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Setälä, Harri. Regio- and stereoselectivity of oxidative coupling reactions of phenols.
Spirodienones as construction units in lignin [Fenolien hapettavan kytkentäreaktion regio- ja 
stereoselektiivisyys. Spirodienonit ligniinin rakenneyksiköinä]. Espoo 2008. VTT Publications 
689. 104 p. + app. 38 p. 

Keywords regioselectivity, stereoselectivity, oxidative coupling reactions, phenols, spirodienones,
lignans, dilignols, dehydrodimerization, peroxidases, chirality, pH, catalysts 

Abstract 
Dimeric phenolic compounds � lignans and dilignols � form in the so-called 
oxidative coupling reaction of phenols. Enzymes such as peroxidases and laccases 
catalyze the reaction using hydrogen peroxide or oxygen, respectively, as 
oxidant generating phenoxy radicals which couple together according to certain 
rules. In this thesis, the effects of the structures of starting materials � 
monolignols � and the effects of reaction conditions such as pH and solvent 
system on this coupling mechanism and on its regio- and stereoselectivity have 
been studied. 

After the primary coupling of two phenoxy radicals a very reactive quinone 
methide intermediate is formed. This intermediate reacts quickly with a suitable 
nucleophile which can be, for example, an intramolecular hydroxyl group or 
another nucleophile such as water, methanol, or a phenolic compound in the 
reaction system. This reaction is catalyzed by acids. After the nucleophilic 
addition to the quinone methide, other hydrolytic reactions, rearrangements, and 
elimination reactions occur, leading finally to stable dimeric structures called 
lignans or dilignols. Similar reactions occur also in the so-called lignification 
process when monolignol (or dilignol) reacts with the growing lignin polymer. 
New kinds of structures have been observed in this thesis. The dimeric 
compounds with a so-called spirodienone structure have been observed to form 
both in the dehydrodimerization of methyl sinapate and in the β-1-type cross-
coupling reaction of two different monolignols. This β-1-type dilignol with a 
spirodienone structure was the first synthesized and published dilignol model 
compound, and at present, it has been observed to exist as a fundamental 
construction unit in lignins. 
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The enantioselectivity of the oxidative coupling reaction was also studied for 
obtaining enantiopure lignans and dilignols. A rather good enantioselectivity 
was obtained in the oxidative coupling reaction of two monolignols with chiral 
auxiliary substituents using peroxidase/H2O2 as an oxidation system. This 
observation was published as one of the first enantioselective oxidative coupling 
reaction of phenols. Pure enantiomers of lignans were also obtained by using 
chiral cryogenic chromatography as a chiral resolution technique. This technique 
was shown to be an alternative route to obtain enantiopure lignans or lignin 
model compounds in a preparative scale. 
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Setälä, Harri. Regio- and stereoselectivity of oxidative coupling reactions of phenols. 
Spirodienones as construction units in lignin [Fenolien hapettavan kytkentäreaktion regio- ja 
stereoselektiivisyys. Spirodienonit ligniinin rakenneyksiköinä]. Espoo 2008. VTT Publications
689. 104 s. + liitt. 38 s. 

Avainsanat regioselectivity, stereoselectivity, oxidative coupling reactions, phenols, spirodienones,
lignans, dilignols, dehydrodimerization, peroxidases, chirality, pH, catalysts 

Tiivistelmä 
Dimeeriset lignaanit ja dilignolit muodostuvat ns. fenolien hapettavassa kytkentä-
reaktiossa, jossa fenolisista monolignoleista syntyvät fenoksiradikaalit kytkeytyvät 
toisiinsa tiettyjen lainalaisuuksien mukaisesti. Reaktiota katalysoivat entsyymit, 
kuten peroksidaasit ja lakkaasit, sopivan hapettimen � joko vetyperoksidin tai 
hapen � läsnä ollessa. Tässä väitöskirjassa käsitellään näiden kytkeytymisten seu-
rauksena syntyvien primääristen rakenteiden ja sitä kautta syntyvien dimeeristen 
yhdisteiden syntymekanismeja ja niihin vaikuttavia tekijöitä, kuten sitä, mitkä lähtö-
aineen rakenteesta johtuvat stereoelektroniset syyt johtavat erilaisten dimeeristen 
rakenteiden syntyyn; ja mikä on reaktio-olosuhteiden vaikutus näiden rakenteiden 
syntyyn. Tässä väitöskirjassa on tutkittu kuuden erilaisen monolignolin rakenteen 
sekä liuotinsysteemin ja pH:n vaikutusta; ja myös jonkin verran katalyytin sekä 
hapettimen vaikutusta reaktioiden regio- ja stereoselektiivisyyteen. 

Hapettavan kytkentäreaktion jälkeen tapahtuvat sekundääriset reaktiot, kuten 
nukleofiilinen additio kinonimetidivälituotteeseen ja sitä seuraavat erilaiset hydro-
lyyttiset reaktiot, toisiintumiset ja eliminoitumisreaktiot, johtavat lopulta stabiileisiin 
dimeerisiin rakenteisiin. Näihin reaktiovaiheisiin vaikuttavia tekijöitä on myös 
käsitelty tässä väitöskirjassa. Kinonimetidi on syntyvän kytkentäreaktion tuote, 
välituote, joka on hyvin reaktiivinen (vaikkakin voi olla tietyissä olosuhteissa melko 
pysyvä) ja reagoi nukleofiilien kanssa joko molekyylien välisissä reaktioissa (vesi, 
fenolinen tai alifaattinen hydroksyyliryhmä, tiolit yms.) tai molekyylin sisäisesti 
esim. tarjolla olevan hydroksyyliryhmän kanssa synnyttäen mm. erilaisia rengas-
rakenteita (furaanit, bentsofuraanit). Nämä rakenteet ovat melko pysyviä ja 
yleisiä eristetyissä lignaaneissa ja ligniineissä. Kuitenkin jotkin niistä voivat olla 
myös välituotteita muiden lignaanien muodostumisreitissä ja myös mahdollisia 
reittejä tiettyjen ligniinissä esiintyvien rakenneosien muodostumiselle. Eräs tällainen 
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välituotetyyppi ovat ns. spirodienonirakenteiset yhdisteet, joita esiintyy luonnossa 
stabiileina rakenteina lignaaneissa ja ligniinissä. Spirodienonirakenteinen dimeeri 
kuitenkin reagoi melko helposti mm. happamissa olosuhteissa toisiintumalla eri 
rakenteeksi. Spirodienonirakenteet selittävät osaltaan ligniinien ns. β-1-rakenteiden 
syntymismekanismeja. Yleisesti ottaen varsinaisen hapettavan kytkentäreaktion 
jälkeiset sekundääriset reaktiot voivat olla hyvin monimutkaisia ja johtaa suureen 
määrään rakenteellisesti hyvin erilaisia dimeerejä � lignaaneja. Lähtöaineiden raken-
teen ja reaktiota katalysoivan entsyymi-hapetinsysteemin lisäksi pH-vaikutus, liuotin-
systeemi, muiden nukleofiilisten reagoivien aineiden vaikutus (nukleofiilisyys, 
konsentraatiot); ja intra- vs. intermolekulaarisen reaktion nopeus välituotteen 
stabiloitumisessa lopputuotteeksi ovat tärkeitä reaktioparametreja. 

Polymeerisen ligniinimolekyylin syntyessä kytkeytymisreaktion lainalaisuudet 
ovat osin toisenlaisia, koska tässä reaktiotyypissä � polymeroitumisessa � kasvava 
ligniinimolekyyli reagoi monomeerisen (tai dimeerisen) fenolisen yhdisteen, 
monolignolin, kanssa. Vallitseva selitys lignifikaatiosta, ligniinin syntymisestä, 
perustuu teoriaan, jonka mukaan tietyistä käytettävissä olevista monomeerisista 
yhdisteistä, monolignoleista, syntyy tiettyjen kombinatoriaalisen kemian lain-
alaisuuksien mukaan erilaisia ligniinin perusrakenneosia ilman esimerkiksi 
entsyymin ohjaavaa vaikutusta. Syntyvien rakenteiden keskinäinen suhde ligniinissä 
perustuu pikemminkin reagoivien monolignolien rakenne-eroavaisuuksiin (hapetus-
potentiaalit, stereoelektroniset tekijät), konsentraatioihin ja syöttönopeuteen ligniini-
polymeerin kasvaessa hapettavassa kytkentäreaktiossa; sekä erilaisten reaktio-
olosuhteiden vaikutukseen. Tässä väitöskirjatyössä syntetisoitu β-1-ristikytkentä-
mekanismilla syntynyt dimeeri on laatuaan ensimmäinen kokeellisesti valmistettu 
spirodienonirakenteinen dilignoliyhdiste. Rakenteen on myöhemmin todennettu 
esiintyvän yleisesti yhtenä ligniinien perusrakenneosana. Väitöskirjassa on valmistettu 
myös muita spirodienonityyppisiä dimeerejä. 

Lisäksi väitöskirjassa on tutkittu monolignoliiin liitetyn kiraalisen substituentin 
vaikutusta hapettavan kytkentäreaktion enantioselektiivisyyteen. Menetelmällä 
pystyttiin valmistamaan dimeerisiä rakenteita hyvällä enantioselektiivisyydellä. 
Julkaisu on eräs ensimmäisistä maailmassa. Puhtaita enantiomeereja voidaan 
valmistaa myös käyttäen ns. kiraalisia resoluutiotekniikoita. Tässä työssä tutkittiin 
ns. kiraalisen kromatografian käyttöä puhtaiden enantiomeerien valmistamiseksi 
raseemisista lignaaneista. 
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1. Introduction 

Both the dimeric lignans and dilignols, and the structural units in the lignin are 
formed in the so-called oxidative coupling reaction of phenols. Erdtman [1] 
proposed already in 1933 the main features for the formation of a dimer in the 
oxidative coupling reaction of phenolic compounds. He used isoeugenol as the 
model compound. Freudenberg [2] developed this idea by using coniferyl 
alcohol as the lignin precursor and the so-called dehydrogenation polymers 
(DHPs) were obtained by using enzymes or inorganic oxidants. After those days 
lignin chemistry and research have developed on many fronts including the 
findings of phenylpropanoid pathways and other biosynthetic routes to lignans 
and lignin. These results have been reviewed, for instance, in the book of Lewis 
and Sarkanen. [3] The most important and relevant results published in the field 
of lignan and lignin research from the beginning of the 1980�s to 2008 in 
relation to this thesis are reviewed and referred to in Chapter 2 as an introduction 
to the results and discussion in Chapter 4. 

This thesis and the published results (Papers I�VI) are just a small part in the 
great puzzle of lignan and lignin research but some important new information 
and pieces of that puzzle have been found. The effects of the structure of monolignols 
and some reaction parameters of the reaction conditions on the formation of 
dimeric dilignols (lignans) have been studied by using some selected 
monolignols as model compounds. First, both the effect of the structure of three 
monolignols � isoeugenol (1), methyl ferulate (2) and coniferyl alcohol (3) � and 
the effect of the pH and organic cosolvents on the amounts and types of dilignols 
have been studied (Paper I). These findings led onto the next studies with methyl 
sinapate as the starting material and onto the first observations of new 
spirodienone structures (Papers II and III). More closely related to the lignin 
chemistry, a new dilignol with a spirodienone structure was obtained in the 
oxidative β-1-type cross-coupling reaction of two monolignols (Paper V). 

Lignans in nature exist usually as pure enantiomers or as enantiomeric mixtures. [4] 
Many asymmetric synthetic methods are available for preparing pure enantiomers of 
lignans. Monolignols with chiral auxiliary substituents were used to study the 
enantiomeric selectivity in the oxidative coupling reaction (Paper IV). These 
results were published as one of the first observations in the world by using this 
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kind of a method. Because the enantiomeric selectivity (enantiomeric excess) is 
not often high enough and a product is a mixture of enantiomers, other separation 
and purification methods are needed. Chiral resolution using some chromatographical 
methods were also studied for the production of pure enantiomers of lignans, in 
preparative scale (Paper VI). 
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2. Formation and structure of lignans 
and lignin 

Monomeric phenolic compounds such as monolignols are derived from phenylalanine 
via general phenylpropanoid pathways in plants. Monolignols are phenolic 
compounds with a phenylpropane carbon skeleton. Other monomeric, dimeric, 
oligomeric, and polymeric phenolic coumpounds such as 1) benzoates and salicylates, 
2) coumarins, 3) cinnamics and phenylpropenes, 4) lignans, 5) flavonoids, 6) stilbenes, 
7) tannins, and 8) lignin polymers are derived basically from monolignols and/or 
related phenolic compounds. The phenylpropanoid pathways and other biosynthetic 
pathways leading to phenolic compounds and the enzymes involved in these 
pathways are rather well known and reviewed in literature. [5�9] A simplified 
scheme of the phenylpropanoid pathways is presented in Figure 2. The most 
interesting compounds and pathways that are a part of this thesis are coloured 
red. Many other monomeric hydroxycinnamics such as isoeugenol and eugenol 
are also biosynthetized through phenylpropanoid pathways, see Figure 2. [10] 

The transportation and/or rate of diffusion of monolignols from cells where they 
are biosynthetized to cell walls or other places where they are needed and used, 
is the next step before the oxidative coupling reaction and/or lignification 
processes. They are transported as their glycosides such as coniferin (Figure 1) 
which has been observed to be present in the lignifying tissue of conifers. [2] 
Coniferin is hydrolyzed by β-glucosidases to coniferyl alcohol and a mono-
saccharide. [2, 11, 12] Many studies, for example, using radio- or 13C-labeled 
coniferin have shown that coniferin is incorporated in lignans or in the lignin of 
the cell walls. [13�16] 

O O

OH

OHHO
HO

CH2OH
H3CO

Coniferin

 

Figure 1. Coniferyl alcohol 4-O-β-D-glucoside, coniferin. 
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2.1 Lignans and dilignols 

Lignans, neolignans, norlignans, and other phenolic compounds are widely 
distributed in vascular plants. Phenylpropanoid dimers often closely related to 
lignans and neolignans are also called dilignols, but this term is used mostly 
when speaking about lignin chemistry and lignin precursors. Many lignans are 
reported to be optically active existing in plants as pure enantiomers or optically 
active mixtures of enantiomer pairs or racemic mixtures. [17] The origin of 
chirality of lignans will be discussed in more detail in Section 2.5. 

OH

H3CO
OH

7 or α 8 or β
9 or γ

12

4

 

Figure 3. Two common ways of labelling the carbon atoms in monolignols. 

Most lignans and dilignols are biosynthesized from monomeric phenolic 
phenylpropanoid compounds such as coniferyl alcohol, sinapyl alcohol, ferulic 
acid, or caffeic acid. They are usually dimeric compounds (dilignols) but, for 
example, trimeric lignans also exist. [18] Flavonolignans [19] and alkaloids [20] 
with a dimeric phenolic skeleton and with amine functionality, and so-called 
norlignans [21] have also been separated and identified in plants. Some 
examples are presented in Figures 4 and 5. There is only a relatively small 
number of phenylpropanoid interunit primary linkages that are used to divide 
lignans into sub-groups: 8-8� (β-β), 8-1�(β-1), 8-5� (β-5), 8-O-4� (β-O-4), 5-5�, 
4-O-5 etc. This system of nomenclature is based on the structural features and on 
the way the monomers are coupled: dimers with 8-8� coupling (or β-β) are 
lignans, dimers with 8-5� (β-5) or 8-O-4� (β-O-4) coupling are neolignans, etc. 
(see IUPAC Nomenclature of Lignans and Neolignans). [22] This nomenclature 
is used in lignan chemistry. [21, 23] The coding system of carbon atoms in 
monolignols presented in parenthesis is widely used in lignin chemistry [24, 25], 
and also used in this thesis (see Figure 3). All coupling combinations mentioned 
above exist in lignin. The β-β� and β-5 couplings are the structures most 
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abundant in lignans. The main groups of β-β� lignans, their structures, and some 
examples of natural lignans are presented in Figure 4. The biosynthesis, biodiversity, 
and biological function of lignans are reviewed elsewhere. [4, 23, 26] 
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Figure 4. Main types of lignan groups resulting from β-β coupling of phenoxy 
radicals. The β-β bond is shown in red and bolded. The compounds shown in 
red will be discussed in more detail in this study. 
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The two natural isomers of hydroxymatairesinol are the most abundant lignans 
present in Norway spruce (P. abies) and may comprise up to 0.3-% of the dry 
wood content. [27] Knots (inner branches) may contain even 6�25-% lignans 
(w/w) with hydroxymatairesinol dominating. [28] Most fir (Abies) species 
contain secoisolariciresinol, lariciresinol, and pinoresinol as the main lignans 
[29], see Figure 4. Amounts and types of lignans are dependent on wood and 
plant species and their distribution inside the species (knots, stem, etc.) is 
reviewed elsewhere. [30, 31] Aryltetralins such as podophyllotoxin extracted 
from the leaves of American mayapple (Podophyllum peltatum L.) are promising 
anticancer agents and some of their derivatives have already been used as 
pharmaceuticals. [32] Thomasidioic acid with a similar structure as 
podophyllotoxin has been isolated from Ulmus thomasii heartwood [33] and its 
methyl ester has been synthetized (Paper II). Dibenzocyclooctadiene lignans are 
common in Schisandra chinensis. [34] 

Some examples of the structural diversity of neolignans, norlignans, and related 
phenolics in plants are presented in Figure 5. Many of them are found � together 
with lignans and other phenolics � in conifers, monocotyledons, and other trees. 
[21, 35] Some neolignans isolated from roots of Krameria gray [36], or from 
Linum usitatissimum cell cultures [37] in Figure 5 are examples of 
dihydrobenzofuran-type structures. Lignans and other similar phenolics exist 
often as their glycosides such as dehydrodiconiferyl alcohol-4-β-D-glycoside 
from Linum usitatissimum [37], or a neolignan rhamnoside from birch leaves 
[38], but also as free aglycones such as dehydrodiisoeugenol from Krameria 
grayi. [36] Lignans are usually free in trees but glycosides in other plants. 
Hinokiresinol obtained from suspension-cultured Cryptomeria japonica [39], 
and a spirocyclic sequosempervirin A from the Sequila sempervirens plant [40] 
are examples of norlignans. Some alkaloids such as salutaridine with a spirodienone-
like structure have dimeric structure similar to lignans and dilignols. The 
oxidative coupling reaction step is assumed to be a part of their biosynthesis 
because of the phenolic functionalities in their structures. [20] Silybin is a so-
called flavonolignan isolated from the seeds of Silybum marianum. [19] 
Sesquineolignans with spirodienone structure was observed from Pine (Pinus 
sylvestris L.) bark. [18] 
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Figure 5. Some examples of other dimeric phenolic compounds in plants: 
dihydrobenzofuran (phenylcoumaran) neolignans, spirocyclic sequosempervirin 
A and hinokiresinol norlignans, flavonolignan, and alkaloid salutaridine with 
spirodienone-like structure. The last example is a trimeric neolignan also with 
spirodienone structure. 
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2.2 Oxidative coupling reaction of monolignols: 
dehydrodimerization 

Dehydrodimerization is based on the oxidative coupling reaction of phenols 
where two phenoxy radicals are first generated in an one-electron oxidation 
reaction by an oxidant system such as peroxidase/H2O2 where peroxidase is a 
catalyzing enzyme and H2O2 is an oxidant. Inorganic oxidants such as Ag2O, 
hexacyanoferrates or FeCl3 can also be used to generate phenoxyradicals (Figure 6). 
Two phenoxy radicals are then coupled to form quinone methide intermediates 
which further react with suitable nucleophiles in intra- or intermolecular 
reactions. [1, 2, 41] Furthermore, other hydrolytic reactions, eliminations, and/or 
rearrangements follow yielding the stable end-products, dilignols and lignans. 
When these two coupling phenoxyradical monomers are not identical, a so-
called cross-coupling reaction may take place. Cross-coupling reactions will be 
discussed in more detail in Section 2.7. 
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Figure 6. One-electron oxidation of phenols having a propenyl side chain 
generating a phenoxy radical (A). All the resonance forms (A-E) of a phenoxy 
radical are presented. The electron spin density of the phenoxy radical is 
delocalized over the aromatic ring and double bond system giving several positions 
to react with each other. The oxidative coupling of these positions gives different 
kinds of primary C-C and C-O bonds and different kinds of lignans. 

In order to achieve a better understanding of what factors and reaction 
parameters have the greatest effect on this oxidative process from monolignols 
to dimeric products, the dehydrodimerization and polymerization processes are 
divided into some basic steps as presented by Shigematsu et al. [42] for the 
overall polymerization process of DHP (dehydrogenative polymer). Transportation 
and diffusion of a monolignol and an enzyme in the polysaccharide matrix is the 
first step in this process but not further discussed in this thesis. Secondly, an 
oxidant (H2O2 or O2) penetrates into the active site of the enzyme forming an 
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oxidized/activated enzyme which is further able to oxidize a substrate. 
Penetration of a monolignol into the active site of the enzyme and the formation 
of monolignol-enzyme complex is the next step. The formation of monolignol-
enzyme-complex is related to the specificity and activity of the enzyme. [43] 
The ratio and availability of monomers in the reaction side of the cell wall 
together with oxidizing enzymes is an important factor. [44] The relative 
reactivities of monolignols (redox potentials) are also important factors in cross-
coupling reactions in the dehydrogenative polymerization of monolignols to the 
growing lignin polymer. [45] 

Thirdly, the formed phenoxyradical will be coupled to another phenoxyradical 
forming quinone methide intermediates. The catalyst can direct reactions in 
many ways, i.e. act as a chiral promoter (with or without any cofactors or 
dirigent proteins) yielding optically active lignans. Reaction conditions have a 
very strong effect on the ratio and amounts of coupling products (Paper I). [43] 

Fourthly, post-coupling reactions will occur: 1) Reaction of the quinone methide 
with a suitable nucleophile and 2) hydrolytic reactions, eliminations, and/or 
rearrangements follow to yield stable end-products. 

These reaction parameters are further discussed in the next sections and Chapter 4. 

2.2.1 Formation of phenoxy radicals by one-electron oxidation 
of monolignols and their coupling to dimers 

How the two phenoxy radicals are initially coupled, which reaction route is 
selected, and the ratio of possible dimeric products are all dependent primarily 
on the stereoelectronic effects related to the structure of the phenoxy radicals. 
[42, 46, 47] But also the catalyst/oxidant system and reaction conditions can 
have remarkable effects (see Section 2.4, and results and discussion in Chapter 4). 

The possible coupling positions leading to different kinds of C-C or C-O bonds 
and lignan types and structural components of lignin are presented in Figure 7. 
The β-β, β-5, and β-O-4 couplings give the most abundant structures in lignans 
and also in lignin. The 4-O-5�/ (A + C) coupling is possible only if there is no 
substituent in the C-5 (and/or C-3) position of the aromatic ring, and usually this 
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coupling occurs when there is no β-coupling possibility in another phenoxy 
radical forming compound. 5-5� (C+ C) is also possible if the C-5 (and/or C-3) 
position has no substituent and is most likely to occur if there is no β-radical 
coupling possibility in either phenoxy radical forming compound. β-1 (8-1�) 
(B+E) coupling is possible if there is no β-radical coupling possibility in another 
phenoxy radical forming compound and more likely if at the same time the C-3 
and (or) C-5 positions in the aromatic ring are blocked. 
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Figure 7. Possible combinations of resonance stabilized phenoxy radicals 
generated from 4-hydroxycinnamics. For example, β-5 and 5-5� couplings are 
possible only if there is no substituent in the C-5 (and/or C-3) position of the 
aromatic ring. 

