. The
syntax of the select statement is the following:

SELECT column FROM table WHERE column operator value

In this work, two relational database management systems (RDBMS) are utilised,
namely MySQL and HSQLDB. MySQL is a popular, open source RDBMS
developed by MySQL AB. MySQL runs on multiple operating systems. MySQL
requires installation before it can be used, so it is not transparent to the user of
the repository-based application. [44 p. 1]

HSQLDB (HSQL database) is lightweight RDBMS, which is implemented with
the Java language. HSQLDB can be run in server mode or in-process mode.

35

Server mode means that the database can be accessed over the Internet, whereas
the in-process mode means that the database is used only locally. HSQLDB can be
totally transparent to the application end-user: it can be started from a Java
application and the user does not have to use any database management tools. [45]

36

4. DSML for developing repository-based
Eclipse plug-ins

This chapter describes the design of the domain-specific modelling language for
developing repository-based Eclipse plug-ins. First, some requirements are set
for DSML. Second, the approach for defining DSML is selected. Then domain
analysis is made to find out the relevant domain concepts. Finally, the scope of
DSML is stated.

4.1 Requirements for DSML

Table 3 presents the requirements that the domain-specific modelling language
should satisfy [1 pp. 142�143, 40]. The requirements are given IDs from R1 to
R5. R1 means that the scope of the domain should be clearly declared so that it
is easy to decide whether DSML answers a certain need. R2 emphasises that
familiar concepts should be used so that people who are familiar with Eclipse
would understand the language concepts with reasonable effort. R3 says that
DSML should have easy-to-use notation, which is important because it has to be
easier to use DSML than to develop the plug-in using Java language. R4 ensures
that the user is not able to construct incorrect models with DSML. An important
aspect when designing DSML is to make sure that DSML can be extended, since
in the future there may be a need for new features or even the domain itself may
need to be extended. The extensibility requirement is stated in requirement R5.
This can be realised by introducing multiple layers to the language. It is possible
to present a simple language in a single layer, but when the number of language
concepts starts to grow, multiple layers become necessary.

Table 3. Requirements for the domain-specific modelling language.

ID Requirement

R1 The domain of DSML should be explicitly stated
R2 The language concepts must be understood by people familiar with the domain
R3 The notation should be easy to use
R4 DSML should have well-defined constraints
R5 It should be possible to extend DSML (i.e. DSML should be composed of multiple layers)

37

4.2 Approach for defining DSML

The target platform in this work is Eclipse, which forms a solid foundation for
the modelling concepts. There is a restricted set of building blocks for Eclipse
plug-ins, and Eclipse plug-ins have a familiar look and feel. The developed
Eclipse plug-ins are also repository-based, so some repository related concepts
need to be included in DSML. Approaches for defining DSML were introduced
in Section 2.2.2. In this work approaches number one (domain expert�s or
developer�s concepts) and number three (look and feel of the system built) are
applied in the definition of DSML. The challenge in defining DSML with
approach number three is relating other types of modelling elements and
constraints to the look and feel concepts [4]. Also the variability space approach
is considered when the scope of the domain is defined.

DSML is developed iteratively, which means that first just a few modelling
concepts are defined and some code is generated from them. Each iteration adds
some concepts to the language and extends the code generator to support the
new features.

4.3 Domain analysis

The purpose of the domain analysis is to find the relevant concepts in the
domain that can be used in the construction of the domain-specific modelling
language. Because DSML has to be able to generate the source code of the
Stylebase for Eclipse plug-in, it is important that the Eclipse concepts used by
the Stylebase for Eclipse tool are included in DSML. Some other Eclipse
concepts not included in the Stylebase for Eclipse tool can also be included in
DSML, but the first priority is to include the concepts necessary to generate the
Stylebase for Eclipse plug-in. It is also necessary to identify the database
operations that are needed for fulfilling the functionality of the Stylebase for
Eclipse tool.

38

4.3.1 Eclipse concepts

Figure 7 presents a screenshot from Eclipse with some Eclipse concepts pointed
out. Two basic concepts in Eclipse are the view (number 1 in Figure 7) and the
editor (2). The combination of various views and editors visible within the
Eclipse workbench are known as a perspective. Multiple perspectives can be
open at one time, but only one is visible. Every perspective has its own set of
views but open editors are shared by all open perspectives. Only a single
instance of a view can be open in a perspective, while any number of editors of
the same type (e.g. Java editors) can be open at the same time in a perspective.
Views are used for navigating resources and modifying the properties of a
resource. A view can contain a view toolbar (3) and a view pull-down menu (4).
A toolbar consists of toolbar buttons (5). A view can also contain a context menu (6),
which pops up when the right mouse button is clicked in the view. Any changes
made within a view are saved immediately, whereas editors follow the open-
save-close model. The user can select a certain view using the show view dialog,
which is opened from the Window menu in the menu bar (7). In order to reduce
the visual clutter in the show view dialog, views should be grouped using view
categories [46]. Plug-ins can contribute actions in many places such as the main
menu bar (7), toolbar (8), the view toolbar (3), the view pull-down menu (4), and
context menus (6). [5 p. 127]

Figure 7. Eclipse user interface concepts.

39

Plug-ins can provide preference pages that contain information needed by the
plug-in when it executes. The user can configure the execution of the plug-in by
changing the values in the preference pages, and the information stored in the
preferences is saved across multiple Eclipse sessions. The contents of a preference
page can be defined by creating SWT widgets, but there are also helper classes,
called field editors, that create the widgets and implement the value setting and
retrieval code for the most common preference types [46]. [26 p. 451]

4.3.2 Stylebase for Eclipse concepts

Since the case example that is used in this work is the Stylebase for Eclipse
product, the relevant Eclipse concepts used by the Stylebase tool need to be
identified. The Stylebase for Eclipse architecture knowledge management tool
uses an HSQL and a MySQL database to store design and architectural patterns.
The tool uses Eclipse views to present information in the databases. Figure 8
presents a screenshot of the Sylebase tool. The main view is called Stylebase and
it presents the patterns in the database. In the upper right corner of the view there
are toolbar buttons (number 1 in Figure 8), which perform different actions to
the database when selected. The view has also a context menu, which contains
actions related to a pattern in the database. In Figure 8, the content of a remote
MySQL database is presented. When the leftmost toolbar button (number 2 in
Figure 8) is selected the view switches to show the content of the HSQL
database. In addition to the Stylebase view, the Stylebase tool contributes the
Pattern diagram and the Pattern guide views, which are used for rendering the
image of a pattern and the HTML description of a pattern, respectively. The
Stylebase plug-in does not provide any custom editors. In the Eclipse
preferences dialog, the Stylebase for Eclipse tool contributes database related
preferences as well as information about the file types of the pattern files.

40

Figure 8. The Stylebase for Eclipse tool.

Since the selected domain is repository-based Eclipse plug-ins, the structure of
the repository and the operations to the repository need to be modelled with
DSML. The basic concepts and operations of relational databases were discussed
in Section 3.3. The concepts of database table and database column are enough
for representing the structure of the database. The Stylebase for Eclipse tool
needs all the basic database operations to operate. Also operations for
transferring data between the file system and the databases are needed, as well as
transferring data directly between the two databases.

4.4 Concepts in DSML

In the previous section, the possible domain concepts were analysed. From these
concepts, a restricted set of concepts need to be selected. The selection was
based on the Stylebase for Eclipse domain analysis i.e. which concepts are
needed to model the Stylebase tool. The selected concepts are presented in
Figure 9. First, there is the repository, which contains the data. Second, there are
the Eclipse views that are used for representing data in the repository. Third,
there are the dialog boxes that are used for collecting user input and performing

41

operations to the database. Preference pages can be defined that contain database
parameters and values that can be used to initialise dialog text fields. It is not
possible to define one�s own custom editors with this DSML.

Figure 9. The selected concepts for DSML.

42

5. Implementation of DSML
In this chapter the implementation of the domain-specific modelling language is
described. As stated in Section 3.2.4, MetaEdit+ provides two alternatives for
the definition of a domain-specific modelling language: form-based metamodelling
and graphical metamodelling. In this work, form-based metamodelling was used
because of the better precision over graphical metamodelling. In form-based
metamodelling, there is a proprietary tool for defining each of the metatypes of
the GOPPRR language (Graph tool, Object tool, Port tool, etc.). Each object,
relationship, role, and property is defined in their respective tools and then the
concepts are bound together in the Graph tool. In the Graph tool, the following
tasks are carried out:

1. Defining the name and properties of the graph.

2. Declaring which previously defined objects, relationships, and roles may
appear in the graph.

3. Defining which relationships can appear between which objects. This
includes also specifying the roles of each object in the relationship. Also
cardinalities can be assigned to the roles which specify how many times a
role may be used in the relationship.

4. Defining possible decomposition and explosion graphs for the objects in
the graph (in this work, only the decomposition structure is used, which
means that the details of an object are described with a proprietary graph).

5. Defining constraints for the graph (e.g. how many times an object may
occur in the graph).

The finalisation of the language includes also defining the graphical symbols for
the objects, roles, and relationships. The symbols are defined with the Symbol
Editor tool, which can be opened from the Object, Role, or Relationship tool.
The definition of symbols is a very important task, since it has a major effect on
the usability of DSML.

Figure 10 illustrates the structure of DSML. DSML consists of six graphs (presented
as grey rectangles in Figure 10): the Workbench graph, the HSQL database
graph, the MySQL database graph, the View graph, the Preference graph, and

43

the Dialog graph. The Workbench graph is the top-level graph of DSML. The
five rounded rectangles under the Workbench graph rectangle present the objects
that can be used in the Workbench graph. An object can be decomposed into a
graph, which forms the basis for the layering of DSML. The decompositions of
the objects in the Workbench graph are presented as rectangles under the
rounded rectangles. It is important to use constraints so that the modeller is not
able to create an incorrect model, which was also stated in the requirements for
DSML (R4). The numbers above the objects describe how many times an object
may occur in the graph. If there is no number above the object, it means that the
object can occur only once. For those objects, the occurrence constraint is strict and
can not be any other number, e.g. a Dialog graph can not contain more than one
Dialog box object. For those objects that can occur more than once, the upper
limit of occurrences is set to some fixed number, just for practicality. For
example, there can be only five view categories because it usually does not make
sense to use too many categories for a single plug-in.

