
V
TT PU

BLICA
TIO

N
S 695

 Tow
ards a Fram

ew
ork for Im

proving Softw
are D

evelopm
ent Process M

ediated w
ith CM

M
I...

ESPOO 2008 VTT PUBLICATIONS 695

Minna Pikkarainen

Towards a Framework for Improving
Software Development Process
Mediated with CMMI Goals and Agile
Practices

Organizational maturity indicators, such as the CMMI levels or SPICE
ratings, have become important for software development. Customer
organizations often rely on them when selecting a supplier, as the results
of these assessments can serve as an indicator of process maturity. At the
same time, agile methods continue to gain popularity due to increasing
speed and quality demands. It has been argued that the CMMI model is
too heavy­weight for software development projects adopting agile
practices and that its use would lead to an overly document­driven
software development approach. This presents a challenge to enable
organizations, relying on CMMI as an indicator of process maturity, to
also benefit from using agile methodologies such as XP and Scrum. The
purpose of this thesis is to increase understanding of how to improve the
software development process mediated with the CMMI and the agile
practices. The work was done empirically in 4 companies and based on 6
scientific research papers, written jointly with an international group of
researchers and published in well­established peer­reviewed scientific
fora.

In order to answer the gaps in the current empirical body of
knowledge and research this study introduces a framework, based on a
hybrid assessment approach, and starts the evaluation of the impact of
agile practices from the communication perspective. The framework can
be used to identify the agile practices for a plan­driven software
development process and to validate the software development process
against CMMI goals and agile practices.

ISBN 978­951­38­7121­5 (soft back ed.) ISBN 978­951­38­7122­2 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1235­0621 (soft back ed.) ISSN 1455­0849 (URL: http://www.vtt.fi/publications/index.jsp)

Julkaisu on saatavana Publikationen distribueras av This publication is available from

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI­02044 VTT, Finland
Puh. 020 722 4520 Tel. 020 722 4520 Phone internat. + 358 20 722 4520

http://www.vtt.f i http:/ /www.vtt.f i http:/ /www.vtt.f i

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi
http://www.vtt.fi
http://www.vtt.fi

VTT PUBLICATIONS 695

Towards a Framework for Improving
Software Development Process

Mediated with CMMI Goals
and Agile Practices

Minna Pikkarainen

Academic dissertation to be presented, with the assent of the Faculty of Science
of the University of Oulu, Department of Information Processing Science,

for public defence in Auditorium IT115, Rakentajantie 3, Oulu,
on November 10th, 2008, at 12 noon.

ISBN 978-951-38-7121-5 (soft back ed.)
ISSN 1235-0621 (soft back ed.)

ISBN 978-951-38-7122-2 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT Technical Research Centre of Finland 2008

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 3, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvägen 3, PB 1000, 02044 VTT
tel. växel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 3, P.O. Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax + 358 20 722 4374

VTT, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde 020 722 111, faksi 020 722 2320

VTT, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel 020 722 111, fax 020 722 2320

VTT Technical Research Centre of Finland, Kaitoväylä 1, P.O. Box 1100, FI-90571 OULU, Finland
phone internat. +358 20 722 111, fax +358 20 722 2320

Text preparing Tarja Haapalainen

Edita Prima Oy, Helsinki 2008

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

3

Pikkarainen, Minna. Towards a Framework for Improving Software Development Process
Mediated with CMMI Goals and Agile Practices. Espoo 2008. VTT Publications 695. 119 p. + app.
193 p.

Keywords CMMI, agile practices, lightweight assessment, communication

Abstract

Problems in software development mainly spring from the difficulty of
establishing and stabilizing the requirements, the changeability of the software
and interactive dependency of the software, hardware and human beings. A
software development process consists of a set of empirical and �best� practices
in software development, together with organization and management that are
needed for the software product implementation.

Different process models, such as CMMI (Capability Maturity Model Integration),
ISO 9001 and ISO 15504, have been developed in the last decade to support the
assessment of software development processes. The main process model,
examined in this thesis, is CMMI. This model was chosen as the focus of this
research because it is a widely-used, beneficial approach for identifying the key
weaknesses of a software development process which need immediate attention
and improvement. Two of the key challenges of CMMI assessments are
1) overly heavy and time-consuming assessments and 2) the risk that the
achievement of CMMI levels forces the developers to use more time writing
documents than implementing the software product.

The level of interest in the use of agile practices (focusing on practices such as
eXtreme Programming and Scrum) has radically increased in software
organizations. Practitioners argue that the adoption of agile software development
methods can solve the organizational need for a more rapid and flexible software
development process, and enable improved communication in changing market
situations. A brief analysis of the empirical body of knowledge reveals, however,
that there are also several challenges in interactive dependency management and
communication between the actors of software development in an agile context.

4

The objective of this study is to increase the understanding of how improvements
can be made in the software development process, mediated with CMMI
�specific� goals and agile practices from communication perspective. This study
is based on a series of case studies and data from 4 companies and 8 software
development teams. To prove the importance of the improvement approach, this
study starts with an evaluation of the agile practices in current use, using well
established �innovation of adoption� theories. The evaluation indicates that agile
practices can achieve the subsequent assimilation stages differentially. The
results also support the use of an adoption strategy, in which the needs of the
teams are first defined before mapping the agile practice-based improvement
solutions to the project level challenges.

Although the iteration retrospectives provide a practical way for improving a
software development process at team level, companies need mechanisms to
constantly implement improvement initiatives and share knowledge of the process
status also at organizational level. To meet this gap in the current empirical body
of knowledge and research, a novel framework is presented in this study. The
framework can be used 1) to identify the agile practices for a plan-driven
software development process and 2) to assess the software development process
in a lightweight manner against the CMMI goals and agile practices.

To indicate the value of the created framework, it is important to collect
empirical evidence on how agile practices actually affect communication in the
software development process. This study applies coordination theory to confirm
that the adoption of agile practices, such as sprint planning, an open office space,
daily meetings and product backlogs improve the communication and management
of requirements, features and project task dependencies in agile software
development teams. Additionally, increased informal communication can in
some cases decrease the need for upfront documentation in software development
teams and, therefore, facilitate more productive software development than in
previous plan driven situations.

5

Preface
During the preparation of this thesis, I have collaborated with many great people
including groups of researchers and customers from many organizations. The
Technical Research Centre of Finland (VTT), Tekes, the Nokia Foundation and
the Irish Software Engineering Centre (Lero) provided funding for the research.
A special thanks to my supervisor Pekka Abrahamsson, whose advice has been
crucial to the creation of this thesis. Thanks also to Samuli Saukkonen from the
University of Oulu for his reviews and Brian Fitzgerald from the University of
Limerick for his great advice during the research. This research would not have
been possible without my friends and colleagues Outi Salo, Annukka Mäntyniemi,
Xiaofeng Wang, Fergal Mc Caffery and Kieran Conboy who jointly created the
research papers with me and who supported me as a friend during the most
difficult moments of this Ph.D. journey.

While carrying out this research, I have worked on the ITEA projects Agile and
Flexi. I would like to express my thanks to all these project groups, and especially
to Ulla Passoja, Mika Koivupalo, Tuomo Kähkönen, Vasco Duarte and Jari Still
who provided me with an opportunity to see how agile practices were adopted
and used in their organizations. The manuscript of this thesis was also reviewed
by Frank Maurer and Tore Dybå. I am grateful for their insightful and
comprehensive comments that greatly improved the final outcome of this thesis.
During the research process, I had the amazing opportunity to be in Ireland and
work with all those lovely people from Lero and learn so much more about the
research. From Lero I would like to thank Gary Gaughan and Eoin O�ccur, who
shared an office with me for one year and always made me laugh during the
most boring moments of the paper re-writing process. My thanks also to my
mother, and sisters for their patience and finally thanks to my love Sami Härkönen
and my cute children Jesse and Jasmin Pikkarainen, who gave me the happiness
and strength every day that I needed to do this research.

Kempele, Finland

Minna Pikkarainen

6

Contents

Abstract ... 3

Preface .. 5

List of Original Publications... 9

List of Names and Acronyms ... 10

1. Introduction.. 11
1.1 Research Questions ... 13
1.2 Scope of the Research ... 15
1.3 Structure of the Thesis... 18

2. Background of the Study ... 22
2.1 Plan-Driven � Traditional Software Development 22

2.1.1 Assessment Approaches ... 24
2.1.2 CMM / CMMI .. 26
2.1.3 Empirical Findings ... 30
2.1.4 Summary .. 34

2.2 Agile Software Development .. 34
2.2.1 Agile Principles .. 36
2.2.2 Agile Methods and Practices .. 37
2.2.3 Empirical Findings ... 40
2.2.4 Summary .. 47

2.3 Hybrid Approaches for Improvement of Software Development 48
2.3.1 Risk Based Agility Evaluation ... 48
2.3.2 Levels for Agility Evaluation ... 51
2.3.3 Integrating CMMI and Agile Practices 52
2.3.4 Empirical Findings ... 55
2.3.5 Summary .. 58

2.4 Summary of Chapter 2... 59

3. Towards a Framework for Improving Software Development Process
Mediated with CMMI and Agile Practices from Communication Perspective......60
3.1 Definition of the Framework ... 60
3.2 Needs for the Framework .. 61

7

3.3 Framework for this Study.. 62
3.3.1 Mapping Model and CMMI Goals and Agile Practices 65
3.3.2 Hybrid Assessment Approach and Mapping Model................... 65
3.3.3 Assessments � Agile practices in Use .. 66
3.3.4 Iteration Retrospectives and Assessment Approach................... 66
3.3.5 Iteration Retrospectives � Agile Practices in Use....................... 66
3.3.6 Agile Practices in Use � Impacts on Communication 66

3.4 Summary of Chapter 3... 67

4. Research Design... 68
4.1 Research Approach and Methods .. 68

4.1.1 Research Approach... 68
4.1.2 Research Method .. 70
4.1.3 Collection of Empirical Evidence... 71
4.1.4 Data Analysis.. 73

4.2 Research Context... 73
4.2.1 Case Company 1... 75
4.2.2 Case Company 2... 76
4.2.3 Case Company 3... 78
4.2.4 Case Company 4... 80

5. Research Contributions.. 83
5.1 PAPER I: Agile Practices in Use from an Innovation Assimilation

Perspective. A Multiple Case Study .. 83
5.2 PAPER II: An Approach Using CMMI in Agile Software Development

Assessments: Experiences from Three Case Studies........................... 84
5.3 PAPER III: An Approach for Assessing Suitability of Agile

Solutions: A Case Study.. 86
5.4 PAPER IV: AHAA � Agile, Hybrid Assessment Method for

Automotive, Safety Critical SMEs .. 87
5.5 PAPER V: Deploying Agile Practices in Organizations:

A Case Study ... 88
5.6 PAPER VI: The Impact of Agile Practices on Communication in

Software Development .. 89
5.7 Summary of Chapter 5... 90

6. Discussion.. 92
6.1 Implications for the Research .. 92

8

6.2 Implications for the Practice.. 94
6.2.1 Implications for Continuous SPI .. 94
6.2.2 Implications for Agile Practice Adoption and Communication98

7. Conclusions... 100
7.1 Answers to the Research Questions... 100
7.2 Limitations of the Thesis ... 103
7.3 Future Research ... 105

References... 106

Appendices

Appendix 1: Mapping Model
Appendix 2: Papers I�VI

Appendix 2: Publications 1�VI of this publications are not included in the PDF
version. Please order the printed version to get the complete publication
(http://www.vtt.fi/publications/index.jsp)

http://www.vtt.fi/publications/index.jsp

9

List of Original Publications

I Pikkarainen, M., Wang, X. & Conboy, K. 2007. Agile practices in Use
from an Innovation Assimilation Perspective. A Multiple Case Study,
ICIS 2007. Montreal, Canada. 31 p.

II Pikkarainen, M. & Mäntyniemi, A. 2006. An approach Using CMMI in
Agile Software Development Assessments: Experiences from Three Case
Studies. SPICE 2006. Luxemburg. 22 p.

III Pikkarainen, M. & Passoja, U. 2005. An Approach for Assessing
Suitability of Agile Solutions: A Case Study, The Sixth International
Conference on Extreme Programming and Agile Processes in Software
Engineering, Sheffield University, UK. 14 p.

IV McCaffery, F. Pikkarainen, M. & Richardsson, I. 2008. AHAA � Agile,
Hybrid Assessment Method for Automotive, Safety Critical SMEs, ICSE
2008. 31 p.

V Pikkarainen, M., Salo, O. & Still, J. 2005. Deploying Agile practices in
Organizations: A Case Study. In: European Software Process Improvement
and Innovation (EuroSPI 2005), Budapest, Hungary. 20 p.

VI Pikkarainen, M., Haikara, J., Salo, O. & Abrahamsson, P. 2008. The
Impact of Agile practices on Communication in Software Development.
Empirical Software Engineering, Vol. 13, No. 3, pp. 303�337. 58 p.

10

List of Names and Acronyms

CMM Capability Maturity Model

CMMI Capability Maturity Model Integration

QIP Quality Improvement Paradigm

SEI Software Engineering Institute

SPICE Software Process Improvement and Capability Determination,
ISO 15504

TDD Test Driven Development

VTT Technical Research Centre of Finland

XP eXtreme Programming

APM Agile Project Management

FDD Feature Driven Design

LSD Lean Software Development

IT Information Technology

CR Change Request

SME Small-Medium Enterprise

PIW Post Iteration Workshop

AHAA Agile Hybrid Assessment method for Automotive, Safety Critical
Small Enterprises

ASD Adaptive Software Development

SPI Software Process Improvement

FDD Feature Driven Development

11

1. Introduction

In the mid-1990s, many developers found the initial requirements and
documentation steps frustrating and difficult to implement in practice (Williams
and Cockburn 2003). Requirements and plans got out of the date even in short
software development projects (Williams and Cockburn 2003). Plan-driven
software development methods are typically characterized as systematic engineering
approaches, where continuous SPI strategies such as CMMI or ISO 15504 (i.e.
SPICE) based assessments are applied in order to define improvement needs for
high maturity processes (Boehm and Turner 2003a). CMM and more recently
CMMI is regarded as the most popular reference model used in assessments as
the first step of SPI (Agrawal, and Chari 2007) and it has been used, for
example, to enhance the reduced costs of software development (Galin and
Avrahami 2006). On the other hand, it has been argued that CMM is too heavy-
weight a model for software development projects (Ramachandran 2005) and
that the use of CMMI could lead an organization or team to an overly document-
driven and structured software development approach (DeMarco and Boehm
2002, Highsmith 2002b).

Agile methods, such as eXtreme Programming (XP) (Beck 2000) and Scrum
(Schwaber and Beedle 2002), promise practices for improved collaboration,
communication and project management (Williams and Cockburn 2003). This is
because, in agile software development, the planning is made more frequently
than in so called �plan-driven software development�. The constant planning
enables these �planning driven teams� to respond to changes quickly (Wang et al.
2008). These are some of the reasons why agile methods have been increasingly
attractive to software intensive companies (See example of the use Karlström
and Runeson 2006, Cohn and Ford 2003, Drobka et al. 2004, Dybå and Dingsøyr
2008, Fitzgerald et al. 2006, Rasmusson 2003, Svensson and Höst 2005).

The usefulness of XP and Scrum practices, however, vary between organizations
and projects (Salo and Abrahamsson 2008). This means that at the same time
when some of the XP and Scrum practices such as (1) collective code
ownership, (2) 40 h week, (3) coding standards and (4) simple design, (5)
product backlogs and (6) sprint planning meetings seem to be very useful for
companies, some other XP and Scrum practices such as (1) pair programming,

12

(2) TDD, (3) On-site customers and (4) product backlogs have been discovered
to have negative effects (i.e. were not seen useful) on the software development
organizations (Salo and Abrahamsson 2008).

Additionally, the deployment of agile methods demands acquiring, assimilation,
transformation and exploitation of new knowledge (Cohen et al. 2004). Therefore,
it is not a surprise that several case studies report the adoption of agile software
development methods as a challenging activity (Svensson and Höst 2005). There
are even cases in which decreased productivity rates have been reported during
the deployment while the team had to take time to learn new methods (Cohn and
Ford 2003). Thus, sometimes the fast introduction of agile methods in individual
pilot projects can cause a situation in which the rest of the organization is left
without knowledge of what and how the agile pilot projects are doing (Cohn and
Ford 2003). Usually the goal is to adopt agile practices to apply the suitable agile
practices as a part of the organization�s previous plan-driven software
development process (Manhart and Schneider 2004) and, therefore, to find a
balance in both the agile and traditional approaches to take advantage of their
strengths and compensate for their weaknesses (Boehm and Turner 2003a).

The relationship between CMMI and the software development process in which
agile practices have been used has been discussed in several empirical reports,
but only in a few research journals (Boehm 2002, Cohen et al. 2004, Glazer
2001, Highsmith 2002b, Paulk 2001). Many have criticized the use of CMMI
based assessments in the software development process in which agile practices
have been used. For example, Boehm (2002) argues that agile methods are a
reaction against traditional methodologies, also known as plan-driven
methodologies. Turner and Jain (2002) indicate that the companies using agile
methods face a risk of emphasizing too much tacit knowledge and too less
formal communication across the team. One reason for the concern is that the
tacit, informal communication is in many cases dependent on the persons�
experience and capability of sharing information between each other (Turner and
Jain 2002). The software development process in which agile practices are used
does not, however, include only informal communication. Formal communication,
such as source code, test cases, and a minimum, essential amount of documentation
is also used in the agile software development process but not in the same way
or in the same extension as in the plan-driven software development process
(Turner and Jain 2002).

13

There are only a few empirical reports in which CMMI has been used when
assessing software development processes where agile practices are used. It has
been, however, suggested that it is possible to achieve CMMI levels 2 and 3
process areas using Scrum and XP practices (Cohen et al. 2004, Paulk 2002,
Vriens 2003). Furthermore, some argue that most XP projects, that truly follow
XP practices, could be assessed at the CMMI level 2 (Glazer 2001, Kähkönen
and Abrahamsson 2004, Paulk 2001). Anderson (2005) even argues that the
CMMI level 5 would be possible to achieve using agile methods. Perhaps, it is,
however as Jeffries (2002) points out that agile methods are: �in some ways a
�vertical� slice through the level 2 through 5� (Cohen et al. 2004).

Thus, organizations that are accustomed to improving their process capability utilizing
standards (such as SPICE) and models (such as CMMI) seem to have limited
tools to identify suitable agile practices for their specific software development
context and to continuously improve the agile based software development
process (Boehm and Turner 2003a). The current literature does not clearly report
how agile practices contribute to the CMMI process areas (Fritzsche and Keil
2007) or how CMMI initiatives and agile practices can be used together to
improve the software development process (Sidky 2007). In addition, both research
and practice have much to learn about SPI efforts using CMMI (Sidky 2007).

In recognition of these problems, the question of how to improve software
development processes mediated with CMMI and agile practices from
communication perspective becomes relevant.

1.1 Research Questions

At the same time as agile practices are increasingly adopted in organizations
(e.g. Karlström and Runeson 2006, Cohn and Ford 2003, Drobka et al. 2004,
Dybå and Dingsøyr 2008, Fitzgerald et al. 2006, Rasmusson 2003, Svensson and
Höst 2005), CMMI is being used as one reference models for assessing a
software development process as a part of the overall SPI programs to reduce
costs of software development (Galin and Avrahami 2006). Currently, many
companies that have used or have a need to use CMMI based assessments have
also a need for agile practices due to, for example, their needs for more effective
communication and collaboration practices.

14

Many have argued that CMMI based assessments and agile practices could be
used as a combined approach to integrate the best abilities of both the agile
methods and the CMMI process areas (Boehm and Turner 2003a, Paulk 2001,
Kähkönen and Abrahamsson 2004). Current research, however, shows only a
few case studies related to the use of agile practices and a lack of an approach
that integrates these aspects together. Therefore, there is a need for some
research focusing on the following one main research question:

Q.1: How to improve the software development process mediated with
CMMI goals and agile practices from communication perspective?

This question is divided into three sub-questions:

Q.1.1: How to facilitate the improvement of the software development
process mediated with CMMI and the agile practices? Currently, many
software intensive companies have a parallel need to 1) use the agile practices
due to business demands and 2) to improve and maintain their process capability
utilizing reference models such as CMMI (2006). This is the situation,
especially, in companies that have a long time investment in SPI or have some
other specific need to follow these well known improvement standards or
models. However, the current research seems to lack an approach for the
adoption of agile practices as a part of SPI program in which assessment is based
on the goals of CMMI model.

Q.1.2 How to validate the improvement of the software development
process mediated with CMMI and agile practices? As the CMMI model is
often defined as a too heavy (Ramachandran 2005) and too document-driven
approach (DeMarco and Boehm 2002, Highsmith 2002b), it is unlikely that an
official assessment where the CMMI paradigm is used would suit a context of
agile software development without modification. Therefore, it is important to
define the extent to which the CMMI model can be applied in a lightweight manner
without having the teams incur excessive documentation.

Q.1.3 Does the use of agile practices improve the communication in software
development teams and between the teams and stakeholders? Communication

15

is an important factor in software development and, thus, a relatively common
success factor, when discussing change in software development projects and
teams (Stelzer and Mellis 1998). Regular communication is the best way to build
trust in teams (Henttonen and Blomqvist 2005) and, thus, make the software
development more efficient in companies (Paasivaara and Lassenius 2003).
Especially, communication among stakeholders (i.e. customers, management,
other development teams) and software development project members and
stakeholders is a particular challenge for software development (Damian et al.
2000). Some of the agile principles suggest that business people and developers
must work together daily and project information should be shared through
informal, face-to-face conversation rather than through documentation. Although
it seems that the use of agile practices would increase communication capabilities
in software intensive companies, it has been claimed also that the use of agile
software development methods can increase the chasm among the actors in
software development organizations and even lead to project failure (Boehm and
Turner 2003b). Most of these problems may be a consequence of the lack of
communication between these actors as identified in many studies in which agile
methods are in use (Cohn and Ford 2003, Coram and Bohner 2005, Svensson
and Höst 2005). The current research seems, however, lack of approach or
discussion on the actual effects of agile practices on communication in software
development teams and between the teams and stakeholders.

1.2 Scope of the Research

Software development can be characterized as a series of sequentially organized
phases of activities (Clegg et al. 1996) such as design, programming and
maintenance that are needed when implementing a software related product
(CMMI 2006). Each phase operates with a defined notation and will often result
in a prescript artefact such as a design document or a program (Baskerville and
Bries-Heje 2001). �Process� as a concept is defined as follows:

�A set of activities, methods and transformations or steps that people use to
develop and maintain software and its associated products� (Humphrey
1995, Mathianssen et al. 2002).

16

System development is

�a rational scientific process, which is proposed as a subdivision of the
development process into deciding what an information system must do and
how it should do it� (Fitzgerald 1996).

The main SPI model, investigated in this thesis, is the capability maturity model,
CMMI (2006). This model is chosen as the focus of this research for a number
of reasons, the foremost being that CMMI based assessments integrated with
other assessments are a widely-used approach for evaluating the software processes
within a company (Trudel et al. 2006) and indicating its key weaknesses for
immediate attention and improvement (Daskalantona 1994). Secondly, the
beneficial experiences of CMM and CMMI programs have been reported as a
part of many studies during the past decades (Galin and Avrahami 2006, Niazi et
al. 2003, Stelzer and Mellis 1998). For example, the results of CMM programs
in 400 projects report improvements in productivity and development speeds in
software development due to the CMMI programs (Galin and Avrahami 2006,
Stelzer and Mellis 1998). Based on the results of the analysis, they report a 26 to
187% improvement in productivity, a 28�53% improvement in cycle time and a
120�650% percent return in investment due to the use of CMMI programs
(Galin and Avrahami 2006).

CMMI model is provided in two alternative representations continuous and staged.
These representations have the same content but different structure. (Curtis et al.
2001). This study focuses using continuous representation of CMMI. This is
because the continuous representation offers more flexibility for organizations to
select most relevant processes to improve based on their business goals and risks
(Curtis et al. 2001).

