
Modeling Process

Application
requirements

System
requirements
Specification
(1)

Platform
requirements

Reference
architecture
template

Platform
module
library

Platform
architecture
design (3)

Cross-domain
architecture
style

Application
architecture
design (2)

Application
service

repository

System allocation/
configuration/
refinement (4)

Quality
evaluation
(5)

Realization
(HW/SW)
(6)

Evaluation
criteria

Validated system
Architecture

models

 VTT PUBLICATIONS 705
VTT CREATES BUSINESS FROM TECHNOLOGY
 Technology and market foresight • Strategic research • Product and service development • IPR and licensing
• Assessments, testing, inspection, certifi cation • Technology and innovation management • Technology partnership

• • • VTT PU
B

LIC
A

TIO
N

S 705 M
O

D
EL A

N
D

 Q
U

A
LITY D

R
IVEN

 EM
B

ED
D

ED
 SYSTEM

S EN
G

IN
EER

IN
G

ISBN 978-951-38-7336-3 (URL: http://www.vtt.fi /publications/index.jsp)
ISSN 1455-0849 (URL: http://www.vtt.fi /publications/index.jsp)

Eila Ovaska, András Balogh, Sergio Campos, Adrian Noguero,
András Pataricza, Kari Tiensyrjä & Josetxo Vicedo

Model and Quality Driven Embedded
Systems Engineering

VTT PUBLICATIONS

692 Kimmo Keränen. Photonic module integration based on silicon, ceramic
and plastic technologies. 2008. 101 p. + app. 70 p.

693 Emilia Selinheimo. Tyrosinase and laccase as novel crosslinking tools for
food biopolymers. 2008. 114 p. + app. 62 p.

694 Olli-Pekka Puolitaival. Adapting model-based testing to agile context.
2008. 69 p. + app. 6 p.

695 Minna Pikkarainen. Towards a Framework for Improving Software
Development Process Mediated with CMMI Goals and Agile Practices.
2008. 119 p. + app. 193 p.

696 Suvi T. Häkkinen. A functional genomics approach to the study of alkaloid
biosynthesis and metabolism in Nicotiana tabacum and Hyoscyamus
muticus cell cultures. 2008. 90 p. + app. 49 p.

697 Riitta Partanen. Mobility and oxidative stability in plasticised food
matrices. The role of water. 2008. 92 p. + app. 43 p.

698 Mikko Karppinen. High bit-rate optical interconnects on printed wiring
board. Micro-optics and hybrid integration. 2008. 162 p.

699 Frej Wasastjerna. Using MCNP for fusion neutronics. 2008. 68 p. + app.
136 p.

700 Teemu Reiman, Elina Pietikäinen & Pia Oedewald. Turvallisuuskulttuuri.
Teoria ja arviointi. 2008. 106 s.

701 Pekka Pursula. Analysis and Design of UHF and Millimetre Wave Radio
Frequency Identifi cation. 2008. 82 p. + app. 51 p.

702 Leena Korkiala-Tanttu. Calculation method for permanent deformation
of unbound pavement materials. 2008. 92 p. + app. 84 p.

703 Lauri Kurki & Ralf Marbach. Radiative transfer studies and Next-
Generation NIR probe prototype. 2009. 43 p.

704 Anne Heikkilä. Multipoint-NIR-measurements in pharmaceutical powder
applications. 2008. 60 p.

705 Eila Ovaska, András Balogh, Sergio Campos, Adrian Noguero, András
Pataricza, Kari Tiensyrjä & Josetxo Vicedo. Model and Quality Driven
Embedded Systems Engineering. 2009. 208 p.

VTT PUBLICATIONS 705

Model and Quality Driven Embedded
Systems Engineering

Eila Ovaska & Kari Tiensyrjä
VTT Technical Research Centre of Finland

Sergio Campos, Adrian Noguero & Josetxo Vicedo
European Software Institute (ESI)

András Balogh & András Pataricza
Budapest University of Technology and Economics (BME)

ISBN 978-951-38-7336-3 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT 2009

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 5, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 7001

VTT, Bergsmansvägen 5, PB 1000, 02044 VTT
tel. växel 020 722 111, fax 020 722 7001

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O. Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax +358 20 722 7001

Technical editing Leena Ukskoski

Text preparing Tarja Haapalainen

3

Eila Ovaska, András Balogh, Sergio Campos, Adrian Noguero, András Pataricza, Kari Tiensyrjä &
Josetxo Vicedo. Model and Quality Driven Embedded Systems Engineering. Espoo 2009. VTT
Publications 705. 208 p.

Keywords methodology, modelling, evaluation, quality, embedded systems engineering

Abstract
The world of embedded systems is broad and diverse, addressing a wide variety
of application domains. Although technologically, the situation for embedded
systems is still quite fragmented, platform-based engineering, reference designs
and maturing system domains have effected great changes. However, the
features of modern embedded systems are changing at such a rate that it is
increasingly difficult for companies to bring new products to the market within
acceptable time scales and still guarantee acceptable levels of operational
quality. This report aims for its part to increase the convergence of views with
regard to embedded systems technologies and engineering methods.

The objective of this report is to introduce the methodology framework for
model and quality driven embedded systems engineering. The framework is
composed of three key artefacts, which provide the basis for building specific
methodology instances. While instantiating this methodology framework, it has to
be adapted to the needs and constraints of that specific application domain and
development organisation.

The first key artefact of the methodology framework is the process model, the
Y-chart model. The second key artefact is the Unified Modelling Language
(UML) adapted to embedded systems engineering with a specific profile. The
third key artefact consists of a set of evaluation methods that have been selected
for use in embedded system engineering. Within the conclusions, an initial
integrated development environment is introduced for embedded systems
engineering.

The methods selected for the methodology framework have been validated in
different application domains of embedded or/and software systems engineering
areas.

4

Foreword
This report is related to the European joint undertaking, called ARTEMIS
(Advanced Research & Technology for EMbedded Intelligence and Systems), in
the arena of embedded intelligence and systems engineering. The vision of
ARTEMIS is that embedded systems will realise ambient intelligence in the
physical objects of our everyday life and also in large-scale applications. By
these means, ARTEMIS will increase the quality of people�s lives by making
life healthier, more secure and by providing more comfort for Europe�s ageing
population. Moreover, ARTEMIS aims to strengthen Europe�s position in
embedded intelligence and systems and to attain world-class leadership in this
area.

This report introduces the first results of the methodology framework research
made in one work package of the GENESYS (GENeric Embedded SYStem
platform, FP7-213322) project [GENESYS 2008], which is an EU-funded effort
to tackle the challenges of future embedded systems defined in ARTEMIS-SRA
(http://www.artemis-sra.eu/). The work was done in collaboration with researchers
from VTT, European Software Institute (ESI) and Budapest University of
Technology and Economics (BME).

I would like to thank Professor Veikko Seppänen from the University of Oulu
for his insights and valuable comments for improving this report.

I hope that readers in future ARTEMIS projects and more broadly in
embedded systems engineering will find this report to be both interesting and
useful.

January 2009

Eila Ovaska
Research Professor
Leader of the Methodology and Tools work package in the GENESYS project

5

Contents

Abstract ..3

Foreword ... 4

Key Abbreviations ... 9

Part 1. Introduction ... 12
1.1 Overview... 12
1.2 Definitions ... 13

1.2.1 Methodology Framework.. 13
1.2.2 Domain... 14
1.2.3 The Cross-domain Style and Template ... 14
1.2.4 Embedded System... 15
1.2.5 Service Description .. 15
1.2.6 Service Modelling... 15
1.2.7 Ontology... 16
1.2.8 Dependability ... 16

1.2.8.1 Safety... 17
1.2.8.2 Reliability.. 18
1.2.8.3 Availability .. 19
1.2.8.4 Security .. 19

1.2.9 Scalability ... 20
1.2.10 Performance ... 20
1.2.11 Evolvability .. 20
1.2.12 Quality of Service (QoS) ... 20

1.3 Principles of the Methodology Framework.. 21
1.3.1 Embedded Systems Engineering Process... 21
1.3.2 Model Driven Development.. 22
1.3.3 Model Representation.. 22
1.3.4 Modelling Semantics.. 23
1.3.5 Formal Methods ... 23
1.3.6 Quality and Non-Functional Properties .. 24
1.3.7 Support for Early V&V.. 24
1.3.8 Integrated Development Environment ... 24

6

Part 2. Process Model .. 26
2.1 Overview... 26
2.2 Process Phases .. 28

2.2.1 System Requirements Specification .. 28
2.2.2 Application Architecture Design ... 29
2.2.3 Platform Architecture Design ... 30
2.2.4 System Allocation / Configuration / Refinement... 31
2.2.5 Quality Evaluation .. 31
2.2.6 System Realization .. 32

2.3 Artefacts.. 33

Part 3. Modelling and Evaluation.. 35
3.1 System Requirements Specification ... 35

3.1.1 Requirements Elicitation .. 37
3.1.2 Requirements Analysis and Documentation .. 38
3.1.3 Requirements Traceability ... 41

3.2 Architecture Design... 41
3.2.1 Selection of Modelling Languages ... 42
3.2.2 Architectural Elements ... 46
3.2.3 Architectural Views, Models and Transformations... 47

3.3 Application Architecture Design .. 48
3.3.1 Structural View... 50
3.3.2 Syntactical View... 55
3.3.3 Behaviour View .. 58
3.3.4 Semantic View ... 62

3.4 Platform Architecture Design .. 63
3.4.1 Structural View... 65

3.4.1.1 MARTE GRM Concepts for Execution Platform Modelling........................ 66
3.4.1.2 Modelling Processing Units and Tasks.. 68
3.4.1.3 Modelling Shared Resources... 69
3.4.1.4 Modelling Variables and Shared Memory .. 70
3.4.1.5 Modelling Communication Resources ... 70
3.4.1.6 Modelling Platform Black-boxes... 71
3.4.1.7 Modelling Timing Resources.. 72
3.4.1.8 Further Refining Platform Structural Models.. 73

3.4.2 Behaviour View .. 73
3.4.3 Code View.. 76

3.5 Platform Module Library.. 77
3.6 Integration and Development of Platform Services .. 79

3.6.1 Interfacing with Platform Services.. 79
3.6.2 Describing the Behaviour of the Services .. 80
3.6.3 Design Process for New Platform Services ... 80

3.7 System Allocation / Configuration / Refinement ... 81
3.7.1 Schedulability Analysis and Simulation.. 83

3.7.1.1 Scheduling View .. 83
3.7.1.2 Analysis and Simulation Tools ... 87

7

3.7.1.3 Concepts of Scheduling View .. 95
3.8 Quality Evaluation ... 97

3.8.1 Performance Evaluation... 98
3.8.1.1 Pre-requisites... 100
3.8.1.2 System Requirements Definition.. 100
3.8.1.3 Application Architecture Design ... 101
3.8.1.4 Platform Architecture Design ... 102
3.8.1.5 System Allocation / Configuration / Refinement....................................... 103

3.8.2 Performance Evaluation Methods.. 104
3.8.2.1 Performance Evaluation of Software Architecture 105
3.8.2.2 Application-platform Performance Evaluation.. 108

3.8.3 Power/Energy Efficiency Evaluation .. 117
3.8.3.1 Pre-requisites... 118
3.8.3.2 System Requirements Definition.. 118
3.8.3.3 Application Architecture Design ... 119
3.8.3.4 Platform Architecture Design ... 120
3.8.3.5 System Allocation / Configuration / Refinement....................................... 120

3.8.4 Power/Energy Evaluation Techniques ... 120
3.8.4.1 Power Analysis in a Multiprocessor Simulation Platform......................... 121

3.8.5 Reliability and Availability Evaluation... 124
3.8.5.1 System Requirements Specification .. 125
3.8.5.2 Architecture Design.. 128

3.8.6 Reliability and Availability Evaluation Methods .. 130
3.8.6.1 Reliability Prediction of Component Based Architectures........................ 130
3.8.6.2 Reliability Evaluation in Model Driven Development................................ 132
3.8.6.3 Reliability and Availability Prediction and Testing.................................... 135
3.8.6.4 Commercial Reliability Analysis Tools ... 136

3.8.7 Safety Analysis... 137
3.8.7.1 Safety Analysis Techniques... 138
3.8.7.2 GENESYS Safety Certification Approach.. 143
3.8.7.3 Prerequisites .. 145
3.8.7.4 System Requirements Specification .. 146
3.8.7.5 Fault and Hazard Modelling ... 148

3.8.8 Safety Analysis Methods (PSSA Stage) .. 150
3.8.8.1 Hip-HOPS Method ... 151
3.8.8.2 Model Checking Method .. 155
3.8.8.3 Commercial Safety Analysis Tools .. 158

3.8.9 Composability Evaluation... 158
3.8.9.1 Model-Based Evaluation .. 160
3.8.9.2 Component Based Evaluation ... 163

3.8.10 Evolvability Evaluation .. 166
3.8.10.1 Adaptability Evaluation... 167
3.8.10.2 Extensibility Evaluation .. 170
3.8.10.3 Maintainability, Flexibility and Modifiability Evaluation............................. 172
3.8.10.4 Trade-off Analysis .. 177

3.8.11 Summary of Quality Evaluation .. 179

8

Part 4. Conclusions and Future Work .. 181
4.1 Overview... 181
4.2 Integrated Development Environment .. 181

4.2.1 Extra Requirements ... 181
4.2.1.1 Support for Multiple Modelling Languages... 181
4.2.1.2 Collaborative Development Support .. 182
4.2.1.3 Open, Extensible Design Environment .. 182

4.2.2 Integrated Design Environment ... 182
4.2.2.1 Versioning Artefact Storage ... 185
4.2.2.2 Artefact Catalogue and Access Rights Management 185
4.2.2.3 Query Services .. 186
4.2.2.4 Navigation and Traceability.. 186
4.2.2.5 Model Transformation Engine.. 186
4.2.2.6 Workflow Orchestration Layer.. 187
4.2.2.7 Client Communication and Event Dispatching... 187

4.2.3 Model Transformations .. 187
4.2.3.1 From requirements to PIM and PM.. 188
4.2.3.2 PIM-related Transformations ... 188
4.2.3.3 Import from Model Libraries / Repositories .. 189
4.2.3.4 System Allocation / Configuration / Refinement....................................... 189
4.2.3.5 PSM to Analysis Transformations.. 190
4.2.3.6 Source and Configuration Files Generation... 191

4.2.4 Available Technologies for the Tool Development... 191
4.2.4.1 Available Technologies .. 191
4.2.4.2 Research and Development Items... 192

4.3 Evaluating Methodology Framework... 193
4.4 Lessons Learned .. 197

References.. 199

9

Key Abbreviations
API Application Programming Interface
ARTEMIS Advance Research & Technology for Embedded Intelligence and

Systems
BIP Behaviour, Interaction, Priority
BMSC Basic Message Sequence Chart
CCA Common Cause Analysis
CCS Cruise Control System
COTS Components off-the-shelf
CP Configuration and Planning
CPU Central Processing Unit
DAS Distributed Application Subsystem
DM Diagnostics and Maintenance
DSL Domain Specific Language
DSML Domain Specific Modeling Language
EMF Eclipse Modeling Framework
FES Failure Effects Summary
FHA Functional Hazard Assessment
FLM Failure Logic Modeling
FM Formal Method
FMEA Failure Modes and Effects Analysis
FMEA Failure Modes and Effects Analysis
FMECA Failure Modes Effect (and Criticality) Analysis
FSM Finite State Machine

10

FTA Fault Tree Analysis
GCM Generic Component Model
GENESYS GENeric Embedded SYStem platform
GQAM Generic Quantitative Analysis Modeling
GRM Generic Resource Modeling
HALM High Level Application Modeling
HMSC High level Message Sequence Chart
HRM Hardware Resources Modeling
HW Hardware
IP Intelligent Property
IPC Inter Process Communication
LI Local Interface
LIF Linking Interface
LQN Layered Queuing Network
LTS Labelled Transition System
LTSA Labelled Transition System Analyser
MARTE Modelling and Analysis of Real-time and Embedded systems
MDA Model Driven Architecture
MDR Meta Data Repository
MPSoC Multi-Processor System- on-Chip
MSC Message Sequence Chart
MTBF Mean Time Between Failure
MTTCF Mean Time To Critical Failure
MTTF Mean Time To Failure
MTTR Mean Time To Repair
NFP Non-Functional Property
OS Operating System
OWL Web Ontology Language
OWL-S Web Ontology Language for Services
PAM Performance Analysis Modeling
PHA Preliminary Hazard Assessment

11

PIM Platform Independent Model
PM Platform Model
PoF Probability of Failure
PSM Platform Specific Model
PSSA Preliminary System Safety Assessment
QA Quality Attribute
QoS Quality of Service
RAM Requirements Engineering Abstraction Model
RAP Reliability and Availability Prediction
SAM Schedulability Analysis Modeling
SIL Safety Integrity Level
SRM Software Resources Modeling
SW Software
SysML Systems Modeling Language
TCP Transmission Control Protocol
TET Trustworthiness Evaluation and Testing
UML Unified Modeling Language
V&V Verification and Validation
VPM Visual and Precise Metamodelling
WSDL Web Service Description Language
WSMO Web Service Modelling Ontology
XMI XML Metadata Interchange
XML eXtensible Markup Language
XSLT Extensible Stylesheet Language Transformations

12

Part 1. Introduction
1.1 Overview

This report defines a methodology framework for embedded systems engineering
including 1) the process model, 2) a specific modelling approach for embedded
system engineering and 3) a selected set of evaluation methods that helps in
early evaluation of a system�s quality. Furthermore, an integrated development
environment is introduced for assisting in the smooth design of embedded systems.

The objective of this report is to define a methodology framework for
developing embedded systems according to the cross-domain architecture style
and the reference architecture template, which were defined at the same time
with this methodology framework in the GENESYS project [GENESYS 2008].
The term �cross-domain� refers to different industrial fields, such as automotive,
avionics and mobile phones. The methodology framework is composed of three
main parts, which provide the basis for building specific methodology instances.

The first part of the methodology framework (Figure 1) is the modelling
process. It is based on the Y-chart model including the ordered phases with
input, output and trigger definitions for each phase.

The second part is the primary modelling language; the Unified Modelling
Language (UML), adapted to embedded systems engineering with the MARTE
(Modelling and Analysis of Real-time and Embedded systems) profile [OMG
2008]. Although other modelling languages are allowed, proper model
transformations between the primary language and specific ones are to be
supported by the provider of that specific language. For each modelling phase, a
set of architectural views are defined.

The use of specific views depends on the selected quality evaluation methods
and tools, which are defined in the third part as an extensive set of evaluation
methods and their supporting tools. Guidelines and examples are given by
illustrating how to use the UML-MARTE modelling language.

Part 1. Introduction

13

M
od

el
in

g
La

ng
ua

ge
s

R
eq

ui
re

m
en

ts
V

ie
w

s

A
rc

hi
te

ct
ur

e
V

ie
w

s

Q
ui

de
lin

es

E
xa

m
pl

e

S
pe

ci
fic

 V
ie

w
s

Q
ua

lit
y

E
va

lu
at

io
n

M
et

ho
ds

Integrated Development Environment

M
od

el
in

g
To

ol
s

Quality Evaluation Tools

P
ef

or
m

an
ce

R
el

ia
bi

lit
y

 &

A
va

ila
bi

lit
y

S
af

et
y

S
ce

du
la

bi
lit

y
A

na
ly

si
s

&

S
im

ul
at

io
n

O
th

er
s

M
od

el
Tr

an
sf

or
m

at
io

ns

Genesys Methodology Framework

Modelling Process

Figure 1. The Methodology Framework.

In the conclusion part, a tool environment is introduced through which the
methods and techniques selected for the architecture modelling and evaluation
phases are integrated and adapted together to support a smooth design flow. The
integrated development environment defines the development infrastructure that
allows tracing modelling artefacts between process phases, a set of model
transformations for extending modelling capabilities and support for adapting
commercial and open source tools for executing the selected instance of the
methodology framework.

1.2 Definitions

1.2.1 Methodology Framework

The methodology framework provides support for the definition of an engineering
process which is composed of suitable (design, evaluation, testing etc.) methods,
techniques and tools. Methodology defines the process, methods and tools to be
used in the development of different types of embedded systems, i.e. the
methodology is an instance of the methodology framework.

Part 1. Introduction

14

The methodology framework is intended for the development of embedded
systems and products by developing and integrating components and services
according to the specified reference architecture defined by a cross-domain
architectural style and a reference architecture template.

1.2.2 Domain

The term �domain� differs in meaning according to context. In general, however,
it refers to the field of study, e.g., the domain of computer science, the field of
interest, e.g., embedded system engineering, or the field of applications, e.g.
automotive industry.

1.2.3 The Cross-domain Style and Template

The cross-domain architectural style defines a set of principles for designing
GENESYS architecture [GENESYS 2008]. These principles are classified
according to seven categories. The last one concerns system design and evolution
and is relevant from the methodology development point of view:

• model-based design is to be adopted,

• name space design is to be followed; separate namespaces for the
logical and physical system architecture,

• modular certification in order to reduce cost and to focus on quality
assurance effort for the most critical parts of a system, and

• legacy integration is to be supported and technology obsolescence to
be avoided by separation of designs from implementation technologies.

The reference architecture template [GENESYS 2008] describes a set of core
and optional services which can be used as such in the system development. The
core services are applicable for all application domains while optional services
are domain specific. The cross-domain architecture style and the reference
template will be published in a book in late 2009. The cross-domain architecture
style and the reference architecture are not the topics of this report but need to be
understood because the methodology framework aims to support the
development of embedded systems which follow the cross-domain architecture
style and reference architecture template, rather than any kind of embedded
systems engineering.

Part 1. Introduction

15

1.2.4 Embedded System

According to [ES 2008] embedded systems can be characterized as follows:

• Embedded systems are designed to do some specific task, rather than be
a general-purpose computer for multiple tasks. Some also have real-time
performance constraints that must be met, for reasons such as safety and
usability; others may have low or no performance requirements, allowing
the system hardware to be simplified to reduce costs.

• Embedded systems are not always standalone devices. Many embedded
systems consist of small, computerized parts within a larger device that
serves a more general purpose. For example, an embedded system in an
automobile provides a specific function as a subsystem of the car itself.

• The program instructions written for embedded systems are stored in
read-only memory or Flash memory chips. Embedded systems run with
limited computer hardware resources: little memory, small or non-existent
keyboards and/or screens.

1.2.5 Service Description

Service description is an explicit and detailed definition supported by a low (but
not detailed) level process model. The textual definition is augmented by
machine-readable semantic information about the service which facilitates the
service mediation and consistency checking of the architecture.

Service description includes a set of quality indicators and non-functional
properties (e.g. power consumption, timing, availability, etc.).

Service description defines a link to the information model showing what
information/functionality the �Service� owns and which information/functionality,
owned by other �Services�, it references.

Service description provides a list of known other �Services� that depend
upon its function or information and the documentation of their requirements.

1.2.6 Service Modelling

Service modelling produces a service description by exploiting generic graphical
modelling languages, such as Unified Modelling Language (UML), and/or

Part 1. Introduction

16

textual notations such as Web Services Description Language (WSDL) and Web
Ontology Language for services (OWL-S).

1.2.7 Ontology

Ontology is a shared knowledge standard or a knowledge model defining the
primitive concepts, relations, rules, and their instances comprising a relevant
knowledge topic. Ontology is used for capturing, structuring, and enlarging explicit
and tacit knowledge across people, organizations, systems, and software services.

1.2.8 Dependability

Dependability is the collective term used to describe availability performance
and its influencing factors (Figure 2): reliability, maintainability and maintenance
support for performance. [IEC IEV 2008]. The IFIP 10.4 Working Group on
Dependable Computing and Fault Tolerance defines dependability as �the
trustworthiness of a computing system which allows reliance to be justifiably
placed on the service it delivers�. [IFIP WG 10.4 2008].

Basically, Dependability of a computing system is the ability to deliver
service that can justifiably be trusted. The service delivered by a system is its
behaviour as it is perceived by its user(s); a user is another system (physical,
human) that interacts with the former at the service interface. The function of a
system is what the system is intended to do, and is described by the functional
specification. Correct service is delivered when the service implements the
system function. A system failure is an event that occurs when the delivered
service deviates from correct service. A failure is thus a transition from correct
service to incorrect service, i.e., to not implementing the system function. The
delivery of incorrect service is defined as a system outage.

Based on the definition of failure, an alternate definition of dependability,
which complements the initial definition in providing a criterion for adjudicating
whether the delivered service can be trusted or not can be given thus: the ability
of a system to avoid failures that are more frequent or more severe, and outage
durations that are longer, than is acceptable to the user(s).

Part 1. Introduction

17

Figure 2. Dependability is a general concept that manages different attributes [see
Dependability Attributes, http://en.wikipedia.org/wiki/Dependability]

1.2.8.1 Safety

Safety describes the absence of catastrophic environmental consequences. The
Safety S(t) of a system can be expressed as: S(t) = Prob (system is fully
functioning or has failed in a manner that causes no harm in [o,t]).

A metric for safety S(t) is MTTCF, the Mean Time to Critical Failure, defined
similarly to MTTF and normally expressed in hours.

Closely related to the concept of safety design requirement is the Safety
Integrity Level (SIL), defined as a relative level of risk-reduction provided by a
safety function, or to specify a target level of risk reduction. Four SIL levels are
defined in (Table 1), with SIL4 being the most dependable and SIL1 being the
least. A SIL is determined based on a number of quantitative factors in
combination with qualitative factors such as development process and safety life
cycle management. The requirements for a given SIL are not consistent among
all of the functional safety standards.

Table 1. Safety Integrity Levels.

DEPENDABILITY
ATTRIBUTES

Reliability Availability Safety Security

Part 1. Introduction

18

Different standards are defined according to application domains. The international
standard IEC 61508 defines SIL using requirements grouped into two broad
categories: hardware safety integrity and systematic safety integrity. A device or
system must meet the requirements for both categories to achieve a given SIL.

The SIL requirements for hardware safety integrity are based on a
probabilistic analysis of the device. To achieve a given SIL, the device must
have less than the specified probability of dangerous failure and have greater
than the specified safe failure fraction. These failure probabilities are calculated
by performing a Failure Modes and Effects Analysis (FMEA). The actual targets
required vary depending on the likelihood of demand, the complexity of the
device(s), and the types of redundancy used.

Electric and electronic devices can be certified for use in functional safety
applications according to IEC 61508, providing application developers the evidence
required to demonstrate that the application including the device is also compliant.

Specific adaptations of standard IEC 61508 are IEC 61511, used in the
petrochemical and hazardous chemical industries and EN 50128, EN 50129 in
rail domain. Other standards are ISO/WD 26262 in the automotive domain and
DO-178B for aeronautics systems.

1.2.8.2 Reliability

Reliability � probability of correct service for a given duration of time.
The Reliability S(t) of a system can be expressed as: S(t) = Prob (system is

fully functioning or has failed in a manner that does cause no harm in [o,t]). [see
http://en.wikipedia.org/wiki/Reliability_engineering#Reliability_theory].

Reliability is closely related to safety: it is the length of time the system must
be able to operate without the safety aspects being jeopardised. For this reason,
reliability and safety are often treated together, and usually, a trade-off must be
made between them. One way to change reliability/safety can be by adding
redundant systems, or adding components to verify the correct operation of the
basic functionality. The net result of redundancy is that safety increases (more
error situations can be detected and trapped/reported), but that reliability
decreases (the redundant system itself can fail as well).

Part 1. Introduction

19

1.2.8.3 Availability

Availability � probability of readiness for correct service. Availability is the
measure of dependability with respect to readiness for usage.

In applications where short periods of downtime are acceptable, they must be
minimized in order to maximize the availability of the service that is delivered
(closely related to the Quality of Service). A number of statistical methods,
based on the history of the system, have proven their value on the hardware
level. For software, however, the stochastic approach is still being investigated
and/or developed for the most part.

Depending on how redundancy is built into the system, there will be an impact
on availability.

Cumulative downtime or uptime over an extended period of time (possibly
expressed as a percentage) is the typical measures used to describe this aspect.

Also, the number of failures per (extended) period of time (e.g. a year) can
provide valuable information, or even better, the mean time of occurrence of the
first failure. These are statistical metrics, which can be drawn from historic data,
if available.

At this time, it makes sense to distinguish between repairable systems (either
subject to maintenance and/or failing systems can be replaced entirely) and non-
repairable systems (inaccessible systems like satellites). For the latter ones,
cumulative up or downtime has little or no meaning. If a failure causes the system
to go down, then it becomes practically impossible to get it operational again.

The Availability A(t) of a system can be expressed as: A(t) = Prob (system is fully
functioning at time t). A metric for the average is A (t) = MTTF / MTTF + MTTR
where MTTR = 1/t and t is the constant repair rate. A(t) is normally expressed in %.
[http://en.wikipedia.org/wiki/Availability]

1.2.8.4 Security

Security is the condition of being protected against danger, loss, and criminals.
Security is a concept related to safety and reliability. [http://en.wikipedia.org/
wiki/Security#Types_of_security]. Information security attributes define the
aspects of a system that security is formed, drawing from the composite notion
of security as the combination of the following properties: 1) confidentiality, i.e.
the prevention of unauthorized disclosure of information; 2) integrity, i.e. the
prevention of unauthorized modification (amendment or deletion) of information

Part 1. Introduction

20

(including accountability and non-repudiation as subcategories); and 3)
availability, i.e. the prevention of unauthorized withholding of information.
[http://en.wikipedia.org/wiki/Information_security].

1.2.9 Scalability

A system or technique is called scalable if for increasing size of the system or
problem, the complexity is reasonably bounded (i.e. linear or polynomial).

1.2.10 Performance

Performance has three dimensions: Responsiveness measured as response time
and throughput; Resource utilization categorized into processing units, memory,
communication, energy and peripherals; and Scalability measured as the ability
of the system to continue its responsiveness objectives as the demand for
functions varies.

1.2.11 Evolvability

Evolvability refers to the ability of a system to persist in the face of changing
conditions. The changing conditions to be taken into account in the GENESYS
methodology specification are those changes that may happen during the design
time, i.e. while designing the platform architecture (i.e. defining variability) and
applying the platform architecture to product development (i.e. reusability,
integrability, extensibility, managing variability).

1.2.12 Quality of Service (QoS)

Quality of service refers to the non-functional and quality properties of services
at different levels. QoS is the degree to which a service meets its quality
requirements and end-user needs (i.e. availability, reliability and performance).
QoS quantifies the service fitness based on the collective behaviour of composite
services.

Part 1. Introduction

21

1.3 Principles of the Methodology Framework

This section describes eight principles that the methodology framework follows:
1) the Embedded systems engineering process, 2) Model driven development,
3) Model representation, 4) Modelling semantics, 5) Formal methods, 6) Quality
and non-functional properties, 7) Support for early verification and validation
and 8) Integrated development environment. These principles are cluster
definitions based on a set of requirements identified and defined for the
methodology framework. (these detailed requirements are referred to using
numbers 3.1�3.41 in the sub-sections 1.3.1�1.3.8, but not described in this
document due to space limitations). Some principles are also related to the cross-
domain architectural style, referred to here as architectural principles. Each
methodology principle is introduced by a description, rationale and the supporting
part of the methodology framework. The description explains what the principle
is about while the rationale justifies its importance and support defines where
and how the principle is to be considered in the methodology framework.

1.3.1 Embedded Systems Engineering Process

The methodology framework supports the full lifecycle of embedded systems. It
also supports top-down and bottom-up development of embedded systems. The
top-down development model assists in developing new embedded systems
according to the cross-domain architecture style and the reference architecture
template providing support for design and evaluation. The bottom-up development
model supports the adoption of the style and template by providing support for
integrating legacy components to the system design models and upgrading an
old platform to conform with the cross-domain architecture style and the reference
architecture template.

To make it easy to adopt the process model, it has been divided into a set of
independent development phases, which are smoothly interoperable.

Rationale: Requirements 3.1�3.6 and architectural principles �Name space design�,
�Legacy integration�, and �Technology obsolescence�.

Support: The process model, the defined methods, tools and guidelines.

Part 1. Introduction

22

1.3.2 Model Driven Development

The methodology framework supports the development of embedded systems
based on the cross-domain architecture style and reference architecture template.
The style follows the model driven development; models are primary artefacts
which are represented on two abstraction levels as platform independent models
(PIM) and platform specific models (PSM). Three kinds of model transformations
are supported: vertical, horizontal and hybrid.

• The top-down vertical transformation is used to convert requirements
to PIM, PIM to heterogeneous computation models and code. Bottom-
up vertical transformation supports code-to-simulation models.

• Horizontal transformations provide support for transforming a model
to another model at the same abstraction level. For instance, the
models for performance analysis and reliability prediction are extracted
from the PSM of a particular integration level (L1�L3). Integrability
analysis is supported by scenario models on the PIM and PSM levels.

• Hybrid transformation supports an activity, which includes several
development phases in a loop and requires models at multiple
abstraction levels, e.g. test modelling, test generation, test execution,
and design updates based on test results.

Rationale: Requirements 3.16�3.18, Architectural principles �Model-based design�,
and �Technology obsolescence�.

Support: PIM and PSM modelling practice for embedded systems engineering.
Transformation rules for the defined set of transformations (as part of the integrated
engineering environment).

1.3.3 Model Representation

The methodology framework supports different model representations. A view
provides a projection of the architecture within models and diagrams by forming
one coherent part of the architecture description, e.g. a structural view and an
interface view. Textual languages are used for describing intended behaviour of
services, a modelling language for describing structure and behaviour and a
specific interface language for service interface descriptions. The selected
languages are extended for describing non-functional properties and service

Part 1. Introduction

23

semantics. Mappings from requirements to models and from models to computing
resources are supported, as well as model consistency checking.

Rationale: Requirements 3.7�3.15.

Support: Views, languages and mappings and appropriate model verification
techniques for model checking.

1.3.4 Modelling Semantics

Semantics is defined at two levels: interface semantics at all integration levels;
service semantics of open systems on L3. Semantic models allow the extension
of the meaning of services at design time. Service semantics is expressed in a
machine readable format for dynamically introduced services of open systems
on the level L3.

Rationale: Requirements 3.20�3.21, Architectural principle �Service semantics�,
related to req. 3.7.

Support: Service categories, the types of LIFs (Linking Interfaces), interdependencies
of services, rules for design-time and run-time usage of services defined by the
cross-domain architecture style and reference architecture template.

1.3.5 Formal Methods

The framework provides a formal modelling language which allows a precise
definition of system behaviour, model checking capabilities, modular proofing,
i.e. module or subsystem-based proofing interactive proving of theorems, and
verification of causal and temporal behaviour in a limited scope.

Rationale: Requirements 3.22�3.25.

Support: A formal language for modelling behaviour of embedded systems.
 A model checking tool.
 Tools and guidance for interactive proving of modular systems.
 A method and tool for verification of causal and temporal behaviour.

Part 1. Introduction

24

1.3.6 Quality and Non-Functional Properties

The framework supports modelling and evaluating non-functional (NF) and quality
properties at the model level:

• scalability required due to the diversity of used technologies and
application domains, related to other NF/quality properties, e.g.
performance

• composability which is related to miss-match identification of service
interfaces and semantics

• performance and power/energy

• dependability, including reliability, availability, safety and security

• evolvability by focusing on checking the use of �standard� design
practices and variability management

• trade-off analysis between the above mentioned NF/quality properties.

Rationale: Requirements 3.26�3.30, Architectural principle �Evolvability�.

Support: Methods and tools for designing and evaluating the defined NF/quality
properties.

1.3.7 Support for Early V&V

Early verification and validation deals with the functional properties of
embedded systems. The framework facilitates early V&V by supporting HW and
SW partitioning, simulation and (virtual) prototyping and heterogeneous simulations
including models and code.

Rationale: Requirements 3.31�3.33.

Support: Methods and tools for partitioning, simulation and rapid prototyping.

1.3.8 Integrated Development Environment

The framework provides an integrated development environment which
automates the V&V process flow and supports repetitive design and V&V tasks
and unit test generation. The integrated development environment automates
mappings by providing support for vertical transformations between abstraction

Part 1. Introduction

25

levels and horizontal transformations at the same abstraction level. However, the
environment allows the user to control the design flow. HDL-based synthesis is
also supported.

Rationale: Requirements 3.34�3.41.

Support: Tools for semiautomatic development and integration of embedded systems.

26

Part 2. Process Model
2.1 Overview

Figure 3 represents the main phases of the embedded systems development based on
the cross-domain architecture style and the reference architecture template. Despite
these phases, the process model is iterative and incremental, illustrated by the
bidirectional arrows between the System Allocation / Configuration / Refinement,
Quality Evaluation and Realisation phases. The links backward to Application
Architecture Design and Platform Architecture Design from Quality evaluation
and Realisation are also illustrated.

Figure 3. Overview of the process model.

Part 2. Process Model

27

System engineering starts with the requirements specification phase, which
results in the definition of the functional properties, non-functional properties,
quality requirements and constraints of a system. The evaluation criteria are
derived from the defined quality requirements and prioritized according to the
scope and importance of the requirements. Evaluation criteria define goals for
quality evaluation. Scoping helps in classifying the requirements into two
categories: application specific and platform specific requirements, which form
the input for application architecture design and platform architecture design.

