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Abstract 
 
Modelling of thermal behaviour of buildings needs effective tools. This is 
particularly true when conduction of heat through slabs and/or walls is 
computed. The paper proposes a novel approach for such applications. The 
method is based on differential equation of heat conduction which is further 
modified to a differential-difference equation with continuous space variable 
and discrete time variable. The approach differs from conventional 
differential-difference solutions. In this paper, one-dimensional problems are 
examined in semi-infinite, one- and multi-layer environment.  
 
Characteristic of the method is that solutions are presented using past values of 
boundary functions. In addition, transfer functions which determine the 
response at each time instant are calculated recursively. Because the 
differential-difference solution is partly numerical, better accuracy is achieved 
by using analytical methods, such as the pulse transfer method. However, in a 
multi-layer environment the latter turns out to be more complicated, since   
several transcendental equations must be solved, contrary to the proposed 
method. 
 
The differential-difference method is compared with numerical solutions 
choosing the explicit method as a representative of them. The results show that 
in most cases better accuracy is achieved with the differential-difference 
method when time steps of both methods are equal. In addition, the proposed 
method needs no nodal points inside the slab during computation. Thus, time 
steps need not be adjusted according to thin layers of the wall, which makes 
the method feasible in multi-layer environment. The differential-difference 
approach is inherently stable, which is not true for all numerical methods. The 
method is suggested to be applied in dynamic thermal models of buildings in 
which time step is less than one hour. 
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Nomenclature 
 
 
A area 
An constant, matrix element 
A(z) matrix element, power series 
Bn constant, matrix element 
B(z) matrix element, power series 
Bi Biot number 
C bulk thermal capacitance (=ρAc) 
Ci lumped thermal capacitance of node i 
Ċe capacitive flow of exhaust air 
Ċf capacitive flow of filtration air 
Cn matrix element 
CR thermal capacitance of zone air 
C(z) matrix element, power series 
Dn matrix element 
D(z) matrix element, power series 
(π/2x)1/2In+1/2(x) Modified Spherical Bessel function of the first kind 
J(x,t-η) integral function, defined in text 
(π/2x)1/2Kn+1/2(x) Modified Spherical Bessel function of the third kind 
L thickness of slab 
L{x} Laplace-transform of x 
M modulus of the explicit numerical method 
O(h) truncation error magnitude order of h 
P steady state heat flow rate 
Pn(t) heat flow rate at boundary of solid 
Q heat flux 
R bulk thermal resistance (=1/kA) 
Ri lumped thermal resistance of node i 
Rn matrix element 
RC time constant of slab 
Un(t) boundary surface temperature 
Uo(t) outdoor temperature 
UR(t) room temperature 
Vn matrix element 
Wn matrix element 
an(x) coefficient function  
am,n(x) coefficient function  
bn(x) coefficient function  
bm,n(x) coefficient function  
c specific heat 
cm,n(x) coefficient function of particular solution 
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g(x,t) forcing function 
h lumping constant 
hs convective coefficient of heat transfer 
hsi convective coefficient of heat transfer on surface i 
k conductivity  
p variable of the Laplace transform in x-space 
q constant 
r variable 
s variable of the Laplace transform in t-space 
t time variable 
ûi

n approximate temperature function based on finite 
difference solution, i and n refer to nodal points  
of x and t 

u(x,t) temperature function of x and t 
v variable 
vm,n coefficient of power series 
wm,n coefficient of power series 
x space variable 
z back shift operator 
η displacement constant  
κ diffusivity 
µ constant 
ρ density 
φ convective load 
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1  Introduction 

1.1  Background 
 
Conduction of heat through slabs and walls, originally a topic of physics, has 
become an area of interest in building services. The reason behind such a trend 
is the fast development of computer technology which allows large scale 
problems to be solved with small computers. Today, architects, engineers, and 
technicians control total buildings with software. A variety of systems and 
programs is available for design, maintenance, and control of buildings. Many 
of them have been implemented to deal with dynamical thermal behaviour of 
buildings and their structures. 
 
Increasing capacity of computers, microprocessors and available memory 
capacity combined with low price creates opportunities for sophisticated 
technical systems, also suited to building services. Control systems are 
developing to building optimization systems (Kelly 1988). Besides ordinary 
control and energy management they can optimize energy consumption, locate 
possible faults or detect energy leakages (Pakanen 1992). Prediction of energy 
consumption and control decisions are based on knowledge of dynamical 
thermal response to physical quantities inside and outside of the building. 
 
Thermal modelling of buildings has been intensive since the advent of 
computers. The first attempts were analogical models constructed of real 
resistors and capacitors. Voltages and currents of the electrical network 
corresponded temperatures and heat flow rates (Day 1982). The advantage 
was higher computational speed compared with the models running in 
computers of early stage. Other approaches such as analytical, finite difference 
and lumped parameter systems have also their advantages and supporters 
(Cowan 1976, Mehta 1980). Thermal modelling and simulation concentrated 
first on building envelope. Later interest focused on internal gains, multi-zone 
environment, solar gains and shadowing, air infiltration and air movement 
between rooms (Walton 1983a), thermal comfort algorithms, HVAC-systems 
and control, as well as nonlinear dynamics and control (Roberts & Oak 1991). 
As a result, a lot of computer programs for simulation and emulation (May & 
Park 1985) have been produced which help the design, maintenance, control, 
and research of buildings.  
 
Conduction of heat through slabs and walls is only one of the physical 
phenomena necessary to formulate in order to carry out a thermal simulation 
of a building or zone. Moreover, conduction is only an approximation of the 
total mass and heat transfer through a slab and most methods apply only to 
homogeneous, isotropic solids. Although these restrictions influence the 
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accuracy, an equally important question is the efficiency of the method to 
compute the heat flow. A larger building may contain hundreds of slabs and 
the software package running the simulation may be massive. An inefficient 
computing algorithm may ruin the original idea of the system. 

1.2  Earlier results 
 
Conduction of heat through a slab is a classical problem mainly solved by two 
types of methods. The first category includes analytical solutions. If the heat 
flow through a slab or wall is to be determined with good accuracy, one would 
apply the pulse response method (Stephenson & Mitalas 1971, Butler 1984, 
Walton 1984) or other analytical methods such as those presented by Title 
(1965), Bulavin & Kaschcheev (1965) and Mikhailov et al. (1982). If the 
number of layers do not exceed two or three and some of the layers are infinite 
in thickness, one may apply the integral transform techniques (Lykov & 
Mikhailov 1965). A common feature of these methods is the eigenvalue 
problem. The complete solution can be expressed with the aid of eigenvalues. 
In order to determine a necessary amount of them a numerical algorithm is 
needed which finds roots of the transcendental equations.  
 
Substitution of finite-difference approximation in the diffusion equation has 
evolved a large number of methods for boundary value problems of heat 
conduction. Such numerical methods have been extensively applied also to 
multi-layer slabs. If one takes care of stability and accepts errors involved, 
heat flow computations with these simple numerical algorithms become 
successful. A disadvantage is the need of nodal points inside the solid which 
must be included in the algorithm. When good accuracy is a requirement, 
inner nodal points increase execution time and restrict the application areas of 
the algorithm.    

1.3  The proposed method 
 
The paper presents a method for boundary value problems of heat conduction 
that is partly analytical and partly numerical. This is accomplished by 
changing the differential equation of heat conduction into a differential-
difference equation where the space variable is analytical and the time variable 
discrete. The approach leads to a linear second order differential equation with 
constant coefficients. Solutions are obtained recursively. Thus, past values of 
initial and boundary functions can be utilized effectively. No eigenvalues need 
to be solved and no inner nodal points used. The method is suitable for 
approximate solutions of diffusion type partial differential equations.  



 

 

 
 
 10

2  Solution of the differential equation of  
heat conduction 

2.1  Deffinition of the initial and boundary value 
problem  
 
Conduction of heat through a slab is described by a second order partial 
differential equation of parabolic type. The following discussion is restricted 
to one-dimensional, linear heat flow through a homogeneous, isotropic solid. 
If the thermal diffusivity is replaced by a bulk thermal resistance R and 
capacitance C, the non-homogeneous differential equation of heat conduction 
is written as 

),(),(),(
2

2

txg
t

txuRC
x

txu
+

∂
∂

=
∂

∂ ,           (1) 

 
where g(x,t) represents a forcing function. A solution of Equation (1) in a 
finite solid in the region 0 < x < L and for times t > 0 is prescribed by the 
initial condition: 

)()0,( 0 xuxu = ,            (2) 
 
and the boundary conditions. In the planes at x = 0 and x = L, and for times t > 
0 the condition is one of the following types: 
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twuBi
n
u

tf
n
u

tUu

i
i

i
i

i

=+
∂
∂

=
∂
∂

=

           (3) 

 
where Ui(t) denotes a surface temperature, fi(t) and wi(t) given functions, Bi the 
Biot number, and in∂∂ /  differentiation along the outward-drawn normal at the 
surface i. Equations (3) represent the linear first, second, and third kind of 
boundary conditions (Özisik 1968).  
 
