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yeasts and a fungus [Aineenvaihdunnan mallinnus ja 13C-vuoanalyysi. Sovellukset bioteknologisesti 
tärkeisiin hiivoihin ja homeeseen]. Espoo 2009. VTT Publications 724. 94 p. + app. 83 p. 
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Abstract 
All bioconversions in cells derive from metabolism. Microbial metabolisms 
contain potential for bioconversions from simple source molecules to unlimited 
number of biochemicals and for degradation of even detrimental compounds. 
Metabolic fluxes are rates of consumption and production of compounds in 
metabolic reactions. Fluxes emerge as an ultimate phenotype of an organism 
from an integrated regulatory function of the underlying networks of complex 
and dynamic biochemical interactions. Since the fluxes are time-dependent, they 
have to be inferred from other, measurable, quantities by modelling and compu-
tational analysis. 13C-labelling is crucial for quantitative analysis of fluxes 
through intracellular alternative pathways. Local flux ratio analysis utilises uni-
form 13C-labelling experiments, where the carbon source contains a fraction of 
uniformly 13C-labelled molecules. Carbon-carbon bonds are cleaved and formed 
in metabolic reactions depending on the in vivo fluxes. 13C-labelling patterns of 
metabolites or macromolecule components can be detected by mass spectrome-
try (MS) or nuclear magnetic resonance (NMR) spectroscopy. Local flux ratio 
analysis utilises directly the 13C-labelling data and metabolic network models to 
solve ratios of converging fluxes. 

In this thesis the local flux ratio analysis has been extended and applied to 
analysis of phenotypes of biotechnologically important yeasts Saccharomyces 
cerevisiae and Pichia pastoris, and a fungus Trichoderma reesei. Oxygen de-
pendence of in vivo net flux distribution of S. cerevisiae was quantified by using 
local flux ratios as additional constraints to the stoichiometric model of the cen-
tral carbon metabolism. The distribution of fluxes in the pyruvate branching 
point turned out to be most responsive to different oxygen availabilities. The 
distribution of fluxes was observed to vary not only between the fully respira-
tory, respiro-fermentative and fermentative metabolic states but also between 
different respiro-fermentative states. The local flux ratio analysis was extended 
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to the case of two-carbon source of glycerol and methanol co-utilisation by 
P. pastoris. The fraction of methanol in the carbon source did not have as pro-
found effect on the distribution of fluxes as the growth rate. The effect of carbon 
catabolite repression (CCR) on fluxes of T. reesei was studied by reconstructing 
amino acid biosynthetic pathways and by performing local flux ratio analysis. 
T. reesei was observed to primarily utilise respiratory metabolism also in condi-
tions of CCR. T. reesei metabolism was further studied and L-threo-3-deoxy-
hexulosonate was identified as L-galactonate dehydratase reaction product by 
using NMR spectroscopy. L-galactonate dehydratase reaction is part of the fun-
gal pathway for D-galacturonic acid catabolism. 
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Tiivistelmä 
Aineenvaihdunta kattaa kaikki biomuunnokset soluissa. Mikrobiaineenvaihdunta 
mahdollistaa yksinkertaisten lähtöaineiden muuntamisen rajoittamattomaksi 
määräksi erilaisia biokemikaaleja ja jopa haitallisten aineiden hajottamisen. Ai-
neenvaihduntavuot ovat yhdisteiden kulutus- ja tuottonopeuksia aineenvaihdun-
nan reaktioissa. Vuot ilmentyvät organismin todellisena fenotyyppinä, jota sääte-
levät yhteistoiminnallisesti solun monimutkaiset ja dynaamiset vuorovaikutus-
verkot. Koska vuot ovat aikariippuvaisia, ne on määritettävä mallinnuksen ja 
laskennallisen analyysin avulla toisista, mitattavissa olevista, suureista. 13C-leimaus 
on välttämätöntä, jotta vuot vaihtoehtoisilla solunsisäisillä reiteillä voidaan määrittää 
kvantitatiivisesti. Paikallisessa vuosuhdeanalyysissa käytetään tasaista 13C-leimausta, 
jossa hiilenlähde sisältää osuuden täydellisesti 13C-leimattuja molekyylejä. In 
vivo -vuot määräävät missä suhteissa aineenvaihdunnassa katkeaa ja muodostuu 
uusia hiili-hiilisidoksia. Aineenvaihdunnan välituotteiden ja makromolekyylien 
komponenttien 13C-leimauskuvioita voidaan mitata massaspektrometrialla (MS) 
tai ydinmagneettisella resonanssispektroskopialla (NMR). Paikallisessa vuosuh-
deanalyysissa käytetään suoraan mittausinformaatiota 13C-leimauskuvioista ja 
aineenvaihduntaverkkomalleja vuosuhteiden ratkaisemiseksi. 

Väitöskirjassa paikallista vuosuhdeanalyysia laajennettiin ja sovellettiin bio-
teknologisesti tärkeiden hiivojen Saccharomyces cerevisiae ja Pichia pastoris, ja 
homeen Trichoderma reesei fenotyyppien analysoimiseksi. S. cerevisiaen in vivo 
-vuojakauman riippuvuus hapen saatavuudesta määritettiin kvantitatiivisesti 
käyttämällä paikallisia vuosuhteita lisärajoitteina keskeisen hiiliaineenvaihdun-
nan stoikiometriselle mallille. Pyruvaattiristeyksen vuojakauma osoittautui her-
kimmäksi eri happisaatavuuksille. Selvästi erilaiset vuojakaumat havaittiin täy-
sin respiratiivisessa, respiro-fermentatiivisessa ja täysin fermentatiivisessa ai-
neenvaihdunnan tilassa, mutta myös eri respiro-fermentatiivisissa tiloissa. Pai-
kallinen vuosuhdeanalyysi laajennettiin kahden hiilenlähteen tapaukseen, jossa 
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P. pastoris kulutti samanaikaisesti glyserolia ja metanolia. Metanolin osuudella 
kokonaishiilenlähteessä ei ollut yhtä merkittävää vaikutusta vuojakaumaan kuin 
hiivan kasvunopeudella. Hiilikataboliittirepression (CCR) vaikutusta T. reesein 
vuojakaumaan tutkittiin rekonstruoimalla aminohapposynteesireitit ja tekemällä 
paikallinen vuosuhdeanalyysi. T. reesein havaittiin käyttävän pääasiassa respiratii-
vista aineenvaihduntaa myös repressoivissa olosuhteissa. NMR-spektroskopiaa 
käytettiin myös D-galakturonihapon kaboliareitin tutkimuksessa ja L-treo-3-
deoksi-heksulonaatti tunnistettiin T. reesein L-galaktonaattidehydrataasireaktion 
tuotteeksi. 
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1. Introduction – biology part 

1.1 Cell factories and model organisms 

Biotechnology offers possibilities for production of highly specialised biochemi-
cals and for sustainable and economic process alternatives. It exploits cells or 
biocatalytes, enzymes, in bioconversions. Cells contain complete machineries 
for bioconversions from simple source molecules to unlimited number of bio-
chemicals and degradation potential for breakdown of compounds even hazard-
ous. Microorganisms are efficient cell factories whose requirements on the proc-
ess conditions are modest and they often grow on inexpensive media. Even 
waste streams or effluents can be utilised as raw materials for bioprocesses. 

Eukaryotic microorganism, yeast Saccharomyces cerevisiae (Figure 1), has a 
long history of biotechnological utilisation from conventional use as baker’s 
yeast to production of diverse biochemicals. Concomitantly S. cerevisiae has 
been widely applied as a model organism in studies of general cell physiology. 
Due to the broad interest and the long history, S. cerevisiae is one of the most 
studied microorganisms with highly developed molecular biology tools and 
modelling frameworks [Petranovic and Vemuri, 2009; Herrgård et al., 2008; 
Nevoigt, 2008]. Today S. cerevisiae is emerging as a simple eukaryotic model, a 
systems biology workhorse, for elucidating the mechanisms of even human dis-
eases [Petranovic and Nielsen, 2008; Chen and Thorner, 2007]. The focus in 
systems biology is in understanding the function of a cell system as a whole 
[Lazebnik, 2002]. Since the complexity of cell systems is beyond intuitive com-
prehension, the core of systems biology is mathematical modelling of biological 
processes [Kitano, 2002]. The significant similarity of the cell function among 
eukaryotic cells offers promising prospects for S. cerevisiae models [Chen and 
Thorner, 2007; Petranovic and Nielsen, 2008; Botstein et al., 1997]. Physiology 
of S. cerevisiae was studied in Publication I of the thesis. The organisms investi-
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gated in Publications II, III and V, are fungus Trichoderma reesei (Figure 1) and 
yeast Pichia pastoris that are two host organisms for industrial production of 
natural and heterologous proteins. 

 

Figure 1. Budding yeast S. cerevisiae (on the left) and filamentous fungus T. reesei (on 
the right) are biotechnologically important production organisms. 

1.2 Metabolism 

All bioconversions in cells derive from metabolism. Metabolism is a set of bio-
chemical reactions made feasible by enzymes [Stryer, 1995], which in turn are 
encoded by genes. Thus, the whole potential of metabolism of an organism is 
encoded in its genome, the complement of all genes. At present, the metabolic 
potential of an organism can usually be efficiently modified or engineered, with 
the variety of molecular biology tools available today. Metabolic engineering is, 
as stated by Stephanopoulos already in 1990’s, “directed improvement of prod-
uct formation or cellular properties through the modification of specific bio-
chemical reaction(s) or the introduction of new one(s) with the use of recombi-
nant DNA technology” [Stephanopoulos et al., 1998]. 

Unicellular organisms comprise catabolism of substrates and anabolic path-
ways for synthesis of biomass components in a single cell. Pathways for metabo-
lization of various carbon sources unite and a range of biosynthetic pathways 
initiate in central carbon metabolism, which is a common knot for catabolism 
and anabolism [Ma and Zeng, 2003]. Source molecules are broken down and 
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energy and precursors for biosynthetic pathways are produced in the central 
carbon metabolism. 

1.3 Metabolic fluxes 

Metabolic flux is a time-dependent quantity of the rate of consumption or pro-
duction of compounds in a metabolic reaction [Stephanopoulos et al., 1998; 
Nielsen et al., 2003]. Metabolic fluxes are process streams of a cell factory. 
Therefore, a common aim of metabolic engineering is to generate changes in 
pathway fluxes. The essential biocatalytes, i.e. enzymes, can be amplified, de-
leted, and modified with versatile molecular biology tools. However, metabolic 
homeostasis prevails in cells that are highly balanced systems. A flux through a 
pathway depends on various factors in addition to the enzymes. The complement 
of fluxes in a cell, namely fluxome is cell’s ultimate response to genetic and 
environmental conditions [Sauer, 2004]. The flux response emerges from an 
integrated function of complex and dynamic interaction networks (metabolic, 
signal transduction, regulatory, protein-protein interaction networks etc). Many 
of the components of the biochemical interaction networks such as concentra-
tions of enzymes, other proteins, metabolites, and genome-wide gene expression 
levels are at present directly measurable with high-throughput systems. Since the 
fluxes are dependent of time, they cannot be directly measured but have to be 
inferred from other, measurable, quantities through a model based computational 
analysis. 

1.4 Regulation of flux phenotype 

The intertwined biochemical interaction networks of a cell form a regulatory 
system. The complex regulatory system enables both fine-tuned adaptive re-
sponses and robustness of the phenotype against genetic defects and fluctuations 
in external conditions [Kitano, 2007]. The ability to adapt to the prevailing 
growth conditions is essential for micro-organisms like S. cerevisiae that are 
unable to control the extracellular conditions. Furthermore, the regulatory sys-
tem is capable of attenuating effects of genetic modifications on phenotype [Da-
vies and Brindle, 1992; Schaaff et al., 2004; Blank et al., 2005]. 

The regulation of a finite change in flux can be conveniently and quantita-
tively divided into hierarchical and metabolic regulation [ter Kuile and Wester-
hoff, 2001]. Hierarchical regulation covers the steps of the central dogma of 
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molecular biology: gene expression, transcription, and translation. It ultimately 
determines the amounts of enzymes. Transcription is regulated by transcription 
factor proteins and other regulatory factors that may bind specifically to a gene 
to initiate or to speed up the formation of a messenger RNA (mRNA) [Fuda et 
al., 2009]. The mRNA is then transferred out of the nucleus into the cytosol 
where it binds to ribosomes for translation. Rate of translation is dependent on 
various factors including ribosome density [Arava et al., 2003; Brockmann et al., 
2007]. The degradation rates also affect the quantities of mRNAs and proteins. 

Metabolic regulation of a change in flux includes everything beyond the en-
zyme concentrations such as activation of enzymes and kinetic control of reac-
tions [ter Kuile and Westerhoff, 2001]. Post-translational modifications of pro-
teins modulate their activity [Uy and Wold, 1977; Mann and Jensen, 2003]. For 
example phosphorylation can fully determine the activity of an enzyme [Ptacek 
et al., 2005]. Signal transduction cascades pass phosphorylations as a response 
of sensing the growth conditions [Zaman et al., 2008]. Reaction rates depend on 
the concentrations of the reactants after the particular kinetics of an enzyme 
[Stryer 1995]. In addition, metabolites can act as allosteric effectors and affect 
the reaction rates [Monod et al., 1965] or even trigger regulation on the hierar-
chical regulatory levels [Sellick and Reece, 2003]. 

Metabolic homeostasis derives from dependences between flux, enzymes and 
metabolites and interdependences between reactions created by the metabolic 
network. Furthermore, hubs [Ma’ayan, 2009] such as cofactors NADH and 
NADPH and the energy unit ATP, are common metabolites for the whole net-
work and create regulatory dependences even between distant pathways of the 
metabolic network. While there is lack of detailed knowledge on kinetic parame-
ters and reaction mechanisms of large fraction of metabolic enzymes, thermody-
namics provides insight to the dependences between fluxes and metabolites 
[Kummel et al., 2006; Beard and Qian, 2005]. 

1.5 Oxygen affects flux phenotype 

Oxygen conditions in nature vary between the oxygen partial pressure in air and 
complete anaerobiosis. Microorganisms have adapted to different ranges of oxy-
gen availabilities depending on their natural habitats. A central role of oxygen 
metabolism is highly usual for any biological system [Koch and Britton, 2008]. 
Aerobic organisms are able to utilise oxygen as the final electron acceptor in the 
electron transfer chain, which is coupled to ATP synthesis. Since oxygen has 
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high electronegativity, the electron transfer reactions provide large transfer en-
ergy and the respiratory ATP production has an extremely high yield [Koch and 
Britton, 2008]. On the other hand, aerobic organisms need protection mecha-
nisms against the deteriorating effects of oxygen [Jamieson, 1998]. Cell compo-
nents are deteriorated by external oxidants and oxygen radicals generated in 
cell’s internal oxygen utilising processes [Herrero et al., 2008]. In should be 
noted that oxidation severely damages proteins, lipids, and nucleic acids 
[Jamieson, 1998; Herrero et al., 2008]. Oxidative stress signalling activates re-
pair mechanisms and degradation pathways for damaged components [Letavay-
ová et al., 2006]. Interestingly, cells counteract oxidative and reductive stresses 
with at least partly overlapping mechanisms [Trotter and Grant, 2002]. 

Aerobic environment poses a challenge also on the regulation of cell’s redox 
balance. Cell cytosol is normally maintained reductive [López-Mirabal and Win-
ther, 2008] and glutathione is the main buffer in the redox balancing system. In 
addition, it is linked to numerous cellular processes like membrane transport 
systems and carbon and nitrogen metabolisms [Perrone et al., 2005; López-
Mirabal and Winther, 2008]. Balanced redox conditions affect the metabolic 
homeostasis also because several metabolic reactions are redox reactions. When 
oxygen is not available as an electron acceptor, S. cerevisiae produces glycerol 
as a redox sink [Bakker et al., 2001]. Fermentative pathway is redox neutral, but 
glycerol production occurs when the amount of NADH formed in biosynthesis 
exceeds the capacity of respiration to regenerate NADH to NAD+. Reoxidation 
of NADH is prioritised under the conditions of oxygen deficiency and the car-
bon flux is directed to the fermentative pathway instead of to the TCA cycle 
[Weusthuis et al., 1994; Publication I]. 

In S. cerevisiae oxygen limitation in the extracellular medium shifts the flux 
phenotype. The glycolytic flux is increased and ethanol production takes place 
[Weusthuis et al., 1994; Publication I]. In the absence of ethanol production, 
metabolism is fully respirative. Respiro-fermentative phenotypes are observed in 
conditions of limited respiration. Respiratory limitation faces S. cerevisiae not 
only in lack of oxygen but also under excess glucose conditions and at high 
growth rate [Cortassa and Aon, 1998]. Glucose sensing and signalling network is 
active in conditions of excess glucose and it represses the components of the 
respiratory chain and the TCA cycle [Zaman et al., 2009]. In contrast, the respi-
ratory chain components have been observed to be upregulated under low oxy-
gen conditions [Rintala et al., 2009]. Aerobic alcoholic fermentation is observed 
in S. cerevisiae also at high growth rates when the glycolytic flux exceeds the 
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critical limit that depends on maximum respiratory rate [Vemuri et al., 2007]. 
Exceeding the critical limit results in overflow metabolism in pyruvate branch-
ing point of central carbon metabolism and thus, to a flux to fermentative path-
way [Vemuri et al., 2007; Frick and Wittmann, 2005]. These observations indi-
cate that similar metabolic states are generated by different transcriptional regu-
latory patterns highlighting the importance of the post-transcriptional and meta-
bolic regulation of the phenotypes. Accordingly, the fluxes through glycolytic 
enzymes have previously been shown to be mainly regulated at post-
transcriptional level [Daran-Lapujade et al., 2007]. Furthermore, pure metabolic 
regulation can increase the glycolytic flux at least eight fold [van der Brink et 
al., 2008] and the increased glycolytic flux observed under high temperature is 
primarily maintained by metabolic regulation [Postmus et al., 2008]. On the 
other hand, the gluconeogenetic and glyoxylate cycle enzymes have been ob-
served to be regulated at transcriptional level [Kolkman et al., 2005]. 

Publication I studied the response of the metabolism of S. cerevisiae to the 
different oxygen provisions at the flux phenotypic level. 

1.5.1 Oxygen responsive hierarchical regulatory mechanisms 

The most well known oxygen-responsive hierarchical regulatory systems are 
dependent on the levels of heme and sterols [Hon et al., 2003; Davies and Rine, 
2006; Kwast et al., 1998]. The synthesis of both of them requires molecular oxy-
gen and thus, their levels decline in the depletion of oxygen. Hap-transcription 
factors respond to the levels of heme. Hap1 regulates the expression of anaerobic 
genes whereas Hap2/3/4/5 factors regulate expression of aerobic genes [Kwast et 
al., 1998]. Hap1 factor has been shown to have a gentle slope in the activity 
profile in mild oxygen limitation but a sharp increase in severe lack of oxygen 
[Hon et al., 2003]. Hap2/3/4/5 factors regulate genes encoding metabolic TCA 
cycle enzymes among others and Hap4 particularly activates catabolism of respi-
ratory carbon sources like ethanol [Raghevendran et al., 2006]. 

The mitochondrial production of oxidative stress mediating reactive oxygen 
species (ROS) and nitric oxide (NO) in low oxygen conditions have been sug-
gested to be involved in signalling for induction of hypoxic genes [Castello et 
al., 2006; D’Autréaux and Toledano, 2007; Woo et al., 2009]. Accordingly tran-
sient oxidative stress response has been observed in S. cerevisiae in sudden de-
pletion of oxygen [Dirmeier et al., 2002]. Genes encoding enzymes involved in 
biosynthesis of fatty acids, which requires oxygen, belong to hypoxic genes. 
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The mitochondria are also known to signal of a respiratory defect by retro-
grade signalling that affects even the transcription of nuclear genes [Butow and 
Avadhani, 2004; Liu and Butow, 2006]. Retrograde signalling coordinates car-
bon and nitrogen metabolisms to respond to the requirements of the deficient 
state. In conditions of mitochondrial deficiency, the regulation of genes encod-
ing TCA cycle enzymes switch from Hap-complex to retrograde regulators [Liu 
and Butow, 2006]. 

1.6 Carbon catabolite repression regulation of phenotype 

Carbon catabolite repression (CCR) is a phenomenon where in presence of a 
preferred carbon source the pathways for utilisation of alternative carbon sources 
are repressed [Gancedo, 1998]. In the presence of excess glucose CCR of 
S. cerevisiae strongly represses metabolization of other carbon sources and also 
the respirative pathway as discussed above [Gancedo 1998; Zaman et al., 2009; 
Westergaard et al., 2007]. High glucose mediates the redistribution of fluxes to 
respirative and fermentative pathways similarly as varying oxygen conditions 
and exceeding the maximum respiratory capacity [Gombert et al., 2001; Nissen 
et al., 1997; Vemuri et al., 2007; Publication I]. Fermentation and high glyco-
lytic flux enable high rate of ATP production. Glucose repression in 
S. cerevisiae is a regulatory switch that prefers high rate of ATP production in-
stead of the high ATP yield that could be obtained from the respirative pathway. 

T. reesei is naturally adapted to grow in nutrient poor environments, where it 
is able to use complex plant material as carbon source. T. reesei and number of 
other filamentous fungi and cellulolytic bacteria produce and secrete plant 
polymer hydrolyzing enzymes such as cellulases and hemicellulases to their 
surroundings to break down the polymers into easily metabolizable monomers 
[Kumar et al., 2008]. The powerful machinery producing hydrolytic enzymes in 
T. reesei is under CCR when a preferred carbon source, such as glucose, is 
available. Small oligosaccharides or derivative parts of the polymers in the envi-
ronment of the fungus act as inducers of expression of genes encoding hydro-
lytic enzymes. The inductive signaling is specific for particular sets of enzymes 
[Ilmén, 1997; Aro et al., 2005]. However, under high glucose concentrations, 
CCR overrules the inductive signals [Ilmén et al., 1997]. The regulatory switch 
of energy generation in T. reesei is different from the switch in S. cerevisiae. In 
T. reesei CCR does not cause repression of genes encoding the TCA cycle en-
zymes or the respiratory pathway components. Thus, CCR does not hinder the 
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high yield respirative energy generation in T. reesei [Chambergo et al., 2002; 
Gancedo, 1998]. The difference is reasonable in evolutionary sense because all 
the available energy in the nutritionally harsh natural habitats of T. reesei is 
valuable. 

The signalling pathways for glucose repression in S. cerevisiae are widely 
studied [Zaman et al., 2009]. The systems biology approach has provided further 
understanding of the interaction of separate signalling pathways in S. cerevisiae 
in yielding specific responses to the growth conditions [Westergaard et al., 
2007]. In T. reesei Cre1 is the key mediator protein of CCR [Strauss et al., 1995; 
Ilmén et al., 1996]. It is structurally highly similar to Mig1, a key protein in glu-
cose repression in S. cerevisiae. Despite the sequence and structural similarity, 
the functional dissimilarities of Cre1 and Mig1 have led to the conclusion that 
glucose repression functionalities in filamentous fungi and yeasts have evolved 
separately [Cziferszky et al., 2002; Vautard et al., 1999]. Pfeiffer et al. (2001) 
has also argued that the evolution from unicellular to undifferentiated multicellu-
lar organisms like T. reesei has been facilitated by the preference of high yield 
energy generation by respiration. The role of respirative metabolism in the de-
velopment of multicellular organisms has recently been supported by Koch and 
Britton (2008). 

In Publication III the distribution of intracellular metabolic fluxes in T. reesei 
were studied in different conditions of CCR. 
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2. Introduction – method part 

2.1 Systems biology 

Systems biology focuses on system level function of cells instead of the conven-
tional approach of mere concentration on individual components [Kitano, 2002; 
Lazebnik, 2002]. Thus, mathematical modelling, networks of biochemical inter-
actions, and high-throughput methods for simultaneous profiling of large num-
bers of cell components are essence of systems biology. Modelling is crucial for 
studying highly complex biological systems. Cell components and processes 
transfer information through interactions which enables for example adaptation 
mechanisms for survival and, on the contrary, phenotypic robustness against 
fluctuations in environmental conditions [Kitano, 2007]. An ultimate aim of 
systems biology is to generate predictive in silico models of biological systems. 
Modelling is an iterative process of continuous improvement of the description 
of the system. Models are mathematical representations of phenomena of interest 
and they are always simplifications of the actuality. According to the retelling of 
Einstein´s statement: models should be as simple as possible, but not simpler, 
thus the level of simplification as well as the type of the model should be de-
signed for the purpose of the model [Klipp, 2007]. 

2.2 Metabolic modelling for flux analysis 

The simplest models of metabolism are black box models in which everything 
else than the external fluxes of uptake and secretion is hidden in the black box. 
Intracellular reactions are not specified but just wrapped into the box. An overall 
reaction equation describes the conversion of substrates to products in the black 
box. Despite the obvious simplicity, the black box models can be utilised for 
calculation of mass balances, elemental balances and degree of reduction bal-
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ances in modelling of cell factories, thus, also in calculation of process figures 
like yields and productivities. However, to be able to engineer the process fig-
ures, information on what occurs inside the black box is of importance. 

2.2.1 Stoichiometric models 

Stoichiometric models of metabolism specify the individual reactions in the 
system and the reaction stoichiometry relations of substrates and products. 
Stoichiometric models are static models and thus, do not include any reaction 
kinetics. While kinetic models of any medium size branching networks are still 
inconvenient due to the lack of knowledge and computational challenges, 
stoichiometric models have proven to be highly useful in metabolic studies of 
large networks. 

2.2.1.1 Genome-wide metabolic reconstructions 

The emergence of efficient sequencing and DNA techniques brought along a 
growing number of published fully sequenced and annotated genomes of organ-
isms. Even the complete metabolic potential of an organism is encoded in its 
genome. Therefore, the availability of the genomes and the development of 
comparative genomics lead into reconstruction of genome wide metabolic mod-
els. The first genome-wide metabolic network reconstruction of S. cerevisiae 
was done by Förster et al. (2003) (Figure 2). Automatic methods exist both for 
full reconstruction of genome wide metabolism and for pathway searches from 
the given substrate to a product [Feist et al., 2009 (review); Karp et al., 2002; 
Pinney et al., 2005; Notebaart et al., 2006]. However, after the automatic work, 
reliable metabolic reconstruction requires laborious manual curation including 
both literature checks and experimental verification of the metabolic network 
model [Francke et al., 2005; Feist et al., 2009 (review); Herrgård et al., 2008 
(S. cerevisiae consensus model); Duarte et al., 2007 (human); Shinfuku et al., 
2009 (Corynebacterium glutamicum)]. The characterisation of enzymes and 
verification of their products as was done in Publication V in the thesis contributes 
to experimental validation of models. The genome wide metabolic reconstructions 
are stoichiometric models including static reaction descriptions and preferentially 
annotations of enzymes catalysing the reactions. The genome-wide metabolic 
models offer frameworks for investigations of the complete metabolic potential of 
an organism, and for data interpretation and analysis [Patil and Nielsen, 2005]. 
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They also provide scaffolds for models of smaller and dynamic systems, and im-
portantly they provide a link between the genome and the metabolic reactions. 

 

Figure 2. The genome-wide metabolic network of S. cerevisiae as a bipartite graph of 
metabolite and reaction nodes. The first genome-wide metabolic network reconstruction 
of S. cerevisiae reconstructed by Förster et al. (2003) included two compartments, cytosol 
and mitochondria, and 1175 metabolic reactions and 584 metabolites. The latest consen-
sus model is divided into eight compartments and contains a total of 1168 metabolites 
and 1857 reactions and also 832 genes, 888 proteins, and 96 catalytic complexes 
[Herrgård et al., 2008]. 

The reaction lists are readily converted into metabolite mass balances, functions 
of reaction rates, and further into stoichiometric matrices. Stoichiometric matri-
ces can be analyzed by techniques of linear algebra to understand the metabolic 
potential and the structure of the metabolism of the particular organism [Palsson, 
2006]. Stoichiometric reaction descriptions and a stoichiometric matrix are also 
the basic requirements for analysis of metabolic fluxes. 

2.2.2 Kinetic models 

Kinetic metabolic models include time-dependent mechanistic descriptions of 
reactions [Klipp, 2007]. Metabolic enzymes possess different mechanisms and 
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thus, the kinetic equations are enzyme specific [Stryer, 1995]. Depending on the 
reaction mechanism of an enzyme, the number of effectors and parameters var-
ies. It is convenient to experimentally determine kinetics of isolated enzymes in 
vitro. However, it is likely that in vivo under crowded and compartmentalised 
conditions of a cell, the kinetics differ significantly from what is determined in 
vitro. Teusink et al. (2000) performed a study were a kinetic model of yeast 
glycolysis was set up and in vitro determined values for kinetic parameters were 
utilised for simulation. The output data from model simulations were compared 
to the experimental flux and metabolite data. There one finds significant dis-
crepancies between simulated and experimental values of half of the reactions 
even though glycolysis is an extensively studied part of metabolism. Experimen-
tal data for computational estimation of kinetic parameters is acquired in pertur-
bation experiments of the system of interest [Nikerel et al., 2006; Vaseghi et al., 
1999]. However, since the number of parameters in kinetic metabolic models is 
usually huge, their estimation is demanding. Thus, different approximations of 
kinetic equations have been developed for studying the dynamic behaviour of a 
metabolic system [Heijnen, 2005 (review); Visser and Heijnen, 2003; Visser et 
al., 2004; Savageau, 1970; Liebermeister and Klipp, 2006]. 

2.3 Metabolic flux analysis 

Determination of intracellular in vivo fluxes is called metabolic flux analysis 
(MFA), which applies mass balances around metabolites according to the 
stoichiometric model. Thus, mass balances around metabolites are formulated as 
functions of the fluxes. Dilution of metabolite pools due to growth can be taken 
into account as a dilution term although in many cases the dilution term is negli-
gible [Nielsen et al., 2003]. 

metmet
met cv

dt
dc

μ−=  (1) 

In equation 1 cmet is the concentration of a particular metabolite, vmet the net rate 
of formation and consumption of the metabolite by all the fluxes in the system, 
and in the dilution term µ is the growth rate. 

Integration of equation 1 over time for all the metabolites would yield the time 
dependence of concentrations cmet(t). However, the fluxes vmet are often unknown 
functions of metabolite concentrations and unknown enzyme kinetic and other 
parameters as discussed above. Since it is challenging to simulate the dynamic 
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concentration profiles, steady state conditions are usually considered. In steady 
state conditions the growth rate and the metabolic fluxes are constant and there 
is no accumulation of intracellular metabolites but their pools also remain constant 
[Nielsen et al., 2003]. Steady state microbial growth is reached in continuous cul-
tures (chemostat cultures) where the rates of medium flow into and out from the 
bioreactor are equal. Pseudo-steady state conditions prevail in early exponential 
phase of a batch culture when the cells grow at maximum rate while the changes 
in the culture medium are still insignificant. Under assumption of steady state 
conditions the following form of equation 1 holds [Nielsen et al., 2003]: 

0=− metmet cv μ  (2) 

Because the intracellular metabolite pools are generally very small, the dilution 
term is tiny compared to the fluxes producing and consuming metabolites, par-
ticularly in the central carbon metabolism that encompasses all the major fluxes 
[Stephanopoulos et al., 1998]. When the dilution term can be assumed to be 
negligible, the equation 2 adapts a simple form: 

0=metv  (3) 

which in matrix notation reads: 

0Nv =  (4) 

where N is the stoichiometric matrix with the fluxes of the system in columns 
and the stoichiometric coefficients of metabolites in each of the fluxes in rows 
and v is a column vector of fluxes. The stoichiometric matrix transforms the 
biology of metabolic reactions into mathematical framework. The matrix equa-
tion actually represents K linear mass balances for the K metabolites that con-
tribute to J fluxes. Since there are always less metabolites K than fluxes J, the 
degree of freedom F = K – J remains and some of the fluxes in vector v need to 
be determined to solve the rest of them [Nielsen et al., 2003]. If the stoichiomet-
ric matrix is partitioned into two parts for measured fluxes (Nm) and for un-
known fluxes (Nu), the equation can be rewritten in the following way: 

0vNvNNv =+= uumm  (5) 

where vm is a vector of measured rates and vu a vector of unknown rates. If ex-
actly F fluxes have been measured and if Nu can be inverted, the unknown rates 
can be directly solved with matrix algebra [Stephanopoulos et al., 1998]. If Nu 
has full rank (rank(Nu) = K), it can be inverted and the unknown fluxes calcu-



2. Introduction – method part 

30 

lated by Gaussian elimination but if the rank of Nu is less than K, Nu is singular 
and the system is underdetermined. If the set of reaction stoichiometries are line-
arly dependent, the rank of Nu is less than K even though the number of meas-
ured fluxes equals degrees of freedom. Also if some of the measured rates are 
redundant, the rank of Nu is less than K. 

Very seldom it is practically possible to measure enough fluxes to reach an al-
gebraic solution to the metabolic system of linear mass balance equations. This 
is obviously always the case with large, genome-scale metabolic models. 

2.3.1 Constraint-based analysis 
The space of metabolic states has as many dimensions as reactions in the system. 
The stoichiometry of the reactions, equation 4, limits the space into a subspace 
that is a hyperplane. If the reactions are defined so that they are all positive, the 
plane is converted into a cone. If additionally upper bounds, maximum capaci-
ties, can be defined for the fluxes, a closed convex cone solution space is ob-
tained. All the possible metabolic states of an organism, the feasible flux distri-
butions, lie in that solution space. Thus, it is the space of phenotypes which an 
organism can express. To further shrink the solution space, additional constraints 
have been set up from reaction thermodynamics [Beard et al., 2002; Beard et al., 
2004; Price et al., 2004b; Price et al., 2006], from experimental transcription 
data and from extracellular metabolome for condition-specific solution spaces 
[Covert and Palsson, 2002; Åkesson et al., 2004; Becker and Palsson, 2008; Mo 
et al., 2009]. The whole feasible solution space can be studied algebraically or 
statistically by sampling the space [Price et al., 2004a; Palsson, 2006]. Random-
ized Monte Carlo sampling of the feasible solution space gives unbiased infor-
mation on the shape and properties of the space where the true metabolic state 
lies [Price et al., 2004a; Schellenberger and Palsson, 2009]. The null space that 
contains all the possible flux distribution can be studied algebraically [Palsson, 
2006]. Investigation of the feasible solution space yields information on what 
types of solutions are possible, what parts of the metabolic network participate in 
the possible metabolic states, are there some limits for production of specific 
extracellular compounds etc. Obviously the properties of the feasible solution 
space contain even the properties of the true metabolic state. 

Linear optimisation can be utilised to find a point solution, i.e. a single flux 
distribution. The approach is often called flux balance analysis (FBA) and there 
the optimisation requires an objective function. It is always a guess what the 
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organism actually optimises for in the particular conditions and it is generally 
not simple to set up a biologically meaningful objective function. Biomass pro-
duction is an obvious choice for objective function for bacteria that grow expo-
nentially. However, higher cells do not usually optimise for growth though un-
controlled growing cancer cells could be an exception. It is generally accepted 
that organisms have evolved to survive but their survival is not straightforward 
to define as an objective function. Different types of objective functions have 
been searched and suggested [Burgard and Maranas, 2003 (ObjFind); Holzhut-
ter, 2004 (flux minimization)] and the optimised flux solutions have been tested 
against experimental data obtained with 13C-tracer based methods [Schuetz et 
al., 2007]. 13C-tracer based methods will be presented in the next chapters. In 
addition to flux determination, FBA approach has been exploited for identifica-
tion of optimal targets for metabolic engineering [Burgard et al., 2003 
(OptKnock); Pharkya et al., 2004 (OptStrain)]. Furthermore, the properties of a 
metabolic system can be studied by defining different types of objective func-
tions. For example production capabilities can be determined by optimising for 
the product formation. However, engineered organisms may not initially reach 
the optimal performance. Thus, FBA will not return flux phenotypes that match 
the reality of engineered organisms. Successful predictions of flux phenotypes of 
engineered organisms have been obtained with the minimization of metabolic 
adjustment (MOMA) to the wild type flux phenotype -principle and solved with 
quadratic programming [Segré et al., 2002]. 

2.3.2 13C-metabolic flux analysis 

As discussed above the determination of an objective function for FBA is often 
extremely difficult. In addition, the constraint-based MFA approaches, like FBA, 
cannot solve distributions of fluxes to parallel and alternative pathways. How-
ever, the parallel pathways usually transfer atoms in distinctive manner before 
they converge to a common metabolic intermediate. Thereby, utilisation of trac-
ers has emerged. Since metabolism is all about breaking and making carbon-
carbon bonds, 13C, is the most common tracer in metabolic studies [Tang et al., 
2009]. 13C is a stable carbon isotope whose natural abundance is only 1.1% 
[Gadian, 1982]. Other tracers are applicable for studies of specific metabolic 
pathways [Brosnan et al., 2004 (15N tracer application)]. 
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2.3.2.1 13C-labelling and analytical methods 

13C-labelling for MFA is performed by introducing 13C-labelled substrate to a 
cell culture. When the carbon source gets metabolized the tracer enrichment 
spreads first to the free intracellular metabolites and during extended periods of 
growth on 13C-labelled carbon source also into the macromolecules and cell con-
stituents. The spread of the 13C-label is dependent on the metabolic fluxes and 
the turnover of macromolecules and storage pools. Since the alternative path-
ways often scramble and cleave the carbon backbones of metabolites in different 
ways, the 13C-labelling prints information on the relative activities of the path-
ways into the carbon-carbon connectivities of the metabolites and into the posi-
tional fates of tracer atoms. Depending on the difference between the carbon 
chain modifications in the alternative pathways, different 13C-labelling designs 
of the carbon source are optimal for resolution of the relative pathway activities 
[Möllney et al., 1999; Araúzo-Bravo and Shimizu, 2003]. Isotopomer is a defini-
tion for isotopic isomers of a compound [Wiechert, 2001] and the isotopomers 
differ only in position or number of different isotopes in the molecule. Thus, 
molecules differing in 13C-labelling patterns are isotopomers [Nielsen et al., 2003]. 
In the following chapters two main 13C-labelling approaches are presented. 

Uniform labelling 

In uniform 13C-labelling approach the carbon source contains a fraction of mole-
cules that are uniformly 13C-labelled. Thus, they contain 13C atom in all posi-
tions. Typically utilised fraction of uniformly 13C-labelled molecules is around 
20% [Zamboni et al., 2009]. If the alternative metabolic pathways modify the 
carbon chain in distinctive ways, the relative activities of the pathways can be 
resolved with this approach. This approach can even be called bond labelling 
because the relative activities of the alternative pathways are actually recorded in 
the common product as cleaved and newly formed carbon-carbon bonds. The 
uniform 13C-labelling approach was established in 1990’s by Szyperski [Szyper-
ski 1995] by introducing biosynthetically directed fractional (BDF) 13C-labelling 
where a fraction of uniformly labelled carbon source was feed to microbial cells. 
During the steady-state growth on fractionally 13C-labelled carbon source infor-
mation on the relative in vivo activities of the pathways was recorded and sig-
nificantly amplified in the 13C-labelling patterns of proteinogenic amino acids. 
The 13C-labelling patterns of proteinogenic amino acids could conveniently be 
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detected by two-dimensional nuclear magnetic resonance (NMR) spectroscopic 
experiments. Szyperski (1995) further introduced probabilistic equations for the 
relations between the 13C-13C-couplings in proteinogenic amino acids and frag-
mentomers, fractions of intact carbon fragments. Four fragmentomers that sum 
up to one of three carbon fragment of a molecule can be deduced. Fragmentomer 
f(1) represents the fraction of molecules in which the middle carbon atom and the 
neighboring carbons originate from different carbon source molecules, fragmen-
tomer f (2) represents the fraction of molecules in which the middle carbon atom 
and one of the two neighboring atoms originate from the same carbon source 
molecule, and fragmentomer f (3) represents the fraction of molecules in which the 
middle carbon atom and both the neighboring carbons originate from the same 
carbon source molecule. Sometimes, if the end carbons of the three carbon 
fragments are in different chemical environment, even two different fragmen-
tomers f (2) and f (2*) can be distinguished by NMR spectroscopic methods. Frag-
mentomers are actually constraints for a full isotopomer distribution of a mole-
cule. Later a GC-MS based detection method was developed to be compatible 
with BDF labelling [Fischer and Sauer, 2003]. 

Positional enrichment 

The alternative 13C-labelling approach is to introduce positional label(s). The 
positional label can be introduced in a specific position or positions of the car-
bon source and usually all the carbon source is equally 13C-labelled. For exam-
ple, the common carbon source glucose is commercially available in different 
compositions of 13C and 12C atoms. However, glucose with 13C-atoms some-
where in the middle of the carbon chain is very expensive to purchase. During 
the growth on positionally 13C-labelled carbon source, specific positions of 
product molecules become enriched depending on the in vivo activities of path-
ways. In positional fractional 13C enrichments, the ratios of 13C and 12C atoms in 
the specific carbon positions of the product molecules provide constraints for the 
full isotopomer distribution of a molecule [Wiechert, 2001]. 

Nuclear magnetic resonance spectroscopy 

Modern nuclear magnetic resonance (NMR) spectroscopy detects signals of spin 
possessing nuclei in a strong magnetic field after a radio frequency pulse or a 
sequence of pulses [Friebolin, 1991]. Nuclei that possess a spin different from 
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zero have different energy states in a magnetic field. Radio frequency pulses 
induce transitions between the energy states and create detectable macroscopic 
magnetisation. The magnetisation induces a current to the receiver coil. This 
signal is recorded and called free induction decay (FID). The FID is then Fourier 
transformed from time domain to frequency domain to obtain an NMR spec-
trum. The limited sensitivity of NMR stems from detecting only the small differ-
ence between the populations of nuclei on different energy states. The energy 
difference is dependent on the strength of the static magnetic field. Therefore, 
strong magnets are utilised. Nevertheless, NMR spectroscopy provides unlimited 
potential in the variety of methods that can be utilised for analysis of biological 
samples. 

Spin possessing NMR active nuclei of main interest in analysis of biological 
samples are: 1H, 13C, 15N, and 31P [Gadian, 1982]. All these nuclei have spin 
quantum numbers of ½ and thus, have two possible energy states in a magnetic 
field. Proton is the most sensitive nuclei and 1H NMR spectroscopy is an unbi-
ased method because it can detect all proton containing compounds in a sample. 
On the other hand 31P has a 100% natural abundance and therefore, it can be 
utilised for example for selective detection of only phosphorus containing com-
pounds in a complex mixture.13C atoms, whose natural abundance is only 1.1%, 
can be directly detected by NMR but not the more abundant 12C atoms. Thus, 
13C is a suitable tracer for NMR spectroscopic studies. 