A+A and E+E coupling products have not been observed in lignans and lignin. 
A+A coupling yields a very unstable peroxy compound. E+E coupling is also 
theoretically possible but because of a common substitution in this position, it is 
sterically hindered. 
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Many theoretical explanations, semi-empirical calculations, and computational 
methods have been used to determine the factors which could control the 
formation of various dimeric products, and these results have been compared to 
experimental data. Houtman [48] simulated the collision of two monolignol 
molecules. The theoretically feasible linkages of radical coupled intermediates 
were simulated and their reactivities were compared to the heat of formation by 
Elder and Ede. [49] The transition state leading to β-O-4 quinone methide 
intermediate of p-coumaryl alcohol was analyzed by semi-empirical molecular 
orbital calculations by Shigematsu et al. [42] Many kinds of computational and 
simulation methods have been used. [50, 51] The reactivity of possible coupling 
positions (C or O atoms) in a phenoxy radical is explained to be dependent on 
the single-electron spin density at these positions. The spin density is dependent 
on the substitution in an aromatic ring [51] and on the structure of the C3-side 
chain which is usually an unsaturated propenyl chain with a hydroxyl, methyl, or 
carboxylic acid group at the Cγ-position. [42] Elder and Worley [52] used semi-
empirical methods to calculate the spin densities on all atoms in the coniferyl 
alcohol molecule, but the results did not correlate very well with the experimental 
data. They looked later also at thermodynamic control as an explanation of the 
experimental data. However, the heats of formation of the final dilignols did not 
determine the product distribution. [49] Similar results were obtained later by 
Durbeej et al. [46, 53] who used density functional theory studies. Houtman [48] 
suggests that the dimerization of coniferyl alcohol is not under thermodynamic 
control and that it is unlikely that the main coupling reaction and post-reactions 
could be reversible. Kinetic arguments were used to explain the product 
distribution in the case of coniferyl alcohol. Based on the molecular dynamics 
(MD) results and the experimental results of Terashima and Atalla [54], 
Houtman [48] has proposed a mechanism by which the solvent environment 
determines the product distribution of radical-radical coupling reactions. 
Terashima and Atalla [54] measured the product distribution of dimers and 
oligomers of coniferyl alcohol in various water/diglyme mixtures and studied pH 
effects, also. Even a small addition of diglyme (20-%) increased the production 
of β-O-4 dimer up to approx. 40-%. The results of Houtman [48], and Tereshima 
and Atalla [54], are compared in Table 1. 
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Table 1. Product distribution of the oxidative coupling of coniferyl alcohol 
based on MD simulations [48] and experimental data [54] compared to 
statistical calculations (random). 

(%) of a dimer: β-O-4 β-5 β-β Others / oligomers Ref. 

MD simul. (water) 13 56 31 - [48] 

Random 40 40 20 - [48] 

Exp. in water 19 34 27 - [48] 

20-% diglyme, pH 5 40 30 13 17 [54] 

60-% diglyme, pH 5 50 32 9 8 [54] 

50-% diglyme, pH 4 50 33 12 6 [54] 

50-% diglyme, pH 7 29 40 13 17 [54] 

 

Phenoxy radicals are assumed first to form a so-called π-complex. The phenoxy 
radicals have to be superimposed in a way that enables the maximum 
overlapping of single-occupied molecular orbitals (SOMO), and at the same time 
the stereoelectronic repulsions of substituents in the aromatic ring and C3-side 
chain have to be minimized. The regioselectivity in the oxidative coupling 
reactions of phenols may be due to different configurations of intermediate π-
complexes. [55�58] These π-complexes (sandwich model) and σ-complexes 
(quinone methide intermediates) and the structures generated from these 
combinations are illustrated in Figure 7. The σ-complexes � quinone methide 
intermediates � are formed through the π-complexes resulting in the transition 
states. The quinone methides may be in equilibrium with the π-complexes or 
with each other, for example, through transition states such as the structure X in 
Figure 8 (Paper I). The nucleophilic attack of R-OH is in principle also a 
reversible reaction, and it is competing with the intramolecular nucleophilic 
attack. [59�62] 
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Figure 8. Schematic diagram of the possible routes and mechanisms to different 
structures. 
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2.2.2 Stabilisation of the α-carbon in quinone methides by the 
addition of nucleophiles and the formation of stable structures 

Stabilisation of the α-carbon in quinone methides (QM) by the addition of 
nucleophiles is dependent on the nature and availability of nucleophiles in the 
reaction media [63, 64], on the structure of the QMs [63, 65, 66], on the solvent 
system (solvolysis, H-bonding with substrates, and bulk effects) [67, 68], and on 
the type of catalysis (acid or base catalyzed, pH-dependence, solvent catalysis, 
etc.). [62, 69] The reactivity is mainly due to the electrophilic nature of QM, 
which is remarkable in comparison to that of other neutral electrophiles. QMs 
are good Michael acceptors, and nucleophiles are readily added under mild 
conditions to the QM exocyclic methylene group to form benzylic adducts. [59�
61, 70, 71] The formation and subsequent reactions of QMs have been shown to 
be highly responsive to the presence of electron-withdrawing and -donating 
groups in the aromatic ring: electron-donating groups greatly facilitate initial 
QM generation and electron-rich QMs react much more slowly but more 
selectively with nucleophiles than do the electron-poor QMs. [66] The reaction 
of nucleophiles to a quinone methide can be an intramolecular attack of a 
substituent of a dimeric intermediate, such as in the formation of resinols or β-5 
dimers, or an attack by other nucleophiles existing in the reaction media. The 
reactivities of quinone methides have been observed to be influenced by both 
intermolecular and intramolecular interactions affecting the relative contributions 
of the resonance forms shown in Figure 9. The solvent effects and the effects of 
the structure of quinone methide to its reactivity and reaction rate (also with 
water) have been investigated by Bolton et al. [63] The influence of quinone 
methide reactivity on the alkylation of thiol and amino groups has also been 
studied. [72] The general observation was that quinone methides can be 
expected to combine rapidly with cellular nucleophiles. The reactivity of the 
quinone methide and, for example, the sensitivity of the QMs solvolysis reaction 
to the polarity of a solvent system as well as the transition state in the 
nucleophilic addition reaction were observed to be dependent on the structure 
and substituents in the aromatic ring and at the exocyclic methylene group. The 
transition state in the nucleophilic addition is either a highly polar transition state 
or an uncharged cyclohexadienone structure (see Figure 9). Modica et al. [64] 
have observed that at lower pH � especially at pH 2, 5, or 6, or even at pH 7 � 
water is a rather good nucleophile for attacking a quinone methide as compared 
to amino or even to sulphur nucleophiles in water solutions. Besides pH, the 
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ratio of addition products was dependent also on other reaction conditions such 
as the structure of competing nucleophiles and their nucleophilicity. Modica et 
al. [64] didn�t observe any addition products by carboxylic acid groups for tested 
amino acids. The formation of β-O-4 lignin models was also studied by 
computational methods such as the density functional theory (DFT) method. The 
results showed also that the conversion of a β-O-4 linked quinone methide into a 
quaiacylglycerol-β-coniferyl ether dilignol is catalyzed by acid. [53] 
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Figure 9. Structures of quinone methides and the addition of a nucleophile XH 
in an acid catalyzed reaction. R = -CH3, -CH2CH3, -COOEt, -CHFx, or alkyl 
chain with other substituents such as -CH(OAr)CH2OH in β-O-4 intermediate of 
coniferyl alcohol. 

Nucleophile selectivities for reactions of 4-MeOC6H4CR1(R2)Y with alkyl 
alcohols and water have been studied. [65] It was found that methanol was the 
most reactive substance with the carbocation 4-MeOC6H4CH(CH3)+ and that its 
nucleophilic selectivity was twenty times the selectivity of water. A similar 
observation was made when the reactivity of o-hydroxybenzyl alcohol (oHBA) 
with solvents like methanol, ethanol, and benzyl alcohol was studied. Methanol 
reacted with oHBA forming 94-% methoxy ether. [68] 

2.3 Stereoselectivity in the oxidative coupling 
reactions of phenols 

The coupling of two phenoxy radicals leads to new asymmetric stereocenters. 
The reaction can lead to pure enantiomers or mixtures if stereocontrol exists due 
to a catalyst and/or matrix and/or chiral auxiliarities in the starting compound. 
Enantioselective (bio)synthesis will be discussed further in Section 4.5. So- 
called erythro and threo isomers can be formed in the β-O-4 type coupling. The 
erythro/threo ratio of β-O-4-structures is an important structural characteristic of 
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lignin. [73] The stereochemistry in the forming of these isomers is nowadays 
believed to be kinetically controlled. [24] The erythro/threo ratio is observed to 
be approx. 1:1 in softwood species, but the erythro form is predominant in 
hardwood species. [73] A quinone methide intermediate of syringyl-type was 
observed to convert more frequently to an erythro-form than a quaiacyl-type. 
The highest erythro/threo ratio in lignins was observed to be more than 3. [74] 
The formation mechanism is illustrated in Figure 10 and compared to the 
situation in the β-5 type coupling. Many experiments in vitro have shown rather 
variable results and the clear fundamental conclusions of the correlations 
between the e/t-ratio and the reacting species, i.e. quinone methides and 
nucleophiles, the effect of the structure of monolignols, and/or the meaning of 
reaction conditions are very difficult to make. The reason is that 1) there are too 
few reliable experiments published so far, 2) the reaction conditions vary very 
much between the studies and the comparison is diffucult, and 3) real systematic 
studies which would take into account the most important reaction parameters in 
the same study are missing. Some examples are presented in Table 2. 
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Figure 10. Schematic diagram showing the acid catalysed addition of a 
nucleophile to a quinone methide intermediate and the formation of erythro and 
threo isomers of β-O-4 dimers and the stereostructure of the Cα-Cβ trans 
configuration in β-5 dimers (Paper I). [75] 
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Table 2. Erythro/threo ratios of some selected β-O-4 dimerizations. IEG = isoeugenol, 
CAL = coniferyl alcohol. 

Monolignol(s) Reaction conditions substituent 
at Cα 

erythro / 
threo Ref. 

IEG Ag2O, dry benzene + water + 1 M HCl -OH 1 [76] 

IEG H2O2/HRP, 38-% aq. acetone - OH 3,0 [77] 

IEG Ag2O, dry CH2Cl2 + MeOH with pTsOH -OMe 1 Paper I 

IEG Laccase -OH 0,2 [78] 

CAL H2O2/HRP, 10-% aq. methanol -OMe 1 Paper I 

CAL Ag2O, dry acetone + water with 1 M HCl -OH 1 [79] 

CAL Ag2O, 1:2 acetone-water pH 2.5 (pH 3.1) -OH 0,7 [79] 

CAL +apocynol Mn(OAc)2 in acetic acid -OAc 1,9 [80] 

5-MeO-IEG Ag2O, dry benzene + water with 1 M HCl -OH 1,4 [76] 

5-MeO-IEG Ag2O, dry benzene + AcOH -OAc 3,2 [76] 

5-MeO-IEG Ag2O, dry benzene + MeOH + pTsOH - OMe 3.0 [76] 

5-MeO-IEG Ag2O, dry benzene + PhOH + Et3N - OPh 10 [76] 

5-MeO-IEG FeCl3, 38-% aq. acetone -OH 2,3 [81] 

 

2.4 Role of peroxidases 

Peroxidases are usually heme-containing glycoproteins that can catalyze various 
oxidative reactions including the oxidative coupling reaction of phenols. [82, 83] 
The oxidation potentials and the power of catalysts are different and are 
dependent on the catalyst�s (enzyme) own structural features. [83, 84] For 
example, when three peroxidases such as lactoperoxidase (LPO), horseradish 
peroxidase (HRP), and chloroperoxidase (CPO) were compared in the oxidation 
of phenolic sulfides, remarkable differences were observed. With CPO the major 
product was a sulfoxide, but also HRP produced sulfoxides. Dimeric phenols 
were yielded as main products with HRP and LPO. [85] The prosthetic group of 
peroxidases is commonly a porhyrin-like organic molecule containing a metal 
atom in the centre. Usually iron but also other metals such as manganese have 
been observed. [86] The structures of several peroxidases have been determined, 
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for example, lignin peroxidase (LiP) [87], horseradish peroxidase (HRP) [88], 
manganese peroxidase (MnP) [86, 89] from plants, and lactoperoxidase (LPO) 
from mammalians. [90] HRP and its isoenzymes and other similar peroxidases 
in plants are believed to be the most important enzymes in the dehydrogenative 
polymerization of monolignols to lignin. [24] Peroxidases use hydrogen peroxide 
(H2O2) as an oxidant in the dehydrogenative dimerization and polymerization 
(see a review about HRP by Veitch 2004). [91] 
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Figure 11. Catalytic cycle of horseradish peroxidase (HRP) and the structure of 
heme � ferriprotophorphyrine IX which is the prosthetic group of HRP and 
many other peroxidases. [91, 92] 

Laccase has also been used to catalyze the oxidative coupling of phenols. 
Laccase (1.10.3.1) is a special polyphenol oxidase involved in the lignification 
of plant tissue and in the phytopathogenicity of several fungi. It has wide 
substrate specificity for phenolic compounds. It uses oxygen as an oxidant and 
copper(II) is involved in the reaction mechanism. [93] 

The stability and activity of an enzyme is often dependent on the concentration 
of an oxidant which can inhibit the enzyme at a too high a concentration. 
[94, 95] The activity and stability of an enzyme is dependent, for instance, on the 
concentrations of reacting substrates, solvent type and system, ionic strength, 
and pH. [96] Enzymes have usually a pH optimum. [97] The tolerances of LiP 
and MnP (from a fungus Bjerkandera sp. strain BOS55) to water miscible 
solvents was rather limited, but MnP was more stable in acetone and ethanol. 
[98] MnP was also found to be more tolerant than LiP in organic solvents. [99] 
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The activity of MnP was studied in aqueous organic media at pH 4.5 with 
several water miscible solvents by using guaiacol and 2,6-dimethoxyphenol as 
substrates. The activity was still rather good, for example, in 70-% acetone, 
diethylene glycol dimethyl ether and 2-propanol, but was greatly dependent on 
the substrate, also. No activity was observed in 70-% methanol. [99] Meanwhile, 
LiP from Phanerochaete chrysosporium was very active in many organic 
solvent-water mixtures. [100] HRP has been found to be remarkably active even 
at high concentrations of organic solvent [101] and the effect of organic solvent 
on its structure and function was studied. [43] According to the kinetic studies, 
the apparent Km values (enzyme-substrate interactions) in dioxane/water 
mixtures increased as the substrate hydrophobicity increased, whereas in aqueous 
buffer, the apparent Km values remained relatively constant. Values of Vmax/Km 
were reduced because of a stronger binding of substrates to HRP (Vmax, catalytic 
turnover). [43, 101] 

Most peroxidases have a low substrate specificity and they can oxidize many 
kinds of substrates. The control of the lignification process by peroxidases may 
still appear in many ways. They may be more active to catalyze the oxidation of 
one monolignol than another, leading to accumulation of one monolignol into a 
growing lignin polymer. For example, some peroxidases such as syringyl 
peroxidase [102, 103] or cell-wall-associated oxidases [104] are found to have 
higher substrate specificities. Peroxidases in the close proximity of their active 
centre may direct the coupling of phenoxy radicals in a regioselective or in 
another way, leading more likely to a specific combination of two phenoxy 
radicals in the coupling stage and also during the post-coupling reactions to 
stabilized end-products. [103] The possible directing functionality and mechanism 
may be based on the structural diversity of the enzyme (protein part which controls 
in many ways the oxidation potential of the enzyme and together with the structure 
of heme having different kinds of metals) leading to different kinds of water activity 
and apparent pH near the active centre of the peroxidase enzymes. [92, 105, 106] 

Peroxidases have not been observed, so far, to catalyze the oxidative coupling of 
phenols in an enantioselective way without the help of so-called dirigent 
proteins, and not at all in the case of the lignification process. [24] 

So, we always have to keep in mind the fact that an enzyme (catalyst) itself may 
have remarkable and unexpected effects on the regio- and stereoselectivity in the 
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oxidative coupling of phenols, and that the effects of organic solvents on the 
catalytic activity and substrate specificity of enzymatic catalysis are important. 

2.5 Chirality of lignans 

Lignans are usually obtained from plants as their pure enantiomers, in other 
words, they are optically active. [17, 23] Several enzymes are responsible for 
their formation by catalyzing many kinds of reactions in a stereoselective manner: 
for example, the enantiospecific conversion of (+)-larreatricin (dehydrodiisoeugenol 
-like lignan with a furan ring) into (+)-3-hydroxylarreatricin by polyphenol 
oxidase in Larrea tridentate [107] or, for example, the stereoselective coupling 
of coniferyl alcohol to an enantiopure pinoresinol by a so-called dirigent protein 
found and studied by Davin and Lewis (see Figure 12). [17, 108] 
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Figure 12. (i) Proposed biosynthetic pathway to (+)-larreatricin (L. tridentata) 
lignan [107], and (ii) the stereoselective coupling of coniferyl alcohol to an 
enantiopure (+)-pinoresinol by a dirigent protein in F. intermedia. [108] 
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Theoretically there are three basic possible reasons for this optical activity: 

1) Enantioselective control of chiral catalysts such as enzymes. For 
example, the biosynthesis of optically pure lignans with the help of 
dirigent proteins. [109] 

2) A chiral matrix or environment controlling stereoselectivity. 

3) Chiral auxiliary substituents in the starting molecule inducing 
stereoselectivity. This route to chiral lignans or dilignols have been 
proved to be a valuable choice (Paper IV). [110] 

Some peroxidases or related oxidoreductases are capable of catalyzing other 
kinds of oxidative reactions in an enantioselective way, for example, 
epoxidations of double bonds by chloroperoxidase or vanadium peroxidase [83], 
or sulfoxidation by HRP. [111] So, in principle, enantiocontrol may be possible 
also in the oxidative coupling reaction of phenols by peroxidases alone without 
dirigent proteins. The theory as to the existence of enantiocontrol in the 
oxidative coupling of phenols in the lignification process proposed by Davin and 
Lewis [17] is not yet accepted, or there is not been enough proof that it is 
involved in lignification in plants. [24, 25] 

Because of the biological activity of lignans and their many potential pharmaceutical 
properties, syntheses of podophyllotoxin and related compounds as well as other 
lignans have been studied intensively. [112] For example, podophyllotoxin which 
is an aryltetralin lignan and its derivatives, are nowadays important drugs against 
cancer. [113] The antitumour activity of several products of the dihydrobenzofuran-
type lignans have also been demonstrated by Pieters et al. [114] Because of the 
need of enantiopure lignans, several synthetic strategies for stereoselective and 
asymmetric synthesis of lignans have been performed to achieve aryltetralins 
such as podophyllotoxin [115, 116], dibenzylbutyrolactones such as matairesinol, 
arctigenin, or enterolactone [117, 118], dibenzylbutanediols [119], or furofuran 
lignans such as pinoresinol. [120] Currently, the biomimetic oxidative coupling 
of monolignols involving a chiral auxiliary substituent in the starting compound 
has also been used to produce enantiopure lignans such as dihydrobenzofurans 
(Paper IV) and aryltetralins. [121] 
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Many of these lignans used for the production of pharmaceuticals such as 
podophyllotoxin are extracted and purified from plants [32] and modified then 
chemically to the end-products. [113] Biotechnical routes to the production of 
enantiopure lignans may also be potential with the use of cell cultures, etc. [122, 123] 

Kinetic resolution by lipase-catalyzed acetylation has been used successfully to 
produce enantiopure dihydrobenzofuran-type neolignans. [124] Chiral resolution 
is related to this technique because pure enantiomers are separated from their 
racemic mixtures by using, for instance, chiral chromatography (Paper VI). 
[125] These dihydrobenzofuran (phenyl coumaran) lignans have also been 
purified from their diastereomeric (-)-camphanoyl derivatives to pure enantiomers 
by using normal liquid chromatography. [126] 

2.6 Role of cinnamic acids as crosslinking compounds 
in plant hemicelluloses 

4-Hydroxycinnamic acids such as ferulic acid and sinapic acid play a remarkable 
role in the texture of cell walls where they are bound to hemicelluloses and 
partly dehydrodimerized forming crosslinkages between hemicellulose chains. 
[127, 128] They also possibly functions as linkages between lignin and cell wall 
polysaccharides and cellulose. [129�131] Dehydrodiferulates are likely to be the 
most important arabinoxylan cross-links in cereals and grasses in general. 
β-β (8-8�), β-5 (8-5�), β-O-4 (8-O-4�), 4-O-5, and 5-5� dehydrodiferulates and 
their esters with carbohydrates have been isolated and characterized in a whole 
range of plant materials. [132, 133] Their oligomers have also been identified as 
existing in plants. [134, 135] Sinapate dehydrodimers and sinapate-ferulate 
heterodimers are also obtained in many plants. [136] The dimeric structures of 
dehydrodiferulic acid are presented in Figure 13. [129] 
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Figure 13. Main dimeric structures of dehydrodiferulic acids in plants. [129] 

2.7 Formation and structure of lignin 

Lignins are amorphous phenolic polymers and the second most abundant organic 
material in nature after cellulose. Lignins are an essential component of the 
woody stems of arborescent gymnosperms and angiosperms in which their amounts 
are in the range from 15 to 36-%. Lignins are found as integral cell wall constituents 
in all vascular plants including the herbaceous varieties. The lignin in the cell 
wall is intimately mixed with the carbohydrate components. Lignin is an 
essential component of higher plants giving them rigidity, water-impermeability, 
and resistance against microbial decay. The basic character of lignin is the lack 
of a regular and ordered structure. [3, 24, 25] Lignins are not optically active in 
contrast to lignans. [137] Usually lignin has to be extracted and isolated from 
plant material before structural analyses and characterization techniques by 
using chemical and physical methods which can change and partly destroy the 
natural structure of lignin. These facts make the characterization of lignin 

H3CO

HO

OR
OR

O

O

OH
H3CO

H3CO

HO

OR
OR

O

O

OH
H3CO OH

H3CO

O OR

ORO

OH
OCH3

β-β-Diferulate,
cyclic form

β-β-Diferulate,
open chain form

β-5-Diferulate

OH
H3CO

O OR
OCH3

O

β-O-4-Diferulate

O

OH

OH

OCH3

OCH3

RO
O

O

RO

β-β-Diferulate,
furan type

O
OCH3

HO

H3CO

O

OR

OR
O

β-5-Diferulate,
dihydrobenzofuran type

OR

O



 

37 

structure rather difficult. [138, 139] Some examples of the typical softwood and 
hardwood lignins and of the lignins of some wood species and other plants are 
presented in Table 3. 

Table 3. Approximate composition (%) of some important classes of lignin with 
different kinds of phenylpropane units in lignin and in some selected wood and 
plant species. (G) guaiacyl, (S) syringyl and (C) p-coumaryl. 