The application architecture design phase follows the principles defined by the
cross-domain architecture style and takes into account the existing services
available at the application service repository and the platform module library.
Application architecture design results in a platform independent model (PIM)
of the application architecture.

Platform architecture design is done according to the cross-domain architecture
style and the reference architecture template. The reference architecture template
defines the structure and behaviour of the platform core services, classified
according to the integration levels they belong to. The cross-domain style defines
three integration levels: chip (Level 1), device (Level 2) and (open/closed) system
(Level 3). The module library provide core and optional services at two abstraction
levels: model level and code level (if the realization is available). If a particular
service is missing from the platform module library, a new optional service is
defined at the PSM (Platform Specific Model) level. The platform architecture
design phase outputs an instance of the PIM (Platform Independent Model) at a
specific integration level. That instance is further used as a system-platform model
upon which the application-PIM is transformed and allocated.

The system allocation / configuration / refinement phase associates/maps the
application architecture design model onto the platform architecture design
model resulting in the system architecture model, which consists of a set of
views: structure, behaviour, and allocation (deployment), which are required for
the next phase; quality evaluation. In the system architecture design phase, the
platform architecture is configured for the use of a specific platform. In fact, in
this phase, the whole system architecture is the first time described as a whole,
and therefore, several refinements are typically needed. These refinements may
be required before and after performing the quality evaluation phase.
Architecture modelling and evaluation is a highly iterative and incremental
process, and which steps need to be performed depends on the improvements
defined as the results of quality evaluation.

Part 2. Process Model

28

Depending on the evaluation methods used, specific models may be needed
for quality evaluation purposes. Thus, the diagrams of the defined views are
transformed horizontally for the specific case at hand.

The evaluation process is iterative; it starts from the quality requirements of
the highest priority and concludes with the quality properties of low priority.
Each quality property is evaluated separately, and thereafter a tradeoffs analysis
is conducted. If conflicts are encountered, a new iteration is taken (i.e. System
Allocation / Configuration / Refinement and Quality Evaluation phases). When
quality requirements are met, the realization of the system is made by
manufacturing hardware and implementing software. Realization includes a set
of refinement and testing phases, which are not discussed here. The assumption
is that after unit, integration and validation tests, a new application and an
optional (domain-specific) service are accepted. Thereafter, the new application
can be included in the application service repository as a new reusable service
and the validated architecture in the repository of validated system architecture
models. The focus is on how to develop applications on top of platforms that
follow the principles defined by the cross-domain style and reference architecture
template.

2.2 Process Phases

The process phases 1�6 in Figure 3 are here described in more detail. The
description elements of each phase define the purpose, preconditions and results
of each phase. Moreover, the approaches with appropriate modelling languages
and tools are introduced whenever possible in spite of the limited space.

2.2.1 System Requirements Specification

Description The System Requirements Specification phase will produce
the requirements documents for the development of applications
and platforms of the cross-domain enabled embedded
systems. This phase will also specify the evaluation criteria
to be applied in the Quality Evaluation phase.

Start conditions The decision to develop a new cross-domain architecture
compliant product/system.

Triggers Application architecture design and platform architecture
design phases.

Part 2. Process Model

29

Inputs Customer requirements, market forecasts, standards, product
portfolio.

Outputs Application requirements, Platform requirements and Criteria
for quality evaluation.

Specification
method and
language

Goal oriented and scenario driven requirements specification.
UML2, SysML (Systems Modeling Language), MARTE NFP
(a sub-profile of MARTE for Non-Functional Properties)

Tool support Papyrus (open source), Rational Software Architect (commercial).

2.2.2 Application Architecture Design

Description The goal of this phase is to obtain a PIM of the application
that will be designed. The phase will use both existing
services and new models to obtain an application model that
meets the requirements described in the application
requirements document provided as input for this phase. It is
important to state that in order for the models to be fully
cross-domain architecture compatible, the models used and
generated during this stage must follow the cross-domain
architecture style.

Start conditions This phase will start whenever the application requirements
are available. Once this phase has ended for the first time, it
will restart if the Quality Evaluation phase detects a quality
error in the application model.

Triggers Upon completion, this phase triggers the System Allocation /
Configuration / Refinement phase.

Inputs Application requirements document, the application service
repository and the cross-domain architecture style and
reference architecture template.

Outputs Application architecture as a platform independent model.

Modelling methods
and languages

The HALM (High Level Application Modeling) sub-profile
of MARTE supports the definition of the PIMs of applications.
It also provides support for modelling behaviour based on
models of computation and communication and the
specification of timing requirements on the models.

Tool support Papyrus, Rational Software Architect.

Part 2. Process Model

30

2.2.3 Platform Architecture Design

Description The goal of this phase is to obtain first an abstract model of
the platform architecture that supports the execution of the
embedded application. The phase will use both existing
models, new models and the services defined by the
reference architecture template to obtain a platform model
that meets the requirements described in the platform
requirements document provided as input for this phase. In
order for the models to be fully cross-domain architecture
compatible, the models used and generated during this stage
must follow the cross-domain architecture style. The platform
abstract model is transformed PSM and instantiated by using
the ready-made modules from the platform module library.

Start conditions This phase will start whenever the platform requirements are
available. Once this phase has ended for the first time, it will
restart if the Quality Evaluation phase detects a quality error
in the platform model.

Triggers Upon completion, this phase triggers the System Allocation /
Configuration / Refinement phase.

Inputs Platform requirements document, existing platform models,
the cross-domain architecture style and the reference
architecture template.

Outputs The logical and physical models of the platform architecture,
an instance of the physical model.

Modelling methods
and languages

The GRM (Generic Resource Modeling) sub-profile of
MARTE supports the high-level modelling of platforms.

Modelling non-functional properties is supported by HLAM and
GQAM (Generic Quantitative Analysis Modeling) sub-profiles.

The HRM (Hardware Resource Modeling) and SRM (Software
Resource Modeling) sub-profiles of MARTE support generation
of detailed hardware and software platform models including
a great number of non-functional properties (i.e. timing,
power consumption, etc.).

SystemC/pseudo code.

BIP (Behaviour, Interaction, Priority) may be used for
modelling core services on L1 level [http://www-
verimag.imag.fr/~async/bip.php]

Tool support Papyrus, Rational Software Architect.

Part 2. Process Model

31

2.2.4 System Allocation / Configuration / Refinement

Description The goal of this phase is to map the application model
obtained from the Application Architecture Design phase
onto the platform model obtained from the Platform Architecture
Design phase. As a result, a full system architecture model
will be obtained.

Start conditions This phase will start for the first time when both the
Application Architecture Design and the Platform Architecture
Design phases have finished. After the first execution, this
phase is executed once again if the Quality Evaluation phase
is not passed.

Triggers Upon completion, this phase triggers the Quality Evaluation
phase.

Inputs The physical model of the platform, PSM of the application,
work load model of the application.

Outputs Structure, behaviour and allocation views of the system
architecture; configuration view and the usage profile of the
system.

Modelling methods
and languages

The Alloc (Allocation Modeling) sub-profile of MARTE
supports the definition of allocation dependencies between
application and platform elements.

Tool support Semi-automatic modelling environment introduced by the
methodology framework.

2.2.5 Quality Evaluation

Description In the quality evaluation phase the system architecture model
obtained from the System Allocation / Configuration / Refinement
phase is evaluated against the evaluation criteria set in the
requirements specification phase. The quality evaluation results
may lead to a redesign of the application model, the platform
model or both. The evaluation report includes the results of
each quality and NFP property evaluation and tradeoffs
analysis.

Start conditions System Allocation / Configuration / Refinement phase is
completed.

Part 2. Process Model

32

Triggers Upon completion, this phase may trigger different phases
depending on the results:

� If one or more platform quality defects are detected, the
System Allocation / Configuration / Refinement phase or
the Platform Architecture Design phase is triggered. The
selection of the next phase depends on the seriousness of
the quality defect.

� If one or more application quality defects are detected the
System Allocation / Configuration / Refinement phase / the
Application Architecture Design phase is triggered. The
selection of the next phase depends on the seriousness of
the quality defect.

� If no defects are detected the System Realization phase is
triggered.

Inputs Evaluation criteria, system architecture model, usage profile(s),
annotated state machines and sequence diagrams.

Outputs Evaluation results as a report on how the quality criteria are met.

Evaluation
methods

Different types of evaluation methods are provided: analytical,
simulation and monitoring.

Tool support Supporting tools and their compatibility with the Eclipse
platform are discussed with each introduced evaluation
method.

2.2.6 System Realization

Description The goal of this phase is to realize the system architecture
model obtained from the System Allocation / Configuration /
Refinement phase. The realization can include design of HW
components, source code and simulation models. In the final
version, simulation models are replaced with hard or soft
components or both. Only the simulation part is covered by
the GENESYS Methodology Framework.

Start conditions This phase starts whenever the Quality Evaluation triggers it.

Triggers Upon completion, this phase triggers different testing and
validation phases that are out of the scope of the GENESYS
methodology framework.

Inputs System architecture and quality evaluation reports.

Part 2. Process Model

33

Outputs HW and SW realizations as simulations and running systems.

Modelling support Model transformation from UML-MARTE to required simulation
models.

Tool support Code generation for simulations / virtual prototyping, mappings
from PSM to physical HW.

2.3 Artefacts

 Application requirements

Description This document contains the requirements that the application has
to meet. It is the main input for the Application Architecture
Design phase.

Produced by System Requirements Specification phase.

Used by Application Architecture Design phase.

 Platform requirements

Description This document contains the requirements that have been
defined for the embedded platform. It is the main input for
the Platform Architecture Design phase.

Produced by System Requirements Specification phase.

Used by Platform Architecture Design phase.

 Evaluation criteria

Description This document contains the criteria to be followed in the
quality evaluation.

Produced by System Requirements Specification phase.

Used by Quality Evaluation phase.

 Cross-domain architectural style

Description The cross-domain architectural style defines 24 principles
that the application and platform architecture design phases
follow.

Produced by GENESYS Architecture work package and Architecture Board.

Part 2. Process Model

34

Used by Application Architecture Design and Platform Architecture
Design phases.

 Reference architecture template

Description The reference architecture template documents the core and
optional services as a service taxonomy which categorizes
the service descriptions. The template also describes how the
defined services are adopted to different integration levels.

Produced by GENESYS WP1-WP2 (optional services) WP4-WP6 (core
services).

Used by Platform Architecture Design phase.

 Platform Module Library

Description A repository of existing platform modules (models or
realizations or both) that can be used such as for defining the
platform architecture.

Used by Platform Architecture Design phase.

 Application Service Repository

Description A repository of existing application services that can be used
as such for designing application architecture. Applications are
defined as DASs which are distributed application systems
composed of jobs.

Used by Application Architecture Design phase.

35

Part 3. Modelling and Evaluation
3.1 System Requirements Specification

The system requirements specification is the entry point to the development
process (Figure 3). As requirements analysis and management is such a wide
topic, while at the same time often being constrained by existing company or
project specific process models, the methodology framework does not prescribe
a detailed requirements process. Instead it describes a set of artefacts and
activities which are useful or required for the later phases and in some places
provides a choice between multiple options or optional activities.

The methodology framework categories requirements into three classes:
application requirements, platform requirements and system requirements
according the scope of a requirement (Figure 5). Requirements and constraints
related to the demands of users and domains are more likely to influence the
application architecture design, while technology related requirements will
mostly affect the platform architecture design. System requirements and constraints
have influence in the application architecture and the platform architecture.

The System Requirements Specification phase (Figure 4) will produce the
requirements documents for the development of applications and platforms of
the cross-domain style enabled embedded systems. This phase will also specify
the evaluation criteria to be applied in the Quality Evaluation phase.

Part 3. Modelling and Evaluation

36

Figure 4. Overview of the System Requirements Specification phase.

Requirements engineering is the task of identifying which functionality a
system-to-be should implement. Additionally, non-functional requirements have
to be addressed that define characteristics concerning the development process
(e.g. composability and evolvability) and properties of the system (e.g. reliability
and performance) beyond the pure functionality. Due to the special characteristics
of the embedded systems domain, a requirements engineering method is needed
that ensures that the functional as well as the non-functional requirements specified
can be verified on the implemented system. This is important to achieve certification
and ensure safety for humans and machines interacting with the system.

Figure 4 introduced the high-level activities of Requirements Engineering and
Requirements Management. With regard to the GENESYS Methodology
framework, the requirement engineering activities involved in the System
Requirement Specification phase are the ones related to the elicitation, analysis
and documentation of requirements. Meanwhile, the verification and validation
activities of the requirements engineering are covered during the quality
evaluation phase, where the system design is evaluated against its non-functional
requirements, and the system realization where the system design is transformed
into simulations and target code of the system. Requirements management
activities, such as versioning and traceability of the requirements, are activities

Part 3. Modelling and Evaluation

37

transverse to all phases of the methodology; i.e. are not covered in specific
phases but are handled all along the lifecycle.

3.1.1 Requirements Elicitation

The objective of this first activity is to build and understand the problem that the
system-to-be is supposed to solve. Elicitation seeks to discover all potential
sources of requirements including:

• Goals: high level objectives that the system needs to satisfy.

• Domain knowledge: is necessary in order to allow the requirement
engineer to obtain specific knowledge not directly provided by the
stakeholders.

• Stakeholders: provide different viewpoints with regard to the functionality
that the system must provide.

• Operational environment: the system-to-be will be restricted by several
factors, among them are, for example, the restrictions with regard to
software or hardware where it should be deployed or the interfaces that
it must provide in order to interact with legacy systems.

• Organizational environment: impact of the structure, culture and
internal policies of the organizations involved needs to be assessed in
determining requirements. Thus, there will be project and process
related requirements caused, for example, by the need of following a
certain project management standard like the V-Model XT or by the
need for a certain certification, this is especially relevant to safety
critical systems.

• Laws or regulations: usually the system is constrained by the fulfilment
of specific constraints related to regulations or laws such as safety
regulations, data protection laws and similar.

The most common techniques for capturing requirements are: interviews,
questionnaires, scenarios, prototypes or facilitated meetings. Going in-depth into
these techniques is out of the scope of this deliverable.

Part 3. Modelling and Evaluation

38

3.1.2 Requirements Analysis and Documentation

Regarding the requirement analysis and documentation activity the requirements
are structured and prioritized. The result of this activity is a model of the
business requirements, the application requirements, a model of the requirements
and constraints for the platform and a set of quality criteria that will be used
during the quality evaluation in order to validate the system architecture design.

This activity involves the following tasks:

• Classifying requirements: grouping requirements into logical entities.
Different criteria can be used: priority, architecture/application, functional/
non-functional, associated risk, etc. In Figure 5, an example of the
classification schema is provided in order to ease this clustering.

• Prioritizing requirements: establishing the relative importance and risk
of each requirement and establishing an implementation priority.

• Conceptual modelling: abstraction behaviour and structure models of
the system are designed in order to get an understanding of the
problem and transfer this understanding to the developers involved in
the system architecture design.

• Requirements negotiation: addresses problems within the requirements
where conflicts occur between stakeholders� needs, between requirements
and resources, or between system capabilities and constraints.

Part 3. Modelling and Evaluation

39

Figure 5. An example of classified attributes of requirements.

Regarding requirements documentation, each requirement will be described at
least by the following fields:

• Id: a unique identifier

• Text: a textual description that describes the requirement

• Source: states the origin of this requirement. The following categories
are considered: customer / operational environment / organizational
environment / law / regulation.

• Kind (Functional/Non-Functional/Quality): states if the requirement is
related to the fulfilment of a certain functional capability or if it is
related to the fulfilment of a certain quantitative or qualitative constraint
or quality attribute. An example of a constraint is a time deadline and
an example of quality attribute performance, e.g. responsiveness of the
system.

• Scope (Application/Platform/System): states if the requirement
imposes a constraint on the application or on the architecture.

Part 3. Modelling and Evaluation

40

• Development phase: this information is used in order to trace the
model elements from other artefacts during the development phase that
contribute to satisfying the requirement.

• Status: this field will describe the current state of the requirement.
There are four possible states for a requirement: feasible (the
requirement has been considered valid by a requirements engineer or a
checking engine), unfeasible (an opposite case), satisfied (it has
already been satisfied) or undetermined (the requirement has not been
analyzed yet).

• Risk: associated to this requirement

• Priority: assigned to this requirement.

The most important fields for quality requirements are: Id, Kind, Scope, and
Priority. Moreover, the requirements of the execution qualities, e.g. reliability,
need an attribute including the required, estimated, predicted and measured values.

In order to refine the requirements the goal-oriented requirement engineering
approach is proposed together with the usage of a use case and scenario
analysis. A goal expresses some objective to be achieved by the system. High
level goals, such as business or user requirements, can be gradually refined into
more concrete sub-goals by asking how the requirement is supposed to be
fulfilled; thus, those sub-goals will contribute to the fulfilment of the higher
level goal. This refinement process can be repeated until a suitable granularity is
achieved. If the refinement and subdivision of requirements is performed
correctly, it is sufficient for the system to fulfil those primitive requirements, as
all other requirements are fulfilled by composition. This decomposition of
requirements is represented usually by direct acyclic graphs, although in the
methodology framework they are represented by SysML requirement diagrams
by using the hierarchical relation that is established among requirements.
Finally, the quality criteria are defined based on the non-functional and quality
requirements and constraints.

Use cases are also used, especially in order to document application
architecture requirements. A use case defines a system-level capability without
revealing or implying any particular implementation or even design of that
capability. Each use cases will be related to a certain amount of requirements. A
use case has associated pre and post conditions that constrain its activation. Use
cases describe the context where the system is used, including the system and

Part 3. Modelling and Evaluation

41

associated actors. An actor is an object outside the scope of the system which
interacts with it. Despite the fact that it is represented by a stick figure on UML2
and SysML use case diagrams, an actor can be any entity, which provides inputs
or information to the system and receives information or control outputs from
the system.

A use case should be detailed by relating them to some scenarios. A scenario
is a particular actor-system interaction corresponding to a use case. Scenarios
model order-dependent message sequences among object roles collaborating to
produce system behaviour in its operational environment. Scenarios are
described by sequence diagrams that help in understanding the collaborations
among the actors and the system. Additionally, state machines are used for
describing the operation modes of a system. The set of use cases and related
scenarios define the initial usage profile of the system that is further refined in the
system refinement phase.

3.1.3 Requirements Traceability

Establishing relationships between requirements and model elements is a key
issue in order to achieve the traceability along the whole development process in
the methodology framework. This traceability assures that all requirements that
have been considered feasible at the different abstraction levels are fulfilled at
some time in the system life cycle. Achieving this traceability at the modelling
level requires establishing relations among model elements used at different
phases. Relations such as verify and satisfied, from the SysML language, are
considered relevant in order to achieve traceability.

3.2 Architecture Design

This section defines the three phases of architecture design: the application
architecture design, platform architecture design and system allocation /
configuration / refinement. First, an overview related to these phases is given
including the commonalities, e.g. the selected modelling languages and models
with their justifications. Thereafter, each architecture design phase is presented
separately.

Part 3. Modelling and Evaluation

42

3.2.1 Selection of Modelling Languages

The architectural descriptions, which are outcome of the phases of application
architecture design, platform architecture design and system allocation /
configuration / refinement, are combinations of textual and graphical descriptions.
English is used for textual descriptions. Graphical models are described by the
selected set of languages defined in Figure 16.

Figure 16. Architecture design phases and the selected modelling languages.

The service interface descriptions have to define the following information:
syntax for accessing a service, service semantics (i.e. the goal of a service) and
behaviour of a service (i.e. how the purpose of the service is achieved).

The four description languages, i.e. UML2 MARTE profile, Web Service
Description Language (WSDL), the BIP-model (Verimag) and SystemC, were
evaluated by applying them to describing two applications, i.e. a multimedia
application and a cruise control system. The comparison of service description
languages is introduced in Table 2. The comparison factors have been derived
from the requirements of the methodology framework.

Service properties were to be described from syntax, semantic and quality
points of view. Service semantic descriptions were especially required in open

Part 3. Modelling and Evaluation

43

systems, on the integration level L3. Standard-based solutions were requested by
the automotive and avionic industries. An open and extensible tool environment
is the generic goal of ARTEMIS and the GENESYS project. It can be seen that
none of the description modelling languages fully meets the requirements.
However, WSDL, UML2-MARTE and SyctemC are standard-based, and the
first two are Eclipse compatible. Both WSDL and UML-MARTE require
extensions for service semantics modelling. However, UML-MARTE is the only
language that provides some support for quality modelling.

Table 2. Comparison of service description languages.

Support for
service WSDL UML2-MARTE SystemC BIP

Syntax Yes, provided
interfaces,
required
interface
defined by
bindings.

Yes Yes, interfaces,
C++ libraries.

Uni/multicast
messaging.

Semantic For exchanged
data with the
XML Schema
as constraints.
Full support
needs the use
of ontologies
as OWL or
OWL-S.

Not
straightforward,
needs to be
extended by
OWL
ontologies.

Simulation
semantics as
execution
engines.

No

Quality No but could
be extended by
using quality
ontologies.

Partially
supported by the
NFP sub-profile
of MARTE.

Temporal
properties
(timing, delay).

Temporal
properties
(periodicity
and latency).

Standard
based

Yes Yes Yes No

Eclipse
compatible
tools

Yes Yes, Papyrus as
open source,
Rational
Software
Architect as a
commercial tool.

Basically No,
but some
demonstrations
have been
presented.
Open libraries
and simulation
kernels from
OSCI.

No (proprietary
tools for
generating
simulations,
state
exploration for
verification and
deadlock
detection
(IF toolset and
DFinder).

Part 3. Modelling and Evaluation

44

As a conclusion, the UML-MARTE was selected for a common modelling
language. Moreover, SystemC is needed for platform architecture design. BIP is
applied to L1 level core services.

Because service semantic descriptions are needed in open systems on the level
L3, two ontology languages were compared: Web Service Modelling Ontology
(WSMO) and the Web Ontology Language for Services OWL-S [Feier 2005,
Fensel 2007, OWL 2008]. The purpose of OWL-S is to define a set of basic
classes and properties for describing services so that users and software agents
are able to automatically discover, invoke, compose and monitor Web resources
offering services. OWL-S supports service descriptions in a wide sense and does
not focus on any particular application domain. WSMO aims to create an
ontology for describing various aspects related to Semantic Web Services and
therefore it focuses on ontology integration and providing support for specific
application domains (e.g. e-Commerce and e-Work).

OWL-S doesn�t explicitly delimit what principles are applied to the
development of the ontology. WSMO is more explicit; it is grounded on a
number of principles of the domain that the ontology formally represents. Moreover,
WSMO is based on the conceptual work done in WSMF (the framework that
served as a starting point for WSMO) and thus it is a conceptually more focused
approach than OWL-S. Comparison of the OWL-S and WSMO is presented
Table 3. The comparison factors intend to illustrate the advantages and shortcomings
of two ontology oriented approaches; the general purpose OWL-S and the
specific purpose WSMO. As seen, WSMO is focused but extensible, whereas
OWL-S is not limited to any application domain, but its adoption to new domains
might be laborious because of limited capabilities and their extensibility.

Part 3. Modelling and Evaluation

45

Table 3. Comparison of Semantics Modelling Approaches.

Aspect OWL-S WSMO

Purpose Wide goal, does not focus on
any application domain

Focused goal, specific application
domain

Principles Not explicit, development based
on a set of tasks to be solved
and foundations inherited from
other research areas

Explicit conceptual work and
well-established principles

Coupling Tight coupling in several aspects
(no meta-ontology, no common
conceptualization of the domain
ontologies)

Loose coupling, independent definition of
description elements (at a meta-level)

Extensibility Limited extensibility through
OWL sub-classing

Extensible in every direction

Non-functional
properties

Few pre-defined properties;
explicit extension mechanism
but improvable flexibility

Pre-defined properties; flexible extension
but no explicit mechanism

Ontology building
blocks

Service profile
Service model
Service grounding for invocation

Ontologies
Goals
Web Services
Mediators
Non-functional properties
(core and QoS properties)

Supporting
services

Advertising
Discovery
Matching
Invocation

Advertising
Discovery
Mediators for matchmaking
Invocation (under specification)

Tool support DAML-S virtual machine

Mindswap / OWL-S API

WSMX (reference implementation of WSMO),
IRS-III (platform for applying WSMO),
Semantic Web Fred, WSMO design studio

Advantages&
drawbacks

Declarative advertisement of
service capabilities.
Single modelling element for
the requester and provider
points of views
Request is expressed by the
desired service description
Doesn�t address heterogeneity
explicitly
Constructs for service
compositions and interactions
Pre-defined grounding to WSDL

Quality properties, e.g. performance,
reliability and security
Distinguishes the requester and provider
points of views
Request is described in the form of goals
i.e. the results expected
Consider the heterogeneity by mediators
Orchestration of services is under
specification
Doesn�t offer any grounding (however, in
the future it might be grounding
independent)

Maturity The latest release 1.2 [OWL 2008] Newest version v1.3
Formalization and standardization as
WSML (Web Service Modelling Language)
is under work

Part 3. Modelling and Evaluation

46

Because the use of any ontology language for describing service semantics is not
straightforward, their application was not appropriate due to our tight schedule.
Therefore, further studies on service semantic modelling were transferred into
future ARTEMIS projects.

The following sub-profiles of MARTE are applied to architecture modelling:

Sub-profile What for to be used

NFP � Non-Functional Properties For defining non-functional and quality
properties

HLAM � High Level Application
Modelling

For application architecture modelling

GCM � Generic Component Model For defining the structure of applications

GRM � Generic Resource Modelling For platform architecture modelling

Alloc � Allocation Modelling For allocating applications to platform
services

SRM � Software Resources
Modelling

For modelling operating systems,
concurrency and interactions of
applications.

HRM � Hardware resources
modelling

For detailed hardware modelling

GQAM � Generic Analysis
Modelling

Platform modelling for analysis.

3.2.2 Architectural Elements

Platform services are described at the PIM level. The platform modules are
described at the PSM level. The GENESYS template defines a taxonomy of
platform services; a set of core and optional services classified into categories
according to the integration levels (L1 (chip level), L2 (device level), and L3
(system level)), functionality, dependability and security. The platform modules
are described in the platform module library. The platform modules are used for
describing the execution platform, upon which the applications (DASs)
composed of jobs (i.e. an ordered set of services) are mapped. There are three
types of components named according to the integration levels they are used:
IP-Core, Chip and Device. Each type of component has four types of interface:

Part 3. Modelling and Evaluation

47

• LIF (Linking Interface) � for communication between applications
(DASs and jobs) on the same integration level.

• DM (Diagnostics and maintenance) � for monitoring platform execution
on the same integration level.

• CP (Configuration and planning) � for controlling and configuring an
execution platform.

• LI (Local interface) � connecting the integration level to the environment
and the gateway component, through which the component is connected
to the next integration level.

3.2.3 Architectural Views, Models and Transformations

Figure 7 gives an overview of the required architectural descriptions; application
service description, platform service description, system architecture description
and micro architectures.

The two last mentioned descriptions are based on the application and platform
service descriptions but include some extra views or models required for
completing the architectural description of that specific phase. Because quality
evaluation is the next phase after architecture design, it has a strong influence on
which views and models are required. Typically, structure, behaviour and
allocation views are necessary for quality evaluation. Structure can be presented
at different abstraction levels; for example, an application service can be
modelled as a distributed application sub-system (DAS) composed of a set of
jobs or as a job, and therefore, the structural view includes two models; one for
defining the structure of DAS and one for defining the structure of involved
jobs. They both belongs to the structural view but can be modelled by using the
different constructs of the modelling language. Moreover, design information of
interfaces is required for evaluating composability and evolvability of the system
architecture. If the specific information required for quality evaluation is not
available, the architectural models are to be transferred into another model that is
suitable for the evaluation purposes at hand.

Part 3. Modelling and Evaluation

48

Figure 7. Architecture modelling phases including views, models and transformations.

3.3 Application Architecture Design

The Application Architecture Design phase is concerned with the design of the
applications from both functional and non-functional points of view. The
architectural principles state that in system level applications (i.e. applications
composed of more than one device that interact with each other) the
interconnection of devices can occur in an open environment or closed
environment. In an open environment, the composition of devices always occurs
dynamically during the system operation without a priori knowledge concerning
the participating devices. A closed system is a system where all devices are
known a priori. In a closed environment, the composition of devices can be static
or dynamic. In order to be able to perform this composition, the services provided
by the different devices have to be defined, not only at syntactical level, but also
at behavioural and semantic levels.

One of the most important challenges regarding the methodology framework
is to enable component and service-based development of embedded applications
by using the core and optional services provided by the architecture template as
the basis. The most important artefacts of the applications are jobs that interact
with each other via unidirectional messages. The interface of a certain job is

Part 3. Modelling and Evaluation

49

composed by the definition of those messages. In order to be able to perform this
composition, the services provided by the different jobs have to be defined, not
only from a syntactical point of view, but also from behavioural and semantic
points of view.

It is also possible that a service has constraints related to its versioning. Thus,
the semantic view is used to give additional information about the meaning of
the service. This information provides a means for distinguishing one service from
another that provides a similar kind of functionality but at a different quality
level or with different constraints. The semantic view is especially needed in
open systems, where service bindings are performed at run-time. However, a
similar type of information might be also needed in other integration levels in
the future.

Since the semantic view is coupled with service properties provided through
the service interfaces, it is common to find that the semantic view is mixed with
the structural and syntactical views, therefore being modelled in the same
diagrams, yet using different elements for each of the views.

In order to provide developers with models that are expressive enough, it is
important to present the structures of the services and jobs in application
architecture. The next sub-sections will cover the modelling of each of these
views using UML2 and the MARTE profile. MARTE is a UML2 profile and,
therefore, it cannot be used without it. It is important to note that UML provides
several ways to describe the same aspects of the system models. This fact makes
it difficult to provide a unique method to create the models as many different
diagrams can be used to specify the same aspects in the models. For example, in
many cases, state machines and activity diagrams can address the same behaviour.

The goal of the Application Architecture Design phase is to produce a
platform independent model of an embedded application or applications. The
phase produces the following views:

Structural view. The structural view contains the definition of DAS (i.e.
interaction between jobs), the jobs (encapsulated pieces of application
functionality), LIFs and messages that take part in the application under
design.

Syntactical view. The syntactical view contains the description of the
protocols that manage the access to a certain service. (The interface
description is partly defined by the structural view and the syntactical view).

Part 3. Modelling and Evaluation

50

Behaviour view. The behaviour view defines the behaviour of the
application at two levels: as behaviour of the application and as behaviour
of the jobs involved in the application.

Semantic view. The semantic view provides information regarding the
semantics of the application service. The semantic view is related to a
service ontology that will be an enabler for service composition engines.

It is possible that many diagrams are included in a single view. It is also possible
to describe two or more views in the same diagram but it is against the
separation of concerns; one of the architecture design laws and breaching that
law will lead to serious problems in architecture evolution.

In the next sections, each view is introduced by using the UML-MARTE
modelling language. Service semantics can also be described with OWL and
used through the UML-MARTE language. However, this means additional tool
support from the interactive development environment. An example of
combining OWL models with UML models is given in [Niemelä 2008].

3.3.1 Structural View

The structural view describes the application as a whole and the building blocks,
i.e. jobs and interfaces, of which it is combined. A job is a) a constituting
element of a DAS, b) forms the basic unit of work, and c) interacts with other
jobs through the exchange of messages in order to work towards a common goal
to provide the application services. The structural view of an application
provides information regarding the construction of the service. Services are
defined by their interfaces. Therefore, the structural view is described as follows:

• Describe the jobs involved in the application under design.

• Describe the service interfaces of each job and messages passed
through each interface.

• Describe the application as a composite of jobs (i.e. distributed
application subsystem, DAS). Reuse the available application service
descriptions.

• Describe the resources (e.g. variables, communication channel, etc.)
shared between jobs.

Part 3. Modelling and Evaluation

51

• Map non-functional and quality requirements and constraints defined
for the application in the system specification phase to the appropriate
diagrams of the application.

The structural view has to describe the applications in terms of jobs, i.e. different
tasks that must be executed. Moreover, the different services involved in the
application must be defined in terms of their interfaces and the kind of messages
they request/provide. Lastly, structural descriptions also include passive elements
that help different jobs to communicate. The MARTE profile provides two
specific sub-profiles for this kind of view:

• High-Level Application Modelling (HLAM) sub-profile and
• Generic Component Model (GCM) sub-profile.

These two sub-profiles along with the UML2 constructs allow a rich description
of applications and services.

The cruise control system (CCS) is used as an example to illustrate the
structural view. The controller receives two input messages containing the
current speed of a car and the desired speed value selected by a car driver and
computes an output signal that affects the engine of the car. Thus, the controller
provides three interfaces: two input interfaces each of which reads a speed
signal, and an output interface which provides the control signal for the engine
actuator. To model this controller we will use a UML active class stereotyped
with <<RtUnit>> from the MARTE HLAM sub-profile (Table 4). The
stereotype gives a class for the semantics of a task or a set of tasks that will be
executed in some computing resource of the underlying platform. The stereotype
includes many properties that may increase expressivity in a class. A complete
list of the <<RtUnit>> parameters is provided in Table 4.

Part 3. Modelling and Evaluation

52

Table 4. Properties of the <<RtUnit>> stereotype.

Property Type Multi-
plicity Description

isDynamic Boolean 1

A true value in this property means that this
RtUnit is created dynamically. If false then this
RtUnit is allocated in a pool of schedulable
resources that existed before the creation of
this RtUnit. Its default value is true.

isMain Boolean [0..1]

A true value makes the task defined by this
RtUnit the main execution thread of the current
application. If true, the main property of this
stereotype should point to a RtService.

memorySize NFP_DataSize [0..1] Static memory size required by this RtUnit
for its execution.

poolSize Integer [0..1]
The number of schedulable resources available
in case this RtUnit is declared as static. Only
for static RtUnits.

poolPolicy PoolMgtPolicy
Kind [0..1] The policy kind applied to the schedulable

resources pool. Only for static RtUnits.

poolWaiting
Time NFP_Duration [0..1] Maximum waiting time admissible for this

RtUnit. Only for static RtUnits.

operational
Mode Behaviour [0..1]

Any UML behaviour that describes the
operational modes of this RtUnit. Normally a
state machine will be used.

main Operation [0..1] The main operation of this RtUnit. It must be
set for main RtUnits.

The final structural model of the CCS controller is depicted in Figure 8. In the
figure, the real-time unit has three interfaces, each of which is modelled as a
UML interface with the <<BFeatureSpecification>> stereotype from the MARTE
GCM sub-profile. This stereotype gives interfaces the types of a signal/message
provider / consumer. It just adds a single property to the interfaces regarding the
direction of the signals/messages defined in them. The protected containers are
added for the speed signal values that the controller will receive. The stereotype
<<PpUnit>> gives a classifier the semantics of a protected passive element of
the system. It defines a couple of properties to further describe these kinds of
elements (Table 5).

Part 3. Modelling and Evaluation

53

Table 5. Properties of <<PpUnit>> stereotype.

Property Defined
in Type Multi-

plicity Description

concPolicy PpUnit CallConcurrencyKind [0..1]
This property describes the
concurrency policy that the
shared resource will follow.

memorySize PpUnit NFP_DataSize [0..1]
This property allows defining
the quantity of memory required
by this resource.

Figure 8. Structural view of a CCS controller.

Applications (DASs) are compositions of jobs that further use application and
platform services for achieving the desired functionality/capability of a system.
The MARTE GCM sub-profile provides a composite diagram for defining
applications by components and connectors. The cruise control application will
consist of four components (i.e. instances of the clients and servers): two speed
inputs provided by sensors, the controller we defined in the earlier section and
the engine actuator. The components interact via UML2 ports (i.e. instances of
their interfaces defined in their structural views). To model these interactions a
UML composite diagram is used. Composite diagrams of applications are especially
needed when application and platform architectures are integrated together.

Part 3. Modelling and Evaluation

54

Figure 9. The cruise control system composite.

Figure 9 shows the cruise control system using UML2 and MARTE. The ports
have been stereotyped with <<MessagePort>> stereotypes from GCM sub-profile
that give the ports the semantics of being message-based communications. The
CGM sub-profile also allows modelling data streams. In order to do so, we
would use the <<FlowPort>> stereotype instead (Table 6).

Table 6. Properties of the <<MessagePort>> and <<FlowPort>>.

Property Type Multiplicity Description

isAtomic Boolean 1

If true the port cannot provide/require
services, it just produces/consumes
signals. Additionally, an atomic port�s
direction is defined by its specification
interface.

isConjugated Boolean 1
Only for non-atomic ports. If true all the
directions of the FlowProperty elements
are reverted.

direction DirectionKind[0..1] [0..1] Only for non-atomic ports. It specifies
the direction of the port.

Part 3. Modelling and Evaluation

55

3.3.2 Syntactical View

The syntactical view of the application describes how the services are accessed.
A syntactical description includes:

• a description of the messages involved in the access of a certain service,

• a description of the communication protocols used,

• the operational modes of the applications (e.g. different QoS, emergency
modes, etc.), and

• non-functional and quality properties related to message, communication
protocols and operational modes.

The syntactical view of a service is often mixed with its structural view since
service syntaxes are always related to structural elements. For example,
messages are related to service interfaces and operational modes are related to
the jobs that execute the service.