NMR active nuclei give signals in an NMR spectrum on their characteristic 
chemical shifts [Friebolin, 1991]. The characteristic chemical shift of a nucleus 
depends on the nature and the chemical environment of the nucleus. Electrons in 
the chemical environment cause shielding of the magnetic field and thus, the 
magnetic field experienced by the nucleus is also dependent on its surrounding 
electrons. In addition, coupling to other NMR active nuclei through bonds gives 
rise to signal splitting. Therefore, different molecule structures have specific 
signal fine structures. 

Complex sequences of radio frequency pulses can be designed for advanced 
NMR spectroscopic experiments. Magnetisation can, for example, be transferred 
from one type of nuclei to other types of nuclei, which targets the analysis to 
specific structures of interest. Higher dimensional experiments can be performed 
for one type nuclei (homonuclear) or for different types of nuclei (heteronuclear) 
[Croasmun and Carlson, 1994]. Higher dimensional experiments provide also 
more information about the structures of analytes because nuclei that are cova-
lently bound together or close to each other in space can be identified. 
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NMR spectroscopic analyses of samples from 13C-labelling experiments can 
provide two different types of constraints to the isotopomer distribution. If 13C 
are detected, signal fine structures reveal fractions of couplings to adjacent 13C 
and 12C nuclei, thus, a 13C-labelling status of a three carbon fragment [Szyperski, 
1995]. Sometimes even longer couplings can be resolved. If protons are de-
tected, the signal fine structure reveals the fractional enrichment of 13C in the 
carbon coupled to the detected proton. The fraction of protons coupled to 13C is 
observed as split satellite signals on both sides of the signal from the 12C coupled 
protons [Friebolin, 1991]. 

Mass spectrometry 

The advantage of mass spectrometry (MS) compared to NMR is its higher sensi-
tivity. However, there are fundamental differences in the data that is produced 
by MS and NMR. MS detects molecules that have distinctive masses but it can-
not distinguish between molecules having the same number of 13C atoms but in 
different positions [Zamboni et al., 2009]. Massisomer (or mass isotopomer) is 
the definition for isomers that differ in mass [Christensen and Nielsen, 1999]. 
Gas-chromatography-mass spectrometry (GC-MS) has been the most popular of 
MS techniques for analysis of samples from 13C-labelling experiments [Witt-
mann, 2007]. Before the GC-MS analysis the metabolites are first derivatized to 
render the molecules volatile [Tang et al., 2009]. Common derivatizations are 
silylation, acylation and alkylation [Tang et al., 2009; Wittmann, 2007]. In GC-
MS analytes become fragmented and derivatization agent may affect the frag-
mentation sites. Fragmentation yields more constraints to the full isotopomer 
distribution [Zamboni et al., 2009]. Metabolites include natural isotopes and 
derivatization introduces additional atoms to the analytes. Thus, the raw data 
requires correction to remove them [Christensen and Nielsen, 1999; van Winden 
et al., 2002]. 

Previous analyses of 13C-labelling experiments, with NMR spectroscopy or 
GC-MS, have utilised the detection of 13C-labelling patterns of proteinogenic 
amino acids that are abundant. GC-MS has somewhat been utilised also in 
analysis of free amino acids and organic acids [Wittmann et al., 2002]. How-
ever, there is a delay before the label reaches proteins that are macromolecules 
or even some delay before the label enriches in the large free amino acid pools in 
cells. Therefore, the methods have not been suitable for analysis of phenomena 
in short time frames. In addition, the long 13C-labelling experiments require lot 
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of expensive labelled carbon source. The application of liquid chromatography-
mass spectrometry (LC-MS) in analysis of 13C-labelling patterns in intracellular 
metabolic intermediates was demonstrated by van Winden et al. (2005) but the 
direct analysis of 13C-labelling patterns of intracellular metabolites has not be-
come a widespread method because the sensitivity severely limits the analysis as 
metabolic intermediates are present only in very low amounts. Later Toya et al. 
(2007) suggested CE-TOFMS (capillary electrophoresis time-of-flight mass 
spectrometry) for detection of 13C-labelling patterns in free intracellular metabo-
lites. CE-TOFMS is fast and the experimental set up is more flexible for analysis 
of various compounds than LC-MS. Kleijn et al. (2007) showed that the data 
sets from the three measurement techniques: NMR spectroscopy, LC-MS and 
GC-MS yielded consistent flux results in analysis of combined substrate label-
ling, 10% [U-13C] and 90% [1-13C] glucose, in glycerol over-producing 
S. cerevisiae strains. Since the flux sensitivities were found to often depend on 
the analysis method, a combined data set gave the most accurate flux distribution 
estimate. LC-MS was utilised for detection of 13C in free metabolic intermedi-
ates whereas the NMR spectroscopy and GC-MS analyses were performed for 
13C-labelling patterns in proteinogenic amino acids and storage carbohydrates. 

In order to obtain massisomer data on smaller fragments or even pure posi-
tional 13C enrichment data, liquid chromatography-tandem mass spectrometry 
(LC-MS/MS) was introduced to 13C-labelling analysis task [Iwatani et al., 2007]. 
In LC-MS/MS the full massisomers are further fragmented and positional en-
richments can be inferred from the full fragmentation data. Iwatani et al. (2007) 
applied LC-MS/MS detection to analysis of 13C-labelling patterns of proteino-
genic and free amino acids in E. coli. 

2.3.2.2 13C-metabolic flux analysis – mathematical and statistical 
methods 

The interpretation of data from 13C-labelling experiments requires mathematical 
modelling and statistical analysis. Firstly the atom transfers in the metabolic reac-
tions are essential to be modelled for interpretation of data form tracer experi-
ments. Mappings of carbon atoms can be obtained from few sources [Arita, 2003; 
Kotera et al., 2004, (KEGG rpair); Mu et al., 2007 (carbon fate maps)]. Unfortu-
nately the databases may contain errors or inconsistencies and thus, the mappings 
for flux analysis models require curation or at least an inspection. If the atom 
transfers of interest are not found in the databases, one is forced to go into mecha-
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nisms of the reactions to resolve them. Furthermore, label scrambling in symmet-
rically reacting compounds need to be taken into account [Bernhard and Tompa, 
1990]. Software such as ReMatch (http://sysdb.cs.helsinki.fi/ReMatch/) [Pitkänen 
et al., 2008] and OpenFLUX [Quek et al., 2009] aid in setting up and sharing 
metabolic models that include atom mappings. 

The flux estimation methods that exploit 13C-labelling data can be divided into 
two sub categories: global iterative fitting and local flux ratio analysis (possibly 
followed by direct flux estimation) methods. In the following chapters the fea-
tures of both types of computational methods and established protocols and 
software are presented. 

Global iterative fitting 

Global iterative fitting requires modelling of label propagation in the metabolic 
network and set up of balance equations generally for each isotopomer. For a 
metabolite with n carbons there will be 2n possible isotopomers. There will be an 
extremely high number of isotopomer balance equations in the system and many 
of them are nonlinear. Iterative fitting searches for the best fit between the ob-
served and simulated labelling patterns [Wiechert et al., 2001; Antoniewicz et 
al., 2006]. Iteration is initiated from a guessed or a random flux distribution and 
13C-labelling patterns of metabolites are simulated with the model. The simu-
lated 13C-labelling patterns are compared to the observed ones and the iteration 
is continued until a minimum of the difference or a difference under a threshold 
between the simulated and the observed 13C-labelling patterns is reached. The 
method returns a single flux distribution that gives the best global fit to all the 
measured data that was utilised as input. 

Other methods to model 13C-labelling patterns than isotopomers have been 
developed since the original task of simulating numerous isotopomers is compu-
tationally highly demanding. Transformation of isotopomers into cumomers 
enabled analytical solution as solving cascades of linear equations [Wiechert et 
al., 1999]. Cumomers are by definition certains sums of isotopomers and cumo-
mer fractions can incorporate both positional enrichments and isotopomer frac-
tions. Bondomers were introduced for modelling of label propagation in uniform 
13C-labelling experiments [van Winden et al., 2002]. Bondomers are isomer 
entities that differ only in numbers and positions of intact carbon-carbon bonds. 
Utilisation of bondomers instead of isotopomers or cumomers decreases the 
number of mass balance equations and similarly as isotopomers can be trans-
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formed into cumomers, bondomers can be transformed into cumulative bon-
domers. Like cumomers cumulative bondomers enable analytical solution of 
sequence of linear equations. Recently an elementary metabolite units (EMUs) 
framework was introduced to further reduce the computational time required to 
simulate isotopic labelling patterns [Antoniewicz et al., 2007]. EMUs are any 
distinct subsets of metabolites’ atoms and the reaction network is decomposed 
into EMU reactions and a minimum amount of information required for simula-
tions is identified. EMU framework is compatible for simulation of any type of 
isotopic labelling. 

13C-FLUX software was for a long time the only publicly available software 
framework for 13C-MFA [Wiechert et al., 2001]. It is compatible with all kinds 
of measurement data and provides also statistical algorithms for analysing the 
results. EMU framework is utilised in OpenFLUX, which is recent user-friendly 
software for all the steps of 13C-MFA, from model building to statistical analyses 
[Quek et al., 2009]. 

The drawbacks of the iterative fitting methods are that it is difficult to assure 
that the method reached a global minimum instead of just a local one [Ghosh et 
al., 2005]. Moreover, if there is not enough data the method returns merely ran-
dom points from the solution space but still cannot define the feasible solution 
space. 

Local flux ratio analysis 

Local flux ratio analysis utilises directly the 13C-labelling data to deduce ratios 
of converging fluxes in the network. Thus the inaccuracies in the data or in the 
assumptions or errors in the network model affect the results only locally in con-
trast to the global methods [Zamboni et al., 2009]. Algebraic equations that re-
late the 13C-labelling pattern of a junction metabolite to the relative fluxes 
through the branching pathways are formulated. If it is possible to solve relative 
fluxes for every pair of alternative pathways in the network model i.e. as many 
as there are degrees of freedom in the stoichiometric model, then the determined 
flux ratios as additional constraints render the MFA system solvable. Approach 
was introduced by Fischer et al., (2004) and has been implemented as software 
FiatFlux [Zamboni et al., 2005]. The frameworks for flux ratio analysis are de-
scribed in the following paragraphs. 
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Metabolic flux ratio analysis 

Metabolic flux ratio (METAFoR) analysis was initially developed to rely on 
uniform 13C-labelling approach by the biosynthetically directed 13C-labelling of 
the proteinogenic amino acids and following analysis of 13C-labelling patterns by 
two-dimensional NMR spectroscopy [Szyperski 1995; Szyperski et al., 1999]. 
Since the carbon backbones of metabolic intermediates of central carbon me-
tabolism are conserved in synthesis of proteinogenic amino acids and the amino 
acid synthesis pathways were well known for E. coli, Szyperski (1995) back 
propagated the 13C-labelling patterns from the amino acids to metabolites and 
derived equations for ratios of converging fluxes in central carbon metabolism. 
Later Maaheimo et al. (2001) extended the method and derived flux ratio equa-
tions for compartmental metabolism of eukaryotic S. cerevisiae. The 
13C-labelling patterns of eight metabolic intermediates of central carbon metabo-
lism of S. cerevisiae can be determined and utilised as parameters in the flux 
ratio equations. The equations derived for eukaryotic metabolism have then been 
utilised in analysis of metabolic states of at least the following other yeasts and a 
fungus P. pastoris [Sola et al., 2004], P. stipitis [Fiaux et al., 2003], P. anomala 
[Fredlund et al., 2004] and T. reesei (Publication III). 

The original analytical method in METAFoR analysis was 1H-13C HSQC (het-
eronuclear single quantum coherence) NMR spectroscopic experiment [Croas-
mun and Carlson, 1994] were the proton bound 13C-nuclei and the 13C-labelling 
status of the adjacent carbon nuclei are detected. In the experiment, signals from 
13C-nuclei in proteinogenic amino acids are spread into two-dimensions and 
found at characteristic chemical shifts in proton and carbon dimensions. According 
to the 13C-labelling status of the adjacent carbon nuclei, different signal fine struc-
tures are formed. Coupling to an adjacent 13C-nucleus splits the signal (Figure 3).  
All the different signal fine structures are observed on top of each other and their 
fractional volumes correspond quantitatively to the fractions of different three 
carbon isotopomers with a central 13C nucleus. The fractions of different three 
carbon isotopomers with a central 13C nucleus are obtained by iterative fitting of 
simulated signal fine structures on the whole multiplet signal. FCAL is a soft-
ware developed for the iterative fitting and following calculation of fragmen-
tomers from the fractions of different signal fine structures with the equations 
derived by Szyperski (1995) [Szyperski et al., 1999]. The probabilistic equations 
take into account the fraction of uniformly 13C-labelled substrate, the natural 13C 
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abundance in the rest of the carbon source and the fraction of biomass synthe-
sized during the 13C-labelled feed [Szyperski et al., 1995]. 

 

Figure 3. An example of the 13C finestructure of Glu-Cα extracted from a two-dimensional 
1H-13C HSQC NMR spectrum. 

The sample preparation for METAFoR analysis is simple [Szyperski et al., 
1999]. The harvested biomass is just hydrolysed (6 M HCl, +110 °C). Since the 
information on the in vivo fluxes is naturally amplified in biomass, sensitivity 
does not limit the NMR measurement. For NMR analysis ash is removed from 
the hydrolysed sample and the solvent is switched to D2O. The detection of the 
13C-labelling patterns of proteinogenic amino acids by 2D NMR spectroscopy 
can be performed without any separation steps in sample preparation. 

Fischer and Sauer (2003) extended the flux ratio analysis to GC-MS as ana-
lytical method and initiated the utilisation of mixed 13C-labelling, a combination 
of positional and fraction uniform 13C-labelling. The introduction of positional 
label was meaningful in combination of the switch to GC-MS analysis, because 
even though GC-MS cannot directly quantify positional enrichments, enrichment 
of label in carbon fragments can be detected. Later the GC-MS analysis has been 
extended to analysis of 13C-labelling in cell cultures in 1 ml deep-well microtiter 
plates enabling high throughput metabolic flux profiling [Fischer et al., 2004]. 

Conventionally the flux ratio equations have been manually derived by ex-
perts of the metabolism of the organism under study being able to set up mean-
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ingful assumptions of the fluxes for every new organism, metabolic network, 
13C-labelling of the carbon source and an analytical platform. Only recently a 
framework for systematic derivation of the equations from a given metabolic 
network model was introduced (Publication IV). 

Local flux ratios as additional constraints in metabolic flux analysis 

Local flux ratios determined from 13C-labelling experiments are experimental 
information that can be utilised as additional constraints in a conventional MFA 
system [Fischer et al., 2004]. If every branching point in the network model can 
be constrained, the system renders solvable. Fischer et al. (2004) applied the 
approach to metabolism of E. coli. Constraint equations were set up and the net 
fluxes in central carbon metabolism were solved by constrained nonlinear opti-
misation with Matlab function fmincon. Later Fredlund et al. (2004) set up the 
constraint equations for compartmentalised eukaryotic network model of Pichia 
anomala. Both studies utilised GC-MS determined 13C-labelling patterns for flux 
ratio determination. Zamboni et al. (2005) implemented the approach as soft-
ware FIATFLUX for net flux determination in three organisms: E. coli, Bacillus 
subtilis, S. cerevisiae. FIATFLUX contains two Matlab based modules. The first 
one is for determining local flux ratios of GC-MS massisomer data from 
13C-experiments and the second module is for estimating the net fluxes utilising 
the local flux ratios as additional constraints. The network models for determin-
ing the local flux ratios are fixed but the stoichiometric models for net flux de-
termination are open for users. Constraints from 13C-labelling experiments often 
enable leaving out the cofactors form metabolite balancing. Cofactor balancing 
is highly error prone since the cofactor specificities vary in isoenzymes and they 
are not precisely known. In Publication I net fluxes in central carbon metabolism 
of S. cerevisiae were determined under different oxygenation conditions by per-
forming 13C-labelling experiments, utilising NMR spectroscopy based META-
FoR analysis instead of GC-MS analysis for determining the local flux ratios and 
then solving the net fluxes by optimisation having the flux ratios as additional 
constraints. 

2.3.2.3 13C-metabolic flux analysis in large scale networks 

In prolonged 13C-labelling experiments all cell components and metabolites be-
come 13C-labelled but analysis of 13C-labelling patterns of only limited number 
of metabolites is feasible with current MS and NMR techniques. However, the 
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measurements with both methods can be directed to specific compounds or 
methods can be adjusted for analysis of desired compounds. Thus, computa-
tional 13C-experiment design has been investigated [Möllney et al., 1999]. In 
addition to optimal 13C-labelling designs for flux resolution [Möllney et al., 
1999; Araúzo-Bravo and Shimizu, 2003], sets of most informative compounds 
for 13C-MFA can be computationally determined to target the analysis of 
13C-labelled samples [Rantanen et al., 2006]. 

13C-MFA becomes unfeasible in large-scale networks because of limited 
13C-labelling data and because of the size of the equation system. For iterative 
methods the number of equations grows fast as the number of additional iso-
topomer balances explodes when the network size increases. 13C-MFA with lo-
cal flux ratios as additional constraints would be computationally feasible in 
larger networks if it was possible to determine sufficiently many local flux ra-
tios. Thus, the 13C-labelling data limits that approach. 

However, few flux analysis studies in large-scale networks have been carried 
out. Blank et al. (2005) determined the net fluxes in the central carbon metabo-
lism of S. cerevisiae with local flux ratios as additional constraints in MFA and 
estimated the fluxes in large-scale network by minimisation of fluxes outside the 
central carbon metabolism. Quite recently Suthers et al. (2007) applied iterative 
flux determination approach to a large scale network of E. coli. Even though 
they included both cofactor balancing and 13C-labelling data, multiple local op-
tima that were statistically indistinguishable were identified. The 13C-labelling 
data was insufficient for reliable flux determination in the large-scale model. 
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3. Aims of the research 
The research included in the thesis has concentrated on studying the metabolism 
of mainly three organisms: yeasts S. cerevisiae and P. pastoris and a fungus 
T. reesei all of which are important production organisms in biotechnology. The 
focus has been on the process streams of the cell factories, the metabolic fluxes, 
under conditions of interest for development of production processes. The quan-
titative studies of the distribution of intracellular fluxes of different organisms 
and under different growth conditions have required development of modelling 
of metabolism for the analysis of fluxes (Publications I, II, III). In Publication IV 
and somewhat also in Publication I, computational methods for quantitative 
analysis of the intracellular fluxes were developed. In Publication V a novel step 
in the fungal metabolic pathway of catabolism of plant material compound D-
galacturonic acid was identified and thus a previously unknown reaction node 
and interactions to reactant metabolites were set in the fungal metabolic net-
work. The analytical tool utilised in the detection of 13C-labelling in the analyses 
of metabolic fluxes, namely the NMR spectroscopy, was applied to verify the 
product of the novel enzyme. 

3.1 Oxygen dependence of fluxes and underlying 
regulation in S. cerevisiae 

Understanding the regulation of redox homeostasis of the organism is important 
for any metabolic engineering project because redox homeostasis binds together 
functions of even distant pathways. Redox homeostasis of an organism is natu-
rally affected by the oxygenation of the culture that is a major parameter in in-
dustrial bioprocesses. Oxygenation is also one of the factors that most contribute 
to the cost of a bioprocess. The important bioproduction and model organism 
S. cerevisiae is known to exhibit various states of energy metabolism depending 
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on the prevailing growth conditions. However, the effect of different low oxygen 
conditions on the metabolic state of S. cerevisiae, thus the distribution of the 
metabolic fluxes, has not been thoroughly studied. Thus, the aim of the Publica-
tion I was to quantify the dependence of the intracellular flux distributions of 
S. cerevisiae on oxygen provision and to study the maintenance of redox homeo-
stasis in the different oxygenation conditions. It was essential to quantify the 
intracellular net fluxes without including the redox cofactors in the metabolite 
mass balances, because the conditions were expected to strongly affect the redox 
balancing. Therefore, in Publication I 13C-MFA was utilised to determine the net 
fluxes. 

3.2 Two carbon source case of methanol and glycerol 
utilisation by P. pastoris 

Methylotrophic yeast P. pastoris is a host organism for industrial production of 
heterologous proteins. Strong inducible promotors of the genes of methanol 
utilisation pathway in the peroxisomes are utilised to induce the expression of 
recombinant proteins. Thus, metabolism during the co-utilisation of inducer 
methanol and a carbon source is of interest from process development point of 
view. The METAFoR analysis of P. pastoris [Sola et al., 2004] was extended to 
a two-carbon source co-utilization. The eukaryotic model for METAFoR analy-
sis [Maaheimo et al., 2001] was likewise extended with methanol utilisation 
pathway. The 13C-labelling with the uniform labelling approach was performed 
in continuous cultures of P. pastoris growing on different methanol/glycerol 
mixtures and at two growth rates to probe the intracellular metabolic state, the 
ratios of intracellular metabolic fluxes, in different possible process conditions. 
The aim was to provide valuable information for process optimisation of recom-
binant protein production with P. pastoris. 

3.3 Path identification and the effect of carbon catabolite 
repression on metabolic fluxes in T. reesei 

The efficient protein expression machinery of T. reesei has been widely investi-
gated but even despite the wide industrial importance the metabolism of 
T. reesei has not been largely studied and its potential is still not known. The 
genome of T. reesei has recently been published [Martinez et al., 2008] but the 
fungus still lacks a genome-wide metabolic reconstruction. 
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The transcriptional response to preferred and repressive carbon source glucose 
and to a neutral carbon source has been studied by Chambergo et al. (2002). 
They found that excess glucose does not repress the respiratory pathway genes 
to the similar extent as in S. cerevisiae that is adapted to fast utilization of sugars 
by fermentation in nutrient rich environments. However, the intracellular in vivo 
fluxes of T. reesei were not previously studied and the effect of the different 
conditions of carbon catabolite repression on the intracellular fluxes has not been 
known. 

Because of the lack of a metabolic reconstruction of T. reesei the biosynthetic 
pathways of proteinogenic amino acids in T. reesei were reconstructed with a 
recent computational pathway analysis method ReTrace [Pitkänen et al., 2009] 
in Publication III. The reconstruction of the biosynthetic pathways of proteino-
genic amino acids was essential for the application of the METAFoR analysis to 
quantitatively probe the intracellular flux distributions in T. reesei. The 
13C-labelling of T. reesei for METAFoR analysis was performed for cells grow-
ing on preferred and repressive carbon source glucose and on sorbitol. The effect 
of induction of cellulase gene expression on the ratios of intracellular fluxes was 
also studied by 13C-labelling of a T. reesei culture growing on sorbitol induced 
with a small addition of inducer sophorose. 

3.4 Framework for analytical determination of flux ratios 

The previously established computational methods for quantitative analysis of 
the metabolic fluxes from 13C-isotopomer measurement data relied either on 
manual derivation of analytic equations constraining the fluxes or on numerical 
solution of a highly nonlinear system of isotopomer balance equations. In the 
first approach, analytic equations were to be tediously derived for each organ-
ism, particular growth conditions and substrate or labelling pattern, by a domain 
expert while in the second approach, the global nature of an optimum solution is 
difficult to prove and comprehensive measurements of external fluxes to aug-
ment the 13C-isotopomer data were typically required. A framework for an 
automatic and systematic derivation of equation systems constraining the fluxes 
from the model of the metabolism of an organism was developed. The frame-
work was designed to be general for all metabolic network topologies, 
13C-isotopomer measurement techniques, carbon sources, and carbon source 
13C labelling patterns. 
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3.5 NMR spectroscopy as a tool in pathway identification 

Fungal metabolism comprises a lot of hitherto unknown potential for biotech-
nology. For example a fungal pathway for D-galacturonic acid catabolism has 
been only partly known. D-galacturonic acid is a major component of pectin that 
is abundant in plant material. The first step in the fungal pathway of D-
galacturonic acid catabolism was previously identified and it is an NADPH-
specific D-galacturonic acid reductase generating L-galactonate [Kuorelahti et 
al., 2005]. The next reaction in the pathway, a novel enzyme that converts L-
galactonate to L-threo-3-deoxy-hexulosonate was then identified in T. reesei. 
The active enzyme was produced in the heterologous host S. cerevisiae and 
characterized. The reaction product of the enzyme L-galactonate dehydratase 
was analysed and identified by NMR spectroscopy. 1D and 2D NMR spectro-
scopic experiments were utilised for the identification of the reaction product 
directly in the reaction mixture. 
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4. Research methods 

4.1 Strains 

In Publication I S. cerevisiae CEN.PK113-1A (MATα, URA3, HIS3, LEU2, 
TRP1, MAL2-8c, SUC2) strain was employed. The strain was kindly provided 
by Dr. P. Kötter (Institut für Mikrobiologie, J.W. Goethe Universität Frankfurt, 
Germany) [de Jong-Gubbels et al., 1998] and prior to the experiments stored in 
glycerol (30% v/v) at -80 °C [Wiebe et al., 2008]. In Publication II a prototro-
phic P. pastoris strain expressing a heterologous protein, a Rhizopus oryzae li-
pase, under the transcriptional control of the aox-1 promoter was employed. 
P. pastoris X-33/pPICZ A-ROL [Minning et al., 2001] is the wild-type pheno-
type X-33 strain (Invitrogen) with the pPICZ A-derived expression vector (Invi-
trogen) containing the ROL gene, pPICZ A-ROL, integrated in its aox-1 locus. 
In Publication III T. reesei strains QM6a (wild type) [Mandels and Reese, 1957] 
and QM6a with deleted cre1 gene (unpublished) were employed. In Publication 
V the S. cerevisiae strain CEN.PK2-1D (VW-1B) was employed as the host for 
the heterologous expression of a T. reesei enzyme and was the source of the 
extract in the NMR spectroscopic analyses. T. reesei strains Rut C-30 or QM6a 
were employed otherwise. 

4.2 Cultivations 

In Publications I, II and III the organisms were cultivated either in continuous 
cultures in fermentors or in batch cultures in flasks. Continuous cultivations 
provide highly controlled culture conditions were a single parameter can be var-
ied while everything else is kept constant. The growth rate of an organism is set 
by the rate of the feed and by the flow out of the reactor. Continuous cultivation 
operates in steady state continuous mode when all the variables have time inde-
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pendent values. The steady state continuous mode is usually eventually obtained 
when after the initiation of the culture in a batch mode all the feed variables are 
kept constant. The reactor is assumed to be an ideal bioreactor where the proper-
ties of the effluent are identical to the properties of the culture in any point of the 
reactor. The assumption is reasonable when the mixing of the reactor is efficient. 
Because of the strict control, continuous cultivation provides possibilities for 
sampling during steady state conditions and highly reproducible cultures. The 
continuous cultivations utilized are described in more detail in Publications I and 
II and the cultivation set up in Publication I also in Wiebe et al. (2008). 

Batch cultures in flasks are much simpler to prepare than continuous cultures. 
The filamentous growth of T. reesei complicates the bioreactor cultivations and 
thus in Publication II T. reesei was cultivated in flasks. After the initial lag-
phase, during the early exponential phase in a flask culture, the growth condi-
tions are still almost unchanged from the initial culture conditions and the organ-
ism is growing on its maximal growth rate. After passing the early exponential 
phase the growth conditions are not precisely known anymore. The T. reesei 
batch cultures in flasks are described in detail in Publication III. 

All the cultivations for METAFoR analysis in Publications I, II, III were per-
formed on minimal medium without amino acids. The media of the main cul-
tures were as follows. Information on the media for inoculates etc can be found 
in Publications II and in Wiebe et al. (2008) for cultures in Publication I. In Pub-
lication I yeast was grown on defined minimal medium [Verduyn et al., 1992], 
with 10 g glucose l-1 as carbon source, and supplemented with 10 mg ergosterol 
l-1 and 420 mg Tween 80 l-1 (a source of oleic acid). In Publication II P. pastoris 
was grown on minimal medium containing (per 1x10–3 m3 of deionized water): 
Yeast Nitrogen Base (YNB), 0.17x10–3 kg; (NH4)2SO4, 5x10–3 kg; glycerol and 
methanol (different ratios on w/w basis), 10x10–3 kg (total). In Publication III 
T. reesei was grown on minimal medium: (NH4)2SO4 7.6 g/l, KH2PO4 15.0 g/l, 
2.4 mM MgSO4, 4.1 mM CaCl2, CoCl2 3.7 mg/l, FeSO4·7H2O 5 mg/l, 
ZnSO4·7H2O 1.4 mg/l, MnSO4·7H2O 1.6 mg/l, pH adjusted to 4.8 with KOH, 
supplemented with 2% (w/v) carbon source glucose or sorbitol. 

4.3 Biosynthetically directed fractional 13C-labelling 

Biosynthetically directed fractional (BDF) 13C-labelling was performed for 
S. cerevisiae, P. pastoris and T. reesei in studies in Publications I, II and III, 
respectively. P. pastoris and S. cerevisiae 13C-labellings were performed in 
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chemostats while T. reesei was 13C-labelled in batch cultures in flasks. After 
reaching a metabolic steady state in S. cerevisiae glucose-limited chemostats, as 
determined by constant physiological parameters including biomass production, 
carbon dioxide evolution and oxygen uptake rates (CER and OUR), alkali utili-
sation, and subsequently confirmed by the observation of constant extracellular 
and intracellular metabolites and gene transcription, 10 % of the carbon source 
in the medium was replaced with [U-13C]glucose (Publication I). 10% [U-
13C]glucose was fed for 1.5 volume changes. P. pastoris was cultivated in 
chemostat on different glycerol/methanol mixtures until a metabolic steady state 
was reached as indicated by a constant cell density and constant oxygen and CO2 
concentrations in the bioreactor exhaust gas (Publication II). Then the culture 
was fed with medium containing about 10% (w/w) uniformly 13C-labelled and 
90% unlabelled amounts of each substrate simultaneously for one volume 
change. T. reesei 13C-labelling was performed with two different set ups (Publi-
cation III). In the first set up 13C-labelled carbon source was provided directly in 
the medium that was inoculated: in 2% (w/v) glucose minimal medium contain-
ing 10% (w/w) [U-13C]glucose and in 2% (w/v) sorbitol minimal medium con-
taining 10% (w/w) [U-13C]sorbitol. In the second set up in exponential growth 
phase the six flask cultures were combined and then the culture broth was di-
vided into six flasks. The final concentration of 1mM sophorose was introduced 
into three of the six replicate 2 l flasks to induce cellulase gene expression in 
T. reesei. An identical volume of water was added to the three control cultures. 
Three hours after the induction, when cellulase gene expression was expected to 
be at a moderate level [Ilmén et al., 1997], 0.4 g of [U-13C]sorbitol was added to 
all six cultures to initiate BDF 13C-labelling. The addition of 0.4 g of [U-
13C]sorbitol at this time was estimated to result in a [U-13C]sorbitol fraction of 
about 10% of the total sorbitol in the culture medium. 

During steady state growth in chemostats and during quasi-steady state growth 
in the exponential growth phase in batch cultures the intracellular metabolic 
fluxes remain constant and determine the labelling patterns of carbon backbones 
of proteinogenic amino acids formed in biosynthesis. In the T. reesei cultures 
that were inoculated in fractionally 13C-labelled medium the fraction of the initial 
biomass could be neglected and all the biomass is formed during 13C-labelling 
(Publication III). Also when the 13C-label was introduced after the induction of 
cellulase gene expression the initial biomass could be neglected. However, in 
chemostat cultures the fraction of biomass formed during the 13C-labelling de-
pends on the growth rate (equals dilution rate D) and the duration of the 
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13C-labelled feed and can be estimated from the first order wash-out kinetics 
(Publications I and II). The S. cerevisiae chemostat cultures at D = 0.1 h-1 were 
fed with fractionally 13C-labelled carbon source for 1.5 residence times which 
equals 15 h with the particular growth rate (Publication V). The P. pastoris 
chemostat cultures at D = 1.39 x 105 s-1 and 4.44 x 105 s-1 were fed with fraction-
ally 13C-labelled carbon source for 1.0 residence time (Publication II). 

4.4 Sampling 

The biomass samples of S. cerevisiae and P. pastoris were harvested by cen-
trifugation (Publications I and II, respectively) and T. reesei mycelium by filtra-
tion (Publication III). The cell pellets and the filtrated mycelium were suspended 
into 10 ml of 6 M HCl and the biomass was hydrolysed in sealed glass tubes at 
+110 ºC for 22 h. The suspensions were dried and dissolved in H2O for filtration 
through 0.2 μm filters. The filtrates were vacuum-dried and dissolved in D2O for 
NMR experiments. The pH of the samples was below 1 due to residual HCl. 

4.5 NMR spectroscopy 

In Publication V the reaction mixture of S. cerevisiae extract of the strain ex-
pressing the lgd1 from T. reesei and 110 mM L-galactonate was analysed by 
NMR after different time intervals. The reaction product was identified by com-
paring the NMR spectrum of the reaction mixture with the NMR spectrum of 
pure L-galactonate. The NMR experiments were carried out at +23 °C on a Var-
ian Inova spectrometer operating on a proton frequency of 500 MHz. The spec-
tral widths of the 1D 1H and 13C spectra were 5000 Hz and 30 675 Hz, respec-
tively. In two-dimensional homonuclear correlation spectroscopy (COSY) and 
total correlation spectroscopy (TOCSY) experiments [Croasmun and Carlson, 
1994], the spectral widths were 3400 Hz. The spinlock time for magnetization 
transfer along coupled nuclei in the TOCSY was 80 ms. In two-dimensional 
heteronuclear 1H-13C HSQC experiment the spectral widths in 1H and 13C di-
mensions were 1654 Hz and 10 000 Hz, respectively. 

For METAFoR analysis in Publications I, II and III the 1H-13C HSQC NMR 
spectra [Croasmun and Carlson, 1994] were acquired at +40 ºC on a Varian 
Inova spectrometer operating at on a proton resonance frequency of 600 MHz 
essentially as described [Szyperski, 1995]. For each sample two spectra were 
acquired focusing on the aliphatic and aromatic regions. The spectral widths in 
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the aliphatic spectra were 6000 Hz and 5100 Hz in the 1H and 13C dimensions, 
respectively. The narrow spectral width in the 13C dimension leads to back-
folding of part of the signals to the empty regions of the spectrum. The spectral 
widths for the aromatic spectra were 6000 Hz and 2815 Hz in the 1H and 13C 
dimensions, respectively. The spectra were processed using the standard Varian 
spectrometer software VNMR (version 6.1, C). 

4.6 Metabolic flux ratio analysis 

The software FCAL (R.W. Glaser; FCAL 2.3.1) [Szyperski et al., 1999] was 
used for the integration of 13C-scalar fine structures of proteinogenic amino acid 
carbon signals in the 1H-13C HSQC NMR spectra and the calculation of relative 
abundances of intact carbon fragments originating from a single source molecule 
of glucose as in Szyperski (1995). 

The nomenclature utilised for the intact carbon fragments, fragmentomers, 
was initially described by Szyperski (1995) and has briefly been explained in 
Introduction. Since the carbon backbones of eight metabolic intermediates are 
conserved in amino acid synthesis, fragmentomer information obtained from 
proteinogenic amino acids can be traced back to the intermediates of central 
carbon metabolism [Szyperski 1995; Maaheimo et al., 2001]. Mass balance 
equations of specific carbon fragments of the metabolic intermediates can be 
formulated from the propagated fragmentomer information to solve ratios of 
fluxes in junctions of central carbon metabolism. In Publication I the metabolic 
flux ratio (METAFoR) analysis relied on the compartmentalized metabolic 
model of S. cerevisiae central carbon metabolism and some of the flux ratios 
were calculated as formulated by Maaheimo and co-workers (2001). However, 
some flux ratio calculations were redefined as follows. The nomenclature of the 
metabolites with differentially conserved C-C connectivities that have been back 
propagated from the 13C-labelling patterns of amino acids is <metabo-
lite_abbreviation_> and then the following characters denote the status of the 
bonds in the carbon chain of the metabolite: 1 stands for an intact bond, 0 for a 
cleaved bond and x for either of the two. The corresponding amino acids frag-
mentomers are named as was explained above. 

The fraction of Pep originating from phosphoenolpyruvate carboxykinase ac-
tivity, denoted by PEPckX , was calculated from the ratio of the fraction of Pep 
molecules containing an intact C1-C2 fragment and a cleaved bond between C2 
and C3 ( 10_Pep ) and the fraction of Oaacyt molecules containing the equivalent 



4. Research methods 

52 

fragments ( xOaa cyt 10_ ) (Equation 1). These fragments cannot originate from 
glycolysis or from the PPP [Maaheimo et al., 2001]. Phe-Cα, Tyr-Cα and Asp-
Cα, Thr-Cα can be traced back to the C2 of Pep and Oaacyt, respectively [Maa-
heimo et al., 2001] (Equation 6). 

( )[ ]{ } ( )[ ]{ }αα CThrAspfCTyrPhefxOaaPepX cytPEPck −−== ,/,10_/10_ *2*2  (6) 

The Oaamit molecules originating from Oga through the TCA cycle possess 
cleaved C2-C3 bonds. The fraction of Oaamit originating from transport over the 
mitochondrial membrane from Oaacyt was solved from a mass balance of intact 
C2-C3 fragments in Oaamit. The conserved connectivity of the C2-C3 fragment in 
Oaamit could be propagated back from Glu-Cα and Pro-Cα carbons that represent 
the C2 carbon in Oga, since the C2-C3 fragment of Oaamit is conserved in the 
TCA cycle as the C2-C3 fragment of Oga. The fraction of Oaamit from Oaacyt, 
denoted by transportOaaX − , was calculated as a ratio of intact C2-C3 fragments in 
Oga and Oaacyt (Equation 7). 
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The fraction of Oaacyt originating from Pyrcyt, denoted by 
cytcyt PyrfromOaaX __ , was 

solved from the mass balance of intact C2-C3 fragments (Equation 8). Since the 
flux from Pep to Pyrcyt through phosphoenolpyruvate kinase and further through 
pyruvate carboxylase to Oaacyt could be assumed to be irreversible, the C2-C3 
fragments of Pep were used in the mass balance equations. The conserved con-
nectivity of the C2-C3 fragment in Pyrcyt could be observed from Phe-Cα and 
Tyr-Cα that represent the C2 carbon of Pep (Equation 8). 

( ) ( )

[ ]{ } [ ]{ }

[ ]{ } [ ]{ }αβα

αβα

CoGluffCCTyrPheff

CoGluffCAspCThrAspff

xxxOgaxPepxxxOgaxxOaaX cytPyrfromOaa cytcyt

−+−−+

−+−−−+
=

−−=

Pr,,,

Pr,,,

1_1_/1_1_

)3()2()3()2(

)3()2()3()2(

__

 (8) 

The upper and lower bounds for Pyrmit originating from the malic enzyme reac-
tion, denoted by  ubMAEX _  and lbMAEX _  respectively, were calculated from a 
mass balance of intact C2-C3 fragments of Pyrmit (Equations 9 and 10). The up-
per and lower bounds were obtained from the assumption that the substrate 
fragment for malic enzyme has an equally conserved connectivity as Oga and 
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Oaamit. The intact fragments in Oaamit were obtained from the intact fragments in 
Oga since the C2-C3-C4 fragment of Oaamit is conserved in the TCA cycle in 
synthesis of Oga. The intact fragments in biosynthetic precursor Oga were de-
duced from the f-values of Glu and Pro carbons (Equations 9 and 10). 
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4.7 Metabolic modelling for 13C-metabolic flux analysis 

In Publication I metabolic flux analysis (MFA) was used to determine intracellu-
lar net fluxes of S. cerevisiae under different conditions of oxygen provision 
(20.9%, 2.8%, 1.0%, 0.5% and 0.0% O2 in the chemostat inlet gas), with 
METAFoR analysis providing additional experimental constraints to render the 
MFA system solvable [Fischer et al., 2004]. A stoichiometric model of central 
carbon metabolism of S. cerevisiae was formulated. The system boundary was 
set around the central carbon metabolism and the model thus included the glyco-
lytic and the pentose phosphate pathways, the TCA cycle and the fermentative 
pathways, production of glycerol and anabolic fluxes from metabolic intermedi-
ates to biosynthesis. The glyoxylate cycle was omitted from the model since the 
METAFoR analysis data showed that the pathway was inactive (Publication I). 
Separate pools of Pyr, AcCoA and Oaa in the two cellular compartments, cyto-
plasm and mitochondria, were included in the model. Thus, they were modelled 
as two distinct metabolites. Mal was lumped in the same pool with Oaamit. Also 
the pentose phosphates formed a single pool and the triose phosphates were 
combined in the pools of G3P and Pep. DHAP, the precursor for glycerol syn-
thesis, was also combined with the G3P pool. Lumping of the metabolite pools 
in the model is reasonable when it is meaningful to assume fast exchange be-
tween the metabolites, faster than between the metabolites and other compounds. 
TCA cycle metabolites were represented by the pools of citrate, Oga and Oaamit. 
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Scrambling of 13C-labels in the symmetric molecules succinate and fumarate was 
taken into account [Bernhard and Tompa, 1990]. 

However, despite the symmetry, partial channelling of succinate and fumarate 
has also been seen [Sumegi et al., 1993]. The transport of Pyr and Oaa across the 
mitochondrial membrane were included in the model but the transport of Ac-
CoA, the final step of the cytosolic pyruvate dehydrogenase (PDH) bypass, was 
omitted since exogenous carnitine would be required for the carnitine shuttle to 
be active [Lange, 2002; Swiegers et al., 2001; van Roermund et al., 1999], and 
carnitine was not provided in the medium. In addition, carnitine acetyltrans-
ferase activity has not been detected in S. cerevisiae grown in anaerobic chemo-
stats at 0.1 h-1 [Nissen et al., 1997]. However, contradictory observation has 
been made by Frick and Wittmann (2005) in S. cerevisiae strain ATCC 32167. 
Pyruvate by-pass via transport of AcCoA into mitocnodria was observed to be 
active during both respirative and fermentative growth under different dilution 
rates between 0.10 h-1 and 0.45 h-1. Since acetaldehyde can freely diffuse across 
the mitochondrial membrane and acetaldehyde dehydrogenase (EC 1.2.1.3) and 
AcCoA synthetase (EC 6.2.1.1) enzymes have both been isolated in the mito-
chodrial proteome [Sickmann et al., 2003], PDH bypass could also be partially 
located in mitochondria and contribute directly to the formation of AcCoAmit. In 
absence of fluxes inducing significantly dissimilar labelling patterns to the C2-
C3 fragments of Pyrcyt and Pyrmit i.e. in conditions of low malic enzyme fluxes as 
observed in this study, 13C-labelling cannot solely reveal the possible contribu-
tion of PDH bypass pathways to the carbon flux to mitochondria. However, in 
the cultivations performed, the expression of ACS1 encoding the mitochondrial 
AcCoA synthetase, essential for the contribution of mitochondrial PDH bypass 
to the formation of AcCoAmit, was negligible and the expression of ACS2 encod-
ing the cytosolic isoenzyme was substantially higher [Wiebe et al., 2008]. 
Therefore, the mitochondrial PDH bypass was not included in the model. 

