
Juha Vitikka

Supporting Database Interface
Development with Application
Lifecycle Management Solution

	 	 VTT PUBLICATIONS 714
VTT CREATES BUSINESS FROM TECHNOLOGY
�Technology and market foresight • Strategic research • Product and service development • IPR and licensing
• Assessments, testing, inspection, certification • Technology and innovation management • Technology partnership

• • • VTT PU
B

LIC
A

TIO
N

S 714	
Supportin

g

 d
atabas

e int

er
fac

e d

evelop
m

ent
w

ith
 application

...

ISBN 978-951-38-27xx-0 (soft back ed.) 	 ISBN 978-951-38-27xx-0 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1235-0621 (soft back ed.)		 ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Julkaisuluettelo tai kuvaus...

VTT PUBLICATIONS 714

Supporting Database Interface
Development with Application

Lifecycle Management Solution

Juha Vitikka

ISBN 978-951-38-7353-0 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT 2009

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 5, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvägen 5, PB 1000, 02044 VTT
tel. växel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O. Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax + 358 20 722 4374

Technical editing Leena Ukskoski

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

3

Juha Vitikka. Supporting Database Interface Development with Application Lifecycle Management
Solution [Tietokantarajapinnan kehittäminen ohjelmiston elinkaaren hallinnan avulla]. Espoo 2009.
VTT Publications 714. 54 p.

Keywords ALM, SCRUM, TFS, data transport formats

Abstract

Controlling a software project has a major effect on the project's productivity,
expenses and the quality of a project's product and code. This work investigates
Application Lifecycle Management which considers how software, the software
process and its different phases are controlled. With the help of Application
Lifecycle Management a working database interface for embedded testing
framework has been developed.

In this Microsoft Team Foundation Server is used for managing the software
project. As a software process SCRUM is used by utilizing SCRUM for Team
System process template developed by Conchango. The process template is cus-
tomized to bring support for requirement management in to it. The customized
process template is used in the demo project, in which a database interface for
embedded testing framework is developed. Thus the process template customi-
zation is tested in practice and experiences of ALM, Microsoft TFS and SCRUM
process are gathered.

During development of the embedded testing framework, which is one sort of
generic data gathering tool, one must pay attention to many issues such as data
transport methods and formats, database solutions, data export methods and
integration. Database interface software, called Probe DB, is developed accord-
ing to the requirements of the customer. Own CSV and binary data transport
formats and XML format for export functionality are designed, and interfaces
for file and TCP/IP import and for Eclipse IDE are developed. Software is coded
with Python and MySQL will serve as database solution.

4

Juha Vitikka. Supporting Database Interface Development with Application Lifecycle Management
Solution [Tietokantarajapinnan kehittäminen ohjelmiston elinkaaren hallinnan avulla]. Espoo 2009.
VTT Publications 714. 54 s.

Avainsanat ALM, SCRUM, TFS, data transport formats

Tiivistelmä
Ohjelmistoprojektin hallinta vaikuttaa merkittävästi projektin tuotteen ja koodin
laatuun, tuottavuuteen ja kuluihin. Työssä perehdyttiin ohjelmiston elinkaaren
hallintaan (ALM), joka käsittelee sitä, miten ohjelmistoa, ohjelmistoprosessia ja
sen eri vaiheita hallitaan. Ohjelmiston elinkaaren hallintaa apuna käyttäen kehi-
tettiin toimiva tietokantarajapinta sulautettuun testauskehikkoon.

Tässä työssä ohjelmistoprojektin hallintaan käytettiin Microsoftin ohjelmiston
elinkaarenhallintatyökalua Team Foundation Serveriä. Ohjelmistoprosessina
käytettiin SCRUMia Conchangon TFS:ään kehittämän SCRUM for Team Sys-
tem -prosessipohjan avulla. Prosessipohjaa muokattiin vaatimustenhallinnan
mukaan tuomiseksi. Muokattua prosessimallia sovellettiin projektissa, jossa
kehitettiin tietokantarajapinta sulautettua testauskehikkoa varten. Näin testattiin
prosessimallin muokkauksen soveltuvuus ja samalla kerättiin kokemuksia oh-
jelmiston elinkaaren hallinnasta, MS TFS:stä ja SCRUM-prosessista.

Sulautettu testauskehikko voidaan katsoa geneeriseksi tiedonkeruutyökaluksi,
jollaiseen tietokantarajapintaa kehittäessä pitää ottaa huomioon useita seikkoja,
kuten tiedonsiirtomenetelmät ja formaatit, tietokantaratkaisu, tiedon vieminen
sekä integrointi. Tietokantarajapintasovellus, nimeltään Probe DB, kehitettiin
asiakkaan tarpeiden pohjalta. Sovellukselle suunniteltiin omat CSV- ja binääri-
muotoiset tiedonsiirtoformaatit sekä XML-formaatti ulosvietävän tiedon määrit-
tämiseen ja kehitettiin tiedosto- ja TCP/IP-rajapinnat testauskehikkoon sekä
TCP/IP-rajapinta Eclipse IDEen. Sovellus koodattiin Pythonilla ja tietokantarat-
kaisuksi valittiin MySQL. Kehitystyön tuloksena syntyi toimiva tietokantaraja-
pinta osaksi sulautettua testaustyökalua, Probe Frameworkiä.

5

Preface
This work was done in VTT as a contribution to the TWINS project.

I would like to thank my master thesis work instructor at VTT, Jukka
Kääriäinen, and my supervisor at Oulu University Professor Juha Röning for
professional work instruction, and my colleges Teemu Kanstren and Markku
Pollari for providing valuable help during my work. Thanks also to other col-
leges, friends and family who have supported me along the way.

Oulu, April 30, 2008

Juha Vitikka

6

Contents

Abstract ... 3

Tiivistelmä ... 4

Preface.. 5

List of symbols .. 8

1. Introduction ... 9

2. Application Lifecycle Management ... 11
2.1 Lifecycle Models ... 11

2.1.1 Traditional Models and Agile Models ... 12
2.1.2 SCRUM .. 14

2.2 ALM Concepts .. 16
2.3 ALM Tools... 18
2.4 MS TFS... 18

2.4.1 TFS from ALM Framework Perspective ... 19

3. Data Transport Formats and Databases of Data Gathering Tools 22
3.1 Data Transport .. 23

3.1.1 Data Import... 23
3.1.2 Export ... 24

3.2 Databases... 24

4. Work Assignment.. 26
4.1 Probe Database Development Needs .. 26

4.1.1 Functional Requirements ... 28
4.1.2 Technical Requirements... 28

4.2 MS TFS Research Needs ... 29

5. Implementation ... 31
5.1 Development Environment Setup ... 31

5.1.1 TFS Installation And Configuration... 31
5.1.2 Process Template Installation And Customizations ... 32
5.1.3 Project Setup.. 36

7

5.1.4 Visual Studio and Python Integration ... 37
5.2 Probe Database Development.. 37

5.2.1 Testing.. 44
5.2.2 Limitations .. 44

5.3 Software Development with TFS .. 45
5.3.1 Working with MS TFS... 45
5.3.2 Software Configuration Management... 46
5.3.3 SCRUM .. 47

6. Discussion... 49
6.1 TFS Usage Experiences ... 49
6.2 Experiences about Database Interface Development .. 50
6.3 Probe Database Future Development .. 51

7. Conclusion .. 52

References.. 53

1. Introduction

8

List of symbols

ALM Application Lifecycle Management

CM Configuration Management

CMM Capability Maturity Model

DB Database

HW/SW Hardware/Software

RM Requirement Management

RUP Rational Unified Process

TFS Team Foundation Server

TCP/IP Transmission Control Protocol / Internet Protocol

VTT Technical Research Centre of Finland

XP Extreme Programming. A software engineering methodology or

a software process.

1. Introduction

 9

1. Introduction
A successful software project requires the management of many steps of the
software process and a large amount of artefacts such as requirements, code,
documents and tests. Software development is done in logical steps, including
definition, design, development, testing, deployment and management. Control-
ling these steps, developed artefacts and software project in overall is called
Application Lifecycle Management. It also facilitates taking care of communica-
tion between team members and work coordination. Nowadays software projects
are also expected to produce better quality products faster and cheaper. Applica-
tion Lifecycle Management is claimed to improve code quality and team produc-
tivity, thus accelerating development and reducing maintenance time. It is also
required in the development of some mission or safety critical systems.

The purpose of this work is to develop a database interface for an embedded
testing framework with the help of ALM and ALM tool. Simultaneously the use
of ALM in a software project will be investigated. An ALM tool, Microsoft
TFS, will be tested for software project management by carrying out a demo
project during which a database interface will be developed. There is also a need
for some customizations to TFS which will be tested in practice during the demo
project. A database interface is needed for embedded testing solution to enable
importing data from embedded tests to database, and for getting test information
out of the database in the desired format.

There are many commercial ALM tools. ALM tools vary from separate tools
to integrated and central database solutions. ALM can be applied to software
development using different kinds of lifecycle models. A theoretical part of this
work investigates ALM in general, ALM tools and different lifecycle models.

This work is done as a part of the ITEA-TWINS project. The TWINS project
investigates co-design problems of integrated hardware and software develop-
ment. The main problems in this development mode are co-specification and the

1. Introduction

10

allocation of requirements, co-optimization of HW/SW architectures, lifecycle
management and configuration management of evolving products and compo-
nents (hardware, software), and the improvement of testing of multidisciplinary
products. Results expected from the project include solutions and inventories to
support HW/SW co-design based on industrial needs and experiences.

2. Application Lifecycle Management

 11

2. Application Lifecycle Management
Application lifecycle management is a rather new concept so there are not many
publications that deal with the term. Its origins are in the history of source control
management and integrated development environments. There are many defini-
tions for ALM and maybe for that reason companies do not always know what to
expect from ALM. According to one definition, ALM means the coordination of
development life-cycle activities, including requirements, modelling, develop-
ment, build, and testing [1]. That involves supporting the processes that span
these activities, managing relationships between development artefacts used or
produced by these activities and reporting on progress of the development effort
as a whole. ALM handles artefacts of lifetime activities and keeps them synchro-
nized for traceability and reporting purposes, for instance. Shaw defines that
ALM is neither a product nor a process � it is a way of doing business within
application development [2]. In this thesis, ALM is considered from the devel-
opment lifecycle point of view, as described by Schwaber [1]. ALM, although it
is a rather new field, is used more and more in industry. Especially in the aero-
space industry, where they develop a lot of mission and safety critical software, it
has become an important tool for software development [3, 4].