View Preference
page

View
category

Workbench
graph

View
graph Preference

graph

HSQL
database

HSQL
database

graph

MySQL
database

graph

MySQL
database

5 20 10

Toolbar
buttonContext

menu

Menu
item

Dialog
graphDialog

graph

View
background

PictureMySQL
view
table HSQL

column

MySQL
column

HSQL
view
table

Browser

View
graph

View
graph

20 10

Dialog
box Button

Text
field

Label

Checkbox

Drop down
list

MySQL
column

HSQL
column

File field
editor

Directory
field editor

String field
editor

50 5050 50 50 * * * * *

HSQL
table

HSQL
column

10 100

MySQL
table

MySQL
column

10 100
String
field

editor

File
field

editor

Directory
field

editor

Page
10 1010

Figure 10. Overview of DSML.

The six graphs of DSML are described in the following sections, starting from
the top-level graph (i.e. Workbench graph) and continuing to the decomposition
graphs of the top-level graph. All the objects and their decompositions in the
graph are explained, the properties of the graph are explained and the relationships
between the objects are described. If there are some special constraints for
relationships, they are presented when the relationships are described.

44

5.1 Workbench graph

Because the user interface of Eclipse is called the Workbench, the top-level
graph in DSML is called the Workbench graph. The purpose of the Workbench
graph is to declare the existence of views, view categories, databases, and
preference pages. The Workbench graph is purely static, so there are no
behaviour definition possibilities. Table 4 presents the objects that can appear in
the Workbench graph.

Table 4. Objects in the Workbench graph.

Object Symbol Description

HSQL
database

Declares that the plug-in uses an
HSQL database. Must be decomposed
into an HSQL database graph, which
describes the structure of the
database.

MySQL
database

Declares that the plug-in uses a
MySQL database. Must be
decomposed into a MySQL database
graph, which describes the structure
of the database.

View
category

Declares the existence of a view
category.

View

Declares the existence of a view.
Must be decomposed into a View
graph, which describes the content of
the view.

Preference
page

Declares the existence of a preference
page. Must be decomposed into a
Preference graph, which describes the
content of the preference page.

Table 5 presents the properties of the Workbench graph. The plug-in uses a log
file for logging some events at run time. The path of the log file can be specified
at run time by using the Log file preference property or at the modelling phase
with the Log file path constant property. Regular expressions are used for
constraining user input.

45

Table 5. Properties of the Workbench graph.

Property
name

Property
data type

Regular expression
for property value Description

Destination
directory String

[C-Z]\:\\[A-Z a-z\\]*
(the expression can
not make sure that the
directory is an existing
directory; it just
checks the correct
format)

The directory to which the code
generator generates the plug-ins
(most convenient to set to
Eclipse plugins directory so that
the generated plug-in is ready to
use when Eclipse is restarted).

Log file path
constant String None A path to a file where the plug-

in can write events at run time.

Log file
preference

File field
editor None

A file field editor in preference
pages from which the file path is
fetched at run time.

Package
name String [a-z]+([.][a-z]+)* The root package for the source

code of the plug-in.

Although it is not possible to define any behaviour in the Workbench graph,
there are two relationships that are used for connecting the objects in the graph.
These relationships are presented in Table 6. The rectangles in the images in
Table 6 present the objects that participate in the relationship. The relationships
are presented as dots in the middle and the roles that are connected to the
relationships are represented as lines between the relationship dot and the participating
object. The name of a role is presented next to the role line and the cardinality of
a role is at the end of the name. If the cardinality is one, it is not presented. The
same notation is used for describing all the relationships in DSML.

46

Table 6. Relationships in the Workbench graph.

Relationship Description

Specifies which views belong to which category
(it is not mandatory for a view to belong to a
category, since there is the Other category in Eclipse
that shows views that do not belong to any category).

Preference
page

Preference
pageParent

page
Child

page 1..9

Is parent

Specifies which preference page is shown as the
top-level preference page in the Eclipse Preferences
dialog.

5.2 Preference graph

The purpose of the Preference graph is to describe the structure of a preference
page in the Eclipse Preferences dialog. Table 7 presents the objects that can
appear in the Preference graph. Only field editor preference pages can be created
with DSML so the Preference graph includes three different types of field
editors and a background object for the field editors. The Preference graph has
only one property called the Page name. Each Preference graph instance can
contain one Page object and a maximum of ten of each field editor.

Table 7. Objects in the Preference graph.

Object Symbol Description

Page

The Page object is the
background for the field
editors and its purpose is to
increase the level of
abstraction because the
symbol resembles a real
preference page in Eclipse.

Directory
field editor

A field editor which accepts
a directory as an input.

File field
editor

A field editor which accepts
a file as an input.

String field
editor

A field editor which accepts
a String as an input.

47

The Page object should be connected to different field editors with the Contains
relationship, which is presented in Table 8. The Contains relationship is the only
relationship in the Preference graph, because the Preference graph contains only
static information, which is reused in other graphs.

Table 8. The only relationship in the Preference graph.

Relationship Description

Connects different field editors to
the Page object.

5.3 Database graphs

There are two database graphs in DSML: the HSQL database graph and the
MySQL database graph. Both graphs have a similar structure but differ in the
graph properties. The purpose of a database graph is to define the structure of the
database. Table 9 presents the objects that can be used in the HSQL database graph.

Table 9. Objects in the HSQL database graph.

Object Symbol Description

HSQL table

A table in the HSQL database.

HSQL column

A column in the HSQL database.

Table 10 presents the objects that can be used in the MySQL database graph. As
can be seen from Table 10, MySQL database has a similar structure as the
HSQL database graph.

48

Table 10. Objects in the MySQL database graph.

Object Symbol Description

MySQL table

A table in the MySQL database.

MySQL column

A column in the MySQL database.

The column objects in the database graphs can be reused in the View and Dialog
graphs (see Sections 5.4 and 5.5) when functionality is defined. The column
objects have a property called Home graph, which should be a reference to the
database graph where the column is defined. The column objects also have a
similar reference property to the table to which they belong. This makes it
possible to access the information in the database graphs also from the other
graphs where column objects are reused. The column objects have also a
property for the name and data type of the column. The data type can be integer,
double, varchar, or binary. There is only one relationship in the database graphs,
which is presented in Table 11.

Table 11. The only relationship in the Database graphs.

Relationship Description

Connects database columns to the table in
which they belong. Since only the Primary key
and the Table roles are mandatory, a table may
consist entirely of primary key columns.

There are some restrictions to the table and column names in a database. A regular
expression is used in constraining user input for the name property of the table and
the column objects. The expression that is used is [A-Za-z][A-Za-z0-9_]*, which
means that the name can consist of just letters, numbers, and underscores, but
can not begin with an underscore. It is also constrained such that a column and a
table can be in at most one Contains relationship. Each column in a database
table should also have a unique name. It is possible in MetaEdit+ to specify that
a property must have a unique value, but then each column that is defined, has to

49

have a unique name (also columns in different tables). Thereby, the column
name uniqueness in a table is not controlled in the DSML level, but checked in
the code generator instead.

The main difference between the databases is the transparency: the MySQL
database is not transparent to the end user as the HSQL database. The structure
of the MySQL database needs to be modelled in the MySQL database graph, but
the actual database tables need to be created with a separate MySQL
administration tool. If an HSQL database is used, the user does not have to
create the database since all the database management work is done by the
generated plug-in. A MySQL database can also be remote or local, but an HSQL
database can only be local. These differences do not show in DSML, but the
difference in the database parameters does. The database parameters are
specified with the graph properties. The HSQL database needs two parameters to
operate: the directory in the local file system where the database is located, and
the name of the database. Table 12 presents the properties of the HSQL database
graph. The directory and the name can be specified either by using field editors
in preference pages or by using a constant value. Thus the parameters can be
specified either at run-time, or already at the modelling phase. If all properties
are set, the field editors in the preference pages are preferred.

Table 12. Properties of the HSQL database graph.

Property name Property data type Regular expression for
property value

Database directory preference Directory field editor None

Database name preference String field editor None

Database directory constant String [C-Z]\:\\\\[A-Z a-z\\]*

Database name constant String [A-Za-z][A-Za-z0-9_]*

Table 13 presents the properties of the MySQL database graph. The MySQL
database needs five parameters: IP-address of the host, name, port, user name,
and password. Each of these can be specified either by a String field editor from
a Preference graph, or by a string or number constant. Primarily, the database
parameters are fetched from the preferences, and secondarily from the constants.

50

Table 13. Properties of the MySQL database graph.

Property name Property data type Regular expression for
property value

Database host preference String field editor None

Database name preference String field editor None

Database port preference String field editor None

Database user name preference String field editor None

Database password preference String field editor None

Database host constant String None

Database name constant String [A-Za-z][A-Za-z0-9_]*

Database port constant Number None

Database user name constant String None

Database password constant String None

5.4 View graph

The purpose of the View graph is to describe the contents and actions in an
Eclipse view. Table 14 presents the objects in the View graph. The purpose is
that the HSQL and MySQL column objects that are used in the View and Dialog
graphs are defined in the database graphs and reused in the View and Dialog
graphs. This means that only existing column objects should be added to the
View and Dialog graphs. It can not be constrained in the MetaEdit+ tool that
only existing column objects can be added to a graph. However, it is possible to
add also new column objects and generate a working plug-in, as long as the new
column object has the same properties as an existing column object defined in a
database graph.

51

Table 14. Objects in the View graph.

Object Symbol Description

View
background

Background object for the other objects in the
view graph.

HSQL view
table

Specifies that the view shows information from an
HSQL database. The name property of this object
specifies which database column is shown as a
table item in the view.

MySQL view
table

Specifies that the view shows information from a
MySQL database. The name property of this
object specifies which database column is shown
as a table item in the view.

Context menu

Context menu for an HSQL or MySQL view
table.

Menu item

Menu item in the context menu. Can be
decomposed into a View or a Dialog graph, which
specifies what kind of view or dialog is opened
when the menu item is selected.

Toolbar
button

A toolbar button in the view toolbar. Can be
decomposed into a View or a Dialog graph, which
specifies what kind of view or dialog is opened
when the toolbar button is pressed.

Browser

Renders an HTML document in the view.