In order for clients to be able to access services it is mandatory that the
service-users are aware of the syntax the services understand. In these kinds of
applications, the syntax of a service is defined by the signals/messages that are
exchanged by service-users and services and by the order in which these signals
and messages are sent from service-users to services and vice versa.

To show an example of modelling the syntax of a service we will use the
example of an application server. The structure of this server is depicted in
Figure 10. As depicted in the figure, the server admits three different kinds of
messages: a StartConnection message, a Data message and a CloseConnection
message. The server also uses two messages to answer the clients: Ack and Nack.
The protocol is defined using a UML2 state machine diagram that is pointed by
the �operationalMode� property of the <<RtUnit>> stereotype (Figure 11). We
also add a property to the server in other to keep track of its current state.

Part 3. Modelling and Evaluation

56

Figure 10. Structure of an application server.

Figure 11. State machine diagram of the application server protocol.

From a syntactical point of view, clients have to be aware of the structure of the
messages they must send to the server in order to interact with it. Messages, as
already has been shown, are modelled using UML2 signal elements. Figure 12
shows the messages involved in the current example.

Part 3. Modelling and Evaluation

57

Figure 12. Messages involved in the application server example.

In Figure 12, UML signal had been stereotyped using <<rtf>> from the MARTE
HLAM sub-profile. The <<rtf>> stereotype adds timing constraints that must be
accomplished at the interfaces that produce/consume each of the messages (i.e.
different deadline descriptions, deadline miss ratios, priorities and arrival patterns).
Table 7 shows all the properties of the <<rtf>> stereotype in the HLAM sub-profile.

Table 7. Properties of <<rtf>> stereotype.

Property Type Multi-
plicity Description

utility MARTE_Library::
UtilityType

[0..1]
An abstract type. It must defined by the user.
This type enables MARTE to include a
semantic description of this service.

occKind
MARTE_Library::
BasicNFP_Types::
ArrivalPattern

[0..1] This property describes the occurrence
pattern for the arrival of this element.

tRef

MARTE_Library::
TimedObservations::
TimedInstantObser
vation

[0..1] This property describes a reference time that
will be used for relative time measures.

relDl NFP_Duration [0..1] Relative deadline.

absDl NFP_DateTime [0..1] Absolute deadline.

boundDl NFP_Bounded
Duration [0..1] Bounded deadline.

rdTime NFP_Duration [0..1] Time used by the current element to perform
its work.

miss NFP_Percentage [0..1] Maximum admissible deadline miss percentage.

priority NFP_Integer [0..1] The priority of this communication.

Part 3. Modelling and Evaluation

58

As can be seen from the table, no property defined by the <<rtf>> stereotype is
mandatory. The properties can be used depending on the designer�s need for
expressivity.

When the <<rtf>> stereotype is applied to signals it enables us to specify the
frequency at which a service has to be accessed. The property occKind is typed
as ArrivalPattern. ArrivalPattern is a MARTE <<choice_type>> which means
that it can be assigned to any element typed with:

PeriodicPattern. This datatype describes the parameters of a periodic
occurrence (i.e. period, jitter and phase).

AperiodicPattern. This abstract datatype describes an aperiodic arrival
pattern defined by a statistical distribution.

SporadicPattern. This datatype describes a special aperiodic pattern
where the time between occurrences has some kind of bound.

BurstPattern. This datatype describes a special aperiodic pattern where
occurrences happen in bursts. The time interval between bursts as well as
the time interval between occurrences in a burst is bounded.

IrregularPattern. This datatype describes a special aperiodic pattern
where occurrences don�t follow any kind of periodicity. The occurrences
are described as an array of inter-arrival times.

Specifying these patterns in a message (i.e. in the interface of a service) gives
accessing clients information about the timing constraints needed to access the
service. Despite this kind of information is not needed in the application server
example; it is very useful to describe control or multimedia systems which are
much more coupled with time.

3.3.3 Behaviour View

The behaviour view of an application describes the control flow between jobs
and applications. It is possible that many (implementation) constraints appear in
behaviour views, since it is common to use variables, function-calls, etc. in
them. The behaviour view is very important in the early validation phase since it
provides a means to test the system�s functionality and evaluate that the system
fulfils its quality requirements related to applications. The behaviour view is also

Part 3. Modelling and Evaluation

59

crucial in the system realization phase, since the behaviour described in this
view is what the developers will implement in the final product.

The HLAM sub-profile of MARTE provides the designer with a series of
stereotypes to make some behavioural aspects present when describing the
services and applications. The behavioural aspects supported by the HLAM
stereotypes include quality of service (QoS) specification and execution, and
concurrency and a synchronization aspects description.

The operations which support the services inside RtUnits can be given
information about their behaviour. The HLAM sub-profile provides designer of
the <<RtService>> stereotype to model how the servers react to incoming
invocations. The properties defined for this stereotype are defined in Table 8 and
Figure 13 shows the way this stereotype is used in the application server example.

Table 8. Properties of <<RtService>> stereotype.

Property Type Multiplicity Description

concPolicy ConcurrencyKind [0..1]
This property describes the
concurrency kind for this particular
service.

exeKind ExecutionKind [0..1]
This property describes how this
service will behave upon its
invocation.

isAtomic Boolean 1
This property specifies if this service
will be executed without being
interrupted by other invocations.

synchKind SynchronizationKind [0..1]
This property describes how this
service is synchronized with the
invoking client.

The RtService stereotype is applied to the signal receptions in the interfaces of
the server RtUnit. In order to add a finer grain description of the behaviour of
the RtUnits or their interfaces, it is necessary to use activity diagrams, sequence
diagrams or state machine diagrams. Figure 13 shows the activity diagram of the
main operation of the controller RtUnit of the CCS example. The diagram shows
that the controller starts up the system and then enters an endless loop in which it
only performs the control algorithm on the speed samples provided by the
sensors and then it sends a message to the engine actuator through the actuator
output interface.

Part 3. Modelling and Evaluation

60

Using the MARTE stereotypes in this kind of diagrams increases their
expressivity, including extra information. The <<rtf>> stereotype, described
before, adds timing information to the actions. On the other hand, the
<<RtAction>> introduces information regarding signal sending and reception.
The properties included in this stereotype are described in Table 9.

Figure 13. Activity diagram of the main operation of the cruise control system controller.

Table 9. Properties of <<RtAction>> stereotype.

Property Type Multi-
plicity Description

synchKind SynchronizationKind [0..1] It describes the type of synchronism that
suits this signal communication.

isAtomic Boolean 1
It defines whether the attention of this
communication will be done atomically. It
is false by default.

msgSize NFP_DataSize [0..1]
This parameter describes the size of the
messages (signals) that are used in this
communication.

Part 3. Modelling and Evaluation

61

The <<RtBehaviour>> stereotype is used in behavioural UML diagrams modelling
how an RtService behaves with regard to invocation queues. It can be used in
any kind of UML behaviour diagrams (state machines, activities and interactions).
Figure 14 shows the activity diagram of the current speed signal reception.

Figure 14. Current speed reception activity of the CCS controller.

The RtBehaviour stereotype is very useful to model services that prioritize some
invocations from others regarding their real-time parameters and QoS. The complete
list of the properties defined in <<RtBehaviour>> is described in Table 10.

Table 10. Properties of <<RtBehaviour<< stereotype.

Property Type Multi-
plicity Description

queueSchedPolicy
GRM_BasicTypes::

SchedPolicyKind
[0..1] The scheduling policy that will be

applied to the message queue.

queueSize Integer [0..1]
Maximum number of messages
that can be stored in the queue of
the current behaviour.

msgMaxSize NFP_DataSize [0..1] Maximum size of the messages
stored in this queue.

Part 3. Modelling and Evaluation

62

3.3.4 Semantic View

The semantic view describes the meaning of the services used in application
design. Semantic information is required for:

• Functionality provided by the service,

• Quality properties of the service,

• Meaning of information/data provided by the service,

• Usage constraints of the service, and

• Context of a service, if it functional or quality properties can change
according to the context.

Although the MARTE profile has great expressivity to describe real-time
embedded applications, it does not include immediate mechanisms to distinguish
one service from another from a semantic point of view apart from the plain
service name.

Semantic information is often very close to ontologies and taxonomies. In
order to use MARTE to fully describe the services of the GENESYS architecture
template, it is necessary to define an ontology of the services that an embedded
application can request/provide at the different integration levels. Once the
ontology is defined, MARTE can be extended or adapted to support the
inclusion of this ontological information.

The <<rtf>> stereotype, defined in the HLAM sub-profile of MARTE, has
been widely used throughout this document to describe the GENESYS
applications and services. <<rtf>> includes a property called �utility� that may
enable to add the semantics to service interfaces by specifying it in the <<rtf>>
stereotypes applied to the signals.

The UtilityType is defined as an abstract type in MARTE so that it can be
refined into user defined types. Figure 15 shows an example refinement of the
MARTE UtilityType to a GENESYSUtilityType with extra semantic information.

Part 3. Modelling and Evaluation

63

Figure 15. Extending UtilityType to add semantic information to the service description.

3.4 Platform Architecture Design

The Platform Architecture Design phase deals with the modelling of the platform
architecture that supports the applications designed during the Application
Architecture Design phase. The platform architecture is logical architecture that
is realized as hardware and software.

The platform architecture design is highly related to the system requirements
specification phase, the application architecture design and the GENESYS style
and reference architecture template. Platform requirements can be business
requirements, system requirements and technical constraints. Business requirements
scope the platform architecture design. System requirements define which kinds of
properties are required from the platform; they can be technical features and/or

Part 3. Modelling and Evaluation

64

restrictions that affect the platform like pricing, weight, communications. Technical
constraints are based on earlier decisions or standards the platform has to support.

The cross-domain architecture style defines three integration levels at which
applications might be developed: System Level (L3), Device Level (L2) and
Chip Level (L1). Each of these levels addresses different application description
challenges through the use of modelling techniques.

Chip level applications focus on developing software/hardware systems that
will be implemented on single chips (e.g., Multi-Processor System-on-Chips). The
platform components at this integration level consist of computation, storage and
communication resources that are either taken from IP (Intellectual Property)
libraries or developed/acquired if they do not exist. Software consists typically of
RTOSes (Real-Time Operating Systems), device drivers and middleware on top of
which services and applications are designed at the chip level.

Device level applications focus on creating complete embedded devices. They
make use of platforms that can, for example, be composed of a set of chip level
platforms providing services to device level applications. Additional middleware
and services may be used on top to facilitate an efficient interface to
applications.

System level applications are composed of a set of distributed devices that
interact with each other. At this integration level only software platforms may
need to be considered since the devices composing the application already have
their hardware/software architecture defined.

Despite their nature, hardware or software, platform elements have to be
considered using two different points of view: a structural view and a
behavioural view. Both views are defined at the logical level. The first view
provides a designer with an understanding of which kinds of building blocks the
platform is composed of, and which kinds of services are provided for the
applications. The behaviour view describes how the defined building blocks of
the platform structure work together and depend on each other. It also enables
system simulation that allows early detection of design errors, increases the
quality of the final system and reduces maintenance costs.

Platform architecture modelling produces models of the following views:

Structural view. The view describes the platform architecture from its
structural point of view. The platform architecture model is composed of
resources (both SW and HW) at various levels of granularity (e.g.,
processor, computing node, multiple interconnected computing nodes).

Part 3. Modelling and Evaluation

65

Resources provide services described by using the core and optional
services provided by the GENESYS template and/or new services if
proper platform services are not available.

Behaviour view. The behaviour view describes the behaviour of the
services included in the platform structural view. Basically, the behavioural
descriptions of the high-level services are taken from the platform module
library that includes the descriptions of the core and optional services
defined by the GENESYS template.

Code view. Platform services are described in more detail in the code
view. In what manner and how a service is described depends on what that
information is needed for.

The structural and behaviour views form a skeleton of the whole platform
architecture and are used for allocating/mapping application models onto it. The
structural and behaviour views are described with UML-MARTE. Defining non-
functional and quality properties is also possible in these views. In case, the core
service has been described with BIP, the BIP to UML-MARTE transformation is
required. The code view is described with SystemC.

3.4.1 Structural View

The structural view of a system�s platform is meant to describe which elements
compose the execution platform. The execution platforms are composed of
hardware and software elements. The structural views represent real elements
that have critical influence on the non-functional properties of a system. These
non-functionalities have to be captured in the platform models in order to be able
to achieve useful simulation and evaluation results in future phases of the
embedded systems development process.

The structural view of a system�s platform provides information about the real
elements of the execution environment intended for the application/service under
construction. Those model elements refer to real resources in the final systems.

MARTE provides platform modellers with the Generic Resource Modelling
(GRM) sub-profile which allows for the high level description of embedded
platforms including both SW and HW in a generic way, without going into
details of the actual platforms (i.e. which processor and/or operating system). In
the following subsections we will try to describe how to use this sub-profile to
model the resources of the embedded platforms.

Part 3. Modelling and Evaluation

66

3.4.1.1 MARTE GRM Concepts for Execution Platform Modelling

An embedded system platform model is composed of models of SW and HW
elements and their interaction relationships. The GRM sub-profile gives concepts
Resource, ResourceService, and their corresponding instances ResourceInstance
and ResourceServiceExecution. Resources are used to model the execution
platform from a structural point of view, while the resource services supply the
behavioural point of view. A resource may be structurally described in terms of
its internal resources � this is represented by the �ownerownedElement� association
in Resource inherited from the ModelElement meta-class. For example, a
processing resource may be refined as a processor connected to a memory
through a bus.

ResourceAmount, representing a generic quantity of the "amount" provided
by the resource. This may be mapped to any significant quantification of the
resource, like memory units, utilization, power, etc.

As it occurs with classifiers, the execution platform may be represented as a
hierarchical structure of resources.

Resource types:

• StorageResource
• Timingresource
• SynchResource
• ComputingResource
• ConcurrencyResource
• Deviceresource
• CommunicationResource: CommunicationEndPoint,

CommunicationMedia.

Scheduler is defined as a kind of ResourceBroker that brings access to its
brokered ProcessingResource or resources following a certain scheduling policy.

SchedulableResource is defined as a kind of ConcurrencyResource with
logical concurrency.

When the executionBehaviours of concurrencyResources need to access
common protected resources, the underlying scheduling mechanisms are typically
implemented using some form of synchronization resource, (semaphore, mutex,
etc.) with a protecting protocol to avoid priority inversions.

Part 3. Modelling and Evaluation

67

ResourceUsage links resources with concrete demands of usage over them. A
few concrete forms of usage are defined at this level of specification under the
concept of UsageTypedAmount; those are aimed to represent the consumption
or temporary usage of memory, the time taken from a CPU, the energy from a
power supply and the number of bytes to be sent through a network.

Platform architecture model � structural view

When the modelling execution platform it is usually presented as a hierarchical
layered model, e.g., a platform layer consisting of a set of (different) computing
nodes linked with (internal) network communication, computing node (also
called a processing node or sub-system) layer consisting of components and
component layer, all layers containing appropriate software implementing system
services.

Examples at the component layer are processing (e.g. programmable
processors), storage (e.g. volatile memories) and interconnection (e.g. bus)
elements as well as an OS/scheduler and device drivers. Their services are of a
basic type, like read, write, etc. Examples of NFP property types include e.g.,
clock frequency, cycles-per-instruction, pipelining, read-latency, write-latency
and burst-latency.

An example at the computing node layer is composed of bus, different
processor types each with private memory, the OS and device drivers, shared
memory, shared I/O component and a shared network interface component (to
connect to network communication at the platform layer). A processing node is
capable of providing generic multi-tasking (multi-processing, multi-threading)
and device driver services and e.g. (part of) core and optional services. Examples
of NFP property types include e.g. task processing time, service processing time,
the number of task switches, the number of processor cycles used,
communication latency/delay, etc.

An example at the platform layer is illustrated by instances of different types
of computing nodes connected with (internal) network communication. In addition
to (internal) network communication services, the platform layer may provide e.g.
(part of) core and optional services that are produced through interaction of
several computing nodes and their services. Examples of NFP property types are
similar to the computing node layer, but now possibly aggregated if services
span several computing nodes.

Part 3. Modelling and Evaluation

68

3.4.1.2 Modelling Processing Units and Tasks

The most common layout of an embedded application is that of concurrent
execution threads competing for the processing core/s of the embedded device.
These threads are abstracted by the underlying operating system and they are
scheduled following the criteria of a certain scheduling policy.

To model this layout, MARTE GRM subprofile provides the designers of
three stereotypes: <<ComputingResource>>, <<Scheduler>> and <<Schedulable
Resource>>. Figure 16 depicts an example layout with a single processor
scheduled via a fixed priority policy. The figure shows three tasks that compete
for the processor.

Figure 16. Modelling a processor and three tasks.

As shown in the latter diagram, the relations between processors, schedulers and
tasks are clearly defined by using the MARTE stereotypes.

Schedulers are a fairly important element in embedded applications running
on top of Real-Time Operating Systems (RTOS) and the profile allows its
description at a great level of detail. The latter diagram shows a fixed priority
scheduler that is hosted (executed) by the system processor. As shown in the
example, the scheduler is scheduling the access of a list of schedulable resources
(i.e. processes or threads) to the processor�s computing resources. In order to do
so, the scheduler will follow a fixed priority policy with pre-emption.

Threads can also be further described using the properties defined for the
<<SchedulableResource>> stereotype. In this case, the three tasks defined are

Part 3. Modelling and Evaluation

69

described by �FixedPriorityParameters� instances which only contain one
parameter: priority. The subprofile also defines parameter types for other
scheduling policies. In order for the model to be consistent, it is necessary that
the parameters used to describe system threads match the scheduling policy used
by its scheduler.

3.4.1.3 Modelling Shared Resources

A problem related to multithread programming is handling access of the
different tasks to the shared resources. MARTE GRM sub profile provides the
users of two stereotypes to model shared resources depending on access protocols. These
stereotypes are <<SynchronizationResource>> and <<MutualExclusionResource>>.
The main difference between these two resources is that the synchronization
resources refer to unmanaged elements like semaphores and mutexes while
mutual exclusion resources refer to elements handled by an access protocol.
Figure 17 shows the three tasks defined before and two shared resources of
different types.

Figure 17. Modelling shared resources with MARTE.

The diagram shows how a shared variable can be modelled following both
approaches. In this case the mutual exclusion resource depicted follows a priority

Part 3. Modelling and Evaluation

70

inheritance protocol managed by the system scheduler that was presented in
Figure 16. The MARTE GRM subprofile allows the description of this
relationship through the use of the stereotype properties defined. The shared
elements have been modelled using <<StorageResource>> stereotypes. These
stereotypes will be covered in the following section.

3.4.1.4 Modelling Variables and Shared Memory

One of the most important characteristics of embedded devices is resource
limitation. All resources considered, the most critical in embedded applications
is memory. Therefore, in order to successfully describe embedded applications it
is necessary to precisely model memory resources and requirements. The
MARTE GRM subprofile uses the <<StorageResource>> stereotype (presented
in the latter section) to model data containers. Figure 18 adds a finer grain
description of the example in Figure 17.

Figure 18. Detailing variables and memory in MARTE.

In this example, the size of the shared information is the priority inheritance
resource defined before is specified. Although these aspects might not be strictly
platform issues it is important to describe them in order to know whether a
specific platform is well suited for a certain application.

In Chip level designs, a storage resource represents a generic memory unit in a
system. On the other hand, in System level designs, this kind of resource
represents (distributed) databases.

3.4.1.5 Modelling Communication Resources

Another important aspect of embedded systems is the capability of interacting
with other devices. In order to do so, a system must access communication
media and use communication resources. The MARTE GRM sub-profile

Part 3. Modelling and Evaluation

71

provides two stereotypes to model communication resources, both resources
internal to the operating systems (i.e. pipes, IPC...) and network resources (i.e.
Bluetooth, IP networks...). The following example depicts how a TCP socket
connection is modelled using MARTE GRM.

Figure 19. Modelling communication resources in MARTE.

As shown in Figure 19, the <<CommunicationEndPoint>> stereotype is used to
model the platform element in charge of transmitting the messages to a
<<CommunicationMedia>> and/or receiving incoming messages from remote
peers. Many real-time applications need predictable communication resources
(e.g. industrial SCADA systems). These applications use real-time networks to
achieve a predictable communication between network devices. MARTE provides
support to model these kinds of networks. In the example a TCP/IP network is
modelled. IP packets can be prioritized according to a fixed priority policy. In
order to model this kind of behaviour, we have used a virtual network scheduler
which is not related to a physical component, but yet affects the communication
behaviour. Again, in order to keep the model consistency, the element sizes for
communication media and end points must be the same/compatible.

The same stereotypes can be used in Chip level designs for modelling the
communication buses and bus interfaces of the components.

3.4.1.6 Modelling Platform Black-boxes

It is common that embedded applications use both dedicated hardware and/or
special software libraries to help developers perform a certain action (e.g. driver
to access a sensor or an MP3 hardware coder). These pieces of
hardware/software are treated as black boxed by the application designers and

Part 3. Modelling and Evaluation

72

developers who will use these specific devices without caring for its
implementation details. This kind of approach is also valid for cross-domain
platform services. MARTE GRM allows for the introduction of such an element
in our platform models by using the <<DeviceResource>> stereotype. Figure 20
shows an FFT accelerating hardware piece that interacts with the control task
modelled before.

Figure 20. Modelling support hardware as device resources.

The stereotype allows the distinction between hardware and software resources
by using its properties. A hardware device resource will use the speedFactor
property to specify its processing speed with relation to the main computing
resource in the system. On the other hand, software libraries won�t specify a
speed factor. A device resource may also use a scheduler to prioritize elements
accessing it.

3.4.1.7 Modelling Timing Resources

It is common to find embedded devices that rely on different timing resources
which they use for different purposes. MARTE GRM provides two stereotypes
for modelling clocks and timers. Figure 21 shows a timer resource included in
our example.

Part 3. Modelling and Evaluation

73

Figure 21. Modelling a timer.

As depicted in the diagram, we have now added a timer that will periodically
inform the system scheduler that it is time to reschedule its managed resources .
Clocks are defined in a very similar way. To obtain further information on
modelling timing resources please refer to the MARTE GRM specification.

3.4.1.8 Further Refining Platform Structural Models

In many cases the MARTE GRM sub-profile is expressive enough to describe
platform architectures; however, in certain cases it is possible that the platforms
models may be too generic for the application under construction or with regard
to further phases of the development process (e.g. application designs at chip
level, L1). If this is the case, MARTE provides two specific and more concrete
subprofiles for software and hardware description: the MARTE Software
Resources Modelling (SRM) subprofile and the MARTE Hardware Resources
Modelling (HRM) subprofile respectively.

3.4.2 Behaviour View

According to MARTE GRM: �Resources are used to model the execution
platform from a structural point of view, while the resource services supply the
behavioural point of view.�

Part 3. Modelling and Evaluation

74

According to MARTE SRM: �The multitask-based method aims at designing
applications as a set of units executing concurrently and interacting (i.e.,
communicating and synchronizing) via specific mechanisms provided by a
specific execution support. That support is in charge of real-time and embedded
features (e.g., time constraints, determinism and memory footprint). It provides a
set of resources and services through its application programming interface
(API).�

According to MARTE HRM: �Typically, an HW_Resource provides at least
one HW_ResourceService, and may require some services from other resources.
Each HW_ResourceService could be detailed by many views to describe its
behaviour patterns. The resource services (HW_ResourceService) are not
explicitly specified as they are mainly deduced from the nature of the resource
and they should be fully listed only if such level of detail is needed.�

In addition to the behaviour descriptions of high-level core and optional
services of GENESYS, there are various execution support services like transferring
data, sharing resources, communications and synchronization of tasks.

The behaviour view is presented as the interfaces and their state machine
descriptions (i.e. protocol) of the above mentioned services.

Regarding the methodology framework, in order to model the behaviour of the
platforms, UML behaviours (i.e. activity, sequence and state machine diagrams)
could be useful to model interactions within the platforms.

In order to reflect how platform behaviour can be modelled, an operating
system round-robin scheduling pattern is modelled. The example, which is based
on [Douglas 2002], describes a round-robin scheduling algorithm by a class
diagram (structural view) and a sequence diagram (behaviour view). The model
elements that complete the pattern have been stereotyped according to the GRM.

The round-robin pattern schedules a set of ordered processes with static
priorities by assigning time-slots to each of them. Once each process completes
the processing time it is pre-empted and the processor is assigned to the next
process in the list.

Part 3. Modelling and Evaluation

75

Figure 22. Structural view for a scheduling pattern.

The class diagram in Figure 22 describes the main elements involved in the
round-robin concurrent pattern. As shown, a system scheduler is interrupted by a
timer that is has been previously configured at initialization time. The scheduler
assigns time-slots to execution threads which are characterized by their control
blocks and stacks. Task control blocks describe the initial addresses of each task
and stacks refer to the memory segments assigned to each task for storing
temporal variables, a parameter or return values for system calls.

In order to describe the behaviour of the platform, a possible scenario is
provided in Figure 23.

In order to facilitate a link between the models and the analysis/simulation
tools, the methodology framework provides the option of using opaque
behaviour UML model elements. Opaque behaviours are defined by pieces of
code or pseudo-code regarding it specification; therefore, using these approach,
it is a simple task to establish a link between the UML2+MARTE models and
other modelling languages like SystemC or BIP.

Each element in an architectural view represents real hardware and software
parts. Each element has, therefore, a behaviour that is implicit to that component�s
nature. Behavioural views capture these behaviours and enable simulation and
testing tools to draw early conclusions from system design models.

Part 3. Modelling and Evaluation

76

Figure 23. Behaviour as a sequence diagram.

Due to their link with reality, behavioural views are heavily constrained by non-
functional properties regarding timing, power consumption, weight, length, etc.
The more complete these kind of views are the greater will be the number of
early tests that can be performed on the system designs and accordingly, the
greater the quality of the final products.

3.4.3 Code View

To be able to execute the models a code view of models is needed in one or
more languages.

For example, SystemC has been selected in GENESYS as one such language
to support system-level performance simulation. The reasons for this selection
include: SystemC is standard, open libraries and tools are available, it enables
high-level (transaction-level) modelling of execution platforms, and it is commonly
used for platform modelling.

The performance views of simulation models of the execution platform
elements described above are modelled in SystemC and stored in a model

Part 3. Modelling and Evaluation

77

library. Based on the selected platform configuration, the platform simulation
model is instantiated from these library elements. It should be noted that for a full
system performance simulation, an abstracted application model needs to be
transformed (e.g. through code generation) or described in SystemC.

Representations in other languages may be needed in the system realization
phase, but they are not addressed here.

3.5 Platform Module Library

A Platform Module Library provides the ready-made services defined by the
reference architecture template. All definitions of platform services have three
dimensions: abstraction, integration and aggregation (Figure 24). These dimensions
have different purposes. Each service has two abstraction levels: model and
code/implementation, which are intended for the use of different stakeholders,
e.g. managers vs. testing people. Both abstraction levels have been introduced in
the previous sections. The integration level defines the scope of a service; the
platform service can be applicable on one, two or all integration levels (chip
(L1), device (L2), open/closed system (L3)). The definition of the integration
level is a property of a service that guides the architect to select a proper service
for the platform architecture under work. The aggregation dimension is used for
separating common services from variable services and managing their
relationships. Thus, the dependencies between services are defined by the
aggregation dimension that is implemented as a taxonomy of services.

Figure 24. Dimensions of platform services specifications.

Part 3. Modelling and Evaluation

78

The service taxonomy categorizes services into useful groups of services, which
make it easy for the platform architect to find a service that fits to a platform
architecture design. Figure 25 depicts one possibility for clustering services; core
services are used in each GENESYS compatible system, i.e. it is to be checked
that all core services have been used in the platform architecture design. Other
services are optional and embody variability that has to be managed by the
module library management mechanisms. Optional services, e.g., Networking,
Security and Resources service class in Figure 25, need definitions of their
relationships with core and other optional services, service specific properties
and rules that help in selecting, configuring and using a service in architecture
design and evaluation phases. These definitions specify explicitly how to deal
with variability, i.e. they define facts and rules for variability management. The
implementation of variability mechanisms depends on the organization who
instantiates the platform module library. Thus, there can be different kinds of
taxonomies, depending on the usage of the platform module library.

Platform Module
Library

Core
Service

Common Time

Monitoring

Communication

Periodic

Sporadic

Steaming

Configuration

Management Service

Resource

Data

QoS

Messaging

Eventing

Communication

Comput ing

Boot

Security

RN-generator

Dist ributed application

Non-volat ile
memory

Job

State

System

Component

Platform

FaultTolerance
Error Correction

Redundancy mgmt

Program Flow mgmt

Protected Channels

Replacement
Distributed Application

Job

Service

Derived Time

Logging

Synchronization

Execut ion

Application

Encryption

Identification

Optional services goup n

Platform

IP-Core

Routing

*
*
*

Figure 25. An initial taxonomy of platform services.

Part 3. Modelling and Evaluation

79

3.6 Integration and Development of Platform Services

In this section we will try to describe how platform services are used as part of
the platform models in the methodology framework. Platform services are a
group of core and optional services that define the reference architecture template.
Each cross-domain architecture style compliant development at each integration
level (L1, L2, L3c and L3o) must implement all the core services defined at that
level plus a set of optional services specific for the current design. Therefore,
applications will rely on the services provided by the underlying platforms. This
kind of interaction requires the definition of an interface between which
applications interact with the services. Furthermore, each platform service will
be defined by its behaviour.

Moreover, the reference architecture template has been defined as an open
architecture, able to evolve and adapt to new requirements by adding and
changing existing platform services. Therefore, the methodology framework
must support the design, development and analysis of new platform services.

3.6.1 Interfacing with Platform Services

System designers using the reference architecture template need are provided
with a series of services that simplify the design and implementation tasks.
These services are instantiated as part of the platform architecture that supports
the applications. Following the approach described in Section 3.4, platform
services can be seen as black boxes that provide the designer with higher level
functionalities. Figure 26 shows an example core service, the Periodic Exchange
of Messages Service.

Figure 26. Periodic Exchange of Messages Service API.

Part 3. Modelling and Evaluation

80

The service description is therefore modelled as a software library API,
describing the available interfaces of the GENESYS service as well as the inputs
and outputs. This representation might be sufficient for platform designs;
however, in order to perform non-functional analyses on the system models a
more detailed approach is needed. It is important to note that the API operations
are stereotyped with MARTE::GRM <<GRService>>, which denotes the
definition of the service interfaces for the clients.

This kind of representation is appropriate for the structural view of the
platform architecture models.

3.6.2 Describing the Behaviour of the Services

Each of the GENESYS platform services is treated from the designer�s point of
view as a black box that provides him/her with some functionality. In order to
fully describe them we still need to add a behavioural description.

As we discussed already in previous sections of this deliverable, the
UML+MARTE modelling language provides several mechanisms to represent
the behaviour: state machine diagrams, activity diagrams, collaboration
diagrams and sequence diagrams. Each of them is preferable for different
applications; however, as we defined previously, the behavioural representation
which is the most widely used among analysis tools is the state machine.
MARTE provides some stereotypes (already described in previous sections) that
allow the addition of non-functional information to the behavioural diagrams.

3.6.3 Design Process for New Platform Services

The reference architecture template is an open and evolvable platform which can
adapt itself to the new challenges of the embedded systems market. Therefore,
the methodology framework must support the design and development of new
platform services.

From the point of view of a designer, a new platform service does not differ in
concept from the development of a concrete application within the scope of the
cross-domain architecture. The design of a new service must go through the six
phases of the development process. However, the application models must
clearly state the interface (API) of the service under design using the
<<GRService>> stereotype. Figure 27 shows an example of this.

Part 3. Modelling and Evaluation

81

Figure 27. The <<GRService>> stereotype in new services design models.

3.7 System Allocation / Configuration / Refinement

The System Allocation / Configuration / Refinement phase of the GENESYS
process model is related to the mapping of the applications to the platform
architecture elements that will support their execution.

This phase includes an allocation view, the platform architecture configuration
view and additional information, e.g. probabilities of state transactions, needed
for quality evaluation purposes.

The allocation view defines how applications and services are deployed on the
computing and communication resources provided by the execution platform.
Typically, platform architecture needs to be configured according to parameters.
Additional information required for specific evaluation methods is provided by
adding the required information to the models provided by the earlier design
phases. An allocated system contains all the necessary information to implement
the final product. If the vertical model transformation is supported, simulation
and target code can be generated from the validated system architecture models.

The MARTE profile includes a specific sub-profile Alloc that allows a
designer to specify which application elements will be associated to which
platform resources. In this section we will use again the cruise control system
(CCS) example to illustrate allocation modelling in MARTE. Figure 28 depicts
the platform model that will support the execution of the controller of the
system.

Part 3. Modelling and Evaluation

82

Figure 28. Platform model of the CCS controller.

The platform model of the cruise control system consists of a CPU managed by
a system fixed priority scheduler. Three threads have been defined, all of them
hosted by the system scheduler. Lastly, two shared protected variables have been
defined, each of them with a blocking call for acquiring and releasing the
variable lock (i.e. a mutex).

The allocation is performed using the structural views of both application and
platform models and using the <<Allocate>> stereotype on UML abstraction
dependencies. The <<Allocate>> stereotype allows for further describing the
nature and kind of the allocation as well as any constraints to be applied during
the allocation process. Additionally, both application and platform elements are
stereotyped with <<Allocated>>. The reader can find more information of the
stereotypes and their properties from the MARTE profile, Section 11.

Figure 29 shows the structural view of the application model allocated on top
of the structural view of the platform model. Each of the operations and
receptions in the controller has been allocated on the three threads and the
passive protected units have been mapped to mutex-protected variables.

Part 3. Modelling and Evaluation

83

Figure 29. Allocated model of the CCS controller.

3.7.1 Schedulability Analysis and Simulation

3.7.1.1 Scheduling View

The scheduling view must gather the information of the systems regarding
eleven concepts: CPUs and computing resources, Schedulers, Threads and
processes, Operations, Composition and ordering of operations, Operation
activation patterns, Shared resources, Shared resources usage times, Secondary
schedulers, Communications networks, and Message communication operations.

These concepts are mainly related to platform resources, but also need
information from the application design. Therefore, the scheduling view is
constructed from the allocated models of a system defined in the System
Allocation / Configuration / Refinement phase.

In fact, many of the concepts included in this view have already been defined
in the modelling phase. To extend the previously defined models to fully cover
the concepts presented above, MARTE provides a Generic Quality Analysis
Modelling (GQAM) sub-profile and a more specific Schedulability Analysis
Modelling (SAM) sub-profile. By using some elements of these sub-profiles it is
possible to enhance the models and make them suitable for use, via model
transformations, as input for schedulability analysis tools.

Part 3. Modelling and Evaluation

84

First, the stereotype provided by MARTE is <<SaExecHost>>, which
enriches the information already provided by the <<ComputingResource>> and
<<Scheduler>> stereotypes adding some extra properties (in fact, this stereotype
inherits the properties from <<ComputingResource>> and <<Scheduler>>).

To use the latter stereotype we create a new class that is related with a
scheduler and a computing resource, and which inherits all the values of the
properties from <<ComputingResource>> and <<Scheduler>> from them.
Figure 30 shows an example of defining a <<SaExecHost>> and relating it to
the platform elements.

Figure 30. Example of a <<SaExecHost>> definition.

Second, following with the structural definition of the schedulability analysis
contexts, it is important to take the shared resources into account. The
stereotypes used for platform definitions, <<MutualExclusionResource>> and
<<SynchronizationResource>>, define the platform resources. However, these
stereotypes do not model the interactions between operations (i.e. threads) and
shared resources. To include this information, the MARTE provides the
<<SaSharedResource>> stereotype to represent shared resources along with the
<<GaAcqStep>> and <<GaRelStep>> stereotypes to model the interactions
between operations and resources.

Part 3. Modelling and Evaluation

85

Figure 31 depicts the definition of a shared resource and how the
<<GaAcqStep>> and <<GaRelStep>> stereotypes are applied to model shared
resources and how tasks access them. In the example, any call to the acquire()
and release() operations by any task in the application model will be understood
as an access to a protected shared resource. The <<SaSharedResource>>
stereotype can be related to both <<SynchronizationResource>> and
<<MutualExclusionResource>> elements.

Figure 31. Definition of a shared resource in the scheduling view.

Third, the resource acquisition and release operations are specific operations
defined for shared resources. However, MARTE also supports the definition of
more generic operations. Operations represent isolated pieces of code that are
executed sequentially following a certain pattern defined during the application
design phase; more concretely, during the definition of the behaviour view.

The MARTE <<SaStep>>, which can be applied to UML operations, actions
and behaviours, provides a very simple way to isolate pieces of code to further
structure our applications and to provide scheduling information to the analysis
and simulation tools. An example is provided in Figure 32.

Part 3. Modelling and Evaluation

86

Figure 32. An example of the <<SaStep>> stereotype for isolating pieces of code.

Fourth, there exist some operations that imply the sending/receiving of messages
using some kind of communication media. These operations have to be treated
differently from normal operations. MARTE defines two stereotypes for model
communications from a schedulability point of view:

• <<SaCommHost>>, which represents communication networks as well
as any scheduling policy that could be defined in those networks, and

• <<SaCommStep>>, which models operations that imply a communication
through any communications media.

Figure 33 shows how to introduce these stereotypes in the scheduling view of
the systems. As it can be seen from the figure, the <<SaCommStep>> stereotype
is appropriate to be applied to UML signal receptions to include scheduling
information.