Lignin type G-type S-type C-type Ref. 

Softwood lignin 95 1 4 [139] 

Hardwood lignin 49 49 2 [139] 

Grass lignin 70 25 5 [139] 

Compression wood (CW) 70 0 30 [139] 

Birch (Betula verrucosa) 24 76 nd [140] 

Poplar (Populus euramericana) 49 51 nd [140] 

Spruce (Picea abies) 98 tr 2 [140] 

Pine (Pinus pinaster) (CW) 82 tr 18 [140] 

Rhubarb 4 96 nd [134] 

Pear 45 55 1 [134] 

 

Thioacidolysis is a widely used method for the characterization of structural 
units of lignin and their amounts in lignin. [141] The use of acetyl bromide 
(AcBr) is also familiar to lignin chemistry because lignocellulosic material can 
be dissolved in acetic acid by this method. [142] The so-called derivatization 
followed by reductive cleavage (DFRC) method has been derived further from 
the AcBr method by combining the reductive step and use of Zn, and is currently 
also popular. [143, 144] 

Many kinds of NMR spectroscopic techniques have been recently developed and 
have became the most powerful techniques for structural analysis of lignin. [145�
147] Combining 13C-labelling of DHP and wood species (P. Abies) suspension 
cultures with the use of NMR techniques such as 3D HMQC-HOHAHA is a 
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very interesting and powerful technique and it can yield important information 
regarding the chemical processes involved in the lignification of cell walls in 
vascular plants. [148�150] Labeling with other nuclei such as deuterium is also 
used. [15] 

Molecular modelling has also been used to determine the comformational 
characteristics and to establish the structure-property relationships of biopolymers 
such as cellulose and lignin. [151, 152] 

In addition to the modern powerful NMR techniques, �studying lignin-biosynthetic-
pathway mutants and transgenics provides insights into plant responses to 
perturbations of the lignification system, and enhances our understanding of 
normal lignification�. [153] 

Perhaps the most important method combined with NMR techniques has been 
the studies with model lignins by generating so-called dehydrogenative 
polymers, DHPs. [154, 155] The advantage of synthetic DHPs is that they are 
free of carbohydrates and other wood components which can complicate 
interpretation of experimental results. [156] The syntheses of dimeric, trimeric, 
and oligomeric model compounds have given a lot of information about the 
basic factors in the oxidative coupling of phenols and have provided useful data 
in support of the characterization and idenfication methods (NMR, MS, etc.). 
[59�61, 70, 79, 80, 134, 157] 

The currently widely accepted theory is that lignin polymer is formed by 
combinatorial-like phenolic coupling reactions, via radicals generated by 
peroxidase-H2O2. The reactions have been reviewed and discussed, for example, 
by Ralph et al. [24, 25] The cross-coupling reaction is important when the 
growing lignin polymer is reacting with monolignols or dilignols in the so-called 
dehydrogenative polymerization process (DHPs) and in the lignification process 
in nature. The theory on the combinatorial-like formation and polymerization 
process of lignin is based on the idea that lignification is a very flexible process 
producing complex racemic aromatic heteropolymers � lignin. According to this 
theory only the simple chemical coupling properties during the lignification 
process constrain the synthesis to limited structural diversity, and at the moment 
all evidence seems to point to the polymerization process itself being independent of 
protein/enzyme control. [25] 
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Another theory called �regiochemical control of monolignol radical coupling: a 
new paradigm for lignin and lignan biosynthesis� has been proposed. [17, 158] 
This theory is not discussed in more detail in this thesis because it is not 
approved and it has not been proven to explain the lignification process in any 
new way or with any adequate evidence. The debate has been going on very 
intensively elsewhere. [24, 25] A so-called replication theory is proposed by 
Sarkanen et al. [159] as one explanation in which the lignin macromolecules, 
without participating covalently in the process, are assumed to be able to act as 
template species in promoting the oxidative coupling of monolignols to form 
high molecular weight dehydropolymerisate components. 

The feeding rate of monolignols into the dehydrogenative polymerization 
process is highly dependent on the hydrolytic enzymes which are one part of the 
control system of lignification. [160] The feeding rate of monolignols [80] and 
the ratio of monolignol / peroxidase [44] were shown to have a significant effect 
on the dehydrogenative polymerization. In the traditional Zutropf (ZT) method 
the monolignols are fed rapidly into a reaction mixture at the same time, whereas 
in the Zulauf method monolignols (and/or other reagents like H2O2) are added 
very slowly. The Zutropf method favours the formation of dimeric products 
whereas the Zulauf method yields more lignin-like DHPs, for instance, with 
higher content of β-O-4 structures. 

In addition to the three predominant monolignols, p-coumaryl alcohol, coniferyl 
alcohol and sinapyl alcohol, it has been observed that many other monomeric 
phenolic compounds are involved in dehydrogenative polymerization as building 
blocks of lignins (see review Ralph et al. [24]). 
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Hydroxycinnamyl aldehydes have been observed to exist in lignins. [161] 
Hydroxycinnamyl acetates such as sinapyl acetate have also been determined in 
lignin. [162] Coumaroylated lignin units � esters of p-coumaric acid with Cγ-
hydroxyl groups have been detected in bamboo and maize. [163] These few 
examples will already illustrate the enormous diversity of lignins in nature. 

The structural feature of lignin polymers is that coupling is possible only in a 
certain way between monolignol and the growing lignin polymer. The main 
possible structural units present in lignins are illustrated in Figure 15. One of the 
main linkages in the lignins are β-O-4 (A) and β-5 structures (B). [24] A 5-5� 
coupling unit (C and F) exists usually as a dibenzodioxocin (C) which is a 
trimeric construction unit in lignins. [164] The β-β coupling units are obtained in 
lignins mainly as resinol (D) structures like pinoresinol and syringaresinol which 
can be principally formed through two different routes. [165, 166] The 5-5�- (C) 
and 4-O-5�-structures (E) are important branching points in lignin. [24] Some 
reduced lignin sub-structures cannot be directly explained by radical coupling 
reactions and nucleophilic attack exist also in lignin. The quinone methide 
intermediates are reduced in these structures yielding, for example, 1-(quaiacyl)- 
and (syringyl)propanol and secoisolariciresinols. [167] Benzodioxane (G) structures 
are also obtained in some plants such as poplar where 5-hydroxyconiferyl alcohol 
(caffeyl alcohol) is incorporated into lignin. [168] These main structural units are 
presented in Figure 15. 

The relative redox potentials of monolignols have been assumed to be one 
possible controlling factor in the dehydrogenative polymerization, i.e. in DHPs 
synthesis and lignification. [45] Neudörffer et al. [169] have measured the 
oxidation potentials of several 4-hydroxycinnamic ethyl ester derivatives and 
related dehydrodimers. Oxidation potentials decreased in the order ethyl sinapate 
(� 0.13 V) > ethyl ferulate (0 V) > ethyl coumarate (+ 0.2 V). Hapiot et al. [170] 
have measured one-electron redox potentials of coniferyl alcohol and analogues. 
They observed that the conjugation of the phenyl ring with the double bond 
makes the oxidation easier, and that the addition of a methoxy group ortho to the 
hydroxyl function makes the substrate more easily oxidized and still more if 
there are two methoxy groups. They got a so-called formal potential value of 
0.11 V for coniferyl alcohol (lifetime 5 µs) and 0.07 for isoeugenol (lifetime 20 µs). 
The measurements were carried out in basic acetonitrile. They also came to the 
conclusion that because of the rather narrow potential range of monolignol redox 
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potentials, the differences of reactivity observed for monolignols in lignin 
polymerization must result from kinetic effects of the reactions following the 
first electron transfer. The aqueous oxidation potentials were measured to be 
0.64 eV for coniferyl alcohol and 0.50 eV for sinapyl alcohol by Wei et al. [171] 
The substituent effect on the O-H bond dissocation enthalpies of phenols is 
studied by EPR radical equilibrium techniques. [172] Russell et al. [173] used 
also EPR methodology to investigate the effects of substrate structure on 
peroxidase-catalyzed phenylpropanoid oxidation and demonstrated that the 
structure of the monomer or dimer determines the final composition of lignin. 
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Okusa et al. [174] compared laccase and peroxidase on the dehydrogenative 
polymerization of coniferyl alcohol and observed that the polymerization 
process was strongly dependent on the enzyme used. For example, laccase from 
Rhus vernicifera produces mainly dimeric products after 144 hrs: 21-% β-β, 26-% 
β-5 and 2-% β-O-4. DHP was not obtained. Laccase from coriolus versicolor 
produces after 51 hrs also mainly dimeric products: 13-% β-β, 22-% β-5 and 11-% 
β-O-4. DHP was obtained in 6-% yield, but when the amount of the enzyme was 
higher the dimeric products disappeared and the yield of DHP was 28-%. 
Laccase from Pycnoporus coccineus produces after 72 hrs only DHP in 96-% 
yield. The reaction using HRP (ZT method) was much faster and produced 
depending on the amount of oxidant, mainly dimeric products: 8�17-% β-β,  
7�17-% β-5 and 4�16-% β-O-4, or DHP in 35�56-% yield when a larger amount 
of hydrogen peroxide and longer reaction times were used. 

A good example of the effect of reaction conditions and matrix is a study of the 
effect of reaction media concentration on the solubility and the chemical 
structure of lignin model compounds (DHP). [175] The end-wise polymerization 
(Zutropfverfahren; ZT) method was used to prepare DHPs with or without 
arabinoxylan. The amount of β-O-4 type linkages and the molecular weight 
(MW) of DHP clearly increased in the arabinoxylan media. [176] Organic water-
miscible solvents are observed to have a clear effect on the molecular weight and 
yields of phenolic polymers. For example, when the amount of acetone was 
increased to 30-%, the yield of polyquaiacol increased to 64-% (from 33-% in 
water) and molecular weight increased slightly from 1190 to 1260, but the MW 
was even higher in 50-% aq. acetone, 1690 g/mol. [177] 
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3. Aim of the present study 

The aim of this study: 

• to determine the effect of the structure of monolignol, i.e., the 
substitution pattern in the aromatic ring and the structure of the propenyl 
chain, on the regioselectivity in the oxidative coupling reaction 

• to determine the effect of reaction conditions, i.e., solvent and pH, on 
the regioselectivity in the oxidative coupling reaction 

• to determine the effect of catalysts. Four different peroxidases were 
tested as well as some inorganic oxidation systems. 

• to determine the effect of chiral auxiliarities on stereoselectivity in the 
oxidative coupling reaction. 

• to synthesize some enterolignans and lignans in preparative scale and to 
resolve the pure enantiomers by using preparative liquid and/or 
cryogenic chiral chromatography. 
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4. Results and discussion 

4.1 Effects of the structure of monolignols and reaction 
conditions on regioselectivity in the oxidative coupling 

reaction of phenols (Papers I, II and III) 

Four different kinds of monolignols were studied in the dehydrodimerization of 
two similar monolignols (homodimerization): isoeugenol IEG (1), methyl 
ferulate MeFA (2), coniferyl alcohol CAL (3), and methyl sinapate MeSA (15). 
The aromatic rings of the first three monolignols have similar structures where 
the C-5 atom does not have a methoxy substituent and this position is free to 
react in the oxidative coupling yielding β-5 (or 5-5 or 5-O-4�) dimers. This 
position in methyl sinapate (15) is blocked by a methoxy substituent (Figures 17 
and 18). 

CH3

OH
OCH3

COOCH3

OH
OCH3

CH2OH

OH
OCH3

COOCH3

OH
OCH3H3CO

(1) (2) (3) (15)  

Figure 17. Four monolignols with different kinds of substitutients in the aromatic 
rings and in the propenyl chain were studied. 

The substituents at Cγ of the propenyl chain were chosen to present the common 
substituents in monolignols and to give a different inductive effect and in this 
way to change the ratio of possible coupling products. 

• The methyl substituent is an electron-releasing (+I) group yielding 
higher electron density to the β-position. 

• The carboxylic acid ester group such as -COOCH3 is an electron-attracting 
(-I) group thus increasing the acidity of the β-proton. This behaviour 
was very clearly seen when the structure of dehydrodiferulic acid and 
its esters were analysed from grass and in vitro experiments. [178] 
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• The methylene alcohol group -CH2OH is a weakly electron-attracting 
group. This group is involved in the three main monolignols in the 
biosynthetic process of lignin. Furthermore, this aliphatic primary 
hydroxyl group can react as a nucleophile in the intramolecular addition 
to a quinone methide intermediate yielding, for instance, resinols or 
furan-like structures. 

Therefore, it was assumed that these substituents at Cγ with different 
(stereo)electronic effects might yield clearly different ratios of coupling 
products and give useful experimental information concerning the mechanism 
and/or reaction controlling parameters pertaining to the oxidative coupling of 
phenoxy radicals forming the primary C-C or C-O bond at the Cγ position. The 
different kinds of substituents at Cγ of the monomers were supposed to affect 
the coupling reaction also according to Shigematsu et al. [42] After the 
oxidative coupling of phenoxy radicals, the formed quinone methide structures 
� β-β or β-5 through C-C bond, or β-O-4 through C-O bond � together with 
ordinary substituents at Cγ should have a different kind of inductive effect on 
the addition reaction of nucleophiles to quinone methide. 

The yields of β-5 and β-O-4 (α-OMe) dimers were measured as a function of pH 
and as a function of solvent content and type of solvent by using monolignols 1�3 
as starting materials. Other dimeric products � except pinoresinol (10) � were 
not determined, although, for example, β-O-4 (α-OH) dimer could be formed 
especially at pH 3�4. The reactions were first performed in a 10 mL total volume 
reaction mixture. The yields were determined by HPLC and synthesized model 
compounds were used as external standards. Some reactions were also performed 
in a preparative scale (ca. 1 g of starting material) and isolated yields were measured. 

Methyl sinapate (15) was used as a model compound when the dehydrodimerization 
of 3,5-dimethoxy substituted 4-hydroxycinnamics was studied. 

Mainly horseradish peroxidase (HRP) was used as a catalyst with hydrogen 
peroxide as an oxidant. The molar ratio of monolignol / oxidant was always 
1:0.5 because one H2O2 can generate two phenoxy radicals. Other oxidants or 
catalysts are mentioned later in the text (see p. 49 and 52). Other peroxidases 
were also studied. These results are presented and discussed in Section 4.3. 
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(1), (2), (3)
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(11)

(12) (13) (14)  

Figure 18. Isoeugenol, R = -CH3 (1) and its dimers (4 and 7); methyl ferulate, 
R = -COOCH3 (2) and its dimers (5 and 8); coniferyl alcohol, R = -CH2OH (3) 
and its dimers (6, 9 and 10); R� = -CH3 in the β-O-4 dimers 7, 8 and 9. The 
bonds formed primarily in the coupling reaction of phenoxy radicals are bolded 
and red. The bonds formed in the post-coupling reactions are bolded and black. 

The main products 4�10 identified and partly also quantified by HPLC (Paper I) 
are presented in Figure 18. Some other common dimeric structures (11�13) and 
β-O-4 dimers (7�9) with α-OH group (R� = OH) are mentioned according to the 
literature reviewed here. The dimeric spirodienone structure (14) from β-β 
coupling of methyl ferulate was identified tentatively from the experiments 
performed in water-methanol mixtures at pH 3�4 (see experimental data and 
discussion in Section 4.2). 
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4.1.1 Effect of pH and cosolvent on product distribution (Paper I) 

The effect of pH was measured at pH 3, 4, 6, and 7.4 in water-organic solvent 
mixtures with 10-% cosolvent. Methanol and dioxane were used as cosolvents. 

The yields of all of the β-5 dimers (4), (5), and (6) were clearly dependent on pH 
(see Figure 21). The highest yield of β-5 dimer with every monolignol seemed to 
be at pH 3�4 in water-methanol mixtures (10-% MeOH). The yields of β-O-4-α-OMe 
dimers were rather low. The more detailed results are presented and discussed 
below. 

Isoeugenol (1) as starting material 

The yield of the β-5 dimer (4) of IEG was high (64-%) in 10-% aq. methanol at 
pH 3 but decreased to 28-% at pH 7.4 (Paper I). A similar low yield, 19-% of the 
β-5 dimer (4), was also obtained elsewhere in 28-% aq. methanol at pH 6 
according to Krawczyk et al. [179] A high yield of (4) has been reported by 
Nascimento et al. [180], even as high as 99-% β-5 dimer of IEG in 10-% 
aqueous methanol at pH 3. The 64-% yield of β-5 dimer (+ 5-% of β-O-4-α-OMe) 
� published in Paper I � was obtained under the same conditions, but Nascimento 
et al. [180] used a higher concentration of isoeugenol as a starting material, i.e., 
20 mM of isoeugenol compared to 10 mM used in Paper I. One explanation for 
the difference between these results might be a rather poor solubility of the β-5 
dimer (4) of IEG into the solvent system used with a high content of water 
(90%). Under these conditions the β-5 dimer starts to precipitate and does not 
participate in the oxidative coupling reaction resulting in a higher yield of 
dimeric material(s). The yield of β-O-4 dimer-α-OMe (7) of isoeugenol was 
rather low at every pH: 5-% β-O-4 dimer at pH 3, 9-% at pH 4, 5-% at pH 6, and 
4-% at pH 7.4, all in 10-% aqueous methanol. The yield of β-5 dimer (4) was 
rather high at every pH, although the competition of water addition or other 
nucleophiles seemed to be possible, especially at higher pH values leading to 
different kinds of products. For example, the formation of furan-like products 
(13-%) have been obtained with isoeugenol as a starting material by Sarkanen 
and Wallis. [77] The results (Paper I) and some selected references are presented 
in Table 4. 
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The highest yield, ca. 80-% of β-5 dimer of IEG, was obtained in 10-% aq. 
dioxane at pH 4�6 where no methanol is present. This result indicates also that 
water does not compete so efficiently as a nucleophile and here the intramolecular 
nucleophilic attack of the phenolic hydroxyl group to the quinone methide can 
occur more efficiently (Paper I). The yields of 65-% β-5 and 22-% β-O-4-α-OH 
were obtained in 38-% aq. acetone by Sarkanen and Wallis [77] � only pure 
water was used without any pH adjustment. Very similar results were also published 
by Shiba et al. [78] when the experiments were performed in 50-% aq. acetone 
by using laccase as a catalyst. These observations indicate that the addition of 
water into the quinone methide intermediate has to be still rather efficient and 
also the formation of other structures is possible. The effect of solvent � type and 
concentration � seems to be even more important than the pH effect. 

The situation was different when dry organic solvents and inorganic oxidants 
were used. The yields of β-O-4 dimers were usually much higher. The rather 
stable quinone methide intermediate of a dilignol was first generated in a dry 
solvent by inorganic oxidants such as Ag2O or MnTPPX/oxidant-system. A 
suitable nucleophile was added after the first stage with an acid as a catalyst. For 
example, β-O-4-α-OMe dimer (7) was prepared in a 59-% yield by using Ag2O 
in dry dichloromethane after adding methanol with a small amount of TsOH 
(Paper I). Zanarotti et al. [76] prepared the β-O-4-α-OH dimer in a 62-% yield 
by using Ag2O in dry benzene after adding a water-THF-HCl mixture into the 
reaction mixture. Kuo et al. [181] used FeCl3 in aq. acetone and obtained 53-% 
β-5 dimer (4), the amount of β-O-4 dimer or other dimers were not determined. 
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Isoeugenol

β-O-4 dimer

β-5 dimer

90 % aq. MeOH, pH 3 10 % aq. MeOH, pH 3 10 % aq. MeOH, pH 
7.4

β-5 dimer

β-5 dimer

β-O-4 dimer

β-O-4 dimerIsoeugenol

β-O-4 dimer

β-5 dimer

90 % aq. MeOH, pH 3 10 % aq. MeOH, pH 3 10 % aq. MeOH, pH 
7.4

β-5 dimer

β-5 dimer

β-O-4 dimer

β-O-4 dimer

 
Figure 19. The effect of reaction conditions on the dimerization of isoeugenol 
illustrated by chromatograms (HPLC). The coupling reaction was very selective 
in 90-% aq. methanol at pH 3 where the two dimers formed in a yield of totally 
ca. 90-%. The erythro and treo isomers of β-O-4 dimer were determined to 
overlap in the same peak. 

The amount of oligomeric and other unknown products � the peaks after β-5 
dimer � increased when pH was increased up to 7.4. This can be seen clearly 
from the chromatograms in Figure 18. Similar behaviour was observed when 
apocynin (4-hydroxy-3-methoxyacetophenone) was oxidised by soybean 
peroxidase at different pHs by Antoniotti et al. [182] Trimeric and oligomeric 
products were favoured at pH 7 and much more at pH 8, and the yield of a 
dimeric product was highest (18-%) at pH 6. It is known also that under neutral 
conditions (pH 6.5) the predominant reactions are the additions of phenolic 
hydroxyl group to quinone methide intermediates to form benzyl non-cyclic aryl 
ethers both in aqueous and non-aqueouns solutions. [59�61] 

All of the previous results are published in Paper I and selected examples of the 
results in scientific literature are presented in Table 5 (p. 56). 