Equations (1), (2), and (3) prescribe also a solution for a semi-infinite and 
multi-layer slab. In the former region the solution must remain bounded as x 
approaches infinity. In the multi-layer slab a separate solution is required for 
each layer, and also the continuity of temperatures and heat flows at each 
interface must be taken account, in addition to the boundary conditions.  
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The above equations define mathematically the initial and boundary value 
problem of the finite, semi-infinite, and multi-layer regions. The following 
pages present an approximate solution for the same problem using the 
differential-difference approach.  
 
Observe that the following differential equations, initial and boundary 
conditions are not presented in terms of dimensionless variables. This makes 
the physical significance of each variable clearer.  
 

2.2  Modification of the differential equation 
 
If the time derivative is written as a backward-difference expression, the 
original equation becomes a differential-difference equation: 
 

),(),(),(),(
2

2

txg
h

txutxuRC
dx

txud
+

−−
=

η ,          (4) 

 
where the denominator h is a constant, and the time variable t gets only 
discrete values.  
 
The above equation is an ordinary differential-difference equation which may 
be treated at least in six different ways. Both Bateman (1943) and Pinney 
(1958) give a survey of the available methods. Typical solutions are also 
presented by Bellman & Cooke (1963). Rektorys (1982) presents a procedure 
where he converts the initial and boundary value problem into a solution of p 
ordinary differential equations with corresponding boundary conditions. He 
divides the time interval of interest into p subintervals. As a result, he gets p 
equations of type (4) and p solutions, one for each time subinterval. The 
following approach to solve Equation (4) differs from those above.  

2.3  The complete solution for one time step  
 
When Equation (4) is written as  
 

),(),(),(),(
2

2

txgtxu
h

RCtxu
h

RC
dx

txud
+−−=− η ,            (5) 

 
the whole right hand side can be interpreted as a forcing function. The 
equation represents a non-homogeneous second order differential equation 
with constant coefficients. From mathematical point of view, x is the only 
independent variable. The solution is obtained with the method of variation of 
parameters as 
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∫ ∫ −+−−−
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xBxAtxu
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00
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sinhcosh),(

νννηνν
                    (6) 

 
where 
 

h
RCq =                                                                                 (7) 

 
The temperature function u(x,t) represents a complete solution of the above 
differential equation for the first time step. A particular solution requires 
suitable values to be assigned to the arbitrary constants A0 and B0.   
 
Observe that Equation (6) compared with the corresponding Laplace 
transform solution in t-space of (1) is exactly the same if h is replaced by 1/s 
and ),( ntxu − by u(x,0).  

2.4   The complete solution for all times  
 
The following procedure changes the complete solution (6) into a series of 
hyperbolic functions. Each of them represents the temperature at the past time 
instant. The solution is obtained by substituting u(x,t) (6), repeatedly back in 
the equation. The first integrand of (6) contains the expression ),( η−txu , 
which represents the temperature at the past time instant t − η, the second at 
t − ξ, ξ  > η, etc. For brevity the current and past time steps are written as t, t – 
1, t –2, … The exact value of the time step is not known but one may initially 
assume that the time step equals the lumping constant h. Then, the time 
derivative expression in (4) becomes a typical backward-difference 
approximation. The relationship between h and η is later discussed in more 
detail. Observe that the time variable t or its past values are not included in the 
resulting hyperbolic expressions, i.e. the time variable disappears in the 
particular solution. Thus, the attached time variable t – n, or actually the 
subscript n = 0, 1, 2, …, only keeps track of the corresponding time step.   
  
Laplace-transformation of (6) gives 
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One time step later, the corresponding expression u(x,t – 1) is  
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By inserting U(p,t – 1) in the preceding equation, simplifying the equation and 
repeating the procedure many times, gives 
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                          (10) 

 
If the Laplace-transforms of the expressions of (10) are defined as 
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the hyperbolic functions am(x) and bm(x), m =  0,1,2,... can be presented as 
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and 
 

( )

( ) qx
m

qxqxqxqxxb

qxqxqxqxqxxb

qxqxqxxb

qxxb

m

mmmmm sinh
!

coshsinh)(

sinh
!22

1cosh
2
3sinh

2
3)(

cosh
2
1sinh

2
1)(

sinh)(

1,12,11,1

2

2332

1

0

++++ ++−=

+−=

−=

=

µµµ

          (14) 



 

 

 
 
 14

 
Observe that the expressions am(x) and bm(x) of (13) and (14) are presented 
only for odd numbers of m. The numerical value of the constant µm,m depends 
on the time instant and its position in the expression.  
 
Finally, the complete solution of Equation (6) is obtained with the above 
definitions for an(x) and bn(x): 
 

∑ ∫
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=
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⎢
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−−++=

0 0

),()()()(),(
n

x

nnnnn dsntsgsxbqxbBxaAtxu .   (15) 

2.5  Recursive form of the coefficient functions 
 
A closer look into the coefficient functions an(x) and bn(x) reveals that they 
can be written in a more compact form with the Modified Spherical Bessel 
functions of the first kind. The first three of those Bessel functions are  
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By comparing Equations (13), (14) and (16), an expression for bn(x) can be 
written as 
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If the following recurrence relations of the Modified Spherical Bessel 
functions are applied: 
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the coefficient functions can be easily put in recursive form. The procedure 
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and formulas of an(x), bn(x) and their derivatives are presented in Table 1. A 
computer program based on the procedure needs only a few lines to compute 
the value of coefficients.  
 

Table 1. A procedure for computing the coefficient functions. 
 

an(x) and bn(x) a’n(x) and b’n(x) 

1. Calculate initial values 
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2. Set n = 1 2. Set n = 1 

3. Calculate functions 
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4. Set n = n + 1 4. Set n = n + 1 

5. if n  < nmax go to step 3. 5. if n  < nmax go to step 3. 
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3  Conduction of heat through a finite,  
one-layer slab 

3.1 The zeroth order transfer function; Case 1   
 
A particular solution is obtained from the complete solution (15), when 
arbitrary constants An, Bn, n = 0, 1, 2,... are determined. Consider heat 
conduction through a slab of thickness L which is initially at zero temperature, 
and no inner heat is produced. The boundary conditions are  
 

0)1 =u , at x = 0, t  > 0 
,)()2 2 ntUu −=  at x = L, t  > 0, n = 0, 1, 2,…                      (20) 

 
Observe the difference with the corresponding analytical boundary conditions. 
Instead of the analytical temperature function U2(t), only its sampled values at 
discrete time instants are applied.  
 
According to (6) the complete solution at the time instant t – n is 
 

)1,(sinhcosh),( −−++=− ntxJxBxAntxu nn                   (21) 
 
where )1,( −− ntxJ  refers to the first integral term from the left of Equation 
(6). Substituting the boundary conditions makes possible to write the arbitrary 
constants An and Bn as 
 

qL
ntLJ

qL
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                  (22) 

 
Inserting these in the complete solution of (15), gives 
 

[ ] [ ]
[ ] ,)3,()2()(

)2,()1()()1,()()(),(

22,1
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+−−−+
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             (23) 

 
In (23) the hyperbolic function b1,n(x) is defined as 
 

qL
xbxb n

n sinh
)()(,1 =                     (24) 

 
where the subscript n refers to time step t - n.  
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Substituting u(x,t) from Equation (23) in the second boundary condition with 
n = 0, allows one to solve the first integral term J(L,t – 1): 
 

[ ] [ ]
[ ] ,)4,()3(

)3,()2()2,()1()1,(

23,1

22,121,1

+−−−+

−−−+−−−=−

tLJtUb
tLJtUbtLJtUbtLJ

   (25) 

where b1,n means a shorter form of b1,n(L). After inserting J(L,t – 1) back in 
Equation (23), and making some rearrangements, u(x,t) can be rewritten as  

−−−−−

+−+−+=

)3,()()2,()(
)2()()1()()()(),(

2,21,2

22,221,220,1

tLJxbtLJxb
tUxbtUxbtUxbtxu

                  (26) 

 
The above notation for b2,i(x), i = 1,2,3,..., means 
 

nnn bxbxbxb

bxbxbxb
bxbxbxb

,10,1,1,2

2,10,12,12,2

1,10,11,11,2

)()()(

)()()(
)()()(

−=

−=

−=

          (27) 