Figure 33. Modelling communications for schedulability analysis in MARTE.

Finally, it is important to address the fact that all other concepts that have not
been explicitly treated here are already covered by the stereotypes used in the

Part 3. Modelling and Evaluation

87

earlier defined views of the system models. For example, the activation patterns
of the tasks can be modelled using the <<RtFeature>> stereotype from the
MARTE HLAM sub-profile. The reason for doing this is because the activation
patterns of the tasks is an application design issue, even if information is used
for schedulability analyses and simulations. The same is true for secondary
schedulers, which have already been covered in the platform design phase. The
stereotype <<SecondaryScheduler>> in the GRM subprofile captures this
concept in the system models.

3.7.1.2 Analysis and Simulation Tools

As has been outlined in the previous sections, models can be used to capture the
most significant structural, behavioural and non-functional information of the
systems. This information enables not only source code generation through
transformations, but also early testing and analysis. However, different analysis
tools often employ different input data formats and it is difficult to make them
interoperate. A more abstract language, along with model transformations provides a
tool-independent framework for system analysis and testing. This section
describes the views that must be added to the existing application models and
how the obtained models can be transformed into input models for three
different schedulability analysis tools: Cheddar [Singhoff 2004], MAST [MAST
2008] and TIMES [Amnell 2003].

Early detection and correction of system vulnerabilities and errors is
increasingly important for embedded software developers; especially for those
developers working with safety critical software. Early detection of software
defects may reduce the costs derived from the correction of the error. Among the
many vulnerabilities that can be detected in an early development stage,
schedulability is one of the most recursive topics in the researchers� community.

Several methods and tests have been developed to analyze the schedulability
in real-time systems [Liu 1973, Tindell 1994a, Sha 1990, Tindell 1994b]. These
tests often require different information from the analyzed system as input.
Models provide a good means for capturing this information in a structured way.
In order to obtain the necessary concepts that should be included in the
scheduling view to enable this kind of testing and analysis, three open-source
schedulability analysis and simulation tools have been used: Cheddar, MAST
and TIMES. Each of the latter tool suites employs a different set of concepts to
create the input models for their simulation and analysis tools. In the following

Part 3. Modelling and Evaluation

88

lines we provide a short overview of the tool suites as well as a brief description
concepts involved in their metamodels.

Cheddar

Cheddar is an open source schedulability analysis and simulation toolkit (Figure
34). It was first conceived to be an AADL models analyzer. It has been
developed on top of OCARINA [Ocarina 2008], a toolsuite for manipulating
AADL models.

Cheddar provides a graphical user interface that allows users to model the
application they want to analyze and a simulator which computes simulated
schedules and feasibility tests. Although Cheddar supports a great number of
scheduling policies and schedulability tests, there are cases where existing
schedulers do not match the particularities of a given system. For those cases,
Cheddar offers the possibility of defining new schedulers and it is able to
analyze the systems according to new scheduling policies.

The schedulers supported by Cheddar for simulation and feasibility analysis
are: Rate Monotonic (RM), Deadline Monotonic (DM), Earliest Deadline First
(EDF), Least Laxity First (LLF), POSIX 1003b fixed priority scheduler and
Maximum Urgency First (MUF). The tool also supports the inclusion of shared
resources into the system models.

Figure 34. Extract of the Cheddar metamodel.

Part 3. Modelling and Evaluation

89

In order to perform schedulability analyses, Cheddar uses system XML models
as input. We will briefly overview the concepts included in the Cheddar metamodel
depicted in Figure 34.

• Processor. Computing resources are modelled in Cheddar as processors.
Each processor has associated a certain scheduler type and a name.
Schedulers can be defined as preemptive or non-preemptive and a quantum
value can be specified.

• Address Space. Address spaces model memory areas reserved for a certain
process in a processor. Tasks are allocated in an address space associated
with a processor. An address space element has a name and must have a
hosting processor. Additionally, an address space may be given a secondary
scheduler that will override the primary processor for the tasks allocated to
it. Lastly, memory properties can be specified in order to perform utilization
tests.

• Task. A task element represents an execution thread running within a
certain process. Again, a task element has a name and a hosting address
space. A task may have many different parameters that affect them in
different scheduling contexts.

• Resource. The element resource of the Cheddar metamodel represents
resources shared by different tasks in a system (i.e. critical sections). A
shared resource is defined by its name, and its hosting processor and
process, and it has a number of extra properties used to specify the number
of tasks that may access it simultaneously, the concrete tasks that require
the resource and the access protocol.

• Task Precedence. Cheddar models allow the insertion of some behavioural
aspects in the models. A task precedence element indicates that a task must
be completed before another one may start its execution.

• Message Dependency. Cheddar models use message dependencies to
include message-based interactions between senders and receivers. A
message element must be defined and related to a message dependency. A
message element is defined by its occurrence properties, its size and its
communication timing properties.

• Buffer Dependency. Cheddar models use buffer dependencies to include
buffer-based interactions between data providers and consumers in streaming

Part 3. Modelling and Evaluation

90

interactions. In similar fashion to message dependencies, a buffer element
must be defined and related to a buffer dependency. It is important to note
that buffers may only be defined in Cheddar as inter-task communication
systems on a local host. A buffer element is defined by the hosting elements
(i.e. processor and address space), its size, its queuing policy and the buffer
users (i.e. a set of tasks). Buffers can be analyzed in Cheddar using buffer
usage simulations and feasibility tests.

MAST

MAST is a toolsuite for modelling and analyzing real-time applications. It has its
own metamodels to create the models needed by the analysis and simulation
tools. MAST tools make use of the concepts introduced in the metamodels to
analyze and simulate real-time applications and provide the results.

MAST supports a variety of scheduling analysis methods: RM, EDF and
Holistic. The tool suite also includes a scheduling simulator engine. MAST
includes a metamodel for modelling real-time applications and systems. The
following paragraphs will briefly cover the concepts included in the MAST
metamodel and the properties associated with them (see Figure 35 for further
details). Further information about the MAST metamodel can be found in
[Medina 2005].

Part 3. Modelling and Evaluation

91

Figure 35. Extract of the MAST metamodel.

• Regular Processor. Regular processor elements represent computing units
in real-time application models. A processor in MAST is defined by its
name, its timing constraints, its interrupt priority range and its speed factor.
A processor may also include a timer.

• Primary and Secondary Schedulers. A primary scheduler represents the
main scheduling resource in an operating system. It is defined by an
identifier, a host processing unit (i.e. a processor or a network) and a
scheduler type (i.e. Fixed Priority or EDF). Secondary schedulers represent
tasks that contain a certain scheduling resource that manages a list of tasks.

• Regular Scheduling Server. A regular scheduling server represents the
structure of a thread in an operating system, that is, the resources that
support the creation of threads, and it owns a series of executable code. A
scheduling server is defined by its identifier, the scheduler in charge for
managing it and the scheduling policy parameters that will be applied to it

Part 3. Modelling and Evaluation

92

and to the shared resources accessed by it. Note that these parameters must
be compatible with the host scheduler.

• Simple Operation. A simple operation represents a small amount of
executable code which is executed in a regular scheduling server. Simple
operations are defined by an identifier and the timing characteristics that
affect its execution. A simple operation may also override the priority
defined for the scheduling server and it may also use/lock/unlock a list of
shared resources.

• Composite and Enclosing Operations. The MAST metamodel allow the
introduction of small behavioural aspects in the models in a similar way to
Cheddar. In order to establish an order of precedence between different
simple operations composite operations are used. This kind of operation is
defined by a list of simple operations that are executed consecutively. On
the other hand enclosing operations model higher level operations that
contain unique code as well as calling other simple operations. Enclosing
operations must specify their timing parameters independently from the
simple operations enclosed within them.

• SRP, Priority Inheritance and Immediate Ceiling Resources. These
three elements represent shared resources in MAST. An SRP resource
represents a non-managed resource or a resource managed by a user-
defined protocol, while the other two represent shared resources whose
access is managed by priority modification protocols.

• Packet-Based Network. Both the MAST metamodel and its analysis
techniques provide support for distributed real-time systems. A packet-
based network represents the most basic communication media for
transmitting messages between tasks located in remote processing
resources. A network is defined by a series of parameters: identifier, speed
factor, throughput, transmission type, maximum blocking time and
maximum/minimum packet sizes. Moreover a network must have a list of
network drivers that manage the messages.

• Message Transmission. A message transmission element represents a
special kind of operation that implies the action of sending a message
through a network. This kind of operation requires the specification of the
message size related to it.

Part 3. Modelling and Evaluation

93

• Regular Transaction. A transaction element defines a concrete behaviour in a
MAST model. MAST will perform schedulability analyses on each
transaction defined. Transactions model not only tasks executing on a local
computing resource, but also packet-based communications over networks
and tasks executing in remote computing resources. Therefore, a transaction
defines an end to end workflow performed in a real-time distributed system.
Transactions are defined by Activity elements. Each activity has an input event
and an output event, which contain the timing information related to it, an
operation element and an execution server. Transactions may also have
event servers. Event servers affect the flow of events in different ways (e.g.
event multicasting, event barriers, event delays...).

TIMES

The TIMES tool is software for modelling and analyzing real-time applications.
The TIMES tool is not only a schedulability analysis tool but also a systems
modeller and a code generator. However, for the experience presented here only
its schedulability analysis and simulation capabilities have been used.

Regarding schedulability, TIMES provides a simulator and a schedulability
analyzer. It supports RM, DM, Fixed Priority and EDF policies with shared
resources; it does not, however, support multiple processors nor distributed
systems.

In a similar way as the other two tools, TIMES uses its own metamodel for
describing real-time systems. The metamodel uses the following concepts (see
Figure 36).

Part 3. Modelling and Evaluation

94

Figure 36. Extract of the TIMES metamodel.

• Task table. Every TIMES model owns a single task table element. The task table
defines the scheduling policy that will be applied to the tasks allocated in it.

• Task. A task represents a process/thread in the system. Since TIMES can
only handle single processor systems, all the tasks are allocated in a single
task table with a single scheduling policy. A task is defined by its worst
case execution time, period, deadline, offset, priority and activation pattern
(controlled, periodic or sporadic). A task may also use shared resources. In
the latter case, each task must address the instants in which it accesses each
shared resource.

• Semaphores. TIMES allows the definition of mutexes between tasks. They
are modelled using only a name, since TIMES does not support priority
inheritance access protocols.

• Task precedence. The TIMES metamodel includes the possibility of
defining a certain order of precedence between tasks in the system.

Part 3. Modelling and Evaluation

95

3.7.1.3 Concepts of Scheduling View

Regarding the concepts covered by each of the analyzed tools it is easy to see
that many of the concepts are covered in various metamodels differently. Therefore,
the introduction of these concepts in the models using a more abstract modelling
language provides designers with a higher level tool independent framework.

Table 11 maps the elements present in the three metamodels with the concept
they model.

In order for the models to be abstract enough to be used with any of these
three analysis and simulation tools, the scheduling view, which can be partly
included in other model views, must contain at least the eleven concepts
described in the table above.

It is important to note that the concepts defined in the scheduling view refer to
both platform and application elements and, thus, the scheduling view should be
defined/created on top of the allocated model in the system refinement /
allocation phase.

Part 3. Modelling and Evaluation

96

Table 11. Comparison of the concepts of three schedulability analysis tools.

Concept Representation in...

 Cheddar MAST TIMES

1. Single and multi-core
processors

Processor

Single and
multi-core(s)

Regular Processor

Single and
multi-core(s)

-

2. Scheduler Processor
scheduler Primary Scheduler Task Table

3. Threads/processes Task Regular Scheduling
Server Task

4. Execution code

Parameters: worst case
execution time, period,
deadline, etc.

Task (each task
represents a
single operation)

Simple/Composed/
Enclosed operations

Task (each task
represents a
single operation)

5. Complex operations

Execution ordering
Task Precedence

Composed/Enclosed
Operations +
Transactions

Task
precedence

6. Shared resources

To be treated in
schedulability analysis

Represent mutexes,
semaphores, monitors
etc.

Resource

SRP, Priority
Inheritance and
Immediate Ceiling
Resources

Shared
Resources

7. Triggers Task types Transaction Events Task
(behaviour field)

8. Relationships between
executing threads and
shared resources

Resource �(tasks
accessing a
concrete
resource)

Resources to
lock/unlock lists

Task
(semaphores
field)

9. Secondary schedulers
built on top of native
scheduler of an operating
system

Address Space Secondary
Scheduler -

10. Communications
network - Packet-Based

Network -

11. Operations that send
messages through a
network

Message
Dependency

Message
Transmission -

Part 3. Modelling and Evaluation

97

3.8 Quality Evaluation

The Quality Evaluation methods introduced in this section (phase 5 in Figure 3)
give support for evaluating the following quality properties:

• Performance
• Power/energy efficiency
• Dependability including reliability, availability and safety
• Composability, and
• Evolvability.

Quality attributes can be classified into two categories; functional qualities,
which are observable at execution time (i.e. execution qualities), and non-
functional qualities, which are observable during the product life cycle (i.e.
evolution qualities). Functional qualities, e.g. performance and dependability,
express themselves in the behaviour of the system, while non-functional
qualities, e.g. composability and evolvability, are embodied in the static structures
of systems.

The interest of the quality attributes for system architecture is in the manner
that quality attributes interact with, and constrain, each other, and how they
affect the achievement of other quality attributes. Therefore, a set of quality
attributes are to be handled at the same time and tradeoffs between quality
attributes are to be calculated and managed. For example, dependability is a
concept that includes four quality attributes: reliability, availability, safety and
security. Moreover, a new concept �trustworthiness� focuses on a holistic view
of quality including the following attributes: correctness, safety, availability,
reliability, performance, security and privacy. The holistic approach aims at
applying multidimensional optimization techniques onto a set of quality
attributes that can have intrinsic and/or extrinsic relationships on other quality
attributes. An intrinsic relationship exists if one quality attribute affects another.
For example, models to predict reliability depend on a system�s anticipated
performance. This relation between reliability and performance is intrinsic.
Extrinsic relationships occur when attributes behave in an opposing way, e.g. an
increase in reliability decreases performance. In this case, the relation between
reliability and performance is extrinsic. However, the relations between two
attributes do not exit per se but rather they are properties of system architecture
[Hasselbring 2006].

Part 3. Modelling and Evaluation

98

Although the focus of this chapter is in the Quality evaluation phase, in order
to evaluate quality, several assumptions are made about the information inserted
into models during the preceding phases, i.e. requirements specification and
architecture design. Therefore, each evaluation method also defines how the use
of the method should be supported in the preceding modelling phases.

In the following sections, the quality evaluation methods specific for each
quality attributes (QA) are introduced. First, the execution quality evaluation
methods are defined and thereafter the evolution quality evaluation methods in
the prioritized order mentioned above.

3.8.1 Performance Evaluation

Performance evaluation means a process of estimating, through using performance
models in quantitative terms, what the performance properties of the system
being designed when implemented would be, whereas after implementation it is
more a question of measuring the values of properties (the latter is not addressed
in the sequel).

Performance evaluation in the context of real-time embedded systems
development tries to provide insight into three main issues:

• Responsiveness: Is the system capable of producing responses to user
(external) service requests in defined response times or according to a
defined throughput?

• Resource adequacy/utilization: Does the system have resources and is
their capacity enough for the currently planned applications? How
efficiently are the resources utilized?

• Scalability: Does the system facilitate extensions/reductions and scale
up/down resources and is their capacity enough to accommodate future
applications / changes in applications?

Performance evaluation methods can be classified according to three main classes:
analytical methods, simulation methods and monitoring methods [Jain 1991].

Analytical performance modelling is typical in the early phases of design and
its methods are based on mathematical models of the workload and the system
architecture. Markov chains, queuing models and Petri-nets are typical examples
of analytical modelling techniques. Analyses are normally based on solving the
equations, but simulation is also used as a supporting tool.

Part 3. Modelling and Evaluation

99

In the performance simulation, the execution of a workload with a model of an
execution platform is simulated. The workload modelling can be based on
several alternatives, e.g. executable programs (real application or benchmark
programs), execution traces of programs and stochastic models. Execution
platform modelling can be based on e.g. abstract resource capacity models or
virtual platform models where instruction-set simulators are used to simulate
programmable.

Monitoring/measurement-based approaches need working prototypes of hardware.
The prototype is calibrated to gather performance information during the
execution of the software.

Future embedded systems integrate an increasing number of concurrent
applications on MPSoCs. Therefore, performance evaluation is gaining importance
in the industry, while unfortunately also becoming increasingly complex.

Cycle accurate simulations are less and less usable for complex systems,
except when investigating a limited part of the system, because the number of
cycles that need to be simulated grows (and cycle-accurate SystemC simulations
are very slow) and because they need to have all the exact code available.
Unfortunately, the processors used in platforms have become so complex that
this kind of simulation, with the exact code and memory layout, often remains
the only chance for estimating timing properties. The classical obstacles to
evaluations at higher level are the non-predictabilities of cache memories,
competing requests for resources, and more generally interferences between
different activities. Possibilities can appear in applications where situations are
diverse enough to allow hiding cache misses and bus conflicts effects behind an
averaging at a very coarse grain.

In many cases, what the developers of complex applications need is an
evaluation of performance with a coarse, but guaranteed, error margin. The key
issue there is predicated upon the existence and capabilities of appropriate tools,
and on whether the assumptions that they put on the behaviour of platforms and
applications are valid for the system under test. The GENESYS architecture
principles on complexity management, component-based design, composability,
etc., will allow raising the abstraction level at which performance modelling and
evaluation is performed, and should therefore have a significant impact on this
situation.

Part 3. Modelling and Evaluation

100

3.8.1.1 Pre-requisites

A number of pre-requisites are needed for doing the evaluation. The following
sub-sections browse through how to consider performance in the modelling
phases of the GENESYS methodology.

A basic assumption is that the modelling applies UML2 supplemented with
the MARTE profile for dealing with NFP modelling.

3.8.1.2 System Requirements Definition

In the requirements specification phase, performance appears as requirements to
and/or constraints on the functionality (e.g. response times, throughput,�),
execution platform resources (e.g. capacities, energy,�), and the development
process itself.

The performance evaluation needs the following input from the requirements
modelling:

• Usage scenarios of the system, i.e. service interaction of the user with
the system, e.g. a set of representative use cases.

• Service interaction of the main (internal) actors of the system when
providing the above services (system behaviour), e.g. as a set of sequence
diagrams.

• Related performance requirements/constraints explicitly defined within
the above diagrams following the modelling constructs of UML2 with
the SysML (and/or MARTE) profile.

In addition to the above usually functionality related (timing, QoS, etc.)
requirements and constraints, other global/generic/holistic ones cannot often be
associated to specific usage scenarios of the system and they are given as overall
requirements and constraints. These shall be fulfilled in the subsequent
development and are often sources of evaluation criteria against which to
compare evaluation results.

Some of the common NFP attributes for analysis in the GQAM sub-profile of
MARTE could possibly (depending on the formalism/elaborateness of the
requirements model) be used already here (Table 12).

Part 3. Modelling and Evaluation

101

Table 12. Examples of NFP attributes for requirements model.

Delay (including initial scheduling delay) (respTime).

Time interval between two successive occurrences (interOccTime).

Throughput (executions per unit time) (throughput).

3.8.1.3 Application Architecture Design

In the application architecture design phase, performance appears e.g. as
deadlines of activities (tasks), service processing times, and types and amounts
of data to be communicated. In the HLAM sub-profile of MARTE, the <<rtf>>
stereotype allows for attaching real-time characteristics, e.g. deadlines and
durations, to interactions (interfaces) (Table 13).

Table 13. Attributes of the <<rtf>> stereotype.

Property Type Multiplicity Description

utility
MARTE_Library::

UtilityType
[0..1]

An abstract type. It must be defined
by the user. This type enables
MARTE to include a semantic
description of this service.

occKind

MARTE_Library::

BasicNFP_Types::

ArrivalPattern

[0..1]
This property describes the
occurrence pattern for the arrival of
this element.

tRef

MARTE_Library::

TimedObservations::

TimedInstantObservation

[0..1]
This property describes a reference
time that will be used for relative
time measures.

relDl NFP_Duration [0..1] Relative deadline.

absDl NFP_DateTime [0..1] Absolute deadline.

boundDl NFP_BoundedDuration [0..1] Bounded deadline.

rdTime NFP_Duration [0..1] Time used by the current element to
perform its work.

miss NFP_Percentage [0..1] Maximum admissible deadline miss
percentage.

priority NFP_Integer [0..1] The priority of this communication.

Part 3. Modelling and Evaluation

102

The GQAM sub-profile of MARTE defines how extra annotations can be
attached to design models for analysis in order to describe how system behaviour
uses system resources. Workloads describe how system behaviour exercises
system resources over time. The central concepts for workload description are
workload events triggering behaviour scenarios that are composed of steps.

A Behaviour Scenario captures any system-level behaviour description or any
operation in UML, and attaches resource usage to it. Resources are used in three
different ways (Table 14):

• Each primitive Step has a host processor used to execute the operation
of the step,

• A Step implicitly uses an operating system process which is a
SchedulableResource,

• A Step may be a specialized AcquireStep or ReleaseStep to acquire or
release a Resource, particularly a logical Resource representing a software
resource.

Table 14. NFP attributes for workload elements.

BehaviourScenario Step

hostDemand: NFP_Duration blockingTime: NFP_Duration [*]

hostDemandOps: NFP_Real [*] repetitions: NFP_Real =1

interOccTime: NFP_Duration [*] probability: NFP_Real = 1

throughput: NFP_Frequency [*] priority: NFP_Integer

respTime: NFP_Duration [*]

utilization : NFP_Real [*]

utilizationOnHost : NFP_Real [*]

3.8.1.4 Platform Architecture Design

In platform architecture design phase, performance appears as latencies /
processing times of services, capacities of resources, e.g. processor configuration
and its properties, and capacities of infrastructure, e.g. communication bandwidth
and policies.

Part 3. Modelling and Evaluation

103

In principle, 3 sub-profiles of MARTE can be applied in the platform architecture
design: GRM, SRM and HRM. The GRM profile is aimed at high-level
modelling of platforms, while SRM and HRM facilitate detailed modelling.

Considering the scope of the GENESYS project, applying the GRM sub-
profile seems most appropriate. The central concept of GRM is resource
providing services and their corresponding instances.

From the analysis point of view, the GQAM defines resource platform
composed of resources being either processing or concurrency resources (Table 15).

Table 15. NFP attributes for different resource types.

Execution host Communication host Communication channel

commTxOverhead: NFP_Duration capacity:
NFP_DataTxRate

packetSize:
NFP_DataSize

commRcvOverhead: NFP_Duration throughput:
NFP_Frequency utilization: NFP_Real

contextSwitchTime: NFP_Duration packetTime:
NFP_Duration

clockOvh: NFP_Duration blockingTime:
NFP_Duration

schedPriorityRange: NFP_Interval transmMode:
TransmModeKind

memorySize: NFP_DataSize utilization: NFP_Real

utilization: NFP_Real

3.8.1.5 System Allocation / Configuration / Refinement

In the system allocation / refinement phase, performance appears as part of the
cost function based on which the application functionality (with capacity
requirements) will be partitioned and mapped on the resources of the execution
platform (with provision of capacities).

The sub-profile Alloc of MARTE describes how application-related design
models can be associated to execution platform models. NFP constraints can be
added to these associations.

Depending on the type of analysis, system allocation can be a step in the
process or it can be implicitly embedded in the analysis modelling as in the
SAM and PAM sub-profiles of MARTE.

Part 3. Modelling and Evaluation

104

3.8.2 Performance Evaluation Methods

Performance evaluation can be used at different stages and for various purposes
in order to support the system (product) development process:

• Early feasibility analysis/evaluation

• Analysis of impacts of new application / application feature on (existing)
execution platform

• Specification/design of new execution platform when targeted applications
are characterised

• Supporting design space exploration

• Validation of performance aspects of implemented system.

Consequently, different methods or combinations thereof may be needed.
Numerous approaches have been presented in research and many are used in
practice. In the sequel, two different approaches are described as examples
(Figure 37): the main focus of the first is software architecture performance
analysis/evaluation using LQN performance models; the second is aimed at
application-platform performance analysis/evaluation using a transaction level
simulation of workload models of an application mapped on capacity models of
an execution platform.

Figure 37. Input, output and support for performance evaluation.

Part 3. Modelling and Evaluation

105

3.8.2.1 Performance Evaluation of Software Architecture

Performance of software architecture (Table 16) means its ability to meet timing
requirements in an environment with resource constraints [Purhonen 2004].
Typical attributes addressed are response time, delay and throughput, but results
may be used also to predict system scalability and sensitivity.

Table 16. Brief overview.

Feature Explanation Remarks

Required
methods

Layered Queuing Network modelling
method.

Targeted usually for software
architecture performance
evaluation.

Input Use cases, scenarios, performance
objectives.

High-level software architecture.

Allocation on computing nodes.

Performance annotations.

Design models are annotated with
performance attributes from which
performance model are created for
analysis.

Output Utilisation � percentage of time
server is busy.

Residence time � average time spent
at server.

Queue length � average number of
customers at service center.

Throughput � rate at which customers
pass through service center.

Jobs arrive, are processed, and
leave the network.

Applicability Software architecture performance
evaluation.

Models resources as servers with
prefixed queues.

Additional
models
required

Performance analysis profile. E.g.
UML SPT and MARTE profiles.

For annotating performance
attributes to design models.

Tooling Research tool for LQN solving.

Several research publications on
transformation from UML to LQN.

Presentation on work in progress of
creating software performance
models from UML+MARTE
descriptions.

http://www.sce.carleton.ca/rads/lqns/

[Woodside 2005, D�Ambrogio
2005]

[Petriu 2008]

Part 3. Modelling and Evaluation

106

Evaluation criteria. the evaluation criteria are defined based on the results of the
system requirements definition. The scope of the performance evaluation of the
software architecture is determined with a performance profile. A profile is a
group of use cases that describe the critical usage situations of the system. The
use cases are further specified as scenarios. Often one use case has to be
described with several concurrent scenarios. The result of this phase in the
architecture development is the evaluation criteria i.e. the test specification for
the architecture. The evaluation specification describes the scope, the
performance objectives, and the evaluation environment. Performance objectives
set the individual goals or constraints to each scenario in a profile. Performance
objectives can be, for example, goals to the response times or resource
utilization.

Software architecture model. Application architecture design results in the
description of the software architecture by architectural views (Table 17): a) The
Logical view presents the required functionality, b) The Physical view presents
the deployment of logical components to the execution nodes, c) The Process
view presents the runtime operation of the software in the execution nodes,
d) The Development view presents organizational constraints.

Table 17. Architecture views and performance aspects.

View Description Performance

Logical Presentation of required
functionality in an
implementation-independent way.

� Required functionality

� Complexity estimates

Physical Presentation of deployment of the
logical components to the
execution nodes.

� Deployment

� Hardware capability

Process Presentation of the runtime
operation of the software in the
execution nodes.

� Runtime components

� Scheduling and other resource
allocation policies

Development Presentation of the modules to be
developed in a language-
independent way.

� Constraints by development
environment

� Development components

Part 3. Modelling and Evaluation

107

Although performance analysis is essentially made from the process view,
information from the other views is also needed. The logical view is used for
understanding the required functionality. A complexity estimate should be
attached to each logical component for which there is still not a good reference
solution available. The physical view shows the deployment of the logical
components to the hardware platform. It should also provide the estimates or the
actual values of hardware capability, for example, the processor capacity and
memory size. The process view shows the partition of software to runtime
components. In addition, it describes the resource allocation policies. The
development view can affect the performance evaluation through constraints set
by the organization or used software technology. For example, the organization
may require the use of certain design tools to which the evaluation approach
should be attached.

Evaluation. Contemporary performance analysis techniques are applied. For
example, RMA or queuing based approaches are applied in this phase.

A typical evaluation sequence is depicted in Figure 38.

Figure 38. Performance evaluation of software architecture.

Queuing networks, stochastic Petri nets and stochastic process algebras are usual
performance model formalisms.

Queuing networks model each time-consuming resource of a system as a
server with a prefixed queue. Networks can be built by connecting servers. Each
job that arrives in the network is processed by a server, e.g. CPU. After that, the
job is processed by the next server or leaves the network. In an open queuing
network, jobs arrive and leave the system. In closed queuing networks, a fixed
number of users circulate in the network. The usual parameter values for

Part 3. Modelling and Evaluation

108

queuing models are service times and arrival rate of jobs for each runtime
component in the model, and the resources used. Typically a solution to a
queuing model gives the average response time to requests as a result. Other
results might be average queue length or throughput of nodes.

Stochastic Petri nets combine functional and non-functional properties of
software, focus on synchronization and concurrency and allow modelling of
resource contention, mutual exclusion and priorities of tasks.

Stochastic process algebras represent a system as a collection of processes,
which communicate, interact and synchronize with each other. Performance
attributes can be added by stochastic expressions.

Analysis The results are compared to the goal of the evaluation and
requirements. The trade-off points are studied. Refinements are proposed based
on this analysis. The evaluation report is needed to maintain a design rationale.

Use in GENESYS. Assuming model-based design using UML2 and MARTE
in GENESYS provides a good opportunity for adopting a software performance
evaluation approach as described above. Three main points are:

Performance properties and attributes need to be annotated to design
models. Here the MARTE profile gives a good starting point.

Annotated design models need to be transformed into appropriate
performance models (e.g. LQN, SPN or SPA). Much related research
exists, but commercial tool support is rare/missing.

Performance models need to be solved/simulated/executed to produce
performance data. Again, a lot of related research exists, but commercial
tool support is rare/missing.

3.8.2.2 Application-platform Performance Evaluation

The performance modelling and evaluation approach summarized in Table 18
follows the Y-chart model as depicted in Figure 39 [Kreku 2008].

Part 3. Modelling and Evaluation

109

Table 18. Brief overview.

Feature Explanation Remarks

Required
methods

Workload modelling method
(UML or SystemC).

Platform modelling method at
transaction level model abstraction
(SystemC).

Targeted for application-
platform performance
evaluation.

Input Use cases, scenarios, performance
objectives.

High-level application software
architecture.

Performance model of execution
platform.

Performance annotations.

Workload models are allocated
on platform models.

Output Utilisations � percentage of time
platform resources are busy.

Numbers of load primitives, of service
calls, requests and responses
performed by resources.

Response and processing times of
services.

Workload models send load
primitives to platform model to
be executed in simulation.

Applicability For evaluation of how application uses
platform resources.

Models resources as capacity
models of platform hardware
and software.

Additional
models
required

Allocation model. For associating workload
models to platform resources.

Tooling Research approach using Telelogic
Tau G2 UML tool and OSCI SystemC
library.

[Kreku 2008]

Applications are modelled in either UML (Unified Modelling Language) or
SystemC domain as workloads consisting of load primitives. The layered
hierarchical workload models represent the computation and communication
loads the applications place on the platform when executed. The workload
models reflect accurately the control structures of the applications, but the
computing and communication loads are abstractions derived either analytically,
from measured traces or using a source code-compilation approach.

Part 3. Modelling and Evaluation

110

Figure 39. Y-chart model of performance modelling and evaluation.

Layered hierarchical platform models represent the computation and
communication capacities the platform offers to the applications. Platform
models are cycle-approximate transaction-level SystemC models. The execution
platform model is configured from a library of performance models.

The workload models are mapped onto the platform models. Mapping
between UML application models and the SystemC platform models is based on
the automatic generation of simulation models for system-level performance
evaluation. The executable simulation model is based on the open source OSCI
(Open SystemC Initiative) SystemC library, extended with configurable
instrumentation. The resulting system model is simulated at transaction-level to
obtain performance data. The simulation results can be selected for analysis and
viewed using visualisation tools.

The approach enables performance evaluation early, exhibits light modelling
effort, allows fast exploration iteration, and reuses application and platform
models. It provides performance results that are accurate enough for system-
level exploration. The simulation performance is good; in an example case
study, the simulation speed was one tenth of real time.

Workload models for performance simulation. Workload models are used for
characterising the control flow and the loads (amounts of workload primitives
{read(), write(), execute()}) of the data processing and communication of
applications on the execution platform. The workload models have a hierarchical

Part 3. Modelling and Evaluation

111

structure, where each workload model level consists of a control part and one or
more lower level (level-1) workloads (Table 19).

Table 19. Workload element hierarchy.

Workload element name Description

MainWorkload Main workload model W divides into application

workloads Ai:

ApplicationControl CA denotes the common control between the

workloads

ApplicationWorkload Each application workload Ai is constructed of one or

more processes Pi:

ProcessControl CP corresponds to the control between the processes

ProcessWorkload Processes are comprised of function workloads

Fi: ,

StatisticalProcessWorkload Statistical process workload describes the total

number of different types of load primitives

FunctionDistribution Control of statistical distribution for the primitives

DeterministicProcessWorkload Deterministic process workload

FunctionControl CF is control and describes the relations of the

functions, e.g. branches and loops

FunctionWorkload Control flow graphs , where nodes

are basic blocks, and arcs are branches.

StatisticalFunctionWorkload Statistical function workload

BasicBlockDistribution Control of statistical distribution for the primitives

DeterministicFunctionWorkload Deterministic function workload

BasicBlockControl Control of load primitives

BasicBlockWorkload Ordered set of load primitives

AbstractInstruction Load primitive for load characterization

Part 3. Modelling and Evaluation

112

Load Extraction. The workload models capture the control behaviour of the
applications in the hierarchically-layered structures. On the other hand, they
abstract the details of data processing and communication as loads. To obtain the
load information, three different techniques are currently used: analytical,
measurement-based and source code-based. These can be used separately or in
combination depending on what kind of descriptions of application algorithms
are available.

Transformation for simulation. The workload models are created with UML
or SystemC, while the platform models are based on SystemC only. If the
workload modelling is done with a UML tool, the models have to be
transformed into SystemC. The entire hierarchy of workload models �
applications, processes, functions, etc. � are collected in a class or package
diagram, which presents the associations, dependencies, and compositions of the
workloads. Control inside the application, process and function workloads is
described with state machine diagrams. Composite structure diagrams are used
to connect the control implementation with the corresponding workload model.
All workload model layers, with the possible exception of the load primitive
layer, are implemented in the UML model.

A skeleton model of the platform is created in the UML model. This facilitates
mapping between the workload models with service requirements and the
platform models with service provisions. The skeleton model describes the
components and services available in the platform and thus enables the use of
those services from the workloads. In the mapping phase, each workload entity
is linked to a processor or other component, which is able to provide the services
required by that entity. This can be realised in the UML model using composite
structure diagrams, for example. Transformation to SystemC produces SystemC
code files, which include SystemC modules of classes and channels required for
communication.

SystemC performance model of execution platform. The platform model is
an abstracted hierarchical representation of the actual platform architecture. It
contains cycle-approximate timing information along with structural and
behavioural aspects. The platform model is composed of three layers each with
its own services.

The component layer consists of processing (e.g. processors, DSPs, dedicated
hardware and reconfigurable logic), storage, and interconnection (e.g. bus and
network structure) elements. The component-layer read, write and execute
services are the primitive services, based on which higher level services are

Part 3. Modelling and Evaluation

113

built. The processing elements in the component layer realise the low-level
workload-platform interface, through which the load primitives are transferred
from the workload side.

The subsystem layer is built on top of the component layer and describes the
components of the resource and how they are connected. The services used at
this layer could include e.g. video pre-processing, decoding and post-processing
for a video acceleration subsystem. The model can be presented as a
composition of structure diagrams that instantiates the elements taken from the
library. The load of the application is executed on processing elements.

The platform architecture layer is built on top of the subsystem layer by
incorporating platform software and serves as the portals that link the workload
models and the platforms in the mapping process. The communication network
connects the subsystems via interfaces with each other.

Interface between workload and platform models. The platform model
provides two interfaces for utilising its resources from the workload models. The
low-level interface (Table 20) is intended for transferring load primitives
between workload and platform models. The functions of the low-level interface
are blocking � in other words a load primitive level workload model is not able
to issue further primitives before the previous primitives have been executed.

Table 20. Low-level interface.

Interface function Description

read(A, W, B) read W words of B bits from address A.

write(A, W, B) write W words of B bits to address A.

execute(N) simulate N data processing instructions.

The high-level interface (Table 21) enables workload models to request services
from the platform model. The use_service() call is used to request the given
service and is non-blocking so that the workload model can continue while the
service is being processed. Use_service() returns a unique service identifier,
which can be given as a parameter to the blocking wait_service() call to wait
until the requested service has been completed, if necessary.

Part 3. Modelling and Evaluation

114

Table 21. High-level interface.

Interface function Return value Description

use_service(name, attr) service identifier id request service name using attr as parameters

wait_service(id) N/A wait until the completion of service id

The platform model includes one or more operating system (OS) models (Figure
40), which control access to the processing unit models of the platform by
scheduling the execution of process workload models. The OS model provides
both low-level and high-level interfaces to the workloads and relays interface
function calls to the processor or other models which realise those interfaces.
The OS model will allow only those process workloads which have been
scheduled for execution to call the interface functions. Rescheduling of process
workloads is performed periodically according to the scheduling policy
implemented in the model.

Figure 40. During simulation process workloads are scheduled by the OS model.