Project planning, management and requirement management are the CMMI
process areas which were examined in more detail in all the case organizations
in this study. These processes were selected because previous research suggests
that these process areas would provide the most significant benefit for the software
development companies (McCaffery et al. 2007, Meehan and Richardson 2002).

This study focuses on investigating eXtreme Programming (XP) (Beck 2000)
and Scrum (Schwaber and Beedle 2002). These methods were chosen for a

17

number of reasons. First of all, because they are considered to be the most
popular of all the agile methods (Fitzgerald et al. 2006). Secondly, they are very
diverse approaches as XP is practitioner-oriented while Scrum focuses on
project management (Abrahamsson et al. 2002). By studying these two methods,
this study integrates lessons learned from both perspectives. The selected set of
agile practices is also based on the engineering approach of using a combined set
of Scrum and XP practices as described by Fitzgerald et al. (2006). Furthermore,
the selection is further justified because the literature shows that there are few
reports and little knowledge in the current literature on how to use and improve a
combined, customized set of agile practices. This study is based on XP practices
from the first edition of Beck�s (2000) XP book. This is because the brief
evaluation of XP practices in Chapter 2.2.3 revealed that most of the existing
empirical studies, including Fitzgerald et al. (2006), that customized the approach
for the agile method tailoring are based on the first, and not the second edition of
XP book. In the future, the analysis could be extended to the new practices of
Beck and Andres (2004).

Rogers (2003) suggests that an innovation can be an idea or practice, which is
perceived as new by the adopters. Based on this definition, agile practices can be
characterized as software process innovations. Most of the proprietary agile
method literature portrays these methods as new, revolutionary and innovative.
Theories on IT innovation adoption, consequently, bring new insights to the
study of agile practices in use. Several innovation adoption theories have been
built and used to explain the mechanisms and structure of the introduction and
implementation of new innovations (Cooper and Zmud 1990, Davis 1989,
Fichman 2001, Gallivan 2001). Gallivan�s (2001) work is deemed relevant and
used in the first part of this study, in which six assimilation stages have been
proposed based on the previous work of Cooper and Zmud (1990). These
theories provide a background for this study to investigate the adoption of agile
practices and the adoption of innovation theories to determine their relevance to
the outcome.

Communication is an important way for team members to coordinate complex
software development environments (Malone and Crowston 1994). Therefore,
communication is also characterized as one central aspect of coordination
theory: as an activity that is needed as a way to manage dependencies between
actors in the process (Malone and Crowston 1994). The agile principles in agile

18

manifesto (2001) provide some solution proposal for more efficient communication
in software intensive companies. This is done emphasizing the collaboration and
interaction inside of the teams and between all teams and stakeholder groups.
Communication was selected as the research theme of the last phase of this
thesis because it has been defined as the first step of an organization towards
agility. For example, Sidky (2007) claims that communication needs to be applied
first (it is included as the first agile level) because agile principles emphasize
�Individuals and interactions over processes and tools� (Sidky 2007). On the other
hand, Watts Humprey (2000) puts the focus of his book on SPI on communication,
thus, highlighting the significance of communication in software related organizations.

In conclusion, the research questions are investigated through case study
research which was applied in four software companies and eight development
teams. The four companies were selected for the research because they have previous
experience or interest in CMMI based assessments and business goals that
supported the use of agile practices as part of the software development process.

1.3 Structure of the Thesis

This thesis is based on 6 published research papers (I�VI). In exploring the
research phenomenon outlined in this thesis, each individual paper (I�VI)
contributes to the increased understanding of improvement in software development
process. Different aspects of this theme have been elaborated upon the papers
and described in Figure 1.

19

Figure 1. Different aspects of the research phenomenon.

In Paper I innovation adoption theories are applied to interpret the use of agile
practices in the three development teams. The paper shows that since the use of
agile practices can reach a sophisticated level of use more easily in certain areas
where the project team see it as most beneficial, it might be more reasonable to
use the adoption strategy in which the need of the project is evaluated to support
the identification of relevant agile practices, before their use by the project
teams. The author of this thesis was the first author of the Paper I. She was
responsible for the case II described in the Paper (which is one of the case
companies in this thesis). Cases I and III as well as the data analysis and paper
writing were done in close collaboration with Xiaofeng Wang from the
University of Limerick and Kieran Conboy from the University of Galway.

Because assessments are a well established approach for evaluating the current
status in organizations and teams, Paper II takes the initial steps to clarify how
the adoption of agile practices could be supported in assessment. As the answer
seems to be to map agile practices under CMMI specific goals, Paper II uses the
data of the three case companies to analyse how agile practices are mapped to
the specific goals of CMMI and how the use of agile practices affects the

20

assessment of the software development process in which agile practices have
already been used. The author of this thesis is the first author of the paper and
responsible for the study of all the cases described in Paper II. Paper II was
written in close collaboration with Annukka Mäntyniemi from Nokia.

Paper III presents a concept of �agile assessment�, using data from case company 1.
The paper describes how to do an agile assessment by focusing on improvement
but also identifying the suitable agile practices for the software development
organization. It has been suggested in the paper that the assessment should be
lightweight � meaning that it does not need to be a complex evaluation including
the full analysis of CMMI base practices. It should be based on some of the agile
principles, such as face-to-face communication, rapid feedback to interviewees
and organization management, and include simple documentation. The author of
this thesis is the first author of the paper which was written together with Ulla
Passoja, who, at that time, was working as a line manager and quality engineer
in the researched case company.

Paper IV integrates the developed �agile assessment� approach with an existing
well established lightweight assessment method called �ADEPT� (McCaffery et
al. 2006, McCaffery et al. 2007) indicating that agile practices are useful and
beneficial to use as a part of lightweight assessment also in safety critical
software development context. One goal of the paper was also to integrate an
agile assessment approach together with the ADEPT assessment method which
was developed by McCaffery et al. (2007). The author of this thesis was the
second author of Paper IV, but participated in both the case and paper writing
work equally with the co-authors Fergal Mc Caffery and Ita Richardson. The
author of this thesis participated in the described work in one of the case
companies and had the main responsibility for all the agile related parts both in
the case itself and in the paper writing.

All three Papers (II�IV) together reveal how an assessment mediated with the
specific goals of CMMI and agile practices are used as the approach that enables
companies to identify relevant improvement needs and solution alternatives for
both agile and plan-driven software development processes.

Paper V integrates the developed assessment approach with steps of the SPI
method called QIP (Basili 1989) showing in which steps of the SPI process the

21

�agile assessment approach� could be used. In this paper it is also shown how
iterative retrospectives can be integrated with the agile assessment approach as a
part of the overall organizational software process improvement. An example
from one case company is used to empirically evaluate the presented research
assumptions. Paper V was written jointly with Outi Salo who is the key author of
several papers related to iterative software process improvement in agile context
(e.g. Salo and Abrahamsson, 2007). The third author of the paper is Jari Still
who at that time was working as a site manager in the evaluated case company.

In Paper VI the developed improvement approach is examined so as to
determine how agile practices affect communication in software development.
The paper evaluates the impacts of agile practices on communication in two
agile software development teams from one case company using the dependencies
of coordination theory. In the paper it is concluded that although the use of agile
practices does not automatically guarantee optimized communication between
the teams and stakeholders; it provides some valuable mechanisms to improve
communication inside the development teams and, thus, might also decrease a
need for formal documentation. The assessment was conducted together with the
research team and the author gained valuable contributions for the paper from
other writers. The author of this thesis is the first author of Paper VI, and she did
the main work related to the literature review, case and data analysis described
in Paper VI.

The summary part of the thesis is structured as following: Chapter 1 describes
the research questions, scope and structure of this thesis; Chapter 2 presents the
background to the study and defines the concepts of plan-driven-, agile- and
hybrid software development process; Chapter 3 introduces the framework for
the thesis, used for integrating the empirical results with the research questions;
Chapter 4 sets out the research design including the research approach, methods
and organizational context in which the research took place; Chapter 5 lists the
research contribution of the empirical research; in Chapter 6 there is a discussion
of the research implications with respect to the theory and practice, and Chapter
7 concludes with a summary of the results and describes the limitations and
possibilities for future research.

22

2. Background of the Study

The purpose of the following two sections is primarily to provide some
perspective and insight into the topic of this thesis, to identify some existing
gaps in models supporting improvement of plan-driven, agile and hybrid software
development processes and to briefly look at empirical reports to show that the
framework is required to support the improvement of software development
process mediated with CMMI goals and agile practices from communication
perspective. In this respect, Sections 2.1 and 2.2 describe:

a) what is plan-driven and agile software development

b) what hybrid methods are currently available for the integration of
these approaches

c) how existing approaches relate to SPI and the adoption of agile practices.

For this reason, Sections (2.1 and 2.2) do not provide a complete description of
the methods, models and practices discussed.

2.1 Plan-Driven � Traditional Software Development

Plan-driven software development is an engineering approach in which the
software is developed following specific processes which start from
requirements and ends at the finished code (Boehm and Turner 2003a). There
are several methodological approaches and models on how to develop the
software in a plan-driven way (Boehm and Turner 2003a). Probably the best
known of these approaches is the �waterfall� model (Royce 1970) in which all
the development phases are implemented, at least twice at stages after one
another to be able to produce the working software. Although Royce�s (1970)
model is always defined as the most plan-driven way to do the software, the
suggestion of Royce is actually to do a 30 month project with a 10 month pilot
model which, therefore, gives some hints on an iterative development approach
(Larman and Basili 2003).

�Developers do not develop systems by completing a single task and
moving to the next task following a rational sequence� (Fitzgerald 1996).

23

Thus, neither the system or software development is a linear process. There is
always the need to return back to the specification and designs to correct the
already developed software code and, thus, continuously modify the already
created documentation. Boehm (1988) claims that the use of the �waterfall� life
cycle can lead organizations to a document driven approach which pushes teams
to write specifications, interfaces, and decision support functions that are useless
and difficult to understand. The argument is that the waterfall model pursues the
development projects to perform activities in the wrong order (Boehm 1988). As
a solution to these problems of the waterfall type of software development life
cycle, Boehm (1988) presents a �Spiral� model to navigate through each phase of
the system development process. He notes, however, that one of the key
challenges to software project management is not only in the process order but
also in the communication among the several stakeholders such as users,
customers, maintenance team, management and the software development team.
The problems in system development arise because all these actors view the
same system in a different perspective (Boehm and Ross 1989).

In iterative development, each iteration is like its own mini-project which
includes the phases of requirements analysis, design, programming and testing
whereas the incremental software development can be characterized as a
development in which the system grows incrementally feature by feature
(Larman 2003). The �Spiral� model (Boehm 1988) was developed in 1988 to
describe a new, more iterative, order for the software development but also to
facilitate communication and trust in the software development teams and
organizations. In the 1990s, many, otherwise incremental, plan driven projects
were, however, based on long iterations or increments and large well documented
requirements analysis (Boehm and Turner 2003a).

SPI standards, models and approaches were developed in the late 1980s due to
the so called software crisis, which existed due to late and overrun software
projects (Eman and Madhavji 1999). The literature contains several theories and
paradigms that describe how to perform SPI. The most well known of these
models are IDEAL (McFeeley 1996), QIP (Basili 1989), and plan-do-check-act-
cycle (Deming 1990). Software process assessments provide an attractive,
practical way of starting the improvement of the software development process.
Typically, the assessments are implemented in order to help managers and
professionals to identify the most critical problems and to agree on the actions

24

that are required to address them (Humphrey et al. 1991). The assessments are
often supported by standards (e.g. ISO 15504 (2006) or ISO 9001 (Agrawal and
Chari 2007)) or paradigms (e.g. capability maturity model (CMM) (Curtis et al.
2001), more recently the CMMI (2006)). These �standards� (Agrawal and Chari
2007, Niazi et al. 2003) define how to achieve managed, defined and optimized
software development (Boehm and Turner 2003a).

2.1.1 Assessment Approaches

Assessments facilitate improvements in the company software development and
management processes (Humphrey et al. 1991):

 �An organization characterizes the current state of its software process
and provides findings and recommendations to facilitate improvement.�
(Humphrey et al. 1991)

Empirical studies have proven that assessments, integrated with the successful
implementation of a change, can enable organizations to improve the speed and
reduce the costs of the software development (Galin and Avrahami 2006, Niazi
et al. 2003). CMMI model defines assessments as an appraisal that an
organization does for itself with the purpose of improving processes (Eman and
Madhavji 1999). Currently, the literature reveals three different types of
assessments which are capability, software product and project assessments
(Eman and Madhavji 1999). Firstly, assessments are done using a selected
improvement model to evaluate development and support the capability of
production (Eman and Madhavji 1999). Secondly, a system assessment aims to
assess the maintainability of the software system from an architectural, design
and implementation point of view. Thirdly, a project assessment focuses on
evaluating that a given product will be delivered with the defined functionality,
schedule, budget and quality (Eman and Madhavji 1999).

Software process assessments have been used, with all of the existing SPI
models, as a mechanism to identify the strengths and weaknesses in software
development projects and this information is used for improvement purposes
(Humphrey et al. 1991). The Software Engineering Institute (SEI) has developed a
method called The Standard CMMI® Appraisal Method for Process Improvement

25

(SCAMPISM) (2006) to support the CMM assessment procedures in organizations.
SCAMPI is a class A appraisal method, which includes detailed level instructions
as well as steps and activities on how to implement the full assessment through
all the maturity levels against the selected assessment model. In class A
assessments, assessors typically use a large amount of evidences which is often
in documented form. In depth analysis of the documentation, however, takes a
great deal of time and effort by the assessment team, which, in addition needs to
be highly educated about the criteria of existing standards or models (e.g. CMMI
(2006) or ISO 15504 (2006)). Ratings are generated based on the descriptions of
the standards. However, assessments (e.g. SCAMPI assessments) can be done in
class B or C which means that the official ratings are not necessarily generated;
assessments demands less resources and the amount of data e.g. documented
evidence is used less than in class A assessment. For example, in a class B
assessment, the same amount of documented evidence is still used but the
assessment team trust face to face discussions more, such as data collected in
interviews and workshops with actors in the system development. Because of the
added trust, assessments in level B or C do not demand as much resources as a
class A assessment but can still provide valuable results for both the teams and the
organization. Although ratings are not generated in class B and C assessments, the
assessment goal is more to define the strengths and improvement needs for the
current organization or teams and therefore to support the process improvement
rather than to rate the capability levels of the organization.

Lightweight assessment methods have been developed in order to offer
techniques for implementing assessments rapidly based on the needs of small
companies that have high dependencies on a low number of individuals and
projects. Lightweight assessments typically follow the class C-type assessments
with characteristics such as low costs, focused processes, simple assessment
process and modified use of assessment process as described in Table 1.

SM SCAMPI, CMMI and CMM Integration are service marks of Carnegie Mellon University.

26

Table 1. Characteristics for lightweight assessments.

Criteria References

Low costs (Richardson 2001)

Focused processes (Richardson 2001, Wilkie and McCaffery 2005)

Simple assessment process (Horvat et al. 2000, Kautz 1998)

Modified use of assessment models (Batista and Figueiredo 2000, Kautz 1998)

Although small companies have a need for the highest software product quality
and fast software production, they often have problems in investing in the
assessments (Batista and Figueiredo 2000). Thus, the key idea of these
lightweight assessment approaches is that they focus on the most valuable
process areas such as requirements management, project planning and tracking
(Richardson 2001, Wilkie and McCaffery 2005) and keep the assessment
process as simple as possible (Horvat et al. 2000, Kautz 1998) to avoid high
costs and effort used in the SPI (Richardson 2001).

Anacleto et al. (2004) identify some existing criteria used in the proposed lightweight
assessment methods. Based on their analysis they suggest 9 additional criteria
for lightweight assessments which are: (1) a detailed description of the assessment
process, (2) guidance for process selection, (3) a detailed definition of the
assessment model, (4) support for identification of risks and improvement
suggestions, (5) conformity with ISO/IEC 15504, (6) no specific software
engineering knowledge required from companies� representatives, (7) tool
support is provided, (8) support is provided for high-level process modeling and
(9) there is public access to the developed method.

2.1.2 CMM / CMMI

The Capability Maturity Model® CMM is a model which is often used as
reference model in assessments to facilitate the organization to achieve a level
where continuous, optimized improvement of the software development is
possible (Anderson 2005). CMM, as well the numerous other IEEE standards

27

and guidelines, integrates some of the wisdom in the software development
industry (Bamberger 1997). It has been developed by the SEI since 1986, based
on the concepts developed by Humhprey (1990) and Deming (1990).

The term �discipline� is used in process relations but also in agile literature (e.g.
Boehm and Turner 2003a) to describe the knowledge that is needed or available
when selecting models (e.g. CMMI (2006)) or the knowledge which is integrated
into the framework (Paulk 1999). CMM describes the principles and practices
underlying the software process maturity (Paulk 1999). It is a model that can be
used in assessment to reflect processes or software organization as a purpose to
identify the strengths and improvement needs and, therefore, facilitate organizations
to shift gear in the software development from ad hoc to mature, disciplined
processes (Paulk 1999). CMM/CMMI were developed due to the increasing
need to integrate existing models as a reference model that could be even more
efficiently used in continuous process improvement in software projects and
organizations. Paulk (1999) reports that due to the small differences; the topics
of CMM (2006) and SPICE (2006) correlate highly to each other. CMMI is the
integration of several models including elements of both CMM and SPICE. The
key differences between CMM and CMMI are:

! the measurement and analysis process is added in the maturity level 2

! there is more focus on software and product development, its risk
management, verification and validation instead of the organizational
level processes

! the Organizational Innovation and Deployment process area has been included
in maturity level 5 instead of the change management process areas.

CMMI includes both capability and maturity models, which means that it can be
used in a staged and continuous way. The staged representation focuses on a set
of key process areas, which are exclusively identified within the maturity levels
(1�5) (CMMI 2006). The assumption of the staged representation of the CMMI
is that an organization cannot achieve the next maturity levels before achieving
the previous level first. Thus, an organization that succeeds to fulfils its goals in
the process areas of level 1 is rated at the lowest level, called Level 1 (Initial).
Other levels, repeatable (level 2), defined (level 3), managed (level 4) and
optimized (level 5) can be achieved by fulfilling the goals of the process areas of

28

each level in Table 2 (CMMI 2006). In the continuous representation, processes
are often measured using the same scale of capability levels that are incomplete,
performed, managed, defined, quantitatively managed and optimizing (CMMI
2006). CMMI includes 25 key process areas (CMMI 2006). Each process area
contains specific and generic goals that are again dealt with by specific and
generic practices (CMMI 2006).

Table 2. Process areas and purposes (CMMI 2006).

Process Area Specific Goal

Maturity Level 2: Managed

Requirements Management Requirements of the projects, product or product components
are managed, and the consistencies are identified between
those requirements, project plan and work products

Project Planning Establish and maintain plans that define project activities

Project Monitoring and Control Provide understanding of project progress, so that corrective
actions are taken

Supplier Agreement Management Manage the acquisition of products from suppliers

Measurement and Analysis Develop a measurement capability that is used to support
management

Software process quality
assurance

Provide management with appropriate visibility into the
product and the software process

Software configuration
management

Establish and maintain the integrity of software products
throughout the project�s software life cycle

Maturity Level 3: Defined

Requirements Development Produce and analyse customer, product and product component
requirements

Technical Solution Design, develop and implement solutions to requirements

Product Integration Assemble products from the product components to ensure that
the product is integrated properly

Verification Ensure that specific work products meet their specific
requirements

Validation Ensure that product or product components fulfil the intended use

Organization process focus Plan and implement organization level process improvement,
based on an understanding of strengths and weaknesses

Organization process definition Develop and maintain a usable set of software process assets

29

Training program Develop individuals� skills and knowledge, so that they can

perform their roles effectively

Integrated project management Integrate management of the project and involvement of
relevant stakeholders according to the process which is tailored
from the organization of a standard set of process

Risk Management Identify potential problems before they occur

Decision, Analysis and Resolution Analyse possible decisions using a formal evaluation process

Maturity Level 4: Quantitatively Managed

Quantitative process
management

Quantitatively control the performance of the software
project�s process.

Quantities project management Quantify manage the project defined process to achieve the
projects set quality and process performance objectives

Level 5: Optimizing

Organizational Innovation and
Deployment

Select and deploy incremental innovative improvements

Causal Analysis and Resolution Identify causes and defects and other problems and take actions
to prevent them in the future

The achievement of related goals, maturity levels and CMMI specific practices
can be assessed through practices used in the case organization. However, the
main goal of the appraisal is to find out whether the goals are achieved or not,
rather than whether or not the defined items exist as such (CMMI 2006). Thus,
these items can be characterized as tools for the evaluators, when appraising the
achievement of the goals.

Each process area includes 1-N Sub Practices which help to explain the content
of the goal of the particular process area. Table 3 describes the specific goals and
sub-practices for the selected requirements management, project planning and
project monitoring and controlling process areas, which have been argued to be
the most important processes especially in small and medium sized enterprises
(Galin and Avrahami 2006).

30

Table 3. Sub-practices for requirements management, project planning, monitoring
and controlling.

Process Area Specific Goals (SG) and Sub-Practices (SP)

Requirements
Management

SG 1.1 Obtain an Understanding of Requirements
SP 1.2 Obtain Commitment to Requirements
SP 1.3 Manage Requirement Changes
SP 1.4 Maintain Bi-directional Traceability of Requirements
SP 1.5 Identify Inconsistencies between Project Work and

Requirements

Project
Planning

SG 1 Establish Estimates
SP 1.1 Estimate the Scope of the Project
SP 1.2 Establish Estimates of Work Product and Task Attributes
SP 1.3 Define Project Life Cycle
SP 1.4 Determine Estimates of Effort and Costs

SG 2 Develop a Project Plan
SP 2.1 Establish the Budget and Schedule
SP 2.2 Identify Project Risks
SP 2.3 Plan for Data Management
SP 2.4 Plan for Project Resources
SP 2.5 Plan for Required Knowledge and Skills
SP 2.6 Plan Stakeholder Involvement
SP 2.7 Establish the Project Plan

SG 3 Obtain Commitment to the Plan [PA163.IG103]
SP 3.1 Review Plans that Affect the Project
SP 3.2 Reconcile Work and Resource Levels
SP 3.3 Obtain Plan Commitment

Project
Monitoring
and Controlling

SP 1.1 Monitor Project Planning Parameters
SP 1.2 Monitor Commitments
SP 1.3 Monitor Project Risks
SP 1.4 Monitor Data Management
SP 1.5 Monitor Stakeholder Involvement
SP 1.6 Conduct Progress Reviews
SP 1.7 Conduct Milestone Reviews

2.1.3 Empirical Findings

While CMMI programs have been widely reported as a beneficial approach to
improve productivity and the time of the system development life cycle (Galin

31

and Avrahami 2006), many companies have also opposed reference models like
CMM and CMMI, for the following key reasons:

a) CMMI assessments are considered too heavy and time consuming
(Fayad and Laitinen 1997);

b) there is no evidence available that the order of the process acquisition
driven by CMMI capability levels is right (Fayad and Laitinen 1997);

c) the implementation of improvements is too time consuming (Niazi, et al.
2003) and are not implemented as planned (Herbsleb et al. 1994);

d) performance improvements are made focusing too much on processes
forgetting people aspects (Laitinen and Fayad, 1998);

e) reference models, such as CMMI, are so massive, that the achievement
of CMMI levels can lead to the approach in which developers use more
time writing documents than implementing software (Boehm and Turner
2003a).

Challenges in the CMMI Assessments

The assessments are claimed to be wasteful, because the current assessment
methods often tend to be too �heavy� and expensive (Fayad and Laitinen 1997).
It has been reported that even 77% of process improvements take longer than
expected (Herbsleb et al. 1994). There are many reasons why the assessment
costs have risen too high. For example, the organizations do not often ignore the
process areas of higher levels before they have achieved the goals of the lower
level (Dangle et al. 2005). This can easily delay the company�s achievement of
the progress in other levels (Dangle et al. 2005).