 
Next, the integral term )2,( −txJ  must be removed from (26). This is done in 
the following way. First, )2,( −txJ is solved from Equation (25) by 
subtracting all time instants by one and then, the resulting )2,( −txJ is inserted 
in (26). This creates a new expression for u(x,t) with one fewer integral term. 
After rearranging, all but the first two hyperbolic functions in Equation (26) 
have changed. Others are denoted as b3,i(x), i=1,2,3,..., and their structure is 
similar to Equation (27). By repeating the procedure all integral terms vanish, 
and the final solution is written as 
 

,)()(

)4()()3()(
)2()()1()()()(),(
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2,1

24,523,4

22,321,220,1

∑
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=
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n
nn ntUxb

tUxbtUxb
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              (28) 

 
where b1,0(x)is obtained from (24) and the all other functions bn+1,n(x)  from 
 

1;,4,3,2;)()()( 2,12,1,1, −≥=−= +−−−− mnmbxbxbxb mnmmnmnm . (29) 
 
Observe that the hyperbolic function bn+1,n(x) of (28) is actually a transfer 
functions which determines response of u(x,t) to an exciting surface 
temperature U2 at the specified time instant t - n.  
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3.2 The zeroth order transfer function; Case 2 
 
If the boundary conditions of the previous problem are changed to 
 

)()1 1 ntUu −= , at x = 0, t  > 0, n = 0, 1, 2,… 
,0)2 =u  at x = L, t  > 0                   (30) 

 
the particular solution is obtained similarly. Substituting the boundary 
conditions generates the following arbitrary constants 
 

qL
ntLJntU

qL
qLB

ntUA

n

n

sinh
)1,()(

sinh
cosh

)(

1

1

−−
−−=

−=
            (31) 

 
When they are inserted in Equation (31), the solution will be 
 

,)1,()(
)1()()1,()()()(),(

1,1

11,10,110,1

+−−

−+−−=

tLJxb
tUxatLJxbtUxatxu

                 (32) 

 
In this equation b1,n(x) is defined by (24) and a1,n(x) by (33) 
 

)(
sinh
cosh)()(,1 xb

qL
qLxaxa nnn −= ,             (33) 

 
where n = 0,1,2,.... Substituting the second boundary condition and proceeding 
as before, the particular solution is finally written as 
 

,)()(

)4()()3()(
)2()()1()()()(),(

0
1,1

14,513,4

12,311,210,1

∑
∞

=
+ −=

+−+−+

−+−+=

n
nn ntUxa

tUxatUxa
tUxatUxatUxatxu

                  (34) 

 
where 
 

1;,4,3,2;)()()( 2,12,1,1, −≥=−= +−−−− mnmaxbxaxa mnmmnmnm     (35) 
 
The resulted solution (34), together with the solution (28), is later applied in 
summing the coefficient functions and in developing heat conduction through 
a multi-layer wall. 
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3.3  The transfer function of  kTH order 
 
The particular solution of the foregoing chapter were all presented as a zeroth 
order transfer function. If the zeroth order transfer function is used in practice, 
a number of coefficient functions must be included. This is due to the fact that 
series solutions of an+1,n(x) and bn+1,n(x) are not rapidly converging. The 
number of coefficient functions can be reduced if u(x,t) at past time instants 
becomes part of the solution. Similarly to the pulse transfer method, a zeroth 
order transfer function can be changed to a kth-order transfer function (Hittle 
1982), where the value k refers to the number of past time steps. However, the 
following technique is different from Hittle. 
  
Consider the solution (28): 
 

+−+−+

−+−+=

)4()()3()(
)2()()1()()()(),(

24,523,4

22,321,220,1

tUxbtUxb
tUxbtUxbtUxbtxu

                    (36) 

 
If )1,(1,1 −txub is added to both sides of the equation, then  
 

[ ]
[ ] [ ] +−++−++

−++=−+

)3()()()2()()(
)1()()()()()1,(),(

21,12,33,421,11,22,3

21,10,11,220,11,1

tUbxbxbtUbxbxb
tUbxbxbtUxbtxubtxu

(37) 

 
When the expressions inside the brackets are compared with Equations (27) 
and (29), Equation (37) can be reduced to 
 

+−+−+

−+=−+

)3()()2()(
)1()()()()1,(),(

23,322,2

21,120,11,1

tUxbtUxb
tUxbtUxbtxubtxu

                   (38) 

 
Equation (38) can be further simplified by adding )2,(2,1 −txub to both sides of 
the equation. After repeating this procedure k times, a kth-order transfer 
function is produced. In practice, numerical values of u(x,t) are computed 
using kth-order transfer functions. In theory, k may also approach infinity. 
Then, the solution is written as  
 

∑ ∑
∞

=

∞

=

−+−−=
1 0

2,1,1 )()(),(),(
n n

nn ntUxbntxubtxu                      (39) 

 
The above solution represents a transfer function of infinite order, where the 
right-hand-side of the first boundary condition of (20) remains zero. If both 
boundary conditions are non-zero, the transfer function of infinite order is 
achieved as previously, starting from the sum of Equations (34) and (28). 
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Another choice is to use the superposition principle and solutions of the form 
(39). Therefore, using the boundary conditions: 

)()1 1 ntUu −= , at x = 0, t > 0, n = 0, 1, 2, … 
)()2 2 ntUu −= , at x = L, t > 0, n = 0, 1, 2, …                       (40) 

 
the solution in the form of infinite order is obtained as 
 

∑ ∑∑
∞

=

∞

=

∞

=

−+−+−−=
1 0

2,1
0

1,1,1 )()()()(),(),(
n n

n
n

nn ntUxbntUxcntxubtxu         (41) 

 
where 
 

)()()()(

)()()()(
)()()(

)()(

0,1,11,1,1,1,1

0,12,11,21,12,32,1

0,11,11,21,1

0,10,1

xabxabxaxc

xabxabxaxc
xabxaxc

xaxc

nnnnnn +++=

++=

+=

=

−+

                    (42) 

 
The above cases represented only solutions to the first kind of boundary 
conditions. The second and third kind of boundary condition is applied 
similarly. Some examples are illustrated later in chapters 4 and 5. 
 

3.4  Sum of the coefficient functions 
 
In a steady state the coefficient functions form a convergent, functional series. 
The sum of the series is related to the steady state value of the temperature. If 
the sum of the coefficient functions is close enough to the specified steady 
state value, the effect of truncation error can be neglected. Thus, summing of 
the coefficient functions is a convenient way to check a proper number of 
those functions, in order to achieve the targeted accuracy of the numerical 
results.  
 
This procedure is outlined using the solution u(x,t), subject to the boundary 
conditions (40) but presented by means of the zeroth order transfer function. 
This is achieved using the superposition principle and summing the solutions 
(28) and (34): 
 

∑ ∑
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=

∞

=
++ −+−=

0 0
2,11,1 )()()()(),(

n n
nnnn ntUxbntUxatxu                             (43) 
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If all values of U1(t) and U2(t) remain constant, sums of the series formed by 
the coefficient functions can be calculated. Comparing solutions of Equations 
(41) and (43) in steady state, the following equalities can be written 
immediately: 
 

∑

∑
∑ ∞

=

∞

=
∞

=
+ =

0
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0
,1

0
,1

)(
)(
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n

n
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n
nn
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xa               (44) 

 
and 
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=
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=
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=
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0
,1

0
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)(
)(

n
n

n
n

n
nn

b

xb
xb                (45) 

 
In a steady state the temperature inside a slab is a straight line connecting the 
surface at temperatures U1 and U2: 
 

( )
∞→

−−=
t

xUUUtxu 211),(lim                (46) 

 
Again comparing this with the solutions of u(x,t), one can conclude that 
 

∑ ∑
∞

=

∞

=
+ −==

0 0
,1,1 1)()(

n n
nnn xxcxa   

                     (47) 

∑ ∑
∞

=

∞

=
+ ==

0 0
,1,1 )()(

n n
nnn xxbxb  

 
Convergence of the series solution is more closely examined in appendix 1. 
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4  Conduction of heat through a semi-infinite, 
one-layer slab 

4.1  The coefficient functions in semi-infinite region 
 
Similarly to the finite region, the complete solution (15) can be applied to heat 
conduction problems in semi-infinite region. The solution must be bounded as 
x tends to infinity. Therefore, the hyperbolic functions an(x) and bn(x) are 
reduced to exponential functions. While the hyperbolic functions are closely 
related to the Modified Bessel functions of the first kind, the exponential 
functions can be described using the Modified Bessel functions of the third 
kind. Thus, correspondingly to (13) and (14) the coefficient functions an(x) are 
written as 
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−
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=

