ESPOO 2008 VTT PUBLICATIONS 685

Tuukka Miettinen

Resource monitoring and visualization
of OSGi-based software components

VTT PUBLICATIONS 685

Resource monitoring and
visualization of OSGi-based
software components

Tuukka Miettinen

ISBN 978-951-38-7104-8 (soft back ed.)
ISSN 1235-0621 (soft back ed.)

ISBN 978-951-38-7105-5 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0849 (URL.: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT 2008

JULKAISIJA — UTGIVARE — PUBLISHER

VTT, Vuorimiehentie 3, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvégen 3, PB 1000, 02044 VTT
tel. vixel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimichentie 3, P.O. Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax + 358 20 722 4374

VTT, Kaitoviyla 1, PL 1100, 90571 OULU
puh. vaihde 020 722 111, faksi 020 722 2320

VTT, Kaitoviyli 1, PB 1100, 90571 ULEABORG
tel. vixel 020 722 111, fax 020 722 2320

VTT Technical Research Centre of Finland, Kaitovéyld 1, P.O. Box 1100, FI-90571 OULU, Finland
phone internat. +358 20 722 111, fax +358 20 722 2320

Edita Prima Oy, Helsinki 2008

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

Miettinen, Tuukka. Resource monitoring and visualization of OSGi-based software components
[OSGi-pohjaisten ohjelmistokomponenttien resurssien kulutuksen monitorointi ja visualisointi].
Espoo 2008. VTT Publications 685. 107 p. + app. 3 p.

Keywords resource consumption, resource monitoring, software visualization, performance
analysis

Abstract

This work introduces a novel approach for the resources consumption analysis of
OSGi-based software components. OSGi Service Platform provides a component
based and service-oriented Java environment that is especially emerging in
environments with constrained computational resources. OSGi Service Platform
enables the cooperation of multiple Java based components within a single Java
Virtual Machine. Existing JVM analyzing tools typically monitor the resource
consumption of the whole Java environment, which is not sufficient in an OSGi
environment since the JVM conceals the resource consumption information of
separate OSGi components. This emphasizes the need for monitoring solutions
that are able to provide a detailed view of the resource consumption of the Java
environment.

Tools implemented in this work enable the effective resource consumption
analysis of individual software components executed on a OSGi platform. A
monitoring tool that is able to identify the resource consuming component was
developed to extract both component and environment specific data from the
Java environment. An existing visualization tool was extended in order to
provide an easy to understand view of the resource consumption behaviour of
both single component and component compositions. Two novel visualizations
were introduced to facilitate the analysis of software resource usage. The tool
produces 3D visualization that simultaneously illustrates the time related CPU
utilizations and memory consumptions of all desired components executed on
the OSGi platform. The other novel visualization presents the amount of resources
required by a component to operate normally. In addition, it enables the
comparison of resource consumption information to desired usage boundaries.
The OSGi-based resource monitoring service was also developed in order to

3

provide runtime resource consumption information for components that are able
to adapt their behaviour according to available computing resources.

The applicability of the tools was demonstrated with two use cases. Firstly, an
OSGi component’s resource usage boundaries were detected and validated.
Secondly, multiple components were monitored and use of the resource
monitoring service was demonstrated with an adaptive OSGi component. It was
proved that implemented tools effectively reveal how the components behave
inside the OSGi environment from a resource consumption perspective.

Miettinen, Tuukka. Resource monitoring and visualization of OSGi-based software components
[OSGi-pohjaisten ohjelmistokomponenttien resurssien kulutuksen monitorointi ja visualisointi].
Espoo 2008. VTT Publications 685. 107 s. + liitt. 3 s.

Avainsanat resource consumption, resource monitoring, software visualization, performance
analysis
Tiivistelma

Téssd tyossd luotiin uudenlainen ldhestymistapa OSGi-pohjaisten ohjelmisto-
komponenttien laskentaresurssien kéyton analysointiin. OSGi-palvelualusta
tarjoaa komponenttipohjaisen ja palvelusuuntautuneen Java-alustan, joka on
herdttdnyt kasvavaa kiinnostusta erityisesti resurssirajoitteisten tietokoneympé-
ristdjen markkinoilla. OSGi-ohjelmistoalusta mahdollistaa useiden Java-pohjaisten
ohjelmistokomponenttien yhteistoiminnan samassa Java-virtuaalikoneessa. Ole-
massa olevat Javan analysointity6kalut tarkkailevat koko Java-ympéristén re-
surssien kulutusta, miké ei ole riittivad OSGi-ymparistssd, koska virtuaalikone
kitkee yksittdisten ohjelmistokomponenttien resurssienkulutuksen. Tdméin vuoksi
tarvitaan uusia resurssien kdyton seurantaratkaisuja, joiden avulla saadaan yksi-
tyiskohtaisempi kuva Java-ympériston resurssien kdytosta.

Tassd tyossd kehitetyt tyokalut mahdollistavat yksittdisten ohjelmistokompo-
nenttien laskentaresurssien kidytén tehokkaan analysoinnin. Kehitetty resurssien
monitorointitydkalu tarkkailee koko Java-ympéristéd ja pystyy erottelemaan
laskentaresurssien kdyton komponenttikohtaisesti. Olemassa olevaa visualisointi-
tyokalua laajennettiin, jotta kerétty tieto voidaan esittdd helposti ymmarrettidvéassi
muodossa. Tyossd esitellddn kaksi uudenlaista visualisointia, jotka helpottavat
ohjelmiston resurssien kédyton analysointia. Visualisointitydkalu tuottaa kolmi-
ulotteisen nakymén, joka yhtdaikaisesti esittdd haluttujen OSGi-komponenttien
tuottaman prosessorikuorman ja muistinkulutuksen. Toinen uusi visualisointi
esittdd laskentaresurssien médrin, jotka ohjelmistokomponentti vaatii toimiak-
seen. Tdmd myos mahdollistaa komponentin resurssienkulutuksen vertailun
haluttuihin kdyttorajoihin. Ty6ssd kehitettiin myés OSGi-pohjainen laskenta-
resurssien monitorointipalvelu, joka mahdollistaa resurssien kéytttiedon ajonai-

kaisen hyodyntdmisen. Taméa taas mahdollistaa vapaana oleviin laskentaresurs-
seihin mukautuvat ohjelmistokomponentit.

Tyokalujen hyodyllisyys osoitettiin kahdella erilaisella kayttotapauksella. Ensim-
mdisessd etsittiin ja vahvistettiin erdin OSGi-komponentin resurssien kulutus-
rajat. Toisessa tapauksessa useita komponentteja monitoroitiin ja havainnollistet-
tiin resurssienmonitorointipalvelun kéytt6d mukautuvan komponentin avulla. Néin
pystyttiin osoittamaan, ettd kehitetyt tyokalut paljastavat tehokkaasti komponent-
tien kayttaytymisen OSGi-ympéristssd resurssien kulutuksen nakdkulmasta.

Preface

The research work for this thesis was made as a part of the ITEA-ANSO (Au-
tonomous Networks for SOHO Users) and ITEA2-CAM4Home (Collaborative
Aggregated Multimedia for Digital Home) projects at the VTT Technical Research
Centre of Finland.

I am deeply grateful to Mr. Mika Hongisto for providing valuable discussions,
reviews and suggestions during the work. I wish to thank my supervisor at the
University of Oulu, Professor Tapio Seppinen for finding time to review and com-
ment on this work.

My colleagues at the VIT Technical Research Centre of Finland deserve my
warmest thanks and especially all members of the Performance Architectures team
for pleasant moments both during and after working hours. I would like to express
my gratitude to Mr. Juho Perild for his excellent technical assistance through-
out the implementation part of the work. In addition, I owe my gratitude to Mr.
Daniel Pakkala for discussions and suggestions provided during both the research
and writing processes.

Finally, I thank you Johanna, for sharing your everyday life with me and for your
encouragement and faith in me that has pulled me through times of desperation
during the writing of this work.

Oulu, May 22th, 2008

Tuukka Miettinen

Contents

ADSITaCt. . . . e 3
Tiivistelma. 5
Preface. 7
Abbreviations. 10
L. Introduction 11
LT MoOtivation.o vt 13

1.2 Scope and structure of thiswork 14

2. Related technologies andresearch 15
2.1 Component-based software development. 15

22 OSGI. .ottt 17
2.2.1 OSGi Service Platform 17

222 Implementations. 19

2.2.3 Computing resources of an OSGibundle 23

2.3 Monitoring Java Virtual Machine 28
2.3.1 JVM Measurement Techniques 29

2.3.2 Java Management Extensions 31

2.3.3 Java Virtual Machine Tool Interface 33

2.3.4 Existing monitoring approaches. 36

2.3.5 Existing visualization approaches. 38

3. Monitoring and visualization approach. 39
3.1 MoONitoring ProCeSS. . . o v vt vttt e e e e 40

3.2 Visualization ProCeSS v v v et e ettt e 44

3.3 Support for dynamic adaptation. 48

4. Implementation.ottt 52
4.1 Overviewoftheapproach. 52

4.2 OSGi implementation modifications 54
4.2.1 Bundle specific ThreadGroup 54

4.2.2 TIsolation of OSGiServices. 57

4.3 The mONitor aZentttt 62

4.3.1 Initializingtheagent............ 63

4.3.2 Resource monitoring.ouuueeetiuinneen.. 65

433 Fileoutputt 68

4.4 The visualization and analysistool 68

4.4.1 ClassStructureo 69

442 Fileoutputttt 72

4.5 OSGi-based resource monitoring Service 72

451 ClassSStruCtUreo vttt ettt e e 73

5. Experimentation 75

5.1 Monitoring single OSGibundle. 75

5.1.1 Monitored OSGibundle 76

5.1.2 Resource consumption measurements 77

5.1.3 Discussionontheresults........................... 82

5.2 Runtime support provided by the monitoring service 83

5.2.1 Arrangements andcaseflow 83

5.2.2 Resource consumption statiStics. 85

5.2.3 Discussion on the statistics 87

6. DISCUSSION . . .o vttt 89

6.1 The monitoring tool 89

6.1.1 Measurement aCCUTaCY v v v v v e ee e et een . 90

6.1.2 Overhead introduced by the monitoring 91

6.1.3 Discussion on the monitoring tool’s applicability 93

6.2 The visualization and analysistool 94

6.2.1 Discussion on the visualization models. 95

6.3 Discussiononthetools. i 96

7. ConcluSionst 98

References 99
Appendices

Appendix 1: Configuration file of the monitor agent
Appendix 2: Example output of the monitor agent
Appendix 3: Example output of the visualization tool

9

API
BCI
CBSD
COTS
CPU
GCM
GUI
IDE
JAR
I2ME
J2SE
JDK
JIMX
JNI
JRE
JSR
JVM
JVMPI
JVM TI
MB
MBean
oS
OSGi
PCCT

QoS
RTT

Abbreviations

Application programming interface
Byte Code Insertion / Byte Code Instrumentation
Component-based software development
Commercial off-the-self

Central Processing Unit

Generic Communication Middleware
Graphical User Interface

Integrated Development Environment
Java Archive

Java 2 Platform, Micro Edition

Java 2 Platform, Standard Edition

Java Development Kit

Java Management Extensions

Java Native Interface

Java Runtime Environment

Java Specification Request

Java Virtual Machine

Java Virtual Machine Profiler Interface
Java Virtual Machine Tool Interface
Megabyte

Managed Bean

Operating System

Open Service Gateway Initiative
Partial Calling Context Tree

Quality of Service

Round-trip time

10

1. Introduction

A rapidly increasing number of diverse devices, functional demands, shortened
product cycles and pervasive networking has increased the complexity of soft-
ware development [1, 2, 3, 4, 5]. Platform-independent, component-based, and
service-oriented middleware-based software systems have been proposed as one
way in addressing these challenges [2, 5]. In this work, focus is on the OSGi
Service Platform [6] targeting to fulfil the above proposal. OSGi enables the in-
tegration of functionally pre-tested software blocks but creates new challenges to
testing and monitoring the software system in contrast to the traditional system.
We must be able to observe and evaluate the behaviour of software components
when integrated with the other components and deployed in the actual execution
platform [3, 5]. These challenges raise problems that are the main research goals
of this thesis work:

e Provide a tool that measures the resource consumption of a single software
component.

e Provide a visualization view to enable the analysis—both single component
and component composition—from a resource consumption behaviour per-
spective.

Software development is typically performed without much concern laid on the
actual target platform. For this reason, run-time resources utilized by software
will remain unclear to the software designer. The OSGi environment emphasizes
this problem since it runs on top of both the Java 2 Standard Edition (J2SE) and
Java 2 Micro Edition (J2ME), and the OSGi applications should be executable
on both of these platforms. OSGi applications are supposed to collaborate with
other components implemented by different vendors. The design of good quality
component compositions requires information on the component’s performance
in addition to the knowledge of its functional behaviour. Therefore, it is essential
for designers to gain a detailed and individual view of the software component’s
resource consumption in its real executing environment. Without this knowledge,
it is hard to determine whether the implementation of the application meets the
resource requirements set at the specification phase or deployment phase. This

11

leads to an unawareness of the correct behaviour of an application and makes it
deployment essentially more difficult.

OSGi is a Java based middleware. The Java programming language has advan-
tages in resource constrained devices, considering its portability, enhanced safety
and the potential for run-time optimization [7]. Java is an object-oriented and in-
terpreted language with automated memory management, which offers reusable
software components. Object orientation and a high abstraction of internal activi-
ties are the main reasons for these benefits; however these also bring weaknesses
when dealing with resource constrained devices. An erratic use of objects and
the transparency of the target platform in the programming phase typically lead
to an excessive consumption of computing resources. This results in an undesired
behaviour of the applications that eventually ruins the performance of the whole
system.

The current profiling and monitoring tools for Java, such as [8, 9], observe the
whole Java Virtual Machine (JVM) and not individual applications. This obser-
vation level is not sufficient in the OSGi environment. Therefore, we require a
tool that can extract application specific behaviour information out of the JVM,
in order to establish a view of the application’s behaviour. Collecting this de-
tailed information using pure Java is currently impossible, without modifying the
JVM itself, due to Java’s lack of low-level abilities. Fortunately, since the version
5.0 Java has provided a native interface for monitoring and debugging purposes:
Java Virtual Machine Tool Interface (JVM TI). Using this interface, a developer
can create monitoring tools written in native language like C/C++ to collect run-
time information from the JVM and directly from the underlying operating system
(OS). Even though this enables the writing of monitoring tools that collect detailed
runtime behaviour data, it is still a challenging task to gather fine-grained statistics
without eating away at the performance of the JVM.

Even the most detailed runtime data is useless without a way to represent it. Col-
lected resource consumption data must be effectively represented to get the entire
benefit out of the monitoring tools. Typically, a behavioural log simply consists
of ASCII debug print data. It is time consuming and aimless to go through the
logs without interpreting those to a form that a human can easily analyze. If the

12

representation is confusing or unpractical, it leads to difficulties in analyzing, or
in the worst case it leads to the fact that no one is interested in analyzing these
statistics. Behaviour statistics that have more than one measured attribute increase
the complexity of representation. 3D visualization can be a powerful tool when
representing statistics that holds more than one attribute. An appropriate 3D graph
of software resource consumption highlights the actual runtime behaviour and cor-
relation of different attributes on one single graph.

1.1 Motivation

The fact that all OSGi applications run on a single JVM introduces a monitoring
problem. With the current monitoring tools, it is almost impossible to identify
the actual source of resource consumption without a detailed knowledge of all the
running applications. This situation leaves application developers with just a trace
of the resource consumption behaviour of their application in its real executing
environment and creates the need for new monitoring solutions.

A method for gathering individual resource consumption statistics would be a
powerful tool, when integrated into the whole cycle of application development.
With a proper monitoring tool and a practical visualization of the gathered data,
we can without excessive effort validate the application’s resource usage against
boundaries set during the specification phase. This would enable a rapid loop
from prototype implementation back to re-implementation or even back to the re-
design.

Monitoring and analyzing tools that are able to provide resource consumption
statistics of individual software components can be used to define the need for
available resources in order to ensure the functioning of a component. These
boundaries could be used as one attribute in the component deployment phase.
Boundaries would enable the comparison of the component’s performance to other
components, which provide the same functionality. In addition, these enable re-
source consumption assessment when building component compositions.

Adaptive applications that can conform to the constant changes of available re-
sources require support from the execution environment; otherwise, portability

13

will be lost because a platform-specific code is always required for precise re-
source monitoring. An OSGi compliant resource monitor has been introduced [10].
This implementation is based on monitoring the whole JVM resource consumption
and self-adapting applications. In a case where the framework controls adaptive
software from exhausting the whole environment, there has to be detailed infor-
mation of the application’s usage of physical resources.

The OSGi platform provides a unique environment to test applications targeted at
small devices. Limitations in profiling support in the J2ME make it difficult to an-
alyze their behaviour in this environment. Since software developed for the OSGi
platform is supposed to run unmodified in different execution environments, it
creates the possibility to analyze their behaviour in the J2SE. Naturally, measured
resource consumption information must be scaled according to the corresponding
platform.

1.2 Scope and structure of this work

The focus of this thesis work is on discovering a resource consumption measuring
method and finding an effective way in representing this information. The aim is
not to analyze the behaviour of specific OSGi bundles, but rather to develop tools
that enables comprehensive and precise analyses.

To achieve these research targets, the thesis is structured as follows. Chapter 1
introduces the related software environments and the motivation for this work. In
Chapter 2 the OSGI environment, different computing resources, and the avail-
able techniques for monitoring Java applications are studied. These are discussed
particularly from an OSGi perspective. From Chapter 3 and onwards, the actual
work done by author begins. Chapter 3 discusses the requirements and imple-
mentation issues of the tools developed in this thesis work. Chapter 4 introduces
implemented tools for monitoring resource consumption of an OSGi bundle and
the post-processing of this information. Chapter 5 presents two different use cases
where the implemented tools are used. Chapter 6 presents the evaluation of the
implementation and a discussion on the applicability of the whole work. Finally,
Chapter 7 summarizes the thesis work, Chapter 8 represents the references, and
Chapter 9 represents the appendices.

14

2. Related technologies and research

2.1 Component-based software development

Emerging component-based software architectures promise to provide the better
re-use of software components, greater flexibility, scalability and a higher quality
of services (QoS). Over the last decade, component based software development
has changed from a purely scientific research field to a widely used technique. The
component-based software technology converts the system design into assembling
the existing components or creating new reusable ones. This makes a system easy
to implement, convenient to manage and flexible to update. Although component-
based development offers many potential benefits, it also raises several issues that
developers need to consider, a comprehensive classification of the issues have been
made in [11]. [12]

By definition, software components are the units of software deployment. A soft-
ware component is a closed module that is responsible for implementing applica-
tion behaviours. It communicates with its interfaces. In designing a component,
the implementation is separated from the interfaces. The implementation is secret
while the interface is public, hence hiding the implementation of a component
from its environment. A software component can also be independently deployed
and is subject to third-party composition. [13]

As was previously mentioned, the software development process in component-
based software development (CBSD) differs from the traditional process. It is
obvious that the developer of the component must deal with the performance,
re-usability and portability issues in order to provide qualitative software. How-
ever, components are typically developed in a heterogeneous environment, which
means that their actual target platform is not known during the time of develop-
ment. Individual components can also be used by many assemblers for innumer-
able purposes in multiple applications [13]. This leads to an increasing complex-
ity of the testing process, as the developer is forced to test the component without
knowing exactly how it ultimately will be used and by whom.

15

CBSD introduces a completely new role for the development process, component
integrator or assembler. The main responsibility of the component integrator is
to integrate individual components into working compositions. The biggest chal-
lenge on the assembling of compositions is the selection of components. There
are numerous aspects that the integrator must consider in the process of compo-
nent selection, it would be impossible to go through all of these comprehensively.
Therefore, we will focus on the quality aspects of the components and particularly
the performance aspects.

The selection process includes a comparison among the components, which pro-
vide the desired functionality. When considering quality issues, it is not sufficient
for the integrator to compare the quality of individual components. Integrators
must consider how the composition inherits the quality attributes of the separate
components. Combining the performance attributes of the components is unpre-
dictable and causes a major challenge to integrators. Approaches have been intro-
duced to make the predictive performance analysis of component-based systems,
such as [14, 15].

In order to enable the quality comparison in the selection process, a character-
ization of the component’s quality attributes must be made. Bertoa and Valle-
cillo have defined a set of quality attributes and their associated metrics for ef-
fective evaluation components in [16]. This set is made for commercial off-the-
self (COTS) components but the set applies to all software components. The set
is comprised of functionality, reliability, usability, efficiency and maintainability.
Efficiency, in this classification, can be seen as a performance attribute. This is
because efficiency is comprised of the runtime performance attributes of a com-
ponent, such as response time, throughput and resource utilization.

A uniform quality model for all available components would enable a comprehen-
sive comparison and evaluation of the components in the selection process. The
kind of assurance that software components conform to well-defined standards
is called certification. A certificated component is evaluated and validated to be
trustworthy by a third party. Academic research has been made in order to pro-
vide a standard certification process for a component. Alvaro et al. have made an
extensive survey in the state-of-the-art component certification area [17]. Based

16

on the survey, they proposed a software component certification framework [18]
in order to achieve a well-defined software component evaluation process.

2.2 OSGi

OSGi Alliance, formerly known as the Open Service Gateway Initiative, is a global
consortium of about 80 companies with a diverse branch of businesses. Together,
they create specifications and reference implementations aimed at non-proprietary
universal middleware. The OSGi specifications define a standardized and compo-
nent oriented computing environment for networked services that is the foundation
of an enhanced service oriented architecture [19]. OSGi was originally designed
to fit the needs of embedded devices and home service gateways, which require to
be managed remotely. Due to an increasing interest among developers, it has re-
cently been used far beyond the context of mobile embedded gateways. The OSGi
Service Platform has become an attractive environment for both application and
system developers, as it has interesting features: portability, deployment format,
resource sharing and life cycle management, to name but a few. These features
added to the fact that the OSGi Service Platform can be executed on top of the
J2ME, has enabled it to emerge in the field of embedded systems.