As a response to the critique of heavy and time consuming assessments, tailored
�lightweight� assessment techniques have been provided in several studies
(Batista and Figueiredo 2000, Horvat et al. 2000, Kautz 1998, Richardson 2001,
Wilkie and McCaffery 2005). They have been developed in order to offer
techniques for implementing assessments rapidly, but only in small companies
that have high dependencies on a low number of individuals and projects. CMM
is often used in the context of lightweight assessments (Batista and Figueiredo

32

2000, Horvat, et al. 2000, Wilkie and McCaffery 2005). For example, Batista
and Figueiredo (2000) argue that a more pragmatic application of CMM and a
simplification of the assessment methods are the key success factors for the
assessments in small teams. The pragmatic application of CMMI in both class B,
C assessments and in a lightweight assessment approach means that the
improvement initiatives are defined based on the improvements that are most
relevant for the assessed organization.

Although, the lightweight assessment approaches seem to offer attractive
solutions for the problems of too time-consuming assessments, they have only
been used in a small part of the whole SPI literature. At the moment, the
lightweight assessment methods only focus on the needs of small organizations.
The current literature lacks studies in which lightweight assessments can be
integrated in the context of medium or large agile based software development
companies or in the improvement of software development mediated with agile
practices.

There is no evidence that the order in which the CMMI levels are driving the
process acquisition is right (e.g. that it would be logical to achieve the CMMI
level 1 and 2 process areas before the achievement of the CMM level 3�5
process areas) (Fayad and Laitinen 1997). For example, there is little empirical
evidence that the engineering processes � such as requirements development,
technical solution and product integration � should be improved later than the
CMMI level 2 requirements management, project planning and controlling
process areas (Fayad and Laitinen 1997).

Challenges in the CMMI Based Improvement Programs

The CMMI based improvement programs seems to demand a great deal of
resources (Hareton et al. 2001). For example, the case study of 56 software
organizations, that have conducted a CMM-based process improvement
initiative, illustrates that the exploitation of the improvements is difficult and
needs both a strong management support and staff involvement (Stelzer and
Mellis 1998). Secondly, it has been argued that in many cases it takes a long
time and significant effort for organizations to show the benefits of the CMMI
programs (Niazi et al. 2003). For example, a survey of 138 individuals in 56
software organizations shows that 72% of the SPI programs that successfully

33

applied the CMM based identification of weaknesses, are not actually improved
(Herbsleb et al. 1994). Thus, SPI programs have often been regarded as a time
consuming and long term approach whose benefits take a long time to be
realized (Niazi et al. 2003).

The reason for why the CMMI initiatives take so much time to be implemented
might lie in the fact that the processes often produce an environmental change
which means a shift in the whole process hierarchy to achieve the identified
improvements (Laitinen and Fayad 1998). This demands not only SPI team
involvement but also efficient coordination and involvement of the developers.

In many cases, however, people do not have much time for software process
improvement among their other software development duties (Laitinen and
Fayad 1998). The process improvement is seen more as a �problem to be fixed�
(Laitinen and Fayd 1998) than as an activity that really makes software
development more productive or efficient. This has, in many cases, made the
developers, especially, a little wary of the processes generally (Anderson 2005).
Often, processes get in the way of the developers and slow the pace of software
development to a frustrating level (Anderson 2005).

The reason for this might lay in the wrong focus of improvement programs as
suggested by Laitinen and Fayad (1998). Although the assessments can involve
the relevant people, the applied improvement programs have often focused too
much on the process aspects at the expense of the people behind the actual
development work (Laitinen and Fayad 1998). After all, the processes and
people are interdependent and the processes are always created and used by the
individuals in the development teams (Laitinen and Fayad 1998).

Impacts of the CMMI Based Improvement Programs

In some cases, the CMMI model is also perceived as too �heavy� and too
bureaucratic (Nawrocki et al. 2002). For example, Anderson (2005) points out
that CMMI suggests that as many as 400 document types and 1000 artefacts are
required to facilitate an appraisal. This is the main reason, why many of the
CMM adopters have argued that the use of CMM itself actually increases the
costs in the companies (Boehm and Turner 2003a).

34

2.1.4 Summary

Plan-driven software development methods have developed over time from the
�waterfall� model towards the �spiral� model and finally to iterative, incremental
software development. SPI mechanisms were developed because projects still
ran over budget and time. Assessments are the starting point for SPI, but also the
way to evaluate the performance of the project. In assessments, the goal is to
define the strengths and weaknesses in the software development. Although
CMM or CMMI are the reference models, which are most popularly and quite
beneficially used in assessments, it seems that CMMI based improvement
programs can easily turn out to be too heavyweight an improvement assessment,
and an improvement approach that takes too much time from software
development teams and companies. Sometimes, this may even drive the teams to
use a too document driven software development process and cause frustration
among the developers.

2.2 Agile Software Development

In spite of the ongoing SPI projects and published incremental development
approaches and models in the 1980 and 1990s, software and product
development projects were still troubled by costs and time overruns, low
customer satisfaction and disappointed developers (Anderson 2003). According
to Larman and Basili (2003), the Standish Group analysed 23 000 projects to
determine the failure factors and concluded as follows:

�The top reasons for a project failure, according to the report, were
associated with waterfall practices.�

The second reason for the failure has been the complexity of the software
development projects:

�Anything can be complex, when complex things interact, the level of
complexity goes to the roof� (Schwaber and Beedle 2002).

Thus, organizations with standard based, highly documented, �complex� processes
were not able to respond to the challenges of the continuously changing

35

requirements of customers, end users and business people. According to Beck
(2000), the software projects faced the following problems:

a) schedule slips, the software is not ready when the deadline comes;

b) project cancelled, projects are cancelled after a long period without
ever going into production;

c) systems go sour, the defect rate increases after the system has been put
into production;

d) defect rate, the defect rate of the software product is so high that it is
never used;

e) business misunderstood, the software never solves the business
problem for which it was originally posed;

f) business changes, the software is ready for production but the business
problem, for which it was meant was solved six months ago;

g) false feature rich, the software has many features which are fun to
program but which do not have any added value from a customer
perspective.

It is unlikely that these problems would be a consequence only of the use of
plan-driven �waterfall� development practices, but rather are a result of dynamic
markets and increasing global competition which also cause additional turbulence
and more changes on the products under development. Another reason for the
issues has been the imperfect communication in the software development teams
and in the organization as described by Cockburn (2002).

In agile software development the problem of the rigidity of a plan-driven
software development process is solved with a �planning driven� approach in
which the planning has been made constant, frequent and fluid to enable the
team respond to changes quickly (Wang et al. 2008). Parallel with the frequent
planning the agile approaches also bring people regularly together for face to
face communication. This should improve the software development if we
understand software development as Cockburn (2002) states:

�Software development as a group game in which the team should
cooperate together to achieve the defined goals� (Cockburn 2002).

36

The game is co-operative because all the team members are able to help each
other reach the set goals. In this game, the important element is communication.
The success of the game depends a great deal on whether the communication is
effective between the team members.

2.2.1 Agile Principles

On February 2001, 17 leading developers and proponents met at a workshop to
think of some reasons and solutions for the ongoing crisis related to the software
development process. They found that there is a need for new methods to
respond to changes in software development projects and make communication
in software development teams and organizations more efficient. As a result of
this meeting, a manifesto for agile based software development was produced. It
provides advice on how to focus the development on people, working software,
customer collaboration and increase an organization�s ability to respond to
changes (Salo and Abrahamsson 2007).

The results of the meeting were 12 agile principles, which describe the values of
the agile approach in more detail giving them a more concrete meaning. The
principles of agile software development are as follows (Agile Manifesto 2001):

a) satisfy the customer through the early and continuous delivery of valuable
software

b) sustainable development is promoted, facilitating an indefinite development;
c) simplicity is essential
d) welcome changing requirements, even late in the development
e) deliver working software frequently
f) working software is the primary measure of progress
g) continuous attention to technical excellence
h) business people and developers must work together daily
i) face-to-face communication is the best method of conveying information
j) the team regularly reflects on how to become more productive and efficient
k) the best work emerges from self-organising teams
l) projects built around motivated individuals.

37

Since the workshop, �agile thinking� through these principles has become more
popular among software development teams and organizations. The principles of
agile software development can be defined as fundamental ideologies that
should be included in the practices of any software development method that
claims to be �agile� (Abrahamsson et al. 2002).

2.2.2 Agile Methods and Practices

Although the initial ideas of agile software development have been created and
used already in the 1970s and 1980s, the agile methods emerged in the late
1990s and the early 2000s. Since then, they have been introduced in companies
as significant mechanisms to increase the organization�s capability to respond to
changes (Abrahamsson 2002). Often, an agile method is defined as a �just
enough� method that seeks to avoid predescribed and time consuming processes
that add only little value to the software development (Cockburn and Highsmith
2001).

�Methods� are supposed to change and ideally improve practices in system
development (Fitzgerald et al. 2002). There are several definitions of
�methodology� and �methods� in the current literature (e.g. see Brinkkemper
1996, Fitzgerald et al. 2002). Based on some sources, the terms method and
methodology have been used synonymously (Fitzgerald et al. 2002), whereas
some research reports define methodology as �the study of systematic methods�.
A method can be characterized as:

�A predefined and organized collection of techniques and a set of rules
which state by whom and in what order the techniques are used�
(Tolvanen 1998).

Agile methods offer approaches to improve the software development process
(Karlström and Runeson 2006). A number of methods are included in this family,
the most notable being XP (Beck 2000), Scrum (Schwaber and Beedle 2002),
Crystal (Cockburn and Highsmith 2001), Agile Modelling (Ambler 2002), APM
(Highsmith 2004), FDD (Coad and Palmer 2002), and LSD (Poppendieck 2001).
These developed because too much discipline kills initiative and the flexibility
of software development projects, which are necessary for dynamic market

38

environments. During the 2000s, interest in agile methods has increased
dramatically (Lindvall et al. 2004). These methods have been adopted in different
types of software projects and in wide-ranging application domains (Karlström
and Runeson 2006).

One of the main reasons for the use of agile practices has been their ability to
increase flexibility and the organization�s ability to respond to changes. Another
significant reason for short cycles, as described in the agile approach, lies in the
communication aspect, especially, in more efficient face-to-face conversation
(Larman 2003). Time boxed iterations and an incremental development approach
is one of the foundations in all agile processes (Larman 2003). The fundamental
idea of all agile methods is to deliver software as early as possible, in short
cycles to get regular feedback both from customers and the management of the
organization (Boehm and Turner 2003a). In general, agile methods tend to be
lightweight processes for the software development. They emphasize user
involvement and requirements prioritization and verification relying on tacit
knowledge and communication as opposed to documentation (Boehm and Turner
2003a). Highsmith (2002a) states, however, that there has to be a balance
between the documentation, working software and the collaboration in the agile
software development teams.

XP is an agile method originally presented by Kent Beck (2000). It is a
�lightweight� methodology with four key values: communication, simplicity,
feedback and courage (Beck 1999). From the communication perspective, XP
faciliates correct communication, which is needed to employ the defined XP
practices (Beck 1999). Simplicity in XP means the team�s goal of implementing
software remains as simple as possible. The value of simplicity is also connected
to communication. If the code is simple, it is also easier to communicate to other
people (Beck 2000). The third value, feedback in XP, mainly relates to customer
collaborations. It means that the team should receive concrete feedback on their
work on a daily, weekly or monthly basis. The value �feedback� also has a strong
relation to communication. For example, Beck argues: �the more feedback you
have, the easier it is to communicate� The last value is courage which means the
�courage� to tackle new technical challenges and, thus, to make new innovations.
According to Beck (1999), communication facilitates courage in teams because it
opens the opportunity for new technical experiments.

39

Scrum has been pioneered by Schwaber and Beedle (2002). It is a simple
process mainly focused on project management of software development
(Fitzgerald et al. 2006). Scrum was originally influenced by Boehm�s �spiral�
model, but it was developed based on industrial experiences to simplify the
complexity of the project and requirements management in software organizations
(Schwaber 2003). Scrum describes practices on an iterative, incremental time
boxed process skeleton. At the beginning of the iteration, the team has a sprint
planning meeting in which they decide what the team will do during the
following iteration. At the end of the iteration, the team presents the results to all
the stakeholders in the sprint review meetings to gain feedback on their work.
The heart of Scrum is an iteration in which the self-organizing team builds
software based on the goals and plans defined in the sprint planning meeting
(Schwaber 2003). The team also has a daily 15 minute meeting called the daily
Scrum, in which they check the status of the project and plan the activities of the
next day (Schwaber 2003).

Both XP and Scrum define practices for the software development process. Beck
(1999) identifies 12 key practices for the software development process, which
mostly focus on software engineering. Beck (1999) argues that the XP practices
are situation dependent, which means that the application of the practices is a
choice which can be made based on the current development context.

Table 4 lists the practices associated with the XP and Scrum, the two methods
that are the focus of this study. However, while such literature is often very
detailed and prescriptive, there is often a substantial difference between the
�textbook� version of the method and the method actually enacted in practice.
The selection of these agile practices are based on the Fitzgerad et al. (2006)
description of the combined, customized use of Scrum and XP practices which
enables the use of both XP and Scrum practices in the same project, so that
sprints, small iterations, sprint planning and planning games are used as equal
practices. Table 4. A Combined List of XP and Scrum Practices based on
Fitzgerald et al. (2006).

40

Table 4. A Combined List of XP and Scrum Practices based on Fitzgerald et al. (2006).

Scrum Practices XP practices �Text book� description

Scrum sprints Small releases Put a simple system into production quickly, and then release
new versions on a short cycle.

Sprint planning Planning game A quick determination of the scope of the next software
release within a short time period, based on a combination of
business priorities and technical estimates.

Daily meeting Short daily status meeting which is official part of Scrum, XP
suggests conducting it while standing up.

Post Game
Sessions

 At the end of each short development cycle, review the
strengths and problems of the process in this cycle.

 40-hour week Work time is limited to 40 hours per week as a rule.

 On-site
customer

Include an actual user on the team, available full-time to
answer questions.

 Pair
programming

The code is written by two programmers on the same machine.

 TDD Writing test code before writing the function code.

 Continuous
integration

Integrate and build the system every time a task is completed �
this may be many times per day.

 Collective
ownership

Anyone can change any code anywhere in the system at any
time.

 Simple Design The design of the system should be as simple as possible.

 Refactoring Programmers restructure the system, without removing its
functionality.

 Coding
standards

Adherence to coding rules which will facilitate communication
through the code.

 Metaphor Guide all the development with a simple shared story of how
the whole system works.

2.2.3 Empirical Findings

While the empirical research on agile practices in use is growing rapidly, there
are still many issues with a strong theoretical and conceptual foundation and a
systematic focus on the specific problems or challenges in the software

41

development process where agile practices are in use. This chapter gives a brief
description of the empirical body of knowledge related to the use of XP and
Scrum practices. Dybå and Dingsøyr (2008) carried out a systematic review of
the studies of agile based software development, during the years 2000�2005.
According to them, the introductions and overviews for agile software development
were reported in several studies. For example, the report of Abrahamsson et al.
(2002) describes the practices of 10 agile methods including XP and Scrum.
Cohen et al. (2004) presents the introduction to software development where
agile practices are discussed in relation to agile software development process
and CMM/CMMI. Erickson and Lyytinen (2005) evaluate the research related to
XP, Agile software development and agile modelling.

Use of the XP and Scrum Practices � General Reports

EXtreme Programming (XP) and Scrum have been suggested as the most used
agile methods (Fitzgerald et al. 2006). XP practices have mostly been introduced
among other agile methods and practices. According to Dybå and Dingsøyr
(2008), more than 26 empirical reports can be found focused on the use of the
XP or Scrum methods in general. 76% of the reports related to use of the XP and
only 3% to Scrum practices. Due to the rapid increase of empirical research of
agile practices in use, there are already a few reports on the use of Scrum
published after the systematic review of Dybå and Dingsøyr (2008), which
reviewed the reports related to XP and Scrum between the years 2000�2005.
(E.g. the reports of Moore et al. 2007, Sutherland et al. 2007).

Although, there are many reports about the success stories of the integrated use
of Scrum or XP practices, only some research and experience reports provide a
critical viewpoint of the adoption of agile software development methods. For
some examples of empirical studies on XP in use (Drobka et al. 2004, Grenning
2001, Karlström and Runeson 2006, Layman et al. 2006b, Rasmusson 2003); for
those on Scrum in use, (Mann and Maurer 2005, Rising and Janoff 2000, Schatz
and Abdelshafi 2005) and a study of the combined use of XP and Scrum
(Fitzgerald et al. 2006).

42

Some Examples of the Use of XP Practices

Grenning (2001) describes how XP practices such as the planning games, small
releases, simple design, test first development; refactoring, pair programming,
collective ownership, continuous integration and 40 hour week are used in a
large company developing safety critical systems. As a result of the analysis, he
suggests that some XP practices, such as simple designs integrated with test first
development and refactoring work quite well in the safety critical area. In that
case, the managers were reported to be happy with the results of the use of XP
practices. This was mainly due to the XP team ability to readily produce
working software instead of a high amount of documentation (Grenning 2001).
One of the biggest challenges revealed from this case was the resistance mainly
due to the decreased documentation. The documentation was needed, for
example, to define product requirements, sustain technical reviews, support
maintenance and describe interfaces. Based on the experiences of the XP project
it was still understood that the documentation was needed at least for
maintenance and review purposes. One reason for this was that the pair
programming as a practice was not considered efficient enough to abandon the
design review processes (Grenning 2001).

Rasmusson (2003) reports XP method use experiences in ThoughtWorks
excluding metaphor and on-site customer practices. He suggests that unit testing,
refactoring, test-first design, and simplicity are beneficial XP practices for
software development teams because they bring some improvements related to
team communication. The problems in the project related to Test Driven
Development, refactoring and communication with external stakeholders. TDD
took a lot of time because the developers had to first learn philosophy behind
TDD and to acquire enough skills for its implementation. Refactoring was used
as an excuse for the delays in the project work schedule which made the
customer unhappy about the practice itself. Moreover, communication was
difficult with the external stakeholders such as getting database system
administrators to participate in daily stand up meetings (Rasmusson 2003).

In Motorola, a selected set of XP practices was used also in the field of safety
critical systems (Drobka, et al. 2004). In that case, the use of XP practices was
reported to have 53% improved average quality compared to the plan-driven
software development project. A key challenge in these XP projects was to

43

define how the project changes affect the overall end date of the project. As a
problem Drobka et al. (2004) mention also the issues of documentation. As in
the case of Grenning (2001), the source code was not documented enough for
the whole system so that a high-level architecture document was still needed to
use to provide class diagrams, scenarios and a process view of the system for
developers. Furthermore, acceptance tests were not enough to verify the
traceability from product to customer requirements. Therefore, additional verification
review meetings were used to cover this gap in the verification process (Drobka
et al. 2004).

Layman et al. (2006b) report the results of a case study to understand communication
in globally distributed agile software development. As communication mechanisms,
instead of iterative planning meetings and daily stand up meetings the distributed
teams used, for example, instant messaging systems, informal emailing and
additional tool support for project tracking (Layman et al. 2006b). Based on the
case study it is clear that the customer role is important for the requirements
management activities and can be problematic especially when working with
software at a distance (Layman et al. 2006b). One reason for the communication
problems were the difficulties to communicate across the different time zones
(Layman et al. 2006b).

Karlström and Runeson (2006) report experiences of the use of XP practices as a
part of a milestone driven software development process. Although the use of
agile practices has been defined as mainly beneficial for the teams, the report
contains an example that shows that communication in the agile based software
development teams can sometimes also lead to more isolated development teams
which could also have negative impacts on communication on the organization
level (Karlström and Runeson 2006).

Sfetsos et al. (2006) have studied the advantages and disadvantages for 30 Greek
software companies to adopt XP practices. While the key success factors were
the efficient communication and synergy between the persons in the software
development teams using XP practices (Sfetsos et al. 2006), the study shows
also that the companies can face several challenges related to the use of XP
practices. One of the main challenges indicated in the study is the cultural
problem which was emphasized especially between the agile and traditional
teams in large distributed projects. The cultural differences had an effect mostly

44

on the pair programming practice which required choosing the right people and
to continuously rotate developer pairs. Another XP practice which was difficult
to use in practice was the on-site customer. In fact, the Greek software companies
ended using the telephone, fixed appointments and internet communication to
handle customer communication instead of face to face meetings as suggested by
the Agile Manifesto (2001).

Some Examples of the Use of Scrum Practices

Rising and Janof (2000) report on a text book use of the Scrum method in three
small software development teams. As a result of the use of the sprint planning,
sprints and Scrum meetings, they claim that the Scrum method facilitates the
product manageability, visibility and team communication as well as ensuring
frequent feedback from the customer.

Mann and Maurer (2005) report on the Scrum impacts on customer satisfaction
and overtime work in the teams. Based on the empirical analysis of the case
study in which Scrum was used in a development project, they reveal that
although it is sometimes difficult to follow sprints of 30 days, hold daily Scrum
meetings as a Scrum practice, facilitating customers to keep up to date with the
development work and planning meetings helps to reduce confusion about what
should be developed from the customer perspective. Additionally the study
reports a statistically significant reduction in overtime work among the evaluated
software development teams due to the adoption of agile practices.

Because the literature on the use of Scrum practices is relatively new, the current
literature seems to lack data on the challenges related to the use of the Scrum
method or its practices.

Some Examples of the Use of Individual Agile Practices of XP and Scrum

The use of individual XP practices, such as pair programming, the TDD,
continuous integration or iteration retrospectives has been described in several
individual reports that focus only on the use of one agile practice at the time.
These reports on the use of individual XP practices can be found for example
related to pair programming and TDD. Hulkko and Abrahamsson (2005) analyse
19 previously published individual research reports on the use of the pair

45

programming practice and then compare the results between these multiple case
studies. They find that pair programming is the most useful for complex tasks
and facilitates the development of a more readable code as described in the
literature. They note, however, that pair programming does not necessarily lead
to improved productivity nor decrease the number of defects in the developed code.

Siniaalto and Abrahamsson (2007) reviewed the empirical body of evidence on
existing reports related to TDD. They found 16 empirical reports on TDD
studies. Based on the empirical analysis of the TDD practice in use, they
conclude that TDD may improve the quality of developed software and facilitate
developers but does not necessarily have an effect on the code quality.

Karlsson et al. (2000) have reported experiences about the use of the daily build
activity in Ericsson as a part of continuous integration practice. According to
their experiences, they have found that a daily build is actually difficult to apply
in distributed software development environments.

Koskela and Abrahamsson (2005) have made a study of the on-site customer
practice in agile software development concluding that actually 21% of the
customer time is needed to assist the team in the on-site customer situation. On
the other hand, it seems that the on-site customer is a good way of guaranteeing
the strong commitment of the team to their work (Koskela and Abrahamsson
2004). Korkala et al. (2006) continue to research customer communication in an
agile context focusing on the link between software quality and customer
location. They show that the defect rate in the teams actually increases when the
customer involvement decreases.

In agile development, regular retrospectives have often been defined as a
primary mechanisms for incremental process improvement at project level
(Packlick 2007). As one of the key approaches for SPI in the agile software
development context, Salo and Abrahamsson (2007) present a method called
post-iteration workshop (PIW) for iterative project level software process
improvement in an agile context. In this method the goal is to harvest and
implement improvements in an iterative manner from and in the agile software
development teams. The process of the PIW method consists of two main
phases, first a workshop after each development iteration in which the strengths
and improvement needs of software development team are harvested and

46

analysed and second, a phase in which the improvements need to be evaluated at
organizational level and then adopted in the software development team (Salo
and Abrahamsson 2007). Although there is some evidence available that the
PIW method provides a valuable approach on how to improve and adopt agile
practices in an iterative manner in software development teams (Salo and
Abrahamsson 2007), PIW does not identify detailed mechanisms to facilitate
agile practice identification for a plan driven situation or evaluation of the agile
software development projects when �identifying� or �checking� the improvements
between the software development projects or at an organizational level. While
retrospective is one agile practice and defined as a significant improvement
mechanism in agile software development, it has been argued that reflections
alone are not enough to drive the degree of change needed for efficient agile
practice adoption or improvement (Packlick 2007).