2.1 Lifecycle Models

Software lifecycle models describe how to manage different activities of soft-
ware development process. These are also called software processes or software
development processes. Though there is a great variety of different kinds of
software lifecycle models most of them have similar patterns and work phases.
Usually they include at least these four work phases: gathering requirements,
designing, implementing and testing.

2. Application Lifecycle Management

12

2.1.1 Traditional Models and Agile Models

There is a great variety of different kinds of software lifecycle models based on
different structures and principles. Every model has its advantages and disadvan-
tages and selecting a model should be done depending on what kind of project is
going to be carried out. There is no clear agreement on how to distinguish agile
models from traditional models [5]. Traditional models are said to be more dis-
cipline and plan-driven, whereas agile models are more unplanned and undisci-
plined, emphasizing agile principles.

Some well known traditional models are the waterfall model, spiral model, V-
model, RUP and CMM. The waterfall model shown in Figure 1 is a well known
classic lifecycle model with a very simple structure. In waterfall processes, soft-
ware development flows downwards through development phases. After each
phase there is an evaluation of the project�s progress to determine whether it is
worthwhile continuing, or should be stopped. [6, 7]

Figure 1. Waterfall Model.

In iterative software processes, software is developed in iterations. During itera-
tion a proportion of the software is developed so that the software gradually
evolves into the final product. Iteration consists of work phases defined by proc-
ess model. In traditional models iterations can be quite long, even months,
whereas in agile models iterations are usually a few weeks long. We get a simple

2. Application Lifecycle Management

 13

example of an iterative model by repeating the stages of the waterfall model in
iterations. Figure 2 shows another iterative model, called the spiral model.

Figure 2. Spiral Model.

The spiral model starts with planning and gathering requirements, after which
risk analysis is done. This involves making the design and prototype of the
product. If continuing the project seems reasonable according to risk analysis
and prototype, the process moves to engineering phase. After the product version
is ready it is evaluated and the next iteration planning starts.

Agile software development models emphasize iterative, incremental, light
weight and agile approach to software development. Most agile models aim at
reducing risk by shortening the development time. They are based on agile prin-
ciples defined in the agile manifesto created in 2001 by 17 agile experts. Some
of the main principles of agile methods are rapid and frequent delivery of useful

2. Application Lifecycle Management

14

software, face-to-face communication, simplicity, self-organizing teams, daily
cooperation between business people and developers, regular adaptation to
changing circumstances. The working software is considered as a measure of
progress. Most models also favor small teams with people located close to each
other and little documentation. For example, SCRUM and XP are software de-
velopment models used for agile development. [5]

Agile methods have their advantages and disadvantages and they are better
suited for particular types of projects. Benefits from agile methods are, for ex-
ample, adaptability, better code quality and reduced risks. However, fast re-
quirement gathering and rapid changes during the project may result in a quite
different product than the optimal solution. Suitability of agile methods can be
examined from many different perspectives. Agile methods are more adaptive to
changes, so they are more suitable for products that are subject to rapid and fre-
quent changes. This, however, costs reliability so traditional methods might be
better suited for products that have criticality, reliability and safety requirements.
Agile methods work better in projects with small teams, because in larger teams
face-to-face communication becomes more difficult.

2.1.2 SCRUM

SCRUM is an iterative and incremental software development process. It defines
a set of roles and practices to carry out a software development process which
produces a working product increment with every iteration. SCRUM�s roles are
ScrumMaster, Product Owner, Stakeholders, Team Members and Users. Itera-
tions, also called as sprints, are usually 15�30 days, focusing on high quality
code and product�s customer value. In addition to daily development work
SCRUM iteration has other activities: Sprint Planning Meeting, Sprint Review,
Sprint Retrospective and Product Backlog Update. Every sprint also aims to
deliver a working product increment that brings value for the customer. Before
the start of the SCRUM guided process there is a set of activities for preparing
project. [5, 8]

The SCRUM process is guided by the ScrumMaster who takes responsibility
that the process is progressing correctly. The ScrumMaster�s tells other team
members their roles in the project and how they should work in their roles. He
supervises that SCRUM rules are followed and tries to remove all impediments
compromising the efficiency of SCRUM. The ScrumMaster�s responsibility is to
improve practices, enable close cooperation, shield the team from external inter-

2. Application Lifecycle Management

 15

ferences and thus maximize the team�s productivity. He also teaches the product
owner how to best benefit from SCRUM and maximize profit. [8]

The product owner is usually an employee from the customer�s company. His
role is to represent everyone�s interest in the project, and to ensure that the pro-
ject makes a profit. He should have a good picture of the product and its features
and requirements. The product owner must understand the business value of
features and requirements of the product being developed to make sure that it is
going to be profitable. His tasks include defining product features, prioritizing
them and gathering input from customers and stakeholders. He also decides on
the product release date and accepts or rejects work results. [8]

Team members in SCRUM are a group of cross-functional people with skills
to develop a product according to requirements. Usually a team, consisting of
about seven people, includes an analyst, designer, a quality assurance person,
coder and documentation person. They specify iteration goal and try to reach it
following SCRUM rules. The ScrumMaster guides them to follow SCRUM
work patterns but they organize their work themselves. [8]

Before SCRUM iterations start there is a preparation phase also called Sprint 0.
This preparation phase involves making a business case, getting funding, building
a vision of product, assembling a team and creating initial product backlog and a
release plan. The business case is important for figuring out if project is going to
be profitable and depending on that, whether it is worthwhile to carry it out at all.
The vision should be a short description of the product or project�s goal that
should be clear for all team members. The initial product backlog is created be-
fore the first sprint, gathering requirements from the product owner,

Figure 3. SCRUM Process.

2. Application Lifecycle Management

16

business case or elsewhere. After team roles are identified, a kick-off meeting is
held where the backlog is reviewed and technical issues, team members� duties
and scope of project are discussed. [8]

SCRUM process, shown in Figure 3, forms of SCRUM activities which are
repeated in every sprint. Before starting the SCRUM sprint, the product backlog
must be updated and prioritized with the product owner. The updated product
backlog is presented in the sprint planning meeting where the team selects with
the product owner the product backlog items to build in the next sprint, accord-
ing to product backlog prioritization. The second part of the sprint planning
meeting is sprint workload planning. The team designs how to implement the
functionality that they have selected and the architecture required. Work is then
split into tasks, and tasks are given estimates of the required work time needed to
complete them. The team is expected to get all work done that they have selected
during the sprint, so that estimates should not dramatically exceed team capacity.
With complete sprint backlog the daily SCRUM work can start. Every day is
held a short daily SCRUM meeting during which team members tell what they
have done and are going to do next and report impediments to ScrumMaster for
removal. At the end of sprint team should deliver a product increment which is
demonstrated to the users and stakeholders. It should be working software with
the new functionality selected to be implemented during the sprint. At last a
sprint review is held where team represents management, customers, users and
product owner the sprint goal, the product backlog committed to, the product
backlog completed and how the sprint has overall gone. The team tells tales of
their working during the sprint, what went right or wrong and to what direction
is product being developed. With this information the management, users, cus-
tomers and product owner can make decisions what to do next. After the sprint a
sprint retrospective is held with team members and ScrumMaster. At sprint ret-
rospective recent sprint is discussed and improvement possibilities are deter-
mined. Team considers its work environment, work procedures, activities and
everything that is affecting having a successful sprint. Issues of what went well
and what did not are gathered and used to improve next sprints. [8]

2.2 ALM Concepts

ALM framework introduced by Kääriäinen and Välimäki describes the principal
elements of ALM. The elements can be seen in Figure 4: Creation and manage-

2. Application Lifecycle Management

 17

ment of lifecycle artefacts, traceability, communication, reporting, process
automation and tool integration. [9]

Creation and management
of project artefacts

Creation and management
of project artefacts

Traceability of
lifecycle artefacts

Process automationReporting of
lifecycle artefacts

Tool integrationCommunication

Figure 4. ALM Framework.

Creation and management of lifecycle artefacts means how project lifecycle
artefacts, such as project�s requirements, documents, source code, builds, project
control items, etc., are created and managed in ALM solution. Managing these
artefacts includes creating, identifying, storing and versioning them in different
project phases. [9]

Traceability in ALM solutions means how traceability information between
project lifecycle artefacts is gathered and maintained. Information about rela-
tionships between artefacts gives visibility to projects� lifecycle and facilitates
many ALM operations like reporting and change impact analysis. [9]

Communication is very important element of ALM. Project members and
other people involved need to exchange information efficiently and securely.
This element describes how ALM solution handles communication and informa-
tion sharing. [9]

The reporting element means how reporting is supported. Information about
process and configuration items need to be gathered, processed and presented. [9]

Process automation means what kind of support and automation is offered for
process coordination. There are many work tasks in processes that can be auto-
mated, thus saving work time for other activities. [9]

2. Application Lifecycle Management

18

Tool integration discusses how different tools for ALM are integrated to-
gether, or what level of support there is for integration [9].

2.3 ALM Tools

There are many freeware and commercial ALM tools available. There are also
some tools and frameworks which support and facilitate developing and integrat-
ing ALM tools. Such are, for example, Eclipse Tool Integration Framework and
ALF, Application Lifecycle Framework [10]. ALM solutions can be divided in
three types: Single vendor platform, Multi-vendor platform and single repository
solution. A single vendor platform is an interoperability framework defined by
single vendor. ALM practitioners and other vendors can build integrations to
that platform, but usually have no means to influence the actual platform. Com-
mercial ALM solutions, �Borland�s ALM solutions� and �IBM Application
Lifecycle Management solutions�, are this kind of ALM platforms. A multi-
vendor platform is developed by many vendors in an open-source community.
�Compuware application delivery management and IT portfolio management
solutions� is an example of a multi-vendor platform. The third type of ALM
solution, Single repository, is an ALM solution built on a single repository, con-
taining a complete set of ALM tools. One repository facilitates traceability and
reporting. Microsoft Team Foundation Server is based on single repository solu-
tion, although it also can be considered as a single vendor platform. [2]

2.4 MS TFS

Microsoft Team Foundation Server is Microsoft�s ALM solution. It�s an inte-
grated ALM suite covering all the main aspects of ALM. It�s available as a
stand-alone version and as a server side platform. As a server platform it sup-
ports different server topologies from a single server platform to very complex
solutions. Thus TFS is highly scalable for different sizes of projects and compa-
nies. In this work MS TFS is used as an ALM tool for a software development
project developing a database interface called Probe DB. TFS was chosen be-
cause it is used by the TWINS project partner who also has a need to investigate
the use of TFS.