2.2.1 OSGi Service Platform

The OSGi Service Platform Specification consists of three parts: the framework,
core services and optional service compendium. A key component of the specifi-
cations is the framework. The framework handles all the necessary actions needed
to transform the JVM from a single application environment to a multiple appli-
cation environment where all the applications run inside the same JVM. Figure 1
presents the transformation enabled by the OSGi framework.

The framework provides a general-purpose, secure, and managed Java framework
that supports the deployment of extensible and downloadable applications known
as OSGi bundles [20]. Technically, the OSGi framework can be seen as a custom,
dynamic Java class loader and a service registry that is globally accessible within
a single Java virtual machine. An architectural view of the OSGi environment is
shown in Figure 2.

17

OSGi Framework

Java Virtual
Machine

Java Virtual
Machine

Figure 1. The OSGi Framework transforms the JVM from a single to a multiple
application execution environment.

OSGi
FRAMEWORK

Figure 2. Architecture of the OSGi environment.

An OSGi bundle, shown in Figure 1, is a Java Archive (JAR) that encloses an
executable code, code libraries and a description of the bundle into a one packet.
In addition to these, JAR can also enclose the resources needed by an applica-
tion. Typical resources are images and sounds. With the information that the
description provides, the framework can manage the bundle’s life cycle. Figure 2
shows that bundles are not restricted to use in only the OSGi Framework, but they
can directly access the resources provided by the standard Java libraries and the
operating system of the underlying hardware. Bundles are just like normal Java

18

applications with the exception that the usual starting point of the main-method
must be replaced with an activator-class, implementing the OSGi BundleActivator
interface. From now on, applications running in the OSGi environment will be
referred as bundles.

The functionality of the Framework can be divided into three layers. The module
layer specifies a class loading model which adds modularization to the Java. The
life cycle layer adds bundles that can be dynamically installed, started, stopped,
updated and uninstalled. This layer also specifies the dependency resolving be-
tween the bundles. The service layer defines the dynamic cooperation model for
bundles. The OSGi uses the publish, find and bind model. All these layers also
extend the security model of the Java 2 to provide a secure environment for col-
laborating bundles.

The OSGi Alliance has specified a number of services that run on top of the frame-
work. There are two main configurations for these services, Core Specification and
Mobile Specification. These services are left as an implementer’s choice; even
core services are marked as optional in the specification. Table 1 lists the manda-
tory services as defined in the specifications [20, 21, 22] with a short description of
the service and if the service is mandatory in the other configuration. Table 2 lists
all the optional services and their availability on different configurations. These
services have been defined by the OSGi Alliance in the specifications [21, 22].

2.2.2 Implementations

There are several open-source projects and commercial products, which have im-
plemented OSGi specification. The following is a short status analysis of the exist-
ing implementations of the OSGi R4 core specification. All the mentioned imple-
mentations are or will be compliant with the latest OSGi specification, OSGi R4
Service Platform. The implementations of former OSGi specifications have been
excluded. At this point, there are no implementations of the OSGi R4 Mobile
specification, at least not any open-source or published implementations.

19

Table 1. OSGi specified mandatory services on different configurations

Service

Core
spec.

Mobile
spec.

Description

Package Admin

yes

yes

Provides information on the sharing sta-
tus of all packages and access to the
package sharing mechanism.

Start Level

yes

no

Sets the current start level, assigns a bun-
dle to a start level, and interrogates the
current settings.

Permission Admin

yes

yes

Provides access and control to bundles
permissions.

Conditional Permission
Admin

yes

optional

Extends Permission Admin Service with
permissions that can be applied when
certain conditions are fulfilled.

URL Handlers

yes

no

Enables bundles to dynamically con-
tribute new scheme or content handlers
to the URL class.

Log

optional

yes

General purpose message logger. Con-
sists of two parts; logging service and log
reader service.

Configuration Admin

optional

yes

Provides a model to get and set configu-
ration info.

Event Admin

optional

yes

Provides a mechanism to publish and
subscribe events.

Service Tracker

optional

yes

Provides a class that tracks services for
applications.

Declarative Services

optional

yes

Can read service declarations from a bun-
dle and then register those services on be-
half of the bundle.

Metatype

optional

yes

Provides a unified access point to the
Meta Type information that is associated
with bundles.

Deployment Admin

no

yes

Standardizes the access to the life cycle
management of interlinked resources on
an OSGi Service Platform.

Application Admin

no

yes

Simplifies the management of an envi-
ronment with many different types of ap-
plications that are simultaneously avail-
able.

20

Table 2. OSGi specified optional services on different configurations

Service Core Mobile | Description

spec. spec.

Device optional| no Mechanism for dynamically finding the

Access bundle that implements a driver for a new
device.

User Admin | optional| no Service for authentication and authoriza-
tion purposes.

10 Connector | optional| optional| Allows bundles to extend Generic Con-
nection Framework (J2ME).

Preferences optional| no Provides access to the database of prop-
erties.

HTTP optional| no Web server. Runs servlets, which are
provided by bundles and need to be avail-
able over HTTP.

UPnP Device | optional| no Maps UPnP devices to the OSGi Service
Registry and vice versa.

XML Parser | optional| optional| Allows bundles to locate a parser with
desired properties and compatibility with
JAXP.

Wire Admin | optional| no Connects different services together as
defined by a configuration.

DMT Admin | no optional| Set of services for managing a device us-
ing concepts from the OMA DM specifi-
cations.

Monitor Ad- | no optional| Provides unified access to the Status

min Variables in the system, which reflect the

status of an application or a device.

Apache Felix Apache Felix is an open-source implementation of the OSGi R4

specification made by the Apache Software Foundation. Felix is a successor to
the former Oscar OSGi platform. By the time of making this thesis the latest
Felix 1.0.0 release is not fully compliant with the OSGi R4 specification as it only

partly implements security issues and lacks two core services: permission admin

and conditional permission admin. [23]

21

Knopflerfish Knopflerfish is an open-source implementation of the OSGi R4
specification maintained and sponsored by Makewave, formerly known as Gates-
pace Telematics, which has several developers assigned to develop and maintain
it. The latest release, Knopflerfish 2.0.0, is an almost complete implementation
of the OSGi R4 specification; a minor security item and a conditional permission
admin service are still missing. Knopflerfish 2 also implements almost all of the
optional services specified in the service compendium [21], three optional services
are missing. [24]

Eclipse Equinox Equinox is an open source implementation of the OSGi frame-
work, managed by the Eclipse Foundation. The latest release is Equinox 3.3,
which fully implements the OSGi R4 specification and almost all of the optional
services, three optional services are missing. Equinox can be used as a standalone
OSGi framework, but its main purpose is acting as the Eclipse’s runtime environ-
ment, handling the life-cycle of all the Eclipse components and plug-ins. Equinox
is the only open-source implementation of the R4 specification that has been cer-
tified by the OSGi Alliance. [25]

Knopflerfish Pro Knopflerfish Pro is a commercial OSGi framework devel-
oped by Makewave. Makewave is the sponsor and maintainer of the open source
Knopflerfish framework and the Knopflerfish Pro can be viewed as the commer-
cial version of Knopflerfish, as large parts of it are built on top of the open source
alternative. The commercial product adds additional services to the open-source
framework, such as UPnP, WireAdmin and Jini. [26]

mBedded Server mBedded Server is a commercial OSGi framework developed
by ProSyst. The latest release, the mBedded server Professional Edition 6.1, pro-
vides the full implementation of the OSGi R4 specification and parts of the service
compendium. There is also a free version of the mBedded Server available called
the Equinox Edition. The latest release of this version also fully implements the
OSGi R4 specification. The Equinox Edition is based on a source code from
the Eclipse Equinox project with extensions from the commercial product. The
mBedded Server has been certified by the OSGi Alliance. [27]

22

2.2.3 Computing resources of an OSGi bundle

As OSGi applications are emerging in mobile and other small devices, which are
constrained in performance and physical memory, resource consumption is an es-
sential factor in developing bundles. This chapter studies the primary resource
attributes that characterize the performance of an OSGi bundle. Computing re-
sources are physical or virtual components offered by an underlying platform,
consisting of hardware and software. Software utilizes these resources to achieve
such a functionality that it was designed to perform.

Resource consumption itself can be comprised as a quality or performance at-
tribute of software. Resource utilization can be seen as defined in [28]: the ca-
pability of software to use appropriate amounts and type of resources when the
software performs its function. Despite extensive functionality testing of soft-
ware, performance testing including resource usage behaviour is often ignored or
left without much concern. However, primary problems with field released soft-
ware are not often crashes or other functional errors but rather performance related
problems [29]. These problems are emphasized in resource constrained environ-
ments where increasing the performance by adding hardware is impossible or not
practical due to high costs, energy dissipation and space issues.

We have focused thus far on three main resource utilization attributes; Central pro-
cessing unit (CPU) utilization, memory consumption and network usage. These
have been identified as all of these are measurable and we have concrete units of
measurements for these resources. The same resources are also defined as a typi-
cal characterization of software performance in [29, 28] and the utilization of these
should be taken into consideration, when trying to determine the performance of
software.

Resources are observed from the perspective of a single OSGi bundle. This re-
flects on the resources and metrics we have chosen to observe. The metrics are
chosen to represent the utilization of resources that a bundle can directly affect
on its own. For example, a congestion of networking media and re-sending mes-
sages due to collisions are not things that one single bundle can affect directly.

23

Instead, the amount and the size of the messages sent and received by the bundle
can be counted as directly bundle related issues.

CPU utilization The ability to monitor CPU consumption is a basic requirement
for a run-time monitoring tool. It is also probably the most challenging resource
to observe. This due to its continuous nature, as we cannot identify explicit places
of CPU consumption in the source code. It is also a major challenge not to exhaust
the measured system with excessive overhead when finding a way to measuring
CPU consumption. [30]

CPU utilization provides the measure of time that the system CPU’s are servicing
an application. The purpose of measuring this attribute is to get a proportional
view of the time that the CPU is busy processing during a specified interval [31].
In the OSGi environment, we can also get a valuable perspective to the bundle
CPU utilization when we measure the CPU time consumed by a bundle and also
the CPU time consumed by the whole JVM. Based on these measurements, we
can calculate the proportion of CPU time taken by a bundle comparing to the time
taken by the JVM.

CPU utilization is an attribute that is an average over the measurement period. Ev-
ery application has instantaneous high CPU utilization peaks at some time during
their execution and therefore the gathering of these peaks is not useful. A typical
interpretation for an application’s CPU utilization of a CPU intensive application
is provided in Figure 3.

Fercant
i}
=1

7807
10344
12881
15418
13037
20830
23218
25797

48585
491:
51740

2
4

_ 28381
7 3102
33635
3620
2878
41388

im

Figure 3. CPU utilization of an application.

24

As shown in Figure 3, an application reserves the CPU steadily when it is per-
forming some of its activities. Without averaging the CPU utilization over the
measurement period, the figure would be hard to analyze because it would be full
of high peaks. Therefore, critical time spans and actual behaviour concerning CPU
reservation would remain hard to identify. A measurement period must be adapted
correctly, otherwise averages may not be meaningful.

The CPU execution time of an application is highly dependent on the execution
platform. It gives a good view of the load caused by an application, though the
measurements are only comparable within the same platform. In Java, there is a
platform-independent measurement unit: bytecode. Counting the number of exe-
cuted bytecodes gives a view to the CPU load of an application that is comparable
with measurements made with other applications on a different platform. Count-
ing the number of executed bytecodes has been introduced in [30].

Memory consumption Memory consumption provides a measure of the size
that an application has reserved from the system memory at a specified point of
time. These days, the memory consumption of an application is often ignored by
developers due to its low cost in desktop environments. Nonetheless, a memory
footprint is an essential factor when trying to identify the resource consumption
behaviour of an OSGi bundle running in resource constrained environments. The
main reasons follow:

e Many mobile devices have tight memory requirements as memory has se-
vere implications on the cost and physical size of a device [32, 33].

e Java executions are expected to stress the memory system more than tra-
ditional programs [34, 35]. This is due to JVM features, such as garbage
collection which make Java programs much more memory-intensive than
normal programs.

e [t has been observed [36, 37] that the memory system can produce a large
proportion of the overall energy dissipation of the whole software system.

25

In Java, JVM manages two kinds of memory areas: heap and non-heap memory.
Both of these memory pools are reserved from the OS when JVM is started. The
heap memory is the runtime data area, from which the memory for all class in-
stances and arrays is allocated. The heap can be either of a fixed or variable size.
An automatic memory management system reclaims unused objects from the heap
memory. Usually, the heap is the largest memory area inside the JVM as can also
be seen in Figure 4. The non-heap memory is the storage area for the compiled
source code and memory required for the internal processing or optimization for
the JVM. Like the heap, the non-heap area may be of a fixed or variable size. De-
pending on the implementation of the JVM, non-heap memory may be subjected
to a automatic memory management system. [38]

The use of non-heap memory can be seen as a static memory consumption of an
application. Static items such as constant pool entries, bytecodes of methods, in-
terface and inheritance information and method information are invariable with
respect to the application’s runtime behavior. Rather, the non-heap memory con-
sumption represents the static size of the distributable application. Usually mobile
devices have a fairly limited size for storing applications. Thus, the storing of
more applications or applications with more functionality and richer resources is
enabled by a reduction of the static memory consumption [39].

The use of heap memory can be seen as a dynamic memory consumption of an ap-
plication. The heap contains objects and arrays that are created during application
execution and these allocations can be released by automatic memory manage-
ment. Therefore, an application’s heap memory allocations are constantly varying
with respect to time. Considering that building some objects requires lots of work
and reserving lots of heap might lead to increasing the activity of automatic mem-
ory management, use of a dynamic memory directly reflects on other performance
attributes. Thus, it is essential to understand the heap memory footprint of an
application.

Th memory consumption is an attribute that is measured at some point of time.
To understand the application’s behaviour regarding memory consumption, there
has to be consecutive measurements taken during an interested activity period of
an application. A typical interpretation for the Java application’s memory con-

26

sumption data is illustrated in Figure 4, which presents the memory consumption
of a simple board game. This clearly shows how the application uses heap and
non-heap memory pools during its active period. An application’s heap memory
allocations are constantly varying with respect to time, so it is important that we
can measure it at any point of time in order to understand the memory consump-
tion behavior of the application.

N
o

]
o

aQ
<]

I
o

memory usage [Mb]
W
o

N
o
L

)
L

o

ARG R R S .

0
%
>
%
%
%

& &

time [sec]

(a) Heap memory consumption

non-heap memory

memory usage [Mb]

time [sec]

(b) Non-heap memory consumption

Figure 4. Memory consumption of a Java application.

We chose to concentrate on observing the heap memory. This is the more in-
teresting part of the two memory spaces as it holds every object that is dynami-
cally allocated, and also because the memory requirement of a Java application is
shaped mainly by the heap space required for executing the application [32, 40].
The use of dynamic memory is directly linked with the runtime behaviour of an
application, so observing just the heap memory serves our goals.

The non-heap memory is not in our interest. As shown in Figure 4b, non-heap
memory is not subject to constant variation with time and the space allocated
from non-heap memory space by applications can be calculated with all of the

27

currently existing monitoring tools. In the OSGi environment, calculations can
be difficult, since we have to use comparison and statistics. For example, we can
measure non-heap allocations before a certain application has been started and
after it has started and compare the results. This comparison can be repeated and
calculate the statistical size of reserved non-heap memory. These calculations are
time consuming and a little imprecise, nevertheless these still can be made.

Network utilization Network utilization provides a measure of the size and
amount of packets sent and received by an application in a networked environ-
ment. The purpose of this attribute is to get a concrete view of the network activity
caused by an application during a specified interval. In the case of a congestion in
the networking media, we can get an inside view of the networking behaviour of
bundles.

2.3 Monitoring Java Virtual Machine

Runtime monitoring tools observe and provide statistical information on the exe-
cution of the software system or applications. Monitoring tools are used to identify
root-cause problems in applications and to get an inside view into the run-time be-
haviour of an application. Monitors can be either software or hardware based.
Software monitors are programs that operate independently from the software to
be measured and hardware monitors are external devices that are attached to the
system to be monitored through external wires or probes [41]. This thesis work
concentrates on software monitors.

Monitoring tools are typically highly platform dependent, as useful runtime infor-
mation is available only at the OS level. Although the high abstraction level of
Java introduces monitoring challenges, the use of a virtual machine helps to make
monitoring tools more portable. J2SE provides built-in interfaces for managing
and monitoring the JVM. This chapter introduces different measurement tech-
niques and represents the basics of the provided interfaces, which have a different
approach for collecting information.

28

2.3.1 JVM Measurement Techniques

Monitoring tools typically use three different measurement techniques; source
code instrumentation, event- and time-based monitoring. These are not exclusion-
ary; all of these can be exploited in a monitoring tool. As was stated in [42], most
useful results can be achieved by combining different techniques. When consider-
ing the JVM, the techniques remain the same but, as Java bytecodes are platform
independent it is more portable than normal source or low-level machine code in-
strumentation. The measurement can be internal or it can be executed external to
application. While external measuring does not need additions to the code of the
measured application, internal measuring requires codes within the application to
detect events and convenient performance data. All the measurement techniques
enable a range in the level of detail. One requirement for the detail level needed is
derived from our interest in measuring a single bundle and not the whole software
system. Choosing the measuring technique is always some sort of trade-off be-
tween the following things; the detail level of data, amount of collected data and
disturbance caused to the measured system. Clearly, these are not exclusionary
but rather interdependent. To ensure that the measured data is meaningful and its
level of detail is desired, we must be able to control the measuring process. The
following primary aspects were highlighted by Smith in [41], and these must be
taken into consideration to get reliable and meaningful measuring results:

e The granularity of events must match the resolution of the system clock used
to time them. The events should not be too short compared to the time units
of the clock. For example, if some method executes in 20 milliseconds it
is obvious that it does not make sense to measure it with a clock that only
measures to milliseconds.

e The sampling interval of the monitor must be adapted correctly. The mon-
itor will not detect all occurrences of the interested matters if the interval
is too long. On the other hand, interval that is too short causes explosion
of the collected data size as well as overhead injected to the system by the
measurement.

29

The following gives a more detailed introduction to the JVM monitoring tech-
niques.

Bytecode instrumentation (BCI) The most common approach for collecting
desired runtime information is modifying the source code of the application. These
additions to the application code can be inserted at compile time, runtime or pro-
grammer can do insertions directly to the source code. In this approach, a devel-
oper replaces or adds bytecodes to desired locations in the original code. At the
runtime, these additions are responsible for logging actions or raising specified
events. Instrumentation can reduce disturbances caused by monitoring, as only
the desired regions of code can be instrumented, rather than instrument the whole
application.

Event-based monitoring An event is a happening of interest which occurs in-
stantaneously at a specific time [43]. In event-based monitoring, we define the
events of interest, and record their occurrence time stamp and appropriate perfor-
mance data. In Java, a great benefit is that the JVM is internally instrumented to
provide previously defined events such as a thread start or stop. If these events are
sufficient, this relieves the programmer from instrumenting the underlying plat-
form or operating system by himself.

Time-based monitoring Time-based monitoring tools are also called sampling
monitors, and these activate at predetermined time intervals and record the cur-
rent state and the appropriate performance data. The simplest form of sampling
typically causes less overhead than instrumentation because it does not need any
additions to the executing software. A sampler simply copies information, such
as a function call stack or execution location, to memory. If a more complex form
of sampling is used, the software system may need to be interrupted to record the
needed information.

Time-based techniques can be considered as statistical monitoring because; to ob-
tain a consistent view of an application behaviour a significant number of runs
must be performed. This number varies from application to application because

30

of the different kind of behaviour of the application. In addition, the sampling
period may need to be adjusted for a particular application. Although sampling is
less intrusive than event-based techniques, it does not provide as precise data as
those do.

2.3.2 Java Management Extensions

The Java Management Extensions (JMX) define an architecture, the design pat-
terns and the Application programming interfaces (API) for management and
monitoring applications, devices, services and the JVM. It provides the means
for changing application configuration, gathering behavioural statistics of an ap-
plication and error and state change notification. It also provides remote access,
so these resources can be monitored and managed remotely. The JMX has been
part of the core platform since the version 5.0 of J2SE. [44]

The JMX specification provides a framework that can be separated into three lay-
ers: the instrumentation level, the agent level and distributed services level. The
key components of the JMX are manageable resources, dynamically extensible
agents and distributed management services. In the JMX technology, the abstrac-
tion of manageable resource is called Managed Bean (MBean). Figure 5 shows
the key components of the JMX architecture and their relations within the three
levels of the JMX architecture.

The instrumentation level provides a specification for implementing the JMX man-
ageable resources. A JMX manageable resource must comply with the MBean
standard defined in the JMX specification and may be dynamically added to or
removed from the JMX agent. MBeans encapsulate manageable objects as at-
tributes and operations through their public methods and utilize design patterns
to expose them to management applications. There are four types of MBeans:
standard, dynamic, open and model MBeans. Each of these address to a different
instrumentation need [44]:

e Standard MBean provides a static management interface which defines meth-
ods for reading and writing attributes and for invoking operations.

31

e Dynamic MBeans conform to a specific interface that exposes the manage-
ment interface at runtime.

e Open MBeans is a dynamic MBean that relies on a small, predefined set of
universal Java Types to describe managed objects and they advertise their
functionality.

e Model MBeans are dynamic MBeans that are configurable and self-described
at runtime. These can be used in instrument dynamically almost any re-
sources.