=

)1(
2
1)(

2
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                               (48) 

      qx
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n
qxqxqx

n
qxxa −

−

⎥
⎦

⎤
⎢
⎣

⎡
−

++++=
!)1(

)(
!2
)(

2
)(

1

,

2

3,2,1, µµµµ  

 
and bn(x) as  
 

     
[ ] qx

qx
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eqxqxxb
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−

−

−

++−=

+−=

−=

2
32

1

0
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2
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2
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                                 (49) 

 

     qx
n

nnnnnn e
n

qxqxqxxb −
+++++ ⎥

⎦

⎤
⎢
⎣

⎡
++++=

!
)(

!2
)()( 1,1

2

3,12,11,1 µµµµ  

 
The procedure for computing the coefficient functions presented in Table 1 is 
still valid, if the initial coefficients are replaced with those of (48) and (49). 
Observe that particular solutions in the semi-infinite region are straight-
forward, because the integral function ),( ntxJ − equals zero on the boundary 
of the slab and has no effect on the structure of the solution. 
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4.2  Boundary conditions of the first kind  
 
Consider a semi-infinite slab. Its temperature is initially at zero, no heat is 
produced inside the solid, and the surface temperature U(t) is varying with 
time. The boundary condition is therefore 
 

)( ntUu −= , at x = 0, t  > 0, n = 0, 1, 2, …                                     (50) 
 
The complete solution for the homogeneous case is written as 
 

[ ]∑
∞

=

+=
0

)()(),(
n

nnnn xbBxaAtxu               (51) 

 
When the boundary condition is inserted in (51) all bn(0) = 0 and an(0) = 0, n = 
0, 1, 2, …, except a0(0) = 1 resulting that A0 = U(t). Obviously A1, A2, A3, … 
are also non-zero. Therefore, one can make a guess that 
 

)( ntUAn −=                (52) 
 
As a result, the particular solution can be written immediately as 
 

∑
∞

=

−=
0

)()(),(
n

n ntUxatxu               (53) 

 
If the solution is written using the Modified Spherical Bessel functions of the 
third kind the mathematical expression will be 
 

)()(
2!

)(2),(
2

1
0

2
1

ntUqxK
n

qxtxu
n

n
n

n

−=
−

∞

=

+

∑π
              (54) 

 
An interesting special case is a semi-infinite slab, in which the temperature is 
initially at zero, no inner heat is generated, and the solid is heated by a flux 
Q(t) in the plane x = 0. The boundary condition is therefore 
 

)( ntQ
dx
duk −=− , x = 0, t > 0, n = 0, 1, 2, …              (55) 

 
Inserting the boundary condition and proceeding similarly as before the 
solution will be 
 

∑
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−−=
0
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n

n ntQxb
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txu                (56) 
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Especially in the plane x = 0, when Equation (7) is applied the first 
expressions of the solution are 
 

⎥⎦
⎤

⎢⎣
⎡ +−+−+−+= )3(

2
10)2(

2
3)1(

2
1)(),0( 52 tQtQtQtQ

RC
hRtu  .   (57) 

4.3  Boundary conditions of the third kind 
 
Consider a semi-infinite slab, initially at zero temperature. The solid is heated 
by radiation in the plane x = 0 from a medium at V(t), and no inner heat is 
produced.  Then, the boundary condition is 
 

[ ])( ntVuh
dx
duk S −−= , x = 0, t > 0, n = 0, 1, 2, …                     (58) 

 
where hs denotes convective heat transfer coefficient and V(t – n) the room 
temperature. The complete solution is equal to Equation (51). When the 
constant An and Bn are solved only Bn generates a solution satisfying (58). 
Thus, the arbitrary constant is 
 

)( ntV
hkq

hB
S

S
n −

+
−=                     (59) 

 
As a result, the particular solution is  
 

∑
∞

=

−
+

−=
0

)()(),(
n

n

S

S ntVxb
h

h
RCk

htxu                     (60) 

 
 



 

 

 
 
 25

5  Conduction of heat through a multi-layer 
slab or wall 

5.1  Definition of two-port parameters 
 
Two-port parameters are transfer functions describing relationships between 
heat flow rates and temperatures on both sides of the wall. These parameters 
regard the wall or slab as a black box where only its inputs and outputs are 
accessible. Two-port parameters form a convenient way to present transfer 
functions for cascaded systems such as multi-layer walls. The following pages 
show how the differential-difference solution is presented using the two-port 
parameters. 
 
Consider Equation (41)  
 

∑ ∑∑
∞

=

∞

=

∞

=

−+−+−−=
1 0

2,1
0

1,1,1 )()()()(),(),(
n n

n
n

nn ntUxbntUxcntxubtxu          (61) 

 
By defining P1(t - n) and P2(t - n), n = 0, 1, 2, … as 
 

dx
dukntP −=− )(1 , at x = 0, t > 0                    (62) 

dx
dukntP −=− )(2 , at x = L, t > 0                    (63) 

 
Then, differentiating (61) and inserting the derivatives (62) and (63) the heat 
flow rates P1(t) and P2(t) can be solved. Observe also that inserting x = 0 or x = 
L simplifies several coefficient functions, such as 
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                (64) 

 
Finally, the transfer function consists of the pair of equations 
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+−+−++−=
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Defining a backshift operator 
 

)()( ntUtUz n −=                   (67) 
 
Equations (65) and (66) can be further written as 
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If the following notations  
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are adopted Equations (68) and (69) can be written in matrix form as 
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5.2  Selection of two-ports 
 
Equation (71) shows one possibility of different combinations of two-port 
matrices which relate the heat flow rates and temperatures on both side of a 
slab. The rest of the expressions are: 
 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−
−

=⎥
⎦

⎤
⎢
⎣

⎡
)(
)(

)(1
1)(

)(
1

)(
)(

2

1

2

1

tP
tP

zD
zA

zCtU
tU

        

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−
−

=⎥
⎦

⎤
⎢
⎣

⎡
)(
)(

)(1
1)(

)(
1

)(
)(

2

1

2

1

tP
tU

zB
zC

zAtU
tP

                       



 

 

 
 
 27

 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−
−

=⎥
⎦

⎤
⎢
⎣

⎡
)(
)(

)(1
1)(

)(
1

)(
)(

2

1

2

1

tU
tP

zC
zB

zDtP
tU

                     (72) 

 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
)(
)(

)()(
)()(

)(
)(

2

2

1

1

tP
tU

zDzC
zBzA

tP
tU

 

 
The last matrix equation is called the transmission matrix. It is needed when 
conduction of heat is computed through a multi-layer wall. The determinant of 
the transmission matrix is one i.e. 
 

1)()()()( =+ zCzBzDzA                       (73) 
 
This can be verified using expressions (70).  

5.3  Cascaded two-ports 
 
Boundary conditions of the third kind 
 
Cascaded two-ports combine, not only the layers of the wall but also their 
surface areas. The following example shows how the conditions of the surface 
are included in the two-port presentation. Consider a homogeneous, finite, 
one-layer slab, initially at zero uniform temperature which is subjected to the 
following boundary conditions 

)()1 1 ntUh
dx
duk S −=− , at x = 0, t  > 0 

)()2 2 ntUu −= , at x = L, t > 0                     (74) 
 
and n = 0, 1, 2, …If the solution is modified to a matrix notation, it will be 
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Using ordinary matrix multiplication, a pair of equations is generated. An 
unnecessary variable can be removed by direct substitution from the other 
equation. For example, if P1(t) is solved as a function of U1(t) and U2(t) the 
expression is written as 
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Inserting power series B(z) and D(z) finally gives 
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A multi-layer wall 
 
If the outer surface temperatures and heat flow rates of a multi-layer wall are 
denoted as U1(t), P1(t), Un+1(t) and Pn+1(t), relationships between them can be 
written as 
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where subscripts 1, 2, …, n refer to the layers.  
 