Methyl ferulate (2) as starting material 

The yield of the β-5 dimer (5) of methyl ferulate (MeFA) was very similar in 
10-% aq. methanol and dioxane, and it was dependent on the pH almost linearly 
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decreasing from ca. 50-% at pH 3 down to 10-% at pH 7.4. The β-O-4 dimer (8) 
of MeFA with similar structure compared to other β-O-4 dimers of IEG or CAL 
was not observed at all. This can be explained by the observation of Ralph et al. 
[178], i.e., when the quinone methide intermediate of β-O-4 dimer of diFA is 
formed, the acidic β-proton is eliminated very easily to form a conjugated 
structure instead of the nucleophilic attact of water or a phenol to the quinone 
methide α-carbon (see Figure 20). See also Table 6 (p. 57) with some results 
(Paper I) and selected references. 
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Figure 20. Elimination mechanism of the β-proton from a β-O-4 dimer of p-
hydroxycinnamic acid derivatives forming a double bond. [178] 
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Figure 21. The yield of β-5 and β-O-4 dimers of isoeugenol (1) and coniferyl 
alcohol (3), and β-5 dimer of methyl ferulate (2) measured as a function of pH in 
aqueous methanol and dioxane (10-% of cosolvent in citrate-phosphate buffer, 
0.02 M). β-O-4 of (2) was not observed. 
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Coniferyl alcohol (3) as starting material 

The yield of β-5 dimer (6) was rather low at every pH, i.e., ca. 11�17-% in 
MeOH, and even lower in dioxane (< 10-%) (see Table 6, p. 58). The yields of 
β-O-4 (-α-OMe) dimer (9) of coniferyl alcohol were 19, 16, 20, and 25-% at pHs 
3, 4, 6, and 7.4, respectively, and slightly increasing as a function of pH. A clear 
correlation between pH and the formation of β-O-4-(α-OMe) dimers was not 
observed. The nucleophilic addition of methanol to β-O-4 quinone methide 
intermediates of diCAL and also of diIEG seemed to be almost independent of 
pH. Competition with the other nucleophiles such as water at low pH and 
phenolic hydroxylic groups at neutral pH (6�7) should be always noticed. [57] 

The yields of ca. 17�25-% of β-5 dimer (6) of coniferyl alcohol (diCAL) were 
very similar at pH 3�4 to the ca. 24-% yields published by Syrjänen and Brunow 
[80] and Quideau et al. [79] (see Table 6). Even in glacial acetic acid the yield of 
β-5 dimer (6) was 22-%. [80] The results obtained at pH 7�7.5 were also 
comparable to other published results, i.e., yields were ca. 10�17-%. The yield of 
β-O-4-α-OMe (9) of diCAL was at the same level as the yields of β-O-4-α-OH 
dimer of coniferyl alcohol reported by other researchers. [47, 79, 80, 174] The 
yields of β-O-4-α-OMe diCAL (9) were always between 16�25-% of (9) in 
aqueous 10-% methanol at pH 3�7.4 (Paper I), and 3�18-% of β-O-4-α-OH of 
diCAL when 20�30-% aqueous acetone at pH 3�7.4 was used as the reaction 
medium. [79, 80, 174] The β-β or pinoresinol structure 10 was obtained in ca. 
10-% yield only in the dehydrodimerization of coniferyl alcohol and found to be 
nearly constant in all conditions. For example, in 90-% aqueous methanol (pH 3) 
its yield was 8�10-%. The yields of pinoresinol published so far have always 
been at the level of 5�18-% in aq. organic solvent systems with water miscible 
organic solvents. [54, 79, 80, 174] Therefore, in this study its yield was assumed 
to be ca. 10-% (Paper I) in all conditions and experiments. The total yields of 
measured dimers (6 + 9 + 10) of coniferyl alcohol were at the level 44-% (+/- 2) 
at every pH. The yields of the β-O-4-α-OH dimer or other possible dimeric 
products were not measured at different pHs. This may be one reason for the 
rather low yields. The dehydrodimerization of coniferyl alcohol appeared to be 
not so regioselective and dependent on pH as the dehydrodimerization of the two 
other monolignols. Another reason might be that in this case water and other 
nucleophiles may be much more competitive nucleophiles. [57] 
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Other catalysts and observations 

Some inorganic catalysts and oxidants were also tested (Paper I). Often these 
catalysts and oxidants cause other oxidation reactions not only the oxidative 
coupling reaction and the yield of wanted products decreases. [183] Even so, 
these catalytic systems can be used as biomimetic oxidant systems because many 
oxidoreductases and also peroxidases can catalyze other oxidation reactions. 
HRP immobilized on Celite was also tested as a catalyst in the similar manner as 
published by Pietikäinen et al. [184] The use of a dry organic solvent as the 
reaction medium and the use of other catalysts/oxidants may provide useful 
routes to prepare model compounds which are difficult to prepare by using 
enzymes in aqueous media (Paper I). [76, 80] 

4.1.2 Effect of organic cosolvents on the distribution 
of dimeric structures (Paper I) 

The yields of the dimers (4�6 and 7�9) at pH 3 were then measured as a function 
of cosolvent at levels of 10, 30, 50, 70, and 90-% (v/v). Preparative scale 
dimerizations were performed in selected reaction conditions to ensure the 
results obtained at the small scale experiments. 

The yields of the β-5 dimers (4) of isoeugenol and (5) of methyl ferulate first 
decreased to a local minimum and then began to rise as a function of the cosolvent 
content. HRP was rather stable even in 90-% aq. methanol because the yields 
still increased. HRP became inactive at higher than 70-% concentration of dioxane 
and no reaction was observed. The same effect has also been observed by 
Dordick et al. [185] The rate of the HRP-catalyzed oxidation of p-phenylphenol 
in 90-% aq. dioxane decreased to the value of 33 as compared to 308 (µmol/min 
mg enzyme) in 10 mM acetate buffer, pH 5. [185] Otherwise the yields were 
higher in dioxane than in methanol at the same concentration of the cosolvent. 
The reason was most likely that methanol was so effective as a nucleophile 
yielding a β-O-4-α-OMe dimer especially at higher methanol concentrations, 
and therefore decreased the yield of the β-5 dimers. When the amount of 
methanol was increased, the yields of β-O-4 dimers also increased. The yields of 
β-O-4-α-OMe dimers (7) and (9) increased almost linearly as a function of 
methanol content up to 21-% (7) and 42-% (9) of that dimer. Total yields of 
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dimers (4 + 7) were 88-% in 90-% aq. methanol, and the total yields of dimers 
(6 + 9 + 10) were 76-% at pH 3 in 70-% aqueous methanol assuming that the 
yield of pinoresinol was ca. 10-%. The very interesting observation was that the 
yields of β-5 dimers after a certain cosolvent content continued to increase 
despite the simultaneous increasing yields of β-O-4-α-OMe dimers! The yields 
of β-5 dimers also increased in aq. dioxane (see Figures 22 and 23). These 
results indicate that dehydrodimerization might be generally favoured by higher 
cosolvent contents as observed by Terashima and Atalla [54], too. The regioselectivity 
in the oxidative coupling reaction of phenols increased evidently due to higher 
cosolvent concentration and also at lower pH, and the dehydrodimerization may 
be performed with better regioselectivity yielding only two main products with 
some monolignols as starting materials. This is illustrated very clearly in Figure 
19 (p. 50) where HPLC chromatograms are shown of the reaction mixtures from 
the dehydrodimerization of IEG in 90-% aq. methanol at pH 3. Total yield of 
these two β-5 and β-O-4 dimers of IEG was approx. 90-%. Syrjänen et al. [80] 
performed the dehydrodimerization of coniferyl alcohol in glacial acetic acid and 
they obtained a 50-% yield of β-O-4-α-OAc. Acetic acid served as a nucleophile 
trapping effectively the quinone methide intermediate to a β-O-4 product. 
However, the β-5 dimer was also obtained at a 22-% yield! The reason for the 
very high regioselectivity is not clear but one explanation might be the changed 
enzyme-substrate interactions and/or the solvent effect on the transition states 
leading to different reaction products. [43, 101] 
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Figure 22. Yield of β-5 dimers of isoeugenol, IEG (1), methyl ferulate, MeFA 
(2), and coniferyl alcohol, CAL (3) as a function of solvent type and content in 
an aqueous citrate-phosphate buffer (0.02 M, pH 3). Methanol and dioxane were 
used as cosolvents. 
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Figure 23. Effect of methanol content in water (citrate-phosphate buffer, 0.02 M, 
pH 3) on the formation of β-5 and β-O-4-α-OMe dimers from isoeugenol, IEG 
(1) and coniferyl alcohol, CAL (3). 
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4.2 Formation of spirodienones by oxidative coupling 
of methyl sinapate (Papers II and III) 

The results reported in the previous sections have shown that methanol reacts 
very easily with quinone methide intermediates (Paper I). Therefore, methyl 
sinapate (15) was oxidazed using a HRP/H2O2 system in a methanol-buffer 
solution (0.02 M citrate-phosphate buffer, pH 4) with 30-% (v/v) methanol. The 
same reaction was performed in acetone-buffer solution (0.02 M, pH 4) with 20-
% acetone. The only difference was the type of solvent, but the result was 
surprisingly different. The reaction scheme and the results are presented in 
Figure 24. Neudorffer et al. [193] obtained very similar results using the 
electrochemical oxidative coupling of 3,5-disubstituted 4-hydroxycinnamic ester 
derivatives in dry acetonitrile followed by treatment with a 0.5 M citrate-
buffered aqueous solution of pH 6, and then by separation using silica gel 
chromatography. This technique yielded 20-% of a similar spirodienone product 
(19) as the spirodienone product (16) in the present study (Paper II). They used 
3,5-di-t-butyl substituted 4-hydroxycinnamic acid ester as the starting material 
similar to the 3,5-dimethoxy substituted methyl sinapate (15) used in this study 
(Paper II). When they used methyl sinapate (15) as the starting material they 
obtained exactly the same product (17), even with the same 42-% yield as 
compared to our 41-% yield. Very bulky t-butyl groups have been observed to 
reduce the reactivity of nucleophiles towards quinone methides [79], and this 
might be the reason for a different kind of spirodienone structure with a double 
bond in the five membered ring. The acidic β-proton is removed faster than the 
nucleophilic water attacks the quinone methide intermediate. Wallis et al. [194] 
obtained a tetralol-type of dimer (21) in 61-% yield when methyl sinapate was 
oxidized by ferric chloride in aq. acetone. Water was able to act as a better 
nucleophile because of rather acidic conditions. Spirodienone-like structures 
were not observed. 
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Yield of spirodienone dimer (16) was 49 %
(+ 14 % of dimer 18)
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yield 30 %
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Figure 24. Dimerization of 3,5-disubstituted 4-hydroxycinnamics to β-β coupling 
(red bonds) products: The black, bolded bonds have formed after the 
intramolecular attack of a nucleophile to the quinone methide intermediate forming 
either spirodienone or dihydronaphthalene structures, depending greatly on 
reaction conditions and substituents in the starting compound. R* = COOMe/Et 
or -CH3, R1 and/or R2 = -H, -OCH3 or -t-Bu. Green bonds illustrate the 
rearrangement and the difference between the products (17) and (18). 
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Zanarotti et al. [76] used 5-methoxy isoeugenol as a starting material in dry 
organic solvents and Ag2O as an oxidant. When they added a nucleophile after 
the formation of the quinone methide intermediate, β-O-4 dimers were obtained 
in rather good yields from 45 up to 95-% depending on the nature of the 
nucleophile used. Other dimeric products were not studied. Wallis et al. [81] 
obtained 56-% of the β-O-4 (α-OH) dimer of 5-methoxyisoeugenol, 2-% 
aryldihydronapthalene (18, R* = -CH3), and 9-% tetralol dimers (21, R* = -CH3) 
using 55-% aqueous acetone and FeCl3 as an oxidant. 

The spirodienone structure (R2 = -H) similar to the compound (16) presented in 
Figure 20 was obtained tentatively by the oxidative dimerization of methyl 
ferulate (2) when performed in aq. methanol at pH 3 at a 16-% yield. See 
experimental data in Section 6.1. 

4.3 Effect of catalysts (previously unpublished results) 

Some results not previously published will be presented here. Different kinds of 
peroxidases or other oxidoreductases or inorganic single-electron oxidants can 
be used to generate phenoxy radicals. In this study four peroxidases � horseradish 
peroxidase (HRP), manganese-dependent peroxidase (MnP), lactoperoxidase 
(LPO) and lignin peroxidase (LiP) � were tested. Silver (I) oxide and 
tetraphenylporhyrinatomanganese(III) [(Mn(III)TPP] acetate or chloride were 
also used as oxidant systems, and iodosylbenzene or hydrogen peroxide were 
used as oxidants with Mn(III)TPP, but those results are presented and discussed 
in Section 4.1.1. 
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Figure 25. Effect of four peroxidases on the yield of β-5 dimer (5) of methyl 
ferulate were tested. The conversions were always 100% when the reaction was 
catalyzed by LPO and HRP.  

The yield of the β-5 dimer (5) of methyl ferulate was almost the same and ca. 
30�40-% in 10-% aq. methanol at pH 3 when LiP, LPO, or HRP were used as 
catalysts. The yield of dimer (5) seemed to be rather independent of the kind of 
catalyst used at pH 3 with the exception of MnP. The yield of β-5 dimer 
decreased as a function of increasing pH with LiP and HRP, but it was rather 
constant in the pH range of 3�6 with LPO. This may be due to the structure of 
the active centre of lactoperoxidase. The heme pocket of LPO has been reported 
to be more constrained than that of HRP [195], and the coupling of two 
phenoxyradicals may not be affected so much by the pH of a reaction medium. 
The yield of dimer (5) increased up to 28-% at pH 5 with MnP. MnP was not so 
efficient and its activity seemed to be lowest at pH 3 where the conversion was 
also low, i.e. only 36-%. The highest conversion 54-% was obtained at pH 5 
with Mn-dependent peroxidase. So this enzyme may have a local activity 
optimum around pH 5 for the dehydrodimerization reaction to β-5-type dimer of 
methyl ferulate. LiP seemed to have a pH optimum around pH 4 where the 
conversion was 94-%. At other pH values the conversion was always lower and 
decreased quite fast to 43-% at pH 6. The conversions were always 100-% when 
the reaction was catalyzed by LPO and HRP. These results presented in Figure 
25 show that the pH effect is not only a result of the common pH of the reaction  
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media but also the enzyme might play a very important role as a controlling 
substance in the oxidative coupling of two phenoxy radicals. This phenomenon 
has also been observed elsewhere. 

The rate constant of LPO has been reported to be much less affected by organic 
solvents than that of HRP. [196] LPO has a comparatively compact heme pocket 
which may be the reason for its different behaviour. [195] This was observed in 
this work also when lactoperoxidase was used as a catalyst in 10-% aq. methanol 
at pH 6. The yield of β-5 dimer was still 37% while it was only 29-% when HRP 
was used in the same conditions. The yield of β-5 dimer (5) decreased from 39% 
at pH 3 to 29% at pH 6 when HRP was used as a catalyst. 

4.4 Cross-coupling studies (Paper V) 

When two different monolignols react in the oxidative coupling reaction 
(dehydrodimerization), the so-called cross-coupling reaction will occur. Two 
starting materials were choosen for these experiments: methyl sinapate MeSA 
(15) and 1-(4-hydroxy-3,5-dimethoxyphenyl)ethanol (23). Methyl sinapate and 
the compound (23) do not form any β-5, 5-5�, or 5-O-4� coupling products 
together or independently. MeSA can only react in the β-position or also 
theoretically in the 1-position of the aromatic ring but the β-position is favored 
leading to β-β or β-O-4 products. 1-(4-hydroxy-3,5-dimethoxyphenyl)ethanol 
can react in the 1-position with the 1-hydroxyethyl substituent, or it can form the 
β-O-4 coupling product with methyl sinapate. 

The reaction was performed in 30-% aq. acetone (0.02 M citrate-phosphate 
buffer, pH 3.5) by using HRP as a catalyst and H2O2 as an oxidant. Equimolar 
amounts of compounds (15) and (23) were reacted yielding two dimers identified 
after acetylation and separation using preparative liquid chromatography. The 
reaction scheme is presented in Figure 26. The dimer (24) with a spirodienone 
structure (β-1/α-O-α) was obtained in a rather good 19-% yield considering that 
50-% of the starting material (23) did not react. The aryltetralin dimer (18) was 
obtained only in ca. 4-% yield. 
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Figure 26. Cross-coupling of methyl sinapate (15) and 1-(3,5-dimethoxy-4-
hydroxyphenyl)ethanol (23) yielding 19-% of the dimer (24) with a spirodienone 
structure and a small amount (4-%) of the dimer (18) from the coupling of two 
methyl sinapate radicals. 
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Figure 27. Spirodienone lignan woorenol (25) was extracted from the rhizomes 
of Coptis japonica [197], and pinobatol (26) from pine bark (Pinus sylvestris L.). 
[18] The spirodienone skeleton (24) (red coloured) (R3 =-- OCH3, R2 = -OH and 
R = -COOCH3) was synthesized (Paper V). 

The spirodienone product (24) obtained here is the first synthetic spirodienone 
model compound formed by the so-called β-1 cross-coupling reaction (Paper V). 
[57] This finding together with other similar natural compounds found in plants 
such as woorenol (25) [197] and pinobatol (26) [18] (see Figure 27) which have 
the same kind of spirodienone structure, and with the earlier observations from 
wood analyses, these offer a new possible explanation and/or pathway to the 
existence of the β-1 structural units of lignins. The abundance of the β-1 structure 
has been estimated to range from 1-% to 15-% in spruce lignin. [198�200] The 
β-1 structures were earlier characterized mainly as 1,2-diarylpropane-1,3-diols 
(see compound 28 in Figure 28) obtained after either mild acidic hydrolysis of 
wood (spruce and beech) in dioxane-water [201, 202], or after acid hydrolysis 
[203], and according to the results from thioacidolysis/Raney-Ni degradative 
analysis [204], and from the DFRC method. [205] However, NMR spectroscopic 
observations have indicated that the 1,2-diarylpropane structure is only a minor 
component in lignin [146, 198, 206, 207], as also the ozonation study results 
have shown. [199] After those findings, the spirodienone structure has been 
proposed as a logical intermediate formed through a β-1 cross-coupling 
mechanism during lignin (bio)synthesis. [24, 148, 208, 209] The spirodienone 
structure has been observed as one of the important structures present in spruce 
and aspen lignins, with an abundance as high as 1.5�3-% in spruce lignin and 
about 1.8-% in aspen lignin. [210] 
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Spirodienone structures have also been observed to exist in the lignins of other 
plants such as kiwi, pear, and rhubarb. [134] These observations also indicate 
that the spirodinenone structure might be a fundamental structural unit in the 
lignins in all kinds of plants (see Table 7). 

Table 7. Relative amounts of structural units in some fruit lignins. guaiacyl (G); 
syringyl (S); β-O-4 aryl ethers; phenylcoumaran (β-5); β-β units; dibenzodioxocin 
(DiB); spirodienones (Sp) and �traditional� β-1 units (F); and others are cinnamyl 
alcohol and arylglycerol end groups. The amounts of these structural units in 
acetylated mill wood lignin samples have been determined by NMR. [134] 

Sample %G %S % β-O-4 % β-5 % β-β % DiB % Sp+F % Others 

Pear 45,1 54,9 77,9 4,5 10,6 2,1 2,3 2,6 

Kiwi 93,6 6,4 68,3 12,0 3,9 8,2 2,6 4,9 

Rhubarb 3,6 96,4 93,0 - 5,8 - 1,3 - 

 

Two possible mechanisms for the formation of isochroman structures (27) or β-1 
structures (28, 1,2-diarylpropane-1,3-diols, R = -CH2OH) from cyclohexadienone 
spiro compounds like the dimer (24) are presented in Figure 28. The synthesized 
spirodienone (Paper V) has a similar structure characterized in lignins. 
[209, 210] The traditional β-1 coupling reaction was also performed by using 
mild acidic hydrolysis in methanol to give the compound (27, R = -CH2OH, 
R2 = -OH, R3 = -OCH3) and acetaldehyde (not measured), Paper V. An alternative 
pathway to isochroman structures are suggested also to be possible by Ralph et 
al. [208] and Peng et al. [211] 
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Figure 28. Two possible mechanisms for the formation of isochroman structures 
(27) or β-1 structures (28, 1,2-diarylpropane-1,3-diols, R = -CH2OH) from 
cyclohexadienone spiro compounds like the dimer (24) synthetized here (Paper V) 
or similar structures characterized in lignins. [209, 210] 

The proposed mechanism of transformation of the spirodienone structure (24) to 
isochroman (27) [211], and the very similar formation of the product (17) from 
the spirodienone dimer (16) is presented in Figure 29 (see Paper II). The C-C 
bond between the C-atom in the tetrahydrofuran ring and spiro carbon proposed 
to migrate via a �methoxymethyl cation� is very similar to that suggested for the 
formation of the aryltetralin structure (17) from the spirodienone dimer (16) of 
methyl sinapate. The migrating carbon in this so-called spirodienone-phenol 
rearrangement was able to carry a positive charge because of the resonance-
stabilisation of the methoxy or alkoxymethylene group. [212, 213] 
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4.5 Preparation of enantiopure lignans (Papers IV and VI) 

Natural lignans often exist in enantiopure forms. In order to determine which of 
the lignan enantiomers is bioactive and which may be, for example, a potential 
pharmaceutical pure enantiomers are often needed. Optically active, pure 
enantiomers of lignans and monolignols can be isolated and purified from plant 
material [125] or prepared by using enantioselective synthesis (Paper IV). [214] 
Pure enantiomers can be obtained by kinetic resolution [124], or by chiral 
resolution, for example, using chiral liquid [125] or supercritical cryogenic 
chromatography (Paper VI). 

4.5.1 Stereoselective synthesis of enantiopure lignans and lignin 
model compounds (Paper IV) 

Asymmetric synthesis is a powerful method for the preparation of enantiopure 
lignans and many synthetic strategies have been proposed and published. Chiral 
auxiliary substituents in starting compounds are used in all these methods to 
induce enantioselectivity. These synthetic methods need several steps and rather 
�hard� chemistry and reagents, and the overall yields after many steps are often 
only reasonable. The stereoselective synthesis of neolignans has been reviewed, 
for example, by Sefkow [214] and Ward. [112, 215] 

More green and environmentally sustainable biomimetic methodologies have 
also been published recently. Boguchi et al. [216] were the first to perform the 
oxidative coupling of phenols in an stereoselective manner by using a methyl 
(R)-mandelyl substituent as a chiral auxiliary in sinapic acid. They used FeCl3 as 
an oxidant in 2:1 organic solvent-water mixtures and THF, AcOH, IPA, CH3CN, 
or acetone as cosolvents. They obtained 53-% yield of the major 1,2-trans 
diastereomer and 23-% of the minor 1,2-trans diastereomer, and also 8-% of the 
1,2-cis diastereomer in acetone-water at 25 oC when the reaction time was 
30 min. The total yield of aryltetralin-like structures was 84-%. They observed 
also that the reaction seemed to be much slower and not so diastereoselective in 
THF-water as in the other solvent systems. 

The first biomimetic enantioselective oxidative coupling of monolignols using 
HRP/H2O2 catalyst/oxidant system in the coupling of a ferulic acid amide having 
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a ethyl (S)-alanine as a chiral auxialiary substituent was published in 1998 
(Paper IV), (see Figure 30). The β-5 dimer of ferulic acid amide (29) was 
obtained in 70-% yield. The diastereomeric excess was observed to be 65-%. The 
main diastereomer (30) was reduced to optically pure dehydrodiconiferyl alcohol (31) 
using LiBH4. This compound was shown to have the 2S,3R-configuration by 
chiral chromatography, by authentic specimens of both enantiomers, and by the 
results and analytical methods published elsewhere. [217] This biomimetic 
synthetic procedure was used later in several studies yielding similar results by 
using other chiral auxiliary substituents presented in Table 8. The highest enantiomeric 
excess of a β-5 dimer, up to 84-%, was obtained when a very bulky chiral 
auxiliary substituent, Oppolzer�s (+)-2,10-camphor sultam, was used. The result 
was in practice independent of the oxidant or solvent system used. The 
temperature in a range from -25 to +25 oC was not observed to have any 
remarkable effect on the enantioselectivity. [218] 

 

Figure 30. Enantioselective synthesis of dehydrodiconiferyl alcohol (31) using 
ethyl-(S)-alaninate (29) as a chiral auxiliary substituent (Paper IV). The 
absolute configuration of (31) was determined by chiral chromatography 
according to the method of Hirai et al. [217] 

These results show that the enantioselective oxidative coupling of monolignols 
is possible using starting materials, monolignols, with chiral auxiliary 
substituents. The role of peroxidase was not discussed in the articles reviewed in 
Table 8. It is still possible that even HRP itself can also have some kind of role 
in the stereocontrol of dehydrodimerization of monolignols with chiral 
auxialiary substituents. It has been shown that HRP can, for example, catalyze 
sulfoxidation in an enantioselective manner. Enantiomeric excess was up to 
68-%. [111] Biomimetic syntheses of some benzodioxane lignans from caffeic 
acid using HRP have been reported to be slightly enantioselective. [219] These 
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observations might indicate that also HRP may have some kind of control or role 
in the enantioselectivity obtained in the oxidative coupling reaction of 
monolignols with chiral auxiliary substituents. [111, 219] 

Table 8. Enantioselectivities in some selected biomimetic oxidative coupling reactions 
of monolignols with chiral auxiliary substituents. E = enzyme, O = oxidant. 