Combined Use of XP and Scrum

Fitzgerald et al. (2006) describe how XP and the Scrum practices can be used in
a combined, customized way in software development projects, claiming that
any software development method cannot be used in software development
projects without tailoring. To support this argument Fitzgerald et al. (2006)
present a case study of Intel Shannon as an example of how the sprint, short
iterations, sprint planning and planning game can be used as equalling practices
in a same team to gain such benefits as 1) reductions in a code defect density and
2) improved planning, tracking and 3) communication. This approach is significant
for research purporting to understand the use of both the XP and Scrum practices
but is not, yet, covered in the current literature.

 XP and Scrum are in many reports suggested to be practical solutions to
improve the time to market and the speed of software development. This chapter
summarized the Agile Manifesto (2001) and empirical analyses of the use of XP
and Scrum practices.

As noted in Chapter 2, XP and Scrum practices have been commonly adopted
and used in software organizations. Most of the reports relating to agile methods
have, however, been made unsystematically without strong theoretical baselines
or aims. Most of the experience reports suggest that the use of XP and Scrum
needs tailoring depending on the context and domain in which they have been

47

adopted or used. Furthermore, the need for documentation, for example, seems
to vary depending on the projects and developed product.

Although, several empirical reports exist on the use of Scrum and XP practices,
few studies have focused on a customized approach (i.e. combined set) and use
of both XP and Scrum practices. There is a dearth of reports providing a critical
analysis of the software development process in which Scrum has been used.
However, there are several reports on the use of individual XP practices
available in current literature. For example, a quick review reveals more than 20
reports of pair programming and 17 reports of TDD.

2.2.4 Summary

Both XP and Scrum define practices for the software development process.
During the 2000s interest in agile methods has increased dramatically (Dybå and
Dingsøyr 2008). These methods have been adopted in different types of the
software projects and in wide-ranging application domains (Lindvall, et al.
2004). Briefly look to the empirical body of knowledge (in Chapter 2.2.3) reveals
that there are several communication challenges occurring in the companies
using agile practices:

Documentation vs. face to face communication

� Resistance mainly due to the decreased documentation (Grenning 2001)

� Source code not enough as documentation, a high-level architecture
document still needed to use to provide class diagrams, scenarios and a
process view of the system for developers. (Drobka, et al. 2004).

Communication at organizational level

� Communication difficulties with the external stakeholders; participation
in daily stand up meetings (Rasmusson 2003)

� Negative impacts on communication on the organization level (Karlström
and Runeson 2006).

48

Communication in distributed environments:

� Difficulties to communicate across the different time zones (Layman et
al. 2006b).

2.3 Hybrid Approaches for Improvement of
Software Development

Boehm and Turner (2003a) argue that:

�Both the agile and planned approaches have situation-dependent
shortcomings that, if left unaddressed, can lead to project failures�.
(Boehm and Turner 2003a)

Therefore it is important for organizations to find a balance between these two
approaches (Boehm and Turner 2003a). The current literature, however, presents
only a few so called hybrid software development approaches, which use
elements of both the plan-driven and agile software development. In the
following sections some hybrid approaches for improving software development
using both agile and plan-driven approaches have been briefly presented and
discussed.

2.3.1 Risk Based Agility Evaluation

One of the methods that could be characterized as a starting point for the agile
practice adoption activities is the Boehm and Turner (2003b) method to address
risks particularly associated with agile and plan-driven methods. The method
consists of five key steps which are (1) risk analysis, (2) risk comparison,
(3) architecture analysis, (4) a tailor life cycle and (5) execution and monitoring,
as seen in Figure 2.

49

Rate the project�s
environmental, agility-

oriented and plan-driven
risks

Buy information via
prototyping, data

collection and analysis

Uncertain about
ratings

Compare the agile
and plan-driven risks

Architect application to
encapsulate agile parts

Deliver Incremental
capabilities according to

strategy

Monitor progress and
risks/ opportunities,

readjust balance, and
process appropriate

Go risk based agile

Go risk based plan-
driven

Go risk based agile in
agile parts, go risk
based plan-driven

elsewhere

Tailor life cycle process
around risk patterns and
anchor point commitment

milestones

Yes

No

Step 1, Risk Analysis Step 2, Risk Comparison

Step 3,
Architecture

Analysis

Step 5, Execute and
Monitor

Step 4, Tailor Life Cycle

Plan-driven risk
dominate

Agility risk
Dominate

Neither
Dominate

Figure 2. Risk based method for agility evaluation adopted by Boehm and
Turner (2003a).

In the risk based method, the project environmental, agile and plan driven risks
are first collected from the project, and then compared in order to define whether
the project should go towards the plan-driven or agile software development
process. The third phase in the method is to evaluate how the architecture affects
the decision, before the life cycle process tailoring. The final step of the method
is to execute and monitor the progress of the development process.

As a rating scale, Boehm and Turner (2003a) determine five agility factors
affecting the selection of the agile or plan-driven way to do software development in
Figure 3. These are: 1) size: the number of people in the team, 2) criticality: the
product�s safety criticality, 3) dynamism: the degree of requirements and change
in technology 4) personnel: the skill and experience of the team and 5) culture:
the support for agile software development provided by the organization culture
(e.g. the developers� freedom to create technical solutions).

50

Figure 3. Boehm and Turner�s five agility factors (2003a).

In Boehm and Turner�s (2003a) risk based method for agility evaluation, each
axis is labelled based on the respective agility dimension. When the data points
of a project for each factor are joined and the resulting shape is located directly
around the centre, it suggests the use of an agile method. Shapes that gather
distinctly toward the periphery suggest using a plan-driven methodology. More
varied shapes suggest the use of a hybrid method including both agile and plan-
driven practices (Boehm and Turner 2003b).

The presented risk-based method provides comparable facts for agile based
software project evaluation. While this can be used as a mechanism to start an
agility evaluation and an agile pilot project selection, it does not address any
specifics regarding the application of agile practices. The main challenge, for the
organization, remains how to tailor the different agile practices (i.e. activities) to
its specific product development context and how to apply the most suitable
agile practices as part of the organization�s current activities.

51

2.3.2 Levels for Agility Evaluation

Ahmed Sidky (2007) presents a framework for agile practice adoption in
software development projects and in organizations which sets out the levels for
agility evaluation. Similarly to Boehm and Turner (2005), he claims that the
organization needs to evaluate the needs for agile practices before making the
adoption decision. This enables an adoption approach in which the organization
adopts only those agile practices that are within their current capacity (Sidky
2007). This is a suitable adoption approach, especially for organizations which
are not willing to invest, time, money and effort to make changes or are unable
to make changes in their current software development process (Sidky 2007).
Sidky (2007) presents a framework for a project and an organization agility
evaluation. The framework of Sidky (2007) deals with the agile practice
adoption in four main steps, which are:

! identification of discontinuing factors: pre-assessment, in which the
organization defines its capability to adopt agility

! project level assessment: identification of the highest level agility that
the project can achieve

! organization readiness assessment: evaluation of the extent to which the
organization is ready to support the project�s target to achieve the agile
level

! reconciliation: resolving of practices that the company wants and can adopt.

Agility is evaluated based on agile principles and five different agile levels, which
are collaborative, evolutionary, effective, and adaptive and encompassing. This
approach is also suggested for use in the diagnosis phase of the IDEAL model and
suitable also for a situation in which organizations use CMMI based assessments.

Sidky (2007) suggest that an organization, moving towards agility, begins with
the communication in agile level 1. This is because the agile practice advice
focus on individuals and interactions over processes and tools and also because
SPI literature leads companies to enhance communication and collaboration (e.g.
(Sidky 2007)). Under the collaborative agility level, Sidky (2007) includes agile
practices, such as coding standards, collaborative planning, collaborative teams
and reflection and tune processes.

52

The second level in Sidky�s framework is called evolutionary requirements. Its
purpose is to ensure continuous delivery of the software. The argument behind
the level description is based on the fact that most agile methods follow the
incremental development process and aim towards a regular, evolutionary
delivery of the software which needs to be achieved before the deployment of
engineering practices. (Sidky 2007). The third agility level, in Sidky�s model is
called effective. It focuses on producing high quality software with practices
such as self organizing teams, frequent face to face communication and
continuous integration. The fourth level of the framework, �adaptive�, aims at
responding to changes with daily meetings, user stories and so called agile
documentation. The final agile level 5 provides an encompassing agile
environment with practices such as TDD and pair programming. (Sidky 2007).

2.3.3 Integrating CMMI and Agile Practices

According to Reifer (2003), agile practices should fit easily with CMM because
the CMM represents a framework for self-improvement. Integrating plan-driven
and planning driven (i.e. agile) software development has, however, often said to
be a fundamental challenge which is �like oil and water� (Turner and Jain 2002).
One reason for this �thinking� might be perhaps misleading assumptions related
to agile and CMM/ CMMI integration (Turner and Jain 2002).

It is often assumed that CMMI compliant processes need to be heavyweight,
bureaucratic and slow-moving (Anderson 2005). Agile practices such as XP and
Scrum have been said to offer a less bureaucratic way of developing quality
software focusing on human centered processes. (Bos and Vriens 2004).
However, the common belief has been that to follow CMMI the teams must
involve documenting requirements, decisions, meetings risks, plans and effort
spent on software development in order to develop high quality software. On the
other hand, when an agile approach is used the teams can achieve quality
software relying more on informal, lightweight documentation. (Boehm and
Turner 2003a). One way to discuss this fundamental problem of CMMI and
agile method integration is to compare the challenges of the CMMI to the
principles of agile software development.

53

Challenges in CMMI Assessments vs. Iteration Retrospectives

Agile principles suggest that a team needs to reflect regularly on how to become
more productive and more efficient (Agile Manifesto 2001). As previously
mentioned, agile software development companies typically respond to this
problem by adopting a practice of iteration retrospectives, in which the teams are
continuously collecting and evaluating their strengths and improvement needs in
a face to face way (Salo and Abrahamsson 2007). The problem with the iteration
retrospective approach is that it does not enable mechanisms for sharing
information between the teams or communicating the strengths and the improvement
needs from teams to the organizational level (Salo and Abrahamsson 2007).
Thus, the assessments can provide some answers to this gap by describing well
established way to collect and share improvement information needed for
organizational level SPI.

Heavy and time-consuming assessments may not, however, fit the organization
which follows the principle of �working software is the primary measure of
progress� (Agile Manifesto 2001). Thus, the assessments, even if useful for agile
companies need to be implemented in the lightest way possible (i.e. not taking
too much time of the teams and organizations). One solution to the problem of
too heavy and time consuming assessments would be to follow the processes of
lightweight assessment methods such as ADEPT (McCaffery et al. 2006, 2007,
Wilkie and McCaffery 2005).

The argument that there is no evidence that the CMMI capability levels actually
drives the improvements in the right order (Fayad and Laitinen 1997) might
actually vitiate the use of capability levels in both traditional and agile contexts.
There are, however, some reported experiences of the successful use of CMMI
capability levels when implementing assessments in the context of agile
software development (Glazer 2001, Kähkönen and Abrahamsson 2004, Paulk
2001). Based on these experiences it has been argued that at least some CMMI
levels could be achieved using agile methods (Anderson 2005). It seems,
however, that the continuous improvement, adapted as a part of the agile
methods, could drive a team to achieve some of the specific practices from
CMMI level 5 (e.g. continuous improvement of process performance through
both incremental and innovative technological improvements) before the actual
achievement of all the criteria of CMMI level 2 and 3. This is against the

54

practice of using capability levels to assess processes in agile software
development context. It should be remembered, however, that often, the goal of
the organization is just to achieve business goals through the improvement of
software development process. Not, actually, to have official CMMI certification
(McCaffery et al. 2007).

The Challenge of CMMI Based Improvement Programs vs. Iterative Improvement

The adoption of the improvement initiatives of CMMI based assessment
programs can be based on improvement models such as QIP (Basili 1989) and
the IDEAL model (McFeeley 1996). It seems that there are some fundamental
differences between the SPI programs that are conducted in the traditional
software development teams and the SPI programs that are conducted in an agile
context (Salo and Abrahamsson 2007). Firstly, CMMI based improvement
programs are often based on strong management control whereas SPI in an agile
context emphasizes the use of self organizing teams as the key for the SPI
implementation (Salo and Abrahamsson 2007). Thus, the process of conducting
SPI in agile software development is typically based on the team level
improvement of their daily working practices (Salo and Abrahamsson 2007).

Impacts of the CMMI Based Improvement Programs in an Agile Context

Although it has been argued that CMMI assessments leads projects to a too
document driven software development approach (Boehm and Turner 2003a) it
should be highlighted that the CMMI model, although it feels heavy, does not
explicitly require any particular work products or artefacts (Baker 2006). On the
contrary it merely proposes collecting evidence that the goals of each process
area are achieved. On the other hand, as defined in Chapter 2.2.3 agile software
development does not mean a process in which documentation are not produced.
On the contrary, documentation is still needed, but the level and amount of
documentation seem to depend on the development environment and complexity
of the developed system. Thus, there is the possibility for the organization to
follow the CMMI goals and still use the agile practices in the software
development (Baker 2006). Kähkonen and Abrahamsson (2004) demonstrate
how to use CMMI as a framework for assessing an agile based software
development process. Based on the analysis of a one case project, they suggest
that assessment in the context of the agile software development is possible but

55

requires more interpretation from assessors than the CMMI assessment for a
plan-driven software development process.

2.3.4 Empirical Findings

The Boehm and Turner (2003b) risk based agility evaluation method provides a
description of the risks or factors that may appear or make software development
demanding in the context of agile software development. Whereas it provides a
mechanism for starting the SPI by evaluating whether the project or organisation
defines the risks for movement towards agility, it does not focus on identifying
agile practices that could be used as a starting point in software process
improvement or agility adoption. Furthermore, it remains unclear how to adopt
the agility, how to assess the agility in the hybrid software projects or how to
improve agile software development projects. Although Boehm and Turner
(2003a) present empirical analysis based on the presented method from one case
company, the risk based approach to balance agile and plan-driven methods has
only been empirically evaluated in a few studies.

McCaffery et al. (2006, 2007) have integrated the risk based agility evaluation in
the so called �ADEPT� assessment method, which is developed based on the
needs of small software enterprises. In the �ADEPT� method based assessment,
McCaffery et al. (2007) use the Boehm and Turner�s (2003b) risk based analysis
as part of an assessment to be able to evaluate an organization�s capability to
adopt agility as part of the improvements. Although, �ADEPT� seems to be the
only assessment method which integrates agility and SPI, it lacks a description
on how agile practices should be used when doing a lightweight assessment for
software organizations.

Sidky�s framework (2007) opens an interesting angle on agile practice adoption.
The results of the framework were evaluated from a survey which was sent to 35
participants and completed by 12. It can be argued that the framework is not yet
well established from the empirical viewpoint. It does not give details on three
important questions: 1) how to map agile practices with CMMI, 2) how to
decrease the effort in assessments in agile practice adoption situations or 3) how
to validate the impact of improvements in the context of agile software
development. Furthermore, Sidky�s (2007) framework could also be challenged

56

with the same argument about the use of CMMI capability levels in the
assessment situations as presented by Fayad and Laitinen (1997). It does not
provide evidence as to why the adoption of agile practices should be done in
some specific order, or why, for example, TDD should be adopted after the
collaborative planning.

There are some case studies available that describe how the CMM/ CMMI and
agile practices have successfully been used together to formulate the so called
combined improvement approach (Paulk 2001, Nawrocki et al. 2002, Morkel et
al. 2003, Paetch et al. 2003, Vriens 2003, Kähkönen and Abrahamsson 2004,
Baker 2005 and 2006, Fritzsche and Keil 2007, Sutherland et al. 2007).
Compliance with reference models usually entails the generation of
documentation, which is a consequence of the used agile principle of �working
software over comprehensive documentation� (Morkel et al. 2003). Although a
lack of documented evidence can be defined as one problem in achieving the
goals of the CMMI process areas using agile practices, the description for
example of Requirements Management in the CMM or CMMI does not
explicitly state that requirements must be documented (Nawrocki et al. 2002). In
an agile context, this means that requirements can exist but are documented in
some other form than in plan-driven development projects, e.g. with user story
cards or a user story database (Nawrocki et al. 2002).

On-site customer and continuous integration (Paulk, 2001) are important
practices from a perspective of understanding requirements. For example, the
on-site customer can be characterized as a practice that directly supports the
understanding of the team (Paulk 2001), when the customer is always available
and capable of explaining the requirements. Paulk (2001) suggests that XP�s use
of (1) stories, (2) on-site customer and (3) continuous integration achieves the
CMM requirement management goals. Paetch et al. (2003) presents a similar
conclusion and argues that agile practices are comparable with the requirements
engineering techniques, where stories and product and sprint backlogs are used.

In XP, the planning game has been characterized as a way of communicating
requirements to the team and therefore increasing understanding, but also as a
practice that facilitates the commitments of participants, communication of
changes and checks the consistency of the plans and requirements (Schwaber
and Beedle 2002). The commitment of requirements in XP teams is achieved

57

using an on-site customer, who is mainly responsible for the story description
(Paetch et al. 2003). In Scrum, the commitment is based on the product owner�s
(Schwaber and Beedle 2002) responsibility and involvement in the sprint
planning and sprint review meetings, as well as an ideology for the self-
organizing teams authorized to make decisions (Schwaber and Beedle 2002). In
some reports, release reviews are reported to be comparable with the
requirements review and sprint planning meetings or planning games with the
process of requirements change management.

The traceability of requirements can be supported by keeping a record of the
earlier stories, tasks and functional tests described in XP (Fritzsche and Keil
2007). Inconsistency can be addressed by the agile practice of writing codes
specifically to meet test cases. No code is accepted before it has been verified
against the defined test cases (Morkel et al. 2003).

According to Paulk (2001) Project planning in CMM could be implemented as a
part of the planning games at the beginning of each iteration of XP (Paulk 2001).
This is based on Humphrey�s advice, �If you can�t plan well, plan often.� XP
also requires that the team and customer are involved in both the requirements
management and software project planning. This supports increasing the
common understanding and commitment of relevant actors in these process
activities (Paulk 2001).

In XP, requirements are typically split up into tasks, described in story cards and
estimated in the planning games by the development team. From the assessment
perspective, this can also be defined as one way to document the results of an
iteration as a part of the project planning process of CMMI (Paulk 2001). The
common understanding and commitment of a customer is achieved only if the
customer is continuously available during the software development project. In
many cases, this is a practice that is not possible to implement, which means that
some alternative �plan-driven� approaches to address this CMMI goal may be
required (Nawrocki et al. 2002). Furthermore, Paulk (2001) states that estimation
planning games and small releases can be used when establishing estimations
and software project planning. In Scrum, project planning is performed in sprint
planning and daily meetings using product and sprint backlogs as a tool for the
work tasks management (Schwaber 2003).

58

The Software project tracking and oversight of CMM can be applied with a large
visual chart, project velocity and commitments (stories) for small releases
addressed by the XP (Paulk 2001). Kähkönen and Abrahamsson (2004) also
argue that iterative planning meetings, daily meetings and continuously updated
task descriptions, together with the corrective actions made in iterative
retrospective workshops fulfil the goals of the project monitoring and control
process area in CMMI. In Scrum projects, tasks are continuously discussed and
estimated in daily Scrum meetings (Schwaber 2003). This means that in agile
projects, project planning is accurate and updated daily (Schwaber and Beedle
2002). Table 5 shows the mapping model between the agile (i.e. XP and Scrum)
practices and CMMI requirements management, project planning, project
monitoring and control process areas.

Table 5. Example of the mapping between the CMMI project planning, monitoring
and controlling as well as requirements management process areas and agile
practices.

Process Area Agile practices References

Requirements
Management

User stories, On site customer
and Continuous integration,
Planning Game/Sprint Planning,
Small Tasks/ Estimations

(Fritzsche and Keil 2007,
Kähkönen and Abrahamsson
2004, Nawrocki et al. 2002,
Paulk 2001)

Project Planning Planning Game/Sprint Planning,
Small releases/ Sprints, Small
Tasks/ Small Tasks/ Estimations,
Post Game Session

(Nawrocki et al. 2002,
Paulk 2001)

Project
Monitoring and
Control

Small Releases/ Sprints, Planning
Game/ Sprint Planning, Daily
Meeting, Post Game Session,
On-site Customer

(Kähkönen and Abrahamsson
2004, Paulk 2001)

2.3.5 Summary

The existing literature proposes few frameworks or mechanisms for the
improvement and adoption of agile methods which can be integrated with the

59

SPI steps or assessments. All of these presented so called �hybrid� methods that
integrate aspects of both the plan-driven and agile software development
approach are, however, relatively new and not so well analysed empirically in
the industrial environment. The above brief review of the current literature,
which maps the CMMI and agile practices, indicates that agile practices can be
used when evaluating the project planning, monitoring, control and requirements
management process areas in software intensive teams and organizations. On the
other hand, it is clear that there is a need for agile organizations to collect and
share information about the strengths and improvements needed between the
several teams at organizational level.

2.4 Summary of Chapter 2

While CMMI has promised many benefits, CMMI based improvement programs
have often been found to be too time-consuming and requiring an overly
document driven software development approach. As indicated in Chapter 2,
many organisations have recently experienced cost reductions, increased
development speed or better quality or communication due to the adoption of
agile practices, but have then encountered problems related to documentation
and communication in the agile software development context.

While the existing hybrid models for SPI and the adoption of agile practices
provide an interesting new research field, indicating the importance of research
into the combined use of agile and plan-driven techniques, they do not seem to
provide the needed approach for dealing with the challenges that appear when
the software development process is improved and mediated with CMMI and
agile practices.

60

3. Towards a Framework for Improving
Software Development Process Mediated

with CMMI and Agile Practices from
Communication Perspective

This chapter first provides a discussion on how to build a framework for the
research and then presents the hybrid framework that supports both the
communication improvement of the software development process and adoption
of agile practices.

3.1 Definition of the Framework

A framework, generally, provides structured mechanisms to define phenomena in
the research and link how they relate to each other (Weick 1995). A conceptual
framework is a tool for explaining, either graphically or in a narrative form, the
main constructs to be studied i.e. the key factors, constructs and relationships
between them (Miles and Huberman 1999). In the conceptual framework, the
concepts used in the study were assembled like a �jigsaw puzzle�. The goal is to
work out how the concepts fit together and relate to each other. The conceptual
framework consists of patterns of concepts and their interconnections (Fisher 2007).

Use of the Miles and Huberman (1999) data analysis approach (i.e. setting out
�bins�, naming them and clarifying their interrelationships) can also lead the
researcher to the conceptual framework. The framework itself is a mechanism to
help the researcher decide the most important and meaningful variables for data
collection and analysis (Miles and Huberman 1999). It does not have to be
complicated, but just requires a simple description of the causes and relationships
between the key factors in the overall research (Fisher 2007). The research
framework can have five key purposes (Schwarz et al. 2007):

1. to summarize the assumptions of a research stream
2. to provide a new focus within a research stream
3. to integrate previous research studies
4. to facilitate future research
5. to synthesize previous research in an actionable way for practitioners.

61

To achieve a clear framework, the graphic presentation needs notations which
are systematically used during the research study. The notation for the
framework presented in this thesis is based on the books of Miles and Huberman
(1999) and Fisher (2007). The type of presented framework in this thesis is a
cyclical, cause and effect model (Fisher 2007) which means that the framework
is shown as �boxes� and �arrows�.

3.2 Needs for the Framework

The framework of this study is based on the elements presented in Chapter 2.
This section discusses the need for the framework presented in this study.

Although, CMMI based improvement programs have been used to improve
productivity of software development (Galin and Avrahami 2006) and agile
methods promise practices for improved collaboration, communication and
project management (Williams and Cockburn 2003), the possibility combining
of these approaches has been critizised, even as a fundamental challenge of
software development (Turner and Jain 2002). Reasons for the critique are based
on the assumption that the CMM or CMMI based software process improvement
would in some context lead to the too document driven software development
approach (DeMarco and Boehm 2002, Highsmith 2002b). This is against the
principles of agile software development (Agile Manifesto 2001). On the other
hand, the use of CMMI reference model has been defined as too time consuming
and process oriented which means that the efficiency may disappear from
software process improvement because the support and feedback from actual
developers to software process improvement are missing (Laitinen and Fayad
1998). There seem not to be empirical evidence that the software process
improvement order presented by maturity levels of CMMI would actually work
in industries (Fayad and Laitinen 1997).