A practical way to compute (78) is to process two layers at the time.  First, 
assume that the n-layer wall consists of two parts. One of them is the current 
layer i and the other is all the preceding layers i – 1, i – 2, … In matrix form 
this is written as 
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where 
 

+++= 2
2,1,0, zwzwwW nnnn                       (80) 
+++= 2

2,1,0, zvzvvV nnnn                       (81) 
 
After multiplication and addition, the elements of transmission matrix for 
Equation (79) are given by 
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The actual solution for multi-layer wall is achieved in the following way. First, 
coefficients of Equation (82) are calculated for the first two layers. These 
results represent coefficients of both first and second layer and can be assigned 
to elements W1, W2, W3, W4. The next layer is assigned to elements V1, V2, V3, 
V4. By repeating this procedure, coefficients over the whole wall structure are 
obtained. Finally P1(t) and Pn+1(t) are solved from 
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6  Time derivative approximation 

6.1  Backward-difference approximation 
  
In practice h and η are often set equal in Equation (4). With this substitution 
the time derivative approximation becomes an ordinary backward-difference 
approximation. The backward-difference derivative approximation comes 
from Taylor series. Assume an analytical function u(x,t) with continuous 
variables x and t. If the function and its time derivative are finite, continuous 
and single-valued function u(x,t) can be expanded in the form of Taylor series 
about the point t as 
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From (84) the time derivative approximation is obtained as 
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The last variable O(h) indicates the magnitude of truncation error which is the 
order of h. The truncation error becomes smaller only when h approaches 
zero.  

6.2  Limits of the lumping constant 
 
The lumping constant 
 
In order to find another and perhaps more appropriate relationship between the 
lumping constant h and the displacement constant η, some potential values of 
h will be examined. The value of the constant η is assumed to be known. 
 
Consider the time derivative approximation of (4). Assume that the time 
derivative expression is separated from (4), and then written to a first order 
differential equation. Finally, h is solved. As a result the following equation is 
produced  
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The limits of interest are the following: ∞→t and η→t which determine 
the range of allowable values of h in time scale. The following pages present 
one case study concerning the limits.  
 
A finite, one-layer slab  
 
Consider a homogeneous slab, initially at zero temperature, and for times t > 0 
the surface x = L is subjected to a stepwise temperature change U, while 
boundary surface x = 0 remains at zero. An analytical solution of the 
temperature will be (Carslaw & Jaeger 1959) 
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By defining 
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applying Equation (87) in the expression (86), and finally inserting rt and rη 
the lumping constant h can be written in the form 
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As ∞→t , h approaches the expression 
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The other limit as η→t is determined similarly. It turns out that the value of 
h approaches zero. Thus, for a step response of one layer slab, h may vary in 
the following region 
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A multi-layer slab   
 
The corresponding limits of h in a multi-layer environment could be 
determined accordingly. However, in this case such a solution involves 
somewhat complicated algebra. Therefore the following approximate 
procedure is applied. If one has a slab of n layers, each layer of equal thickness 
L and diffusivity κ, their combined time constant RCALL is related to the time 
constant of a slab of thickness nL and diffusivity κ. This is achieved 
approximately if 
 

[ ] 2
2211 nnALL CRCRCRRC +++= ,           (91) 

 
where RnCn presents a time constant of layer n. Thus, the expression (90) is 
applicable also to a multi-layer slab, if RC is replaced by RCALL.  

6.3  Value of the lumping constant 
 
Equation (90) defines approximate limits for the lumping constant, both for a 
one-layer and a multi-layer slab. As a default h and η are set equal. Another 
alternative would be the average of the limits (90). Actually, the optimized 
value for h depends on several variables and boundary conditions and its 
mathematical expression is complicated. However, the test runs indicate that 
in the above case, a suitable value of h is greater than one time step but still 
lower than the upper limit of (90). Therefore, one suggestion is the proposal 
presented by Equation (92). 
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Figures 1 and 2 compare the responses when h is set equal both to η and the 
expression (92).  In the figures the former is referred as the conventional and 
the latter as the new value of h. 
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Figure 1. Comparison of the conventional and new expression of h and their influence on the 
accuracy of the step response in one layer slab, RC=1.59 1/h and L=0.05 m. The figure 
illustrates step responses when time step η equals 0.63RC, 0.31RC and 0.06RC from up to 
down. Conventional h means the relationship h=η. 
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Figure 2. Comparison of the conventional and new expression of h and their influence on the 
accuracy of the step response in one layer slab, RC= 14.3 1/h and L=0.15 m. The figure 
illustrates step responses when time step η equals 0.070RC, 0.030RC and 0.007RC from up 
to down. Conventional h means the relationship h=η. 
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7  Performance and comparision of the 
method 
 
7.1  The differential-difference method compared 
with the explicit numerical method 
 
The explicit method 
 
Application and development of numerical methods to the problems of heat 
conduction has created a number of techniques. One of them is the classical 
explicit method. This method is chosen as a representative of the numerical 
methods and compared with the differential-difference method.  
 
The algorithm for calculation of the approximate temperature û inside a solid 
is derived starting from a differential equation of heat conduction with 
discretized space and time variable. The resulting algorithm is 
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where subscripts and superscripts refer to nodal points of x and t. The modulus 
M is defined as 
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RiCi in this equation is a time constant of one discrete part of the slab, 
thickness of ∆x, located at node i. The explicit method is simple to use, but 
one must choose the right time and space subintervals in order to prevent 
instabilities. In order to maintain the stability, it is required that M ≤ 0.5.   
 
One layer slab 
 
The methods are compared by using several responses and time steps. Results, 
computed using analytical methods, are applied as reference values. Figures 3 
to 9 present test runs of step and ramp responses and deviations from exact 
solutions. Figures 5, 7, 9, and 11 illustrate heat flow rates at the surface as a 
response to the temperature change on the same or opposite surface of the 
slab. The other figures present absolute percentage errors of both methods 
compared with the exact solution. Observe that the exact solutions are also 
presented using a curve connecting points at discrete intervals. The practice is 
the same for all the figures. Only errors up to 100 % are shown.  
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The following conclusions were made after the comparison. First, accuracy of 
the differential-difference method is better in most cases. Especially figures 3, 
4, 9 and 10 show a good performance of the differential-difference method. 
Also in figures 5 and 6 the new method indicates better performance. Only 
when the time step is small compared with the time constant RC, the explicit 
method seems to be better. In this region differences in time derivatives are 
negligible and the number of nodal points inside slab is high enough to 
compensate benefits of the continuous space variable of the differential-
difference method. 
  
The responses of figures 7 and 8 represent the only case where the explicit 
method shows a better performance. The differential-difference method is not 
able to process correctly the high frequencies of the response. This is due to 
the lumping constant h, which was not chosen for small times of the response. 
When the frequencies are lower, the differential-different method shows a 
good performance as indicated in figures 9 and 10.  
 
Comparison of the methods can be performed only in a relatively narrow time 
step region because of unstable behaviour of the explicit method. It needs 
separate control and adjustments for every layer and the same time step cannot 
be applied to all slab thicknesses. The differential-difference method has no 
such problems, and it is inherently stable for all time steps, except some 
extreme regions. 
 
Table 5 illustrates some results of the comparison. It presents percentage errors 
of both methods with different time steps and the number of coefficient 
functions and nodes in each case. The number of coefficient functions is two 
or three times greater than the number of nodes in explicit method. If more 
coefficient functions are included they do not improve the accuracy. The 
number of coefficients is prescribed using the method of chapter 3.4.    
 
Computing time  
 
In order to examine the computing time of both methods in similar 
circumstances, the solution concerning the one-layer slab was converted to a 
computer program. Both programs computed the heat flow rate at the surface 
of the slab, when the temperature of the opposite surface changed stepwise.  
The initial temperature of the slab was zero. Equations (93) and (94) were 
modified and applied to the explicit method and Equation (65) to the 
differential-difference method. The coefficient functions were calculated using 
the procedure of Table 1. Appendix 2 presents the computer programs of both 
methods. Test runs were performed for several time steps between 0.006RC 
and 0.06RC. They show that the differential-difference method needs 7 to 10 
% more computing time in each case.  
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Table 2. Comparison of the differential-difference and explicit method in a one-layer 
environment. Properties of the slab are: L = 0.375 m, RC = 26.35 1/h. 

 Time step  Differential-difference  Explicit 

   η/RC  error [%]   coefficients  error [%]   nodes 

   0.006      0.11      17      0.12       8 

   0.01      0.16      13      0.16       6 

   0.02      0.31       9      0.37       4 

   0.04      0.52       6      0.51       2 

   0.06      0.63       5      0.73       1 
 
 
Note that the computer programs include about the same number of program 
lines. The explicit numerical method is known as one of the simplest 
procedures for numerical heat transfer. The compact form of the differential-
difference computer program is due to the recursive property of the method. 
Both the coefficient functions and the solution are calculated with simple 
recursive formulas. 
 