JMX-compliant Other Management Distributed
Management Application Applications Services Level

Connectors and
Protocol adaptors

Agent
Services

Agent level

)

Instrumentation
level

Resources
(Mbeans)

Figure 5. The JMX architecture.

The agent level provides a specification for implementing the JMX agents that
control MBean resources and make them available to management applications.
A JMX agent consists of an MBean server, a set of agent services and additionally
requires at least one communication connector or adaptor. An MBean server is a
registry for MBeans in the agent and it handles all the management and monitoring
requests and dispatches them to the appropriate MBean. JMX agent services are
implemented as MBeans and these provide services for the management and moni-
toring applications or for other MBeans. Protocol adaptors and connectors provide
remote access to the agent for management applications. All these components of
the agent level are mandatory in an implementation of the JMX specification. [44]

32

The distributed services level defines the interfaces and components for imple-
menting the JMX managers. These interfaces and components allow remote man-
agement applications to perform operations on agents and expose a management
view of an agent and its MBeans.

JMX provides out-of-the-box means for the management and monitoring of JVM.
The JVM is highly instrumented using JMX technology and the JMX agent pro-
vides access to the built-in JVM instrumentation, and thereby it is possible to
monitor and manage the JVM remotely. By using JMX technology, we can collect
not only JVM level but also thread level resource consumption information. One
main advantage of the JMX is that it allows remote monitoring of the system, and
thereby, the monitoring application does not consume the resources of the moni-
tored system as much as with the local monitoring. Another benefit of the IMX is
that it does not need to add anything to the application code. However, it lacks the
means to trace the thread’s heap allocations, network utilization and file system
usage. These are especially emphasized in a OSGi environment, where all the ap-
plications run in the same virtual machine. The disadvantages are largely derived
from the fact that the JIMX is not designed just for profiling purposes, but rather for
dynamic extension mechanism and for enabling distributed management system.

2.3.3 Java Virtual Machine Tool Interface

JVM Tl is a programming interface used by debugging and monitoring tools. It
provides both a way to inspect the state and to control the execution of applica-
tions running in the JVM [45]. This interface was brought to the Java specification
in version 5.0 and it replaced the Java Virtual Machine Profiler Interface (JVMPI)
that was included as an experimental feature since version 1.1. JVM TI is de-
scribed as a part of the Java Specification Request (JSR) 163. It is not guaranteed
that the JVM Tl is available in all the implementations of JVM but major vendors,
like Sun and IBM, have included it in their JVM implementations.

JVM TI is a native interface and all clients of this interface must be written in
language that supports C-like calling conventions. The clients of the JVM TI are
called agents, and therefore, all clients of the JVM TI will be referred toas agents
from now on. The JVM starts the agent early in the initialization phase, before any

33

bytecodes have been executed or classes have been loaded. An agent is attached
to the same process as the monitored JVM, thus, minimizing the communication
costs with the JVM. The communication model of JVM TI is presented in Fig-
ure 6. Communication with the JVM happens through direct calls to functions
provided by the JVM TI, events raised by the JVM and BCI.

The JVM TI specification supports more than just one agent running simultane-
ously but each agent has its own JVM TI environment. This restricts the changes
made in one environment having an affect on the state of others. The state of the
environment includes the following properties; capabilities, event notifications
and the event callbacks. These properties are set by the agent at its load up phase
to achieve the needed functionality. With capabilities the agent defines the func-
tionality available in this JVM TI environment. Because capabilities may incur a
cost in processing speed or memory space, initially all capabilities are disabled.
Enabled event notifications define the desired JVM events to be listened. The event
callback-function specifies callback function for the occurrence of corresponding
event.

Figure 6. JVM TI agents’ communication model.

The JVM TI provides support for BCI, the ability to alter the Java virtual machine
bytecode instructions, which form the target program. Added bytecodes are usu-
ally an additive method call to capture some specific data and these additions do
not modify the application state or behaviour. BCI is actually necessary because
a basic assumption of the JVM TI is that information that can be collected with
the BCI, should be collected with that technique. As was stated, JVM TI pro-
vides the required support for instrumentation but it does not provide the means

34

for the actual addition of bytecodes. This has to be performed by writing a nec-
essary code or using external BCI libraries. The following list presents supported
instrumentation means as defined in [45]:

o Static Instrumentation: The class file is instrumented before it is loaded into
the VM - for example, by creating a duplicate directory of *.class files which
have been modified to add the instrumentation. This method is extremely
impractical, and in general, an agent cannot know the origin of the class
files, which will be loaded.

e [oad-Time Instrumentation: when a class file is loaded by the VM, the raw
bytes of the class file are sent for instrumentation to the agent. The Class-
FileLoadHook-event, triggered by the class load, provides this functionality.
This mechanism provides an efficient and complete access to one-time in-
strumentation.

e Dynamic Instrumentation: A class that is already loaded is modified. This
optional feature is provided by the ClassFileLoadHook-event and triggered
by calling the RetransformClasses-function. Classes can be modified multi-
ple times and can be returned to their original state. The mechanism allows
instrumentation, which changes during the course of execution.

As the JVM TI is designed for developing monitoring and debugging tools, it
provides the means to collect very detailed information from the JVM. Because
the JVM TI is capability-based the performance impact of the JVM TI agent can
be reduced by only selecting the desired capabilities unlike in the JVMPI which
was more of an "all or nothing"-approach. The BCI approach provides complete
control to the agent: the instrumentation can be restricted to desired portions of
the code and can be conditional. The BCI instrumentation adds standard Java
bytecodes, so the virtual machine is able to also optimize the instrumented code
and the overhead, added by the measurement agent, is minimized. However, if
the instrumentation involves switching from bytecode execution, expensive state
transitions are required and additional bytecodes can exhaust the JVM. [45]

35

2.3.4 Existing monitoring approaches

There is wide variety of tools available for monitoring JVM, both commercially
and non-profit. It is impossible to make a comprehensive list of the currently avail-
able tools. Therefore, the tools mentioned here should be taken as representative
entities. Typically, monitoring and profiling tools are used by developers to track
functional problems but we are interested in the resource consumption information
of an application. Therefore, tools, which create function call trees and calculate
method execution times have been excluded from the review.

Java 2 SE 6 Java Development Kit (JDK) tools and utilities The JConsole is
a JMX-compliant monitoring tool and it is delivered with the Java 2 SE 6 JDK.
It provides the performance and resource consumption information of applica-
tions running on the JVM by using JMX instrumentation. The JConsole can be
connected to the JVM either locally or remotely. It obtains its information from
JVM MBeans in the connected JMX agent. The JConsole provides information
on memory usage, thread usage, class loading and garbage collection statistics of
the monitored JVM. The JConsole also provides a generic way to manage and
monitor applications if these implement the MBean interfaces. [8]

Jstat is an experimental tool that monitors the JVM performance and resource con-
sumption. The Jstat is attached to an instrumented HotSpot Java virtual machine
to collect and log performance statistics as specified by the command line op-
tions. The Jstat collects information on memory usage, class loading and garbage
collection statistics of the monitored JVM. The instrumentation is designed such
that it does not require a separate starting, yet has negligible performance impact.
This monitoring interface, added to the HotSpot JVM, is proprietary and it is not
guaranteed that it will be supported in the future.

The J2SE provides a simple command line profiling tool called HPROF. The
HPROF collects information on heap memory usage, CPU utilization and it can
dump the whole heap to a file. These heap dump files can be analyzed with a
tool called the Jhat. These tools are meant to be used as an aid for the developer
to track bugs and memory leaks. The HPROF itself is not targeted to be a capa-
ble analyzing tool, but rather to provide a foundation for building a performance
analyzer.

36

The NetBeans Profiler The NetBeans Profiler provides profiling functionality
for the NetBeans integrated development environment (IDE). It relies on JFluid
technology, developed by Sun Microsystems, and bytecode instrumentation. The
JFluid is a technology that provides a mechanism to dynamically start or stop pro-
filing and select only the desired portion of code to be profiled. The NetBeans
Profiler can monitor thread state, CPU utilization and memory usage. CPU uti-
lization can be seen on both thread level and method level. The NetBeans profiler
is a solution for debugging purposes, for finding memory leaks or unoptimized
code and is tightly integrated into the IDE work flow. [9]

Academic approaches Whaley have presented a sampling-based online mea-
surement system for Java in [46]. It uses periodic thread sampling to collect
every thread’s stack, program counter and CPU time. This information is used to
create partial calling context tree (PCCT), a data structure for efficiently encoding
approximate context-sensitive profile information. The system provides an effec-
tive way for detecting not only the most CPU time consuming code blocks but also
the call context of its occurrence. This information is not however appropriate for
our means, because even if we can identify the calling application from the call
stack it is inefficient. Also all the other resources that we are interested in are
ignored.

There have been various proposals to realize a resource control in Java, although
these are not just monitoring systems, these provide interesting monitoring and
accounting solutions as a basis for their resource control system. Czajkowski and
von Eicken proposed the JRes [47], which is a resource control system. It uses
per-thread accounting for tracking the consumption of CPU time, heap memory
and network resources. Resource usage information is collected with a mixture
of bytecode instrumentation and native code. This approach lacks the linkage
between the threads and application as all the threads are treated and accounted
individually.

Binder et al. have long studied the fully portable profiling approach both sepa-
rately [48, 49] and as a part of the resource accounting framework [30, 50, 51].
These rely on bytecode instrumentation in order to account the used resources.
The profiling approach uses self-accounting for approximating CPU usage, which

37

means that each thread counts its own executed bytecodes and reports these to
the account shared between all the threads of a component. These approaches not
only use a fully portable Java code but also use platform independent profiling
metrics, such as bytecodes. Introduced CPU accounting for all the threads of the
component provide a linkage between the threads and application, and therefore,
it presents the CPU usage of the whole component. However, the mapping of the
threads to the component is not discussed in detail.

2.3.5 Existing visualization approaches

The resource consumption visualization of software has not been a subject of ex-
tensive research. There have been a large number of different systems that provide
visualizations of the dynamics of a Java program, for example [52, 53, 54]. These
concentrate on the program flow, behaviour and interactions of threads and class
allocations. Typically, existing resource consumption visualization approaches
use simple 2D-graphs for representing the usage of one single resource, as shown
in Figures 3 and 4. This is an inefficient way of interpreting resource consumption
behaviour because a human analyst has to inspect all the graphs separately. It is
time consuming and the correlations between different graphs are often difficult
to notice.

38

3. Monitoring and visualization approach

This Chapter presents the goals and requirements of our monitoring approach.
In addition, challenges and possible difficulties are identified. The monitoring
system consists of two main processes, the monitoring and visualization processes

[

= c

as shown in Figure 7.

Modified Oscar

JVM

Analyst

Figure 7. High level perspective to the monitoring approach.

The high level Figure 7 presents the key components of the monitoring and data
post-processing approach. The monitoring tool collects runtime behavioural in-
formation of bundles and the visualization tool interprets this information to the
user of the tools. A log file and analyzable graph are the end products of these
tools.

Considering Figure 7, both processes of the monitoring system are equally impor-
tant and useless without the other. As the monitoring process produces a textual
log file, without proper interpretation it is impossible for the analyst to gain a clear
behavioural view of the whole lifetime of the bundle. Even the most state-of-the-
art visualization is also useless without exact measurements. At the first phase,
monitoring collects information to a log file and all the calculations are performed
after desired test cases have been executed. This reduces the interference caused
by the monitoring system than if the visualization had been performed online. In
this case, the visualization should be distributed to another machine for minimiz-
ing the overhead caused by the time-consuming calculations.

We have largely derived the requirements for the monitoring and visualization ap-
proach from the target environment and the requirements of target end-users. As

39

the tools are targeted to be used not only by application developers but also by
external analysts, tools should be usable even without deeper knowledge of the
monitored applications or the underlying hardware. As the monitoring system
consists of two different processes, both have individual requirements. The fol-
lowing sections discuss the basic requirements and implementation issues of the
monitoring system.

3.1 Monitoring process

The monitoring process aims at revealing the inner resource consumption be-
haviour of the JVM. This can be achieved by identifying the actual sources of
the resource consumption inside the JVM and collecting these statistics. Chap-
ters 2.2.3 and 2.3 provide a base for the following fundamental features of the
monitoring process that we have identified.

Monitoring process requirements

1. Most of the collected resource consumption information is bundle-level and
not JVM-level information. This feature creates a requirement for a detailed
level of data that we must be able to extract from the underlying system.

2. Multiple bundles can be monitored at the same time.

3. The first prototype of the measuring tool collects the following resource
consumption attributes:

(a) Heap memory consumption of a bundle.
(b) CPU utilization of a bundle.
(¢) CPU utilization of the whole JVM.

The following attributes are optional:

(d) Network utilization of a bundle.

(e) Mass storage consumption of a bundle.

40

4. Bundles that are monitored can be selected at the startup phase of the tool.

5. Monitoring does not require any changes to the source code of the monitored
bundle.

6. Overhead caused by the monitoring process is measured or must be at least
assessable.

At first, the monitoring tool is implemented to the Windows platform, but there
should not be any problems in porting the implementation to other platforms as
well.

The most crucial requirement of the monitoring process is the identification of
the actual source of resource consumption. As the OSGi environment is com-
posed of multiple collaborating bundles that execute in a single JVM, it will be a
challenging task to identify which is consuming computing resources. This raises
the first question, how can we identify a resource consuming bundle? In addi-
tion, the OSGi environment introduces another challenge for identification: ser-
vice providers. Bundles that provide services for other bundles provide a public
interface for other bundles to use. This leads to the second problematic question,
should we account resources consumed during service interaction to the service
provider or the user of the service?

Bundle identification As was studied in Chapter 2.3.4, thread based tracking
enables the bundle level identification of resource consumption. This gives us
the answer to the first question. We still need to solve the mapping threads to the
bundle. Figure 8 presents a high-level algorithm for tracking the bundle’s resource
consumption.

We considered different choices for bundle identification such as tracking bundles
separately for every resource consumption event, but concluded that the least dis-
ruptive way for identification is to identify new threads at their time of creation.
As shown in Figure 8, a newly created thread is identified and if it belongs to a
bundle that is in our interest, we add this thread to the set of monitored threads of
the bundle. Otherwise, the resources consumed by this thread are ignored. As we

41

EVENT: Thread_Start

if the thread belongs to a monitored bundle then
| add the thread to monitored threads;

else
| the thread is ignored;

end

Figure 8. Bundle identification, right after a new thread is spawned.

have identified all the threads of the bundle and tracked the resources consumed
by these threads, it is possible to account the consumed resources to exactly one
bundle.

Accountancy of consumed resources To answer the second question about re-
source consumption accounting in case of service interaction, we need to consider
the accountability of the consumed resources. As services are used through public
interfaces, it can be seen as a direct sharing of objects that provide some service.
Two possibilities can be defined to account the consumed resources during service
interaction: direct and indirect. The following discusses these choices and their
impact on resource consumption monitoring.

The indirect accounting of resources, consumed by a bundle, means that all the re-
sources consumed by threads belonging to one bundle are accounted to this same
bundle. Thus, the bundle is held accountable for all actions made on behalf of
the bundle. By using this approach, the resources used during service interaction
will be accounted to the bundle using the service. This is because the service user
directly calls methods offered by the service provider. This leads to the fact that
during service interaction, the service provider is not even active in a sense of re-
source consumption. This approach is not completely misleading since resources
consumption is accounted to the bundle that actually requires these resources.

The direct accounting of resources that are consumed by a bundle means that the
resources consumed by computing inside one bundle will be accounted to this
corresponding bundle. Thus, the bundle is held accountable for all actions made
by it. Using this approach, the resources used during the service interaction will
be accounted to service provider. So, when a user of the service calls the service

42

provider, the accounting of the consumed resources changes from the service user
to the service provider though a thread that performs the service interaction be-
longs to the service user. This approach isolates the service providing component
from the service user and both components will be accounted with the appropriate
amount of resources consumed.

Let us consider a situation where a service providing bundle is poorly implemented
and uses excessive amounts of computing resources. Using the indirect accounting
approach, it seems that the service using bundle is consuming all those resources
and the consumption of service providing component is concealed. With direct
accounting approach, the monitoring reveals that the service provider consumes
all those resources. Thus, direct accounting provides a distinction for the resource
usage of a component and the resource usage that a component cannot affect di-
rectly.

We have chosen the direct accounting approach because it makes a clear distinc-
tion between the resources used by the bundle and other bundles. To achieve this,
we must be able to provide a mechanism to isolate applications from each other,
such as in KaffeOS [55], which uses process abstraction for every application like
the traditional OS. The isolation of different components in the OSGi environ-
ment must be achieved without interfering with the system’s normal functioning
because in this case we are only interested in monitoring and not in managing
the resource consumption of components. In addition, the monitoring should be
possible without changing the monitored component. This sets a requirement for
isolation: it must be invisible for every collaborating component.

Although with thread-based identification, we are able to account resources to a
corresponding bundle, it is not a complete solution. One disadvantage is that it
is impossible to account the resources that are consumed by the JVM on behalf
of a particular bundle: for example, CPU time spent while performing garbage
collection to the objects allocated by a bundle from the heap memory.

43

3.2 \Visualization process

As the log file, produced in the monitoring process, can be rather cryptic to exam-
ine, the visualization process is needed to transform the collected resource con-
sumption data in some form that a human can easily analyze. Informative and
clarity are the keywords in achieving analyzable representation. From these key-
words and the studies of earlier chapters, especially Chapter 2.3.5, we have derived
the main requirements of the visualization process.

Visualization process requirements

1. Outcome is easily analyzable scenery where all the monitored bundles and
their measured resource consumption attributes will be seen from a single
scenery.

2. CPU time consumed by a bundle can be compared to both, elapsed time
on the sampling period and to the CPU time consumed by the JVM as a
process.

3. Besides the visual scenery, numerical information is also produced to sup-
port analyzing. This is produced from the desired time interval of the log
file. At the first phase, the textual information consists of:

(a) Selected time frame in wall clock time.

(b) Averaged CPU time consumed by a bundle compared to both, selected
time interval and to the CPU time consumed by the JVM in this inter-
val.

(c) Heap memory consumption statistics from the selected time interval.
This includes the bundle’s largest, smallest and average consumption.

Existing visualization and analysis tool The visualization and analysis tool is
responsible for interpreting the logged measurement data in a human analyzable
form. The tool produces 3D-visualization and analysis, presenting the resource

44

consumption behaviour of monitored OSGi bundles. In the first phase, the mon-
itoring collects information to a log file from which visualization tool reads the
data and produces an off-line visualization.

The visualization and analysis tool should provide an inside view to the resource
consumption of the JVM during the monitored time frame. The time frame is not
limited and it should be possible to efficiently visualize both short and long time
frames. These can range from milliseconds to tens of minutes. To enable analysis,
the tool should produce not only visual but also numerical results of the desired
time frame. These numerical results will be displayed in visualization and these
are stored in text files for later analysis.

The tool that will be used for analysis and visualization has been designed and
implemented by Yrjonen [56]. The tool was initially designed for and used in an-
alyzing performance scaling techniques and the system wide execution and perfor-
mance of embedded devices. It produces 3D-scenery from runtime traces, which
allows a free movement; the analyst can view the model from any angle and at any
scale. This tool will be extended in this thesis work to be capable of visualizing
and to aid the resource consumption analysis of OSGi bundles.

Visualization models Presenting software runtime behaviour with 3D-graphics
is not revolutionary, since it is easy to transform a graphical model from 2D to
3D. The main point is how the third dimension is used in visualization. In the
first phase, we concentrate on memory consumption and CPU utilization. In vi-
sualizing resource consumption, we combine CPU utilization with the memory
consumption of a OSGi bundle. This effectively illustrates the resources used by
a component. In addition, it gives a clarifying view to the inner behaviour of the
JVM.

Figure 9 illustrates how each time slice is composed in a 3D graph. This figure
presents the statistical CPU load of each bundle and the whole JVM in a certain
time interval. Three bundles have been monitored in this example. These are
sorted by their memory consumption, the lowest block in the graph consumes the
largest amount of memory, in this case bundle A. Their relative CPU utilization
can be seen on the vertical axis, the largest share is consumed by bundle B in this
example.

45

—+ 100 %

CPU utilization

BUNDLE A

—+ 0%

-

Memory consumption

Figure 9. CPU utilization of bundles sorted by memory consumption in a single
time slice.

The illustration shown in Figure 9 gives an insight view to the processor activities
during a specified time interval and it also opens up the JVM as a process for
analyzing. The total vertical size of the coloured area illustrates the CPU load in
the processor caused by the JVM. In this example, it has reserved the processor
for almost the whole time interval. The uppermost block illustrates the CPU time
of the JVM that has been reserved outside of the monitored bundles. Below the
JVM block, we can see how the CPU time taken by the JVM has been divided
between the monitored bundles.

When a series of illustrations, shown in Figure 9, is created over time and arranged
into a 3D-graph one after another, we obtain the illustration shown in Figure 10.
This presents the changes in the CPU utilization and memory consumption of
bundles over time as processing continues. In Figure 10 the time is represented
along the x-axis, resources are in the same way as in Figure 9, CPU utilization
along the y-axis and memory consumption along the z-axis.

In Figure 10, there are two OSGi bundles monitored, A and B. C represents the
CPU utilization of the JVM. This gives us a revealing view of the CPU load distri-
bution inside the JVM. This view enables the comparison of the CPU load caused
by bundles either to the time interval or to the JVM itself. As the memory con-

46

Figure 10. 3D-graph presenting resource consumption of applications.

sumption of bundles is represented in the same graph, the resource utilization of a
software component is effectively illustrated. This helps the analyst to gain a clear
view of the executed bundles inside the JVM by analyzing only one single graph.