Picture Renders an image in the view. The image can be
in GIF, JPEG, PNG, BMP, or TIFF format.

HSQL
column

Presented in
Table 9

MySQL
column

Presented in
Table 10

Can be used for specifying which database
column is shown in a browser or a picture.

52

The relationships that can be used in the View graph are presented in Table 15.
A View graph instance may contain both an HSQL view table and a MySQL
view table object, but only one of them can be connected to the View object,
which means that a view can be used to show information either from an HSQL
database table, or a MySQL database table, not both. A view that contains a
browser or a picture has to be opened from another view that contains a view
table so that content is shown in the browser or picture.

Table 15. The relationships in the View graph.

Relationship Description

Specifies the content of the view.

View
table

Context
menu

Has context menuHSQL view table/
MySQL view table

Context
menu

Specifies that a view table has a
context menu.

Context
menu

Menu
itemMenu item

Contains

Menu

Connects menu items to the context
menu.

Specifies the column that is shown in
the browser or picture (the column has
to be from the same database table
which is shown in the view from
which the Browser or Picture view is
opened).

Specifies that the menu item deletes
the selected table item from the
database.

Reloads all the table items from the
database.

53

5.5 Dialog graph

The purpose of the Dialog graph is to specify a dialog box that can show
information in the database, accept user input and possibly perform some actions
to the database. Table 16 presents the objects that can appear in the Dialog
graph. In the code level, GridLayout is used for the layout of the dialog. The
GridLayout lays out the widgets in rows and columns, so that each row has the
same number of widgets. GridLayout lays out the widgets in the dialog in one
column by default. That is why the Dialog box object contains a property called
Number of columns, which makes it possible to control the layout of the dialog.

Table 16. Objects in the Dialog graph.

Object Symbol Description

Dialog box

Background object for the widgets
in the dialog. There can be only
one Dialog box object in the
Dialog graph.

Checkbox A Boolean type widget.

Drop down list

A widget that contains a list of
Strings.

Label

A plain text widget which can not
be edited.

Text field

A text field widget which can
show text and accept user input.

Button A button that triggers an action.

HSQL column Presented in Table 9

MySQL column Presented in Table 10

Are used for specifying the targets
of the database operations.

Directory field editor

File field editor
String field editor

Presented in Table 7 Can be used to initialise Text field
widgets.

54

The majority of the functionality is defined in the Dialog graph, which contains
eleven different relationships. Four of the relationships are binary relationships,
which are presented in Table 17. A Button can not be in more than one Widget
role, which means that it can be connected to the Dialog box object either with
the Contains relationship, or with the Is default button relationship (not both).

Table 17. Binary relationships in the Dialog graph.

Relationship structure Description

Connects the different widgets to the Dialog
box. Widgets can take part in only one
Contains relationship.

Defines which button in the dialog is the
default button that is initially selected. A
Dialog box may take part in only one Is
default button relationship.

Initialises a text field with a single value from
preferences or from the database table that is
shown in the view from which the dialog box
was opened.

Initialises a drop down list with all the values
from a certain database column.

In addition to the binary relationships, there are also so called n-ary relationships
in the Dialog graph, which have more than two participating objects. Figure 11
presents the objects that can participate in the Insert relationship, which is used
for inserting a new row to the database. The Trigger role specifies the button in
the dialog box, which triggers the Insert action. All the n-ary relationships in the
Dialog graph have the Button object in the Trigger role. The Value to be inserted
role specifies the text field in the dialog from which the value to be inserted is
read at run time. The Target column role specifies the database column to which
the value is inserted. A Button object can participate in only one Insert
relationship.

55

Button

Text field
Value to be

inserted

Trigger

HSQL column/
MySQL column

Target
column

Figure 11. The Insert relationship.

The Insert relationship does not use the where clause in the SQL statement. In all
the other relationships, the where clause is needed. The where clause is specified
with the Condition column and Condition value roles. The Condition column
role specifies the column that is used in the where clause and the Condition
value specifies a widget, from which the value for the column is read. The
Condition value role has a property called Operator, which specifies the operator
that is used in the where clause. Both of the roles have a property called
Sequence number, which connects the specific value to a certain column. This
way the where clause can contain several conditions which are combined by
using the AND operator. If the Condition value is not specified, the value is
taken from the selected item in the view if the selected item has a column with
the same name. If the Condition value role is not specified and there is no item
selected, the select operation is not executed.

Figure 12 presents the objects that can participate in the Select relationship,
which is used for retrieving data from the database. The Column role specifies
the column to be selected. If the Column role is not used, it means that instead of
selecting a specific column, table items are selected from the view from which
the dialog was opened. The Target widget role specifies the widget where the
result of the Select operation is written. If the target widget is not specified, the
result of the select operation is shown in the view from which the dialog box was
opened. However, if the select operation is specified to a different database table
that is shown in the view, the results are not shown in the view. The Enable role
specifies the checkbox that enables or disables the Select action at run time. The
Button object may participate in only one Select relationship.

56

Figure 12. The Select relationship.

Figure 13 presents the objects that can participate in the Update relationship,
which is used for updating an existing field in the database. The Target column
role specifies the column that is to be updated and the widget in the New value
role specifies the new value for the column. If the condition column and the
Condition value roles are not specified, the selected view item is updated if it has
a column with the same name as the target column. The Button object can
participate in multiple Update relationships, so many values can be updated by
pressing a single button.

Button

Drop down list/
Text field New value

Trigger
HSQL column/
MySQL column Target column

Checkbox

Drop down list/
Text field

HSQL column/
MySQL columnCondition column 0..5

Condition
value 0..5

Enable 0..1

Figure 13. The Update relationship.

Figure 14 presents the Delete relationship, which is used for deleting a row from
the database. A button object can participate in only one Delete relationship.

Figure 14. The Delete relationship.

In the previously presented relationships, the type of the target column did not
matter, since the operation is always made to the database which is shown in the
view from which the dialog box was opened. However, in the remaining

57

relationships, the type of the column is taken into account. The Transfer from
file relationship transfers binary or character data from the file system to an
HSQL or MySQL database. Figure 15 presents the objects that can participate in
the Transfer from file relationship. If the Condition column and the Condition
value roles are not specified, the selected view item is updated if it has a column
with the same name as the target column. The Button object can participate in
multiple Transfer from file relationships, so many values can be updated by
pressing a single button. The File role specifies the text field in the dialog box
that should contain the file path of the source file. The Target column role
specifies the column in the database where the contents of the file are transferred.

Figure 15. The Transfer from file relationship.

Sometimes it is necessary also to transfer data from the database to the file
system. For this purpose, there is the Transfer to file relationship. Figure 16
presents the structure of the Transfer to file relationship. The File role specifies
the text field that should contain the file path of the target file. The Source
column specifies the column from which the data is transferred to the target file.

Figure 16. The Transfer to file relationship.

It would be possible to transfer data between the databases using only the
Transfer to file and Transfer from file relationships (in that order) but for
convenience, also a relationship for transferring data directly between the
databases is provided. The Transfer between databases relationship can be used
to transfer data from an HSQL database to a MySQL database or the other way

58

round. Figure 17 presents the structure of the Transfer between databases
relationship. The Source column and the Target column roles specify the source
and the target columns for the transfer. The source and the target columns have
to be from different databases.

Figure 17. The Transfer between databases relationship.

59

6. Implementation of the code generator
The syntax of DSML defines what kind of objects can appear in a graph and
how they can be connected with different relationships. The semantics of DSML
is defined in the code generator. The code generator traverses the model and
uses the information in the model to generate a fully functional application. The
code generator is defined in the Generator Editor tool provided by the MetaEdit+
environment. The code generator consists of reports, which can call other
reports. The reports are written in the MERL scripting language. An example of
the MERL language is presented in Figure 18, which includes a part of the
generator definition that generates the plugin.xml file. A report has to be defined
for a certain graph type. For example, if a report would be defined for the Dialog
graph and the context is View graph when the report is called, the generator does
not find the constructs in the Dialog graph. From here on, a report is called a
generator or a sub generator.

1 � <extension point = "org.eclipse.ui.views">� newLine
2 foreach .View category{
3 � <category id = "Category� objectid �"� newLine
4 � name = "� :Category name �"/>�newLine
5 }
6 foreach .View{
7 variable �category� write �0� close
8 do ~View>Contains~Category.(){
9 variable �category� write �Category� objectid close
10 }
11 do decompositions{
12 foreach .View{
13 � <view �
14 if $category <> �0� then
15 �category = "� $category �"� newLine
16 endif
17 � class = "� $package �.view.View� objectid �"� newLine
18 � icon = "icons� sep :Icon path;2 %file�"� newLine
19 � id = "View� objectid �"� newLine
20 � name = "� :View name;1 �"/>� newLine
21 }
22 }
23 }
24 � </extension>� newLine

Figure 18. An example of the MERL language.

60

The first priority when implementing the code generator is that the generated
code should be of high quality and contain as few errors as possible. As stated
before, the constraints set for DSML are not comprehensive so it is possible to
construct a model that does not define the plug-in completely. For this reason, it
is important that the code generator takes care of the constraints that could not
be defined in the DSML level.

6.1 Code style

It is good coding practice to give classes, methods, and variables descriptive
names so that the code is easy to understand by an outsider. However, since the
purpose of domain-specific modelling is to develop such a code generator,
which is able to generate 100 percent code that does not require manual editing
it is not the first priority while developing the code generator that the generated
code is easy to understand. The generator names the classes and variables by
combining the type of the object and the object ID, which is a property that
MetaEdit+ automatically assigns for each of the object instances. The names can
also be more complicated, including possibly many object IDs. This kind of
naming convention is used because Java class names can not have empty space
and the object ID never contains empty space. The object ID is also unique so
this procedure guarantees uniqueness of the class and variable names. This
naming scheme does, however, also have a downside: objects in dialogs can not
be reused because this causes duplicate names in the code.