E/O Solvent system Chiral auxiliary substitient Yield (%) e.e. (%) Ref. 

HRP 30-% aq. dioxane, 
pH 3 

Methyl (S)-alaninate 70 65 Paper V 

FeCl3 67-% aq. acetone Methyl (R)-mandelyl  76 67 [216] 

HRP 75-% aq. dioxane, 
pH 3.5 

(S or R)-2-benzyloxazolidinone 40�50 21 [110, 218] 

Ag2O CH2Cl2 (S or R)-2-benzyloxazolidinone  40�50 18�20 [110, 218] 

HRP 75-% aq. acetone, 
pH 3 

(S or R)-2-phenyloxazolidinone 40�50 59�62 [110, 218] 

Ag2O CH2Cl2 (S or R)-2-phenyloxazolidinone 40�50 53 [110, 218] 

HRP  75-% aq. acetone, 
pH 3.5 

(+)-2,10-camphor sultam 40�50 81 [218] 

Ag2O CH2Cl2 (+)-2,10-camphor sultam 40�50 80�84 [218] 

HRP 30-% aq. dioxane, 
pH 3.5 

Ethyl (S)-alaninate 70 65 [220] 

HRP 30-% aq. dioxane, 
pH 3.5 

(+)-2,10-camphor sultam 40 81 [220] 

Ag2O CH2Cl2  (- 20 oC) (+)-2,10-camphor sultam 40 80 [220] 

Ag2O CH2Cl2 (+ 25 oC) (+)-2,10-camphor sultam 35 84 [220] 

HRP 75-% aq. dioxane, 
pH 4 

(S)-phenylalanine ethyl ester 60 50 [121] 

HRP  75-% aq. dioxane, 
pH 4 

(S)-methylbenzylamine 50 40 [121] 

HRP 75-% aq. dioxane, 
pH 4 

(S)-2-phenyloxazolidinone 40 70 [121] 
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4.5.2 Preparative chiral chromatography as a potential method for 
obtaining enantiopure lignans and dilignols (Paper VI) 

Several natural and synthesized lignans such as the methyl ester of dehydrodiferulic 
acid (diFA) and 3�,4-di-O-methylcedrusin have been purified using chiral liquid 
chromatography as reported by Lemière et al. [125] They used several chiral 
columns such as a Chiralcel OD column for which they determined separation 
factors of 1.05 with EtOH/hexane (1:1) and 1.05 with 100-% ethanol as eluents. 
The best separation factor was obtained using Chiralcel OJ column (α = 1.26) 
with ethanol as eluent. The separation was performed in a preparative scale (2.1 
g sample/2 kg chiral phase). 

In this work (Paper VI) the method was tested for the chiral purification of diFA 
methyl ester using semipreparative column (10 x 250 mm) with 10 g chiral 
phase (Daicel Chiralcel OD) and hexane�2-propanol as the eluent (see Chapter 
6, experimental). The best results were obtained using hexane�2-propanol in a 
40:60 mixture with a flow rate of 0.5 ml/min and loading 0.325 g sample/kg 
phase with 0.05 ml injection volume. This was a similar loading of a monolignol 
as published earlier by Lemiere et al. [125] for the chiral separation of the same 
compound, the methyl ester of diFA (5, Figure 18, p. 47). The calculated productivity 
was 33 g/kg of phase per day with the separation factor 1.17 (resolution was 0.7) 
according to the results published in Paper VI. Therefore, the productivity with 
this size of a column would have been ca. 0.16 g of each enantiomer per day. 

Wolf and Pirkle [221] have observed that low temperatures generally favour 
enantiomeric selectivity in syntheses as well as in separations. A new, promising 
and more powerful method for the chiral resolution of racemic mixtures for 
preparative scale production of lignans was developed by using pressurized/ 
supercritical carbon dioxide with a cosolvent such as ethanol or methanol at 
cryogenic temperatures (Paper VI). The method was used successfully for chiral 
separation of some interesting molecules such as the β-5 dimer (5) of methyl 
ferulate and enterolactone (33, Figure 32). A systematic approach was presented 
to find the optimum conditions for maximum throughput. Two chromatography 
columns were screened: Chiralcel OD CSP and Kromasil CHI-TBB using analytical 
scale columns (4.6 x 250 mm). The typical chromatograms are presented in 
Figure 31 with these columns under three different chromatographical conditions. 
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Figure 31. Chiral separation of the β-5 dimer (5) of methyl ferulate using two 
different chiral phases and columns under three different chromatographic conditions 
A (+25 oC), B (+0 oC), C (�30 oC) with mobile phase CO2/EtOH 20-% and with 
the column Chiralcel OD CSP, and D (+25 oC), E (+0 oC), and F (�25 oC) with 
mobile phase CO2/EtOH 3-% and with the column CHI-TBB. 

With the optimization procedure presented in Paper VI it was possible to 
produce even 4.2 g of each pure enantiomer of the β-5 dimer (5) of methyl 
ferulate by using a semi-preparative size column (10 x 250 cm) of Chiralcel OD 
with the measured optimum productivity of 840 g/kg of phase/day. This is 25 
times more than by using chiral liquid chromatography at room temperature. 

(+/-)-Enterolactone was prepared in a 100 gram scale by using a four step 
synthetic route with an overall yield of 56-% [117, 118, 222, 223], see Figure 32. 
An efficient preparative liquid chromatographical method was developed and 
used successfully for the purification of enterolactone as well as its synthetic 
precursors and intermediates (see Figure 33). (+/-)-Enterolactone was resolved 
to pure enantiomers by using preparative supercritical fluid chromatography. 
This method was very efficient, productive, and fast. 

The racemic mixture of enterolactone can be used, for instance, for bioactivity 
studies as those published elsewhere. [224, 225] The pure enantiomers of 
enterolactone were separated using the same methodology as presented in the 
case of dehydrodiferulate (5) with the Chiralcel OD column. 128 mg of (-)-
enterolactone (peak A) and 118 mg of (+)-enterolactone (peak B) were prepared 
rather easily (see Figure 34). 
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Figure 32. Synthesis scheme for the preparation of racemic enterolactone (see 
Chapter 6, Experimental) 

Product
(31)

 
Figure 33. Typical chromatogram showing preparative separation of the 
product from unreacted starting materials and by-products in the purification of 
diphenylthioacetal of di-O-methyl enterolactone (31). Ca. 40 g of a crude 
product mixture was dissolved into a suitable amount of ethyl acetate and 
loaded into a 70 x 460 mm Büchi glass column filled with flash silica gel. The 
last peak was the product (31). 
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Figure 34. Chromatogram showing the chiral separation of (+)- and (-)-enterolactone 
using preparative chiral SFC (Chiracel OD 10 x 250). 5�10 mg of enterolactone 
was injected as 100 mg/mL acetone solutions. The first peak (A, RT = 16 min) 
was determined to be (-)-enterolactone and the peak (B, RT = 19 min) was (+)-
enterolactone (see experimental part, Chapter 6). 

These results show that cryogenic chiral chromatography may be a valuable 
method for purifying lignans as enantiomerically pure compounds at a 
preparative scale. 
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5. Conclusions 

The results of this thesis show that the regio- and stereoselectivity of the 
oxidative coupling reaction of phenols are equally dependent both on 
stereoelectronic effects of the structures of starting materials and very much on 
the reaction conditions where the most important parameters are: 1) the catalyst 
and oxidant used and their concentrations in the reaction media, 2) the solvent 
system which can be water mixed with water miscible organic solvents or a 
hydrophobic (dry) organic solvent; 3) the pH of the reaction media, and 4) the 
concentration and type of nucleophilic species in the reaction media. 

The reactions of the three 3-methoxy-4-hydroxycinnamics with different kinds 
of substitution at Cγ gave very different results. This shows that the 
stereoelectronic effects are important in the coupling reaction of phenoxy 
radicals to yield the primary coupling structures and the basis for the ratio of 
dimeric structures. Isoeugenol with an electron-releasing substituent -CH3 gave a 
β-5 dimer at high yield and together with β-O-4-α-OCH3 product even in 88-% 
yield in 90-% aq. methanol at pH 3. Methyl ferulate gave also a β-5 dimer in a 
rather high yield of up to 50-% in the same conditions. Coniferyl alcohol gave 
three main dimeric products in 75-% total yield in 70-% aq. methanol at pH 3, 
where methanol as a rather good nucleophile produced β-O-4-OCH3 dimers even 
in 45-% yield. 

Methyl sinapate was also dimerized in aq. methanol to determine the effect of 
methanol. Surprisingly a new kind of spirodienone structure was obtained 
whereas the aryltetralin structure was the main product in aq. acetone. 

The spirodienone dimer was also obtained in a 19-% yield when a so-called 
cross-coupling reaction was performed with methyl sinapate and 1-(4-hydroxy-
3,5-dimethoxyphenyl)ethanol. After this study was published, similar spirodienone 
structures have been found to exist commonly in many wood species and other 
plants, also. The spirodienone structures and their reactions leading to other 
structures in lignans and lignins seem to be rather common in nature. 

The effect of catalysts such as different peroxidases and also inorganic catalysts 
were also studied. The results show that the peroxidases, more than the other 
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catalysts used, may have an important effect on the regioselectivity of the 
oxidative coupling reaction in the same manner as observed and published by 
several other research groups elsewhere. 

The formation of the primary bond in the oxidative coupling of two phenoxy 
radicals forms the basis for the ratio of different possible dimeric structures. The 
stereoelectronic effects due to the structural differences in the monolignols are 
the most important factors, but the results show that the reaction medium also 
has a great influence on this ratio. The basic reason is not clear but one 
explanation may be the effect of reaction parameters such as pH and organic 
cosolvents on the substrate-enzyme interactions. 

The results of the addition reactions of suitable nucleophiles were clearly 
dependent both on the stereoelectronic effects of the structure of the quinone 
methide intermediate, on the nucleophiles and their concentrations in the 
reaction medium, and on the other reaction parameters such as pH and solvent 
system. The other reaction steps following this step yielded many kinds of stable 
structures and end-products which were also dependent on the structure of this 
intermediate and on the reaction conditions. Methanol was found to react readily 
as a nucleophile with quinone methide intermediates. 

For the purpose of exploring the possibilities to synthesize enantiopure lignans 
and lignin model compounds a stereoselective oxidative coupling reaction was 
also performed using a phenolic substrate with a chiral auxiliary substituent. The 
reaction proceeded in good yield and stereoselectivity. Another good method for 
obtaining enantiopure lignans was chiral chromatography, especially in 
cryogenic conditions with a carbon dioxide-methanol mixture as eluent. This 
chiral resolution method was validated for preparative resolution of racemic 
mixtures of dilignols and lignans. 
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6. Experimental 

6.1 Synthesis of a spirodienone dimer of methyl ferulate 

5.2 g (25.1 mmol) of methyl ferulate (2) was dimerized by using 100 mg of HRP 
(Sigma 250 U/mg) dissolved in 10 ml water and 12.6 mmol of H2O2 as an 
oxidant. Methyl ferulate was dissolved into 85 ml methanol and 125 ml buffered 
water solution was added (pH 3.5, 0.02 M citrate-phosphate buffer). HRP was 
added and followed by the addition of 16 ml H2O2 in 10 min into the reaction 
mixture. The reaction mixture was stirred for 2 hrs. The reaction mixture was 
filtered through 0.45 µm membrane filter. The solvents were evaporated to 
dryness. The reaction mixture was acetylated using an acetic anhydride-pyridine 
mixture (1:1) overnight at rt. The dimers were separated using a silica column 
and hexane-ethyl acetate as eluent. The yield of β-5 dimer was 43-% and the 
yield of the spirodienone dimer of methyl ferulate was tentatively 16-%. The 
1H-NMR spectra and the tentative signal assignments are presented in Table 9. A 
200 MHz Varian NMR spectrometer was used. The solvent was CDCl3. The 
spectrum is shown in Figure 35. 

The peaks are assigned tentatively by comparing to the 1H-NMR of spirodienone 
dimers of methyl sinapate (16), which are labelled to be the dimers 3a and 3b in 
Paper II. The peaks of the dimer 3a from the five membered spiro ring were 
closer to the peaks of this possible spirodienone dimer of methyl ferulate. 
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Table 9. The 1H-NMR (200 Mhz, CHcl3) spectral parameters and the tentative 
signal assignments of the synthesized spirodienone dimer of methyl ferulate. 

Assignment δH (ppm) mult. protons J (Hz) (*) 

4�-OCOCH3 2,27 s 3 no 

4-OCH3 3,37 s 3 no 

7-OCH3 3,53 s 3 no 

3-CH 3,53 dd 1 10,7 and 6,4  

3-COOCH3 3,65 s 3 no 

3�-OCH3 3,74 s 3 no 

2-COOCH3 3,83 s 3 no 

1,2 or 4-CH 3,87 m 1 nd 

1,2 or 4-CH 3,96 m 1 nd 

1,2 or 4-CH 4.03 m 1 nd 

6-CH 5,66 d 1 2,6 

9-CH 6,33 d 1 10,2 

2�-CH 6,67 d 1 1,9 

6�-CH 6,72 dd 1 2,0 and 8,2 

5�-CH 6,89 d 1 8,1 

10-CH 7,19 dd 1 2,6 and 10,3 

(*) The couplig constants were determined by a first order interpretation and are approximate. 
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Figure 35. The 1H-NMR spectrum of the supposed spirodienone dimer of methyl 
ferulate. 

 

6.2 Dehydrodimerization experiments in dioxane 

The small scale screening experiments were described in Paper I. 
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6.3 Dehydrodimerization of methyl ferulate using four 
different peroxidases 

Lignin peroxidase (LiP) was obtained from the University of Helsinki (LiP was 
isolated from Phlebia radiata, reported activity 42 nkat/ml by NADH/veratryl 
alcohol method, solution in 0.1 M acetate buffer, pH 5). [226] Manganase-
dependent peroxidase (MnP) was from VTT (reported activity 320 nkat/ml by 
NADH method/verartryl alcohol method, solution in 0.025 M succinate-lactate 
buffer, pH 4). Lactoperoxidase (LPO) was from Sigma (L2005, 80 U/mg, 
powder) and horseradish peroxidase (HRP) from Serva (31943, 250 U/mg, 
lyophilized salt-free powder). Before use, the activities of the used enzymes LiP, 
MnP, LPO, and HRP were determined by the purpurogallin method where the 
formation of oxidation product was measured by a UV-VIS spectrometer at 
wavelength 420 nm. [227] The activities were determined in 10-% aq. methanol, 
0.1 M citrate-phospate buffer with pH 3�6. Total volume of the reaction mixture 
was 2 ml. 5 µmol methyl ferulate in 0.2 ml MeOH was added into 1.3 or 1.7 ml 
of a buffer solution. 0.1 or 0.5 ml (ca. 1 U measured by the pyrogallol method) 
of the enzyme was added. The reaction was started by adding 30 µl (2.5 µmmol) 
H2O2. The yield of β-5 dimers and conversions of the reaction were measured as 
described in Paper I by HPLC and using synthetized β-5 dimers as external 
standards. The results and some reaction parameters are shown in Table 10. 

Table 10. The reaction conditions with four peroxidases, yields and conversions. 

Peroxidase Enzyme 
solution 

Buffer 
solution 

pH 3e 
yield (co) 

pH 4e 
yield (co) 

pH 5e 
yield (co) 

pH 6e 
yield (co) 

 (ml) (ml) (%) (%) (%) (%) 
MnPa 0,5 1,3 18 (36) 24 (47) 28 (52) 22 (42) 

LiPb 0,1 1,7 34 (83) 39 (94) 35 (71) 20 (43) 

LPOc 0,1 1.7 36 (100) 38 (100) 40 (100) 37 (100) 

HRPd 0,1 1.7 39 (100) 34 (100) 32 (100) 29 (100) 

a) in 0.025 M buffer, pH 4, the concentration of MnSO4 in the added citrate-buffer 
solution was adjusted to 1 mM; b) in 0.1 M sodium acetate buffer, pH 5; c) dissolved 
in 0.01 M citrate-phosphate buffer, pH 6; d) dissolved in 0.005 M citrate-buffer, pH 
6. e) The pH values of mixed solutions were not corrected. The pH value of added 
buffer solution was used. (co) = conversion %. 
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6.4 Synthesis of enterolactone and purification of its 
enantiomers by chiral resolution 

Synthesis of enterolactone (33, Figure 32, p. 74) 

Compound (30) was synthesized from 3-methoxybenzaldehyde and thiophenol 
with AlCl3 in dry dichloromethane as described by van Oeveren 1994 et al. [118] 
The crude product was purified by flash chromatography with hexane-ethyl 
acetate as the eluent yielding 89-% pure compound (30) (lit. [118] 81-%). The 
thioacetal of di-O-methyl enterolactone (31) was prepared from compound (30) 
by reaction with n-hexyllithium and 2-butenolide in THF (�78 oC), followed by 
in situ alkylation with 2-methoxybenzylbromide in the presence of HMPA. This 
is also called �tandem� addition. The synthesis was slightly modified from the 
method published by Pelter et al. [222] The yield was 75-% (lit. [222] 65-%) 
after a preparative liquid chromatographic purification step (see the chromatogram 
in Figure 34). Treatment of compound (31) with Raney-nickel in refluxing 
ethanol gave di-O-methyl enterolactone (32) in approx. quantitative yield. [223] 
Demethylation of compound (32) with boron tribromide in CH2Cl2 (�20 oC) 
provided enterolactone by using the procedure published by Bode et al. [117] 

The crude product was purified by preparative liquid chromatography to yield 
85-% enterolactone (33). See Figure 32. Enterolactone was also easilly reduced 
to enterodiol (34) using LiAlH4 in refluxing THF. Enterodiol was crystallised 
from an ethyl acetate � ethanol mixture yielding 98-% of the white product. 

Preparative liquid chromatography. The preparative HPLC with two preparative 
pumps (flow rate 0.1 to 300 ml/min), an injection pump (flow rate 0.1 to 10 ml/min), 
and UV-VIS detector controlled by the Shimadzu Class-VP automated software 
system were used as the chromatographic instrument. Büchi-685 glass columns 
(460 x 50 mm or 460 x 70 mm with pretreatment column) were used and self-
packed with flash silica gel 60 (particle size 0.040, see Figure 32, 0.063 mm) by 
the wet/slurry filling method. The maximum input pressure was 40 bar. The flow 
rate was usually from 7 up to 15 ml/min when using hexane � ethyl acetate as 
the eluent. The gradient elution was used to ensure optimal resolution. The 
amount of loaded sample was dependent on the resolution and solubility but it 
was usually 10 to 50 grams when using a glass column of 460 x 70 mm filled 
with ca. 1 kg of silica gel. Elution times varied from 5 to 10 hours per one 
separation or injection. Injection/loading of a sample was performed by using an 
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injection pump or a Rheodyne loop injector (50 ml). An example of the resolution 
and purification of diphenyl thioacetal of di-O-methyl enterolactone (31) is shown 
in Figure 33 (p. 74). 

Preparative supercritical fluid chromatography (SFC), (Figure 34, p. 75): 100 mg 
enterolactone was dissolved into 1 ml acetone. 10 mg (100 ml) enterolactone 
was injected into a Chiracel OD 10 x 250 (Chiral Technologies Inc) column. 
CO2 with 16-% methanol was used as eluent. Temperature was +22 oC. The 
productivity was ca. 100 mg of each pure enantiomer of enterolactone in a day. 
The loading was 1 g of (+/-)- enterolactone per 1 kg CSP (dotted line) or 0.5 g 
per 1 kg of chiral solid phase (CSP). The first peak (A, RT = 16 min) was 
determined to be (-)-enterolactone and the second peak (B, RT = 19 min) was 
(+)-enterolactone. Characterization of the separated fractions (A) and (B) was 
performed by comparing to an authentic reference sample � a pure enantiomer of 
(-)-enterolactone � at the Department of Organic Chemistry, Åbo Akademi 
University in the manner published earlier by Saarinen et al. [228] 
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Horse Radish Peroxidase-catalysed Oxidative Coupling of Methyl Sinapate 
to give Diastereoisomeric Spiro Dimers 

Harri Setala, Aarne Pajunen, llkka Kilpelainen and Gosta Brunow * 
Department of Chemistry, PO Box 6, SF-00014 University of Helsinki, Finland 

The oxidative coupling of methyl sinapate with H,O,/horse radish peroxidase at pH 4 in the 
presence of methanol gives dimeric spiro structures of a novel type. The crystal structures of two 
diastereoisomers have been determined. The coupling reaction shows some threo selectivity. 

Aryltetralins are an important group of natural lignans with 
a 1,2-dihydro- or tetrahydro-naphthalene skeleton. Many of 
these compounds have been observed to have biological and 
pharmacological effects. ' The oxidative coupling of phenols 
catalyzed by peroxidases is a very attractive method for 
preparing phenolic dimers of this type from phenolic cinna- 
mates. The advantages of the enzymatic method are mild 
reaction conditions and fast reaction rates. The use of 
peroxidases in a preparatively useful manner is limited by the 
low selectivity of the oxidative coupling and the complexity of 
the subsequent reactions. We have been investigating possible 
ways to enhance the selectivity of this reaction type, for 
example, by changing the pH or using organic c o - s ~ l v e n t s . ~ ~ ~  In 
this paper we report how the addition of methanol changes the 
course of the oxidative dimerization of (E)-methyl sinapate 
giving two diastereoisomers of an interesting new spiro 
compound. 

In a previous investigation of the oxidative coupling of 
methyl sinapate published by W a l l i ~ , ~  the reaction was carried 
out with ferric chloride in aqueous acetone. In our work the 
oxidant was hydrogen peroxide with horse radish peroxidase, 
HRP (EC 1.1 1.1.7), as a catalyst. The reactions were carried out 
at pH 4 because our previous work with ferulates have shown 
that low pH-values tend to favour the formation of dimers at 
the expense of polymeric p r o d ~ c t s . ~  When the reaction was 
carried out in aqueous acetone, compound 2 was observed 
as the only dimeric product (yield 41%) after acidification. 
Repeating the oxidation in aqueous methanol, compound 2 was 
a minor product, the main products being the diastereoisomeric 
spiro compounds 3a and 3b (Scheme 1). The structures of 3a 
and 3b were determined by X-ray crystallography. The form- 
ation of compound 2 was also observed in the work of Wallis 
and its formation can be understood as a prototropic 
rearrangement of an initially formed bisquinone methide 4 to 
a cinnamyl structure and subsequent cyclization of the other 
quinone methide onto the aromatic ring (Scheme 2).4 In 
formation of the spiro compounds 3a and 3b, we assume that 
the addition of methanol to the bisquinone methide 4 is a key 
step. We have previously observed that methanol at pH 4 reacts 
rapidly with quinone methides, even in aqueous  solvent^.^ The 
next step can be formulated as an electrophilic attack by the 
protonated quinone methide on the aromatic ring to form the 
spiro compound (Scheme 2). Since it is unclear why five- 
membered ring formation is favoured in this case, the possible 
participation of phenoxy radicals cannot be ruled out. A 
possible mechanism where intermediate spiro compounds 
would result in the formation of 2 was ruled out by carrying out 
an acid hydrolysis of a mixture of 3a and 3b. In the dienone- 
phenol rearrangement only the oxygen-substituted side-chain 
migrated to give the isomeric dihydronaphthol 5 after 
elimination of methanol. 