Architecturally TFS consists of three tiers: Application Tier, Data Tier and
Client Tier. The data tier consists mainly of Microsoft SQL Server 2005 data-

2. Application Lifecycle Management

 19

bases and data stores. It can be installed on the same or separate server machine
as TFS application tier. The data tier can not be accessed directly but the data is
accessible through the application tier. The application tier runs TFS applica-
tions and web services and offers web services API through which client pro-
grams can integrate with TFS.

TFS Build and TFS Proxy are also included with TFS. TFS Build offers sup-
port for build automation and for sharing builds for testers. TFS proxy is used to
cache source control files. This is useful in distributed software development
when the actual TFS server is far from development site. Proxy is located near
development site and it caches source control files making it faster to work with
them.

2.4.1 TFS from ALM Framework Perspective

The ALM framework can be used to characterize how MS TFS handles the dif-
ferent aspects of ALM. This framework consists of six main areas of ALM:
Creation and management of lifecycle artefacts, traceability, communication,
reporting, process automation and tool integration [9].

The TFS solution for creation and management of project artefacts is based on
integrated ALM suite and central database. All project artefacts can be created
and controlled from Visual Studio using an integrated TFS client, Team Ex-
plorer. Project artefacts are stored by the TFS data layer, which uses MS SQL
Server 2005 as information storage. Permission to project artefacts is handled
through TFS group membership and security settings. Project artefacts in TFS
include work items, builds, source code, reports and documents.

Work items are used for tracking work in the project and communicating pro-
ject information between project members. The basic project management items
such as requirements, tasks, bugs and issues, all appear as work items in TFS.
Work items are process-template specific, so they may have different names and
properties depending on process template used. Work items are not versioned
but their change history is recorded. They are stored in SQL Server work item
database. It is possible to create new work item types or modify the existing ones
if necessary, but that may require some study.

TFS has a source control repository for source code and documents. TFS�s
source control system is based on change sets. Changeset is a logical container
in which TFS stores everything related to a single check-in operation: file and
folder revisions, links to related work items, check-in notes, a comment, policy

2. Application Lifecycle Management

20

compliance and system metadata such as owner name and date/time of check in.
All data related to version control is stored in the SQL server source repository
database through TFS data layer.

TFS has a build server which builds the builds and keeps them shared for test-
ers. TFS build server works as a centralized place for builds. A build in TFS can
also appear as work item that can be linked to changesets.

Documents can also be shared in the document library of the TFS project por-
tal. Document library keeps documents versioned if versioning is turned on.

Traceability of lifecycle artefacts in TFS is partly automated, but it�s also pos-
sible for the user to create links manually. Links between various types of pro-
ject artefacts can be created quite freely and without constraints. Traceability
data between source control objects and tasks is gathered automatically, if this
check-in policy is turned on. When a work item is created from another, links
are also automatically created. Automated traceability depends on the process
template and its working procedures. Mainly it is left for project members to
work in such a way that traceability data is gathered correctly. These procedures
are described in process templates process guidances.

Reporting of lifecycle artefacts in TFS is supported. There�s a report portal for
project reports accessible with a web browser. Process templates include many
useful reports and they can also be customized for a project�s needs. Microsoft
provides tools for report customization [11].

Communication is one of the main aspects of TFS. In the TFS project the pro-
ject portal works as the central point of communication. Work items, project
alerts and reports also facilitate communication. To ensure secure communica-
tion security settings define who can access and modify which information.

Work items are used to share information about projects� requirements, tasks,
issues, bugs and so on. Work items are linked together, and with other lifecycle
artefacts and their change history is recorded. Reports gather data about project
artefacts and provide useful information about project�s progression.

Project portal works as a central point of communication in TFS. Project por-
tal is accessed with a web browser and has many tools for information sharing.
There project members can share documents, discuss issues on message boards
and share information about announcements, events and links. The project portal
is customizable and process templates have their own customizations to do it.

Project templates in TFS provide process support/automation. From a techni-
cal view point process templates define project management items and their
properties, state transformations and relations. Process templates also include

2. Application Lifecycle Management

 21

process guidance, reports and their own customizations to project portal. Process
guidance explains process models� working procedures, roles, work items and
reports.

The TFS application tier provides web services through which client applica-
tions can integrate to TFS. There are many commercial and open source tools
that integrate with TFS. Some Microsoft�s products, e.g. Microsoft Project and
Excel, are meant to be used with TFS as an essential part of project manage-
ment. There�s also integration with Windows SharePoint Services and SQL
Server. Many open source tools integrating with TFS can be found from Micro-
soft�s open source community CodePlex.

TFS integrates with some windows server�s features like active directory,
workgroup and SMTP. SMTP integration enables sending email notifications
from TFS and Active Directory and workgroup integration provides quite useful
help for controlling users and groups in TFS.

3. Data Transport Formats and Databases of Data Gathering Tools

22

3. Data Transport Formats and Databases
of Data Gathering Tools
Probe Framework can be considered as a generic data gathering tool in which
the data transport techniques and database solutions play an essential role. Data
import and export functionalities need their own data transport methods and
formats, so different solutions are considered here. The database solution has an
effect on the actual database interface programming, but it does not affect much
architecture or other parts of the software. Figure 5 gives an overview of Probe
DB�s architecture.

Figure 5. Overview of Probe DB�s architecture.

3. Data Transport Formats and Databases of Data Gathering Tools

 23

3.1 Data Transport

Efficient data transport techniques are important in data gathering tools like
Probe DB. Data is gathered in an embedded device and it must be imported to
the database, so there is a need for import methods. Various data transfer tech-
niques can be used, for example transfer using TCP/IP connection or file transfer
[12]. The format used for data transfer also plays an important role. The gathered
data is used in different third party software, test analysis software for example,
so it must be possible to export data in different formats that these third party
software understand.

3.1.1 Data Import

Getting the gathered data from the data gathering tool to the database requires a
data transfer technique and a data format. Transfer can be done, for example,
through TCP/IP connection or using a file. For transfer format there are several
possibilities that can be used. One can design a specific format that is tuned to
meet the needs of the software, or use some of the existing standard formats like
XML based GXL [12].

Data transfer methods in data gathering products are often either transport over
a network or transport using a file. A transport file is created automatically or
manually in the software from which the data is going to be exported. The file is
then read automatically or manually to software into which data is imported [13].
Transporting data over a network connection is currently quite popular. A net-
work connection is established and used to transfer the data. TCP/IP is usually the
protocol used for this but there are other possible protocols, like UDP, too.

Gathering data in a device undergoing testing should be as efficient as possi-
ble so that testing itself would not cause a probe effect, meaning to alter the be-
haviour of the system and affecting the test results [14]. This is especially sig-
nificant factor in systems with real requirements, and in embedded systems with
limited resources. Thus the data format should be designed in a way which does
not require too many resources when used. There are a few existing standard
formats that could be used for data transfer but they are not optimal in efficiency
and resource usage. Some format standards, like GXL for example, are based on
XML, which is quite slow compared to fixed length data field formats. If one
designs his own data format for software with the intention to tune it for optimal
performance, it is better to make it a delimited format. These kinds of formats

3. Data Transport Formats and Databases of Data Gathering Tools

24

are usually based on CSV or binary format. CSV, Comma Separated Values, is a
simple way of formatting data. In CSV format values are in their fixed places
separated with a separator character which is usually �;�. To design as optimal
and compact a format as possible it is better to use binary format. Binary format
codes all data values in binary. In CSV format values are in text format, for ex-
ample number 10 appears in the CSV file as characters 1 and 0 consuming two
bytes. In binary format 10 would appear as hexadecimal value 0x0A requiring
only one byte. Thus binary saves space and is usually much faster to read. One
example of need for efficient data transport is SEAT (Software Exploration and
Analysis Tool) which uses a metamodel called CTF.

3.1.2 Export

When data may be used by different third party software there is a need for vari-
ous export formats or the possibility to define ones own export format. Different
software products understand data in different formats, and they may require
manipulation, scaling and filtering data depending on what kind of data it is, and
how it is analyzed. An example of analyze software used to analyze test data
from the Probe Framework is Daikon Tool [15]. It is a tool for detecting likely
invariants and it can read data from CSV files and Excel spreadsheets among
other ways of getting data.

3.2 Databases

The database is an essential part of Probe DB, used to store data coming from
the Probe Network. Many possible choices for database solution are available,
ranging from relation databases to object oriented databases. Different database
solutions are good for different things. Relation databases are popular and com-
monly used for many purposes. They store information to database tables which
have relational links between them. Object oriented databases use objects to
represent information. There are also post-relational databases which have tables
and relations but do not have the information principle, requiring that all infor-
mation is represented by data values in relations, as a constraint. MySQL is an
example of relational database and Zope is an example of an object oriented
database [16, 17].

Relational databases are databases that work according to a relational model
storing their data in tables. Information in tables is organized to columns and

3. Data Transport Formats and Databases of Data Gathering Tools

 25

rows, and individual rows are often identified using a key column. Between
tables there can be links which relate rows of information in one table to rows of
another table. These links are implemented using some columns as foreign keys
which reference foreign key columns in other tables. In a relational database,
information is well organized and retrieving and combining information is rela-
tively easy. Usually SQL, Simple Query Language, is used for retrieving and
manipulating information in relational databases. Thus, SQL being a widely
used industrial standard, relational databases are quite well supported by other
software like reporting, OLAP and backup software, and they are also easily
interfaced with many programming languages. However, the relational model
encounters some difficulties with object-oriented programming languages due to
differences in data representation, encapsulation and data types. [18, 19]

Object databases represent their information as objects the same way as in ob-
ject-oriented programming languages. This facilitates developing database ap-
plications with an object-oriented programming language, because object data-
base objects can be used as normal programming language objects. Object ori-
ented databases are navigationally based, meaning that the information is found
by following references through objects. For some data specific kind of searches
this works quite fast, but general-purpose queries are often slower and more
difficult to formulate when compared to relational databases. Object oriented
databases are not that well supported by other software. [19]

In this work MySQL was chosen for the database solution, first of all because
it is open source and free. Object based database Zope was also considered as
one or possibly even a parallel alternative but the developer and customers were
both more familiar with relational databases. Also the wider support for MySQL
database SQL in other software possibly used for reporting purposes was one
key point in the decision.