As claimed in Chapter 2, iterative improvement mechanisms are a valuable way
to harvest feedback from development teams and give them a regular possibility
to improve their way of creating software and following the software processes
(Salo and Abrahamsson 2007). The agile software development approaches do
not, however, provide solutions about how to share information on the strengths
and improvements between the different teams (Salo and Abrahamsson 2007).

62

Therefore, there is a need for an approach which contains the aspects of
organizational level improvement and adoption of agile practices in software
intensive organizations (Salo and Abrahamsson 2007).

The framework as presented in Figure 4 was developed to increase the
understanding of the link between the CMMI and agile practices, to provide an
approach for starting software development improvements using both agile
practices and CMM goals. The primary goal of the framework is to build a link
between the concepts �hybrid/ lightweight�, �CMMI�, �assessments�, �agile
practices in use� and �communication� and to integrate the presented research
papers in this thesis. Another purpose of the framework is to focus on the
research and research challenges presented in Chapter 2 and, at the same time,
identify the parts that are outside the scope of study and to integrate previous
research studies around the selected key concepts.

3.3 Framework for this Study

The framework of this study presented in this study illustrates:

• how to facilitate and validate software development processes mediated
with CMMI and agile practices

• how the developed hybrid, lightweight improvement approach can be
combined with the use of agile practices in iterative project level software
process improvements

• how the use of agile practices affects the communication in software
development teams and organizations.

The framework in Figure 4 has been constructed on the basis of the description
of the plan-driven and agile software development variables presented in
Chapter 2.

63

Mapping
 Model

CMMI specific
goals and
practices

Agile Principles
and

�Text Book�
Agile Practices

Hybrid
Assessment

Agile Practices in
Use

Communication in
software

development

Iteration
Retrospectives

Figure 4. Framework for this study.

The framework in Figure 4 suggests that:

• the CMMI model defines goals for each process area, and a basic way of
achieving those goals is to use practices described in CMMI

• a �Mapping Model� describes how practices in the CMMI process areas
are complemented or replaced by a customized set of agile practices. The
�Mapping model� between the �CMMI goals and process areas� and agile
practices could be used as a tool when assessing the software development
process with the �hybrid assessment� method

• the �Hybrid, assessment� produces both plan-driven and agile based
improvement suggestions that may drive to �agile practices in use�

• �Iteration retrospectives� are used to evaluate the software development in
which �agile practices are in use�

64

• �Iteration retrospectives� drive the �agile practices in use� and work as a
mechanism to harvest software process improvement needs from the team
members

• the data from �iteration retrospectives� can be used at an organizational
level while implementing �hybrid assessments�

• the using of �agile practices improve the �communication in software
development�

• the software development process where �agile practices are in use� can be
further evaluated and improved within a �hybrid assessment� approach.

The relationships between the constructs of the presented framework are
described in the research papers I�VI in this thesis, using the relations between
the constructs and the papers from Table 6.

Table 6. Relationships between the constructs of the presented framework.

Relationships between the constructs Reported in the research papers

Mapping model � CMMI goals and agile practices Papers II, III, IV

Hybrid Assessment approach � Mapping model Paper II, III, IV

Assessments � Agile practices in Use Paper I

Iteration retrospectives and Assessment approach Paper V

Iteration retrospectives � Agile practices in use Paper I, V

The use of agile practices � impacts on communication Paper VI

Each link between the components of the framework is explained briefly in the
following sections including the description of the link between this and other
frameworks described in Chapter 2.3.

65

3.3.1 Mapping Model and CMMI Goals and Agile Practices

Papers II, III and IV of this thesis all focus on providing a description, discussion
and the key findings of the multiple case studies which have integrated CMMI
specific practices, XP and Scrum practices in a real industrial context, utilizing
the mapping model (as summarised in Appendix 2) as a framework for the
question list creation and data analysis.

3.3.2 Hybrid Assessment Approach and Mapping Model

The research Papers II�IV describe how to apply hybrid, lightweight assessment
in multiple contexts and how to produce practical improvements based on both
the specific practices of CMMI and practices of Scrum and XP. The hybrid
assessment presented in Papers II�IV use the same idea as defined in the Boehm
and Turner (2003a) framework. The idea is to define both the agile and plan-
driven risks so as to tailor the software development processes based on the
assessment results which are specifically generated from the context and domain
of the evaluated software organization. In this thesis, Boehm and Turner�s (2003a)
five agility factors were also applied in 2 case companies as a starting point for
the improvement work. This was done in order to develop an understanding of
the context factors of the assessed teams. During the assessment it was revealed,
however, that context factors in Boehm and Turner�s (2003b) framework do not
provide enough detailed improvement suggestions about how to continue with
improvement and agile practice adoption. Therefore, a more specific, practice
based assessment approach is still needed.

At the time when the case studies were implemented in the case companies,
Sidky�s framework did not yet exist. Presuming that Sidky�s framework will be
more established for future research, it could be used as a tool in assessments to
determine which agile practices should be first focused on in the assessment
processes.

66

3.3.3 Assessments � Agile practices in Use

In Paper I the use of agile practices was analysed and discussed using the
assimilation stages defined in innovation adoption theories. It was found that
since the need is the key driver for a comprehensive and sophisticated use of
agile practices, assessment can be also used as a mechanism to analyse the needs
of companies and to identify agile practices that the software development team
could first adopt.

3.3.4 Iteration Retrospectives and Assessment Approach

One purpose of Paper V was to use the QIP model as a framework to show how
the improvement and adoption of agile practices can be implemented at team
and organizational level and how the team level iteration retrospectives can be
linked to the previously presented agile assessment approach (in Papers II and
III). In one case company, the data from post iteration workshops (Salo and
Abrahamsson 2007) and discussions with the workshop facilitator were used as
one of the primary sources of data when doing the agile assessment. This gave
new perspectives to the assessment situation as the assessors could view the
improvements and implementation of the project processes as a changing, broad
process instead of a snap shot description of current working practices.

3.3.5 Iteration Retrospectives � Agile Practices in Use

In Paper I it became clear that the iteration retrospective is a practice that
regularly used has an impact on the assimilation levels reached in the
development teams. A similar observation was made also in Paper V, in which
the analysis of a post-iteration workshop disclosed its positive affects on the way
the teams used the agile practices.

3.3.6 Agile Practices in Use � Impacts on Communication

Paper VI analysed the implications of the single adopted agile practices for
communication in the software development teams and organizations. This

67

evaluation is important to prove that the assessment approach is a valid way of
affecting the software development processes.

3.4 Summary of Chapter 3

In this chapter the framework was presented to illustrate the problem of how to
improve the software development process mediated with CMMI and agile
practices. The components of the framework have been derived from the
discussion in Chapter 2. The links between the constructs are described in the
research Papers I�VI on the topics constructed between 2005�2008 in 4 case
companies.

The framework shows the different elements that should be taken into
consideration when making improvements to software development processes
by integrating both plan-driven and agile aspects of software development.
Therefore, the framework makes it possible for practitioners and researchers to
reflect on the improvement of software development processes as a rich and
complex process influenced by all the framework components and interaction
between them.

68

4. Research Design

In this chapter there is a discussion of the research approach and methods adopted
in this study. Another goal of this chapter is to provide a brief description of the
companies used in this study with the basic information about the company
background, technology context and use and their motivations to adopt agile
practices.

4.1 Research Approach and Methods

In the following chapters, the approach and research methods of this study are
discussed. In addition, this chapter contains a description of research settings
including a description of context of four case companies.

4.1.1 Research Approach

The research approach in this study was to conduct the research as a series of
case studies. Each step is analysed and reported in several research publications.
Following the principle of interaction in interpretive research this means the
construction of research data through interaction between the researchers and
participants (Klein and Myers 1999). In this study, the data used is mainly
qualitative but in some cases structured in a more quantitative manner (e.g.
papers IV, V, VI). The data collection is based on multiple evidences as
suggested by Yin (2003). The used data collection sources are semi-structured
interviews and group interviews, observations, software development
documentation of the case projects, workshops and collaborative meetings.

Klein and Myers (1999) argue that a dialogical reasoning principle in interpretive
research means that the researcher follows the rule: improvement of the
understanding of the previous research stage becomes the prejudice for the next
research phase. In this research, the focus shifted among several themes which
were found to be relevant to explain the observed processes in the eight different
teams in the four case companies. In Table 7, these themes are categorized based
on the constructs described in the published research Papers I�VI. In Table 7,

69

these themes are categorized based on the constructs described in the published
research Papers I�VI. In table 7 the papers are included in the same order as they
were written.

Table 7. Research Themes.

Paper
Number Theme Explanation

III Agile Assessment Assessments are used in a lightweight manner as a way
to identify suitable agile practices in an organization.

II CMMI goals and agile
practices

Mapping of the CMMI goals and agile practices in
Paper II, through the three case studies.

V Deployment, Adoption of
Agile practices and agile
assessments, agile
practices

Agile Practice adoption is analysed and integrated with
the QIP model and evaluated through the case study.
The post-iteration workshop method has been linked
with the agile assessments and QIP steps.

IV Hybrid Lightweight
assessments and agile
practices

Hybrid assessment and agile practices are presented as a
new method and evaluated through the case study.

I Agile practices in use Data in case company 3 has been used to increase the
understanding of agile practices in use and to give
motivation for assessment based on agile practice
adoption approach.

VI Agile practices in use and
communication

Assessment data is used to clarify the impacts of agile
practices on communication in software development
teams.

In the first phase of this research, the purpose was to integrate agile practices and
CMMI goals in the assessment process. The results of this first step were
reported in Paper III. In the second phase, deployment and adoption concepts
were selected as the focus of the research and published in Paper V in the
purpose to integrate the previously presented assessment mechanisms with the
organizational level agile deployment, adoption and improvement. After this, the
mapping model was considered in more depth through the reported experiences
of four case companies in Papers II and IV. Together, these papers increase the
understanding of the improvement of the software development process mediated
with the lightweight CMMI based assessments and agile practices. In the last phase,
the key focus turned to the agile practices in use. This was done in order to validate
the importance of the presented improvement strategy and presented framework.

70

Firstly, the impact of agile practice in use on communication was selected as the
focus for a more detailed analysis in Paper VI. Secondly, agile practices in use
were also researched from an innovation assimilation perspective in Paper I.

4.1.2 Research Method

This section, provides, firstly, the reasons why the case study method was
selected and, secondly, an explanation of how the data collection and analysis
were applied in this particular study. As the intention behind this study was to
investigate a contemporary phenomenon in a real-life context case studies are
considered by the researcher to be a suitable research approach for the overall
study. The case study approach was selected as the research approach in this
thesis, because it is beneficial in research situations where control over
behaviour is not possible and research data can be collected through observation
in an unmodified setting (Yin 1994). Case study research has been implemented
and reported iteratively based on Yin�s (2003) steps in case study research
methods i.e. preparing data collection, collecting evidence, analysing case study
evidence and reporting case studies.

While a case study allows capturing of details and the analysis of many
variables, the method is criticized for a lack of generalizability, a critical issue
for a case study researcher. Because the corporate, team and project
characteristics are unique to each case study, comparisons and generalizations of
case study results are difficult and are subject to questions of external validity
(Kitchenham et al. 2002). However, Walsham (1995) argues that when using a
case study approach, researchers are not necessarily looking for a generalization
from a sample to a population, but rather plausibility and logical reasoning
through developing concepts, drawing specific implications, and contributing
rich insight into the researched phenomena. This study also investigates an
improvement of the software development process using individual agile
practices, not agile methods in general. Therefore, the agile practice is
considered as the unit of analysis of this thesis. Agile practice in this thesis can
be defined as the practice that has been described in Scrum and XP.

The level of the research can be individual, group, or organization (Hovorka and
Larsen 2006). As for the level of analysis, the presented research is focused on a

71

software development team (group level) and those stakeholders (organization
level) who have a direct impact on the software development teams. These
actors or stakeholders have been differentially defined in existing research
studies. For example, in coordination theory Malone and Crowston (1994)
discuss actors in information transferral and coordination. The key actors
defined in this thesis are the customers, managers and individual programmers
or group of programmers. Boehm (2003) creates a theory of value based software
engineering focusing on the actors and success models of the most frequent project
stakeholders. He characterizes the most relevant stakeholders in the software
engineering as developers, managers, users, maintainers, sales people and
acquirers (Boehm 2003). On the other hand, Leon (1995) categorizes different
stakeholder groups for system development, also defining two other stakeholders
that have effects on the work of a development group. There are other development
teams that have impacts on the work of the development team and support staff,
for example, quality engineers who ensure the quality of the end product. In the
CMMI product suite, (CMMI 2006) a �stakeholder� is characterized as:

�A group or individual that is affected by or is in some way accountable
for the outcome of an undertaking. Stakeholders may include project
members, suppliers, customers, end users, and others.� (CMMI 2006).

In this thesis, the level of analysis includes not only the development team but
also the managers, customers, support staff and other development teams from
the organizational level who have a direct impact on the work of the evaluated
software development team.

4.1.3 Collection of Empirical Evidence

Personal face-to-face interviews are considered as efficient data-gathering
techniques especially for interpretive studies (Yin 2003). Also, the information
gathered is likely to be more accurate than information collected by other methods,
since the interviewer can avoid inaccurate or incomplete answers by explaining the
questions to the interviewee (Oppenheim 1992).

During the period 2005�2008, the initial approach was to interview managers
and employees in four firms that were in the process of implementing the XP

72

and Scrum methods. Since this time period was still early for software process
improvement via agile practices, the firms were chosen opportunistically based
on their business goals to adopt agile practices. During this research, a total of 27
individual interviews were conducted at these four companies (Table 8). These
interviews were semi structured and lasted for about 60�90 minutes each.

Most interviews were tape-recorded and transcribed verbatim. 12 additional
interviews can be characterized as group interviews, in which the semi
structured issues were discussed together with the software development teams
and facilitated by the author of this thesis (Table 8). For these interviews, where
tape recording was not possible, detailed hand written notes were taken and
immediately transcribed following the interview.

Table 8. Data Collection.

Case company 1 2 3 4

Individual interviews 10 5 8 4

Group Interviews 5 1 5 1

Since one goal of these field studies was to assess the software development
process and define new improvements based on project needs and agile methods
focusing on the requirements, project management and engineering processes in
the CMMI, each firm provided opportunities for interviewing developers, project
managers and product managers. In the individual interviews 20 of the
respondents were developers, 3 were also doing project management work, 6
were only project managers and 1 was quality engineer and 1 was in customer
role in the agile software development project.

All the interviews were conducted in a responsive manner (Rubin and Rubin
2005, Wengraft 2001). In some interviews, the client (i.e. representative from
case company) also participated in interviews in the role of the interviewer,
which enabled reflection and efficient collaboration. Furthermore, the research
team kept a note of the questions asked during each interview, and analysed their
effectiveness, refining or adding to the set of questions via telephone or e-mail.

73

The documentation review and field notes were used as complementary data
collection methods. The sources of documents include information system
development documents, project management documents, corporate websites or
brochures, and other available publications.

4.1.4 Data Analysis

 Coding is often used in qualitative research, systematically labelling concepts,
themes, and artefacts so as to be able to retrieve and examine all the data units
that refer to each subject across the interviews (Miles and Huberman 1999). The
research, presented in this thesis, is based on the framework building approach
in which the researcher sets out �bins�, names them and clarifies the
interrelationships between them as described by Miles and Huberman (1999).
The �bins� can be events, settings, processes, practices or theoretical constructs
(Miles and Huberman 1999).

The conceptual framework describes the main areas to be studied, the key factors,
the constructs of the research and the key factors between them. The coding structure,
adopted in this research, consisted of two distinct mechanisms. Firstly, agile practices
were used as �bins� to define codes for each interviewee, the first segmentation
and filtering was done and the interview data collected. Secondly, pattern coding
was used as a way of grouping the summaries of previous codings into a smaller
number of themes or constructs as described by Miles and Huberman (1999).

4.2 Research Context

Drawing conclusions from the empirical results is always difficult, because the
results are largely dependent on the project settings. This study collected the data
on the implementation of the XP and Scrum practices in four companies which
all are working in dynamic, global markets. Agile practices were evaluated as
way to improve companies ability to respond to changes within short, time
boxed development cycles.

All of these organizations are operating in the embedded software development
area. None of these organizations did use agile practices at the beginning of this
research. Agile methods were adopted in the selected projects in the first phase,

74

alongside the plan-driven product development process. The case companies
were chosen for this study based on their need and goals to adopt agile practices
and need or background to use CMMI models. The context of the case
companies provided valuable context for the research related to the software
process improvement mediated with CMMI goals and agile practices from
communication perspective.

The research was conducted in four case companies during the years 2005�2008.
During this time, 8 teams in total were selected for the evaluation. Table 9 gives
an overview on the cases used in this research study.

Table 9. Overview of the Cases.

Case Company Projects Used Agile
methods Evaluation of the output

Case Company 1,
Phase I

Team A
Team B
Team C

Plan-Driven Paper II and III

Case Company 2 Team D XP, Scrum Paper II

Case Company 3
phase I and II

Team E
Team F

XP, Scrum Paper I, V, VI

Case Company 4 Team G
Team H

Plan Driven Paper IV

In two of the companies, case companies 1 and 3, the research was conducted in
two stages. In the first period, the current status of the processes was analysed.
In the second phase, 6 months later, the results of the previous analysis were
assessed by holding second interviews and analysis. In case company 2, an
evaluated project used the XP and Scrum practices whereas in case company 4,
the evaluated projects were plan-driven but the organization representatives were
willing to adopt agile practices as part of the SPI program.

The following chapters describe the research context of each company selected
for the case study of this research.

75

4.2.1 Case Company 1

Teams A, B and C belong to Case Company 1 which delivers video technology
solutions for 18 semiconductor manufacturer customers in six different countries
in Europe, Asia and the USA. At the time of the research, Case Company 1 was
a medium size company with 80 employees. All the development was located in
Oulu, Finland. The development deals with domain and application engineering.
This means that part of the developers in the teams do the application
engineering at the same time, when the other developers integrate basic products
based on specific customer needs. At the moment of the first interviews, the
domain engineering teams were based on deep negotiations and requirements
�freezing� before any actual software development activities.

Organizational Background

Because the company was still quite small all developers were located in the
same building, daily communication between the developers, project managers
and business units in all three teams was possible. Due to the efficient
communication study participants said that there was no need to put so much
emphasise on documentation. The need for more systematic mechanisms for
communication and software development management was, however,
necessary due to the increasing amount of developers and management.

Technology Context and Use

All the products that are developed in case company 1 are embedded and have
more hardware components. At the time of the first interviews all the
developers, in all three teams in case1 worked in the same building, some of
them in the same rooms and others in separate rooms. All of the evaluated teams
were also quite small, having two to five developers in which some of them
design the hardware part of a whole product.

Team A has performed domain engineering activities for a previously
implemented embedded product. The goal of the project has been to tailor the
product to a specific customer environment based on continuous customer needs
and requests for changes. Two developers have made the changes, mainly ad-
hoc, as quickly as possible based on the current customer demands. The project

76

began with long contract negotiation and specification phases following also the
previously defined milestones and milestone criteria.

The goal of Team B has been to develop an embedded product with new
technologies. At the first data collection period, the project had five software
developers and a group of hardware developers. At that time, the project was in
the specification phase having only internal customers.

The developers in Team C have conducted application engineering in parallel
with domain engineering work for several customers. At the assessment
moment, the project was in the implementation phase. Previously, the project
only had one customer and the product manager took care of gathering customer
requirements. In the later phases, the project, however, had several new
customers that were all continuously making new requirements or requests for
changes.

Motivation to Adopt Agile Practices

Because domain engineering projects of the teams in case 1 were typically based
on deep negotiations and requirements �freezing� before the actual development
activities, the management had, first, a sceptical attitude towards increasing the
agility. This attitude, however, changed when new evidence of the benefits of
agile software development came from within the case company 1 projects and
other companies.

4.2.2 Case Company 2

Team D is part of a large international company located all over the world. It
delivers mobile communication applications for the fast moving dynamic, global
market. The aim of case company 2 is to provide mobile solutions in an area of
imaging, games, media and businesses and also to provide equipment, solutions
and services for network operators and corporations.

The work in Team D was based on case company 2�s corporate research centres
which develop technologies and creates competencies in technology areas vital
to the company�s future success. The research centre also supports the company�s

77

four business groups by interacting closely with them in order to develop new
concepts, technologies, and applications. Conducting research within a
cooperative and global network underpins their long-term technology visions
and they cooperate with universities and other industrial players to widen the
scope of technology.

Organizational Background

At the time of the interviews, the process model in used in case company 2 was
based on the plan-driven software development approach, in which the
management of the project followed milestones. The milestone criteria required
producing specific documents in each space of the software development
process.

Agile practices were first applied inside the evaluated Team D and therefore, the
manager had a difficult role to combine the highly plan-driven milestone based
organizational level culture and the project which internally worked on an agile
basis. Since the first pilot projects, using agile methods, were successfully
applied, the developers began to apply the agile software development approach
on a large scale also in other development projects. During 2,5 years of time, the
overall culture of the company changed radically emphasizing agile principles
and quick feature deliveries.

The culture of case company 2 was, at that time, mainly based on a plan-driven
software development process. Our analysis reveals that, at the assessment time,
most of the management in case company 2 were not aware of agile methods or
were not willing to change the plan-driven milestone routines to support
software development in which agile practices were used. On the other hand, the
organization had a clear willingness to pilot agile practices because, the whole
development Team D was selected from other companies based on their agile
software development background.

Technology Context and Use

Team D was the first project in case company 2 in which agile practices were
really piloted. The goal of the evaluated case project was to develop a new
generation report management system to support product development projects.

78

Another goal was to evaluate the success of the agile methods in the case
company environment. The developers were mainly subcontractors from other
organizations and selected for the pilot project because of their 2�3 years
experience with agile software development. Early versions of the report
management system were developed during the previous years used Excel
scripts. Now the goal was to transfer the data into a new database and redevelop
new software to support metrics collection and management in product projects.

Team D included four software engineers, who worked in the same office space,
a project manager and customer who participated in validating the results and
provided required daily technical support for the project development. The
evaluated project used the selected set of agile practices from XP and Scrum
methods. The product was implemented in six two week iterations.

Motivation to Adopt Agile Practices

The evaluated agile pilot project implemented by Team D was the first pilot
using agile practices in the case company 2. Later on, the number of pilot
projects using agile practices increased significantly. The first pilot project
already provided evidence that agile practices would help teams in case
company 2 to produce features of the products for earlier market delivery and,
thus, created a better response to the demands of the moving market.

4.2.3 Case Company 3

Teams E and F belongs to a medium sized company (case company 3), which
produces products to protect consumers and businesses against computer viruses
and other threats from the Internet and mobile networks. The company is located
in both Oulu and Helsinki in Finland, but the company has also many regional
offices located around the world. The corporation produces services for the
global market in more than 90 countries. The company was founded in 1988 and
has been continuously expanding since then.

79

Organizational Background

At the time when the research was beginning in 2005, the case company was
mainly making software using plan-driven software development methods and
principles. The management of the company reported the achievement of CMMI
level three and the reliability of the software was high. All the developers
worked in separate rooms and, due to the demands of standards, the documentation
was described as important mechanisms of communication between the developers,
different projects and testing groups. The company had an iterative process
model that was based on the milestones and the milestone criteria. A project
status was reported to the management regularly at milestone meetings.

In 2004, the company management made a decision to pilot agile software
practices as a way to respond to the needs of dynamic markets and increasing
competition. The key challenge for the company was not the quality but the
speed of the software development, which was evaluated as an essential factor
for the particular business field that they were working in. Just before the
research started, the company had organized agile method training for all the
project managers and software developers to make them aware of the new
approach to manage and implement the software development process. At the
time of the data collection, the company was just implementing their first pilot
projects using Scrum and XP practices.

The goal of the research team was to help the company in moving towards a new
agile based software development. This was done by several interviews,
workshops and collaborative meetings which all supported the company in the
agile practice deployment.