A multi-layer slab or wall 
 
Although the computing time of the explicit method is slightly shorter in one 
layer slab, the situation is quite different in multi-layer environment. While 
applying the explicit method, the time increment and spatial nodal points must 
be set according to the thickness and material properties of the solid. 
Especially walls may contain several layers, many of them thin chipboards, 
plasterboards or coatings, which cannot be approximated as purely resistive 
layers. Usually the chosen time step must be relatively short otherwise the 
algorithm may become unstable. This feature is clearly seen even in a wall of 
considerably thick and massive layers. Table 3 presents a similar comparison 
as Table 2 The differential-difference method has no difficulties to compute 
the heat flow rate, but the explicit method can be applied only if the shortest 
time step is chosen. Even in this case the accuracy of differential-difference 
method is better.   
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Table 3. Comparison of the differential-difference and explicit numerical method in a multi-
layer environment. Four layers and their properties are: concrete L = 0.05 m, RC = 1.59 1/h, 
air gap R = 0.17 m2K/W, insulation L = 0.175 m, RC = 5.23 1/h and concrete L = 0.05 m, RC 
= 1.59 1/h. 
 
 Time step  Differential-difference  Explicit 

   η/RC  error [%]   coefficients  error [%]   nodes 

   0.006      0.05      14      0.32       6 

   0.01      0.06      12       -       - 

   0.02      0.11       9       -       - 

   0.04      0.15       7       -       - 

   0.06      0.20       6       -       - 
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Figure 3. Comparison of the explicit and differential-difference methods in a one-layer slab 
where L = 0.15 m and RC = 14.3 1/h. The figure illustrates heat flow rate in the plane x = 0, 
when the temperature at x = L changes stepwise. The applied time steps are 0.1RC, 0.05RC 
and 0.01RC from up to down. 
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Figure 4. Comparison of the explicit and differential-difference methods in a one-layer slab 
where L = 0.15 m and RC = 14.3 1/h. The figure illustrates percentage errors in each case of 
figure 3. 
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Figure 5. Comparison of explicit and differential-difference methods in a one-layer slab where 
L = 0.15 m and RC = 14.3 1/h. The figure illustrates heat flow rate in the plane x = 0, when 
the temperature at x = L changes rampwise. The time steps are 0.1RC, 0.05RC and 0.01RC 
from up to down. 
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Figure 6. Comparison of the explicit and differential-difference methods in a one layer slab 
where L = 0.15 m and RC = 14.3 1/h. The figure illustrates percentage errors in each case of 
figure 5.  
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Figure 7. Comparison of the explicit and differential-difference methods in a one layer slab 
where L = 0.15 m and RC = 14.3 1/h. The figure illustrates heat flow rate in the plane x = 0, 
when the temperature at x = 0 changes stepwise. The time steps are 0.1RC, 0.05RC and 
0.01RC from up to down. 
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Figure 8. Comparison of the explicit and differential-difference methods in a one-layer slab 
where L = 0.15 m and RC = 14.3 1/h. The figure illustrates percentage errors in each case of 
figure 7.  
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Figure 9. Comparison of the explicit and differential-difference methods in a one-layer slab 
where, L = 0.15 m and RC = 14.3 1/h. The figure illustrates heat flow rate in the plane x = 0, 
when the temperature at x = 0 changes rampwise. The time steps are 0.1RC, 0.05RC and 
0.01RC from up to down. 
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Figure 10. Comparison of the explicit and differential-difference method in a one-layer slab 
where L = 0.15 m and RC = 14.3 1/h. The figure illustrates percentage errors for each case 
of figure 9. 
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7.2 The differential-difference method compared 
with the pulse response method 
 
The pulse response method is a conventional approach when heat flow 
through a multi-layer slab or wall is computed. The method has been 
developed from analytical solution of heat conduction. Inputs are overlapped 
triangular pulses forming an approximate variation of any sampled input 
signal. Calculation of the response factors utilizes root finding algorithms, and 
matrix calculus.  
 
Formally, the equations describing heat flow rate by means of the pulse 
response method and the differential-difference method have several common 
features. The differences between these two methods are clearly seen from the 
following set of equations. According to Park et. al (1986) the heat flow rates 
at the surfaces of a one-layer slab using the pulse response method are the 
following 
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where Xm, Ym and Zm are called the external, cross and internal transfer 
functions. Rk refers to past heat flow rates. When the heat flow rates produced 
by the differential-difference method are modified to the same format as 
above, they can be written as: 
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A notable difference between the two methods is the number of the cross 
transfer functions Ym, m = 0, 1, 2.... The latter equations contain only one cross 
transfer function at m = 0. Other parts of the equations are formally similar in 
both cases. When methods are applied to the same slab with equal time steps, 
test runs show that N ≥ K and J ≥ M, i.e. some variables of the differential-
difference method need more transfer functions but the total number of them 
is about the same in both methods.  
 
Clearly, the pulse response method generates more accurate results and one 
also has a possibility to control the accuracy. In principle, one needs only to 
increase the number of pulse response factors to achieve numerical results 
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closer to their exact values. The differential-difference method is able to 
produce approximate results, and better accuracy is achieved only by 
decreasing the time step. Figures 11, 12, 13, and 14 illustrate the ability of the 
differential-difference method to represent a step and ramp response in a 
heavy and light multi-layer wall. The corresponding pulse response factors 
according to (97) and (98) are presented in appendix 3. 
 
Walton (1984) has studied the pulse response method. He presents the 
following Table 4 which describes the ability of the pulse response method to 
compute heat flow through thin and massive layers. The table also shows the 
number of M and K in each case. The pulse response method has difficulties in 
two areas which are indicated by hyphens and stars. The hyphens represent an 
area of long time steps and thin layers. Errors in the dynamic response of the 
slab are noticeable when the number of transfer functions is less than three. In 
the area of stars the number of transfer functions and their digits increase. This 
means problems due to the round-off errors. Walton used 32 bit real numbers. 
 
When the similar test runs are applied to the differential-difference method, 
conclusions are the same as above in the area of stars (Table 5. The number of 
coefficient functions increase beyond twenty. The floating point math 
package, built inside the computer program had problems to handle the large 
numbers. In the area of hyphens calculations were carried out without any 
difficulties. The coefficient functions are close to the same magnitude which is 
their steady state value. 
 
Table 4. Number of transfer functions (M/K) required for modelling a homogeneous slab 
computed to 0.001 percent accuracy in a steady state value presented by Walton (1984). 
Time steps are in seconds and slab thicknesses in meters, diffusivity κ=0.0029 h/m2. 
 
 Time  Thickness Of The Slab 

 Step .013 .025 .037 .051 .076 .102 .152 .305 

 3600   -     -   2/1 2/1 3/1 3/1 4/1  6/3 

 900   -   2/1 3/1 3/1 4/1 4/2 6/3 10/5 

 240 2/1 3/1 4/1 4/2 5/3 7/3 9/5   *  

 60  3/1 4/2 5/3 7/3 9/5 13/5    *   *  

 15 4/2 7/3 9/5 13/5   *    *     *   * 

 5  6/3 11/5   *    *    *    *     *   *  
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Figure 11. The heat flow rate at the plane x = 0 of a heavy, multi-layer wall, when the 
temperature in the plane x = L changes stepwise. The four layers are: concrete L = 0.05 m, 
RC = 1.59 1/h, air gap R = 0.17 m2K/W, insulation   L = 0.175 m, RC = 5.23 1/h and concrete 
L = 0.05 m, RC=1.59 1/h. Time steps are 0.050RCALL, 0.025RCALL and 0.005RCALL from up 
to down. 
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Figure 12. The heat flow rate at the plane x = 0 of a heavy, multi-layer wall, when the 
temperature in the plane x = L changes rampwise. The four layers are: concrete L = 0.05 m, 
RC = 1.59 1/h, air gap R = 0.17 m2K/W, insulation   L = 0.175 m, RC = 5.23 1/h and concrete 
L = 0.05 m, RC = 1.59 1/h. The time steps are are 0.050RCALL, 0.025RCALL and 0.005RCALL 
from up to down. 
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Figure 13. The heat flow rate at the plane x = 0 of a light, multi-layer wall, when the 
temperature in the plane x = L changes stepwise The four layers are: wood L = 0.02 m, RC = 
0.50 1/h, air gap R = 0.17 m2K/W, insulator L = 0.175 m, RC = 5.23 1/h and wood L = 0.02 m, 
RC = 0.50 1/h. The time steps are 0.050RCALL, 0.025RCALL and 0.005RCALL from up to down. 
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Figure 14. The heat flow rate at the plane x = 0 of a light, multi-layer wall, when the 
temperature in the plane x = L changes rampwise. The four layers are: wood L = 0.02 m, RC 
= 0.50 1/h, air gap R = 0.17 m2K/W, insulator L = 0.175 m, RC = 5.23 1/h and wood L = 0.02 
m, RC = 0.50 1/h.  The time steps are 0.050RCALL, 0.025RCALL and 0.005RCALL from up to 
down. 
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7.3  Time step and slab thickness vs. accuracy 
 
Due to the time derivative approximation, numerical errors of the differential-
difference approach are proportional to the selected time step. Smaller time 
steps usually means smaller absolute errors. The same feature is common to 
all numerical heat transfer methods. Consider a test case where relative errors 
are computed by summing at every time instant the difference between the 
analytical and numerical results. Then these sums are divided by the number 
of time steps and the steady state value of the response. In this way relative 
errors, characteristic of all responses are found. Table 5 shows these results as 
a function of time step size and thickness of the slab. These parameters are the 
same as in Table 4. Zeros in the upper left corner are due to the single 
coefficient function which is almost equal to the corresponding analytic value. 
The chosen time step and thickness of the slab have a noticeable effect on the 
relative error. Decreasing time step and increasing thickness makes the relative 
error smaller, until round-off errors start to cumulate. Distribution of the errors 
is also effected by the value of the lumping constant h. The table clearly shows 
combinations of those time steps and thicknesses which are not most 
appropriate for the chosen value of h.  
 