6.2 The structure of the code

The code generator implementation is based on the existing implementation of
the Stylebase for Eclipse tool, because it is easier to define the generator when
there is some idea of the required generation result. The Stylebase for Eclipse
tool consists of three separate plug-ins: the core plug-in, the MySQL database
plug-in, and the HSQL database plug-in. The core plug-in contains most of the
functionality and at least one database plug-in needs to exist for the core plug-in
to execute successfully. The core plug-in applies the Model-View-Controller
architectural pattern. The MVC architectural pattern divides the application into
three parts: the model, the view, and the controller. The model contains the core
functionality and data, the view displays the information to the user, and the

61

controller handles user input. The database plug-ins are quite simple and they do
not contain any user interface elements, so they do not follow the MVC
architectural pattern. [47, 48 p. 125]

Figure 19 presents a simplified UML diagram of the structure of the code that
the generator should generate. The source code of the core plug-in is contained
in one Java package, whose name is determined by the Package name property
of the Workbench graph. The top package is decomposed into five sub packages:
controller, view, model, preferences, and system. Classes are presented as
rectangles inside the packages in Figure 19. The oid in the class names stands for
object id. The top package contains the plug-in activator class which is
responsible for the plug-in life cycle. Each view has its own View controller
class, which is named after the object id of the view. View controller class is
responsible for creating all the actions for the View. There is also a Model admin
class for each view. The View controller class communicates with the model
admin class through the IModelAdmin interface. The model admin
communicates with the database plug-ins through the IDbPlugin interface.

<<package>> Package name

<<package>>
view

<<package>>
controller

IViewHandler

<<package>>
model

View +
oid

View + oid +
Dialog + oid

ModelAdmin +
oid

IDbPlugin + oid

View + oid +
Controller

<<plug-in>> MySQL<<plug-in>> HSQL

IDbPlugin + oid

<<package>>
system

<<package>>
preferences

Activator

TableItemContainer + oid

TableItem + oid

IModelAdmin +
oid

Actions

<<creates>>

Figure 19. A simplified UML diagram of the structure of the generated code.

62

Although the basis for the implementation was the existing implementation, there
were some modifications that were necessary. The Model and the database plug-
ins required the most changes since in the Stylebase for Eclipse tool, only patterns
are saved in the database and in constructed DSML, any kind of data should be
possible to be stored in the database. This is why the IModelAdmin and the
IDbPlugin interface had to be made independent of the data stored in the database.

6.3 The structure of the code generator

The instructions for code generator definition are that there should be a separate
code framework and the generator should generate as little code as possible (i.e.
glue code). Since the existing source code of the Stylebase for Eclipse tool had
to be modified, it was easier to have all the necessary code in the generator and
not as separate files. Of course, there is the Eclipse platform which is not
included in the code generator. Also the database drivers are provided as
separate jar files. Otherwise, all the necessary parts of an Eclipse plug-in are
generated by the code generator.

Figure 20 presents the structure of the code generator. The code generator has a
hierarchical structure where the top level generator is responsible for calling the
sub generators. The names of the sub generators start with an underscore, which
identifies the generator as a sub generator. The top-level generator is called
generate and it creates some variables and translators, creates the plug-in
directory, and calls the sub generators.

Figure 20. The structure of the code generator.

63

The rmdir and mkdir sub generators include commands for removing a directory
and creating a directory in the file system. The hsqlDatabase and the
mysqlDatabase sub generators create the HSQL and MySQL database plug-ins,
respectively. The structure of these generators is similar to the structure of the
top-level generator, since all the corresponding items need to be created for the
database plug-ins also. The icons sub generator creates the icons directory under
the plug-in directory and then copies the icons that are used in the views, menu
items and toolbar buttons to the icons directory. The source code generator
creates all the necessary Java source files for the core plug-in. The schema sub
generator creates the schema directory and an XML description of the details of
each extension point provided by the core plug-in. The pluginXML generator
creates the XML description of the plug-in. The manifest sub generator creates
the manifest file for the plug-in. Finally, the compile generator creates a BAT
file for compiling the source code and executes the file. The code generator
generates either two or three plug-ins, depending on the number of databases the
modeller has selected.

The sourceCode generator generates the source code for the core plug-in. Figure 21
illustrates the structure of the sourceCode generator. The sourceCode generator
has eight sub generators. The first sub generator is the same mkdir generator for
creating a directory that was used also by the top-level generator. The
framework sub generator generates the activator class for the plug-in, some
classes and interfaces to the controller package, and the system package. The
preferences sub generator generates the preferences package, containing code for
each preference page, as well as a preference initialiser, which initialises each
preference page with default values. The viewController sub generator creates a
controller class for each view. The view generator creates the code for each
view. The model sub generator creates the IDbPlugin interfaces, IModelAdmin
interfaces, and ModelAdmin classes for each view. The tableItem sub generator
generates the TableItem classes and the TableItemContainer classes for each
view table. The viewActions sub generator generates all the actions for each
view that contains a view table. DSML does not restrict adding actions also to
views that do not contain a view table, but these actions are not generated. The
viewActions generator also generates the code for the dialog boxes. The Dialog
layout definition is a little problematic. To create the dialogs from the dialog
graph, the code generator goes through the Contains relationships and orders
them by using the location. Then GridLayout is used for laying out the dialog. It

64

is possible that the layout is not the desired one, but by moving the objects
slightly, the desired outcome can usually be achieved.

Figure 21. The structure of the source code generator.

65

7. Case example: Stylebase for Eclipse
This chapter validates constructed DSML with a case example. First, the
Stylebase for Eclipse product family is described and the variability of the
product family is analysed. Second, DSML is used for modelling the Stylebase
tool and the source code for the plug-in is generated. Finally, the model-driven
approach of developing a repository-based Eclipse plug-in is compared with the
code-centred approach.

7.1 Case description

Stylebase for Eclipse is an open source software architecture knowledge
management tool which is implemented as a plug-in to Eclipse. Stylebase is a
knowledge base for storing design patterns and architectural styles as well as
quality attributes associated with them. The Stylebase for Eclipse tool allows the
user to browse and maintain the knowledge base. The purpose of the tool is to
improve the quality of software design and enable reuse of architectural information.
Stylebase for Eclipse is a product family, which possesses a number of variation
points. Figure 22 presents the features in the Stylebase for Eclipse product
family. The model input feature is represented with a dashed line in Figure 22,
since it is a so called external feature. An external feature is offered by the target
platform of the system so it is thus external to the architecture of the software
[49]. In this case, the repository can accept any kind of textual model of a design
or architectural pattern so the model input tool is not restricted in any way. [10, 47]

Figure 22. The Stylebase product family.

66

Figure 23 presents the features that are implemented in the current version of the
Stylebase for Eclipse tool. The current version of the Stylebase for Eclipse tool
utilises two relational database management systems: MySQL and HSQLDB.
MySQL database is used as a central repository, which can be used by multiple
users and HSQLDB is used to store patterns locally, and if the user wants to
share his or her patterns with others, he or she can upload them to the shared
MySQL database. [45]

Figure 23. Stylebase for Eclipse version Beta 1.1.

The ellipses labelled from A to D in Figure 23 represent the variant sets in the
Stylebase product that have a common variability realisation technique,
introduction time and binding phase. The binding of the model input feature is
not considered here because it is an external feature which does not have a
specific variability realisation technique. Table 18 presents how these variant
sets are realised in the current version of the Stylebase for Eclipse tool.

Table 18. Variability sets in Stylebase.

Variant set Variability realisation
technique

Introduction
phase Binding phase

A Database structure design
and manual coding

Requirements Design

B Manual coding Architecture Implementation

C Eclipse preference pages Design Run time

D Manual coding Requirements Implementation

67

Figure 24 presents the variant sets in the current version of the Stylebase tool
with the frame of reference presented in Section 2.3.

Figure 24. Variability in Stylebase.

7.2 Modelling the Stylebase for Eclipse tool

DSML and the code generator can be used for generating a large number of
different repository-based Eclipse plug-ins. For example, a photo management
application could be easily generated with DSML and the code generator. The
application could be used for example, to manage photos associated with
persons who appear in the photo. In this section, the modelling of the version
Beta 1.1 of the Stylebase for Eclipse plug-in is presented, which represents just
one of all the possible plug-ins that DSML is able to generate.

Figure 25 presents an instance of the Workbench graph, which is the top-level
graph of DSML. The version Beta 1.1 of the Stylebase for Eclipse tool uses both
an HSQL database and a MySQL database, which are declared in the Workbench
graph. The original Stylebase tool uses the same view to show content from each
of the databases and there is a toolbar button which changes the database. This is
not possible to do with DSML defined in this work, because a view is dedicated
to show information from either an HSQL database or a MySQL database by
using either the HSQL view table or the MySQL view table object. Consequently,

68

the contents of the HSQL database and the MySQL database are presented in
different views: the Stylebase HSQL and the Stylebase MySQL views, respectively.
The available quality attributes for the patterns are also presented in their own
views, instead of showing them in a Dialog box, as in the original Stylebase for
Eclipse tool. There are three preference pages declared in the Workbench graph.
The Preference page entitled Stylebase is the main preference page and the
pages entitled HSQL and MySQL are shown under the Stylebase page in the
Eclipse preferences dialog. All objects except the View category object have a
decomposition graph.

Figure 25. An instance of the Workbench graph.

7.2.1 HSQL database graph

Figure 26 presents an instance of the HSQL database graph, which describes the
structure of the HSQL database that is used by the Stylebase for Eclipse tool.
The database consists of three tables: patterns, quality_attributes, and
attribute_definitions. The patterns table contains information about a design or
an architectural pattern, such as the HTML description of the pattern. The
attribute_definitions table contains the definitions of quality attributes that are

69

associated with the patterns. The quality_attributes table connects the patterns to
their quality attributes and provides also the rationale field which can be used to
explain why a pattern promotes a quality attribute. The structure of the database
is not exactly the same as in the original Stylebase tool, because in DSML, the
references between different tables were a bit problematic. That is why the
primary keys in the quality_attributes table are strings that contain the name of
the pattern and the attribute, instead an integer id. This makes it easier to define
dialogs that show the quality attributes of a pattern.

Figure 26. An instance of the HSQL database graph.

7.2.2 MySQL database graph

Figure 27 presents an instance of the MySQL database graph, which defines the
structure of the MySQL database that is used by the Stylebase for Eclipse tool.
As can be seen from the figure, the structure of the MySQL database is the same
as the structure of the HSQL database. Again, the structure is not the same as in
the original Stylebase for Eclipse tool.

Figure 27. An instance of the MySQL database graph.