Technology Context and Use

Case company 3 delivers products for securing computers, networks and mobiles
against the increasing complexity of computer viruses, worms, hackers and other
threats that appear in the field of information systems. Assessments were
conducted for the four software development teams that all were the first
projects where agile processes were adopted.

80

Team E focused on developing a tool for security system management. The
project team consisted of six persons including four software engineers, a Scrum
master and the quality engineer. The core of the project worked in an open office
space. The project had been ongoing for over a year and the Scrum method had
been used in the project for about five months at the moment of the first
interview period. The second interviews were held after the project had finished,
when the development had continued for 1.5 years.

The goal of Team F was to develop a mobile security application. The core of
the case project consisted of four software developers and two quality engineers,
who worked in an open office space. The project team conducted five software
development iterations. The team leader of the project was an expert in the agile
process and was provided by the research organization. Thus, the team had
constant support and coaching available for adopting the new agile process
model and technologies.

Motivation to Adopt Agile Practices

At the moment of the research case in Teams E and F, company 3 was adopting
agile software practices in the first pilot projects. Due to successful experiences
(e.g. the pilot projects showed a radical increasing in the speed and quality of the
software development process), the company management made a decision to
apply the agile practices on a large scale at the corporation level. Feedback for
the process model creation was collected from several projects.

4.2.4 Case Company 4

Teams G and H belong to Case company 4 that is a small company in Ireland
with a parent company in Denmark. The company is developing safety critical
products with a key focus on the application areas such as test systems for the
electrical and functional testing of complex electronic systems and Network and
Command & Control systems. The domain of case company 4�s products is
currently in the space industry, but the company is also making products for the
automotive domain. Case company 4 consisted of 6 developers and three
managers in Ireland. The parent company in Denmark has 50 employees in total.

81

Organizational Background

The case company 4�s Irish unit was founded only one year ago, which means
that the software development practices were just developing. The culture of the
company was highly plan-driven, which means that development was based on a
long specification phase and development cycles.

Technology Context and Use

At the moment of the interviews, the company had two ongoing teams working
on two projects, both having the goal to make a commercial system for the
automotive industry. Both projects built an embedded system. The projects also
used commercial shelf-components as one of the key strategies for efficient
development.

The case projects in company 4 had their own project manager and the six
developers changed between the projects when needed. Both of the projects had
been running in the case company 4 for half a year. In Team H, the software
development was dealt with in three, three-month increments, whereas in
another project, the overall development life cycle was six months. The parent
company had been mainly responsible for the requirement�s definition and
communication with customers in both projects. Team I of case company 4 was
mainly working similarly to Team H. Team I had, however, created the
requirements specification document interpreting the requirements document
made by the parent company.

The communication between the parent company and case company 4 was
occurred but not in regular manner. Most of the changes to the requirements and
the overall systems were managed in an unsystematic way, but the development,
verification and validation of the products were well implemented, which is
important for the safety critical domain.

Motivation to Adopt Agile Practices

Teams H and I began the change towards the use of agile practices in software
development process based on the assessment results made with the AHAA,
Agile Hybrid Assessment method for Automotive, Safety Critical SMEs. Based

82

on the assessment results, the developers and management of case company 4
identified the particular areas in which they could use agile practices to solve
their current problems and, thus, improve their software processes.

83

5. Research Contributions

In exploring the research phenomenon defined in this thesis, each individual
paper contributes to improving the software development process mediated with
agile practices. The following chapters describe the research contributions
including the key findings for each selected research paper.

5.1 PAPER I: Agile Practices in Use from an Innovation
Assimilation Perspective. A Multiple Case Study

Paper I focuses on one of the key elements of the thesis: the combined use of XP
and Scrum practices. It is based on the strong lens of existing well-established
innovation adoption theories (Davis 1989; Cooper and Zmud 1990; Fichman
2001; Gallivan 2001) and it presents three teams (including a team from a case
company 3) which compare and evaluate the agile practices in use from an
innovation assimilation perspective. Paper I is based on the Rogers (2003)
argument that an innovation can be an idea or practice, which is perceived as
new by its adopters. This is because this definition leads to the characterization,
which is �Agile practices are software process innovations�. The investigation
of the adoption processes of agile practices is critical because �it provides
another level of explanation, describing the importance of the agile practices in
a system development and adoption setting� (Hovorka and Larsen 2006).

As a result, Paper I suggests that while agile practices addressing the needs of a
software development team or an organization have the potential to be reutilized
or infused, it is first sensible to identify the challenges in the software
development project or organization and then to select the relevant agile
practices to adopt in the area, rather than take the whole set of agile practices of
some method as such. This supports the approach in which the adoption of agile
practices begins by identifying the areas of a software development process in
which the improvement is implemented through a CMMI goal and agile
practice-mediated framework, which is one of the contributions of this thesis.

Another finding from the study presented in Paper I is that iteration
retrospectives are a so called �superior� practice, in which regular use may lead

84

teams to a more comprehensive use of agile practices. This supports the
argument that the use of iteration retrospectives affects the adoption and
improvement of agile practices and needs, therefore, to be linked with the
assessment (i.e. the data of iteration retrospectives might be valuable while
doing assessments for a company where agile methods are in use).

Key Findings of the Paper

! It is sensible to identify and select the relevant agile practices to adopt,
based on the needs of the software development project or organization in
the areas of most need.

! Iteration retrospectives drive the assimilation level at which agile
practices are used.

5.2 PAPER II: An Approach Using CMMI in Agile Software
Development Assessments: Experiences from Three Case Studies

As recognized in the first paper of this thesis, organizations have a need for
assessment mechanisms that take the agile context into account, to show how to
validate the extent to which the customised method(s) in action meet the CMMI
model. To cater for this, Paper II begins the development of the assessment
approach focusing on the mappings between the CMMI goals and agile
practices. The mapping and experiences of the assessment approach has been
presented through three different organizations (in case companies 1�3) and the
experiences of a total of seven team assessments.

Paper II uses CMMI goals, integrated with agile practices, as a tool to identify
agile practices based on the current need for software development projects. It
suggests that the use of agile practices increases the discipline in the CMMI
based assessment situation and helps assessors not to wrongly interpret the
different phases of the development project. As shown in the research selected in
this thesis, the mappings can be used to clarify the connections between the agile
and plan-driven processes and thus, increase understanding of the assessment
results and provide concrete practical solution proposals for the company on
how to improve software development process.

85

Among other agile practices, Paper II reveals that, for example, knowledge of
agile practices such as product and sprint backlogs; sprint planning, sprint
reviews; self-organizing teams in industries brings some new approaches for the
assessment of requirements management, project planning, monitoring and the
controlling process area of the CMMI. Furthermore, the paper proposes that
compared to the plan-driven software development projects, it seems that an
agile based approach enables project members to prioritize requirements as well
as plan and monitor project tasks. On the other hand, the agile approach does not
automatically lead to the success of software development process. Moreover,
agile projects have improvement needs that are possible to identify using the
CMMI model as a framework for analysis.

Although CMMI and agile practices seem to be integral elements, there are
many challenges that the assessors face when evaluating software development
processes in the context of an agile software development. The use of the CMMI
goals enables the assessors to cover all the relevant issues in the assessment
situation at the same time as the agile principles lead the assessors to seek
evidence of the goal achievement in other forms than the traditional word
documents. For example, the use of the agile principle: �working software over
comprehensive documentation� leads easily to the situation in which the
evidence for assessments is not often available as a form of official
documentation. This does not mean that the evidence does not exist. On the
contrary, evidence can be collected using face-to-face communication with the
groups of developers and project management. The ideology of the self-
organizing teams and efficient communication in the team makes the group
interview situations more open and, therefore, easier from an assessor perspective.

Key Findings of the Paper

! Mapping the CMMI process areas to agile practices is a valuable tool
for identifying suitable agile practices for organizations that use the
plan-driven software development approach.

! Lightweight, hybrid assessments, integrated with CMMI goals and agile
practices can be used as a way to validate software development process
using agile methods.

86

5.3 PAPER III: An Approach for Assessing Suitability of Agile
Solutions: A Case Study

Paper III describes the results of a research study, in which agile practices are
used to identify improvements for case company 1. It focuses on the
requirements and project management process areas of the CMMI. It presents an
assessment approach to make an assessment in organizations that have a goal to
increase the ability to respond to changes in dynamic market situations.

From the research framework perspective in Figure 4 the paper contributes to the
link between hybrid assessments and agile practices. For example, it suggests
that lightweight assessments (i.e. assessment with low costs, focused processes,
simple assessment processes and modified use of assessment processes) are a
sensible way of identifying suitable agile practices based on the project needs in
a software organization. This supports the use of lightweight assessment
methods in assessments made in the context of agile software development. The
paper also proposes that the assessment integrated with agile practices (i.e. agile
assessment) increases the understanding of what agile practices would suit the
organizational culture, current working methods and environment. The findings,
presented in Paper III, support the assumption that the use of agile practices
improves project monitoring, risk management and requirement traceability in
plan-driven product development.

Key Findings of the Paper

! Lightweight assessments integrated with agile practices is a sensible
way of identifying suitable agile practices in plan driven software
organizations.

! Lightweight, hybrid assessments, integrated with agile practices, can be
used as a way of validating suitable agile practices in a plan driven
organization.

87

5.4 PAPER IV: AHAA � Agile, Hybrid Assessment Method for
Automotive, Safety Critical SMEs

Paper IV presents the �AHAA� Agile, Hybrid Assessment method for Automotive
industries, integrating the lightweight �ADEPT� assessment method (McCaffery
et al. 2006, 2007, Wilkie and McCaffery 2005) within the agile assessment
approach presented in Papers II and III. It uses data from the assessment in case
company to describe the practical application of the presented method in a new
domain. From the framework perspective in Figure 4, Paper IV integrates the
assessment approach (mediated with agile practices) presented in Papers II and
III with the �ADEPT� method and specific process areas of Automotive
SPICETM (Automotive SPICE). By doing this, the paper creates a new method
called the AHAA � A Agile, Hybrid Assessment Method for Automotive for
SMEs working in the safety critical domain. Furthermore, the paper provides a
description of how the AHAA method was developed and how the �ADEPT�
method and �agile assessment� approach were integrated. Paper IV shows that is
sensible to use agile practices as part of the lightweight assessment also in the
safety critical domain. Additionally, Paper IV provides some new evidence on
how to integrate requirements management and project planning, monitoring,
controlling and configuration management process areas of CMMI and agile
practices and how to use the mapping model to generate the needed information
for creating questions, analysing data and to identify suggestions for suitable
agile practices based on the improvement needs of the one case company. For
example, the AHAA assessment provided 7 actions to address the 14 issues
highlighted during the assessment of the requirements management process
within case company 4.

The AHAA recommendations enable this to be resolved by adopting a
combination of plan-driven and agile based actions. For example, according to
the participants of assessments, case company 4 will adopt plan-driven practices
such as introducing requirements capturing templates (to ensure that the
requirements are complete and verifiable) and developing a procedure for
handling CRs, in addition to introducing agile based practices of iterative software
development cycles, backlog-based requirement databases, continuous requirement
analysis and requirement prioritisation with the customer and parent company.

88

Key Findings of the Paper

! Hybrid assessment, integrated with agile practices, is a sensible way of
identifying currently suitable agile practices, also in the context of an
automotive security critical software organization.

5.5 PAPER V: Deploying Agile Practices in Organizations:
A Case Study

Paper V presents a framework that maps the SPI and agile deployment steps
together in a model that can be used in the organization�s continuous SPI. It uses
data from case company 3 to summarize how assessments can be used to
facilitate the SPI in organizations, both at team and organizational levels. Paper
V helps to understand the link between assessments and agile practices in the
presented framework, but also shows how the agile practice deployment and the
SPI fit together. Paper V integrates the assessment approach � presented in
Papers II, III and IV with the QIP model and iterative improvements required by
agile methods � in the form of steps for the deployment of agile practices.

Based on the agile principle: �The team regularly reflects on how to become
more productive and efficient� (Agile Manifesto (2001)), processes in the agile
software development should be iteratively improved using the reflection
workshops. As presented in Paper II, the continuous iterative process
improvement makes a �snap shot� type of assessment challenging in the context
of agile software development. In Paper V, this challenge becomes a bonus as
continuing discussions and the shared documentation between the assessor and
reflection workshop facilitator can be used as additional data for assessments.

Paper V suggests that lightweight assessments could be used in two phases of
the QIP model and three phases of the agile deployment model. Therefore, the
paper integrates the assessment approach as a part of a larger agile practice
adoption and continuous SPI context. The empirical evidence, from the case
study, illustrates how case organization 3 was able to employ and benefit from
the deployment mechanisms. Particularly the management found the results of
the lightweight assessments useful in monitoring the deployment process and in

89

drafting an organization-specific agile process model, alongside their own plan-
driven product development process.

Key Findings of the Paper

! Use of the results of the iteration retrospectives or post iteration
workshops (PIWs) enables assessors to form an overall picture of agile
software development projects.

5.6 PAPER VI: The Impact of Agile Practices on Communication
in Software Development

The last paper of this thesis uses empirical data collected during the assessments
in case company 3 in order to explore the impact of agile practices on
communication in two software development teams. Paper VI investigates how
agile practices affect communication. Based on the analysis, it suggests that
some agile practices, such as an open office space, sprint planning, daily
meetings and sprint reviews would have a stronger effect on the communication
between the development team and stakeholders than the other XP or Scrum
practices. Paper VI proposes that agile practices, without plan-driven mechanisms,
do not provide the needed support for external communication. Contextual
factors � such as the number of customers � can affect the need for plan-driven
mechanisms to cover these communication and collaboration needs.

Thus, Paper VI reveals that although the improvements especially in the area of
the communication seems to happen due to the adoption of agile practices, there
are still room for improvements from communication and coordination perspective
especially when the amount of stakeholders are increasing. Thus, additional
mechanisms are still needed to cover, for example, the link between the software
development team and its stakeholders, which still remains a challenge in the
case projects.

90

Key Findings of the Paper

! The use of customized agile practices is not a silver bullet. There are
many communication challenges in the context of agile software
development which means that improvement is still needed.

5.7 Summary of Chapter 5

Table 10 summarizes the findings of this research through a conceptual
framework. It also maps the findings to the research questions presented in
Section 1.1. These empirical findings, although they must be regarded somewhat
tentatively since they are based on a limited sample, are of interest and will be
investigated further as part of future research in this area.

The results of this thesis suggest that these different conceptual foundations
(agile practices and CMMI) should be viewed as complementary, rather as
competition or an incompatible approach. In fact, the study shows that the
integrated lightweight assessment approach, used as a part of the continuous SPI,
is a sensible way to help software companies to make decisions on the adopted
agile practices, especially when the goal is to improve requirements, project
management processes and adopt agile practices.

91

Table 10. Findings of the study.

Research
Question Assumptions of the framework Findings Reported in

the paper(s)

Hybrid assessment produce both
plan driven and agile based
improvement suggestions that
may drive towards the use of
agile practices.

Lightweight, hybrid assessments,
integrated with agile practices,
is a sensible way to identify
suitable agile practices in a plan
driven organization.

III, IV, V Q.1.1

The mapping model between the
CMMI goals and process areas
and agile practices could be used
as a tool when assessing the soft-
ware development process with
the hybrid assessment method.

The CMMI process area and
agile practice mapping is a
valuable tool to identify suitable
agile practices for a plan-driven
organization.

II

Data of iteration retrospectives
can be used at organizational
level while implementing hybrid
assessment.

Use of the results of the iteration
retrospectives (or PIWs) helps
assessors formulate an overall
picture of the agile software
development project.

V

Iteration retrospectives drives the
level of agile practices in use.

Iteration retrospectives drives the
assimilation level in which agile
practices are used.

I

Q.1.2

The software development process
in which agile practices are used
can be further validated within a
hybrid assessment approach.

Lightweight, hybrid assessments,
integrated with the CMMI goals
and agile practices can be used
as a way to further validate the
software development process.

II

Individual agile �text book� agile
practices can be used when
improving the software
development process.

The assessment producing both
agile and plan-driven
improvement suggestions may
drive the use of agile practices.

It is sensible to identify or select
relevant agile practices to adopt,
based on the challenges of the
software development project or
organization in the area where it
is currently most beneficial.

I Q.1.3

The use of agile practices may
improve communication in
software development.

The use of customized agile
practices improves communication
in the teams but is not a silver
bullet; there are still also many
communication challenges in the
context of software development
process in which agile practices
are in use. In some cases, agile
practices can even hinder
communication related to
software development process.

VI

92

6. Discussion

The research presented in this thesis has implications both for theory and
practice. In Chapter 6 there is a discussion of the findings of this thesis against
the current literature and a discussion of the implications of the papers both for
research and practice.

6.1 Implications for the Research

The research presented in this study supports increased attention to be given to
the improvement of software development process, mediated with agile
practices. Aggregating the different perspectives of improvement and examining
the results through the framework leads to stronger results in terms of research
validity than looking at each of the framework components in isolation.

Since Paper I shows that agile practices addressing the needs of an organization
have the potential to be reutilized or infused, it is sensible to identify areas that
an organization needs to improve and then select a relevant, customized set of
agile practices to adopt rather than attempting to adopt a whole set of practices
in an agile method. In this approach, described in papers II, III and IV, the
practice is firstly to identify the organization�s challenges, then map them to
agile practice based solutions so as to understand what agile practices should be
introduced and why.

This study contributes new evidence on the integration of CMMI and agile
practices. For example, the CMMI model and agile methods have often been
presented as approaches which are opposed to each other or at least difficult to
integrate. This research increases the understanding on how to combine CMMI
process areas and agile practices in an approach that supports finding beneficial
XP and Scrum practices in the specific team context. In this approach, the
mapping model between the CMMI goals has an important role.

The concept of agility is based on agile manufacturing and it has been generally
defined as agility of enterprises to manage unexpected changes (Highsmith
2004). Although, the primary goal of this research was not to clarify the concept

93

of agility, this study anyway contributes to the understanding of agility in terms
of the use of individual agile practices. For example, based on the study in Paper
I, it is suggested that the use of agile practices is not a straightforward or simple
activity. This is because the use of agile practices is a changing phenomenon that
can reach different levels of assimilation also inside the software development
teams. From the research perspective, this means that there is a need to establish
what a deep, sophisticated level use of agile practices actually means in software
development teams.

While there has been some work linking theories from organizational management
literature to organizational level agility (e.g. Hovorka and Larsen 2006) and
examining communication in the agile context (e.g. Korkala et al. 2006, Layman
et al. 2006b, Turner and Jain 2002), little attention has been paid to combining
agile practices and software development process improvements and
communication aspects. In addition, it is useful to link practices that are well
grounded in industries with existing well establish theories. This is an approach
that may lead to a more comprehensive set of findings. This study links agile
practice to innovation adoption (Davis 1989, Cooper and Zmud 1990, Fichman
2001, Gallivan 2001) and coordination (Crowston and Kammerer 1998, Malone
and Crowston 1994) theories. This can be a starting point for many future studies
in which well established theories are used to understand communication,
coordination and innovation in software development processes in which agile
practices are used.

Both communication and coordination seem to be interesting concepts as a focus
for research in software development processes using agile practices. While both
of these concepts have been mainly used in theoretical studies made in the
distributed software development context, it seems to be worth studying their
extension also to co-located software development environment. Since the
amount of research is currently increasing in the field of organizational agility
and software development process or teams using agile practices, many
researchers tend to base the concept of agility on the description of the Agile
Manifesto (2001). One interesting finding in this research related to communication
is, however, that the principles and values in the Agile Manifesto (2001) do not
necessarily guarantee improved communication between the team and its
stakeholders. For future research there is a clear need to establish the link
between the Agile Manifesto (2001) and the use of agile practices.

94

6.2 Implications for the Practice

From an empirical viewpoint, this study provides results for the practical
implications on two levels of software engineering: firstly, in SPI which is
related to the CMMI level 5 goal to establish continuous software process
improvement supporting incremental process, and secondly on the practical level
of the software development process in teams and organizations. The following
sections discuss the implication of this study. The discussion is based on the
findings of this study, reflected against the relevant literature in this field.

6.2.1 Implications for Continuous SPI

The CMMI process area and agile practice mapping is a valuable tool to
identify suitable agile practices for a plan-driven organization.

The assessment approach, presented in this thesis, is a novel strategy for assessment
among others presented by Nielsen and Pries-Heje (2003). In this new strategy,
the CMMI process area and agile practice mapping are used either as a tool to
find a suitable combination of XP and Scrum practices for a plan-driven
organization or as a tool for evaluating and continuously improving agile based
software development projects, according to the criteria of lightweight assessment.

The mapping model was created first on a theoretical level by integrating agile
practices under the specific goals of CMMI in the selected process areas in Paper
III. Then the model was integrated as a part of the list of assessment questions
which was used to create a framework for interviews as identified in Paper IV.
During the overall research process the mapping model was used to create
interview questions, which were analysed and continuously updated case by case
as described in Paper II. Although, this research study, therefore, gives some
examples of mapping between the goals of CMMI project planning, monitoring
and controlling and requirements management process areas and agile practices,
the results of this research only look at a narrow scope of this larger research
area, which would be worthwhile pursuing in future research. As argued by
Reifer (2003): �SEI could also provide leadership and stimulate the process
community to develop recommended agile practice mappings for the SWCMM.�
This is because Level 5 organizations should have a technology change-

95

management process to adopt innovations, such as XP into a normal practice
(McCaffery et al. 2007) and working mechanisms to also continuously improve
processes in agile software development organizations.

The fact that the mapping model presented in this thesis is focused on three
process areas from CMMI level 2 does not mean that the approach would not be
relevant to the other CMMI Levels. In fact, implications for SPI presented in this
thesis focuses vertically on CMMI level 5 which encourages continuously
improving the process performance through incremental and innovative changes.
It seems also that the iterative continuous improvement approach integrated with
lightweight assessments would be a valuable practice to support CMMI level 5
achievements related to the software development process in which agile
practices have been used.

Lightweight assessments integrated with CMMI goals and agile practices are a
sensible way of identifying suitable agile practices in a plan driven organization.

As in plan-driven processes, agile based software development also requires
frequent inspection and adaptive responses (McCaffery et al. 2007). Agile
software development is not easy to assess using CMMI (McCaffery et al.
2007). As CMMI specific practices differ from agile practices, it is difficult for
assessors to analyse projects in an agile context (Kähkönen and Abrahamsson
2004). This thesis supports Anderson�s (2003) argument that CMMI is a useful
model to assure that the most significant software development viewpoints,
related to the selected process focus, were also taken into account in the
assessment in the context of the agile software development. This thesis reveals
that an analysis of software development processes using agile practices brings
some new discipline for assessments in the context of plan-driven software
development. For example, the knowledge of agile practices facilitates assessors
together with case company representatives to define more specific improvement
suggestions for software development process.

The hybrid lightweight assessment approach provided in this thesis is different
from other assessment approaches because it provides an organization with a
combination of plan-driven and agile-based suggestions as to how to improve
their software development. During the research process, Boehm and Turner�s
(2003a, b) risk based method was applied when defining the suitable projects for

96

lightweight assessment purposes and analysing the data relating to contextual
factors such as criticality, personnel, dynamism, culture and size. The method
did not, however, provide enough practical improvement suggestions for the
companies on how to improve software development processes using agile
practices. The assessment approach presented in this thesis is said to be
lightweight for the following reasons:

• first of all it is integrated into the existing Lightweight assessment method
called ADEPT (McCaffery et al. 2007) which has been empirically
evaluated in several companies and described in several journal papers
(Wilkie and McCaffery 2005, McCaffery et al. 2006, 2007)

• secondly, it follows 7 of the 9 criteria outlined by Anacleto et al. (2004),
for the development of lightweight assessment methods: low cost, detailed
description of the assessment process, guidance for process selection,
detailed definition of the assessment model, support for identification of
risks and improvement suggestions, no specific software engineering
knowledge required from companies� representatives, and tool support is
provided. The exceptions to the criteria outlined by Anacleto et al. (2004)
are that no support is provided for high-level process modelling and only
the authors currently have access to method and the conformity with
ISO/IEC 15504 is provided only in AHAA method

• thirdly, the approach was designed to adhere to criteria for lightweight
assessments such as low costs (Richardson 2001), focused processes
(Richardson 2001, Wilkie and McCaffery 2005), simple assessment process
(Horvat et al. 2000, Kautz 1998) and modified use of assessment models
(Batista and Figueiredo 2000, Kautz 1998).