As the final goal is to be able to monitor the usage of more than two resources and
then evaluate these against predefined resource boundaries, we must construct an-
other effective illustration. Let us consider that we have three resource attributes,
for example, CPU utilization, memory consumption and networking activity. Fig-
ure 11a illustrates the predefined boundaries for these resources. The boundaries
form a cage that defines the maximum usage of different resources that are allowed
for a component. In this illustration, the CPU load is represented along the y-axis,
memory usage along the z-axis and networking activity along the x-axis. The time
is not represented at all. When a component is executed, we can form the same
kind of block as the boundary cage from the resource usage values of the com-
ponent. The monitored software component can now be inserted inside this cage
and see if the requirements set by these boundaries are met. Figure 11b illustrates
a software component that meets the resource usage requirements. Figure 11c
represents a case where the application violates its resource requirements.

47

z z

(a) Boundaries of three (b) Bundle meets the
resource attributes. specification.

z

(c) Bundle violates its
resource usage bound-
aries.

Figure 11. Evaluating bundle behaviour against pre-defined resource consumption
boundaries with 3D visualization.

The illustration shown in Figure 11 aids the analysis of an application’s resource
consumption behaviour. It enables a simple and effortless evaluation of the per-
formance of a software component. Like in Figure 11c, although the boundaries
set for the CPU utilization and networking activity are met, the memory consump-
tion limit is exceeded. This would lead to a re-evaluation of the implementation
or design. This type of 3D representation that captures all the attributes on a sin-
gle graph is far more effective and clearer than three 2D graphs, as discussed in
Chapter 2.3.5.

3.3 Support for dynamic adaptation

In the previous sections, we have discussed the static usage of the monitoring tool
that does not affect the execution of the software excluding the overhead intro-
duced by the tool. This section discusses how the monitoring tool can enable
decision making that affects the runtime behaviour of the software components.

48

An important aspect when developing the OSGi-based platform independent soft-
ware is the availability of computing resources. This is emphasized in resource-
constrained computing environments unlike with the desktop computing environ-
ments. The behavioural adaptation of software itself means that a program can
adapt its internal behaviour to meet the dynamically varying availability of com-
puting resources. Two adaptation schemes can be distinguished: self-adaptive and
platform controlled. The self-adaptive software gains the resource availability in-
formation itself and the platform controlled receives an adaptation request from
the underlying platform.

Regardless whether we are considering either a self-adapting or platform con-
trolled adaptive software, the adaptation needs support. The application or the
platform must be able to access resource usage information, in order to make
adaptation decisions. This thesis work presents an OSGi-based service compo-
nent that provides the dynamic resource usage information of different compo-
nents running in the environment. In addition, information on the availability of
different computing resources in the whole environment will be provided. Support
for dynamic adaptation creates a need for a runtime access to the monitoring tool.
Therefore, we must develop an OSGi bundle that communicates with the monitor-
ing tool and provides a service that supplies the resource consumption information
of the components and the JVM. This type of approach separates the monitoring
and minimizes communication between the bundles and the monitoring tool. This
bundle only makes resource usage information available, it does not generate any
adaptation requests neither does it take any part in the adaptation process itself.

Bundles that are capable of behavioural adaptation will be registered to the moni-
toring service. The registration provides also their resource usage boundaries. The
monitoring service forwards the registration to the monitoring tool, so it can add
these bundles to the set of monitored bundles. During execution, the monitoring
service notifies every time when a bundle has crossed its boundary. After that, it
is up to platform or the bundle itself to perform the necessary adaptation request
or actions.

False notifications from a monitoring service can waste the advantages introduced
by dynamic adaptation and ruin the performance of the software system. Sudden

49

but short-term changes in resource usage can lead to premature corrective actions.
Premature adaptation actions cause resource usage oscillation though the goal is to
achieve a steady resource usage level. To avoid false notifications, the monitoring
service must have the means to correct sudden changes in resource usage levels
without notification. For example, averaging is a simple and efficient way to avoid
false notifications. Figure 12 clarifies the application’s behaviour with premature
and correct adaptation.

2,
X \
. AN A / A X F\ A
S S
=
/m -
2. 3.
(a) Premature adaptation. (b) Correct adaptation.

Figure 12. Application’s dynamic adaptation to available resources.

Figure 12a illustrates the application’s resource consumption behaviour when adap-
tation requests are premature. A and B represent the resource usage boundaries,
the target of the adaptation is to keep the resource usage level between these
boundaries. At first, the resource usage is at the target level and then at the point
1 there occurs a peak in the resource consumption. Since it is only a peak, the re-
source usage would return near the earlier level without any actions. In this case,
there has been a notification of resource boundary violation sent and the appli-
cation performs adaptation actions to lower its resource usage. These premature
activities lead to a large drop in resource usage and it drops below the low-level
boundary. Again, at point 2, notification has been sent that there are a great deal
of available resources to use. These premature actions can lead to an unstable be-
haviour as can be seen after point 2. These false notifications are sent due to fact
that, without any correcting means the monitoring end can not determine whether
the changes are permanent, short-term peaks or incorrect measurements.

50

The illustration in Figure 12b shows the application’s behaviour with correct adap-
tation requests. A and B present the same boundaries as in Figure 12a. In this case,
averaging has been used at the monitoring end. Now, when a peak occurs at the
point 1, notification is not sent because the averaged resource usage stays below
the level A. At points 2 and 3, notifications of changes in resource usage levels are
sent and the application makes correcting activities to reach the desired level of
resource consumption. These result in a desired behaviour since the notifications
are now sent correctly, only when the change in resource usage level is permanent.
It is clear that in this case, the application reacts slower to changes of resource us-
age levels but even so, this leads to better results than actions that are faster but not
as accurate. There are also more sophisticated algorithms than simple averaging
that can improve the reaction time.

51

4. Implementation

This Chapter presents the actual monitoring approach implemented in this work
and also introduces a visualization tool and extensions which were made to en-
able data post-processing. First of all, a short overview of the implementation is
presented. Then the modifications that enable the OSGi bundle identification are
described, the actual monitoring tool and extensions to the visualization tool [56]
are laid out. Finally, the implementation of the OSGi-based monitoring service is
laid out.

4.1 Overview of the approach

In implementing the prototype, we use Oscar, the predecessor of the Apache Felix
introduced in Chapter 2.2.2, as a OSGi platform. The monitoring tool was de-
signed to collect bundle specific resource usage information. The main difficulties
and requirements were identified in Chapter 3.1. We need to be able to identify
the source of the resource consumption from the information we get by observing
the JVM. The overhead introduced by the monitoring is also a major issue to over-
come since the desired information is so detailed that its extraction can consume
a great deal of processing power. These monitoring related issues were discussed
in Chapter 2.3. An overview of the measuring resource consumption in the OSGi
environment can be derived from Figure 7, and is presented in Figure 13.

Modified Oscar

Text

dump
v ? TCP/IP ?

MONITORING LOG

ANALYZABLE
STATISTICS

Figure 13. Overview of OSGi bundle monitoring in the OSGi environment.

52

The monitoring agent collects bundle-specific resource usage information from the
JVM and directly from the underlying OS as all the required information, as was
identified to be necessary in Chapter 3.1, is not available from the JVM. Figure 14
illustrates an example sequence of the monitoring and visualization approach.

initializes produces

is input for

Legend:

C) Process
[]arifact

3D scenery
produces

Figure 14. An example sequence of the monitoring and visualization approach.

The Configuration file initializes the monitor agent. The monitor agent periodi-
cally stores the measurement data to the file system. To reduce the disturbance to
the executed applications, the time consuming calculations will be performed after
JVM shutdown and monitoring has ended. The Log file contains numerical data
representing the behaviour of monitored components. The Visualization and anal-
ysis tool processes the log file to provide 3D scenery. The 3D scenery illustrates
the resource consumption behaviour of the monitored bundles. In the visualiza-
tion phase, desired calculations can be performed and mathematical statistics can
be gathered. The outcomes of this chain are a graphical scenery and statistics,
which gives a clear behavioural view of the bundles whole lifetime. It provides
the resource analysis of the bundle with as little effort as possible.

In order to achieve the goals set for the monitoring approach in Chapter 3.1, we
had to modify and extend the OSGi implementation. The relations between the
Oscar modifications and the monitor agent are shown in Figure 15.

The following sections discuss the implementation details of these modifications,
the monitor agent and the visualization tool.

53

Modified Oscar

gnatics OSGi extensions

. | - EN20IES | o rodification

Figure 15. OSGi implementation modifications enable the resource monitoring.

4.2 OSGi implementation modifications

Modifications made to the Oscar, are required in order to identify the bundle that
is consuming resources and to isolate the OSGi services as illustrated in Figure 16.

Modified Oscar

<M OSGi extensions

| -2NabIes | 5i mogification

Figure 16. OSGi implementation modifications.

This modification and the extensions are discussed and laid out in the following
chapters.

4.2.1 Bundle specific ThreadGroup

The identification of the actual source of resource consumption is based on identi-
fying the thread that uses computing resources as described in Chapter 3.1. It was
also designed so that the threads are identified already during the startup-phase of
a new thread, thus, minimizing runtime data processing.

54

One way to implement thread identification is to inspect its stack trace, which is
a chain of method calls that reveal where the execution is in the code. Typically,
this is used to sort out where an application has crashed or hung. Stack traces are
represented as strings of text. This approach was discarded because the thread’s
stack trace can be so long that it is very inefficient to perform a thorough inspec-
tion. A string processing overhead would be unsustainable when processing these
stack traces at runtime.

We ended up implementing the actual identification from the ThreadGroup object
of the Java thread. It is originally meant for collecting multiple threads into a
single object and performing managing operations to those threads all at once
rather than individually. Every Java thread is a member of a thread group. A
thread group presents a set of threads and the thread group can include other thread
groups. The top most groups in a Java application are named system and main.
The thread groups form a tree hierarchy of threads and thread groups as shown in
Figure 17.

Thread 4

Thread 1 Thread 2
Thread 3

Figure 17. Thread group tree of a Java application.

The newly created thread is placed to the same thread group as the thread that
has spawned this new thread unless the thread group is not separately specified. If
there is a specified new thread group in the creation of a new thread, the new thread
group will be placed as the child of the current thread group. If the developer does
not specify new thread groups all threads will be placed in the main-group as
Thread 4 in Figure 17.

55

Figure 18 presents the Java thread group trees in the OSGi environment. The
thread group tree in the unmodified OSGi environment is shown in Figure 18a.
Threads Al, A2, B1 and so on, illustrate threads, which belong to different bun-
dles. This shows that all the threads are placed in the main-group if the developer
of the bundle has not specified otherwise. Therefore, the thread groups cannot be
used in the thread identification.

Thread A1 Thread A2 Threhd B2

(a) Thread group tree in the original
OSGi environment.

Thread A1 Thread A2 Thread B1 Thread B2 Thread C1

(b) Thread group tree in the modified OSGi environ-
ment.

Figure 18. Java thread group trees in the OSGi environment.
In our implementation we create a unique ThreadGroup object for every bundle

deployed to the OSGi environment. All the threads of the bundle will be placed in

56

this thread group. To enable this, we had to modify Oscar so that whenever there
will be bundle deployed, it will be started by a thread that has a unique Thread-
Group object that identifies the currently starting bundle. After the bundle has
started all the threads that it spawns will be in this same group as was previously
explained and is illustrated in Figure 18b.

Figure 18b presents the tree of thread groups in the modified OSGi environment.
All threads within the same group belong to exclusively one bundle. This enables
the unique identifying of the threads and therefore the bundle that is consuming
the computing resources. As was previously explained, the only modification to
achieve this is that the bundle has to be started in a separate thread. To start
a bundle, a thread — with a unique ThreadGroup object — executes the bundle’s
start-method of the Activator-class as was studied in Chapter 2.2.1. After this
modified startup-phase, all threads can be identified to a corresponding bundle.

4.2.2 Isolation of OSGi services

Different resource accounting strategies were discussed in Chapter 3.1 and a direct
approach was chosen. It was also identified that we need to be able to isolate the
OSGi services in order to account the resources that these consume. To achieve
complete isolation we use a proxy pattern. Figure 19 presents an overview of our
approach.

Monitoring
Scope

Modified Oscar

JVM

Figure 19. Proxy model for OSGi services.

In Figure 19, Bundle A and Bundle B represent service interaction participants.
The Monitor Proxy is the intermediary in the service interaction and it is a normal

57

OSGi bundle that provides the same service interface as the Bundle B in Figure 19.
The Monitor Proxy is the key component in enabling the monitoring of the Bundle
B resource consumption.

Figure 20 illustrates the action flow of the service interaction with monitoring
proxy:

1. Proxy captures a service call of the service user.

2. Proxy forwards the call.

3. Proxy captures the response to a service call.

4. Finally, the proxy forwards the response back to the service user.

The main responsibilities of the monitoring proxy are:

1. Perform actions that enable the resource monitoring of the service provider.

2. Perform inverse actions that enabled the resource monitoring of the service
provider.

(©)

(1 (@

Figure 20. Service interaction sequence with monitoring proxy.
In other words, the proxy isolates the OSGi service and defines the monitoring

scope for the monitoring agent. The implementation issues that enable this action
flow and the extensions made to Oscar are discussed in the following paragraphs.

Oscar extensions To be able to use proxies for OSGi services, we extended the
chosen OSGi implementation Oscar. Extensions were needed in order to manage
the life cycle and activation of the proxies. The management of the proxy life

58

cycle includes the registration and unregistration of proxies. The activation of a
proxy makes it possible for others to use proxies. The most important classes of
the modified Oscar are shown in Figure 21. This paragraph describes shortly these

modifications.
«interface»
BundleContext
+registerServiceProxy()
+unregisterServiceProxy()
1
| Oscar
I - -
-m_serviceTGList
BundleContextimpl . m_serviceProxyList
+registerServiceProxy()
0.* 1 +unregisterServiceProxy()
Al +getService()
+registerService()
One for each bundle
installed in the framework 4 1
«interface» One for each
ServiceProxy o _Se';'cs ’eg's‘e’i‘j
+getServiceObject() . in the framewor
+getProxyObject() 7/
ServiceThreadGroup //
0.r 1 +getServiceObject()

1 +getThreadGroup()
+setProxyObject()

" +getProxyObject()
ServiceProxylmpl +getServiceBundle() 1
1
\ «interface»
Servicelnterface
One for each service proxy
registered in the framework
o

1] oo H [

1 1

1 1

MonitorProxy Servicelmpl 1
!

Figure 21. Class diagram of the modified Oscar.

To realize a transparent proxy, we need to be able to register the proxy to the OSGi
framework and unregister it. We added two new methods to the BundleContext
interface in the org.osgi.framework package: registerServiceProxy and unregis-
terServiceProxy. One new interface ServiceProxy was also added to this package.
With the implementation of these methods and this interface in org.ungoverned.oscar
package we are able to maintain the list of proxies that are present in the frame-
work.

For every service that registers to the OSGi framework, we create an additional ob-
ject that stores the information of this service. This object is an instance of the Ser-
viceThreadGroup class that we have added to the org.ungoverned.oscar package.

59

It has references to the service object, service providing bundle and ThreadGroup
object of this corresponding bundle. These ServiceThreadGroup objects will be
placed in a vector called m_serviceTGList containing one object for every service
registered in the framework.

The registration procedure is much like registering a normal OSGi service. A
method called registerServiceProxy takes the proxy object, the service object and
its service reference as its argument. For every proxy registered, an instance
of ServiceProxylmpl will be created containing information on this proxy, and this
instance is added to the vector of registered proxies called the m_proxyList. The
newly created ServiceProxylmpl object is also linked with the corresponding Ser-
viceThreadGroup object. This ServiceThreadGroup object will be returned after
the registration procedure, to be used by the proxy that requested its registration.

The service interaction call normally returns the object that provides the corre-
sponding service. We have modified the getService method so that it first goes
through the list of proxies. If the list contains a registered proxy object that cor-
responds to the requested service the proxy object is returned to the service user.
Due to this procedure, both the service provider and the service user are com-
pletely unaware of the intermediary in the service interaction. In other words, this
ensures the transparency of the monitor proxy.

The unregisteration of service or monitor proxy releases corresponding objects
and clears those out of the maintained vectors. After a monitor proxy has unregis-
tered, the corresponding service operates in a normal way without the interfering
intermediary. The monitor proxy itself becomes unusable if the corresponding
service has been unregistered before the proxy.

Proxy implementation A monitor proxy is a bundle that implements the same in-
terface or interfaces that the service provider has made available for other bundles
to use. As was previously described, in order to act as an intermediary the proxy
must register itself to the OSGi framework. The following Figure 22 illustrates the
registration procedure. Firstly, the bundle that implements a monitor proxy gets
the corresponding service object and registers itself as a proxy for this service.
The registering method returns the ServiceThreadGroup object as was previously

60

explained. Among other information on the service provider, the returned object
has the reference to the service providing bundle’s thread group. No further actions
are required by the bundle to operate as a proxy.

(8) Forwarded

(7) Service Call

¢ Service Call >

g B = —
g [e |z |& S
3 3 Q

@ Q @ Q 23 Q

@

208 S8 13 g
8 @ 8 © @ >
2 |5 2|5 |3 g
& 3 T |® 8 (%
3 < s [= 3 ©

Modified Oscar

Figure 22. Monitor proxy registration procedure and usage.

When the service user desires to use a service, instead of calling a method of a
service provider, it calls a method of the monitor proxy as in Figure 20. To enable
the monitoring of the service provider the proxy needs to change the ThreadGroup
of the thread as was explained in Chapter 4.2.1. Java does not allow the changing
of the group of the thread, and so, we need to spawn a new thread in the service
provider’s group that performs the service interaction. This is illustrated in Fig-
ure 23, which is a snippet from a source code taken from the Monitor Proxy shown

in Figure 19.

public class MonitorProxy implements BundleActivator ,
BundleBService {
private Data data = null;
public Data service () {
Thread serviceThr = new Thread (BundleBGroup ,new serviceThread ());
serviceThr.start () ;
serviceThr.join () ;
return data;
}
class serviceThread implements Runnable {
public void run () {
data = BundleB.service () ;

}

Figure 23. Source code snippet from Monitor Proxy.

61

As shown in Figure 23, the parent thread of the serviceThr waits for the service
interaction to complete. After the service provider has responded to the service
call, the thread responsible for the service call will die. The death of this service
thread unblocks its parent thread and the execution goes on. There will be no
need for further actions since the execution now returns to the service user and
the parent thread is already in corresponding thread group, hence the consumed
resources will be tracked to the appropriate bundle.

4.3 The monitor agent

The previous section discussed the implementation details that enable the resource
consumption monitoring of a separate bundle. This section opens up the actual
monitoring agent implemented in this thesis work. The main responsibility of the
monitor agent is shown in Figure 24. The actual identification of the threads is
performed in the monitor agent. As this identifies the resource consuming bundle,
it is the most crucial task of the agent.

Figure 24. Thread identification enables the identification of the resource consum-
ing bundle.

Various approaches to JVM monitoring approaches were studied in Chapter 2.3.
We implemented a monitoring agent by using the JVM TI and BCI. The use of this
interface was chosen as it provides the best approach to collect runtime data. The
BCI is needed in order to get detailed monitoring data. The JMX based imple-
mentation was discarded because it did not provide the means to extract detailed
bundle specific information.

62

The actual implementation is a dynamically linked library (DLL) written in C and
it uses two demo library files delivered with the JDK. These are the agent_util.c
that provides a few utility functions for the JVM TI agents and the java_crw_demo.c
that provides the functionality required for performing the basic BCI. The imple-
mentation utilizes both time- and event-based monitoring techniques and the BCI.
Utilizing all the different techniques was studied to be the most efficient approach
in Chapter 2.3.1. The monitoring agent reacts on the events that it receives from
the JVM TI. In addition, the monitoring agent has its own thread for periodically
checking the CPU usage of the threads and for collecting heap memory usage
information.

The following chapters open up the agent implementation from the initializing
phase to the actual monitoring phase.

4.3.1 Initializing the agent

The monitor agent is loaded right at the startup phase of the JVM and the Agent_OnLoad-
function is called. In this phase, the agent defines the subjects of interest and pre-

pares itself before the actual execution. This function parses the configuration file,

finds out the number of processors in the execution environment, gets the JVM
process handle from OS and sets the state of the JVM TI environment, as was
described in Chapter 2.3.3.

A configuration file defines the desired bundles to be monitored and additional op-
tions. An example configuration file is included in Appendix 1. Only the bundles
that have been defined in this file will be monitored, the remainder are ignored by
the agent. With additional options, the user of the agent can the define following
optional properties of the agent:

e Classes which will be instrumented with new bytecodes.

CPU sampling interval.

e Memory sampling interval.

Garbage collector interval.

Filename of the monitor log.

63

To collect the desired information, the state of the JVM TI environment of the
agent must be set. This includes defining and registering events of interest and
actions taken when a certain event occurs. The events of interest and desired func-
tionality provided by the JVM TI are defined with capabilities, event notifications
and event callback-functions. The following lists these and their purposes.

The following capabilities are added:

e can_generate_all_class_load_hook_events: The event is raised for every
class loaded by the JVM. This is to enable the BCI.

e can_tag_objects: To tag the desired allocated objects in order to identify
them from the heap memory.

e can_generate_vm_object_alloc_events: The event is raised when the JVM
allocates an object that is not visible with BCI.

e can_get_thread_cpu_time: To get the CPU times used by the threads.

The following event notifications and corresponding event callback-functions are
set:

e JVMTI_EVENT_VM_START: In the start phase of the JVM, the native
methods needed for memory allocation tracking are registered.

e JVMTI_EVENT_VM_INIT: Start an agent thread that periodically samples
the CPU usage and logs the heap usage of bundles.

e JVMTI_EVENT_VM_DEATH: Run down the monitor agent.

e JVMTI_EVENT_VM_OBJECT_ALLOC: Log object allocations that are
not caught with BCL

e JVMTI_EVENT_CLASS_FILE_LOAD_HOOK: BCI for every desired class.

e JVMTI_EVENT_THREAD_START: Check every new thread and add to
monitored threads if desired.

e JVMTI _EVENT THREAD_END: Clear thread from the monitored threads.