70

7.2.3 Preference graph

Figure 28 presents an instance of the Preference graph. This preference page
includes the Page object and five String field editors that contain MySQL
database related parameters. The Page object is the big background object and
the String field editor objects are connected to the Page object with the Contains
relationship (grey line with a red dot in the middle). The String field editors
defined in this Preference graph instance are reused in the MySQL database
graph properties to specify where the MySQL database plug-in can find the
necessary parameters to connect to the MySQL database.

Figure 28. An instance of the Preference graph.

7.2.4 View graph

Figure 29 presents a View graph instance, which is the decomposition graph for
the Stylebase HSQL view object in the Workbench graph. This View graph
instance describes an Eclipse view that contains an HSQL view table. The table
has a context menu, which contains eight menu items. There are more menu
items than in the original Stylebase for Eclipse tool, since all the actions could

71

not be implemented in the same way with DSML. All the menu items, except the
Delete menu item have decompositions into Dialog graphs, which describe the
dialog box that is opened when the menu item is selected. There are also four
toolbar buttons (number 1 in Figure 29). The first toolbar button opens a MySQL
view, so it decomposes into the View graph that defines the MySQL view. The
Add new pattern and Search patterns toolbar buttons have decompositions into
Dialog graphs. The last Toolbar button does not have a decomposition graph,
since it is connected with the Refresh relationship to the HSQL view table.

1. Toolbar
buttons

Figure 29. An instance of the View graph.

7.2.5 Dialog graph

Figure 30 presents an instance of the Dialog graph. This dialog shows the quality
attributes of the pattern that is selected in the Stylebase view. The problematic
nature of the references between different database tables can be seen in Figure 30.
The Initialise relationship (number 1 in Figure 30) can be used to initialise a
widget only if the column is in the same table that is shown in the view from

72

which the dialog was opened. Since the quality attributes of a pattern are in a
different table than the pattern, the attributes need to be retrieved using the
Select relationship. When the user presses the Button labelled Refresh attributes
(number 2 in Figure 30), the quality attributes are fetched to the drop down list
(number 3 in Figure 30). It is possible to use the select relationship to fetch all
columns in the table that is shown in the view from which the dialog was
opened, but again it is not possible to select multiple columns from another
database table. Therefore, the rationale needs to be fetched using another Select
relationship. When the user presses the button labelled �Refresh rationale�
(number 4 in Figure 30), the rationale is fetched to the text field (number 5 in
Figure 30). Because the nature of the GridLayout object, it is sometimes
necessary to add empty Label objects (number 6 in Figure 30) to the Dialog to
achieve a certain layout. It is not possible to reuse the objects in the dialog
graph, because the variables in the code are named after the object id of the
widget. However, it is possible to reuse widgets defined in other Dialog graphs.
This dialog can be used also to show the quality attributes in the MySQL
database, because the Insert, Update, Select, and Delete relationships do not use
the type of the database column (HSQL database column or MySQL database
column). However, the Transfer between databases, Transfer from file, and
Transfer to file relationships use the type of the column object to determine the
source or target of the operation.

Figure 30. An instance of the Dialog graph.

73

7.3 Generating the source code

After all the necessary features have been modelled with DSML, the source code
can be generated. The source code of the Stylebase for Eclipse tool is generated
by running the top-level generator called �generate� presented in Figure 20. The
necessary plug-ins are generated to the directory specified in the Destination
directory property of the Workbench graph. In this case, the destination directory
is set to the Eclipse plugins directory, so the Stylebase for Eclipse tool is ready
to use when Eclipse is restarted. Figure 31 presents a screenshot from Eclipse
with the generated tool. The dialog that is open in Figure 31 is the dialog that
was modelled in Figure 30.

Figure 31. The generated Stylebase tool in Eclipse.

Figure 32 presents a sample of the generated code. The code defines a new
button widget and it is a part of the createContents method of a dialog box. The
name of the button is specified in the model (row 2 in Figure 32) as well as the
size of the button (rows 4 and 5 in Figure 32).

74

1 this.button12882 = new Button(this.composite,SWT.NULL);
2 this.button12882.setText("OK");
3 GridData gd12882 = new GridData();
4 gd12882.widthHint = (int)74.0;
5 gd12882.heightHint = (int)21.0;
6 this.button12882.setLayoutData(gd12882);
7 this.button12882.addSelectionListener(new SelectionAdapter() {
8 public void widgetSelected(SelectionEvent e) {
9 View3781Dialog12669.this.setReturnCode(12882);
10 View3781Dialog12669.this.caller.handleInput();
11 }
12 });

Figure 32. A sample of the generated code.

7.4 Comparison of the MDD approach to the code-
centred approach

Domain-specific modelling is well suited to the software product family
approach and handling variability. The metamodel and the code generator
definition roughly correspond to the domain engineering phase, and using the
metamodel (i.e. modelling) and generating code from the model correspond to
the application engineering phase. The frame of reference for representing
variability presented in Section 2.3 is not directly applicable to domain-specific
modelling because the variability realisation techniques and the phases of the
software development process are different. In this work, a frame of reference
for representing variability in DSM is introduced. The new frame of reference is
presented in Figure 33 with the variant sets from Figure 22. The variant sets that
were previously bound at the implementation phase can now be bound already at
the modelling phase and code can be automatically generated. The variant set C
can be now bound already at the modelling phase, or alternatively at run time.

75

Binding phase

Introduction phase

Code generation
Modelling

DSML definition
Requirements 1

2
3
4
5

1 2 3 4 5

Code generator definition

A,B,C,D

C

Figure 33.Variability representation in DSM.

76

8. Discussion
The aim of this work was to define a prototype domain-specific modelling
language and a code generator for developing repository-based Eclipse plug-ins.
The work included many challenges but was also very rewarding. This chapter
presents some experiences during the work and analyses developed DSML and
the code generator.

8.1 Experiences on DSML design

Initially, it was difficult to invent a suitable domain for the work, and even after
the domain was selected, finding the relevant domain concepts was somewhat
troublesome. The reason for this was probably the fact that the author of this
work had no previous experience in any kind of language design. The selected
approach for the work was the look and feel approach with domain concepts (see
Section 4.2). It was quite easy to pick the relevant user interface concepts from
Eclipse to DSML. Combining the functionality to the user interface concepts
seemed daunting at first, but after initial struggles, also the behaviour part started
to come together. However, the implementation of the functionality is not fully
satisfying due to the complex nature of SQL queries.

It was hard not to be too greedy with the number of different domain concepts.
This relates to the trade-off between generality and expressiveness: the more
general the language, the less expressive it becomes [50]. Also, the difficulty of
implementing the code generator increases every time a new concept is added to
the language. It was necessary to leave out some concepts that were initially
selected, so that the scope of the work would not become overwhelming.
Consequently, when constructing DSML, the number of initial concepts should
be small and the relationships in the language should be kept simple. New
concepts should be added after the code generator works with the initial
concepts.

77

8.2 Experiences in DSML implementation

The selected tool for the definition of DSML and the code generator was the
MetaEdit+ environment, which was quite easy to learn but which lacked some
more intuitive features. Form-based metamodelling was used in this work, which
meant that all the types in DSML were defined using dialog boxes provided by
the MetaEdit+ tool. This was not the most convenient way of defining DSML
because every object, relationship, role, and property had to be defined in a
separate tool and after that the concepts were tied together in the Graph tool.
This was sometimes quite awkward when defining a graph only to realise a role
was needed to some relationship. This meant having to start the role tool and
generate the role and return to the graph tool. Nevertheless, form-based
metamodelling was a good selection for this work because of the better precision
over graphical metamodelling.

Also the functionality in the graphical diagrams was sometimes different than
was expected. For example, intuitively one might expect that when an object is
double clicked, the decomposition graph of that object should open. However,
this was not the case; instead the decomposition graph had to be opened from a
pop-up menu which appeared when the object was clicked with the right mouse
button. Also the modality of dialogs was annoying sometimes when many
windows were open.

The symbol definition for metatypes was also somewhat limited. It was not
possible to use the icon specified by the icon path property in the object symbol.
Luckily, it is possible to see the icon by selecting �Execute� from the input box,
but it would have been more intuitive to the user of DSML if the icon would
have been a part of the object symbol.

The code generator definition was the most time consuming task in this work. At
first, it was necessary to learn the MERL generator definition language syntax,
which was not always so easy, even though MERL is a relatively simple
language. Even after most of the MERL syntax was correct, problems came up,
e.g. comparing strings instead of integers while ordering elements. Also, the
generator had to be defined for the right graph type, which was sometimes a
little confusing. Luckily these problems were quickly solved by sending e-mail
to MetaCase support. After getting the MERL syntax right, it did not guarantee

78

that the syntax of the generated Java code was correct. The bright side in the
errors in the generated code was that if there were many, they were in the same
place, so it was quite easy to discover them. Testing and debugging the
generated plug-in was also difficult, especially because the database
functionality was in different plug-ins than the core functionality. For this
reason, it might have been more reasonable to implement the whole functionality
in a single plug-in. On the other hand, it was easier to implement the
functionality as separate plug-ins as the existing Stylebase for Eclipse tool was
implemented that way. Eclipse also brought its own problems to the mix. For
example, if the plugin.xml file changes, the change does not take effect when
Eclipse is restarted if the name of the plug-in stays the same. It is required either
to change the name of the plug-in, or remove the plug-in from the plugins
directory and restart Eclipse, and then generate the plug-in and restart Eclipse
once more.

Since the nature of the work was iterative, sometimes a more convenient name
for an object came up or the structure of a relationship needed to be changed
completely. Changing the metamodel, made it necessary to change also the code
generator and forgetting the old name or structure somewhere caused errors that
were not always easy to find.

Although the code generator tries to remove the old plug-in directories first
before creating new ones, this does not always happen, because it is not possible
to remove the directories if there is an access violation (if there is for example a
command prompt window open at the same directory). Then the files are
generated to the old directory and some old files may cause problems in the
compiling phase. The best way to overcome this problem was to remove the old
plug-ins first by hand (or close all windows that may cause an access violation).

In the DSM field, there are only few commercial tools available. Based on the
tool comparison done in Section 3.2 and experiences on MetaEdit+, it can be
stated that, MetaEdit+ is a good environment for the development of DSML and
a code generator. There were some features that were not used in this work, such
as the model animation possibilities, but during this work, a good overall
understanding of the MetaEdit+ tool was gained.