SystemC performance simulation. During the simulation of the system model,
the workloads send load primitives and service calls to the platform model. The
platform model processes the primitives and service calls, advancing the
simulation time while doing so. The simulation run will continue until the top-
level workload model stops it when the use case has been completed.

Part 3. Modelling and Evaluation

115

The platform model is instrumented with counters, timers and probes, which
record the status of the components during the simulation. These performance
probes gather information about platform performance, e.g:

• Status probes collect information about utilisation of components and
scheduling of processes performed by the operating system models

• Counters count the number of load primitives, service calls, requests and
responses performed by the components

• Timers keep track of the task switch times of the OS models and
processing times of services.

Once the simulation is complete, the performance probes output the collected
performance data to the standard output. The data can be analysed and feedback
given to an application or platform design. If the utilisation of components is for
example low, lowering the clock frequency can be proposed to platform
designers for decreasing power consumption.

Use in GENESYS. Firstly, the approach described above requires abstracted
models of applications in the form of workload models that model the control
behaviours but abstract data processing and communication as loads. These can
be modelled e.g. using UML and MARTE, but also in SystemC. Secondly,
transaction-level performance capacity models of the execution platform are
needed in SystemC. In case UML and MARTE are used in the workload
modelling, the models need to be transformed to SystemC which would require a
corresponding generator tool (an add-on to Telelogic Tau G2 UML tool was
used in the above example).

Examples of similar approaches. Several approaches having to some extent
similar goals but using different formalisms and techniques have been presented
in research publications:

SPADE [Lieverse 2000] implements a trace-driven, system-level co-
simulation of application and architecture. The application is described by
Kahn process networks and symbolic instruction traces generated by the
application are interpreted by architecture models to reveal timing
behaviour. Abstract, instruction-accurate performance models are used for
describing architectures.

The Artemis work [Pimentel 2006] extends SPADE by introducing the
concept of virtual processors and bounded buffers. The system-level

Part 3. Modelling and Evaluation

116

simulation environment allows for architectural exploration by applying
dataflow graphs to take care of the runtime transformation of coarse-
grained application-level events into finer grained architecture-level
events that drive the architecture model components.

The basic principle of the TAPES [Wild 2006] is to abstract the involved
functionalities by processing latencies and to cover only the interaction of
them on the architecture without actually running the corresponding
program code. Each sub-function is captured as a sequence of
transactions, also referred to as trace, and by storing the trace in the
respective architectural resource, which can contain several traces.

MESH [Paul 2005] looks at resources, software, and schedulers/protocols
as three abstraction levels that are modelled by software threads on the
evaluation host. Hardware is represented by continuously activated, rate-
based threads, whereas software threads contain annotations describing
the hardware requirements � so-called time budgets that are arbitrated by
scheduler threads. Software time budgets are derived beforehand by
estimation or profiling.

Koski [Kangas 2006] is an automated SoC design methodology focusing
on abstract modelling of application and architecture. This methodology
includes early architecture exploration, methods to generate the models
from the original design entry and system-level architecture exploration
performing automatically allocation and mapping. It also includes a tool
chain supporting the defined methodology utilizing a graphical user
interface, well-defined tool interfaces, a common intermediate format, and
a simulation tool that combines abstract application and architecture
models for co-simulation.

Examples of commercial tools:

CoFluent Design (http://www.cofluentdesign.com) provides ESL design
tools for modelling and simulating hardware/software systems that allow
users to analyze key architectural trade-offs between power consumption,
bus/interconnect/processor loads, memory usage and cost. The functional
description is a set of communicating processes executing concurrently.
The platform model is a set of communicating processes and shared
memories linked by shared communication nodes. The transaction level
SystemC platform model has performance attributes associated with it.

Part 3. Modelling and Evaluation

117

CoWare Inc. (http://www.coware.com). Platform Architect is a SystemC-
based graphical environment for capturing the platform for analysis at
transaction-level. It integrates simulation build, simulation run, and
system-level analysis controls so that platform developers can rapidly
create and validate hierarchical, reconfigurable platforms. The platform
designer can create a virtual platform of his design to be distributed to
software developers. Software designers then receive a virtual platform
package which includes a compiler, a debugger and the platform simulator.

3.8.3 Power/Energy Efficiency Evaluation

Power/energy evaluation and related design and development techniques for uni-
processor environments are quite mature research topics. Conventional power
estimation approaches use power simulators at gate-level and lead to fairly
accurate results. Register-transfer-level (RTL) power simulators aggregate gate-
level power data to RTL components to achieve acceptable simulation times.

The situation is different in the case of current and future MPSoCs on which
applications of embedded systems and handheld multimedia devices are built,
and powered from limited capacity batteries:

The number of gates per chip is approaching a billion, which increases
simulation complexity and execution time far beyond the acceptable range.

Systems are designed using IPs coming from different sources in various
forms. MPSoCs are often composed of a number of SoCs (that possibly existed
before). Therefore gate- or RTL-level (power) information is not usually available.

Systems are becoming software programmable, which emphasises
performance-power scaling and power management from the software side.
Although the control mechanisms are part of platform (system) software,
interactions are necessary with the application software in order to
deduce/negotiate/select performance-power/energy policies e.g. by using
Quality-of-Service (QoS) categorisation.

Technology scaling also scales nominal power, but more slowly than the
number of gates. Furthermore, voltage scaling that was earlier the main means of
reducing power is about to stop due to its hitting thresholds. Special low power
design and low power silicon processes can help to keep the peak power
consumption within some threshold budgets. However, new active means for
power/energy management are needed to achieve acceptable average and
standby power/energy figures, especially for battery-powered devices. For

Part 3. Modelling and Evaluation

118

example, clock- and/or power-gating of whole computing nodes can be one of
such means in a MPSoC. This would require support from system/application
software in order to know what can be shut down and what functions and how
(to keep QoS) need to be moved to other computing nodes.

It is obvious that to be able to manage power-energy issues, trade-offs, often
dynamic, with respect to performance are needed. The applications that are
usually considered to transform to embedded software do not consume power-
energy per se, but their execution on a MPSoC causes power-energy
consumption in the various components of the platform (processors, memories,
interfaces, interconnects, power supply / conversion itself etc.). Therefore, there
is an interplay of application architecture and platform architecture in handling
power/energy issues and an assumption is made that the MPSoC platform
contains an appropriate means for planning/deciding (e.g. some kind of power-
energy / resource manager) and for controlling (e.g. DVFS controls, clock-gating
and/or power-gating).

3.8.3.1 Pre-requisites

A number of pre-requisites are needed for doing the evaluation. The following
sub-sections browse through how to consider power/energy in the modelling
phases of the GENESYS methodology.

A basic assumption is that the modelling applies UML2 supplemented with
the MARTE profile for dealing with NFP modelling.

3.8.3.2 System Requirements Definition

In the requirements specification phase, power/energy appears as requirements
to and/or constraints on the functionality and execution platform resources,
especially to power supplies, and the development process itself.

The related information in the requirements modelling includes e.g:

• Power source (battery) capacity and its characteristic properties
• Operation times with different use profiles
• Maximum, average and standby power consumption allowed.

The MARTE profile defines a basic data type NFP_Power and the related unit
PowerUnitKind.

Part 3. Modelling and Evaluation

119

3.8.3.3 Application Architecture Design

In the application architecture design phase, various techniques have been
proposed to manage/reduce power/energy [Venkatachalam 2005].

One group of work proposes techniques that enable applications to adapt to
their runtime environment including e.g:

• Architecture-centric (processes, event handlers, communication
mechanisms) transformations of applications using simulators to
measure energy consumption

• Trading the accuracy of computations for reduced energy consumption

• Trading the fidelity or quality of data e.g. presented to the user

• Letting applications to �compete� for energy of power resource via
�energy futures� distributed by OS resource management.

The idea in another group of techniques is to provide mechanisms (APIs) so that
applications can give hints (like start times, deadlines, execution times and I/O
resource usage) to e.g., the OS that can further control the power/energy
management mechanisms of hardware.

Furthermore, holistic approaches have been researched that integrate
information from multiple levels (applications, compilers, middleware, OS�s,
hardware) into a power management framework.

As can be seen above, the techniques are domain-, application-and even case-
specific. The GRM sub-profile of MARTE gives concepts ResourceAmount and
ResourceUsage that can possibly offer useful mechanisms for power/energy
modelling in the application architecture design phase. The attributes of
ResourceUsage are presented in Table 22.

Table 22. UsageTypedAmount.

execTime: NFP_Duration [*]

msgSize: NFP_Dat aSize [*]

allocatedMemory: NFP_DataSize [*]

usedMemory: NFP_DataSize [*]

powerPeak :NFP_Power [*]

enery:NFP_Energy [*]

Part 3. Modelling and Evaluation

120

These power/energy issues are tightly related to performance, and the related
modelling issues are useful also here.

3.8.3.4 Platform Architecture Design

In the platform architecture design phase, power/energy appears as energy
consumptions of services of resources and infrastructure.

In addition to the GRM sub-profile of MARTE, the SRM and HRM may
provide a means to handle power/energy. The ResourceAmount and
ResourceUsage concepts of GRM profile are available in the SRM. The HRM
contains a package called HW-Power. It defines e.g., concepts HW_Battery,
HW_PowerSupply and an HW_PowerDescriptor, the last one being related with
resource services. Their attributes are presented in Table 23.

Table 23. NFP attributes for HW_Power.

HW_Battery HW_PowerSupply HW_PowerDescriptor

capacity: NFP_Energy suppliedPower: NFP_Power consumption : NFP_Power

 dissipation: NFP_Powerl

3.8.3.5 System Allocation / Configuration / Refinement

In the system allocation / configuration / refinement phase, power/energy appears
as part of the cost function based on which the application functionality (with
power/energy usage) will be partitioned and mapped on the resources of the
execution platform (with provision of power/energy).

The sub-profile Alloc of MARTE describes how application-related design
models can be associated with execution platform models. NFP constraints can
be added to these associations.

3.8.4 Power/Energy Evaluation Techniques

Power/energy evaluation can be used at different stages and for various purposes
in order to support the system (product) development process:

Part 3. Modelling and Evaluation

121

• Power budgeting
• Power/energy estimation of application and platform software
• Power/energy characterisation of platforms
• Supporting design space exploration
• Validation of power/energy aspects of implemented system.

Consequently, different methods or combinations thereof may be needed.
Numerous approaches have been presented in research and many are used in
practice.

In the era of MPSoCs, the power/energy estimation needs to be performed at
system-level, i.e. effects of both the application and platform should be included.
When executing the application functionality in the form of embedded software,
as well as system (platform) software, on a platform causes power to be
consumed in the hardware resources and their interactions: processing elements,
various memory elements and interconnections. The amount of energy spent
depends on the internal state of each element.

In addition to spreadsheet and analytical models of power/energy, system-
level simulation is the most researched technique. This is usually implemented
by attaching power models and instrumentation to architectural simulation
models used in performance simulations [Simunic 2001]. Power/energy data is
then collected during the simulation of application on the platform.

There are various approaches for achieving basic power models for different
platform elements:

• Processors are typically simulated using instruction-set simulators
having associated power figures either for each instruction or for e.g.
active and idle states. Energy is accumulated cycle by cycle.

• Memory power models take into account various access types in
addition to idle states. Caches and other specific memory types require
specific access policies to be included in the models.

• Interconnect power models account for the power/energy of data
transfers.

3.8.4.1 Power Analysis in a Multiprocessor Simulation Platform

As an example, an approach (Table 24) for power analysis in a multiprocessor
simulation platform [Loghi 2004] is presented in the sequel.

Part 3. Modelling and Evaluation

122

Table 24. Brief overview.

Feature Explanation Remarks

Required
methods

Power model creation and data
gathering methods.

Input Multiprocessor simulation platform.

Power models.

Power models are associated
to corresponding simulation
platform elements.

Output Energy spent per operation per
platform simulation element.

Data collected from different
elements.

Applicability For analysis operation by operation
energy used e.g. in processor core,
cache, memory and bus.

Additional
models required

Instruction set simulator for each
processor core.

For simulating code execution.

Tooling Research approach using SystemC [Loghi 2004]

The MPSoC power analysis approach is based on a SystemC multiprocessor
simulation platform consisting of a configurable number of ARM processors,
their private memories, shared memory, interrupt module, semaphore module
and interconnect with the following power models, which are functions that
compute the energy spent by the correspondent device, using information on the
device�s internal state. (Figure 41):

• For the cores a state-based power model distinguishes between a
RUNNING state and an IDLE.

• For the memories (both caches and private memories) an empirical
model was derived from interpolation of data extracted from a memory
generator for the used silicon technology. The model is parameterized
with respect to the memory size (in 32-bit words), and it distinguishes
between read and write accesses (for which there are two different
power models). The caches are regarded as a special type of memories
consisting of two distinct cell arrays, the data and the tag memory. To
accurately model cache power, cache accesses are decomposed into
different access sub-types.

Part 3. Modelling and Evaluation

123

• The power model for the ST-bus is relative to the same silicon
technology. It computes the power spent during a clock cycle using the
number of cells which are in transit on the bus.

Figure 41. An example of MPSoC power analysis approach [Loghi 2004].

When a given module is activated, the related power module function is
invoked with the actual parameters carrying information on the device state. For
the ST-bus power model this data is the number of cells in transit on the bus,
while for memories and caches it is the memory size and the access type. The
power module function returns to the caller (the module implementation) the
amount of energy spent for the current operation. The module moves this value
to the data collection routines which are in charge to gather and record
information about performance and energy of the system. For the ARM core, the
information flow is different. The ISS, in fact, does not run when the core is
stalled waiting for a bus response. Since the core is consuming energy also when
idle, to collect this energy, the power model is invoked from the data collector
routine, which is activated at each cycle, and keeps track of the state of the core.

Use in GENESYS. Applying the above approach requires a simulation
platform, power models of the main elements of the platform, their
instrumentation to the platform and stimuli in some form.

Part 3. Modelling and Evaluation

124

3.8.5 Reliability and Availability Evaluation

Reliability is defined as the probability of the failure-free operation of a system
for a specified period of time in a specified environment. Service reliability
extends the traditional reliability definition, requiring in turn that either the
system does not fail at all for a given period or it successfully recovers state
information after a failure for a system to resume its service as if it had not been
interrupted. Availability is measured as the probability of a software service or
system being available when needed. Reliability and availability are often
defined as attributes of dependability, which is �the ability to deliver a service
that can justifiably be trusted�. From an architecture point of view, reliability
and availability are execution qualities of a system.

In [Goseva-Popstojanova 2001] architecture-based reliability evaluation
methods are categorized into state-based, path-based and additive models. All of
them are analytical methods. The state-based models use the probabilities of the
transfer of control between components to predict the system reliability, whereas
the path-based models compute the reliability of composite components based
on the possible execution paths of the system. The additive models address the
failure intensity of composite components, assuming that the system failure
intensity can be calculated from component failure intensities.

Simulation models are used in testing and operational phases [Gokhale 2005].
The aim of simulation is to identify components� criticality to the reliability of
an application and detect faults and the number of failures in applications. Thus,
simulation models are domain specific and can be regarded as optional
approaches in the GENESYS methodology. Monitoring methods use a running
system as a source and therefore they are considered only if they give support
for architecture-based reliability prediction.

Predicting reliability and availability (RA) from the architectural descriptions
is a challenging task for two main reasons:

Reliability is strongly dependent upon how the system will be used. Since
reliability and availability are execution qualities, the impact of faults on
reliability differs depending on how the system is used, i.e. how often the faulty
part of the system is executed. The evaluation of different ways and frequencies
to execute the system is a challenge to RA prediction, especially when the usage
profiles of the system are unknown beforehand.

The reliability of software architecture depends on the reliability of individual
components, component interactions, and the execution environment. The

Part 3. Modelling and Evaluation

125

reliability of a component depends on its internal capabilities, e.g. implementation
technology, size, and complexity, information about which might be unavailable,
or not yet exist, while architecting. Furthermore, components rely on other
components, interactions between components, and on an execution environment,
the reliability of which may be unknown.

The GENESYS methodology supports the reliability and availability
evaluation by defining methods and techniques that help to consider reliability
and availability at three levels: system, architecture and components. Therefore,
reliability and availability evaluation is based on the following works: reliability
prediction of components based architectures [Reussner 2003] (Table 25),
reliability prediction in model-driven development [Rodrigues 2005a] (Table
26), reliability evaluation of service architectures and software families
[Immonen 2006] and trustworthiness evaluation and testing of open source
components [Palviainen 2008] (Table 27). These approaches have been selected
for the starting point based on their contradictory contributions to reliability
evaluation concerning the scope of evaluation, modelling languages, abstraction
levels, evaluation techniques and tool support. With the exception of the last
one, the methods are analytical based on architecture models. The last one is an
integrated approach that exploits reliability measurements in order to improve
the accuracy of prediction.

3.8.5.1 System Requirements Specification

In order to evaluate reliability and availability, several assumptions are made
regarding how quality requirements are specified and how they are mapped to
architectural elements. The following sub-sections describe how the RA
evaluation is to be considered in the preceding phases of the GENESYS
modelling process.

In the System Requirements Specification phase (see Figure 4), the reliability
requirements of a system is specified in a way that the information required for
reliability evaluation is in the architecture models. The RA evaluation needs the
following input from the requirements specification phase:

• Use cases define how different kinds of end-users will use the system.
A use case consists of a textual description and a sequence diagram
that defines how architectural components interact in the use case.

Part 3. Modelling and Evaluation

126

• A usage profile defines how many times and in which order the use
cases occur in a particular usage scenario.

• RA requirements are explicitly defined within the requirement diagrams
following the modelling constructs of UML2 and the SysML profile.

Reliability requirements, which are later transformed to RA properties of a
system, have the following attributes:

• Quality attribute identifier (string: e.g. RA_id-011)

• Priority class (RA_Pri) (enumerate {high, medium, low})

• Scope of influence (RA_Sco) (enumerate { system | architecture |
application | platform | component | service})

• Metric-ID (string, e.g. M-Re_MTBF), which refers to the reliability
metric to be used in the definition of the required, estimated, predicted
and measured RA values.

Each RA property has four values:

• RA_target is the RA requirement defined in the system specification phase.

• RA_estimation is based on the heuristic knowledge of a designer and is
used only when predicted and measured values are not possible to
define.

• RA_prediction is defined by using one of the prediction methods and tools.

• RA_measurement of an existing component/path/system measured by
dynamic testing.

The target and measurement values are defined by the Metric_ID metric. The
selection of Metric-ID could be supported by the metrics ontology of a particular QA.

Figure 42 introduces an initial taxonomy of reliability metrics [Niemelä 2008].
Because the complete QA metrics ontologies important for GENESYS (i.e.
performance and dependability) are not available and the definition of the QA
ontologies is out of the scope of GENESYS, the QA metrics are defined in a
similar way but without any ontology.

Part 3. Modelling and Evaluation

127

Figure 42. Taxonomy of reliability metrics.

Figure 43 depicts the concepts of QA metrics that can be common for all quality
attributes of dependability, whereas only part of the metrics classes and actual
metrics in the metrics classes can be shared by different QA ontologies. Each
metric has the following properties: purpose; target, i.e. where the metric can be
used; applicability, i.e. when the metric can be used; one or more formulas;
range value for the measurements; and the optimal value of the measurement.
Rules constrain the formulas and used measurement units by defining the set of
measurement targets and value ranges and the time when the metric is valid.

Part 3. Modelling and Evaluation

128

Figure 43. Concepts of QA metrics.

In summary,

• QA requirements shall be explicitly defined in the system requirements
specification phase. (Criterion: accuracy)

• QA requirements specifications shall be treated as quality properties that
are independent of functional requirements.(Criterion: separation of
concerns)

• QA requirements shall be defined in a systematic way, i.e. each RA
requirement follows the same model. (Criterion: reusability; define
once, use every time)

• QA requirements shall be treated as a design artefact of their own.
Then their reuse and evolution is possible to manage (Criterion:
independence and traceability).

3.8.5.2 Architecture Design

The architecture design phase includes two concurrent activities and an activity
where the results of these two activities are combined, refined, and configured in
order to meet the system requirements at hand. Here the architecture design
phases are considered from a reliability modelling point of view.

Part 3. Modelling and Evaluation

129

Application and platform architecture design

In the architecture design phase, the RA requirements defined in the system
requirements specification phase are used for mapping the target RA values to
the architectural elements (i.e. components and connectors) of the application
architecture. After mapping that is made by the architects, each architectural
element affected has an explicit target RA value and a metric for it. The
evaluation method to be used depends on the measure the analyzer is interested
in. Thus, the architect needs to know which kinds of methods could be used and
select the RA value � the metric pair that fits to the method to be used in quality
evaluation.

The assumption is that the services provided by the platform module library
include the measured or/and estimated RA values. Estimations are made before
and after system building.

The electronic reliability prediction methods introduced in [Fuqua 2005] more
or less rely on the use of existing reliability data. There is one exception, the
system reliability assessment predictive modelling approach that is near to the
GENESYS process model including two main parts:

• the system pre-build phases that are supported by the consolidated
reliability assessment methodology including phases from requirements
specification to manufacturing; and

• the system post-build phases which use e.g. test and process data for
predicting the best post-build reliability estimate using Bayesian
statistical techniques. The approach is supported by PRISM [PRISM
1999] and FIDES [FIDES 2004] reliability assessment tools.

System Allocation/Configuration/Refinement

In this phase, the application and platform architecture models are combined and
a new view, allocation view, is described for deploying software services to
computing and communication resources. RA requirements specific for nodes
and their connections are added to the allocation view of the system architecture.

Depending on which reliability prediction method is selected, the required
input varies. Typically, the state transition diagrams and/or sequence charts have
to be annotated by probabilities of state transitions and transactions.

Part 3. Modelling and Evaluation

130

3.8.6 Reliability and Availability Evaluation Methods

Figure 44 depicts the overview of the phase where the reliability and availability
of the components, architecture and the whole system are predicted based on
analytical models and the measured reliability values of existing components.

Figure 44. Input, output and support for reliability/availability evaluation.

The overview is based on three prediction approaches which will be introduced
next. All these approaches are model-driven. Thereafter, a couple of mature
commercial tools that support different kinds of analysis are introduced.

3.8.6.1 Reliability Prediction of Component Based Architectures

An overview of the approach is presented in Table 25.

Part 3. Modelling and Evaluation

131

Table 25. Brief overview.

Feature Explanation Remarks

Required
methods

A method is based on basic
and composite kens (i.e.
components at two integration
levels) [Reussener 2003].

Applied to component based software
architecture of distributed systems.

Input Empirical data, bindings
(network connections),
mappings (local connections),
usage profiles

Empirical data to be obtained by
monitoring. If not available to be
estimated.

Bindings, mappings and usage profiles
to be defined by modelling.

Output Reliability of failure-free
operation (MTTF) of basic
kens (i.e. components) and
composite kens (e.g. sub-
system, system).

Measured and predicted reliabilities
from an empirical case study;
comparison show <1 % deviation.

Applicability Applicable to component
based systems but needs to
be adapted to UML2 based
modelling.

Only one reference, progress
not known.

When reliability of required services is
< 10%, the precision of the usage
profile does not significantly affect the
accuracy of the predictions.

Additional
models
required

Markov chain model. A specific language, RADL (Rich
Architectural Description Language).

Tooling Java based test bed
constructed for validation.

Contributions

Component reliability. Reliability is predicted for basic kens and composite
kens. For basic kens the provided and required gates (including protocol Finite
State Machine (FSM)) and the service FSM usage profile of provided services
are modelled. The last one extends a service FSM to a Markov chain model. To
link reliability of the required gates to the reliability of services in the provided
gates, the parameterised contracts combine the service FSM usage profile and
the reliabilities of required interfaces to compute the missing reliabilities for the
external services. Finally, the overall reliability of a ken is calculated.

Part 3. Modelling and Evaluation

132

Similar to basic kens the reliability of composite kens is calculated in two
phases; first the service reliability and then the overall reliability. Equations for
calculations are presented in [Reussener 2003].

Limitations

The method requires the following input data:

1) For basic kens (considered as black box components) the service effect
FSM and a usage profile from a vendor and the required services
reliability from a buyer.

2) For composite kens (considered as gray boxes, assembly) the service
effect FSM of inner basic kens, binding and mapping reliabilities form a
vendor and the required services reliability from a buyer.

Use in GENESYS

Application of this method in GENESYS requires the following adaptations:

• To be adapted to UML2 � MARTE modelling language

• Tool support for automating the definition of the Markov chain model
and parameterized contracts

• No recent publications that would help.

3.8.6.2 Reliability Evaluation in Model Driven Development

An overview of the approach is presented in Table 26.

Part 3. Modelling and Evaluation

133

Table 26. Brief Overview.

Feature Explanation Remarks

Required
methods

Reliability prediction method
[Rodriques 2005a],
Sensitivity analysis method
[Rodriques 2005b].

Applied to software systems.

Input Scenarios as a collection of
Basic Message Sequence
Charts (BMSC) and High-
Level Message Sequence
Charts (HMSC).

Operational profile.

BMSC describes message exchange
between components. HMSC provides
sequential, conditional and iterative
composition of BMSCs.

Output System�s reliability, implied
scenarios and sensitivity of
the system reliability.

Reliability value (0�1).

Implied scenario = a system produces a
trace that reveals a mismatch between
behaviour defined in architecture.

Sensitivity to changes in individual
probability values.

Applicability System and architecture
level reliability prediction
based on models. Active
work around the topic.

Answers to the following questions:

Is there any implied scenario in the
system architecture model?

What is the impact of implied scenarios
on reliability?

Is reliability change sensitive?

Additional
models
required

A specific reliability
prediction profile.

The profile required for annotating
scenarios.

Tooling LTSA, from UML to LTSA
transformation.

LTSA as an Eclipse plug-in
http://www.doc.ic.ac.uk/ltsa/eclipse/

XSLT used for transforming the XMI form
of the UML model to XML input for LTSA.

Part 3. Modelling and Evaluation

134

Contributions

System reliability prediction as part of model-driven development. The method
includes the following steps:

• Scenario specification by annotating (high and basic) message
sequence charts by using a specific reliability profile.

• A probabilistic Labelled Transition System (LTS) is synthesised from
the annotated scenarios. Mapping of the probability annotations of the
scenario specification into probability weights for transitions in the
synthesised architecture model.

• The synthesised architecture model is interpreted as a Markov model
by applying Cheung�s reliability prediction method extended by one
initial and one final scenario.

• Performing sensitivity analysis of the prediction.

• LTSA has the following extensions:
• LTSA-UML which allows models to be described by UML2-XMI and

translates UML2 interaction models to be translated to message
sequence charts.

• LTSA-MSC which allows models to be described by graphically
editing sets of scenarios in the form of message sequence charts
(MSC). The LTSA can be used to detect the presence of implied
scenarios in the system as part of an iterative design process.

• LTSA WS-Engineer which allows service models to be described by
translation of the service process descriptions, and can be used to
perform model-based verification of web service compositions.

Limitations

An HMSC in LTSA cannot have multiple nodes that correspond to the same
BMSC. LTSA does not support hierarchically-nested HMSCs.

Use in GENESYS

This method could be adopted quite easily for GENESYS due to support for
UML2 based modelling and evaluation tools.

Part 3. Modelling and Evaluation

135

3.8.6.3 Reliability and Availability Prediction and Testing

An overview of the approach is presented in Table 27.

Table 27. Brief overview.

Feature Explanation Remarks

Required
methods

Reliability and availability prediction
method (RAP) [Immonen 2006].

A method for trustworthiness evaluation
and testing of components (TET).

So far the methods have been
applied to software systems only.

Integration of reliability
prediction and testing
[Palviainen 2008, Immonen
2007].

Input The sequence diagrams of the system
and the state diagrams of components.

Responsibility of the architect.

Output Probability of failure (PoF).

Estimated, predicted or/and measured
PoFs of components.

�Predicted PoFs for components in
different execution paths and PoF of the
system.

Normalized (0�1).

Updated architecture models
with estimated, predicted and
measured PoFs.

Responsibility of the QA
analyzer.

Applicability Supports code based testing of
software components� reliability and
model-based RA prediction at the
architecture and system levels.

Applied to a health-care
system, a product family of
middleware architectures and
open source software
components. [Immonen 2008]

Additional
models
required

The usage profiles and the Markov
chain model derived from the state
machines.

Semi-automatic transformation.

Usage profiles of different users
defined by the QA analyzer.

Tooling RAP tool for prediction.

ComponentBee for testing.

Integrated tool chain available
under the Eclipse Public
License, EPL. [Evesti 2008]

Contributions

Component reliability. Component reliability in RAP is predicated upon the
state-based reliability prediction. The method and tool supports component
reliability evaluation by predicting the component�s PoF by transforming the
state diagram to the Markov chain model. This transformation is made semi-
automatically; the QA analyzer adds estimated probabilities of state transitions

Part 3. Modelling and Evaluation

136

and the PoF of each state; the tool adds a separate failure state and calculates
new probabilities for state transitions and finally the predicted PoF for the
component.

The ComponentBee tool is used for calculating the measured PoF of
components. The tool requires a component-specific test model, which is derived
from the usage profile of the system and a set of sequence diagrams that describe
the architectural components in different scenarios. ComponentBee provides
plug-ins for recording raw and trace data and calculating the measured PoF of a
component from the extracted behaviour patterns.

System/architecture reliability. Architecture-level reliability and availability
prediction is a path-based approach. As input it requires a behaviour model (i.e.
sequence diagrams) of the architecture and the usage profiles of the system. As
output it gives a predicted PoF value for each execution path and the predicted
PoF value for the whole system. Calculation of the PoFs for execution paths is
made separately and is based on the components� PoF values and probabilities of
transitions in the execution paths. By analysing the reliabilities of execution
paths and the components reliabilities involved in a particular path, the
reliability sensitivity points of the architecture can be identified. The execution
order of the paths has no impact on the system level reliability.

Limitations. The approach has been applied only to software systems. The
accuracy of the system�s PoF depends on accuracy of the predicted PoFs of
components. Thus, the measured PoFs of existing components increase the
accuracy of the system PoF value. Although the recent version of the
ComponentBee supports only Java components, the approach might be adapted
to the components of embedded systems that include software and hardware.

Use in GENESYS

Use of the RAP tool is quite straightforward but needs adaptation to the
components of embedded systems. ComponentBee supports only Java components
and requires the test bed that means application specific implementation.

3.8.6.4 Commercial Reliability Analysis Tools

Reliability Workbench is Isograph�s flagship suite of Reliability Analysis
software [Isograph 2008]. This tool supports many kind of analysis: reliability
and maintainability prediction, failure mode effect and criticality analysis
(FMECA), reliability block diagram analysis, reliability allocation, fault tree

Part 3. Modelling and Evaluation

137

analysis, event tree analysis and Markov analysis. The use of the tool allows for
predicting a system�s reliability, identifying the critical components of a system
and finding out which design changes will improve the system reliability and
estimating the consequences and risks of system failures. The tool is stand alone
and each module requires specific input information (i.e. it is not UML
compatible). The problem is the same with ReliaSoft�s Lambda Predict tool that
supports all major prediction standards [ReliaSoft 2008]. The maturity of these
tools is obvious. However, the goal of GENESYS is to support the whole life-
cycle of model driven development of embedded systems and therefore, the use
of these tools requires remarkable adaptation work in order to make them able to
interoperate with UML2 modelling tools in the Eclipse environment. Moreover,
experience of applying these tools in a specific domain area should be gained
before starting the adaptation.

3.8.7 Safety Analysis

A safety critical system is a system in which an action incidence (not performed,
or performed incorrectly in logic or in time), could result in danger, injury,
death, or property damages. An intrinsically safe system, on the other hand,
cannot cause harmful exposures or damage under normal or abnormal conditions
even when the equipment and personnel are in their most vulnerable condition
[Leveson 1991, Leveson 1995].

Safety properties are normally defined by using two factors: hazard and its
risk. Hazard is a system state potentially causing accidents while the risk is
concerned with the degree of acceptance of the hazard in certain environmental
conditions, determined by severity, probability, exposure time, operation modes
and possible mitigation of the hazard�s effect.

A safety assessment process provides analytic evidence showing compliance
with system requirements. The process includes specific assessments conducted
and updated during system development; both processes interact along the
product life-cycle. General safety assessment processes are structured as
follows: [EMMA 2005]

• Functional Hazard Assessment (FHA): Examines system functionalities
to identify potential functional failures, classifies the hazards associated
with specific failure conditions and severity, and assigns safety
objectives to the failure conditions of the functions. The FHA is

Part 3. Modelling and Evaluation

138

performed early in the development process and is updated as new
functions or fault conditions are identified. The applicable method is:

o PHA (Preliminary Hazard Analysis).
• Preliminary System Safety Assessment (PSSA): Establishes specific

system and item safety requirements and provides a preliminary
indication that the anticipated system architecture can meet those safety
requirements. The PSSA is updated throughout the system development
process. It is also used to ensure completeness of the failure conditions
list from the FHA. All safety requirements should be traceable from the
PSSA to the system requirements. The applicable methods are:

o Failure Modes, Effects (and Criticality) Analysis (FME(C)A)
o Failure Effects Summary (FES)
o Fault Tree Analysis (FTA) that can be performed at several

levels.
• System Safety Assessment (SSA): Collects, analyses, and documents

verification that the system, as implemented, meets the system safety
requirements established at analysis time. It uses the same applicable
methods as PSSA.

• Common Cause Analysis (CCA): Establishes and validates physical and
functional separation and isolation requirements between systems and
verifies that these requirements have been met.
The applicable methods are:

• Zonal Safety Analysis (ZSA), Particular Risk Analysis (PRA),
and Common Mode Analysis (CMA).From the point of view of
safety-related systems, it is usual to define a life cycle where
both the course of development and safety management of the
system are realized in parallel.

3.8.7.1 Safety Analysis Techniques

Figure 45 gives an overview of the safety analysis techniques that are introduced
next.

Part 3. Modelling and Evaluation

139

Figure 45. Taxonomy of safety analysis techniques.

Classical Safety Analysis Techniques

Safety analysis is performed according to an industrial domain-specific
standardized process (see IEC-61508, NASA-STD-8719.13A, WD 26262 and
MIL_STD_882), addressing two major tasks: risk assessment and hazard
analysis.

The aim of risk assessment is to determine acceptance criteria of hazards
especially when it is assumed such hazards could not be completely avoided.
This is normally performed by considering the environmental conditions along
with the exposure or duration factors. A risk can be defined as the combination
of the hazard-level, the likelihood of accident, and hazard exposure/duration.
Risk can also be defined as a function of the frequency of occurrence of an
undesired event, the potential severity of consequences, and the uncertainties
associated with its frequency and severity.

Hazard analysis aims to identify hazards as well as their causes and
consequences, to assess the levels of hazards in terms of probability and
criticality, and finally, to derive safety specific requirements or approaches (e.g.

Part 3. Modelling and Evaluation

140

architecture, patterns, etc). For safety critical systems, this analysis is performed
at different design stages and with different levels of abstraction.

A general approach is to apply PHA (Preliminary Hazard Analysis) aligned to
system requirement analysis. This identifies all the undesired events linked to
the studied system, classifies them regarding severity and probability criteria,
selects the most critical of them that will be the subject of further detailed
assessment and determines specific safety requirements for the system. Further
steps consist on applying FAA (Functional Failure Analysis) at system-level for
the analysis of top-level hazards and FMEA (Failure Modes and Effects
Analysis) [Kletz1992] at the subsystems/components for the derivation of
causes. The different results are usually captured in tabular form.

Fault tree analysis (FTA) is a top-down failure analysis in which an undesired
state of a system is analyzed using boolean logic to combine a series of lower-
level events, which determines the probability of a safety hazard as fault trees
depicting the causal or logical relationships of events.

Other techniques can be used at different stages of the development, in a
complementary way: SHA (System Hazard Analysis � System Requirement
Analysis), SSHA (Subsystem Hazard Analysis � Subsystem Requirement Analysis)
or OSHA (Operating and Support Hazard Analysis � System Requirement
Analysis) [FAA2008].

Extensions to the traditional techniques are defined for software safety
management; this way, SFTA (Software Fault Trees Analysis) for software
programs provides a failure semantics for the elements of a programming
language or detailed design to support the reasoning of logical errors to show
that a specific software design will not produce system safety failure. Failing
that, it determines the environmental conditions that could lead it to cause such a
failure� [Rushby1993]. SFMEA is a table-based design analysis technique which
determines system effects of each failure mode of every software component,
identifies and traces failures leading to specific events.

Model-based Safety Analysis

Traditional analysis techniques, introduced above, are based on information
synthesized from several sources, including informal design models and
requirements documents. This circumstance determines a major pitfall; they are
highly subjective and dependent on the skill of the engineer. Even after a
consensus is reached, it is unlikely that the analysis results will be complete,
consistent, and error free due in part to the informal models used as the basis of

Part 3. Modelling and Evaluation

141

the analysis. In fact, the lack of precise models of the system architecture and its
failure modes often forces the safety analysts to devote much of their effort to
gathering information about the system architecture and system behaviour and
embedding this information in the safety artefacts such as the fault trees.
The use of safety analysis activities based on formal/semi-formal models of the
system under development significantly improves this obstacle; the extension of
the model-based development to incorporate the safety analysis activities in
addition to the traditional development activities.

A model-based approach has several benefits when integrated into safety
analysis processes:

• Integration between systems and safety analysis is based on common
models of system architecture and failure modes.