64

The number of processors available is needed in the data processing phase to cal-
culate the CPU utilization and current process handle to get the information out of
the OS concerning the whole JVM. After this initializing phase, the monitor agent
starts tracking the resource consumption of the OSGi environment. The actual
logging of the data, however begins after the JVM has been completely initialized
and the agent receives the JVMTI_-EVENT_VM_INIT-event.

typedef struct BundleInfo {
jlong hashCode;

/% name of the threadgroup == {bundlename}.jar x/

char name [MAX_FILE_NAME | ;

/% Total space taken up by objects allocated from this threadgroup/
bundle x/

jlong totalSpace;

/% total cputime taken by this threadgroup/bundle x/

jlong cpuTime;

/% list of threadlDs running in this threadgroup, —I1 if thread has died
*/

DWORD threadIds [MAX_THREADS_PER _BINFO];
/* index of last thread id x/

int threadIndex ;

/* pointers to the prev/next Bundlelnfo in the list */
struct BundleInfo *next;

struct BundleInfo =xprev;

}Bundlelnfo;

Figure 25. Structure to store bundle information.

For every bundle that will be monitored, a Bundlelnfo-structure will be created that
stores the necessary information of the bundle. These structures are created in the
initializing phase of the agent right after the configuration file is read. The Bundle-
Info-structure is presented in Figure 25. This structure will store all the threads for
this bundle, and so, these define all the monitored threads. As the bundle’s thread
group is a string of characters, a unique hash will be created for every bundle in
order to reduce the processing time of finding the right bundle during the runtime.
All the Bundlelnfo-structures are stored in a linked list that is a global variable
inside the monitor agent.

4.3.2 Resource monitoring

In the first prototype, we concentrated on observing the CPU usage and heap mem-
ory consumption of bundles as was designed in Chapter 3.1. Figure 24 illustrated
the key activity of the agent, the thread identification. This chapter shortly presents
the implementation of the runtime monitoring performed by the monitor agent.

65

Thread identification A high level algorithm for bundle identification was pre-
sented in Figure 8. This algorithm is expanded in Figure 26, in order to demon-
strate the activities done by the agent.

EVENT: JVMTI_EVENT_THREAD_START
get thread group;

get hashcode of the group;

search for corresponding group;

if thread belongs to thread group of monitored bundle then
get thread id;

bundle—threadlds[bundle—threadIndx]=thread id;
else
| ignore thread;

end
Figure 26. Thread identification, straight after a new thread is spawned.

As this is done to all of the threads spawned in the JVM, the Bundlelnfo-structures
store all the thread id’s that we are interested in. The thread id is the most conve-
nient way to represent a thread because it costs less processing time than character
strings. Only the events caused by the threads, which are in our interest, will now
be taken into account.

Heap memory monitoring The monitoring of heap memory allocations is per-
formed by the BCI. All classes are instrumented with additional bytecodes straight
after they are loaded by the JVM. These additional bytecodes are placed after ev-
ery new object and array allocation. Additional bytecodes are method calls to
monitoring agent with the newly created object as an argument. As was previ-
ously explained in Chapter 4.3.1, not all of the allocations are visible with the
BClI, and so, there is an event notification enabled for these allocations. The ac-
tions taken by the agent are the same in both cases. Figure 27 illustrates the action
sequence of a monitoring agent when there is a new object allocated.

Whenever a new object allocation occurs, the bundle that made this allocation
will be searched. If the bundle responsible for the allocation is in our interest the
newly created object will be tagged with a pointer to the corresponding Bundle-
Info-structure. Now all the objects in the heap memory area that are allocated by
bundles, which are in our interest, are tagged with a unique bundle identifier.

66

EVENT: JVMTI_EVENT_VM_OBJECT_ALLOC
get current thread id;
search for corresponding group;

if thread belongs to monitored bundle then
| tag object with Bundlelnfo;

else
| ignore object;
end
Figure 27. Object tagging, straight after new object has been allocated.

The agent thread periodically traverses the heap memory and counts the aggregate
size of the objects, which are tagged to individual bundle. The inspection of the
heap memory is done by the IterateThroughHeap-function provided by the JVM
TI. This function can filter out all the untagged objects, thus, only the objects that
are in our interest are counted.

CPU time monitoring The CPU utilization monitoring of the bundles is per-
formed by the agent thread. The purpose of the sampling thread is to periodically
sample the running threads, count the aggregate CPU time taken by one bundle
and update it in the corresponding Bundlelnfo-structure. A pseudo code illustrat-
ing thread sampling is shown in Figure 28.

get all the running threads;

for each running thread do

get thread info;

if thread belongs to monitored bundle then
get thread CPU time;
add to bundle CPU time;

else

| ignore thread;
end

end
Figure 28. Basic operation of thread sampler.

All the used functions in thread sampling are provided by the JVM TI. Threads are
not suspended during sampling, thus, there is a possibility that a thread could have

67

died before we get its CPU time. This is acceptable as it would be too interfering
to suspend all the threads for sampling and the resolution of the thread CPU time
provided by the JVM is not high anyway.

Besides sampling all the running threads, the agent thread also monitors the CPU
time consumed by the JVM. The JVM is a one process in the OS, and so, we
periodically retrieve this process CPU time with a system call.

4.3.3 File output

The monitor agent creates an output file that consists of numerical values repre-
senting the behaviour of monitored bundles and the OSGi environment.

As was explained in Chapter 4.3.2, the agent thread periodically samples both the
heap memory and CPU time usage of the monitored bundles. The result of the
sampling is written to the output file with a time stamp. The CPU time used by
the JVM is presented in 100 nanosecond units, the CPU time used bundles and
time stamp are represented in nanoseconds. The heap memory usage of bundles
is presented in bytes.

A snippet from an example log file is included in Appendix 2. The first number
in the file reveals the number of the processors in the monitored platform. This is
used later on to calculate the CPU usage statistics.

4.4 The visualization and analysis tool

Two novel resource consumption visualization models were identified in Chap-
ter 3.2. In order to realize these models, the visualization tool must read the log
file and create a visualization based on the monitoring data. An existing visu-
alization and analysis tool was extended in this thesis work as was explained in
Chapter 3.2.

The visualization and analysis tool is written in C++. It uses an object-oriented
approach, where all the main functionalities are separated into their own classes.
The separate elements consist of a class for inputting data, a class for creating

68

drawable graphics from the data and an application logic class to implement the
tool from these components. Actual implementation and implemented extensions
are presented in this section.

4.4.1 Class structure

Figure 29 shows the most important classes of the original software [56]. The
new implementations and classes that need to be extended in order to handle the
resource consumption data of OSGi bundles are marked with red ellipses. The
most relevant classes and their responsibilities will be then shortly described. In
addition, the new derived classes and extensions are explained.

PerfFileReader This is an abstract base class. Its responsibility is to read input
files of a predetermined form. Implementations of the reader class are registered
by a registration mechanism in the class PerfFileReaderFactory. In order to handle
the resource consumption data of the OSGi bundles, an implementation of a reader
class was made. This class is the OSGIFileReader. It takes the output file of the
monitor agent as its input.

DataChunk A DataChunk is the internal representation of all the data used in
the visualization and analysis. All the data read into the memory by the reader
class is inserted into the DataChunk. This class was extended with attributes
needed to represent the OSGi bundle related data. These attributes include the
CPU usage, memory usage, networking activity and the resource boundaries of
individual bundles. In addition, the DataChunk holds general information on bun-
dles, such as names.

ModelTriangleObject This is an abstract base class. The ModelTriangleObject
forms the basic building blocks of the graphics. Two different implementations of
this class were made in this thesis work, one for both of the visualization models.
In the resource usage model, the basic block consists of averaged resource usage
statistics over a corresponding time interval. In the resource boundary model, the

69

PerVisGL «uses» PerfFileReaderFactory

1
T Creates

Pointer to Pointer to

1 1 1

MyOpenGL -
thde Contains raw data, VisModel

logical and graphical

presentations of it Reads input
Renders the file to
scene A A DataChunk
1

Contains multiple

PerfFileReader

ModelTriangleObject ImplVisModel ImplPerfFileReader

AN

Building block of
graphical and logical
presentation

Contains

1

ImpIModelTriangleObject DataChunk Creates

Figure 29. Class diagram of the original software.

basic block consists of the maximum instantaneous resource usage statistics of a
bundle and its resource boundaries. Both implementations calculate the graphics
based on the input data that is read into the DataChunk by the reader class.

VisModel This is an abstract base class. It manages the vector of the Model-
TriangleObjects, calculates reports and analyzes them. This class is responsible
for transforming the real-world measurement values to the OpenGL coordinates.
Two different implementations of this class were made in this thesis work, one for
both visualization models. The VisModel implementations contain the original
DataChunk. It is used for counting statistics, when the user selects some portion
of the visualization.

70

PerVisGL This is the main class of the program containing the glue logic that
is first created and first called from the main function. This class also implements
the Graphical User Interface (GUI) functionality. [56]

Figure 30 shows the most important classes of the software modified in this thesis
work. The class diagram only shows the classes relevant to this work.

«uses»
PerVisGL PerfFileReaderFactory

P VisModelFactory

Crehtes Creates

Pointer to Pointer to

1 1 1

MyOpenGL -
i Contains raw data, VisModel

logical and graphical —

presentations of it Reads input
Renders the VAN file to
scene DataChunk

PerfFileReader

ModelTriangleObject
o yModel 0! i OSGIFil
1 1 1 1
Contains multipl Contains
1.* Contains mulfiple
Contains Cregtes
CPU_Memory_NetworkUsageFrame I DataChunk

1. 1

~
~
~

CPU_MemoryUsageFrame

Building block of
graphical and logical
presentation

Figure 30. Class diagram of the extended software.

All of the classes and their responsibilities were described before, except the Vis-
ModelFactory. This class was created in order to improve the scalability of the
software. It provides a registration mechanism for different VisModel implemen-
tations and brings them available to the user via the GUI, in the same way as the
PerfFileReaderFactory does with different implementations of the reader class.

71

4.4.2 File output

A visualization and analysis tool creates an output file, which consists of numer-
ical values representing the behaviour of the monitored bundles and the OSGi
environment. The output is calculated automatically from the portion that the user
selects from the visualization.

In the resource consumption model, the main information in the output is the
length of the selected time frame, CPU utilization and the memory consumption
of individual bundles. Both are averaged over the selected time frame, and the
maximum and minimum memory consumption values are also included. The CPU
utilization of a bundle is also compared to the CPU utilization of the JVM.

In the resource boundary model, the output information includes maximum in-
stantaneous CPU utilization, memory consumption and networking activity, all
the corresponding resource usage boundaries and relations to these are included.
In addition, the information includes the time distribution of the CPU utilization
that clarifies CPU utilization behaviour of a bundle.

Appendix 3 shows two examples of an output file, one for both models.

4.5 OSGi-based resource monitoring service

Chapter 3.3 discussed the dynamic adaptation support in the OSGi platform. It
was identified that we need to implement an OSGi service to provide the resource
consumption information to the components that can adapt their behaviour. This
service provides unified access to the data collected by the monitor agent.

A resource monitoring service is a component written in Java although we need to
use the Java Native Interface (JNI) to gain access to the monitor agent since it was
written in C. The service component introduces native methods that are introduced
as native methods in the monitor agent. These native methods are used as normal
methods, although, these reside in the monitor agent.

Using the OSGi-based resource monitoring service requires that the JVMT TI
monitor agent, described in Chapter 4.3, has been started. Figure 31 clears the
relations between the components, which are participating in the dynamic adapta-
tion interaction.

72

AdaptiveComponent (OSGi Bundle)

uses

A4

uses PlatformAdaptationController (OSGi Bundle)

K==

. . uses
ResourceMonitor (OSGi Bundle)
1
T 1
uses I

SelfAdaptiveComponent (OSGi Bundle)

|

|

[}

|

|
A4

Monitor Agent (JVM Tl Agent)

Figure 31. Component diagram of the OSGi-based dynamic adaptation.

Various types of adaptation schemes were discussed in Chapter 3.3. The Resource-
Monitor bundle does not consider the adaptation scheme. The implementation of
the service supports both self-adapting and platform controlled adaptive software.
The responsibility of resource monitoring service is to provide resource consump-
tion information and not to handle the adaptation itself. The following section
presents the actual implementation of the service.

4.5.1 Class structure

Figure 32 shows the class structure of the service component. The most relevant
classes are then described.

AdaptivityServicelnterface This interface is registered to the OSGi Framework
as a service provided by the ResourceMonitor class. It offers registration mecha-
nisms for bundles that need to obtain resource consumption information of their
own or the JVM.

73

«interface»
AdaptivityServicelnterface
- +registerAdaptivityListener()
«interface» +unregisterAdaptivityListener()
BundleActivator +registerResourcelListener()
+unregisterResourcelistener()

ResourceMonitor

1 <> «interface»
AdaptivityListener
) . +resourcelevelChanged()
Containg multiple +getResourceBoundaries()
+getBundleName()
|
0..* '
I
1
MonitoredBundle ImplAdaptivityListener

Figure 32. Class diagram of the resource monitoring service.

MonitoredBundle The ResourceMonitor creates an instance of the Monitored-
Bundle class for every bundle that registers as a user of this service. The Mon-
itoredBundle class contains all the relevant information on this bundle. This in-
cludes reference to implementation of the AdaptivityListener, the bundle name
and its resource usage boundaries. The implementation of the AdaptivityListener
interface is used to notify the bundle of changes in its resource usage levels.

ResourceMonitor This class is the main class of the monitoring service. The
ResourceMonitor handles the list of registered bundles and registers these to the
monitor agent. It updates the resource consumption information of all the regis-
tered bundles periodically by accessing the monitor agent. These are updated to
the corresponding MonitoredBundle.

74

5. Experimentation

This chapter presents the usage of implemented monitoring and visualization tools
with two different test cases. These validate the applicability of the tools from
both monitoring and analyzing perspective. Firstly, an example of monitoring a
single OSGi bundle and the related visualizations are presented. Secondly, the
monitoring tool is used with adaptive components and visualizations are used to
demonstrate how these tools can be used to evaluate the dynamic adaptation. The
second test case also demonstrates how the implemented tools can be used in
analyzing multiple bundles.

The tools were evaluated with an AOpen miniPC that was using an Intel T2500
2.0 Gigahertz Core Duo processor and one gigabyte memory. The PC was running
a 32-bit Microsoft Windows XP OS and a modified Oscar was executed on top of
Sun’s Java Runtime Environment (JRE) version 6. The maximum heap memory
size for the JVM was defined to be 64 megabytes (MB).

5.1 Monitoring single OSGi bundle

At first, the implemented tools were used to validate the resource usage boundaries
for an OSGi bundle. The monitoring tool collected run-time behavioural data of
the chosen bundle during the various test cases. These test cases included different
configurations of the chosen bundle. All these different configurations had unique
resource requirements. By testing different configurations, we were able to cap-
ture the typical resource usage levels of the bundle. These configurations include
the low usage of computing resources as well as the worst case scenario from a
resource consumption perspective.

This test case shows an example of, how the implemented tools can be used to de-
tect and validate the resource consumption boundaries for a software component.
It was explained in Chapter 3.2 that a goal of these tools is to evaluate software be-
haviour against predefined resource usage boundaries. There were no predefined
boundaries for this component and we specified the boundaries with the aid of our
analyzing tools. Although it is not possible to design test cases that will be com-
prehensive and capture all the possible resource usage levels of a component, we

75

were able to specify the typical resource consumption behaviour of the software
component.

5.1.1 Monitored OSGi bundle

We applied implemented tools to the Indexing Service component that was re-
sponsible for acquiring, indexing and providing dynamically changing data. The
Indexing Service, and the data it provided, simulated continuously changing sen-
sor data. The Indexing Client was a distributed component that utilized the sensor
data. These communicate via Generic Communication Middleware (GCM) [57].
Figure 33 presents the test case and the relevant bundles.

Indexing
Client
A
Monitor i
Proxy for | m| GCM 1 v
GCM el 1 Server } P
Server EMomtorlng
i Scope GCM Client
Modified Oscar !

JUM ; JUM

b~ 3

Figure 33. Simulation arrangement for Indexing Service.

We needed to use a Monitor Proxy because the GCM server and Indexing Service
are OSGi services as was previously introduced in Chapter 4.2.2. The communi-
cation flow in this test case is simple: the Indexing Service acquires sensor data,
indexes it and periodically the Indexing Client acquires the indexed data from the
Indexing Service.

As was stated in the previous section, we tried to distinguish the typical and differ-
ent behaviour levels of the Indexing Service from a resource consumption point of
view. These levels were identified with simulations of real life use cases of the ser-
vice component. The Indexing Service has two different operation modes which
differ in resource consumption, round-trip time (RTT) and the consistency of the
dynamically changing data. The resource consumption boundaries were identified
for the Indexing Service in both operation modes.

76

The operating modes of the Indexing Service define the scheme, which is used
in storing the constantly changing data. The first operation mode uses memory
to store the sensor data. The second operation mode stores the sensor data to a
database. Obviously, the first operating mode provides better QoS but needs more
computing resources from the platform.

The quality attributes of the Indexing Service are data consistency and RTT. The
data consistency of the provided data was determined by the update time of the
continuously changing data. The RTT was the time elapsed in the client side from
request message send and response message received. These were measured in
order to show the changes in the QoS with two different operation modes. Both
cases were also executed without a monitoring agent, so we were able to estimate
the disturbance caused by the monitoring tool to the test system.

5.1.2 Resource consumption measurements

As was stated in the previous section, the Indexing Service has two operating
modes. The resource consumption of the bundle was observed in both of the
modes. These observations were made by individual test cases. The Indexing
Client sent 120 request messages in both cases. After each response message
received, the client waited for half a second until it sent a new request. To provide
a view of the quality changes of the service, the RTT and update time of sensor
data was also measured. The RTT and the update time of the constantly changing
data was averaged over all the 120 messages, in order to obtain a statistical view
to the response time and the data consistency.

The sequence of one test message is illustrated in Figure 34 and the following
presents the action sequence of the figure:
1. The Indexing Client sends a message that requests a sensor data correspond-
ing one index.
2. The GCM is used for message delivery to the Indexing Service.

3. The Monitor Proxy forwards the request message.

77

4. The Indexing Service encapsulates the requested sensor data to the response
message and sends it back to the Indexing Client.

5. The Monitor Proxy forwards the response message.

6. The GCM delivers the response message to the Indexing Client.

(3) . (2) (1)
Monitor | «¢——— “®— Indexing
Proxy GCM Client
for GCM ———®» E—
4) (5) (6)

Figure 34. Sequence of one test message.

This section presents the measuring results with the views provided by the previ-
ously introduced monitoring and visualization approach. The provided views were
explained in Chapter 3.2. Both of the operation modes of the Indexing Service are
included.

Operation mode 1 The Index Service running in operation mode 1, uses heap
memory to store sensor data. Figure 35 illustrates the resource usage of the In-
dex Service during the test case. It can be seen that the CPU utilization remained
steadily near 50 % utilization. This shows that the Index Service reserved one
core of the processor throughout the test case, as it was stated that the test system
consisted of dual core processor. The Figure also shows that monitored bundle
reserved nearly all the CPU taken by the JVM. This indicates that there were no
other bundles running in the OSGi environment. The heap memory consump-
tion increased steadily to 3 MB, and then it dropped to the normal usage of the
monitored bundle and began to grow again. This is normal behaviour for a Java
application as the heap memory usage typically grows until the JVM performs a
complete garbage collection.

Figure 35 presented a time-dependent view of the test case. Figure 36 provides
a different view of the same test case. This encapsulates the averaged maximum
instantaneous usage values of different computing resources. These can be inter-
preted as what the computing platform should be able to provide for a bundle, in
order to function properly.

78

Statistics tiseframe: from 52700 to 79625, length 26525, duration: 13 sec

Cpu usage statistics:

Cpu wtilization of the whole JVM: 52.2786 X

Bundle: irdesservice.jar cou utilizstion: 96,1653 ¥ and utilization o comeawico JuM: 88,3063 X
Monitoring cverhead: 0.0957103 X and overtwsd cospared to JVM: 0.106564

Memory consumption statistics:
Bundle: irdesaervice.jar largest mesory conausption: 1754 48 smallest: 0.673533 M and aversge: 124579 M8

Figure 35. Resource consumption of the Indexing Service in operation mode 1.

Statistics:

Mo predefined boundaries for bundle: indexservice.jar
CPU util: £3.404 %, boundary set to: 64 %

Mem alloc: 2.94397 MB, boundary set to: 2.94397 WB

Met util: 27.8068 KB/sec, boundary set to: 27.8066 KB/sec
Bundle CPU utilization distribution:

4 % of its execution time between 0-25%

57 % of its execution time hetween 25-50%

38 % of its execution time between S0-75%

0 % of its execution time between 75-100%

-Ll.11482 -0.557312

Figure 36. Indexing Service resource boundaries in operation mode 1.

The Index Service, which was running in operation mode 1, consumed 64 % of
the CPU at its maximum, nearly 3 MB of heap memory and the network band-
width usage was about 28 kilobytes per second. Statistics also show that the CPU

79

utilization of the monitored bundle was between 25 % and 75 %, throughout its
execution. The QoS attributes in operation mode 1 were the following:

e Average RTT was 25.6 milliseconds.

e Average update time of the sensor data was 0.136 milliseconds.