79

Concerning experiences on DSML implementation, the following rules can be
summed up:

1. Learn how to use the metamodelling tool properly before starting the
implementation of DSML.

2. If Eclipse plug-ins are developed, implement rather a single plug-in than
multiple plug-ins.

3. Avoid changing the names of DSML concepts after (a part of the) code
generator is implemented.

8.3 Evaluation of DSML

Developing DSML is a difficult task, since both domain and language
development expertise are required [50]. The author of this work had relatively
little experience in developing repository-based Eclipse plug-ins, and no
experience at all in developing domain-specific modelling languages. However,
prototype DSML and a code generator were successfully developed, and
working Eclipse plug-ins can be generated. The model-driven approach enables
the binding of the variant sets in the modelling phase instead of the
implementation phase. In principle, the variant sets have to be bound earlier than
before, but since there is no manual implementation phase in the model-driven
approach, the variability can be handled in a more flexible way than in the
traditional code-centred approach.

The requirements that were set for DSML in Section 4.1 were fulfilled quite
well. R3 was not fulfilled totally, since DSML is not as intuitive and easy to use
as it should have been. Partly the usability of DSML is restricted by MetaEdit+,
but the usability might have been improved by better design of the language and
the code generator. In the definition of dialogs, there are also some weaknesses.
First, the dialog box has to have the same number of widgets in every row, so
sometimes empty labels need to be added to achieve a desired layout. Also, the
number of columns in the dialog needs to be selected correctly from the Dialog
box object. The benefit of the DSM approach is its automatic code generation, so
even if the layout comes out different than was required, it is easy to change the
model and generate new plug-ins. It may be necessary to perform several

80

iterations before the desired layout is achieved. Second, the behaviour definition
in the Dialog boxes is quite complex because of the relationships have so many
roles. It was difficult to define the roles to be simpler, because SQL statements
need to be defined precisely.

The main problem that hinders the usability of DSML, in my opinion, is that
DSML is too complicated. Although some simplifications were made along the
way, the final result was still not simple enough. The n-ary relationships in the
Dialog graph have too many roles and make the Dialog graphs look cluttered.
This leads also to the fact that requirement R4 was not fully met, since it is
possible to construct a model that either produces compilation errors, or does not
perform valid actions to the database. However, the generated plug-in logs
events to the log file, from which the modeller can conclude the errors in the
modelling of the database action. To facilitate the adoption of DSML, a simple
language with minimum functionality should be developed as the first DSML
implementation.

Another problem in DSML is the references between database tables. It is
possible to form the where clause of the SQL statement with the Condition
column and Condition value roles, but it is not possible to use the result of a
select statement as the condition for the next select statement without saving the
results to a widget in a dialog box. This leads to poor usability of the dialogs
since the user has to click several buttons to see the required information.

For the most part, the case example was successful, although there were some
things that could not be modelled with DSML. In the Stylebase for Eclipse tool,
the patterns in the MySQL database can be locked to a certain user and they can
not be modified by others while some user possesses a lock. This was not
possible to model with DSML. In addition, some dialog boxes were not identical
to the dialog boxes of the Stylebase for Eclipse tool because of the restrictions in
the database operations. In the Stylebase for Eclipse tool, the HSQL database
stores only the file paths of the pattern files, which makes the database perform
faster. This was not possible to do with DSML.

The iterative development approach was well suited for the development of
DSML and the code generator. First, a minimum language was developed and a
code generator which was able to generate only a basic Eclipse plug-in with an

81

empty view and some preference pages. After initial experiments, it was
encouraging to notice that the code generator works and continue building the
language. At a later stage, it was necessary to construct multiple models to find
errors in the code generator. At first, only a single model was used for testing
and all went smoothly. When a whole new model was constructed, multiple
compilation errors occurred.

The domain is quite restricted since the target platform is Eclipse and of all the
possible Eclipse plug-ins only repository-based ones belong to the domain.
However, the whole idea behind domain-specific modelling is to restrict the
domain and be able to generate full code for that restricted domain. DSML can
be also extended if necessary. There are many possible directions for extensions:

1. Extending the features of the language
2. Extending to other kinds of repository-based applications
3. Extending to all possible Eclipse plug-ins.

In the first alternative, new widgets or new operations to the database could be
added to the Dialog graph. It would also be useful to add the Condition column
and Condition value roles to the Initialise relationship as well as add a possibility
to select multiple columns with the Select relationship. In the second alternative,
the Database graph and the Dialog graph would be ready to use as is, but it
might be necessary to add other graphs to DSML. The third alternative might be
a little easier to implement than the second alternative. For example, in the
Workbench graph, the possibility to define own custom editors could be added
as well as help pages for the plug-in. In the View graph, it would be easy to add
new content types such as plain text. Also a pull down menu and a double click
action could be easily added to the View graph. The data types in the databases
are also very restricted but this is also possible to change by changing the
database column definitions and implementing the changes to the code
generator. Since DSML is going to be published in an open source community
[11], new ideas for extension possibilities may also come from the community.

82

Valuable experience on defining DSML and code generator was gained during
the work. This experience is summed up in the following rules of thumb:

1. If DSML is developed without earlier experience, focus on simplicity.
a. Try to keep the number of objects to a minimum.
b. Try to avoid too many roles in relationships.

2. Develop the language and the code generator iteratively.

3. Experiment with different model variants to discover errors in the code
generator.

To sum up, developed DSML is able to generate repository based Eclipse plug-
ins. The level of abstraction was raised well because the dialogs and the
preference pages resemble the real Eclipse dialogs and preference pages.
Developed DSML and the code generator reduce the time to develop a
repository-based Eclipse plug-in. It is nice to see that after initial doubts, 100
percent code generation really is possible and not just a beautiful idea.

83

9. Conclusion
The aim of this work was to develop prototype DSML and a code generator for
creating repository-based Eclipse plug-ins. A metamodelling tool comparison
was performed to select a suitable tool for the development of DSML and the
code generator. Four metamodelling tools were compared and the MetaEdit+
tool was selected because of the good code generation definition possibilities.
DSML and a code generator for creating repository-based Eclipse plug-ins were
developed with the MetaEdit+ metamodelling tool.

The requirements for DSML were fulfilled quite well. There are some
deficiencies in the constraints for DSML and in the references between database
tables. The usability of DSML would also have been better if the language
would have been simpler. The extensibility requirement for DSML was fulfilled
well and there are multiple possibilities for future extensions.

DSML was demonstrated by generating the source code for the Stylebase for
Eclipse plug-in. The case example shows that DSML facilitates model-driven
development of repository-based Eclipse plug-ins. Since the Stylebase for
Eclipse plug-in was previously implemented manually, it was possible to
compare the model-driven approach with the traditional code centric approach.
A frame of reference for representing variability in domain-specific modelling
was presented in this work. The domain-specific approach enabled the binding
of the variant sets of the Stylebase for Eclipse product family in a more flexible
way than with the traditional code-centred way, since the binding can be done in
the modelling phase instead of in the manual implementation phase.

DSML developed in this work can be used for modelling a repository-based
Eclipse plug-in and the code generator is able to generate a fully working
Eclipse plug-in. DSML speeds up the development of repository-based Eclipse
plug-ins and thus demonstrates the usefulness of the domain-specific modelling
approach.

84

References

[1] Greenfield J. & Short K. (2004) Software Factories: Assembling Applications
with Patterns, Models, Frameworks and Tools. Wiley Publishing, Inc.,
Indianapolis, USA. 666 p.

[2] Tolvanen J. P. (Accessed: 18.1.2008) Domain-Specific Modelling: How
DSM Code Generation Can Go Beyond The Benefits Delivered By UML.
URL: http://reddevnews.com/techbriefs/print.aspx?editorialsid=120.

[3] Selic B. (2003) The Pragmatics of Model-Driven Development. IEEE
Software, Vol. 20, Issue 5, pp. 19�25.

[4] Luoma J., Kelly S. & Tolvanen J. P. (2004) Defining Domain-Specific
Modeling Languages: Collected Experiences. In: Proceedings of the 4th
OOPSLA Workshop on Domain-Specific Modeling (DSM�04), Oct. 25,
Vancouver, British Columbia, Canada. Pp. 1�10.

[5] Gamma E. & Beck K. (2004) Contributing to Eclipse: Principles, Patterns
and Plug-Ins. Addison-Wesley Professional, Boston. 395 p.

[6] Anonymous. (Accessed: 16.1.2008) About GEMS. URL:
http://www.eclipse.org/gmt/gems/about.php.

[7] Anonymous. (Accessed: 31.8.2007) EclipsePlugins: Details for the Merlin
Generator Eclipse Plug-in. URL: http://eclipse-plugins.2y.net/eclipse/plug
in_details.jsp?id=916.

[8] Anonymous. (Accessed: 17.1.2008) Eclipse Modeling Framework Project
(EMF). URL: http://www.eclipse.org/modeling/emf/.

[9] Anonymous. (Accessed: 17.1.2008) Eclipse Graphical Editing Framework
Project (GEF). URL: http://www.eclipse.org/gef/.

http://reddevnews.com/techbriefs/print.aspx?editorialsid=120
http://www.eclipse.org/gmt/gems/about.php
http://eclipse-plugins.2y.net/eclipse/plug
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/gef/

85

[10] Henttonen K. & Matinlassi M. (2007) Contributing to Eclipse: a Case
Study. In: Proceedings of the Software Engineering 2007 Conference,
March 29�30, Hamburg, Germany. Pp. 59�70.

[11] Anonymous. (Accessed: 14.1.2008) Stylebase for Eclipse. URL:
http://stylebase.tigris.org/.

[12] Royce W. W. (1987) Managing the Development of Large Software Systems:
Concepts and Techniques. In: Proceedings of the 9th International
Conference on Software Engineering (ICSE �87), March, Monterey,
California, United States. Pp. 328�338.

[13] OMG. (Accessed: 31.8.2007) MDA Guide Version 1.0.1. URL:
http://www.omg.org/docs/omg/03-06-01.pdf.

