
V
TT P

U
B

LIC
A

TIO
N

S 694
 A

dapting m
odel­based testing to agile contex

t
O

lli­Pekka P
uolitaival

ESPOO 2008 VTT PUBLICATIONS 694

Olli­Pekka Puolitaival

Adapting model­based testing to
agile context

VTT PUBLICATIONS

678 FUSION Yearbook. Association Euratom­Tekes. Annual Report 2007. Eds. by Seppo
Karttunen & Markus Nora. 2008. 136 p. + app. 14 p.

679 Salusjärvi, Laura. Transcriptome and proteome analysis of xylose­metabolising
Saccharomyces cerevisiae. 2008. 103 p. + app. 164 p.

680 Sivonen, Sanna. Domain­specific modelling language and code generator for
developing repository­based Eclipse plug­ins. 2008. 89 p.

681 Kallio, Katri. Tutkimusorganisaation oppiminen kehittävän vaikuttavuusarvioinnin
prosessissa. Osallistujien, johdon ja menetelmän kehittäjän käsityksiä prosessin
aikaansaamasta oppimisesta. 2008. 149 s. + liitt. 8 s.

682 Kurkela, Esa, Simell, Pekka, McKeough, Paterson & Kurkela, Minna. Synteesikaasun
ja puhtaan polttokaasun valmistus. 2008. 54 s. + liitt. 5 s.

683 Hostikka, Simo. Development of fire simulation models for radiative heat transfer
and probabilistic risk assessment. 2008. 103 p. + app. 82 p.

684 Hiltunen, Jussi. Microstructure and superlattice effects on the optical properties
of ferroelectric thin films. 2008. 82 p. + app. 42 p.

685 Miettinen, Tuukka. Resource monitoring and visualization of OSGi­based software
components. 2008. 107 p. + app. 3 p.

686 Hanhijärvi, Antti & Ranta­Maunus, Alpo. Development of strength grading of
timber using combined measurement techniques. Report of the Combigrade­project
– phase 2. 2008. 55 p.

687 Mirianon, Florian, Fortino, Stefania & Toratti, Tomi. A method to model wood by
using ABAQUS finite element software. Part 1. Constitutive model and computa­
tional details. 2008. 51 p.

688 Hirvonen, Mervi. Performance enhancement of small antennas and applications in
RFID. 2008. 45 p. + app. 57 p.

689 Setälä, Harri. Regio­ and stereoselectivity of oxidative coupling reactions of
phenols. Spirodienones as construction units in lignin. 2008. 104 p. + app. 38 p.

690 Mirianon, Florian, Fortino, Stefania & Toratti, Tomi. A method to model wood by
using ABAQUS finite element software. Part 2. Application to dowel type connec­
tions. 2008. 55 p. + app. 3 p.

691 Räty, Tomi. Architectural Improvements for Mobile Ubiquitous Surveillance Sys­
tems. 2008. 106 p. + app. 55 p.

692 Keränen, Kimmo. Photonic module integration based on silicon, ceramic and plastic
technologies. 2008. 101 p. + app.

693 Selinheimo, Emilia. Tyrosinase and laccase as novel crosslinking tools for food
biopolymers. 2008. 114 p. + app. 62 p.

694 Puolitaival, Olli­Pekka. Adapting model­based testing to agile context. 2008. 69
p. + app. 6 p.

ISBN 978­951­38­7119­2 (soft back ed.) ISBN 978­951­38­7120­8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1235­0621 (soft back ed.) ISSN 1455­0849 (URL: http://www.vtt.fi/publications/index.jsp)

Julkaisu on saatavana Publikationen distribueras av This publication is available from

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI­02044 VTT, Finland
Puh. 020 722 4520 Tel. 020 722 4520 Phone internat. + 358 20 722 4520

http://www.vtt.f i http:/ /www.vtt.f i http:/ /www.vtt.f i

Test execution

Test generation

Model

Model­Based
Testing

Agile Process

Requirements Application

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi
http://www.vtt.fi
http://www.vtt.fi

VTT PUBLICATIONS 694

Adapting model-based testing
to agile context

Olli-Pekka Puolitaival

ISBN 978-951-38-7119-2 (soft back ed.)
ISSN 1235-0621 (soft back ed.)

ISBN 978-951-38-7120-8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT 2008

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 3, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvägen 3, PB 1000, 02044 VTT
tel. växel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 3, P.O. Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax + 358 20 722 4374

VTT, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde 020 722 111, faksi 020 722 2320

VTT, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel 020 722 111, fax 020 722 2320

VTT Technical Research Centre of Finland, Kaitoväylä 1, P.O. Box 1100, FI-90571 OULU, Finland
phone internat. +358 20 722 111, fax +358 20 722 2320

Technical editing Leena Ukskoski

Edita Prima Oy, Helsinki 2008

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

 3

Puolitaival, Olli-Pekka. Adapting model-based testing to agile context [Mallipohjaisen testauksen
soveltaminen ketterässä ohjelmistokehityksessä]. Espoo 2008. VTT Publications 694. 69 p. + app. 6 p.

Keywords software testing, testing automation, software developing

Abstract

This study concentrates on model-based testing in agile software developing
context. Model-based testing is a software testing technique in which tests are
generated from a model. Test can be executed separately later or in motion
during the generation. Special focus is placed on examining the adaptability of
model-based testing to agile software developing context.

The purposes of this study were to find guidelines for model-based testing tool
selection and to evaluate most suitable tool in agile context in case study. First
was performed literature survey, where found criteria for model-based testing
tools selection. Based on literature survey, was analyzed available tools
carefully. Based on literature review and evaluation was made a collection of
guidelines for tool selection and selected one tool for case study.

The case study aims to evaluate model-based testing suitability for agile
developing project. This case study had two purposes: the first goal was to
present model-based testing usage in agile process, and the second goal was to
evaluate model-based testing suitability in agile context. Based on empirical
findings, it was concluded that model-based testing can be performed in agile
process.

 4

Puolitaival, Olli-Pekka. Adapting model-based testing to agile context [Mallipohjaisen testauksen
soveltaminen ketterässä ohjelmistokehityksessä]. Espoo 2008. VTT Publications 694. 69 s. + liitt. 6 s.

Avainsanat software testing, testing automation, software developing

Tiivistelmä

Tässä työssä käsitellään mallipohjaista testausta ketterässä ohjelmistokehitys-
ympäristössä. Mallipohjaisella testauksella tarkoitetaan tekniikkaa, jossa mallista
tuotetaan testejä. Testit voidaan ajaa myöhemmin erikseen tai testata ohjelmaa
sitä mukaa, kun testejä generoidaan. Työssä keskitytään tutkimaan mallipohjaisen
ohjelmoinnin soveltuvuutta ketterään ohjelmistokehitykseen.

Työn tarkoituksena oli sekä etsiä suuntaviivoja mallipohjaisen testaustyökalun
valintaan että tehdä tapaustutkimus parhaaksi valitun työkalun käytöstä ketterässä
projektissa. Ensiksi suoritettiin kirjallisuuskatsaus, jossa etsittiin kriteerejä malli-
pohjaisten testaustyökalujen valintaan. Kirjallisuuskatsauksen perusteella analysoitiin
saatavilla olevat olennaisimmat mallipohjaiset työkalut huolellisesti. Analyysin
ja kirjallisuuskatsauksen perusteella tehtiin kokoelma suuntaviivoja mallipohjaisen
työkalun valinnan tueksi ja valittiin yksi työkalu tapaustutkimusta varten.

Tapaustutkimuksen tarkoitus oli arvioida mallipohjaisen testauksen soveltuvuutta
ketterään ohjelmistokehitykseen. Arvioinnilla oli kaksi päämäärää: kuvata malli-
pohjaisen testauksen käyttöä käytännössä ketterässä projektissa sekä ar-vioida
mallipohjaisen testauksen soveltuvuutta tähän ympäristöön. Tapaustutkimuksen
perusteella ketterässä ohjelmistokehitysprosessissa voidaan tehdä mallipohjaista
testausta.

 5

Preface

This thesis was carried out as a part of the RITA (Rapid, Iterative, model driven
Testing in Agile context) project at VTT Technical Research Centre of Finland
in the group of Software Platforms 2007.

I would like to express my gratitude to all of those people helping and
supporting me with this work. I would especially like to thanks Tienoo project
members and MR. Teemu Kanstren for giving me the opportunity to conduct
this thesis.

I would like to thank my supervisor at the University of Oulu, Professor Juha
Röning and Janne Haverinen, for comments, suggestions, and having the time to
review this work. Finally, I would like to acknowledge the important role my
parents and sisters played as they encouraged and supported me with my studies
and work.

Oulu 10.9.2008

Olli-Pekka Puolitaival

 6

Contents

Abstract ... 3

Tiivistelmä .. 4

Preface .. 5

Acronyms and abbreviations... 8

1. Introduction... 10

2. Agile software development ... 12
2.1 Agile overview .. 12
2.2 Testing in agile process ... 14
2.3 Mobile-D� ... 14

2.3.1 Overview... 15
2.3.2 Implementation process .. 17

3. Model-based testing.. 20
3.1 Online vs. offline MBT approach.. 21

3.1.1 Offline model-based testing .. 21
3.1.2 Online model-based testing... 23

3.2 Modelling .. 25
3.3 Test generation .. 28
3.4 Making tests executable .. 31
3.5 Test execution and reporting ... 32
3.6 Reusability... 33

4. Model-based testing in agile context .. 35

5. Model-based testing tool selection ... 38
5.1 Overview of existing tools... 38
5.2 LEIRIOS Test Designer .. 39
5.3 Markov Test Logic .. 40
5.4 Conformiq Qtronic .. 41
5.5 Reactis ... 42
5.6 Spec Explorer .. 43
5.7 Guidelines for selection ... 44

 7

6. Case study: Tienoo ... 47
6.1 Introduction ... 47
6.2 Developing process ... 48
6.3 Tienoo software features ... 50
6.4 System implementation ... 51
6.5 Testing system... 53

6.5.1 Modelling .. 54
6.5.2 Making tests executable .. 56
6.5.3 Tests generation and execution ... 58

7. Analysis of results... 60
7.1 Does model-based testing fit in agile iteration? 61
7.2 Model-based testing vs. script based testing in agile process.............. 62
7.3 Summary ... 63

8. Conclusions... 64

Appendices

Appendix 1: Tienoo system features

Appendix 2: Mobile-D� developing iteration

Appendix 3: JWebUnit user interface

Appendix 4: Conformiq Qtronic Modeler figures: TienooCore and TienooDatabase

Appendix 5: Conformiq Qtronic Modeler figures: TienooServer.ServerMobileSide

8

Acronyms and abbreviations

API Application Programming Interface

CQ Confomiq Qtronic, a model-based testing tool

DSM Domain Specific Modelling

FACMA Mobile Facility Management Services, a project in VTT

FSM Finite State Machine

GPS Global Position System

HTML Hypertext Mark-up Language

HTTP Hypertext Transfer Protocol

JML Java Modelling Language

JSP Java Server Pages

J2ME Java 2 Platform, Micro Edition

JUnit A unit testing framework for the Java programming language

JWebUnit A Java-based framework for testing web applications

LTD LEIRIOS Test Designer, a model-based testing tool

MaTeLo Markov Chain Logic, a model-based testing tool

MBT Model-based testing

Mobile-D� Agile method made by VTT

 9

NFC Near Field Communication

OCL Object Constraint Language

PIW Post Iteration Workshop

QML Qtronic Modelling Language

RFID Radio Frequency Identification

RITA Rapid Iterative model driven Testing in Agile context, strategic
project of VTT

SUT System Under Testing

Spec# Spec Explorer using language for describing system features

SVN Subversion

TDD Test Driven Development

TTCN-3 Testing and Test Control Notation, version 3

UML Unified Modelling Language

VTT Technical Research Centre of Finland

XML Extensible Mark-up Language

XP Extreme Programming

10

1. Introduction

Already in the 1960�s software developing processes were in crisis [1]. Projects
were late, too expensive and the necessary quality was lacking. Attempts to
solve those problems were made via several large software developing process
models. Early on those proved to be too complex and maintenance-intensive.
First of all the processes were too inflexible. In reality, the customer is
continuously changing requirements and those changes cause problems and
increase workloads. Nowadays these problems still exist and they are even
worse than before. The importance of software is growing all the time and the
problems related to software developing processes have become everyday
phenomena. Agile methods constitute the latest solution for solving software
process problems. While the Agile framework cannot solve all the problems, it
provides a framework that improves the possibilities for successfully completing
software projects. Agile methods have been taken into use with great success in
industry. One pilot project has already reported a 70% cost saving. [2]

The development of software developing methods has posed challenges for
software testing as part of software quality verification. There have been
numerous attempts to improve software quality verification in several ways,
which have been variously tested in history. The first way of performing testing
was manual testing, which is still widely used. Manual testing proved, however,
to be expensive, when the same tests were made several times. Capture and
replay testing has been done to reduce the cost of test re-execution by capturing
the manually run test and running it again. The maintenance of capture and
replay testing was, however, costly because after every small change in the
system�s external behaviour the whole test had to be captured again from the
beginning. Capture and replay tools are still used for testing some graphical
programs but are no longer widely in use. The next attempt for raising test
automation and reducing the effort around the test process was script-based
testing. Scripts are able to run whenever required and this made it possible to
perform full-automated execution. In practise, test scripts have grown almost as
big as the whole program and the size produced maintenance problems. Data-
driven testing, table-driven testing, action word testing and keyword-driven
testing have tried to solve the maintenance problem by raising the abstraction
level of test cases. Model-based testing is the latest solution to solve software-

 11

testing problems. Model-based testing does not solve the entire problem but it
aims to solve the automation of design functional test cases, reduce maintenance
costs and automatically generate a traceability matrix. [3]

MBT has demonstrated various advantages and yielded good results in the
research community and industrial case studies [4�8]. Despite the success of
studies, model-based testing is not considered as widely accepted practice within
industries. Thus, the adaptation of MBT has been slower than expected. Based
on our experiments, the main reasons today could be a lack of knowledge of
model-based tool selection and the finding of good practices.