A model of central carbon metabolism of S. cerevisiae with the same extent as 
above was formulated for development of the systematic and analytic framework 
for determination of flux ratios in Publication IV. In the model, some simplifica-
tions common to 13C-MFA were applied by pooling metabolites whose iso-
topomer pools can be assumed to be fully mixed (cf. [Kleijn et al., 2007]). Pool-
ing of metabolites was carried for the pentose-phosphates in PPP, phopshotrioses 
between G3P and Pep in glycolysis, and Oaa and Mal in the TCA cycle. In these 
cases, pooling was justified by the existence of fast equilibrating, bidirectional 
reactions between the listed intermediates and the empirical evidence that their 
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isotopic labelling is not distinguishable with the current analytical tools. Cofac-
tor metabolites were excluded from the model as cofactor specificities and ac-
tivities are not accurately known for many reactions. The bulk of the carbon 
mappings of reactions in the metabolic network were provided by ARM project 
[Arita, 2003]. Carbon mappings from amino acids to their precursors conformed 
to [Szyperski, 1995] and [Maaheimo et al., 2001]. For empirical verification of 
the framework it was tested by estimation of flux ratios for junction metabolites 
in the metabolic network of S. cerevisiae from the artificial data generated by the 
13C-FLUX software [Wiechert et al., 2001]. 

In Publication I the metabolic fluxes were modelled as net fluxes so that a net 
flux in the forward direction was assigned with a positive value and a net flux in 
the reverse direction was assigned with a negative value. As an exception, the 
transport of Oaa across the mitochondrial membrane was modelled as two one-
directional transport reactions by not allowing negative net fluxes. In S. cerevisiae 
the transport of Oaa across the mitochondrial membrane can occur via mito-
chondrial Oaa transporter OAC1 facilitated transport [Palmieri et al., 1999]. 

The stoichiometric model for experiments under 20.9%, 2.8% and 1.0% oxy-
gen conditions consisted of 38 reactions coupling 34 metabolites including du-
plicated extracellular metabolites and uptake and production fluxes (Publication 
I Figure 4). The 14 fluxes across the system boundary included glucose uptake 
and excretion fluxes of ethanol, acetate and glycerol and the fluxes of the meta-
bolic precursors to macromolecule synthesis for biomass production. The 
METAFoR analysis results were used to identify inactive reactions, to constrain 
the stoichiometric models for the experiments with 0.5% and 0.0% oxygen by 
omitting inactive fluxes to avoid numerical problems in optimization. The 
stoichiometric model for experiments under 0.5% oxygen consisted of 37 reac-
tions, coupling 34 metabolites and excluding the malic enzyme activity from the 
first model of the network of active reactions. The compartmentalization of cen-
tral carbon metabolism in anaerobic conditions is evident from the vital anabolic 
role of mitochondria in the absence of oxygen [Visser et al., 1994]. However, in 
completely anaerobic conditions only the net transport of Oaa across the mito-
chondrial membrane is resolvable and the activities of PEPck and malic enzyme 
reactions cannot be quantified. Since, according to the METAFoR analysis, the 
PEPck reaction showed only slight activity in the other conditions studied and its 
activity decreased as the oxygen provided was reduced, it was omitted from the 
anaerobic stoichiometric model. MAE1 has been shown to be induced in anaero-
bic conditions and its possible role in provision of NADPH in mitochondria in 
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anaerobic conditions has been discussed [Boles et al., 1998]. However, the malic 
enzyme reaction also showed only slight activity in all the conditions where 
quantification was possible and had its lowest activity in 0.5% oxygen. Thus, the 
malic enzyme reaction was omitted from the anaerobic model. Under anaerobic 
conditions the stoichiometric model of the active pathways consisted of 34 reac-
tions and 34 metabolites. 

After including the measured uptake and excretion rates and the rates of meta-
bolic precursor depletion to biomass synthesis, as determined from the composi-
tion of S. cerevisiae biomass previously reported [Gombert et al., 2001], in the 
models, the linear equation systems remained underdetermined. The composi-
tion of S. cerevisiae biomass was assumed to be the same in all the conditions 
studied, since the biomass composition in the two extreme conditions, i.e. in 
fully aerobic and in anaerobic conditions, has been experimentally shown to be 
essentially the same [Gombert et al., 2001; Nissen et al., 1997]. Solvable sys-
tems were obtained by further constraining the MFA systems with one to six 
linearly independent constraints, depending on the structure of the network of 
active reactions from the METAFoR analysis as described by Fischer and co-
workers (2004) for MS 13C-labelling data. Using the constraints from the 
METAFoR analysis, it was not necessary to include redox cofactor mass bal-
ances in the mass balance constraints in 13C MFA. Cofactor mass balances are 
sources of errors since the correct balancing requires detailed knowledge of the 
relative activities of different isoenzymes and the enzymes’ redox cofactor 
specificities on a cell wide scale under the studied conditions. Under the condi-
tions of different oxygen provisions, the external conditions posed different chal-
lenges on the redox homeostasis systems of the cells and their effect are not 
known. The mass balances of the metabolites were formulated as a linear equa-
tion system as described in [Fischer et al., 2004] (Equation 11): 

mi RbvN =−  (11) 

where iN is the stoichiometric matrix of the active network i  determined from 
the METAFoR analysis fragmentomer data, v  is the flux distribution vector, 
b is the vector of the measured extracellular fluxes and mR is the vector of the 
residuals of metabolite mass balances. 
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Figure 4 (Publication I). Metabolic network model of S. cerevisiae for net flux determina-
tion utilising flux ratios as additional constraints. 
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The flux ratio equations were set up according to the METAFoR analysis for the 
reactions in the stoichiometric models of the central carbon metabolism of 
S. cerevisiae (Equations 12 to 16, the reaction numbers are defined in Figure 4). 
Depending on the structure of the network of active reactions the flux ratio equa-
tions included one to six of the following (Equations 12 to 16): 

the fraction of Pep from PPP assuming a maximal contribution of PPP 
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The following constraint equations were thus obtained from the flux ratio equa-
tions (Equations 17 to 22): 

( ) 02123 645765 =++−++ vvvfrvvv   (17) 

( ) 02 81515 =+− vvfrv  (18) 

( ) 03 132121 =+− vvfrv  (19) 
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( ) 04 221616 =+− vvfrv  (20) 

( ) 05 91414 =+− vvfrv  (21) 

( ) 06 14914 =−+ vvvfr  (22) 

Irreversibility was assumed for the intracellular fluxes 3v , 4v , 8v , 9v , 10v , 11x , 
12v , 13v , 14v , 15v , 16v , 21v , 22v , 23v , 24v , for extracellular fluxes 25v , 26v , 
27v , 28v  and for the depletion of precursors to biosynthetic reactions and thus, 

only positive values were allowed for the fluxes. The minimization of the sum of 
the weighted square residuals of the metabolite mass balances was done using 
the Matlab function fmincon for optimization of constrained nonlinear multivari-
able function. The extracellular metabolite mass balances were assigned weights 
according to the experimental measurement error estimates. The biomass precur-
sor metabolite mass balances were assigned ten-fold larger weights, relative to 
their stoichiometric coefficients in the biomass composition, since the assump-
tion of constant biomass composition was expected to be harsh [Furukawa et al., 
1983]. The flux ratio constraints were included as strict constraints. The optimi-
zation was started 10000 times from random initial values to evaluate the 
uniqueness of the optimal flux distribution. The sensitivity of the flux distribu-
tion solutions to the noise in the flux ratio data and in the extracellular flux data 
was studied by Monte Carlo -simulations [Antoniewicz et al., 2006]. Additive 
normally distributed noise with zero mean and experimentally determined vari-
ances of the flux ratios and the extracellular fluxes was sampled to the flux ratios 
and to the extracellular flux data, separately and simultaneously. A flux distribu-
tion was solved for each of the 100 sets of input data from 12 random initial flux 
distributions. Confidence intervals (95%) of the fluxes were determined. 

4.8 Pathway reconstruction 

In Publication III metabolic flux ratio (METAFoR) analysis was performed for 
T. reesei which lacks a genome-wide metabolic reconstruction. It was essential 
for the METAFoR analysis to reconstruct the biosynthetic pathways for pro-
teinogenic amino acids of T. reesei. The reconstruction of amino acid biosyn-
thetic pathways from their precursors in T. reesei was performed with ReTrace 
which is a recent computational carbon path analysis method [Pitkänen et al., 
2009], which can be queried to discover branching metabolic pathways in a uni-
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versal metabolic database. ReTrace aims to find pathways which transfer as 
many atoms from source to target metabolites as possible. 

The reaction database used in ReTrace analysis was KEGG LIGAND, re-
trieved in March 2009 [Kanehisa et al., 2008]. Reaction database contained 7827 
reactions, 15400 compounds. Atom mappings, that describe how atoms are trans-
ferred in a reaction from substrate to product metabolites, were defined for 
33795 substrate-product pairs in the RPAIR database [Kotera et al., 2004], 
which is a subdatabase of KEGG. All reactions were considered bidirectional. 
To compute reaction scores, a database consisting of 101136 sequences anno-
tated with an EC number in UniProt version 9.3 [The UniProt Consortium, 
2007] was queried with the 9129 protein sequences in T. reesei genome [Marti-
nez et al., 2008] by blastp [Altschul et al., 1997] using e-value cutoff 10 to de-
tect remote homologs. Each reaction in the KEGG database was assigned a score 
by taking the maximum BLAST score over all UniProt-Trichoderma sequence 
pairs, where UniProt sequence had been annotated with an EC number corre-
sponding to the reaction. A total of 3974 reactions received a score in this proce-
dure, while the remaining 3853 reactions were assigned a zero score. Reaction 
scores reflected the degree of evidence from the detection of sequence homology 
that there exists an enzyme catalyzing the reaction in T. reesei. 

ReTrace operates on an atom-level graph representation of the metabolic net-
work of all the reactions in the reaction database [Pitkänen et al., 2009]. First, 
the metabolic network is converted into an atom graph, where nodes correspond 
to the atoms of metabolites and edges the atom mappings between the individual 
atoms. Atom mappings of carbon atoms were utilised in the reconstruction of the 
biosynthetic pathways of amino acids in T. reesei. Other atoms than carbons, 
such as nitrogen and sulphur, were not considered in the analysis performed in 
Publication III. 

ReTrace [Pitkänen et al., 2009] utilises a K shortest paths algorithm [Epp-
stein, 1994] to discover a number of connections between nodes in the atom 
graph. Given a query to find pathways from source to target metabolites (to 
amino acids in Publication III) ReTrace searched for shortest paths in the atom 
graph from any atom in source metabolites to any target metabolite atom [Pit-
känen et al., 2009]. Each shortest path was then processed. ReTrace traces back 
the target metabolite atoms along the atom mappings. Then branching points 
were identified as atom mappings that did not transfer the traced carbon atom 
towards the source [Pitkänen et al., 2009]. Possible metabolites that could pro-
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vide the missing carbon were determined and shortest paths from source to these 
metabolites were searched to determine the branches. 

4.9 Localization of amino acid biosynthetic enzymes in 
T. reesei 

In Publication III, TargetP, a machine learning method based on neural networks 
that predicts both chloroplast and mitochondrial targeting peptides and secretory 
signal peptides was utilized to predict the probable subcellular localization of 
some enzymes on the biosynthetic pathways of amino acids in T. reesei 
[Emanuelsson et al., 2007; Emanuelsson et al., 2000]. 
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5. Results and discussion 
In Publications I, II, III and IV ratios of intracellular fluxes were determined 
utilising 13C-labelling experiments and the established metabolic flux ratio 
(METAFoR) analysis approach was extended. In Publication I flux ratios from 
METAFoR analysis combined with NMR spectroscopy as the analytical tool 
was utilized as experimentally derived additional constraints that enabled solv-
ing intracellular net fluxes under S. cerevisiae in different oxygenation condi-
tions and determination of the dependence of the flux phenotype of S. cerevisiae 
on oxygen provision. In Publication II the Established METAFoR analysis was 
extended to a two-carbon source case to investigate the metabolism of 
P. pastoris under process conditions of recombinant protein production where 
methanol is used as inducer and glycerol as a carbon source. In Publication III 
the previously scarcely studied metabolism of filamentous fungus T. reesei was 
studied under different conditions of carbon catabolite repression. Since 
T. reesei lacks a genome-wide metabolic reconstruction the METAFoR analysis 
was coupled to essential reconstruction of the biosynthetic pathways of amino 
acids from genome level evidence. Comparison of the flux ratios of T. reesei to 
the ones observed in S. cerevisiae confirmed that the regulation of the central 
pathway fluxes is programmed in distinct ways in the two organisms. In Publica-
tion IV a systematic and analytic framework for derivation of flux ratio equa-
tions from a given model and 13C-labelling data that constrains isotopomer dis-
tributions was developed. Comparison of the automatically derived flux ratios to 
manually by METAFoR analysis approach derived flux ratios was not straight-
forward because the biological information encoded in the METAFoR analysis 
approach by domain experts is diverse. When the model employed in the auto-
matic derivation corresponded to the METAFoR approach, the derived flux ra-
tios agreed well. 
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In Publication V NMR spectroscopy was utilized in verification of the recon-
struction of a metabolic pathway in T. reesei. A reaction product of a step on the 
D-galacturonic acid catabolic pathway was identified by 1D and 2D NMR spec-
troscopy. 

5.1 Utilization of 13C-metabolic flux analysis excluded 
cofactor mass balances 

In Publication I the dependence of intracellular flux distribution of S. cerevisiae 
on the level oxygenation was quantified by 13C-MFA. S. cerevisiae was grown in 
glucose-limited chemostat cultures at a low dilution rate of 0.1 h-1 that ensured 
that the maximum respiratory rate was not reached even under fully aerobic 
conditions. The cultures were aerated with five different fractions of oxygen in 
the chemostat inlet gas: 20.9%, 2.8%, 1.0%, 0.5% and 0.0%. Wiebe et al. (2008) 
observed that at aeration of 20.9% O2 in the chemostat inlet gas the metabolism 
of S. cerevisiae was fully respiratory and ethanol was observed in the medium 
under all the rest of the conditions. Duplicate cultures at each oxygenation con-
dition were 13C-labelled with uniform-labelling approach for 13C-MFA analysis 
in Publication I. Quantitative ratios of merging fluxes in central carbon metabo-
lism of S. cerevisiae were obtained by METAFoR analysis approach utilizing 
NMR spectroscopic detection of  13C-labelling [Szyperski, 1995; Szyperski et al., 
1999; Maaheimo et al., 2001]. The flux ratios were utilised as additional con-
straints to solve the mass balance equation system of the stoichiometric model of 
central carbon metabolism of S. cerevisiae as was earlier done for another eu-
karyote P. anomala with MS detected constraints by Fredlund et al. (2004) with 
the approach published by Fischer et al. (2004). 13C-MFA enabled solving the 
intracellular net fluxes without including the redox cofactors in the mass bal-
ances which was essential since oxygen availability strongly affects the systems 
that maintain the redox homeostasis in cells. 

5.2 Pyruvate branching point distribution responsive 

The quantification of the net flux distributions of S. cerevisiae in response to 
different oxygenation conditions showed that the fluxes were redistributed not 
only between the cells grown in the fully aerobic conditions, under conditions of 
reduced oxygen provision and under anaerobic conditions but also between cells 
grown with different levels of low oxygen (2.8%, 1.0% and 0.5% O2 in the 
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chemostat inlet gas) (Publication I). Although the metabolism of S. cerevisiae 
was respiro-fermentative under each of these low oxygen conditions, the actual 
amount of oxygen available resulted in different distribution to the respirative 
and fermentative pathways. The flux distribution at the pyruvate branch point, 
where the respirative and the fermentative pathways and the anaplerotic path-
way, that operates to replenish the TCA cycle, diverge was particularly respon-
sive to the level of reduction in oxygen provision. The respirative pathway flux 
decreased progressively under reduced oxygenation conditions where the avail-
ability of terminal electron acceptor limited the respiratory rate. However, the 
respiratory energy generation, that is highly efficient because of the high elec-
tronegativity of oxygen, provided a large fraction of ATP even under the low 
oxygen conditions (Table 1). 

Table 1 (Publication I). Estimated fractions of respiration coupled ATP generation in 
S. cerevisiae under different oxygenation conditions. 

 O2 provided in the fermentor inlet gas 

 20.9% 2.8% 1.0% 0.5% 0.0% 

ATP from respiration (%) 59 55 36 25 0 

OUR (mmol g-1h-1) 2.7 2.5 1.7 1.2 0 

ATP/ Oa 0.9 1.0 1.1 1.1 - 

ATP/ 2e-b 1.0 0.9 1.0 1.2 - 

a Calculated from the oxygen uptake rate (OUR), bCalculated from the flux of electron donors to 
the respiratory chain. 

5.3 Methanol and glycerol co-utilization extension 

In Publication II a biosynthetically directed fractional 13C-labelling approach 
was established for yeast P. pastoris growing on carbon substrate mixture of 
methanol and glycerol. Methanol is utilised as an inducer of protein production 
in P. pastoris processes. The approach allowed the quantification of the meta-
bolic state of the TCA cycle and associated pathways under production condi-
tions and thus was an important methodological expansion of the metabolic flux 
ratio (METAFoR) analysis [Szyperski, 1995; Szyperski et al., 1999; Maaheimo 
et al., 2001]. 
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5.4 Flux distributions robust against different fractions 
of methanol 

It was shown that co-assimilation of methanol as a carbon source does not alter 
the way the common amino acids are synthesized in P. pastoris growing on a 
sole multicarbon source, and that the growth on different glycerol/methanol mix-
tures at a given growth rate results in rather similar flux ratio profiles in the TCA 
cycle and related pathways as the fraction of methanol is increased (Publication 
II). In contrast, a clear effect of specific growth rate on the relative activity of the 
TCA cycle and related pathways was observed, regardless of the methanol frac-
tion in the feed, consistent with the observation that TCA cycle activity in 
S. cerevisiae is strongly correlated with the environmentally determined specific 
growth rate [Blank and Sauer, 2004]. Co-assimilation of methanol as a carbon 
source has a clear impact with respect to the activity of the PPP, which is consis-
tent with the increasing flux of methanol molecules towards the synthesis of 
central carbon metabolism intermediates (e.g. Pep), as observed when the frac-
tion of methanol in the feed medium is increased. However, this pattern was not 
observed in cells growing at the higher dilution rate (where methanol is partially 
accumulated in the medium) suggesting that the distribution of methanol carbon 
into assimilatory and dissimilatory pathways may be different. Earlier 
13C-labelling studies of methanol metabolism of the methylotrophic yeast H. 
polymorpha [Jones and Bellion, 1991] showed that the linear methanol oxidation 
pathway to CO2 only operates under extreme conditions (e.g. methanol accumu-
lation to toxic levels), suggesting a role in detoxification. 

The information from the 13C-labelling and METAFoR analysis [Szyperski, 
1995; Szyperski et al., 1999; Maaheimo et al., 2001] of P. pastoris on glycerol 
and methanol mixtures is valuable for the optimization of culture processes for 
the production of recombinant proteins in P. pastoris, where parameters such as 
the residual methanol concentration, specific growth rate, as well as mixed sub-
strate culture strategies have been shown to have a dramatic impact on overall 
process productivity (Publication II). In addition, the information derived from 
the study may be relevant for the design of isotopic labelling experiments of 
recombinant proteins (or other cell components, e.g. cell wall glucans) for struc-
tural studies. 



5. Results and discussion 

66 

5.5 Metabolic flux ratio analysis of T. reesei necessitated 
reconstruction of biosynthetic pathways of amino acids 

In Publication III the biosynthetic pathways of T. reesei were reconstructed for 
most of the proteinogenic amino acids with a computational carbon path analysis 
method ReTrace [Pitkänen et al., 2009]. The method was used to search for 
pathways from a metabolic network consisting of all reactions found in a com-
prehensive metabolic reaction database, and to subsequently rank the pathways 
according to the degree of support from the T. reesei’s genome. Contiguous 
pathways, identical to the amino acid biosynthetic routes of S. cerevisiae, were 
found with high genome-level evidence. Origins of amino acids in T. reesei 
relevant for METAFoR analysis are shown in Figure 5. 
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Figure 5 (Publication III). The origins of the carbon backbones of the proteinogenic amino 
acids in T. reesei that are relevant for METAFoR analysis and for which the biosynthetic 
pathways were reconstructed by computational pathway analysis method ReTrace [Pit-
känen et al., 2009]. If the biosynthetic pathway was not directly found by ReTrace, the 
amino acid abbreviation is denoted in red italics. The amino acid carbons are denoted in 
the following way: a = α, b = β, g = γ, d = δ, e = ε, ksi = ξ. 

5.6 Primary respiratory metabolism 

T. reesei wild type and Δcre1 strains were 13C-labelled with uniform 13C-labelling 
approach in batch cultures in flasks on repressive carbon source glucose and on 
sorbitol. The 13C-labelling patterns of proteinogenic amino acids were in good 
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accordance with the compartmentalized model of eukaryotic central carbon me-
tabolism, originally developed for S. cerevisiae [Maaheimo et al., 2001]]. How-
ever, in contrast to S. cerevisiae, in both T. reesei strains Asp synthesis was ob-
served to occur primarily from the mitochondrial pool of Oaa, under all the stud-
ied conditions. 

The T. reesei wild type strain is known to exhibit carbon catabolite repression 
of hydrolytic gene expression during growth on glucose, whereas in the Δcre1 
strain the repression is partially disturbed [Ilmén et al., 1996]. The respiratory 
pathway does not become transcriptionally downregulated by the carbon catabo-
lite repression in T. reesei as in S. cerevisiae [Chambergo et al., 2002]. How-
ever, it is the in vivo fluxes that are the ultimate phenotype of an organism. The 
ratios of in vivo fluxes of T. reesei were solved with METAFoR analysis from 
the 13C-labelling patterns of proteinogenic amino acids [Szyperski, 1995; 
Szyperski et al., 1999; Maaheimo et al., 2001] in the different conditions of car-
bon catabolite repression. This was the first time that the effect of carbon catabo-
lite repression T. reesei on in vivo fluxes was quantitatively studied. 

The relative anaplerotic flux, the flux that replenishes the TCA cycle, com-
pared to the respiratory pathway flux was characteristic to primarily respiratory 
metabolism in the both T. reesei strains under all the studied conditions (Table 
2). This indicated that T. reesei utilizes primarily respiratory metabolism also on 
preferred carbon source glucose. However, the observed relative anaplerotic 
fluxes suggested that the respirative activity of the TCA cycle in T. reesei was 
even slightly higher on the neutral carbon source sorbitol than on glucose. Only 
minor differences were observed between the in vivo flux distributions of the 
wild type and the Δcre1 strains. Therefore, CRE1 the key repressor of utilization 
of alternative carbon sources, does not mediate carbon source dependent meta-
bolic state alterations in central carbon metabolism in T. reesei. The sophorose 
induction of cellulase gene expression did not result in significant changes in the 
relative requirements of proteinogenic amino acids or in the ratio of anabolic to 
oxidative activities of the TCA cycle. 
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Table 2 (Publication III). Comparison of Metabolic Flux Ratio (METAFoR) analysis of 
T. reesei to the crabtree positive and negative yeasts S. cerevisiae and P. stipitis. META-
FoR analysis from fractional 13C-labelling of T. reesei wild type and Δcre1 strains in aero-
bic batch cultures on glucose and on sorbitol (Publication III), compared with the ones 
observed in S. cerevisiae and P. stipitis in aerobic batch cultures on glucose and in aero-
bic glucose-limited chemostat cultures [Maaheimo et al., 2001; Fiaux et al., 2003]. 

organism T. reesei T. reesei T. reesei T. reesei S. cerevisiae S. cerevisiae P.stipitis P.stipitis
strain wild type delta cre1 wild type delta cre1
carbon source glucose glucose sorbitol sorbitol glucose glucose glucose glucose
culture batch batch batch batch batch chemostat batch chemostat
reference Maaheimo Fiaux Fiaux Fiaux

% sd % sd % sd % sd % sd % sd % sd % sd
Pep from PPP (UB, no PEPck) 39 2 47 4 36 7 45 9 0-4 40 8 57 9 61 11
R5P from T3P and S7P 51 1 42 1 72 3 79 4 68 2 59 2 57 2 72 2
R5P from E4P 25 2 23 1 46 2 54 3 10 2 33 2 35 2 43 2
Anaplerotic flux ratio 35 1 33 2 26 3 42 5 76 4 31 2 36 2 32 2
MAE (UB) 4 0 9 1 12 2 6 5 25-30 <13 <6 <7
MAE (LB) 2 0 6 1 9 1 4 3 nd nd nd nd nd nd nd nd  

UB upper bound, LB lower bound, nd not determined 

5.7 Framework for analytic and systematic derivation of 
flux ratio equations 

In Publication VI a systematic and analytic framework for 13C-metabolic flux 
ratio analysis was introduced. Previously the utilisation of the METAFoR analy-
sis [Szyperski, 1995; Szyperski et al., 1999; Maaheimo et al., 2001] has been 
relying on manual derivation of the equations that constrain the flux ratios. The 
systematic and analytic framework for 13C-metabolic flux ratio analysis is a gen-
eralization and formalization of existing analytic methods for computing meta-
bolic flux ratios [Maaheimo et al., 2001; Zamboni et al., 2005; Szyperski 1998] 
and facilitates an efficient and analytic computation of the ratios between the 
fluxes producing the same junction metabolite in a given metabolic network. 

The model of the central carbon metabolism of S. cerevisiae was formulated 
also in a 13C-FLUX [Wiechert et al., 2001] format and artificial substrate label-
ling was employed to obtain simulated 13C-labelling data for verification of the 
implementation of the framework for flux ratio determination. Then NMR spec-
troscopy data from 1H-13C HSQC experiments, relative intensities of fine struc-
tures that represent different combinations of 13C and 12C atoms coupled to a 
central 13C atom in proteinogenic amino acids, was utilized to compare the flux 
ratios derived with the implemented framework with manually derived flux ra-
tios. The experiment showed that the framework was able to provide relevant 
quantitative information on the distribution of metabolic fluxes, even when only 
constraints to the isotopomer distributions of proteinogenic amino acids are 
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measured. Detection of the 13C-labelling status of 15 proteinogenic amino acids 
resulted in flux ratios for junctions in four cytosolic metabolites (Oaa, Pep, Gly 
and Ser) and in three mitochondrial metabolites (Oaa, AcCoA and Pyr). In addi-
tion, an upper bound for G3P molecules that had gone through a transketolase 
reaction could be solved when the model was first manually simplified to corre-
spond to the model utilised in the manual derivation of the G3P flux ratio. The 
computed flux ratios where compared to the manually derived ones whenever 
the assumptions made in the manual derivation were consistent with the general 
model employed in the automatic derivation of the flux ratios. The automatically 
derived flux ratios agreed well with the manually derived ratios. Differences 
between the estimations could be explained by numerical instabilities and by 
differences in computational procedures: in manually derived ratios the estima-
tions are based on the breakage of a single bond in different routes leading to a 
metabolite while in the developed framework more isotopomer information is 
possibly utilized in the estimation. 

5.8 L-threo-3-deoxyhexulosonate is a reaction product of 
L-galactonate dehydratase 

In Publication V the metabolism of fungus T. reesei was further studied and an 
L-galactonate dehydratase and the corresponding gene were identified from 
T. reesei. The enzyme converts L-galactonate to L-threo-3-deoxy-hexulosonate 
(2-keto-3-deoxy- L-galactonate) and belongs to the fungal pathway for D-
galacturonic acid catabolism. L-galactonate dehydratase is the second enzyme of 
the pathway after the D-galacturonic acid reductase. L-galactonate dehydratase 
activity is present in T. reesei mycelia grown on D-galacturonic acid but absent 
when other carbon sources are used for growth. L-galactonate dehydratase is 
active on sugars L-galactonate and D-arabonate in which the hydroxyl groups of 
the C2 and the C3 in the Fischer projection are in L- and D-configuration, re-
spectively. The enzyme was not active with sugar acids having the hydroxyl 
groups of C2 in D-configuration and C3 in L-configuration as in D-galactonate, 
D-gluconate and D-xylonate and with sugar acids having the hydroxyl groups of 
C2 and C3 in D-configuration as in D-gulonate. 

In order to define the reaction product of L-galactonate dehydratase it was 
analysed by NMR spectroscopy. To generate a sufficient amount of reaction 
product L-galactonate was incubated in the yeast extract of the strain expressing 
the L-galactonate dehydratase gene. In this extract the reaction product did not 
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react further, which facilitated the NMR spectroscopic analysis. In the T. reesei 
mycelia extract the reaction product was degraded, making the NMR spectro-
scopic analysis more difficult. The NMR spectroscopic analysis showed that 
erythro- or threo-3-deoxy-hexulosonate was formed. Knowing the substrate of 
the dehydratase reaction it was concluded that the product was L-threo-3-
deoxyhexulosonate. The NMR spectroscopic analysis also revealed that it was 
predominantly in the pyranose form. For the pyranose form two anomers are 
possible; the carboxyl group in R1 and the hydroxyl group in R2 or vice versa. 
The NMR spectroscopic analysis suggested that one of the anomers was pre-
dominant but it did not allow determination of which of the two anomers it was. 
The NMR spectroscopic analysis revealed also that the axial hydrogen at C3 is 
the hydrogen that was added in the reaction. However, as there are two possible 
chair conformations of the pyranose ring it remained unclear which of the two 
protons is in the axial position. 
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6. Conclusions and prospects 
The analyses of flux ratio of different organisms revealed phenotypic differences 
in detail. In the studies of this thesis the differences between the regulatory prin-
ciples of two eukaryotic organisms, S. cerevisiae and T. reesei, were observed 
on flux phenotypic level (Publications I and III). The former pursues high rate of 
ATP production whereas the latter seeks a high ATP yield. The distributions of 
fluxes to respirative and fermentative pathways were similar when S. cerevisiae 
was growing slowly with unlimited oxygenation and low glucose and T. reesei 
was growing on high glucose at maximum rate. However, the fast growing 
S. cerevisiae on high glucose diminishes the respirative pathway flux and speeds 
up the glycolytic flux and fermentative pathway activity [De Deken, 1966; Maa-
heimo et al. 2001; Gombert et al. 2001]. The differences in regulatory principles 
of the two organisms can be explained by the different natural habitats of the 
organisms and adaptive evolution of the regulatory systems. Pfeiffer et al. 
(2001) have further claimed that the preference to high ATP yield has contrib-
uted to the development of multicellular organisms. 

6.1 Robust regulatory system enables stable flux 
phenotype 

Complex and multi-level regulatory mechanisms can maintain fairly stable dis-
tribution of fluxes in altered conditions. However, attenuating changes can 
though be observed in the underlying levels of transcription, proteome and me-
tabolome [Davies and Brindle, 1992; Schaaff et al., 2004; Raamsdonk et al., 
2001]. Furthermore, an adaptation of the flux phenotype to altered conditions 
can occur through sequential changes in the underlying levels of cell function 
[van der Brink et al., 2008]. There is interdependence between metabolite con-
centrations, enzyme concentrations and fluxes through the metabolic network, 
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enzyme kinetics and regulation of enzyme activity [Stryer, 1995]. Enzyme con-
centration is set by hierarchical regulatory system that is closely linked to the 
metabolic status of an organism. Nutrient sensing and feedback regulation trig-
ger signalling cascades that affect the hierarchical regulatory system [Zaman et 
al., 2008; Zaman et al., 2009]. Coordinated responses have been observed even 
between metabolites and transcripts [Bradley et al., 2009]. The enzyme activity 
cannot affect the equilibrium constant of a chemical reaction but the network can 
enable a shift of an effective equilibrium constant through futile cycles [Qian 
and Beard, 2006]. The multilevel regulatory system provides robustness that 
enables stability of flux phenotypes. Are the robust response mechanisms to 
different perturbations mechanistically similar? How has the robustness of an 
organism against fluctuations in its natural environment developed? The same 
multilevel regulatory system provides fine-tuned adaptation in some conditions. 
A fine piece of work was published by Bennet and co-workers (2008) where 
they could conclude that the regulatory system of galactose metabolism in 
S. cerevisiae functions as a low-pass filter that in dynamic conditions enables 
adaptation to slow changes and robustness against fast perturbations. Thus the 
same mechanisms can provide both robustness and adaptation. Are they different 
depending on the perturbation? How are the decisions between robust response 
and adaptation made when the cells are exposed to different perturbations? 
These are interesting questions that are expected to be answered by sophisticated 
systems biology studies when the experimental and modelling tools are reaching 
an adequate performance level. 

It should eventually be possible to integrate data of all measurable cell con-
stituents and integrate it with models of cellular interaction networks and com-
pose a predictive model of cell function. There are methods for recording data 
on all the effector types. Quantitative metabolomics methods in particular by MS 
have been established [Ewald et al., 2009; Buscher et al., 2009]. Enzyme con-
centrations are determined by rates of transcription, mRNA degradation, transla-
tion and protein degradation and both protein and transcript levels can be ob-
served in large-scale [de Groot et al., 2007]. Regulatory mechanisms that affect 
fluxes are for example enzyme phosphorylations which can currently be moni-
tored [Ptacek et al., 2005; Huber et al., 2009]. Information on allosteric interac-
tions has been reported in literature and some is collected for example in data-
base BRENDA (http://www.brenda-enzymes.org) [Schomburg et al., 2002]. All 
effectors are tied together by interaction networks that are dynamic in reality. 
However, the static interaction network models provide a framework for the 



6. Conclusions and prospects 

73 

dynamic system responses that give rise to the observed flux phenotypes. Hin-
drances can still be pinpointed both in experimental methods and in modelling 
tools. Not all the levels of cell function can be monitored in genome-wide scale 
and modelling tools need to be able to handle that missing data and uncertainties 
as well as to find suitable means to model different types of interactions and 
information transfer through them. Ishii et al. (2007) performed a pioneering 
data integration study in a limited system were flux phenotypic data and data on 
underlying regulatory levels was simultaneously recorded from central carbon 
metabolism of single gene deletion mutant strains of E. coli under different 
growth conditions. However, since the scale of the system was limited to the 
central carbon metabolism, integrative visualisation of the metabolic network 
was adequate for interpretation of the data. Figure 6 shows an example of inte-
grative data analysis of the switch from fully respiratory to respiro-fermentative 
phenotype of S. cerevisiae in context of interaction network of limited extent 
(unpublished results). The systemic co-responses are almost too complex to 
visually comprehend even though the system is limited. Multiomics data integra-
tion requires tools that generate hypotheses of systemic response mechanisms. 
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Figure 6. Co-response interactions in S. cerevisiae between components of central car-
bon metabolism in switch from fully respirative to respiro-fermentative metabolism in 
limited oxygen provision (unpublished results). Co-responses are calculated according to 
Raamsdonk et al. (2001) as ratios of the log fold changes in the quantities of components 
between the two conditions [Publication I; Rintala et al., 2009]. Co-response interactions 
are drawn for the components having strong positive (in green) or negative (in red) co-
responses. 

6.2 Determinants of energy generation processes 

The biological features studied in the Publications included in the thesis were 
effects of oxygen and different carbon sources on flux distributions of three eu-
karyotes S. cerevisiae, T. reesei and P. pastoris. Carbon sources among other 
nutrients [Rohde et al., 2008] are known to trigger regulatory cascades that can 
ultimately determine the active energy production processes as in case of high 
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glucose sensed by S. cerevisiae [Zaman et al., 2009]. Oxygen on the other hand 
is a major determinant of active energy processes in aerobic organisms. Regula-
tion of energy processes in bioproduction hosts is naturally of importance for 
developed bioprocess control. Many of the regulatory mechanisms are conserved 
among eukaryotes and thus, the studies of simple eukaryotes such as yeasts and 
fungi provide a basis also for understanding the function of higher cells. Under-
standing of the regulation of energy generation processes is central in investiga-
tions of for example human metabolic diseases. One of the metabolic diseases, 
type II diabetes, is at present increasing in population of western countries [Wild 
et al., 2004]. Energy generation processes are central also in sports. Oxygen 
uptake rate and carbohydrate refuelling are central parameters of sports perform-
ance [Hulston and Jeukendrup, 2009]. Oxygen provides not only an electron 
acceptor for efficient energy generation but also a threat of cell component dam-
age as a strong oxidant. Both features of oxygen are related to cell ageing and 
thus, of major interest [Koc et al., 2004; Oliveira et al., 2008; Finkel and Hol-
brook, 2000; Lin et al., 2002]. 

6.3 Prospects of local flux ratio analysis 

Local flux ratio analysis is an efficient approach for quantitative profiling of the 
flux phenotype. The conventional method is extendable from inferring 13C-
labelling patterns of proteinogenic amino acids to detection of free metabolites 
and from established network structures to novel or engineered organisms by 
systematic derivation of constraint equations (Publication IV). The strength and 
advantage of the local flux ratio analysis is the independence of external fluxes 
and therefore, also an independence of the definition of biomass effluxes [Zam-
boni et al., 2009]. Biomass effluxes are usually derived from growth rate and 
biomass composition and the experimental determination of the detailed macro-
molecular composition of biomass is laborious [Lange 2002; Lange and Heijnen, 
2001]. Thus, flux ratios provide independent quantitative measures of distribu-
tion of fluxes also when the effluxes from the system to macromolecule synthe-
sis is not exactly known. Analysis can be targeted to metabolic junctions of in-
terest or as many junctions can be analysed as possible to gain constraints for net 
flux determination by 13C-MFA. 
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6.4 Large-scale flux analysis 

Global iterative fitting becomes computationally unfeasible when the number of 
isotopomer balance equations explodes. System extension requires also addi-
tional measurements of 13C-labelling patterns to gain constraints for isotopomer 
distributions of added metabolites. Without enough constraints the flux distribu-
tion cannot be accurately solved. Combinations of 13C-labelling based con-
straints and an objective function have been proposed for example by Blank et 
al. (2005). Nevertheless, the large-scale models can always be utilised as scaf-
folds where the active networks can be identified and more detailed models built 
[Suthers et al., 2007]. 

Flux balance analysis (FBA) is feasible in well-defined genome scale meta-
bolic networks. The difficulty of definition of a relevant objective function limits 
the utilisation of FBA in flux determination. In determination of metabolic capa-
bilities of organisms it is highly efficient. Automatic means to infer or to identify 
objective functions have been proposed [Knorr et al. 2007; Gianchandani et al. 
2008]. As interest in systems biology is also on higher cells, intelligent defini-
tions of objective functions have been proposed [Heuett and Qian, 2006] and are 
under development. 

6.5 Flux analysis in dynamic conditions 

Flux analysis is turning dynamic since stationary metabolic flux analysis is not 
convenient for those time-dependent processes that are of biotechnological inter-
est or compatible with analysis of fluxes in higher cells. If the specific growth 
rate is low, prolonged labelling time is required to reach an isotopic pseudo 
steady-state in macromolecule components. During prolonged labelling time the 
steady state may alter. Furthermore, the non-growing cells are completely in-
compatible with stationary biosynthetically directed 13C-labelling. Direct meas-
urement of the labelling patterns of metabolic intermediates was thought to 
shorten the required labelling times but the investigations showed that the label-
ling patterns of intermediates stabilize much later than expected. Large pools of 
storage compounds, protein turnover and compartmentalized pools increase the 
stabilisation times of the labelling patterns of metabolic intermediates to the 
timescale of label stabilisation in macromolecule components [Aboka et al., 
2009; Grotkjaer et al., 2004; den Hollander et al., 1981]. 
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Dynamic 13C-MFA that significantly shortens the required labelling times 
emerged first to metabolic stationary but isotopically non-stationary conditions 
[Nöh et al., 2007; Selivanov et al., 2006; Schaub et al., 2008; Hoffmann et al., 
2008]. Due to the shorter labelling times, the dynamic 13C-flux analysis has 
broader applicability to mammalian cell cultures than the conventional stationary 
flux analysis. Mammalian cells grow usually slower than microbial cells and 
steady states are hard to sustain. Recently Munger et al. (2008) utilised dynamic 
13C-labelling of cultured human fibroblasts to determine metabolic targets for 
antiviral therapy. Extension of 13C-MFA to metabolic non-stationary states was 
shown in silico by Wahl et al. (2008) and applied already to E. coli cultures by 
Schaub et al. (2008), and to hepatic cells in a two-part study [Hoffmann et al., 
2008; Maier et al., 2008]. 13C-MFA in transient state takes advantage of a kinetic 
model of the metabolic system, measurements of metabolic pool sizes and time-
dependent labelling patterns. Integration of data yields different things depend-
ing on the approach. The kinetic parameters can be determined more reliably, 
non-measured metabolite pools can be solved and sensitivities of flux distribu-
tion solutions can be decreased by integrating stationary and non-stationary data 
[Nöh et al., 2007; Selivanov et al., 2006; Schaub et al., 2008]. Dynamic 13C-flux 
analysis is also suitable for stimulus-response experiments were the systemic 
time-dependent responses to perturbations are investigated [Wahl et al., 2008]. 
13C-labelling experiments in dynamic conditions enable direct probing of ro-
bustness and control of the metabolic system and the data also reveals compart-
mentalization of metabolite pools [Schryer et al., 2009]. Furthermore, the short 
time-scale 13C-labelling reduces the cost of experiments and thus, is compatible 
with high-throughput experiments. 
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Abstract
Background: The yeast Saccharomyces cerevisiae is able to adjust to external oxygen availability by utilizing
both respirative and fermentative metabolic modes. Adjusting the metabolic mode involves alteration of
the intracellular metabolic fluxes that are determined by the cell's multilevel regulatory network. Oxygen
is a major determinant of the physiology of S. cerevisiae but understanding of the oxygen dependence of
intracellular flux distributions is still scarce.

Results: Metabolic flux distributions of S. cerevisiae CEN.PK113-1A growing in glucose-limited chemostat
cultures at a dilution rate of 0.1 h-1 with 20.9%, 2.8%, 1.0%, 0.5% or 0.0% O2 in the inlet gas were quantified
by 13C-MFA. Metabolic flux ratios from fractional [U-13C]glucose labelling experiments were used to solve
the underdetermined MFA system of central carbon metabolism of S. cerevisiae.

While ethanol production was observed already in 2.8% oxygen, only minor differences in the flux
distribution were observed, compared to fully aerobic conditions. However, in 1.0% and 0.5% oxygen the
respiratory rate was severely restricted, resulting in progressively reduced fluxes through the TCA cycle
and the direction of major fluxes to the fermentative pathway. A redistribution of fluxes was observed in
all branching points of central carbon metabolism. Yet only when oxygen provision was reduced to 0.5%,
was the biomass yield exceeded by the yields of ethanol and CO2. Respirative ATP generation provided
59% of the ATP demand in fully aerobic conditions and still a substantial 25% in 0.5% oxygenation. An
extensive redistribution of fluxes was observed in anaerobic conditions compared to all the aerobic
conditions. Positive correlation between the transcriptional levels of metabolic enzymes and the
corresponding fluxes in the different oxygenation conditions was found only in the respirative pathway.