4. Work Assignment

26

4. Work Assignment
The TWINS project and its participants have research needs for ALM and ALM
tools and methods. There are also requirements to facilitate embedded testing.
For embedded testing a testing framework, named Probe Framework, is built and
it requires a database interface, called Probe DB. The work assignment consists
of two separate needs: Probe DB development needs and Microsoft Team Foun-
dation Server research needs. These needs can be met by using Team Foundation
Server for Probe Database development project. This section describes the actual
work assignment, and more specifically the Probe DB development needs and
requirements.

4.1 Probe Database Development Needs

Probe Database needs to be developed to work as a part of a larger testing
framework. Probe Database�s role is to work as a database interface for an em-
bedded testing solution named �Probe Framework�. Probe Framework consists
of Probe Network and Probe Database. Probe Network is an application which
gathers various kinds of information in an embedded device during testing. In-
formation gathered from probes needs to be saved to a database through the da-
tabase interface, �Probe DB�. Exporting saved data should also be supported.
The software should be platform-independent which must be taken into consid-
eration when deciding on the programming language and database solution.

Probe DB should be able to import data over a TCP connection or from a file.
Data coming from embedded device probes can be in binary or CSV format.
These formats must be designed in cooperation with Probe Framework develop-
ers and specification documents must be made. Binary format is important to
reduce work load and resource needs at the embedded device under testing. CSV

4. Work Assignment

 27

format is useful in prototyping Probe DB and in the early phase of integration
testing.

Probe DB should also have data export functionality. Data from embedded
testing can be analyzed with third party software which needs data to be in a
specific format. There must be a method to specify data which needs to be ex-
ported and it�s formatting. This is going to be done with an XML file which user
edits before export. The XML file must be designed and specification document
should be made.

Figure 6. A graphical presentation of Probe Database�s interfaces.

Other development needs for Probe DB are text based user interface, eclipse
integration interface, reporting and data browsing. Probe DB is planned to be
integrated with Eclipse, so an integration interface for it should be developed.

4. Work Assignment

28

Probe DB�s main features, like import and export, could be used from Eclipse
IDE which might be integrated with other useful tools like analysis software.
Probe DB�s export feature could also be directly integrated to some analysis
software. For reporting features testers wished for some reports about test data
saved to database. Browsing the data would also be handy in many situations.

As seen in Figure 6, Probe Database has TCP/IP interfaces to Probe Network
and Eclipse. Test data is imported from the Probe Network over a TCP/IP con-
nection or from a file. Eclipse can control and get information from Probe DB
over a TCP/IP interface. Getting data to analyze software can be done with
Probe DB�s export feature which exports specified data in specified format to a
file.

4.1.1 Functional Requirements

Probe DB should be able to import data from a Probe Network over a TCP con-
nection or from a file to which Probe Network has saved its data gathered from
testing of embedded device. Database export that would export data from a data-
base specified in export XML file should also be possible.

4.1.2 Technical Requirements

There are many technical requirements and issues that had to be taken into con-
sideration when developing Probe DB. Binary and CSV formats and export
XML format specify a large part of these. Also the TCP/IP connection interface,
Eclipse interface and database queries face some technical issues.

Technical requirements for import features are supporting import from a file
and import over a TCP/IP connection. An import feature must be able to import
data in binary format or CSV format. These have their technical requirements.

A binary format protocol should be designed to minimize the redundancy of
data and facilitate generating data at the Probe Network running on embedded
devices which are often quite limited in resources and computing power. Thus
there are many technical requirements concerning binary import format. Binary
format should be able to describe all necessary test information created by the
Probe Network. The majority of test data is information coming from probes but
there is also input data, different output types and data types. Test information
always belongs to a specific project, version and test case, so there must be a
way to specify this information. Data coming from the Probe Network can be in

4. Work Assignment

 29

various forms, which must be identified correctly. Binary format should support
byte order since it may vary in different embedded platforms. There should also
be support for all basic data types: Boolean, integer, float, text and binary. Input
and output values are often just integers of different sizes, so binary format
should have one, two, three, four and eight byte integers to support large num-
bers, and at the same time minimize the size required for saving small integers.
Different time scales are often present in testing, ranging from a few clock cy-
cles to even hours of testing, so there must be different time resolutions avail-
able. In the future new versions of binary protocol format might be developed so
different protocol versions must be supported. To reduce redundancy there must
be a way of sending multiple input or output data units in a group without re-
peating their header information.

Export feature includes XML format specification, which has been designed
according to technical requirements of the export feature. The user must be able
to specify data he wants from the database, its formatting, filtering conditions,
data manipulation and so on. Data to be retrieved always belongs to a specific
project, version and test case so this information must be specified in XML.
Exported data is often output and input values, but it must be made possible to
choose the database table from which the information is retrieved. Filtering data
according to search conditions, limiting the number of results and getting data in
a specific order must also be possible. For formatting data there must be a way
to specify line start and separator characters and the order of data fields. Data
manipulation features, such as scaling and replacing, are necessary to fit data for
analyze software. Probe DB�s export feature could have some export XML
models which format data for known analysis software.

Database is required to store all information concerning embedded tests. This
includes the project, version and test case information and input and output data.
There is a need for output type and data type tables also.

4.2 MS TFS Research Needs

The TWINS project has research needs for Application Lifecycle Management.
One goal of the project is to find proper tools and methods for project manage-
ment and configuration management in distributed development project. Micro-
soft Team Foundation Server has been selected for the ALM tool to try different
methods for ALM and to research how well it fulfils the tasks of an ALM tool.
One project partner also has the more specific need of investigating the use of

4. Work Assignment

30

the SCRUM process model in TFS and bringing, at least partially, requirement
management to it.

To investigate TFS as an ALM solution a demo project must be implemented.
During the demo project experiences of the use of TFS are gathered and TFS�
quality as an ALM is evaluated. Process model for the demo project will be
modified SCRUM process with a requirement management item added to it.
Thus a modified process template will also be validated during the demo project.

5. Implementation

 31

5. Implementation
In the implementation phase the research needs and Probe DB development
needs are both going to be fulfilled during the same demo project.

5.1 Development Environment Setup

Before implementation the development environment had to be setup. For pro-
ject management Microsoft Team Foundation Server and the necessary plug-ins
to perform the customizations were installed. Visual Studio and the TFS client,
Team Explorer, was setup for coders.

5.1.1 TFS Installation And Configuration

Team Foundation Server was installed on a Windows Server 2003 machine as a
single server deployment. TFS Build was also installed on the same server ma-
chine.

Installation required many steps, but instructions provided on the Microsoft
website were quite good. Before actual TFS installation other necessary software
had to be installed. Other software TFS requires are IIS, ASP.NET, Microsoft
SQL Server 2005, Microsoft SQL Server 2005 SP1, Microsoft .NET framework
hotfix and SharePoint Services and its critical updates. IIS and SharePoint Ser-
vices are needed for browser-based features like project and report portal. All
data in TFS, project artefacts, source code, documents, etc. are stored to Micro-
soft SQL Server 2005 databases. Installation also required two domain accounts:
a TFS Service account with local admin rights and a TFS Reporting account.
The TFS Service account is used to run TFS services on a server machine and
the reporting account to run SQL Server Reporting Services. Also, installation
steps had to be done with a domain account which had local admin rights.

5. Implementation

32

Despite good instructions some mistakes were made during the first installation
attempt. The first installation attempt was mistakenly done with a local adminis-
trator account and local service accounts. There were great difficulties getting
SharePoint services to work correctly. Finally installation was successful, but
using active directory accounts for user identification did not work. After read-
ing instructions more carefully the server was re-installed and necessary domain
accounts were used. This time installation went through quite easily without any
bigger problems.

After successful installation some configuration was required and installation
of the �Agile Software Development with SCRUM� process template, Team
Explorer and Process Editor Visual Studio plug-ins. The �Agile Software Devel-
opment with SCRUM� process template included its own installer which was
run at the server machine. Process Editor plug-in was easily installed to Visual
Studio and it needed little configuring.

5.1.2 Process Template Installation And Customizations

Installing new process templates to TFS is quite simple. Process templates can
be managed with the Process Template Manager located in the Team menu. The
SCRUM alliance�s �Agile Software Development with SCRUM � v1.2� had its
own installer which was run at the server machine. For customizations, the Proc-
ess Editor plug-in was also installed.

Customizing process templates requires some study. Process templates consist
of XML process definition files, plug-ins and a new project wizard. XML proc-
ess definition files define tasks which are run when creating a new team project.
They also define work items, work item queries, areas, iterations, the project
portal, version control permissions, check-in notes, report and groups and per-
missions. Plug-ins are components that run when a new project is created. They
create necessary files and configure data for the project. Plug-ins read XML
process definition files and do the necessary tasks defined there. The new team
project wizard is run when new team project is created. It runs plug-ins and con-
figures the team project according to XML process definition files.

In process templates there are six main XML process definition files, which
are Work Item Tracking XML, Classification XML, Windows SharePoint Ser-
vices XML, Version Control XML, Reports XML and Groups and Permissions
XML. Work Item Tracking XML specifies work item types, work item queries
and initial work items that are created when project is created. Each work item

5. Implementation

 33

has also its own XML definition file which defines its data fields and behavior.
Classification XML defines areas and iterations. Areas are used to organize
work in different areas, for example UI, database and applications. Iteration is a
set of activities which are repeated in iterative software development. Work
items are grouped by iterations. Windows SharePoint Services XML specifies
which site template is used for the project portal and define which additional
document libraries and folders and files are created there. Version Control XML
defines initial version control permissions, check-in notes for project and
whether multiple check-out option is enabled. Reports XML creates the report-
ing site (using a plug-in) and defines initial reports and report folders for the
project. Groups and Permissions XML contains initial group and permission
definitions for the team project.

Customizations to the process templates can be made by manually editing the
process template�s XML process definition files or with Visual Studio plug-in,
Process Editor, which is available at Microsoft�s website. The Process Editor
plug-in facilitates process customizing by providing UI for showing and editing
process templates. One does not have to understand XML to customize process
templates with Process Editor.

The process template used in demo project was SCRUM alliance�s �Agile
Software Development with SCRUM � v1.2�. Customizations were made using
Process Editor. A new work item, called �Idea�, was created to work as a re-
quirement management item. It was made by first making a copy of Product
Backlog Item and then modifying its data fields, layout and workflow. Idea work
item�s data fields are described in table 1.

The work item�s data fields seen in Table 1 are used to contain and refer in-
formation of the work item. For example, fields in the work item layout require a
unique data field. Data fields can also have rules, such as what values a field can
have, or even conditional rules. Fields with RefName starting �System� are as-
signed and used by TFS and they are the same in every work item.