Adoption processes for software testing automation are difficult and most of the
time result in failure. MBT is not exception. The applied field of MBT for
commercially available and applicable tools is fragmented, resulting in
difficulties finding a suitable tool that fits in the testing domain and the system
under testing (SUT). Another reason appears to be that several MBT evaluations
are mostly performed by researchers using their own chosen tools within a
narrow context in certain projects. However, there is lack of adequate guidelines
for the selection and usage of MBT tools in different projects and processes.
MBT algorithms and theory are well described in several places but there is no
guideline for making them in practise. In this thesis the author aims to help MBT
adoption for industrial use by providing guidelines for MBT tool selection,
evaluation descriptions of most suitable MBT tools and presenting a case study
for the adoption of MBT in an Agile context.

 12

2. Agile software development

Agile software development methods are the latest attempt to solve changing
requirements, exceeded time limits and quality deficiencies in software
development. Agile methods have shown good results in a number of case
studies and their adoption seems to be on the increase. This chapter describes the
background to agile methods and Mobile-D�.

2.1 Agile overview

Agile software development methods provide fundamental practices and
principles. Agile is an iterative process at the heart of which is a self-organizing
team. Agile processes are not possible to copy straight from team to team. Agile
is high-level framework and thus the team has to find out its own best practices
to work in the agile way.

During the 1990�s various so-called lightweight software development methods
came into being. These lightweight methods have been the base for agile
methods. The true �Agile Movement� in the software industry came into being
in 2001 when 17 lightweight methods specialists gathered in Utah. They
discussed the commonalities of their methods. They developed the agile concept
and wrote an agile manifesto to describe the main elements. The manifesto was
written as follows.

�Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it and helping
others to do it. Through this work, we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items
on the left more.� [9]

 13

�Individuals and interactions over processes and tools� signify that human roles
are the most value thing. Hence, the process is adapted for people as well as
possible. This can be seen for example, in the concept that overtime working is
not well advised. Agile methods emphasize interaction and collaboration
between team members. Discussion is a more comfortable and effective way to
communicate for people than reading text and writing. Collaboration means
really to do the same thing together. In this way more members know things
collectively and the one person lacking in that knowledge is no barrier to
developing ideas further. [10]

�Working software over comprehensive documentation,� means focusing on the
software features realization. Documents are not worthless but the main purpose
of the developer team is to produce working software. Team member knowledge
is more important than the details in a document. This way they can focus on
system development. Only the required documents are written. [10]

�Customer collaboration over contract negotiation� means iterative development
and collaboration with a customer instead of making a plan before the project
and following that to the end. In practice, the development process is divided
into small iterations. After each iteration, the working application is demonstrated
to the customer and the customers then say what will be implemented in the next
iteration. When the customer sees the application it is easier to say what is
wrong than plan everything before the project. During the iteration, the situation
is stable, because changes can be made only between iterations. The duration of
an iteration can be from one to six weeks. [10]

�Responding to change over following a plan� is has to do with Problems with
changing requirements. The traditional software process is based on requirements
that are given at the beginning of process. Everything is based on these
requirements and changes that are made are costly. In practice, these
requirements are changing all the time. Agile software developing methods are
based on the logic that everything is changing during the process. The agile
process is like doing small projects, which are described as iterations.
Everything can be changed between iterations. In fact, changes are seen as good
thing. The customer does not have good vision of product at the beginning.
During the agile process, the customer is given every possibility to define his

 14

needs with greater clarity. In this way it is possible to develop more favourable
client relations. [10]

2.2 Testing in agile process

Agile processes mostly define positive unit testing. Agile methods usually bind
the testing as part of the development tasks. The developer writes the code and a
couple of positive test cases, which test the ideal use case. The tests have to be
written before the task can be finished. Written tests are set as part of a
regression test suite. The regression suite has to be successfully run, before the
code is committed for common version control. This way, developers can be
more assured that the new code is not broken.

Test-driven development (TDD) means writing tests before the code [10]. When
an engineer employs TDD, he/she writes one or more positive tests before
implementing the code. Test writing is like planning the code part of external
behaviour. It is natural to do planning first and then continue with implementation.
TDD ensures that tests are really written and the regression test suite exists.
TDD is an original XP method, but it has been used widely.

2.3 Mobile-D�

Mobile-D� is a process model for agile development [11]. Mobile-D� is not
exactly determined. Therefore, every team conducts it slightly differently In this
chapter our style of performing Mobile-D� is presented and developed into a
case study (see chapter 5).

Mobile-D� is an agile method, which was empirically composed over a series of
software development projects in 2003�2006 [12]. The method is based on a
two-month production rhythm, which is divided into five sub phases. Each of the
sub phases takes from one to two weeks. These phases are called setup, core
functionality one, core functionality two, stabilize and wrap-up & release.
Mobile-D� adopts most of the Extreme Programming practices, Scrum
management practices and Rational Unified Process phases for lifecycle coverage.
The method is described in pattern format and can be downloaded from [13].

 15

Figure 1. Mobile-D� working process [13].

2.3.1 Overview

The Mobile-D� working phases are presented in Figure 1 and described below [13]:

• Explore phase practically means establishing project environmental
dependencies. That includes establishment of stakeholders, scope defining
and project establishment. Stakeholders are customer interest groups and
other people who are interested in the project. When the stakeholders
group is established it is possible to create initial versions of a requirement
collection and a project plan. Those determine the high-level purpose of
the project. Then the environment can be selected, personnel allocated,
the architecture line defined and the process established.

• Initialize phase or zero iteration means establishing project set-up. In
this phase, the developing team starts its work. They build up a developing
environment and make architecture planning. At the end of this phase
everything is ready for the first developing iteration. The most important
things are set-up, the physical and technical resources for the project as
well as the environment for project monitoring, training the project team
up to the needed level and establishing project specific ways to
communicate with customers. Mobile-D� is a general framework and
does not give a description for environment set-up or team training. It is
important to establish customer communication so that both the
customer and the developer team get the necessary information fast
enough, in an appropriate manner and in a useful format.

• Core-1 and Core-2 develop iterations. The core phase�s purpose is to
implement the required functionality from sprint backlog to the final
product. Iteration is two weeks long and consists of one planning day,

 16

eight working days and one release day. Implementation iteration phases
are described more specifically in chapter 3.3.2.

• Stabilize phase is an iteration, which aims to integrate subsystems
into a single product. Big software normally consists of small parts.
These parts are collected together in stabilize phase.

• System test & fix is the last phase of Mobile-D�. The purpose of this
phase is to make more tests, fix faults and produce documentation. The
product quality has to be adequate and software without documentation
is unusable. Source code is not enough for communicating the
software�s features, structures and so on. Documents will be produced
for project stakeholders and not for the agile team.

Figure 2. Task Master.

All agile methods handle tasks almost the same way at a high level. Every
method has its own practises for task handling at a lower level. Mobile-D� uses
Taskmaster. Taskmaster is a tool for task position management and presents the
information of the iteration�s current condition. That information is highly useful
for team members and interest group members. Taskmaster is described in

 17

Figure 2 [13]. Taskmaster includes five columns the meanings of which are
described below.

• Backlog state is for stories that are selected for implementation in the
current iteration. Stories typically mean program features. Stories are
divided into tasks. The last four states visually describe the tasks state in
developing.

• Defined state is the starting state for tasks. When an engineer begins a
task he or she is moving that from the defined phase to the started
column. This way everyone else knows that someone is implementing
that task. The advantages are that people are not doing the same thing
and know better the situation of the iteration.

• Done state means that the code is written, but also that positive unit
tests have been successfully run.

• Verified state means that the test engineer has verified the task. The test
engineer checks that all the tests have been made and completely run.

2.3.2 Implementation process

The Roles inside an agile developing team are considered different from
traditional software developing methods. Traditionally, team members have had
specific roles. Traditionally thinking suggests lead team members specialization.
Testers only test the program and developers implement code. This thinking has
led to a situation where developers have specialized in some part of the code and
they alone have been able to develop that part. When the person in question
changes company or has been unable to work, that part of the program�s
developing has stopped. The purpose of agile methods is to share knowledge
through the team. This approach makes it possible for everyone in the team to
develop every part of the code. Consequently everyone has wider skills and
knowledge and development does not stop when one person from the team is
absent. Members also have a better picture of the whole and can help each other
work with several decision processes at a time. [13]

Mobile-D� has no roles but it does have responsibilities. Roles are more
binding to persons than responsibilities. With a role, the person is doing things

 18

that belong to his/her role. With responsibility, the person must take care that all
things are performed that belong to his/her area of responsibility, and the person
must do those him/herself. Responsibility is similar to the supervisor�s role.
Mobile-D� traditionally uses developing role names for naming responsibility
areas, because these are easier to adapt. Mobile-D� responsibilities are for
example: Team Leader, Tester, Metrics, Architecture, and Quality Engineer.
Mobile-D� directs the team towards self-organizing. Therefore, responsibilities
are not needed before the project, but those can be set continuously during the
project when some responsibility is needed. Self-organizing means also actively
searching out better practices and developing the process.

The Mobile-D� core phase�s iterations consist of three parts these being: planning
day, working days and release day. These parts are described in Appendix 2 and
more below [13]:

• Planning day: All iterations start from a planning day. During the
planning day the purpose is to select and plan the work contents for the
next iteration. The customer participates actively and ensures that the
requirements provide the most business value, are identified and that
those requirements are correctly understood. At the beginning of the day
the requirements are analysed. The purpose of the requirement analysis
is to analyze, determine priorities and select carefully requirements for
each iteration in collaboration with the customer. After this, we have a
prioritized product backlog for at least the next iteration. The product
backlog is used for iteration planning to share features in stories and
stories to tasks and evaluate those efforts. Te evaluated implementation
time is written in the task card. Later the real implementation time will
be written also, so it is easy to judge the accuracy of the evaluation.

• Working day: The working day is normally started as a wrap-up. A
wrap-up is briefly an informal daily meeting for increasing awareness
and process control. The purpose of the daily wrap-up is to share
knowledge among the developing team. Everyone says what he or she
requires other people to know. The team can find their own best way to
keep wrap-ups. Scrum daily meeting questions can be used for helping
members to notice wrap-up idea. Some typical scrum daily meeting
questions are presented below.

 19

1. What I have done since the last meeting?

2. What am I going to do before the next meeting?

3. What impediments do I have?

The wrap-up can be kept daily or every second morning. The e time
taken and its intensity is the team�s own decision. Mobile-D� strongly
recommends pair programming, continuous integration and refactoring
during implementation. Pair programming means that two persons are
coding the same code at the same time. The purpose of pair programming
is to improve communication, enhance process fidelity and spread
knowledge within the team, and ensure quality of the code. Continuous
integration of new code with the existing code in the code repository
facilitates control over the constant change of software. Refactoring is
improving existing code without modifying its external behaviour.
Refactoring makes software more modifiable, extendable and readable.
In the agile process all attempts are made to keep the process
transparent. Transparency means team internal communication as well
as providing an honest view of progress to the customer. When the
customer is conscious of the process situation, he/she can give feedback
on implemented features and guide development.

• Release day: Release day starts with testing and then continues with
release ceremonies and finishes with a post iteration workshop. On the
morning of the release day, the system is integrated and built-up, so it is
a good time to check the quality in testing. Release day tests normally
consist of acceptance testing, because the main goal is to ensure that
customer-specified features are implemented correctly. The release
ceremonies aim to present features for the customer. The customer tests
the product him/herself and gives feedback. All realized bugs are written
into the bug list and are fixed at the beginning of the next iteration.
Development proposals are logged and the customer can use those in the
next iteration backend.