Operation mode 2 The Index Service running in operation mode 1, uses a
database to store sensor data. Figure 37 illustrates the resource consumption of
the Index Service during the test case. It can be seen that the CPU utilization of
the bundle was nearly zero throughout the test case. This is due to the usage of
a database as storing and reading operations take so much time that the bundle is
usually waiting for this operation. The heap memory usage of the Index Service
is also very small; it varies between 0.1 MB and 0.5 MB.

Statistics timeframe: from 176902 to 200060, length 30158, duration: "15 sec

Cpu usage statistics:

Cpu utilization of the whole JVM: 2.06579 X

Bundle: indexservice.far cpu utilization: 0.865442 X and utilization compared to JVHM: 41,8941 %

Memory consumption statintics:
Bundle: indexservice.jar largest memory consumption: 0.351538 MB ssallest: 0.15563 M3 and average: 0.260697 MB

1 opooe 7858 e liin s

Figure 37. Resource consumption of the Indexing Service in operation mode 2.

Figure 38 illustrates the averaged maximum instantaneous usage values of the dif-
ferent resources in this test case. The boundaries around the resource consumption
box are taken from the previous test run, where the Index Service was running in
operation mode 1.

80

Statistics:

Bundle: indexservice.jar "
CPU util: 20.4457 %, boundary: 64 %, resource underspend by 43.5543 %

Mem alloc: 4.03588 MB, boundary: 3 MB, resource underspend by 1.96412 MB

Net util: 11.9898 KB/sec, boundary: 28 KB/sec, resource underspend by 16.0102 KB/sec
Bundle CPU utilization distribution:

100 % of its execution time hetween 0-25%

0 % of its execution time between 25-50%

0 % of its execution time betueen 50-75%

0 % of its execution time betueen 75-100%

-1.63148

-0.815738

Figure 38. Indexing Service resource usage in operation mode 2 with boundaries
from operation mode 1.

The Index Service that was running in operation mode 2 consumed 21 % of the
CPU at its maximum, about 1 MB of heap memory and the network bandwidth
usage was about 12 kilobytes per second. Statistics also show that the CPU uti-
lization of the monitored bundle remained below 25 % throughout its execution.
The QoS attributes in operation mode 2 were the following:

e Average RTT was 78.5 milliseconds.

e Average update time of sensor data was 11.61 milliseconds.

Summary To get a reliable view of the resource consumption of the Indexing
Service in both test cases, both were run 5 times. Table 3 presents the averaged
results of these five cases. It summarizes the consumption of the monitored re-
sources and the quality of service attributes in two different operation modes of
the Indexing Service. The performance ratio in this table means the switch from
operation mode 1 to operation mode 2.

81

Table 3. Summary of test cases.

Attribute | Operation mode 1 Operation mode 2 f;trit;)rmance
CPU 63.8 % £+ 0.75 % 22.6 % £+ 1.36 % 1:0.35
Memory 2.03 MB + 0.72 MB 1.09 MB £ 0.07 MB 1:0.54
Network 20.1kB/s +6.18kB/s | 11.4kB/s =2.57kB/s | 1:0.57

g;‘ttf UP- | 0136 ms + 001 ms | 11.61 ms£007ms | 1:8543
RTT 25.6 ms &+ 2.91 ms 78.5 ms + 3.81 ms 1:3.06

The standard deviations of these 5 runs are shown in Table 3. It shows that the
deviation of the measured attributes between the test runs is very low, except that
the deviation in the networking activity is considerable. This indicates that we had
been able to capture the behaviour of the Index Service reliably and repeating test
cases would be unnecessary.

5.1.3 Discussion on the results

The test cases introduced the Index Service in two fundamentally different opera-
tion modes. Table 3 shows a great difference in resource usage between these two
modes. The difference is clearly highlighted in Figure 38. It can also be seen that
the savings in resource usage, costs highly in the quality of the provided service.
The utilization of the CPU especially varies greatly between the operation modes.
This difference is highlighted when comparing Figures 35 and 37, which illustrate
the resource consumption throughout the whole test cases.

Results include the resource boundaries for the Index Service in two operating
modes. From the boundaries, we are able to determine the resource consumption
savings we will achieve, if we switch from operation mode 1 to operation mode
2. These are shown in Table 3. The CPU utilization drops almost to one third,
the heap memory consumption and network bandwidth utilization almost to a half
of the original levels. These savings cause a great reduction to the QoS provided
by the Index Service. The RTT is 3 times longer and the sensor data update time
is over 85 times longer than the original times. These can now be taken into
consideration, if the computing platform is in a situation where it is running out of
computing resources.

82

The resource consumption boundaries of the Index Service, found out with previ-
ous test cases, can be included as one performance attribute of the Index Service.
These are now validated and can be used when comparing two individual imple-
mentations of the bundle providing the same service. The boundaries can also
be used in determining whether the target platform is able to provide a sufficient
amount of appropriate resources in order to execute the Index Service bundle. Ob-
viously, for example, the CPU utilization gives just a view of how CPU intensive
the Index Service is, because an accurate value is correct only in this computing
platform.

5.2 Runtime support provided by the monitoring service

In the second use case, the implemented tools were applied to an environment
that had multiple bundles running. In this case, the platform used the previously
validated resource usage boundaries of the Index Service, presented in the Chap-
ter 5.1. This information was used when computing resources were running low in
the platform. The runtime resource consumption information was provided by the
monitoring service introduced in Chapter 4.5. This case demonstrated the runtime
use of the monitor agent and monitoring service. In addition, it demonstrated the
use of implemented tools in monitoring and analyzing the resource consumption
behaviour of multiple bundles.

5.2.1 Arrangements and case flow

In this case we used the Midgate platform [58, 59] which extends the service
component model provided by the OSGi environment. The Midgate also provides
support for adaptive middleware components [60]. Only the Index Service was
running on top of the Midgate platform in this case. Figure 39 presents all the
bundles of the test case.

There was the same sensor data indexing service and client executed as presented
in Chapter 5.1. The Midgate platform is able to control the operation mode of
the Index Service. The controlling is based on the resource consumption informa-
tion that is provided by the Resource Monitor bundle. BundleA and BundleB are

83

general applications, which do not provide any services. These simulate the user
applications executed in the OSGi environment.

Indexing
Client

A

Monitor
Proxy GCM
Gfg;ﬁ Ralilag Server V
Server
" Resource G_CM
Modified Oscar ‘ usage Client
data

JVM JVM

* TCP/IP

Figure 39. Arrangement for the test case.

The activity periods of the relevant bundles are presented in Figure 40. The Index
Service was started in operating mode 1, and so, it provided the best QoS. Initially
it was the only bundle executed in the environment. After a while, more bundles
were started, at first BundleA and then BundleB. After 1 minute and 30 seconds,
bundles A and B were stopped then the situation was the same as it was initially,
where only the Index Service was running.

Time

Figure 40. Activity periods of the bundles in the test case.

In the test case, the Midgate platform was responsible for the availability of the
computing resources. It was defined that the CPU utilization of the whole OSGi
environment must remain below 80 %. The Index Service was the only bundle
that could be adjusted according to the availability of computing resources, so

84

the only way to release resources was to control the operating mode of the Index
Service. The Midgate used the resource consumption knowledge that was gathered
in Chapter 5.1.

5.2.2 Resource consumption statistics

The resource consumption of the bundles during the test case is illustrated in Fig-
ure 41. Letters A—F present the different periods of the case.

At first, the Midgate platform initializes itself and reserves the memory it requires.
After initialization, the Midgate’s CPU utilization is very low and the heap mem-
ory consumption is steady. This is because its only responsibility in the case is to
control the operating mode of the Index Service.

Figure 41. Resource consumption of the bundles.

Figure 42 presents the resource consumption statistics of the test case provided
by the visualization and analyzing tool. In Figure 42a, statistics of period A are
shown. Period A begins when the Index Service was started. The Midgate was
already initialized and its heap memory usage dropped to 5 MB, which is its stan-
dard level. The behaviour of the Index Service followed the same pattern as was
measured in the Chapter 5.1.2.

At the beginning of period B, Bundle A was started. Bundle A quite steadily
utilized about 11 % of the CPU. The CPU utilization of the OSGi environment
increased to near 70 %. As it remained below 80 %, the Midgate did not need to

85

Input file: PERIOD A.txt
Statistics timeframe: from 60880 to 176165, length
115285, duration: ~57 sec

Cpu usage statistics:

Cpu utilization of the whole JVM: 51.6572 %

Bundle: indexservice.jar Cpu utilization: 38.1515 % and
utilization compared to JVM: 73.8552 %

Monitoring overhead: 0.0407685 % and overhead compared to
JVM: 0.0789213 %

Memory consumption statistics:

Bundle: indexservice.jar largest memory consumption:
1.86473 MB smallest: 0.234836 MB and average: 0.989622 MB
Bundle: midgate.jar largest memory consumption: 10.1528
MB smallest: 5.0008 MB and average: 9.94007 MB

(a) Statistics of period A.

Input file: PERIOD_C.txt
Statistics timeframe: from 339539 to 406781,
duration: ~33 sec

length 67242,

Cpu usage statistics:

Cpu utilization of the whole JVM: 87.3769 %

Bundle: indexservice.jar Cpu utilization: 19.7853 % and
utilization compared to JVM: 22.6436 %

Bundle: bundlea.jar Cpu utilization: 13.4276 % and
utilization compared to JVM: 15.3675 %

Bundle: bundleb.jar Cpu utilization: 29.5544 % and
utilization compared to JVM: 33.8241 %

Bundle: midgate.jar Cpu utilization: 0.138306 % and
utilization compared to JVM: 0.158287 %

Monitoring overhead: 9.24868 % and overhead compared to
JVM: 10.5848 %

Memory consumption statistics:
Bundle: indexservice.jar largest memory consumption:

2.77591 MB smallest: 0.324242 MB and average: 0.990821 MB
Bundle: bundlea.jar largest memory consumption: 1.66523 MB
smallest: 1.66523 MB and average: 1.66523 MB

Bundle: bundleb.jar largest memory consumption: 2.0252 MB
smallest: 0 MB and average: 1.84072 MB

Bundle: midgate.jar largest memory consumption: 5.10358 MB

smallest: 5.0006 MB and average: 5.01101 MB

(c) Statistics of period C.

Input file: PERIOD_E.txt
Statistics timeframe: from 515952 to 544510, length 28558,
duration: ~14 sec

Cpu usage statistics:

Cpu utilization of the whole JVM: 6.52357 %

Bundle: indexservice.jar Cpu utilization: 0.987464 %
utilization compared to JVM: 15.1369 %

Bundle: midgate.jar Cpu utilization: 0.108551 % and
utilization compared to JVM: 1.66398 %

and

Memory consumption statistics:

Bundle: indexservice.jar largest memory consumption: 1.204 MB
smallest: 0.180891 MB and average: 0.502929 MB

Bundle: bundlea.jar largest memory consumption: 1.66523 MB

smallest: 0.00496094 MB and average: 0.457761 MB
Bundle: bundleb.jar largest memory consumption: 1.86895 MB
smallest: 0.00496094 MB and average: 0.51332 MB

Bundle: midgate.jar largest memory consumption: 5.02991 MB
smallest: 5.02151 MB and average: 5.02318 MB

(e) Statistics of period E.

Input file: PERIOD_B.txt
Statistics timeframe: from 172970 to 333112, length
160142, duration: ~80 sec

Cpu usage statistics:

Cpu utilization of the whole JVM: 67.3933 %
Bundle: indexservice.jar Cpu utilization: 37.714 %
utilization compared to JVM: 55.9611 %

Bundle: bundlea.jar Cpu utilization: 11.4292 %
utilization compared to JVM: 16.959 %
Monitoring overhead: 3.7217 % and overhead compared to
JVM: 5.52235 %

and

and

Memory consumption statistics:

Bundle: indexservice.jar largest memory consumption:
2.12559 MB smallest: 0.275914 MB and average: 1.10579 MB
Bundle: bundlea.jar largest memory consumption: 1.66523 MB
smallest: 0 MB and average: 1.39038 MB

Bundle: midgate.jar largest memory consumption: 5.0008 MB
smallest: 5.0006 MB and average: 5.00079 MB

(b) Statistics of period B.

Input file: PERIOD D.txt
Statistics timeframe: from 410019 to 512480, length 102461,
duration: ~51 sec

Cpu usage statistics:

Cpu utilization of the whole JVM: 71.9093 %

Bundle: indexservice.jar Cpu utilization: 0.995501 % and
utilization compared to JVM: 1.38438 %

Bundle: bundlea.jar Cpu utilization: 14.4679 % and
utilization compared to JVM: 20.1197 %
Bundle: bundleb.jar Cpu utilization: 33.197 %
utilization compared to JVM: 46.1651 %
Monitoring overhead: 9.56364 % and overhead compared to
JVM: 13.2996 %

and

Memory consumption statistics:

Bundle: indexservice.jar largest memory consumption:
2.93541 MB smallest: 0.299398 MB and average: 0.698256 MB
Bundle: bundlea.jar largest memory consumption: 1.66523 MB
smallest: 1.66523 MB and average: 1.66523 MB

Bundle: bundleb.jar largest memory consumption: 1.86895 MB
smallest: 1.86895 MB and average: 1.86895 MB

Bundle: midgate.jar largest memory consumption: 5.03273 MB
smallest: 5.02255 MB and average: 5.02427 MB

(d) Statistics of period D.

Input file: PERIOD_F.txt
Statistics timeframe: from 547722 to 679036, length 131314,
duration: ~65 sec

Cpu usage statistics:

Cpu utilization of the whole JVM: 50.8392 %

Bundle: indexservice.jar Cpu utilization: 44.2908 % and
utilization compared to JVM: 87.1193 %

Monitoring overhead: 0.0121845 % and overhead compared to JVM:
0.0239668 %

Memory consumption statistics:

Bundle: indexservice.jar largest memory consumption: 1.60774 MB
smallest: 0.371242 MB and average: 0.870333 MB

Bundle: bundlea.jar largest memory consumption: 0.00496094 MB
smallest: 0.00496094 MB and average: 0.00496094 MB

Bundle: bundleb.jar largest memory consumption: 0.00496094 MB
smallest: 0.00496094 MB and average: 0.00496094 MB

Bundle: midgate.jar largest memory consumption: 5.02479 MB
smallest: 5.02116 MB and average: 5.02158 MB

(f) Statistics of period F.

Figure 42. Outputs of the analyzing tool.

86

make any adjustments to the operating mode of the Index Service. There was still
a 10 % gap to the defined limit.

At the beginning of period C, Bundle B was started. Bundle B reserved nearly
30 % of the available CPU time. As the utilization of the CPU was approaching
overuse, the system was not able to provide a sufficient proportion of CPU time to
the bundles. The CPU utilization of the OSGi environment was nearly 90 %, so
the pre-defined limit was exceeded by 10 % during period C. This limit violation
lasted for 33 seconds.

Period D started after the Midgate forced the Index Service to operating mode 2.
This action dropped the CPU utilization of the Index Service to below 1 %, as was
found out already in Chapter 5.1.2. The CPU utilization of the OSGi environment
also dropped to an acceptable level. Therefore, it is clear that the Midgate released
resources for bundles to use with its action.

Period E was a time frame where bundles A and B were stopped. This reduced
the CPU utilization of the environment to below 10 %. Therefore, there was now
the capacity to change the operation mode of the Index Service back to its initial
mode. This period of low resource usage lasted for about 15 seconds.

Period F started after the Midgate forced the Index Service back to operating mode
1. The system was now back to the same state as in period A. The Index Service
was the only active bundle in the environment. In addition, it can be seen that
the automatic memory management of Java was not able to release all of the heap
memory allocated by bundles A and B.

5.2.3 Discussion on the statistics

The measurements of the last chapter concentrated on the CPU utilization of the
bundles. This is because all the bundles in this case consumed very little heap
memory and the Index Service was the only bundle that utilized the network. The
largest heap memory allocations were made by the Midgate platform at its initial-
ization phase, a little over 10 MB. Other bundles reserved at most less than 3 MB.
That is the reason why the heap memory consumption is ignored in the discussion.

87

Figure 41 shows that the performance requirements were fulfilled at first. The
first violation of requirements was made at period C. This violation of the CPU
utilization requirement persisted for over half a minute. The Midgate platform
was too slow to react to this violation. The blame for the long reaction time can be
shifted onto the Resource Monitor bundle since the Midgate reacted immediately
after it was notified by the Resource Monitor. The reason why the notification
was so slow is the averaging of the CPU utilization values. The rise of the CPU
utilization is seen as delayed by the Resource Monitor. This is due to the target of
avoiding false notifications, as was explained in Chapter 3.3.

Switching from low resource consumption to a higher level at period E, the Re-
source Monitor reacted 2 times faster than the opposite switch. This is because
the decrease in the CPU usage was much more drastic than the growth between
periods B and C. Even though the reaction was faster, there is still lot to improve.
Improvements can be achieved by reducing the averaged samples or by using a
more sophisticated monitoring algorithm.

88

6. Discussion

The main goal of this thesis work was to provide tools that enable the analysis of
OSGi bundles from a resource consumption perspective. This chapter discusses
the implemented tools and the applicability of these. Future improvements of the
tools are also under discussion. Firstly, the accuracy of the measurements provided
by the monitoring tool, the overhead introduced by the tool and the applicability
of the tool are discussed. Secondly, the applicability of the visualizations is dis-
cussed. Finally, the applicability of both tools is discussed.

6.1 The monitoring tool

The overall requirements defined for the monitoring tool were achieved rather
well. The monitoring tool was shown to be able to collect resource consumption
data of individual Java components. This feature provides the basis for revealing
the inner behaviour of the JVM and the behaviour of a software component.

At the time of writing this thesis work, not all of the features of the monitoring
tool were yet implemented. The required BCI for logging network activity was
not performed automatically by the tool. These additional bytecodes were added
by hand before compiling.

Although we tried to find an approach that would not have required any modifica-
tions to any parts of the applications involved, we were not able to find this kind
of approach. Small modifications to the underlying environment are however a
small price to pay for detailed statistics. The worst case scenario would be that we
would have to modify all the monitored applications by hand, which would also
be prohibited by the requirements identified in Chapter 3.1. Modifications made
to the Oscar lead to the fact that the monitoring tool is highly dependent on the
platform. The monitoring tool is useless without the modified Oscar. This fact
reduces the usability of the tool. If some analyst needs to use the monitoring tool,
we need to provide not only the tool but also the modified platform. This makes
the use of the tool too inflexible for broad scope usage.

89

6.1.1 Measurement accuracy

One of the prime requirements for the monitoring tool is the accuracy of the mea-
surement data it provides. The whole monitoring tool loses its meaning if it pro-
vides inaccurate or even incorrect data. This section provides an estimation of the
accuracy of the implemented tool.

Considering the accuracy of measuring the CPU time used by an OSGi bundle,
we must take into account the smallest CPU time used that can be detected by our
tool. In this work, we used the thread CPU times provided by the Windows XP OS
and the CPU resolution time for a thread is 15.625 milliseconds. The resolution
time defines the absolute precision that we cannot improve.

The monitoring tool also infects the measured CPU usage values. As the monitor-
ing of heap memory usage and the networking activity was implemented with the
BCI, the logging of these events increases the CPU time used by the correspond-
ing bundle. This mostly affects the applications, which are highly heap memory
intensive. The infected CPU time distorts and decreases the accuracy of the mon-
itoring results. Nonetheless, the provided data is still useful and comparable with
the data acquired by this same tool.

The heap memory consumption values, provided by the tool, give an exact amount
of allocated memory by the bundle. The precision is one byte, so it is quite a high-
precision value. One disadvantage that is introduced by our monitoring tool is that
it samples the heap periodically, this leads to an uncertainty between two samples.
In addition, a Java related issue could be seen which is caused by the automatic
memory management. When a bundle releases an object, it is still seen by the
monitoring tool, until the garbage collector collects it from the heap. This causes
faulty statistics between two collections.

Objects, which have not been handled by the automatic memory management, are
an arguable issue whether these should or should not be counted to the allocated
memory. We could use continuous counting for heap memory allocations to pro-
vide an exact memory usage value at any point of time. This would require the
catching of all the object free events, which would increase the overhead caused
by the heap memory consumption monitoring. We ended up with the conclusion

90

that it would cause too much disturbance to the target system, so the continuous
counting was discarded.

The networking activity was monitored with the BCI. This value represents all the
bytes sent and received by the bundle. This value does not include the overhead
introduced by the used transport protocol. Only the payload is counted. This
decision was a matter of a point of view and simplicity, as was already discussed
in Chapter 2.2.3.

6.1.2 Overhead introduced by the monitoring

The disturbance to the monitored system, caused by the monitoring tool, is a major
issue to overcome in developing the monitoring tool. Not only because it slows
the execution of the application, but it can also make it perform incorrectly. This
section brings the main issues that cause the overhead under discussion and also
evaluates the overhead caused by monitoring in the two test cases presented in
the Chapter 5. The memory footprint of our monitoring tool is very low, so this
chapter concentrates just on the CPU overhead.

The impact of the BCI was already discussed in Chapter 6.1.1 but performing the
BCI does not only infer the accuracy of the measurement results, but it also infers
the whole monitored system. All the classes loaded by the JVM must be inspected
thoroughly and additional bytecodes must be added to the appropriate places in
the class source code. The time taken by the BCI depends on the size and nature
of the loaded class. Although this can add a significant time to class loading, it still
needs to be done one time per loaded class. The once per class nature of the BCI
makes it tolerable for the monitoring tool, because in the long run the significance
of the overhead caused by the BCI itself is almost nonexistent.

Object tagging, during heap allocations made by bundles, can cause a significant
overhead. This also depends on the nature of the monitored bundle. Let us con-
sider a bundle that allocates a very large amount of small objects. For every object
allocation, there will be one call to the monitoring agent function. As these calls
are much slower than the normal Java method calls, these cause a great overhead.
The time taken by one call to the JVMTI function is highly dependent on the
execution platform so it cannot be precisely estimated.