The Figure 7 presents �idea� work item�s workflow which describes the state
transitions of the �idea� work item. First when an idea is created its state is �Raw
Idea�, meaning it is not refined to a product or sprint backlog item, or taken into
consideration in any way in implementation. When �idea� is somehow taken into
consideration, its state changes to �Used Idea�. �Idea� can also be deleted from
states �Raw Idea� and �Used Idea�. �Idea� with the state �Deleted� can be re-
vived to state �Raw Idea� again, however.

5. Implementation

34

Table 1. The data fields of an Idea work item.

Field name Type Ref Name Description
Id Integer System.Id Work

item�s i.d.
Title String System.Title Work

item�s title
History History System.History Needed to

record work
item�s his-
tory

State String System.State State of
work item

Audit String System.VSTS.Scrum.Audit Needed for
work flow

Description Plain
Text

System.Description Description
of work
item

Idea Type String VTT.VSTS.Scrum.IdeaType Idea type:
Feature,
Technical
Require-
ment

Idealist String VTT.VSTS.Scrum.Idealist Idea creator
Importance String VTT.VSTS.Scrum.Importance Importance:

low, me-
dium, high

Reason to
Decision

String VTT.VSTS.Scrum.ReasonToDecision Reason to
current state
of idea

5. Implementation

 35

Figure 7. Workflow of idea.

Figure 8. An idea work item in action.

5. Implementation

36

An �idea� work item can be created from team explorer as any other work item.
For creating and editing the �idea� work item, TFS opens the �idea� form shown
in Figure 8. In addition to �Title� it has the following fields: Idea Type, Created
by, Importance, Current Status and Reason to Decision. �Idea Type� is either a
feature or technical requirement. Importance can have the values High, Medium
or Low and Current Status Raw Idea, Used Idea or Deleted. �Idea� also has the
fields Description, History, Links and File Attachments which are included in
every work item. In the description field the user can write the description and
other additional information about the work item. The �History� field shows
change history of the work item. In the links field can be seen the work item�s
relations to other work items. Finally, to file attachment field can be attached
documents or other files related to the work item.

The �Idea� work item is meant to be used for requirement management. Re-
quirements are gathered before the start of project and during the project they are
updated as requirements change. Feature ideas are often taken to the product
backlog, whereas technical requirement ideas might affect some technical solu-
tions and decisions. All ideas are not necessarily taken notice of at all so they
remain as raw ideas or are deleted at some point.

5.1.3 Project Setup

Before the demo project could be started some planning and preparations had to
be done. The project team had to be gathered, working environments setup, re-
quirements gathered and roles made clear.

Setting up the demo project was started by gathering requirements for Probe
DB from the customer and Probe Network developer. Teemu Kanstren, who is
working on his thesis at VTT acted as the customer, and the Probe Network is
developed by Markku Pollari as a part of his master thesis. When a clear view of
requirements was established, the project was planned according to SCRUM.
The requirements were divided into logical groups and initially scheduled so that
the working product would be delivered at the end of the project. The project
also required one additional member to test distributed development with TFS.
A TWINS project member, Juho Eskeli, volunteered to be a second contributor
in the demo project. He does not actually do any coding or otherwise contribute
to the Probe DB development but he acts as he would by marking tasks and bugs
done. Juha Vitikka fulfils the role of project manager and contributor in the pro-

5. Implementation

 37

ject. Thus in addition to coding Probe DB, he takes care of coordinating the pro-
ject and its work.

5.1.4 Visual Studio and Python Integration

Python was selected as the programming language for Probe DB but Visual Stu-
dio does not have native support for it. Visual Studio must be used to use TFS
features in the project, so some way of integrating VS with Python had to be
found. There is .NET implementation of Python called IronPython and Visual
Studio SDK has a sample integration project of it.

IronPython syntax is almost the same as in native Python, although it misses
some useful modules which needed to be added separately. The missing modules
were taken from FePy, which is an enhanced implementation of IronPython.
Some modules did not work by themselves, but required an additional .dll �file
to offer support for some Python functions. In this project files �IronPython.dll�
and �MySql.data.dll� were needed. IronPython.dll offers some Python system
level functions and MySql.data.dll was required by mysqldb.py module.

5.2 Probe Database Development

Development was partially directed by SCRUM, since it was selected to be a
process model for this project. It was decided to run the project in four sprints.
Some designing was done before the initiation of the project. The architectural
design of Probe Framework was drawn from the feature and technical require-
ments.

Probe DB has eleven classes, which can be seen in Figure 9. TUI, short for
Text Based User Interface, is the main class that works as a user interface. It
initiates functionality in other classes according to the user�s choice. When TUI
starts, EclipseTCPInterface which listens to socket for incoming Eclipse control
messages, is also launched to a separate thread. EclipseTCPInterface receives
XML control messages and passes them to CommandParser. CommandParser
parses commands, executes them and then returns the response back to Eclip-
seTCPInterface which sends data to Eclipse IDE.

5. Implementation

38

Figure 9. Class Diagram of Probe DB.

Import functionality works through TCPInterface, BinaryParser and CSVParser.
In case of file import, TUI class initiates CsvParser or BinaryParser depending
on the data format used. Import over network is taken care of by TCPInterface
class. It starts to listen to the socket for incoming data, and depending on the
data format, either passes it on to BinaryParser or CsvParser. These parsers parse
information from formatted data and save it to the database through Project
class. Project class has an instance for every test case that is importing data.
Finally DbInterface module has the database queries to interface with database.

Probe DB development was started from making CSV parser and database in-
terface. The aim during the first sprint was to deliver the first working build of
Probe DB which would be able to parse data from CSV file to database. That
build would be used only for testing, not released to the customer.

Work was started by making an initial design for database relations. The re-
quirements for database relations changed on many occasions during the project
so here only the final version of the database model is discussed. A diagram
below shows the final database tables and structure.

5. Implementation

 39

Figure 10. Database model of Probe DB.

Figure 10 shows Probe DB�s database tables and their relations. There are five
tables needed for storing all test data coming from Probe Network and in addi-
tion two auxiliary reference tables. All of the ID fields would not necessarily
have to be included in tables but keeping them there keeps queries simple and
probably makes them work faster.

All data imported to database must be connected to a specific project, version
and test case, so there are tables for this data. The project name and version ta-
bles include only the name and version fields in addition to the ID fields. The
table for test cases has ID fields and test case number, target, description, time
resolution and time fields. Other fields are quite self explanatory but the time
resolution field which tells what unit of time is measured in input and output

5. Implementation

40

times. The actual test data is saved to input and output tables. Input data is data
that the Probe Network inputs to the system under test or values, configuration
information, text or binary data used in tests. Output data can be various kinds of
data coming from probes or the Probe Network itself. For example it can be test
configuration data, memory dump, text, numbers of memory and CPU usage or
test duration times. For different types of output data there�s a reference table to
which the output types, their data types and IDs are saved. Input and output data
can be in different data types, so there is a reference table for data types as well.
Thus, because of the data being in different data types, input and output tables
have their own field for each MySql data type. In addition, the output table has
number and time fields and reference ID field to output type. The input table
also has number and time fields and a reference ID field to data types table.

The CSV format was designed for the first working builds as a proof of con-
cept, to help develop other parts of Probe DB and to identify more technical
requirements and impediments. It was much easier to develop than binary format
which is going to be used as the primary import format. When the CSV specifi-
cation document had been written, coding of CSV parser and database queries
was started.

Binary format and binary parser were developed with the aim of reducing
work load at the probe network because it is usually running on an embedded
device with little computing power and few resources. Also, the technical re-
quirements had to be taken into consideration. Format protocol was formed of
compact binary messages which have specific data fields. This is suitable in both
cases, importing from a file and from TCP/IP packets. Most of the message
fields are fixed length and for variable length fields, like text and binary fields,
the lengths are given in the length field before the actual variable length field.
Thus it is known how long each message is so messages can be put one after
another without separator characters.

The message types in binary format are initial binary, output type binary, in-
put binary, output binary and serial binary messages for sending multiple inputs
and outputs in a row. Every data import must start with an initial binary message
which delivers byte order, project name, version, test case, time and time resolu-
tion information. With the initial binary a three byte ID to reference the specific
initial binary information is also sent. This is necessary because there can be
multiple imports going on simultaneously. When importing data over TCP/IP
every packet must start with this ID to ensure that the packet�s data is matched
with the right initial binary data. An output type binary message enables adding

5. Implementation

 41

custom output types to the database. It has fields name, number and data type
number. For every test case there are automatically created output types �Test
Result�, �Duration�, �Time� and �Configuration�.

Input and output binary messages are used to import the actual test data. Input
binary includes input number, data type, time field and data field (with length
field depending on data type). Output binary fields are output number, output
type, time and the actual data field. For getting multiple inputs or outputs to the
same message there are two kinds of serial binary types for inputs and outputs.
First, the serial binary type enables the sending of multiple data and time pairs in
the same message. An other serial binary type is for sending just multiple data
values in the same message without the time field. The benefit from this is re-
ducing redundancy by not sending other message fields with every data value.

Binary protocol format is processed by BinaryParser class� instance. The in-
stance is first given a file name or data string from TCP/IP packet, and depend-
ing on that it either reads data from a file or starts directly processing the data
packet. Parsing itself is done by reading the binary message�s bytes at the
pointer mark. The first byte of each message suggests what kind of message it is.
Each message type is parsed and handled differently. If data fields are of fixed
length the whole message can be parsed at once. In case there are variable length
fields in the binary message the parsing must be done in parts because the places
of data fields behind variable length fields are not known. When the whole mes-
sage is parsed its information is processed and sent to an instance of Project
class.

TCP interface creates a socket and then waits for incoming connections. Every
socket is opened to its own thread to enable simultaneous multiple imports.
Socket threads must also have their own instances of BinaryParser and
CsvParser classes to parse data parallel in case it is coming from several connec-
tions. TCP interface receives packets of data and identifies whether data is in
binary or CSV format. Then the data is given to the right parser. When parsing is
finished the next data packet is taken to processing. After all data packets are
received the socket is closed and the TCP interface keeps on listening to new
connections.

Export functionality required designing of XML export format protocol which
should be able to describe the information the user wants and its formatting. In
export XML format all information is presented between XML elements. Below
is an example of XML export file.