• fourthly, the provided lightweight assessment method also shares some of
the requirements of the Adept method (Wilkie and McCaffery 2005,
McCaffery et al. 2006, 2007) meaning that the assessment is implemented
without the purpose of certification (ratings are not required), both
preparation and assessment time is minimized

• finally, the evidence collection during the assessment was mainly based on
face-to-face discussions (what developers and managers say) instead of
documented evidence and the purpose was to keep assessment documentation
as lightweight as possible.

97

In this thesis it is claimed that hybrid integrated lightweight assessments, as
reported in Papers II, III and IV, can be used to identify suitable agile based
solutions for the improvement needs of teams using the plan-driven software
development approach. This is possible to do in different product environments,
such as embedded software development (Paper III) or safety critical,
automotive software development (Paper IV). During the research, the agile
practice based assessment approach integrated with the �ADEPT� method
(McCaffery et al. 2007) was described in practical steps on how to conduct
assessments, so as to identify suitable agile practices for an organization or to
improve the agile software development related to the requirements management
and project management process areas.

Lightweight, hybrid assessments, integrated with the CMMI goals and agile
practices can be used as a way to validate the software development process

It has been argued that even the CMMI Level 4 or 5 could be achieved using agile
methods (Sutherland 2001). Based on this argument, it is assumed that the
lightweight assessment can be applied in organizations that use the agile approach
(McCaffery et al. 2007). This thesis sheds light on this research area by providing
some new knowledge about the use of CMMI goal based lightweight assessments
in the context of software development in which agile practices are used.

It is shown that CMMI, as a model, does not explicitly prescribe or require any
particular work products. Rather, its purpose is to provide evidence that the
processes related to the defined goals are performed as suggested by Baker
(2006). This is the key reason, why the CMMI based assessments can be
conducted in agile software development process, whose purpose is to produce
�working software, instead of comprehensive documentation� (Agile Manifesto
2001). This is also why the lightweight assessment mechanisms, as they
emphasize human communication based evidence in assessment situations
(Wilkie and McCaffery 2005), were found to be suitable in the context of agile
software development.

Iteration retrospectives drive the assimilation level in which agile practices are used

Iteration retrospectives have been successfully used as a mechanism to evaluate
software development where other agile practices are in use (Salo and

98

Abrahamsson 2007). This approach was also shown to be beneficial for
organizations and to motivate developers to participate in the daily software
process improvement (Salo and Abrahamsson 2007). In this thesis, it is shown
using assimilation stages from the innovation of adoption theories (Davis 1989,
Cooper and Zmud 1990, Fichman 2001, Gallivan 2001) that iteration retrospective
actually drives teams towards a more efficient and sophisticated use of agile
practices.

The link between assessments and iteration retrospectives enable the assessor to
forme an overall picture of the agile software development project

This thesis creates a link between the iterative project level SPI (where iteration
retrospectives are used), as described by Salo and Abrahamsson (2007) and the
organizational level SPI (using hybrid assessments). By presenting a framework
on how to deploy and continuously improve the software development using
agile practices, it was found that CMMI can be used as a way to improve
software development in teams using Scrum or XP practices (Fritzsche and Keil,
2007). There are, however, several strategies for selecting the way to apply the
assessment in companies (Nielsen and Pries-Heje 2002). The assessments,
presented in this thesis, are based on the CMMI model and a software process
assessment approach. It is also integrated with �day to day project management�
(Nielsen and Pries-Heje 2002), creating a link between the assessments and the
data of iterative retrospectives.

6.2.2 Implications for Agile Practice Adoption and Communication

It is sensible to identify and select relevant agile practices to adopt based on the
challenges of the software development project or the area in an organization
where it is currently most beneficial. There are some empirical studies that
support a similar approach for the integrated process improvement and adoption
of agile practices in companies, see (Packlick 2007, Sidky 2007, Svensson and
Höst 2005). For example, Svensson and Höst (2005) present cases of agile
practices being introduced in a software maintenance and evolution organization
via assessment.

99

There are many communication challenges in the context of agile software development

The challenge of XP projects lies in the same problems defined in coordination
theory (Malone and Crowston 1994): i.e. keeping the overall project focus and
the independence of the defined work tasks. In this study, it is proposed that the
use of a combination of Scrum and XP facilitates communication. In fact, some
agile practices such as sprint plannings, daily meetings and sprint reviews were
revealed to have a more positive effect on information transfer between actors
than other agile practices. Rising and Janoff (2000) report similar results from
the Scrum projects. They claim that the short time boxed iterations in the agile
software development are a key reason for improved communication in the
software development teams.

The use of agile practices may improve communication but does not solve all the
communication challenges between developers and external stakeholder groups
(Cohn and Ford 2003, Coram and Bohner 2005, Svensson and Höst 2005). In
fact, many argue that interface management between agile and traditional teams
are challenging (Boehm and Turner 2005, Lindvall et al. 2004).

100

7. Conclusions

In this thesis a framework is proposed that draws insights from both the
literature on the use of agile methods as well as SPI and CMMI. There are three
key contributions in this thesis.

First contribution is to provide a brief review of the literature with regard the
terms of �assessment approaches�, �CMMI� and �the use of XP and Scrum
practices from communication perspective�. By highlighting the limitations and
proposing solutions to the problems in these areas, this study generates a new
understanding of the improvement of software development processes mediated
with CMMI and agile practices.

Secondly, on the basis of this review, a hybrid framework is suggested to
facilitate organizational level improvement of requirements management, project
planning, project monitoring and controlling process areas of CMMI. Based on
the framework the improvements on communication of software development
process can be done in lightweight manner via CMMI goals, project level
iterative improvement mechanisms and a combination of XP and Scrum
practices. It is also shown that the use combined set of XP and Scrum practices
improves some communication aspects inside of the development teams but may
not provide enough practices for the overall communication or coordination of
dependencies in broader system development where external stakeholders are
involved.

Thirdly, the research described in the scientific research papers in this thesis can
be regarded as a starting point for integrating well established theories in the use
of agile practices and to modify software process improvement methods to fit
better with improvement work in the context of software development process
using agile practices.

7.1 Answers to the Research Questions

In this research, three research questions (Q.1�3) were posed, which are set out
below with a summary of the results.

101

Q.1 �How to improve software development process mediated with CMMI goals
and agile practices from communication perspective?�

This thesis presents a framework which goal is to support improvement of
software development process from communication perspective using goals of
CMMI and agile practices. The presented framework integrates previously
developed ADEPT assessment method with agile practices and therefore, provides
a new hybrid assessment method that supports both deployment of agile practices
and assessment of plan-driven software development processes. The presented
assessment method does not, however, support certification. On contrary, it
suggests improvements in industries using lightweight, adaptive, 1�2 days
assessments bracing against CMMI goals and agile practices. This is occurred
more using informal (i.e. face to face) than documented formal evidence and
based on the CMMI level 5 goals addressing both iterative improvement with
project teams and SPI activities in organizational level.

The implementation of framework reveals that although the assumption was that
use of agile practices improves the communication between the software
development teams and their stakeholders, finding the balance between the
amount of informal and formal communication seems still to be a problem
especially in the project in which the agile practices are used. Although, the
combined use of Scrum and XP practices for instance has been shown to
improve the communication inside of the development teams, it does not seem to
guarantee the efficient enough communication in the condition in which the
amount of customers or stakeholder teams with feature interdependences are
increasing. In the following, more detailed answers are provided also for the
three sub research questions 1.1, 1.2 and 1.3:

Q.1.1 �How to facilitate the improvement of the software development process
mediated with CMMI and agile practices?�

Firstly, the mapping model was developed to provide an example of how agile
practices could complement the CMMI specific practices in the selected process
areas. The development of the mapping model was started by focusing on the
requirements and project management process areas of the CMMI. This was
done without the goal of achieving the complete model, but rather for presenting some
examples on how a mapping model could be implemented and used for assessment.

102

The second phase of the framework is a hybrid assessment which is based on the
principles and methods of the existing lightweight assessment approaches that
were originally developed based on the needs of small to medium size of
enterprises. The facilitation of the improvement can be done using the lightweight
assessment approach, in which the assessment questions are based on the
mapping model. The research reveals that a lightweight CMMI based assessment
is suitable for an agile context because it does not require documented evidence
during the assessment and it seems to provide a mechanism to identify practical
agile based improvement suggestions for the software development teams and
organizations.

Q.1.2 �How to validate the improvement of the software development process
mediated with CMMI and agile practices?�

In the third phase of the presented framework, the hybrid assessments are used
to evaluate the software development process against the CMMI goals. This is
based on the assumption used among the lightweight assessment methods (i.e.
ADEPT) that achieving the CMMI maturity levels does not require that projects
achieve all the practices of the CMMI but emphasizes the achievement of the
CMMI goals instead. As a conclusion of the assessments using CMMI goals and
agile practices, it can be stated that although XP and Scrum give valuable
practices for companies to achieve some of the CMMI goals, at least in some
context, they do not seem to replace the plan-driven practices from CMMI. For
example, in requirements management process area, the use of agile methods
might facilitate the achievement of commitment between the stakeholders (in the
case where the systematic meetings are used regularly and right people are
attending to those meetings) but does not necessary quarantee the needed
traceability of the requirements or efficient requirements impact analysis.
Similarly in the project planning process area the use of agile practices such as
small releases, sprint planning, daily meetings might enable the constant
planning including more efficient scope evaluation and estimation activities in
co-operation with teams and business units but lack, for instance, efficient risk
management practices. Thus, some of the practices described in CMMI are still
needed in agile software development, depending on the context of the software
development e.g. the number of customers and other stakeholders and overall
complexity of the developed system.

103

Q.1.3 �Does the use of agile practices improve the communication in software
development teams and between the teams and stakeholders?�

To indicate the value of the created framework, it is important to collect
empirical evidence on how agile practices actually affect the software development
process from the communication perspective. In this research it is indicated that
most of the agile practices used in the projects had positive effects on the
communication inside the development teams. For example, sprint planning,
open office space, collective code ownership and daily meetings were suggested
as efficient practices to improve communication related to requirements, features
and project tasks in agile software development teams. In the situations in which
these practices were used together, it was apparent that increased informal
communication decreases the need for documentation in software development
teams and, therefore, facilitates more productive software development than in
previous plan driven situations. The study confirms that the use of agile practices
has also some positive effects on the external communication and facilitates
dependencies between the tasks-and subtasks as well as features and
requirements. This occurred especially in the communication between the
software development teams and stakeholders. Communication hurdles, however,
might still be encountered in the communication between the agile software
development team and its stakeholders.

7.2 Limitations of the Thesis

This research was implemented as a series of case studies to understand agile
practice adoption and improvement in software intensive organizations. Owing
to the confidential nature of the data and the extended periods of data collection,
the research team could not rely on more objective constructs to observe process
or process changes. The research team was also constrained by access to a few
key informants in each organization who were managers or developers. Thus, it
was only possible to triangulate across different observations of the same data
point (interviews at different time points) and across other published materials
and the researchers and research team�s own observations. Since only interim,
�snap shot� information of software development projects has been collected and
analyzed, it is not possible to understand the factors involved in improvements of
software development processes from a long term process perspective.

104

In addition, due to the lack of a reference model for agile practices (e.g. a
standard), the mappings presented in this thesis were done based on the
researcher team�s current knowledge gained from the literature and personal
experience. Thus, the mappings presented are also subjective and context-
specific. Furthermore, the author�s role as a lead assessor in the case companies
1�3 can be considered as a factor of bias in this research. However, the case
study research method was considered a suitable and practical method in rapidly
changing software development organizations.

The concepts used in this thesis and their interpretation need further evaluation
and extension to make them more adequate for the study of the improvement of
the software development process mediated with CMMI goals and agile practices.
One possible avenue for further research is to examine agile practices beyond
those covered in this study i.e. XP and Scrum. Methods such as the LSD, FDD,
APM, Crystal and the Adaptive Software Development are all methods that
could be assessed.

The study was also based on the first edition of the XP book. This was done for
two reasons. Firstly, because the first version of the XP book is empirically
evaluated in many research studies and secondly because there is a lack of
research available on the combined use of XP and Scrum practices. This is the
situation even if the use of a customized set of practices of these two methods
seems to be the increasing trend in software companies. In the future, the study
could, however, be extended to cover XP practices from the new version of XP
(Beck and Andres 2004).

The proposed approach, as implemented in the pilot scheme, is also limited to
the predefined three process areas and was implemented only in four case
organizations. However, the empirical evidence from these organizations suggests
that the method could be also valuable for other software development contexts
in different software development organizations. Four case studies is too small a
number to validate or refute the framework. Therefore, a larger number of rich
case details and case studies would be necessary for further evaluation of the
framework.

105

7.3 Future Research

First of all, the lightweight assessment approach presented in this doctoral thesis
is a good starting point for work towards a combination of the CMMI process
areas and agile practices. Future research can go down several routes.

Firstly, the research can continue with other process areas of CMMI. For
example, requirements development, technical solution, product integration,
validation and verification are process areas that would be valuable to map with
XP practices, in several in-depth case studies or action research studies.

Secondly, one possible avenue for further research is to examine agile method
practices beyond those covered in this study i.e. XP and Scrum. Methods such as
LSD, FDD, APM, Crystal and ASD are all methods that could be assessed. For
example, (Sidky 2007) uses a larger set of agile practices, which could be
valuable from the perspective of future research.

Thirdly, research on the adoption of agile practices could be based on a stronger
theoretical framework or could continue with a more quantitative approach by
means of a large-scale survey. This could be used to determine the levels of the
agile methods and agile practice assimilation across the information system
development community with results that can be more generalizable than those
contained in this research. This could reveal interesting insights, such as which
agile methods are most assimilated and why. A future study could also examine
the barriers and facilitators affecting this assimilation. Further research could
also examine the effectiveness of agile method adoption. This study was descriptive
in nature with the objective being to understand the extent of assimilation, but
there was no attempt made to correlate the assimilation to effectiveness or success.

Finally, one of the most obvious ways to continue this study would be to further
develop, validate and evaluate the presented framework. The validation could be
done by empirical case studies or in a survey with large amount of more
generalizable research data.

106

References

Abrahamsson, P. 2002. The Role of Committment in Software Process Improvement.
Oulu Doctoral Thesis. Oulu: University of Oulu. 162 p.

Abrahamsson, P., Salo, O., Ronkainen, J. & Warsta, J. 2002. Agile Software
Development Methods: Review and Analysis. Espoo. 408. VTT Publications
478. 107 p. http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf.

Agrawal, R. & Chari, K. 2007. Software Effort, Quality and Cycle Time: A
Study of CMM Level 5 Projects. IEEE Transactions on Software Engineering,
Vol. 33, No. 3, pp. 145�155.

Agile Manifesto, 2001. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A.,
Cunningham, W., Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R.,
Kern, J., Marick, B., Martin, R., Mellor, S., Schwaber, K., Sutherland, J. &
Thomas, D. Manifesto for Agile Software Development. http://AgileManifesto.org.
Accessed 02.07.2008.

Ambler, S. 2002. Agile Modeling: Effective Practices for Extreme Programming
and the Unified Process. New York: John Wiley & Sons Inc. 384 p.

Anacleto, A., von Wangenheim, C. G., Salviano, C. F. & Savi, R. 2004.
�Experiences gained from applying ISO/IEC 15504 to small software companies
in Brazil�, 4th International SPICE Conference on Process Assessment and
Improvement, Lisbon, Portugal. Pp. 33�37.

Anderson, D. J. 2003. Agile Management for Software Engineering, Applying
the Theory and Constraints for Business Results. Prentice Hall. 0-13-142460-2.
336 p.

Anderson, D. J. 2005. Stretching Agile to Fit CMMI Level 3. Agile Development
Conference, Denver.

Automotive SIG, 2007. The SPICE User Group, Automotive SPICETM Process
Reference Model, available from http://www.automotivespice.com.

http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf
http://AgileManifesto.org
http://www.automotivespice.com

107

Baker, S. W. 2006. Formalizing Agility, Part 2: How an Agile Organization Embraced
the CMMI. Agile 2006 Conference, Minneapolis, Minnesota.

Baker, S. W. 2005. Formalizing Agility: An Agile Organization�s Journey toward
CMMI Accreditation. Agile Conference, Denver, Colorado, USA.

Bamberger, J. 1997. Essence of the Capability Maturity Model. Computer, Vol.
30, No. 6, pp. 112�114.

Basili, V. R. 1989. Software Development: A Paradigm for the Future.
COMPSAC �89 Conference, Orlando, Florida. Pp. 471�485.

Baskerville, R. & Bries-Heje, J. 2001. A Multible Theory Analysis of Diffusion
of Innovation Technology Case. Information Systems Journal, Vol. 11, No. 3,
pp. 181�212.

Batista, J. & Figueiredo, A. D. 2000. SPI in a very Small Team: a Case with
CMMI. Software Process Improvement and Practice, Vol. 5, No. 4, pp. 243�250.

Beck, K. 1999. Embracing Change with Extreme Programming. IEEE Computer,
Vol. 3, No. 10, pp. 70�77.

Beck, K. 2000. Extreme Programming Explained: Embrace Change. Addison-
Wesley Longman, Inc. 190 p.

Beck, K. & Andres, C. 2004. Extreme Programming Explained: Emprace
change, second edition. Boston: Addison-Wesley.

Boehm, B. 2002. Get Ready For The Agile Methods, With Care. Computer, Vol.
35, No. 1, pp. 64�69.

Boehm, B. 1988. A Spiral Model of Software Development and Enhancement.
Computer, Vol. 21, No. 5, pp. 61�72.

Boehm, B. 2003. Value-Based Software Engineering. Computer, Vol. 3, No. 3,
pp. 33�41.

108

Boehm, B. & Turner, D. 2005. Management Challenges to Implement Agile
Processes in Traditional Development Organizations. IEEE Software, Vol. 22,
No. 5, pp. 30�38.

Boehm, B. & Turner, R. 2003a. Balancing Agility and Discipline. Balancing
Agility and Discipline. In: Balancing Agility and Discipline � A Guide for the
Perplexed. Addison-Wesley. 0-32-118612-5. 304 p.

Boehm, B. & Turner, R. 2003b. Using Risk to Balance Agile and Plan-Driven
Methods. IEEE Computer Society.

Boehm, B. W. & Ross, R. 1989. Theory-W software project management principles
and examples. IEEE Transactions on Software Engineering, Vol. 15, No. 7,
pp. 902�916.

Bos, E. & Vriens, C. 2004. An agile CMM, 4th Conference on Extreme
Programming and Agile Methods � XP/Agile Universe, pp. 129�138.

Brinkkemper, S. 1996. Method Engineering: Engineering of Information Systems.
Development Methods and Tools. Information and Software Technology, Vol.
38, No. 4, pp. 275�280.

Clegg, S. R., Waterson, P. E. & Axtell, C. M. 1996. Software Development
Knowledge Intensive Work Organizations. Behaviour and Inofmation Technology,
Vol. 15, No. 4, pp. 237�249.

CMMI. 2006. Capability Maturity Model® Integration for Development, Version
1.2, Technical Software Engineering Institute. Report CMU/SEI-2006-TR-008.
http://www.sei.cmu.edu/publications/documents/06.reports/06tr008.html.

Coad, P. & Palmer, S. 2002. Feature-Driven Development. NJ.: Prentice Hall.

Cockburn, A. 2002. Agile Software Development. Boston: Addison-Wesley.
0-201-69969-9 278.

Cockburn, A. & Highsmith, J. 2001. Agile Software Development: The People
Factor. Computer, Vol. 34, No. 11, pp. 131�133.

http://www.sei.cmu.edu/publications/documents/06.reports/06tr008.html

109

Cohen, D., Lindvall, M. & Costa, P. 2004. An Introduction to Agile Methods.
Elsevier Academic Press. 0-12-012162 2-67.

Cohn, M. & Ford, D. 2003. Introducing an Agile Process to an Organization.
IEEE Computer, Vol. 36, No. 6, pp. 74�78.

Cooper, R. B. & Zmud, R. W. 1990. Information Technology Implementation
Research: A Technological Diffusion Approach. Management Science, Vol. 36,
No. 2, pp. 123�139.

Coram, M. & Bohner, S. 2005. The Impact of Agile Methods on Software
Project Management. 12th IEEE International Conference and Workshops on
Engineering of Computer based Systems Conference, Potsdam, Germany.

Crowston, K. & Kammerer, E. 1998. Coordination and Collective Mind in Software
Requirements Development. IBM Systems Journal, Vol. 37, No. 2, pp. 227�245.

Curtis, P., Phillips, D. M. & Weszka, J. 2001. CMMI � The Evolution Continues.
System Engineering, Vol. 5, No. 1, pp. 7�18.

Damian, D., Eberlein, A., Shaw, M. L. & Gaines, B. R. 2000. Using Different
Communication Media in Requirements Negotiation. IEEE Software, Vol. 17,
No. 3, pp. 28�36.

Dangle, K. C., Larsen, P. & Zelkowitz, M. V. 2005. Software Process Improvement in
Small Organizations: A Case Study. IEEE Software, Vol. 22, No. 6, pp. 68�75.

Daskalantona, M. K. 1994. Achieving Higher SEI Levels. IEEE Software,
Vol. 11, No. 4, pp. 17�24.

Davis, F. D. 1989. Perceived usefulness, perceived ease of use, and user acceptance
of information technology. MIS Quarterly, Vol. 13, No. 3, pp. 319�339.

DeMarco, T. & Boehm, B. 2002. The Agile Methods Fray. IEEE Computer,
Vol. 31, No. 6, pp. 90�92.

110

Deming, W. E. 1990. Out of the Crisis. Massachusetts Institute of Technology,
Center of Advanced Engineering Study. Cambridge. 0-26-254116-5. Second edition.
207 p.

Drobka, J., Noftz, D. & Raghu, R. 2004. Piloting XP on Four Mission Critical
Projects. IEEE Software, Vol. 21, No. 6, pp. 70�75.

Dybå, T. & Dingsøyr, T. 2008. Empirical Studies of Agile Software
Development: A Systematic Review. Information and Software Technology
10.1016/j.infsof.2008.01.006.

Eman, K. E. & Madhavji, N. H. 1999. Elements of Software Process Assessment
and Improvement. IEEE Press.

Erickson, J. & Lyytinen, K. 2005. Agile Modelling, Agile Software Development,
and Extreme Programming: The State of Research. Journal of Database
Management, Vol. 16, No. 4, pp. 88�100.

Fayad, M. & Laitinen, M. 1997. Process Assessment Considered Wasteful.
Communications of the ACM, Vol. 40, No. 11, pp. 125�128.

Fichman, R. G. 2001. The Role of Aggregation in the Measurement of IT-related
Organizational Innovation. MIS Quarterly, Vol. 25, No. 4, pp. 427�455.

Fisher, C. 2007. Researching and writing a dissertation a guidebook for business
students. Prentice Hall.

Fitzgerald, B. 1996. Formalized Systems Development Methodologies: a critical
perspective. Information Systems Journal, No. 6, pp. 3�23.

Fitzgerald, B., Hartnett, G. & Conboy, K. 2006. Customising Agile Methods to
Software Practices at Intel Shannon. European Journal of Information Systems,
Vol. 15, No. 2, pp. 200�213.

Fitzgerald, B., Russo, N. L. & Stolterman, E. 2002. Information Systems
Development � Methods in Action. McGraw-Hill Education.

111

Fritzsche, M. & Keil, P. 2007. Agile Methods and CMMI: Compatibility or
Conflict? Software Engineering Journal, Vol. 1, No. 1, pp. 9�26.

Galin, D. & Avrahami, M. 2006. Are CMM Program Investment Beneficial?
Analysing Past Studies. IEEE Software, Vol. 23, No. 6, pp. 81�87.

Gallivan, M. 2001. Organizational Adoption and Assimilation of Complex
Technological Innovations: Development and Application of a New Framework.
The DATA BASE for Advances in Information Systems, Vol. 32, No. 3, pp. 51�85.