 20

3. Model-based testing

Model-based testing term is used for a wide variety of test generation
techniques. In this thesis, MBT is defined as follows. Model-based testing is one
particular type of software testing technique in which test cases are generated
automatically from a model, which describe the behaviour of the system under
testing from the perspective of testing. The model normally consists of states,
triggers and expected outputs. The model describes the system�s requirements
for a test generator. The test generator generates a test suite automatically from
the model. Tests fail when the expected behaviour based on the model is not
equal with SUT behaviours. [3]

The main advantages of using MBT are: 1) Less faults in test cases because test
generation is automated via sophisticated algorithms and there are no human
faults in test cases. Human faults can still be found in the model, but those are
easier to see. 2) The quality of the test suite for complex systems is better,
because generation is made via sophisticated algorithms and there is no human
limitation for designing different tests. 3) A number of faults will be found
earlier, already in the modelling phase. The test model is at a higher abstraction
level than the design model and therefore faults are made visible. 4) Non
deterministic system testing and infinite test suites are possible with the online
MBT approach. [3]

MBT has had slow adoption for industrial use. One reason is that MBT differs so
much from other testing styles. MBT is software testing system development
and neither test case writing nor execution as testing is seen normally. Therefore
an MBT engineer must be a technical person. Normally, testers are non-technical
and are unable to perform MBT successfully. Often testing is required to be
immediately ready for use and MBT needs some preparation before using it.
Additionally, the software industry has had a lack of MBT knowledge and
metrics are not directly compatible with MBT. [14]

 21

3.1 Online vs. offline MBT approach

The MBT can be divided into two different categories; online and offline testing.
Offline testing signifies test suite generating from the model and its later execution.
The export format of generated test cases depends on the used execution tool,
and can be, for example a test script. In the online test generation approach, tests
are generated and executed in motion. With online testing, it is possible to react
to continual changes, and make autonomous decisions. This makes it possible to
test non-deterministic systems and run infinite test suites [15, 16]. A comparison
of online MBT with offline MBT is presented in Figure 3 [3, 17]

Figure 3. Online vs. offline MBT approach.

3.1.1 Offline model-based testing

Offline MBT means automated test suite generation from a given model and
tests execution separately. Offline MBT testing process is described in Figure 4.
The target system�s behaviour is described in an informal requirements
document. A model for test generation is made from the requirement
specification. The model is imported to the test generator. The test generator
generates test suites from the model with test requirements. Test requirements

 22

guide the generator to make the required kind of test cases. Requirements are for
example, coverage criteria or targets in the model. The generated test suite is
entered to a test executor. The test executor runs test cases against the SUT and
makes a report from the results. The executor is usually an external tool. This
chapter is based on [18].

Report

Model

Offline
MBT tool

Test
requirements

Test
executor

Test suite

System
requirements

SUT

Figure 4. Offline model-based testing process.

The main advantages of the Offline MBT approach are 1) automatically generated
test cases, 2) easier adaptation for program changes, 3) good adaptability for
existing tool chain and 4) adaptation layer reuse.

Automatically generated test cases save efforts and increase the quality of the
test suites. Model-based test generation is done using several test generation
algorithms and strategies. These algorithms and strategies generate better test
suite quality for complex systems than human can do. When the machine makes
tests there are no human errors. Humans can introduce faults to the model, but
the model is set at a high abstraction level and so it is easier to see faults.

Offline MBT test suites can be stored and run anytime without regenerating the
test suite. Therefore, it is possible to use the generated test suite for regression

 23

testing. When the program changes one only needs to change the model and
regenerate a test suite.

Offline MBT is able to be adapted as part of a tool chain. Typically, program-
developing companies are familiar with a modelling tool because they use them
for developing. Mature MBT tools allow for the import of third party models
and thus it is possible to use an already familiar modelling tool for MBT. Often,
companies make a test execution platform for manually written test cases.
Offline MBT tools can generate tests in different formats. Therefore, the
generated test can be used on the existing test execution platform. These features
make it possible to adapt offline MBT in an existing tool chain. Online MBT
cannot normally be adapted for an existing test execution platform. The reason
for this is that it is more difficult because the test must be executed in motion
and MBT could receive the output value.

An Offline MBT generator generates abstract test cases, which have to be made
executable before running. Making such executable is normally performed so
that the generation tool writes tests in a format acceptable to the execution tool
and the test execution tool then runs tests against SUT. Therefore tests are made
executable partly in generator and partly in executor. The main thing is that
performed test executions can be fully reused in the same test execution
platform.

3.1.2 Online model-based testing

Online MBT means easily automatic test suite running against SUT, so that the
next test step is generated when the previous test is executed and a response
value has received. Online MBT is seen as a game between the MBT tool and
the SUT. The Online MBT process is described in Figure 5. [17]

The Online MBT process starts in the same way as offline. The high abstraction
model is created based on program requirements. Then the model and test
requirements are imported to the MBT tool. In online MBT, a test generator and
an executor are found in the same tool, because of the possibility to make tests
generation and execution in motion.

 24

Test requirements include lighter algorithms than the offline approach. In the
online approach, the test requirements mean normally walking algorithms.
Walking algorithms used for test generation are useful when a long time test
session is performed. Before online MBT can be started, the adaptation layer has
to be implemented. The online adaptation layer joins the SUT and MBT tester
together. When the model for testing is imported, test requirements are defined
and the adaptation layer is implemented, it is possible to start the test. The online
MBT tool is tested continuously in motion, which means forwarding one-step in
the model, running that step immediately in the SUT and analysing the results. If
the value differs from what it is expected, based on the model, the test fails.

System
requirements

Model

Report

Test
requirements

Adapter

SUT

Online MBT
tool

Figure 5. Online model-based testing process.

Compared to the offline approach, the main advantages of online MBT are
running infinite test suites and testing non deterministic systems. The online
model-based testing approach is connected directly and continuously to the model
and this makes it possible to react continuously to changes and perform
autonomous decision-making. Therefore, testing of non-deterministic systems is
possible. By using online testing, it is possible also to make the testing session as
long as required, or until the program crashes. This is especially useful when
there is a need to test for example, memory leaks over a long period. [18]

 25

The online tool can also write log and that can be used as a document. The log
can be used also later to run the same test suite again.

Compared to online testing the biggest difference with offline testing is the delay
between test generation and execution. Both of those automatically provide test
generation and validation based on an abstract model. That means saving efforts
in test writing, test suite maintenance and test suite adaptability for changes. The
offline approach is easier to adapt in existing software developing because of
this independent test suite generation and execution. This makes it possible to
use the existing test execution platform. Online testing has a bigger gap for the
normal testing process because of simultaneous test designing and execution.
Therefore, the adaptability for existing tool chains is more problematic and this
may be a reason why the online approach has been less adopted for industrial
use. [3]

3.2 Modelling

In MBT, the model presents system requirements for the test generator. The
system requirements are normally presented in an informal document. The test
engineer translates the requirement document wholly or partly in test model
format. The model is the only knowledge of the system that the test generator
has. Modelling strongly affects the required amount of effort and quality of tests.

A number of cases prove that the modelling phase determines almost as much
faults as test running. This is possible because test requirements form an
informal document and from this it is harder to see crosswise requirements,
which are not possible at the same time. When the system is modelled at a high
level, these conflicts become visible and can be fixed. Humans can also see
faults more easily from a high-level model than from requirement documentation.
[3, pp. 59�106]

 26

Figure 6. Abstraction level.

The first step in modelling is to choose what to model and from which aspect.
Modelling can be started from small part of the SUT and then built up step by
step. There is no need to model everything before starting the test. It is also
important to select a good level of abstraction. That means deciding how many
details are included in the model. The abstraction stage is described in Figure 6.
The model is used only for testing. To be efficient, the model must be much
simpler than the full implementation model. Often, it is more practical to make
several smaller models for individual components. Then the system level testing
model can be simpler. To be useful for test automation, the model has to include
excepted output data. Because of the inclusion of expected output data to the
model, it is possible to compare output and expected output. That enables
automatic faults detection, also known as oracle. [19]

The model for MBT describes SUT behaviour. Modelling can be made from two
different aspects: test model or design model aspect. A test model aspect is a
description of the SUT environment and a design model aspect is a description
of the SUT itself. In a server client system when the server is the SUT, the test
model is a description of the client and the design model is a description of the
server as is described in Figure 7. The test model can be seen as a mirror image
of the design model. Therefore, the test model�s input value is the same as the
design model�s output value. These are equal approaches from the test generation
viewpoint. Design model aspect usage provides possibilities for reuse models,
which are made for the software developing purpose. [19; 3, pp. 59�106]

 27

Figure 7. Modelling aspects for MBT.

Modelling notation has a strong influence on modelling efforts. The model
describes system behaviour. Therefore, if the notation is more effective for
modelling the domain of the SUT, it saves efforts. The model notation�s domain
means the area and which kinds of systems can be modelled with that.
Generally, narrower domain notations are more efficient. Very narrow notations
are called domain specific modelling (DSM). Actually, DSM means making a
new notation for every single system. DSM notations are most efficient for
modelling because those are performed for describing the current domain�s
problem, rather than describing all possible domains. DSM is used in MBT for
embedded software. Usually, generic notations are not so effective in any single
case but enable the modelling of almost everything. At present, general
modelling notations are most used in MBT. [17]

Several notations that are currently used in MBT (i.e. UML) are made originally
for software system design rather than for software testing. Therefore, these
modelling languages are not native for testing. Test-specific languages such as
TTCN-3 are better for modelling efficiently and testing purposes. Implementation
oriented modelling languages have been the natural selection because of the test
engineering familiarity stage. This can be seen also as a reason for increasing
usage of design models in MBT tools. [17]

 28

At present in MBT, most used model notations types are pre/post models and
transition based models. Pre/post models consist of operations that have
precondition and post condition. These are used design modelling most
popularly. Examples of such notation include UML+OCL, B notation, Spec#
and java modelling language (JML). Pre/post models are best for data-oriented
modelling. Transition-based notations are models that usually include nodes and
transitions like finite state machine (FSM). Examples of these are UML state
flow, Simulink Stateflow charts and Markov Chain models. These are best for
modelling control-oriented systems. These kinds of models have problems for
including data knowledge. Sometimes these are extended with some
programming language for presenting data. There are several more classes of
modelling notations. These two are most essential to this work and therefore
others are not presented here. Further reading on this subject can be found from
[3, pp. 59�106].

Model validation is important because there may be human faults. Usually, the
MBT tester checks the format correctness but also checks logical impossibilities.
Logical impossibilities can be for example: unreachable states or a transition that
does not have a target. From a complex model it is hard to see if it does not fit
the system requirement correctly. Various MBT tools are available for providing
test cases visualization in sequence diagram format, and for facilitating manual
validation. From a sequence diagram is easy to see the correctness of generated
test cases. If test cases can be demonstrated to be impossible, the model is not
correct. When the model takes the form of a concrete design model, it is possible
to animate it. �Animate� here means for example, running the model systematically.
Then the variables values tell if it works correctly. Validation methods help
model error detection before the test suite is generated, and reduce faults in test
cases. [15]

3.3 Test generation

The main benefit of MBT is automatic test generation. Automatic test generation
requires a description of the system and test requirements. A description of the
SUT is the model and test requirements guide the test generation. Via sophisticated
test requirements, it is possible make more efficient test suites and the generation
can be faster. The collections of test generation guiding algorithms vary a lot in

 29

tools. A great number of algorithms is, however, not always beneficial. This
chapter is concerned with how to facilitate MBT tool selection for describing the
test requirements. Test requirements can be divided into three main categories:
coverage criteria, targets and walking techniques. [3, pp. 110�138]

Coverage criteria show how well a generated test suite fulfils the model.
Coverage criteria are mostly used in offline MBT, because it is not so time
critical compared with online MBT. Some tools also use coverage guidance for
online MBT.

Coverage criteria used for test generation guiding mean that the test generator
tries to cover given criteria as well as possible. Most coverage criteria algorithms
and terms are adopted from white box testing where those mean code covering.
In MBT, the coverage criteria mean how well a generated test suite covers the
model. Therefore, in MBT, 100 percent coverage does not mean that code is 100
percent tested. 100 percent coverage means only that there is a generated test
suite, the tests of which cover 100 percent of the model from a selected criteria
aspect. [3, pp. 110�138]

There are several different kinds of coverage criteria. Presented below are five
examples but more can be found:

• State coverage criteria measure how well a generated test suite covers
model states. 100 percent state coverage means that at each state of the
model is tested at least in one test of the test suite. This is one of the
most used coverage criteria.

• Transition coverage means the model transitions covered in the test
suite. Using this method it is useful to know how the tool handles two-way
transitions. Two-way transitions can be required to test both directions
or just one direction to be covered.

• Boundary value analysis makes tests that are near by value boundaries.
Typically, every boundary is tested with three tests: one below, one equally
and one over value. This can find errors when value boundaries are not
well implemented.

• Branch coverage means covering model branches. All branches are covered
when a test suite has at least one test suite for each branch.

 30

• Most probable route covers the route, the probability of which is highest.
This requires probability numbers in the model.

Targets are points in the model. A target is fulfilled, when a test is generated
which passes the target. This is mostly used for offline MBT because it needs a
lot of calculation power. The targets are good for making a small set of test cases
or one particular test case. Targets are described also as requirements, because a
target can be used for determining requirements in test cases. Targets placed in
the model give good traceability. Several tools use a traceability matrix from
which it is easy to see that which targets are tested in which test case. [3, pp.
110�138]

Walking techniques determine how the test generator walks through the model
during the test generation. These are not normally used for offline testing
because other guidance algorithms provide a better quality of test cases. These
can be used in offline testing as a couple of other tools are doing. Added to this,
MBT walking techniques are widely used in online because they are lightweight.
With online MBT it is possible to perform non-deterministic testing and infinite
test suites. In those cases is impossible to build searches because of its infinite
size. Therefore, online MBT testing can be guided well with walking techniques,
especially in very long test suites. Good examples are random walking, coverage
guided and with probability numbers. Random walking is just randomly walking
through the model. Coverage guided means trying to fulfil coverage criteria
better than random walking. That means small searches maintained during the
testing process and promoting coverage criteria fulfilling. Probability numbers
can be used at least in two ways. First, one is to set static probability numbers
for transitions and walking so that a higher probability number means taking that
step. The second one is to use variable probability numbers so that every step
taken decreases the current transition probability. This leads in the long run to
wider coverage while the same route has a lower priority as the new one. [20; 3,
pp. 110�138]

Time limits do not guide the test generation. Time limits are important for testing
time-limited features. In online testing, time limits often means a response
waiting time or test generation time. In offline MBT, time limits are included in
exported test script. Then the test executor knows the time limits from the script.