5. Implementation

42

<export>
 <bind>
 <project>Test</project>
 <versionnumber>alpha</versionnumber>
 <testcase>1.0</testcase>
 </bind>
 <output>
 <linestart>::</linestart>
 <separator>;</separator>
 <start>50</start>
 <max-values>20</max-values>
 <table>output</table>
 <column>
 <colname>time</colname>
 </column>
 <column>
 <colname>output_int</colname>
 <scale-max>7</scale-max>
 <scale-min>4</scale-min>
 </column>
 <column>
 <colname>number</colname>
 </column>
 <where>number>100</where>
 <order>number,output_int</order>
 </output>
</export>

There are two main elements, <bind> and <output>. First there must be a de-
scribed project, version and test case that the data to be exported belongs to. This
is specified in the <bind> element. Within the next element, <output>, all the
other information about the export is described: the table from which to export,
columns taken to export, order, scaling, formatting and filtering options. Using
the <order> element the user can choose a column by which the values are or-
dered in either ascending or descending order. Filtering elements enable the user
to filter out a number of first rows, define the maximum number of rows and
specify search parameters according to SQL syntax. For formatting export data
there is a possibility to specify line start and separator characters. The scaling
option is column specific and it enables specifying minimum and maximum that
values are scaled to.

The XML export format parser was implemented in Export class using Py-
thons pyexpat module. It is a very simple parser which offers the possibility to
write methods that are run when the parser detects start element, data element

5. Implementation

 43

and end element. Export class also uses Errors Class and Column Class as auxil-
iary classes. Errors Class has a definition for one exception and instances of
Column Class are used to contain information concerning single columns. There
is no error checking for XML files so it is up to the user to write the XML cor-
rectly following the format specification.

Eclipse integration works over a TCP/IP connection. It is implemented in
EclipseTCPInterface class and it offers Eclipse a way to retrieve data from the
database. Integration interface is started on its own thread from TUI class. It
creates a socket and listens to incoming connections. A connection is opened
from Eclipse IDE and then the interface waits for data. When data arrives it first
checks that the data, or at least its first element, is in XML format. The XML
data is given to an instance of CommanParser class which parses XML using
Python�s pyexpat parser described earlier (XML export format). Eclipse inter-
face offers queries for projects, versions and test cases. Later in future versions it
may expose all Probe DB�s functionality to Eclipse IDE.

Figure 11 represents the User interface of Probe DB. It was constructed
quickly and is a quite simple text-based UI. It is implemented in TUI class which
also works as the main instance of Probe DB. It shows the user which choices of
functionalities Probe DB offers and then waits for the user to make his or her
choice. When a choice is made, a specified feature starts to run and when it
completes it, UI informs the user of the choices again. Below is a screenshot of
UI main screen.

Figure 11. Text based UI of Probe DB.

5. Implementation

44

5.2.1 Testing

Visual Studio�s IronPython integration does not offer support for automated tests
which presented considerable difficulty in implementing tests. This was solved
by implementing tests in Eclipse which has PyUnit offering support for unit
tests. Unit tests were not written for all source code but the most important parts
and complex parts have unit tests.

Several integration tests with Probe Network have been made. The first time
integration with the Probe Network was tested when a working build with CSV
parser and database file import functionality was ready. Probe Network devel-
oper made a sample CSV data file for testing import functionality. First integra-
tion testing revealed a number of bugs, but it also proved that the concept works,
and gave some ideas for future development. Later more integration testing was
done when the binary parser and network import features were ready. The binary
parser was tested the same way as CSV parser integration. Network import was
tested a few times with a small amount of sample data, but all of the technical
requirements could not be tested since the Probe Network is still under devel-
opment. Eclipse integration was also tested by Juho Eskeli while developing
eclipse integration plug-in. Integration tests revealed many bugs, but after fixing
them Probe DB proved to be working well with Eclipse and Probe Network as
far as requirements were able to be tested. Binary format seemed to reduce the
probe effect, that is mainly work load and need of resources, at the embedded
device when compared to CSV format. Export functionality was tested by im-
porting random data to the database and then making an XML export file for an
MVA tool named Pervis developed at VTT. Data was exported and read suc-
cessfully to Pervis.

5.2.2 Limitations

The software�s UI is very clumsy and unattractive since it is text based. Probe
DB does only one thing at a time (excluding Eclipse integration which runs in
the background). You can not, for example, import and export simultaneously.
The TCP/IP connection does not buffer packets, so there is a possibility that data
gets lost when the data is coming in too fast. Eclipse integration does not yet
offer support for all Probe DB features but more available features will be added
in future development.

5. Implementation

 45

5.3 Software Development with TFS

TFS offers a wide range of tools and features facilitating the work of project
managers especially but also work of other project members. All project mem-
bers are able to get and share all necessary information using TFS or its project
portal. The project is coordinated using work items.

5.3.1 Working with MS TFS

There are different roles in the project which all have different usages for TFS.
Project managers coordinate the project and its work with the help of work items
and reports. Coders use source control repository, project portal and work items
to manage their work and schedule. Process templates have some automation for
project flow and process guidance guiding through different stages of project.
The project portal can be used to share essential information, documents and
reports with group members.

From a project management point of view TFS has useful features for project
coordination and information sharing. The project manager uses work items to
coordinate project work and to inform other project contributors of what their
tasks and schedules are. The project portal is used to share all kinds of essential
information like documents, links, events and contacts. From reports, a project�s
state and progress can be monitored. Process models have also process guidance
providing information about the process and its methodology, work procedures,
roles, work items and reports.

In practice, the project managers� work with TFS is mainly playing with work
items, observing the progress of work and watching reports. Getting started with
a new project is quite simple if the process model is otherwise familiar. The
process template takes care of creating the project and its project portal and re-
ports. After the project is created it needs to be configured for the project�s
needs. This includes adding members to the project, setting up permissions and
security, tailoring the project portal and configuring source control settings. The
next phase is usually setting up project management, meaning creating the pro-
ject�s initial work items. Creating, viewing and modifying work items are done
from Visual Studio Team Explorer. When the project gets going the project
manager observes and coordinates project work with the help of work items and
reports. Detailed work progress can be seen straight from work items as con-
tributors mark them done, but the bigger picture can be seen from reports. They

5. Implementation

46

are available from Visual Studio Team Explorer plug-in and from the project�s
report portal.

For coders, TFS offers integrated source control repository and facilitates get-
ting and sharing information and coordinating work and schedules. Coding itself
is done with Visual Studio, which integrates with TFS. Source control files are
managed with TFS� source control repository. From work items coders see re-
quirements, issues, features and bugs of software they are developing and tasks
that are to be done.

During project iteration coders select the tasks to work on from work items.
They update work items according to their work progress so that project manag-
ers can keep on track of work. Work items can be linked to other work items,
source control items and documents. This offers very useful traceability informa-
tion for coders. For example, this way bugs can be traced to specific work items
and source control files. For coders, the project portal works as a place for in-
formation sharing. There information can be shared using document libraries,
discussion boards and links, events, announcements and contact lists.

The project portal greatly facilitates project communication. It is quite easily
customizable for a projects� needs. There can be added reports, discussion
boards, document libraries and various lists, like event, announcement contact,
link and task lists. It is easily accessible with web browser.

5.3.2 Software Configuration Management

TFS has an integrated source control repository which uses SQL Server 2005 as
information storage. In TFS the source control files are managed with check-in
and check-out operations. Check-out takes files under editing and check-in
commits the changes to repository. Control management in TFS is based on
change set which describes one check-in operation and all files and other objects
associated with it. TFS source control has support for the common control man-
agement operations, like Merge, Branch and Shelve.

When a coder starts to work with a source control object he performs a check-
out operation. A check-out downloads the latest version of files from the reposi-
tory to be edited and marks them checked-out. If multiple check-out option is
enabled then a coder can decide whether other coders can perform check-outs or
check-ins at the same time. There may be difficulties merging the changes made
to the source control file that has been edited simultaneously by several coders
so usually it would be wise not to allow concurrent check-outs. When the coder

5. Implementation

 47

has finished editing source code files he performs a check-in, which commits the
changes made to checked-out files. Depending on check-in policies check-in can
(or must) be associated with work items. [20, pp. 152�156]

In addition to basic operations like check-in and check-out TFS source con-
trol�s features include labeling, branching, merging, shelving, comparing and
locking. Labeling is a way to mark a specific set of file versions so that this par-
ticular set is retrievable later if necessary. This feature, also called as baselining,
is used very often to manage different versions and branches of product. The
branching feature means that you can make several branches of product that are
developed differently from the same baseline. Merging, that is merging two
branches, is the opposite. Shelving is one kind of check-in operation in which
the changes are not committed to the original source code file but are shelved to
possibly be used later. [20]

In the demo project carried out, we used this check-in policy and found out it
was quite practical. This way it can be traced back to which files a particular
work item is associated with, or vice versa.

5.3.3 SCRUM

Managing SCRUM in TFS is possible with Conchango�s SCRUM for Team
System process template. It has work items, reports and process support needed
for SCRUM. Work items in the SCRUM process template are Product Backlog
Item, Sprint Backlog Item, Sprint, Release and Sprint Retrospective item. There
are also many useful reports like Delta Report, burndown charts and reports of
specific work items. SCRUM process template lacks process automation but it
has process guidance for process support. SCRUM�s roles can be managed from
TFS membership and security settings.

Different SCRUM process artefacts in the SCRUM process template appear as
work items. There are five actual SCRUM work items and one work item, an
idea, was added to the process template in this implementation to work as re-
quirement management item. All items have Description, History and File At-
tachment fields and most of them have also Links field for traceability. SCRUM
product backlog is constructed of product backlog items. They have all the nec-
essary data fields needed to control it according to SCRUM. A product backlog
item is addressed to a specific sprint and product area. For product backlog pri-
oritization and scheduling there are Relative Value, Estimate and Work Remain-
ing fields. Current Status field controls product backlog item�s state from �Not

5. Implementation

48

Done� through �In Progress� to �Done� or �Deleted�. With product backlog
item�s Owned by field item can be marked for a specific developer. A sprint
work item defines one sprint and its parameters. In addition to sprint status there
are fields for sprint capacity, release number and start and end dates. SCRUM
tasks, bugs and impediments appear as sprint backlog items. As product backlog
items they also have Sprint Number, Product Area, Status, Owned by, Estimate
and Work Remaining fields. The backlog item-type field specifies whether the
sprint backlog item is either task, bug or impediment. Sprint retrospective issues
can be gathered to sprint retrospective items. Their parameters are Sprint Num-
ber, Retrospective Type, Team and Individual. Retrospective types are �What
went well�, �What didn�t go so well� and �What we can do better�. There is also
a work item for release with only Release Number and Current Status fields.