• Simulation of the behaviour of system architectures occurs early in the
development process to explore potential safety hazards.

• Exploration all possible behaviours of a system architecture is
exhaustive with respect to some safety property of interest using
automated analysis tools.

• Generation many of the artefacts that are manually created during a
traditional safety analysis such as fault trees and FMEA/FMECA
charts or formal demonstration of compliance of the requirements or
the finding of counter-examples as exception to the desired behaviour
is automatic.

The methodology framework considers the errors and failures at different levels
of abstraction and integration (e.g. system-level, device-level or chip-level).
Once extended to the system model and defined according to the behaviour of
the system, the safety analysis task involves verifying whether safety
requirements keeps on the occurrence of the faults previously defined in the fault
model. Here, numerous approaches have been developed [Joshi 2005]; to
perform exploratory analysis by simulating faults on specific components and
observing the behaviour of the system or more rigorous analyses, it is possible to
use formal verification tools to determine whether safety properties of interest
hold. This criteria determines the main approaches.

Part 3. Modelling and Evaluation

142

Simulation

Having a formal model of the system extended with the fault model enables the
engineer to simulate different failure scenarios as exploration of �what-if�
scenarios involving combinations of faults through simulations.

This provides engineers with the facility of visualizing in a interactive way,
the effect of faults on system functionality. This capability can be used as a
preliminary analysis, to quickly detect safety problems in common scenarios
before performing a more rigorous static or dynamic analysis.

Failure Logic Modelling (FLM)

This approach emerged from the observation that traditional analysis methods do
not yield reusable models; after any modification, the whole range of analysis
models must be reviewed and recalculated. The FLM techniques, follow a
component-based approach for certification and allow modelling of the failure
behaviour of the system in an incremental fashion as design work progresses
from system architecture to a detailed level. It breaks down the system-level
assessment, which would otherwise be very complex, into more manageable
tasks of characterisation of failure behaviour of individual components. With
adequate tool support, the analysis results could be represented in the form of
familiar safety artefacts (such as Fault Trees or FMEA tables), automatically
extracted from the failure logic model, with the guarantee of consistency
between views.

Formal Methods (FM)

Formal verification tools, such as model checkers and theorem provers, can be
used to prove that a safety property holds over the extended system model. To
prove interesting properties, an engineer will typically have to rule out certain
unlikely combinations of failures. These can be encoded as assumptions or
axioms that will be used in the proof process. If a property is proved, then the
responsibility of the safety engineer is to review the assumptions that were used
in the proof and check whether they are realistic. If so, the engineers have a
mathematical proof that the system satisfies the safety property with respect to
the fault model. In case a property is not proved, it may be necessary to re-
architect the system or to relax the original safety property to accommodate
delay or other acceptable constraints to allow system recovery.
Some techniques are available:

Part 3. Modelling and Evaluation

143

Model checking Approach. Given a description of a system in some formal
notation and a list of properties that must hold of the system, the inference
system verifies whether the property is true, or the property is false with a
counter example; does not generate results in the form of traditional safety
artefacts, like fault trees. Different variants are currently evaluated: SPIN [Baier
2008, Holzmann 2003], BDD (Binary Decision Diagrams), SAT (Satisfiability
Tecnhnique) and others [ESACS 2004].

Theorem Proving Approach. Theorem proving is another method for
performing verification on formal specifications of system models. Theorem
provers (for example, PVS, http://pvs.csl.sri.com) verify or apply rules of
inference to a specification in order to derive new properties of interest. Rather
than exploring the global state space, theorem provers automate human
reasoning, reducing a proof goal (with human guidance) to simpler sub-goals
that can be discharged automatically by the primitive axioms or decision
procedures of the prover.

Constraint Satisfaction Approach. Error and failure behaviour are composed
as a network of relations and the problems described by such networks are
referred to as Constraint Satisfaction Problems (CSP). CSPs are networks of
variables interconnected by a set of relations called constraints [Tsang 1993]. A
CSP is solved, if a value assignment has been found for all variables, such that
all the relations are satisfied. Constraints have several interesting properties
[Barták 2001]; like a constraint does not need a unique specification of all the
values of its variables thus they may specify partial information which can be
exploited using on-the-fly diagnosis procedures. Constraints are non-directional,
declarative (they specify what relationship must hold without specifying a
computational procedure to enforce that relationship), additive (the conjunction
of constraints is effective independently of the order of imposition of
constraints), and compositional, as hierarchical refinement is supported. The use
of relations in CSPs provides proper support for handling non deterministic
abstractions of complex systems [Pataricza 2006].

3.8.7.2 GENESYS Safety Certification Approach

The inherent properties of the cross-domain architectural style and its domain
specific instantiations, allow a modular certification approach (Figure 46). For
the instantiated systems (aligned with the cross-domain architectural style and
reference architecture template), the overall system can be subdivided into

Part 3. Modelling and Evaluation

144

subsystems with different levels of criticality; each of them can then be
individually certified to the appropriate level of criticality, avoiding the full
product certification to the highest criticality level of all subsystems, reducing
cost and simplifying the complexity of certification effort [Obermaisser 2005].

This process is supported by the definition of Modular Safety Cases [Kelly
1999, Kelly 2003] and provides an independent certification of platform service
from applications and management of independent safety arguments for different
functions:

• Separating certification of architectural services from applications. The
certification of the overall system is supported by a baseline formed by
the certified architectural services [Nicholson 2000, Obermaisser 2005].

• Separating certification of different functionalities. Instead of
considering the system as a monolithic block; the certification will be
accomplished incrementally.

Figure 46. Modular application safety case for GENESYS product.

Within GENESYS safety certification, the main focus is the support by
realization of early model-based FHA and PSSA and the provision of artefacts
such as fault trees and FMEAs automatically generated as product of the quality
analyses. Figure 47 shows the relation and link between the GENESYS
methodology and safety assessment process.

Part 3. Modelling and Evaluation

145

Figure 47. Alignment between GENESYS development methodology and safety assessment
process.

Safety engineering for critical systems involves at least the following three key
aspects: specification of safety requirements, safety analysis and safety design in
terms of hazard control. These aspects are considered as prerequisites for the
safety evaluation methods introduced thereafter.

3.8.7.3 Prerequisites

GENESYS Methodology proposes a dual safety analysis, a preliminary
following the Failure logic Modelling, supported by the architecture,
error/failure knowledge and a MARTE system behaviour model. As far as
formalized services (using BIP) are available, formal safety analysis techniques
will be evaluated.

To apply the design models to the construction of a safety-case, the following
information is needed:

Part 3. Modelling and Evaluation

146

• Safety Requirements. Specific safety-related requirements elicited
from the preliminary safety analysis and safety integration labelled
according to the functional requirements of the system.

• Architecture. A model of the system architecture, describing the
different blocks, components and elements which constitute the system
to be analyzed. See point 6.5. Platform Architecture Design).

• Behaviour. Since the safety analysis requires knowledge of the
different faults that can occur and the various ways in which the
system components can malfunction, the proposed nominal (non-
failure) system behaviour (see point 6.4.3. Behaviour View) captured
must be augmented with the fault behaviour of the system to create the
Extended System Model [Leveson 2000].

• Hazards, failures and faults. The following concepts are specified and
modeled.

- hypotheses of defects � expressed solely in terms of the system �
must be provided to avoid mistaking fail-safe behaviour of the
model for fail-safe behaviour of the system.

- characterisation of failures � expressed solely in terms of the
interface between system and environment � must be provided to
allow identifying deviations from the intended behaviour in the
interaction between the system and its environment.

- identification of hazardous situations � expressed solely in terms of
the environment � must be provided to allow describing hazards in
terms of the controlled environment rather than the controlling system.

3.8.7.4 System Requirements Specification

The objectives of the PHA analysis are to identify all the undesired events linked
to the studied system, to classify them regarding severity and probability criteria,
and to select the most critical of them that will be the subject of further detailed
assessment. The levels of hazards indicate the necessities of safety-related
design; high level hazards need to be treated either by making changes in the
design, by mitigating the severity of hazard by safety devices, or by reducing the
likelihood of hazards using architectural approaches. The specifications of such

Part 3. Modelling and Evaluation

147

measures in terms of related design criteria and constraints are referred to as
safety requirements.

Closely related to the concept of safety design requirements are the Safety
Integrity Levels (SILs), which introduces the following concepts [IEC-61508]:

• Risk: a measure of the severity and probability of dangerous failures.

• Safety functions: E/E/PES systems and other technologies that are
introduced in order to achieve functional safety, i.e., to maintain the
risks at acceptable levels in respect of hazardous events.

• Safety function requirements: relating to the functionality of a safety
function, derived from hazard analysis.

• Safety integrity requirements: relating to the effectiveness of a safety
function in terms of its likelihood of performing satisfactorily,
determined based on risk assessment.

The derived safety / safety integrity requirements are annexed to functional and
non-functional requirements and managed during the system life cycle. In
support automated analysis, the safety properties must be expressed using some
formal notation.

Depending of the general approach, there are several candidate notations:

• For an FLM solution, the safety integrability requirements are
specified by labelling the jobs at different integration and abstraction
levels with corresponding SIL, according to the specific safety norm
(IEC-61508, DW 26262, �). Here, there is no common terminology,
values and semantics although similar are domain-specific so MARTE
does not provides specific NFP types, for the specification of the set of
qualified values required to precisely specify and qualify an SIL
attribute.

• An additional attribute to <<RtUnit>> stereotype, silLevel:
NFP_String [1] should be provided.

Related to a formal approach, the requirement model is based on temporal logics
like CTL/LTL [Gabbay 1994, Baier 2008] or higher order predicate logics
[Andrews 2002]. Temporal logic formulas are boolean expressions with
additional operators to express properties over time. Representative samples are
NuSMV or SCADE SPPI [ESACS 2004].

Part 3. Modelling and Evaluation

148

3.8.7.5 Fault and Hazard Modelling

Error modelling provides a capture if potential errors, failure behaviour and
propagation, providing a complementary extension of the nominal to support the
system safety and dependability analysis. Some concepts are involved: a failure
is an inability of a system to perform its required functions within specified
performance requirements. [IEEE 610.12-1990]. The deviation from correct
behaviour (nominal) may assume different forms that are called service failure
modes. The adjudged or hypothesized cause of an error is called a fault. In most
cases, a fault first causes an error in the functional state of a component that is a
part of the internal state of the system and the external state is not immediately
affected. The definition of an error is the part of the total state of the system that
may lead to its subsequent system failure.

The component failure will be triggered by some internal or propagated fault.
In order to trigger these faults, we add additional inputs to the extended model
for each fault that can occur within a component in the nominal model. A fault
model should contain:

1. component failure mode behaviour specifications,

2. additional inputs for activating faults
a. intrinsic faults activated through system level inputs, and
b. propagated faults activated by the error propagating component.

Three different levels of resolution are possible [Pataricza 2006]:

1. Static, error and fault dependability assessment models describe the
signal flow in a system mapping them to a single attribute of failure
mode. The set of failure modes contains in the simplest case of pass/fail
categorization only the values of good and faulty. In the case of a more
detailed modelling, the faulty case is refined into multiple values
according to failure modes.

The core idea of fault level analysis is the characterization of the
sensitivity of the individual components in the system by means of
relations between the error manifestations at their inputs and outputs. It
serves as an early check of the appropriateness of the dependability
concept, thus avoiding extremely costly redesign cycles due to violations
of dependability requirements.

Part 3. Modelling and Evaluation

149

2. Another option, dynamic error propagation analysis deals with the
dynamics of propagation of discrepancies appearing as fault impacts in a
system. This is done both by an intuitive method creating the basic
models heuristically and by an algorithm automatically deriving them
from the functional description of the components.

Abstract dynamic error propagation analysis relies on a model of the
dynamics of the target system (internal operation sequences in the
components, their mutual interaction and invocation) in order to
incorporate the activation sequences into the analysis.

The introduction of error modes as a main representation facilitates the
creation of a simple automaton describing the impacts of errors
appearing at inputs of the individual components (p.e. timed failure
propagation graphs (TFPG) [Abdelwahed 2006]).

3. Finally, the foundations of model transformation generating formal
analysis models from engineering ones are addressed (See. Formal
Methods approach).

The GENESYS methodology approach, considers the errors and failures at
different levels of abstraction and integration (e.g. system-level, device-level or
chip-level).

Different formalism (formal/semi-formal, static-dynamical) has been proposed
for the error behaviour and propagation modelling at each level. EAST-ADL2 is
an architecture description language, dedicated to automotive embedded electronic
systems, developed in the context of the ITEA cooperative project EAST-EEA
(http://www.easteea.net/) and ATESST project (www.atesst.org); extending UML2
standard and addressing the new automotive domain standardization AUTOSAR
(http:// www.autosar.org/) represents error propagations and emphasizes either
the temporal aspect or the causal aspects (Figure 48).

Part 3. Modelling and Evaluation

150

Figure 48. Relating errors and other architectural abstractions by EAST-ADL (ATTEST 2007).

In order to follow the general approach of aligning GENESYS methodology
with the OMG � Object Management Group Object Management Group and the
OSCI � Open SystemC Initiative, GENESYS Methodology team will follow and
contribute the open OMG taskforces and describe the usage of MARTE for
building EAST-ADL2-like models.

3.8.8 Safety Analysis Methods (PSSA Stage)

Figure 49 depicts the overview of the phase, where the safety requirements at the
different integration levels are analyzed. This process supports the application of
different methods in different circumstances.

GENESYS Methodology proposes a dual safety analysis: a preliminary
following the Failure logic Modeling (FLM) approach, supported by the
architecture, error/failure knowledge and a MARTE system behaviour model.
Hip-HOPS (Table 28) provide a powerful method, which enables the safety
assessment of GENESYS platforms.

Further efforts related to formal safety analysis techniques will be evaluated as
far as formalized services (using BIP formalism) are available; here, the
proposed solution is an academic model checker, NuSMV (Table 30).

Part 3. Modelling and Evaluation

151

Finally, some commercial tools that support different kinds of analysis are
introduced.

Figure 49. Input, output and support of safety analysis (PSSA Stage).

3.8.8.1 Hip-HOPS Method

An overview of the approach is presented in Table 28.

Part 3. Modelling and Evaluation

152

Table 28. Brief Overview.

Feature Explanation Remarks

Required
methods

HiP-HOPS
(Hierarchically
Performed Hazard
Origin and Propagation
Studies) [Papadopoulos
1999].

Integrated assessment of hierarchically
described system at different levels of detail:
from functional level to lower HS/SW design
level.

Input Function block and
failures, effects, severity
information.

Error behaviour and
propagation.

Description of a topology of a system model
(hierarchical if necessary to manage complexity)
that includes information about component
failures and their local effects.

Output System�s reliability,
implied scenarios and
sensitivity of the system
reliability.

Modify and incorporate classical techniques and
generates the following information in an
incremental way:

• Early: FFA+ (Extended FFA)

• Later: IF-FMEA (Interface Focused FMEA)

• Across: FTA (Mechanically generated).

Applicability System and architecture
level safety analysis
based on models.
Current research topic.

Answers to the following questions:

Which risk has the greatest concern, and
therefore an action is needed to prevent a
problem before it arises?

Which are the probabilities of system failure?

Additional
models
required

A specific error
management profile.
Solution: EAST-ADL
profile (annex A. of
MARTE profile
specification).

The profile required for modelling the information
related to errors (behaviour, propagation, etc).

Tooling HiP-HOPS (University
of York under
commercialization
process).

HiP-HOPs as an isolated tool.

Part 3. Modelling and Evaluation

153

Contributions

This method aims to enable an integrated safety analysis from abstract functional
level to low level component failure modes based on a hierarchical system
description. The analysis process starts from an FFA analysis and produces a
hierarchical system model in which possible system hazards are identified.
Failure behaviours of components in this model are then further analyzed
considering both the local failures of an individual component and its reactions
to failures caused by other components. Finally, HiP-HOPS performs a fault-tree
synthesis determining faults propagation in the entire system. The integration is
based on a neutral format of input for HiP-HOPS in a �.hip�, allowing the
development of interface to HiP-HOPS, In all instances, HiP-HOP currently
supports Matlab/Simulink model analysis by using a toolbox which produces
failure-modes annotation and the required failure data.

The harmonization of HiP-HOPs with EAST-ADL2 is more aligned with the
primary modelling approach of the methodology framework, which is an
Architecture Description Language developed by ATESST, a consortium of
universities and automotive companies in a project directly funded by the
consortium. The ATESST approach supports safety analysis by providing a
hierarchical system analysis model that consists of failure semantics at each
abstraction level. Table 29 explains the mapping between concepts between
EAST-ADL2 and the HiPHOPS. The implementation is performed using EMF
(Eclipse Modeling Framework) APIs and Eclipse UML2 APIs.

Part 3. Modelling and Evaluation

154

Table 29. EAST-ADL2 and HiP-HOPS concepts for safety analysis [ATESST 2007].

GENESYS Concepts Explanation HiP-HOPS Concepts

FunctionType It represents basic entities.

Function Prototype /
FunctionalDevice

these two are specializations of
FunctionalType. Abstraction Function

ErrorBehavior

It defines the Specification of
error logic. Properties such failure
logic, propagation port, handling
status and failure effects.

Functions failures, effects,
severity. Component
failures.

ErrorModel

It defines the ErrorBehavior that a
entity can have given a specific
context.

Implementation of a
component that allows
synthesis and analysis to
take place.

ErrorPropagation

It defines the relationships
between errors of components
which can cross abstraction
levels.

Propagation of failure and
faults.

PropagationPort
It defines the port that an faulty
event can go through. Failure data port.

Safety analysis as part of model driven development. The method includes the
following steps:

1. Scenario specification, defining the operational environment by fault
behavioural modelling. By using EAST-ADL2 profile.

2. Construct a function block diagram, which identifies system functions
and their dependencies. Output from Platform Architecture Design stage.

3. Assess multiple functional failures (FTA, FMEA).

Limitations. The component behaviour is not considered while generating the
fault trees; there is no fault order dependency information, which is important or
necessary in a system under synchronization requirements.

Part 3. Modelling and Evaluation

155

Use in GENESYS

This method could be adopted quite easily to the methodology framework after
establishing a mapping between MARTE profile and ATTEST-ADL2 model.

3.8.8.2 Model Checking Method

An overview of the approach is presented in Table 30.

Table 30. Brief Overview.

Feature Explanation Remarks

Required
methods

NuSMV [Cimatti 1999],
FSAP (Formal Safety
Analysis Platform)
[Bozzano 2002].

Supports design and safety engineers in
the development and in the safety
assessment of complex systems.

Input System model (Failure
Modes / Failure Sets,
Messages and Message
classes, Safety
Requirements).

Formal model of the system under
investigation (system model) at the level
of abstraction required by the current
development iteration, requirements of
the system model.

Output Counter example / Formal
verification of hypothesis /
Simulations.

Based on CTL, LTL and Bounded Model
Checking Techniques.

Applicability System and architecture
level safety analysis based
on models. Current research
topic.

Answers to the following questions:

Which risk has the greatest concern, and
therefore an action is needed to prevent a
problem before it arises?

Which are the probabilities of system
failure?

Additional
models
required

Finite State Machines in
a modular hierarchical
descriptions. Tool language
not aligned with UML.
A profile must be defined.

The profile required for modelling the
information related to errors (behaviour,
propagation, etc).

Tooling FSAP/NuSMV-SA
(ITC-IRST within ESACS
Project).

The FSAP/NuSMV-SA platform is
composed of two main tools: FSAP
(Formal Safety Analysis Platform),
providing a graphical user interface for
easier user interaction and NuSMV-SA an
extension of the NuSMV2 model checker.

Part 3. Modelling and Evaluation

156

Contributions

NuSMV has been developed as a joint project between ITC-IRST (Istituto
Trentino di Cultura, Istituto per la Ricerca Scientifica e Tecnologica in Trento,
Italy), Carnegie Mellon University, the University of Genoa and the University
of Trento. It is a reimplementation and extension of SMV, the first model checker
based on Binary Decision Diagrams (BDDs). The tool has been designed as an
open architecture for model checking. It is aimed at reliable verification of
industrially-sized designs, for use as a backend for other verification tools and as
a research tool for formal verification techniques.

The FSAP/NuSMV-SA platform aims at supporting the formal analysis and
safety assessment of (complex) systems. The platform is based on a set of tools
(including an extension of the NuSMV model checker) and is based on the
concept of a repository. The repository contains the information necessary for
the design and safety assessment of systems and is shared between the design
engineer (the actor responsible for the design of the complex system) and the
safety engineer (the actor responsible for performing safety analysis on the
complex system).

The platform is designed to support different phases of the development and
safety assessment process and to support different development and safety assessment
practices. To achieve these goals, FSAP/NuSMV-SA provides a set of basic functions.
These basic functions can be combined in different ways to perform complex
tasks. The major benefits from the use of FSAP/NuSMV-SA are the following:

• The platform supports a tight integration between the design and the
safety teams

• The platform automates (some of) the activities related both to the
verification and to the safety analysis of systems in a uniform
environment

• The use of the platform is compatible with an incremental development
approach, based on iterative releases of the system model at different
levels of detail.

Safety analysis is part of model driven development. The method includes the
following steps:

1. Model Capturing: A formal model of the system under development
(system model, from now on) is provided.

Part 3. Modelling and Evaluation

157

2. Requirements Capturing: The properties of the system under development
(system model, from now on) are provided. The properties refer both to
the behaviour of the system in nominal conditions and to the behaviour
of the system in degraded situations.

3. Failure Mode Capturing: The failure modes of the components of the
design model are identified.

4. Failure Injection: The failure modes of the system are injected into the
design model. This step generates a new model, called the extended
system model, in which components may fail according to the
specification of failure provided in the previous step.

5. Formal Assessment of the System Model: Both, the system model and
the extended system model are formally checked against a set of
properties. We can distinguish two different activities:

o Formal Verification: The model is checked against a set of pre-
defined requirements, under the hypothesis of nominal
behaviour, that is, under the hypothesis that all the components
work as expected. This step assures the correctness of the design
in nominal situations.

o Assess Safety: The model is checked against a set of pre-defined
requirements, under the hypothesis that the component may fail.
This ensures that the system behaves as required in degraded
situations (e.g., when some of the components are not working).

Limitations. Though FSAP is a very powerful tool, it has disadvantages, which
might limit its applicability to practical systems. There is no flexibility in
defining the fault model � no good way of specifying fault propagation,
simultaneous/dependent faults, and persistent/intermittent faults.

Use in GENESYS

This method could be adopted for GENESYS after implementing transformation
between GENESYS modelling and evaluation tools. Currently, the capabilities
of UML2 and its MARTE profile for the representation of complex models of
computation semantics (p.e. synchronous languages) are under analysis. Further
results related to the mapping between BIP and UML MARTE profile, are

Part 3. Modelling and Evaluation

158

expected to establish a different semantic translation extended to error and
failure behaviour modelling.

3.8.8.3 Commercial Safety Analysis Tools

Different commercial solutions can be found based on the different approaches,
reviewed previously. Representative tools are the AltaRica Data-Flow Toolbox
from ARBoost Technologies and Cecilia OCAS tool-set developed by Dassault
Aviation (France) based on the Altarica model as result of the ESACS (Enhanced
Safety Assessment for Complex Systems) European project, promoted by Airbus
and ONERA [ESACS 2004].

Another solution is Exhaustif/SWIFI, a faults injection tool, used during
system integration and system testing phases (not design stages) of any software
development lifecycle by the injection of software errors in program procedures
and variables and hardware faults in CPU, Memory and I/O.

However, a similar situation to reliability analysis tools is found for safety
analysis and for the set of tools analyzed an adaptation of the concepts and
interface is needed.

3.8.9 Composability Evaluation

Composability is a concept that refers to integrability and interoperability of
components and services. Integrability is the ability to make separately
developed components and services of the system to work correctly together.
Systems are based on integrated components, when the components are used as
building blocks in product development. However, the black-box nature of
components and insufficient component documentation makes the integration of
components difficult. Successful component integration requires that the
component matches the functional and quality requirements of a system and
interoperates with other components of the system.

Integrability is related to interoperability and interconnectivity. Interoperability
is a sub-characteristic of integrability and partially defined by interconnectivity;
the ability of components/services to communicate and exchange information.
Thus, interconnectivity is a prerequisite for interoperability; the ability of a
service to use the exchanged information and provide something new originated
from exchanged information. Interconnectivity and interoperability are
execution qualities, whereas integrability has a larger scope, impacting upon the

Part 3. Modelling and Evaluation

159

development and evolution of a system. Therefore, integrability is to be considered
together with the features of products, domain requirements, high-level coarse-
grained architectural elements and the means to develop and maintain products.
Interoperability is considered when components and their interactions are
defined in detail and finally observed as executable models, simulations and
running systems.

Two approaches have been suggested to be used together to estimate and to
avoid integration mismatches in these two cases: model-based integration and
component-based integration [Eqyed 1999]. The approaches are different, but
their results are complementary. The purpose of both approaches is to identify
clashes, which yield mismatches. Corresponding with the approaches, two types
of clashes/mismatches can be detected:

• Model-based integration yields model constraint and rule clashes/
mismatches

• Component-based integration yields component feature clashes/
mismatches.

The model-based integration approach tries to combine information from
different views to allow precise reasoning. Integrating architectural views means
that problems and faults are still relatively easy (and inexpensive) to fix, because
architectural issues are considered early in the development life-cycle.

The component-based integration approach is high-level and can be used
early for risk assessment when little information is available. The approach uses
a set of conceptual features for describing components and the connections
between the components. When composing systems, many potential
architectural mismatches can be detected by analyzing their various choices for
conceptual features. Feature mismatches may occur when components have
different or the same (collision) characteristics for some particular feature, such
as concurrency, distribution, dynamism, layering, encapsulation, supported data
transfers, triggering or capability. Component features can be derived through
observation and assumptions of their external behaviour (black-box analysis)
without knowing their internal workings.

Part 3. Modelling and Evaluation

160

3.8.9.1 Model-Based Evaluation

In model-based integration, architectural characteristics are divided into
orientation level characteristics, latitude level characteristics, and execution level
characteristics. The orientation level characteristics are related to the high-level
architectural style of the system, and their values can be gleaned mainly from the
structural view of the architecture. The latitude level characteristics demarcate
where and how communication moves through a system (i.e. mainly from
behaviour and allocation views). The characteristics of the execution level are
further refined to the extent of providing execution details (i.e. detailed information
of the whole system).

In order to evaluate interoperability, the architectural characteristics should be
detected directly from the architectural models. By examining multiple aspects
of a characteristic, Davis et al. [Davis 2002] have grouped, associated, and
appended the architectural characteristics in a principled manner (Table 31).

They use three levels of abstraction; orientation, latitude, and execution that
represent the point at which the value of an architectural characteristic can be
assigned during the design effort. The system category is concerned with the
system as a whole and how the characteristics shape the component-based
system on the orientation level. Data characteristics deal with how data resides
and moves within components. Data characteristics are defined at the latitude
and execution levels. Similarly, control characteristics address control issues are
defined at the latitude and execution levels. The last column maps the
architectural characteristics to the artefacts used in the methodology framework.
In GENESYS, the model-based integration evaluation means an evaluation that
the system architecture (i.e. output of the phase 4) follows the principles defined
in the cross-domain style and methodology.

Part 3. Modelling and Evaluation

161

Table 31. Categorised architectural characteristics and their mappings to the GENESYS context.

Category Characteristics Abstraction
level

Used views in GENESYS

Identity of
components

Orientation

Blocking Orientation

Structural and semantic views

Required: DASs, jobs, state
machines

Modules Orientation

System

Connectors Orientation

Structural and syntactical views

Required: Components (ip-core,
device, system) and connections
(inter-LIFs between them)

Data Topology Orientation Structural view, (semantic view),
Required: data classes

Supported Data
Transfer

Orientation Structural view,

Required: message structures

Data Storage
Method

Orientation Structural views,

Required: shared and unshared
storages

Data Flow Latitude

Data Scope Latitude

Data Mode Latitude

Structural and behaviour views

Required: Class diagrams and
sequence diagrams

Method of Data
Communication

Execution

Data Binding Time Execution

Data

Continuity Execution

Behaviour, allocation and
scheduling views

Control Topology Orientation

Control Structure Orientation

GENESYS style: integration
levels

Structural and allocation views

Control Flow Latitude

Control Scope Latitude

Behaviour view

Required: state machines and
sequence diagrams

Method of Control
Communication

Execution

Control Binding
Time

Execution

Synchronicity Execution

Control

Concurrency Execution

Behavioural and allocation views,
additional views required for
simulation and schedulability
analysis.

Part 3. Modelling and Evaluation

162

Steps of model-based evaluation

The model-based composability evaluation has the following steps:

• The evaluation criteria related to composability (i.e. integrability and
interoperability) defined in the system specification phase are compared
to the cross-domain architectural style. In a conflicting case, the style
has the higher priority and the system criteria are refined so that they
match with the principles of the cross-domain architecture style.

• The architectural models of the structure, semantic, behaviour and
allocation views are checked against the principles of the cross-domain
architecture style and the reference architecture template. Modules,
connectors and supported data transfers used in models are compared
to the principles defined in the cross-domain style about components,
services, interfaces and messaging. The use of earlier developed
application and platform services are checked against the service
descriptions of the application service repository and platform service
repository. The allocation and configuration views/models are checked
against the rules defined for the corresponding integration levels (chip,
device and system levels). After this step, the orientation level
integrability and interoperability evaluation is passed.

• Next, the latitude level evaluation is made by checking the scope,
mode and flow of control and data. The usage profile defined in the
requirements specification phase is used for going through the
scenarios based on the sequence and state diagrams of the architecture.
Evaluation can be performed manually or semi-automatically. In case,
the reference architecture template provides composition and binding
rules, this step could be automated.

• Lastly, the syntactic evaluation is conducted. This step has to be
automatic by using the properties of modern verification and
simulation tools.

Recent research focuses on model-based structural and behavioural mismatch
analyses and adaptation [Tsantalis 2006, Mili 2000, Canal 2008]. Structural
mismatches can be identified by using a structure mapping engine [Falkenhainer
1990]. Behavioural mismatches can be removed by with or without reordering
and adaptation supported by the Adaptor tool [Canal 2008].

Part 3. Modelling and Evaluation

163

3.8.9.2 Component Based Evaluation

System architecture defines the relationships that a component has with other
components. Each relationship together with the interface description defines a
contract between a component that provides certain functionality and the
components that require that functionality. Thus, interfaces determine how a
component can be used and interconnected with other components and the
interface description helps integrators to decide what integration strategy to use.

Interfaces can be controlled by the following strategies:

• Use of de facto and industry-defined standards (preferably open standards).

• Specifying as many assumptions about a component�s interface as is
feasible.

• Adapting the component to the use of integration elements.

Steps of component based evaluation

Next, each of these strategies are introduced and mapped to the context of the
methodology framework. Thus, the component-based composability evaluation
has three main steps:

1. Stability of interfaces

A number of the existing standards define how to access particular functional
components. These standards take the form of an Application Programmer
Interface (API) that defines how to link to a local procedure call, or they take the
form of a protocol that defines how to access a service over a network. By using
an industry-accepted standard, component developers provide the integrators
with a much greater capability to mix and match components. However,
accepted standards exist only in domains that are relatively mature.

The de facto standard is the specification of a linking interface (LIF). LIFs are
the interfaces for the integration of components at a given integration level.
Thus, the LIFs used/defined in the system architecture shall be checked against
1) the LIFs defined in the platform module library and 2) the new LIFs against
the LIF specification defined in the cross-domain architectural style.

Part 3. Modelling and Evaluation

164

2. In-built changeability

Concepts of parameterized interface and negotiated interface are techniques for
avoiding interface mismatch. A parameterized interface is an interface whose
assumptions about the environment can be changed by changing the value of a
variable before the component service is invoked. A negotiated interface is a
parameterized interface with self-repair logic. This kind of interface can
parameterize by itself or via an external agent.

The reference architecture template may define the rules how LIFs are adapted
to different domains and integration levels. The composability evaluation
methods only checks that the adaptation rules defined in the reference
architecture template have been followed while defining the system architecture
models at hand. This evaluation step may have two levels, model and
implementation levels depending on the component to be evaluated. A new
component is evaluated at the model level but an existing component can be
checked at the model level and the implementation level.

3. Reusable integration elements

If an existing component needs to be adapted to the cross-domain style, an
integrator may apply integration elements (Figure 50) [Keshav 1998]. The
integration elements are classified into the three main classes: translator,
controller and extender. The translator and controller are connector models of
integration functionality defined as design patterns on the architecture level and
based on solving incompatibility problems among components. The extender is a
connector model, whose functionality enhances the functionality provided by
translators and/or controllers. The basic function of a translator (e.g. a bridge,
adapter, filter or converter) is to convert data and functions between component
formats and to perform semantic conversions. It does not change the content of
the information. A controller (e.g. a broker) coordinates and mediates the
movement of information between components using predefined decision-
making processes or strategies. The extender is a connector model whose
functionality can vary extensively, (e.g. buffering, polling, and security checks)
and is specifically used as part of an integration architecture, in which the
translator and controller cannot accommodate the full functional need. The
proxies, wrappers and decorators contain at least one translator and one extender
integration element.

Part 3. Modelling and Evaluation

165

Typically a component model defines two elements: components and containers.
A component model provides the template from which practical components are
created. The container part of the component model defines a method for
combining components together into useful structures. Containers provide the
context for the components to be arranged and how they interact with one
another. The main element of a component model is the interconnectivity
standard that defines the communication and data exchange among components.
In addition, a component model provides a set of standards for component
implementation, naming, customization, composition, evolution and deployment.

The component integrability evaluation checks that correct integration elements
(Figure 50) are used for adapting the existing components to the system
architecture and that the adapted components follow the �standard�-based
messaging, naming, customization and composition rules defined by the cross-
domain architectural style.

Figure 50. Integration elements.

Part 3. Modelling and Evaluation

166

Tool support

If the component model defined by the cross-domain architectural style is
described as a meta component model and supported by the modelling
environment, the steps of the component based composability evaluation could
be semi-automatic. An analyzer is needed for making the decision that
appropriate integration elements are applied. Recent architectural knowledge
management tools already support this step, e.g. Stylebase for Eclipse, PAMKE
and WOP.

3.8.10 Evolvability Evaluation

Evolvability is a concept related to several quality attributes, e.g. flexibility,
adaptability, extensibility, maintainability, and modifiability. Therefore, many
evaluation methods cover one or more quality attributes of evolvability. Most of
these methods are scenario-based, and thus the first step in evolvability
evaluation is to define what to evaluate and why.

The selection of the evaluation method is based upon the required quality
properties of the system and the supporting evaluation methods and tools.
However, the importance levels of the quality properties define the order that the
quality evaluation follows. The importance levels are defined by categorizing the
QA requirements into three or four classes which represent how critical the QA
requirements are for the success of the system architecture and products/systems
based on it. An example of influence factors is introduced in Table 32. At least
one of the influence factors of the selected importance level has to be true, when
the evaluation order is selected. The idea is to first concentrate on the part of the
system architecture that has the greatest influence on quality (e.g. size, criticality,
complexity), and when that part is proved to be correct, the evaluation focuses
on the other parts that have lower impact on quality.

Part 3. Modelling and Evaluation

167

Table 32. Prioritizing QAs for the evaluation order.

Importance
level Sphere of interest Dependencies Impact on implementation

1 similar core
services and
optional services

related to many other
services and QAs,
trade-offs making
necessary

special resources required,
time-consuming, high
complexity

2 specific optional
/application
services

related to other QA(s) special resources required,
moderate complexity

3 application services no relation to other
QAs

moderate/low complexity

3.8.10.1 Adaptability Evaluation

Adaptability is a quality attribute that has two different meanings: 1) a qualitative
property of a system�s maintainability and 2) an ability of components/services
of a system to adapt their functionality, even at runtime, to behavioural and
structural changes that occur either internally or externally in their operating
environment and the requirements of stakeholders� objectives [Tarvainen 2008].
Here we focus on the latter one, i.e. how to evaluate from architectural descriptions
that the system to be developed has an ability to adapt its functionality in a
changing environment.

The Adaptability Evaluation Method (AEM) [Tarvainen 2008] that is an
integral part of QADA® (Quality driven Architecture Design and quality Analysis)
methodology supports adaptability evaluation from software architecture
models. AEM has three phases, each of them including several steps.

1. Adaptability requirements specification

The first phase includes the following activities:

• Identifying stakeholders and their concerns. In this phase, stakeholders
are defined as actors and their adaptability requirements are analyzed
and modelled in the strategic dependency model that describes
dependencies between goals, soft goals (goals that can not be defined
precisely), tasks and resources. The dependency model helps in
negotiation and prioritization of the importance of goals.

Part 3. Modelling and Evaluation

168

• Mapping the adaptability requirements to functional blocks, i.e. sub-
systems, domains, components and services. One adaptability requirement
may be mapped to several functional blocks. Additionally, the adaptability
requirements themselves may result in certain functionality.

• Comparison of architectural styles and selection of the optimal one.
Comparison is based on the defined adaptability requirements. Patterns
that support adaptability are recommended.

• Adaptability evaluation criteria are defined on tree levels: common
criteria for all products (i.e. core services), 2) common criteria for
domain specific services, and 3) product specific criteria.