[14] Booch G., Brown A., Iyengar S., Rumbaugh J. & Selic B. (2004) An
MDA Manifesto. MDA Journal: Model Driven Architecture Straight from
the Masters. URL: http://www.bptrends.com/publicationfiles/05-04%20
COL%20IBM%20Manifesto%20-%20Frankel%20-3.pdf.

[15] OMG. (Accessed: 27.11.2007) Model Driven Architecture (MDA) FAQ.
URL: http://www.omg.org/mda/faq_mda.htm.

[16] Deursen A., Klint P. & Visser J. (2000) Domain-Specific Languages: An
Annotated Bibliography. SIGPLAN Notices, Vol. 35, Issue 6, pp. 26�36.

[17] Blake D. (Accessed: 15.8.2007) Domain-Specific Languages Versus Generic
Modeling Languages. URL: http://www.ddj.com/architect/199500627.

[18] Langlois B., Jitia C. E. & Jouenne E. (2007) DSL Classification. In:
Proceedings of the 7th OOPSLA Workshop on Domain-Specific Modeling
(DSM�07), Oct. 21�22, Montréal, Canada. Pp. 28�38.

[19] Feilkas M. (2006) How to Represent Models, Languages, and
Transformations? In: Proceedings of the 6th OOPSLA Workshop on
Domain-Specific Modeling (DSM�06), October 22, 2006, Portland, Oregon
USA. Pp. 169�176.

http://stylebase.tigris.org/
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.bptrends.com/publicationfiles/05-04%20
http://www.omg.org/mda/faq_mda.htm
http://www.ddj.com/architect/199500627

86

[20] Seifert T., Beneken G. & Baehr N. (2004) Engineering Long-Lived
Applications using MDA. In: Proceedings of the IASTED Conference on
Software Engineering and Applications, November 9�11, MIT, Cambridge,
MA, USA. Pp. 241�246.

[21] Clements P. & Northrop L. (2001) Software Product Lines: Practices and
Patterns. Addison-Wesley, Boston, USA. 563 p.

[22] Svahnberg M., van Gurp J. & Bosch J. (2005) A Taxonomy of Variability
Realization Techniques. Software: Practice and Experience, Vol. 35, Issue 8,
pp. 705�754.

[23] Jacobson I., Griss M. & Jonsson P. (1997) Software Reuse: Architecture,
Process and Organization for Business Success. Addison-Wesley, New
York. 497 p.

[24] Jaring M. & Bosch J. (2002) Representing Variability in Software Product
Lines: A Case Study. In: Proceedings of the Second Software Product
Line Conference, August 19�22, San Diego, USA. Pp. 15�36.

[25] Anonymous. (Accessed: 31.8.2007) SWT: The Standard Widget Toolkit.
URL: http://www.eclipse.org/swt/.

[26] Clayberg E. & Rubel D. (2006) Eclipse: Building Commercial-Quality
Plug-Ins. Addison-Wesley, Upper Saddle River, NJ. 810 p.

[27] Microsoft Corporation. (Accessed: 19.12.2007) Domain-Specific Language
Tools documentation. URL: http://msdn2.microsoft.com/fi-fi/library/bb12
6235(en-us,VS.80).aspx.

[28] Kosar T., Mernik M. & Lopez P. (2007) Experiences on DSL Tools for
Visual Studio. In: 29th International Conference on Information Technology
Interfaces, June 25�28, Cavtat, Dubrovnik, Croatia. Pp. 753�758.

[29] Microsoft Corporation. (Accessed: 20.12.2007) Overview of Domain-
Specific Language Tools. URL: http://msdn2.microsoft.com/en-us/library/
bb126327.aspx.

http://www.eclipse.org/swt/
http://msdn2.microsoft.com/fi-fi/library/bb12
http://msdn2.microsoft.com/en-us/library/

87

[30] Institute for Software Integrated Systems Vanderbilt University. (Accessed:
14.1.2008) Vanderbilt University End User Licence Agreement. URL:
http://repo.isis.vanderbilt.edu/tools/tool/GME/License.

[31] Institute for Software Integrated Systems Vanderbilt University. (Accessed:
19.12.2007) GME: The Generic Modeling Environment. URL:
http://www.isis.vanderbilt.edu/projects/gme/.

[32] Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J., Thomason C.,
Nordstrom G., Sprinkle J. & Volgyesi P. (2001) The Generic Modeling
Environment. In: Proceeding of the IEEE International Workshop on
Intelligent Signal Processing (WISP�2001), May 24�25, Budapest,
Hungary.

[33] Amyot D., Farah H. & Roy J. F. (2006) Evaluation of Development Tools
for Domain-Specific Modeling Languages. In: Proceedings of the 5th
International Workshop on System Analysis and Modeling: Language
Profiles (SAM 2006), May 31 � June 2, Kaiserslautern, Germany. Pp.
183�197.

[34] Institute for Software Integrated Systems Vanderbilt University.
(Accessed: 10.1.2008) GME User�s Manual Version 5.0. URL:
http://www.isis.vanderbilt.edu/Projects/gme/GMEUMan.pdf.

[35] Anonymous. (Accessed: 17.1.2008) Eclipse Public Licence. URL:
http://www.eclipse.org/legal/epl-v10.html.

[36] Anonymous. (Accessed: 17.1.2008) Generative Modelling Technologies
Project. URL: http://www.eclipse.org/gmt/.

[37] Anonymous. (Accessed: 17.1.2008) Graphical Modelling Framework
Project. URL: http://www.eclipse.org/gmf/.

[38] White J., Schmidt D., Nechypurenko A. & Wuchner E. (2007)
Introduction to the Generic Eclipse Modeling System. Eclipse Magazine,
Issue 6, Jan. 07, pp. 11�19.

http://repo.isis.vanderbilt.edu/tools/tool/GME/License
http://www.isis.vanderbilt.edu/projects/gme/
http://www.isis.vanderbilt.edu/Projects/gme/GMEUMan.pdf
http://www.eclipse.org/legal/epl-v10.html
http://www.eclipse.org/gmt/
http://www.eclipse.org/gmf/

88

[39] Anonymous. The Generic Eclipse Modelling System Manual. URL:
http://www.eclipse.org/downloads/download.php?file=/technology/gmt/ge
ms/gems-3.0-rc-1-manual.zip.

[40] MetaCase. (Accessed: 10.10.2007) MetaCase � Domain-Specific Modelling
with MetaEdit+. URL: http://www.metacase.com/.

[41] Kelly S., Lyytinen K. & Rossi M. (1996) MetaEdit+ A Fully Configurable
Multi-User and Multi-Tool CASE and CAME Environment. In: Proceedings
of the 8th International Conference on Advanced Information System
Engineering (CAiSE�96), May 20�24, Herakleion, Crete, Greece. Pp. 1�21.

[42] Pohjonen R. & Steven K. (2007) Interactive Television Applications Using
MetaEdit+. Model-Driven Development Tool Implementers Forum (MDD-
TIF07). URL: http://www.dsmforum.org/events/MDD-TIF07/MetaEdit+.2.pdf.

[43] Wilms H. (Accessed: 19.12.2007) Microsoft Domain-Specific Language
Tools from a Developer�s Perspective. URL: http://www.infoq.com/news/
2007/03/ms-dsl-developer.

[44] Sheldon R. & Moes G. (2005) Beginning MySQL. John Wiley & Sons,
Incorporated. 866 p.

[45] Anonymous. (Accessed: 19.12.2007) HSQLDB documentation. URL:
http://www.hsqldb.org/web/hsqlDocsFrame.html.

[46] Anonymous. (Accessed: 10.10.2007) Eclipse SDK Help. URL:
http://help.eclipse.org/help31/index.jsp.

[47] Henttonen K. (2007) Stylebase for Eclipse. An Open Source Tool to
Support the Modeling of Quality-Driven Software Architecture. VTT
Tiedotteita � Research Notes 2387. VTT, Espoo, Finland. URL:
http://www.vtt.fi/inf/pdf/tiedotteet/2007/T2387.pdf.

[48] Buschmann F., Meunier R., Rohnert H., Sammerlad P. & Stal M. (1996)
Pattern Oriented Software Architecture: A System of Patterns. John Wiley
& Sons, Chichester, England. 457 p.

http://www.eclipse.org/downloads/download.php?file=/technology/gmt/gems/gems-3.0-rc-1-manual.zip
http://www.metacase.com/
http://www.dsmforum.org/events/MDD-TIF07/MetaEdit+.2.pdf
http://www.infoq.com/news/2007/03/ms-dsl-developer
http://www.hsqldb.org/web/hsqlDocsFrame.html
http://help.eclipse.org/help31/index.jsp
http://www.vtt.fi/inf/pdf/tiedotteet/2007/T2387.pdf

89

[49] van Gurp J., Bosch J. & Svahnberg M. (2001) On the Notion of
Variability in Software Product Lines. In: Proceedings of the Working
IEEE/IFIP Conference on Software Architecture (WICSA�01), August
28�31, Amsterdam, Netherlands. Pp. 45�54.

[50] Mernik M., Heering J. & Sloane A. M. (2005) When and how to Develop
Domain-Specific Languages. ACM Computing Surveys, Vol. 37, Issue 4,
pp. 316�344.

 Series title, number and
report code of publication

VTT Publications 680
VTT-PUBS-680

Author(s)
Sivonen, Sanna
Title

Domain-specific modelling language and code generator
for developing repository-based Eclipse plug-ins

Abstract
Eclipse is an open source platform for tool integration which can be extended by writing plug-ins that utilise
the extension points provided by the Eclipse platform. Eclipse plug-ins are written in the Java language and
the plug-in development work can be time consuming especially if multiple plug-ins are developed for the
same application domain. Model-driven development is about focusing on models rather than computer
programs in software development. Domain-specific modelling follows the principles of model-driven
development by promoting the use of domain-specific modelling languages (instead of general-purpose
modelling languages).

The aim of this research is to develop a prototype graphical domain-specific modelling language (DSML) and
a code generator for creating repository-based plug-ins for Eclipse. The purpose of DSML is to raise the level
of abstraction and thus speed up the development process of several similar Eclipse plug-ins compared to
hand writing the plug-ins in Java language. Also people not familiar with Java (i.e. end users) could build their
own extensions with the language defined in this work.