The SCRUM process template has many reports, most of which just list work
items, but there are a few quite useful ones also. Sprint and the product burn-
down chart reports show the progress of the project by viewing graphically how
many of the work items have been done, and how much there is still to be done.
From a burn down graph can be seen a burn down line, from which can be esti-
mated when all the work will be done. Sprint and product cumulative flow re-
ports are also handy for observing progress. They show a graphical diagram of
what is done, in progress and what is not done. Delta report shows changes in
product backlog. Sprint overview chart shows in sprint�s tasks�, bugs� and im-
pediments� remaining work in a graph.

The project was run successfully with SCRUM following its process and pro-
cedures. SCRUM meetings were only short formal events where the project
leader (and coder) Juha Vitikka told Juho Eskeli which tasks he should mark
done. These meeting were handy for gathering experiences of SCRUM and its
procedures though. Requirement management item customization for TFS
SCRUM template was used during the project and it proved to work as it should.
Reports and queries of this item would have been useful, and they will probably
be implemented in the future.

6. Discussion

 49

6. Discussion
In this section issues concerning this work overall and issues raised while work-
ing will be discussed. User experiences of TFS and SCRUM by the viewpoints
of different roles were gathered during the project. Both the positive and nega-
tive issues and possible enhancements are discussed here. Also issues of data-
base interface development are covered.

6.1 TFS Usage Experiences

TFS usage was tested with a two member team project. One purpose of it was to
get user experiences of TFS in different roles. Roles in the project were coder,
project manager, customer, user and ScrumMaster. Thus a large portion of TFS
main functionality was used in the project.

TFS work items were found to be quite handy and simple for managing the
project. Work items are mainly used by the project manager and coders. Though
they lack some automation, they are also quit fast and easily manageable. For an
automation point of view there could be more automatically updating fields. All
information of work items are controlled by editing the data field which may feel
a little frustrating in the long run. For example, tasks could be marked �done�
with a button or some other way. There is also currently no way to update in-
formation to multiple work items at the same time. For listing work items there
could be dynamic queries which would list only those work items that are essen-
tial at the time. For example, task query lists all the project�s tasks, though old
tasks are seldom used or observed. Controlling work items by hierarchy view
would also facilitate controlling projects with a large number of work items.
Work item control is integrated with Microsoft Project and Microsoft Office but
in our demo project we found little use for these tools. If the project manager is
more familiar with MS Project this integration probably facilitates his work.

6. Discussion

50

For requirement management the �idea� work item was used in the demo project.
Though a slightly simplified implementation it worked quite well and provided
useful traceability information between requirements and other work items. The
�Idea� work item may be improved in the future development.

TFS is used from Visual Studio with Team Explorer plug-in. Visual Studio is
limited in programming language support so if you want to code java, for exam-
ple, it is not easily done with TFS. It is possible to make other programming
IDEs to integrate with TFS though. For eclipse IDE there is a commercial
TeamPrise plug-in which enables the use of TFS from Eclipse.

The project portal was found to be a very practical tool for project communi-
cation and information sharing. It is easy to learn to use and it can be customized
for a project�s needs.

All in all, ALM has provided some useful help in the demo project. Especially
work coordination and communication with team members was somewhat facili-
tated by the use of TFS. One must notice that the demo project had only three
member team and the product developed was not extremely complex. ALM and
ALM tools might be more helpful in larger projects with more people and more
complex products. In distributed software development it could also appear to be
very important.

6.2 Experiences about Database Interface Development

Many issues must be taken notice of when developing a database interface for an
embedded test framework. One of the most difficult issues was that data must be
transferred between the embedded platform and database interface using transfer
techniques and data formats that would not put too much work load on an em-
bedded device. Thus a compact and efficient binary format had to be designed
and tuned for optimal performance at the Probe Network�s end. The information
saved to the database is analyzed with third party analysis software, so there had
to be a customizable export feature also. For a database solution there were
many possible options. MySQL was selected because it is free open source data-
base, very commonly used and it supports SQL language. Other database solu-
tions were not tried but an object oriented database was under consideration.
MySQL was also a little easier to implement for Probe DB since the developer
had no former experience of object oriented databases.

6. Discussion

 51

6.3 Probe Database Future Development

Planning for future development of Probe Database is already ongoing. Probe
DB is going to be integrated with Merlin tool chain, which is a set of project
management and testing tools integrated with Eclipse designed to facilitate dis-
tributed software development work. There is also an MVA (Multi Variable
Analysis) tool that is going to be integrated with tool chain to Eclipse IDE and
Probe DB. This puts development needs on Probe DB requiring its own ready-
made export format and some automation. It is also possible that only the Probe
DB�s export module is developed to serve as Eclipse interface to Probe DB�s
database.

Some simple reporting features could be developed to offer testers some
commonly needed information of test data. From quite early phases a report
feature was considered for Probe DB but it was kept at low priority. Reports
could be web browser based reports built using JavaScript or PHP with direct
database connection. There could also be a web portal for reports. Reports them-
selves have not yet been planned but at least some basic ones which would show
test cases and their statistics would probably be useful.

The User interface is quite clumsy and poor looking since it is only text based.
If Probe DB is going to be used more commonly as a stand alone solution, not
through eclipse integration, it would need a better UI. A graphical UI would look
better and probably facilitate working with Probe DB.

Probe DB still lacks all information browsing features. Test case browsing
could be added to UI, preferably to graphical UI, allowing the user to browse
through projects, versions and test cases and maybe even the test data itself.
Further on, with this test case browser user could maybe select some readymade
exports for test data to some commonly used analyze software formats. Informa-
tion browsing could be real time, meaning that the user could browse through
information while the test is still running. An exporting feature might also be
able to support real time export so that data could be analyzed real time while
tests are running. Real time export could be sent directly to a network socket that
is listened to by analyzing software instead of an export file.

7. Conclusion

52

7. Conclusion
During this work a working database interface, Probe DB, has been developed
for an embedded testing framework, Probe Framework. Also a modification to
MS TFS SCRUM process template was made and demoed. Probe DB was de-
veloped with the help of Microsoft�s ALM solution, MS TFS, using a modified
SCRUM process template. The project was carried out with SCRUM process
model. The project provided insight to ALM and experiences of applying ALM
in practice.

Probe DB was developed using the carefully selected methods and techniques
described in this work. Because one major requirement was that the product
would be open source and platform-independent it was coded with Python pro-
gramming language. For the same reason MySQL database was selected to serve
as the database solution. To avoid, or at least reduce, the probe effect Probe
Framework�s binary format was designed. It was made as compact as possible to
reduce the need of resources and processing power at the Probe Network, which
runs tests at the embedded platform. CSV format was designed before binary
format to test the concept, and it is also needed if text-coded CSV information is
wanted to be imported to the database from other sources. There was a need to
analyze information with third party software, so a customizable export feature
had to be developed. This was implemented using XML to describe the data and
possible data manipulations wanted, and the format it should be exported in. File
and network imports were required because embedded platforms and test setups
vary so that both data transport methods are needed sometimes.

MS TFS with the modified SCRUM process template was successfully used
to manage the demo project. MS TFS lacks requirement management items, so
the SCRUM process template had to be tailored by adding an �idea� work item
to it. The �idea� work item acts as a simple requirement item providing traceabil-
ity and reporting possibilities for requirements.

7. Conclusion

 53

References
[1] Schwaber, C. (2006) The Changing Face of Application Life-Cycle Manage-

ment. Forrester Research Inc. White paper.

[2] Shaw, K. (2007) Application lifecycle management for the enterprise. Serena
Software, April 2007. (Available 31.05.2007.) URL:

 http://www.serena.com/Docs/Repository/company/Serena_ALM_2.0_For_t.pdf

[3] Doyle, C. (2007) The importance of ALM for aerospace and defence (A&D).
Embedded System Engineering (ESE magazine), Volume 15, Issue 5, pp. 28�
29.

[4] Doyle, C. & Lloyd, R. (2007) Application lifecycle management in embedded
systems engineering. Embedded System Engineering (ESE magazine), Volume
15, Issue 2, pp. 24�25.

[5] Abrahamsson, P., Salo, O., Ronkainen, J. & Warsta, J. (2002) Agile software
development methods. Review and analysis. Espoo: VTT Publications 478. 107 p.

[6] Royce, W. W. (1970) Managing the Development of Large Software Systems.
Proceedings of IEEE WESCON 26, August. Pp. 1�9.

[7] Pressman, R. S. (1987) Software Engineering: A Practitioner's Approach.
McGraw�Hill Book Company. 161 p.

[8] SCRUM Alliance Home Pages. (Available 30.4.2008.)
 URL: http://www.scrumalliance.org/

[9] Kääriäinen, J. & Välimäki, A. (2008) Impact of Application Lifecycle Manage-
ment � a Case Study. In: Proceedings of International Conference on Interop-
erability of Enterprise, Software and Applications, March 25�28, Berlin, German.
Enterprise Interoperability III � New Challenges and Industrial Approaches. Mer-
tins, K., Ruggaber, R., Popplewell, K. & Xu, X. (Eds). Springer. Pp. 55�67.

[10] Eclipse home page. (Available 30.4.2008.) URL: http://www.eclipse.org/

[11] Semeniuk, J. & Danner, M. (2005) Managing Projects With Visual Studio Team
System. Microsoft. 249 p.

[12] Hamou-Lhadj, A., Lethbridge, T. C. & Fu, L. (2004) Challenges and Require-
ments for an Effective Trace Exploration Tool. Proceedings of the 12th IEEE In-
ternational Workshop on Program Comprehension (IWPC�04), 24�26 June. Pp.
70�78.

http://www.serena.com/Docs/Repository/company/Serena_ALM_2.0_For_t.pdf
http://www.scrumalliance.org/
http://www.eclipse.org/

7. Conclusion

54

[13] Sääksvuori, A. & Immonen, A. (2002) Product Lifecycle Management. Springer
2004 (Original Finnish version: Talentum, 2002.) 231 p.

 14] Gait, J. (1986) A probe effect in concurrent programs. Software�Practice &
Experience, Volume 16, Issue 3, pp. 225�233.

[15] Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S. Pacheco, C., Tschantz,
M. S. & Xiao, C. (2006) The Daikon system for dynamic detection of likely in-
variants. Science of Computer Programming. Volume 69, Issue 1�3, pp. 35�45.