91

The modifications to the OSGi environment also cause an overhead to the system.
For every starting bundle, a new thread is created that starts the bundle. The cre-
ation of these threads impose almost a nonexistent overhead to the system because
this is done only once per bundle. The monitoring proxies required for the OSGi
services however can introduce quite a high overhead, as these spawn a new thread
for every service transaction. The overhead introduced by these thread creations,
depends on the execution platform, the number of proxies and the number of ser-
vice transactions, so it highly depends on the monitored bundles and executed test
case. The average thread creation time on the platform that was used in the test
cases was measured to be 0.16 ms.

In this implementation, the log file created by the monitoring tool is a standard
text file. The resource consumption data is logged continuously. Continuous file
system usage loads the monitored system. This could be reduced in the future
with binary format logging or by saving the resource consumption data straight to
memory and writing the log file after the test case has been executed.

All the above mentioned sources of overhead are practically impossible to estimate
during individual test cases. These can be classified as issues that we just have
to tolerate. However, there are two factors that we can measure: the thread CPU
time monitoring and heap iteration. Both of these are performed by the monitoring
agent thread and the CPU time, taken by this thread, is measured with the same
precision as all the other threads.

The periodical iteration over heap is also a great source of overhead. This is also
hard to estimate as it is highly dependent on the used platform, the size of heap
and the quantity of tagged objects. One way to reduce it in future implementations
would be to perform the heap iteration immediately after each garbage collection.
This would reduce the amount of heap iterations and also minimize the problem
with already released objects, explained in Chapter 6.1.1.

Measured overhead During the test cases presented in Chapter 5., we measured
the overhead caused by the monitoring tool by three different methods. The built-
in measurement of the monitoring tool is the overhead caused by the sampling
thread. In the test cases, we also measured the RTT and the data update time with

92

and without monitoring. The following discusses the overhead measurements of
the test case presented in Chapter 5.1. Table 4 shows the averaged statistics of the
test case, where the Index Service was running in operating mode 1.

Table 4. Monitoring overhead of a test case.

Attribute With monitoring Without monitoring | Overhead
Data Update 0.136 ms 0.087 ms 56.8 %
RTT 25.6 ms 23.1 ms 11.1 %

The data update time overhead was nearly 57 %, which seems to be quite high. An
overhead percentage such as this would be clearly too high in production systems.
But if we consider our test case, where the user of the service requests a new data
value every half a second, the 0.05 millisecond addition to the data update time
by the monitoring does not affect the data consistency at all. A 2.5 ms addition
to the RTT was quite reasonable and can be accepted both for development and
production usage. The overhead statistics show that the monitoring tool managed
very well in this test case. This is partly due to the nature of the bundles monitored,
if the Index Service would have been much more heap memory intensive, the
overhead cause by the monitoring tool would have been much higher.

The overhead measurement provided by the monitoring tool is shown in Fig-
ures 41 and 42. The overhead is negligible at periods A, E and F. When the
bundles A and B are running at periods from B to D, the overhead increases to
a value that is rather high. The increase of disturbance derives from the nature
of the bundles A and B. Both of the bundles utilize 1000 threads, which causes a
high load for the monitoring tool since the tool uses thread based monitoring.

6.1.3 Discussion on the monitoring tool’s applicability

As the results in Chapter 5. show, the monitoring tool was able to extract bundle
specific resource consumption data out of the JVM. This was the primary goal
and the tool fulfilled the goal very well. As was explained earlier, data is not very
useful ’as is” but forms the basis for the further processing of the data. Chapter 5.2
presents the use of the monitoring tool to provide runtime statistics of the resource
consumption of individual bundles. Even though the test case was very simple

93

and for demonstrative purposes it still clearly shows the great potential of this
kind of approach. The variety of computing platforms and diverge of available
computing resources that these provide is wide nowadays. Software that is capable
of operating on more than one platform requires some kind of dynamic adaptation
feature and the knowledge of the resources it uses.

Some disadvantages remain in the monitoring tool. The resource consumption in-
formation provided by our tool is excessively platform dependent for comparisons
on a large scale. This reduces the applicability of the resource usage boundaries.
We should be able to provide fully platform independent statistics, such as studied
in Chapter 2.3.4, in order to validate a competitive and comparable performance
attribute.

The overhead of the monitoring tool comprises of many separate causes, as was
explained in the previous section. The largest problem with the disturbance caused
by the tool is that the overhead depends largely on the nature of the monitored
bundles. This kind of behaviour makes the overhead hard to estimate and too
unpredictable for large scale exploitation. In addition, this behaviour leads to the
fact that it is not feasible to use the monitoring tool in a production environment.

6.2 The visualization and analysis tool

The visualization and analysis tool was shown to efficiently utilize the monitoring
data and facilitate the resource consumption analysis of bundles. The tool pro-
duced a clear view of the inners of the JVM that is easy to understand for a human
analyst. Although the provided automatic analysis was simple, these support the
analyst’s work rather well.

The results and figures presented in this thesis work do not completely reflect
the capabilities of the scenery provided by the visualization tool. As the figures
are static, the possibility of free movement in the scenery is not emphasized. In
addition, the ability to select different parts of the visualization to get statistics that
are more detailed was missed due to static figures.

94

6.2.1 Discussion on the visualization models

Two novel visualizations were introduced in this thesis work. The time depen-
dent model gave a clear view of the distribution of resource consumption between
bundles. The time independent model illustrates the bundle’s need for different
computing resources in order to operate. Both were found to provide very useful
information.

Figure 41 demonstrated all the aspects of the time dependent model. It gives a
very clear view of the inner behaviour of the JVM from a resource consump-
tion perspective. As the visualization encloses both the CPU utilization and heap
memory consumption, its information value is much higher than with traditional
2D visualizations. The encapsulation makes the discovery of bottlenecks much
easier.

As the results show, the visualization tool makes it possible to analyze more than
just the resource consumption behaviour of different bundles. The tool makes it
possible to evaluate the performance of different runtime controlling algorithms.
Although the example was simple, it efficiently demonstrated the capabilities of
this kind of analysis.

A time independent visualization model was used in order to detect and validate
resource usage boundaries for a bundle. It also provided a great possibility for
comparison between the different configurations of the monitored bundle. The
scenery makes it clear to a human analyst how the switching of the operation
mode affects to the resource consumption of the bundle. This visualization model
could be further developed to support the design of component compositions. It
should provide a possibility to define the available resources of the platform that
would form the outer boundaries. The resource usage blocks of the bundles could
then be stacked inside the boundaries and this composition of blocks must not
violate the boundaries in order to operate on the defined platform.

95

6.3 Discussion on the tools

The use of the tools of this thesis together as a tool chain enables a much easier
analysis of the OSGi bundles than traditional tools. Let us consider the test case
presented in Chapter 5.2 and the use of the JConsole [8] as the monitoring tool.
Figure 43 presents the CPU utilization statistics provided by the JConsole.

CPU Usage

0%

30%

CPU Usage
0%— 4 0%

10:40 1041 10042 10143 10044 10145 1046

CPU Usage: 2,53%
Figure 43. CPU utilization statistics provided by the JConsole.

This figure shows the changes of the CPU utilization in respect to time caused by
the OSGi environment. This clearly shows how useless the resource consumption
analysis of individual OSGi bundles is with current tools. Without pre-existing
bundle resource usage knowledge, it is impossible to know how the consumption
of resources is distributed between bundles inside the OSGi environment. Fig-
ure 43 is comparable with the previously presented Figure 41. There is an unam-
biguous distinction with the informative level of these figures. The figure provided
by the JConsole does not reveal anything about the resource usage of separate bun-
dles, whereas the illustration provided by our tools makes it clear which bundles
are using resources and to what extent.

The use of our tools reveal the inner behaviour of the JVM from a resource con-
sumption point of view. It disperses the uncertainty of the resource usage in the
OSGi environment, where there can be multiple software components executed in
the JVM. If the JVM appears to be using excessive amounts of physical resources,
a clear view of situation can be obtained with the aid of our tools.

96

It was shown that the tools could be used to detect the resource consumption
boundaries of an OSGi bundle. Validated resource usage boundaries can be used
at least in three processes in the life cycle of a software component. These pro-
cesses are testing, integration and marketing. Firstly, in the testing phase, bound-
aries can be used to check that the component meets the resource requirements set
at the specification phase. Secondly, in the integration phase, boundaries can be
used as a performance or quality attribute of a software component and these add
a concrete comparison attribute to component integrators. Integrators can now
compare a component’s resource usage with other components, which offer the
same service. In addition, the boundary information can be used in estimating a
component’s suitability to a certain platform. Thirdly, validated boundaries can
be used as a tempting quality property of a component when the components are
sold to potential users. The assurance of a component’s resource usage could be
a decisive factor in the decision-making process of a software buyer. However, as
was already said, the boundaries detected by our tools are still too dependent on a
test platform for usage in large scale comparison or universal assurance processes.

As the results show, the tools act as enablers for the resource consumption analysis
of OSGi-based software components. Under no circumstances, are the tools ready
for large scale usage and there are still lots of issues to be solved. However, the
work done in this thesis provides a good foundation for further research on the
resource monitoring of OSGi bundles, the visualization of component resource
consumption and dynamically adaptive software components. In addition, this
thesis tries to highlight the resource consumption as a comparable performance
attribute of a software component in the component integration phase.

There has been one scientific conference paper submitted based on the monitor-
ing tool introduced in this thesis work. Another paper, based on the OSGi-based
resource monitoring service that enables dynamically adaptive software compo-
nents, is currently under work. In addition, there is an undergoing patent investi-
gation based on the visualization and analysis tool introduced in this work.

97

7. Conclusions

This thesis work presented two tools for the software performance analysis of
OSGi bundles from a resource consumption perspective. These, combined with
the OSGi-based resource monitoring service, provide the basis for controlling the
resource consumption of bundles and enable the analysis of the control effective-
ness. All the presented tools were applied to simple test cases, which demonstrated
the applicability of the tools. The following briefly presents the main contributions
of this work:

e Two novel 3D visualization methods for representing the resource consump-
tion behaviour of both single bundle and multiple bundles in an easy to un-
derstand form.

e A monitoring tool that extracts bundle specific resource usage data by mon-
itoring the JVM.

e An OSGi-based resource monitoring service that provides resource con-
sumption information for runtime control decisions.

Test cases proved that the monitoring tool provides detailed resource consumption
data on individual OSGi bundles. The 3D visualizations effectively illustrate the
CPU utilization, the heap memory consumption and the use of a network of sepa-
rate bundles in one single view. These enable the human analyst to gain knowledge
on the component’s behaviour inside the OSGi environment from a resource con-
sumption perspective. In addition, the resource usage boundaries can be detected
and validated.

The tools provide a foundation for future research on the component’s quality
assurance process. The validated resource boundaries provide the quality or per-
formance attribute of a software component. This validated attribute can be used
in various processes during the component’s life cycle, such as, testing, integration
and marketing.

The OSGi-based resource monitoring service that provides the runtime resource
usage information forms the basis for the use of runtime resource consumption

98

controlling algorithms. The possibility for dynamic adaptation, according to avail-
able computing resources, enables the software component to be executed on dif-
ferent platforms without modifications. Although the test case was for demonstra-
tive purposes, it gave encouraging results for future research on resource aware
software development.

There has been one scientific conference paper submitted based on the monitor-
ing tool introduced in this thesis work. Another paper, based on the OSGi-based
resource monitoring service that enables dynamically adaptive software compo-
nents, is currently under work. In addition, there is an undergoing patent investi-
gation based on the visualization and analysis tool introduced in this work.

Overall, the tools were demonstrated to enable an effective resource consumption
analysis of OSGi bundles. It was also shown that the tools could be used as a foun-
dation for a more complete analysis of the collaborating component compositions.

99

(1]

(2]

(3]

[4]

(5]

[6]

[7]

(8]

References

Osterweil, Leon J. A future for software engineering? In: Future of Software
Engineering (FOSE’07), 2007. 19-21 March 2007.

Issarny, Valerie, Caporuscio, Mauro and Georgantas, Nikolaos. A perspective
on the future of middleware-based software engineering. In: Future of Software
Engineering (FOSE’07),2007. 19-21 March 2007.

Bertolino, Antonia. Software testing research: Achievements, challenges, dreams.
In: Future of Software Engineering (FOSE’07),2007. 19-21 March 2007.

Brereton, Pearl, Budgen, David, Bennnett, Keith, Munro, Malcolm, Layzell,
Paul, MaCaulay, Linda, Griffiths, David and Stannett, Charles. The future of
software. Communications of the ACM, 42(12):78-84, 1999.

Jaffar ur Rehman, Muhammad, Jabeen, Fakhra, Bertolino, Antonia and Polini,
Andrea. Testing software components for integration: a survey of issues and
techniques. Software Testing, Verification and Reliability, 17(2):95-133, 2007.

The OSGi Alliance. Osgi. Website, Feb 2007. [Retrieved 27.8.2007] From:
http://www.osgi.org/.

Kapthammer, Gregory M., Soffa, Mary Lou and Mosse, Daniel. Testing in
resource constrained execution environments. In: ASE ’05. Proceedings of the
20th IEEE/ACM international Conference on Automated software engineering,
pages 418-422, New York, NY, USA, 2005. ACM Press.

Chung, Mandy. Using jconsole to monitor applications. Website, Oct 2004.
[Retrieved 2.7.2007] From: http://java.sun.com/developer/technical Articles/
J2SE/jconsole.html.

100

http://www.osgi.org/
http://java.sun.com/developer/technicalArticles/

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

The NetBeans community. The netbeans profiler. Website, Aug 2007.
[Retrieved 27.8.2007] From: http://profiler.netbeans.org/.

Van Den Bossche, B., Van Boxstael, K., Goeminne, N., Gielen, F. and
Demeester, P. M. An osgi compatible implementation of a java resource
monitor. In: Multimedia on Mobile Devices, Proceedings of the Society of
Photo-Optical Instrumentation Engineers (SPIE), volume 56840, pages 181—
189, March 2005.

Brereton, Pearl and Budgen, David. Component-based systems: A classification
of issues. Computer, 33(11):54-62, 2000.

Stuckenholz, Alexander. Component evolution and versioning state of the art.
SIGSOFT Softw. Eng. Notes, 30(1):7, 2005.

Szyperski, Clemens. Component Sofiware: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing, Boston, MA, 2002.

Chen, Shiping, Liu, Yan, Gorton, lan and Liu, Anna. Performance prediction
of component-based applications. J. Syst. Softw., 74(1):35-43, 2005.

Grassi, Vincenzo and Mirandola, Raffaela. Towards automatic compositional
performance analysis of component-based systems. SIGSOFT Softw. Eng.
Notes, 29(1):59-63, 2004.

Bertoa, Manuel and Vallecillo, Antonio. Quality attributes for cots components.
In QAOOSE 2002: Proceedings of the 6th ECOOP Workshop on Quantitative
Approaches in Object-Oriented Software Engineering (QAOOSE 2002), 2002.

Alexandre Alvaro, Eduardo Santana de Almeida, and Silvio Romero de

Lemos Meira. Software component certification: A survey. In: EUROMICRO 05:
Proceedings of the 31st EUROMICRO Conference on Software Engineering

101

http://profiler.netbeans.org/

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

and Advanced Applications, pages 106—113, Washington, DC, USA, 2005.
IEEE Computer Society.

Alvaro, Alexandre, Santana de Almeida, Eduardo and de Lemos Meira, Silvio
Romero. A component quality assurance process. In: SOQUA '07: Fourth
international workshop on Software quality assurance, pages 94—101, New
York, NY, USA, 2007. ACM.

The OSGi Alliance. About the osgi service platform, technical whitepaper.
Website, Nov 2005. [Retrieved 2.7.2007] From: http://www.osgi.org/documents/
collateral/OSGiTechnical WhitePaper.pdf.

The OSGi Alliance. Osgi service platform release 4, core specification.
Website, July 2006. [Retrieved 2.7.2007] From: http://www.osgi.org/.

The OSGi Alliance. Osgi service platform release 4, service compendium.
Website, July 2006. [Retrieved 2.7.2007] From: http://www.osgi.org/.

The OSGi Alliance. Osgi service platform release 4, mobile specification.
Website, July 2006. [Retrieved 2.7.2007] From: http://www.osgi.org/.

The Apache Software Foundation. Apache felix. Website, Aug 2007.
[Retrieved 8.8.2007] From: http://felix.apache.org.

Makewave AB. Knoplerfish. Website, Aug 2007. [Retrieved 8.8.2007] From:
http://www .knopflerfish.org.

The Eclipse Foundation. Eclipse equinox. Website, Aug 2007. [Retrieved
8.8.2007] From: http://www.eclipse.org/equinox.

Makewave AB. Knoplerfish pro. Website, Aug 2007. [Retrieved 8.8.2007] From:
http://www.makewave.com/site.en/products/knopflerfish_pro osgi.shtml.

102

http://www.osgi.org/documents/
http://www.osgi.org/
http://www.osgi.org/
http://www.osgi.org/
http://felix.apache.org
http://www.knopflerfish.org
http://www.eclipse.org/equinox
http://www.makewave.com/site.en/products/knopflerfish_pro_osgi.shtml

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

ProSyst Software GmbH. mbedded server. Website, Aug 2007. [Retrieved
8.8.2007] From: http://www.prosyst.com/products/osgi.html.

Ryan, Caspar and Rossi, Pablo. Software, performance and resource utilisation
metrics for context-aware mobile applications. In: METRICS ’05: Proceedings
of the 11th IEEE International Software Metrics Symposium (METRICS’ 05),
page 12, Washington, DC, USA, 2005. IEEE Computer Society.

Weyuker, Elaine J. and Vokolos, Filippos I. Experience with performance
testing of software systems: Issues, an approach, and case study. /EEE
Transactions on Sofiware Engineering, 26(12):1147-1156, 2000.

Binder, Walter and Hulaas, Jarle. A portable cpu-management framework for
java. IEEE Internet Computing, 8(5):74-83, 2004.

Braddock, Robert L., Claunch, Michael R. and Rainbolt, J. Walter. Operational
performance metrics in a distributed system. Part ii. Metrics and interpretation.
In: SAC ’92: Proceedings of the 1992 ACM/SIGAPP symposium on Applied
computing, pages 873—-882, New York, NY, USA, 1992. ACM Press.

Chen, G., Kandemir, M., Vijaykrishnan, N. Irwin, M. J., Mathiske, B. and
Wolczko, M. Heap compression for memory-constrained java environments.
In: OOPSLA "03: Proceedings of the 18th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications,
pages 282-301, New York, NY, USA, 2003. ACM Press.

Raeder Clausen, Lars, Pagh Schultz, Ulrik, Consel, Charles and Muller, Gilles.
Java bytecode compression for low-end embedded systems. ACM Transactions

on Programming Languages and Systems (TOPLAS), 22(3):471-489, 2000.

Kim, Jin-Soo and Hsu, Yarsun. Memory system behavior of java programs:
methodology and analysis. In: SIGMETRICS "00: Proceedings of the 2000

103

http://www.prosyst.com/products/osgi.html

[35]

[36]

[37]

[38]

[39]

[40]

[41]

ACM SIGMETRICS international conference on Measurement and modeling
of computer systems, pages 264-274, New York, NY, USA, 2000. ACM Press.

Cahoon, B. and McKinley, K. Tolerating latency by prefetching java objects,
October 1999. In: Workshop on Hardware Support for Objects and
Microarchitectures for Java.

Vijaykrishnan, N., Kandemir, M., Irwin, M. J., Kim, H. S. and Ye, W.
Energydriven integrated hardware-software optimizations using simplepower.
In: ISCA "00: Proceedings of the 27th annual international symposium on
Computer architecture, pages 95-106, New York, NY, USA, 2000. ACM Press.

Catthoor, F., Franssen, F., Wuytack, S., Nachtergaele, L. and De Man, H.
Global communication and memory optimizing transformations for lowpower
signal processing systems. In: VLSI Signal Processing Workshop, pages 178—
187, Oct 1994.

Lindholm, Tim and Yellin, Frank. The JavaTM Virtual Machine Specification,
Second edition. Addison-Wesley, 1999.

Hartikainen, Vesa-Matti, Liimatainen, Pasi P. and Mikkonen, Tommi. On
mobile java memory consumption. In: PDP ’06: Proceedings of the 14th
Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing (PDP’06), pages 333-339, Washington, DC, USA, 2006.
IEEE Computer Society.

Choi, Yoonseo and Han, Hwansoo. Protected heap sharing for memory-
constrained java environments. In: CASES '06: Proceedings of the 2006
international conference on Compilers, architecture and synthesis for embedded
systems, pages 212-222, New York, NY, USA, 2006. ACM Press.

Smith, Connie U. Performance Engineering of Software Systems. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990.

104

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Metz, Edu, Lencevicius, Raimondas and Gonzalez, Teofilo F. Performance
data collection using a hybrid approach. I: ESEC/FSE-13: Proceedings of the
10th European software engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of software engineering,
pages 126—135, New York, NY, USA, 2005. ACM Press.

Mansouri-Samani, Masoud and Sloman, Morris. A configurable event service
for distributed systems. In: ICCDS '96: Proceedings of the 3rd International
Conference on Configurable Distributed Systems, page 210, Washington, DC,
USA, 1996. IEEE Computer Society.

Sun Microsystems Inc. Java management extensions (JMX) specification,
version 1.4. Website, Nov 2006. [Retrieved 17.7.2007] From: http://java.sun.com/
javase/6/docs/technotes/guides/ jmx/JIMX 1 4 specification.pdf.

Sun Microsystems Inc. Jvm ti reference. Website, Aug 2006. [Retrieved
2.7.2007] From: http://java.sun.com/javase/6/docs/platform/ jvmti/jvmti.html.