Table 5. Relative errors of the differential-difference method as a function of time step and 
thickness. Time step sizes are in seconds and thicknesses in meters. Material properties are 
the same as in Table 4. 
 
 Time  Thickness Of The Slab 

 Step .013 .025 .037 .051 .076 .102 .152 .305 

 3600 0.00 0.00 0.00 0.00 0.28 1.05 1.45 1.03 

 900 0.00 0.04 0.80 1.11 1.37 1.12 0.65 0.24 

 240 0.01 0.85 1.05 1.31 0.97 1.00 0.31   *  

 60  0.83 1.43 0.96 1.00 0.29 0.17    *   *  

 15 1.33 0.83 0.29 0.16   *    *     *   * 

 5  0.67 0.23   *    *    *    *     *   *  
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7.4  Errors involved in the differential-difference 
scheme 
  
Numerical solutions are subject to several types of errors. Numerical 
calculations are carried out using a finite number of decimal places. Rounding 
a decimal number at each step causes a small error. Although the error is small 
in size, their cumulative effect may be significant.  
 
Many numerical solutions are based on finite difference approximation of the 
time and space variable. Finite differences are derived from truncated Taylor 
series expansion. Truncation of the series causes an error at each step of the 
solution. Decreasing of the time and space subdivisions also decreases the 
error. If the mesh size becomes small, computing takes a longer time. Thus, 
the mesh size is a compromise.  
 
Similar errors also concern the differential-difference approach. However, the 
test runs described in chapter 6 and the results of Table 5 indicate that 
numerical errors are not strictly linearly dependent of the time step size.  For 
each response there probably exists an optimum step size which also has a 
slight decreasing effect on the numerical error. When several layers are 
combined the situation becomes more complex.  
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8  Applicability of the  method to dynamic 
thermal models 

8.1  Dynamic thermal models of an occupied space 
 
A dynamic thermal model of a building is usually based on the heat balance of 
an occupied space or zone. Typically, convective gains from the room surfaces 
are added and the sum is set equal to zero. This also includes the effect of 
ventilation and heat produced by internal sources. A simplified form of the 
heat balance of a zone can be expressed mathematically as 
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where φ refers to convective loads of machines, lighting, occupation and the 
heating system. Variables UR(t), Ui(t) and Uo(t) refer to the room, surface and 
outdoor temperatures. 
 
A key issue in the thermal model is how the heat balance on the surfaces of the 
room is computed. Characteristic features of the model will be determined by 
the applied algorithm. Typical is a finite difference or an analytical model, 
where the latter is usually based on the pulse transfer method. The differential-
difference method becomes a new alternative, possessing some benefits over 
the old types. All these models still require that the heat balance of the zone is 
solved at discrete time instants.  
 
The thermal model of the room can also be formulated with purely analytical 
expressions, which means evaluating all heat balances analytically. Such a 
solution is successful only under restricted assumptions. A semi-infinite slab is 
the only slab type, where a closed form solution has been presented (Rotem et 
al. 1963, Saastamoinen & Nylund 1980). For one and multi-layer slabs and 
walls such a solution involves extremely heavy algebra. Thus, a pure 
analytical approach is not a good choice.  

8.2  Single-path models 
 
Difficulties of the analytical approach have led to reduced, lumped parameter 
models. One of them is a single-path model, which represents a thermal 
response of the room temperature to a change in the outdoor temperature or 
the heating power. Only the main components of the relationship are included. 
Because the effect of surfaces and walls dominate the response, the physical 
properties of the structures must be part of the model. The response of the 
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room temperature to the outdoor disturbances is characterized as a low 
frequency response whereas that due to inside disturbances is called high 
frequency response (Cowan 1976). 
 
The differential-difference approach is well suited for reduced, single-path 
models. This kind of model is not feasible for the finite difference technique 
due to the inner nodal points of the slab. Also, the pulse transfer method is too 
complicated for such a simple model.   
 
Single-path models have been utilized especially in small microprocessor 
systems. Typical implementation is a self-tuning optimum start time control of 
heating plant (Dexter 1981, Florez & Barney 1987), control of stored-energy 
heating systems (Dexter & Hayes 1981) or heating load prediction (Pakanen 
1992). In these systems the model is an integral part of the control sequence. 
The discrete time system combined with the recursive structure of the 
differential-difference solution is well suited for these applications.   

8.3  Larger models  
 
If more details of the building and/or zone are added to the thermal model, 
obviously, the results will be better but the complexity of the system increases. 
Equations of such a model are feasible to process in matrix form. A small 
computer program for simulation of a building thermal response may contain 
a matrix equation consisting of ten to fifteen separate equations. The whole 
building is then modelled as one room a zone. A large simulation program, 
consisting of several hundred subroutines, computes, in addition to a detailed 
building envelope, the effect of internal gains, solar gains and shadowing, air 
infiltration, air movement between rooms, and controls of the HVAC-systems. 
The total building model is combined of single room or zone models. 
 
The size and implementation of the simulation programs and their thermal 
models depends on their designed application areas. An energy management 
and control system may include a thermal simulation program for optimal 
energy and control strategies of buildings. It provides a convenient tool for 
plant operators and energy managers for diagnostics checks of energy 
consumption. A stand alone tool for a design engineer or architect could be a 
computer program with a thermal model running in a PC. The program 
simulates and checks the internal temperature levels of a building under 
different loading conditions, structures and material alternatives. An energy 
analysis computer program containing 25000 program lines or more 
represents a large thermal simulation capability of a building with a 
sophisticated dynamic thermal model (Walton 1983b). 
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The differential-difference method is suitable for all those applications. As 
previously shown, the differential-difference method has some benefits over 
numerical explicit method, such as good stability, accuracy, and performance 
in multi-layer environment. Thus, the numerical explicit method and probably 
many other numerical methods could be replaced by the differential-difference 
method.  
 
When large energy analysis programs are concerned the situation is different. 
Such programs typically use a long time step and they are optimized for multi-
season applications. There is no need to compute the transfer functions 
repeatedly, and running of the complete energy analysis may take a long time. 
Preparations for the run, including numerical solution of transcendental 
equations of multi-layer walls, takes a time which is a negligible part of the 
whole run. Besides the differential-difference method, there are other methods, 
like the pulse transfer method, which are proper for such applications.  

8.4  Restrictions of the time step 
 
One criteria for choosing proper applications for the differential-difference 
method is the size of time step. The test runs indicated that good accuracy is 
achieved if a relatively short time step is used. Although proper time step 
depends on several conditions, time steps less than one hour are probably best 
for multi-layer walls of actual buildings. If the time step is larger, decreasing 
accuracy cannot be avoided. Thus, an energy analysis program, where a large 
time step is a requirement, is not suitable according to this principle. 
Conversely, there are many applications where a large time step is not 
essential. The same is true for computer programs implemented for design, 
energy management, and especially for control applications.  
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9  Summary 
 
The differential-difference approach for initial and boundary value problems 
of heat conduction find straightforward solutions in semi-infinite, one- and 
multi-layer slabs. All these solutions can be written with the aid of hyperbolic 
and exponential functions and powers. Recurrence relations of the functions 
make numerical algorithms short and effective. The solution can be presented 
either in the form of a zeroth or kth-order transfer function, and the number of 
coefficient functions is about the same as with the pulse response method. 
 