Developed DSML is demonstrated by generating the source code of an existing repository-based Eclipse
plug-in. The plug-in that is used in the demonstration is an open source software architecture knowledge
management tool called Stylebase for Eclipse, which has been developed at VTT Technical Research Centre
of Finland. The Stylebase for Eclipse is a software product family, which has a number of variation points.
Since the Stylebase for Eclipse tool is already developed once with the traditional code-centred approach, it is
possible to compare the model-driven approach with the code-centred approach in this particular case.

The case example shows that DSML and the code generator defined in this work can be used for generating
repository-based Eclipse plug-ins. The code generator generates a fully functional Eclipse plug-in so the
generated code does not have to be edited manually after its generation. Also variability in the software
product family can be handled in a more flexible way in the model-driven approach.

ISBN
978-951-38-7094-2 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number

VTT Publications
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

7326

Date Language Pages
April 2008 English, Finnish abstr. 89 p.

Name of project Commissioned by
MoSiS

Keywords Publisher
model-driven development, software product family,
variability

VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4520
Fax +358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

 Julkaisun sarja, numero ja
raporttikoodi

VTT Publications 680
VTT-PUBS-680

Tekijä(t)
Sivonen, Sanna

Nimeke

Sovellusaluekohtainen mallinnuskieli ja
koodigeneraattori tietokantapohjaisten
Eclipse-laajennusten kehittämiseen
Tiivistelmä
Eclipse on avoimen lähdekoodin alusta, jota käyttäjät voivat laajentaa hyödyntämällä Eclipse-alustan
tarjoamia laajennuspisteitä. Eclipse-laajennukset kehitetään Java-ohjelmointikielellä ja kehitystyö voi olla
haastavaa, erityisesti kehitettäessä useita hieman toisistaan poikkeavia sovelluksia samalle sovellusalueelle.
Malliohjattu ohjelmistokehitys keskittyy ohjelmiston malleihin lähdekoodin sijasta. Sovellusaluekohtainen
mallintaminen on eräs tapa toteuttaa malliohjattua ohjelmistokehitystä. Sovellusaluekohtaisessa mallintami-
sessa käytetään sovellusaluekohtaisia mallinnuskieliä yleiskäyttöisten mallinnuskielten asemesta.

Tämän tutkimuksen tavoitteena on määritellä sovellusaluekohtainen mallinnuskieli ja koodigeneraattori
tietokantapohjaisten Eclipse-laajennusten kehittämiseen. Mallinnuskielen ja koodigeneraattorin tarkoituksena
on nostaa ohjelmistomallin abstraktiotasoa ja siten nopeuttaa tietokantapohjaisten Eclipse-laajennusten
kehittämistä verrattuna laajennusten manuaaliseen ohjelmointiin. Myös käyttäjät, jotka eivät hallitse Java-
ohjelmointikieltä, voivat kehittää tietokantapohjaisia laajennuksia Eclipseen tässä työssä kehitetyn mallinnus-
kielen avulla.

Työssä kehitetyn sovellusaluekohtaisen mallinnuskielen ja koodigeneraattorin käyttöä havainnollistetaan ge-
neroimalla olemassa olevan tietokantapohjaisen Eclipse-laajennuksen lähdekoodi. Laajennus, jota käytetään
havaintoesimerkissä, on arkkitehtuuritietämyksen hallintaan käytettävä Stylebase for Eclipse -työkalu, joka on
VTT:n kehittämä avoimen lähdekoodin työkalu. Stylebase for Eclipse on tuoteperhe, jolla on useita
varioituvuuspisteitä. Koska Stylebase for Eclipse on aiemmin kehitetty koodikeskeisellä sovellusten
kehittämistavalla, voidaan tässä työssä vertailla mallikeskeistä tietokantapohjaisten Eclipse-laajennusten
kehittämistä koodikeskeiseen tapaan.

Havaintoesimerkki osoittaa, että työssä kehitettyä sovellusaluekohtaista mallinnuskieltä ja koodigeneraattoria
voidaan käyttää Eclipse-laajennusten kehittämiseen. Koodigeneraattori tuottaa toimivan Eclipse-
laajennuksen, joten generoitua koodia ei tarvitse editoida manuaalisesti generoinnin jälkeen. Mallikeskeisessä
kehitystyössä myös tuoteperheen varioituvuuden hallinta on joustavampaa.

ISBN
978-951-38-7094-2 (URL: http://www.vtt.fi/publications/index.jsp)

Avainnimeke ja ISSN Projektinumero
VTT Publications
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

7326

Julkaisuaika Kieli Sivuja
Huhtikuu 2008 Englanti, suom. tiiv. 89 s.

Projektin nimi Toimeksiantaja(t)
MoSiS

Avainsanat Julkaisija

model-driven development, software product family,
variability

VTT
PL 1000, 02044 VTT
Puh. 020 722 4520
Faksi 020 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

V
TT P

U
B

LIC
A

TIO
N

S 680
 D

om
ain-specific m

odelling language and code generator for developing... Sanna Sivonen

ESPOO 2008ESPOO 2008ESPOO 2008ESPOO 2008ESPOO 2008 VTT PUBLICATIONS 680

Sanna Sivonen

Domain-specific modelling language
and code generator for developing
repository-based Eclipse plug-ins

VTT PUBLICATIONS

660 Sihvonen, Markus. Adaptive personal service environment. 2007. 114 p. + app. 77 p.

661 Rautio, Jari. Development of rapid gene expression analysis and its application to
bioprocess monitoring. 2007. 123 p. + app. 83 p.

662 Karjalainen, Sami. The characteristics of usable room temperature control. 2007. 133 p. +
app. 71 p.

663 Välkkynen, Pasi. Physical Selection in Ubiquitous Computing. 2007. 97 p. + app.
96 p.

664 Paaso, Janne. Moisture depth profiling in paper using near-infrared spectroscopy.
2007. 193 p. + app. 6 p.

665 Ilmatieteen laitoksen palveluiden vaikuttavuus. Hyötyjen arviointi ja arvottaminen eri
hyödyntäjätoimialoilla. Hautala, Raine & Leviäkangas, Pekka (toim.). 2007. 205 s.
+ liitt. 73 s.

666 Prunnila, Mika. Single and many-band effects in electron transport and energy
relaxation in semiconductors. 2007. 68 p. + app. 49 p.

667 Ahlqvist, Toni, Uotila, Tuomo & Harmaakorpi, Vesa. Kohti alueellisesti juurrutettua
teknologiaennakointia. Päijät-Hämeen klusteristrategiaan sovitettu ennakointi-
prosessi. 2007. 107 s. + liitt. 7 s.

668 Ranta-Maunus, Alpo. Strength of Finnish grown timber. 2007. 60 p. + app. 3 p.

669 Aarnisalo, Kaarina. Equipment hygiene and risk assessment measures as tools in the
prevention of Listeria monocytogenes -contamination in food processes. 2007. 101 p.
+ app. 65 p.

670 Kolari, Kai. Fabrication of silicon and glass devices for microfluidic bioanalytical
applications. 2007. 100 p. + app. 72 p.

671 Helaakoski, Heli. Adopting agent technology in information sharing and networking.
2007. 102 p. + app. 97 p.

672 Järnström, Helena. Reference values for building material emissions and indoor air
quality in residential buildings. 2007. 73 p. + app. 63 p.

673 Alkio, Martti. Purification of pharmaceuticals and nutraceutical compounds by sub-
and supercritical chromatography and extraction. 2008. 84 p. + app. 42 p.

674 Mäkelä, Tapio. Towards printed electronic devices. Large-scale processing methods
for conducting polyaniline. 2008. 61 p. + app. 28 p.

675 Amundsen, Lotta K. Use of non-specific and specific interactions in the analysis of
testosterone and related compounds by capillary electromigration techniques. 2008.
109 p. + app. 56 p.

677 Hanhijärvi, Antti & Kevarinmäki, Ari. Timber failure mechanisms in high-capacity
dowelled connections of timber to steel. Experimental results and design. 2008.
53 p. + app. 37 p.

680 Sivonen, Sanna. Domain-specific modelling language and code generator for
developing repository-based Eclipse plug-ins. 2008. 89 p.

ISBN 978-951-38-7094-2 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI-02044 VTT, Finland
Puh. 020 722 4520 Tel. 020 722 4520 Phone internat. + 358 20 722 4520

http://www.vtt.fi http://www.vtt.fi http://www.vtt.fi

http://www.vtt.fi
http://www.vtt.fi
http://www.vtt.fi
http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	Abstract
	Tiivistelmä
	Preface
	Contents
	List of abbreviations
	1. Introduction
	2. Model-driven development of softwareproduct families
	2.1 Non-MDD development
	2.2 Model-driven development
	2.2.1 MDD with Model-Driven Architecture approach
	2.2.2 MDD with domain-specific modelling approach
	2.2.3 Comparison between MDA and DSM

	2.3 Software product families

	3. Tools and technologies
	3.1 Eclipse
	3.2 Metamodelling tools
	3.2.1 DSL Tools for Visual Studio
	3.2.2 Generic Modelling Environment
	3.2.3 Generic Eclipse Modelling System
	3.2.4 MetaEdit+
	3.2.5 Comparison of the tools

	3.3 Relational databases

	4. DSML for developing repository-basedEclipse plug-ins
	4.1 Requirements for DSML
	4.2 Approach for defining DSML
	4.3 Domain analysis
	4.3.1 Eclipse concepts
	4.3.2 Stylebase for Eclipse concepts

	4.4 Concepts in DSML

	5. Implementation of DSML
	5.1 Workbench graph
	5.2 Preference graph
	5.3 Database graphs
	5.4 View graph
	5.5 Dialog graph

	6. Implementation of the code generator
	6.1 Code style
	6.2 The structure of the code
	6.3 The structure of the code generator

	7. Case example: Stylebase for Eclipse
	7.1 Case description
	7.2 Modelling the Stylebase for Eclipse tool
	7.2.1 HSQL database graph
	7.2.2 MySQL database graph
	7.2.3 Preference graph
	7.2.4 View graph
	7.2.5 Dialog graph

	7.3 Generating the source code
	7.4 Comparison of the MDD approach to the codecentredapproach

	8. Discussion
	8.1 Experiences on DSML design
	8.2 Experiences in DSML implementation
	8.3 Evaluation of DSML

	9. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