OH 

1 

6H 
2 (41%) 

2 (14%) 

OH 

3a (32%) 3b (17%) 

Scheme 1 

26) 

The structure of the diastereoisomers 3a and 3b were 
determined by X-ray crystallography of the acetates and the 
assignments of the signals in the 'H and ' 3C NMR spectra were 
carried out using 2D NMR techniques (HMBC and HMQC). 
The trans configuration of the ester groups in the predominant 
dimer 3a shows that the radical coupling leading to the ep 
bond has a stereospecificity consistent with the threo coupling 
observed with other 4-hydroxyphenylpropenes. 
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Experimental 
General.-Horse radish peroxidase (EC 1.1 1.1.7) was from 

Serva, activity 277 U mg-' (purpurogallin method). Hydrogen 
peroxide, a 30% aqueous solution from Merck, was diluted to 
give a 3% solution before use. Silica gel 60 (0.040-0.063) for 
flash chromatography was from Merck. The preparative HPLC 
was performed with detection at 265 nm and a column (1 x 30 
cm) with Silasorb 600 as an absorbent. Hexane-ethyl acetate 
was used as an eluent. The injection volume was 1 cm3. 'H and 
13C NMR measurements were recorded with a Varian Unity 
500 spectrometer with tetramethylsilane as internal standard. 
MS were recorded with a JEOL JMS-SX102 instrument. The 
melting points are uncorrected. 

(E)-Methyl Sinapate (Methyl 4-Hydroxy-3,5-dimethoxybenz- 
ylideneacetate) 1 .-This compound was synthesised from 
vanillin. Bromination and methoxylation gave 5-methoxyvanil- 
lin (syringaldehyde).6 A subsequent Knoevenagel reaction 
with malonic acid and esterification with methanol-sulfuric 
acid gave the title compound. 

Oxidative Coupling of (E)-Methyl Sinapate in Aqueous 
Acetone.-Procedure (A) .  Methyl sinapate (0.40 g, 1.68 mmol) 
was dissolved in acetone (10 cm3) and a solution of buffer (0.02 
mol drn-,, citrate-phosphate, pH 4; 40 cm3) was added to it. 
Hydrogen peroxide (0.85 cm3, 0.84 mmol) and aqueous HRP 
(1400 U; 1 cm3) were added during 10 min to the reaction 
mixture which was then stirred at room temperature for 1 h 
during which time it turned reddish brown. HCl (2 mol drn-,; 
5 cm3) was added to the reaction mixture which, whilst being 

stirred for 20 min at room temperature, turned yellowish. The 
mixture was extracted with ethyl acetate (x3 )  and the com- 
bined extracts were washed with 5% aqueous NaHCO,, water 
and brine, dried (Ma,SO,) and evaporated to dryness. The 
residue was acetylated with dry pyridine and acetic anhydride 
(1 : 1) overnight at room temperature.' The products were 
separated using a short silica gel column (3 x 4 cm) eluting 
with hexane-AcOEt (1 : 1). The main fraction (351 mg) was 
purified by preparative HPLC (eluent: hexane-AcOEt, 1 : 1) to 
yield dimethyl 7-acetoxy- 1 -(4-acetoxy-3,5-dimethoxyphenyl)- 
6,8-dimethoxy- 1,2-dihydronaphthalene-2,3-dicarboxylate (di- 
acetate of 2) which recrystallized from ethyl acetate-hexane 
(1 : 4) as white crystals, m.p. 177-179 "C; 6,(500 MHz; CDC1,) 

s, 8-OMe), 3.66 (3 H, s, 2-C0,CH3), 3.68 (6 H, s, 3',5'-OMe), 
3.80 (3 H, s, 3-C02CH,), 3.86 (3 H, s, 6-OMe), 4.17 (1 H, d, 

5-H), 7.62 (1 H, s, 4-H); ~3~20 .5  (OCOCH,), 39.3 (1-C), 45.6 (2- 
C), 52.l(3-CO2CH,), 52.6(2-CO2CH,), 56.1(3',5'-OMe), 56.2 
(6-OMe), 61.4 (8-OMe), 104.1 (2',6'-C), 108 (5-C), 122.7 (9-C), 

2.28 (3 H, S, 4'-OCOCH3), 2.33 (3 H, S, 7-OCOCH,), 3.64 (3 H, 

J 1.1,2-H), 5.03 (1 H, S, 1-H), 6.23 (2 H, S, 2',6'-H), 6.76 (1 H, S, 

125.7 (343, 127.5 (4'-C), 129.8 (1'-C), 135.0 (7-C), 136.7 (4-C), 
140.4(10-C), 151.0(8-C), 151.9 (6-C), 166.7 (3-CO,CH,), 168.1 
(7-OCOCH,),168.7(4'-0COCH3)and 172.0(2-CO,CH,);m/z 
558 (M+, 24%), 516 (98), 499 (lo), 474 (69), 456 (15), 414 (loo), 
383 (37), 355 (12), 320 (16), 289 (10) and 236 (10) (Found: M+,  
558.1735. C28H30012 requires M ,  558.1737). 

Further elution yielded a mixture of by-products (70 mg, 
15%) and approximately 44% of the total yield was oligomeric 
material eluted from the silica gel column with EtOH-AcOEt 
(1 : 1). 

Procedure ( B ) .  The reaction was performed in a similar way 
without the addition of HCl. The reddish brown reaction 
mixture turned slowly yellowish over 12 h. After this time the 
same work-up yielded the dimer 2 (1 52 mg, 32%). 

Oxidative Coupling of (E)-Methyl Sinapate in Aqueous 
Methanol.-Methyl sinapate( 1.44 g, 6.05 mmol) was dissolved in 
methanol (200 cm3) and a solution of buffer (0.02 mol drn-,, 
citrate-phosphate, pH 4; 450 cm3) was added to it. Hydrogen 
peroxide (3.84 cm3, 3.03 mmol) and aqueous HRP (6066 U, 10 
cm3) were added during 15 min to the reaction mixture which 
was then stirred for 2 h at room temperature. The cloudy, 
yellowish reaction mixture was extracted several times with 
ethyl acetate and the compound extracts were washed with 5% 
aqueous sodium hydrogen carbonate, water and brine, dried 
(Na2S0,) and evaporated to dryness. The products were 
acetylated as above. 

Separation and Pur$cation of the Products.-The acetates of 
2 and 3 were separated by preparative HPLC with hexane- 
ethyl acetate (1 : 4) as eluent. The yield of dimer 2 was 238 mg 
(14%). The fraction containing the diastereoisomers 3a and 
3b was then further fractionated with hexane-ethyl acetate 
(1 :9). 

Dimethyl 1-(4-Acetoxy-3,5-dimethoxyphenyl)-4,7,9-trirneth- 
oxy-8-oxospiro~4.5~deca-6,9-diene-2,3-dicarboxylate (Acetate 
of 3).-The yield of the acetates of 3 after HPLC was 49% 
including two diastereoisomers 3a (32%) and 3b (17%). Both of 
these were crystallised from diethyl ether-acetone mixture 
(9: I),  3a m.p. 195-196 "C and 3b m.p. 183-185 "C; 'H NMR 
and 13C NMR (3a in ['HJacetone) are shown in Table 1: 3a, 
m/z 548 (M+, 4%), 516 (42), 474 (25), 456 (49), 414 (loo), 383 
(31), 372 (26), 355 (18), 336 (23) and 170 (16) (Found: M+, 
548.1901. C27H32012 requires M ,  548.1894); 3b, m/z 548 (M+, 
30%), 516 (83), 474 (58 ) ,  456 (26), 414 (loo), 383 (40), 355 (13), 
320 (15), 268 (17) and 170 (16) (Found: M', 548.1904. 
C27H32012 requires M ,  548.1894). 
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Table 1 The assignment of 'H and I3C chemical shifts for acetates of compounds 3a and 3b (500 MHz, solvent [2H,]acetone, Jvalues are given in Hz) 

3a 3b 

Assignment BH & 6, & 

4'-OAc 
4-OCH 3 

3-CH 
9-OCH3 
3-COzCH3 
7-OCH3 
3'-, 5'-OCH3 
2-COzCH3 
1 -CH 
4-CH 
2-CH 
1 0-CH 
6-CH 
2'-, 6'-CH 
5-C (spiro) 
4'-c 
1 '-c 
9-c  
3'-, 5'-c 
7 -c  
2-COzCH3 
3-COZCH3 
8 - 0  

2.16 (s) 
3.38 (s) 
3.48 (dd, J 8.8 and 3.6) 
3.57 (s) 
3.60 (s) 
3.72 (s) 
3.74 (s) 
3.79 (s) 
3.94 (d, J 12.1) 
4.01 (d, J3.4) 
4.04 (dd, J 12.0 and 8.8) 
6.04 (d, J 2.4) 
6.28 (d, J2.4) 
6.64 (s) 

20.23 
58.63 
54.90 
55.40 
52.49 
55.47 
56.50 
52.94 
58.57 
91.44 
49.09 

114.81 
1 17.09 
106.4 1 
55.20 

128.90 
135.18 
152.24 
152.36 
152.49 
173.66 
173.91 
175.47 

2.16 (s) 
3.27 (s) 
3.60 (dd, J 12.4 and 9.2 
3.68 (s) 
3.71 (s) 
3.75 (s) 
3.73 (s) 
3.56 (s) 
3.88 (d, J 11.9) 
4.48 (d, J9.3) 
4.33 (br d, J 12.1) 
6.31 (d, J2.4) 
6.42 (d, J 2.4) 
6.65 (s) 

20.21 
59.91 
50.99 
55.64 
52.49 
55.56 
56.44 
52.34 
56.50 
91.24 
47.15 

113.32 
120.13 
106.51 
55.40 

128.88 
135.28 
153.76 
152.29 
153.18 
172.97 
173.43 
175.98 

Dimethyl 6-Acetoxy-l-(4-acetoxy-3,5-dimethoxyphenyl)-5,7- 
dime thoxy - 1 ,2 -dih ydr onap h thalene- 2,3 -dicarboxy la te (A ce ta te 
of 5).-Compound 3 (100 mg, 0.18 mmol) was dissolved in 
dioxane (9 cm3) and 0.2 mol dm-, HCI ( 1  cm3) was added to the 
solution. The mixture was refluxed for 30 min after which it was 
extracted with ethyl acetate (2 x 50 cm3). The combined ex- 
tracts were washed with aqueous sodium hydrogen carbonate, 
water and brine, dried (Na2S0,) and evaporated to dryness. 
The residue was acetylated and purified by preparative HPLC 
with hexane-ethyl acetate (1 : 1) as eluent to give the diacetate of 
5 as white crystals (EtOH), m.p. 186-187 "C; 6,(500 MHz) 2.30 
(3 H, S, 4'-OCOCH,), 2.36 (3 H, S, 6-OCOCH,), 3.66 (3 H, S, 2- 
COZCH,), 3.69 (6 H, S, 3',5'-OCH,), 3.78 (3 H, S, 3-COzCH,), 
3.79 (3 H, S ,  7-OCH,), 3.88 (3 H, S, 5-OCH,), 4.04 (1 H, d, J2 .6 ,  
2-H), 4.68 (1 H, d, J2.6, 1-H), 6.23 (2 H, S, 2',6'-H), 6.53 (1 H, S, 

8-H) and 7.94 (1 H, s, 4-H); 6,20.5 (4',6-OC0CH3), 46.8 (C-1), 
46.9 (C-2), 52.0 (3-CO2CH,), 52.6 (2-C02CH,), 56.1 (3'3'- 
OCH,), 56.2 (7-OCH3), 62.4 (5-OCH3), 104.4 (C-2',6'), 108.5 
(C-8), 118.6 (C-lo), 122.6 (C-3), 127.6 (C-4'), 131.1 (C-4), 132.1 
(C-6), 135.5 (C-9), 140.2 (C-1'), 150.9 (C-5), 154.0 (C-7), 152.0 
(C-3',5'), 166.9 (3-COzCH,), 168.4 (6-OCOCH,), 168.8 (4'- 
OCOCH,), 172.5 (2-COzCH3); m/z  558 (M', 49%), 516 ( 5 9 ,  
499 (12), 474 (lo), 456 (51), 414 (loo), 383 (25), 320 (13), 195 
(11) and 167 (13) (Found: M ' ,  558.1741. C28H30012 requires 
M ,  558.1737). 

Crystal Structure of 3b Acetate.-Crystal data. C27H32OI2, 
M ,  = 548.54. Monoclinic, a = 11.818(5), b = 23.828(5), c = 
11.016(5) A, p = 107.12(5)", V = 2965(2) A3 (by least-squares 
refinement on diffractometer angles of 16 automatically 
centered reflections); F(000) = 1160, D, = 1.23 g ern-,, space 
group PZ,, 2 = 4, p(Mo-Ka)  = 0.097 mm-', ( M o - K a )  = 
0.7 1069 A. White plates, recrystallized from methanol. 

Data collection and processing. Data were collected on a 
Nicolet P3 diffractometer using graphite monochromated 
Mo-Ka  radiation and 0-28 scan type. Two standard reflections 
were monitored every 2 h and showed no significant deviation. 
2874 Unique reflections were recorded (1.5 < 0 < 20°, 
k h,k,l) but owing to the very poor quality of crystals only 1755 
[F > 5.0a(F)] were used in the refinement. 

Structure analysis and reJinement. Positional parameters 
were determined by direct methods using SHELXTL,' and 
were refined by full-matrix least-squares calculations in two 
blocks with all non-hydrogen atoms treated anisotropically 
using the weighting scheme w-' = a2(F) + 0.0376F2. The 
hydrogen atoms were placed in calculated positions. The 
atomic scattering factors were those in the SHELXTL program. 
The refinement converged at R = 0.135 (R,  = 0.157). Frac- 
tional atomic coordinates, bond lengths, angles and H-atom 
coordinates have been deposited at the Cambridge Crystal- 
lographic Data Centre.* 

The crystal structure of 3a will be published separately. 

* For details see 'Instructions for Authors (1994),' J. Chem. Soc., 
Perkin Trans. I ,  1994, Issue 1 .  
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All H atoms were inserted using a riding model and given 
isotropic displacement parameters equal to 1.2U~q (or 1.5Ueq 
for methyl groups) of the parent atom. 

Data collection and cell refinement: Siemens R3m system. 
Data reduction: SHELXTL-Plus (Sheldrick, 1991). Program(s) 
used to solve structure: SHELXTL-PIus. Program(s) used to 
refine structure: SHELXL93 (Sheldrick, 1994). 

We thank the SERC for financial support (to TJS). 

Lists of structure factors, anisotropic displacement parameters and 
H-atom coordinates have been deposited with the IUCr (Reference: 
HR1035). Copies may be obtained through The Managing Editor, 
International Union of Crystallography, 5 Abbey Square, Chester CH 1 
2HU, England. 
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study on the stereoselectivity of  the oxidative coupling 
of  phenols. The title compound (I) was the main 
product and the trans configuration of  the ester groups 
demonstrates a degree of  diastereoselectivity in the 
coupling reaction. The details of the synthetic work 
and the crystal structure of  the cis diastereomer have 
been published elsewhere (Setiil/i, Pajunen, Kilpel/iinen 
& Brunow, 1994). The five-membered ring is in an 
envelope conformation with C10 the out-of-plane atom. 
The angle between the least-squares plane through 
atoms C6, C7, C8 and C9 and the plane of  C6, C9 and 
C10 is 39.5 (5) °. Disorder of  one of  the ester groups 
was resolved. The ester group 05 ,  06 ,  C21 has two 
orientations with 0.43 (2) and 0.57 (2) occupancy. The 
structure contains a poorly defined acetone molecule.  

MeO 
MeO q COOMe 

O ~ "  COOMe 

MeO Z~MeO. ~ [ ~  OMe 

AcO 
(I) 
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Abstract 
In this isomer of  the title compound,  C27H32012.C3H60, 
the f ive-membered ring adopts an envelope conforma- 
tion and the ester groups occupy trans positions with 
respect to the ring. 

Comment 
The structure of  a product of  peroxidatic oxidation 
of  methyl  sinapate was determined as a part of  a 

© 1994 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

C18 

C27 O ! C7 06 C21 b 

Ol ,i 
c26(~ '~0~c24 ~'c23 

Fig. 1. A drawing of the molecule with the numbering of the non-H 
atoms. The displacement ellipsoids represent 30% probability levels. 
Only one orientation of the disordered ester group is shown. 

Experimental 
Crystal data 

C27H32OI2.C3H60 
Mr = 606.60 
Triclinic 
t,i 
a = 9.278 (4) A 
b = 11.635 (8) A, 
c = 15.812 (4)/~ 
a = 76.46 (5) ° 
/3 = 78.46 (4) ° 
~, = 72.77 (5) ° 
V = 1569.2 (13) A, 3 
Z = 2  
Dx = 1.284 Mg m -3 

Mo Kot radiation 
A = 0.71069/~, 
Cell parameters from 20 

reflections 
0 = 7-14 ° 
# = 0.101 mm - l  
T = 297 (2) K 
Transparent block 
0.40 x 0.30 × 0.30 mm 
Colourless 
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1824 C 2 7 H 3 2 0 1 2 . C 3 H 6 0  

Data collection 
Nicolet P3 diffractometer 
w-20  scans 
Absorption correction: 

empirical 
Trot, = 0.795, Tmax = 
0.992 

5890 measured reflections 
5514 independent reflections 
2598 observed reflections 

[I > 20"(/)] 

Refinement 

Refinement on F 2 
R[F 2 > 2tr(F2)] = 0.0955 
wR(F 2) = 0.2855 
S = 1.353 
5509 reflections 
368 parameters 
H atoms refined as riding 

model 
w = 1/[tr2(Fo 2) + (0.1947P) 2] 

where e = (Fo 2 + 2F2)/3 

Rint = 0 .0370 
0max -- 25.00 ° 
h = 0 ---~ 11 
k = - 1 3  ~ 13 
l = - 1 8  ~ 18 
5 standard reflections 

monitored every 60 
reflections 

intensity variation: 
insignificant 

(A/tr)m~x = 0.39 
Apmax = 0.68 e /~-3 

Apmin = -0 .26  e / ~ - 3  
Extinction correction: none 
Atomic scattering factors 

from International Tables 
for Crystallography (1992, 
Vol. C, Tables 4.2.6.8 and 
6.1.1.4) 

Table  1. Fractional atomic coordinates and equivalent 
isotropic displacement parameters (A 2) 

. . . .  , I t  , I t  • • 

Ueq = ( l /3)~'~,~~jUIja i aj a,.aj. 

x y z Ueq 
O1 0.2533 (5) 0.9300 (4) 0.0330 (3) 0.105 (1) 
02 0.1696 (5) 1.1526 (4) 0.0566 (3) 0.132 (2) 
03 -0.0779 (5) 1.2518 (3) 0.1565 (3) 0.108 (1) 
04 -0.3795 (5) 0.9656 (4) 0.2080 (3) 0.108 (1) 
05 -0.0562 (8) 0.6266 (5) 0.1288 (3) 0.139 (2) 
06 -0.3023 (7) 0.6555 (5) 0.1340 (3) 0.142 (2) 
07 -0.1521 (5) 0.6721 (3) 0.4421 (2) 0.100 (1) 
08 -0.1544 (4) 0.5417 (3) 0.3607 (2) 0.090 (1) 
09 0.4415 (4) 0.6574 (3) 0.3716 (3) 0.099 (1) 
O10 0.4303 (3) 0.8538 (3) 0.4346 (2) 0.081 (1) 
Oll  0.3170 (5) 0.7896 (5) 0.5678 (3) 0.122 (2) 
O12 0.1876 (4) 1.0441 (3) 0.4299 (3) 0.097 (1) 
C1 0.0365 (6) 0.8862 (4) 0.1341 (3) 0.080 (1) 
C2 0.1229 (6) 0.9594 (5) 0.0896 (3) 0.084 (1) 
C3 0.0864 (7) 1.0877 (5) 0.0974 (4) 0.093 (2) 
C4 -0.0542 (6) 1.1328 (4) 0.1557 (3) 0.081 (1) 
C5 -0.1411 (6) 1.0592 (4) 0.1987 (3) 0.079 (1) 
C6 -0.1042 (5) 0.9273 (4) 0.1964 (3) 0.074 (1) 
C7 --0.2390 (6) 0.8906 (5) 0.1746 (3) 0.084 (2) 
C8 -0.2230 (6) 0.7548 (5) 0.2229 (3) 0.086 (1) 
C9 -0.1009 (6) 0.7242 (4) 0.2839 (3) 0.075 (1) 
C10 --0.0833 (5) 0.8475 (4) 0.2916 (3) 0.073 (1) 
Cll  0.0575 (5) 0.8468 (4) 0.3263 (3) 0.069 (1) 
C12 0.1868 (6) 0.7504 (4) 0.3279 (3) 0.075 (1) 
C13 0.3106 (6) 0.7514 (4) 0.3641 (3) 0.076 (1) 
C14 0.3069 (5) 0.8504 (4) 0.3991 (3) 0.072 (1) 
C15 0.1783 (6) 0.9501 (4) 0.3947 (3) 0.075 (1) 
C16 0.0558 (5) 0.9467 (4) 0.3602 (3) 0.074 (1) 
C17 0.3075 (8) 0.8069 (7) 0.0260 (4) 0.126 (2) 
C18 -0.2082 (10) 1.3030 (6) 0.2155 (5) 0.139 (3) 
C19 -0.5053 (7) 0.9575 (7) 0.1748 (5) 0.131 (2) 
C20 -0.1904 (13) 0.6716 (6) 0.1586 (5) 0.120 (2) 
C21At -0.0561 (29) 0.5699 (23) 0.0679 (17) 0.20 (1) 
C21B~ -0.2641 (15) 0.5952 (12) 0.0570 (8) 0.136 (6) 
C22 -0.1385 (5) 0.6454 (4) 0.3721 (3) 0.076 (1) 
C23 -0.1899 (7) 0.4577 (5) 0.4407 (4) 0.109 (2) 
C24 0.4578 (7) 0.5557 (5) 0.3325 (5) 0.115 (2) 
C25 0.4219 (6) 0.8216 (5) 0.5235 (4) 0.086 (1) 
C26 0.5541 (6) 0.8336 (6) 0.5542 (4) 0.108 (2) 
C27 0.0709 (7) 1.1524 (5) 0.4191 (4) 0.095 (2) 

O13 
C28 
C29 
C30 

0.3653 (30) 0.4554 (24) 0.1414 (18) 0.45 (2) 
0.1906 (27) 0.3986 (19) 0.2362 (15) 0.31 (1) 
0.3149 (48) 0.4183 (37) 0.1802 (29) 0.39 (2) 
0.3436 (22) 0.2505 (22) 0.1982 (14) 0.34 (1) 

t Occupancy = 0.43 (2). 
~: Occupancy = 0.57 (2). 