The differential-difference solution consists of an analytical space variable and 
discrete time variable. Therefore many its properties fall between numerical 
and analytical approaches. The accuracy and stability are better than that of an 
explicit numerical method but reaches the accuracy of the analytical methods 
only when time step is small. Numerical algorithms of the differential-
difference temperature functions are slightly more sophisticated than those of 
basic numerical methods. Conversely, the algorithm demands no processing of 
transcendental equations which is typical of an analytical approach. 
Consequently, the differential-difference method suits for dynamic thermal 
models of buildings in design, energy management, and control applications.  
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APPENDIX 1 
 
Convergence, consistency and stability of the solution 
 
Convergence of the series solution 
 
Solution (15) represents a functional series approaching infinite. The series 
may include both an(x) and bn(x) functions. Each term of the series is defined 
in the interval 0 ≤ x ≤ L. According to Carslaw (1963), a necessary and 
sufficient condition for the uniform convergence of the series in this interval is 
that, if any positive number ε has been chosen, as small as we please, there 
shall be a positive integer v such that for all values of x in the interval, |Rp,n(x)| 
< ε, when n ≥ v, for every positive integer p. 
 
If a solution with an(x )= 0, n = 0, 1, 2,..., and the first kind of boundary 
conditions equal to one at all time steps, is represented by a series 
 

++++ )()()()( 3210 xbxbxbxb                                                       (1) 
 
Rp,n(x) is defined as 
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It is first assumed that p = 1 and n + 1 is an odd number. Then 
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where β(x) refers to a bounded function combined of hyperbolic function and 
powers. Rn+1,n(x) consists of two types of terms. The first type is expressions 
with β(x)-functions. They all include a difference of coefficients µ, 
approaching zero as n tends to infinite. So one can choose any number ε, for 
which there is a positive integer v satisfying the required condition. 
 
The last terms of Rn+1,n(x) represents the second type of expression, for which 
one can make the same kind of conclusion. Because qx and coshqx are 
bounded, the expression approaches zero when n tends to infinite. This is due 
to the increasing value of denominators. 
 
The above case was only for p = 1. If p > 1 the expression of Rn+p,n(x)  includes 
several expressions of the second type. The condition is satisfied by all of 
them. The same is also true for terms with an even subscript n + 1. Similar 
deduction could be made for series of an(x) functions.     
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Consistency and stability 
 
The time derivative definition with the relationship between the displacement 
and the lumping constants: η, and h makes the solution (15) consistent with 
the corresponding analytical solution. Equation (15) converges to the 
analytical solution when time step approaches zero. The solution is also stable 
according to the Lax equivalence theorem (Strang 1986) stating that the 
combination of consistency and stability is equivalent to convergence. This 
theorem is valid for linear initial and boundary value problems and for 
approximation of functions. 
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APPENDIX 2 
 
Computer programs for the explicit numerical method 
and the differential-difference method 
 

      PROGRAM EXPLIC 
C COMPUTER PROGRAM OF EXPLICIT NUMER. METHOD FOR RAMP 
C RESPONSE, APPLIED TO ONE-LAYER, FINITE SLAB 
      REAL T(0:30,2),L,M,DX,DIFFUS,CONDUC,TSTEP,U2 
      READ(*,*) LOOPS,NPOINT,TSTEP,L,DIFFUS,CONDUC,U2 
    3 NPOINT = NPOINT-1 ! NUMBER OF NODAL POINTS 
      DX = L/NPOINT 
      M = DX**2/(DIFFUS*TSTEP) 
      TMP = 1.-2./M 
      IF((TMP.LT.0.).AND.(NPOINT.GT.2)) GOTO 3 
      IF((TMP.LT.0.).AND.(NPOINT.GT.1)) GOTO 100 
      DO 5 I = 0,POINT ! HEAT FLOW RATE AS A FUNCTION OF TIME 
    5 T(I,0) = 0. 
      DO 10 I = 1,LOOPS 
      T(0,1) = U2*I 
      DO 20 N = 1,NPOINT-1 
   20 T(N,1) = (T(N+1,0)+T(N-1,0))/M+TMP*T(N,0) 
      DO 30 J = 0,POINT 
   30 T(J,0) = T(J,1) 
      P1 = - CONDUC*(T(NPOINT-1,1)-T(NPOINT,1))/DX 
   10 WRITE(*,*) I,P1 
  100 CONTINUE 
      END 

 
      PROGRAM DIFFER 
C COMPUTER PROGRAM OF DIFF.-DIFF. METHOD FOR  
C RAMP RESPONSE, APPLIED TO ONE-LAYER, FINITE SLAB. 
      REAL BB(0:30),BD(0:30),P1(0:30),L,DIFFUS,CONDUC,U2,TSTEP 
      READ(*,*) LOOPS,TSTEP,L,DIFFUS,CONDUC,U2,PAR 
      KNUM = 0 ! INITIAL VALUES 
      QL = L/SQRT(DIFFUS*TSTEP) 
      BB(0) = SINH(QL) 
      BD(0) = COSH(QL) 
      DO 10 N = 1,20 ! COEFFICIENTS AND THEIR NUMBER 
      BB(N) = ((2.*N-1.)*BB(N-1)-QL*BD(N-1))/(2.*N) 
      BD(N) = -QL*BB(N-1)/(2.*N) 
   10 IF((ABS(BB(N))).LT.PAR).AND.(KNUM.EQ.0)) KNUM = N 
      DO 20 I = 0,KNUM ! HEAT FLOW RATE AS A FUNCTION OF TIME 
   20 P1(I) = 0. 
      TMP = BB(0)*L/(CONDUC*QL) 
      DO 40 N = 1,LOOPS 
      DO 30 I = KNUM,1,-1 
      P1(0) = P1(0)-BB(I)/BB(0)*P1(I) 
   30 P1(I) = P1(I-1) 
      P1(1) = P1(0)-U2*N/TMP 
      WRITE(*,*) N,P1(1) 
   40 P1(0) = 0. 
      END  
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APPENDIX 3 
 
Pulse response factors of heavy and light multi-layer 
wall 
 
The following numerical values illustrate coefficients of the differential-
difference method. The coefficients are calculated using a time step of one 
hour and modified into the form of pulse transfer method of Equations (96) 
and (97). Also physical properties of the walls are shown. 
 
Table 1. The pulse transfer coefficients of a heavy, multi-layer wall. 
 

k Rk Yk Zk Xk 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

  1.00000 
- 3.51869 
  5.43269 
- 4.92849 
  2.97607 
- 1.28541 
  0.41667 
- 0.10498 
  0.02112 
- 0.00347 
  0.00047 
- 0.00005 
  0.00001 

  0.00137 
  0.00000 
  0.00000 
  0.00000 
  0.00000 
  0.00000 
  0.00000 
  0.00000 
  0.00000 
  0.00000 
  0.00000 
  0.00000 
  0.00000 

 - 85.02454 
  149.71950 
- 154.00100 
  104.73000 
 - 50.57932 
   18.20159 
  - 5.05638 
     1.11458 
  - 0.19933 
    0.02946 
  - 0.00365 
    0.00039 
  - 0.00003 

 - 85.02368 
  149.71910 
- 154.00090 
  104.73000 
 - 50.57932 
   18.20159 
  - 5.05638 
    1.11458 
  - 0.19933 
    0.02946 
  - 0.00365 
    0.00039 
  - 0.00003 

 
 
Table 2. The material properties of the heavy, multi-layer wall. 
 
 n  Ln[m]  kn[W/mK]  ρn[kg/m3]  cn[J/kgK]  1/hs[m2K/W] 

 1 
 2 
 3 
 4 

 0.130 
 0.175 
 0.020 
 0.130 

 0.950 
 0.045 
 0.000 
 0.950 

 1923.0 
    30.0 
     0.0 
 1923.0 

 920.0 
 840.0 
    0.0 
 920.0 

 0.00 
 0.00 
 0.17 
 0.00 
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Table 3. Pulse transfer coefficients of a light, multi-layer wall. 
 

k Rk Yk Zk Xk 
0 
1 
2 
3 
4 
5 
6 

  1.00000 
- 0.98879  
  0.39830 
- 0.08876  
  0.01248 
- 0.00120 
  0.00008 

0.07030 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000

- 5.01366  
  3.03933 
- 0.90968  
  0.16030 
- 0.01846  
  0.00149 
- 0.00009 

- 4.97891 
  3.02442 
- 0.90707  
  0.16006 
- 0.01845 
  0.00149 
- 0.00009 

 
 
Table 4. The material properties of the light, multi-layer wall. 
 
 n  Ln[m]  kn[W/mK]  ρn[kg/m3]  cn[J/kgK]  1/hs[m2K/W] 

 1 
 2 
 3 
 4 

 0.020 
 0.175 
 0.022 
 0.020 

 0.140 
 0.041 
 0.000 
 0.140 

 460.0 
   30.0 
    0.0 
 460.0 

 1360.0 
  840.0 
     0.0 
 1360.0 

 0.00 
 0.00 
 0.17 
 0.00 
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