 31

Presented next is the most important thing about test generation in MBT based
on our investigations. Tools provide much more features, but we determined
those to be less important. Extra features can be found from tools user manuals.
In summary, better test generation guiding makes more effective and test suites
better fitted for their purpose. More is not always better with test requirements.
The necessary test generation requirements are case-specific.

3.4 Making tests executable

When a test suite is automatically generated, is almost useful to increase the
testing automation stage as automating tests execution. Generated tests are set at
high abstraction state as the model for testing because the model is the only
information from the SUT that the test generator has. Tests have to concretized
before they cam be run against the SUT. Concretization is performed in the
adaptation layer. [3, pp. 283�305]

The adaptation layer maps the MBT tool for the system under testing. The layer
can consist of a single component, or a chain of components. Three different
ways for implementing the adaptation layer are described in Figure 8.

The offline MBT approach generates an abstract test suite and does not directly
take care of test execution. Case B is the normally used high-level structure of
offline testing adaptation layer. In such a case high-level test script is exported
and that is separately executed on the test execution platform. In case C, the
exported test script is executable. That normally means that the MBT tested has
some adapter inside, which includes the concretization knowledge. This is a
possible solution with domain-specific tools. These are only three high level
examples and in practice, there are countless variations of the adaptation layer
structure. [3, pp. 283�305]

 32

Adapter

MBT tool MBT tool

SUTSUT

Executable
test script

Test
script

MBT tool

SUT

Adapter

A B C

Figure 8. Adaptation layer [3].

The online MBT approach needs a continual two-way connection between the
MBT tool and SUT. Then the adaptation layer could be a single adapter as in
case A in Figure 8. The adapter may consist of several parts but it must be able
to work faster than the offline adaptation layer. [21; 22; 3, pp. 283�305]

3.5 Test execution and reporting

System developers implement one interpretation of the system requirements.
The MBT test engineer models the other interpretation. Test running tests
whether these two interpretations match.

Usually, the offline MBT technique does not consider test execution. It exports
the generated test suite in a determined format. It is possible to include a test
executor in offline MBT tool but we could not find any example. Exported test
suite execution styles vary from manual to fully automatic. Because the offline
MBT tool does not execute tests, it does not have information of test success.
Therefore, the offline MBT tool is unable to write reports. An MBT tool can
write some reports describing the content of a test suite but test execution
reporting is the test execution platform�s task.

Online MBT also runs tests. Test execution takes place through the adapter.
Thus, the adapter takes care that test information is transmitted to the right input

 33

interface of SUT and the output data from the SUT is received. The online MBT
tester is also suitable for test result analysis. Therefore, it can write test reports
and export them.

3.6 Reusability

Reusability is always an interesting issue in software area because it can save so
much effort. Reusability in MBT can be divided into three main aspects:
implementation purpose model reusing in MBT, MBT model reusing and
adapter layer reusing.

Model for
implementation

Model for
model based testing

Code

System
under
testing

MBT tool

Implement

Compile

Testing

Importing

Reuse

Figure 9. Implementation purpose model reusing for MBT.

Implementation purpose model reusing as a model for testing is presented in
Figure 9. That is possible only with MBT tools which use an implementation-
modelling approach for testing. This reuse aspect would save much effort
because there is no need to make a separate model for testing. There is a risk that
if the original model has a fault, so the fault is consequently included also in the
test suite. This leads to a situation where the test suite can be successful run
although the system has a fault. The further the models are from each other the

 34

more probable it is that they do not include the same faults. The implementation
model is a concrete description of the system, but a very high abstraction model
is normally used for testing. That may lead to some problems with MBT tools
and system logic understanding. [17]

Model 2.

Model 3.

Reuse

Model 1.
Reuse

Figure 10. Models reusing in testing.

The model for testing reusing for another model is the same kind of reusing found
in code line copying. The two main ways are models linkage and model partly
reusing. Use of these depends normally much on features provided by the MBT
tool. Model linkage means building a big model from small ones via linking. This
approach is presented in Figure 10. There the first model is linked as part of the
second model. Using this reusability approach it is possible to test smaller parts
individually and collect those parts for testing wholeness. Model partly reusing is
able to be performed in the same manner as copying in programming. That
requires that the model be divided into smaller parts. The idea of model partly
reusable is described in Figure 10 between the second and third model.

 35

Adapter reusing is one of the most reusable things in MBT. The adapter layer
translates an abstract test suite from the MBT tool executable in specific test
execution platform. The MBT tool is relatively the same in the same developing
or testing team and the test execution platform number is normally small. When
the MBT tool and test execution platform are the same as the adaptation layer, it
is fully reusable. That requires that the adapter is well implemented and fully
able to cover the formats.

 36

4. Model-based testing in agile context

This thesis aims to adapt MBT in the agile context. In this chapter MBT
adaptability to the agile process based on theories is discussed. This chapter also
gives hypotheses for the case study of this thesis. The results of the case study
are described in chapter 6.

Figure 11. Software development life-cycle support [10].

Agile methods recommend unit testing in iteration and more tests afterwards
[10]. Agile methods normally focus on software developing and thus lack testing
practices. As Figure 11 presents, most agile methods do not determine acceptance
testing. Most methods cover the system test. How are system tests covered?
Extreme programming (XP) and Scrum are the most popular agile methods and
those present the strongest evidence of their functioning [23]. Thus, these
provide good examples of testing in the agile process. XP only recommends the
developer to use TDD and the customer to write functional tests. The tester�s
role is to help the customer in writing functional tests. Scrum recommends unit
tests made by the developer and system testing after the iteration. These
practices are described more closely in chapter 2.2.

37

Team

Iteration

MBT

Requirements
Acceptance

testing Release

Figure 12. MBT outside from an agile team [3].

BT is thought to replace other testing styles and, to use as those other styles have
used before. We could find only one source of MBT in agile [3, pp. 381�382]. In
that source MBT suitability for agile process is discussed. The source related
that MBT could be performed with XP in the same way that XP recommends for
system level testing. It was also stated that the customer could possibly make the
MBT model with the test engineer. The idea is to do MBT separately from agile
developing team. This process is described in Figure 12. They also say that MBT
can be performed in TDD way because it is usable for performing unit tests.

Figure 13. MBT inside an agile team.

We presupposed that MBT including an agile team is the best way to perform
MBT in an agile context. In this thesis, the aim is to adapt MBT in an agile
context as well as possible. The test engineer included in an agile developing
team has improved software quality [24]. In this thesis, we aim to put the MBT
test engineer inside the agile team as Figure 13 presents.

We presupposed that our approach would yield several advantages. In an agile
project, things change a lot. If the test team is working separately, test engineers
do not know about the latest changes. In agile developing, only the absolutely

 38

necessary documents are made, thus the tester lacks overall documentation. This
information gap can cause problems in the testing process. MBT putting inside
the agile team should reduce these information problems. Agile development has
good practices for software development. These should be able to be used also
for testing system developing.

There are some challenges that can block MBT out of agile iteration. There is no
existing answer for the question of what kind of testing can be performed in
agile team We think that the most important thing is testing a style needing
effort. If the testing is too heavy it should be left out of the team, because heavy
things are not agile and these decrease team flexibility. The testing style has to
be so light that it can be fitted in iteration. After every iteration, the application
should be implemented and tested. If the testing needs too much effort, it is
dropped out of the iteration. Then the software cannot be tested using that testing
style before the iteration ends.

MBT testing is test system developing and not test cases writing. Agile methods
have a number of practices for developing. Could it be possible to handle MBT
in the same manner as developing? In agile methods, features are divided into
tasks and the amount of tasks needing effort is estimated. It could be useful to
put testing as a task and handle it in the same manner as developing tasks are
handled. It could also be successful to perform MBT as pair programming and
TDD.

 39

5. Model-based testing tool selection

This thesis aims to facilitate MBT adoption for giving knowledge of MBT tools
selection. In this chapter the aim is to clarify MBT tool selection for giving
several MBT tools evaluation and guidelines for the analysis of MBT tools.
Guidelines are based on model-based testing theory, which is described in
chapter 3.

5.1 Overview of existing tools

In this section, we discuss a set of MBT tools from the viewpoint of the
evaluation presented in the previous sections. The tools discussed have been
chosen based on their maturity and commercial viability. A tool should have
support available for its users, a well-defined user interface, and provide support
for testing different kinds of applications.

For evaluation, we used evaluation licenses from the tool providers. Thus, this
was a limiting factor as not all tool vendors were willing to provide an
evaluation version of their tools. For most of the tools, these evaluation licenses
could be acquired directly from the company web site or by request from a
company representative. For some it was not possible and we had to base our
study on other sources of information or leave the tools out. Thus, for these tools
the analysis is not extensive and cannot be as objective as for the tools with the
evaluation license.

For the Leirios Test Generator, we could not get an evaluation license as they
considered their tool too difficult to learn and use without consultant training. As
we still required the inclusion of information on this tool, we used the tool
manual that was given on request and the information acquired from a video
conference given by Leirios. T-VEC is another tool vendor that works in this
area but they were not willing to provide any information or evaluation license
for their tool. [25].

 40

5.2 LEIRIOS Test Designer

LEIRIOS Test Designer (LTD) is commercial offline MBT tool provided by
LEIRIOS [26]. LTD must be integrated with an UML modelling tool under the
ECLIPSE platform and generated test cases are exported into a test repository
and adapted to the test execution platform. LTD supports both the Windows and
LINUX platforms.

LTD uses a design model for test generation. LTD uses the UML class diagram
and state machine diagram with OCL. UML is used for the graphical model and
the OCL code to define the operation in the class diagram. LTD does not include
any modeller but it does support the IBM Rational Software Modeller and
Borland Together models as input.

LTD splits the test case generation into three parts: preamble, body and postamble.
Preamble leads from the initial state to a specific state. Body executes the test
itself. Postamble is optional and brings the system back to either the final state of
the state machine or to the initial state. From the model LTD automatically
generates test case specifications (i.e. the expected behaviour to be tested, which
is described as test targets in LTD vocabulary). LTD then automatically generates
the preamble, the body call, and, optionally, the postamble from the model. LTD
supports a traceability matrix for tracking errors requirements. LTD also provides
a timeouts setting. Although LTD does not provide any coverage criteria for
generation guiding, coverage metrics are reported.

LTD provides generated tests which are exported to an external tool for
managing and execution. LTD provides a large variety of adapters for different
exporting formats. The company also promised to create new ones quickly if
there were no suitable ones available. Do-it-yourself adapters are also provided.

The test execution framework performs test execution reporting. LTD provides
information on test suite coverage and a traceability matrix. The traceability
matrix presents dependencies between test cases and requirements.

LTD is highly useful if a company already has it and is familiar with compatible
modelling and test execution tools. In such cases LTD can easily be set between
the modeller and test execution platform.

 41

5.3 Markov Test Logic

Markov Test Logic (MaTeLo) is a commercial offline model-based tool provided
by All4Tec [27]. MaTeLo has its own modeller and the test is exported in textual
notation. MaTeLo uses Markov Chain models and therefore focuses on test
control oriented systems. MaTeLo provides exporting formats for automatic and
manual test execution. MaTeLo only supports the Windows platform.

MaTeLo is divided into two separate programs, Usage Model Editor and Testor.
The Usage Model Editor uses the Markov Chain Usage model for modelling
notation. It is a finite state machine extended with probability numbers. It is not
extended with programming languages but does accept variables, Scilab/scicos
functions, and Matlab/Simulink Transfer functions, extending the model for
simulating expected results. While the use of these variables and functions limits
the model�s complexity, they are not as effective as programming languages.
The lack of a programming language extension sets limitations on present data-
flow models. MaTeLo accepts many kinds of models as inputs via the MaTeLo
converter. These inputs are important for the reuse of existing models. While
MaTeLo only provides deterministic models, these can include asynchronous
inputs. MaTeLo relies on the design model aspect.

MaTeLo Testor takes the model as input and generates a test suite. Testor
validates the model before usage. Validation means checking modelling errors
like unattainable states. Test generation is able to guide the user with four
algorithms: random, boundary value testing, most probable route, state coverage
and transition coverage. MaTeLo also provides time limits. Although MaTeLo
does not offer any target based test generation possibilities, test generation can
be done with probability numbers.

MaTeLo cannot execute tests itself. It is, however, possible to export test suites
into HTML, TTCN-3 or TestStand formats. TTCN-3 and TestStand are used for
automatic test execution, and HTML for manual testing. TestStand is a test
management tool created by National Instruments. During the testing process,
Report Management is used for making a report of test campaign monitoring.
Report Management has the additional feature of presenting pleasing graphical
figures of the testing process.