Table 2. Selected geometric parameters (/~, °) 

O1---C2 1.359 (6) Oll--C25 1.181 (6) 
O1--C17 1.393 (7) O12--C15 1.369 (5) 
02--423 1.225 (6) O12---C27 1.398 (6) 
O3---C4 1.339 (6) C1---C2 1.327 (6) 
O3---C18 1.439 (7) C1---C6 1.497 (7) 
(M---C19 1.409 (7) C2----C3 1.459 (7) 
O4--C7 1.416 (6) C3---C4 1.472 (7) 
O5---C20. 1.242 (9) C4----C5 1.328 (6) 
O5---C21A* 1.29 (2) C5----C6 1.478 (6) 
O6--C20" 1.255 (8) C6---C7 1.556 (6) 
O6---C21B* 1.477 (12) C6---C10 1.587 (6) 
O7----C22 1.191 (5) C7---C8 1.562 (7) 
O8---C22 1.315 (5) C8---C20 1.492 (9) 
O8---C23 1.452 (6) C8----C9 1.542 (7) 
O9---C13 1.376 (6) C9----C22 1.518 (6) 
O9--C24 1.415 (6) C9----C10 1.527 (6) 
O10---C25 1.360 (6) C10---C11 1.512 (6) 
O10----C14 1.386 (5) 

C2----O1---C17 115.8 (4) C20---C8---C7 111.0 (4) 
C4---O3---C18 115.4 (4) C9----C8--C7 107.0 (4) 
C19--4M---~ 113.3 (5) C22---C9---~10 113.2 (4) 
C20---O5---C21A* 108.5 (13) C22---C'9--C8 113.5 (4) 
C20---<)6--C21B* 114.7 (8) CI(F---C9---C8 105.5 (4) 
C22--O8----C23 115.4 (4) C11----C10--C9 117.3 (4) 
C13---O9----C24 117.8 (4) C11--C10----C6 115.2 (3) 
C25--O10--C14 116.3 (4) C9---C10--C6 103.0 (3) 
C15--O12----C27 117.0 (4) C12--C1 l----C10 123.4 (4) 
C1----C2---O1 127.5 (5) C16----C1 l---C10 118.6 (4) 
O1---C2---423 110.5 (4) O9----C13----C12 125.3 (4) 
O2--C3---C2 120.6 (5) C13---C14---4)10 121.0 (5) 
O2---C3----C4 123.0 (5) O12---C15---C16 125.7 (5) 
C5---C4----O3 127.8 (5) O12---C15----C14 113.7 (4) 
O3----C4----C3 111.2 (4) O5--C20----O6" 123.0 (8) 
C5----C6--C7 112.5 (4) O5---C20----C8. 119.4 (7) 
C1---C6----C7 109.7 (4) O6---C20---C8. 117.5 (9) 
C5--C6--C10 110.5 (4) O7---C22---4)8 124.1 (4) 
C1---C6---C10 108.9 (4) O7----C22--C9 125.8 (4) 
C7---C6--C10 101.9 (3) O8--C22---C9 110.1 (4) 
O4---C7---C6 109.9 (4) O11----C25--O10 121.8 (5) 
O4----C7----C8 109.7 (4) O11---C25---C26 126.4 (6) 
C6--C7---C8 105.3 (4) O10--C25---C26 111.7 (5) 
C20----C8--C9 114.5 (5) 

* These values are affected by the disorder of the ester group. 

C 12 and atoms of the ill-defined acetone molecule were refined 
isotropically. 

Data collection, cell refinement and data reduction: Nicolet 
P3 software (Nicolet, 1980). Program(s) used to solve struc- 
ture: SHELXS86 (Sheldrick, 1990). Program(s) used to refine 
structure: SHELXL93 (Sheldrick, 1994). Molecular graphics: 
SHELXTL-Plus (Sheldrick, 1991). Software used to prepare 
material for publication: SHELXL93. 

Lists of structure factors, anisotropic displacement parameters and 
H-atom coordinates have been deposited with the IUCr (Reference: 
HR1032). Copies may be obtained through The Managing Editor, 
International Union of Crystallography, 5 Abbey Square, Chester CH1 
2HU, England. 
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3-Chloro- and 3-Bromo-2-oxopropyl 
p-Toluenesulfonate 

JUDITH A. K. HOWARD, ANDREI S. BATSANOV, 
DAVID O'HAGAN AND JEFFREY WHITE 

dihedral angles of 93.9 (1) and 91.5 (1) ° with each other 
in (1) and (2), respectively, and both are approximately 
perpendicular to the O1,S,C1 plane. This apparently 
unfavourable conformation, on steric grounds, may be 
eased by hyperconjugation in the planar moiety, or by 
donation from the lone pair of O1 onto the a* orbital 
of the X---C10 bond [in both molecules, O1.. .C10 
2.68 ,~]. The latter explanation, however, seems less 
likely as the X--C10 bonds are not weakened, but rather 
are shorter than the average C1---CH2 and Br---CH2 
bond lengths of 1.790 (7) and 1.966 (29),g,, respectively 
(Allen, Kennard, Watson, Brammer, Orpen & Taylor, 
1987), and the S--O1 bond is not lengthened. The cis- 
planar orientation of the halogen and 04  atoms is quite 
common for o~-halogenoketones and can be attributed 
to O.. .CI charge-transfer bonds (e.g. S0rensen, 1974; 
Watson, Go & Purdy, 1973). 

Department of Chemistry, University of Durham, 
Science Laboratories, South Road, Durham DH1 3LE, 
England 

(Received 1 February 1994; accepted 6 June 1994) 

Abstract 
The crystal structures of 3-chloro-2-oxopropyl p-tol- 
uenesulfonate, C10HlIC104S, and 3-bromo-2-oxopropyl 
p-toluenesulfonate, C10HllBrOaS, were determined at 
150 and 293 K, respectively. They have essentially 
identical molecular structures and conformations, but 
different, though closely related, crystal structures. The 
Cl(or Br) - -CH2--CO--CH2--O chain has an almost 
planar conformation. 

Comment 

The title compounds 3-chloro- (1) and 3-bromo-2- 
oxopropyl p-toluenesulfonate (2) are of interest as 
intermediates in a recently developed synthesis of 
isotopically labelled epichlorohydrins (O'Hagan, White 
& Jones, 1994). In order to provide additional insight 
into the potential reactivity of these molecules, we 
undertook structural studies. 

o 

/ 
x --C1t2 

CHz  °I-G 
O 

(1) X = C i  (2) X = B r  

CH3 

The molecular structures of (1) and (2) in the 
crystalline form are essentially identical (Fig. 1). An 
interesting feature to emerge was the conformation of 
the O1,C8,C9,O4,C10,X moiety (X = C1 or Br), which 
is planar to within 0.11 ,~ for (1) and 0.05,~ for (2). 
The planes of this moiety and the benzene ring form 

(l) 

C~014) 

0131 0 1 6 ) ~ C  15) .0 

(2) 

Fig. 1. Molecular structures of compounds (1) and (2), showing 50% 
probability displacement ellipsoids. 

It is noteworthy that the deviation of the C 1 - - S - -  
O1---C8 torsion angle from 0 or 180 ° makes the molec- 
ular conformation chiral and the actual conformations 
of (1) and (2) are those of maximum chirality. 

With the van der Waals radii of C1 and Br being 
similar (1.75 versus 1.85 ~,; see Bondi, 1964), crystals 
of (1) and (2) might be expected to be isomorphous. In 
fact, (1) forms chiral crystals (space group P21) with the 
polarity along the 21 axis defined by parallel orientation 
of S(==O)2 groups along this axis, while (2) crystallizes 
in space group P21/c (Fig. 2) with the unit cell equal 
to that of (1) with the c parameter doubled. The latter 
contains enantiomers differing by rotation of ca 160 ° 
around the S--O1 bond and oriented antiparallel along 
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Abstr~.  The first storeoselect/ve free radical coupling of a phenylproponoidic phenolic compound is 
reported. Tile oxidation of a el)ira1 ferulic acid amide to give dimeric benzofuranic neolignan is 
performed enzymatically using horseradish peroxidase as the catalyst. Emntiomeric excess in a 
biologically active compound with l~mylconmaran skeleton (1~-5 dimer) is thus obtained. 
© 1998 Elsevier Science Ltd. All rights reserved. 

Organic compounds obtained from radical coupling of phenylpropenoidic phenols have an important 

biological role. In fact, they constitute organic polymers such as lignin I, lignans 2, suberin 3 and algal cell wall 4. 

Moreover, the dilignol 3'-4-di-O-methylcedrusin is a wound healing agent and an inhibitor of  thymidine 

incorporation in endothelial cells 5 and dehydrodiconiferyl alcohol has a role in plant physiology 6. 

Unlike most biological oxidation, the bimolecular phenoxy radical coupling reaction is not under a 

strictly regio- and stereospeeifie control 7. This is due to the fact that phenoxy radicals are very persistent and 

the dimerization reaction is slow. Hence the stereogenic carbons formed in the oxidative phenol coupling 

reaction in vitro are racemic s. On the contrary, iignans are homochiral 2. The biosynthetic pathway to 

enantiopure lignans has been proposed quite recently. A protein isolated from Forsythia species is suggested 

to be responsible for the formation of enantiomeric pure pinoresinol from coniferyl alcohol 9. 

We recently reported that regio- and diastereoselectivity in the oxidative phenol coupling reaction may 

be obtained 1° using the horseradish peroxidase (HRP)-catalyzed oxidative coupling and hydrogen peroxide as 

the oxidant 11. This reaction takes advantage from mild reaction conditions and fast reaction rates. It is possible 

to enhance the selectivity of  this reaction by tuning the reaction pH and using the appropriate organic 

cosolvent, but stereoselection is not obtained under these conditions. The same negative result has been 

obtained using cyclodextrin as a chiral auxiliary I:. 

Here we report the I-IRP-eatalyzed enantioselective oxidative phenol coupling of a ferulic acid amide 

having the ethyl S-alaninate group as chiral auxiliary. 

0040-4039/98/$19.00 © 1998 Elsevier Science Ltd. All fights reserved. 
PH: S0040-4039(98)00473 -0 
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The starting material was prepared as follows: ethyI-S-alaninate hydrocloride 1 was transformed to 

ethyi-S-alaninate 2 with triethylamine and reacted in situ with an equimolecular amount of ferulic acid 3 in 

tetrahydrofuran (TI-IF)in the presence of dicyclohexylcarbodiimide (DCC) to give the amide 4 in 70% yield 

(Scheme 1). 

Scheme 1 COOH 

~OMe 
COOEt _COOEt 

H3N+,. ._~ H (a) = H 2 ~ H  3 _= - Igle Igle (b) 

Reagents: a) Et3N/THF rt lh; b) DCC/THF rt 4h. 

H COOEt 

The HPR-catalyzed oxidative phenol coupling was performed in a dioxane-aqueous buffer pH 3. The 

mixture of the two diastereoisomers 5 and 6 was obtained in 70% yield. 

Separation by silica gel flash chromatography, crystallisation and final purification by preparative RP- 

HPLC allowed to obtain the individual diastereoisomers which were charactedsed by IH-NMR, ]3C -NMR, 

UV, IR, MS 13. The diastereoisomeric excess in the reaction was evaluated by RP-HPLC analysis of the crude 

reaction mixturel4to be 65% 

H _COOEt I 

H~eo UMe 

0 
, ~ , N  .- COOEr 

='-~'=.': H / - 
H I~le 

0 
H COOEt II _COOEt 

=---L...H -" H 
O - / .~ 

Me 

HO ""'"" 

5 $ 

The absolute configuration of the two stereogenic carbons in the phenylcoumaran skeleton in the major 

diastereoisomer was attributed by hydrolysis with LiOOH in THF to give a crude mixture containing the 
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diacid 7 as the main product. Treatment of this mixture with diazomethane gave the diester 8 which was 

reduced with LiBI-L, to optically pure dehydrodiconiferyl alcohol 9. Comparison of this product by chiral 

HPLC l~ with authentical specimens of both enantiomers of dehydrodiconiferyl alcohol ~6 allowed to atlribute 

the absolute configuration 2S,3R. 

In summary, this is the first example of a bimolecular coupling reactions of phenoxy radicals to give 

phenylcoumarans with a significant enantiomeric excess. This result provides a whole new approach to the 

synthesis of valuable lignan structures. Studies are now in progress to obtain a higher enantiomeric excess. 

Schcmo 2 

.COOH 

HOO\ 
6 (a) ~ H O - - ~  ........ ~ Co) = 

/ - - - ,  
MoO OMe 

7 

H O ~  H 

(c) H O ~ "  

MoO OM¢ 
9 

Rvagcnts: a)LiOH/H202/THF rt 1811; b) CH2N2; c) LiBH42THF-78 °C 

COOCH3 

CH300C S 

H O - ~  ........ ~ . ~  

MoO OMc 
8 
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A novel type of spiro compound formed by oxidative cross
coupling of methyl sinapate with a syringyl lignin model
compound. A model system for the â-1 pathway in lignin
biosynthesis
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Oxidative coupling of methyl (E)-sinapate with 1-(4-hydroxy-3,5-dimethoxyphenyl)ethanol, a syringyl lignin model
compound, was carried out with hydrogen peroxide catalyzed by horseradish peroxidase. The main product was a
cyclohexadienone spiro compound of a novel type. Mild acidolysis caused the loss of one side chain and yielded a
dimeric compound with a 1,2-diarylpropane structure. This is the first example of the formation of this structural
type by oxidative coupling in vitro.

Introduction
The final step in the biosynthesis of lignin is an oxidative poly-
merization of phenolic precursors. In a previous article 1 we
have discussed the importance of oxidation potentials and of
the cross coupling of different phenolic precursors in the bio-
synthesis of lignin in the cell walls of woody plants. The
importance of cross coupling first became apparent through the
discovery of the 1,2-diarylpropane or β-1 structure in both
softwood 2 and hardwood lignins.3 These structures could not
be fitted into the original dehydrogenation scheme based on the
work of Erdtman and Freudenberg (for a review see ref. 4). The
most plausible mechanism for the formation of these structures
involves a cross coupling between a p-hydroxycinnamyl alcohol
radical and a radical (with a saturated side chain) residing on
the growing polymer chain. The intermediate cyclohexadienone
was assumed to lose a side chain to form a β-1 or 1,2-diaryl-
propane-1,3-diol structure and a glyceraldehyde-2-aryl ether
by a mechanism outlined in Scheme 1. This involves a reverse
vinylogous aldol reaction and addition of water to the quino-
methane group.2 The formation of the glyceraldehyde ether
stops the growth of the polymer chain. The released β-1 dimer
contains phenolic groups from which a new chain may begin.
Both the glyceraldehyde groups and the β-1 or diarylpropane
units have been found in lignin preparations, but it has proved
difficult to estimate the abundance of such structures in lig-
nin. Degradation products emanating from the β-1 structure
are prominent among thioacidolysis products,5 whereas NMR
studies on milled wood lignin have revealed only small amounts
of such structures.6–8 It is still not known if this discrepancy is
caused by an uneven distribution of such structures in lignins
or if the explanation is that the cyclohexadienone structures
persist in the lignin and that they are transformed to β-1 struc-
tures only on acidic treatment. The likelihood that such
structures can persist in lignin is increased by the recent dis-
covery in nature of woorenol,9 a neolignan with a β-1 coupled
cyclohexadienone structure. Recent isolation of isochroman
structures in lignin degradation products and their detection in
isolated lignins provides evidence for such spiro structures in
vivo;10,11 in this case a dienone–phenol rearrangement may have
produced an isochroman structure. We have now been able to
generate a spirocyclohexadienone structure similar to that in
woorenol from a biomimetic oxidative phenol coupling and
to demonstrate that mild acidolysis indeed transforms it to a

1,2-diarylpropane-1,3-diol structure; this constitutes the first in
vitro demonstration of the original mechanism put forward in
1965.2

Results and discussion
We have reported earlier that cross coupling of phenols with
different oxidation potentials is difficult to achieve. For
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instance, sinapyl alcohol does not react with a syringyl struc-
ture with a saturated side chain.1 The lower oxidation potential
of the sinapyl alcohol compared to the syringyl structure makes
the sinapyl alcohol react mainly with itself. Replacing the
alcohol hydroxy with a carboxy group is expected to raise the

Fig. 1 Crystal structure of the acetate of 3.

oxidation potential of the phenol 12 to the level of the syringyl
structure. This was, in fact, observed. Oxidative coupling (with
hydrogen peroxide catalyzed by horseradish peroxidase) of
an equimolar mixture of 1 with methyl sinapate (2) gave a
product that could be assigned structure 3 on the basis of a
crystal structure determination of the acetate (Fig. 1). Another
prominent product was 4, a dimerization product of methyl
sinapate,13 analogous to a ferulate dimer observed in grass cell
walls.14 The spiro cyclohexadienone structure of 3 can be visual-
ized as having been formed by a β-1 coupling between 1 and 2
and subsequent cyclization (Scheme 2). Mild acid hydrolysis
converted this cyclohexadienone to 5, the first demonstration of
a β-1 structure formed in vitro by oxidative coupling and side
chain elimination. The 1,2-diarylpropane 5 was obtained as a
single diastereomer; the stereochemistry of the reaction is under
investigation. The β-1 pattern is a minor contribution to the
structure of lignin but knowledge about its mode of formation
and reactivity sheds important light on the factors regulating
the biosynthesis of lignin in the cell wall of the plant.

Experimental
General

Horseradish peroxidase (EC 1.11.1.7) was from Serva, activity
250 U mg21 (purpurogallin method). 30% Aqueous hydrogen
peroxide (Merck) was diluted to give a 3% solution (ca. 0.8
mmol cm23) before use. Silica gel for column chromatography
was Merck 60 (230–400 mesh). Thin layer chromatography was
performed on silica gel plates (Merck Kieselgel 60 F254). The
preparative HPLC was performed with detection at 265 nm and
a Lichrospher Si 60 column (1 × 25 cm) from Merck. The injec-
tion volume was 1 cm3. 1H and 13C NMR spectra were recorded
with Varian 200 (2000 Gemini) and 300 MHz (Nova) instru-
ments with tetramethylsilane (TMS) as internal standard and

Scheme 2

O

O

O

OCH3

HO

+

O

OCH3

HO

O

O

H

H3CO

H3CO

OCH3

OCH3

H3CO

OH

O

H3CO

OCH3

OCH3OH

OCH3

HO

H3CO

1
2

H2O2/HRP

pH 4

30% acetone

H3CO

OCH3

OCH3

3

CO2CH3

CO2CH3

H3CO

CH3O

HO

H3CO

OH

OCH3

4

3

5

CH3OH/H2O

OH

OCH3H3CO

O

O

OCH3

H3CO

O

OCH3

OH

H3CO

HO

H3CO

OH

OCH3

OCH3

CO2CH3

1 2
3

4
5

6

7

8

1'

2'

3' 4'

5'

6'

7'
9'

1' 2'

3'5'

6'

6

4'

1
2

3

45

7
8

9

8'

V/2



J. Chem. Soc., Perkin Trans. 1, 1999, 461–464 463

deuteriochloroform as solvent. The spectral assignments were
made using HMQC-TOCSY and HMBC experiments and
VNMR software. Mass spectra were recorded with a JEOL
JMS-SX102 instrument. The melting points are uncorrected.

1-(4-Hydroxy-3,5-dimethoxyphenyl)ethanol 1

This compound was prepared from syringaldehyde and methyl
magnesium iodide.15

Methyl (E)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoate 2
(methyl (E)-sinapate)

The compound was made from vanillin. Bromination and
methoxylation gave syringaldehyde.16 Knoevenagel reaction
with malonic acid 17 and esterification with methanol–sulfuric
acid gave the title compound.

Oxidative coupling of 1 and 2

Methyl sinapate (2) (0.79 g, 3.33 mmol) and 1 (0.66 g, 3.33
mmol) were dissolved in acetone (30 ml) and a solution of
buffer (0.02 mol dm23, citrate–phosphate, pH 3.5; 75 ml) was
added. Horseradish peroxidase (40 mg in 1 ml of water) was
added and hydrogen peroxide (4.16 ml, 3.33 mmol) was added
during 10 minutes to the reaction mixture which was stirred at
room temperature for 2 hours. The mixture was extracted three
times with ethyl acetate and the combined extracts were washed
with 5% aqueous sodium hydrogen carbonate, water and brine,
dried (Na2SO4) and evaporated. The residue was acetylated
with acetic anhydride and dry pyridine (1 :1) overnight at room
temperature.18 The dark brown mixture was first purified using
a short silica gel 60 column (4 × 5 cm) eluting with ethyl acetate–
hexane (3 :1). The fractions containing the products (detected
with TLC) were combined and evaporated to a yellowish
powder. The crude product was then separated using prepar-
ative HPLC (eluent: ethyl acetate–hexane, 3 :1) to yield 298 mg
(19%) of 3, a large amount (ca. 50%) of unreacted 1 and a small
amount (ca. 4%) of sinapate dimer 4.13 Compound 3 was
recrystallized for crystal structure determination from ethyl
acetate–hexane, mp 170 8C (decomp.).

Methyl 3-hydroxy-2,3-bis(4-hydroxy-3,5-dimethoxyphenyl)-
propanoate 5

Compound 3 (80 mg, 0.163 mmol) in methanol (10 ml) was
treated with toluene-p-sulfonic acid monohydrate (3 mg) at
room temperature for 20 hours. The reaction mixture was
neutralized by treating with solid sodium hydrogen carbonate, 5
ml of water was added and the mixture extracted with dichloro-
methane. The organic phase was washed with water and with
brine, dried (Na2SO4) and evaporated. The crude product was
acetylated with acetic anhydride (2 ml) and pyridine (2 ml). The
acetylated reaction mixture was dissolved in ethyl acetate. On
dissolution, part of compound 5 (peracetate) started to crystal-
lize and the crystals were filtered off. The rest was isolated by
flash chromatography on a silica column with a 2 :1 mixture of
ethyl acetate and hexane. The combined yield of 5 (peracetate)
was 30 mg (33%), white crystals mp 210–212 8C. NMR data in
Table 1; MS: m/z 534 (M1, 15%), 492 (30), 432 (16), 390 (36),
268 (65), 225 (100), 197 (15), 183 (93) (Found: M1, 534.1743.
C26H30O12 requires M, 534.1737).

Crystal structure of 3 acetate

Crystal data. C24H28O10, M = 476.46. Monoclinic, a =
9.133(2), b = 10.921(2), c = 22.979(5) Å. β = 91.29(3)8, V =
2291.4(8) Å3 (by least-squares fitting of 20 automatically
centred reflections); F(000) = 1008, Dx = 1.38 g cm23, space
group P21/c, Z = 4, µ(Mo-Kα) = 0.108 mm21. Colourless plates,
0.40 × 0.37 × 0.32 mm, recrystallized from ethyl acetate–
hexane.

Data collection and processing. Data were collected on a
Rigaku AFC7S diffractometer using graphite monochromated
Mo-Kα radiation at 280 8C. Three standard reflections were
monitored every 2 h and showed no significant deviation. 3165
Unique reflections were recorded (2.57 < θ < 25.018 ±h,k,l).