Conclusion: 13C-constrained MFA enabled quantitative determination of intracellular fluxes in conditions
of different redox challenges without including redox cofactors in metabolite mass balances. A
redistribution of fluxes was observed not only for respirative, respiro-fermentative and fermentative
metabolisms, but also for cells grown with 2.8%, 1.0% and 0.5% oxygen. Although the cellular metabolism
was respiro-fermentative in each of these low oxygen conditions, the actual amount of oxygen available
resulted in different contributions through respirative and fermentative pathways.
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Background
The yeast Saccharomyces cerevisiae is a facultative anaerobic
organism. It is able to respond to external oxygen availa-
bility by utilizing both respirative and fermentative meta-
bolic modes and it grows at a fast rate even when aerobic
respiration is limited or completely prevented [1-3]. Met-
abolic response to oxygen availability requires alteration
of the intracellular fluxes. The intracellular flux distribu-
tion alterations in general are mediated through transcrip-
tional, protein level and metabolic regulation, the fluxes
being the integrated network response of the regulated
interactions between enzymes and metabolites [4]. Oxy-
gen is a major determinant of the physiology of S. cerevi-
siae but understanding of the oxygen dependence of
intracellular metabolic flux distributions is still scarce.
Furthermore the dependence of the flux distribution on
oxygen availability is of great interest in many biotechno-
logical applications of S. cerevisiae, particularly those
requiring a low oxygen concentration to obtain maximal
product yield with simultaneous limited side products,
including biomass [5].

During aerobic growth oxygen serves as a final electron
acceptor in respiration. When oxygen availability is lim-
ited, cells need alternative acceptors for the electrons of
NADH and FADH2 to maintain the redox balance. In aer-
obic conditions the assimilatory NADH is oxidised
mainly by the external NADH dehydrogenases or trans-
ported into mitochondria by the glycerol-3-phosphate
shuttle, whereas in the absence of oxygen S. cerevisiae pro-
duces glycerol as a redox sink [6,7]. Since glycerol produc-
tion leads to net hydrolysis of ATP and loss of carbon, S.
cerevisiae uses oxygen preferentially for oxidation of
assimilatory NADH when oxygen availability is restricted
[8,9]. In addition the oxidative stress to which the cells are
exposed in high external oxygen availability imposes
other redox challenges.

When external oxygen availability is limited S. cerevisiae
generates energy partially or completely through fermen-
tation, although it is less energy efficient than respiratory
metabolism [2]. While the high fermentative capacity ena-
bles S. cerevisiae to produce energy at a sufficient rate even
in anaerobic conditions [10], constant anaerobic growth
requires addition of unsaturated fatty acids and ergosterol
to the culture medium since oxygen is an essential reac-
tant in sterol biosynthesis and anabolic desaturation reac-
tions [1,11]. Furthermore, when the respiratory system
coupling NADH oxidation to the generation of a proton
gradient across the mitochondrial membrane is limited,
additional means for cross-membrane transport of metab-
olites and ions are required [1]. Growth when there is lim-
ited or no aerobic respiration thus requires an adjusment
of metabolism and a major redistribution of metabolic
fluxes compared to fully respiratory metabolism.

Respiration of S. cerevisiae becomes restricted, not only
when oxygen availability is limited, but also in fully aero-
bic conditions when there is an excess of repressive carbon
source [12-16]. The excess repressive carbon source medi-
ates complex transcriptional regulation, including repres-
sion of respiratory genes, and thus lowers the maximal
respiratory rate. Limited respiratory capacity results in
alcoholic fermentation [17]. Aerobic alcoholic fermenta-
tion is also triggered at high growth rates in aerobic chem-
ostats [18,2]. The limited respiratory capacity in both
conditions has been shown to result in redistribution of
intracellular carbon fluxes through respiratory and fer-
mentative pathways [19,20,18].

Intracellular metabolic flux distributions are determined
by metabolic flux analysis (MFA) which is based on stoi-
chiometric modeling, with a system of mass balance equa-
tions for intracellular metabolites [21]. Usually the mass
balance equation system is underdetermined since the
number of degrees of freedom exceeds the number of
measured extracellular fluxes. Linear programming can be
used to solve the MFA system if a biologically meaningful
objective function is formulated [22]. Including redox
cofactors that are involved in all cellular metabolism into
the mass balancing renders the system more constrained
but requires detailed knowledge on the cofactor specifici-
ties of different isoenzymes and the relative activities of
the isoenzymes in the conditions studied. This informa-
tion is rarely available in the extent of a genome wide met-
abolic network. However, MFA with additional
experimental constraints from 13C-labelling experiments
combined with mass spectrometry (MS) or nuclear mag-
netic resonance spectroscopy (NMR) detection of label-
ling patterns in metabolic compounds [4,18,19,23] can
be used to resolve intracellular fluxes through complex
pathway structures [24], including compartmentalised
eukaryotic metabolic networks [25-27]. The established
knowledge on the topology of the metabolic network of S.
cerevisiae [28,29] enables modelling for MFA. The distri-
bution of intracellular fluxes of S. cerevisiae to respirative
and fermentative pathways in response to different
reduced oxygen provisions has not been quantified with
MFA combined with 13C-tracer experiments before. 13C-
labelling has previously been used to quantify the redistri-
bution of fluxes in S. cerevisiae to the respirative and fer-
mentative pathways in response to glucose repression by
comparison of batch culture fluxes to glucose-limited
derepressed chemostat culture fluxes at low growth rate
[19,20] and in response to high growth rates in aerobic
chemostat cultures [18].

The physiology of S. cerevisiae in aerobic and in anaerobic
conditions has been studied at the levels of gene expres-
sion [30,31], metabolite concentrations and enzyme
activities [32,33], by the means of 13C-metabolic flux ratio
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(METAFoR) analysis [20,34], metabolic flux analysis
(MFA) [9,35,36] and regulation analysis [37]. 13C-tracer
experiments in combination with metabolic flux analysis
(MFA) have previously been applied only in studying the
flux distributions of S. cerevisiae in aerobic glucose-limited
chemostat cultures [19,38]. The effect of intermediate
oxygenation conditions on S. cerevisiae metabolism has
been the subject of some classical studies [2,3,39], includ-
ing studies of the dependence of gene expression in S. cer-
evisiae on oxygenation through heme-dependent and
heme-independent regulation networks, reviewed by Zit-
omer and Lowry (1992) and Kwast et al. (1998) [40,41].
Oxygen dependent transcriptional responses were
observed in a range of oxygen concentrations. In addition
Franzén (2003) studied ethanol production and meta-
bolic fluxes of S. cerevisiae in respiratory quotient (RQ)
controlled continuous cultures in a number of different
microaerobic conditions by MFA without 13C-tracers [9].
Franzén observed a positive correlation between biomass
generation and reoxidisation of assimilatory NADH, indi-
cating the importance of the redox balance as a determi-
nant of the metabolic flux distribution.

The work presented here is the first where the intracellular
metabolic flux distributions of S. cerevisiae in different lev-
els of low external oxygen in chemostat cultures at low
growth rate were quantified using 13C-labelling. The low
growth rate, 0.1 h-1, ensured that the metabolic effects
observed stemmed solely from the reduced availability of
oxygen, rather than from exceeding the respiratory capac-
ity. The flux distributions of S. cerevisiae central carbon
metabolism under five different oxygenation conditions
were solved by combining the metabolic pathway branch-
ing point constraints from the 13C-labelling experiments
with metabolite balancing using MFA. By including the
additional constraints from the 13C-labelling experiments,
the cofactors could be left out from the metabolite balanc-
ing in MFA and thus the redox status regulated carbon
fluxes could be reliably assessed. Completely respirative
metabolism was observed in fully aerobic conditions and
fully fermentative metabolism in anaerobic conditions
and in the three different reduced oxygenation conditions
the actual amount of oxygen available was observed to
result in different flux contributions through respirative
and fermentative pathways. Based on the flux distribu-
tions, energy generation of S. cerevisiae in the different
oxygenation conditions was also determined. This paper
also compares the metabolic flux distribution in different
conditions of oxygen provision with the transcriptional
levels of a number of metabolic genes in the same condi-
tions, as published recently [32].

Results
S. cerevisiae CEN.PK113-1A was grown in glucose-limited
chemostats at a dilution rate of 0.1 h-1 in five different oxy-

genation conditions (20.9%, 2.8%, 1.0%, 0.5% and 0.0%
O2 in the inlet gas). The corresponding average specific
oxygen uptake rates (OUR) at these oxygen concentra-
tions were 2.7, 2.5, 1.7, 1.2, and 0.0 mmol O2 g biomass-

1 h-1 as derived from a number of replicate chemostat cul-
tivations [32]. The specific uptake rate of glucose, excre-
tion rates of acetate, ethanol and glycerol and the biomass
concentration in the different oxygenation conditions in
the 13C labelled replicate cultivations are given in Table 1.
Net ethanol production was not observed in the aerobic
cultures provided with 20.9% oxygen, indicating a fully
respiratory metabolism. In 2.8% oxygen, slight ethanol
excretion was observed indicating a shift to respiro-fer-
mentative metabolism. In lower oxygen conditions, etha-
nol excretion rates increased further and the highest
ethanol excretion rate was observed in anaerobic condi-
tions, in which the metabolism was completely fermenta-
tive. As expected [42], the concentration of biomass was
five times lower in anaerobic than in fully aerobic cultiva-
tions. Net production of glycerol was observed only in
anaerobic cultivations. When only 0.5% oxygen was pro-
vided, ethanol and CO2 yields exceeded the yield of bio-
mass (Figure 1). In anaerobic conditions the biomass
yield was only one fourth of the yield of the main product
ethanol. The carbon balances closed between 96–113% in
all the cultures (41.6 C-mmol/g DW [19]).

Metabolic flux ratios were determined by METAFoR anal-
ysis from the fractionally 13C-labelled biomass hydro-
lysates by 2D NMR [34,43]. The flux ratios were calculated
from the relative abundances of intact carbon backbone
fragments, fragmentomers, in proteinogenic amino acids
originating from a single carbon source molecule of glu-
cose, determined from the 13C-fine structures in 2D NMR
spectra (Additional file 1). Flux ratios of metabolic
branching points in the central carbon metabolism of S.
cerevisiae in the different oxygenation conditions are given
in Table 2. In 13C-MFA metabolic flux ratios from the
METAFoR analysis were used as additional constraints in
a MFA system to be able to solve the metabolic net flux
distribution without including the cofactors NADH and
NADPH or ATP in the metabolite mass balances. The met-
abolic net fluxes in the different oxygenation conditions
are shown in Figure 2. The confidence intervals (95%) for
the net fluxes from Monte Carlo simulations of noise to
the flux ratio and extracellular flux rate input data are
included in Additional file 2.

Glycolytic and PPP fluxes
The METAFoR analysis showed that in fully aerobic con-
ditions on average 32% or less of Pep originated from the
PPP and the combined pool of pentose phosphates (Table
2). In lower oxygen conditions, the relative PPP flux was
lower and even with 2.8% oxygen the fraction of Pep orig-
inating from pentose phosphates was only 20%. The car-
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bon flux split ratio from G6P to glycolysis and to the
oxidative branch of PPP is shown in Figure 3. The relative
flux from G6P to the PPP pathway decreased as the oxygen
provision was reduced. However, the results of 13C MFA,
shown in Figure 2, revealed that this decrease of the rela-
tive PPP flux was a result of increased glycolytic flux, while
the specific flux through the oxidative branch of the PPP
remained relatively constant. Progressively higher glyco-
lytic fluxes were observed in 1.0% and in 0.5% oxygen. In

anaerobic conditions the net flux in lower glycolysis
remained almost the same as in 0.5% oxygen since a frac-
tion of the carbon flux was lost in upper glycolysis to glyc-
erol production. In anaerobic conditions the PPP flux
contribution to Pep could be somewhat overestimated
since the contribution of the phosphoenolpyruvate car-
boxykinase (PEPck) reaction to the labelling status of Pep
was assumed insignificant. The flux ratio of PEPck contri-

Average yields in S. cerevisiae CEN.PK113-1A glucose-limited chemostat (D = 0.1 h-1) culturesFigure 1
Average yields in S. cerevisiae CEN.PK113-1A glucose-limited chemostat (D = 0.1 h-1) cultures. Average yields of 
biomass (41.6 C-mmol g biomass-1 [19]), CO2, ethanol and glycerol on glucose (C-mol/C-mol) in the [U-13C]glucose labelled 
replicate cultivations of S. cerevisiae CEN.PK113-1A in glucose-limited chemostat (D = 0.1 h-1) in different oxygenation condi-
tions: 20.9%, 2.8%, 1.0%, 0.5% and 0.0% oxygen of the chemostat inlet gas.

Table 1: Uptake and production rates and biomass concentration in S. cerevisiae CEN.PK113-1A chemostat cultures. Glucose uptake 
rate, glycerol, acetate and ethanol production rate and biomass concentration (mean ± SEM) of the 13C-labelled glucose-limited 
chemostat cultures (D = 0.10 h-1, pH 5.0, 30°C, 1,5 vvm gas flow) of S. cerevisiae CEN.PK113-1A used as input values in the 13C-MFA.

O2 provided

20.9% 2.8% 1.0% 0.5% 0.0%

I II I II I II I II I II

Glucose uptake rate [mmol/(g 
DW)-1h-1]

1.28 ± 0.04 0.87 ± 0.04 1.36 ± 0.04 1.28 ± 0.02 1.97 ± 0.02 2.13 ± 0.06 2.20 ± 0.09 2.78 ± 0.16 6.30 ± 0.25 6.58 ± 0.16

Glycerol production rate 
[mmol/(g DW)-1h-1]

0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.05 ± 0.01 1.11 ± 0.03

Acetate production rate 
[mmol/(g DW)-1h-1]

0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Ethanol production rate [mmol/
(g DW)-1h-1]

0.00 ± 0.00 0.00 ± 0.00 0.07 ± 0.00 0.10 ± 0.01 1.56 ± 0.02 2.00 ± 0.08 2.59 ± 0.09 2.91 ± 0.18 9.05 ± 0.21 9.47 ± 0.31

Biomass (g DW l-1) 5.17 ± 0.04 5.31 ± 0.12 4.61 ± 0.09 4.86 ± 0.05 3.22 ± 0.02 2.70 ± 0.03 2.21 ± 0.03 2.08 ± 0.03 1.03 ± 0.02 0.98 ± 0.02
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bution to Pep was generally lower when oxygen provision
was lower.

The METAFoR analysis also gives insight into the reversi-
ble reactions of transketolase, TK, and transaldolase, TA,
(Table 2), since these reactions cleave the carbon back-
bone of the pentose phosphates in specific locations [43].
Higher fractions of pentose phosphates showing the
reversible action of a transketolase reaction were observed
when less oxygen was provided than with more. There was
no clear trend in the flux through the reversible transaldo-
lase reaction, but it was low in anaerobic cultures com-
pared to the other conditions. The high fraction of
pentose phosphates cleaved by TK and TA may reflect the
proposed ping-pong mechanism of these enzymes, allow-
ing the reaction to proceed backwards before releasing the
keto- or aldogroup [44].

Anaplerosis and the Pyr branching point
The relative anaplerotic flux, the anaplerotic flux ratio
defined here as the fraction of Oaamit molecules originat-
ing from Pep, was on average 31% and 30% in 20.9% and
2.8% oxygen respectively, while the relative flux from
pentose phosphates to Pep was lower in 2.8% oxygen
than in fully aerobic conditions (Table 2). In 1.0% oxygen
the anaplerotic flux ratio was slightly higher (36%), and it
was clearly higher in 0.5% oxygen (53%) than in fully aer-
obic conditions. Thus, in 0.5% oxygen approximately half
of the Oaamit molecules originated from anaplerosis.

The carbon flux from Pyr branches into three pathways
through pyruvate dehydrogenase, pyruvate decarboxylase

and pyruvate carboxylase. The pyruvate dehydrogenase
reaction is the first step for the carbon flux directed to the
TCA cycle. The pyruvate decarboxylase reaction is the
starting point for a fermentative pathway, and pyruvate
carboxylase catalyses the carboxylation of Pyr to Oaa and
thus also carries the anaplerotic flux. The carbon flux dis-
tributions at the pyruvate branching point were similar in
fully aerobic conditions and in 2.8% oxygen (Figures 2
and 3). Slightly lower fluxes through pyruvate dehydroge-
nase and pyruvate carboxylase were observed in 2.8% oxy-
gen than in 20.9% oxygen corresponding to the higher
carbon flux through pyruvate decarboxylase, which
reflected the production of ethanol. In conditions receiv-
ing less than 2.8% oxygen the carbon fluxes were redis-
tributed at the pyruvate branching point and fermentative
fluxes became dominating. In 1.0% oxygen the major car-
bon flux (on average 62%) from the pyruvate branching
point was directed through pyruvate decarboxylase. The
corresponding value in 0.5% oxygen was on average 77%.
In 1.0% oxygen the fraction of carbon flux through pyru-
vate dehydrogenase (on average 23%) was less than half
that observed in fully aerobic conditions (on average
65%), while the fraction of carbon flux through pyruvate
carboxylase was 15% compared to 29% in fully aerobic
conditions. In anaerobic conditions 94% of the carbon
flux from the pyruvate branching point was directed
through pyruvate decarboxylase, while pyruvate dehydro-
genase flux contributed only 2% of the total flux (Figure
3).

Table 2: Metabolic flux ratio (METAFoR) analysis results. Metabolic flux ratio (METAFoR) analysis results showing the origins of 
metabolic intermediates during growth of S. cerevisiae CEN.PK113-1A in glucose-limited, 13C-labelled chemostat cultures (D = 0.1 h-1) 
at different fractions of oxygen in the chemostat inlet gas. Values for two independent cultivations are given for each condition.

Metabolite % fraction of total pool

20.9% O2 2.8% O2 1.0% O2 0.5% O2 0.0% O2

I II I II I II I II I II

Pep from pentose phosphates (ub)a 30 ± 9 34 ± 11 19 ± 6 20 ± 7 15 ± 6 19 ± 7 10 ± 7 6 ± 9 4 ± 4 4 ± 5
P5P from G3P and S7P 
(transketolase reaction)

51 ± 3 56 ± 6 64 ± 5 63 ± 4 82 ± 3 77 ± 3 74 ± 6 79 ± 4 86 ± 3 86 ± 5

P5P from E4P 
(transketolase and transaldolase)

34 ± 2 35 ± 2 27 ± 2 25 ± 2 28 ± 2 24 ± 2 26 ± 2 38 ± 2 14 ± 2 15 ± 2

Ser from Gly and C1-unit 62 ± 4 61 ± 4 61 ± 4 61 ± 4 63 ± 3 62 ± 3 62 ± 4 58 ± 3 57 ± 3 58 ± 3
Gly from CO2 and C1-unit 4 ± 4 3 ± 3 5 ± 3 6 ± 3 4 ± 3 4 ± 3 0 ± 4 4 ± 3 4 ± 3 2 ± 3
Pep from Oaacyt (PEPck) 4 ± 7 7 ± 8 3 ± 6 1 ± 6 2 ± 10 7 ± 10 6 ± 12 0 ± 14 nd nd
Oaamit from Pep 30 ± 2 31 ± 2 30 ± 2 29 ± 2 34 ± 2 38 ± 2 48 ± 2 57 ± 2 100 ± 2 100 ± 2
Oaamit from Oaacyt 50 ± 3 55 ± 4 52 ± 4 54 ± 3 45 ± 2 51 ± 2 60 ± 3 69 ± 2 99 ± 2 99 ± 2
Oaacyt from Pep 43 ± 2 37 ± 3 39 ± 3 35 ± 2 61 ± 3 57 ± 3 62 ± 4 59 ± 4 nd nd
Oaacyt reversibly converted to fumarate 10 ± 7 18 ± 17 19 ± 7 17 ± 10 6 ± 5 10 ± 9 8 ± 5 14 ± 4 18 ± 7 21 ± 3
Oaamit reversibly converted to fumarate 64 ± 15 77 ± 17 71 ± 15 61 ± 14 60 ± 13 60 ± 13 62 ± 11 70 ± 8 29 ± 4 27 ± 4
Pyrmit from malate (ub)a 3 ± 3 2 ± 6 4 ± 4 4 ± 3 0 ± 4 0 ± 4 ndb nd nd nd
Pyrmit from malate (lb)a 2 ± 2 1 ± 4 3 ± 3 3 ± 2 0 ± 2 0 ± 2 nd nd nd nd

a ub upper bound, lb lower bound for the fraction of total pool, see Methods for details
b nd not determined, see Methods for details
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Metabolic net flux distributions of S. cerevisiae CEN.PK113-1A in different oxygenation conditionsFigure 2
Metabolic net flux distributions of S. cerevisiae CEN.PK113-1A in different oxygenation conditions. Net flux dis-
tribution of S. cerevisiae CEN.PK113-1A in glucose-limited chemostat, D = 0.1 h-1, in different oxygenation conditions: 20.9%, 
2.8%, 1.0%, 0.5% and 0.0% oxygen of the chemostat inlet gas. The net fluxes are shown as relative fluxes normalised to the spe-
cific glucose uptake rate in the corresponding experiment. The fluxes for each reaction in the model corresponding to the 
20.9%, 2.8%, 1.0%, 0.5% and 0.0% oxygen of the chemostat inlet gas are given from top to bottom and the flux values from rep-
licate experiment are given from left to right. The specific glucose uptake rates corresponding to the different oxygenation 
conditions and the replicate experiments are given at the top of the figure. The net flux distributions were determined using 
fractional [U-13C]glucose feed and metabolic flux ratio (METAFoR) analysis to obtain additional experimental constraints to 
render an underdetermined metabolite mass balance system solvable. The Matlab function fmincon performing nonlinear opti-
misation was applied to solve the net fluxes.

Pyrmit

Ethanol

Acetate

AcO

AcCoAmit

AcCoAcyt

Glycerol

Glc

G6P

F6P

G3P

Pep

Pyrcyt

Oaacyt

P5P

E4P

S7P

Oaamit

CitMal

Oga

76
77
35
20
4

72
71
33
17
4

64
68
76
83
91

63
67
78
80
91

8
6
5
3
2

9
6
6
2
2

26
18
15
11
5

28
19
18
8
5

6
3
3
2
1

7
3
4
1
1

7
7
5
3
2

7
7
4
4
2

7
12
84

122
149

7
15
99
115
148

0
0
0
0
17

0
0
0
0
17

6
4
3
10
-

10
1
12
0
-

89
87
47
28
8

88
84
43
26
8

7
7
5
3
2

7
7
4
4
2

60
68
20
18
3

70
68
26
17
3

32
32
18
20
5

33
27
25
13
5

73
74
33
18
3

69
69
31
15
3

73
74
33
18
3

69
69
31
15
3

61
62
25
12
-

58
57
24
8
-

43
50
12
13
-

56
51
19
9
-

8
6
5
3
2

9
6
6
2
2

4
6
0
-
-

2
5
0
-
-

50
58
68
77
88

47
57
68
77
88

100
100
100
100
100

100
100
100
100
100

128
133
150
164
163

125
130
157
157
163

128
131
150
171
162

129
126
166
154
162

0
5

79
119
147

0
8

95
111
147

Ethanolext

Acetateext

0
0
0
0
0

0
0
0
0
0

Glycerolext

0
0
0
0
17

0
0
0
0
17

Mitochondria

GlcextFigure 2
Glc uptake rate [mmol/(g h)]

1.28
1.36
1.97
2.20
6.30

± 0.04
± 0.04
± 0.02
± 0.09
± 0.25

0.87
1.28
2.12
2.78
6.58

0.04
± 0.02
± 0.06
± 0.16
± 0.96

± 
O  (%)2

20.9
2.8
1.0
0.5
0.0

I/6



BMC Systems Biology 2008, 2:60 http://www.biomedcentral.com/1752-0509/2/60

Page 7 of 19
(page number not for citation purposes)

Fractional distributions of carbon fluxes in metabolic branching pointsFigure 3
Fractional distributions of carbon fluxes in metabolic branching points. Fractional distribution of carbon fluxes a) 
from the pyruvate branching point, b) in the TCA cycle and c) from G6P to glycolysis and PPP in S. cerevisiae CEN.PK113-1A in 
glucose-limited chemostats, at D = 0.1 h-1, in 20.9%, 2.8%, 1.0%, 0.5% and 0.0% oxygen of the chemostat inlet gas. Replicate 
experiments are indicated with I and II.
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TCA cycle fluxes
Low net TCA cycle fluxes were observed in low oxygen
concentrations. 2.8% oxygen in the chemostat inlet gas
was enough to maintain the net TCA cycle flux at a level
almost as high as in the fully aerobic conditions, but pro-
gressively lower fluxes were observed when less oxygen
was provided (Figure 2). Limitation in oxygen availability
reduced the respirative carbon flux through the TCA cycle,
the net flux from Oga through the TCA cycle to Oaamit
(x13, Figure 4), whereas the specific biosynthetic flux from
the TCA cycle remained constant (x38, Figure 4). In fully
aerobic conditions the respirative carbon flux from Oga
was 84% of the net flux and even in 0.5% oxygen the res-
pirative carbon flux was the major fraction of the net car-
bon flux in the TCA cycle (on average 59%) (Figure 3).

In anaerobic conditions, the C2–C3 fragments in Pep,
Oaacyt and Oaamit had equal labelling patterns, as deduced
from the corresponding amino acid labelling patterns (see
the fragmentomer data in Additional file 1). Thus, ana-
plerotic flux was the only source of Oaamit (Table 2) and
the TCA cycle operated as a branched pathway, with oxi-
dative and reductive branches, instead of as a cycle [45].
The equal fractions of intact C2–C3 fragments in Pep,
Oaacyt and Oaamit result in unresolved flux ratios at the
metabolic branching points of Pep, Oaacyt and Pyrmit.
Therefore, the metabolic network model was simplified
by neglecting the PEPck activity and resolving only the net
transfer of Oaa across the mitochondrial membrane at the
Oaa branching point. The contribution of malic enzyme
flux to the Pyrmit pool could not be quantified in anaero-
bic conditions, because the carbon fragments from the
malic enzyme flux would have the same labelling pattern
as the carbon fragments originating from Pyrcyt. However,
when 0.5% oxygen was provided, no contribution for
malic enzyme flux could be observed. In anaerobic condi-
tions, symmetrisation of Oaa as the result of reversible
exchange with fumarate was observed, but this label-
scrambling flux could not be quantified with the current
experimental set up. The labelling pattern of Oaamit could
only be partly determined from the amino acids, in which
the carbon backbone originates from Oga (Table 2).

Energy metabolism
In anaerobic conditions, where no aerobic respiration is
taking place, ATP is generated solely through substrate
level phosphorylations. Fermentation allows redox neu-
tral anaerobic ATP generation when acetaldehyde acts as
an electron acceptor for NADH. The biosynthetic ATP
requirement per biomass unit was estimated from the
anaerobic ATP generating and consuming net fluxes. The
specific biosynthetic ATP requirements were assumed to
be constant in all oxygenation conditions, since biomass
composition was assumed to be constant, as indicated in
previous experimental observations which showed essen-

tially the same biomass composition in the two extreme
conditions, i.e. in fully aerobic and in anaerobic condi-
tions [19,35]. ATP generation through substrate level
phosphorylations was calculated from the reaction stoi-
chiometry and the net flux data. The rest of the ATP
demand was assumed to be provided by respirative ATP
generation. The fraction of ATP generated through respira-
tion to meet the ATP demand was 59% in fully aerobic
conditions and decreased with decreasing oxygenation, as
ethanol production increased (Table 3). In 0.5% oxygen,
25% of the ATP was still generated through respiration.

The efficiency of oxidative phosphorylation in different
levels of oxygen was assessed by determining the P/O
ratios in the different conditions. By neglecting the frac-
tion of oxygen consumed in pathways other than respira-
tion [46], P/O ratios were estimated from the measured
OURs and the estimated amount of ATP generated
through respiration (Table 3). The P/O ratios were also
estimated from the electron flux to the respiratory chain
and the estimated ATP generation through respiration.
Assimilatory NADH generation was estimated from the
anaerobic glycerol production rate, assuming that NADH
generation in biosynthetic reactions was constant per g
CDW-1 in all conditions. The generation of electron
donors, NADH and FADH2, in central carbon metabolism
was determined from the net flux data. As NADH and
FADH2 are energetically equivalent in yeast, the estimated
total electron flux to the respiratory chain was calculated
from the summed generation of electron donors. The two
estimates for P/O ratios were close to one in all the condi-
tions.

Transcriptional regulation of metabolic enzymes
Results from Transcript analysis with the aid of Affinity
Capture (TRAC) of S. cerevisiae in the different oxygena-
tion conditions are presented in Wiebe et al. (2008) [32].
Genes encoding enzymes of central carbon metabolism
were mapped to the corresponding fluxes in the metabolic
network model using the Saccharomyces Genome Data-
base [47] and Pearson correlation coefficients were calcu-
lated between the transcription levels of genes encoding
metabolic enzymes and the fluxes through the enzymes in
the different conditions. Positive correlation (> 0.60)
between the transcriptional levels [32] and the corre-
sponding fluxes in the different oxygenation conditions
was found only in the respirative pathway, i.e. in pyruvate
dehydrogenase and in the TCA cycle (Additional file 3).

Discussion
The dependence of the intracellular metabolic flux distri-
bution of S. cerevisiae CEN.PK113-1A on the external oxy-
gen availability was studied in glucose-limited chemostats
under five different oxygenation conditions with 13C-
labelling. 13C-labelling was utilised to obtain ratios of
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Fractional distributions of carbon fluxes in metabolic branching pointsFigure 4
Metabolic network model of the central carbon metabolism of S. cerevisiae. Metabolic network model of the central 
carbon metabolism of S. cerevisiae was applied in the 13C-metabolic flux analysis for determination of net fluxes in different oxy-
genation conditions. The cytosolic and mitochondrial compartments and glycolytic, pentose phosphate, TCA cycle and fermen-
tative pathways were included in the model. The fluxes are presented as net fluxes and the directions of the arrows represent 
the directions of positive net fluxes. The compounds consumed or produced by external fluxes are denoted with a subscript 
ext. The anabolic reactions from metabolic intermediates to biosynthesis are represented by small arrows.
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intracellular fluxes at the metabolic branching points
[23,43]. The flux ratio constraints were included in the
MFA systems to solve the metabolic flux distributions
[24]. The redox cofactors NADH and NADPH were not
included in the metabolite mass balancing in 13C-MFA so
that the intracellular flux distributions could be reliably
solved, despite the lack of precise information on the
cofactor specificities and the relative activities of different
isoenzymes for conditions in which redox balancing is an
important determinant of cell physiology, in particular
metabolic fluxes. The dilution rate in the chemostat culti-
vations, 0.10 h-1, was well below the μmax observed for the
equivalent strain CEN.PK113-7D: 0.41 h-1 and 0.30 h-1 in
aerobic and anaerobic conditions [15], respectively, and
significantly lower than the critical dilution rate 0.27 h-1,
at which the metabolism of S. cerevisiae (CEN.PK122) has
been reported to shift from fully respirative to respiro-fer-
mentative in aerobic chemostat cultures [42]. The entirely
respirative metabolism of S. cerevisiae under fully aerobic
conditions was further confirmed by the absence of etha-
nol and other fermentation products in the culture super-
natant and approximately the same specific rates of O2
consumption and CO2 production (Table 1). The control-
led continuous culture conditions ensured that the meta-
bolic effects observed under conditions of restricted
respiration in the current study stemmed solely from the
reduced availability of oxygen, rather than from exceeding
the respiratory capacity, which has been observed to result
in overflow metabolism, in aerobic alcoholic fermenta-
tion at high specific growth rate [17,18].

The switch from entirely respirative metabolism to
respiro-fermentative metabolism was observed in condi-
tions of 2.8% oxygen in the chemostat inlet gas. However,
in 2.8% oxygen the respirative pathways still carried most
of the carbon fluxes. When the oxygen provision was fur-
ther restricted to 1.0%, thus reducing the potential of res-
pirative ATP production, flux through the fermentative
pathway increased. Since mitochondrial respiration is a
significantly more efficient means to produce ATP than

substrate level phosphorylations, even in only 0.5% oxy-
gen a significant fraction (25%) of ATP was produced
through respiration.

Major redistributions of carbon fluxes were observed
between the different oxygenation conditions, particu-
larly at the pyruvate branch point where the metabolism
branches to three pathways. The respirative and the fer-
mentative pathways branch out from pyruvate through
the enzymes pyruvate dehydrogenase and pyruvate decar-
boxylase, respectively. Pyruvate decarboxylase has been
found to be essential for growth on glucose in S. cerevisiae
because of the assimilatory role of the pathway in genera-
tion of cytosolic acetyl-CoA. It is therefore also expressed
during respiratory growth [48]. Wiebe et al. (2008)
observed decreased expression of the pyruvate decarboxy-
lase PDC1 gene in low oxygenation [32] although the flux
redistribution at the pyruvate branch point demonstrated
that higher flux was directed through pyruvate decarboxy-
lase in low than in high external oxygen, suggesting that
post-transcriptional regulation is important for pyruvate
decarboxylase. In 1.0% oxygen the fermentative flux
through pyruvate decarboxylase became the main carbon
flux from the pyruvate branch point.

Under glucose repression the respiratory pathway
enzymes are severely down-regulated [17] whereas under
low external oxygen availability the respiratory chain is
functional but the terminal electron acceptor, oxygen, is
limiting. The electron transport chain may even be opti-
mized for low oxygen conditions by oxygen dependent
modification of the terminal electron acceptor COX subu-
nits Cox5a and Cox5b via transcriptional regulation [49].
The genes encoding TCA cycle enzymes are down-regu-
lated in low oxygenation [32]. The carbon fluxes in the
TCA cycle were also lower in lower oxygenation. In anaer-
obic conditions the TCA cycle operated as a branched
pathway, as previously observed by Fiaux et al. (2003)
[20] and in aerobic glucose repressed batch cultures by
Gombert et al. (2001) [19]. On the contrary Maaheimo et
al. (2001) [34] observed cyclic operation of the TCA cycle
in aerobic batch cultures and branched operation only in
anaerobic batch cultures. In mammals pyruvate dehydro-
genase can be regulated via HIF1 mediated phosphoryla-
tion to reduce the flux to the TCA cycle under restricted
respiration [50]. However, the activity of the S. cerevisiae
pyruvate dehydrogenase enzyme has not been found to be
regulated by phosphorylation [51].

The third flux branching from pyruvate, the anaplerotic
flux, through pyruvate carboxylase, replaces the carbons
lost from the TCA cycle to biosynthesis. An increase in the
anaplerotic flux can be expected when the ratio of the car-
bon flow to biosynthesis, relative to the respirative carbon
flux through the TCA cycle, is increased. When the respi-

Table 3: Energetic features in different oxygenation conditions. 
Energetic features of S. cerevisiae CEN.PK113-1A grown in 
glucose-limited chemostat, D = 0.1 h-1 in different oxygenation 
conditions.

O2 provided in fermentor inlet gas

20.9% 2.8% 1.0% 0.5% 0.0%

ATP from respiration (%) 59 55 36 25 0
OUR (mmol g-1h-1) 2.7 2.5 1.7 1.2 0
ATP/Oa 0.9 1.0 1.1 1.1 -
ATP/2e-b 1.0 0.9 1.0 1.2 -

aCalculated from the oxygen uptake rate (OUR).
bCalculated from the flux of electron donors to the respiratory chain.
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ration rate was reduced by the reduced availability of
external oxygen while the growth rate was kept constant,
the respirative carbon flux was decreased whereas the spe-
cific carbon flux to biosynthesis remained the same. In
0.5% oxygen the respirative carbon flux was still over 60%
of the net carbon flux to the TCA cycle whereas in anaero-
bic conditions there was no respirative carbon flux and
the anaplerotic flux was the only source of Oaamit. Frick
and Wittmann (2005) observed considerably increased
anaplerotic fluxes in S. cerevisiae at high growth rates (D =
0.30, 0.40 h-1) in aerobic chemostats compared to low
growth rate (D = 0.15 h-1) and the increases in the ana-
plerotic fluxes were accompanied by high malic enzyme
fluxes [18]. High contribution of a malic enzyme flux has
also been observed in aerobic glucose-repressed batch cul-
tures [34]. In this study the highest, but still low, malic
enzyme fluxes were observed in the more oxygenised con-
ditions while the absolute anaplerotic flux remained on
fairly constant level and only the ratio of anaplerosis to
the TCA cycle flux was increased when oxygen concentra-
tion was reduced. Thus a high ratio of anaplerotic flux to
the TCA cycle flux is associated with respiro-fermentative
and anaerobic metabolism, but high absolute anaplerotic
and malic enzyme fluxes with high specific growth rate
and/or overflow metabolism. Overflow metabolism was
not observed as a result of decreased respiratory rate
achieved by reduced oxygen provision.

In fully aerobic conditions S. cerevisiae regenerates NAD+

mainly through respiration. When limited oxygen availa-
bility restricts respiration, cells are forced to use other
means for regeneration of NAD+and mitochondrial
NADH needs to be transported to the cytosol for reoxidi-
sation. For the transport of NADH, mitochondrial alcohol
dehydrogenase, encoded by ADH3, provides a probable
redox shuttle [6,52]. S. cerevisiae oxidises the surplus
NADH by producing glycerol as a redox sink. In this study,
carbon loss to glycerol was observed only in anaerobic
conditions, as expected. Based on the theoretical amount
of assimilatory NADH synthesised in anaerobic condi-
tions, 11 mmol g biomass-1 at a growth rate 0.1 h-1 [10],
which was consistent with the anaerobic glycerol produc-
tion rate observed in this study (1.2 mmol g biomas-1 h-1

[32], no net glycerol production should occur for oxygen
uptake rates of 0.55 mmol O2 g biomass-1 h-1 or higher
[53]. The oxygen uptake rate measured in the lowest oxy-
gen concentration provided in this study, 0.5% O2, was
1.2 mmol O2 g biomass-1 h-1, which is twice the rate which
would be sufficient for maintaining the cytosolic NADH
balance with the external NADH dehydrogenases and
mitochondrial respiration [6].

The main mechanisms in S. cerevisiae for mitochondrial
reoxidation of cytosolic NADH are the external NADH
dehydrogenases (Nde1p and Nde2p) but the glycerol-3-

phosphate shuttle is also known to be active [6,7]. The
anaerobic flux distribution observed was clearly different
from all the other flux distributions since respiration
could maintain the NADH/NAD+ ratio in all the aerobic
conditions. Weusthuis et al. (1994) indicated that yeasts
could optimise their function for redox balancing so that
available oxygen would primarily be used to maintain the
redox balance, thus avoiding carbon loss to glycerol [8].
The indication has been supported by MFA modelling
results of S. cerevisiae metabolism in low oxygen condi-
tions [9]. Respiratory functions couple energy generation
in terms of ATP with the redox balance. Since the redox
cofactor NADH is one of the hub metabolites in the
organism-wide network of metabolic reactions [29], the
regulation of redox homeostasis encompasses all the met-
abolic pathways.

In this study P/O ratios were estimated in two different
ways: from OURs and from the flux of electrons to the res-
piratory chain. The two different estimates were consistent
with each other and close to one in all conditions. The
effective P/O ratio has previously been estimated to be
close to one in respiratory, carbon-limited cultures [54]
and an increase in the effective P/O ratio in decreased res-
piratory fluxes has been observed in isolated mitochon-
dria and in spheroplasts [55-57]. An ability to adjust the
P/O ratio has been discussed as providing an important
means to control ATP synthesis in cells to adapt to
changes in energy demands [56]. In this study no signifi-
cant increase in the P/O ratio was observed with decreas-
ing respiratory fluxes.

The PPP provides precursors for biosynthesis and reduc-
tive power in the form of NADPH. The relative flux to the
PPP appeared to be mainly determined by the NADPH
requirement for biomass synthesis in the different oxy-
genation conditions. It has been stated that the flux
through the PPP depends on the NADP+/NADPH ratio in
the cell and additionally on the MgATP2- pool that inhib-
its glucose-6-phosphate dehydrogenase, an enzyme in the
oxidative branch of the PPP, allowing dynamic regulation
of the relative PPP flux [58]. The dependence of the rela-
tive PPP flux on growth rate and biomass yield has been
observed [18]. The relative PPP flux contributions to PEP
observed with METAFoR analysis of glucose repressed
cells in aerobic batch cultures [34] are essentially the same
as observed in this study in response to the lowest oxygen
provision and anaerobic conditions. NADPH production
of the oxidative PPP in the aerobic cultivations was
approximately 6 mmol g biomass-1 in this study, assum-
ing the maximum relative PPP flux, while approximately
9 mmol g biomass-1 would be needed for reducing power
in the form of NADPH for biomass production of yeast
growing on glucose with ammonium as the nitrogen
source [59]. Thus one third of the NADPH required must
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have been produced in pathways other than the PPP. The
isocitrate dehydrogenase reaction of the TCA cycle is
assumed to be another main contributor to the produc-
tion of NADPH [59]. However, NADPH is also known to
be an important factor in oxidative damage prevention
[60] and therefore the NADPH requirement may have
been lower in the lower oxygenation conditions.

The changes in metabolic flux distribution observed in the
series of different oxygenation conditions were positively
correlated with the transcriptional changes of the genes
encoding the flux carrying metabolic enzymes [32] only
for pyruvate dehydrogenase and the TCA cycle. Glycolytic
flux, in particular, showed a large increase as oxygenation
was reduced, in contrast to the expression levels of some
of the corresponding genes [32]. However, no extensive
correlation between changes in transcription and the flux
distribution in aerobic and anaerobic chemostat cultures
of S. cerevisiae has been previously observed [61,62] and
the glycolytic enzymes have recently been stated to be
post-transcriptionally regulated [37,63]. In contrast, some
transcriptional regulation of metabolism has been found
to correlate with the glycolytic rate in batch cultures of S.
cerevisiae strains displaying glucose uptake rates between
3.5 mmol g-1 h-1 and 15.8 mmol g-1 h-1 by Elbing et al.
(2004) [64]. In this study, even though the specific glu-
cose uptake rates in chemostats varied between 0.9 mmol
g-1 h-1 and 6.6 mmol g-1 h-1 [32] there was no correlation
with the transcriptional level of the glycolytic genes which
were studied. However, in the work by Elbing et al.
(2004), how the glycolytic rate was sensed to trigger tran-
scriptional changes was not resolved [64]. As extensive
oxygen dependent redistributions of fluxes were observed
in central carbon metabolism in this work, the oxygen-
dependent regulation of the fluxes in S. cerevisiae appears
to lie mainly at the post-transcriptional level of the cell's
regulatory system. However, it should be kept in mind
that the oxygen dependent flux distributions of S. cerevi-
siae reflect not only the direct oxygen sensing regulatory
mechanisms, but rather the ultimate response of the
whole interactive multi-level regulatory system.