 42

Probability numbers are the main idea behind the Markov Chain. MaTeLo is
therefore a powerful choice for control-oriented testing compared with the test
output formats of other tools, which are relatively limited.

5.4 Conformiq Qtronic

Conformiq Qtronic (CQ) is a commercial MBT tool by Conformiq. It provides
both online and offline MBT [28]. CQ works on Windows and Linux operating
systems. CQ is a general-purpose MBT tool. Thus, the models and test execution
techniques and algorithms are not tied to any specific domain or platform.
Qtronic provides its own components for modelling and test execution, but it can
be integrated with external tools.

CQ has its own modelling tool but it also accepts inputting of models. Qtronic
supports multi-threaded concurrent models and testing of non-deterministic
systems in online mode. The modelling tool provided by CQ is the Qtronic
Modeler and it uses Qtronic Modelling Language (QML). QML means UML
statechart extended with java or C# code. Qtronic supports also CQλ and any
UML2.0 models as input. CQλ is a variant of LISP. UML2.0 can be used for
importing models from third party modelling tools. UML2.0 has to be saved in
XMI format before importing. All of these can all be extended with java or with
C# in the same manner as with Qtronic Modeler.

Qtronic provides nine sophisticated coverage criteria, which provide good test
generation guiding possibilities. In offline generation, Qtronic is able to limit
search tree depth and maximum delay for response. In similar fashion to LTD,
Qtronic also provides test generation based on specification requirements, which
are interpreted and described in the model. CQ also provides manually created
use cases for test generation guidance. Qtronic providing coverage criteria are
state coverage, transition coverage, 2-transition coverage, implicit consumption,
boundary value analysis, branch coverage, method coverage, statement coverage,
atomic condition coverage.

In Online, perspective mode the user can choose one of three alternative walking
techniques: random, Markov Chain or coverage guided. The Markov Chain
algorithm does not promote the same route again which means a wider scope of

 43

walking. The coverage guided walking technique focuses on covering selected
coverage criteria. The coverage-guided technique is very useful when the testing
time is short. In online mode, the user can also define the maximum latency
time. Test execution can optionally be paused automatically, stopped when all
coverage criteria are fulfilled, or stopped after a single test run.

In offline mode the user is able to choose look ahead depth and maximum delay
time. Look ahead depth controls the amount of CPU time used for planning the
test scripts. Maximum delay signifies response waiting time after the sending of
input. The offline mode also makes it possible to minimize the size of the test
sets, or to generate only finalized test sets.

Adaptation is done by plug-ins: scripter plug-in for offline while MBT and both
adapter and logging plug-ins for online testing. The plug-ins can be performed in
C++ or Java. The Qtronic package already has some plug-ins, for example
TTCN-3 or HTML scripter. It is easy to make a new plug-in for a specific
format.

Conformiq Qtronic is a true MBT tool with a very general approach. Open plug-
ins makes the tool highly flexible and easily adaptable to different domains.
Qtronic is currently the only MBT tool that provides online MBT.

5.5 Reactis

Reactis is a commercial offline model-based testing tool for embedded software.
It is specialized in embedded software testing. Reactis is strongly bound with
MATLAB and works on the Windows platform [29].

Reactis uses MATLAB / Simulink / Stateflow for modelling. Stateflow is a graphical
design tool for design and simulating event-driven systems based on finite-state
machine theory. It is focused on modelling embedded systems and therefore
Reactis is domain-specific for embedded systems. Reactis is a workable tool for
model simulation. For example, the user is able to load a test case and check
how it works in the model. Values can also be changed during simulation. This
facilitates validation of the model for testing.

 44

Reactis can generate tests in two main ways; randomly or guided with some
coverage criteria. Reactis has ten different sophisticated coverage criteria.
Random tests and coverage criteria-guided tests can be included in the same test
suite. There is also the possibility to download the previous test suites as part of
the new one. The amount of generated test cases can be set.

The generated test suite can be exported in several Matlab formats, as a plain
ASCII file or in the comma separated value (CSV) format. Matlab formats can
be used with MathWorks products and CVS to run the test suite in hardware in
the loop environment.

Reactis provides a wealth of information of the generated test suite. Since
Reactis does not run any tests, it cannot write a test report.

Reactis is an adequate MBT tool for the embedded software domain. The model
can be tested and debugged in detail in Reactis before test generation, which is
likely to reduce the number of faults. The test data generated by Reactis can be
exported and tested in Matlab.

5.6 Spec Explorer

Spec Explorer is a MBT tool that is allowed for use in any non-commercial
purpose. It is made by Microsoft and accepts only Windows as its operating
system. It can test in both offline and online approaches. Spec Explorer is
strongly tied to Visual Studio. It uses Visual Studio�s (VS) formats, and does
compilation in VS. [30, 31]

Spec Explorer uses the textual notations: Abstract State Machine Language
(AsmL) and Spec# for modelling. ASML is an executable specification language
based on the theory of Abstract State Machines. Spec# is an extended version of
C#, with extension to support non-null types and checked exceptions. Modelling
can be done with text editors or with an integrated graphical editor. Spec
Explorer generates visual finite state machine (FSM) from textual notation for
illustration.

 45

When there is a requirement to run the test suite automatically against the
implementation of the system it was necessary to write an adapter for mapping Spec
Explorer and SUT together. The adapter may be written in C# or Visual Basic.

Spec Explorer offers few coverage criteria. The offline approach gives random
walk, transition coverage or shortest path algorithm. Online testing works only
with randomly walking. There are also some searching algorithms for sharpening
test set quality that affect both testing approaches.

Both offline and online testing are executable in Spec Explorer. It is also
possible to export offline test suite in xml format or export executable test code
in Visual Basic or C# language. Online testing can be started directly from the
Spec Explorer and the tool will continue to run test cases against the model until
SUT fails or the user stops the execution process. Spec explorer can present a
test very illustratively in the model. The selected test is shown as a different
colour in the map.

Spec Explorer is most useful when you are familiar with Visual Studio.
Unfortunately, it is just for research purposes. Based on this, however, a very
sophisticated tool from Microsoft is being developed. Further reading is
available from Spec Explorers homepage [31].

5.7 Guidelines for selection

In this section, we aim to give guidelines based on MBT theory and experiences
of evaluating tools.

• Do you need online MBT or is offline MBT enough? Offline testing
provides test script automatically generating from a model to the
existing test execution platform. The offline MBT approach is easier to
adopt than the online MBT approach because it is closer to the normal
script-based testing process. If the infinite test suites and non-
deterministic systems testing are needed, this presupposes the need for
the online MBT approach. Still, both of these provide several
advantages, which are described in chapter 3. Only Conformiq Qtronic
and Spec Explorer provide online MBT testing and Spec Explorer is not

 46

for commercial use. Therefore, Qtronic seems to be the only suitable
choice when online MBT is needed for industrial applications.

• Generic or DSM modelling language? Model languages can be
divided into domain specifics and generics based on domain limitation.
In general all are suitable for a large proportion of purposes but domain
specific ones are more effective inside the domain. Reactis showed the
strongest domain limitation of all the evaluated tools. It only works with
embedded systems because of modelling languages.

• What then is the right modelling notation? The most important thing
over a language selection for testing is to think that how well the SUT is
able to model using that notation. The model is the only information of
system requirements that the MBT tool has. It has been shown that
existing tools typically use pre/post models or transition based notation.
Pre/post models are most suitable for data-oriented system modelling.
Pre/post models examples include the UML state diagram extended with
programming language, Spec# and JML. Transition based notation is
most feasible for control oriented modelling. An example of this kind of
modelling language is a finite state machine (FSM). For example,
MaTeLo uses that kind of model. MaTeLo uses FSM with probability
numbers and some extensions. Therefore, MaTeLo can handle an
expected output, but does not do so well with pro/post models. [3]

• Design model reuse for testing in MBT tools: The design model, which
is made for implementation, is able to be reused in MBT if the MBT tool
uses the design model perspective. Straight reuse means that the model
for testing has the same faults as the model for implementation. In
practise, there are also problems with formats between modelling tools
and the MBT tester. Based on the evaluation, LTD and Conformiq
Qtronic use the design modelling aspect. Those also have several ways
to use external modelling.

• What kind of test requirements is needed? Good test guiding algorithms
reduce effort and improve the quality of test cases. MBT tools provide
various collections of test guiding algorithms. Those are described in
chapter 3.3. The sufficient level of these is hard to determine beforehand.
It could be easier to state that almost all the required algorithms are
provided in selected tool.

 47

• How to map MBT generated tests and SUT together? Because the
offline MBT tool normally exports the test suite, it is important that the
format is suitable for the test execution platform. Normally, some of the
most general formats are provided like XML and TTCN-3. If there is a
possibility for self-made plug-ins, the formats are almost unlimited.
Online MBT tool have to map straight to SUT. Therefore, there are not
normally existing usable solutions, but rather the layer has to be
implemented. Online MBT can provide API for making that layer.

• How can errors be traced? In offline MBT the traceability knowledge
is included in to the test script. Therefore, the main question is how
much information the test script has. In online testing, the MBT tool
takes care of traceability. Tools also provide do-it-yourself plug-in
probabilities. This field is fragmented and tools should be used in real
testing in order to see the traceability efficiently. Therefore, we only
recommend that the selected tool has adequate traceability features.
MBT as a whole is almost useless without traceability.

• What kind of documents are automatically written? Offline MBT
tools export test suite and test execution platform execute tests and write
the report. Report quality depends on script quality and executors
features. Online MBT tools write tests and it is useful in such instances
to take care that suitable report formats are provided.

 48

6. Case study: Tienoo

The main purpose of this thesis was to describe a case study where model-based
testing is used in an agile project. The case study�s project name was Tienoo.
The purpose of the Tienoo project was to develop a system for the FACMA
project while the MBT part is made for this thesis. This chapter reviews the
study case.

6.1 Introduction

This case study was performed in cooperation with the Mobile Facility
Management Services (FACMA) and Rapid Iterative model driven Testing in
Agile context (RITA) projects from VTT Technical Research Centre of Finland,
the software project course from Oulu University and SoPro (productivity
increasing in software industry) project from Joensuu University. This study case
was a RITA and FACMA equal joint venture at the beginning. Then SoPro
participated with two persons, who worked all the time in Joensuu.

This thesis is made for RITA. The RITA research area was focused on getting
information on new techniques in the agile context. FACMA was the customer
of this study case. FACMA needed a demo version of software for trial. SoPro
project research areas included pair programming and distributed agile
developing process practices.

The Tienoo case study was a distributed agile developing process. Two persons
worked in Joensuu University and five people in VTT premises in Oulu. The
author was working for the RITA project and his roles were model-based tester
and project manager. Four members came from Oulu University who performed
a software project course. Each of them had their own area of responsibility,
these being tester, metric, architecture and quality measurement. Two persons
were working in Joensuu. They were developers without specific responsibilities.

In this case study Conformiq software is used with Conformiq Qtronic as MBT
tool. Conformiq Qtronic was chosen based on the evaluation described in
chapter 4. The main reason for selection was that we did not have knowledge of

 49

the system domain before the project began. Conformiq Qtronic was the most
general tool and therefore had the best adaptability for different domains.

6.2 Developing process

Our team did not have much previous experience of techniques that are used in
this project. Only one person had real work experience in java. Other member�s
java programming experiences came from Universities courses. The Mobile-D�
developing process was also new for all with the exception of one person. We
used several other techniques like Java Servlets, JSP, J2ME, Google Map and
SVN that no one of us had any working experience of. Members who worked in
Oulu participated in Conformiq Qtronic and Mobile-D� training days before
the project started. Mobile-D� training was organised by VTT and Conformiq
Qtronic training was organised by Conformiq.

The Mobile-D� (see 2.3) working method does not give communication rules
except release and planning day meetings but it incites teams to self organize
adequate communication. Adequate communication was a big challenge because
we were a geographically distributed agile team. Joensuu members only visited
Oulu on the first planning day and final release day. We mainly used
videoconference, phone calls, Skype video calls and Windows Messenger chat
for communication. Videoconference was used in the planning and release
meeting. Videoconference was a good way to communicate but there were
technical problems several times and organizing it needed effort. Phone calls
were used when an immediate connection was needed like those related to
solving architecture. Skype video calls were used in wrap-ups. Wrap-ups were
kept irregular when it was considered necessary. The advantage of Skype video
calls advantages was that they were lighter to organize than videoconference and
everyone was able to participate. Skype voice and video quality were poor so we
could not use that in planning or release meetings. Windows Messenger chat was
used to communicate with small problems between Joensuu and Oulu during the
working day. Everyone could take a personal connection with somebody using
Messenger. We also used Taskmaster for sharing the knowledge of
implementation real-time situation. We used a taskmaster�s web site version and
physically on the wall. The wall was much more illustrative than the web one
but the web site version was easier to share between two places.

 50

We increased communication using pair programming and post iteration
workshops. We did not use pair programming all the time, but that much that at
least two developers could develop every single part of the whole. We kept that
goal relatively well. This way we could assure implementation continuance
when someone could not come to work. Post Iteration workshops (PIW) were
our style to tell all of our worries. Of course, worries appeared out of the PIWs,
but PIW presented a better atmosphere for telling stories. PIW feedback showed
that members demonstrated good teamwork and team spirit but worried about
technical problems at the beginning of the project. Later most of technical
problems had been solved and the biggest worry was communication between
Joensuu and Oulu.