2. Modelling adaptability

In this phase, the adaptability requirements are mapped to different architectural
views; structure, behaviour and deployment. As defined in the methodology
framework, structure and behaviour are described in phase 2 and 3. Deployment
is defined in phase 4 when application and platform models are combined. Thus,
the adaptability requirements mapping has to be considered in all three
architecture design phases.

3. Adaptability evaluation

Qualitative adaptability evaluation means tracking if adaptability requirements
are met. The use of qualitative adaptability evaluation requires traceability
support from the modelling environment. When this kind of support is available,
this evaluation phase is automatic; the designer maps the adaptability
requirements to architectural elements in the design phase, and in the evaluation
the modelling environment informs only if some of the adaptability requirements
are not handled.

Quantitative adaptability evaluation assists the user in selecting the optimal
architecture among the candidate architectures. Stakeholders� adaptability goals
drive the evaluation as follows:

• The adaptability scenario profile is defined for each architecture
candidate based on the defined adaptability goals. The adaptability
scenarios defined in the profile are descriptions of a system�s
behaviour driven by potential changes related to adaptability.

Part 3. Modelling and Evaluation

169

• The impact analysis is performed by applying the class point (CP)
method and calculation worksheets. In the CP size estimation, the
design specifications are analyzed in order to classify components into
four types: 1) the problem domain type represents real-world entities in
the application domain, 2) the human interaction type satisfies the need
for information visualization and human interaction, 3) the data
management type encompasses data storage and retrieval, and (4) the
task management type includes jobs of the system and communication
between sub-systems and the system and its environment. The
behaviour of each component/service is taken into account in order to
evaluate its complexity level (low, average or high). Complexity
estimations are made based on the number of provided interfaces, the
number of interconnections between components and the number of
attributes. For example, the rule for estimation can be; if provided
interfaces > 9, interconnections >= 2 and attributes > 2, the complexity
level is high.

• Once the complexity levels of each component are defined, the total
unadjusted class point (TUPC) value is calculated by the following
formula:

 (1)

where xij is the number of classes of component type i (PDT, HIT,
DMT, TMT) with complexity level j (low, average, or high), and wij is
the empirical weighting value for type I and complexity level j.

The Technical Complexity Factor (TCF) is estimated by assigning the
degree of influence (ranging from 0 to 5) that 18 general system
characteristics have on the application from the designer�s point of
view [Costagliola 2005]. The given estimates are recorded in the
Processing Complexity table. The sum of the influence degrees related
to such general system characteristics forms the Total Degree of
Influence (TDI), which is used to determine the TCF according to the
following formula: . The final value of CP is
obtained as follows: .

Part 3. Modelling and Evaluation

170

• Architecture adaptability is calculated as follows:

IOSA (the Impact On the Software Architecture)

 (2)

where | S | is the number of the adaptability scenario, PSk is the estimated
probability of the adaptability scenario Sk based on the adaptability
evaluation criteria, and CP is the impact analysis result of Sk. Csk and
Tsk are the set of impacted components and connectors Sk respectively.

• ADSA (the Adaptability Degree of the Software Architecture)

 (3)

• Finally, the calculated results are analyzed. The range of IOSA is [0, ∞]
and the range of ADSA [1, 0]. When ADSA = 1, the architecture is
totally adaptable in all dimensions. In order to make the value of
ADSA spread equally throughout the range, the value of N must be
close to 1. After some experiments, it was determined that N = 1, 01.
Based on the value of ADSA, the architect can select the architecture
that is most adaptable to the stakeholders� adaptability goals. In
addition, the architect can identify the weaknesses of the architectures
in order to support architecture improvement. However, the architectures
must be designed for the same system or the value of ADSA is
meaningless.

Tool support: Excel sheets for quantitative evaluation exist but effective use of
the method requires tool support especially for handling adaptability requirements
and calculations.

3.8.10.2 Extensibility Evaluation

Extensibility is the ability to extend a system with new features, services and
components without loss of functionality or qualities specified as the requirements
of the system. Extensions can be taken into use by run-time upgrading or
stopping the system for a period of time. Thus, extensibility evaluation focuses
on how new features, originated from customers� demands or new emerging
technologies, could easily be developed and exploited in a system without losing
existing capabilities. The impact of changes to the system also has to be estimated.

Part 3. Modelling and Evaluation

171

The IEE method is intended for evaluating integrability and extensibility of
software (family) architectures [Henttonen 2007]. The method is scenario-based
and aligned with the principles of QADA. The phases of IEE can be mapped to
the following phases of the modelling process; requirements specification,
architecture modelling and quality evaluation. The extensibility evaluation part
of the method could be adopted for the methodology framework as follows:

1. Defining quality goals and quality criteria

The phase includes four activities: impact analysis, quality analysis, variability
analysis and hierarchical domain analysis. Domain experts are responsible for
impact analysis and quality analysis. In the impact analysis, the domain experts
identify and elicit the interests of the business stakeholders and technical
stakeholders, define the standards, regulations and practices to be followed in the
domain. This activity means adaptation of the methodology framework into
practice and results in a list of the stakeholders and their quality goals.

Application and platform architects identify and define core and domain
specific functional and quality properties of a system (i.e. variability analysis),
and categorize capabilities into a service taxonomy taking into account the
defined functional capabilities, quality goals, domain specificity and
commonality of the capabilities (i.e. hierarchical domain analysis). The phase
results in a list of prioritized quality criteria against which the architecture is
evaluated. Instructions how to define quality goals and quality criteria, and how
to represent the required and provided quality properties in architectural models
are given in [Niemelä 2007].

2. Defining and modelling change scenarios for extensibility evaluation

Phase 2 includes one combined activity: scenario modelling. The purpose of this
phase is to define and model a representative set of change scenarios and, if
necessary, enhance the existing architectural description with information
relevant to the extensibility evaluation. The scenarios represent possible future
needs with regard to extension of products based on the architecture. The
scenario modelling consists of the following tasks: 1) defining scenarios for
extensibility, 2) selecting appropriate views and patterns for describing
architecture, and 3) defining assumptions, architectural constraints and a design
rationale for each view. The phase results in the description of system
architecture at the point where all figurative change scenarios have been

Part 3. Modelling and Evaluation

172

realized. The description includes a complete set of views and selected styles
and patterns. The cross-domain architecture style and architectural views have
already been defined. Selection of patterns depends on the application under
development.

3. Extensibility evaluation from architectural models

In the third phase, quality analysts evaluate the extensibility of the architecture
and compare the evaluation results to the defined quality criteria. In quality
evaluation, extensibility analysis is used to identify in which part the architecture
extension points are required and how effectively extensibility patterns are used
in the architecture. Comparative analysis is applied to compare the evaluation
results to the quality criteria, identifying conflicts and the making of trade-offs,
and finally evaluation results are reported as proposed improvements and as
identified unsolved problems, which are returned to the architects for the next
iteration phase.

The quality evaluation is done iteratively and incrementally. First, the quality
criteria, which have high importance and affect many parts of the architecture,
are evaluated. If these qualities do not meet the requirement, architecture
refinement is needed and after refinement the quality criteria of high importance
are re-evaluated. Secondly, quality criteria of high importance but small impact
are evaluated. Third, quality criteria of medium importance for any part of the
architecture are taken under evaluation. Last, quality criteria of low importance
are checked. The approach allows the evaluator to focus first on the most
important qualities and thereafter to make trade-offs among the less important
quality criteria.

3.8.10.3 Maintainability, Flexibility and Modifiability Evaluation

Maintainability, flexibility and modifiability address the ability to improve and
change a system easily. Maintainability is the ease with which a
system/component/service can be modified. Modification may mean removal,
update, addition or moving a component/service to a different computing node.
Flexibility is the ease with which a system or component can be modified for use
in applications or an environment other than those for which it was specifically
designed. Modifiability for its part measures how quickly and cost-effectively
the changes can be made.

Part 3. Modelling and Evaluation

173

Architecture level modifiability analysis (ALMA) was selected from a set of
different methods because of its obvious superiority over other similar kinds of
methods; it has a clearly defined process, it has been applied to industrial cases
and the method supports multi-goal evaluation [Bengtsson 2004].

The separation between the tasks of the following steps is not strict and it is
often necessary to iterate over various steps.

1. Select the evaluation goal

• Maintenance cost prediction by estimating the effort required to
modify the system to accommodate future changes.

• Risk assessment by identifying the types of changes for which the
architecture is inflexible.

• Architecture selection by comparing candidates and selecting the
optimal one.

2. Describe the relevant parts of the architecture

Modifiability evaluation requires architectural information that allows the analyst
to evaluate the scenarios. The following information is needed: decomposition of
the system into components, relationships between components and relationships
between the system and its environment. All relationships are not known at the
architecture level because they are defined in detailed design or implementation.
These relationships may cause unforeseen triple effects when modifications are
made to a component. Because it is not always possible to determine the full
impact of a scenario, this affects the overall accuracy of evaluation, which is
based on the sufficiency of available information. If the information proves to be
insufficient to determine the effect of the scenarios found, there are two options.
First, it is not possible to determine the effect of the scenario precisely. Alternatively,
the architect that assists in scenario evaluation may fill in the missing information.

3. Define the set of relevant change scenarios

There are a couple of issues in the elicitation of change scenarios: the number of
possible changes and selection criterion. The number of possible changes to a
system is almost infinite. In order to make scenario-based evaluation feasible, a
combination of two techniques is used: equivalence classes and classification of
change categories.

Part 3. Modelling and Evaluation

174

Partitioning the space of scenarios into equivalence classes enables one to
treat one scenario as a representative of a class of scenarios, thus limiting the
number that have to be considered. However, not all equivalence classes are just
as relevant for each analysis. Deciding on important change scenarios requires a
selection criterion. Classification of change categories is used to focus on the
scenarios that satisfy this selection criterion.

There are two approaches for selecting a set of scenarios: top-down and
bottom-up. In a top-down approach some predefined classification of change
categories guides the search for change scenarios. This classification may derive
from the domain of interest, knowledge of potentially complex scenarios, or
some other external knowledge source. In interviews with stakeholders, the
analyst uses this classification scheme to stimulate the interviewee to bring
forward relevant scenarios. This approach is top-down, because the analyst starts
with high-level classes of changes and concludes with concrete change
scenarios. When using a bottom-up approach, there is no predefined
classification scheme but it is left to the stakeholders being interviewed to come
up with a relevant set of scenarios. The analyst then categorizes the scenarios and
stakeholders review this categorization. In practice, the approaches are iterated
such that the elicited change scenarios are used to build up or refine the
classification scheme. This (refined) scheme is next used to guide the search for
additional scenarios. In addition to the selection criterion, elicitation also needs a
stopping criterion to decide when a representative set of scenarios have been
collected. In ALMA, the number of change scenarios is sufficient when: (1) all
change categories are explicitly considered and (2) new change scenarios do not
affect the classification structure.

The second issue is that of deciding on the selection criterion. The selection
criterion for scenarios is closely tied to the goal of evaluation. If the goal is to
estimate maintenance effort, the focus is on scenarios that correspond to changes
that have a high probability of occurring during the operational life of the
system. If the goal is to assess risks, the analyst selects scenarios that expose
those risks. If the goal is to compare different architectures, the analyst
concentrates on scenarios that highlight differences between those architectures.
Table 33 introduces the different means of defining change scenarios and when
to use them (based on Architecture Trade-off Analysis Method, ATAM).

Part 3. Modelling and Evaluation

175

Table 33. Means for defining change scenarios.

Means Sub-type Used for

Direct scenario eliciting information about the architecture

 representing changes to the system

growth scenario representing anticipated future changes;
predicting maintenance effort

Indirect scenario

exploratory scenario stressing the system, exposing the limits of
the current design

Utility tree top-down decomposition of relevant quality
attributes in the assessment (modifiability)

Facilitated
brainstorming

 a bottom-up mechanism

4. Determine the effect of the set of scenarios

Scenario evaluation concerns two steps: analysis of the impact of the scenarios
and expressing this impact. Architecture-level impact analysis is used to identify
the architectural elements affected by a change scenario. This includes the
components that are affected directly, but also the indirect effects of changes on
other parts of the architecture. The effect of the scenario is expressed using some
measurement scale, depending on the goal of the modifiability analysis.

Together with the architects and designers the analyst determines the impact
of the change scenarios and expresses the results in a way suitable to the goal of
evaluation. This is the architecture level impact analysis that consists of the
following steps:

• Identifying the affected components, i.e. the components to be
modified.

• Determining the effect on the components, i.e. the functions of the
components to be changed and how changes propagate over system
boundaries (interfaces to environment).

• Determining ripple effects. The occurrence of ripple effects is recursive;
each ripple may have additional ripple effects. Because not all
information is available at the architecture level, the analyst has to
make assumptions about the occurrence of ripple effects. The
optimistic assumption is that there is no ripple effect. The pessimistic

Part 3. Modelling and Evaluation

176

assumption is that each component related to the affected component
requires changes. In practice, the analyst relies on the architects and
designers to determine whether modification of a component has ripple
effects on other components.

The results of the impact analysis are expressed either qualitatively by describing the
changes needed, or quantitatively by using a five level scale (++, +, +/-, -, --).
This allows the analyst to compare the effect of scenarios and estimate the effort
required for modification using e.g. function points.

5. Interpret the analysis results

Prediction of maintenance effort requires a model that is based on the cost drivers of
the organization�s maintenance processes. Organizations have different strategies
for performing maintenance and this affects how the cost and effort relate to the
change traffic and modified components. ALMA proposes a model (Eq. 2) that
assumes that the change volume is the main cost driver and that there is a
productivity figure for the cost of adding new code and modifying old code.

() ()
()

nc
IA CC NC

estimated

size weight size weight
Total effort changes

j j cc j j
j j

Ρ Ρ

C S

⎛ ⎞⎛ ⎞ ⎛ ⎞
⋅ ⋅ + ⋅ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠= ⋅

∑ ∑ ∑
 (4)

For risk assessment, the analyst will have to determine which change scenarios
are risks with respect to the modifiability of the system. This interpretation is
done in consultation with stakeholders who estimate the likelihood of each
scenario and whether the required changes are too complicated. The owner of
the system decides on the criteria to be used.

In comparing candidate architectures, the interpretation is aimed at selecting the
best candidate. There are three approaches to compare candidate architectures:

• To appoint the best candidate for each scenario and the architecture
candidate that supports most scenarios is considered the best.

• To rank the candidates for each scenario and get an overview of the
difference between the candidates and select the one that is best suited
for the system.

• To estimate the effort of each scenario for all candidates on some
scale, and interpret the results based e.g. the importance of change
scenarios or the predicted efforts of all candidates.

Part 3. Modelling and Evaluation

177

3.8.10.4 Trade-off Analysis

The Architecture Trade-off Analysis Method®1(ATAM) is a method for evaluating
software architectures relative to quality attribute goals. ATAM consists of the
following phases and steps:

Phase 1: Presentation

• Method. The analyst describes ATAM to the assembled participants,
tries to set their expectations, and answers questions they may have.

• Business drivers. The project manager or system customer describes
what business goals motivate the development effort and what the
primary architectural drivers are.

• Architecture. The architect describes the architecture focusing on how
it addresses the business drivers.

Phase 2: Investigation and analysis

• Architectural options are identified.

• Quality attribute utility tree. Quality attributes that comprise system
�utility� are elicited, specified by scenarios and annotated with stimuli
and responses, and finally prioritized.

• Analysis of the architectural options. Those architectural options that
address the scenarios of high priority are analysed by identifying risks,
non-risks, sensitivity points and trade-offs points.

Phase 3: Testing

• Brainstorm and prioritized scenarios. A larger set of scenarios is
elicited from the group of stakeholders and prioritized via a voting
process by all the stakeholders.

• Analysis of the architectural options. The defined larger set of scenarios
is used as test cases for analysing and ranking the architectural options.

1 ®ATAM is registered in the U. S. Patent and Trademark Office by Carnegie Mellon Software
Engineering Institute.

Part 3. Modelling and Evaluation

178

Phase 4: Reporting

• The evaluation team presents the collected results (options, scenarios,
attribute-specific questions, the utility tree, risks, non-risks, sensitivity
points, tradeoffs) to the assembled stakeholders.

With regard to the previously presented methods, the Software Engineering
Institute (SEI) has applied ATAM to the evaluation of industrial system
architectures during the last ten years and distilled the risks into themes that
summarize and consolidate the collection of risks found during evaluations. The
risk themes are based on 18 architecture evaluations [Bass 2006]. As a result, the
four most prevalent risk theme categories were identified: performance,
requirements, unrecognized needs and organizational awareness. 14 of the
evaluated systems were different kinds of embedded systems. In more than 10
cases performance, reliability/availability and interoperability were considered
as business goals in a similar way as functionality. Performance in particular was
considered as an important business goal. Naturally, the cost of development,
deployment, operation and maintenance were also ranked high. Similarity
among the risk theme categories of high importance and the prioritized quality
attributes of the methodology framework is evident.

In four domains, more than one evaluation was made. When comparing the
evaluation results, it was seen that that there is no similarity among the risk
themes of the evaluations in any of the four domains. One explanation may be
that the organizational context plays a part in the generation of risk themes.

Risk themes were categorized into three types:

• risks of commission resulting from problematic architectural decisions,
• risks of omission resulting from not performing a certain activity/activities.
• neither commission nor omission; ambiguous risks.

Three risks of omission were identified: security, requirements and
unrecognized needs. The last two risk themes are not the result of architectural
decisions but rather the results of having a high level of uncertainty in
requirements and/or stakeholders� needs. The security risk themes were not all
of risks of omission. In fact, security requirements are hard to meet, and
architectural teams ignored some important aspects of meeting them.

Part 3. Modelling and Evaluation

179

3.8.11 Summary of Quality Evaluation

To summarize the quality evaluation methods selected for the methodology
framework, the most important findings related to the important quality
attributes of embedded systems are:

• Performance. Two performance evaluation methods were introduced.
The software performance evaluation method is based on LQN models
contrary to the application-platform performance evaluation method
that requires workload models and transaction-level capacity models.
Both methods are applicable within UML-MARTE models and have,
at least, partial tool support.

• Power/energy efficiency. One evaluation method was introduced. The
method requires a multiprocessor simulation platform and power
models as input. Tooling is still on the research prototype level.

• Reliability and availability. Three evaluation methods were introduced.
Methods require input sequence diagrams, state diagrams, usage
profiles and probabilities of state transitions/transactions. Two of the
methods are supported by appropriate tools.

• Safety. Two safety evaluation methods were introduced. The Hip-
HOPS method was recommended for assessing GENESYS platforms
and the NuSMV method for safety evaluation in model-driven
development. Use of Hip-HOPS requires adaptation between MARTE
and ATTEST-ADL2. NuSMV requires mapping between UML
MARTE and evaluation tools.

• Composability. Two approaches were proposed for the composability
evaluation; model-based and component-based evaluation. The model-
based approach is usable in top-down design. Conformance of existing
artefacts, i.e. components and services, against the GENESYS architectural
style and template is to be checked by using the component-based
evaluation method when the bottom-up approach is used.

• Evolvability. Three methods were proposed for evolvability evaluation.
All of these methods are scenario-based and partially qualitative,
although there are also quantitative measures. ADM measures the
adaptability degree of architecture and compares it to the adaptability

Part 3. Modelling and Evaluation

180

criteria. Extensibility evaluation shows how well the architecture is
supported by extension points for new features, services and components.
ALMA measures how easily a system can be improved and changed.
Cost-effectiveness can also be measured. A common shortcoming for
all of these methods is that they are laborious without tool support and
their application requires specific skills.

• Trade-offs. One method was introduced for trade-off analysis, ATAM,
although the above mentioned evolvability evaluation methods also
support trade-offs making, mostly adopted from ATAM. The strength
of ATAM is its applications to embedded systems in industrial
settings. The use of the method is fully dependent on the skills of the
method users and without any tool support.

181

Part 4. Conclusions and Future Work
4.1 Overview

Although a large amount of commercial and open source tools for modelling and
quality evaluation exists, an integrated development environment is required in
order to provide smooth transformation from one design phase to another and
keep the models in a consistent state. Therefore, a strong development effort
should be made for developing this kind of integrated development environment
for embedded systems engineering. In this section, such design environment is
outlined. Thereafter, the methodology framework is evaluated by comparing its
support to the principles defined in Part 1.

4.2 Integrated Development Environment

4.2.1 Extra Requirements

Besides the eighth principles of the methodology framework introduced in Part I
there are additional requirements that are implicit because they are invisible or
natural from the user point of view.

4.2.1.1 Support for Multiple Modelling Languages

All the requirements combined in the eighth principle rely on the support of
model language handling. Without this feature, code generation, model
transformation, and model-based hardware software integration cannot exist.
The environment should support the application of multiple (and most probably
domain-specific) modelling languages simultaneously.

Part 4. Conclusions and Future Work

182

Besides having multi-language modelling support, the inter-language links
should also be possible. The overall design artefact traceability is built on that
while defining inter-model references.

Current solutions like Eclipse Modeling Framework (EMF) [EMF 2008],
MetaData Repository (MDR) [MDR 2008] and Visual and Precise Metamodelling
(VPM) [Varró 2004] all support the definition of multiple modelling languages
and the manipulation of multiple model instances simultaneously.

4.2.1.2 Collaborative Development Support

Collaborative or team development has a long tradition in IT systems development,
and simultaneously with the growing complexity and size of systems under
design it has gained even more importance. The support for it should be an
integral part of the development environment. It should be noted that although
most of the current solutions offer such functionality for source code sharing and
versioning, the same should also be present for models and other design artefacts.

4.2.1.3 Open, Extensible Design Environment

Given the high diversity in the target application domain, the design environment
should be extensible in order to be customizable for new implementation targets,
new modelling aspects, and new analysis tools. The extension interfaces should
be public in order to allow tool vendors to contribute to the environment
resulting in a multi-vendor tool chain configuration assembled by the tool
components most suitable for the user (and for the actual development project).

4.2.2 Integrated Design Environment

This Section will introduce the proposed architecture for the integrated design
environment based on the requirements discussed earlier. The high level architecture
of the tool environment is illustrated by Figure 51.

Part 4. Conclusions and Future Work

183

Figure 51. High level architecture of the design framework.

The basis of the tool environment is the interface to the development infrastructure
server, that manages all the assets (models, source code, documents, etc.)
required during the development process. It should support team collaboration
and versioning for all kinds of artefacts. This storage layer also incorporates
traceability and navigation support by allowing the inter-artefact link creation
and traversal.

The tool orchestration layer supports the tool interactions on the client side. Its
main purpose is to organize the information flow between the tools and to offer a
tool automation environment for the automatic execution of point tools triggered
by the design workflow.

The generic workbench offers integration interfaces for the point tools and
implements a generic user interface (GUI) that gives access to the lower layers
of the framework (design artefact handling, queries, transformations, navigation
and design workflow).

Point tools (performing a specific step in the development process) can be
either integrated on the top of the core design environment or (in case of COTS
tools) can be interfaced with custom tool adapters. Point tools are invoked either
by the user or (in the case of automatic tools, like code generators, or some
analysis tools) by the tool orchestration layer.

The Design Artefact Store (DAS) supports the management of various
development artefacts like models, source code, documents, reports, and so on.
The structure of the DAS is illustrated by Figure 52.

Part 4. Conclusions and Future Work

184

The DAS is a server component that stores the design artefacts in a central
(versioning) repository. It also contains an artefact catalogue (project tree for all
development projects) and user rights management in order to support the access
control rule definition on the various design artefacts. The query engine (file and
model element level query support) supports the definition of custom
queries/views on the repository or on different models. The navigation and
traceability support module implements a uniform inter-element trace definition,
maintenance, and navigation framework that allows the tracing of concepts
throughout design steps. The model transformation module executes automatic
transformations on the various elements in order to synchronize various models
or to derive analysis models from engineering ones.

The communication and event layer serves as a interface for the developer
PCs (clients) that run the Integrated Development Environment. The client-
server architecture allows for a real-time team collaboration both in models and
textual documents and the immediate synchronization of models between
developers on model changes.

Figure 52. Architecture of the Design Artefact Store.

Part 4. Conclusions and Future Work

185

4.2.2.1 Versioning Artefact Storage

This component�s main responsibility is the storage of design artefacts. Besides
this, it also stores project-related meta data such as the workflow of the
development process, the current status of the tasks, and the list and rights of
project members (analysts, system designers, architects, developers, and so on).

In contrast with the current versioning systems solutions (like CVS,
Subversion, Microsoft Team Foundation Server, and Rational ClearCase) that
rely on file-based versioning and text level file comparison, the proposed
solution relies on a finer grained level in the case of models. Model changes are
handled at the model element level, and the changes are organized into user
transactions. After a transaction is executed, the model changes are directly
propagated to all clients and that results in a live synchronization. Model
versions are snapshots that reflect the state of the model at a given time point.
The various versions are comparable also on model element level. The files are
handled in the conventional way, using existing technologies.

The versioning system also includes the creation of branches that can be used
to evaluate alternative design options. After creating multiple branches, the
various options can be implemented and a comparative analysis can be
performed on them.

4.2.2.2 Artefact Catalogue and Access Rights Management

This module is responsible for the maintenance of a catalogue of the design
artefacts in the development project and the management of access rights on
these elements.

The catalogue contains basic information on the artefacts (name, creation date,
modification date, size, etc.), access control information, and meta information
about the artefact and the tools that handle it.

The user rights management relies on an internal or external (standards
compliant) user database, and is based on the RBAC (role-based access control)
paradigm. User rights on artefacts can be set at element, category, or folder (sub-
catalogue) level.

Part 4. Conclusions and Future Work

186

4.2.2.3 Query Services

The Query services module is responsible for the execution of queries on the
design artefacts. In a textual content, it serves as an advanced search engine,
while on structured content (models) it serves as model-element level query
engine.

Besides the user-directed query execution, model queries are the basis of all
code generation and model transformations. Given the possible high number of
modelling and analysis aspects, and the large size of models, an effective query
method should be used.

The queries can be executed either in batch or in live mode. Live queries
reflect on model changes and are mainly used to implement event-triggered
transformations or model synchronization.

Batch queries and transformations are supported by several solutions (like
ATL [ATL 2008] and VIATRA2 [VIATRA 2008]) but there is only a limited set
of existing tools for the live mode.

4.2.2.4 Navigation and Traceability

Traceability of requirement throughout the development process is a high priority
issue in most design domains. The navigation and traceability module is
responsible for the definition of trace links between artefacts (and sub elements,
like model elements or text fragments) and the management of links. Trace links
can be created by the user, or during the execution of automatic transformations.

4.2.2.5 Model Transformation Engine

This module relies on the services of the previous two in order to support the
execution of model transformations. However, there are several existing tools
and solutions for model-to-model and model-to-code transformations, like ATL,
VIATRA2, etc., and these should be developed in order to include live
transformation and model traceability. The central execution of transformations
can result in a reduced workload on the clients, as all transformations are only
executed once, and their results is propagated to the clients only when necessary.

Part 4. Conclusions and Future Work

187

4.2.2.6 Workflow Orchestration Layer

The tool orchestration layer is responsible for the execution of the development
process according to the custom, pre-defined process model (defined for instance
using SPEM). This includes the guidance of the user through the manual and
semi-automatic steps, and the execution of automatic steps (code generation,
analysis, unit tests, etc.). The status of the workflow is persisted on the server,
and is distributed among the clients

4.2.2.7 Client Communication and Event Dispatching

This module has two tasks. It handles the client-server communication and
central event processing.

The communication between the server and client should be platform-
independent and secure. As the communication channel is extensively used during
user-interactive editing, an optimized protocol offering high bandwidth and low
latency.

The event dispatcher collects artefact-related events and distributes them
between the clients. This is the basis of live synchronization. The clients can
immediately reflect the model changes by refreshing the current view, if affected
by the model changes.

4.2.3 Model Transformations

The GENESYS tool environment has to support several different model
transformations in order to provide all the functionalities described in the earlier
parts. In the following, a brief outline of the most important transformations will
be given.

Figure 53 illustrates the key transformation paths in the development
workflow. Only some important models and modelling languages are shown.
Dashed lines represent manual or semi-automatic transformations, continuous
lines represent automatic ones. Bi-directional arrows represent bi-directional (or
synchronization-like) transformations.

Part 4. Conclusions and Future Work

188

Figure 53. Overview of transformations in the development workflow.

4.2.3.1 From requirements to PIM and PM

This transformation is traditionally manual. The main reason of treating this
manual (and in most cases complex) process as a model transformation is that
the traceability of requirements to model artefacts should be maintained. The
role of the development environment in this case is the support of the definition
of trace links, and the analysis of the models (whether all requirements have
implementation in the PIM or PM).

4.2.3.2 PIM-related Transformations

Multiple PIM Representations

The main modelling notation of PIM uses UML MARTE. Although this
modelling language is expressive enough to capture the concepts of a platform-
independent model, several target domains have their own domain-specific
language for architecture design (like AutoSAR in the automotive domain). In
order to support these DSLs while keeping the standard internal MARTE model
representation, DSL to MARTE transformations are needed.

Part 4. Conclusions and Future Work

189

These model transformations should be live, bi-directional and incremental, in
order to be able to synchronize the models during editing. This way, the actual
PIM is always present in both notations. The DSL notation is used for editing,
while the MARTE model can be used for early V&V and model analysis.

Architecture and Behaviour Modelling

While MARTE (or a DSL) is used for platform-independent architecture modelling,
the modelling of the internal behaviour of atomic GENESYS components is not
covered by these methods. There are several languages and tools that are used
traditionally in the embedded systems field to model behaviour.
Matlab/Simulink, SCADE are such commercial tools, but new approaches like
BIP are also important in this development step.

The main goal of the behavioural model <-> PIM transformation is the
synchronization of component interfaces. While the internals of a component are
modelled using a behavioural modelling language, the inter-component
communication and architecture is modelled using MARTE. The consistency of
the two aspects is crucial for the success of component integration.

4.2.3.3 Import from Model Libraries / Repositories

Both PIM and PM components can be stored in repositories or libraries in order
to facilitate the reuse of components. The instantiation or import of these model
fragments is also an important model transformation in the tool environment.

Model fragment imports usually involve some kind of model merge
operations that leads to quite complex model manipulations that can efficiently
handled by high level transformation methods and tools.

4.2.3.4 System Allocation / Configuration / Refinement

This development step is known as PIM-PSM mapping in the traditional MDA
(Model-Driven Architecture) paradigm. The application model (PIM) is mapped
to the execution platform (PM) and all necessary configurations are generated in
order to produce the implementation-level platform specific model (PSM) of the
system.

While this step is treated as an atomic, automatic model transformation in the
traditional MDA approach, recent projects (like DECOS [DECOS 2008, Shariful
2006]) have shown that in the case of embedded systems, PIM-PSM mapping

Part 4. Conclusions and Future Work

190

should be an iterative, interactive process involving both automatic and manual
steps. This results in several model transformations, tightly coupled to the PIM-
PSM mapping tool.

The main advantage of the interactive approach is that while the automatic
transformations do the mechanical work resulting in a shorter development time,
key decisions can be taken by the developer.

It should be noted that this step cannot only include transformations and
manual model manipulation phases, but also mathematical optimization methods
in order to produce optimal scheduling for the communication buses, or for
component allocation. The interfacing of optimization tools is usually also done
by model transformations.

4.2.3.5 PSM to Analysis Transformations

As quality evaluation, verification, and validation are all important aspects in the
development process, there will be several different tools and methods used for
model analysis, evaluation and V&V.

The transformation between high level engineering models and the input
formalisms of mathematical tools is a traditional field of model transformations.
These transformations � as illustrated by Figure 54 � are quite complex. There
are several inputs that have to be collected and integrated in order to create the
analysis model.

Figure 54. Typical engineering to analysis transformation structure.

Part 4. Conclusions and Future Work

191

The main information source is the PSM model. (It should be noted, that PIM-
level analysis transformations are also common. In this case PIM is used instead
of PSM). The information is complemented by the behavioural model of the
application components (if the analysis tool performs detailed analysis), the
respective behavioural models of the PIM and PM components that are reused
from the libraries, and by the formal models of the platform services.

All these models are combined and translated to the input language of the
analysis tool. It should be noted, that although this scenario is quite complex, in
several cases there may be simplifications of it. There are methods that treat
components as black boxes, and focus only on their interactions (timeliness and
schedulability analysis, etc.). In such cases, some of the input models of the
picture can be neglected.

4.2.3.6 Source and Configuration Files Generation

Source and configuration file generation is the final stage that includes model
transformations (model-to-text). The goal is to generate all the necessary files
for building and deploying the application on the target system.

Model-to-text transformations are supported by most model transformation
frameworks and can easily be tailored to any concrete syntax needed by the
target environment.

4.2.4 Available Technologies for the Tool Development

There are several promising technologies already on the market (or still
emerging) that can be utilized in order to build the tool environment proposed in
the last Sections. However, while these technologies are not always mature
enough to have accumulated a significant amount of field experience, their
features cover most of the important services of the GENESYS development
infrastructure. Several open points and research items have also been identified
that should be addressed in order to get a full implementation of the
environment.

4.2.4.1 Available Technologies

The IBM Jazz platform [Jazz 2008] is a novel integrated collaboration enablement
technology. It is still under development, but it support nearly all the features

Part 4. Conclusions and Future Work

192

required for the Infrastructure Server of the GENESYS tool chain. It contains a
versioning artefact store (only at file level), collaboration utilities, requirements
management and a traceability framework as well as a customizable design
workflow. Its main drawback is the lack of central model management and
transformation support, and the lack of tool automation support. As it has an
open, extensible architecture, these missing functions can be added by integrating
other tools to it.

Eclipse EMF CDO [CDO 2008] is a distributed implementation of the
industry standard Eclipse Modeling Framework (EMF). It features a central
model repository stored in a standard relational database that can be reached by
multiple clients simultaneously. Although some important features are still
missing (e.g. model versioning) it can be a solid foundation for the model
artefact store. Given its open architecture, the integration of versioning and
query/transformation support should be feasible.

One of the key technologies is the selection of an appropriate model
transformation technique. The complexity and diversity of transformations during
the development process necessitates the selection of a powerful tool. There are
several proposals, like VIATRA2 [VIATRA 2008] and ATL [ATL 2008] from
the Eclipse project, but none of them has all the required features (live and batch
transformations, EMF integration, incremental pattern matching, etc.).

In the case of client side technologies, the selection is straightforward. The
Eclipse Framework is the most widespread tool integration framework
nowadays, and its importance is still growing. It contains several components
that can be easily reused by the tool environment.

4.2.4.2 Research and Development Items

An important research item is the extension of the traceability support currently
available. Although there are several solutions for that, up to now there has been
no uniform, extensible solution. Traceability is a complex problem involving all
tools, transformations, and model/file management components of the tool
environment; therefore a global solution should be proposed.

The integration of distributed model storage and model transformation support
also needs further investigation. There are currently several promising
technologies in both areas, but no integrated solution exists. The support for
integrated, automated model-to-model and model-to-text transformations is a
key to the success of the model-driven development approach.

Part 4. Conclusions and Future Work

193

The enablement of model / model element level versioning and concurrent
model manipulation is also a key technology in team collaboration-based
development. Industrial practice shows that the current edit and merge
techniques are inappropriate in most cases. There are dedicated tools that use the
concept of distributed model editing and enable concurrent modifications, but no
general solution is present.

As a summary, we can state that most of the important technologies are
present currently, but there are several missing elements that should be created
in order to achieve a complete model-driven tool chain that will be capable of
handling real size development projects.

4.3 Evaluating Methodology Framework

The definition of the methodology framework is based on eight principles which
were derived from the requirements identified and defined by the authors with
the help of industrial partners involved in the GENESYS project. To summarize,
we justify the completeness of the methodology framework by illustrating how
these principles are supported by the methodology framework.

Principle 1: Embedded systems engineering process

The methodology framework provides the following support for the whole life-
cycle of embedded systems engineering:

• A process model with appropriate modelling and evaluation methods
that support modelling and early verification and validation from
requirements specification to validated system architecture models (top-
down approach).

• Each modelling and evaluation phase is supported by a set of tools
which can be integrated by means of the platform of the integrated tool
environment.

• Adoption of the UML-MARTE modelling language is supported by
guidelines and a numerous set of examples.

• A process model defines how the existing services and components
from the application service repository and the platform module library
could be used (bottom-up approach) in application and platform
architecture design.

Part 4. Conclusions and Future Work

194

It should be noted that the methodology framework allows for exploration,
refinement and iteration. For example, the approach can be applied with more
abstract (and less detailed) models for feasibility assessment at an early stage of
development. Later on the drawn conclusions can be validated with more mature
(and more detailed) models until finally signed off for realisation.

In summary, the ES engineering process is fully supported.

Principle 2: Model driven architecture development

The model driven architecture design is supported as follows:

• The process model follows the Y-chart model by separating application
and platform architecture design at the abstract (logical/PIM) level.
The PSM model is achieved by allocating application models to
platform models and transforming and configuring the combined models
for a specific system model. These three architecture design phases
(application, platform and system/product) are separate and provide
models at different abstraction levels.

• A set of identified model transformations (horizontal and vertical) have
been defined as part of the integrated development environment.

The top-down vertical transformation is supported by the selection of a language
suite, i.e. UML2, SysML and MARTE. Horizontal transformation, i.e. models to
models transformations are needed for quality evaluation. That is supported by
tools that use UML models as input. Hybrid transformation is supported only in
one case, where model-based reliability testing is integrated with reliability
prediction. As summary, all transformations, i.e. vertical, horizontal and hybrid
need improvements and further research activities.