Whaley, John. A portable sampling-based profiler for java virtual machines.
In: JAVA "00: Proceedings of the ACM 2000 conference on Java Grande,
pages 78-87, New York, NY, USA, 2000. ACM Press.

Czajkowski, Grzegorz and von Eicken, Thorsten. Jres: a resource accounting
interface for java. In: OOPSLA ’'98: Proceedings of the 13th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications,
pages 21-35, New York, NY, USA, 1998. ACM Press.

Binder, Walter. Portable profiling of memory allocation in java. In:
NODe/GSEM, pages 110-128, 2005.

Binder, Walter. Portable and accurate sampling profiling for java. Software—
Practice and Experience, 36(6):615-650, 2006.

105

http://java.sun.com/
http://java.sun.com/javase/6/docs/platform/

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Binder, Walter, Hulaas, Jarle and Villazén, Alex. Portable resource control in
java. In: OOPSLA '01: Proceedings of the 16th ACM SIGPLAN conference
on Object oriented programming, systems, languages, and applications, pages
139-155, New York, NY, USA, 2001. ACM Press.

Hulaas, Jarle and Binder, Walter. Program transformations for portable cpu
accounting and control in java. In: PEPM ’04: Proceedings of the 2004 ACM
SIGPLAN symposium on Partial evaluation and semantics-based program
manipulation, pages 169—177, New York, NY, USA, 2004. ACM Press.

Reiss, Steven P. Visualizing java in action. In: SoftVis '03: Proceedings of the
2003 ACM symposium on Software visualization, pages 57-65, New York,
NY, USA, 2003. ACM Press.

Reiss, Steven P. and Renieris, Manos. Jove: java as it happens. In: SoftVis '05:
Proceedings of the 2005 ACM symposium on Software visualization, pages
115-124, New York, NY, USA, 2005. ACM Press.

De Pauw, Wim, Jensen, Erik, Mitchell, Nick, Sevitsky, Gary, Vlissides, John M.
and Yang, Jeaha. Visualizing the execution of java programs. In: Revised
Lectures on Software Visualization, International Seminar, pages 151-162,
London, UK, 2002. Springer-Verlag.

Back, Godmar and Hsieh, Wilson C. The kaffeos java runtime system. ACM
Transactions on Programming Languages and Systems, 27(4):583-630, 2005.

Yrjonen, Anton. Performance analysis of software run-time behaviour using
3-d visualization. Master’s thesis, Lappeenranta University of Technology,
Department of Information Technology, Lappeenranta, 2007.

Pakkala, Daniel, Padkkonen, Pekka and Sihvonen, Markus. A generic

communication middleware architecture for distributed application and
service messaging. In: ICAS/ICNS, page 22. IEEE Computer Society.

106

[58]

[59]

[60]

Pakkala, Daniel, Koivukoski, Aki and Latvakoski, Juhani. Midgate:
Middleware platform for service gateway based distributed systems. In:
ICPADS "05: Proceedings of the 11th International Conference on Parallel
and Distributed Systems (ICPADS’05), pages 682—688, Washington, DC,
USA, 2005. IEEE Computer Society.

Pakkala, Daniel and Latvakoski, Juhani. Distributed service platformfor
adaptive mobile services. International Journal of Pervasive Computing and
Communications (JPCC), 2(2):175-187, 2006.

Pakkala, Daniel, Perdld, Juho and Niemeld, Eila. A component model for
adaptive middleware services and applications. In: EFUROMICRO '07:
Proceedings of the 33rd EUROMICRO Conference on Software Engineering
and Advanced Applications (EUROMICRO 2007), pages 21-30, Washington,
DC, USA, 2007. IEEE Computer Society.

107

Appendix 1 Configuration file of the monitor agent

Monitor agent configuration file

#

File format:

help Prints some usage info

include=item Classes which will be instrumented with new bytecodes
exclude=item Classes which won’t be instrumented with new bytecodes
cpu_interval=time Defines the cpu polling interval in ms

mem_interval=times Defines the memory dump interval in times*cpu_interval [ms]
garbage=times Defines garbage collector interval in times*mem_interval*cpu_interval [ms]
With this interval garbage collection is forced to start

file=name Filename for the monitor log

monitor=bname Defines bundle that will be monitored

#

Attribute examples:

item org/osgi/*

time 150

times 100

name monitor.log.txt

bname bundlea.jar

#

If some attribute is not defined then defaults will be used
Defaults:

include All of the packages

exclude None of the packages

cpu_interval 100

mem_interval 100

garbage 0 (Disabled)

file monitor_log.txt

monitor No bundles

#

garbage=100

cpu_interval=20
mem_interval=30
file=config_example.log
monitor=BundleA jar
monitor=BundleB.jar

171

Appendix2 Example output of the monitor agent

2
20134456761962"JVMProcessTime"2835468750" BundleB
"203437500000"
20134480927603"JVMProcessTime"2835781250"BundleB
"203453125000"
20134505273994"JVMProcessTime "2836406250"BundleB
"203484375000"
20134532046112"JVMProcessTime"2836718750"BundleB
"203500000000"
20134557025823"JVMProcessTime"2837343750" BundleB
"203515625000"
20134581466918"JVMProcessTime"2837968750" BundleB
"203546875000"
20134607152864"JVMProcessTime"2838281250" BundleB
"203562500000"
20134631281629"JVMProcessTime"2838906250" BundleB
"203593750000"
20134654702762"JVMProcessTime"2839218750" BundleB
"203609375000"
20134679501165"JVMProcessTime"2839843750"BundleB
"203625000000"
20134705833283"JVMProcessTime"2840468750"BundleB
jar"203656250000"
20134731903356"JVMProcessTime"2840781250" BundleB
jar"203671875000"
20134756440273"JVMProcessTime"2841406250" BundleB
jar"203703125000"
20134779804416"JVMProcessTime"2841718750" BundleB
jar"203718750000"
20134805061537"JVMProcessTime"2842187500" BundleB
jar"203718750000"
20135007540343"JVMProcessTime"2845000000" BundleB
jar"203812500000"
20135031652626"JVMProcessTime"2845156250" BundleB

.jar"750000000"BundleA . jar
.jar"765625000"BundleA . jar
.jar"796875000"BundleA . jar
.jar" 812500000 " BundleA . jar
.jar"843750000"BundleA . jar
.jar"875000000"BundleA . jar
.jar"890625000"BundleA . jar
.jar"921875000"BundleA . jar
.jar"937500000"BundleA . jar
.jar"968750000"BundleA . jar
.jar"1000000000"BundleA .
.jar"1015625000"BundleA .
.jar" 1046875000 "BundleA .
.jar"1062500000"BundleA .
.jar" 1093750000 "BundleA .
.jar" 1156250000 "BundleA .

.jar" 1171875000 " BundleA .

jar"203812500000"; "BundleB . jar "20894392"BundleA . jar"191456

20135368922307"JVMProcessTime"2849531250"BundleB
jar"203906250000"

20135392977040"JVMProcessTime"2850156250"BundleB
jar"203937500000"

20135416457957"JVMProcessTime"2850468750" BundleB
jar"203953125000"

20135441082595"JVMProcessTime"2851093750" BundleB
jar"204000000000"

20135467199322"JVMProcessTime"2851406250" BundleB
jar"204015625000"

2/1

.jar" 1250000000 " BundleA .
.jar" 1281250000 "BundleA .
.jar" 1296875000 " BundleA .
.jar" 1312500000 "BundleA .

.jar"1328125000"BundleA.

Appendix3 Example output of the visualization tool

Input file: Example_OSGi_resource_cosumption_model.log
Statistics timeframe: from 861615 to 1242764, length 381149, duration:
~190 sec

Cpu usage statistics:

Cpu utilization of the whole JVM: 0.749434 %

Bundle: BundleA Cpu utilization: 0.0484561 % and utilization compared to
JVM: 0.064657 %

Bundle: BundleB Cpu utilization: 0.155435 % and utilization compared to
JVM: 0.207404 %

Bundle: BundleC Cpu utilization: 0.302068 % and utilization compared to
JVM: 0.403062 %

Bundle: BundleD Cpu utilization: 0.00674802 % and utilization compared to
JVM: 0.00900415 %

Monitoring overhead: 0.0451477 % and overhead compared to JVM: 0.0602424 %

Memory consumption statistics:

Bundle: BundleA largest memory consumption: 31.7013 MB smallest: 0 MB and
average: 12.7312 MB

Bundle: BundleB largest memory consumption: 17.6072 MB smallest: 6.77072
MB and average: 11.3382 MB

Bundle: BundleC largest memory consumption: 0.00244531 MB smallest:
0.00103125 MB and average: 0.00109417 MB

Bundle: BundleD largest memory consumption: 3.43541 MB smallest: 0.761734
MB and average: 1.44036 MB

Input file: Example_OSGi_resource_boundary_model.log
Statistics:

Bundle: BundleA

CPU util: 37.8049 %, boundary: 45 %, resource underspend by 7.19512 %

Mem alloc: 1.33638 MB, boundary: 5 MB, resource underspend by 3.66362 MB

Net util: 2233.4 KB/sec, boundary: 1500 KB/sec, bound exceeded by 733.398
KB/sec

Bundle: BundleB

CPU util: 60.7591 %, boundary: 65 %, resource underspend by 4.2409 %

Mem alloc: 10.8249 MB, boundary: 13 MB, resource underspend by 2.17512 MB

Net util: O KB/sec, boundary: 250 KB/sec, resource underspend by 250 KB/
sec

3/1

Series title, number and
report code of publication

m VTT Publications 685

VTT-PUBS-685

Author(s)
Miettinen, Tuukka

Title
Resource monitoring and visualization of OSGi-based

software components

Abstract

This work introduces a novel approach for the resources consumption analysis of OSGi-based software
components. OSGi Service Platform provides a component based and service-oriented Java environment that
is especially emerging in environments with constrained computational resources. OSGi Service Platform
enables the cooperation of multiple Java based components within a single Java Virtual Machine. Existing
JVM analyzing tools typically monitor the resource consumption of the whole Java environment, which is not
sufficient in an OSGi environment since the JVM conceals the resource consumption information of separate
OSGi components. This emphasizes the need for monitoring solutions that are able to provide a detailed view
of the resource consumption of the Java environment.

Tools implemented in this work enable the effective resource consumption analysis of individual software
components executed on a OSGi platform. A monitoring tool that is able to identify the resource consuming
component was developed to extract both component and environment specific data from the Java
environment. An existing visualization tool was extended in order to provide an easy to understand view of
the resource consumption behaviour of both single component and component compositions. Two novel
visualizations were introduced to facilitate the analysis of software resource usage. The tool produces 3D
visualization that simultaneously illustrates the time related CPU utilizations and memory consumptions of all
desired components executed on the OSGi platform. The other novel visualization presents the amount of
resources required by a component to operate normally. In addition, it enables the comparison of resource
consumption information to desired usage boundaries. The OSGi-based resource monitoring service was also
developed in order to provide runtime resource consumption information for components that are able to
adapt their behaviour according to available computing resources.

The applicability of the tools was demonstrated with two use cases. Firstly, an OSGi component’s resource
usage boundaries were detected and validated. Secondly, multiple components were monitored and use of the
resource monitoring service was demonstrated with an adaptive OSGi component. It was proved that
implemented tools effectively reveal how the components behave inside the OSGi environment from a
resource consumption perspective.

ISBN
978-951-38-7104-8 (soft back ed.)
978-951-38-7105-5 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number
VTT Publications 21427

1235-0621 (soft back ed.)
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Date Language Pages

June 2008 English, Finnish abstr. 107 p. + app. 3 p.

Name of project Commissioned by

ITEA2-CAM4Home Tekes, VIT

Keywords Publisher

resource consumption, resource monitoring, software | VTT Technical Research Centre of Finland

visualization, performance analysis P.O. Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4520
Fax +358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

Julkaisun sarja, numero ja
raporttikoodi

WT VTT Publications 685
VTT-PUBS-685

Tekija(t)
Miettinen, Tuukka

Nimeke

OSGi-pohjaisten ohjelmistokomponenttien resurssien
kulutuksen monitorointi ja visualisointi

Tiivistelmé&

Téssd tyossd luotiin uudenlainen 1&hestymistapa OSGi-pohjaisten ohjelmistokomponenttien laskentaresurssien
kayton analysointiin. OSGi-palvelualusta tarjoaa komponenttipohjaisen ja palvelusuuntautuneen Java-alustan,
joka on herittinyt kasvavaa kiinnostusta erityisesti resurssirajoitteisten tietokoneympéristdjen markkinoilla.
OSGi-ohjelmistoalusta mahdollistaa useiden Java-pohjaisten ohjelmistokomponenttien yhteistoiminnan sa-
massa Java-virtuaalikoneessa. Olemassa olevat Javan analysointityokalut tarkkailevat koko Java-ympériston
resurssien kulutusta, miké ei ole riittivad OSGi-ympéristossd, koska virtuaalikone kitkee yksittdisten ohjel-
mistokomponenttien resurssienkulutuksen. Témén vuoksi tarvitaan uusia resurssien kdyton seurantaratkaisuja,
joiden avulla saadaan yksityiskohtaisempi kuva Java-ympériston resurssien kaytosta.

Téssd tyOssd kehitetyt tyokalut mahdollistavat yksittdisten ohjelmistokomponenttien laskentaresurssien kay-
ton tehokkaan analysoinnin. Kehitetty resurssien monitorointitydkalu tarkkailee koko Java-ympéristod ja
pystyy erottelemaan laskentaresurssien kdyton komponenttikohtaisesti. Olemassa olevaa visualisointitykalua
laajennettiin, jotta keridtty tieto voidaan esittdd helposti ymmarrettdvassd muodossa. Ty0ssé esitelldédn kaksi
uudenlaista visualisointia, jotka helpottavat ohjelmiston resurssien kdyton analysointia. Visualisointityékalu
tuottaa kolmiulotteisen ndkymaén, joka yhtdaikaisesti esittdd haluttujen OSGi-komponenttien tuottaman pro-
sessorikuorman ja muistinkulutuksen. Toinen uusi visualisointi esittdd laskentaresurssien méérén, jotka oh-
jelmistokomponentti vaatii toimiakseen. Tdma myos mahdollistaa komponentin resurssienkulutuksen vertailun
haluttuihin kéyttorajoihin. Ty6ssé kehitettiin myds OSGi-pohjainen laskentaresurssien monitorointipalvelu,
joka mahdollistaa resurssien kdyttétiedon ajonaikaisen hyddyntdmisen. Tédmé taas mahdollistaa vapaana
oleviin laskentaresursseihin mukautuvat ohjelmistokomponentit.

Tyokalujen hyddyllisyys osoitettiin kahdella erilaisella kéytttapauksella. Ensimmadisessi etsittiin ja vahvis-
tettiin erddn OSGi-komponentin resurssien kulutusrajat. Toisessa tapauksessa useita komponentteja monito-
roitiin ja havainnollistettiin resurssienmonitorointipalvelun kéyttod mukautuvan komponentin avulla. Niin
pystyttiin osoittamaan, ettd kehitetyt tyokalut paljastavat tehokkaasti komponenttien kayttdytymisen OSGi-
ympéristossd resurssien kulutuksen ndkokulmasta.

ISBN
978-951-38-7104-8 (nid.)
978-951-38-7105-5 (URL: http://www.vtt.fi/publications/index.jsp)

Avainnimeke ja ISSN Projektinumero
VTT Publications 21427
1235-0621 (nid.)

1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Julkaisuaika Kieli Sivuja

Kesdkuu 2008 Englanti, suom. tiiv. 107 s. + liitt. 3 s.
Projektin nimi Toimeksiantaja(t)
ITEA2-CAM4Home Tekes, VIT
Avainsanat Julkaisija

resource consumption, resource monitoring, software | VIT

visualization, performance analysis PL 1000, 02044 VTT
Puh. 020 722 4520

Faksi 020 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

VTT PUBLICATIONS

667

668

669

670

671

672

673

674

675

677

678

679

680

681

682

683

685

Ahlqvist, Toni, Uotila, Tuomo & Harmaakorpi, Vesa. Kohti alueellisesti juurrutettua
teknologiaennakointia. Péijat-Hdmeen klusteristrategiaan sovitettu ennakointiprosessi.
2007. 107 s. + liitt. 7 s.

Ranta-Maunus, Alpo. Strength of Finnish grown timber. 2007. 60 p. + app. 3 p.

Aarnisalo, Kaarina. Equipment hygiene and risk assessment measures as tools in
the prevention of Listeria monocytogenes -contamination in food processes. 2007.
101 p. + app. 65 p.

Kolari, Kai. Fabrication of silicon and glass devices for microfluidic bioanalytical
applications. 2007. 100 p. + app. 72 p.

Helaakoski, Heli. Adopting agent technology in information sharing and networking.
2007. 102 p. + app. 97 p.

Jarnstrom, Helena. Reference values for building material emissions and indoor
air quality in residential buildings. 2007. 73 p. + app. 63 p.

Alkio, Martti. Purification of pharmaceuticals and nutraceutical compounds by sub-
and supercritical chromatography and extraction. 2008. 84 p. + app. 42 p.

Maikeld, Tapio. Towards printed electronic devices. Large-scale processing methods
for conducting polyaniline. 2008. 61 p. + app. 28 p.

Amundsen, Lotta K. Use of non-specific and specific interactions in the analysis
of testosterone and related compounds by capillary electromigration techniques.
2008. 109 p. + app. 56 p.

Hanhijarvi, Antti & Kevarinméki, Ari. Timber failure mechanisms in high-capacity
dowelled connections of timber to steel. Experimental results and design. 2008.
53 p. + app. 37 p.

FUSION Yearbook. Association Euratom-Tekes. Annual Report 2007. Eds. by Seppo
Karttunen & Markus Nora. 2008. 136 p. + app. 14 p.

Salusjirvi, Laura. Transcriptome and proteome analysis of xylose-metabolising
Saccharomyces cerevisiae. 2008. 103 p. + app. 164 p.

Sivonen, Sanna. Domain-specific modelling language and code generator for
developing repository-based Eclipse plug-ins. 2008. 89 p.

Kallio, Katri. Tutkimusorganisaation oppiminen kehittdvdn vaikuttavuusarvioinnin
prosessissa. Osallistujien, johdon ja menetelmin kehittdjin kéasityksid prosessin
aikaansaamasta oppimisesta. 2008. 149 s. + liitt. 8 s.

Kurkela, Esa, Simell, Pekka, McKeough, Paterson & Kurkela, Minna. Synteesikaasun
ja puhtaan polttokaasun valmistus. 2008. 54 s. + liitt. 5 s.

Hostikka, Simo. Development of fire simulation models for radiative heat transfer
and probabilistic risk assessment. 2008. 103 p. + app. 82 p.

Miettinen, Tuukka. Resource monitoring and visualization of OSGi-based software
components. 2008. 107 p. + app. 3 p.

Julkaisu on saatavana Publikationen distribueras av This publication is available from
VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000
02044 VTT 02044 VTT FI-02044 VTT, Finland
Puh. 020 722 4520 Tel. 020 722 4520 Phone internat. + 358 20 722 4520
http://www.vtt.fi http://www.vtt.fi http://www.vtt.fi

ISBN 978-951-38-7104-8 (soft back ed.) ISBN 978-951-38-7105-5 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1235-0621 (soft back ed.) ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

<
—
—
.
G
oo
=
P
e
>
=
=]
Z
n
N
<o
(52l

syuauodwod 31eMIJOS PISeq-INS(JO UOTIBZI[BNSIA pUE SULIOITUOW IDINOSIY

UDUIIIAIN

http://www.vtt.fi
http://www.vtt.fi
http://www.vtt.fi
http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	Abstract
	Tiivistelmä
	Preface
	Contents
	Abbreviations
	1. Introduction
	1.1 Motivation
	1.2 Scope and structure of this work

	2. Related technologies and research
	2.1 Component-based software development
	2.2 OSGi
	2.2.1 OSGi Service Platform
	2.2.2 Implementations
	2.2.3 Computing resources of an OSGi bundle

	2.3 Monitoring Java Virtual Machine
	2.3.1 JVM Measurement Techniques
	2.3.2 Java Management Extensions
	2.3.3 Java Virtual Machine Tool Interface
	2.3.4 Existing monitoring approaches
	2.3.5 Existing visualization approaches

	3. Monitoring and visualization approach
	3.1 Monitoring process
	3.2 Visualization process
	3.3 Support for dynamic adaptation

	4. Implementation
	4.1 Overview of the approach
	4.2 OSGi implementation modifications
	4.2.1 Bundle specific ThreadGroup
	4.2.2 Isolation of OSGi services

	4.3 The monitor agent
	4.3.1 Initializing the agent
	4.3.2 Resource monitoring
	4.3.3 File output

	4.4 The visualization and analysis tool
	4.4.1 Class structure
	4.4.2 File output

	4.5 OSGi-based resource monitoring service
	4.5.1 Class structure

	5. Experimentation
	5.1 Monitoring single OSGi bundle
	5.1.1 Monitored OSGi bundle
	5.1.2 Resource consumption measurements
	5.1.3 Discussion on the results

	5.2 Runtime support provided by the monitoring service
	5.2.1 Arrangements and case flow
	5.2.2 Resource consumption statistics
	5.2.3 Discussion on the statistics

	6. Discussion
	6.1 The monitoring tool
	6.1.1 Measurement accuracy
	6.1.2 Overhead introduced by the monitoring
	6.1.3 Discussion on the monitoring tool’s applicability

	6.2 The visualization and analysis tool
	6.2.1 Discussion on the visualization models

	6.3 Discussion on the tools

	7. Conclusions
	References
	Appendix 1 Configuration file of the monitor agent
	Appendix 2 Example output of the monitor agent
	Appendix 3 Example output of the visualization tool

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