-40

-30

-20

-10

0

10

20

30

40

1 2 3 4 5

Iteration (number)

Es
tim

at
io

n
ac

cu
ra

cy
 (h

ou
r)

Series1

Figure 14. Estimation accuracy in iterations.

In its entirety, the Tienoo project went well. In agile developing processes,
estimation accuracy is a good metric to describe process maturity. At the
beginning of the project, estimations did not match real time needs. During the
process, the team learnt to estimate and as a result estimations became more
accurate. In Figure 14 estimation accuracy is described so that real implementation
time is deducted from the estimated time. For example, in the first iteration, we
used about ten hours more time than we estimated. The second iteration varies as
much as the first one because it was three times longer than the first one. In
iteration three, the estimation is relatively good. The fourth and fifth iterations
took more time because of integration problems. Joensuu and Oulu developed

 51

mobile code too far from each other and their understanding of architecture was
relatively different. This led to a big integration problem.

0

4

8

12

16

1 2 3 4 5
Iteration

im
pl

em
en

te
d

fe
at

ur
es

Series1

Figure 15. Developing process propagation.

We implemented all the features that were appointed at the beginning of the
program. The customer invented more during the project but we had no time to
implement those. The process did not proceed without trouble. Figure 15
presents the number of implemented features after all iterations. From first to
third iteration, development was increasing and at a fast rate. In the fourth
iteration, we noticed the integration problem and we could not integrate all parts
for the fourth release. That resulted in failure because we had no new working
features for the customer. We integrated every part together and developed
minor features in the fifth iteration. In this figure have to notice, that earlier
features were smaller as a whole than later. Therefore, the feature number is not
comparable in the beginning and end of the project.

6.3 Tienoo software features

At present maintenance men are reporting on the completion of assignments
after their rounds. Tienoo software makes this reporting possible immediately
after a working situation. The Tienoo application is both a reporting tool and a
prescription-giving aid. It helps maintenance men to remember all their
designated tasks.

Maintenance men must be able to report their work in real-time on the spot.
Reporting has to be as easy as possible because the user focus must be on

 52

working, not on using a mobile application. Reporting can be manually written
text, voice or photo. Maintenance men must be able to locate themselves both
outside and inside buildings. The system must allow voice mail to be left so that
maintenance men are able to listen to it.

A maintenance man logs in the morning by touching a personal identification
card with a mobile phone. The personal identification card includes a Near Field
Communication (NFC) tag and the phone relays information to the backend
system that the person have started work. When he arrives at his workplace, he
touches the location tag. The application launches and creates a Bluetooth
connection to the GPS locator to get coordinates. When the phone has the
coordinates, it sends the coordinates to the backend system. The backend system
finds tasks that are determined for the place and sends back a list of tasks. The
phone presents tasks to the user. The user does the tasks fills the application and
presses the send button. The phone sends report to the back end system. The
backend system saves it to the database and shows it in the administrator web
page. From the web page a manager sees the task situations in real-time.

Inside the location is made with NFC tags that have place knowledge. Inside
tasks for maintenance men are normally conducted on a room level. Therefore, it
is enough to use room specific tags. When inside the maintenance man presses a
tag with the phone and the application gives a task list.

The maintenance man is able to listen to a voice mail that is directed to that
place. He can also write text or take a picture as a report. The implemented
solution also includes a web site that enables the management of tasks, persons,
places and check reports.

6.4 System implementation

The system includes three parts: a web site for administrator, a mobile
application for the employee and a back end system for data handling. Figure 16
describes the high-level overview of system architecture. Appendix 1 shows
features of system parts.

 53

Employee

GPS

Adminstrator

Back end system

Server/
Apache Tomcat

Tag data

Bluetooth HTTP, XML

HTTP, HTML

Google maps

MySQL

Figure 16. The system overview.

Via the web site, the administrator can manage tasks, employees and places. All
those are able to be added, and deleted. Employees and tasks can be added by
writing the necessary details and saving those. Place adding has been
implemented using the Google maps service. The Google map makes it possible
to see an area in a map and click on the corners of the place. The Google map
also colours the determined area. It is also possible to bind tasks to the area i.
Bounded tasks are sent to the maintenance man when he is located to that area.
In the report page there is list of reports with details. There is also a link to the
voice file when the maintenance man has given voice mail with his/her report.
The web site is running in Ubuntu in an Apache Tomcat server. It has been
implemented using Java Servlets, JSP, JavaScript and Google Maps.

The mobile phone application has been made for the usage of maintenance men
and is as easy as possible to use. The application is implemented in java using
high-level user interface components. Bluetooth was used for making a
coordinate query to the GPS block. The NFC technique is used for reading NFC
tags. NFC is closely readable RFID technique. The maximum NFC reading
length is 10 centimetres. Tags include some data that is transferred to the mobile
phone through touch. The data can order the mobile phone to call some number,
to go to some web site or launch some program.

 54

6.5 Testing system

The testing system consists of three main parts: a test case generator, test
executor and a system under testing. Conformiq Qtronic was chosen to be the
test case generator based on previous MBT tools evaluation. Qtronic exports the
test suite as a text file. The test suite was imported to the JwebUnit. JwebUnit
was the test execution platform that runs test cases against SUT. The overview
of the testing environment is presented in Figure 17. Developing the model-
based testing system does not take place incrementally but is more continuous
and comprehensive in nature. Therefore, the model does not need to be ready
before scripter developing. In this case, first, we made a very lightweight model,
scripter and test execution platform then executed tests out and ran those. Next,
we developed a little bit of every part and tried again. This iterative way kept
results testable most of the time and it was then possible to use them as
regression tests.

Figure 17. Testing system overview.

 55

1 private void testLogin(){
2 beginAt("localhost/login.html");
3 assertTitleEquals("Tienoo");
4 setTextField("username",name);
5 setTextField("password",passwd);
6 submit("", "OK");
7 assertLinkPresent("Kirjaudu ulos");
8 }

Figure 18. JWebUnit test case example.

JWebUnit is a java framework that facilitates the creation of acceptance tests for
web applications. It is an Eclipse plug-in and therefore works on Eclipse. The
JWebUnit user interface is described in Appendix 3. Figure 18 describes an
example of a JWebUnit test case. The example is made using methods provided
by JWebUnit. The example is a login use case. First the web address:
localhost/login.htm is accessed. Then the title is checked and username and
password are input to the fields. Then the ok-button is pressed and checked that
there is logout-link available. Then the script can be run by pressing the run-
button in Eclipse. JWebUnit presents failed cases with red marks, successful
marks with green marks and cases which have some errors with dark blue marks.
The marks can be seen on the left side of the picture in Appendix 3. [32]

6.5.1 Modelling

Modelling is an important phase of MBT because the model is the MBT testing
tool�s only knowledge of the SUT. All test cases are generated using this
knowledge. Qtronic accepts several languages as input. In this study case, we
used Conformiq Qtronic�s own tool, Conformiq Qtronic Modeler. The Qtronic
model has to be made from an implementation aspect, but at a higher abstraction
level than the implementation model. The abstraction level is described in
chapter 3.2. A high abstraction level makes the model lighter to develop and
easier to understand. The Qtronic modeller uses a state machine that is expanded
with Qtronic modelling language (QML) language that is close to java. The state
machine is similar to the java program�s run method visualization. So part of its
functionality can be hidden in text files and in this way the model becomes
clearer. The model is also possible to do wholly in text format. QML is

 56

Qtronic�s own language and it has java syntax with several limitations and
extensions.

Figure 19. State explosion.

At the beginning of this case, we thought of making a sharp model, which could
wholly cover the administrator web site logic. We thought that this approach
could give several good test cases for testing system logical working correctness.
It could have been a good approach but that was ultimately not successful. The
model grew huge in size and complex, because of the website�s menu bar. The
menu bar made it possible to move to every main topic from every single state.
That led to a huge amount of transitions in the model and MBT could not find
tests efficiently. MBT tool�s test case seeking problem is described in Figure 19.
The searching tree grew exponentially and it caused calculation problems. The
other problem was that we were not aware of which things have to be put in the
scripter and the model. This troublesome modelling aspect added to our novice
skills led to the situation where implementation was faster than MBT model
developing.

Later we noticed that some of these problems could be solved with a better
knowledge of MBT tool algorithms. Therefore, part of the reason for this failure
was our lack of skills. We also noticed that for efficient MBT implementation a
lot of practice is needed.

When we noticed that the first try was failing, we stopped it and started to make
a totally new model. We started the second one from a much higher level. The
previous model was not reusability because of the changed modelling aspect.
The scripter was fully reusable because it only depended on the test execution

 57

platform�s format (See. 3.6) and the test executor was the same. We made the
second model according to the requirement level. The requirement level meant
here that requirements were able to see straight into the model and there were no
more details than the requirements described. The requirement level gave
enough of an abstraction level to model system logic.

In this case, the model included two threads: a main system thread and a
database knowledge describing thread. The model is shown in Appendix 4. and
Appendix 5. The main thread included an idle state where the system starts.
From the idle state it is possible to try login from a mobile or from the web site
side. If login succeeds in the web site there is a possibility to perform actions in
whatever order is required. Mobile side reporting is not meaningful if the user
has no other task list to report. Therefore, on the mobile side, the order of actions
is limited. All the time the database thread takes care of added and deleted data,
so the test case can go in random order in the model and always has the right
data. We tested the model behaviour also in making html-format sequence
diagrams and by reading required model behaviour from that.

6.5.2 Making tests executable

We used the Eclipse JUnit testing tool with JWebUnit library as the test
execution platform. For translating test cases in JWebUnit syntax, we had to
make a scripter. In Qtronic, the scripter means a plug-in that is imported to the
tool. Qtronic accept java and C++ languages for creating plug-ins. In this case
java is used as the programming language in the scripter. You have to implement
a class that realizes a super class. The super class determines functions that the
Qtronic calls for when it is writing a script. In Figure 20 the skeleton of the
scripter that was made for this thesis is presented. Writing type is written in
scripter that has been made by java. Therefore, all java-writing styles are
possible like write text to the file, the command line in Linux or in the database.
Some examples of those functions are presented in Figure 20.

 58

1 public class TienooScripter extends ScriptBackend {
2 �
3 public boolean initialize(String args) {�}
4 public boolean beginScript(){�}
5 public boolean beginCase(){�}
6 public boolean testStep(�){�}
7 public boolean endCase(){�}
8 public boolean endScript(){�}
9 public boolean uninitialize(){�}
10 �
11 }

Figure 20. Qtronic Scripter example.

Scripter is like an abstraction-growing layer between a model�s abstraction state
and a test executor�s abstraction state. Practically, this means that the scripter
has to translate test case knowledge from the model to that test execution syntax.
In this case, the model is feature level and the test executor works on a manual
level. The manual level means that with JwebUnit tool can go to the web site,
click on links, put texts to the text fields and so on. Therefore, it is a big gap
from a feature like �Add user� to the manual clicking in web site. We solved this
problem using keyword-driven testing principles [33]. It makes abstraction
higher, makes the model simple and helps the user to focus on the system logic
testing. We needed to test the system�s logic from the web site interface, so there
was no meaning to test all routes to do that in this testing style. Therefore, we
made methods that make further actions and test cases include as little
information as possible. Figure 21 presents an example of a test case and a
method that is similar to keyword testing using.

 59

1 /**
2 * This is auto generated test case number 9
3 */
4 @Test
5 public void testCase9() throws Exception {
6 webLogin("mikkomatti","miksu");
7 TextPresent("User:");
8 addTask(01,"Luutua lattia","1111");
9 deleteTask("Luutua lattia");
10 �
11 }
12 �
13 /*
14 * This method make (These methods are provided by

JWebUnit)
15 */
16 private void webLogin(String name, String passwd){
17 beginAt("/login.html");
18 assertTitleEquals("Tienoo");
19 if(!name.equals(""))setTextField("user", name);
20

 if(!passwd.equals(""))setTextField("pass",passwd);
21 submit("", "OK");
22 }
23 }
24 �

Figure 21. Test case and method examples.

6.5.3 Tests generation and execution

Qtronic take the model as an input file. Firstly, Qtronic checks the model to
ensure that there are no syntax errors or logically impossible things. Qtronic
makes it possible to choose search depth, coverage criteria and requirements for
guiding the test generation. A search debt defines how deep the searching tree
can be. Coverage criteria mean only the required model coverage in generating
test cases. Coverage criteria are described better in chapter 3.3. Qtronic�s
coverage criteria algorithms are very mature, but those all wholly fulfil the
required expert stage modelling. Requirements are targets in the model. If the
generated test case passes the target current the requirement is fulfilled.

 60

Figure 22. Scripting overview.

The test generation simply required the press of a button and a short wait. The
test suite appears in a determined place and format. In this case, we generated
tests in a specific folder and in a JwebUnit format. From there we copied the file
into the Eclipse JwebUnit testing environment. Eclipse can run tests by pressing
a button and it also shows failed test cases. Figure 22 presents an overview of
scripting process.