Conclusion
In this study the quantification of the flux distributions of
S. cerevisiae in response to different oxygenation condi-
tions with 13C-MFA showed that the fluxes were redistrib-
uted not only between the cells grown in the fully aerobic
conditions, in conditions of reduced oxygen provision
and in anaerobic conditions but also for cells grown with
2.8%, 1.0% and 0.5% oxygen. Although the cellular
metabolism was respiro-fermentative in each of these low
oxygen conditions, the actual amount of oxygen available
resulted in different contributions through respirative and
fermentative pathways. The flux distribution at the pyru-
vate branch point, leading to respirative and fermentative

pathways and to anaplerotic flux replenishing the TCA
cycle, was particularly responsive to the level of reduction
in oxygen provision. The oxygen-dependent regulation of
the flux distribution in central carbon metabolism of S.
cerevisiae appeared to lie mainly at the post-transcriptional
level of the cell's regulatory system. Respirative pathway
flux decreased progressively in reduced oxygenation con-
ditions where the availability of terminal electron accep-
tor limited the respiratory rate. However, respiratory
energy generation, being very efficient, provided a large
fraction of the ATP required even in low oxygen condi-
tions.

Methods
Strain and medium
Saccharomyces cerevisiae CEN.PK113-1A (MATα, URA3,
HIS3, LEU2, TRP1, MAL2-8c, SUC2) was kindly provided
by Dr. P. Kötter (Institut für Mikrobiologie, J.W. Goethe
Universität Frankfurt, Germany) [65] and stored in glyc-
erol (30% v/v) at -80°C [32].

Yeast were grown in defined minimal medium [66], with
10 g glucose l-1 as carbon source, and supplemented with
10 mg ergosterol l-1 and 420 mg Tween 80 l-1 (a source of
oleic acid). BDH silicone antifoam (0.5 ml l-1) was used to
prevent foam production in the cultures [32].

Culture conditions
Cells were grown in 0.8 to 1 l medium in Biostat CT (2.5
l working volume) bioreactors. Cultures were inoculated
to an initial OD600 of approximately 0.5 and maintained
as batch cultures for 6 to 9 h, after which continuous
medium feed was started while the cells were still growing
exponentially. Chemostat cultures were maintained at D
= 0.10 ± 0.02 h-1, pH 5.0, 30°C, with 1.5 volume gas [vol-
ume culture]-1 min-1 (vvm). Chemostat cultivations were
performed with five different oxygenation conditions:
20.9%, 2.8%, 1.0%, 0.5% and 0.0% oxygen of the chem-
ostat inlet gas. For cultures which received less than 20.9%
O2 in the gas stream, O2 was replaced with the equivalent
volume of N2, so that total gas flow was maintained con-
stant for all experiments. The N2 gas used was 99.999%
pure. Gas concentration (CO2, O2, N2 and Ar) was ana-
lysed continuously in an Omnistar quadrupole mass spec-
trometer (Balzers AG, Liechenstein), calibrated with 3%
CO2 in Ar. 13C labelled CO2 was taken into account in the
determination of CERs during feeding with13C glucose.

To achieve anaerobic conditions in the chemostat only
Marprene tubing with very low oxygen permeability was
used to connect the vessels. The medium reservoir was
continually flushed with N2 to prevent additional O2
being added by diffusion into the medium in the anaero-
bic and low oxygen cultures. The kLa (overall oxygen
transfer coefficient) for the bioreactor in the cultivation
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conditions was 0.035–0.039s-1 (in pure water). The DOT
was 83% in cultures receiving 20.9% O2 and 0% in all the
other cultures [32]. It should be noted that, based on
Henry's law, the amount of oxygen able to dissolve into
the medium is determined by the partial pressure of oxy-
gen in the inlet gas, and that in oxygen-limited conditions
(i.e. cultures receiving 2.8, 1.0 or 0.5% oxygen) the yeast
were able to utilise all the oxygen which was able to dis-
solve into the medium. Oxygen was continually dissolv-
ing and continually being removed. Thus the oxygen
available to the yeast was directly determined by the con-
centration of oxygen in the inlet gas while the measurable
DOT remained zero, as also indicated by the OURs. Dis-
solved oxygen was measured with a Mettler Toledo
InPro(R) 6000 series polarographic dissolved oxygen
probe.

The culture conditions and biomass determination and
chemical and metabolite analyses are described in more
detail by Wiebe et al. (2008) [32]. The rate of ethanol loss
through evaporation was estimated, based on initial
measurements for 1 l cultures at 30°C, 15 vvm aeration
and 800 rpm agitation and assuming that the evaporation
rate would be constant in chemostat cultures under these
conditions.

Biosynthetically directed fractional (BDF) 13C-labelling
13C-labelling experiments were performed in at least two
replicate cultures under each oxygenation condition. After
reaching a metabolic steady state, as determined by con-
stant physiological parameters including biomass produc-
tion, carbon dioxide evolution and oxygen uptake rates
(CER and OUR), alkali utilisation, and subsequently con-
firmed by the observation of constant extracellular and
intracellular metabolites and gene transcription, 10% of
the carbon source in the medium was replaced with [U-
13C]glucose (Isotec, 99 atom% 13C). During steady state
growth the active pathways in the cells will determine
how the yeast biomass becomes 13C-labelled. After
approximately 1.5 residence times biomass samples, 50
ml of culture broth, corresponding to 0.27 to 0.05 g CDW,
were harvested by centrifugation. The cell pellets were sus-
pended into 10 ml of 6 M HCl and the biomass was
hydrolysed in sealed glass tubes at 110°C for 22 h. The
suspensions were dried and dissolved in H2O for filtration
through 0.2 μm filters. The filtrates were vacuum-dried
and dissolved in D2O for NMR experiments. The pH of
the samples was below 1 due to residual HCl.

As described previously [20,23,34,43,67-69], the calcula-
tion of metabolic flux ratios when using fractional 13C-
labelling of amino acids is based on the assumption that
both a metabolic and an isotopomeric steady state exist.
To establish a cost-effective protocol for a larger number
of 13C-labelling experiments, 13C-labelled substrate was

fed to a chemostat operating in a metabolic steady state
for the duration of 1.5 volume changes [20,67] before
harvesting the biomass. The fraction of unlabelled bio-
mass produced prior to the start of 13C-labelled medium
supply was calculated following simple wash-out kinetics
[69].

NMR spectroscopy
13C-HSQC nuclear magnetic resonance (NMR) spectra
were acquired at 40°C on a Varian Inova spectrometer
operating at a 1H-resonance frequency of 600 MHz essen-
tially as described [43]. For each sample two spectra were
acquired focusing on the aliphatic and aromatic regions.
For the aliphatic spectra, a matrix of 1024 × 1500 (f2 × f1)
complex data points was acquired and zero-filled to 4096
complex data points in f1. The spectral widths were 6000
Hz and 5100 Hz in the 1H- and 13C-dimensions, respec-
tively. The narrow spectral width in the 13C-dimension
leads back-folding of part of the signals to the empty
regions of the spectrum. For the aromatic region, a matrix
of 1024 × 800 complex data points was acquired and zero-
filled to 2048 complex data points in f1. The spectral
widths for the aromatic spectra were 6000 Hz and 2815
Hz in the 1H- and 13C-dimensions, respectively. All spec-
tra were weighted with a cosine function in both dimen-
sions prior to the Fourier transformation. The spectra were
processed using the standard Varian spectrometer soft-
ware VNMR (version 6.1, C).

METAFoR analysis
Metabolic flux ratio (METAFoR) analysis was done based
on the compartmentalized metabolic model of S. cerevi-
siae central carbon metabolism formulated by Maaheimo
and co-workers (2001) [34]. The software FCAL (R.W.
Glaser; FCAL 2.3.1) [23] was used for the integration of
13C-scalar fine structures of proteinogenic amino acid car-
bon signals in the 13C-HSQC NMR spectra and the calcu-
lation of relative abundances of intact carbon fragments
originating from a single source molecule of glucose. The
nomenclature used here for the intact carbon fragments,
fragmentomers, has been described previously [43].
Briefly, f(1) represents the fraction of molecules in which
the observed carbon atom and the neighbouring carbons
originate from different source molecules of glucose, and
f(2) the fraction of molecules in which the observed carbon
atom and one of the two neighbouring atoms originate
from the same source molecule of glucose, and f(3) the
fraction of molecules in which the observed carbon atom
and both the neighbouring carbons originate from the
same source molecule of glucose. If the observed carbon
exhibits significantly different 13C-13C scalar coupling
constants with the neighbouring carbons, f(2)and f(2*) can
be distinguished. The fraction of molecules with a con-
served bond between the observed carbon atom and the
neighbouring carbon with the smaller coupling is repre-
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sented by f(2). f(2*) then denotes for fraction of molecules
where the bond is conserved between the observed carbon
and the neighbouring carbon with the larger coupling. If
the observed carbon is located at the end of a carbon
chain, f(1) and f(2) fragmentomers can be observed indicat-
ing the conservation of the terminal two carbon fragment
of the molecule.

Fragmentomer information obtained from proteinogenic
amino acids can be traced back to the metabolic interme-
diates in central carbon metabolism since the carbon
backbones of eight intermediates are conserved in amino
acid synthesis pathways [34]. Mass balance equations of
specific carbon fragments of the metabolic intermediates
were formulated from the propagated fragmentomer
information for junctions in central carbon metabolism.

Since glycolysis and the pentose phosphate pathway
(PPP) are completely located in the cytosol, the upper
bound for the fraction of Pep from the PPP was calculated
as for prokaryotic cells and as described by Maaheimo and
co-workers (2001) [34]. The fraction of Pep originating
from phosphoenolpyruvate carboxykinase activity,
denoted by XPEPck, was calculated from the ratio of the
fraction of Pep molecules containing an intact C1–C2
fragment and a cleaved bond between C2 and C3 and the
fraction of Oaacyt molecules containing the equivalent
fragments (Equation 1). These fragments cannot originate
from glycolysis or from the PPP [34]. Phe-Cα, Tyr-Cα and
Asp-Cα, Thr-Cα can be traced back to the C2 of Pep and
Oaacyt, respectively, as the amino acid synthesis pathways
from metabolic intermediates are known [34] (Equation
1).

XPEPck = Pep_10/Oaacyt_10x = [f (2*)]{phe, Tyr-Cα}/[f 
(2*)]{Asp, Thr-Cα } (1)

where Pep_10 denotes for the fraction of Pep molecules
that possess an intact C1–C2 bond and cleaved C2–C3
bond and Oaacyt_10x denotes for the fraction of Oaacyt
molecules that possess an intact C1–C2 bond, a cleaved
C2–C3 bond and either intact or cleaved C3–C4 bond.

The Oaamit molecules originating from Oga through the
TCA cycle possess cleaved C2–C3 bonds. The fraction of
Oaamit originating from transport over the mitochondrial
membrane from Oaacyt was solved from a mass balance of
intact C2–C3 fragments in Oaamit. The conserved connec-
tivity of the C2–C3 fragment in Oaamit can be propagated
back from Glu-Cα and Pro-Cα carbons that represent the
C2 carbon in Oga, since the C2–C3 fragment of Oaamit is
conserved in the TCA cycle as the C2–C3 fragment of Oga.
The fraction of Oaamit from Oaacyt, denoted by XOaa-transport,
was calculated as a ratio of intact C2–C3 fragments in Oga
and Oaacyt (Equation 2).

The fraction of Oaacyt originating from Pyrcyt, denoted by

, was solved from the mass balance of

intact C2–C3 fragments (Equation 3). Since the flux from
Pep to Pyrcyt through phosphoenolpyruvate kinase and

further through pyruvate carboxylase to Oaacyt can be

assumed to be irreversible in the experimental conditions
used here, the C2–C3 fragments of Pep were used in the
mass balance equations. The conserved connectivity of
the C2–C3 fragment in Pyrcyt can be observed from Phe-

Cα and Tyr-Cα that represent the C2 carbon of Pep (Equa-
tion 3).

The upper and lower bounds for Pyrmit originating from
the malic enzyme reaction, denoted by XMAE_ub and XMAE_lb
respectively, were calculated from a mass balance of intact
C2–C3 fragments of Pyrmit (Equations 4 and 5). The upper
and lower bounds were obtained from the assumption
that the substrate fragment for malic enzyme has an
equally conserved connectivity as Oga and Oaamit. The
intact fragments in Oaamit were obtained from the intact
fragments in Oga since the C2–C3–C4 fragment of Oaamit
is conserved in the TCA cycle in synthesis of Oga. The
intact fragments in biosynthetic precursor Oga were
deduced from the f-values of Glu and Pro carbons (Equa-
tions 4 and 5).
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13C-MFA
Metabolic flux analysis (MFA) was used to determine
intracellular metabolic fluxes, with METAFoR analysis
providing additional experimental constraints to solve the
MFA system [24]. A stoichiometric model of central car-
bon metabolism of S. cerevisiae was formulated, based on
the model used in the METAFoR analysis [34] (Additional
file 4). The model included the glycolytic and the pentose
phosphate pathways, the TCA cycle and the fermentative
pathways, production of glycerol and anabolic fluxes
from metabolic intermediates to biosynthesis. The glyox-
ylate cycle was omitted from the model since the META-
FoR data showed that the pathway was inactive. The
labelling pattern of succinate that would have originated
from the glyoxylate cycle was calculated from Asp and Lys
fragmentomers representing the labelling patterns of Oaa-

cyt and AcCoAcyt respectively. No trace of influx of succi-
nate originating from the Glyoxylate cycle to the TCA cycle
was observed since the labelling pattern of Oga derived
from Glu fragmentomers was fully explained by the TCA
carbon flux. Separate pools of Pyr, AcCoA and Oaa in the
two cellular compartments, cytoplasm and mitochondria,
were included in the model. Mal was lumped in the same
pool with Oaamit. Also the pentose phosphates formed a
single pool and the triose phosphates were combined in
the pools of G3P and Pep. DHAP, the precursor for glyc-
erol synthesis, was also combined with the G3P pool. TCA
cycle metabolites were represented by the pools of citrate,
Oga and Oaamit. Scrambling of 13C-labels in the symmet-
ric molecules succinate and fumarate was taken into
account. The transport of Pyr and Oaa across the mito-
chondrial membrane were included in the model but the
transport of AcCoA, the final step of the cytosolic PDH
bypass, was omitted since exogenous carnitine would be
required for the carnitine shuttle to be active [70-72], and
carnitine was not provided in the medium. In addition
carnitine acetyltransferase activity has not been detected
in S. cerevisiae grown in anaerobic chemostats at 0.1 h-1

[35]. Since acetaldehyde can freely diffuse across the mito-
chondrial membrane and acetaldehyde dehydrogenase
(EC 1.2.1.3) and AcCoA synthetase (EC 6.2.1.1) enzymes
have both been isolated in the mitochodrial proteome
[73], PDH bypass could also be partially located in mito-
chondria and contribute directly to the formation of
AcCoAmit. In absence of fluxes inducing significantly dis-
similar labelling patterns to the C2–C3 fragments of Pyrcyt
and Pyrmit i.e. in conditions of low malic enzyme fluxes as
observed in this study, 13C-labelling cannot solely reveal
the possible contribution of PDH bypass pathways to the
carbon flux to mitochondria. However, in the cultivations
performed, the expression of ACS1 encoding the mito-
chondrial AcCoA synthetase, essential for the contribu-
tion of mitochondrial PDH bypass to the formation of
AcCoAmit, was negligible and the expression of ACS2
encoding the cytosolic isoenzyme was substantially

higher [32]. Thus, the mitochondrial PDH bypass was not
included in the model.

The metabolic fluxes were modelled as net fluxes so that a
net flux in the forward direction was assigned with a pos-
itive value and a net flux in the reverse direction was
assigned with a negative value. As an exception, the trans-
port of Oaa across the mitochondrial membrane was
modelled as two one-directional transport reactions. In S.
cerevisiae the transport of OAA across the mitochondrial
membrane can occur via mitochondrial Oaa transporter
OAC1 facilitated transport [74].

The stoichiometric model for experiments in 20.9%, 2.8%
and 1.0% oxygen conditions consisted of 38 reactions
coupling 34 metabolites including duplicated extracellu-
lar metabolites and uptake and production fluxes, Figure
4. The 14 fluxes across the system boundary included glu-
cose uptake and excretion fluxes of ethanol, acetate and
glycerol and the fluxes of the metabolic precursors to mac-
romolecule synthesis for biomass production. The META-
FoR results were used to identify inactive reactions, to
constrain the stoichiometric models for the experiments
with 0.5% and 0.0% oxygen by omitting inactive fluxes.
The stoichiometric model for experiments in 0.5% oxygen
consisted of 37 reactions, coupling 34 metabolites and
excluding the malic enzyme activity from the first model
of the network of active reactions. The compartmentaliza-
tion of central carbon metabolism in anaerobic condi-
tions is evident from the vital anabolic role of
mitochondria in the absence of oxygen [75]. However, in
completely anaerobic conditions only the net transport of
Oaa across the mitochondrial membrane is resolvable
and the activities of PEPck and malic enzyme reactions
cannot be quantified. Since, according to the METAFoR
analysis, the PEPck reaction showed only slight activity in
the other conditions studied and its activity decreased as
the oxygen provided was reduced, it was omitted from the
anaerobic stoichiometric model. MAE1 has been shown
to be induced in anaerobic conditions and its possible
role in provision of NADPH in mitochondria in anaerobic
conditions has been discussed [76]. However, the malic
enzyme reaction also showed only slight activity in all the
conditions where quantification was possible and had its
lowest activity in 0.5% oxygen. Thus, the malic enzyme
reaction was omitted from the anaerobic model. Under
anaerobic conditions the stoichiometric model of the
active pathways consisted of 34 reactions and 34 metabo-
lites.

After including the measured uptake and excretion rates
and the rates of metabolic precursor depletion to biomass
synthesis, as determined from the composition of S. cere-
visiae biomass previously reported [19], in the models, the
linear equation systems remained underdetermined. The
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composition of S. cerevisiae biomass was assumed to be
the same in all the conditions studied, since the biomass
composition in the two extreme conditions, i.e. in fully
aerobic and in anaerobic conditions, has been experimen-
tally shown to be essentially the same [19,35]. Solvable
systems were obtained by further constraining the MFA
systems with one to six linearly independent constraints,
depending on the structure of the network of active reac-
tions from the METAFoR analysis as described by Fischer
and co-workers (2004) [24]. Using the constraints from
the METAFoR analysis, it was not necessary to include
redox cofactor mass balances in the mass balance con-
straints in 13C MFA. Cofactor mass balances are sources of
errors since the correct balancing requires detailed knowl-
edge of the relative activities of different isoenzymes and
the enzyme cofactor specificities on a cell wide scale. The
mass balances of the metabolites were formulated as a lin-
ear equation system as described in [24] (Equation 6):

Nix - b = Rm (6)

where Ni is the stoichiometric matrix of the active network
i determined from the METAFoR analysis fragmentomer
data, x is the flux distribution vector, b is the vector of the
measured extracellular fluxes and Rm is the vector of the
residuals of metabolite mass balances.

The flux ratio equations were set up according to the
METAFoR analysis for the reactions in the stoichiometric
models of the central carbon metabolism of S. cerevisiae
(Equations 7 to 11, the reaction numbers are defined in
Figure 4). Depending on the structure of the network of
active reactions the flux ratio equations included one to
six of the following (Equations 7 to 11):

the fraction of Pep from PPP assuming a maximal contri-
bution of PPP

the fraction of Pep originating from Oaacyt, XPEPck:

the fraction of Oaamit originating from Oaacyt, XOaa-transport:

the fraction of Oaacyt originating from Pyrcyt,

:

the upper and lower bounds for Pyrmit originating from
the malic enzyme reaction, XMAE_ub and XMAE_lb:

The following linear constraint equations were obtained
from the flux ratio equations and included to the MFA sys-
tems to solve the metabolite mass balances (Equations 12
to 17):

x5 + 3x6 + 2x7 - fr1(x5 + 2x4 + x6) = 0 (12)

x15- fr 2(x15+ x8) = 0 (13)

x21-fr3(x21 + x13) = 0 (14)

x16 - fr4(x16 + x22) = 0 (15)

x14 - fr5(x14 + x9) = 0 (16)

fr6(x14 + x9)-x14 = 0 (17)

Irreversibility was assumed for the intracellular fluxes x3,
x4, x8, x9, x10, x11, x12, x13, x14, x15, x16, x21, x22, x23, x24, for
extracellular fluxes x25, x26, x27, x28, and for the depletion
of precursors to biosynthetic reactions and thus, only pos-
itive values were allowed for the fluxes. The minimization
of the sum of the weighted square residuals of the metab-
olite mass balances was done using the Matlab function
fmincon. The extracellular metabolite mass balances were
assigned weights according to the experimental measure-
ment error estimates. The biomass precursor metabolite
mass balances were assigned ten-fold larger weights, rela-
tive to their stoichiometric coefficients in the biomass
composition, since the biomass composition was
assumed constant in all the conditions studied [2]. The
flux ratio constraints were included as strict constraints.
The optimization was started 10000 times from random
initial values to evaluate the uniqueness of the optimal
flux distribution. The sensitivity of the flux distribution
solutions to the noise in the flux ratio data and in the
extracellular flux data was studied by Monte Carlo-simu-
lations [77]. Additive normally distributed noise with
zero mean and experimentally determined variances of
the flux ratios and the extracellular fluxes was sampled to
the flux ratios and to the extracellular flux data, separately
and simultaneously. A flux distribution was solved for
each of the 100 sets of input data from 12 random initial

fr
x x x
x x x

1 5 3 6 2 7
5 2 4 6

= + +
+ +

(7)

fr
x

x x
2 15

15 8
=

+
(8)

fr
x

x x
3 21

21 13
=

+
(9)

XOaa from Pyrcyt cyt_ _

fr
x

x x
4 16

16 22
=

+
(10)

fr
x

x x
fr5 14

14 9
6≤

+
≤ (11)
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flux distributions. Confidence intervals (95%) for the
fluxes were determined.
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The metabolic pathways associated with the tricarboxylic acid cycle intermediates of Pichia pastoris

were studied using biosynthetically directed fractional 13C labelling. Cells were grown aerobically in

a chemostat culture fed at two dilution rates (1.39610”5 s”1 and 4.44610”5 s”1) with

varying mixtures of glycerol and methanol as sole carbon sources. The results show that, with

co-assimilation of methanol, the common amino acids are synthesized as in P. pastoris cells grown

on glycerol only. During growth at the lower dilution rate, when both substrates are entirely

consumed, the incorporation of methanol into the biomass increases as the methanol fraction in the

feed is increased. Moreover, the co-assimilation of methanol impacts on how key intermediates of

the pentose phosphate pathway (PPP) are synthesized. In contrast, such an impact on the PPP is

not observed at the higher dilution rate, where methanol is only partially consumed. This finding

possibly indicates that the distribution of methanol carbon into assimilatory and dissimilatory (direct

oxidation to CO2) pathways are different at the two dilution rates. Remarkably, distinct flux ratios

were registered at each of the two growth rates, while the dependency of the flux ratios on the

varying fraction of methanol in the medium was much less pronounced. This study brings new

insights into the complex regulation of P. pastoris methanol metabolism in the presence of a second

carbon source, revealing important implications for biotechnological applications.

INTRODUCTION

The methylotrophic yeast Pichia pastoris has emerged as an
important production host for both industrial protein
production and basic research, including structural geno-
mics (Lin Cereghino & Cregg, 2000; Lin Cereghino et al.,
2002; Yokoyama, 2003; Prinz et al., 2004). However,
progress in strain improvement and rational design and
optimization of culture conditions for heterologous protein
production in P. pastoris is currently hampered by the

limited number of systematic metabolic and physiological
characterization studies under bioprocess-relevant condi-
tions (Sauer et al., 2004; Solà et al., 2004). Information on
heterologous gene expression and production of proteins
under different physiological states of the cells is scarce.
Furthermore, very little information is available on the
cellular responses to protein production in P. pastoris
(Hohenblum et al., 2004). Importantly, the P. pastoris
genome has been deciphered (see www.integratedgenomics.
com), offering innumerable possibilities to pursue coordi-
nated understanding of cellular processes in the framework
of systems biology.

P. pastoris has been developed as an expression platform
using elements that include strong inducible promoters
derived from genes of the methanol utilization pathway,
which is compartmentalized in the peroxisomes (Harder
& Veenhuis, 1989). During growth on methanol, several
key enzymes, e.g. alcohol oxidase, catalase, formaldehyde

3These authors contributed equally to this work.

Abbreviations: [13C,1H]-COSY, [13C,1H] correlation NMR spectroscopy;
BDF, biosynthetically directed fractional; cyt, cytosolic; GCV, glycine
cleavage pathway; mt, mitochondrial; OAA, oxaloacetate; PPP, pentose
phosphate pathway; SHMT, serine hydroxymethyltransferase; TCA,
tricarboxylic acid.

Tables of f-values are available as supplementary data with the online
version of this paper.
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dehydrogenase and dihydroxyacetone synthase, are present
in high amounts and peroxisomes proliferate. The synthesis
of these enzymes is regulated at the transcriptional level of
the respective genes. Methanol assimilation is subject to a
carbon-source-dependent repression/derepression/induc-
tion mechanism; it is rather strongly repressed by multi-
carbon sources such as glucose and glycerol, but highly
induced by methanol. Importantly, co-assimilation of a
multicarbon source and methanol can be triggered under
certain growth conditions (Egli et al., 1982).

Although pathways of methanol metabolism are essentially
analogous for all methylotrophic yeasts, important varia-
tions do exist with respect to their regulation (Harder &
Veenhuis, 1989). It is, for example, well documented that
during aerobic growth of different species (e.g. Hansenula
polymorpha), partial catabolite repression of methanol
metabolism specific enzymes may occur, i.e. allowing
expression of these enzymes to quite significant levels.
Furthermore, control by catabolite repression by different
multicarbon compounds in some strains is tighter than in
others, while methanol may have a small or a significant
inducing effect. In P. pastoris, high-level induction of
methanol metabolism enzymes is strongly dependent on
methanol, i.e. partial catabolite repression of methanol-
metabolism-specific enzymes only occurs at a much reduced
level. Implications of the regulation of methanol metabo-
lism for central carbon metabolism in P. pastoris growing on
mixtures of methanol plus a multicarbon source are
essentially unexplored. Moreover, most of the comprehen-
sive investigations of methanol mixed carbon metabolism
have so far been pursued only for other methylotrophic
yeasts (e.g. H. polymorpha, Kloeckera, Candida boidinii; for a
review see Harder & Veenhuis, 1989). In this context, the
level of protein expression in P. pastoris depends critically on
the growth conditions, and the attainment of high cell
densities has been shown to improve protein yields
substantially (Stratton et al., 1998). Although production
of recombinant proteins under such culture conditions is
typically induced by methanol, which activates the aox-1
promoter controlling the heterologous gene, feeding
mixtures of glycerol (or other multicarbon sources) to the
culture has also been successfully used as a means for
improving process productivities (for a review see Cos et al.,
2006). In view of the outstanding role of P. pastoris for
biotechnology research, this organism represents an obvious
target for studies of its metabolism and physiology.

Stable isotope labelling experiments employed in conjunc-
tion with NMR spectroscopy and/or mass spectrometry
(Szyperski, 1998) are a powerful tool for metabolic studies.
In particular, biosynthetically directed fractional (BDF) 13C
labelling of proteinogenic amino acids has been developed
into a cost-effective approach to assess the topology of active
bioreactions (i.e. active pathways) and to quantify metabolic
flux ratios (Szyperski, 1995). BDF labelling has been applied
to study central carbon metabolism of eubacteria (Szyperski,
1995; Sauer et al., 1997, 1999) as well as eukaryotic yeast cells

(Maaheimo et al., 2001; Fiaux et al., 2003; Solà et al., 2004)
growing on glucose or glycerol.

Recently, we have established BDF 13C labelling and meta-
bolic flux ratio formalism (Szyperski, 1995; Maaheimo et al.,
2001) as an analytical tool to study intermediary carbon
metabolism of P. pastoris cells growing on glycerol as sole
carbon source in chemostat cultures (Solà et al., 2004). This
investigation allowed accurate mapping of the metabolic
state of the tricarboxylic acid (TCA) cycle and associated
pathways, thus providing a valuable methodological basis
for the analysis of P. pastoris cells growing on mixtures of
glycerol and methanol, which is described in the present
study. In addition, here we have applied the metabolic flux
ratio formalism for yeast growing on a single carbon source
(Maaheimo et al., 2001) to the case of two-carbon-source
co-assimilation.

METHODS

Strain and media. A prototrophic P. pastoris strain expressing a
heterologous protein – a Rhizopus oryzae lipase (ROL) – under the
transcriptional control of the aox-1 promoter was chosen for meta-
bolic flux ratio profiling. P. pastoris X-33/pPICZaA-ROL (Minning
et al., 2001) is the wild-type phenotype X-33 strain (Invitrogen)
with the pPICZaA-derived expression vector (Invitrogen) containing
the ROL gene, pPICZaA-ROL, integrated in its aox-1 locus.
Chemostat cultures were fed with a defined minimal medium con-
taining (per 161023 m3 of deionized water): Yeast Nitrogen Base
(YNB; Difco), 0.1761023 kg; (NH4)2SO4, 561023 kg; glycerol and
methanol (different ratios on w/w basis), 1061023 kg (total);
Antifoam Mazu DF7960 (Mazer Chemicals, PPG Industries),
0.161026 m3. The YNB components and methanol were sterilized
separately by microfiltration and then added to the bioreactor. The
medium used for starter cultures was YPD medium containing 1 %
(w/v) yeast extract, 2 % (w/v) peptone, 2 % (w/v) glucose.

Chemostat cultures. Continuous cultures were carried out at a
working volume of 0.861023 m3 in a 1.561023 m3 bench-top
bioreactor (BiofloIII; New Brunswick) at 30 uC and with a minimum
dissolved oxygen tension of 30 %. Simultaneous cultures using gly-
cerol and methanol in different proportions as carbon source were
performed at two different dilution rates, D (defined as volumetric
flow rate/working volume) of 1.3961025 s21 and 4.4461025 s21.
These values are just below the maximum specific growth rate, mmax,
of P. pastoris cells growing on an excess of methanol or glycerol,
1.9461025 and 4.7261025 s21, respectively (Solà, 2004). Medium
feeding was controlled by a Masterflex pump (Cole-Parmer). The
working volume was kept constant by removal of effluent from the
centre of the culture volume by use of a peristaltic pump (B. Braun
Biotech). The pH of the culture was maintained at 5.5 by addition
of 1 M KOH and the airflow was maintained at 0.1661024 m3 s21

with filter-sterilized air using a mass flow controller (Brooks
Instruments). The agitation speed was set to 500 r.p.m. Starter cul-
tures (161024 m3) were grown in 1 l baffled shake flasks at
200 r.p.m. at 30 uC for 8.646104 s. Cells were harvested by centrifu-
gation and resuspended in fresh medium prior to the inoculation of
the bioreactor. The culture was initially run in batch mode to grow
cells until the late exponential growth phase and then switched to
continuous operational mode.

Analytical procedures. Cell biomass was monitored by measuring
OD600. For cellular dry weight, a known volume of culture broth
was filtered using pre-weighed filters; these were washed with 2 vols
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distilled water and dried to constant weight at 105 uC for
8.646104 s. Samples for extracellular metabolite analyses were cen-
trifuged at 6000 r.p.m. for 120 s in a microcentrifuge to remove the
cells. Glycerol, acetic acid and ethanol were analysed by HPLC as
described by Solà et al. (2004). Methanol was measured by GC as
described by Minning et al. (2001). The exhaust gas of the bioreac-
tor was cooled in a condenser at 2–4 uC (Frigomix R; B. Braun
Biotech) and dried through a silica gel column. Concentrations of
oxygen and CO2 in the exhaust gas of bioreactor cultures were
determined on line with a mass spectrometer (Omnistar; Balzers
Instruments).

BDF 13C labelling. P. pastoris cells were fed with a minimal
medium containing 10 kg different glycerol/methanol mixtures m23

(8 : 2, 6 : 4 and 4 : 6, w/w) for five volume changes to reach a meta-
bolic steady-state, as indicated by a constant cell density and con-
stant oxygen and CO2 concentrations in the bioreactor exhaust gas.
BDF 13C labelling of cells growing at steady-state on a single carbon
source has been described elsewhere (Sauer et al., 1997; Fiaux et al.,
2003; Solà et al., 2004); essentially, it is achieved by feeding the reac-
tor with medium containing about 10 % (w/w) of uniformly 13C-
labelled and 90 % unlabelled substrate for one volume change. In
this study, where two carbon sources (namely glycerol and metha-
nol) were used simultaneously, the BDF 13C labelling step involved
feeding the reactor with medium containing about 10 % (w/w) uni-
formly 13C-labelled and 90 % unlabelled amounts of each substrate
simultaneously for one volume change. Uniformly 13C-labelled gly-
cerol (isotopic enrichment of >98 %) was purchased from Martek
Biosciences or Spectra Stable Isotopes. 13C-labelled methanol (isoto-
pic enrichment of 99 %) from Cambridge Isotope Laboratories
was purchased from Euriso-top. Cells were then harvested by centri-
fugation at 4000 g for 600 s, resuspended in 261022 M Tris/HCl
(pH 7.6) and centrifuged again. Finally, the washed cell pellets were
lyophilized (Benchtop 5L Virtis Sentry), of which 261024 kg were
resuspended in 361026 m3 of 261022 M Tris/HCl (pH 7.6). After
addition of 661026 m3 6 M HCl, the biomass was hydrolysed in
sealed glass tubes at 110 uC for 8.646104 s, the solutions were fil-
tered using 0.2 mm filters (Millex-GP; Millipore) and lyophilized.

NMR spectroscopy and data analysis. The lyophilized hydroly-
sates were dissolved in 0.1 M DCl in D2O and two-dimensional
(2D) [13C,1H] correlation NMR spectroscopy (COSY) spectra were
acquired for both aliphatic and aromatic resonances as described
previously (Szyperski, 1995) at 40 uC on a Varian Inova spectrometer
operating at a 1H resonance frequency of 600 MHz. The spectra
were processed using standard Varian spectrometer software VNMR
(version 6.1, C). The program FCAL (R. W. Glaser; FCAL 2.3.1)
(Szyperski et al., 1999) was used for the integration of 13C–13C
scalar fine structures in 2D [13C,1H]-COSY, for the calculation of
relative abundances, f-values, of intact carbon fragments arising
from a single carbon source molecule (Szyperski, 1995), and for the
calculation of the resulting flux ratios through several key pathways
in central metabolism (Szyperski, 1995; Maaheimo et al., 2001). The
probabilistic equations relating the 13C fine structures to f-values
can be readily applied to this case of two simultaneous carbon
sources. This is because, as a C1-compound, methanol does not
introduce contiguous multiple-carbon fragments to the metabolism
and, therefore, all contiguous 13Cn (n>1) fragments must originate
from glycerol. Since the probabilistic equations for calculating the
flux ratios depend on a uniform degree of 13C labelling, both gly-
cerol and methanol were supplied with the same fraction of uni-
formly 13C-labelled molecules.

As described previously (Szyperski, 1995, 1998; Sauer et al., 1997, 1999;
Szyperski et al., 1999; Maaheimo et al., 2001; Fiaux et al., 2003; Solà
et al., 2004), the calculation of metabolic flux ratios when using
fractional 13C labelling of amino acids is based on assuming both a

metabolic (see above) and an isotopomeric steady-state. To establish a
cost-effective protocol for a larger number of 13C labelling experiments,
we fed a chemostat operating in metabolic steady-state for the duration
of one volume change with the medium containing the 13C-labelled
substrates (Sauer et al., 1997; Fiaux et al., 2003) before harvesting the
biomass. Then, the fraction of unlabelled biomass produced prior to
the start of the supply with 13C-labelled medium can be calculated
following simple wash-out kinetics (Szyperski, 1998; see also Solà et al.,
2004 for additional discussion).

Measurement of the degree of 13C enrichment in CO2. For
the determination of 13C incorporation from 13C-labelled methanol
to CO2, cells were first cultivated with unlabelled medium contain-
ing a given glycerol/methanol mixture as carbon source until steady-
state was achieved, as described above. During one residence time at
steady-state, the CO2 produced was trapped by bubbling the outlet
air through a tube containing 261025 m3 of 10 M KOH. The cul-
ture was then fed with medium containing about 50 % (w/w) uni-
formly 13C-labelled and 50 % unlabelled methanol plus unlabelled
glycerol at the same ratio as in the unlabelled medium for one
volume change. The 13CO2 produced was trapped by bubbling the
outlet air through a tube containing 261025 m3 of 10 M KOH for
the period of one residence.

The 13C content of carbonate anions in culture off-gas samples was
measured by 13C NMR spectroscopy on a Bruker 500 Avance
spectrometer using a cryoprobe to improve the signal to noise ratio.
Samples were prepared by mixing 0.261026 m3 of the corresponding
10 M KOH solution with 0.261026 m3 of a 1 M solution of dioxane
(internal standard for both calibration and integration) in D2O. 13C
NMR spectra were obtained at 125 MHz for each sample under Waltz-
16 proton decoupling, using a 31 450 Hz (over 250 p.p.m.) sweep
width, with a 30 degree 13C pulse and a relaxation delay of 1.0 s. After
accumulation to a good signal to noise ratio, the flame ionization
detectors were weighted with a 1.0 Hz line broadening function
and Fourier transformed. The resulting spectra showed peaks at
166.6 p.p.m. (carbonate anion) and 66.9 p.p.m. (dioxane), which were
integrated. 13C incorporated into CO2 was estimated by comparing the
13C content in carbonate anions in corresponding unlabelled and
labelled samples.

Biochemical reaction network model for P. pastoris. The bio-
chemical reaction network model for data interpretation was the
one recently identified for Saccharomyces cerevisiae (Maaheimo et al.,
2001; Fiaux et al., 2003), which was also shown to be suitable for
Pichia stipitis (Fiaux et al., 2003) and P. pastoris (Solà et al., 2004).
Considering published data (Harder & Veenhuis, 1989), pathways
for methanol metabolism were added (Fig. 1). Briefly, methanol is
oxidized by an alcohol oxidase to generate formaldehyde, which is
further oxidized to CO2 or assimilated into carbohydrates. The first
step in the formaldehyde assimilation pathway involves a dihydroxy-
acetone synthase, which catalyses the condensation of formaldehyde
with xylulose 5-phosphate to form fructose 6-phosphate. The hydro-
gen peroxide formed in the initial oxidation of methanol is removed
by the action of a catalase. These four enzymes are peroxisomal.
Furthermore, methanol assimilation by yeasts is characteristically
associated with the biogenesis of peroxisomes.

RESULTS AND DISCUSSION

P. pastoris cultures were performed at two dilution rates,
1.3961025 s21 and 4.4461025 s21, in aerobic chemostats
using mixtures of glycerol and methanol at different ratios
as sole carbon sources. The lower dilution rate is slightly
below the mmax of the organism as observed previously in a
batch culture on methanol (1.9461025 s21), i.e. where the
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Fig. 1. Network of active biochemical pathways constructed for P. pastoris cells grown with glycerol and methanol as mixed
carbon source. The network is based on those identified for P. pastoris growing on glucose or glycerol (Solà et al., 2004) and
on the literature on methanol metabolism of methylotrophic yeasts (Harder & Veenhuis, 1989; see text). The central carbon
metabolism of P. pastoris is dissected into cytosolic and mitochondrial subnetworks. In addition, the reactions involved in the
initial oxidation steps of methanol to formaldehyde (i.e. alcohol oxidase and catalase), the first reaction involved in
formaldehyde fixation (i.e dihydroxyacetone synthase), as well as the glyoxylate cycle reactions are supposed to reside in
peroxisomes in methylotrophic yeast like P. pastoris. Since the reactions of the glyoxylatecycle cannot be identified with the
current 13C labelling strategy (see text), its reactions are depicted in grey. Amino acids and carbon fragments originating from
a single intermediate of central carbon metabolism are represented in the rectangular boxes. Thin lines between amino acid
carbon atoms denote carbon bonds that are formed between fragments originating from different precursor molecules, while
thick lines indicate intact carbon connectivities in fragments arising from a single precursor molecule. The carbon skeletons of
glycolysis, TCA cycle and PPP intermediates are represented by circles, squares and triangles, respectively. The numbering of
the carbon atoms refers to the corresponding atoms in the precursor molecule. Abbreviations: AcCoA, acetyl-Coenzyme A;
DHA, dihydroxyacetone; DHAP, dihydroxyacetone phosphate; E4P, erythrose 4-phosphate; F6P, fructose 6-phosphate;
Fum, fumarate; G6P, glucose 6-phosphate; Gly, glycine; Glyox., glyoxylate; G3P, glyceraldehyde 3-phosphate; 3PG,
3-phosphoglycerate; Mae, malic enzyme; Mal, malate; OAA, oxaloacetate; 2Og, 2-oxoglutarate; Pyr, pyruvate; Pep,
phosphoenolpyruvate; S7P, sedoheptulose-7-phosphate; Ser, serine; Succ, succinate; Xu5P, xylulose 5-phosphate. For
AcCoA, Fum, OAA, Pyr and Succ, cytosolic (cyt) and mitochondrial (mt) pools are indicated separately.

284 Microbiology 153
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glycerol supply is growth-limiting. The higher dilution rate
is slightly below the mmax of the organism observed
previously in a batch culture on glycerol (4.7261025 s21)
(Table 1).

All chemostat cultures operated at D=1.3961025 s21

simultaneously utilized glycerol and methanol, indicating
that glycerol repression of methanol consumption did not
occur. In fact, the residual concentrations of glycerol and
methanol in the culture media were below the detection
limits of the respective assays.

At the higher rate of D=4.4461025 s21 with an 80 : 20
glycerol/methanol mixture, some residual glycerol (2.2 kg
glycerol m23) accumulated in the growth medium and,
concomitantly, very little methanol was consumed under
these conditions. However, residual glycerol concentrations
in the chemostat were very close to or below the detection
limit when the glycerol/methanol ratio was decreased.
Under such conditions, a significant fraction of the
methanol was consumed by the cells, though the residual
methanol concentration increased as the fraction of
methanol increased. These results confirm that cells fed
with mixtures of methanol and glycerol are able to utilize
methanol at dilution rates considerably higher than mmax in
batch cultures grown on methanol as sole carbon source
(D=1.9461025 s21) (Zhang et al., 2003). A similar
substrate utilization pattern has been observed in H.
polymorpha growing on different methanol/glucose mix-
tures (ranging from 0 : 100 to 100 : 0) and growth rates (Egli
et al., 1986). At low dilution rates both carbon sources were
utilized simultaneously, but at higher dilution rates the cells
increasingly accumulated methanol in the culture medium.
The dilution rate at which the transition from glucose/
methanol growth to glucose growth occurred (Dt) was
strictly dependent on the composition of the methanol/
glucose mixture in the feed, and Dt increased with

decreasing proportions of methanol. Similarly, growth of
P. pastoris at D=4.4461025 s21 is probably close to the
upper limit of the specific growth rate at which the
regulatory mechanism that determines the onset of
repression of methanol-assimilating enzymes in cells
growing on glycerol mixtures.