Structure analysis and refinement. Positional parameters were
determined by direct methods and the non-hydrogen atoms
were refined by full-matrix least-squares on F2. The hydrogen
atoms were placed at calculated positions and were assigned
isotropic thermal parameters U(H) = 1.5 Ueq(C) of the parent
carbon atoms. The refinement converged at R1 = 0.0762 {1774
I > 2σ(I) reflections} and wR2 = 0.2004 for all reflections. The
final electron difference map was featureless with largest peak
0.62 e Å23. Computations were carried out on using the
SHELXTL 19 and SHELXL93 20 program systems.

Full crystallographic details, excluding structure factor
tables, have been deposited at the Cambridge Crystallographic
Data Centre (CCDC). For details of the deposition scheme, see
‘Instructions for Authors’, J. Chem. Soc., Perkin Trans. 1, avail-
able via the RSC Web page (http://www.rsc.org/authors). Any
request to the CCDC for this material should quote the full
literature citation and the reference number 207/293. See http://
www.rsc.org/suppdata/p1/1999/461/ for crystallographic files in
.cif format.
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Table 1 1H and 13C NMR data for acetates of compounds 3 and 5

3 5

Position

1
2
3
4
5
6
7
8
3 OMe
5 OMe
19
29
39
49
59
69
79
89
99
4 OCO
4 OCOMe
49 OCO
49 OCOMe
39,59 OMe
7 OCO
7 OCOMe
99 OMe
9 OCO
9 OMe

13C

52.1
114.7
152.6
176.0
152.1
111.3
83.5
14.7
55.1
54.4

140.2
101.0
152.0
127.7
152.0
101.0
79.7
63.1

169.2

168.4
20.1
55.9

54.2

1H

5.89 (d, J 2)

5.61 (d, J 2)
4.41 (d, J 6.10)
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3.47 (s)

13C

136.2
104.2
152.0
132.9
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56.3
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105.7
152.0
132.9
152.0
105.7

168.6
20.5

168.6
20.5
56.3

169.4
20.8

170.8
52.3

1H

6.64 (s)

6.64 (s)
6.42 (d, J 9.5)
3.99 (d, J 9.5)
3.82
3.82

6.62 (s)

6.62 (s)

2.33 (s)

2.33 (s)
3.82 (s)

1.87 (s)

3.56 (s)
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Cryogenic Chiral Chromatography for Rapid Resolution of Drug Candidates

Martti Alkio, Olli Aaltonen,* and Harri Seta¨lä

VTT Technical Research Centre of Finland, Otaniemi, Espoo, Finland

Abstract:
The chromatographic resolution of three racemates is presented
at temperature areas extending to the cryogenic area, down to
-25 °C. In all examined cases the separation factor between
the enantiomers increased with decreasing temperature. The
yields and production rates for the enantiomers were calculated
from chromatograms to predict optimum conditions for pre-
parative resolutions.

Introduction
Chiral chromatographic methods are increasingly used to

speed up drug development at early stages. When up to 100
g of pure enantiomers are needed, the quickest way of
obtaining them is often to synthesize a racemate and make
the resolution with preparative, chiral chromatography. Low
temperatures generally favour enantiomeric selectivity in
syntheses as well as in separations. However, the viscosity
of the medium increases and molecular diffusivity decreases
with decreasing temperature. This puts a lower limit to
feasible temperatures when conventional liquid eluents are
used in chromatographic separations. Pressure drop over a
packed chromatography column may typically not exceed
100 bar. Otherwise there is a risk of damaging the chiral
stationary phase. This pressure drop limit is easily reached
with conventional liquid eluents, such as hexane and iso-
propyl alcohol, at lower than room temperature and with
conventional flowrates. We have already shown that by using
a liquid CO2-based eluent one can go down to at least-25
°C, without an excessive pressure drop over the column.1

This is because the viscosity of pressurized, liquid carbon
dioxide is much lower than that of ordinary solvents.
According to the Stokes-Einstein relation, molecular dif-
fusivity increases linearly with decreasing viscosity at
constant temperature. Therefore, the plate number of a
chromatography column should be higher with liquid CO2

than with conventional solvents, because of the viscosity
difference at low temperatures.

Wolf and Pirkle reported a considerable and consistent
increase of separation factor, enantioselectivity, and resolu-
tion with decreasing temperature for eight chiral alcohols
and ketones.2 They used a mobile phase consisting of carbon
dioxide modified with different amounts of methanol.
Although none of the studied compounds could be com-
pletely separated at room temperature, a baseline separation

was achieved at cryogenic temperatures. The authors also
studied the enantiomeric separation of five axially chiral,
arylnaphthalene lignans. Four of them were successfully
separated at 0 to-47 °C and one not. The authors attribute
the good chromatographic separations at low temperature to
the rapid adsorption-desorption kinetics of the brush-type
stationary phase which they used.

Stringham and Blackwell showed that for each racemate/
chiral stationary phase (CSP)/eluent system there is an
isoelution temperature where the enantiomers elute with the
same rate and do not separate from each other3. Chromato-
graphic selectivity between enantiomers may be related to
temperature as

whereR is the separation factor between the enantiomers,R
is the ideal gas constant,T is absolute temperature,δ∆H is
the difference between the enthalpy of the enantiomers’
interaction with the stationary phase, andδ∆S is the entropic
difference. At isoelution temperature, ln (R) ) 0 and the
enthalpy and entropy terms are equal.

Thermodynamics predicts that when moving away from
the isoelution temperature the logarithm of the separation
factor (ln (R)) increases linearly with the reciprocal of
temperature in Kelvin (1/T). Stringham and Blackwell
showed experimentally that the relationship was indeed linear
at below the isoelution temperature with a carbon dioxide/
2-propanol eluent. They covered a temperature range from
+200°C down to-20°C using a brush-type chiral stationary
phase.

So it has already been shown that low temperatures may
increase the resolution and enantioselectivity of chiral
separations. This is immediately useful in analytical work.
However, lowering column temperature increases retention
and prolongs cycle time. Cycle time is the minimum time
interval between repeated injections made so that peaks from
adjacent injections do not overlap when leaving the column.
Lowering the temperature also decreases column efficiency
expressed as plate number. For preparative, production-scale
separations it would be important to know if the favourable
resolution and enantioselectivity at cryogenic temperatures
translate into increased throughput despite the longer cycle
time and decreased plate number. It is also of interest to
know how other types of CSPs respond to cryogenic
temperatures.

We have previously reported a successful resolution of
the enantiomers of a drug candidate, Finrozole, at cryogenic

* To whom correspondence should be addressed: P.O. Box 1602, FI-02044
VTT, Finland. E-mail: olli.aaltonen@vtt.fi. Telephone:+358 20 722 5301.
(1) Alkio, M. In Proceedings of the 8th Meeting on Supercritical Fluids; April

14-17, 2002, Bordeaux; pp 754-759.
(2) Wolf, C.; Pirkle, W. H.J. Chromatogr., A1997, 785, 173. (3) Stringham, R. W.; Blackwell, J. A.Anal. Chem.1997, 69, 1414.

ln(R) ) -δ∆H/RT+ δ∆S/R (1)
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temperatures with anL-tartar diamide CSP.1 The results were
verified with preparative resolutions in pilot-plant scale. The
linear ln(R) vs 1/T correlation was also confirmed in the
studied case. The results from Finrozole resolution are
summarized here in Table 5. In this paper we present further
examples of low-temperature chiral chromatography and also
a systematic approach to find the optimum conditions for
maximum throughput. Finrozole and ferulic acid dimer
dimethyl ester were chosen for cryogenic resolutions because
they were subjects of contract work at VTT and unsatisfac-
tory results were previously obtained using other methods.

Guaifenesin was chosen as an example of an easy resolution
and because of existing literature data for comparisons.

Experimental Methods
The chromatograph setup is depicted in Figure 1. The

equipment was a Hewlett-Packard G1205A Laboratory SFC
unit, with a diode array UV detector.

Two chromatography columns were screened. Chiralcel
OD CSP, 4,6 mm× 250 mm, from Daicel Chemical
Industries, Ltd., Japan was packed at Cultor Oy, Finland.
The chiral stationary phase (CSP) of Chiralcel OD is
cellulose tris(3,5-dimethylphenylcarbamate) coated on a silica
support. The Kromasil CHI-TBB colums were from Eka
Chemicals, Sweden. The CSP of the CHI-TBB column is
O,O′-bis(4-tert-butylbenzoyl)-N,N′-diallyl-L-tartar diamide
covalently bonded on silica.

Methanol, tetrahydrofuran (THF), and toluene were
HPLC-grade from Rathburn, UK. Dichloromethane was from
Fluka. Ethanol was absoluted, technical (Ba) grade from Altia
Oy, Finland (min purity 99.5%). Carbon dioxide was food
grade from Oy AGA Ab, Finland (min purity 99,7%).
Guaifenesin (min 98%, GC) was purchased from Sigma-
Aldrich Chemicals (Figure 2). Ferulic acid dimer dimethyl
ester was synthesized and purified at VTT using a previously
described procedure.4 Finrozole was obtained from Hormos
Medical Ltd., Turku, Finland.

The target function to be maximized was the daily
production rate (PR) of both enantiomers per kg of CSP. It
was calculated from chromatograms as follows: From each
run the chromatographic bandwidth, i.e., the cycle time (ct)
was measured. For nonoverlapping peaks the yields of pure

(4) Chioccara, F.; Poli, S.; Rindone, B.; Pilati, T.; Brunow, G.; Pietika¨inen, P.;
Setälä, H. Acta Chem. Scand. 1993, 47, 610.

Figure 1. Chromatographic setup for studying cryogenic chiral
separations.

Figure 2. Structures of the chiral racemates.

Figure 3. Method of estimating the yields of each enantiomer
in the case where enantiomer peaks overlap.

Table 1. Variables and their levels selected for the
orthogonal design of chromatography experiments for
guaifenesina

variable levels

guaifenesin minimum middle maximum

temperature °C -25 0 +25
load ratio g/kg of CSP 5.0 9.0 12.5
modifier concentration % EtOH 15.0 20.0 30.0
eluent linear velocity mm/s 4.0 4.5 5.5

a Ethanol was selected as the injection solvent for the racemate.

Table 2. Variables and their levels selected for the
orthogonal design of chromatography experiments for ferulic
acid dimer dimethyl estera

variable levels

ferulic acid dimer
dimethyl ester minimum middle maximum

temperature °C -25 0 +25
load ratio g/kg of CSP 1.25 1.88 2.50
modifier concentration % EtOH 15 22.4 30
eluent linear velocity mm/s 3.0 4.5 6.0

a Dichloromethane was selected as the best injection solvent for the racemate.
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enantiomers were estimated to be 100%. For overlapping
peaks, the net yield was estimated from the measured
resolution. Figure 3 illustrates the method of estimating the
net yield from a chromatogram where peaks overlap.

Column load ratio (LR) was calculated as

where:

c is concentration of racemate in feed solution (g/mL).
Vinj is injection volume (mL).
MCSP is mass of CSP in the column (kg).
The daily production rate of both enantiomers per kg of

CSP was calculated:

where:
LR is load ratio (g racemate/kg CSP.
ct is cycle time (min).
Y is estimated, combined yield of both pure enantiomers

(a fraction of the mass of injected racemate).

Results
Before designing the experiment matrix a few chromato-

graphic runs were carried out to locate a feasible parameter
area for each racemate. Methanol and ethanol were tested
as modifiers in carbon dioxide eluent, and ethanol, tetrahy-
drofuran (THF), toluene, and dichloromethane were tested
as injection solvents for the racemates. Chiralcel OD was
superior to Kromasil CHI-TBB for the guaifenesine and
ferulic acid dimer dimethyl ester cases, and therefore it was

Table 3. Results from the chiral separation chromatography
of guaifenesin enantiomersa

T,
°C

LR,
g/kg of
CSP

modifier
EtOH,

%

linear
velocity,

mm/s

estimated
yield,

%

cycle
time,
min

PR,
g/kg of

CSP/24 h

25 5.0 15 4.0 100.0 2.4 3000
25 12.5 15 4.0 100.0 3.0 6000
25 5.0 30 4.0 100.0 1.5 4800
25 12.5 30 4.0 33.0 1.6 3713
25 5.0 15 5.5 100.0 1.8 4000
25 12.5 15 5.5 100.0 2.2 8182
25 5.0 30 5.5 100.0 1.5 4800
25 12.5 30 5.5 25.0 1.0 4500
0 9.0 20 4.5 100.0 3.0 4320
0 9.0 30 4.5 100.0 2.0 6480
0 9.0 30 5.5 100.0 1.6 8100

-25 5.0 15 4.0 100.0 9.5 758
-25 12.5 15 4.0 100.0 8.8 2045
-25 5.0 30 4.0 100.0 4.0 1800
-25 12.5 30 4.0 100.0 4.0 4500
-25 5.0 15 5.5 100.0 6.5 1108
-25 12.5 15 5.5 100.0 6.4 2813
-25 5.0 30 5.5 100.0 2.9 2483
-25 12.5 30 5.5 100.0 2.7 6667

a Column: Chiralcel OD. Eluent: CO2 + ethanol.

Table 4. Results from the chiral chromatography of ferulic
acid dimer dimethyl ester enantiomersa

T,
°C

LR,
g/kg of
CSP

modifier
EtOH,

%

linear
velocity,

mm/s

estimated
yield,

%

cycle
time,
min

PR,
g/kg of

CSP/24 h

-25 1.25 15.0 3.0 100.0 20.0 90
-25 1.25 30.0 3.0 100.0 10.0 180
-25 1.25 15.0 6.0 100.0 8.0 225
-25 1.25 30.0 6.0 85.0 5.0 306

25 1.25 15.0 3.0 100.0 6.0 300
25 1.25 30.0 6.0 0.0 2.0 0
25 1.25 30.0 3.0 10.0 2.5 72
25 1.25 15.0 6.0 10.0 3.0 60
0 1.88 22.4 4.5 100.0 4.0 675
0 1.88 22.4 6.0 100.0 2.8 982
0 1.88 30.0 4.5 95.0 3.0 855

25 2.50 15.0 3.0 50.0 6.5 277
25 2.50 15.0 3.0 10.0 3.5 103
25 2.50 15.0 6.0 20.0 3.2 225
25 2.50 30.0 6.0 0.0 2.0 0

-25 2.50 15.0 3.0 80.0 16.0 180
-25 2.50 15.0 6.0 60.0 12.0 180
-25 2.50 30.0 6.0 12.0 7.0 62
-25 2.50 30.0 3.0 40.0 8.0 180
-10 2.50 15.0 6.0 50.0 6.5 277
-10 2.50 30.0 3.0 55.0 7.5 264
-10 2.50 15.0 3.0 90.0 10.0 324

0 2.50 22.5 6.0 72.0 10.0 259
0 2.50 30.0 3.0 68.0 10.0 245

a Column: Chiralcel OD. Eluent: CO2 + ethanol.

LR ) (c * Vinj)/MCSP (2)

Figure 4. Effect of temperature on the resolution of ferulic
acid dimer ester enantiomers.

Figure 5. Effect of temperature on the resolution of guaifenesin
enantiomers.

PR) LR * (60/ct) * Y * 24 (3)
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selected for the systematic experiments. For finrozole,
enantiomer separation was achived only with the Kromasil
CSP.

Based of these screening runs the orthogonal experiment
matrices of Tables 1 and 2 were designed for the racemates.
Modde 5.0 software (Umetrics AB, Umeå, Sweden) was used
to design experiment matrices for the minimum number of
chromatography runs and with an orthogonal location of
experiments in the parameter space.

The results for guaifenesin and for ferulic acid dimer ester
are shown in Tables 3 and 4, respectively. Estimated yield
is the yield of both pure enantiomers based on the amount
of injected racemate.

Parameter analysis with Modde 5.0 software revealed that
temperature and load ratio were most significant in determin-
ing the PR. Linear velocity and modifier concentration were
less important.

Chromatograms showing the effect of temperature are
presented in Figures 4-6.

The production rates of pure enantiomers for guaifenesine
and for ferulic acid dimer dimethyl ester are shown in Figures
7 and 8, respectively.

The optimum conditions and maximum productivity for
guaifenesin, ferulic acid dimer dimethyl ester, and Finrozole
are collected in Table 5 where the PR results are based on
the surface plots of Figures 7 and 8. The fitted surface plots
are smoothed and therefore do not necessarily coincide with
all the experimental points in Tables 3 and 4. The fitted plots
average the scattering of the measured data. Therefore the
results in Table 5 should give a more realistic view of the
achievable production rates than the results from individual
experiments shown in Tables 3 and 4.

Figure 6. Effect of temperature on the resolution of Finrozole enantiomers.1

Figure 7. An interpolated-surface plot of the effect of column
temperature and load ratio on the production rate of ferulic
acid dimer dimethyl ester enantiomers. Figure 8. An interpolated-surface plot of the effect of column

temperature and load ratio on the production rate of guaifen-
esine enantiomers.
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Conclusion
The results show that the productivity of chiral chroma-

tography may be increased by lowering the operation
temperature below ambient. Temperature should be included
in the set of parameters which are optimized when develop-
ing a preparative method for chiral separation. Complement-
ing previous findings with brush-type chiral stationary phases
we have shown that the positive temperature lowering effect
on productivity may apply for cellulose-based and forL-tartar
diamide-based CSPs as well. The effect of lowering the
temperature appears to be specific to each racemate/eluant/
CSP system. The optimum temperature and other optimum
conditions need to be found experimentally. We have shown
that, by systematic experimental planning, one may find an
estimate of optimum conditions in a couple of days.

The enantiomer needs at an early stage of drug develop-
ment may be in the order of 100 g. Chiral chromatography
with a 50 mm diameter column and 1 kg of CSP can produce
the needed batch of pure enantiomers in about 4-100 h,
depending on the separation task, when the operating
conditions are optimized. The basic scale-up of preparative
chromatography is fairly straightforward. The capacity is
linearly related to the cross-sectional area of the stationary
phase bed, provided that the linear flowrate of the eluent

and the load ratio (LR) are kept constant. Dynamic axial
compression (DAC) columns are used for keeping the CSP
under constant compression. They are commercially available
for preparative enantiomer resolutions and can be modified
for cryogenic operation.

For large installations the authors would like to stress the
following safety considerations. Carbon dioxide is heavier
than air. In the case of carbon dioxide leakage from the
chromatography system it may replace air in confined spaces.
Dizziness, fatigue, increased heart rate, and other symptoms
may arise when the concentration of carbon dioxide rises to
2-10%. Exposure to higher concentrations may lead to
unconsciousness or death. Rooms where carbon dioxide is
used in large amounts shall be well ventilated and equipped
with carbon dioxide sensors and alarms.

A comparison with HPLC is available for the resolution
of guaifenesin. Jusforgues5 et al. report a maximum produc-
tivity of 2892 g of injected guaifenesin/kg of CSP/day with
HPLC. Our results with cryogenic carbon dioxide eluent are
more than two times higher (Table 5). Liquid solvent
consumption in the HPLC runs was 160 g of hexane/ethanol
per g of guaifenesin racemate, while in the cryogenic carbon
dioxide system it was 72 g of ethanol per g of racemate.

Received for review June 22, 2005.

OP0501040
(5) Jusforgues, P.; Shaimi, M.; Colin, H.; Colopi. D.Proceedings of SPICA

98; September 23-25, 1998, Strasbourg, France.

Table 5. A comparison of optimum parameter values and maximum productivities of pure enantiomers obtained for the three
studied chiral chromatography cases at lower than ambient temperatures

racemate
chiral

stationary phase
column

size, mm
CO2

modification
temp,

°C
load ratio (LR),

g/kg of CSP
productivity (PR),

g/kg of CSP/d

guaifenesin Chiralcel OD 4.6× 250 30% EtOH 0 9.0 6400
ferulic acid dimer ester Chiralcel OD 4.6× 250 20% EtOH 0 1.9 840
Finrozole1 Kromasil CHI-TBB 10× 250 5% MeOH -30 0.4 250
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helposti mm. happamissa olosuhteissa toisiintumalla eri rakenteeksi. Spirodienonirakenteet selittävät osaltaan ligniinien ns. β-1-rakenteiden 
syntymismekanismeja. Yleisesti ottaen varsinaisen hapettavan kytkentäreaktion jälkeiset sekundääriset reaktiot voivat olla hyvin monimutkaisia ja 
johtaa suureen määrään rakenteellisesti hyvin erilaisia dimeerejä � lignaaneja. Lähtöaineiden rakenteen ja reaktiota katalysoivan entsyymi-
hapetinsysteemin lisäksi pH-vaikutus, liuotinsysteemi, muiden nukleofiilisten reagoivien aineiden vaikutus (nukleofiilisyys, konsentraatiot); 
ja intra- vs. intermolekulaarisen reaktion nopeus välituotteen stabiloitumisessa lopputuotteeksi ovat tärkeitä reaktioparametreja. 

Polymeerisen ligniinimolekyylin syntyessä kytkeytymisreaktion lainalaisuudet ovat osin toisenlaisia, koska tässä reaktiotyypissä � 
polymeroitumisessa � kasvava ligniinimolekyyli reagoi monomeerisen (tai dimeerisen) fenolisen yhdisteen, monolignolin, kanssa. Vallitseva 
selitys lignifikaatiosta, ligniinin syntymisestä, perustuu teoriaan, jonka mukaan tietyistä käytettävissä olevista monomeerisista yhdisteistä, 
monolignoleista, syntyy tiettyjen kombinatoriaalisen kemian lainalaisuuksien mukaan erilaisia ligniinin perusrakenneosia ilman esimerkiksi 
entsyymin ohjaavaa vaikutusta. Syntyvien rakenteiden keskinäinen suhde ligniinissä perustuu pikemminkin reagoivien monolignolien 
rakenne-eroavaisuuksiin (hapetuspotentiaalit, stereoelektroniset tekijät), konsentraatioihin ja syöttönopeuteen ligniinipolymeerin kasvaessa 
hapettavassa kytkentäreaktiossa; sekä erilaisten reaktio-olosuhteiden vaikutukseen. Tässä väitöskirjatyössä syntetisoitu β-1-ristikytkentä-
mekanismilla syntynyt dimeeri on laatuaan ensimmäinen kokeellisesti valmistettu spirodienonirakenteinen dilignoliyhdiste. Rakenteen on 
myöhemmin todennettu esiintyvän yleisesti yhtenä ligniinien perusrakenneosana. Väitöskirjassa on valmistettu myös muita spirodienoni-
tyyppisiä dimeerejä. 

Lisäksi väitöskirjassa on tutkittu monolignoliiin liitetyn kiraalisen substituentin vaikutusta hapettavan kytkentäreaktion enantio-
selektiivisyyteen. Menetelmällä pystyttiin valmistamaan dimeerisiä rakenteita hyvällä enantioselektiivisyydellä. Julkaisu on eräs ensimmäisistä 
maailmassa. Puhtaita enantiomeereja voidaan valmistaa myös käyttäen ns. kiraalisia resoluutiotekniikoita. Tässä työssä tutkittiin ns. 
kiraalisen kromatografian käyttöä puhtaiden enantiomeerien valmistamiseksi raseemisista lignaaneista. 
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