Although Qtronic is the most mature tool according to our experience, it still has
some problems. Scripter coding for Qtronic is just like coding the java program
and it is possible to do in some developing tool, but model making is not so
easy. When some mistake is detected in the model, Qtronic says only that there
is an error. It takes a great deal of time to try to find these small mistakes all the
time. Conformiq has developed effective algorithms but still there is room for
improvement. If the trigger and the conditional statement are apart and there are
loops between those, Qtronic cannot find a test case to fulfil the condition
statement, or if it does, it takes a very long time. The lack of algorithm, occurs
arguably from a loop affected state explosion. String variable testing could also
be nice to include in Qtronic. Now it only makes tests with the correct string
field value or an empty value.

 61

7. Analysis of results

The main goal of this thesis is the MBT adapting agile process. This chapter reviews
the main results of the study case. The hypothesis is presented in chapter 4.

Successfully adapting agile and MBT, model-based testing, for the agile context
requires that team members see it as a good thing. The self-organizing team is at
the heart of the agile process. Self-organizing means that the team can decide on
used practices. If MBT or generally a test engineer in an agile team is not seen as
good thing, it can be outsourced. Agile methods only determine positive code
testing and there are no rules for making other testing in the project. Therefore, it
was an interesting challenge to try to adopt MBT in an agile process. In this
chapter our main observations are described.

An MBT testing engineer can work in the developing team and successfully
perform MBT in an agile team. We put the MBT in an agile developing team as
we described in chapter 4. That was better than we expected. We noticed a
number of advantages but only a few problems in MBT including those to the
agile team. At the beginning, we had several problems for adapting the MBT
tool for JWebUnit tool and run JWebUnit tests against the SUT. The first
problem we had to solve by asking from the tool vendor but the second one the
developers helped a lot. The JWebUnit tool had several limitations. Thus, there
had to be web sites, which were able to be handled with the JWebUnit tool. For
testing the server from the mobile point of view, developers made a small web
site. They also had to make some structural changes for the administrator web
site because of the testing tool. It was also useful to review the MBT model for
some developer and in that way be surer that the behaviour was right. Because
we made MBT and were developing it in the same time and the same room, the
developer knew immediately when the test engineer noticed a fault. Because the
test engineer is also a technical person, he asked every time why there was a
bug. The developer described the reason and they designed the solution together.
There are clear advantages to reveal bugs face to face than keep some bug list in
a website. Firstly, the bug is fixed earlier. Secondly, when the test engineer talks
about bugs face to face, the developer remembers it better and does not make the
same fault so easily again. The only trouble we noticed was the developer�s
industrial peace: If someone is disturbing you all the time, it is hard to concentrate.

 62

Testing requirements should be handled as normal product requirements in the
agile process. In the agile process, low level testing is normally included in tasks
and higher level testing is outsourced to a separate testing team. Therefore, there
has been no need to handle testing in the agile process. Agile methods have good
practices for dividing features for tasks and handling tasks in the process. We
used tasks handling practices for testing effort amount handling. In practice, we
estimated the time for MBT during the next iteration. This worked well. It might
be workable to divide MBT into smaller tasks and try to handle those as developing
tasks. This could be the same for testing as task handling is now for developing.

MBT is suitable for pair programming. At the beginning of the MBT development
process, we tried to do MBT in the pair programming way. We did not do it
much because we had five persons in Oulu and we decided developing pairs to
be more important. However, we tried pair programming a couple of times and
our investigation showed that it works well. Developers in Oulu had had one
day�s training for MBT before the pair programming. After training, they became
familiar with the tool and with the pair programming method relatively quickly.
Pair programming usage ensures that MBT developing does not totally stop if
the tester cannot come to work, because developers can also perform MBT.

7.1 Does model-based testing fit in agile iteration?

This study case aims to give knowledge of MBT�s suitability for the agile developing
process. MBT is able to develop iteratively. Therefore, iterative developing is
not the problem, in theory. In practise, the test method has to be lightweight to
be able to fit into agile iteration (see chapter 4). Therefore, the question is about
the amount of effort required. In this chapter efforts calculations in this case
study are presented and the result of the impacts estimated accordingly.

The used metric unit is a working hour and the amounts have been taken from
our working diaries. Calculated working hours are true working time and project
managing or document writing times are not included. It must be noted that one
person was making MBT and the rest of the group was making the implementation
part. The MBT test engineer also had project manager responsibility. From
Table 1 it can be seen that the first attempt to do MBT needed almost as much
time as implementing those features. One reason was that the MBT test engineer

 63

was not familiar with MBT. The bigger reason was that the MBT model was at
too low an abstraction level. We tried to present the web site structure in its
entirety. There was a link bar on the left side of the site and that increased the
transition number by a huge factor. A voluminous amount of transitions made
the model unclear and it was difficult for Qtronic to find enough test cases in a
practical time limit (see 6.5.1). The model�s unclear structure increased work
time and we decided to discard it and start a new one.

Table 1. MBT times vs. implementation time.

 Modeling Scripter Implementation MBT/Imp.

First MBT 15 h 41 h 58 h 95%

Second MBT 27 h 12 h 310 h 12%

The second attempt at performing MBT started from the hypothesis that it was
most important to test the system�s core logic instead of a web site linking all
combinations. This modelling approach is described in Appendix 4 and
Appendix 5. The new modelling style reduced effort greatly. We could reuse the
scripter plug-in because the test execution platform was the same. Of course, we
had to develop the scripter because it was not ready after the first try. Table 1
presents much better efficiency such that MBT only took 12% compared to the
implementation time. If the number is the same in the long run, one test engineer
can do MBT in eight developer groups. This is a small project and a program
and can only prove that this is possible in this context. MBT has provided
advantages in the long run [3], therefore it could be able to adopt MBT in an
agile context, also in bigger projects.

7.2 Model-based testing vs. script based testing
in agile process

MBT is more comfortable for technical persons. We did script-based testing, as
described by agile methods and MBT testing in our own way. We noticed that
MBT is more comfortable for technical persons than script based testing. MBT
tests system development, the heart of which is the MBT test generator. The

 64

better the testing system you build the more it saves you effort later. That poses
several challenges and makes it more interesting than script-based testing.
Script-based testing is just writing test cases, which means input and output
value lists. Script writing does not give true challenges and technical persons
like us consider it boring. Agile methods facilitate script writing efforts by
sharing the test writing for every developer. There can still be problems with test
coverage and the amount of test cases, because tests are written by developers
and not a test engineer.

The test engineer must be technical person in order to successfully implement
MBT. In MBT it is necessary to build a model and an adaptation layer. In
practise, both of these are coding efforts and preclude the intervention of a non-
technical person.

MBT generating scripts can also be directly compared to scripted testing. In this
case, Qtronic normally made from ten to twenty test cases, which mean 200 lines
of code on average. That much code writing manually takes about ten working
hours, because the code is relatively simple. Using the MBT way required 39
working hours. This means that manual test case writing is about five times
faster than MBT. In MBT, a computer is designing test cases so it is hard to say
whether those are better test cases than those which are manually written.

7.3 Summary

This study case indicates that MBT adapts to the agile context very well. Our
investigations demonstrated that a test engineer working in an agile team is not a
problem. MBT does not need too much effort, thus it can be fitted into iteration.
The pair programming method can be used for MBT. An MBT maker must be a
technical person, but for him/her it is more comfortable than script-based testing.

These results are based on a single case study and most of the team members
were novices. Therefore, straight generalisations are not possible from these
results. This is still assuming that near beginners are able to do MBT and MBT
can be performed inside the agile team. Future research needs to estimate this
efficiently and the business of MBT working in an agile project in the long run
and in bigger projects.

 65

8. Conclusions

The main purposes of this thesis were to find suitable guidelines for model-
based testing tool selection and to evaluate how model-based testing can be
adapted to the agile context.

Work was started by presenting the motivation for the topic, after which an
introduction to agile developing methods and model-based testing was presented.
Actual work made by the author commenced by gathering guidelines for model-
based testing tool selection. Gathered requirements were fulfilled by evaluating
available model-based testing tools. The applicability of model-based testing for
the agile developing method was evaluated in the case study, where the selected
model-based testing tool was used for testing a server application, which was
made in an agile project.

The results gained from the case study were encouraging. It was possible to do
model-based testing in an agile developing team and calculations seemed to
indicate that it could be even more effective in future. There was only one case
study and most project members were novices, thus the results cannot be
considered reliable in a larger context.

 66

References

[1] Naur, P. & Randell, B. (1968) Software Engineering: Report of a conference.
In: The NATO software engineering conference1968, October 7–11,
Garmisch, Germany. URL: http://homepages.cs.ncl.ac.uk/brian.randell/
NATO/nato1968.pdf.

[2] Salo, O. (2006) Enabling Software Process Improvement in Agile Software
Development Teams and Organisations. Espoo, VTT. (VTT Publications
618.) 149 p. + app. 96 p. ISBN 951-38-6869-9; 951-38-6870-2. URL:
http://www.vtt.fi/inf/pdf/publications/2006/P618.pdf.

[3] Utting, M. & Legeard, B. (2007) Practical Model Based Testing: A Tools
Approach. Morgan Kaufmann, San Francisco. 433 p.

[4] Craggs, I., Sardis, M. & Heuillard, T. (2003) AGEDIS Case Studies:
Model-based Testing in Industry. In: 1st European Conf. on Model Driven
Softw, December, Nuremberg, Germany. Pp. 106–117. URL:
http://www.agedis.de/documents/AGEDIS%20in%20Industry.pdf.

[5] Becker, P. (read 21.5.2008) Model-based testing helps sun microsystems
remove software defects. URL: http://articles.techrepublic.com.com/5100-
22-1064538.html.

[6] Hartmann, J., Imoberdorf, C. & Meisinger, M. (2000) UML-based
integration testing. In: ISSTA ’00: Proceedings of the 2000 ACM
SIGSOFT International Symposium on Software Testing and Analysis,
August 21–23, Portland, Oregon, United States. Pp. 60–70. URL:
http://doi.acm.org/10.1145/347324.348872.

[7] Jéron, T. & Morel, P. (1999) Test generation derived from model-
checking. In: CAV ’99: Proceedings of the 11th International Conference
on Computer Aided Verification, July 6–10, Trento, Italy. Pp. 108–121.

http://homepages.cs.ncl.ac.uk/brian.randell/
http://www.vtt.fi/inf/pdf/publications/2006/P618.pdf
http://www.agedis.de/documents/AGEDIS%20in%20Industry.pdf
http://articles.techrepublic.com.com/5100-
http://doi.acm.org/10.1145/347324.348872

 67

[8] Offutt, J. & Abdurazik, A. (1999) Generating tests from UML specifications
In: Second International Conference on the Unified Modeling Language
(UML99), October 28�30, Fort Collins, USA. Pp. 416�429.

[9] Manifesto for agile software development (31.8.2007) URL:
http://agilemanifesto.org/.

[10] Abrahamsson, P., Salo, O., Ronkainen, J. & Warsta, J. (2002) Agile
software development methods. Review and analysis. Espoo, VTT. 107 p.
(VTT Publications 478.) ISBN 951-38-6009-4; 951-38-6010-8. URL:
http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf.

[11] Ihme, T. & Abrahamsson, P. (2005) Agile Architecting: The Use of
Architectural Patterns in Mobile Java Applications. In: International
Journal of Agile Manufacturing, Vol. 8, pp. 97�112

[12] Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J.,
Korkala, M., Koskela, J., Kyllönen, P. & Salo, O. (2004) Mobile-D: An
agile approach for mobile application development. In: OOPSLA �04:
Companion to the 19th Annual ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications, October
24�28, Vancouver, BC, Canada.

[13] Electronics � AGILE � agile software technologies. (2007, 16.8.2007)
URL: http://www agile.vtt.fi.

[14] Robinson, H. (2004) Obstacles and opportunities for model-based testing
in an industrial software environment. 1st European Conference on Model
Driven Software Engineering, December 2003, Nuremberg, Germany.
Pp. 118�127. URL: http://www.geocities.com/harry_robinson_testing/
ObstaclesAndOpportunities.pdf.

[15] Utting, M. (2005) Position paper: Model-based testing. In: Verified
Software: Theories, Tools, Experiments, October 10�13, Zürich. URL:
http://www.cs.waikato.ac.nz/~marku/papers/utting_mbt_position.pdf.

http://agilemanifesto.org/
http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf
http://www
http://www.geocities.com/harry_robinson_testing/
http://www.cs.waikato.ac.nz/~marku/papers/utting_mbt_position.pdf

 68

[16] Schulz, S., Honkola, J. & Huima, A. (2007) Towards model-based testing
with architecture models. In: 14th Annual IEEE International Conference
and Workshops on the Engineering of Computer-Based Systems, March
26�29, Tucson, AZ, U.S.A.

[17] Hartman, A., Katara, M. & Olvovsky, S. (2006) Choosing a test modeling
language: A survey. In: Proceedings of the Haifa Verification Conference
2006, October 2006, IBM Haifa Labs, Haifa, Israel. Pp. 204�218. URL:
http://www.cs.tut.fi/~clark/doc/HVC'06survey-preliminary.pdf.

[18] Utting, M., Pretschner, A. & Legeard, B. (2006) A taxonomy of model-
based testing, Working Paper: 04/2006. URL: http://www.cs.waikato.ac.nz/
pubs/wp/2006/uow-cs-wp-2006-04.pdf.

[19] Huima, A. (2007, 17.07.2007). Model driven testing � the weblog. URL:
http://www.conformiq.com/blog/.