Notably, ethanol and acetate were not detected by HPLC in
any of the cultures, and carbon balances closed within 5 %.
Hence, P. pastoris cells, when growing under the experi-
mental conditions described, used both glycerol and
methanol entirely to generate biomass and CO2. The
observed biomass yields (Yx/s) in these mixed-substrate
cultures gave a reasonable fit with the predicted Yx/s

calculated as the weighted mean of the growth yields on
the two individual substrates (Table 1). These were
calculated from an aerobic chemostat culture at D=1.396
1025 s21 using methanol as sole carbon source [0.31 kg
cell dry wt (kg glycerol)21; Solà, 2004] and from chemostat
cultures at D=1.3961025 s21 and 4.4461025 s21 using
glycerol as sole carbon source [0.63 kg cell dry wt (kg
methanol)21; Solà et al., 2004]. An analogous pattern has
been observed in chemostat cultures of H. polymorpha
growing on different glucose/methanol mixtures (Egli et al.,
1986). Also, during growth at D=1.3961025 s21 and
4.4461025 s21 both the specific methanol consumption
rate (qmet) and specific CO2 production rate (qCO2

)
increased proportionally as the glycerol/methanol ratio
decreased. However, this does not necessarily imply that no
change in distribution of methanol carbon into assimilatory
and dissimilatory pathways took place because of the
presence of the second growth substrate, glycerol. Metabolic
flux ratio analyses were performed with hydrolysed biomass
samples that were harvested from these chemostat cultures
in physiological steady-state. 2D [13C,1H]-COSY data were
analysed as described by Maaheimo et al. (2001), yielding
the desired relative abundances (f-values) of intact carbon

Table 1. Growth parameters in steady-state chemostat cultures of P. pastoris

Yx/s represents the biomass yield, qglyc, qgluc and qO2
are specific utilization rates, qCO2

is the specific production rate, Glyc and Meth indi-

cate glycerol and methanol, respectively, and RQ is the respiratory quotient. ND, Not determined.

Carbon source Residual substrate

concn (Glyc/Meth;

kg m”3)

Yx/s (kg dry

wt kg”1]
qglyc/qmeth qCO2

(mol kg”1

per 3600 s)

qO2

(mol kg”1

per 3600 s)

RQ

D=1.39610”5 s”1

Glycerol 0.0/2 0.63 1.09/2 1.56 2.16 0.72

80 glycerol/20 methanol 0.0/0.09 0.51 0.95/0.63 1.70 2.70 0.63

60 glycerol/40 methanol 0.0/0.17 0.44 0.74/1.48 2.10 3.90 0.54

40 glycerol/60 methanol 0.0/0.09 0.44 0.57/2.33 2.21 4.85 0.46

D=4.44610”5 s”1

Glycerol 3.0/2 0.63 2.75/2 2.35 3.62 0.65

80 glycerol/20 methanol 2.2/1.8 0.65 ND ND ND ND

60 glycerol/40 methanol 0.05/2.6 0.51 2.77/1.87 4.18 7.19 0.58

40 glycerol/60 methanol 0.0/3.9 0.53 2.23/2.73 3.60 7.20 0.50
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fragments arising from a single source molecule of glycerol
(Tables S1 and S2, available with the online version of this
paper).

Biosynthesis of proteinogenic amino acids and
C1 metabolism in P. pastoris

As expected, the f-values obtained for the mixed glycerol/
methanol cultures (Tables S1 and S2, available with the
online version of this paper) show that proteinogenic amino
acids are primarily synthesized in P. pastoris according to the
pathways documented for S. cerevisiae (Jones & Fink, 1982;
Voet & Voet, 1995; Michal, 1998; Maaheimo et al., 2001),
and these have also been validated for P. pastoris cells
growing on glucose and glycerol (Solà et al., 2004).

Remarkably, the fraction of methanol in the feed affects
the pool of Ser molecules effected by the reversible cleavage
by serine hydroxymethyltransferase (SHMT); about
40–43 % of Ser molecules are cleaved in glucose and glycerol
cultures (Solà et al., 2004), but this fraction changes in
mixed glycerol/methanol cultures. For instance, it decreased
to about 28 % in cells growing at D=1.3961025 s21 in the
80 : 20 and 40 : 60 glycerol/methanol mixtures (Table 2). For
Gly synthesis, yeasts can cleave either Ser (via SHMT) or Thr
(via threonine aldolase). Due to the near degeneracy of
f-values, however, it is not possible to accurately determine
the relative contribution of the two pathways, or to
distinguish between cytosolic and mitochondrial SHMT
activity (Solà et al., 2004). In contrast to the SHMT pathway,
the Thr cleavage reaction via threonine aldolase is, if present,

Table 2. Origins of metabolic intermediates during aerobic growth of P. pastoris in glycerol/methanol chemostat cultures

For comparison, corresponding data reported previously for P. pastoris growing on glycerol in chemostat aerobic cultures (Solà et al., 2004)

are given in the left-most column. Glyc and Meth indicate glycerol and methanol, respectively. PEP, Phosphoenolpyruvate; PYR, pyruvate.

Metabolite Fraction of total pool (mean %±SD)

Glyc* 80 Glyc/20 Meth 60 Glyc/40 Meth 40 Glyc/60 Meth

D=1.39610”5 s”1

Cytosol

PEP from cyt-OAA (PEP carboxykinase reaction) <3 <7 9±6 <11

cyt-OAA from cyt-PYRD 32±2 37±4 35±2 33±3

cyt-OAA reversibly converted to fumarate at least

once (cytosolic or inter-compartmental exchange)

56±13 50±16 58±19 48±25

Mitochondria

mt-PYR from malate (upper bound) <4 <9 <16 <19

mt-PYR from malate (lower bound) <3 <2 <4 <3

mt-OAA from PEP (anaplerotic supply of TCA cycle) 33±2 32±3 36±3 29±4

mt-OAA reversibly converted to fumarate at least once 65±14 52±17 59±15 50±20

C1 metabolism

Ser from Gly and C1 unit 43±3 28±2 37±3 28±2

Gly from CO2 and C1 unit 2±2 4±3 9±3 5±2

cyt-Gly from mt-Gly <2 <4 <9 <5

D=4.44610”5 s”1

Cytosol

PEP from cyt-OAA (PEP carboxykinase reaction) <6 <21 <10 <11

cyt-OAA from cyt-PYRD 68±4 89±2 78±2 76±2

cyt-OAA reversibly converted to fumarate at least

once (cytosolic or inter-compartmental exchange)

12±6 <5 11±5 <6

Mitochondria

mt-PYR from malate (upper bound) <11 <7 <6 0

mt-PYR from malate (lower bound) <3 <2 <2 0

mt-OAA from PEP (anaplerotic supply of TCA cycle) 48±2 47±2 42±2 43±2

mt-OAA reversibly converted to fumarate at least once 61±14 55±8 52±12 53±12

C1 metabolism

Ser from Gly and C1 unit 42±2 37±2 33±2 51±2

Gly from CO2 and C1 unit 5±3 3±3 4±2 7±2

cyt-Gly from mt-Gly <5 <3 <4 <7

*Data taken from Solà et al. (2004).

DValues assuming absence of cytosolic OAA from fumarate conversion.

286 Microbiology 153
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irreversible in all cultures. This can be readily deduced from
the fact that nearly identical f-values were obtained from Thr
and Asp. Gly may also be synthesized from a C1 unit and
CO2 via the mitochondrial glycine cleavage (GCV) pathway.
In contrast to previous studies with S. cerevisiae (Maaheimo
et al., 2001) and with P. pastoris growing on glucose (Solà
et al., 2004), we found no evidence for efflux of Gly which
had been reversibly cleaved by the GCV into the cytosol in
glycerol and glycerol/methanol cultures. Hence, it may be
that either the mitochondrial GCV pathway is operating
irreversibly, or Gly is not exported into the cytosol when
cells are grown on glycerol. Only when cells are grown at
D=1.3961025 s21 with a 60 : 40 glycerol/methanol mix-
ture do the differences observed in the labelling patterns of
Gly Ca and Phe Ca indicate that the mitochondrial GVC is
operative. In principle, yeasts can also synthesize Gly from
TCA cycle intermediates via isocitrate lyase and the alanine/
glyoxylate aminotransferase (Takada & Noguchi, 1985).
However, our data suggest that the activity of the glyoxylate
cycle is low (see below), so that this route for Gly synthesis is
probably of minor importance, if it is active at all.

Comparative flux ratio profiling of P. pastoris
growing on glycerol- and methanol-limited
mixtures in chemostats

The use of the three-carbon source glycerol and methanol
for BDF 13C labelling of proteinogenic amino acids enabled
the determination of the flux ratios for reactions associated
with the TCA cycle (Table 2), while those related to glycoly-
sis and the pentose phosphate pathway (PPP) could not be
assessed (Solà et al., 2004). This is because when labelled
glycerol is metabolized through gluconeogenesis and

oxidative PPP, labelling patterns that are sufficiently distinct
from those generated when glycerol is channelled through
the non-oxidative PPP are not produced. In fact, the only
information that can be derived with respect to the
operation of the PPP is obtained from the f-values of His
Cb (Tables S1 and S2, available with the online version of
this paper). The f-values reveal the reversible activity of the
transketolase and transaldolase reactions when P. pastoris is
grown on glycerol. Also, important variations in the
observed E4P and R5P labelling patterns can be detected
as the methanol fraction in the feed is increased (Table 3),
suggesting an increasing activity of the methanol assimila-
tion pathway, which involves PPP intermediates (Fig. 1).
The increasing contribution of methanol to biomass
constituents is further confirmed by the observation that
the fraction of intact PEP molecules (i.e. originating from a
single glycerol molecule) sharply decreases as the methanol
fraction in the feed is increased, whereas the fraction of PEP
molecules with both 13C-13C bonds cleaved (i.e. exclusively
originating from methanol) increases (Table 3). Neverthe-
less, the fraction of methanol carbons assimilated by the cells
that enter central carbon metabolism in relation to the
methanol carbons that are dissimilated directly into CO2

cannot be determined.

Ample information for pathways associated with TCA
cycle intermediates can be obtained (Fig. 2) and can be
summarized as follows. During growth at D=1.396
1025 s21 one finds that (i) gluconeogenesis from cytosolic
oxaloacetate (cyt-OAA) via phosphoenolpyruvate (PEP)
carboxykinase is either not detected or active at very low
levels; (ii) synthesis of mitochondrial pyruvate (mt-PYR)
from malate via malic enzyme is not detected; (iii) the

Table 3. Labelling patterns of erythrose 4-phosphate (E4P) and phosphoenolpyruvate (PEP) metabolic intermediates during
aerobic growth of P. pastoris in glycerol/methanol chemostat cultures

For comparison, corresponding data reported previously for P. pastoris growing on glycerol in chemostat aerobic cultures (Solà et al., 2004)

are given in the left-most column. Glyc and Meth indicate glycerol and methanol, respectively. RSP, ribose 5-phosphate.

Metabolite Fraction of total pool (%)

Glyc* 80 Glyc/20 Meth 60 Glyc/40 Meth 40 Glyc/60 Meth

D=1.39610”5 s”1

Cytosol

E4P with intact C2-C3-C4 bonds 44 30 28 19

R5P with intact C3-C4-C5 bonds 96 72 61 46

R5P with cleaved C1-C2 bond (TA/TK activity) 55 70 78 90

PEP with intact C1-C2-C3 bonds 96293 70267 63 49248

D=4.44610”5 s”1

Cytosol

E4P with intact C2-C3-C4 bonds 46 43 45 44

R5P with intact C3-C4-C5 bonds 94 86 95 89

R5P with cleaved C1-C2 bond (TA/TK activity) 55 65 58 55

PEP with intact C1-C2-C3 bonds 97293 90289 97 91

*Data from Solà et al. (2004).
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fraction of cyt-OAA that stems from the mitochondrial
pool of C4 intermediates, e.g. via malate-Asp and/or malate-
OAA shuttles (Bakker et al., 2001), or possibly synthesized
via the glyoxylate cycle, does not vary significantly as the
fraction of methanol in the feed is increased; (iv) the fraction
of mt-OAA reversibly interconverted to fumarate and the
fraction of cyt-OAA reversibly interconverted to fumarate
does not change significantly when the glycerol/methanol
ratio is increased; (v) no significant alterations can be
identified for the anaplerotic supply of the TCA cycle in cells
growing with different glycerol/methanol ratios. The
labelling patterns of cyt-OAA and mt-OAA molecules
were almost identical, indicating relatively fast exchange
between the two pools. Therefore, the anaplerosis was
defined here as the fraction of mt-OAA molecules
originating from PEP, which can be regarded as the flux
of three-carbon molecules from glycolysis to the combined
pool of cyt-OAA and mt-OAA.

Comparative flux ratio profiling of P. pastoris
growing at high growth rates on glycerol/
methanol mixtures in chemostats

At D=4.4461025 s21, P. pastoris cells grow at about 90 %
of the mmax for glycerol provided as sole carbon source.
Under these conditions, only part of the methanol being fed
is effectively consumed by the cells. In fact, the residual
methanol concentration in the culture broth increases with
the methanol fraction in the feed, while the residual glycerol
concentration is very low or zero (Table 1). In these
cultures, the absolute amount of methanol effectively
assimilated by the cells increases with the methanol fraction
in the feed. Only in the case when glycerol accumulates to
significant levels (80 : 20 glycerol/methanol mixture) is

methanol virtually not consumed (Table 1). The compar-
ison of flux ratios at this dilution rate revealed that,
regardless of the methanol fraction in the feed medium, flux
ratios are very similar to those observed in cells growing
solely on glycerol as carbon source, e.g. the fraction of intact
PEP molecules and the labelling patterns in PPP inter-
mediates is not altered significantly by the assimilated
methanol (Tables 2 and 3). A priori, this observation might
indicate that the methanol that is consumed by the cells has a
completely different fate from that in cells growing at the
lower growth rate, namely that methanol could be mostly
dissimilated directly to CO2, generating 2 NADH molecules
per methanol molecule. However, flux ratios in relation to
the anaplerotic supply of the TCA cycle (i.e. the relative TCA
cycle activity) are not significantly altered, as one would
expect as a result of the extra amount of NADH produced by
direct methanol oxidation to CO2. Also, the observed ratio
of the biomass to assimilated substrate (Yx/s) still gave a
reasonable fit with the predicted Yx/s calculated as the
weighted mean of the growth yields on the two individual
substrates (i.e. no significant drop in the observed growth
yield was observed). Thus, the lower impact of methanol
assimilation on the flux ratio distributions in cells growing
at D=4.4461025 s21 may just reflect the fact that the
amount of methanol molecules actually being consumed by
the cells is significantly smaller than in cells growing at
D=1.3961025 s21, rather than a change in the split flux
ratio between methanol assimilatory and dissimilatory
pathways. In fact, a replica labelling experiment in which
13C-labelled methanol (isotopic enrichment of 50 %) and
unlabelled glycerol were fed at the 60 : 40 glycerol/methanol
ratio indicated that the degree of enrichment of CO2 was
about 12.4 % at D=1.3961025 s21, whereas incorporation

Fig. 2. Summary of flux information involving
pools of TCA intermediates when P. pastoris

cells are grown in a chemostat at
D=1.39610”5 s”1 (left-hand values) and at
D=4.44610”5 s”1 (right-hand values). The
values in the boxes correspond from top to
bottom, respectively, to the reference gly-
cerol culture (data from Solà et al., 2004),
the 80 : 20, 60 : 40 and 40 : 60 mixed gly-
cerol/methanol cultures. Note that values
associated with arrows pointing at the same
metabolite pool add up to 100 %. For
abbreviations, see the legend to Fig. 1.
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of 13C into CO2 at D=4.4461025 s21 was close to
negligible, i.e. supporting the latter hypothesis.

Comparison of flux ratio distributions of P. pastoris cells
growing at D=1.3961025 s21 on different glycerol/
methanol mixtures with those observed in cells growing at
D=4.4461025 s21 on the same corresponding substrate
mixtures shows the same pattern observed previously when
comparing P. pastoris cells growing on glycerol as sole
carbon source at these growth rates (Solà et al., 2004). In
particular, as also observed in cells growing on glycerol as
sole carbon source, (i) the values for the fraction of cyt-OAA
that stems from the mitochondrial pool of C4 intermediates,
e.g. via malate-Asp and/or malate-OAA shuttles (Bakker
et al., 2001), or possibly synthesized via the glyoxylate cycle,
are about twice as high at the lower dilution rate compared
to the corresponding values in cells growing at the higher
dilution rate. This indicates that, regardless of the fraction of
methanol present in the feed medium, a largely unidirec-
tional flux of OAA from the cytosol to the mitochondria
occurs when cells are growing close to their maximal growth
rates. (ii) The relative TCA cycle activity is reduced at the
higher dilution rate (i.e. the fraction of mt-OAA generated
by anaplerosis is a function of the specific growth rate but
not of the methanol fraction in the feed medium) – unlike at
the lower dilution rate, cyt-OAA and mt-OAA had distinct
labelling patterns at the higher dilution rate, indicating
slower exchange between the two pools. (iii) The fraction of
cyt-OAA reversibly converted to fumarate is very low or zero
in cells growing at the higher dilution rate, whereas this
value is around 50 % in cells growing at the lower dilution
rate. Blank & Sauer (2004) have defined this flux ratio as an
upper limit of the fraction of cyt-OAA generated via the
glyoxylate cycle, since export of TCA cycle intermediates
from the mitochondria can also contribute to the cyt-OAA
pool. However, the labelling patterns calculated for mt-OAA
(as described by Maaheimo et al., 2001) did not reflect a
clear contribution of cytosolic succinate generated by the
glyoxylate cycle.

Conclusions

This is the first comprehensive study of central carbon
metabolism of the yeast P. pastoris growing on glycerol and
methanol mixtures. In the framework of this study, we have
established the BDF 13C labelling approach of proteinogenic
amino acids as an analytical tool to study intermediary
metabolism of yeast cells growing on such carbon substrate
mixtures. This approach allows the mapping of the
metabolic state of the TCA cycle and associated pathways
and thus this is an important methodological expansion for
investigating the metabolism of eukaryotic cells growing
with sole carbon sources. Specifically, we have shown that (i)
co-assimilation of methanol as a carbon source does not
alter the way the common amino acids are synthesized in P.
pastoris growing on a sole multicarbon source, and (ii)
growth on different glycerol/methanol mixtures at a given
growth rate results in rather similar flux ratio profiles in the
TCA cycle and related pathways as the fraction of methanol

is increased. In contrast, a clear effect of specific growth rate
on the relative activity of the TCA cycle and related pathways
is observed, regardless of the methanol fraction in the feed,
consistent with the observation that TCA cycle activity in S.
cerevisiae is strongly correlated with the environmentally
determined specific growth rate (Blank & Sauer, 2004).

Co-assimilation of methanol as a carbon source has a clear
impact with respect to the activity of the PPP, which is
consistent with the increasing flux of methanol molecules
towards the synthesis of central carbon metabolism
intermediates (e.g. PEP), as observed when the methanol
fraction in the feed medium is increased. However, this
pattern is not observed in cells growing at the higher dilution
rate (where methanol is partially accumulated in the
medium) suggesting that the distribution of methanol
carbon into assimilatory and dissimilatory pathways may be
different. Earlier 13C labelling studies of methanol metabo-
lism of the methylotrophic yeast H. polymorpha (Jones &
Bellion, 1991) showed that the linear methanol oxidation
pathway to CO2 only operates under extreme conditions
(e.g. methanol accumulation to toxic levels), suggesting a
role in detoxification. Although the data obtained in the
present study do not allow directly quantification of the split
ratio of formaldehyde between the assimilation pathway and
the oxidation pathway (Fig. 1) over the different tested
environmental conditions, net fluxes through the metabolic
network may be deduced from metabolic flux ratio analysis
when combined with metabolic flux balancing (Fischer et al.,
2004; Fredlund et al., 2004). Hence, we expect this study will
lead to important insights into central carbon metabolism
and its regulation in P. pastoris.

Overall, our investigation can be expected to become a
valuable knowledge base for the optimization of culture
processes for the production of recombinant proteins in P.
pastoris, where parameters such as the residual methanol
concentration, specific growth rate, as well as mixed
substrate culture strategies have been shown to have a
dramatic impact on overall process productivity. In
addition, the information derived from our studies may
be relevant for the design of isotopic labelling experiments of
recombinant proteins (or other cell components, e.g. cell
wall glucans) for structural studies. Furthermore, the
methodology used in this work can also be applied to
study the effect of other bioprocess-relevant parameters
such as temperature, oxygen availability, etc., on the
metabolic activity of P. pastoris.
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Abstract
Background: The filamentous fungus Trichoderma reesei is an important host organism for industrial
enzyme production. It is adapted to nutrient poor environments where it is capable of producing large
amounts of hydrolytic enzymes. In its natural environment T. reesei is expected to benefit from high energy
yield from utilization of respirative metabolic pathway. However, T. reesei lacks metabolic pathway
reconstructions and the utilization of the respirative pathway has not been investigated on the level of in
vivo fluxes.

Results: The biosynthetic pathways of amino acids in T. reesei supported by genome-level evidence were
reconstructed with computational carbon path analysis. The pathway reconstructions were a prerequisite
for analysis of in vivo fluxes. The distribution of in vivo fluxes in both wild type strain and cre1, a key
regulator of carbon catabolite repression, deletion strain were quantitatively studied by performing 13C-
labeling on both repressive carbon source glucose and non-repressive carbon source sorbitol. In addition,
the 13C-labeling on sorbitol was performed both in the presence and absence of sophorose that induces
the expression of cellulase genes. Carbon path analyses and the 13C-labeling patterns of proteinogenic
amino acids indicated high similarity between biosynthetic pathways of amino acids in T. reesei and yeast
Saccharomyces cerevisiae. In contrast to S. cerevisiae, however, mitochondrial rather than cytosolic
biosynthesis of Asp was observed under all studied conditions. The relative anaplerotic flux to the TCA
cycle was low and thus characteristic to respiratory metabolism in both strains and independent of the
carbon source. Only minor differences were observed in the flux distributions of the wild type and cre1
deletion strain. Furthermore, the induction of the hydrolytic gene expression did not show altered flux
distributions and did not affect the relative amino acid requirements or relative anabolic and respirative
activities of the TCA cycle.

Conclusion: High similarity between the biosynthetic pathways of amino acids in T. reesei and yeast S.
cerevisiae was concluded. In vivo flux distributions confirmed that T. reesei uses primarily the respirative
pathway also when growing on the repressive carbon source glucose in contrast to Saccharomyces
cerevisiae, which substantially diminishes the respirative pathway flux under glucose repression.
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Background
The industrially important protein producer, the filamen-
tous fungus Trichoderma reesei, a clonal derivative of the
ascomycete Hypocrea jecorina, is adapted to growth in
nutrient poor environments, where it is able to use com-
plex plant material as carbon source. T. reesei and a
number of other filamentous fungi and cellulolytic bacte-
ria produce and secrete plant polymer hydrolyzing
enzymes, such as cellulases and hemicellulases, into their
surroundings to break down the polymers into easily
metabolizable monomers [1].

Because of its ability to synthesize and secrete large
amounts of proteins, T. reesei has gained industrial impor-
tance in production of enzymes of native and heterolo-
gous origin. Carbon catabolite repression (CCR) of T.
reesei negatively regulates the powerful production
machinery of the hydrolytic enzymes when a preferred
carbon source, such as glucose, is available. Inducers of
hydrolytic enzyme expression are often small oligosaccha-
rides or derivative parts of the polymers from the environ-
ment of the fungus. The inductive signaling leads to
synthesis of specific sets of enzymes [2,3]. In T. reesei, D-
xylose, xylobiose, sophorose, and lactose have been
observed to trigger production of particular enzyme sets
[4,5]. Sophorose, a molecule of two beta-1,2-linked glu-
cose units, is an efficient inducer of cellulose gene expres-
sion at low concentration (1-2 mM) when T. reesei is
growing on a non-repressing carbon source, such as sorb-
itol or glycerol [6]. However, in high glucose concentra-
tions CCR overrules the inductive signals in T. reesei [6].

Sorbitol as a carbon source neither provokes CCR nor trig-
gers the cellulase gene expression in T. reesei [6]. Neverthe-
less, cellulase production is positively correlated with the
ability of different T. reesei strains to grow on D-sorbitol
[7], which could be converted to L-sorbose [8] that
induces cellulase expression in T. reesei [9]. In T. reesei L-
arabinitol 4-dehydrogenase (Lad1) is involved in the ini-
tial oxidization of D-sorbitol at C2 to convert it to D-fruc-
tose [10]. A specific sorbitol dehydrogenase converts
sorbitol to fructose in Aspergilli fungi [11,2].

Cre1 is the key mediator protein of CCR in T. reesei
[12,13]. Trichoderma Cre1 has a 95% sequence similarity
with Aspergillus CreA in regions of the zinc-finger and pro-
line-serine-threonine-rich domain and the complete
sequences are 46% identical [13]. Cre1 is structurally also
highly similar to Mig1, a key protein in glucose repression
in yeast Saccharomyces cerevisiae [12,13]. However, the
functional dissimilarities observed between Cre1/CreA
and Mig1, in spite of the sequence and structural similar-
ity, have led to the conclusion that glucose repression
functionalities in filamentous fungi and yeasts have
evolved separately [14,15]. Pfeiffer et al argued that the

evolution from unicellular to undifferentiated multicellu-
lar organisms, like T. reesei, has been facilitated by the gen-
eral preference of high yield energy generation through
respiration even in the presence of a preferred carbon
source [16]. In contrast to CCR regulation in S. cerevisiae,
it has been shown that in T. reesei CCR does not cause
repression of genes encoding the TCA cycle enzymes or
respiratory pathway components [17,18]. David et al
observed differences in the distribution of intracellular
carbon fluxes in central carbon metabolism between A.
nidulans reference and a carbon repression deletion
mutant (creAΔ4) strains when they were grown on glucose
[19].

Despite the industrial importance of T. reesei, its genome
has only recently been sequenced [20] and its metabo-
lism, beyond that related to protein production and secre-
tion, is narrowly studied. In the present work,
computational carbon path analysis [21] was utilized to
reconstruct the biosynthetic pathways of amino acids.
That was essential for quantitative flux analysis, as no met-
abolic network model was available for T. reesei. The local-
izations of the key reactions in the biosynthetic pathways
of amino acids were determined from the 13C-labeling
patterns of proteinogenic amino acids and by computa-
tional estimation of targeting peptide sequences. The
intracellular metabolic flux ratios in the central carbon
metabolism were determined utilizing fractional 13C-
labeling and metabolic flux ratio (METAFoR) analysis
[22] in a wild type (QM6a) strain and in a Δcre1 mutant
strain (L161a), when grown on the repressive carbon
source glucose and on the neutral carbon source sorbitol.
Additionally, the effect of sophorose induction of cellu-
lase gene expression on the relative fluxes in the central
carbon metabolism was quantified. To the authors'
knowledge this is the first time that the metabolic path-
ways of T. reesei have been reconstructed and in vivo fluxes
in the central carbon metabolism of T. reesei have been
quantitatively studied.

Results and Discussion
13C-labeling in batch cultures
Metabolic flux ratio (METAFoR) analysis was performed
for the T. reesei wild type (QM6a) and Δcre1 (L161a)
strains growing in minimal medium in flasks with frac-
tional [U-13C]glucose and on fractional [U-13C]sorbitol
with and without induction of cellulase gene expression
by sophorose. Since 13C-metabolic flux ratio (METAFoR)
analysis is based on biosynthetically directed fractional
(BDF) labeling of the constituents of biomass biopoly-
mers, it requires constant intracellular flux distribution
during the labeling [22-28]. Constant flux distribution
can be achieved in a chemostat culture, where the specific
growth rate is constant, or in a batch cultivation during
exponential growth. In the exponential growth phase
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when the cells are growing at their maximum specific
growth rate and the changes in the extracellular condi-
tions are still insignificant a quasi-steady state can be
assumed [26,19]. Precultivations were performed to deter-
mine the exponential growth phases and the maximum
specific growth rates for the T. reesei wild type and Δcre1
strains (data not shown). Cultures with different growth
profiles were then sampled for quantitative flux analysis at
equivalent growth stages, in the exponential phase. The
maximum specific growth rates of T. reesei on glucose
were 0.15 ± 0.01 h-1 and 0.12 ± 0.01 h-1 for the wild type
and Δcre1 strains, respectively. When grown on sorbitol
the maximum specific growth rates for the wild type and
Δcre1 strains were 0.03 ± 0.02 h-1 and 0.06 ± 0.01 h-1,
respectively. The maximum specific growth rates of A. nid-
ulans wild type strain and that of a CreA deletion strain
have been observed to be 0.25 h-1 and 0.11 h-1, respec-
tively, when grown on glucose [19].

Reconstruction of pathways through the metabolic 
network leading to amino acid synthesis
In order to quantify the in vivo flux ratios in the central
carbon metabolism of T. reesei by 13C-labelling and
METAFoR approach [22], it was necessary to obtain a
model of the amino acid biosynthesis pathways. How-
ever, no curated metabolic model exists for T. reesei. Thus,
the pathways for synthesis of the carbon backbones of the
proteinogenic amino acids from the carbon source mole-
cules in T. reesei were reconstructed by ReTrace pathway
analysis [21]. ReTrace analysis results are summarized in
Table 1 and fully reported in Additional File 1.

ReTrace analysis confirmed, for most of the proteinogenic
amino acids, that the biosynthetic pathways of amino
acids identical to the pathways in S. cerevisiae are present
also in T. reesei. Therefore the carbon backbones of the
proteinogenic amino acids in T. reesei evidently originate
from the precursor metabolites similar to the ones in S.
cerevisiae [26] (Figure 1). For some proteinogenic amino
acids (Arg, Ile, Leu, Thr, Tyr) ReTrace was not directly able

Table 1: Summary of the ReTrace [21] analysis of the amino acid biosynthetic routes in T. reesei.

Amino acid Precursors Paths Zo AvgSc BestSize AvgSize MinPoor

Ala Pyr 227 1 652 1 16.8 0

Arg Oga 134 1 811 9 15.1 0

Asp Oaa 121 1 757 1 13.5 0

Glu Oga 36 1 426 1 12.6 0

Gly Ser 260 1 1128 1 16.1 0

Gly Thr 71 1 522 2 12.6 0

His R5P 21 1 774 22 25.8 0

Ile OAA, Pyr 483 1 797 14 18.7 0

Leu AcCoA, Pyr 916 1 356 13 19.1 1

Lys AcCoA, Oga 347 0.67 834 11 14.6 0

Phe E4P, PEP 348 1 679 12 19.2 0

Pro Oga 119 1 673 3 14.4 0

Ser 3PG 69 1 670 3 15.3 0

Thr Oaa 97 1 768 7 2.5 0

Tyr E4P, PEP 156 1 654 19 19.6 0

Paths paths found, Zo highest fraction of transferred atoms, AvgSc average reaction scores, BestSize the size of the pathway achieving Zo reported, 
AvgSize average pathway size, MinPoor minimum number of reactions with a score under 50
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to identify the biosynthetic routes that are active in S. cer-
evisiae because alternative reactions with higher scores
strongly directed the search or because of errors in the
atom mapping in the KEGG reaction database. However,
the manual inspection of all the pathways identified
directly from the carbon source or from different precur-
sors, confirmed that the biosynthetic pathways for all pro-
teinogenic amino acids relevant for METAFoR analysis,
except for Arg and Lys, that are known to operate in S. cer-
evisiae, are also present in T. reesei.

The fungal biosynthetic pathway of Lys from Oga [29] was
not found by ReTrace because of inconsistencies in the
atom mapping in the KEGG reaction database. However,
because the reactions of the alternative biosynthetic route
of Lys which is active, for example in bacteria, did not gain
good scores for presence in T. reesei, the fungal pathway
was assumed prior to the 13C-pathway analysis. Pathways
from Oga to Arg were identified by ReTrace but the path-
way known to be active in S. cerevisiae was not found
among them. Most of the identified pathways were
directed through 1-pyrroline-5-carboxylate dehydroge-
nase reaction (1.5.1.12) in the reverse direction, which
forms a false shortcut path between Oga and Arg.

After the unsuccessful direct search of pathway from Oaa
to Thr, Thr biosynthesis pathway was searched from Asp,
an intermediate in the pathway from Oaa to Thr. Genome
level evidence of the presence of the pathway was found.
The biosynthetic pathway of Ile that is active in S. cerevi-
siae was not found directly from precursors Oaa and Pyr
because the pathway proceeds first from Oaa to Thr and
that pathway was not directly identified as discussed
above. The reactions further from Thr were identified with
high scores for genome level evidence of their presence in
T. reesei and thus, the pathway that is known to be active
in S. cerevisiae is evidently present also in T. reesei. Tyr bio-
synthesis pathway was found from precursors down-
stream to 3-(4-hydroxyphenyl)pyruvate and only the
transamination was lacking from a complete pathway.
However, a high scoring hit for a transaminase sequence
was separately searched and identified in the genome of T.
reesei. Most of the high scoring alternative pathways could
be excluded because only the anabolic pathways are active
in the exponential growth and in absence of amino acids
in the medium.

Origins of proteinogenic amino acidsFigure 1
Origins of proteinogenic amino acids. The origins of the carbon backbones of the proteinogenic amino acids utilized in 
METAFoR analysis [26] and for which the biosynthetic pathways were reconstructed by computational pathway analysis 
method ReTrace [21]. The amino acids for which the biosynthetic pathway was not directly found by ReTrace are denoted in 
red italics. The amino acid carbons are denoted in the following way: a = α, b = β, g = γ, d = δ, e = ε, ksi = ξ.

E4P 
3 4 Oga AcCoA 3 Pyr Pep 

Glu, Pro, Arg 

5 4 3 2 1 

d g b a 

P5P 

His 

1 2 3 4 5 

d2 g b a 

4 3 2 1 

g b a 

Oaa 

Asp, Thr 

2 3 2 1 

g b a 

Phe, Tyr 

3 1 

2 

3 2 1 

b a 
Ser 

3PG, Gly+CO2

a 

2 1 
Ser, Thr 

Gly 

3 2 1 

b a 
Ala 

Pyr 

2 2 1 

b a 
Val 

Pyr 

3 

g1 

g2 

3 

2 2 1 2 1 

b a 
Leu 

d2 3 
g 

d1 
Oaa 

4 Pyr 3 
2 2 1 

d g2 

b a 
3 

g1 

Ile 

5 4 3 2 

e d 

Oga 

Lys 

1 2 
AcCoA 

dx 

dx 

ex 

ex 

ks
i 

g b a 
Page 4 of 16
(page number not for citation purposes)

III/4



BMC Systems Biology 2009, 3:104 http://www.biomedcentral.com/1752-0509/3/104
13C-pathway analysis and prediction of subcellular 
localization of key enzymes
The pathways of amino acid biosynthesis reconstructed in
T. reesei corresponded to the pathways utilized by S. cere-
visiae. The fragmentomer data from 13C-labeling of protei-
nogenic amino acids provided further confirmation for
this (see Methods for the definition of fragmentomer
data). The 13C-labeling patterns of the carbon backbones
of proteinogenic amino acids originate from the 13C-labe-
ling of their precursor metabolites in central carbon
metabolism and thus, the 13C-labeling patterns of amino
acids can be propagated to the precursors to identify the
active pathways. In particular, the Lys 13C-labeling pattern
indicated its synthesis from Oga via α-aminoadipate path-
way, as in yeasts [30]. However, in contrast to S. cerevisiae
and a number of other yeast [26,31], the 13C-labeling pat-
tern of Asp indicated that it primarily originated from
mitochondrial Oaa under all the studied conditions (Fig-
ure 2). Mitochondrial Asp synthesis has previously been
observed in Yarrowia lipolytica [31]. Furthermore, identical
13C-labeling patterns were observed in Asp and Thr. This
confirmed Thr synthesis from Asp and excluded a contri-
bution from the reversible threonine aldolase reaction
[32].

A three carbon fragment of mitochondrial Oaa (Oaamit)
(C2-C3-C4) remains intact in the synthesis of the TCA
cycle intermediate Oga and therefore the 13C-labeling pat-
tern of Oaamit can be partially observed in Glu that origi-
nates from Oga. In the exponential growth phase it is
reasonable to assume unidirectional transport of Oaa
across the mitochondrial membrane, which has previ-
ously been experimentally shown in S. cerevisiae [26].
When the backward transport from Oaamit to Oaacyt is neg-
ligible, a three-carbon fragment of Oaacyt (C1-C2-C3) is
produced from Pep, a precursor of Phe and Tyr, via glyco-
lysis and by pyruvate carboxylase. The fractions of intact
Cα-Cβ bonds in Asp and Thr were highly similar to the
corresponding intact carbon fragments in Oga, propa-
gated from Glu, but clearly different from the correspond-
ing intact carbon fragments in Pep, propagated from Phe,
Tyr in T. reesei, indicating the primarily mitochondrial ori-
gin of Asp. Since the C3-C4 bond of Oaamit remains intact
in the TCA cycle, Oaamit serving as a precursor for Asp and
Thr biosynthesis was further supported by the high simi-
larity in the fraction of molecules having the correspond-
ing C-C fragment intact, i.e. the C3-C4 fragment of Oaa,
propagated from Asp, Thr, and C1-C2 fragment of Oga,
propagated from Glu, (OAA_xx1 and OGA_1xxx, respec-
tively, Figure 2).

Additional support for mitochondrial Asp synthesis was
obtained from sequence analysis. Evidence of mitochon-
drial targeting peptide sequence was identified in one of
the T. reesei genome sequences with homology to the

aspartate aminotransferases in S. cerevisiae by TargetP
analysis [33,34] (Additional file 2). This strongly sup-
ported the mitochondrial localization of one of the
encoded enzymes. However, no evidence of mitochon-
drial targeting peptide was identified by TargetP analysis
of the T. reesei sequence with homology to the S. cerevisiae
pyruvate carboxylase that produces Oaa. Thus, Oaamit
could originate both from transport across the mitochon-
drial membrane and from the TCA cycle.

Pyruvate is a precursor of Ala and Val biosynthesis. If the
pyruvate pools in cytosol and mitochondria possess sig-
nificantly different 13C-labeling patterns, for example as a
result of malic enzyme flux, a mitochondrial localization
of pyruvate-based amino acid synthesis can be confirmed
from the 13C-labeling data [31]. However, the fractions of
intact two-carbon fragments Pyr C1-C2 and C2-C3
observed in Ala and Val and the corresponding two-car-
bon fragments in Pep, a direct precursor of Pyrcyt,
observed in Phe and Tyr, were not significantly different
under the studied conditions. Therefore, the 13C-labeling
patterns could not be utilized to assess the localization of
the synthesis of pyruvate-based amino acids. Strong evi-
dence of a mitochondrial targeting sequence in the T. ree-
sei sequence that showed homology to the acetolactate
synthase in S. cerevisiae was identified by TargetP [33,34]
(Additional file 2). In yeast the first enzyme in Val biosyn-
thesis, the acetolactate synthase, has been reported to be
localized in mitochondria [35], whereas cytosolic and
mitochondrial isoenzymes of alanine aminotransferase
have been observed [30].

Ser originates from glycolytic intermediate 3-phos-
phoglycerate and can be further converted to Gly and a C1
unit by the reversible reaction of serine hydroxymethyl
transferase (SHMT). Gly could also originate from threo-
nine aldolase or from the reversible reaction of the glycine
cleavage pathway (i.e., C1 + CO2). In S. cerevisiae glycine
cleavage pathway is active inside mitochondria [36] and
although both mitochondrial and cytosolic isoenzymes of
SHMT exist in S. cerevisiae [37,38], the effect of the glycine
cleavage pathway on the Ser-Cα f(1) fraction has not been
observed in S. cerevisiae batch cultures grown on glucose
[26]. In T. reesei the activity of the glycine cleavage path-
way was observed in the 13C-labeling pattern of Ser, since
Ser-Cα f(1) fragmentomer fraction of Ser molecules with
both carbon bonds cleaved was higher than the fraction of
fully cleaved Pep, a three carbon lower glycolytic interme-
diate. The fraction of fully cleaved Pep molecules was
observed in Phe and Tyr-Cα f(1) fragmentomer fractions
(Figure 3). Two T. reesei sequences were observed to have
homology to the S. cerevisiae SHMT sequences. In one of
them a strong evidence of a mitochondrial targeting pre-
sequence was found by TargetP [33,34] (Additional file
2). Therefore, SHMT activity likely occurs in both
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cytosolic and mitochondrial compartments of T. reesei.
The Ser 13C-labeling pattern observed in T. reesei indicates
either a partially cytosolic localization of the glycine cleav-
age pathway or protein synthesis occurring primarily from
a mitochondrial pool of Ser. TargetP analysis of the T. ree-
sei sequence homological to sequence of the S. cerevisiae
glycine dehydrogenase, the p-subunit of the Gly cleavage

system, showed no clear indication of a mitochondrial
targeting pre-sequence [33,34] (Additional file 2).

Amino acids belonging to the Glu amino acid family, Glu,
Pro and Arg, showed a highly similar 13C-labeling, as
expected, in both strains grown on glucose and in the wild
type strain culture grown on sorbitol (data not shown). In
contrast, a significant variation was observed in the Glu,

Comparison of the fractions of corresponding intact bonds in amino acid precursors Oaa, Oga and Pep in T. reeseiFigure 2
Comparison of the fractions of corresponding intact bonds in amino acid precursors Oaa, Oga and Pep in T. 
reesei. The data is taken from all replicates of fractional [U-13C]glucose or [U-13C]sorbitol experiments performed (1-3 wild 
type on glucose, 4-6 Δcre1 on glucose, 7-9 wild type on sorbitol, 10-12 wild type on sorbitol (sophorose experiment control), 
13-15 wild type on sorbitol (sophorose induction), 16-17 Δcre1 on sorbitol (sophorose experiment control), 18-19 Δcre1 on 
sorbitol (sophorose induction)). Oaa data was detected from Asp-Cα, -Cβ and Thr-Cα, Oga data from Glu-Cα, -Cβ and Pro-
Cα, -Cβ and Pep data from Phe and Tyr-Cα. Fractions of intact bonds in Oaa, Oga and Pep were calculated from combinations 
of fragmentomers. A) OAA_x1x is the fraction of Oaa molecules with an intact bond at C2-C3, OGA_x1xx is the fraction of 
Oga molecules with an intact bond at C2-C3 and PEP_x1 is the fraction of Pep molecules with an intact bond at C2-C3. B) 
OAA_xx1 is the fraction of Oaa molecules with an intact bond at C3-C4 and OGA_1xxx is the fraction of Oga molecules with 
an intact bond at C1-C2. Error bars are ± SEMs. The carbon chain of Oaamit remains intact in the TCA cycle except that C1 is 
cleaved in the synthesis of Oga. Almost the entire labeling pattern of Oaamit can be assessed from the labeling pattern deter-
mined for Oga. If Asp and Thr synthesis originates from Oaamit, the fractions of corresponding Oaa and Oga intact fragments in 
the figures should match.
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Pro and Arg fragmentomers in cultures when their pre-cul-
tures were mixed before sophorose induction experiment.
This observation may be explained by differential mobili-
zation of amino acids from cellular compartments result-
ing from the perturbation when the cultures were mixed
prior to the induction period.