Principle 3: Model representation

The model representation is supported by defining:

• the views required in each modelling phase,

• a primary modelling language and possible extensions needed in different
phases of the modelling process,

• how applications are to be mapped to the platform model, and

• schedulability analysis techniques and tools for checking architectural
models before the quality evaluation phase.

Part 4. Conclusions and Future Work

195

Although the model representation is covered to a large extent, we anticipate that
representation of quality properties and model consistency checking still need further
studies, at least in applying MARTE in real industrial cases and making existing
tools smoothly applicable in different instances of the methodology framework.

Principle 4: Modelling semantics

Semantics modelling is covered only to the extent it is supported by the UML2
modelling language, e.g. semantics of exchanged data and interface types.
However, in order to fully exploit semantics modelling, much more should be
defined; For example, service semantics as part of the platform module library
and application service repository; �standardization� of linking interfaces and
technology-independent interfaces by means of interface ontologies; and
defining rules for instantiation and run-time usage of platform services and
developing (semi)automatic tool support for design time and mechanisms for
run-time management. Thus, modelling the semantics of embedded systems
services will be one of the key research items of future ARTEMIS projects.

Principle 5: Formal methods

The use of formal methods for modelling platform services is partially supported.
The use of the BIP framework is possible only if the model transformation
support is available. Currently, that is not the case. The use of existing model
checking tools will be possible thorough the integrated development environment
but further studies are needed on the development of appropriate adapters for
commercial, proprietary and/or open source tools. Two topics which are not
covered by the GENESYS framework are:

• Tools and guidance for interactive proving of modular systems, and
• A method and tool for verification of causal and temporal behaviour.

The first one is a topic of further research projects, especially in the Artemis
context. The last one is to be covered to some extent in the next research phase.

Principle 6: Evaluation of quality and non-functional properties

The methods, techniques and tools introduced in this report cover almost all the
quality and non-functional properties that were identified and defined to be of
high importance in embedded systems engineering in the requirements
specification of the methodology framework as well as ARTEMIS SRA. The

Part 4. Conclusions and Future Work

196

only exception is information security. The reason for not covering information
security by the methodology framework is that simultaneous work in the
ITEA/Eureka project �-Confidential; a survey on existing security methodologies
was already made in spring 2008, and furthermore, a novel security assurance
methodology was under development. According to the project�s work plan, the
security methodology shall be ready for use in December 2008. Thus, the final
methodology framework will refer to that security methodology and recommend
using it as such for embedded systems engineering.

Principle 7: Support for Early V & V

According to this principle, the methodology framework should facilitate early
validation and verification by supporting HW and SW partitioning, simulation
and (virtual) prototyping, and heterogeneous simulations including models and
code. This principle is covered by the integrated development environment to
the following extent:

1. Model transformations in the development workflow have been
identified and shortly specified in Part IV.

2. Live, bi-directional and incremental model transformations between
DSMLs and MARTE are considered as a solution for integrating domain
specific design with a standard-based model based early V &V.

Principle 8: Interactive development and integration environment

The support for integrated, automated model-to-model and model-to-text
transformations is a key to the success of the model-driven development
approach. Therefore, an initial specification of an interactive development and
integration environment has been defined. However, further research and
experimental studies are required in order to make it possible to orchestrate
model-based embedded systems engineering based on diverse models, methods
and tools and provide forward and backward traceability for the whole design
flow. There are two research items in particular that need further investigation:
a) integration of distributed model storage and model transformation support and
b) creation of a uniform and extensible solution for tracing artefacts throughout
the life cycle of embedded systems.

Part 4. Conclusions and Future Work

197

4.4 Lessons Learned

The work for this report was done over a period of nine months, three of which
were spent for eliciting and defining requirements for the methodology
framework specification work. The authors of this report represent different
dimensions that all are specific for embedded systems engineering; hardware vs.
software, system engineering vs. software engineering, process vs. architecture,
critical systems vs. non-critical systems, etc. Thus, working with this subject
required patience from all of us; we had to learn to understand each other, to
understand the needs of different application domains, to close the gap in
understanding the researchers and engineers who were experts on time-triggered
safety critical systems or (mobile) networked systems. As a conclusion, the main
difficulty was the definition of a common terminology; it is still evolving while
writing this report and it is obvious that there are different interpretations of the
terms defined and used.

Although the diversity of our skills has brought challenges in achieving the
consensus, it has also been our enrichment. We have had an opportunity to
observe embedded systems engineering through the eyes of our colleagues and
learn things that are not possible in homogeneous development teams. This will
increase these researchers� and engineers� openness to the new things and
challenges that will be studied in future ARTEMIS projects in similar kinds of
heterogeneous, multi-disciplinary development teams.

The field of embedded systems is broad, its technologies and applications are
diverse, and a multitude of design paradigms, languages, methods and tool
approaches exist. The authors have also participated in other work activities of
the GENESYS project [GENESYS 2008] in order to define the scope of the
methodology work and focus on the most important support needs of the cross-
domain architecture style and reference architecture template that GENESYS is
aiming at. Progressing in parallel, the architecture and methodology related
works have, on one hand, had an opportunity to interact proactively. On the
other hand, this has caused uncertainties as many issues and options had to be
kept open until the last minute.

The cornerstones of the methodology framework are the Y-chart and model-
based approach, supporting modelling methods and languages, and a rich set of
quality/non-functional property modelling and evaluation methods. The authors
think that almost all of the necessary building blocks exist for instantiating
whole development processes and environments. However, major advances are

Part 4. Conclusions and Future Work

198

needed to achieve industrial-strength solutions, e.g., interoperability of methods,
models and tools should be improved to allow smooth and efficient work, the
industrial robustness of many methods and tools should be increased, and the
whole methodology framework should be validated by applying it in industry-
scale development activities.

199

References
[Abdelwahed
2006]

Abdelwahed, S. Notions of Diagnosability for Timed Failure
Propagation Graphs. IEEE. 18�21 Sept. 2006. Pp. 643�648.

[Amnell 2003] Amnell, T., Fersman, E., Mokrushin, L., Petterson, P., Yi, W.
TIMES: a tool for schedulability analysis and code generation
of real-time systems. Proceedings of the 1st International
workshop on Formal modelling and analysis of timed systems.
FORMATS 2003, Marseille, France, Sep. 6�7, 2003.

[Andrews 2002] Andrews, P. B. An Introduction to Mathematical Logic and
Type Theory: To Truth Through Proof. 2nd ed. Kluwer
Academic Publishers, available from Springer, 2002.

[ATESST 2007] Advancing Traffic Efficiency and Safety through Software
Technology. Deliverable D2.2.1. Elicitation of representative
and relevant analysis and V&V techniques. 2007.

[ATL 2008] Atlas Transformation Language.
http://www.eclipse.org/m2m/atl. (2008).

[Baier 2008] Baier, C, Katoen, J.-P. Principles of Model Checking. The
MIT Press. 2008.

[Barták 2001] Barták, R. Theory and practice of constraint propagation. In:
Proceedings of the 3rd Workshop on Constraint Programming
for Decision and Control (CPDC2001), Wydavnictvo Pracovni
Komputerowej, 2001. Pp. 7�14.

[Bass 2006] Bass, L., Nord, R., Wood, W., Zubrow, D. Risk Themes
Discovered Through Architecture Evaluations. CMU/SEI-2006-
TR-012, 2006. 42 p.

References

200

[Bengtsson
2004]

Bengtsson, P.-O., Lassing, N., Bosch, J., van Vliet, H.
Architecture-level modifiability analysis (ALMA). Journal of
Systems and Software, 69, 2004, pp. 129�147.

[Bozzano
2003]

Bozzano, M., Villafiorita, A. Improving System Reliability via
Model Checking: The FSAP/NUSMV−SA Safety Analysis
Platform. Lecture Notes in Computer Science, Computer
Safety, Reliability, and Security, Vol. 2788/2003. Springer
Berlin/Heidelberg 2003. ISSN 0302-9743. ISBN 978-3-540-
20126-7.

[Canal 2008] Canal, C., Poizat P., Salaün, G. Model-based adaptation of
behavioural mismatching components. IEEE trans. Software
Engineering, 34(4), July�August 2008, pp. 546�563.

[CDO 2008] Eclipse EMF CDO Project Home Page
http://www.eclipse.org/modeling/emf/?project=cdo#cdo.
(2008).

[Cimatti 1999] Cimatti A. NuSMV: a new symbolic model verifier. Proceeding
of International Conference on Computer-Aided Verification
(CAV�99). In: Lecture Notes in Computer Science, number
1633, Trento, Italy, July 1999. Springer. Pp. 495�499.

[Costagliola
2005]

Costagliola, G., Ferrucci, F., Tortora, G., Vitiello, G. Class
Point: An Approach for the Size Estimation of Object-Oriented
Systems, IEEE Trans. Software Eng., Vol. 31, No. 1, 2005,
pp. 52�74.

[D�Ambrogio
2005]

D�Ambrogio, A. 2005. A Model Transformation Framework for
the Automated Building of Performance Models from UML
Models. Fifth International Workshop on Software and
Performance. July 11�15, 2005. Universitat de les Illes Balears.
Palma de Mallorca, Spain. Pp. 75�86.

[Davis 2002] Davis, L., Gamble, R. F., Payton, J. The impact of component
architectures on interoperability. The Journal of Systems and
Software 61, 2002, pp. 31�45.

[DECOS 2008] Dependable Embedded Components and Systems. An EU
FP6 IP. http://www.decos.at/, Dec. 2008.

References

201

[Douglas 2002] Douglas, B. P. Real-Time Design Patterns: Robust Scalable
Architecture for Real-Time Systems. Addison-Wesley, 2002.
ISBN 0-201-69956-7.

[EMF 2008] Eclipse Modelling Framework. http://www.eclipse.org/emf, Dec.
2008.

[EMMA 2005] European Airport Movement Management by A-SMGCS
(EMMA), D681 Recommendations Report, Version 1.0.
J. Jakobi (DLR), et al., Braunschweig, 2006.

[Eqyed 1999] Egyed, A., Gacek, C. Automatically Detecting Mismatches
during Component-Based and Model-Based Development.
14th IEEE International Conference on Automated Software
Engineering, Florida, USA, 1999.

[ESACS 2004] ESACS project. Enhanced Safety Assessment for Complex
Systems. http://www.cert.fr/esacs, Dec. 2008.

[ES 2008] Embedded systems. http://en.wikipedia.org/wiki/Embedded_
system#Examples_of_embedded_systems, Dec. 2008.

[Evesti 2008] Evesti, A., Niemelä, E., Henttonen, K., Palviainen, M. A tool
chain for quality-driven software architecting. Demonstration in
SPLC�08, Limerick, Ireland, 2008.

[FAA 2008] System Safety Handbook. Federal Aviation Administration,
May 2008. http://www.faa.gov/, Dec. 2008.

[Falkenhainer
1990]

Falkenhainer, B., Forbus, K. D., Gentner, D. The structure-mapping
engine: Algorithm and examples. Artificial Intelligence 41,
1989/90, pp. 1�63.

[Feier 2005] Feier, C., Roman, D., Polleres, A., Domingue, J., Stollberg, M.,
Fensel, D. Towards Intelligent Web Services: Web Service
Modelling Ontology (WSMO). In: Proc. of the Int�al Conf. on
Intelligent Computing (ICIC) 2005, Hefei, China, August 23�26,
2005.

[Fensel 2007] Fensel, D., Lausen, H., Polleres, A., Bruijn, J. D., Stollberg, M.,
Roman, D., Domingue, J. Enabling Semantic Web Services.
The Web Service Modelling Ontology. 2007, XIV, 41 illus. 188 p.
ISBN 978-3-540-34519-0.

References

202

[FIDES 2004] FIDES Guide 2004, Issue A, Reliability Methodology for
Electronic Systems, Sept. 2004.

[Fuqua 2005] Fuqua, N. B. Electronic reliability prediction. START, Vol. 4,
No. 2. 5 p.

[Gabbay 1994] Gavvay, D. M. Temporal Logic: Mathematical Foundations and
Computational Aspects. Oxford University Press. USA, 1994.

[GENESYS
2008]

GENeric Embedded SYStem Platform. http://www.genesys-
platform.eu/ (2008).

[Gokhale
2005]

Gokhale, S. S., Lyu, M. R.-T. A simulation approach to
structure-based software reliability analysis. IEEE Trans. on
Software Engineering, Vol. 31, No. 8, 2005, pp. 643�656.

[Goseva-
Popstojanova
2001]

Goseva-Popstojanova, K., Trivedi, K. S. Architecture-Based
Approach to Reliability Assessment of Software Systems.
Performance Evaluation, 45(2�3) 2001, pp. 179�204.

[Hasselbring
2006]

Hasselbring, W., Reussner, R. Troward Trustworthy Software
Systems. Computer, April 2006, Vol. 39, No 4, pp. 91�91.

[Henttonen 2007] Henttonen, K., Matinlassi, M., Niemelä, E., Kanstren, T.
Integrability and Extensibility Evaluation from Software
Architecture Models � A Case Study. Open Software
Engineering, Vol. 1, No. 1, 2007, pp. 1�20.

[Holzmann
2003]

Horzmann, G. The SPIN Model Checker: Primer and
Reference Manual. Lucent Technologies, 2003.

[IEC IEV
2008]

IEC IEV 191-02-03. http://std.iec.ch/iev/iev.nsf/display?open
form&ievref=191-02-03, Dec. 2008.

[IEC-61508]

[IEEE 610.12-
1990]

IEC-61508. Functional Safety of Electrical/Electronic/
Programmable Electronic Safety-Related Systems, 2000.

Glossary of Software Engineering Terminology. Institute of
Electrical and Electronics Engineers, 01-May-1990. 84 p.
ISBN 155937067X.

[IFIP WG 10.4
2008]

http://www.dependability.org/wg10.4/, Dec. 2008.

References

203

[Immonen 2006] Immonen, A. 2006. A method for predicting reliability and
availability at the architectural level. In: Software Product-
Lines � Research Issues in Engineering and Management.
Käkölä, T., Dueñas, J. C. (eds.). Pp. 373�422.

[Immonen 2007] Immonen, A., Palviainen, M. Trustworthiness Evaluation and
Testing of Open Source Components. In: 7th International
Conference on Quality Software QSIC 2007. Portland,
Oregon, 11�12 Oct. 2007. Proc. of 7th International Conference
on Quality Software QSIC �07, 2007. Pp. 316�321.

[Immonen 2008] Immonen, A., Evesti, A. Validation of the Reliability Analysis
Method and Tool. In: 5th Software Product Lines Testing
Workshop (SPLiT 2008), SPLC 2008 Proceedings of the 12th
International Software Product Line Conference, 2nd Volume,
Limerick, Ireland, 2008. Pp. 163�169.

[Isograph 2008] http://www.isograph.com/workbench.htm, Dec. 2008.

[Jain 1991] Jain, R. 1991. The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design, Measurement,
Simulation and Modelling. John Wiley & Sons, Inc., 1991. 685 p.

[Jazz 2008] IBM Jazz Platform Information Portal, https://jazz.net/pub/
index.jsp, Dec. 2008.

[Joshi 2005] Joshi, A. Model-Based Safety Analysis Final Report. Internal
report. University of Minnesota, 2005.

[Kangas 2006] Kangas, T., Kukkala, P., Orsila, H., Salminen, E.,
Hännikäinen, M., Hämäläinen, T. D., Riihimäki, J., Kuusilinna, K.
UML-based Multi-Processor SoC Design Framework.
Transactions on Embedded Computing Systems, Vol. 5, No.
2, ACM, 2006, pp. 281�320.

[Kelly 1999] Kelly, T. P. A Systematic Approach to Safety Case Management.
DPhil Thesis, Univ. of York, 1999.

[Kelly 2003] Kelly, T. P. Managing Complex Safety Cases. 11th Safety
Critical Systems Symposium (SSS�03), February 2003.

[Keshav 1998] Keshav, R., Gamble, R. Towards a Taxonomy of Architecture
Integration Strategies. In: 3rd International Software Architecture
Workshop. Florida, Orlando, 1998.

References

204

[Kletz 1992] Kletz, T. HAZOP and HAZAN: Identifying and assessing
process industry standards. 3rd ed. Washington, DC:
Hemisphere, 1992. ISBN 1-56032-276-4.

[Kreku 2008] Kreku, J., Hoppari, M., Kestilä, T., Qu, Y., Soininen, J.-P.,
Andersson, P., Tiensyrjä, K. Combining UML2 Application
and SystemC Platform Modelling for Performance Evaluation of
Real-Time Embedded Systems. EURASIP Journal on
Embedded Systems, Vol. 2008, Article ID 712329. 18 p.
doi:10.1155/2008/712329.

[Leveson 2000] Leveson, N. G. Intent Specifications: An Approach to Building
Human-Centered Specifications. IEEE Transaction on SW
Engineering, Vol. 26 (1), 2000.

[Leveson 1991] Leveson, N. G. Software safety in embedded computer
systems. Communications of the ACM, Vol. 34, Issue 2,
February 1991.

[Leveson 1995] Leveson, N. G. Safeware: System safety and computers.
Addison-Wesley Publishing Company, 1995.

[Lieverse 2000] Lieverse, N. G. Intent Specifications: An Approach to Building
Human-Centerered Specifications. IEEE Trans. On SW
Engineering, Vol. 26 (1), 2000.

[Liu 1973] Liu, C. L., Layland, J. W. Scheduling algorithms for multi-
programming in a hard real-time environment. Journal of the
ACM, 20, 1973, pp. 46�61.

[Loghi 2004] Loghi, M., Poncino, M., Benini, L. 2004. Cycle-Accurate
Power Analysis for Multiprocessor Systems-on-a-Chip.
GLSVLSI�04, April 26�28, 2004, Boston, Massachusetts,
USA. Pp. 401�406.

[MAST 2008] Modelling and Analysis Suite for real-Time applications.
htpp://mast.unican.es/, Dec. 2008.

[MDR 2008] MetaData Repository http://mdr.netbeans.org/, Dec. 2008.

[Medina 2005] Medina, J. Metodología y Herramientas UML para el Medelado
y Analisis de Sistemas de Tiempo Real Orientados a Objetos.
PhD Thesis, 2005.

References

205

[Mili 2000] Mili, R., Desharnais, J., Frappier, M., Mili, A. Semantic distance
between specifications. Theoretical Computer Science 247,
2000, pp. 257�276.

[Nicholson 2000] Nicholson, M., Conmy, P. et al. Generating and maintaining a
Safety Argument for Integrated Modular Systems. 5th
Australian Workshop on Safety Critical Systems and
Software. Australia, 2000.

[Niemelä 2007] Niemelä, E., Immonen, A. 2007. Capturing quality requirements
of product family architecture. Information and Software
Technology. 49 (11�12), 2007, pp. 1107�1120.

[Niemelä 2008] Niemelä, E., Evesti, A., Savolainen, P. Modelling Quality
Attribute Variability. Third International Conference on Evaluation
of Novel Approaches of Software Engineering, ENASE 2008,
Funchal, Madeira, Portugal, May 4�7, 2008. Pp. 169�176.

[Obermaisser
2005]

Obermaisser, R. Event-Triggered and Time-Triggered Control
Paradigms � An Integrated Architecture. Springer-Verlag,
Hardcover, Real-Time Systems Series, Vol. 22, 2005. ISBN
0387230432. 170 p.

[Ocarina 2008] An AADL model processing suite. http://ocarina.enst.fr/, Dec.
2008.

[OMG 2008] OMG. MARTE (Modeling and Analysis of Real-time and
Embedded systems). http://www.omgmarte.org/, Dec. 2008.

[OWL 2008] OWL-S. http://www.ai.sri.com/daml/services/owl-s/1.2/, Dec. 2008.

[Palviainen 2008] Palviainen, M., Evesti, A., Niemelä, E. Integrated Approach
for Reliability Evaluation and the Testing of Open Source based
Software Systems. Submitted to Software: Practice and
Experience. 28 p.

[Papadopoulos
1999]

Papadopoulos, Y., McDermid. J. A. Hierarchically Performed
Hazard Origin and Propagation Studies. SAFECOMP 1999.
Pp. 139�152.

[Pataricza 2006] Pataricza, A. Model-based dependability analysis. DSc Thesis,
Hungarian Academy of Sciences, 2006.

References

206

[Paul 2005] Paul, J. M., Thomas, D. E., Cassidy, A. S. High-Level Modelling
and Simulation of Single-Chip Programmable Heterogeneous
Multiprocessors. ACM Transactions on Design Automation of
Electronic Systems, Vol. 10, No. 3, 2005, pp. 431�461.

[Petriu 2008] Petriu, D. B. 2008. Performance Analysis with MARTE and
PUMA. Available at: http://www.omg.org/docs/omg/08-06-
35.pdf, Dec. 2008.

[Pimentel 2006] Pimentel, A., Erbas, C. A Systematic Approach to Exploring
Embedded System Architectures at Multiple Abstraction Levels.
IEEE Transactions on Computers, Vol. 55, No. 2, Feb. 2006,
pp. 99�112.

[PRISM 1999] PRIMS, �System Reliability Assessment Software Tool�.
Reliability Analysis Center (RAC), 1999.

[Purhonen 2004] Purhonen, A. Performance optimization of embedded software
architecture � a case study. 4th Working IEEE/IFIP Conference
on Software Architecture, WICSA 2004, 12�15 June 2004
Oslo, Norway. IEEE Computer Society (2004). Pp. 112�121.

[ReliaSoft 2008] http://www.reliasoft.com/predict/features.htm, Dec. 2008.

[Reussner 2003] Reussner, R. H., Schmidt, H. W., Poernomo, I. H. Reliability
prediction for component-based software architectures. The
Journal of Systems and Software, 66(2003), pp. 241�252.

[Rodriques
2005a]

Rodrigues, G. N., Rosenblum, D. S., Uchitel, S. 2005. Reliability
Prediction in Model-Driven Development. MoDELS 2005,
Briand, L., Williams, C. (Eds.), LNCS 3713. Pp. 339�353.

[Rodriques
2005b]

Rodrigues, G. N., Rosenblum, D., Uchitel, S. Sensitivity
Analysis for a Scenario-Based Reliability Prediction Model.
ICSE 2005 Workshop on architecting Dependable Systems,
2005. Pp. 73�77.

[Rushby 1993] Rushby, J. Formal Methods and Digital Systems Validation
for Airborne Systems, SRI-CSL-93-07, 1993.

[Sha 1990] Sha, L., Rajkumar, R., Lehoczky, J. P. Priority inheritance
protocols: An approach to real-time synchronization. IEEE Trans.
on Computers, 1990.

References

207

[Shariful 2006] Islam, M. S., Csertán, G., Balogh, A., Herzner, W.,
LeSergent, T., Pataricza, A., Suri, N. SW-HW Integration
Process for the Generation of Platform Specific Models. In:
Publications of the Austrian Electrotechnical Association:
Proc. of the Informationstagung Mikroelektronik ME 2006.
Vienna, Austria 2006. Pp. 194�203.

[Simunic 2001] Simunic, T., Benini, L., De Micheli, G. Energy-Efficient Design
of Battery-Powered Embedded Systems. IEEE TVLSI, Vol. 9,
No. 1, February 2001, pp. 15�28.

[Singhoff 2004] Singhoff, F., Legrand, J., Nana, L., Marcé, L. Cheddar: A
flexible real-time scheduling framework. ACM SIGAda Ada
Letters, Vol. 24, No. 4, 2004, pp. 1�8.

[Tarvainen 2008] Tarvainen, P. 2008. Adaptability Evaluation at Software
Architecture Level. The Open Software Engineering Journal, Vol.
2, No. 1, 2008, pp. 1�30. doi:10.2174/1874107X00802010001.

[Tindell 1994a] Tindell, K., Clark, J. Holistic schedulability analysis for
distributed hard real-time systems. Microprocessing &
Microprogramming, Vol. 50, No. 2�3, 1994, pp. 117�134.

[Tindell 1994b] Tindell, K. Adding time-offsets to schedulability analysis.
Technical Report YCS 221, Dept. of computer science,
University of York, England, 1994.

[Tsang 1993] Tsang, E. Foundations of constraint satisfaction. Academic
Press. 1993.

[Tsantalis 2006] Tsantali, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S.
Design pattern detection using similarity scoring. IEEE Trans.
Software Engineering, 32(11), Nov. 2006, pp. 896�909.

[Varró 2004] Varró, D. Automated Model Transformations for the Analysis of IT
Systems. PhD thesis. Budapest University of Technology and
Economics, 2004.

[Venkatachalam
2005]

Venkatachalam, V., Franz, M. Power reduction techniques for
microprocessor systems. ACM Computing Surveys (CSUR),
Vol. 37, Issue 3 (September 2005), pp. 195�237.

[VIATRA 2008]

VIATRA2 Model Transformation Framework, http://www.
eclipse.org/gmt, Dec. 2008.

References

208

[Wild 2006] Wild, T., Herkersdorf A., Lee, G.-Y. TAPES � Trace-based
architecture performance evaluation with SystemC. Design
Automation for Embedded Systems, Vol. 10, Numbers 2�3,
Special Issue on SystemC-based System Modelling,
Verification and Synthesis, 2006. Pp. 157�179.

[Woodside
2005]

Woodside, M., Petriu, D. C., Petriu D. B., Shen, H., Israr, T.,
Merseguer, J. 2005. Performance by Unified Model Analysis
(PUMA). Fifth International Workshop on Software and
Performance. July 11�15, 2005. Universitat de les Illes Balears.
Palma de Mallorca, Spain. Pp. 1�12.

 Series title, number and
report code of publication

VTT Publications 705
VTT-PUBS-705

Author(s)
Eila Ovaska, András Balogh, Sergio Campos, Adrian Noguero, András Pataricza,
Kari Tiensyrjä & Josetxo Vicedo
Title

Model and Quality Driven Embedded Systems
Engineering

Abstract
The world of embedded systems is broad and diverse, addressing a wide variety of
application domains. Although technologically, the situation for embedded systems is still
quite fragmented, platform-based engineering, reference designs and maturing system
domains have effected great changes. However, the features of modern embedded
systems are changing at such a rate that it is increasingly difficult for companies to bring
new products to the market within acceptable time scales and still guarantee acceptable
levels of operational quality. This report aims for its part to increase the convergence of
views with regard to embedded systems technologies and engineering methods.

The objective of this report is to introduce the methodology framework for model and
quality driven embedded systems engineering. The framework is composed of three key
artefacts, which provide the basis for building specific methodology instances. While
instantiating this methodology framework, it has to be adapted to the needs and
constraints of that specific application domain and development organisation.

The first key artefact of the methodology framework is the process model, the Y-chart
model. The second key artefact is the Unified Modelling Language (UML) adapted to
embedded systems engineering with a specific profile. The third key artefact consists of a
set of evaluation methods that have been selected for use in embedded system
engineering. Within the conclusions, an initial integrated development environment is
introduced for embedded systems engineering.
The methods selected for the methodology framework have been validated in different
application domains of embedded or/and software systems engineering areas.

ISBN
978-951-38-7336-3 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number

VTT Publications
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

18985

Date Language Pages
February 2009 English 208 p.

Name of project Commissioned by
Genesys EU

Keywords Publisher
methodology, modelling, evaluation, quality,
embedded systems engineering

VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4520
Fax +358 20 722 4374

Modeling Process

Application
requirements

System
requirements
Specification
(1)

Platform
requirements

Reference
architecture
template

Platform
module
library

Platform
architecture
design (3)

Cross-domain
architecture
style

Application
architecture
design (2)

Application
service

repository

System allocation/
configuration/
refinement (4)

Quality
evaluation
(5)

Realization
(HW/SW)
(6)

Evaluation
criteria

Validated system
Architecture

models

 VTT PUBLICATIONS 705
VTT CREATES BUSINESS FROM TECHNOLOGY
 Technology and market foresight • Strategic research • Product and service development • IPR and licensing
• Assessments, testing, inspection, certifi cation • Technology and innovation management • Technology partnership

• • • VTT PU
B

LIC
A

TIO
N

S 705 M
O

D
EL A

N
D

 Q
U

A
LITY D

R
IVEN

 EM
B

ED
D

ED
 SYSTEM

S EN
G

IN
EER

IN
G

ISBN 978-951-38-7336-3 (URL: http://www.vtt.fi /publications/index.jsp)
ISSN 1455-0849 (URL: http://www.vtt.fi /publications/index.jsp)

Eila Ovaska, András Balogh, Sergio Campos, Adrian Noguero,
András Pataricza, Kari Tiensyrjä & Josetxo Vicedo

Model and Quality Driven Embedded
Systems Engineering

VTT PUBLICATIONS

692 Kimmo Keränen. Photonic module integration based on silicon, ceramic
and plastic technologies. 2008. 101 p. + app. 70 p.

693 Emilia Selinheimo. Tyrosinase and laccase as novel crosslinking tools for
food biopolymers. 2008. 114 p. + app. 62 p.

694 Olli-Pekka Puolitaival. Adapting model-based testing to agile context.
2008. 69 p. + app. 6 p.

695 Minna Pikkarainen. Towards a Framework for Improving Software
Development Process Mediated with CMMI Goals and Agile Practices.
2008. 119 p. + app. 193 p.

696 Suvi T. Häkkinen. A functional genomics approach to the study of alkaloid
biosynthesis and metabolism in Nicotiana tabacum and Hyoscyamus
muticus cell cultures. 2008. 90 p. + app. 49 p.

697 Riitta Partanen. Mobility and oxidative stability in plasticised food
matrices. The role of water. 2008. 92 p. + app. 43 p.

698 Mikko Karppinen. High bit-rate optical interconnects on printed wiring
board. Micro-optics and hybrid integration. 2008. 162 p.

699 Frej Wasastjerna. Using MCNP for fusion neutronics. 2008. 68 p. + app.
136 p.

700 Teemu Reiman, Elina Pietikäinen & Pia Oedewald. Turvallisuuskulttuuri.
Teoria ja arviointi. 2008. 106 s.

701 Pekka Pursula. Analysis and Design of UHF and Millimetre Wave Radio
Frequency Identifi cation. 2008. 82 p. + app. 51 p.

702 Leena Korkiala-Tanttu. Calculation method for permanent deformation
of unbound pavement materials. 2008. 92 p. + app. 84 p.

703 Lauri Kurki & Ralf Marbach. Radiative transfer studies and Next-
Generation NIR probe prototype. 2009. 43 p.

704 Anne Heikkilä. Multipoint-NIR-measurements in pharmaceutical powder
applications. 2008. 60 p.

705 Eila Ovaska, András Balogh, Sergio Campos, Adrian Noguero, András
Pataricza, Kari Tiensyrjä & Josetxo Vicedo. Model and Quality Driven
Embedded Systems Engineering. 2009. 208 p.

	Abstract
	Foreword
	Contents
	Key Abbreviations
	Part 1. Introduction
	1.1 Overview
	1.2 Definitions
	1.2.1 Methodology Framework
	1.2.2 Domain
	1.2.3 The Cross-domain Style and Template
	1.2.4 Embedded System
	1.2.5 Service Description
	1.2.6 Service Modelling
	1.2.7 Ontology
	1.2.8 Dependability
	1.2.8.1 Safety
	1.2.8.2 Reliability
	1.2.8.3 Availability
	1.2.8.4 Security

	1.2.9 Scalability
	1.2.10 Performance
	1.2.11 Evolvability
	1.2.12 Quality of Service (QoS)

	1.3 Principles of the Methodology Framework
	1.3.1 Embedded Systems Engineering Process
	1.3.2 Model Driven Development
	1.3.3 Model Representation
	1.3.4 Modelling Semantics
	1.3.5 Formal Methods
	1.3.6 Quality and Non-Functional Properties
	1.3.7 Support for Early V&V
	1.3.8 Integrated Development Environment

	Part 2. Process Model
	2.1 Overview
	2.2 Process Phases
	2.2.1 System Requirements Specification
	2.2.2 Application Architecture Design
	2.2.3 Platform Architecture Design
	2.2.4 System Allocation / Configuration / Refinement
	2.2.5 Quality Evaluation
	2.2.6 System Realization

	2.3 Artefacts

	Part 3. Modelling and Evaluation
	3.1 System Requirements Specification
	3.1.1 Requirements Elicitation
	3.1.2 Requirements Analysis and Documentation
	3.1.3 Requirements Traceability

	3.2 Architecture Design
	3.2.1 Selection of Modelling Languages
	3.2.2 Architectural Elements
	3.2.3 Architectural Views, Models and Transformations

	3.3 Application Architecture Design
	3.3.1 Structural View
	3.3.2 Syntactical View
	3.3.3 Behaviour View
	3.3.4 Semantic View

	3.4 Platform Architecture Design
	3.4.1 Structural View
	3.4.1.1 MARTE GRM Concepts for Execution Platform Modelling
	3.4.1.2 Modelling Processing Units and Tasks
	3.4.1.3 Modelling Shared Resources
	3.4.1.4 Modelling Variables and Shared Memory
	3.4.1.5 Modelling Communication Resources
	3.4.1.6 Modelling Platform Black-boxes
	3.4.1.7 Modelling Timing Resources
	3.4.1.8 Further Refining Platform Structural Models

	3.4.2 Behaviour View
	3.4.3 Code View

	3.5 Platform Module Library
	3.6 Integration and Development of Platform Services
	3.6.1 Interfacing with Platform Services
	3.6.2 Describing the Behaviour of the Services
	3.6.3 Design Process for New Platform Services

	3.7 System Allocation / Configuration / Refinement
	3.7.1 Schedulability Analysis and Simulation
	3.7.1.1 Scheduling View
	3.7.1.2 Analysis and Simulation Tools
	3.7.1.3 Concepts of Scheduling View

	3.8 Quality Evaluation
	3.8.1 Performance Evaluation
	3.8.1.1 Pre-requisites
	3.8.1.2 System Requirements Definition
	3.8.1.3 Application Architecture Design
	3.8.1.4 Platform Architecture Design
	3.8.1.5 System Allocation / Configuration / Refinement

	3.8.2 Performance Evaluation Methods
	3.8.2.1 Performance Evaluation of Software Architecture
	3.8.2.2 Application-platform Performance Evaluation

	3.8.3 Power/Energy Efficiency Evaluation
	3.8.3.1 Pre-requisites
	3.8.3.2 System Requirements Definition
	3.8.3.3 Application Architecture Design
	3.8.3.4 Platform Architecture Design
	3.8.3.5 System Allocation / Configuration / Refinement

	3.8.4 Power/Energy Evaluation Techniques
	3.8.4.1 Power Analysis in a Multiprocessor Simulation Platform

	3.8.5 Reliability and Availability Evaluation
	3.8.5.1 System Requirements Specification
	3.8.5.2 Architecture Design

	3.8.6 Reliability and Availability Evaluation Methods
	3.8.6.1 Reliability Prediction of Component Based Architectures
	3.8.6.2 Reliability Evaluation in Model Driven Development
	3.8.6.3 Reliability and Availability Prediction and Testing
	3.8.6.4 Commercial Reliability Analysis Tools

	3.8.7 Safety Analysis
	3.8.7.1 Safety Analysis Techniques
	3.8.7.2 GENESYS Safety Certification Approach
	3.8.7.3 Prerequisites
	3.8.7.4 System Requirements Specification
	3.8.7.5 Fault and Hazard Modelling

	3.8.8 Safety Analysis Methods (PSSA Stage)
	3.8.8.1 Hip-HOPS Method
	3.8.8.2 Model Checking Method
	3.8.8.3 Commercial Safety Analysis Tools

	3.8.9 Composability Evaluation
	3.8.9.1 Model-Based Evaluation
	3.8.9.2 Component Based Evaluation

	3.8.10 Evolvability Evaluation
	3.8.10.1 Adaptability Evaluation
	3.8.10.2 Extensibility Evaluation
	3.8.10.3 Maintainability, Flexibility and Modifiability Evaluation
	3.8.10.4 Trade-off Analysis

	3.8.11 Summary of Quality Evaluation

	Part 4. Conclusions and Future Work
	4.1 Overview
	4.2 Integrated Development Environment
	4.2.1 Extra Requirements
	4.2.1.1 Support for Multiple Modelling Languages
	4.2.1.2 Collaborative Development Support
	4.2.1.3 Open, Extensible Design Environment

	4.2.2 Integrated Design Environment
	4.2.2.1 Versioning Artefact Storage
	4.2.2.2 Artefact Catalogue and Access Rights Management
	4.2.2.3 Query Services
	4.2.2.4 Navigation and Traceability
	4.2.2.5 Model Transformation Engine
	4.2.2.6 Workflow Orchestration Layer
	4.2.2.7 Client Communication and Event Dispatching

	4.2.3 Model Transformations
	4.2.3.1 From requirements to PIM and PM
	4.2.3.2 PIM-related Transformations
	4.2.3.3 Import from Model Libraries / Repositories
	4.2.3.4 System Allocation / Configuration / Refinement
	4.2.3.5 PSM to Analysis Transformations
	4.2.3.6 Source and Configuration Files Generation

	4.2.4 Available Technologies for the Tool Development
	4.2.4.1 Available Technologies
	4.2.4.2 Research and Development Items

	4.3 Evaluating Methodology Framework
	4.4 Lessons Learned
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