[20] Vain, J., Raiend, K., Kull, A. & Ernits, J. (2007) Synthesis of test purpose
directed reactive planning tester for nondeterministic systems. In:
Proceedings of the Twenty-Second IEEE/ACM International Conference
on Automated Software Engineering, November 5�9, Atlanta, Georgia,
USA.

[21] Kervinen, A., Maunumaa, M., Pääkkönen, T. & Katara, M. (2006) Model-
based testing through a GUI. In: Proceedings of the 5th International
Workshop on Formal Approaches to Testing of Software, July 2006,
Edinburgh, Scotland, UK. Pp. 16�32.

[22] Hartman, A. (31.3.2004) AGEDIS project final report. URL:
http://www.agedis.de/documents/FinalPublicReport%28D1.6%29.PDF

[23] Abrahamsson, P., Warsta, J., Siponen, M. & Ronkainen, J. (2003) New
directions on agile methods: comparative analysis. In: 25th International
Conference on Software Engineering, May 3�10, Portland, OR, USA.

http://www.cs.tut.fi/%7Eclark/doc/HVC%E2%80%9906survey-preliminary.pdf%00
http://www.cs.waikato.ac.nz/
http://www.conformiq.com/blog/
http://www.agedis.de/documents/FinalPublicReport%28D1.6%29.PDF

 69

[24] Talby, D., Hazzan, O., Dubinsky, Y. & Keren, A. (2006) Agile software
testing in a large-scale project. IEEE Software 23, pp. 30�37. URL:
http://www.cs.huji.ac.il/~davidt/papers/Agile_Testing_IEEESoftware06.pdf.

[25] T-VEC: Products (29.8.2007) URL: http://www.t-vec.com/solutions/
products.php.

[26] Leirios � SMART TESTING�: Streamline the test design and improve
productivity (11.3.2008) URL: http://www.leirios.com/.

[27] All4Tec � home (11.3.2008) URL: http://www.all4tec.net/.

[28] Conformiq qtronic (11.3.2008) URL: http://www.conformiq.com/qtronic.php.

[29] Reactis: Model-based testing and validation (11.3.2008) URL:
http://www.reactive-systems.com/.

[30] Veanes, M., Campbell, C., Schulte, W. & Tillmann, N. (2005) Online
testing with model programs. In: SIGSOFT Softw. Eng. Notes, Vol. 30,
pp. 273�282.

[31] Spec explorer � home (13.9.2007) URL: http://research.microsoft.com/
projects/SpecExplorer/.

[32] JWebUnit � JWebUnit 1.x (11/04/2008) URL:
http://jwebunit.sourceforge.net/.

[33] Katara, M., Kervinen, A., Maunumaa, M., Pääkkönen, T. & Satama, M.
(2006) Towards deploying model-based testing with a domain-specific
modeling approach. In: Proceedings of TAIC PART � Testing: Academic
& Industrial Conference, August 2006, Windsor, UK. Pp. 81�89.

http://www.cs.huji.ac.il/~davidt/papers/Agile_Testing_IEEESoftware06.pdf
http://www.t-vec.com/solutions/
http://www.leirios.com/
http://www.all4tec.net/
http://www.conformiq.com/qtronic.php
http://www.reactive-systems.com/
http://research.microsoft.com/
http://jwebunit.sourceforge.net/

1/1

Appendix 1: Tienoo system features

2/1

Appendix 2: Mobile-D� developing iteration

3/1

Appendix 3: JWebUnit user interface

4/1

Appendix 4: Conformiq Qtronic Modeler
figures: TienooCore and TienooDatabase

4/2

5/1

Appendix 5: Conformiq Qtronic Modeler
figures: TienooServer.ServerMobileSide

 Series title, number and
report code of publication

VTT Publications 694
VTT-PUBS-694

Author(s)
Puolitaival, Olli-Pekka
Title

Adapting model-based testing to agile context
Abstract
This study concentrates on model-based testing in agile software developing context.
Model-based testing is a software testing technique in which tests are generated from a
model. Test can be executed separately later or in motion during the generation. Special
focus is placed on examining the adaptability of model-based testing to agile software
developing context.

The purposes of this study were to find guidelines for model-based testing tool selection
and to evaluate most suitable tool in agile context in case study. First was performed
literature survey, where found criteria for model-based testing tools selection. Based on
literature survey, was analyzed available tools carefully. Based on literature review and
evaluation was made a collection of guidelines for tool selection and selected one tool for
case study.

The case study aims to evaluate model-based testing suitability for agile developing
project. This case study had two purposes: the first goal was to present model-based
testing usage in agile process, and the second goal was to evaluate model-based testing
suitability in agile context. Based on empirical findings, it was concluded that model-
based testing can be performed in agile process.

ISBN
978-951-38-7119-2 (soft back ed.)
978-951-38-7120-8 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number

VTT Publications
1235-0621 (soft back ed.)
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

11375

Date Language Pages
September 2008 English, Finnish abstr. 69 p. + app. 6 p.

Name of project Commissioned by
RITA (Rapid, Iterative, model driven Testing
in Agile context)

Keywords Publisher
software testing, testing automation, software
developing

VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4520
Fax +358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

 Julkaisun sarja, numero ja
raporttikoodi

VTT Publications 694
VTT-PUBS-694

Tekijä(t)
Puolitaival, Olli-Pekka

Nimeke

Mallipohjaisen testauksen soveltaminen ketterässä
ohjelmistokehityksessä
Tiivistelmä
Tässä työssä käsitellään mallipohjaista testausta ketterässä ohjelmistokehitysympäristössä.
Mallipohjaisella testauksella tarkoitetaan tekniikkaa, jossa mallista tuotetaan testejä. Testit
voidaan ajaa myöhemmin erikseen tai testata ohjelmaa sitä mukaa, kun testejä generoidaan.
Työssä keskitytään tutkimaan mallipohjaisen ohjelmoinnin soveltuvuutta ketterään ohjel-
mistokehitykseen.

Työn tarkoituksena oli sekä etsiä suuntaviivoja mallipohjaisen testaustyökalun valintaan
että tehdä tapaustutkimus parhaaksi valitun työkalun käytöstä ketterässä projektissa.
Ensiksi suoritettiin kirjallisuuskatsaus, jossa etsittiin kriteerejä mallipohjaisten testaus-
työkalujen valintaan. Kirjallisuuskatsauksen perusteella analysoitiin saatavilla olevat olennai-
simmat mallipohjaiset työkalut huolellisesti. Analyysin ja kirjallisuuskatsauksen perus-
teella tehtiin kokoelma suuntaviivoja mallipohjaisen työkalun valinnan tueksi ja valittiin
yksi työkalu tapaustutkimusta varten.

Tapaustutkimuksen tarkoitus oli arvioida mallipohjaisen testauksen soveltuvuutta ketterään
ohjelmistokehitykseen. Arvioinnilla oli kaksi päämäärää: kuvata mallipohjaisen testauksen
käyttöä käytännössä ketterässä projektissa sekä arvioida mallipohjaisen testauksen sovel-
tuvuutta tähän ympäristöön. Tapaustutkimuksen perusteella ketterässä ohjelmistokehitys-
prosessissa voidaan tehdä mallipohjaista testausta.

ISBN
978-951-38-7119-2 (nid.)
978-951-38-7120-8 (URL: http://www.vtt.fi/publications/index.jsp)

Avainnimeke ja ISSN Projektinumero
VTT Publications
1235-0621 (nid.)
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

11375

Julkaisuaika Kieli Sivuja
Syyskuu 2008 Englanti, suom. tiiv. 69 s. + liitt. 6 s.

Projektin nimi Toimeksiantaja(t)
RITA (Rapid, Iterative, model driven Testing in
Agile context)

Avainsanat Julkaisija

software testing, testing automation, software
developing

VTT
PL 1000, 02044 VTT
Puh. 020 722 4520
Faksi 020 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

V
TT P

U
B

LIC
A

TIO
N

S 694
 A

dapting m
odel­based testing to agile contex

t
O

lli­Pekka P
uolitaival

ESPOO 2008 VTT PUBLICATIONS 694

Olli­Pekka Puolitaival

Adapting model­based testing to
agile context

VTT PUBLICATIONS

678 FUSION Yearbook. Association Euratom­Tekes. Annual Report 2007. Eds. by Seppo
Karttunen & Markus Nora. 2008. 136 p. + app. 14 p.

679 Salusjärvi, Laura. Transcriptome and proteome analysis of xylose­metabolising
Saccharomyces cerevisiae. 2008. 103 p. + app. 164 p.

680 Sivonen, Sanna. Domain­specific modelling language and code generator for
developing repository­based Eclipse plug­ins. 2008. 89 p.

681 Kallio, Katri. Tutkimusorganisaation oppiminen kehittävän vaikuttavuusarvioinnin
prosessissa. Osallistujien, johdon ja menetelmän kehittäjän käsityksiä prosessin
aikaansaamasta oppimisesta. 2008. 149 s. + liitt. 8 s.

682 Kurkela, Esa, Simell, Pekka, McKeough, Paterson & Kurkela, Minna. Synteesikaasun
ja puhtaan polttokaasun valmistus. 2008. 54 s. + liitt. 5 s.

683 Hostikka, Simo. Development of fire simulation models for radiative heat transfer
and probabilistic risk assessment. 2008. 103 p. + app. 82 p.

684 Hiltunen, Jussi. Microstructure and superlattice effects on the optical properties
of ferroelectric thin films. 2008. 82 p. + app. 42 p.

685 Miettinen, Tuukka. Resource monitoring and visualization of OSGi­based software
components. 2008. 107 p. + app. 3 p.

686 Hanhijärvi, Antti & Ranta­Maunus, Alpo. Development of strength grading of
timber using combined measurement techniques. Report of the Combigrade­project
– phase 2. 2008. 55 p.

687 Mirianon, Florian, Fortino, Stefania & Toratti, Tomi. A method to model wood by
using ABAQUS finite element software. Part 1. Constitutive model and computa­
tional details. 2008. 51 p.

688 Hirvonen, Mervi. Performance enhancement of small antennas and applications in
RFID. 2008. 45 p. + app. 57 p.

689 Setälä, Harri. Regio­ and stereoselectivity of oxidative coupling reactions of
phenols. Spirodienones as construction units in lignin. 2008. 104 p. + app. 38 p.

690 Mirianon, Florian, Fortino, Stefania & Toratti, Tomi. A method to model wood by
using ABAQUS finite element software. Part 2. Application to dowel type connec­
tions. 2008. 55 p. + app. 3 p.

691 Räty, Tomi. Architectural Improvements for Mobile Ubiquitous Surveillance Sys­
tems. 2008. 106 p. + app. 55 p.

692 Keränen, Kimmo. Photonic module integration based on silicon, ceramic and plastic
technologies. 2008. 101 p. + app.

693 Selinheimo, Emilia. Tyrosinase and laccase as novel crosslinking tools for food
biopolymers. 2008. 114 p. + app. 62 p.

694 Puolitaival, Olli­Pekka. Adapting model­based testing to agile context. 2008. 69
p. + app. 6 p.

ISBN 978­951­38­7119­2 (soft back ed.) ISBN 978­951­38­7120­8 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1235­0621 (soft back ed.) ISSN 1455­0849 (URL: http://www.vtt.fi/publications/index.jsp)

Julkaisu on saatavana Publikationen distribueras av This publication is available from

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI­02044 VTT, Finland
Puh. 020 722 4520 Tel. 020 722 4520 Phone internat. + 358 20 722 4520

http://www.vtt.f i http:/ /www.vtt.f i http:/ /www.vtt.f i

Test execution

Test generation

Model

Model­Based
Testing

Agile Process

Requirements Application

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi
http://www.vtt.fi
http://www.vtt.fi

	Abstract
	Tiivistelmä
	Preface
	Contents
	Acronyms and abbreviations
	1. Introduction
	2. Agile software development
	2.1 Agile overview
	2.2 Testing in agile process
	2.3 Mobile-DŁ
	2.3.1 Overview
	2.3.2 Implementation process

	3. Model-based testing
	3.1 Online vs. offline MBT approach
	3.1.1 Offline model-based testing
	3.1.2 Online model-based testing

	3.2 Modelling
	3.3 Test generation
	3.4 Making tests executable
	3.5 Test execution and reporting
	3.6 Reusability

	4. Model-based testing in agile context
	5. Model-based testing tool selection
	5.1 Overview of existing tools
	5.2 LEIRIOS Test Designer
	5.3 Markov Test Logic
	5.4 Conformiq Qtronic
	5.5 Reactis
	5.6 Spec Explorer
	5.7 Guidelines for selection

	6. Case study: Tienoo
	6.1 Introduction
	6.2 Developing process
	6.3 Tienoo software features
	6.4 System implementation
	6.5 Testing system
	6.5.1 Modelling
	6.5.2 Making tests executable
	6.5.3 Tests generation and execution

	7. Analysis of results
	7.1 Does model-based testing fit in agile iteration?
	7.2 Model-based testing vs. script based testing
	7.3 Summary

	8. Conclusions
	References
	Appendix 1: Tienoo system features
	Appendix 2: Mobile-Dtm developing iteration
	Appendix 3: JWebUnit user interface
	Appendix 4: Conformiq Qtronic Modeler
	Appendix 5: Conformiq Qtronic Modeler
figures: TienooServer.ServerMobileSide

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