Glazer, H. 2001. Dispelling the Process Myth: Having a Process Does Not Mean
Sacrificing Agility or Creativity. CrossTalk. The Journal of Defense Software
Engineering, pp. 27�30.

Grenning, J. 2001. Launching XP at a Process-Intensive Company. IEEE
Software, Vol. 18, No. 6, pp. 3�9.

Hareton, K., Leung, N. & Terence, C. F. 2001. A process framework for small
projects. Software Process Improvement and Practice, Vol. 6, No. 2, pp. 67�83.

Herbsleb, J., Carleton, A., Rozum, J. & Siegel, D. 1994. Benefits of CMM-based
software process improvement: Initial results. CMS/SEI-94-TR-013. Pittsburgh:
Carnegie Mellon University.

Henttonen, K. & Blomqvist K. 2005. Managing Distance in a Global Virtual Team:
The Evolution of Trust Trough Technology-Mediated Relational Communication.
Strategic Change, Vol. 14, No. 2, pp. 107�119.

Highsmith, J. 2004. Agile Project Management, Creating innovative products.
Addison-Wesley.

Highsmith, J. 2002a. Agile Software Development Ecosystems. Addison-Wesley.
Boston. 0201760436. 448 p.

Highsmith, J. 2002b. What Is Agile Software Development? Crosstalk, pp. 4�9.

112

Horvat, R. V., Rozman, I. & Györkös, J. 2000. Managing the Complexity of SPI
in Small Companies. Software Process Improvement and Practice, Vol. 5, No. 1,
pp. 45�54.

Hovorka, D. S. & Larsen, K. R. 2006. Enabling Agile Adoption Practices through
Network Organizations. European Journal of Information Systems, Vol. 15, No. 2,
pp. 169�168.

Hulkko, H. & Abrahamsson, P. 2005. A Multiple Case Study on the Impact of
Pair Programming on Product Quality. International Conference on Software
Engineering. ICSE Conference, Louis, Missouri, USA.

Humphrey, W. S. 1995. A Discipline for Software Engineering. Addison-Wesley,
Longman, Inc. 0-201-54610-8 816.

Humphrey, W. S., Snyder, T. R. & Willis, R. W. 1991. Software Process
Improvement at Hughes Aircraft. IEEE Software, Vol. 8, No. 4, pp. 11�23.

ISO. 2006. (SPICE) ISO TR 15504. Part 5. Information technology � Software
process assessment � Part 5: An exemplar Process Assessment Model, JTC 1/SC
7. ISO TR 15504. Geneva: International organisation of standardisation.

Jeffries, R. 2002. Extreme Programming and the Capability Maturity Model
http://www.xprogramming.com/xpmag/xp_and_cmm.htm.

Karlsson, E.-A., Anderson, L.-G. & Leion, P. 2000. Daily Build and Feature
Development in Large Distributed Projects. Conference on Software
Engineering (ICSE 2000), Limerick, Ireland. Pp. 649�658.

Karlström, D. & Runeson, P. 2006. Integrating agile software development into
stage-gate managed product development. Empirical Software Engineering, Vol.
11, No. 2, pp. 203�225.

Kautz, K. 1998. Software Process Improvement in Very Small Enterprises: Does it
Pay Off. Software Process Improvement and Practice, Vol. 4, No. 4, pp. 209�226.

http://www.xprogramming.com/xpmag/xp_and_cmm.htm

113

Kitchenham, B. A., Pfleeger, S. L, Pickard, L. M., Jones, P. W., Hoaglin, D. C.,
Eman, K. E. & Rosenberg, J. 2002. Preliminary Guidelines for Empirical Research
in Software Engineering. IEEE Transactions on Software Engineering, Vol. 28,
No. 8, pp. 721�734.

Klein, H. K. & Myers, M. D. 1999. A Set of Principles for Conducting and
Evaluating Interpretive Field Studies in Information Systems. MIS Quartely,
Vol. 23, No. 1, pp. 67�94.

Korkala, M., Abrahamsson, P. & Kyllönen, P. 2006. A Case Study on the Impact
of Customer Communication on Defects in Agile Software Development. Agile
2006 Conference. Pp. 76�88.

Koskela, J. & Abrahamsson, P. 2004. On-Site Customer in an XP Project:
Empirical Results from a Case Study. EuroSPI 2004 Conference. Pp. 1�11.

Kähkönen, T. & Abrahamsson, P. 2004. Achieving CMMI Level 2 with
Enhanced Extreme Programming Approach. Profes Conference, Japan.

Laitinen, M. & Fayad, M. 1998. Surviving a process performance crash.
Communications of the ACM, Vol. 41, No. 2, pp. 83�86.

Larman, C. 2003. Agile & Iterative Software Development. Addison-Wesley.
Boston. 340 p.

Larman, C. & Basili, V. R. 2003. Iterative and Incremental Development: A
Brief History. IEEE Computer, Vol. 36, No. 6, pp. 47�56.

Layman, L., Williams, L. & Cunningham, L. 2006a. Motivations and Measurements
in an Agile Case Study. Journal of Systems Architecture, Vol. 52, No. 11,
pp. 654�667.

Layman, L., Williams, L., Damian, A. & Bures, H. 2006b. Essential Communication
Practices for Extreme Programming in a Global Software Development Team.
Information and Software Technology, Vol. 48, No. 9, pp. 781�794.

114

Leon, G. 1995. On the diffusion of software technologies: technological frameworks
and adoption profiles. The Diffusion and Adoption of Information Technology
Conference, Oslo. Pp. 97�116.

Lindvall, M., Muthig, D., Dasnino, C. W., Stupperich, M., Kiefer, D. &
Kähkönen, T. 2004. Agile Software Development in Large Organizations.
Computing Practices, Vol. 37, No. 12, pp. 38�46.

Malone, T. & Crowston, K. 1994. The Interdisciplinary Study of Coordination.
ACM Computing Surveys, Vol. 26, No. 1, pp. 87�119.

Manhart, P. & Schneider, K. 2004. Breaking the Ice for Agile Development of
Embedded Software: An Industry Experience report. 26th International
Conference of Software Engineering Conference, Washington, DC, USA.

Mann, C. & Maurer, F. 2005. A case study on the Impact of Scrum on Overtime
and Customer Satisfaction. Agile 2005 Conference, Denver.

Mathianssen, L., Pries-Heje, J. & Ngwenyama, O. 2002. Improving Software
Orgnanizations, From Principle to Practice. Addison-Wesley.

McCaffery, F., Richardson, I. & Coleman, G. 2006. Adept � A Software Process
Appraisal Method for Small to Medium-sized Irish Software Development
Organisations. EuroSPI06 Conference, Finland, Joensuu.

McCaffery, F., Taylor, P. & Coleman, G. 2007. Adept: A Unified Assessment
Method for Small Software Companies. IEEE Software, Vol. 24, No. 1, pp. 24�31.

McFeeley B. 1996. A Users Guide for Software Process Improvement. Pittsburgh:
Carnegie Mellon University.

Meehan, B. & Richardson, I. 2002. Identification of Software Process Knowledge
Management. Software Process: Improvement and Practice, Vol. 7, No. 2,
pp. 47�56.

Miles, M. & Huberman, A. 1999. Qualitative Data Analysis. London: Sage.

115

Moore, R., Reff, K., Graham, J. & Hackerson, B. 2007. Scrum at a Fortune 500
Manufacturing Company. Agile 2007 Conference, Washington D.C.

Morkel, W. H., Kourie, D. G. & Watson, B. W. 2003. Standards and Agile Software
Development. SAICSIT 2003 Conference. Pp. 178�188.

Nawrocki, J., Jasinski, M., Walter, B. & Wojciechowski, A. 2002. Extreme
Programming Modified: Embrace Requirements Engineering Practices. International
Conference of Requirements Engineering, Essen, Germany.

Niazi, M., Wilson, D. & Zowghi, D. 2003. A maturity model for the implementation
of software process improvement: an empirical study. The Journal of Systems
and Software, Vol. 74, No. 2, pp. 155�172.

Nielsen, P. A. & Pries-Heje, J. 2002. A Framework for Selecting an Assessment
Strategy. A Framework for Selecting an Assessment Strategy. In: Improving Software
Organizations � from principle to practice, Addison-Wesley. Pp. 185�198.

Oppenheim, A. N. 1992. Questionnaire Design, Interviewing and Attitude
Measurement. Questionnaire Design, Interviewing and Attitude Measurement.
New York.

Paasivaara, M. & Lassenius, G. 2003. Collaboration in Inter-organizational Software
Development. Software Process Improvement and Practice, Vol. 8, No. 4,
pp. 183�199.

Packlick, J. 2007. The Agile Maturity Map. A Goal Oriented Approach to Agile
Improvement. Agile 2007 Conference, Washington D.C.

Paetch, F., Eberlein, A. & Maurer, F. 2003. Requirements Engineering and Agile
Software Development. 12th IEEE International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprices Conference. Pp. 308�313.
0-7695-1963-6.

Paulk, M. 2002. Agile Methodologies and Process Discipline. CrossTalk The
Journal of Defense Software Engineering, pp. 15�18.

116

Paulk, M. 1999. Analyzing the Conceptual Relationship Between ISO/IEC 15504
(Software Process Assessment) and the Capability Maturity Model for Software.
International Conference on Software Quality, Austin, Texas, USA.

Paulk, M. C. 2001. Extreme Programming from a CMM Perspective. Software,
Vol. 18, No. 6, pp. 19�26.

Poppendieck, M. 2001. Lean Programming. Software Development Magazine,
No. 2, pp. 71�75.

Ramachandran, M. 2005. A Process Improvement Framework for XP Based
SMEs. XP Conference, Sheffield, UK. Pp. 202�205.

Rasmusson, J. 2003. Introducing XP into Greenfield Projects: Lessons Learned.
IEEE Software Vol. 20, No. 3, pp. 21�28.

Reifer, D. 2003. XP and the CMM. IEEE Software, Vol. 20, No. 3, pp. 14�15.

Richardson, I. 2001. Software Process Matrix: A Small Company SPI Model.
Software Process Improvement and Practice, Vol. 6, No. 3, pp. 157�165.

Rising, L. & Janoff, N. S. 2000. The Scrum software development process for
small teams. IEEE Software, Vol. 17, No. 4, pp. 26�32.

Rogers, E. M. 2003. Diffusion of Innovations. New York: The Free Press. Fifth
Edition.

Royce, W. 1970. Managing the Development of Large Software Systems. IEEE
WESCON Conference. Pp. 1�9.

Rubin, H. & Rubin, I. 2005. Qualitative Interviewing: The Art of Hearing Data.
Thousand Oaks, CA: Sage.

Salo, O. & Abrahamsson, P. 2007. An Iterative Improvement Approach for
Agile Development: Implications from multiple case study. Software Process:
Improvement and Practice, Vol. 12, No. 1, pp. 81�100.

117

Salo, O. & Abrahamsson, P. 2008. Agile methods in European embedded software
development organisations: a survey on the actual use and usefulness of Extreme
Programming and Scrum, Software, IET, Vol. 2, No. 1, pp. 58�64.

Schatz, B. & Abdelshafi, I. 2005. Primavera Gets Agile: A Successfull Transition
to Agile Development. IEEE Software, Vol. 22, No. 3, pp. 36�42.

Schwaber, K. 2003. Agile Project Management with Scrum. Microsoft Press.
Washington.

Schwaber, K. & Beedle, M. 2002. Agile Software Development with Scrum.
Prentice-Hall. Upper Saddle River, NJ. 0-13-067634-9 158.

Schwarz, A., Mehta, M., Johnson, N. & Chin, W. W. 2007. Understanding
Frameworks and Reviews: A Commentary to Assist us in Moving Our Field
Forward by Analyzing Our Past. The DATA BASE for Advances in Information
Systems, Vol. 38, No. 3, pp. 29�50.

SEI. 2006. Standard CMMI®Appraisal Method for Process Improvement
(SCAMPISM) A, Version 1.2: Method Definition Document. CMU/SEI-2006-
HB-002. http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06hb002.pdf,
available 020108.

Sfetsos, P., Angelis, L. & Stamelos, I. 2006. Investigating the extreme programming
system. An empirical study. Empirical Software Engineering, Vol. 11, No. 2,
pp. 269�301.

Sidky, A. 2007. A Structured Approach to Adopting Agile Practices: The Agile
Adoption Framework. Doctoral Thesis. Virginia Polytechnic Institute and State
University. 236 p.

Siniaalto, M. & Abrahamsson, P. 2007. Comparative Case Study on the Impact
of Test-Driven Development on Program Design and Test Coverage. International
Symposium on Empirical Software Engineering and Measurement Conference,
Madrid, Spain.

http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06hb002.pdf

118

Stelzer, D. & Mellis, W. 1998. Success Factors of Organizational Change in
Software Process Improvement. Software Process Improvement and Practice,
Vol. 4, No. 4, pp. 227�250.

Sutherland, J. 2001. Agile Can Scale: Inventing and Reinventing SCRUM in
Five Companies. Cutter IT Journal, Vol. 14, No. 12, pp. 5�11.

Sutherland, J., Jakobsen, C. R. & Johnson, K. 2007. Scrum and CMMI Level 5:
The Magic Potion for Code Warriors. Agile 2007 Conference, Washington D.C.

Svensson, H. & Höst, M. 2005. Introducing an Agile Process in a Software
Maintenance and Evolution Organization. 9th European Conference of Maintenance
and Reengineering Manchester, UK.

Tolvanen, J. P. 1998. Incremental Method Engineering with Modelling tools.
Doctoral Thesis. University of Jyväskylä. 301 p.

Trudel, S., Lavoie, J. M, Paré, M. C. & Suryn, W. 2006. The small company-
dedicated software process quality evaluation method combining CMMI and
ISO/IEC 14598. Software Quality Journal, Vol. 4, No. 1, pp. 7�23.

Turner, R. & Jain, A. 2002. Agile Meets CMMI: Culture Clash or Common
Cause. 1st Agile Universe Conference, Chicago.

Walsham, G. 1995. Interpretive Case Studies in IS Research: Nature and Method.
European Journal of Information Systems, Vol. 4, No. 1, pp. 74�81.

Wang, X. Oconchuir, E. & Vidgen, R. 2008. A paradoxical Perspective on
Contradictions in Agile Software Development. European Conference of
Information Systems (ECIS) 2008. Galway, Ireland.

Weick, K. 1995. What Theory Is Not, Theorising Is. Quarterly, Vol. 40, No. 1,
pp. 385�390.

Wengraft, T. 2001. Qualitative Research Interviewing. London: Sage.

119

Wilkie, F. G. & McCaffery, F. 2005. Evaluation of CMMI Process Areas for
Small to Medium-sized Software Development Organizations. Software Process
Improvement and Practice, Vol. 10, No. 2, pp. 189�202.

Williams, L. & Cockburn, A. 2003. Agile Software Development It is about
Feedback and Change. Computer, Vol. 36, No. 6, pp. 39�42.

Vriens, C. 2003. Certifying for CMM Level 2 and ISO9001 with XP@Scrum.
Agile Development Conference, Salt Lake City, Utah, USA.

Yin, R. K. 1994/2003. Case Study Research Design and Methods. Saga Publications.
Thousand Oaks, California. Second Edition. 192 p. 076192552X

Yin, R. K. 2003. Case Study Research: Design and Methods. Thousand Oaks,
California.

Appendix 2: Publications 1�VI of this publications are not included in the PDF
version. Please order the printed version to get the complete publication
(http://www.vtt.fi/publications/index.jsp)

http://www.vtt.fi/publications/index.jsp

Appendix 1: Mapping Model

1/1

Appendix 1 shows the mapping model which was created based on the literature
review and the four described case studies 1�4.

CMMI specific goal Scrum Practices XP Practices

Manage
requirements

Requirements continuous
analysis for product and
sprint backlogs, requirements
analysis for 4 week iterations
in sprint planning, sprint
reviews (demo presentation
after the review), daily
meetings, Self-organizing
teams

Analysis of requirements for
one- to two-week iterations,
user stories, on-site customer,
daily stand up meetings,
continuous integration, small
tasks and estimations

Establish
estimates

Sprint planning, tasks and
effort estimations for 4-week
iterations, self-organizing
teams

Planning games, stories, story
boards, tasks and effort
estimations for one- to two-
week iterations, task and
effort descriptions on the wall

Develop a
Project Plan

Sprint planning, sprints,
product backlog, sprint
backlog, daily meetings, tasks
and effort estimations for 4-
week iterations, self-
organizing teams

Planning game, small
releases, story board, small
tasks and effort estimations
for one- to two-week
iterations, task descriptions in
the wall

Obtain commitment
to the Plan

Sprint planning, sprint review;
self-organizing teams

On-site customer, planning
game

Monitor project
against the plan

Sprint planning, sprints,
sprint review, daily scrum
meeting, scrum metrics,
reflection workshops

Planning game, small
releases, daily stand up
meetings, on-site customer

 Series title, number and
report code of publication

VTT Publications 695
VTT-PUBS-695

Author(s)
Pikkarainen, Minna
Title

Towards a Framework for Improving Software Development
Process Mediated with CMMI Goals and Agile Practices
Abstract
Problems in software development mainly spring from the difficulty of establishing and stabilizing the requirements, the
changeability of the software and interactive dependency of the software, hardware and human beings. A software
development process consists of a set of empirical and �best� practices in software development, together with organization
and management that are needed for the software product implementation. Different process models, such as CMMI
(Capability Maturity Model Integration), ISO 9001 and ISO 15504, have been developed in the last decade to support the
assessment of software development processes. The main process model, examined in this thesis, is CMMI. This model was
chosen as the focus of this research because it is a widely-used, beneficial approach for identifying the key weaknesses of a
software development process which need immediate attention and improvement. Two of the key challenges of CMMI
assessments are 1) overly heavy and time-consuming assessments and 2) the risk that the achievement of CMMI levels
forces the developers to use more time writing documents than implementing the software product.

The level of interest in the use of agile practices (focusing on practices such as eXtreme Programming and Scrum) has
radically increased in software organizations. Practitioners argue that the adoption of agile software development methods
can solve the organizational need for a more rapid and flexible software development process, and enable improved
communication in changing market situations. A brief analysis of the empirical body of knowledge reveals, however, that
there are also several challenges in interactive dependency management and communication between the actors of software
development in an agile context.

The objective of this study is to increase the understanding of how improvements can be made in the software development
processes from communication perspective, mediated with CMMI �specific� goals and agile practices. This study is based
on a series of case studies and data from 4 companies and 8 software development teams. To meet the gaps in the current
empirical body of knowledge and research, a novel framework is presented in this study. The framework can be used 1) to
identify the agile practices for a plan-driven software development process and 2) to assess the software development
process in a lightweight manner against the CMMI goals and agile practices.

To indicate the value of the created framework, it is important to collect empirical evidence on how agile practices actually
affect communication in the software development process. This study applies coordination theory to confirm that the
adoption of agile practices, such as sprint planning, an open office space, daily meetings and product backlogs improve the
communication and management of requirements, features and project task dependencies in agile software development
teams. Additionally, increased informal communication can in some cases decrease the need for upfront documentation in
software development teams and, therefore, facilitate more productive software development than in previous plan driven
situations.

ISBN
978-951-38-7121-5 (soft back ed.)
978-951-38-7122-2 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number

VTT Publications
1235-0621 (soft back ed.)
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

23490

Date Language Pages
October 2008 English 119 p. + app. 193 p.

Keywords Publisher
CMMI, agile practices, lightweight assessment,
communication

VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4520
Fax +358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

V
TT PU

BLICA
TIO

N
S 695

 Tow
ards a Fram

ew
ork for Im

proving Softw
are D

evelopm
ent Process M

ediated w
ith CM

M
I...

ESPOO 2008 VTT PUBLICATIONS 695

Minna Pikkarainen

Towards a Framework for Improving
Software Development Process
Mediated with CMMI Goals and Agile
Practices

Organizational maturity indicators, such as the CMMI levels or SPICE
ratings, have become important for software development. Customer
organizations often rely on them when selecting a supplier, as the results
of these assessments can serve as an indicator of process maturity. At the
same time, agile methods continue to gain popularity due to increasing
speed and quality demands. It has been argued that the CMMI model is
too heavy­weight for software development projects adopting agile
practices and that its use would lead to an overly document­driven
software development approach. This presents a challenge to enable
organizations, relying on CMMI as an indicator of process maturity, to
also benefit from using agile methodologies such as XP and Scrum. The
purpose of this thesis is to increase understanding of how to improve the
software development process mediated with the CMMI and the agile
practices. The work was done empirically in 4 companies and based on 6
scientific research papers, written jointly with an international group of
researchers and published in well­established peer­reviewed scientific
fora.

In order to answer the gaps in the current empirical body of
knowledge and research this study introduces a framework, based on a
hybrid assessment approach, and starts the evaluation of the impact of
agile practices from the communication perspective. The framework can
be used to identify the agile practices for a plan­driven software
development process and to validate the software development process
against CMMI goals and agile practices.

ISBN 978­951­38­7121­5 (soft back ed.) ISBN 978­951­38­7122­2 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1235­0621 (soft back ed.) ISSN 1455­0849 (URL: http://www.vtt.fi/publications/index.jsp)

Julkaisu on saatavana Publikationen distribueras av This publication is available from

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI­02044 VTT, Finland
Puh. 020 722 4520 Tel. 020 722 4520 Phone internat. + 358 20 722 4520

http://www.vtt.f i http:/ /www.vtt.f i http:/ /www.vtt.f i

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi
http://www.vtt.fi
http://www.vtt.fi

	Abstract
	Preface
	Contents
	List of Original Publications
	List of Names and Acronyms
	1. Introduction
	1.1 Research Questions
	1.2 Scope of the Research
	1.3 Structure of the Thesis

	2. Background of the Study
	2.1 Plan-Driven Ł Traditional Software Development
	2.1.1 Assessment Approaches
	2.1.2 CMM / CMMI
	2.1.3 Empirical Findings
	2.1.4 Summary

	2.2 Agile Software Development
	2.2.1 Agile Principles
	2.2.2 Agile Methods and Practices
	2.2.3 Empirical Findings
	2.2.4 Summary

	2.3 Hybrid Approaches for Improvement of
	2.3.1 Risk Based Agility Evaluation
	2.3.2 Levels for Agility Evaluation
	2.3.3 Integrating CMMI and Agile Practices
	2.3.4 Empirical Findings
	2.3.5 Summary

	2.4 Summary of Chapter 2

	3. Towards a Framework for Improving
	3.1 Definition of the Framework
	3.2 Needs for the Framework
	3.3 Framework for this Study
	3.3.1 Mapping Model and CMMI Goals and Agile Practices
	3.3.2 Hybrid Assessment Approach and Mapping Model
	3.3.3 Assessments Ł Agile practices in Use
	3.3.4 Iteration Retrospectives and Assessment Approach
	3.3.5 Iteration Retrospectives Ł Agile Practices in Use
	3.3.6 Agile Practices in Use Ł Impacts on Communication

	3.4 Summary of Chapter 3

	4. Research Design
	4.1 Research Approach and Methods
	4.1.1 Research Approach
	4.1.2 Research Method
	4.1.3 Collection of Empirical Evidence
	4.1.4 Data Analysis

	4.2 Research Context
	4.2.1 Case Company 1
	4.2.2 Case Company 2
	4.2.3 Case Company 3
	4.2.4 Case Company 4

	5. Research Contributions
	5.1 PAPER I: Agile Practices in Use from an Innovation
	5.2 PAPER II: An Approach Using CMMI in Agile Software
	5.3 PAPER III: An Approach for Assessing Suitability of Agile
	5.4 PAPER IV: AHAA Ł Agile, Hybrid Assessment Method for
	5.5 PAPER V: Deploying Agile Practices in Organizations:
	5.6 PAPER VI: The Impact of Agile Practices on Communication
	5.7 Summary of Chapter 5

	6. Discussion
	6.1 Implications for the Research
	6.2 Implications for the Practice
	6.2.1 Implications for Continuous SPI
	6.2.2 Implications for Agile Practice Adoption and Communication

	7. Conclusions
	7.1 Answers to the Research Questions
	7.2 Limitations of the Thesis
	7.3 Future Research

	References
	Appendix 1: Mapping Model

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