METAFoR analysis of T. reesei
The relative fluxes merging at the branching points of cen-
tral carbon metabolism of T. reesei were determined by
BDF 13C-labeling with glucose and sugar alcohol sorbitol
as carbon sources. The flux ratios of the wild type and
Δcre1 T. reesei strains determined in batch cultures on glu-
cose, on sorbitol and on sorbitol with sophorose induc-
tion of expression of cellulase genes are shown in Table 2.

Respiratory pathway flux of T. reesei
The relative anaplerotic flux (the fraction of OAAmit from
Pep, Table 2) describes the relative activities of the biosyn-
thetic and respirative carbon fluxes in the TCA cycle. The
anaplerotic flux replenishes carbons to the TCA cycle flux
by importing C4 compounds as there is drain of carbon to
biosynthesis. David et al concluded that the TCA cycle was
more active in ΔcreA mutants of A. nidulans than in the
wild type when grown on glucose [19]. However, they
suggested that it resulted from a higher ATP demand in
the deletion strain possibly caused by active futile cycles
instead of derepression of the respirative pathway flux. No
significant difference was observed in the anaplerotic flux
ratios between the T. reesei wild type and Δcre1 strains
grown on glucose. Thus, in T. reesei the TCA cycle was as
active relative to biosynthesis in the Δcre1 strain as in the
wild type strain and so, Cre1 does not mediate repression
of respirative pathway flux in T. reesei either.

A difference was observed between the two T. reesei strains
when grown on sorbitol. The relative anaplerotic flux was

Effect of the reversible glycine cleavage pathwayFigure 3
Effect of the reversible glycine cleavage pathway. 
Effect of the reversible glycine cleavage pathway in T. reesei 
wild type (wt) and Δcre1 strains on the 13C-labeling pattern 
of Ser. The fraction of Ser-Cα f(1) fragmentomer from the 
total pool of Ser, compared to the corresponding fraction in 
Pep (C2) observed from Phe and Tyr-Cα f(1) fragmentom-
ers. Error bars are ± SEMs.
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Table 2: Metabolic flux ratios of T. reesei wild type (wt) and Δcre1 strains in aerobic batch cultures on glucose and on sorbitol with and 
without sophorose induction of cellulase gene expression.

strain wt Δcre1 wt wt Δcre1 Δcre1

carbon source glucose glucose sorbitol sorbitol sorbitol sorbitol

fraction of total pool (%) sd sd sd sophorose sd control sd sophorose sd

Pep from PPP (UB wo PEPck) 39 2 47 4 36 7 37 7 45 9 46 2

R5P from T3P and S7P 51 1 42 1 72 3 70 1 79 4 79 1

R5P from E4P 25 2 23 1 46 2 48 5 54 3 44 2

Ser from Gly and C1 80 0 85 2 44 2 41 15 54 1 52 0

Gly from CO2 and C1 12 1 14 1 6 2 16 21 8 1 10 3

Oaamit from Pep 35 1 33 2 26 3 26 4 42 5 39 7

MAE (UB) 4 0 9 1 12 2 2 2 6 5 1 nd

MAE (LB) 2 0 6 1 9 1 2 2 4 3 0 nd

sd standard deviation, UB upper bound, LB lower bound
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26% in the wild type strain and 42% in the Δcre1 strain
(Table 2). This may indicate that there was a difference in
the specific growth rates of the two strains on sorbitol.

Previously, an excess of glucose has been found to only
partially repress the gene expression of the enzymes of the
TCA cycle and the components of the respiratory chain in
T. reesei [17]. That is in contrast to the effect of excess of
glucose on S. cerevisiae, where glucose repression exten-
sively downregulates the respiratory pathway at the tran-
scriptional level [18]. The anaplerotic flux ratio in T. reesei
wild type strain was higher on glucose (35%) than that on
sorbitol (26%) (Table 2). The results indicated a higher
activity of respiratory metabolism relative to biosynthesis
on the non-repressing carbon source sorbitol than that on
the repressing carbon source glucose. A complete oxida-
tion of sorbitol, that is a more reduced carbon source than
glucose, results in a higher relative flux of electrons per
carbon source molecule to the respiratory chain than dur-
ing growth on glucose. Thus, if T. reesei respired at maxi-
mum rate during the batch growth on glucose, fluxes
producing reduced cofactors, for example biosynthetic
pathway fluxes or the TCA cycle fluxes, would have
decreased on sorbitol.

Small fractions of Pyrmit originating from malate via the
action of the malic enzyme were observed in both strains
under almost all conditions (Table 2).

Pentose phosphate pathway (PPP) of T. reesei
A lower fraction of triose phosphates originated from pen-
tose phosphates in the wild type strain (39%) than in the
Δcre1 strain (47%) when grown on glucose (Table 2). In
batch cultures under excess glucose conditions, the gluco-
neogenesis by phosphoenolpyruvate carboxykinase and
the reverse transport of Oaa across the mitochondrial
membrane are assumed to have negligible fluxes [18,26].
For this purpose the fraction of Pep originating from the
pentose phosphate pathway (PPP) was calculated neglect-
ing any contribution of phosphoenolpyruvate carboxyki-
nase to the 13C-labeling pattern of Pep, propagated from
Phe, Tyr. The fraction of Pep originating from PPP repre-
sents the flux via PPP relative to the total flux to Pep. How-
ever, this fraction is not a direct measure of the flux
through the oxidative branch of the PPP but includes mol-
ecules that have only gone through reversible reactions in
the non-oxidative PPP. Furthermore, the standard devia-
tion is always high because only 40% of the triose phos-
phates that originate from the PPP have different 13C-
labeling patterns than the triose phosphates originating
from glycolysis.

The differences in the relative flux through the PPP to the
triose phosphates can be caused by differences in the gly-
colytic rate or in NADPH demands, since the oxidative

branch of the PPP is usually the main source of cytosolic
NADPH. A low glycolytic rate could allow the label scram-
bling in the non-oxidative part of the PPP to affect the 13C-
labeling patterns of a large fraction of triose phosphates.

The reversible fluxes through the reactions of transketo-
lase and transaldolase, observed in the 13C-labeling pat-
terns of pentose phosphates that can be detected in His,
were clearly different in glucose and sorbitol cultivations
(Table 2). The fraction of pentose phosphates that had
gone through a transketolase reaction (R5P from T3P and
S7P) was 51% and 42% when glucose was the carbon
source for the wild type and the Δcre1 strains, respectively.
When grown on sorbitol the fractions were higher, 72%
and 79% for the wild type and the Δcre1 strains, respec-
tively. The fraction of pentose phosphates cleaved in the
transaldolase and transketolase reactions (R5P from E4P)
was 25% and 23% when grown on glucose, whereas when
sorbitol was the carbon source they were 46% and 54%
for the wild type and the Δcre1 strains, respectively. The
higher fractions of pentose phosphates cleaved in the
reactions of transketolase or transaldolase when grown on
sorbitol could be a result of entrance of sorbitol in the cen-
tral carbon metabolism and into the PPP directly in a
form of fructose 6-phosphate [10].

Figure 4 shows the relative abundances of the contiguous
13C-fragments around His-Cβ, which originate from frag-
ments around ribose 5-phosphate C3. When sorbitol was
the carbon source lower fractions of fully intact His frag-
ments and higher fractions of His fragments cleaved in the
reversible reactions of transaldolase and transketolase
were observed in both strains than when grown on glu-
cose. This indicated higher relative fluxes in the non-oxi-
dative part of the PPP when compared to the rate of
withdrawal of pentose phosphates to His biosynthesis.
When sorbitol was the carbon source the relative activity
of the non-oxidative PPP compared to the rate of biosyn-
thetic drain of pentose phosphates was even higher in the
Δcre1 strain than in the wild type strain. The fraction of
fully cleaved His-Cβ f(1) fragments was higher in the
Δcre1 strain than in the wild type strain when they were
grown on sorbitol (Figure 4). Correspondingly, lower
fractions of fully intact His-Cβ f(3) were observed in the
Δcre1 strain than in the wild type strain.

Effect of sophorose induction of cellulase gene expression 
on metabolic fluxes
Induction of cellulase gene expression with sophorose did
not cause any significant changes in the metabolic flux
distributions in the central carbon metabolism of T. reesei.
Therefore, the induction of cellulase gene expression did
not affect the relative fluxes to different amino acid fami-
lies or the ratio of anabolic and catabolic activity of the
central carbon metabolism. Alteration in the relative bio-
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synthetic rates of different amino acids would have
occurred if the amino acid composition of the induced
cellulases had been significantly different from the amino
acid composition of the proteins generally produced by T.
reesei which was not observed.

Flux ratio profiles of T. reesei, S. cerevisiae and Pichia 
stipitis indicate differences in preferred utilization of 
pathways
The anaplerotic flux ratios determined hereby in the wild
type and Δcre1 T. reesei strains in batch cultures, both
grown on glucose, were substantially lower and similar to
what has been observed in fully respiratory metabolism in
S. cerevisiae in glucose-limited chemostat cultures, where
there is no glucose repression [27] (Table 3). The extensive
glucose repression of the TCA cycle and the respiratory
pathway activity in S. cerevisiae result in high anaplerotic
ratio in batch cultures on glucose [26]. The anaplerotic
flux ratios in the T. reesei strains with glucose as a carbon

source were also similar to the ones observed in P. stipitis,
both when grown on glucose in batch cultures and in glu-
cose-limited chemostat cultures [27]. P. stipitis completely
lacks aerobic alcoholic fermentation.

It has previously been determined that glucose does not
cause extensive repression of the gene expression of the
TCA cycle and the respiratory pathway components in T.
reesei [17] as it does in S. cerevisiae [18]. The 13C-labeling
and METAFoR analysis results on the level of in vivo fluxes
confirmed that for highly efficient energy generation
through complete oxidation of carbon source T. reesei
indeed uses primarily the respirative pathway also when
growing on a preferred carbon source glucose. The regula-
tory differences between T. reesei and S. cerevisiae have
been explained as adaptation to different growth environ-
ments. S. cerevisiae is adapted to nutrient rich environ-
ments in which it has competitive advantage from fast
nutrient utilization and a high rate of ATP production

13C-His-Cβ centered contiguous 13C-fragments in T. reeseiFigure 4
13C-His-Cβ centered contiguous 13C-fragments in T. reesei. Fractions of 13C-His-Cβ centered contiguous 13C-frag-
ments in T. reesei in different genetic, wild type (wt) and Δcre1 mutant. Cultures were grown on glucose (glucose repressed) or 
sorbitol (derepressed). Sorbitol grown cultures were grown with or without induction of cellulase gene expression by the 
addition of sophorose to some cultures. His-Cβ f(1) denotes fragments with C-C bonds cleaved on both sides of Cβ, His-Cβ 
f(2) and f(2*) denote fragments with Cβ-Cα and Cβ-Cγ preserved, respectively, and His- Cβ f(3) denotes fragments were both 
bonds are intact. Error bars represent ± SEM.
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through the fermentative pathway, whereas T. reesei is
adapted to nutrient poor environments where it benefits
from high energy yield [17,16]. It has also been postulated
that undifferentiated multicellular organisms, of which T.
reesei is an example, have gotten evolutionary advantage
from preferring the high energy yield from respiratory
metabolism [16].

Conclusion
Biosynthetic pathways of T. reesei were reconstructed for
most of the proteinogenic amino acids by using a compu-
tational carbon path analysis method ReTrace. The
method was used to search for pathways from a metabolic
network consisting of all reactions found in a comprehen-
sive metabolic reaction database, and to subsequently
rank the pathways according to the degree of support from
the T. reesei's genome [21]. Contiguous pathways, identi-
cal to the amino acid biosynthetic routes of S. cerevisiae,
were found with high genome-level evidence. The 13C-
labeling patterns observed in this study were in good

accordance with the compartmentalized model of eukary-
otic central carbon metabolism, originally developed for
S. cerevisiae [26]. However, in contrast to S. cerevisiae, Asp
synthesis was observed to occur primarily from the mito-
chondrial pool of Oaa in both T. reesei strains under all
the studied conditions.

The T. reesei wild type strain is known to exhibit carbon
catabolite repression of hydrolytic gene expression during
growth on glucose, whereas in the Δcre1 strain the repres-
sion is partially disturbed [13]. The respirative pathway in
T. reesei does not become transcriptionally downregulated
by the carbon catabolite repression as in S. cerevisiae [17].
However, it is the in vivo fluxes that are the ultimate phe-
notype of an organism. In the present work, the effect of
carbon catabolite repression on in vivo fluxes in T. reesei
was, for the first time, quantitatively studied. The relative
anaplerotic flux to the respirative pathway flux was char-
acteristic to primarily respiratory metabolism in the both
T. reesei strains under all studied conditions. Thus, T. reesei

Table 3: Metabolic flux ratios of T. reesei wild type (wt) and Δcre1 strains in compared with the corresponding flux ratios observed in 
the crabtree positive and negative yeasts S. cerevisiae and P. stipitis [26,27].

organism T. reesei T. reesei T. reesei T. reesei S. 
cerevisiae

S. 
cerevisiae

P.stipitis P.stipitis

strain wt Δcre1 wt Δcre1

carbon 
source

glucose glucose sorbitol sorbitol glucose glucose glucose glucose

culture batch batch batch batch batch chemostat batch chemostat

reference control [26] [27] [27] [27]

fraction of 
total pool 
(%)

sd sd sd sd sd sd sd sd

Pep from 
PPP 
(UB wo 
PEPck)

39 2 47 4 36 7 45 9 0-4 40 8 57 9 61 11

R5P from 
T3P and 
S7P

51 1 42 1 72 3 79 4 68 2 59 2 57 2 72 2

R5P from 
E4P

25 2 23 1 46 2 54 3 10 2 33 2 35 2 43 2

Oaamit from 
Pep

35 1 33 2 26 3 42 5 76 4 31 2 36 2 32 2

MAE (UB) 4 0 9 1 12 2 6 5 25-30 <13 <6 <7

MAE (LB) 2 0 6 1 9 1 4 3 nd nd nd nd nd nd nd nd
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utilizes primarily respiratory metabolism also when grow-
ing on a preferred carbon source glucose. However, the
observed relative anaplerotic fluxes suggested that the res-
pirative activity of the TCA cycle is even slightly higher
when T. reesei grows on the neutral carbon source sorbitol
than when it grows on glucose. Only minor differences
were observed between the in vivo flux distributions of the
wild type and the Δcre1 T. reesei strains. This indicates, that
Cre1, the key repressor of utilization of alternative carbon
sources, does not mediate carbon source dependent met-
abolic state alterations in the central carbon metabolism
of T. reesei. The induction of cellulase gene expression
with sophorose did not result in significant changes in the
relative requirements of proteinogenic amino acids or in
the ratio of anabolic and oxidative activities of the TCA
cycle.

Methods
Strains, media and culture conditions
Biosynthetically directed fractional (BDF) 13C-labeling of
proteins was carried out for the T. reesei QM6a (wild type)
[39] and T. reesei QM6a with deleted cre1 gene (unpub-
lished). Both strains were cultivated in triplicate on two
different carbon sources: glucose and sorbitol. Glucose
cultivations were carried out in 2 l flasks in 200 ml of min-
imal medium ((NH4)2SO4 7.6 g/l, KH2PO4 15.0 g/l, 2.4
mM MgSO4, 4.1 mM CaCl2, CoCl2 3.7 mg/l, FeSO4·7H2O
5 mg/l, ZnSO4·7H2O 1.4 mg/l, MnSO4·7H2O 1.6 mg/l,
pH adjusted to 4.8 with KOH) supplemented with 2% (w/
v) glucose containing 10% (w/w) [U-13C]glucose.

The 200 ml cultures were inoculated with 8 × 107 spores
and cultivated at +28°C with constant agitation at 250
rpm. After 35 h of cultivation, during the exponential
growth phase (Figure 5), 30 ml and 50 ml samples were
withdrawn for dry weight determination and for NMR
experiments, respectively. Mycelium from the samples

was collected by filtration through Whatmann GF/B filters
and washed twice with the sampling volume of water. For
dry weight determination the mycelium was dried in an
oven at +106°C overnight and weighed.

The BDF 13C-labeling of the wild type strain on sorbitol
was carried out in three replicates with 2% (w/v) sorbitol
containing10% (w/w) [U-13C]sorbitol, similarly as in the
glucose cultivations. After 104 h of incubation, in the
exponential growth phase (Figure 5), 30 ml and 50 ml
samples were withdrawn for dry weight determination
and for NMR experiments, respectively.

BDF 13C-labeling on sorbitol was also carried out with
induction of cellulase gene expression by sophorose. Six 2
l flasks of each strain were inoculated, with 2% (w/v)
sorbitol as the sole carbon source in minimal medium
(see above). After 76 h for the wild type and after 114 h
for the Δcre1 mutant, in exponential growth phase (Figure
5), the six cultures were combined, a 30 ml sample for dry
weight determination was withdrawn and then the culture
broth was redivided into six flasks. The final concentra-
tion of 1 mM sophorose was introduced into three of the
six replicate 2 l flasks to induce cellulase gene expression.
An identical volume of water was added to the three con-
trol cultures. Three hours after the induction, when cellu-
lase gene expression was expected to be at a moderate
level [6], 0.4 g of [U-13C]sorbitol was added to all six cul-
tures to initiate BDF 13C-labeling. The addition of 0.4 g of
[U-13C]sorbitol at this time was estimated to result in a
[U-13C]sorbitol fraction of about 10% of the total sorbitol
in the culture medium. After 24 h from the addition of the
[U-13C]sorbitol, still during the early-exponential growth
phase (Figure 5), 30 ml and 50 ml samples were with-
drawn for dry weight determination and NMR experi-
ments, respectively. Thereby the 13C-labeled fraction of
biomass was synthesized in the induced conditions and

T. reesei growth curvesFigure 5
T. reesei growth curves. Growth curves of T. reesei wild type (wt) and Δcre1 strains (A) on glucose and (B) on sorbitol. Error 
bars are standard deviations of three replicates.
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the information of the pathways that were active when the
cellulase gene expression was induced was recorded in the
labelling patterns of proteinogenic amino acids.

Nuclear Magnetic Resonance (NMR) spectroscopy 
experiments
The filtered mycelial samples were suspended into 10 ml
of 6 M HCl and the biomass was hydrolysed in sealed
glass tubes at +110°C for 22 h. The suspensions were
dried and dissolved in H2O for filtration through 0.2 μm
filters. The filtrates were vacuum-dried and dissolved in
D2O for NMR experiments. The pH of the samples was
below 1 due to residual HCl.

13C-HSQC NMR spectra were acquired at +40°C on a Var-
ian Inova spectrometer operating at a 1H-resonance fre-
quency of 600 MHz essentially as described [22]. For each
sample two spectra were acquired focusing on the
aliphatic and aromatic regions. For the aliphatic spectra, a
matrix of 1024 × 1500 (f2 × f1) complex data points was
acquired and zero-filled to 4096 complex data points in
f1. The spectral widths were 6000 Hz and 5100 Hz in the
1H- and 13C-dimensions, respectively. The narrow spectral
width in the 13C-dimension leads back-folding of part of
the signals to the empty regions of the spectrum. For the
aromatic region, a matrix of 1024 × 800 complex data
points was acquired and zero-filled to 2048 complex data
points in f1. The spectral widths for the aromatic spectra
were 6000 Hz and 2815 Hz in the 1H- and 13C-dimen-
sions, respectively. All spectra were weighted with a cosine
function in both dimensions prior to the Fourier transfor-
mation. The spectra were processed using the standard
Varian spectrometer software VNMR (version 6.1, C).

Metabolic Flux Ratio (METAFoR) analysis
The software FCAL (R.W. Glaser; FCAL 2.3.1) [25] was
used for the integration of 13C-scalar fine structures of pro-
teinogenic amino acid carbon signals in the 13C-HSQC
NMR spectra and the calculation of relative abundances of
intact carbon fragments originating from a single source
molecule of glucose. The nomenclature used here for the
intact carbon fragments, fragmentomers, has been
described previously [22]. Briefly, f(1) represents the frac-
tion of molecules in which the observed carbon atom and
the neighboring carbons originate from different source
molecules of glucose, f(2) the fraction of molecules in
which the observed carbon atom and one of the two
neighboring atoms originate from the same source mole-
cule of glucose, and f(3) the fraction of molecules in which
the observed carbon atom and both neighboring carbons
originate from the same source molecule of glucose. If the
observed carbon exhibits significantly different 13C-13C
scalar coupling constants with the neighboring carbons,
f(2) and f(2*) can be distinguished. The fraction of mole-
cules with a conserved bond between the observed carbon

atom and the neighboring carbon with the smaller cou-
pling is represented by f(2). f(2*) then denotes the fraction
of molecules where the bond is conserved between the
observed carbon and the neighboring carbon with the
larger coupling. If the observed carbon is located at the
end of a carbon chain, f(1) and f(2) fragmentomers can be
observed indicating the conservation of the two terminal
carbon fragment of the molecule.

The degree of13C-labeling of the biomass amino acids was
determined from the 13C-scalar fine structures of Leu-Cβ
and Val-Cγ2. The biomass was assumed to be fully pro-
duced from the fractionally labelled carbon source in the
glucose experiments and in sorbitol experiments without
sophorose induction because the dry weight of the inocu-
lum was negligible. For the sorbitol experiments with
sophorose induction the fraction of labeled biomass was
estimated from the dry weight measurement (data not
shown). The model of the central carbon metabolism net-
work used in the METAFoR analysis was the one previ-
ously developed for eukaryotic metabolism of the yeast S.
cerevisiae [26] (Figure 6). Fragmentomer information
obtained from proteinogenic amino acids can be traced
back to the metabolic intermediates in central carbon
metabolism through the amino acid synthesis pathways
to assess ratios of intracellular fluxes which merge at a
metabolic network junction [26]. The biosynthetic path-
ways of amino acids in T. reesei were reconstructed with
carbon path analysis method ReTrace [21] described in
the next section.

Carbon path analysis
The reconstruction of amino acid biosynthetic pathways
from their precursors in T. reesei was performed with
ReTrace. ReTrace is a recent computational pathway anal-
ysis method [21], which can be queried to discover
branching metabolic pathways in a universal metabolic
database. Specifically, ReTrace aims to find pathways
which transfer as many atoms from source to target
metabolites as possible.

The reaction database used in ReTrace analysis was KEGG
LIGAND, downloaded in March 2009 [40]. Reaction data-
base contained 7827 reactions and 15400 compounds.
Atom mappings, that describe how atoms are transferred in
a reaction from substrate to product metabolites, were
defined for 33795 substrate-product pairs in the RPAIR
database, which is a subdatabase of KEGG. All reactions
were considered bidirectional. To compute reaction
scores, a database consisting of 101136 sequences anno-
tated with an EC number in UniProt version 9.3 [41] was
queried with the 9129 protein sequences in T. reesei
genome [20] by blastp [42] using e-value cutoff 10 to
detect remote homologs. Each reaction in the KEGG data-
base was assigned a score by taking the maximum BLAST
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Metabolic network modelFigure 6
Metabolic network model. Eukaryotic central carbon metabolism network model [26].
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score over all UniProt-Trichoderma sequence pairs, where
UniProt sequence had been annotated with an EC
number corresponding to the reaction. A total of 3974
reactions received a score in this procedure, while the
remaining 3853 reactions were assigned a zero score.
Reaction scores reflected the degree of evidence from the
detection of sequence homology that there exists an
enzyme catalyzing the reaction in T. reesei.

For a majority of pathway queries, maximum search
depth was set to 3 and number of pathways searched at
depths 1, 2 and 3 to 50, 10 and 1, respectively. In other
words, ReTrace search comprised pathways with three
branches or less. In particular, more alternative routes (k
= 50) were searched at the initial first level (depth 1) than
at subsequent levels to reduce the computational com-
plexity. However, in queries involving Asp, Phe, Thr and
Tyr, search time with these parameters exceeded a few
hours due to branching. These queries were resolved by
setting k = 1 already at the second level, while keeping k =
50 at the first level.

Typically, the queries took from 30 minutes to 2 hours
CPU time each on computers running Intel Xeon X5355
CPUs. Queries were performed on a cluster of 10 CPUs
with four cores each, reducing the total time required.
Parameter choices affect the computation time signifi-
cantly: although it is possible to obtain results on, for
example, existence of complete pathways in a matter of
seconds by setting k = 1 at each level, in this study a more
exhaustive approach was adopted.

Localization of amino acid biosynthetic enzymes in T. 
reesei
TargetP, a machine learning method based on neural net-
works, which predicts both chloroplast and mitochon-
drial targeting peptides and secretory signal peptides, was
utilized to predict the probable subcellular localization of
some amino acid biosynthetic enzymes in T. reesei
[33,34]. The prediction performance of non-plant mito-
chondrial targeting peptides with TargetP has been meas-
ured to be 80 - 90% sensitivity and 70% specificity [33].
TargetP reported, for each analyzed peptide sequence, the
probability that the peptide contained some signal pep-
tide (SP), a mitochondrial targeting peptide (mTP) or
cytosolic targeting peptide (cTP) presequence. In addi-
tion, a numerical reliability class (RC) between 1 and 5
was reported. The reliability class was derived from the
difference of highest and second-highest probabilities
assigned to the prediction classes SP, mTP, cTP or "other".
The class "other" indicates the probability that no subcel-
lular location sorting signal was found. If the difference
was greater than 0.8, RC equals 1; if the difference was
below 0.2, RC equals 5.
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Abstract
Background: Metabolic fluxes provide invaluable insight on the integrated response of a cell to
environmental stimuli or genetic modifications. Current computational methods for estimating the
metabolic fluxes from 13C isotopomer measurement data rely either on manual derivation of analytic
equations constraining the fluxes or on the numerical solution of a highly nonlinear system of isotopomer
balance equations. In the first approach, analytic equations have to be tediously derived for each organism,
substrate or labelling pattern, while in the second approach, the global nature of an optimum solution is
difficult to prove and comprehensive measurements of external fluxes to augment the 13C isotopomer data
are typically needed.

Results: We present a novel analytic framework for estimating metabolic flux ratios in the cell from 13C
isotopomer measurement data. In the presented framework, equation systems constraining the fluxes are
derived automatically from the model of the metabolism of an organism. The framework is designed to be
applicable with all metabolic network topologies, 13C isotopomer measurement techniques, substrates and
substrate labelling patterns.

By analyzing nuclear magnetic resonance (NMR) and mass spectrometry (MS) measurement data obtained
from the experiments on glucose with the model micro-organisms Bacillus subtilis and Saccharomyces
cerevisiae we show that our framework is able to automatically produce the flux ratios discovered so far
by the domain experts with tedious manual analysis. Furthermore, we show by in silico calculability analysis
that our framework can rapidly produce flux ratio equations – as well as predict when the flux ratios are
unobtainable by linear means – also for substrates not related to glucose.

Conclusion: The core of 13C metabolic flux analysis framework introduced in this article constitutes of
flow and independence analysis of metabolic fragments and techniques for manipulating isotopomer
measurements with vector space techniques. These methods facilitate efficient, analytic computation of
the ratios between the fluxes of pathways that converge to a common junction metabolite. The framework
can been seen as a generalization and formalization of existing tradition for computing metabolic flux ratios
where equations constraining flux ratios are manually derived, usually without explicitly showing the
formal proofs of the validity of the equations.
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Background
From microorganisms to animals and plants, cells adjust
their metabolic operations to fulfill the demand of energy
and biosynthetic precursors. In nature this is a challenging
task because substrate availability is typically limited and
often changing in its composition. To ensure viability on
a broad palette of chemically heterogeneous substrates,
cells have developed intertwined enzymatic networks that
also confer robustness against genetic mutations. Opti-
mum redistribution of molecular fluxes in metabolism is
achieved by multilevel regulation circuits. In recent years,
experimental measurement of in vivo metabolic fluxes
has attracted much attention. For example, in biotechnol-
ogy metabolic fluxes are utilized to lead rational strain
engineering, whereas systems biologists assess fluxes to
unravel targets and mechanisms of metabolic regulation.

Metabolic fluxes are often estimated using flux balance
analysis (FBA) [1,2]. In FBA, fluxes are solved by fixing
some objective for the metabolism of an organism, such
as maximal growth. Then, a corresponding optimization
problem is solved by using the stoichiometry of the meta-
bolic network as a constraint to the optimization. FBA is a
viable method for studying the metabolic capabilities of
an organism, but as a method for estimating metabolic
fluxes it has some weaknesses. First, selecting the correct
objective for the metabolism is far from trivial [3], espe-
cially when mutant strains or behaviour in exceptional
environmental conditions is analyzed. Second, there can
be many biologically interesting flux distributions that
give an optimal solution to the optimization problem of
FBA.

A more direct method for experimental determination of
the metabolic fluxes is to feed an organism with 13C
labelled substrate, observe the fate of 13C atoms in the cell
at isotopomeric steady state with mass spectrometry (MS)
or nuclear magnetic resonance (NMR) measurements,
and then infer the metabolic fluxes from the measure-
ments. The rationale behind these 13C tracer experiment is
that, often alternative pathways between metabolites in
the network manipulate the carbon backbones of the
metabolites differently, thus inducing different 13C label-
ling patterns to metabolites. Then, constraints to fluxes
complementary to the basic stoichiometric constraints
can be derived by measuring the relative abundances of
different labelling patterns in the metabolites.

The main difficulty in applying the procedure in practice
is that current measurement techniques only can produce
incomplete information about relative abundances of dif-
ferent 13C labelling patterns, the isotopomer distributions, of
some metabolites, usually protein bound amino acids in
the network, and no isotopomer information at all for
many intermediate metabolites of interest [4-6]. This

imposes a highly non-linear dependency between the
measured isotopomer distributions of the metabolites
and the metabolic fluxes, which is very challenging to
solve both computationally and statistically.

Currently, two main approaches for 13C metabolic flux
analysis exist. In the global isotopomer balancing approach,
the problem of estimating metabolic fluxes from the iso-
topomer measurements is formulated as a nonlinear opti-
mization problem, where candidate flux distributions are
iteratively generated until they fit well enough to the
experimental 13C labelling patterns [7-11]. Global iso-
topomer balancing is a versatile approach that can be
applied with all network topologies, substrate labelling
distributions and with all measurement techniques – also
in short time scales where isotopomeric steady state is not
reached [12-14]. However, due to the nonlinearity of the
problem, it is hard to make sure that the optimization has
converged to a global optimum and that this optimum is
unique [15]. Also, to apply the global isotopomer balanc-
ing approach successfully, one usually needs comprehen-
sive information on the uptake and production rates of
external metabolites, as well as about biomass composi-
tion of the cell. This information can be hard to obtain,
especially in large-scale experiments where dozens to hun-
dreds of mutants or different organisms are comparatively
analyzed [16,17].

A metabolic flux ratio approach (METAFoR) [4,18,19] for
13C metabolic flux analysis has traditionally relied more
on the expertise of a domain specialist than advanced
computational techniques. In metabolic flux ratio analy-
sis, the aim is to write linear equations constraining the
ratios of fluxes producing the same metabolite. The equa-
tions are manually derived by domain experts, by careful
(and tedious) inspection of metabolic networks. The
motivation for the approach is that, in many cases, the
knowledge about the flux ratios already offers enough
information about the response of an organism to its
environment.

The ratio of competing fluxes or pathways producing the
same metabolite is easy to understand, and in many cases
easier to estimate reliably than all the fluxes in the net-
work – some interesting flux ratios might be obtainable
from scarce measurement data or from the incomplete
model of metabolic network that would not allow a relia-
ble estimation of a complete flux distribution using global
isotopomer balancing. Flux ratios can also be obtained
without knowing the uptake and production rates of
external metabolites of the biomass composition. And, if
enough non-redundant flux ratios are identified, it is pos-
sible to use this information to construct and solve an
equation system for the full flux distribution of the meta-
bolic network [20-22].
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As a downside, manually derived flux ratio equations
depend heavily on the topology of a metabolic network,
measurement capabilities and substrate labelling distribu-
tions. Thus, each time a new organism or new mixture of
substrates are introduced, flux ratio equations have to be
verified and new ones possibly derived. To date, flux ratio
equations are manually derived for central carbon metab-
olisms of three model organisms on glucose, S. cerevisiae
[17,23], B. subtilis [24] and for Escherichia coli [18,19].
Recently, flux ratio equations of S. cerevisiae were modi-
fied for Pichia pastoris grown on glycerol and on glycerol/
methanol mixtures [25,26]. Facilitating the process of
deriving flux ratio equations for other organisms and
other substrates clearly calls for automatic tools. Also,
many times the (simplifying) assumptions made by the
expert in the derivation and solution of flux ratio equa-
tions, are not reported in detail. Thus, it is often nontrivial
to verify the correctness of given flux ratio equations.

In this article we present a novel automatic framework for
deriving flux ratios when the measurement data and the
model of metabolic network are given as input. The
framework is based on the graph algorithmic flow analy-
sis of metabolite fragments in the metabolic network [27]
and on the interpretation and manipulation of both NMR
and MS data with vector space techniques [21]. The goal
of our work is to combine the good aspects of global iso-
topomer balancing and manual flux ratio analysis: like
global isotopomer balancing, our framework is systematic
and can be applied with all network topologies, substrates
and substrate labelling distributions and with all current
isotopomer measurement techniques. Thus, laborious
and error-prone manual inspection of metabolic network
models and the tailoring of the equation systems con-
straining the fluxes separately for each experimental set-
ting required in manual flux ratio techniques can be
avoided. On the other hand, during the automated con-
struction of flux ratios we resort to linear optimization
techniques only, combined with graph algorithms of pol-
ynomial worst case time complexity. Thus, our framework
is computationally efficient and avoids problems with
local and multiple optima frequently met in global iso-
topomer balancing. The trade-off of this philosophy is,
however, the requirement of measuring isotopomer distri-
butions of metabolites more rigorously to obtain full flux
distribution. Given insufficient measurements, our frame-
work can solve the flux ratios only for some, but not nec-
essary for all metabolites in the network. We expect that,
especially as measuring isotopomers of intermediate
metabolites becomes more routine, our framework will be
an attractive method for 13C flux analysis.

Results and Discussion
In this section we demonstrate the applicability of the pre-
sented framework by empirical results. We show that our

automatic and systematic framework is able to reproduce
flux ratios previously determined by a manual analysis
from NMR and GC-MS isotopomer measurements of pro-
tein bound amino acids of S. cerevisiae and B. subtilis on
glucose. Thus, we can conclude that the presented frame-
work is powerful enough to provide interesting flux ratio
information in the well studied experimental settings.
Furthermore, we show that the framework can be applied
to study less known experimental conditions without any
further effort by discovering the flux ratios that can be esti-
mated when B. subtilis is grown on malate instead of glu-
cose. The results of this analysis show that our framework
can detect profound effects the change of external sub-
strate can have to the flux ratio computations. The results
indicate that our framework is a good tool to study flux
ratios of microbes in different experimental conditions –
a claim that will try to validate with more experiments in
our further work.

We obtained NMR and GC-MS labelling data, where iso-
topomer distributions of protein bound amino acids of S.
cerevisiae and B. subtilis grown on different conditions
were measured. Then, available flux ratios were computed
with the presented framework. Models of metabolic net-
works applied in the analysis can be found from the sup-
plementary material of this article: additional files 1 and
2 contain the SBML model file and a visualization of the
model of S. cerevisiae, while additional files 3 and 4 con-
tain the same information for B. subtilis. In the models,
some simplifications common to 13C metabolic flux anal-
ysis were applied by pooling metabolites whose iso-
topomer pools can be assumed to be fully mixed (cf.
[28]). Pooling of metabolites was carried for (i) the three
pentose-phosphates in PPP, (ii) phopshotrioses between
GA3P and PEP in glycolysis, and (iii) oxaloacetate and
malate in the TCA cycle. In these cases, pooling is justified
by the existence of fast equilibrating, bidirectional reac-
tions between the listed intermediates and the empirical
evidence that their isotopic labeling is not distinguishable
with the current analytical tools. Cofactor metabolites
were excluded from the model as cofactor specificities and
activities are not accurately known for many reactions.

The bulk of the carbon mappings of reactions in the met-
abolic network were provided by ARM project [29]. Car-
bon mappings from amino acids to their precursors were
conform to [4] and [23]. Before the analysis of the real
measurement data, the correctness of the implementation
of the framework was empirically verified by estimating
flux ratios for junction metabolites in the metabolic net-
work of S. cerevisiae from the artificial data generated by
the 13C-FLUX software [8].
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NMR measurements from S. cerevisae on glucose
In the first experiment we analyzed NMR isotopomer
measurement data from protein bound amino acids of S.
cerevisiae that was grown on uniformly labelled glucose
(see Section Experimental NMR and GC-MS methods for
more details on experimental settings).

From the 15 measured amino acids we were able to esti-
mate flux ratios for seven junction metabolites: oxaloace-
tate, PEP, glycine and serine on cytosol and for
oxaloacetate, acetyl-CoA and pyruvate in mitochondria.
Furthermore, an upper bound for a ratio of GA3P mole-
cules that have visited the transketolase reaction was
obtained by manually simplifying the model to imitate
the previously reported ways to manually compute the
corresponding upper bound (cf. [4]). (The structural anal-
ysis of the metabolic network model described in Section
Structural analysis of isotopomer systems can help in discov-
ering such simplifications, but they also need some expert
insight. As the simplifications are currently not done auto-
matically, the systematical framework is unable to vali-
date them.)

The computed flux ratios were compared with the manu-
ally derived ratios [23], when the assumptions made in
the manual derivation of flux ratios were consistent with
the model used. In all cases, automatically computed flux
ratios agreed well with the manually derived ratios (Table
1). Differences between the estimations can be explained
by numerical instabilities and by differences in computa-
tional procedures: in manually derived ratios the estima-
tions are based on the breakage of a single bond in
different routes leading to a metabolite while in our
framework more isotopomer information is possible uti-
lized in the estimation.

GC-MS measurements from B. subtilis on glucose
In the second experiment we analyzed GC-MS isotopomer
measurement data from protein bound amino acids of
Bacillus subtilis that was grown on uniformly labelled glu-
cose (see Section Experimental NMR and GC-MS methods
for more details on experimental settings).

In comparison to eukaryotic S. cerevisiae, the metabolic
network of prokaryotic B. subtilis lacks cellular compart-
ments. Thus, from the point of view of 13C metabolic flux
analysis, there are fewer interesting junction metabolites
in the central carbon metabolism of B. subtilis where the
flux ratios can be estimated. From the GC-MS measure-
ments of 14 amino acids we were able to compute flux
ratios for four junction metabolites – oxaloacetate, pyru-
vate, PEP and glycine – when [U-13C]-glucose was used as
a carbon source. Furthermore, an upper bound for a ratio
of GA3P molecules that have visited transketolase reac-
tion was obtained by manually simplifying the model of
the metabolic network. Excluding pyruvate, we were able
to compute the same ratios with [1-13C]-glucose as a car-
bon source.

We compared the computed flux ratios to ones obtained
with the software FiatFlux [30] that is based on the manu-
ally derived analytic equations for computing flux ratios.
Currently, manually derived flux ratio equations for [1-
13C]-glucose as a carbon source exist only for PEP and for
the upper bound to the flux through oxidative pentose
phosphate pathway. In general, the flux ratios computed
with different methods from the same data and with the
same assumptions about the topology of metabolic net-
work were in good agreement (Table 2). (As a data clean-
ing procedure, we removed from [1-13C]-glucose data the
mass distributions of fragments whose fractional enrich-
ment deviated more than 5% from the assumed fractional
enrichment of 20% in [U-13C]-data. This was done
because differences in fractional enrichments can be
tracked in uniformly labelled data where the fractional
enrichment of each fragment is know a priori, but not in
positionally labelled data, where the fractional enrich-
ment of a fragment depends on the network topology and
the fluxes. This kind of irregularities are in general caused
by noise in fragments with low intensity or by coeluting
analytes with overlapping fragment masses.) Again, differ-
ences between the flux ratios estimated by different meth-
ods can be explained by numerical instabilities and by
differences in isotopomer information applied during the
estimation. Variation in the estimated flux ratios between
repeated experiments (six repetitions for [1-13C]-glucose

Table 1: Estimated flux ratios from NMR measurements of S. cerevisiae.

flux ratios our framework METAFoR

PYR(mit) from MAL(mit) : PYR(mit) from PYR(cyt) 0.05 : 0.95 0.03 : 0.97
OAA(mit) from TCA-cycle : OAA(mit) from OAA(cyt) 0.50 : 0.50 0.50 : 0.50
PEP from OAA(cyt) : PEP from GA3P 0 : 1 0.04 : 0.96
OAA(cyt) from PYR(cyt) : OAA(cyt) from OAA(mit) 0.40 : 0.60 0.43 : 0.57
GLY from SER : GLY from C1 + CO2 0.96 : 0.04 0.96 : 0.04

Directly comparable flux ratios computed from the NMR data by the framework presented in this paper and by manual flux ratio analysis 
(METAFoR).
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experiment, four repetitions for uniformly labelled glu-
cose experiment) was negligible.

In silico calculability analysis of B. subtilis on malate
One of the strengths of the presented framework is that it
is able to automatically produce metabolic flux ratios also
when other external labelled substrates than commonly
used glucose are fed to organisms. To demonstrate this
ability, we applied our framework to predict what flux
information would be available, if we feed B. subtilis with
malate.

We applied the in silico calculability analysis (see Section
Calculability analysis) to examine which flux ratios are cal-
culable in the best case from GC-MS measurements of
amino acids, when B. subtilis is grown on [U-13C]-
labelled malate. Interestingly, our fragment flow analysis
revealed that – with the reaction reversibilites in the
applied model – the isotopomer distributions of GA3P,
PEP and pyruvate depend only on the isotopomer distri-
bution of the fragment containing the first three carbons
of oxaloacetate, but not on the relative fluxes producing
these metabolites. Thus, isotopomer balances for GA3P,
PEP and pyruvate reduce to mass balances and the ratios
of fluxes producing these metabolites cannot be esti-
mated. This somewhat surprising phenomenon is due the
fact that the rearrangements of carbon chains occurring in
PPP pathway will affect only to the carbon fragments that
will be recycled in the upper metabolism but not the car-
bon fragments that can flow back GA3P, PEP and pyruvate
from PPP (we modelled a reaction from GA3P to F6P as
unidirectional one).