[16] MySQL Web Pages. (Available 30.4.2008). URL: http://www.mysql.com/

[17] Zope Web Pages. (Available 30.4.2008.) URL: http://www.zope.org/

[18] Elmasri, R. & Navathe, S. B. (2000) Fundamentals of database systems. Third
edition. Addison�Wesley. 1 000 p.

[19] Garcia-Molina, H., Ullman, J. D. & Widom, J. (2002) Database Systems: The
Complete Book. Prentice Hall. 1 152 p.

[20] Guckenheimer, S. (2006) Software Engineering with Microsoft Visual Studio
Team System. Addison�Wesley. 256 p.

http://www.mysql.com/
http://www.zope.org/

 Series title, number and
report code of publication

VTT Publications 714
VTT-PUBS-714

Author(s)
Juha Vitikka
Title

Supporting Database Interface Development with
Application Lifecycle Management Solution

Abstract

Controlling a software project has a major effect on the project's productivity, expenses and the
quality of a project's product and code. This work investigates Application Lifecycle Management
which considers how software, the software process and its different phases are controlled. With
the help of Application Lifecycle Management a working database interface for embedded testing
framework has been developed.

In this Microsoft Team Foundation Server is used for managing the software project. As a software
process SCRUM is used by utilizing SCRUM for Team Sys-tem process template developed by
Conchango. The process template is custom-ized to bring support for requirement management in
to it. The customized proc-ess template is used in the demo project, in which a database interface
for em-bedded testing framework is developed. Thus the process template customiza-tion is tested
in practice and experiences of ALM, Microsoft TFS and SCRUM process are gathered.

During development of the embedded testing framework, which is one sort of generic data gather-
ing tool, one must pay attention to many issues such as data transport methods and formats, data-
base solutions, data export methods and integration. Database interface software, called Probe DB,
is developed accord-ing to the requirements of the customer. Own CSV and binary data transport
formats and XML format for export functionality are designed, and interfaces for file and TCP/IP
import and for Eclipse IDE are developed. Software is coded with Python and MySQL will serve as
database solution.

ISBN
978-951-38-7353-0 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number

VTT Publications
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

6086

Date Language Pages
September 2009 English, Finnish abstr. 54 p.

Name of project Commissioned by
TWINS ITEA

Keywords Publisher
ALM, SCRUM, TFS, data transport formats VTT Technical Research Centre of Finland

P.O.Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4520
Fax +358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

 Julkaisun sarja, numero ja
raporttikoodi

VTT Publications 714
VTT-PUBS-714

Tekijä(t)
Juha Vitikka
Nimeke

Tietokantarajapinnan kehittäminen ohjelmiston
elinkaaren hallinnan avulla

Tiivistelmä

Ohjelmistoprojektin hallinta vaikuttaa merkittävästi projektin tuotteen ja koodin laatuun, tuottavuu-
teen ja kuluihin. Työssä perehdyttiin ohjelmiston elinkaaren hallintaan (ALM), joka käsittelee sitä,
miten ohjelmistoa, ohjelmistoprosessia ja sen eri vaiheita hallitaan. Ohjelmiston elinkaaren hallintaa
apuna käyttäen kehitettiin toimiva tietokantarajapinta sulautettuun testauskehikkoon.

Tässä työssä ohjelmistoprojektin hallintaan käytettiin Microsoftin ohjelmiston elinkaarenhallintatyö-
kalua Team Foundation Serveriä. Ohjelmistoprosessina käytettiin SCRUMia Conchangon TFS:ään
kehittämän SCRUM for Team System -prosessipohjan avulla. Prosessipohjaa muokattiin vaatimus-
tenhallinnan mukaan tuomiseksi. Muokattua prosessimallia sovellettiin projektissa, jossa kehitettiin
tietokantarajapinta sulautettua testauskehikkoa varten. Näin testattiin prosessimallin muokkauksen
soveltuvuus ja samalla kerättiin kokemuksia ohjelmiston elinkaaren hallinnasta, MS TFS:stä ja
SCRUM-prosessista.

Sulautettu testauskehikko voidaan katsoa geneeriseksi tiedonkeruutyökaluksi, jollaiseen tietokanta-
rajapintaa kehittäessä pitää ottaa huomioon useita seikkoja, kuten tiedonsiirtomenetelmät ja for-
maatit, tietokantaratkaisu, tiedon vieminen sekä integrointi. Tietokantarajapintasovellus, nimeltään
Probe DB, kehitettiin asiakkaan tarpeiden pohjalta. Sovellukselle suunniteltiin omat CSV- ja binää-
rimuotoiset tiedonsiirtoformaatit sekä XML-formaatti ulosvietävän tiedon määrittämiseen ja
kehitettiin tiedosto- ja TCP/IP-rajapinnat testauskehikkoon sekä TCP/IP-rajapinta Eclipse IDEen.
Sovellus koodattiin Pythonilla ja tietokantaratkaisuksi valittiin MySQL. Kehitystyön tuloksena syntyi
toimiva tietokantarajapinta osaksi sulautettua testaustyökalua, Probe Frameworkiä.

ISBN
978-951-38-7353-0 (URL: http://www.vtt.fi/publications/index.jsp)

Avainnimeke ja ISSN Projektinumero
VTT Publications
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

6086

Julkaisuaika Kieli Sivuja
Syyskuu 2009 Englanti, suom. tiiv. 54 s.

Projektin nimi Toimeksiantaja(t)
TWINS ITEA

Avainsanat Julkaisija

ALM, SCRUM, TFS, data transport formats VTT
PL 1000, 02044 VTT
Puh. 020 722 4520
Faksi 020 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	 	 VTT PUBLICATIONS 714
VTT CREATES BUSINESS FROM TECHNOLOGY
�Technology and market foresight • Strategic research • Product and service development • IPR and licensing
• Assessments, testing, inspection, certification • Technology and innovation management • Technology partnership

• • • VTT PU
B

LIC
A

TIO
N

S 714 SU
PPO

R
TIN

G
 D

A
TA

B
A

SE IN
TER

FA
C

E D
EVELO

PM
EN

T W
ITH

 A
PPLIC

A
TIO

N
 LIFEC

YC
LE ...

ISBN 978-951-38-7353-0 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455-0849(soft back ed.)	

Juha Vitikka

Supporting Database Interface
Development with Application
Lifecycle Management Solution

VTT Publications

696	 Suvi T. Häkkinen. A functional genomics approach to the study of alkaloid biosynthesis and
metabolism in Nicotiana tabacum and Hyoscyamus muticus cell cultures. 2008. 90 p. + app.
49 p.

697	 Riitta Partanen. Mobility and oxidative stability in plasticised food matrices. The role of water.
2008. 92 p. + app. 43 p.

698	 Mikko Karppinen. High bit-rate optical interconnects on printed wiring board. Micro-optics
and hybrid integration. 2008. 162 p.

699	 Frej Wasastjerna. Using MCNP for fusion neutronics. 2008. 68 p. + app. 136. p.

700	 Teemu Reiman, Elina Pietikäinen & Pia Oedewald. Turvallisuuskulttuuri. Teoria ja arviointi.
2008. 106 s.

701	 Pekka Pursula. Analysis and Design of UHF and Millimetre Wave Radio Frequency
Identification. 2008. 82 p. + app. 51 p.

702	 Leena Korkiala-Tanttu. Calculation method for permanent deformation of unbound pavement
materials. 2008. 92 p. + app. 84 p.

703	 Lauri Kurki & Ralf Marbach. Radiative transfer studies and Next-Generation NIR probe
prototype. 2009. 43 p.

704	 Anne Heikkilä. Multipoint-NIR-measurements in pharmaceutical powder applications. 2008.
60 p.

705	 Eila Ovaska, András Balogh, Sergio Campos, Adrian Noguero, András Pataricza, Kari Tiensyrjä
& Josetxo Vicedo. Model and Quality Driven Embedded Systems Engineering. 2009. 208 p.

706	 Strength of European timber. Part 1. Analysis of growth areas based on existing test results.
Ed. by Alpo Ranta-Maunus. 2009. 105 p. + app. 63 p.

707	 Miikka Ermes. Methods for the Classification of Biosignals Applied to the Detection of
Epileptiform Waveforms and to the Recognition of Physical Activity. 2009. 77 p. + app. 69 p.

708	 Satu Innamaa. Short-term prediction of traffic flow status for online driver information. 2009.
79 p. + app. 90 p

709	 Seppo Karttunen & Markus Nora (eds.). Fusion yearbook 2008. 2009. Annual report of
Association Euratom-Tekes. 132 p.

710	 Salla Lind. Accident sources in industrial maintenance operations. Proposals for identification,
modelling and management of accident risks. 2009. 105 p. + app. 67 p.

711	 Mari Nyyssönen. Functional genes and gene array analysis as tools for monitoring hydrocarbon
biodegradation. 2009. 86 p. + app. 59 p.

712	 Antti Laiho. Electromechanical modelling and active control of flexural rotor vibration in cage
rotor electrical machines. 2009. 91 p. + app. 84 p.

714	 Juha Vitikka. Supporting database interface development with application lifecycle management
solution. 2009. 54 p.

http://www.vtt.fi/publications/index.jsp

	Abstract
	Tiivistelmä
	Preface
	Contents
	List of symbols
	1. Introduction
	2. Application Lifecycle Management
	2.1 Lifecycle Models
	2.1.1 Traditional Models and Agile Models
	2.1.2 SCRUM

	2.2 ALM Concepts
	2.3 ALM Tools
	2.4 MS TFS
	2.4.1 TFS from ALM Framework Perspective

	3. Data Transport Formats and Databases
	3.1 Data Transport
	3.1.1 Data Import
	3.1.2 Export

	3.2 Databases

	4. Work Assignment
	4.1 Probe Database Development Needs
	4.1.1 Functional Requirements
	4.1.2 Technical Requirements

	4.2 MS TFS Research Needs

	5. Implementation
	5.1 Development Environment Setup
	5.1.1 TFS Installation And Configuration
	5.1.2 Process Template Installation And Customizations
	5.1.3 Project Setup
	5.1.4 Visual Studio and Python Integration

	5.2 Probe Database Development
	5.2.1 Testing
	5.2.2 Limitations

	5.3 Software Development with TFS
	5.3.1 Working with MS TFS
	5.3.2 Software Configuration Management
	5.3.3 SCRUM

	6. Discussion
	6.1 TFS Usage Experiences
	6.2 Experiences about Database Interface Development
	6.3 Probe Database Future Development

	7. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