Preliminary experiments with GC-MS data from B. subtilis
grown on [U-13C]-labelled malate agreed with the results
of fragment flow analysis: constraints to the isotopomer
distributions of fluxes entering to these metabolites were
identical within the limits of measurement accuracy. On
the other hand, our framework was able to estimate for
example the TCA-cycle activity also when B. subtilis is
grown on malate, just as predicted by the calculability
analysis.

Conclusion
In this article we introduce a systematic and analytic
framework for 13C metabolic flux ratio analysis. At the
heart of the framework lie the techniques for flow analysis
of a metabolic network and for manipulating isotopomer
measurements as linear subspaces. These techniques facil-
itate the efficient and analytic computation of the ratios
between the fluxes producing the same junction metabo-
lite. The framework can be seen as a generalization and
formalization of existing analytic methods for computing
metabolic flux ratios [23,30,31] where equations con-
straining flux ratios are manually derived. Like the recent
methods to improve the speed of the simulation of iso-
topomer distributions in the global isotopomer balancing
framework [10,32], our framework relies on graph algo-
rithms. However, both our goals and applied techniques
are quite different from these approaches. In [10] and [32]
connected components of isotopomer graphs are discov-
ered to divide the simulation of isotopomer distributions
to smaller subtasks. In our framework, flow analysis tech-
niques are applied to discovered metabolite fragments
with equivalent isotopomer distributions in every iso-
topomeric steady state.

Our experiments with NMR and MS data show that the
framework is able to provide relevant information about
metabolic fluxes, even when only constraints to the iso-
topomer distributions of protein-bound amino acids are
measured.

Thanks to recent advancements in measurement technol-
ogy improving the feasibility of mass isotopomer meas-
urements of intermediate metabolites [13,33], we expect
that the full power of the framework will be harnessed in
near future. Measurements from intermediates will make
it possible to use larger models of metabolic networks and
estimate flux ratios more accurately, without simplifying
assumptions about the topology of the metabolic network
or directionality of the fluxes. However, these measure-
ments will not be easy to conduct, because of the low
abundances of intermediates in the cell. Thus, systematic
methods for experimental planning and data quality con-
trol are required. The presented framework provides pow-

Table 2: Estimated flux ratios from GC-MS measurements of B. subtilis.

flux ratios our fw (UL) our fw (1CL) FiatFlux (UL) FiatFlux (1CL)

PYR from MAL : PYR from PEP 0.01 : 0.99 0.04 : 0.96
OAA from TCA-cycle : OAA from PYR 0.42 : 0.58 0.37 : 0.63 0.41 : 0.59
PEP from OAA : PEP from GA3P 0 : 1 0 : 1 0.04 :0.96 0 : 1
GLY from SER : GLY from C1 + CO2 1 : 0 1 : 0 1 : 0
SER from GLY : SER from GA3P 0.09 : 0.91 0.14 : 0.86

Directly comparable flux ratios computed from the GC-MS data described by the framework presented in this paper (our fw) and by FiatFlux 
software [30]. UL denotes uniform labelling of external glucose, 1CL external glucose labelled to the first carbon position.
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erful tools for these tasks. First, the framework facilitates
time saving in silico calculability analysis.

Second, the manipulation of isotopomer measurements
as linear subspaces offers a natural way for comparing
measurements from different metabolites that contain
overlapping information to detect inconsistencies in the
measurements: it is enough to compare propagated iso-
topomer information in the fragments that belong to the
same equivalence class. Third, as MS isotopomer measure-
ment techniques have to be developed separately for dif-
ferent intermediate metabolites or metabolite classes, it
will be very useful to select a small subset of intermediates
that gives enough information about the interesting met-
abolic fluxes with least experimental effort. In future
research, we want to tackle this problem by generalizing
our earlier experimental planning method [34], to all
measurement data and to realistic measurement error
models.

As the presented framework for 13C metabolic flux analy-
sis only resorts to linear optimization techniques, it is not
always able to provide as much information about the
metabolic fluxes as the global isotopomer balancing
frameworks utilizing more powerful, nonlinear optimiza-
tion techniques [8,35], that do not necessarily converge to
the global optimum. On the other hand, some flux ratios
might be computable from the scarce data or incomplete
model of metabolic network that does not allow global
isotopomer balancing. The differences in the practical per-
formance of different approaches require further research.
We see these alternative approaches as complementary
ones. A very nice goal would be an integration of our work
with global isotopomer balancing: our analytic flux ratios
could speed up and direct the optimization process of glo-
bal isotopomer balancing, that would then fill in the flux
ratios possibly missed by our framework.

Methods
In this section we describe a systematic and analytic com-
putational framework for 13C metabolic flux analysis. At
the end of the section we also shortly describe the experi-
mental method that were applied to produce the iso-
topomer measurement data that was analyzed in Section
Results and Discussion.

The overall goal of our computational framework is to
automatically infer from the available isotopomer meas-
urement data produced by MS, MS-MS or NMR tech-
niques, an equation system constraining the fluxes. The
crucial question is to derive as many non-redundant equa-
tions as possible, ideally constraining the flux distribution
to a point solution, or in general, as low-dimensional con-
vex set as possible.

In short, the framework consists of the following steps:

1. The model of the metabolic network of an organism is
constructed by selecting a set of biochemical reactions
operating in the organism and by designating them to cor-
rect cellular compartments;

2. Structural analysis of the isotopomer system is con-
ducted, consisting of the following steps:

(a) Flow analysis of the metabolic network is conducted
in order to discover equivalent fragments, fragments of car-
bon backbones of metabolites that will have the same the-
oretical isotopomer distribution, regardless of the fluxes.

(b) Independence analysis of fragments is conducted to
find statistically independent carbon subsets from metab-
olites, that is, subsets that have been at some point sepa-
rated along every pathway able to producing them and
that have flux invariant isotopomer distributions. This
guarantees that the isotopomer distribution of their union
assumes the form of a product distribution.

(c) In silico calculability analysis is performed to test if the
available measurement techniques and substrate label-
lings make it in principle possible to obtain the required
flux information.

3. Wet-lab isotopomer tracer experiments are conducted
and constraints to isotopomer distributions are measured;

4. The fluxes of the network are estimated. The process
consists of the following steps:

(a) Isotopomer measurement data is propagated in the
metabolic network model from the measured metabolites
to unmeasured ones according to the equivalences discov-
ered in step 2.

(b) An equation system tying the isotopomer data and the
fluxes together is constructed and solved, either to obtain
a flux distribution for the metabolic network as a whole,
or for a single junction metabolite to obtain the ratios of
fluxes producing it.

(c) The statistical analysis of obtained fluxes or flux ratios
is carried out.

In the following we first formalize the 13C flux analysis
problem and then detail the computational steps above.

Preliminaries

In 13C metabolic flux analysis the carbon atoms of metab-
olites are of special interest. We denote with M the set of
carbon locations M = {c1, ..., ck} of a k-carbon metabolite.
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By |M| = k we denote the number of carbons in M. Frag-

ments of metabolites are subsets F = {f1, ..., fh} ⊆ M of the

carbons of the metabolite. A fragment F of M is denoted
as M|F. A metabolic network G = ( , ) is composed of a

set  = {M1, ..., Mm} of metabolites and a set  = {ρ1, ...,

ρn} of reactions that perform the interconversions of

metabolites.

With isotopomers we mean molecules with similar element
structure but different combinations of 13C labels. Iso-
topomers of the molecule M = {c1, ..., ck} are represented
by binary sequences b = {b1, ..., bk} ∈ {0, 1}k where bi = 0
denotes a 12C and bi = 1 denotes a 13C in location ci. Mol-
ecules that belong to the b-isotopomer of M are denoted by
M(b). Isotopomers of metabolite fragments M|F are
defined in an analogous manner: a molecule belongs to
the F(b)-isotopomer of M, denoted M|F(b1, ..., bh), if it has
a 13C atom in all locations fj that have bj = 1, and 12C in
other locations of F. Isotopomers with equal numbers of
labels belong to the same mass isotopomer. We denote mass
isotopomers of M by M(+p), where p ∈ {0, ..., |M|} denotes
the number of labels in isotopomers belonging to M(+p).

The isotopomer distribution DM of metabolite M gives the
relative abundances 0 ≤ PM(b) ≤ 1 of each isotopomer
M(b) in the pool of M such that

The isotopomer distribution DM|F of fragment M|F and

the mass isotopomer distribution  of mass isotopomers

M(+p) are defined analogously: DM|F of metabolite M

gives the relative abundances 0 ≤ PM|F(b) ≤ 1 of each iso-

topomer M|F(b) and  gives the relative

abundances 0 ≤ PM(+p) ≤ 1 of each mass isotopomer

M(+p).

Reactions are pairs ρj = (αj, λj) where αj = (α1j, ..., αmj) ∈ m

is a vector of stoichiometric coefficients-denoting how many
molecules of each kind are consumed and produced in a
single reaction event-and λj is a carbon mapping describ-
ing the transition of carbon atoms in ρj (see Figure 1).
Metabolites Mi with αij < 0 are called substrates and with αij
> 0 are called products of ρj. If a metabolite is a product of
at least two reactions, it is called a junction. If αij < 0, a reac-
tion event of ρj consumes |αij| molecules of Mi, and if αij >
0, it produces |αij| molecules of Mi. Bidirectional reactions
are modelled as a pair of reactions.

A pathway p in network G from metabolite fragments {F1,

..., Fk} to fragment F' is a sequence  of reac-

tions such that a composite carbon mapping

, defined by p maps the

carbons of {F1, ..., Fp} to the carbons of F'.

For the rest of the article, it is important to distinguish
between the subpools of a metabolite pool produced by dif-
ferent reactions. Therefore, we denote by Mij, the subpool
of the pool of Mi produced (αij > 0) or consumed (αij < 0)
by reaction ρj. The concept of the subpools of a metabolite
pool is illustrated in Figure 2.

By Mi0 we denote the subpool of Mi that is related to the
external in flow or external out flow of Mi. We call the
sources of external in flows external substrates. Subpools of
fragments are defined analogously. In 13C metabolic flux
analysis, the quantities of interest are the rates or the
fluxes vj ≥ 0 of the reactions ρj, giving the number of reac-
tion events of ρj per time unit. We denote by v the vector
[v1, ..., vn] of fluxes, or a flux distribution.

Generalized isotopomer balances
The framework for 13C metabolic flux analysis presented
in this article rests on the assumption that the metabolic
network is in metabolic and isotopomeric steady state. In
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An example of a metabolic reactionFigure 1
An example of a metabolic reaction. In the reaction ρj, 
a fructose 1,6-bisphosphate (C6H14O12P2) molecule is pro-
duced from glycerone phosphate (C3H7O6P) and glyceralde-
hyde 3-phosphate (C3H7O6P) molecules. Carbon maps are 
shown with dashed lines. Glyceraldehyde 3-phosphate is 
equivalent to the gray fragment of fructose 1,6-bisphosphate 
while glycerone phosphate is equivalent to the white frag-
ment.
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the metabolic steady state, metabolite balance, or mass bal-
ance

holds for each metabolite Mi. Here, βi is the measured
external in flow (βi < 0) or external out flow (βi > 0) of
metabolite Mi. From balance equations (1) defined for
every metabolite Mi we will obtain a metabolite balanc-
ing, or stoichiometric equation system.

In isotopomer steady state, for each isotopomer b of each
metabolite Mi in the metabolic network the following iso-
topomer balance holds:

For metabolic flux analysis (1) and (2) bear a fundamen-
tal difference: the former cannot be used to estimate fluxes
of alternative pathways producing Mi while the latter can.
However, using (2) is not in general admissible in prac-
tice: typically abundances PM(b) of isotopomers are not
fully determined from the measurements, and we need to
settle for some constraints to the distribution DM. A cru-
cial building block of our framework is the representation

of isotopomer measurements as systems of linear equa-
tions (c.f. [21])

where sbh is the weight of isotopomer b in the h'th con-
straint, dh is a value derived from isotopomer measure-
ments, and r is the total number of constraints. We call (3)
isotopomer constraints. For a k carbon metabolite, 2k linearly
independent isotopomer constraints – one for each iso-
topomer – are necessary and sufficient to constrain the
isotopomer distribution DM to a point solution. A set of
isotopomer constraints has a natural matrix representa-
tion SDM = d, where S = (sbh)b,h is a 2k by r matrix, where 1
≤ r ≤ 2k is the number of isotopomer constraints (the triv-
ial constraint ΣbPM(b) = 1 by definition always holds).

The use of (3) follows from the simple observation that
isotopomer balance (2) implies that each linear combina-
tion of isotopomers is balanced. Thus, we can write a new
balance equation that constrains the fluxes producing Mi
as soon as we know the value of the same linear combina-
tion of isotopomer abundances for each subpool of Mi.
We have

where each  is a linear combination of

the form (3), with coefficients sb that do not depend on j,

i.e. they are the same for each subpool Mij. We call (4) a

generalized isotopomer balance.

Representing MS and NMR isotopomer measurements as linear 
constraints
In the following, we will show by examples how MS and
NMR data can be represented as isotopomer constraints.
Let us first consider mass isotopomer distributions
obtained from MS. Here we omit discussion on practical-
ities such as corrections for natural abundances of 13C iso-
topes (c.f., [6,36]) and concentrate on the conceptual
level. For example, the +2 mass isotopomer of a three car-
bon metabolite M satisfies

PM(+2) = PM(011) + PM(110) + PM(101)

which conforms to (3) by taking s011,2 = s110,2 = s101,2 = 1,
and sb,2 = 0 otherwise. Similarly, the coefficients sbk can be
derived for all mass isotopomers +k, k = 0, ..., 3.

Isotopomer data originating from Tandem MS, or MS-MS,
falls into the same representation. Consider, for example,
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An example of subpools of a metabolite poolFigure 2
An example of subpools of a metabolite pool. Phos-
phoenolpyruvate (PEP) is produced by two different reac-
tions (ρi and ρj), either from Oxaloacetate (OAA) or from 
glyceraldehyde 3-phosphate (GA3P). Thus, PEP has two in 
flow subpools, PEP from OAA and PEP from GA3P (grey boxes) 
that are mixed in the common PEP pool (at the bottom).
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a fragment M|F of a three-carbon metabolite, containing
the first and second carbon of M. The following equation
holds for the mass isotopomer M|F(+1):

PM|F(+1) = PM|F(01) + PM|F(10).

The equation can be written in terms of the precursor M,
but the exact form of the equation depends on the mode
of tandem MS. If the full scan mode is used, we obtain

PM|F(+1) = PM(010) + PM(011) + PM(100) + PM(101),

as all precursor molecules M that have exactly one carbon
among the first and second location contribute to the frag-
ment mass isotopomer M|F(+1). On the other hand, in
the daughter-ion scanning mode a single mass iso-
topomer, for example M(+2), is selected as the precursor.
Then we obtain

PM|F(+1) = PM(011) + PM(101),

as the precursor must always have two 13C atoms in total.
We refer the reader to [6,36] for further details. Also NMR
13C isotopomer measurements, where relative intensities
of different combinations of 13C and 12C atoms that are
coupled to an observed 13C atom are measured, can be
expressed as linear combinations of isotopomer abun-
dances. For example, for a three-carbon metabolite M, the

following constraints to  can be inferred for the labe-

ling pattern 010:

where d(010) is the measured intensity. Rewriting the
above as

and denoting sb = d(010), for b ∈ {110, 011, 111}, s010 =
d(010) - 1 and sb = 0 for b ∈ {000, 100, 001, 101}, the
above can be seen to conform to (3). Similar derivation
can be used for other isotopomer signals present in the
NMR spectrum to obtain the corresponding isotopomer
constraints.

Projection of isotopomer measurements to fragments
In our computational framework, it will be necessary to
project the measurement data obtained for a metabolite
M to its fragments M|F and vice versa. In this projection,
we want to avoid any unnecessary loss of measurement
information, that is, we want to obtain as many linearly

independent constraints to the isotopomer distribution of
F as possible. For example, if we have measured that a
two-carbon metabolite M has the isotopomer distribution

PM(00) = 0.2, PM(01) = 0.3, PM(10) = 0.4, PM(11) = 0.1

and we need to know the isotopomer distribution of the
fragment M|F consisting of the first carbon of M, we
should obtain

For the general model of isotopomer measurements (4)
the projection of measurement information from a
metabolite to its fragments can be done by the techniques
of linear algebra introduced in [21]. We recapitulate the
techniques in the following.

Recall the general form of isotopomer measurement SDM

= d, where S denotes a matrix with 2k columns, one col-
umn for each isotopomer b of k-carbon metabolite M, and
each row h of S corresponds to a measured isotopomer

constraint (3). The rows of S span a subspace  in a

2k dimensional vector space  spanned by all possible

isotopomer distributions DM.

Also the metabolite fragments are naturally represented as
vector subspaces. Let UF denote a matrix with also a col-
umn for each isotopomer M(b) and a row for each iso-
topomer F(b') of M|F, that is,

The rows of UF span another subspace . Any iso-

topomer distribution DM|F lies in this subspace, and hence

also any isotopomer constraint SFDM|F = d for fragment

M|F necessarily lies in the same subspace.

In conclusion, the available information about DM is

given as its linear projection onto , and anything we can
express about DM|F in terms of isotopomer constraints is

contained within . Thus, any isotopomer constraint

for DM|F that we can derive from the measurements can be

expressed in terms of the vector space intersection .

Thus, to obtain isotopomer constraints for fragment M|F
from a measurement SDM = d, we need to compute the
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vector space intersection  and project the

measurement to . This can be done by standard linear

algebra (c.f. [21]). This process gives us as output iso-
topomer constraints of the required form

YFDM|F = dF.

Finally, transforming a fragment constraint YFDM|F = dF
into an isotopomer constraint SDM = d is easy: we post-
multiply the fragment constraint with the matrix UM|F : S
= YFUM|F and d = dFUM|F.

Structural analysis of isotopomer systems
The incomplete nature of 13C measurement data requires
us to find ways to use the available data the best way pos-
sible. The central concept is to find invariants of iso-
topomer distributions that remain through the pathways,
and allow us to trade or propagate measurement informa-
tion from one metabolite to another. This allows us to
write or augment generalized isotopomer balances for
metabolites for which the isotopomer distributions are
not completely determined by measurements. Thus, the
fluxes are potentially more tightly pinpointed as well.

In particular, we use two techniques: First, flow analysis is
used to uncover sets of metabolite fragments that have the
same isotopomer distribution regardless of the fluxes. Sec-
ond, independence analysis of fragments is used to uncover
situations where two fragments of the same metabolite
induce the product distribution for the isotopomer distri-
bution of their union.

Flow analysis of metabolic networks
The goal of the flow analysis [27] is to partition the frag-
ments of the metabolites in the network to equivalence
classes such that fragments in the same equivalence class
have identical isotopomer distributions in every steady
state. This can be guaranteed if a fragment is produced
from another a such a manner that the carbons within the
fragment never depart from each other regardless of the
pathway that is being used.

Formally, we say that fragment F' dominates fragment F if
the following conditions are met

1. F and F' have the equal number of carbons;

2. all carbons of F originate always from the carbons of F';

3. carbon of F' stay connected to each other via all path-
ways from F' to F;

4. composite carbon mappings are the same in all path-
ways from F' to F.

Intuitively, a dominated fragment (F) is always produced
from its dominator (F') without manipulating the carbon
chain of the fragment. Thus, isotopomer distribution of
the dominated fragment does not contain any informa-
tion about the metabolic fluxes. For a fragment F that has
no dominators, the transitive closure of the domination
relation corresponds to the class of equivalent fragments
in the network.

The simplest example of fragment equivalence is the one
between a substrate Mk and product Mi in a single reaction
ρ. If the atoms in Mi|F originate from Mk|F', then the frag-
ments Mk|F' in the subpool Mij produced by reaction ρj,
are equivalent with the fragment Mi|F (Figure 1). Further-
more, if metabolite Mi has only one producing reaction ρj,
isotopomer distributions of subpool Mij and Mi coincide.
Thus, if fragment Mi|F is produced from a single fragment
Mk|F' of some substrate Mk of ρj, F and F'are equivalent. By
transitivity, all fragments in the linear pathway are equiv-
alent.

More complicated case of fragment equivalence is found
when a fragment of a junction metabolite is dominated by
an upstream fragment (Figure 3). In [27] we show that the
the classes of equivalent fragments corresponding the
conditions (1–4) can be efficiently computed. Very brie
fly, first the metabolic network is transformed to a frag-
ment flow graph that connects substrate metabolite frag-
ments to their product fragments for each reaction in the
network. Then, the dominator tree [37,38] of the frag-
ments in the fragment flow graph is constructed. It turns
out that the subtrees of this dominator tree correspond to
the required fragment equivalence classes (see Figure 4).

Fragment equivalence classes have many uses [27]. Most
importantly, measured isotopomer constraints to frag-
ment F can be directly propagated to another fragment F'
in the same equivalence class, by applying the joint car-
bon mappings between F and F'. This helps in the con-
struction of generalized balance equations (4) where the
same isotopomer information is required for each sub-
pool of junction metabolites.

Independence analysis of fragments
A complementary property to fragment equivalence 13C is
the statistical independence of fragment isotopomer dis-
tributions. Intuitively, if two fragments of the same
metabolite are statistically independent, new isotopomer
constraints to the union of them can be obtained by tak-
ing a product of the isotopomer distributions of the inde-
pendent fragments.

More formally, the basic question is on what conditions
the distribution DM|E∪F of union of two fragments will
necessarily have the form of a product distribution

  M F F| = ∩

i F,
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DM|E∪F = DM|E � DM|F (6)

where � denotes the tensor product consisting all terms of
the form PE∪F(b) = PE(b')·PF(b"), where b' (resp. b") ranges
over all isotopomers of E (resp. F), and b is the isotopomer
of M|E ∪ F formed by joining E and F.

The utility of fragment independence is in that it gives us
constraints to the isotopomer distributions that are com-
plementary to the isotopomer constraints (3) obtained
from the measurements.

In general, two criteria need to be satisfied for statistical
independence of two fragments M|E and M|F. First, the
fragments need to be structurally independent, meaning
that along all pathways producing the metabolite, at some
point all carbons of the fragments have resided in differ-
ent metabolite molecules. This property can be defined in

recursive manner. Fragments M|E and M|F are structurally
independent if for all carbon pairs (a, b), a ∈ E and b ∈ F,
for all reactions ρ producing M, it holds that

• a and b originate from different reactants of ρ, or

• a and b originate from the same reactant M', and the

reactant fragments M'|Fa and M'|Fb, where Fa = (a), Fb

= (b), are structurally independent.

The second necessary condition is that the two fragments
need to be dominated by some other metabolite frag-
ments in the network. This will make the fragment distri-
butions flux invariant. Together, the two criteria guarantee
(6) to hold.

A simple case of statistical independence of fragments is a
(subpool) product metabolite Mi of a single reaction ρj,
where the fragments Mi|E and Mi|F are disjoint and origi-
nate from different reactants. The fragments are structur-
ally independent (by originating from different reactants)
and are dominated (by reactant fragments of ρj). Hence
(6) holds. The underlying assumption here is that
enzymes pick their reactants independently and randomly
from the available pools. This case of statistical independ-
ence of fragments is depicted Figure 1, where white and
grey fragments of D-fructose 1,6-biphosphate are statisti-
cally independent (in the subpool of reaction ρj).

Another simple example is a junction metabolite Mi that

has two or more producers with associated subpools Mij.

If Mij|E and Mij|F are structurally independent in all sub-

pools, Mi|E and Mi|F are structurally independent as well.

If Mi|E and Mi|F are dominated by some fragments in the

network, all subpools have the same distribution which
takes the form of (6). Without dominance the distribution

 will in general be a flux-dependent mixture of

product distributions .

This case of statistical independence is depicted in Figure
5.

A generalized form of (6), useful for propagation of iso-
topomer constraints, is derived as follows. Assume inde-
pendent fragments M|E and M|F of metabolite M and
isotopomer constraints SE∪FDM|E∪F = dE∪F, SEDM|E = dE and
SFDM|F = dF, where S = SE � SF. Now, the the h'th constraint
for fragment E and g'th constraint for fragment F, written
as Σasah,EPM|E(a) = dh,E and Σcscg,FPM|F(c) = dg,F.

λρ
−1

λρ
−1

DM E Fi| ∪

D v D DM E F j M Ej M Fi ij ij| | |∪ = ⊗∑

An example of fragment equivalence classes in a branched pathwayFigure 3
An example of fragment equivalence classes in a 
branched pathway. An example of equivalence classes of 
fragments in the metabolic network that contains dominated 
junction fragments M|E and M|F. Grey and white fragments 
constitute two equivalence classes. Dashed lines depict car-
bon mappings.
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M

C – C - C

C – C - C

M|F M|E
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Multiplying the constraints, and denoting sb = sah,E·scg,F
where b is the isotopomer consistent with fragment iso-
topomers a and c, we get the following equation

for the l'th constraint for E ∪ F. The equations of the above
kind can be concisely written in terms of tensors:

d = SDM|E∪F = (SE � SF) DM|E � DM|F = dE � dF.
(7)

From above, if two of the three vectors d, dE, dF are known,
the remaining unknown one can be solved.

We note in passing that computing constraints to the
metabolite given constraints to the fragments is straight-
forward application of (7).

Applying fragment independence analysis to flux ratio computation
In our framework, statistical independence of fragments
has two uses. We apply it

1. to compute isotopomer constraints for the union of
independent fragments, given isotopomer constraints to
its independent fragments, and

2. to compute isotopomer constraints for an independent
fragment given isotopomer constraints to the other frag-
ments and the metabolite as a whole.

In both cases making use of (6) gives us a larger set of con-
straints than the vector space and flow analysis approach
alone.

Next we describe how (7) generalizes the basic measure-
ment propagation step of the traditional metabolic flux
ratio analysis [31]. In the basic case, the flux ratios are
solved for two competing pathways p and q, which p
cleaves a certain carbon-carbon bond b of junction M
while the q preserves b intact from the external substrate.
(See Figure 6 for an example). This serves also as an exam-
ple of applying (7) to compute isotopomer constraints for
the union of independent fragments.

When a uniformly labelled substrate is used, the labelling
degree of every carbon in the network is the same (and
known a priori) when the system reaches isotopomeric

steady state. Thus, the isotopomer distribution  of a

two-carbon fragment F (metabolite MF in Figure 6) con-

taining bond b can be computed by (7) for pathway p

cleaving b, while for pathway q,  can be propagated

d d s P a s P a sh E g F ah E M E

a

cg F M F

a

b, , , | , |( ) ( )⋅ =
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⋅
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=∑ ∑ PP b dM E F l E F

a

| ,( ) ,∪ ∪=∑

DFp

DFq

An example of a fragment flow graph and a dominator treeFigure 4
An example of a fragment flow graph and a dominator tree. A metabolic network (left), the corresponding fragment 
flow graph (up right) and the subtrees of the dominator tree (down right).
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from the external substrate (metabolite ME in Figure 6)

using the fragment equivalence classes of the previous sec-
tion. If we are able to measure (constraints to) the iso-
topomer distribution of the mixed pool F, we can then
automatically derive a generalized isotopomer balance
corresponding the manually derived ratio. To use (7) to
compute isotopomer constraints for an independent frag-
ment from the known isotopomer constraints to the other
independent fragment and to the whole metabolite is
complicated by the incompleteness of the measurement
data: an arbitrary measurement SDM|E∪F = d might not be

directly representable via a tensor product S = SE � SF.

Instead, we need to first compute isotopomer subspaces

An example of statistical independence of fragmentsFigure 5
An example of statistical independence of fragments. 
White and grey one-carbon-fragments of Mi are statistically 
independent: both fragments are dominated by one-carbon-
fragments of M, and the fragments are disjoint in every path-
way that produce Mi from M.

C -- C 

C C 

C -- C 

M

Mi

C C 

An example of using fragment independence to obtain new isotopomer constraints under uniform substrate labellingFigure 6
An example of using fragment independence to 
obtain new isotopomer constraints under uniform 
substrate labelling. Constraints to the isotopomer distri-
butions of striped metabolites are assumed to be known, 
either by direct measurement of measurement propagation. 
In pathway q = (ρ2, ρ4), the isotopomer distribution of MF 

molecules will be the same as in ME. In pathway p = (ρ1, ρ3), 
the isotopomer distribution of MF can be derived by applying 
fragment independence: the isotopomer distributions of sin-
gle carbon metabolites produced by ρ1 are known a priori to 
be equal to the labelling degree of uniformly labelled sub-
strate. As the two carbons of MF3 are produced from two dif-
ferent metabolites, these carbons are statistically 
independent to each other in the subpool and the iso-
topomer distribution D( ) of MF molecules produced by 

p can be computed by applying Equation 7.

C 

1 2

3 4
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C C - C 

C - C 
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Page 13 of 19
(page number not for citation purposes)

IV/13



BMC Bioinformatics 2008, 9:266 http://www.biomedcentral.com/1471-2105/9/266
for known isotopomer constraints where (7) can be
applied.

The detailed description of this technique is rather techni-
cal and omitted from this article. Here we give an example
of the technique (See Figure 7). We assume that we know

the mass isotopomer distributions  of metabolite Mi

(metabolite M1 in Figure 7) and  of fragment Mi|E.

We furthermore assume that Mi|E and Mi|F are independ-

ent. From this information the mass isotopomer distribu-

tion of  can be solved. To be exact,  can be

solved from the system containing an equation

for each mass isotopomer p of Mi. To see that (8) con-

forms to (7), we denote the measured mass isotopomer

distribution  = S·D(Mi) of Mi by dM (i.e. rows of coef-

ficient matrix S correspond to different mass isotopomers
of Mi) and the measured mass isotopomer distributions of

E and F by dE and dF. Let |E| = 2, |F| = 1 and |Mi| = 3, thus

Mi = E ∪ F. We have

with the tensor product

As the two matrices are not the same (7) is not directly
applicable. However, by summing up the second and the
third rows and the fourth and the fifth rows of SE � SF we

obtain S. Intuitively, this means that Equation (7) can be

applied to compute , when we take into account that

the isotopomer constraints corresponding both second
and third rows of SE � SF contribute to mass isotopomer

Mi(+1), while the isotopomer constraints corresponding

fourth and fifth rows of SE � SF contribute to mass iso-

topomer Mi(+2). (From the definition of the tensor prod-

uct we see that, for example, the second row of SE � SF

corresponds to isotopomer constraints PE(00)·PF(1) =

PE(+0)·PF(+1) and the third row corresponds to the con-

straints PE(01)·PF(0) + PE(10)·PF(0) = PE(+1)·PF(+0),

thus validating our intuitive observation.) When the
similiar information for all rows of SE � SF is collected to

a linear equation system, we will obtain the following

constraints to the mass isotopomer distribution 

(which in the case of one-carbon-fragment M|F coincides
with the isotopomer distribution DM|F):
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An example of using fragment independence to obtain new isotopomer constraints for a reactantFigure 7
An example of using fragment independence to 
obtain new isotopomer constraints for a reactant. 
The mass isotopomer distributions of striped metabolites are 
assumed to be measured. Fragments M1|E and M2 belong to 
the same fragment equivalence class. Thus, Dm(M1|E) can be 
derived from Dm(M2) by the measurement propagation inside 
equivalence classes. Furthermore, fragments M5|E' and M5|F' 
dominate fragments M1|E and M1|F, and the bond between 
M1|E and M1|F is broken in all pathways producing M1 from 
M5. Thus, M1|E and M1|F are statistically independent, and 
Dm(M1|F) can be deduced from Dm(M1) and Dm(M1|E) by uti-
lizing Equation 7. Computed Dm(M1|F) can then be propa-
gated to M4, as M1 and M4 belong to the same fragment 
equivalence class. Finally, Dm(M4) helps to solve the ratios of 
fluxes entering to M3.
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which is equal to (8).

Calculability analysis
Isotopomer tracer experiments using less common carbon
sources can be very costly because of the prices of purpose-
fully labelled substrates. Thus, it is very useful to be able
to first conduct in silico calculability analysis to find out,
whether it is even in principle possible to obtain the
required flux information from the tracer experiment. By
analyzing the fragment equivalence classes, it is relatively
easy to perform this kind of "structural identifiability
analysis" (cf. [39,40] for global isotopomer balancing),
that is, to discover the set of junction metabolites for
which the flux ratios can be calculated (in the best case)
from the given measurement data: it is enough to check
what type of isotopomer constraints

can be propagated to each subpool Mij of junction metab-
olites Mi from the measured metabolites (we need to
know only coefficients sbij, not the isotopomer abun-
dances dij). Then, by applying the techniques of comput-
ing vector subspace intersection described above, we can
compute the maximal number of linearly independent
constraints obtainable for the flux ratios of each junction.
Thus, it is possible to check before costly and time-con-
suming wet lab experiments, whether the experiments
even have potential to answer the biological questions at
hand. The results of the calculability analysis tell which
flux ratios are in principle determinable, given the label-
ling of external substrates, topology of the metabolic net-
work and the available measurement data. It then
depends on the actual flux distribution and the accuracy
of the measurements, whether these ratios can be reliably
determined from the experimental data.

Estimating the flux distribution of the metabolic network
In the main step of our framework for 13C metabolic flux
analysis, the fluxes of the metabolic network are estimated
by forming and solving generalized isotopomer balance
equations (4). The generalized isotopomer balance equa-
tions are based on the isotopomer measurement data that
is first propagated in the network to unmeasured metabo-
lites by utilizing the results of the structural analysis pre-
sented above.

Measurement propagation
The aim of the propagation of measurement data is to
infer from the isotopomer constraints of measured metab-
olites as many isotopomer constraints as possible to
unmeasured metabolites. As a rule of thumb, more con-
straints the unmeasured metabolites will get more gener-

alized isotopomer balance equations (4) bounding the
fluxes can be written.

Fragment equivalence classes can be utilized in the meas-
urement propagation: from isotopomer constraints
known for fragment Mi|F isotopomer constraints for other
fragments Ml|Fk in the equivalence class of F can be easily
computed. The process is the following:

1. Before measurements are propagated from fragment
M|F of measured metabolite M to other fragments in the
equivalence class of F, isotopomer constraints to F are
computed from the constraints measured to the whole
metabolite M by using the vector space projection tech-
niques (see Section Projection of isotopomer measurements to
fragments).

2. The fragment constraints are propagated to all frag-
ments F' that have been found equivalent to F via the flow
analysis technique.

This requires mapping of isotopomers of F to isotopomers
of F' by applying the carbon mappings of the reactions
along any pathway between F and F'.

3. After the propagation of measurement data inside the
fragment equivalence classes, new isotopomer constraints
for independent fragments of the same metabolite can be
derived, as described in Section Independence analysis of
fragments.

Steps 2 and 3 can be iterated until no new isotopomer
constraints to the fragments are discovered.

Construction of generalized isotopomer balances

After the propagation step, we have some isotopomer con-

straints  for each subpool j of every junction

metabolite Mi. (For non-junction metabolites, iso-

topomer balance equations do not contain any additional
flux information compared to the mass balances.) In the
best case we know complete isotopomer distribution

, in the worst case we have only trivial constraints

stating that the sum of relative abundances of all iso-
topomers equals one.

Next, a linear equation system containing flux constraints
obtained from mass balances (1) and generalized iso-
topomer balances (4) is constructed.

However, the isotopomer constraints of different sub-
pools do not yet conform to (4) as the matrices Sij are not
necessarily the same.

s P b dbij M

b

ijij∑ =( ) , (9)

S Dij M ijij
= d

DMij
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Thus we still need to compute a common subspace

 (  is spanned by the rows of Sij) of the iso-

topomer constraints known for each subpool Mij and

project subpool constraints  to .

This can be done with the same techniques that were pre-
viously applied to project measured isotopomer informa-
tion of a metabolite to its fragments. Let Yi be a matrix

with row space . After the projection we obtain iso-

topomer constraints  for each subpool Mij

(See Figure 8 for an example).

Now the isotopomer constraints of all the subpools lie in

the same subspace of  and we are ready to write the

system of generalized isotopomer balance equations (4)
for every junction Mi:

that is,

where gi = βizi0.

Estimating the fluxes
The ratios of (forward) fluxes producing Mi can be com-
puted by solving the corresponding Equation (11) aug-
mented with a constraint that fixes the out flow from Mi
to equal 1. Thus, we obtain flux ratios of junction metab-
olites without manual derivation of ratio equations, with-
out nonlinear optimization and without knowing intake
and outtake rates of external metabolites or biomass com-
position.

In addition, when the equations (11) of all junction
metabolites are combined with the mass balances (1) of
non-junctions, we obtain a linear equation system

constraining the fluxes v of the network that contains a
block (junctions) or a row (non-junctions) Ak for each
metabolite Mk. Measured external fluxes and other known
constraints, such as the composition of biomass can also
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An example of the computation of the common subspace of isotopomer constraints in different subpoolsFigure 8
An example of the computation of the common subspace of isotopomer constraints in different subpools. The 
mass isotopomer distribution of junction metabolite M1 is assumed to be measured. For the in flow subpools M11 and M12 we 
obtain isotopomer constraints from the above reactant metabolites by measurement propagation. These propagated con-
straints must be projected to mass isotopomer to the subspace defined by the mass isotopomer distribution of M1 before gen-
eralized isotopomer balances are constructed.
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be added to (12) as additional constraints. Additional
constraints, like ones derived from gene regulatory infor-
mation [41] or from thermodynamic analysis of metabo-
lism [42-44] can also easily be included to (12).

If (12) is of full rank, the whole flux distribution can be
solved with standard linear algebra [45]. Also, more com-
plex, nonlinear methods can be applied to model the
effect of experimental errors to the estimated flux distribu-
tion [20]. In a common case where the system is of less
than full rank, a single flux distribution can not be pin-
pointed without additional constraints. Instead, (12)
defines the space of feasible flux distributions, that are all
equally good solutions. In that case we can apply tech-
niques developed for the analysis of stoichiometric matri-
ces to determine as many fluxes as possible [46] from
(12). More generally, by linear programming we can
obtain maximum (resp. minimum) values for each flux vi:

where  and  are predetermined minimum and

maximum allowable values for vi

Furthermore, it is possible to search for in some sense
optimal flux distribution – for example a flux distribution
maximizing the production of biomass – from the feasible
space defined by (12) by linear programming techniques
of flux balance analysis [1,3,47,48]. In that case, iso-
topomer data constrain the feasible space more than the
stoichiometric information would alone do, thus possibly
allowing more accurate estimations of the real flux distri-
bution.

Statistical analysis
For an experimentalist, it is important to know how sensi-
tive the obtained estimation of fluxes is to measurement
errors. If enough repeated measurements are not available
to assess this sensitivity, it has to be estimated by compu-
tational techniques. In the global isotopomer balancing
framework for 13C metabolic flux analysis, many mathe-
matically or computationally involved methods have
been developed to analyze the sensitivity of estimated flux
distributions to errors in isotopomer measurements and
the sensitivity of the objective function to the changes in
the generated candidate flux distributions [49-53].

As our direct method for 13C metabolic flux analysis is
computationally efficient, we can afford to a simple, yet
powerful Monte Carlo procedure to obtain estimates on

the variability of individual fluxes due to measurement
errors:

1. For each measured metabolite Mi: By studying the vari-
ability in the repeated measurements, fix the distribution
Ωi from which the measurements of Mi are sampled.

2. Repeat k times:

(a) For each measured metabolite Mi: sample a measure-
ment from Ωi.

(b) Estimate fluxes vl from the sampled measurements.

3. Compute appropriate statistics from the set V = {v1, ...,
vk} to describe the sensitivity of fluxes to measurement
errors.

Possible statistics that can be applied in the last step of the
above algorithm include standard deviation, empirical
confidence intervals [53], kurtosis, standard error etc. of
each individual flux vj and measures of "compactness" of
V, such as (normalized) average distance of items of V
from the sample average.

Experimental NMR and GC-MS methods
In this section we shortly describe the experimental proce-
dures applied in NMR and GC-MS isotopomer measure-
ments that produced the data for Section.

In the first experiment S. cerevisiae was grown in an aero-
bic glucose-limited chemostat culture at dilution rate 0.1
h-1. After reaching a metabolic steady state, as determined
by constant physiological parameters 10% of the carbon
source in the medium was replaced with fully carbon
labelled glucose ([U-13C]) for approximately 1.5 resi-
dence times, so that about 78% of the biomass was uni-
formly labelled. 2D [13C, 1H] COSY spectra of harvested
and hydrolysed biomass were acquired for both aliphatic
and aromatic resonances at 40°C on a Varian Inova 600
MHz NMR spectrometer. The software FCAL v.2.3.0 [19]
was used to compute isotopomer constraints for 15
amino acids from the spectra. Detailed description of the
cultivation set up can be found in [54] whereas similar 13C
labeling set up, NMR experiments and spectral data anal-
ysis as were applied here have been described in [55].

In the second experiment B. subtilis was grown on shake
flasks containing 50 ml M9 minimal medium. In the
experiment, the medium was supplemented with 50 mg/
L tryptophan and 3 g/L glucose labelled to the first carbon
position ([1-13C]) (99%; Cambridge Isotope Laborato-
ries) or a mixture of 0.6 g/L fully carbon labelled glucose
([U-13C]) (99%; Cambridge Isotope Laboratories) and
2.4 g/L unlabeled glucose as the sole carbon source. Four-
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teen derivatized amino acids were analyzed for 13C labe-
ling patterns with a series 8000GC combined with an
MD800 mass spectrometer (Fisons instruments). More
information about the details of the measurement proce-
dure can be found from [20] where identical measure-
ment techniques were applied.
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Metabolisms of microorganisms contain possibilities for conversions of simple 
source molecules to unlimited number of biochemicals and for degradation 
of even hazardous compounds. Rates of metabolic reactions are called fluxes. 
They are in sense process streams of a cell factory in case of biotechnologically 
important organisms. Since the fluxes are time-dependent, they cannot be directly 
measured but have to be inferred from other, measurable, quantities by modelling 
and computational analysis. 13C-labelling is crucial for quantitative analysis 
of fluxes through alternative pathways inside the cells. Fluxes emerge as an 
ultimate phenotype of an organism from an integrated regulatory function of the 
underlying networks of complex and dynamic biochemical interactions. Inferring 
fluxes and their regulation in simple model organisms aids in understanding for 
example metabolic disorders in human. The dissertation considers modelling of 
metabolism and 13C-labelling for quantitative analysis of metabolic fluxes in yeast 
Saccharomyces cerevisiae that is an important biotechnological production and 
model organism, and in yeast Pichia pastoris and in fungus Trichoderma reesei that 
serve as efficient hosts for protein production. 
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